
=====:.- -- --- -.... --..... ------ ---- ---- -----===;=' = ":' Program Product

APL \360 Primer
Program Nos. 5734-XM1

5736-XM1

This primer provides an introduction to the
APL/360 system and to the APL programming
language. It discusses the mechanics of using
the system, and shows how to write represent­
ative programs for a variety of applications.
The treatment is elementary. For a discussion
of advanced system features and available opera­
tions, refer to the APL/360 User's Manual
(GH 2 0 - 06 8 3) .

GH20-0689-1

ACKNOWLEDGEMENTS

This Primer was written by Paul Berry of the IBM
Research Division, T. J. Watson Research Center, Yorktown
Heights, New York. The text benefitted greatly from the
suggestions, criticisms, and comments of the readers of the
various early drafts, and especially those of A. D. Falkoff,
K. E. Iverson, J. C. McPherson, L. M. Breed, and R. H.
Lathwell. The final draft was completed with the technical
assistance of Miss C. Conroy.

The text was entered at a terminal, and edited and
composed by an APL\360 program. The master pages were then
typed by the computer at the terminal, using an IBM courier
typing element.

This edition is a reprint incorporating Technical Newsletter GN20-2124. It does not
obsolete the previous edition (GH20-0689-0) as updated by GN20-2124.

This manual and the program to which it applies are distributed without warranty on an "as is"
basis by IBM under a modified License Agreement for IBM Program Products, and an Agreement
of Understanding. Reference should be made to those documents for information on the con­
ditions under which this manual and the program are distributed.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Technical Publications Department,
112 East Post Road, White Plains, New York 10601.

This publication revises and supersedes C20-1702-0.

© Copyright International Business Machines Corporation 1969

i

CON TEN T S
= = = = = =

PART J

1: INTRODUCTION 1

Why an APL Primer? 1
What Is a Remote-Terminal Time-Sharing System? 1
What Is a Computer Program? 2
What Is a Programming Language? 4
PO"v~er, Relevance, and Simplici ty in a Programming Language 4
How to Read This Primer 5

2: COMMUNICATING WITH THE COMPUTER

What Equipment Do You Need?
The APL Typeface
Establishing the Telephone Link
Whose Turn to Type?
Distinguishing Who Typed What
Fixing Typing Errors As You Go
Overstrikes Not Allowed
Visual Fidelity
Interrupting the Computer

3: BASIC OPERATIONS IN ARITHMETIC

7

7
7
8
9

10
10
11
11
12

13

The Workspace 13
The Two Modes of Operation: Execution vs. Definition 13
Addition, Subtraction, Multiplication, and Division 14
The Idea of a Variable: Associating a Name with a Value,

and Storing Them 15
Storing or Printing the Result of a Calculation 15
Using the Stored Valu~ of a Variable 16
Possible Names for Variables 17
Storing a Result under a Name That Has Already Been Used 17
Referring to a Variable Which Has No Value 18
Examples of Arithmetic with Variables 18

4: MORE ARITHMETIC OPERATIONS

Negation
Reciprocals
Monadic and Dyadic Operators
Raising to a Power (Exponentiation)
Taking a Root
Maximum: Taking the Larger of Two Numbers
Minimum: Taking the Smaller of Two Numbers
The Floor and the Ceiling of a Number
Rounding to the Nearest Integer
Summary of Arithmetic Operators Mentioned Thus Far

21

21
21
21
22
22
23
24
25
26
26

ii

5: SEVERAL OPERATIONS IN THE SAHE INS'liRUCTION

Order in Which Operations Get Executed in APL
Use of Parentheses
Rewriting the Earlier Examples

with Several Operations in the Same Instruction
Do You HAVE to Write Many Operations

In a Single APL Instruction?

6: ENTERING THE DEFINITION OF A PROGRArvl SO THAT IT CAN

27

27
29

31

32

BE USED REPEATEDLY 33

Starting the Definition
Focal Length of a Lens: A Simple Calculcation to

Illustrate Program Definition
Sample Use of the Program Just Defined
Another Sample Program: Efficiency of a Diesel Engine
Writing the DIESEL Program in a Single Line
An Instruction in One Program Can Call for the

Execution of Another Program

7: DISPLAYING OR CHANGING THE PROGRAM AFTER YOU'VE

33

34
36
37
38

39

DEFINED IT 41

Adding Another Line 41
Replacing a Line 42
Displaying What is Already on a Line 42
Displaying the Whole Stored Definition 44
Inserting a Line between Lines That Are Already Defined 44
Deleting a Line of the Definition 46
Changing the Program's Header 47
Erasing Programs or Variables Entirely from Your Norkspace 47

8: REPRESENTING NUMBERS

Decimal Form
Exponential Form
Negative Numbers
Negative Numbers in Exponential Form
Very Small Numbers
Precision of Numbers
Number Display
Which Form Does the Computer Use?

9: TESTING THE TRUTH OF A RELATIONSHIP

Example of Test for Equal
How Close Is Equal?

49

49
50
51
51
52
52
52
53

55

56
57

iii

10: MORE OPERATIONS IN ARITHMETIC

Absolute Value
Residue and Remainder
Powers of the Natural Constant e
Logarithms
Natural Logarithms
Antilogs
Logical Operations
Logical OR
Logical AND
Exclusive OR
NOT: Logical Negation
Getting a Variable's Sign with the Signum Function
Sine, Cosine, and Tangent

11: CONTROLLING THE SEQUENCE IN WHICH THE LINES
OF A PROGRAM ARE EXECUTED

59

59
59
60
61
62
62
62
63
63
64
65
65
66

67

"Ordinary" Order of Execution 67
Branches 67
Branching Out of a Program 68
Computed Branches 68
The Factorial: An Example of a Program with a Branch 69
Program Loops 70
The Roots of a Quadratic: Another Example of a Program

with a Conditional Branch Out 70
Branch or Continue 71
The Factorial Again: An Improved Version Using Two

Branch Instructions 73

12: ARRANGING THE WAY THE PROGRAM TYPES ITS OUTPUT

Printing Text
Results and Heading Appearing on the Same Line

13: LINE LABELS FOR EASIER BRANCHING

14: WHAT TO DO WHEN THE PROGRAM STOPS

Halt When an Instruction in Your Program Can't Be

77

77
80

81

83

Executed 83
A Program Error Doesn't Mean That Execution Is AllOver 84
Resuming Execution 85
Where Was Work Suspended? 86
Terminating Execution of All Halted Functions 87
Changing Individual Characters Within a Line 87
Illustration: Using Character Editing to Correct a Mistake

in a Program 88
Editing Characters in the Program Header 91
Tracing the Execution of a Program 91
Suspending Execution Part Way Through 92
Stop or Trace Can Be Controlled by the Program Itself 92

iv

'IS: SYSTEM COMMANDS 93

Distinguishing System Commands from Other Instructions 93
Signing On 93
Signing Off 94
Holding the Telephone Line for the Next User 94
Establishing a Sign-On Password 94
Saving a Workspace 95
Naming a Workspace 96
Your Library of Saved Workspaces 96
Bringing a Saved Workspace into the Active Area 97
Loading a Workspace from a Public Library 97
Saving a Workspace into a Public Library 98
Loading a Workspace from the Private Library of Another

User 98
Dropping a Workspace from Your Library 99
Automatic Saving: Signing Off with "Continue" 99
Automatic Continue When a Connection Is Broken 100
Diagram Summarizing Information Flow Between You,

Your Active Workspace, and Saved Workspaces 101
Clearing the Active Workspace 103
Sending a Message to the Operator 103
Broadcast Messages 104

PART II

16: VECTORS: PARALLEL PROCESSING OF THE ELEMENTS
OF ARRAYS 105

Entering a Vector of Numbers 105
Parallel Processing of Vectors 106
Using Parallel Processing in some of the Problems

Introduced Earlier 107
Vectors Must Have Matching Lengths 107
Extending a Single Number to Match the Length of a Vector 108
Parallel Processing Requires All the Elements

to Be Treated in the Same Way 110
Adjusting a Formula to Facilitate Work with Vectors III
A Vector in a Branch Instruction 112

17: "REDUCING" A VECTOR: APPLYING THE SAME OPERATION
TO ALL THE ELEMENTS 113

Summation 113
Product 114
Maximum Reduction: Looking for the Largest 114
Minimum Reduction: Looking for the Smallest 115
OR Reduction: Looking for "Any" 115
AND Reduction: Looking for "All" 116
Example Using the Sum of Products: Price Times Quantity

Ordered 117
The Area under a Curve 117

v

18: GENERATING ARRAYS AND FINDING THEIR DIMENSIONS

Generating an Array by Reshaping
vectors of Literal Characters
An Array Can Have Zero Length
Generating Consecutive Integers
Finding Out the Shape of an Array
What Is the Shape of a Single Number?
Another Example Using Parallel Processing of Vectors:

The Correlation Coefficient

19: SELECTING PARTICULAR ELEMENTS FROM AN ARRAY
BY USING INDEX NUMBERS

Respecifying Certain Elements Within an Array
The Index Numbers May Result from an Expression
Indexing an Expression
Indexing by an Empty Vector of Indices
Indexing a Matrix

20: FINDING THE INDEX NUMBERS THAT LOCATE
PARTICULAR ELEMENTS WITHIN A VECTOR

119

119
120
121
121
122
124

125

127

127
128
128
129
129

131

Finding Several Indices at Once 131
Indexing Works Just as Well for Arrays of Literal

Characters 132
Looking for the Index Number of a Value

That Isn't There 133
The Index for a Value that Occurs at Several Locations

In the Vector 134
An Example Using Iota to Find Index Numbers:

Evaluating Hexadecimal Representations 134

21: CATENATION: BUILDING A VECTOR BY CHAINING
ITEMS TOGETHER

Building a Vector of Results by Catenating the Latest

137

Result to the Earlier Ones 139
Example Using Catenation: Accumulating Primes 139
Making Any Variable Into a Vector 141
Inserting New Elements Between Existing Elements

of a Vector 141
Building Pascal's Triangle: An Example Using Catenation 143

22: LOOPS

Exit from a Loop
Leading Decisions

vi

Standard Procedure for Writing a Loop with a Counter
An Iterative Program to Print an Interest Table
Alignment of Output in Columns
Interest Table with Output as a Matrix
Interest Table with Fixed Format on Each Line
A Footnote: the PRINT Program
Paying the Mortgage
An Iterative Program for Finding Prime Factors

23: COMPRESSION: SELECTING SOME ELEMENTS FROM A
VECTOR AND OMITTING OTHERS

Tests of the Truth of a Relationship Provide the Zeroes

145

145
146
147
148
149
149
150
152
153
154

157

and Ones Needed to Control Compression 158
Example: Compression and the Sieve of Eratosthenes 159
Another Program Using Catenation and Compression:

Sorting the Elements of a Vector 162
A More General Form of the Sorting Program 163
The Primitive Functions for Sorting 165
Why the Branch-or-Continue Instruction Includes

a Compression 165

24: THE PROGRAM ASKS FOR INPUT, GETS IT, AND THEN PROCEEDS 167

Example of Input to a Program: Crystal Lattice Problem 168
Input as Literal Characters 170

25: DEFINED FUNCTIONS THAT HAVE ARGUMENTS AND RESULTS 173

The Idea of a Function 173
The Arguments and the Result of a Function 173
Programs as the Definitions of Functions 174
The Definition of a Function That Takes an Argument

and Returns a Result 176
GCD: A Simple Function of Two Arguments 177
Six Possible Forms for a Function Header 177
What Happens When the Computer Executes a Function

with Arguments or a Result 178
A Simple Function of Two Arguments: Area of a

Segment of a Circle 179
Another Example with Two Arguments:

Converting Pounds to Dollars 181
Compound Expressions Using Defined Functions:

Another Approach to the Correlation Coefficient 182
Changing a Function's Syntax After You've Entered

Its Definition 184
Variables That Are Local to the Execution of a Function 185
Global vs. Local Variables 185
Displaying the Value of a Local Variable 186
Additional Local Variables Other Than the

Arguments or Result 18h

vii

A Mystification to Avoid 187
Editing the Definition of a Function that Has Arguments,

a Result, or Local Variables 187
Spaces Separate a Function from Its Arguments 187

26: TRANSFERRING PROGRAMS OR DATA FROM SAVED
WORKSPACES TO THE ACTIVE WORKSPACE

Grouping of Functions and Variables
Listing the Names of Groups and Their Members
Dispersing a Group
Erasing the Members of a Group
Protected and Unprotected Copying
Copying an Entire Workspace into a Cleared Workspace
Commands That Summarize ~vhat' s in Your ~'Vorkspace

APPENDIX A: NOTES ABOUT WHAT HASN'T BEEN MENTIONED

Encoding and Decoding the Representations of Numbers
Factorial
Combinations Operator
Residue with Nonintegral Left Argument
Nor and Nand
Multidimensional Arrays
Indexing of Multidimensional Arrays
Matrix Products
Generalized Matrix Product
Outer Product
Transposition of an Array
Reversal of an Array
Rotation of an Array
Compressing a Multidimensional Array
Expansion of an Array
Random Numbers: Roll and Deal
System and Program Information
Library Functions

Additional System Commands
Change of Origin
Locking a Function
Locking a Workspace
Width Control
Messages Between Terminals
Identifying Who Else Is Signed On

APPENDIX B: SUMMARY OF SYSTEM COMMANDS

Terminal Control Commands
Workspace Control Commands
Library Control Commands
Inquiry Commands
Communication Commands

189

189
191
191
191
191
192
193

195

195
196
196
196
196
197
197
198
198
199
199
200
201
202
203
204
205
205

207
207
207
207
208
208
208

209

209
211
214
215
216

viii

APPENDIX C: TABLE OF APL OPERATORS

Standard Scalar Operators
Generalized Matrix Operations
Generalized Reduction
Compression and Expansion
Other Operators
Symbols Having Special Functions

APPENDIX D: TRIALS AND ERRORS

217

217
218
219
219
219
220

222

Form of Error Messages 222
Errors Are Described from the Computer's Point of View 223
Resend (Transmission Error) 224
Character Error 224
Value Error 224
Domain Error 225
Syntax Error 225
Rank Error 226
Length Error 226
Definition Error 226
Depth Error 227
Label Error 227
WS Full 228
System Error 228

APPENDIX E: EQUIPMENT YOU NEED TO USE APL \ 360

The 1050 System
The 2741 Terminal
Coupling to the Transmission Line

Index

229

229
230
230

233

PART I

1: INTRODUCTION

Why an AP~ Primer?

The APL\360 System puts an advanced computing system
within the reach of a wide range of users. APL\360 is
distinguished from earlier systems of this type by its speed
and power, and by the radical simplicity of the instructions
which control it. This combination makes APL well suited not
only to the advanced scientific or technical user, but also
to the occasional user and to the user with little or no
previous experience with computers.

This primer is intended to provide an introduction to
the APL\360 System and to the APL programming language. It
will show you the mechanics of using the system, and how to
write effective programs to cover a wide range of
applications. It explains in detail many points which the
experienced user will find obvious--and you may therefore
prefer to skip some portions.

Because this is a primer, little use will be made of a
number of the more advanced features of the system; the
primer doesn't describe all of the operations available, and
mentions only a few of the specialized applications that are
possible using APL. However, even at this rather elementary
level, you will already have at your command all you will
need for a wide range of uses--and frequently more than \.,as
available even to the experienced users of earlier systems.
If you subsequently go on to more advanced material, you
will learn ways in which the programs included in this
primer could have been made neater or simpler or more
general. But that is beyond the scope of a primer. Complete
definitions of all of the operations in the APL language and
all of the features of the APL\360 System may be found in
the APL\360 User's Manual. Here we are concerned with provid­
ing you with a basic orientation to the way the system is
used, and arming you with the fundamental skills needed to
make APL\360 work effectivel1 for you.

What is a Remote-Terminal Time-Sharing System?

APL\360 is a time-sharing system with remote terminals.
Let's consider each of those terms in turn.

"Remote terminal" means that you don't come to the
computer in order to use it. Instead, you use a special kind

2

of electric typewriter installed wherever it is convenient.
This typewriter is equipped for tele-processing: in addition
to serving as a regular office typewriter, it can be
connected by telephone to a large computer located miles
away. When you type something on the typewriter, what you
type is transmitted to the computer. Within seconds you can
receive the response transmitted over the telephone lines
from a.computer you have never seen. The computer is able to
take control of the typewriter and cause it to type the
computer's reply. A typewriter that is connected to a
computer in this fashion is called a "terminal" of the
computer. It is "remote" because the connection is by way of
the public telephone lines, so that the typewriter can be
located anywhere that a telephone line can reach.

"Time sharing" means that the central computer is
capable of serving many customers at once. Actually it
serves them in rotation; each one gets a tiny fraction of
the computer's time, but the computer's operating speed is
so high that often there is no appreciable delay between the
time you type your request and the time the computer types
its response. Even for problems of moderate size, a response
may be received within a few seconds. Time sharing permits
you to have apparently continuous use of a large computer,
while paying a charge based on the far smaller amount of
time that the computer is actually working on your problem.
APL\360 has a conversational style, which permits you to
make a request, get an immediate answer, then make another
request, and so on. This would be prohibitively expensive if
you had to tie up an entire computer to do it. Time sharing
serves both to keep the computer in efficient use and to
share its cost among many customers.

The letters APL designate the programming language that
is the outgrowth of the work of K. E. Iverson, first at
Harvard and then at IBM. The name comes from the initials of
his book A Programming Language (New York: Wiley, 1962).
APL\360 is the computing system which uses this language
with IBM System/360 computers.

What Is a Computer Program?

A program is a set of instructions that tell a computer
how to do something. A computer has to work from coded
instructions which are usually stored inside it. When you
want a job done, you must tell the computer precisely what
you want it to do; no instructions, no work. The word

)

3

"program" has been used in this sense only since the advent
of the computer. But the underlying idea of a set of precise
instructions that are to be carried out literally and in
sequence is older and more familiar. A cook book is an
obvious example of an attempt to summarize, in order, those
things that the cook must do in order to produce an
unfamiliar dish. What is different about a computer program
is the speed with which the computer can carry out its
instructions, and the literal faithfulness with which the
computer follows what it is told.

Sometimes the literalness of the computer requires you
to be more precise than you would be if you were simply
giving directions to a friend. If the instruction you give a
computer can be carried out, the computer will carry it out,
regardless of whether it is what you really had in mind. So
you have to be careful to state your instructions in a way
that correctly describes what you want. If the instruction
is wrongly spelled, or otherwise impossible to accept as
stated, the computer will stop and report what you
instructed it and why it cannot proceed. Human beings might
hazard a guess at what you meant by an incorrect
instruction, but the computer doesn't.

The computer has to be able to understand the
instructions you give it. Computers do not understand
English; although they may be programmed to recognize a
handful of English words, the natural language is too rich,
too complex, and too ambiguous for them. Moreover, English
is ill-suited to describe many of the things that you might
want to ask a computer to do. Calculations can be described
far more neatly, clearly, and briefly by the symbols of
arithmetic. That is why we describe a calculation by a
formula rather than in English words.

The designers of the traditional notations of
arithmetic and algebra did not foresee all of the things you
might want to ask a computer to do, and hence arithmetic and
algebra do not contain all the symbols that are needed. This
makes it necessary to have a speGial language for writing
programs of computer instruqtions. Tnat language is more
extensive than conv~nt~onal arithmetic, but much more
restricted and pre~ise thqn natural English~ The language in
which the computer is prepared to aocept its instructions is
its programming language.

4

Wha t ~ s ~_£E?-2E~~~~.'1.; .. l:r~.~9:.~~9.~.?

A programming language is the language in which you
(the user) tell the computer what it must do. Most of this
primer is concerned with APL, the programming language of
the APL\360 System. A set of instructions written in APL can
also be carried out by any person who knows the language:
they don't have to be executed by a machine. A progra~~ing
language is thus a way of stating a procedure, regardless of
who or what actually executes the procedure.

Inside the hardware of the computer, all of its
instructions and all of the data it works with are encoded
as patterns of electronic pulses. This is the electronic
language internal to the machine. You don't need to know
anything about this language in order to use the computer.
All of your communication with the computer ~vill be in APL.
The computer will then translate that into instructions in
its own internal language, and then execute them.
Internally, the machine works by carrying out only one very
small and very simple step at a time. One APL instruction
that you type may easily start a sequence of hundreds or
even thousands of machine instructions before the work is
completed. But these are executed so rapidly that the
machine completes several thousand a second. The machine
sets up its internal instructions in response to the brief
instructions that you type in APLi you need never be
concerned with the internal operation of the computer.

Power, Relevance r and S~mEli9,.t~.y
In a Programmin~L L.a_llSL~~g.~.

A programming language should be relevant. That is, you
should have to write only what is logically necessary to
specify the job you want done. This may seem an obvious
point, but many of the earlier programming languages forced
the user to be concerned as much with the internal
requirements of the machine as with his own statement of his
problem. APL\360 takes care of those internal considerations
automatically.

A programming language needs both power and simplicity.
By power, we mean the ability to handle large or complicated
tasks. By simplicity, we mean the ability to state what must
be done briefly and neatly, in a way that is easy to read
and easy to write. You might think that power and simplicity
are competing requirements, so that if you have one you

)

5

can't have the other, but that is not so. Simplicity does
not mean that the computer is confined to doing simple
tasks, but that the user has a simple way to write his
instructions to the computer. The power of APL as a
programming language comes in part from its simplicity; it
is this simplicity that makes it simultaneously well suited
to the beginner and to the advanced user.

How to Read This Primer

If thLs is your first introduction to the use of
APL\360, after you've glanced through the primer to get a
general impression of its contents, it would probably be
wise to sit down at an APL\360 terminal with the book beside
you. Then you should tryout the calculations and programs
in the text. Add variations or explorations of your own;
that's one of the advantages of a conversational system:
it's so easy to experiment. See for yourself how the system
responds to your instructions.

After this early stage, you will probably find it more
useful to come back to various passages as the need for them
arises; the table of contents and the index should help you
find what you need. You should also have q copy of the
APL\360 User's Manual, which gives complete but concise
descriptions of the APL operators and the features of the
APL\360 System. The manual includes coverage of a number of
advanced points which, for simplicity, are omitted from this
primer.

The two most distinctive and valuable characteristics
of the APL language are the way it treats arrays, and the
way it permits you to use a program as you would use a
mathematical function. Neither of these topics is mentioned
at all in Part I of the primer, since it seemed desirable to
lay a foundation of familiarity with other matters before
getting to them. But if you already feel familiar with these
topics and with their treatment in programming systems, you
may wish to look ahead to Chapter 16, where the treatment
of arrays is introduced, and to Chapter 25, where we take up
programs that can be used as functions. The examples in all
the earlier chapters may then be understood as applying also
to arrays of data, and could be written so that they behave
like functions.

~
~

CLR

[~ I; I ~ DO ~ I ~ I ~ I ~ I ~ I ~ I ~ I;] OOB
~[~ I ~ IT] ~ I ; I t I ~ I i I g I ~ I !) (1f ON 1

[- ~OCK)(~ I ~ [D F I ~ I ~ I ; I ~ I 2 I ~ I ~) ~ RETURN,

l SET J[SHIFT)[~ I;] 2 I ~ I * I ; I ~ I : I ~ I))~L OFF

APL\360 KEYBOARD

7

2: CO~L\1UNICATING WITH THE COHPUTER

This chapter deals with some practical aspects of
getting your terminal connected to the APL\360 System,
communicating with the computer, and other such mundane but
essential matters. If you are about to try a terlninal for
yourself, this chapter logically precedes the ones that
describe the APL language and the way in which you carry out
calculations in it. But if your interest is primarily in the
APL language, you may wish to skip this chapter now, and
return to it when you are ready to use an APL\360
terminal.

You need:

a communications terminal with an APL typeball

a data telephone or telephone coupler

an APL\360 account number.

The typewriter may be either an IBM 2741 or an IBM
1050. The 1050 permits the attachment of certain extra
equipment, such as card readers and punches, but is slower
in operation and more expensive. Thus unless you have
special needs for the extra equipment, the 2741 is
preferable, and that is the terminal to which this primer
usually refers. A complete discussion of the alternative
models and features usable with the APL\360 System may be
found in Appendix E.

A data telephone may be rented from the telephone
company. The system uses the Western Electric Dataset, Model
103-A2, or equivalent equipment.

The APL Typeface

The APL typing element provides both a full upper-case
alphabet and the special symbols used in the APL programming
language but not found on an ordinary office typewriter. The
APL typeface was chosen so as to end confusion between the
letter 0 and the number 0, or between the letter I and the
number 1, or between the letter X and the sign that means
multiplication. Three different styles of lettering

8

distinguish letters, numerals, and operation signs, as
follows:

Alphabetics: * always capitalized
* always italic
* always condensed (higher than wide)
* always with serifs

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

Numerals: * always upright
* always condensed

1 234 5 6 7 890

Operators: * not condensed
* upright (except for Greek letters)

+ - x t * r L T L A V = ~ < > 1++ 1 pEa w

This typeface makes it quite clear whether any character is
a letter, a numeral, or an operator sign. For instance, the
phrase that indicates "the letter 0 times the letter X plus
the letter I minus ten" can be typed

OxX+I-l0

which leaves no doubt about which are the letters, which the
numerals, and which the operator signs.

When you are ready to use APL\360 (assuming Lhat you
are using a 2741 terminal) you proceed as follows:

1. Turn on the typewriter power. Set the switch on
the left side of the 2741 type\.vri ter to cor-1 (for
"communicate") rather than to LCL (which stands
for "local tl

).

2. Depress the TALK button on the data telephone, and
dial the number of the APL\360 computer.

3. When you hear a high-pitched tone, press the DATA
button firmly and release it. Once DATA is
pressed, you may cradle the telephone.

9

4. Type your sign-on.

When you first set the typewriter switch to COM, the
keyboard is locked. When the connection to the computer is
established, the keyboard will be unlocked, and you may type
your sign-on. This is a right parenthesis followed by your
user number and password (if any). When the computer
receives your sign-on command, it acknowledges by typing
these things: your port number (which of the computer's
telephone extensions you reached), your name, the date and
time, and the system identification. Sometimes you will also
receive a broadcast message from the APL operator sent to
all users who are signing on. Until your sign-on is
accepted, you cannot do any other work. However, if you need
to, you can type a message to the APL operator even before
you're signed on (see p. 103). Here is a sample sign-on:

)4000000
OPR: MERRY CHRISTMAS, HAPPY CHANUKKAH, OR SEASON'S GREETINGS.
009) PCBERRY 12/23/67 39.12.37

A P L \ 360

Once your sign-on has been acknowledged, you are ready to
begin work. Most of the rest of the primer is devoted to
explaining the kinds of calculations you can perform and
programs you can write. The balance of this chapt~r deals
with the mechanics of typing your instructions to the
computer.

Whose Turn to Type?

You and the computer can't both type on the same
typewriter at the same time. You have to take turns. You can
type only when the keyboard is unlocked, whereas the
computer can type only when the keyboard is locked. While it
is the computer's turn to type, the keyboard remains locked,
and you can't type anything.

When you complete the typing of an instruction, you
have to let the computer know that you have finished. The
carrier-return key serves to enter the instruction: that is,
to signal the computer that you have finished typing, and
that it should start interpreting and executing the
instruction you have typed. When you hit the carrier-return
key, three things happen:

10

1. The carrier returns to the left margin and the
paper is moved up by one line.

2. The keyboard is locked.

3. The computer receives the signal that your message
is complete.

Locking the keyboard serves two purposes: it keeps you
from typing any.more until the computer is ready for you,
and it keeps the typewriter available for the computer's
response to you. The computer never starts work on your
instruction until it receives the signal that you have
finished typing. Since that signal is the carrier return,
each message you type must fit on a single line. But
instructions in APL are so concise that you will rarely need
as much as a whole line for an instruction.

As soon as the computer completes work on the
instruction you typed, it does these three things:

l~ Prints the result (if called for) and moves the
paper up one line;

2. Indents by six spaces;

3. Unlocks the
instruction.

keyboard

Distinguishing Who Typed What

to await your next

The paper in your typewriter will contain a complete
record of your dialogue with the computer. When you read it,
it is important to be able to tell who typed what. Because
the computer makes the carrier space over by six spaces
before the keyboard is unlocked, everything you type will
ordinarily appear indented by six spaces, whereas what the
computer types will ordinarily start at the left margin.
(1050 terminals with two-color ribbon go a step further, by
typing your part in red and the computer's part in black.)

Fixing Typing Errors as You Go

If pe(or~_.--"you press the carrier return you notice a
mistake in what you have typed, you have a chance to correct
it before the computer starts to execute your instruction.

11

You can do that in the following way:

1. Backspace to the position of
character that is in error.

the leftmost

2. Press the ATTN key (this key is sometimes marked
INDEX or LINEFEED).

When you do this, the computer types an inverted caret
under the character in error, and spaces the paper up an
additional line. Now that character and everything appearing
to the right of it are considered "erased." You may resume
typing the balance of your instruction. Suppose you type
A-BxC, and then you realize that the mUltiplication should
have been a division. The "erasure" and correction would
look like this:

A-BxC
v
-i-C

Overstrikes Not Allowed

Don't overstrike or X out any part of what you type.
Except for certain APL characters which are always formed by
overstriking, APL\360 cannot read overstruck characters. If
you enter a statement which contains an illegal overstrike
(i.e. if you type an illegal overstrike but don't erase it
before you hit carrier return), the computer responds with
an error message and a reproduction of your instruction up
to the point that the illegal overstrike occurred. Like
this:

A-B-i-FJ
CHARACTER ERROR

A-B-i-
1\

You will have to retype the line in which an overstrike
occurs.

Visual Fidelity

While you are typing, you don't have to type each of
the characters in order. For instance, you could leave extra
spaces near the beginning of a line and then backspace over
to that point and fill in the blanks. Your message is

12

interpreted by the computer the way it looks on the paper at
the moment you press the carrier return. Within the line,
the time sequence in which you hit the various keys doesn't
matter. This principle can be summed up by the rule, "What
you see goes in."

Interrupting the Computer

It may, happen that you cause the computer to start
typing a very long result, or working on a very lengthy (or
even interminable) calculation. If you decide that you want
to cut short what the computer is doing, there are two ways
of stopping it. The easiest way is to use the "interrupt"
feature supplied with some 2741 typewriters. If you have a
2741 thus equipped, pressing the ATTN key while your
keyboard is locked ~ll bring whatever the computer is doing
for you to a halt.

If you have a 1050 terminal, or a
have the "interrupt" feature, you can
effect as follows:

1. Uncradle the telephone.

2741 that doesn't
produce the same

2. Press the TALK button for a few seconds (you'll
hear the high-pitched tone again).

3. Press the DATA button again.

If you have a 1050, that's all. If you have a 2741, the
following additional step may be necessary:

4. If the carrier does not space over 6 spaces before
unlocking, strike the carrier return repeatedly
until it does.

13

3: BASIC OPERATIONS IN ARITHMETIC

The \vorks pace

As soon as your sign-on is completed, the computer puts
at your disposal a block of its internal storage (or
"memory"). This block of storage is called your workspace,
since it is where all of your calculations take place. In it
will be stored the definitions of programs that you enter,
and the names and values of variables used in your
calculations. Your workspace also includes locations used by
the computer for the temporary storage of partial results
while a calculation is in process, and specifications of a
number of other items that affect the way your calculation
is carried out or the way its result is printed. As you will
see in Chapter 15, it is possible for a single user to have
several different workspaces within the computer. However,
only one of these is ever available for calculation at any
one time. The one workspace which is currently available is
called your ac~~y~ workspace.

The Two l-1odes of Operation: Execution vs. Definition

The computer has two modes of operation, called
execution mode and ¢lefinition mode.- When the computer is in­
execution mode, it carries out any instruction immediately,
as soon as you enter it. If you enter an arithmetic expres­
sion, the computer immediately responds with the result:

12x13
156

Ordinarily, the computer is in execution mode; it is in
execution mode when you first sign on, and it stays in
execution mode unless you specifically direct it to switch
to definition mode. When the computer is in definition mode,
it does not execute the instruction that you enter, but
stores it as part of the definition of a program. The
instructions that make up the program are not executed until
(at some later time, when you're back in execution mode) you
call for execution of this program. How you enter the
definition of a program is taken up in Chapter 6. The
remainder of this chapter discusses the instructions you can
use to get the computer to carry out some basic operations
in arithmetic. These instructions could just as well be
included as parts of a program, but the illustrations in
this chapter show them being used in immediate execution.

14

Addition, Subtraction, Multiplication, and Division

These operations are familiar from everyday arithmetic.
APL uses the familiar signs to indicate them:

+ - x f

The operation sign is typed between the numbers that
are to be operated on, just as 1n arithmetic. For instance,
if you want to multiply 1345.2 by 873.21, you simply type

1345.2x873.21

The computer executes that instruction immediately, and
replies with the answer:

1174642.092

Here are some more examples of simple instructions.
Because the computer always indents by six spaces before
unlocking the keyboard, the instructions you type always
appear indented by six spaces, while the responses from the
computer are typed starting at the left margin.

176f14.2
12.3943662

17228.1-14.2
17213.9

2+2
4

5+0
5

5
5

4x1.25
5

3f32
0.09375

15

The Idea of a Variable:
Associating a Name with a Value, and Storin~ The~,

You can store data, or the results of calculations, in
your active workspace. A stored item of data is called a
variable. Every variable has a ~ and a value; the computer
associates the value with the name, and preserves that
association in your active workspace. Whenever you refer to
a variable by its name, the computer automatically supplies
the value that has been associated with that name.

The symbol for assigning a value to a variable is the
left-pointing arrow. If you enter the instruction

SPEED+1088.5

you cause the value 1088.5 to be associated with the name
SPEED.

The left-pointing arrow causes the value of the
expression to the right of the arrow to be stored under the
name which appears immediately to the left of the arrow.
This instruction may be read in several ways. You can read
it as "SPEED is specified as 1088.5," or "SPEED is assigned
the value 1088.5," or even "SPEED is 1088.5."

The variable SPEED is now stored in your active
workspace. The computer doesn't type any specific
acknowledgment that it has stored SPEED, but as soon as the
variable's name and value have been stored in the workspace,
the computer again indents and unlocks the keyboard.

A variable must always have both a name and a value;
you can't create a variable which has a name but no value,
and you can't store a value unless you assign it to a
name.

Storing or Printing the Result of a Calculation

When you enter an instruction that calls for a
calculation, as soon as the instruction is executed, the
computer needs to know what to do with the result. There are
three possibilities. All three are listed at the top of the
next page, but the third one will not be discussed until the
next chapter, where we take up compound expressions in a
single instruction.

16

1. You can have the result printed. If you don't
indicate that something else is to be done with
the result of a calculation, the computer always
assumes that you want to see it, and prints it.

2. You can have the result associated with a name,
and stored in the workspace as a variable.

3. You can have the result of that operation used in
another operation in the same instruction.

Using the Stored Value of a.V!riabl!

Once you have assigned a value to a variable, from then
on whenever you refer to that variable's name, the computer
supplies the associated value. If you simply type the name
of a variable, the computer responds by printing its
value:

SPEED
1088.5

If you use the name of a variable in an instruction,
the computer carries out the instruction, substituting the
associated value wherever the name appears in the
instruction. For instance, the value of SPEED is the speed
of sound in air at 0 degrees Centigrade, expressed in feet
per second. If you need to know how far sound travels in
15.5 seconds under those conditions, you can find out by the
following instruction:

15.5xSPEED
16871 0 75

Or, since multiplication is commutative (i.e. order doesn't
matter), you could just as well enter:

SPEEDx15.5
16871.75

If you'd prefer to have that result stored, the
following instruction assigns the result as the value of a
variable called DISTANCE:

DISTANCE+SPEEDx15.5

And you could display the value of DISTANCE like this:

DISTANCE
16871.75

Possible Names for Variables

17

The name of a variable must begin with a letter of the
alphabet. After that it may have any combination of letters
or numerals, and any length. A name may not contain a space,
or any punctuation, or any of the symbols used for
operations. You may often find it helpful to select names
that have some mnemonic significance to you ••• but of course
the computer is unaffected by what names mayor may not mean
in English. When naming a new variable, don't give it a name
that you want to keep in use for some other purpose in the
same workspace.

Storing a Result Under a Name
That Has Alreadl' Been Us'ea---

Suppose that at one point you type:

X+SPEEDx8

and then later on you type:

X+SPEEDf8

Each of these instructions calls for at result to be stored
under the name X. What happens? The first time you use the
name X to the left of a specification arrow, a variable is
introduced, with the name X, and whatever value results when
the value of SPEED is multiplied by 8.

The next time you specify a value for X, that new value
replaces the former one. The value of SPEED is divided by 8,
and the result of that division becomes the value of X. The
old value is erased.

Clearly this would be the wrong way to write the
instructions if you really wanted to preserve both of those
results. To keep both, you must give them distinct names.
However, there are many situations in which it is convenient
to be able to replace one value of a variable by another
value stored under the same name. Suppose you want to count
how many times a task has been done. If, for example, you
have a variable called COUNT, you might have use for an

18

instruction which serves to update the counter, perhaps
something like this:

COUNT+COUNT+l

Each time this instruction is executed, the computer adds 1
to whatever value it finds already associated with the name
COUNT, and then stores the resulting value back under the
name COUNT. (It should be noted that COUNT must have
received its very first value in some other instruction: it
can't always have been specified by referring to its own
earlier value.)

Referring to a Variable t!hich_~~_NO _yal~!::

You can assign a value to almost any name you like. But
if you attempt to display or make use of the value of a
variable before any value has been assigned to it, the
computer is unable to supply an associated value, and can't
proceed with the execution of your instruction. It reports
the trouble by sending you an error message. For instance,
suppose you have assigned a value to SPEED but not to
INTERVAL, and then you enter an instruction which refers to
INTERVAL. Your dialogue with the machine looks like this:

INTERVALxSPEED
VALUE ERROR

INTERVALxSPEED
A

The first of those typed lines is your instruction. On the
second line, the computer types its error message,
indicating the kind of error iL has found. On the third line
the computer repeats the instruction as received. Then the
computer types a caret under the point in the instruction at
which it ran into trouble.

Examples of Arithmetic with Variables

The instruction

AxE

means that the operation of multiplication is to be
performed on the value of A and the value of B. When the
computer executes that instruction, it finds in the
workspace the values of the variables A and B, and then

19

performs the operation, using those values. (The
associated with A and B in the workspace memory
changed unless you specify that they should be.)

values
are not

Suppose that A and B have been assigned the following
values:

A+-6.25
B+-144

Then you can use those values in simple instructions, and
the computer types results, like this:

A+B
150.25

A+l
7.25

BfA
23.04

B-A
137.75

AxB
900

900fB
6.25

Z+-l fA
1fZ

6.25

A-A
0

1

20

This page intentionally left blank.

21

4: MORE ARITHMETIC OPERATIONS

Negation .
If you place a minus sign in front of a number or

variable, but nothing to the left of the minus sign, you get
a result which has the same magnitude but opposite sign. For
instance, if B has the value -17, then you get the negation
of B like this:

-8
17

Reciprocals

When you use a division sign in the same manner, it
means that the reciprocal is to be found. If A still has the
value 6.25, you can find the reciprocal of A like this:

0.16

Monadic and Dyadic Operators

Negation and the reciprocal are examples of monadic
operators. It is easy to distinguish them from ~yadic
operators such as subtraction or division: the monadic
operators have no value appearing to the left of them. That
is, monadic operations such as negation and reciprocal each
take only one argument, whereas sUbtraction and division
take two arguments. The arguments of an operator are the
values it works oni an argument may be a variable, a number,
or the value that results when an expression in parentheses
is evaluated.

A dyadic operator is always written with the values on
which it works (i.e. its arguments) on either side of it, as
for instance in A-B. A monadic operator is always written
with its argument to the right of the operator symbol, as in
-B.

APL often uses the same symbol in two senses, one
monadic and the other dyadic. You (and the computer) can
always tell which sense is intended. If there is an argument
immediately to the left of the operator sign, the operator
is dyadic. Otherwise it is monadic.

22

Raising to a Power (Exponentiation)

In conventional arithmetic, exponentiation is indicated
by writing the power to which a number is to be raised in a
smaller typeface and placing it above the line. For
instance, 2 raised to the 3rd power is written:

2 3

This is hard to type. Moreover, it seems odd that
exponentiation has no symbol of its own, although addition,
multiplication, division, etc., all have theirs. So APL uses
a special symbol for exponentiation, placed between the
number (or variable, expression, etc.) and the power to
which it must be raised. The sign is * and is located on the
keyboard above the P (P for Power). For example:

8

Here's an example of a calculation that uses
exponentiation. It is based upon the familiar rules of
compound interest. The names chosen for the variables should
be self explanatory.

PRINCIPAL+1045.28
INTEREST+-. 03
YEARS+17
RATE+1+INTEREST
MULTIPLIER+RATE*YEARS
TOTAL+PRINCIPALxMULTIPLIER
TOTAL

1727.688573

This sequence of instructions estimates the total to which
$1045.28 would grow if invested for 17 years at 3 per cent,
compounded annually. The calculation could also be obtained
in a single instruction, but that must wait until the next
chapter.

Taking a Root

APL doesn't have any special sign for the extraction of
a root. It doesn't need one. Taking the square root of a
number is exactly the same thing as raising it to the
one-half power. That's the way you write it in APL. If A has
the value 144, you find the square root of A like this:

12

Or you might get it this way:

12

POWER+f2
A*POWER

23

This procedure isn't confined to taking square roots.
Any root can be extracted; for instance, you can find the
fifth root of A by the following instruction:

A*0.2
2.701920077

The designers of musical instruments that are tuned to
the "even tempered" scale (such as pianos) are faced with
the problem of dividing an octave into 12 equal parts. The
frequency of any note must be in a constant ratio to the
note one semitone below it. Since it takes twelve semitones
to make an octave, the ratio between one semi tone and the
next must be picked so that the product of all twelve of
them will just make an octave. The semitone ratio is
therefore the twelfth root of the octave ratio. Knowing that
the octave ratio is exactly 2, you could find the size of an
even-tempered semitone by the following two instructions.
(Here again, this could also be done in a single
instruction, as will be seen in the next chapter.)

POWER+f12
2*POWEI?

1.059463094

Maximum: Taking the Larger of Two Numbers

It is often convenient to be able to pick whichever is
the larger of two numbers. APL includes an operation which
does this. When the sign r is typed between two numbers (or
variables that have numerical values) the computer selects
whichever value is greater. If you type

ArB

the computer examines what has been stored under those
names. Then it takes whichever value is greater. (R~call
that the values associated with A and B in the workspace
remain unchanged.)

Suppose that earlier calculations resulted in the
following values for the variables ABC and XYZ:

24

ABC has the value 12345679, and
XYZ has the value 12345678

Then your dialogue with the computer might look like
this:

ABCrXYZ
12345679

Consider an illustration in which this operation might
be useful. Suppose you work for a department store. Each
month, the store calculates for each of its customers how
much he charged and how much he paid that month. You have a
program which handles the billing. You calculate for each
customer the value of a variable you call BALDUE, which is
the difference between the total of the accumulated charges
and the total of the accumulated payments for that customer.

The store charges each customer a service charge of
1.5% of the unpaid balance each month. You might find this
charge by the following instruction:

CHARGE+BALDUEx.015

However, for one reason or another, some of the customers
have overpaid their bills. For them, BALDUE is a negative
number, and shows as a credit on their monthly statements.
If you calculate the service charge by the instruction just
shown, you'll be paying them interest at 1.5% per month
whenever they overpay. Instead, the store prefers to
calculate the service charge as 1.5% either of the balance
due or of zero, whichever is greater. You can do this by

CHARGEABLE+orBALDUE
CHARGE+CHARGEABLEx.015

Minimum: Taking the Smaller of Two Numbers

In similar fashion, another primitive APL operator
selects whichever is the smaller of the two values on either
side of it. If ABC and XYZ have the same values as before,
the lesser is selected by this instruction:

ABCl XYZ
12345678

25

The annual amount a wage-earner pays for FICA (social
security) tax is based upon how much he earns. However, any
income he has beyond $7800 a year doesn't count for social
security purposes. The FICA tax rate is currently 4.4%. If a
man's yearly gross income is called YEARGROSS, and has a
value of $8320, then his annual FICA tax might be found this
way:

343.2

YEARGROSS+8320
FICAINCOME+7800LYEARGROSS
.044xFICAINCOME

The Floor and the Ceiling of a Number

You can disregard the fractional portion of a number
and just consider the integer portion. You have a choice of
two ways of doing this: by rounding down to the next smaller
integer than the fraction, or by rounding up to the next
larger integer. The operators which do this are called the
floor and the ceiling. If A has the value 3.14159, then you
get the floor of A as follows:

LA
3

and the ceiling of A like this:

4

You will notice that ceiling is the meaning of the r
symbol when it is used monadically; when it is used
dyadically (i.e. with a value on either $ide of it) it means
maximum. In the same way, L means floor whep it is used
monadically, but minimum when it is used dyadically.

r XYZ

means the ceiling of XYZ. If XYZ is already an integer, then
the ceiling of XYZ has the same value as XYZ. But if XYZ has
a fractional part, the ceiling is the next (algebraically)
larger integer than XYZ.

LXYZ

means the floor of XYZ. If XYZ is already an integer,·its
floor has the same value. But ifXYZ has a fractional part,

26

the floor of XYZ is the next (algebraically) smaller
integer. In the case where XYZ has the value 3:

3

3

r XYZ

LXYZ

Rounding to the Nearest Integer

It is common practice to round numbers to the nearest
integer. This means that when the fractional part is less
than .5, the number is rounded down, but if the fraction is
.5 or greater, the number is rounded up. This effect is
prod~ced if you first add .5 and then take the floor.
Suppose A has the value 3.14159, and B has the value 3.5:

3

X+.S+A
LX

X+"S+B
LX

Summary of Arithmetic Operators Mentioned Thus Far

A+B means A plus B

A-B means A minus B
"'B means the negation of B (i.e. 0 minus B)

A~E means A times B

AfB means A divided by B
fB means the reciprocal of B (i.e. 1 divided by

ArB means the maximum of A and B
rB means the ceiling of B

ALB means the ml.nl.mum of A and B
L8 means the floor of B

A*B means A raised to the Bth power.

B)

Note: in conventional algebra, the expression ab means the
product axb. The multiplication sign is elided. But in APL,
the multiplication sign must be explicitly entered wherever
you want multiplication to occur.

27

5: SEVERAL OPERATIONS IN THE SAME INSTRUCTION

The preceding examples of APL instructions were all
written so that only one arithmetic operator occurred on
each line. APL\360 does not, of course, restrict you to
writing only instructions with but a single operator. The
examples were written that way so as to postpone for a
moment the discussion of some issues that arise when there
are several operations in the same instruction.

APL permits you to write any number of operators in the
same instruction. But as soon as you write more than one
operator, you have to be clear about the order in which they
get executed. It makes a difference.

Conventional arithmetic has a number of rules for this.
First of all, there is a hierarchy of operators. Some
operators are always executed ahead of others, regardless of
their position in the instruction. Exponentiation gets
highest priority. Then multiplication and division are
performed. Addition and subtraction are done last. There is
also a rule to apply if the instruction contains several
instances of the same operator. If those rules aren't
appropriate to indicate the order in which you want to
execute several operations, you can use parentheses to show
that what falls within them gets priority.

APL employs not only the operators + - x T but a great
many others as well. You have made the acquaintance of * and
r. There are several more. Moreover, in more advanced uses
of APL, programs that you write yourself can be made to act
like operators. You can see that attempting to have a
hierarchical rule to determine which of all those operations
should get done first could get very complicated.

Order in Which Operations Get Executed in APL

APL solves this problem by abolishing the hierarchy of
operators altogether. Instead, the order of execution
depends upon only two things:

1. Parentheses (in the usual way),

2. The order in which the operators appear in
the instruction.

28

This is the rule: An operator operates on everything to the
right of it. Stating it more formally, any operator takes as
its right argument everything to the right of it.

This order is the same as the usual order of English
speech. You may not have thought of English speech in that
way, but it will be obvious in a brief example. Take the
following English sentence:

"They oppose a rise in the price of products from farms."

To examine the meaning of this sentence, let's pose
some questions about what applies to what.

Oppose what?

What rise?

Rise in what price?

Price of what products?

Here each of the key elements in the sentence refers to
all the rest of the sentence after it.

The same structure occurs
example:

A+BxC-DfE

What is A added to? BxC-DfE

What is B multiplied by? C-DfE

What is subtracted from C? DfE

What is D divided by? E

in APL. Consider this

Suppose you have to explain that English sentence to
someone who knows about English grammar but doesn't know
what the particular nouns in that sentence apply to. You'll
find that your answer to each of the questions still
involves everything that comes later in the sentence. If the
questions are asked in the order we just used (starting at
the left), the answer to the first one isn't immediately
usable because the answer still refers to the rest of the
sentence, and that hasn't been defined yet. To build up the

29

explanation in a logical way, you have to start with the
last word, "farms." Then, using that, you can work back to
"products," and that will permit you to get the meaning of
"products from farms." And so on, working from right to left
until the meaning of the whole sentence is established.

Similarly, when the computer executes an instruction
such as

A+BxC-DfE

it starts by looking for the value associated with the name
E. Then it looks up the value of D. That gives it enough
information to evaluate D divided by E. Next it looks up the
value of C, which gives it enough information to evaluate
the difference between C and D-divided-by-E.

Thus although an APL instruction reads aloud easily
from left to right, ,.,hen the computer comes to execute the
instruction, it executes the various operations in
right-to-left"order. This has become known as the "right to
left rule." Notice that this doesn't mean that the computer
reads the line backwards, only that when it executes the
various operations within an instruction it does the
rightmost one first, then the next rightmost one, and so on.

Use of Parentheses

In APL, you use parentheses in the usual way. That is,
the operations inside the parenthesis are to be executed
before operations outside. When the expression inside a
parenthesis has been evaluated, the result must always be a
value: you can't just put an operator symbol alone inside
the parenthesis.

Consider the following
arithmetic:

expression in conventional

(a+b)x(c+d)

The hierarchy of operators in conventional arithmetic ,,,"ould
ordinarily cause the multiplication to be executed before
the addition. But this order is overridden by the
parentheses, which cause the two additions to be done first.
In APL, you could ,,,,rite the instruction in exactly the same
way:

30

(A+B)x(C+D)

or you could also write it like this:

(A+B) xC+D

Since in APL the rightmost operation is executed first
anyway, you don't really need to use the right pair of
parentheses--although it's all right to include them if you
want to. If you enter the following instruction:

(A+B) xC+D

here's how the computer will proceed. The rightmost
operation is the addition of C and 0, so it does that first.
Moving leftwards, it finds that the next operation is the
multiplication. But the left argument of the multiplication
is a parenthesis. The computer suspends work on the
multiplication until it has evaluated the expression in the
parenthesis. When that is done, it comes back to the
multiplication, and multiplies the sum-of-A-and-B by the
sum-of-C-and-D.

Because of the order of execution of operations in APL,
many instructions that would otherwise require parentheses
no longer need them. When you enter an APL instruction, you
can often arrange it so that the operators that you want
executed first appear furthest to the right in your
instruction. For instance, consider the instruction that in
conventional arithmetic would have to be written as either

" \oJ
,.. v I.,... ,Lh \
......"\"""IJ-JI

In APL, that can be written without any parentheses:

CxA+B

Where rearrangement doesn't eliminate the need for
parentheses, you can still use them in the usual way.
Parentheses within parentheses (sometimes called "nested"
parentheses) are all right too. The computer starts first on
the outermost parenthesis. If it finds another parenthesis
inside the first one, it suspends work on the expression in
the outer parenthesis until it has evaluated the inner one.

31

Rewriting the Earlier Examples
Nith Several Operations in the Same Instruction

The examples presented earlier in the
only one arithmetic operation on each line.
dealt with the question of order of execution
several operations in the same instruction,
those earlier examples more neatly by
expressions.

text involved
Now that we' ve
when there are
we can rewrite

using compound

For instance, the total when an amount is invested at
compound interest can be stated as follows, (assuming that
the variables have the same values as before):

PRINCIPALx(l+INTEREST)*YEARS
1727.688573

The square root of XYZ can be written like this, using the
reciprocal sign, since the second root of XYZ is equivalent
to raising XYZ to the reciprocal-of-two power:

XYZ+12
XYZ*t2

3.464101615

and in similar fashion the semitone ratio
even-tempered scale can be found by

2*t12
1.059463094

for an

To prove that it really is the twelfth root, you could raise
the semitone ratio to the twelfth power. The result should
be the octave ratio, which is 2.

2

SEMITONE+2*t12
SEMITONE*12

The charge on the balance due on a charge account becomes:

CHARGE+.015xorBALDUE

and the annual FICA tax becomes:

TAX+.044x7800lYEARGROSS

32

Do You HAVE to Wri te r4an~ Operations
In a Single APL Instruct10n?

As you gain experience in the use of APL, you \.,ill
probably tend to use longer compound expressions in the
instructions that you write. For one thing, it is often
easier to understand a well-formed compound instruction than
it is to trace through a sequence of simpler steps. Compare,
for instance, the expression for the total resulting from
compound interest used on the preceding page:

TOTAL+PRINCIPALx(l+INTEREST)*YEARS

with the one-step-at-a-time sequence we used on page 22:

RATE+l+INTEREST

MULTIPLIER+RATE*YEARS

TOTAL+PRINCIPALxMULTIPLIER

Nevertheless, it should be clear that whether you use a
few long instructions or many short ones is up to you; you
should write in the style that seems easiest to you.

33

6: ENTERING THE DEFINITION OF A PROGRAM
SO THAT IT CAN BE USED REPEATEDLY

If the work that you want done can be specified in an
instruction that is brief and easy to type, you can get it
done simply by entering that instruction. But if you want a
more complex calculation, or one that you want to use
repeatedly, you will certainly want to define a program to
do the job. Then you can obtain execution of the program,
regardless of the number of instructions it contains, simply
by typing its name. This section tells you how to define a
program.

Starting the Definition

You will recall that the computer has two modes, one
for executing instructions immediately, and the other for
storing the definition of a program. To start the
definition, you must enter definition mode. The symbol ~
(pronounced "del") takes you from one mode to the other. If­
you type a ~ while you are in execution mode, it signals
the computer that what follows is the definition of a
program. If you type another ~ while the computer is in
definition mode, that signals the computer that you are
finished with the definition of that program; the computer
returns to execution mode.

To start the definition of a program, the first thing
you do is type (on a single line) the symbol ~ followed by
the name of the program.*

When you press carrier return, the computer asks what
you want as the first line of the definition. It does this
by typing, in square brackets, the number 1. Then the

*At this point we are limiting the discussion to the
simplest type of program, what you might call a "stand
alone" program. A program of this type is executed simply by
typing its name. That name, standing alone, is all that may
appear in the instruction that causes the program to be
executed. APL also permits you to define a program so that
it may be used as part of a compound instruction, with other
programs, operations, and variables all in the same
instruction. Discussion of that type of program is deferred
until Chapter 25.

34

computer spaces over until it has completed the usual
indentation of six spaces, and unlocks the keyboard to await
your definition of line 1. What you type at that point is
entered as the definition for line 1 of this program. Then
the computer types a 2 in square brackets, and awaits the
definition of line 2. It continues in this fashion until you
type another 'V to indicate that you want to return to
execution mode.

This will be clear if we consider a simple program and
work through its definition step by step.

In order t~ show where the typeball is when the
keyboard is unlocked, we use the following mark:

@

This mark does not, of course, appear on your paper; we
merely use it in this primer to show you where the typeball
is located at the moment when it becomes your turn to type.

Focal Length of a Lens: A Simple Calculation
To Illustrate Program Definition

Here is the formula for the focal length of a lens:

f =

where f is the focal length
n is the index of refraction
t is the thickness of the lens
r 1 and r 2 are the two radii of curvature.

Suppose thpt you want a program called FOCAL to compute
the focal length, F, from the stored values of variables
called N, T, RI, and R2. The program should both store F and
print F.

(Notice that it's all right for a name to include
numerals, as long as they aren't the first character in the
name, so that the names RI and R2 are permissible. However,
they are individual names which do not mean that these are
the first and second members of a variable called R.
Indexing of a variable is introduced in Chapter 19.)

35

Your first
followed by the
computer notes
want as line
this:

step in defining FOCAL is to type a del,
name of the program. When you do that, the

the name of the program, and asks what you
1 of the definition. Your paper looks like

VFOCAL
[1] @

You could start the calculation by finding the value of
the numerator of the fraction, and storing it. When you type
line 1, which might be as follows, the computer responds by
asking what you want on line 2:

VFOCAL
[1] NUM+NxR1xR2
[2] @

On line 2, you can calculate the denominator of the
fraction:

VFOCAL
[1] NUM+NxR1xR2
[2] DENOM+(N-1)x(NxR1+R2)-TxN-1
[3] @

On line 3, you do the division and store the result
under the name F:

VFOCAL
[1] NUM+NxR1xR2
[2] DENOM+(N-1)x(NxR1+R2)-TxN-1
[3] F+NUM+DENOM
[4] @

On line 4, you want to have F printed. You simply type
its name:

VFOCAL
[1] NUM+NxR1xR2
[2] DENqM+(N-1)x(NxR1+R2)~TxN-1

[3] F+NUM*DENOM
[4] F
[5] @

That's all the program needs.

36

When the computer asks for a definition of line 5, you
type another del. The computer closes the definition of the
program called FOCAL, stores it in the memory of the active
workspace, and returns to execution mode.

'lFOCAL
[1J NUM + NxR1xR2
[2J DENOM + (N-1) x (NxR1+R2) - TxN-l
[3J F + NUMfDENOM
[4J F
[5J V

@

After the final del, the computer leaves definition
mode. Therefore, as you can see in the example shown above,
when it unlocks the keyboard for your next instruction, it
again indents by six spaces, but this time without typing a
line number (since now you're back in execution mode).

Sample Use of the Program Just Defined

The values of the variables N, T, RI and R2 need not
have been stored at the time you entered the definition of
FOCAL, but they should be stored before you try to execute
FOCAL. Once those values are in storage, you cause the
computer to execute FOCAL simply by typing its name. The
computer prints the value of F, as line 4 of the program
directs.

N+ 1.3275
T+ .375
R1+8
R2+7.85
FOCAL

12.16918274

If you wish, you can set new values for the radii and
then ask for a new execution of FOCAL. If you can still use
the former values of Nand T, you need not enter their
values again, since they are retained in the workspace.

Ri + 8.1
R2 + 7.73
FOCAL

12.16433832

37

Another Sample Program:
Efficiency oraore-s'e'i--Engine:

One form of the equation for the theoretical efficiency
of a Diesel engine is as follows:

EFF = 1 -
1 (~r -1

~ (~: -l)
Using this formula, you would like to seeho\v the

theoretical efficiency varies over some range of the various
parameters. You need a program that will compute EFF,
the efficiency, from the stored values of those parameters.
In your workspace, you can give them names based upon their
representations in the formula; for instance, they might be
R, GN~, V3, and V2.

There are various strategies for writing this program.
To simplify your task, you might \tlant to divide up the
calculation into sections, and compute each section
separately. Suppose you start by breaking the formula into
sections A, B, and C, as follows:

(~r -l ' __ B

"Y (..:!i. -1) '} V2 -

EFF= 1 -
1

c

Once you have calculated values for A, B, and C, you can get
the efficiency by this instruction:

EFF+1-AxB-i-C

This will probably be the last, or next-to-last, instruction
of the program. Ahead of it you need instructions that will
calculate A, B, and C. Part A is easily obtained with the
following instruction:

Notice that V3-i-V2 occurs twice in the formula, once in
section B and once in section c. If you save the result the
first time you do the division, you won't have to do the
division twice. Hence before you evaluate Band C, you may

38

want to divide V3 by V2 and store the result; suppose you
call it RATIO. Then B can be calculated by this instruction:

B+(RATIO*GAMMA)-l

and C can be obtained by this instruction:

C+GAMMA 'X,RAT 10-1

Now the various steps can be put together into a program.
Suppose the program has the name DIESEL. This version does
not include a print instruction, although of course one
could be added as line 6.

VDIESEL
[11 A+ tR*GAMMA-l
[2] RAT 10+ V3 f.V2
[3] B+ (RATIO*GAMMA) -1
[4J C+ GAMMAxRATIO -1
[5] EFF+ l-AxBfC
[6] V

Writing ,the DIESEL Program in a Single Li~=

~here are many ways this little program could be
written. If you preferred to write an equivalent program
which puts it all into one instruction, you could do it like
this: Imagine the formula split into sections A, B, and C,
as before, but this time instead of storing values for each
of those variables, substitute the expression for A, B, and
C directly in the first line. Let this short program be
called s:

EFF + 1 A x B C

I I

fR*GAMMA-l «V3tV2)*GAMMA)-1 GAMMA x (V3 f V2) -1

The one-line definition of S is therefore as follows:

'IS
[1] EFF+l- (tR * GAMMA -1) x (((V3 f V2) * GAMMA) -1) f GAMMA x (V3 f V2) -1
[2] V

Sample Execution of DIESEL

GAMMA+1" 485
V3+184
V2+22
R+15
DIESEL
EFF

0 0 4484434684

39

An InstructioI]. .. ~n ~ __ Rr03-~.e!!!.>
Can Call for the Execution of Another Program

.-...... - -,-~, ,- _ _ ~~ ,,<i.U. , •• oC; • .,. __ _ ____ ... _ .. __ •• _., ___ ._._ •• 4" ••••• -.

The instructions in DIESEL might be rewritten so that
each portion of the calculation is handled by another
program. Since the diesel calculation was divided into parts
A, B, and C, each of those might be calculated by a separate
program; you might want to call them DOA, DOB, and DOC.
Here's a program called DSL, written in that way:

\J DSL
[lJ DOA
[2J DaB
[3 J DOC
[4J EFF+1-AxBfC

\J

Of course, you can't tell what this definition means
until definitions are supplied for the programs DOA, DOB,
and DOC. Here they are:

\J DOA
[1 J A+fR*GAMMA-1

\J

\J DaB
[1 J B+«V3fV2)*GANMA)-1

\J

\J DOC
[lJ C+GAMMAx(V3fV2)-1

\J

As far as you can tell when you use it, DSL works just like
DIESEL. In a larger problem than this one, it is often
convenient to be able to break the work up into modules

40

which are handled by separate sub-programs. As you will see
later, the ability of one program to call for the execution
of other programs becomes much more useful when those
programs can be written so that they have arguments in the
way that APL operators do. Then you can write compound
expressions involving calls to other programs. That topic
is discussed in Chapter 25.

It is sometimes convenient to define a program in which
the opening instructions set up the values that another
program is to use. A later instruction in the same program
may then call for the execution of the program that does the
actual calculation. Here is a definition for a program
called D, which sets new values for GAMMA, R, V3, and V2 by
modifying the earlier values as shown, and then calls for an
execution of DIESEL and for the printing of the final value
of EFF.

V D
[1J GAMMA+1 0 01xGAMMA
[2J V3+0.99xV3
[3J V2+0095xV2
[4J R+R+Oo04
[5J DIESEL
[6J EFF

V

D
0.4489094412

D
0.4488170822

41

7: DISPLAYING OR CHANGING THE PROGRAM
AFTER YOU'VE DEFINED IT

Suppose you've defined a program DIESEL. You have typed
all of your definition, and you've typed a final V to
indicate that the definition is ended. That has taken you
back to execution mode. Perhaps you have even executed the
program a few times. Now you decide that you want to change
the definition. Perhaps you find a mistake in it, or some
unnecessary lines; perhaps you wish to add some additional
steps that you didn't think of before. How may you edit the
stored definition?

Any time you edit the definition of a program
(including just displaying it without changing it) you start
out by typing a V and the name of the program. For the
"stand alone" type of program (the only kind introduced thus
far) this is the same as the way you first started the
definition of the program.

Adding Another Line

Whenever you enter definition mode and type the name of
a program, the first thing the computer does is check the
active workspace to see if there is already a definition for
a program of that name. The first time you entered VDIESEL,
the computer could find no prior definition for a program
called DIESEL in the workspace. So it presumed you were
starting a new definition, and asked what you wanted on line
1. When you first opened the definition of DIESEL, the
opening dialogue went like this:

VDIESEL
[1J @

But when the computer finds that a definition of DIESEL
has already been stored, it assumes that now you want to add
to the stored definition. So it types the number of the line
which comes next after the lines it already has, and awaits
your definition for that new line.

VDIESEL
[6J @

42

After it gets the definition of that line, it asks you
for line 7, and so on unti I you once more enter a V to
indicate that the definition is closed. You may recall that
the definition of DIESEL did not include an instruction to
print the value of EFF. Suppose you now add such an
instruction after the instructions that have already been
entered:

VDIESEL
[6 JEFF
[7 J V

@

_Replacing a Line

Suppose that you don't like the definition that you
originally entered for line 3 of DIESEL; you want to replace
it with something else. If you once again enter definition
mode, since the computer now has six lines of definition for
DIESEL, it invites you to enter a definition for line 7. You
may override this suggested line number by typing a new line
number, in brackets as before. If you wish to redefine line
3, you now type [3J followed by whatever you would now like
to have on line 3. The new version of line 3 replaces the
old one.

VDIESEL
[7J [3J B+-l-V*GAMMA
[4J V

Whenever you specify a new definition for a line which
already exists, your current definition replaces the earlier
one. After accepting your new definition for line 3, the
computer asks if you wish to revise line 4 also. If you
don't want to, you now type a ~. Line 4, and all other'lines
previously defined, remain unchanged. /

Displaying What Is Already on a Line

Suppose you want to check up on what you wrote on a
line of your program. You want to see what was on line 3 of
DIESEL in order to decide whether to change it, or how. You
do this using the input-output symbol n, called "quad." Once
you are in definition mode, you type within brackets the
line number followed by a O. For example, to cause line 3 of
DIESEL to be displayed, at that point you enter [3DJ. This

43

is shown step by step in the following example. Notice that
after it has shown you what is on line 3, the computer
invites you to redefine line 3.

[7 J

[7]
[3 J
[3 J

[7J
[3J
[3 J
[4J

[7 J
[3]
[3 J
[5J
[5 J

[7 J
[3 J
[3]

VDIESEL
@

VDIESEL
[3D]
B+(RATIO*GAMMA)-l
@

VDIESEL
[3DJ
B+(RATIO*GAMMA)-l
B+-l-RATIO*GAMMA
@

VDIESEL
[3D]
B+(RATIO*GAMMA)-l
[50]
EFF+l-AxBfC
@

VDIESEL
[3DJ
B+(RATIO*GAMMA)-l
v
@

Step 1: Enter definition mode for
the program called DIESEL. The
computer already has six lines
defined, so it asks what you want
on line 7.

~tep 2: Instead, you ask for a
display of line 3. The computer
types its stored definition of
line 3, and then asks what you
want as a new definition for line
3.

Step 3: Either--

(a) If you want to change line
3, type the new instruction for
line 3. Then the computer asks
what you want on line 4.

or--

(b) If you don't want to change
line 3, but you now want to
display some other line, type
in brackets the number of the
line you want to see next,
followed by a O. The computer
then shows you that line, and
asks what you want as the new
definition of that line.

or--

(c) If, you want to leave line 3
as it was, and leave definition
mode, type a v. As always, all
previously defined lines remain
unchanged.

44

Displaying the Whole Stored Definition

Once you have the computer in definition mode, if you
use the 0 symbol to get a line displayed but you don't say
which line you want, you get all of them. For instance,
entering

VDI ESEL
[7J [OJ

causes the computer to print its entire stored definition of
the program DIESEL:

VDI ESEL
[7 J [OJ

V DIESEL
[lJ A+-fR*GAMMA -1
[2 J RATIO+-V3fV2
[3] B+-(RATIO*GAMMA)-l
[4J C+-GAMMAxRATIO-1
[5 J EFF+-1-AxBfC
[6 J EFF

V
[7 J @

Notice that the computer even prints the initial V with
which the definition starts, and another one to show where
the definition thus far stored comes to an end. These dels
that the computer types do not change the mode: only a del
that you type can do that. The first del you typed started
the definition mode; when you are ready, you will ha.ve to
typt:: anotht:!L" del to get back to execution mode.

Notice too that after it has finished typing the entire
stored definition, the computer types a new line number,
inviting you to enter the definition of another line after
those already defined. As before, you don't have to enter
one if you don't want to.

Inserting a Line Between Lines that are Already Defined

Suppose that the line that you want to add doesn't come
at the end of the program. Perhaps you forgot to set up
something at the beginning of the program, or perhaps you

)

45

forgot an intermediate step somewhere in the middle. How can
you insert a line between the existing lines of the program?

You interpolate a line by giving it an interpolated
line number. Suppose you wish to insert a line so that it
comes after line 1 but before line 2. You do that by
assigning your line a decimal number between 1 and 2; 1.1
would do, or 1.5, or any other number with up to four
decimal places and which is greater than 1 but less than 2.
Negative line numbers aren't allowed, so if you want to
insert a line ahead of the first line, assign it a line
number between 0 and 1.

When you type V followed by the name of the program,
the computer, as before, asks what you want to add after the
last line it now has in the definition. You decline this
invitation; instead, you type a new line number, also in
brackets. This new line number overrules the one typed by
the computer. Suppose the program DSL now has 5 lines; you
wish to insert a line saying

RATIO+V3f V2

between lines 1 and 2. Here's what happens:

VDSL
[6] [1.5JRATIO+V3fV2
[1.6J @

As usual, after you enter your definition of that line,
the computer responds by asking what you want as the
definition of the next line. What is the "next" line in this
situation? The computer determines the number of the "next"
line by adding a 1 in the rightmost place of whatever number
was typed. Since you typed [1.5J, the machine asks next for
line [1.6J.

If you had given the line the number [2.0089], then the
computer would have asked next for a definition of line
[2.009]. Of course, you wouldn't have to give it one. You
can always close the definition, or you can type any other
line number you may want to insert next.

When you close the definition, the lines are all
renumbered, and given line numbers that are consecutive
integers (1, 2, 3, 4, .•. etc). If you insert a single line
between lines 1 and 2, that inserted line becomes line 2.
The old line 2 becomes line 3, the old line 3 becomes line

46

4, and so on. If you now display the entire definition of
DSL, you find that the inserted line has pushed down the
lines that follow it:

'ilDSL
[7 J [DJ

'iI DSL
[lJ DOA
[2 J RATIO+V3-i-V2
[3 J DaB
[4J DOC
[5 J EFF+1-AxB-i-C
[6 J EFF

'iI
[7J @

Deleting a Line of the Definition
~~"I'"~"'-""""~.-'---~--"

Suppose that you decide that you don't want line 2 of
program DSL in there after all. How can you remove it?

You can delete a line of the stored definition of a
program by using the "erase" feature. You start out as if
you were going to replace the definition of a line (see page
42). But when it comes time to type the new definition for
that line, you simply press the ATTN key, followed
immediately by carrier return. This combination erases that
line from the stored definition. Then the computer asks what
you want to do about the next line of the program. Erasure
of line 2 of program DSL looks like this:

'ilDSL
[7J [2J

v

[3] @

When you type the final 'iI to leave definition mode,
lines of the program which have nothing on them are dropped,
and the other lines are moved up to fill the gaps. For
instance, if you erase line 2, the old line 3 is moved up to
become line 2, the old line 4 becomes lines 3, and so on.

(

\

47

Changinq the Program's Header

The header of a program is the title line, containing
the program's name. As you will see in Chapter 25, it may
also contain several other items as well. It is quite
possible to edit not only the instructions that make up the
body of a program's definition, but also the header itself.
In this way you can change the name of the program, if you
wish. When you get to defined functions with results,
arguments, or local variables (taken up in Chapter 25) you
may also add, delete, or rename any of those.

The header of a program may be edited by
alter its line 0, and then proceding just as you
change any other line of the program. Suppose you
rename the function DSL with the name DSL2:

VDSL
[7J [ODJ
[0 J DSL
[oJ DSL2
[1J V

asking to
would to

wish to

Now you have created a program called DSL2, having the same
definition that DSL used to have, and (indirectly) you've
also erased DSL.

_Erasing ProgEams or Variables Entirely from your Workspace

Suppose you are through with some programs or variables
altogether. You may keep them in your workspace indefinitely
if you wish. But if you no longer want them cluttering up
your workspace, you may delete it using the system command
)ERASE followed by the names of each of the programs (or
variables) you want to erase. Suppose you want to erase the
program called DIESEL and the variable GAMMA:

)ERASE DIESEL GAMMA

Both the name and the entire definition of DIESEL are erased
from the workspace. Similarly, both the name and the value
of GAMMA are erased. If you try to use either of them, the
computer no longer recognizes them:

DIESEL
VALUE ERROR

DIESEL

"

48

You can't erase a program definition while it is
pendent (i.e. while its execution is halted to await the
result of another program). See page 85-86, where halted
programs are discussed, and the discussion of definition
errors in Appendix D.

49

8 : REPRESENTING NUMBERS

When you wish to enter a number into the computer, or
when the computer prints the numerical value of a result,
you have to have a system for representing numbers. You want
the computer to understand what you type, and you need to
understand what it reports. Internally, the computer
represents numbers in the binary system, but with APL\360
you don't have to deal with the internal workings of the
computer. Whenever you and the computer communicate, numbers
are represented in the decimal system.

Within the decimal system, APL\360 uses either of two
different forms. When you wish to enter a number, you may
use whichever form is convenient for you. You may mix both
forms in the same expression, if you like. The choice of one
or the other for~ is purely a matter of convenience: it
makes no difference to the computer's calculations.
Similarly, each time the machine has to print a numerical
value, it picks one or the other form in which to type it.
In general, the computer picks whichever form yields the
simplest representation. This choice of form is not made
until the computer is ready to print, after its calculation
has been completed.

Decimal Form

You can enter any number in the usual decimal form,
using the period as a decimal point. If the number doesn't
have any digits to the right of the decimal point, you don't
need to type the decimal point either; to APL, it doesn't
matter whether you enter 6, or 6.0, or even 06.00. Leading
zeroes to the left of the decimal point, or trailing zeroes
to the right of the decimal point, don't matter. However,
the digits that represent a single number must not be
separated by spaces or commas.

In the following examples, A, B, C, D, and E are given
values that are entered in the standard decimal form:

A+ 0

B+ 1088.5

C+ .00065

D+ 186300000

E+ 0.3

50

Exponential Form

When your work involves numbers that are very large or
very small, it is often desirable to indicate these numbers
by stating a value in some convenient range, and then
multiplying it by the appropriate power of ten. For
instance, Avogadro's number, which is the number of
molecules in x grams of a substance whose molecular weight
is x, is commonly written as 6.02xl023

•

A similar form exists in APL. It is called exponential
form. In exponential form, Avogadro's number is written

6.02E23

The E in the middle indicates that this is exponential form;
the digits to the right of the E indicate the number of
places that the decimal point must be shifted.

6.02E23

means the same as

602000000000000000000000.0 (point shifted 23 places).

That is, the digits to the right of the E indicate the power
of 10 by which the number to the left of the E must be
multiplied.

The estimated population of the world in 1964 could be
written in any of the following ways; each results in the
same value of the variable POP64:

POP64+3.22E9

POP64+3220E6

POP64+3220000000

POP64+3220000000.00

It is important to note that the letter E in a number
such as 3.22E9 is a part of the name of that number, and not
an operator. By contrast, when you enter 3.22xl0*9 you are
instructing the computer to perform a sequence of operations
which, as it happens, will end up with the same value.

51

Negative Numbers

A negative number is indicated by the symbol that means
"negative" placed in front of it. Negative two is written
like this:

2

Note that the negative symbol is not the same as a
minus sign. The minus sign denotes the operation of
subtraction. The negative symbol is part of the name of all
those numbers that lie below zero on the number line.
Unfortunately, the distinction between the operation of
subtraction and the names for numbers that are below zero
has been muddled by the common practice of calling a
negative number (for instance) "minus two," and using the
minus sign for both purposes. APL avoids this confusion by
using the minus sign only to mean the operations of either
SUbtraction or negation, and the negative symbol only as
part of the name of a negative number.

Notice that the operation - (subtraction), like all
other APL operators, applies to everything to the right of
it in an instruction. For instance, the instruction

7 - 2 + 3

means that the sum of 2 and 3 is to be subtracted from 7. By
contrast, the negative symbol is simply part of the
representation of a single number. It doesn't apply to ahy
other number but the one in which it occurs. Because it is
not an operation at all, it can never be used alone, and it
can never be used to operate on a variable. In this respect,
the negative symbol is like the decimal point, or the
exponential E: it has no meaning other than to help
determine the value of the number represented by a
particular cluster of digits. The decimal point, the
negative sign, and the exponential E, may occur only as
part of the representation of a number. You can't have any
spaces separating these symbols from the other digits of the
same number.

Negative Numbers in Exponential Form

The negative symbol can turn up in exponential form in
just the same way as in other numbers. For instance, you can
indicate the number negative two trillion by typing:

2E12

52

And you get negative 2.11684 trillion by entering:

2.11684E12

Very Small Numbers

In the exponential form, you can represent a very small
number in the same fashion as a very large one. For large
numbers, the decimal point is to be shifted to the right, so
that 2E3 means 2000. For very small numbers the decimal
point must be shifted not to the right but to the left. This
is indicated by having a negative exponent. So you could
write two trillionths like this:

In the same fashion, you can write negative two trillionths
like this:

2E 12

Note that the two negative symbols that are in the
representation of "negative two trillionths" occur inde­
pendently. The first one means that the whole value of this
number is negative. The second one means that this is a
number with a very small magnitude.

Roughly speaking, APL\360 can work with numbers
(positive or negative) whose magnitude ranges from a minimum
of about 1E-75 to a maximum of about 1E75.

Precision of Nu~bers

Internally, the computer represents numbers with a
precision equivalent to about 16 decimal digits. InevitablYi
any sequence of operations on values each of which requires
the full precision will result in some cumulative error, so
that the results (even though calculated to the equivalent
of 16 decimal digits) are not necessarily that significant.

Number Display

Regardless of precision, it would be cumbersome to
print all 16 digits every time you asked to see a number.
So, when APL\360 prints a number, it prints only the 10 most
significant digits, and suppresses trailing zeroes to the
right of the decimal point. If you ask for the reciprocal of

53

3, the result that you see printed will show only ten places
after the decimal point, even though the calculation was
carried further than that:

+3
0.3333333333

Similarly, 1 million divided by 3 is printed with ten
digits:

1E6+3
333333.3333

And one million million million divided by 3 is also printed
with ten digits:

1E18+3
3.333333333E17

But although only ten digits are printed, when a value is
stored in the workspace, it is stored with APL\360's full
precision, equivalent to about 16 decimal digits, and this
is what is used in any calculation involving that stored
value.

If for some reason you want your results printed with
more or fewer digits, you can reset the number of digits
printed in a particular workspace by using the command
)DIGITS followed by any integer from 1 to 16.

Which Form Does the Computer Use?

When you are entering a numerical value, you may use
whichever form you like (assuming that it is adequate to
describe the number you want to enter). But when the
computer types a number, it selects one of the forms
according to its own preference. For instance, the computer
always arranges numbers that it types in exponential form so
that the left portion (the mantissa) is between 1 and 10,
regardless of the way you entered the number:

602E21
6002E23

1E6
1000000

54

.00000000000000000000000000000000000025
2.5E 37

1.0
1

As you have just seen, it is quite possible that you
choose to represent a number in one form, while, when it
types, the computer represents the same value in the other
form. None of this makes any difference to the calculation,
since the way numbers are typed during input or output is
independent of the way they are represented inside the
computer during a calculation. For the computer, as for you,
the choice of one or the other form for writing numbers is
merely a matter of convenience in typing.

55

9: TESTING THE TRUTH OF A RELATIONSHIP

In the course of a calculation, there will be occasions
when you want to know whether a particular relationship
holds or not. You may want to test whether a counter has
reached its maximum, or you may want to check whether a
trial result is close enough to a desired standard of
accuracy. Possibly you want to do something differently in
your calculation, depending upon whether a particular
condition is or is not met. APL includes operators which
test whether two quantities are equal, as well as other
relations.

The following APL operations test the truth of a
relationship:

o

1

o

< less than

::;; less than or equal to

= equal to

;::: greater than or equal to

> greater than

~ not equal to

Consider the following exchange:

A+-12345678
B+-12345679

A=B

A<B

A;:::B

The computer always evaluates the truth of a
relationship with I for true and 0 for false. Notice that
because the result of testing one of these relationships is
a number, it can be used in subsequent calculations.

56

l+AsB
2

Each time a relationship is tested, think of it this
way: = means "Is it the case that A=B ?" (and similarly,
"Is it the case that" AsB, or A;r!B, or whatever it is). If
the answer is "Yes," the computer says 1; otherwise, O.

Notice that these instructions do not tell the computer
that A is less than B (or whatever the relation is). Nor do
they instruct the computer to make A less than B. They test
the truth of the relationship.

Example of Test for Equal

Suppose the correct answer to a problem has been stored
as the value of a variable called RIGHT. Suppose that the
answer supplied by a student has been stored under the name
STUDENT. You need to keep track of the student's score. You
want to add 1 to his score if his answer is the same as the
right answer, and otherwise leave his score unchanged.

If the student got this problem right, then it is true
that STUDENT=RIGHT. To add 1 to his score if and only if his
answer is equal to the right answer, you could give this
instruction:

SCORE + SCORE + STUDENT=RIGHT

Then the amount added to SCORE will be 1 when the two values
are equal, and 0 when they are different.

The example could be made slightly more complicated.
Suppose that instead of adding 1 when the student is right,
you wish to give some problems more weight than others. The
weight for the current problem is stored under the name
WEIGHT. If the student gets this problem right, you want to
add WEIGHT to his score; otherwise, o.

SCORE + SCORE + WEIGHT x STUDENT=RIGHT

If the student's answer is equal to the right answer, then
STUDENT=RIGHT has the value 1, so the amount that is added
is WEIGHTxl. But if they are not equal, then the amount
added is WEIGHTxO, which is o.

57

How Close is EqualJ

We have already mentioned that the computer stores the
values of numbers out to about sixteen decimal digits. It is
not programmed to handle greater precision than that.
However, if you perform calculations on those stored
numbers, there is almost certainly some loss of accuracy, so
that although a result is carried to about sixteen digits,
the final digits may become meaningless.

Whenever you ask a co.mputer whether two quantities are
equal, you have to qualify that question, and ask it (in
effect), "Are these quantities equal as nearly as it is
reasonable to judge? II APL\ 360 judges two quanti ties to be
equal if the relative difference between them is less than 1
part in about ten million million (i.e. 1 part in lE13) •

As we noted earlier, APL,360 types a maximum of ten
significant digits. This means, in effect, that the typed
answer is rounded to the nearest 1 part in lEl0, and numbers
which are not in fact equal may look alike when printed.

Occasionally this may cause some puzzlement. For
instance, suppose you have two variables called A and B. If
you ask for these two to be printed, exactly the same values
are typed for both of them. But if you test to see if they
are equal, you find that they are not!

A+f3
B+03333333333
A

Oc3333333333
B

Oo333333333~

A=B
o

This arises when the difference between A and B is
large enough to be detected when the two stored values are
compared, but not large enough to show up when they are
typed. You can make the difference evident by finding the
difference between A and B:

A-B
3.333332221E-ll

58

Notice that these are not mistakes,
consequence of two facts:

but the normal

1. No matter how you perform a computation or
comparison, there must be some finite limit on the
precision.

2. APL\360 does not normally display
precision of which it is capable.

all the

59

10: MORE OPERATIONS IN ARITHMETIC

So far we have considered the following arithmetic
operations: addition, subtraction, multiplication, division,
exponentiation, maximum, and minimum. • In this chapter we
present capsule summaries of four other arithmetic
operations, and four logical operations.

Absolute Value

Sometimes you want to consider the magnitude of a
number without regard for whether it is positive or
negative--that is, its absolute value. In conventional
arithmetic, absolute value is often indicated by placing a
vertical bar on either side of the name of a variable, thus:

In order to keep its syntax consistent, APL dispenses with
the need to write the sign twice, and writes lithe absolute
value of A" like this:

IA

If A has a positive value, then IA has the same value. But
if A has a negative value, then IA has the same magnitude
but a positive sign.

Like every APL operator,
the right of it, so that

IA+BZxQ

I operates on everything to

means "the absolute value of the sum of A and the product
of BZ and Qn

Residue and Remainder

AlB

is read as "the A residue of B." The A residue of B is the
smallest non-negative number that could be reached if you
started out from the number B and added or subtracted the
absolute value of A as· often as necessary. If A and Bare
both positive, this is the same as saying that the A residue
of B is the remainder when B is divided by A.

60

If B is evenly divisible by A, then AlB must be O. By
testing the truth of the relation O=AIB you could decide
whether B is divisible by A.

A program which prepares monthly statements includes a
variable MO which contains the number of the current month.
At the beginning of each new month, the program updates the
stored values of MO. The months run from 1 to 12, so that
the next month after month 12 is month 1. The following
instruction'would update the months correctly:

MO+l+12IMO

For instance, at the end of March, MO has the initial
value 3:

4

MO+3
1+121MO

But at the end of December, when MO is 12, the same
instruction has this result:

1

MO+12
1+12/MO

p'owers of the Natural Constant e

If you type the symbol for exponentiation * with no
left argument, APL presumes that the number which is to be
raised to a power is the natural constant e. Thus e a in APL
is written *A

The formula for the height of the Gaussian "normal
curve of error" (when the total area under the curve is 1)
provides that, the height (i.e. frequency) Y of a deviation
of T units from the mean may be found by the following
formula:

y = 1

vz;-
The reciprocal of the square root of two pi'*' is constant in
this formula. Suppose we call that constant RTP; in APL, it
may be found as RTP+ f(2xPI)*Oo5 Then the formula for Y
becomes:

Y+ RTP x *-O.5xT*2

*The value of pi is directly available from the monadic use
of the circular function 0 (see p. 66).

61

This might be embodied in a program called GAUSS:

'iJ GAUSS
[lJ Y+RTPx*-0.5xT*2

'iJ

The height of the curve at its center, when the deviation T
is zero, is found in the following execution:

T+O
GAUSS
y

0.3989422804

And the height when T is 2 units:

T+2
GAUSS
Y

0.05399096651

Logarithms

The log of B to the base A is written:

(The symbol for logarithm is formed by overstriking the
circle 0 and the sign for exponentiation *.)

The common (i.e. base 10) logarithm of NUMBER can be
found by the following instruction:

NUMBER+20
10eNUMBER

1.301029996

And the base 2 log of NUMBER is found this way:

2eNUMBER
4.321928095

In order to approximate the responsiveness of human
senses, radio engineers convert the power of an audible
signal into units called decibels. The change of intensity,
in decibels, measured with respect to an arbitrary reference
power, is found from the formula

db 20 1 power
= og10 ref

62

In APL, this becomes:

DB + 20x 10ePOWER+REF

For a reference power of .002, an observed power of .08 is
converted to decibels as follows:

POWER+ .08
REF + .002
DB + 20x10ePOWER+REF
DB

32.04119983

Natural Logarithms

Just as the powers of e can be found by entering * with
no left argument, so the log to the base e (the Napierian or
natural logarithm) is found' by entering the symbol for
logarithm with no left argument. Hence the natural log of
XYZ is found by the expression eXYZ.

e2
0.6931471806

XYZ+10
eXYZ

2.302585093

Antilogs

APL has no special symbol for the antilogarithm, since
it can be found directly by exponentiation. The base 10
antilog of B i~ obtained by the instruction 10*B, ~yJ'hilc the
natural antilog of XYZ is found by *XYZ. For example:

42

A+6
B+7
LOGA+eA
LOGB+eB
LOGPROD+LOGA +LOGB
*LOGPROD

Logical Operations

The logical operations OR, AND and NOT operate only on
zeroes or ones. Logical operations are most frequently used
to form compound expressions about the truth of two or more

)

63

relationships. APL uses the number 1 to stand for "true" and
the number 0 to stand for "false." Thus the logical
operators can work on the result of any of the tests of
relationship. But they aren't restricted to handling the
results of relational tests; they can work on any values
that contain only zeroes or ones, regardless of where those
zeroes and ones came from.

Logical Or

Suppose A represents the truth of some relation, and B
represents the truth of some other relation. Some condition
you have in mind will be satisfied if either A or B is true.
You can find the truth of nA or B" by the instruction

AVB

Suppose that in a particular program you are finding a
solution by successive approximations. You will be satisfied
if the result is correct within .0000001, but you will also
be satisfied if the computer has already tried 100
approximations. You want to quit if either of those
conditions is met. The first condition to test might be:

lE-7 ~ ILASTRESULT-NEWRESULT.

And the other one might be written this way:

COUNT~100

An expression that yields a 1 if either of those conditions
is true (i.e. has the value 1) is:

(COUNT~100) v lE-7~ILASTRESULT-NEWRESULT

In APL, as in logic, OR means the inclusive or: that
is, you are satisfied if either one of the conditions is
true, or if both of them are true.

Logical And

The instruction

AAB

returns a 1 if and only if both A and Bare 1. That is, AAB
is true only when both A and B are true.

64

Let's return to the example in which we increase a
student's score by 1 if his answer is equal to a right
answer (page 56). Suppose now that this is a two-part
question, and he has to have both parts right in order to
get credit. If the student's two answers are called Sl and
82, and the correct answers are called Rl and R2, then you
can keep track of his score by the following instruction:

SCORE+ SCORE+ (Sl=Rl)A S2=R2

In a certain jurisdiction, you can vote in school board
elections if you are a citizen, and registered, and either a
parent of a child in the local schools or a taxpayer to the
school district. If CIT, REGD, PARENT, and TAXED are
variables which indicate whether those conditions are met
for an individual, you can combine them to test whether he
is eligible to vote by the following expression:

ELIG+ CITA REGDA PARENTvTAXED

Exclusive OR

In ordinary English speech, "or" often means "one or
the other, but not both." Technically, this is the
exclusive or. APL doesn't have a special symbol for
exclusive or since the "unequal" operator provides this
function. If A is a logical variable (i.e. is restricted to
the values 0 or 1), and B is too, then

can hd.ve the value 1 if and only if one of those variables
has the value 1 while the other has the value O. The
operation can be used to test whether any pair of values
is unequal, including numerical values of any size, or even
liter,al characters. But if the operation is applied to
zeroes and ones, its effect is the same as an exclusive or.

In household electrical circuits, it is common practice
to provide some lamps that may be turned on or off from
either of two different switches--perhaps at the foot or the
head of a staircase. The switches are arranged so that the
current may flow when the two switches are in opposite
positions. In that way, reversing the position of either
switch always reverses the light. If the two switches are

(

65

called Sand T, then the lamp (represented by the variable
LAMP) is on (has a value 1) when:

LAMP+ S~T

NOT: Logical Negation

The operator ~ takes only one argument, which must be
logical (i.e. must be composed exclusively of zeroes and
ones), and produces a result of opposite truth. That is, the
value of ~O is 1, while the value of -1 is o.

Suppose a condition will be satisfied only if A is true
and B is false. That can be tested by the result of this
expression:

In constructing logical, expressions involving the
negation of some logical result, it may be handy to recall
the equivalences given by De Morgan's rule:

Neither A nor B: "'A vB is equivalent to ("'A)A"'B

Not both A and B: ""AAB is equivalent to ("'A)V"'B

Getting a Variable's Sign with the Signum Functio~.

The signum function is a handy way of obtaining the
algebraic sign of a variable without regard to its
magnitude. It returns a result of one when its argument is
greater than zero, zero when it is zero, and negative one
when the argument is negative. APL uses the monadic times
sign to stand for the signum function:

x123045
1

1

The signum function may be useful in a variety of
situations in which you have a three-condition test, such as
"within range," "above range," or "below range." It is also
useful in those situations in which it is more convenient to
perform a calculation on the absolute value of a variable,

66

and then restore the appropriate sign at the end. Suppose
you would like to convert a series of measurements to the
log of their absolute value, but retain the original sign.
You could do it like this:

LOGX + (xX) x $/X+X=O

Sine, Cosine, and Tangent

In APL the trigonometric functions (which are also
known as the circular functions) are provided by the circle
symbol o. In order to get the necessary variety of
functions using a single symbol, a left argument is used
with the circle, as follows:

Sin A:
Cos A:
Tan A:

lOA
20A
30A

Arcsin A:
Arcos A:
Arctan A:

loA
20A
30A

These are all defined in terms of radian measure, rather
than degrees.

The circle with a left argument of zero is the function
that gives the relation between the sine and cosine of an
angle: OoA is equivalent to (1-A*2)*0.5

The circle can also be used without an argument on the
left, in which case it gives a multiple of the constant PI.
For example, the number of radians in a circle is 02, and in
a quarter circle (90 degrees), it is 00.5. If you are given
an angle in degrees, and wish to find its cosine, you can
write the single expression 200Af180 8ince PI radians iG
equivalent to 180 degrees.

In Chapter 25 it is shown how a function can be defined
to have an argument and a result. That capability can be
used to obtain the circular functions in a convenient form,
under their conventional names. For example, if a function
SIN is defined as follQws:

V Z+SIN A
[1] Z+looA+180

V

it can be used like this:

SIN 45
0.7071067812

67

11: CONTROLLING THE SEQUENCE
IN WHICH THE LINES OF A PROGRAM ARE EXECUTED

"Ordinary" Order of Execution

The ordinary order of execution of the lines of a
program is to start at line 1, then do line 2, then line 3,
and so on until the last line for which there is a
definition. Inside each workspace, there is a line counter
which tells the computer which line of the program it should
execute next. When you call for a fresh execution of a
program, it always starts out with line 1. In the usual
course of events, in order to decide which line to do next,
the computer simply adds 1 to the last value of the line
counter.

In the programs which have been used as illustrations
thus far, work always ended because the line counter moved
up in the usual sequence until it came to a line that had
not been defined. If a program has 4 lines, after the
computer executes line 4, it sets its line counter to 5, and
looks for line 5. When it finds that there isn't any line 5,
it concludes that it has reached the end.

Branches

There are many situations in which you want to be able
to tell the computer to go to some other line of the
program, instead of the one that it would ordinarily do
next. For instance, after a particular sequence of lines has
been executed, you might want to have the computer go back
and do them again with a different set of values. If the
sequence that you want to have repeated starts at line 3,
you might want to be able to tell the computer, "Go back to
line 3." Or, if you want to repeat the sequence starting at
line 3 only if a counter has not reached a particular value,
you might want to say "Go back to line 3 if COUNTER is less
than VALUE, otherwise stop."

An instruction which explicitly tells the computer
which line to go to next is written with a right-pointing
arrow, followed by an expression whose value is the number
of the line that is next to be executed. Such an instruction
is called a branch. The two examples mentioned in the last
paragraph would be written like this:

-+3
-+3xCOUNTER<VALUE

68

The second example, which depends for its effect on
some condition that is tested, is often called a conditional
branch. This and other forms of conditional branch will be
discussed in a moment.

Branching Out of a Program

A branch to a line for which there is no definition
always causes the computer to conclude that work on the
program is finished, just as it does if the line counter is
set to a line 1 greater t~an the last line of the program.
If a program has 5 lines, the instruction

-+6

will terminate work on it. So would -+99, or -+678. But the
most obvious line number for which no instruction is ever
defined is line O. Hence, if for some reason a program needs
an explicit instruction to end work, the instruction that's
generally used is

-+0

Naturally, you don't need to write -+0 if the program comes
to an end after the last line. (Although no line ever has a
fractional number once function definition mode is ended,
you can't use a branch to a fractional line number even to
end execution of a program.)

computed Branches

Instead of writing -+6 you could just as well use this
instruction:

-+2x3

The "go to" arrow means that the calculation on the
right is to be performed, and the result of that calculation
is to be used to reset the line counter for the current
program.

Now suppose you give the instruction:

-+3xCOUNTER<VALUE

This calls for a test to see whether it is true that COUNTER
is less than VALUE. If it is true, then the expression

69

COVNTER<VALVE has the value 1;
instruction either means "Go to 3"
--i.e. exit from the program. II
prevails depends in any instance
that COUNTER is less than VALUE.

otherwise, O. Thus this
or else it means "Go to 0

Which of those meanings
upon whether it is true

The Factorial: An Example of a Program with a Branch

Suppose you want a program to compute factorials. The
factorial of n is the product of the consecutive integers
from 1 to n. You will need a counter; call it X. You will
also need another variable F, to hold the result as it is
developed. Start with X set equal to 1 and F also set equal
to 1. (It's all right to write both of those in the same
line.)

'i/ FACTORIAL
[1] F+-X+-1

Next increase X by 1. Then respecify F as the product of F
and X.

'i/ FACTORIAL
[lJ F+-X+-1
[2J X+-X+1
[3] F+-FxX

If N is the number whose factorial is to be
now need an instruction that says "Go back to
is true that X is less than Ni otherwise go to

'i/ FACTORIAL
[1 J F+-X+-1
[2] X+-X+1
[3J F+-FxX
[4] -+2xX<N
[5] 'i/

computed, you
line 2 if it

0."

Here is a sample execution of the program called
FACTORIAL. First you set a value of N; then you call for
execution of the program; finally you ask for display of the
latest value of F.

N+-12
FACTORIAL
F

479001600

70

Program Loops

In the FACTORIAL program, the sequence of lines 2 to 4
is repeated as many times as required. A repeated segment of
a program is called a loop. Whenever you write a program
with a loop, there is some danger that a mistake in the
program will cause the loop to be executed endlessly. For
example, if the instruction on line 4 has requested a return
to line 3 instead of to line 2, X would never be increased.
The computer would return to line 3 indefinitely, because X
would always be smaller than N. In this example, F would get
larger and larger, being doubled at each repetition of line
3. Eventually the program would stop when the size of F
exceeded the capacity of the computer.

Any time the computer seems to be taking longer to
execute a program than you think it should, it is possible
that it is in an endless loop. It is good practice to use
the interrupt feature (see page 12) to stop it. If all is
as it should be, you can tell the computer to resume where
it left off by entering a branch instruction from the
keyboard; this is discussed in more detail in Chapter 14,
"What to Do When the Program Stops. II

The Roots of a Quadratic: Another Example
pf a Program With a Conditional Branch Out

There are various ways of finding the roots of a
quadratic equation. One of the best known goes as follows.
Arrange the equation so that it is in the form

ax 2 + bx + C = 0

Then the roots are given by the formula:

roots = -b + V b-J. - 4ac

2a

Suppose you want to write a program to calculate and
prin t the values of the two roots. The pl:oblem that arises
is this: the quantity ~-4ac (which is called the
discriminant) may be negative. If the discriminant is
negative, the roots are complex. If you woodenheadedly go
ahead and try to calculate them anyway, you'll be in trouble
when you try to take the square root of a negative
discriminant. So you want to test whether the discriminant

)

71

is negative. For the moment, assume that when you find a
negative discriminant, you want to terminate execution of
the program, but if the discriminant is not negative, you'll
go ahead with the calculation. (You're also in trouble if A
is zero, since that would give you a 0 divisor, but let's
not worry about that since if A is zero this isn't a
quadratic equation.)

Here's an outline of the procedure you can use in a
program to find the real roots of a quadratic. Suppose you
call the program QUADROOTS.

1. Calculate the discriminant and store it.

2. If the discriminant is negative, go to 0 (i. e.
quit) •

3. Otherwise, calculate and print the values of the
two roots.

In writing this program, you can find the discriminant
on line 1. Then line 2 is a branch: if the discriminant is
negative, go to O. Otherwise, go to 3. The program looks
like this:

'iJ QUADROOTS
[lJ DISC+(B*2)-4 xAxC
[2J +3xDISC?O
[3J (-B-DISC*O.5)f2xA
[4J (-B+DISC*O.5)f2xA

'V

If a negative discriminant is encountered with this
program, the computer will simply terminate execution
without doing the calculation. Some procedures which are
more general, and handle both the real and the complex
roots, are, of course, possible, but aren't discussed here.

Branch or Continue

Line 2 of the QUADROOTS program says (in effect) "Go to
o if the discriminant is negative, and otherwise go to line
3." It is more convenient to write an instruction which
doesn't require you to know that the next instruction is on
line 3. You would rather say, "If the branch is not taken,
go to whatever line comes next." You can do that in the
following way. The instruction

+CONDITION/LINE

72

causes a branch to the line number specified by LINE if and
only if CONDITION is true (i.e. has the value 1 rather than
0). When CONDITION is false (i.e. is 0), the program
continues with the next line in the usual sequence.

This expression, involving the / sign, is actually an
example of a much more general operation called compression,
which is discussed in a later section. For the moment it is
only necessary to note the way that it is used to provide an
instruction which has the effect of "Branch if the tested
condi tion is true, but otherwise continue in sequence."

Instructions which test whether the discriminant is
negative, and go to 0 if it is but otherwise continue, could
be written like this:

TEST+O>DISC
+TEST/O

Probably you don't want to create a stored variable
called TEST on one line, and then branch on the next line.
You can instead insert the formula for the condition being
tested right into the branch instruction. However, now you
must put parentheses around the expression for the test, so
that the test is evaluated before deciding the branch:

+(O>DISC)/O

We can now go back to the QUADROOTS program and give it
a different line 2, so that a display of the entire program
now looks like this:

V QUADROOTS
[1] DISC+(B*2)-4xAxC
[2] +(O>DISC)/O
[3] (-B-DISC*O.5)f2 xA
[4] (-B+DISC*O.5)f2 xA

V

Here is an example of the quadroots program in use.
Suppose you need the roots of the following equation:

14.r- - 2x = 18. 6

Putting it into the form ax2.+bx+c=O, you find that

A is 14; B is -2; C is -18.6

73

Because the program presumes that values of A, B, and Care
already in storage, you must enter those values before
calling for execution of the program:

Then you call for execution of the QUADROOTS program
simply by typing its name.

QUADROOTS
1.226276384
-1.083419241

The Factorial Again: An Improved Version
Using Two Branch Instructions

If
page 69
results:

you try executing the factorial program shown on
with small values of N, you run into some strange

N+2
FACTORIAL
F

2
N+1
FACTORIAL
F

2
N+O
FACTORIAL
F

2

Something
factorial of 0

is
is

wrong. The factorial of I should be 1. The
also defined to be 1. Where is the error?

You will recall that line 4 of the FACTORIAL program
said, in effect, "Go back and multiply F by the next integer
if the counter X is less than the number N." But before the
computer ever gets to make that test, it has already
multiplied F by X+I, or 2, regardless of the value of N. If
this program is to work properly for all the non-negative
integers, this superfluous multiplication must be
forestalled.

74

The answer lies in putting the test ahead of the loop.
That way, when appropriate, there may be zero repetitions of
the loop, since the test may cause the computer to skip
before it ever executes the instructions in the loop. The
branch instruction should therefore come right after line 1.
It should say, in effect, "Stop now if X is greater than or
equal to N. Otherwise continue with the instructions in the
loop." This may be written as:

-+(X~N)/O

As you will see by studying the program below, this test,
executed before the loop is entered, is the only test
necessary. The loop is closed by the instruction at line 5
to return to line 2, and test again. Here is the program as
revised:

V FACTORIAL
[lJ F+X+1
[2J -+(X~N)/O
[3J X+X+1
[4J F+FxX
[5J -+2

V

Sample executions of this program now give the correct
results:

2

1

1

N+2
FACTORIAL
F

N+-1
FACTORIAL
F

N+O
FACTORIAL
F

N+12
FACTORIAL
F

479001600

This method of constructing a loop, with the test at
the beginning, is sometimes known as the "method of leading

75

decisions." While it requires two branch instructions (one
at the beginning and one at the end of the loop), it will
often keep you out of trouble and make for a neater program,
as it does in the case just illustrated.

(It should also be noted that factorial is also
available as a primitive operation in APL, so that, apart
from this exercise, you wouldn't need to write a factorial
program at all. See Appendix A.)

Techniques for programming with loops are discussed
further in Chapter 22.

76

This page intentionally left blank.

77

12: ARRANGING THE WAY THE PROGRAM TYPES ITS OUTPUT

Frequently, you will want to write a program in such a
way that the computer automatically types readable output,
without your having to give special instructions each time.
If you get much output printed by the computer, pretty soon
you're going to want some headings to distinguish what is
what. You can instruct the computer to print alphabetic
characters. Then you can arrange these as headings for the
results of a program, or as any other message you may want
to have typed. (The text of this primer was typed and
arranged by a program running on APL\360.)

Printing Text

Literal text can be entered by using quote marks. If
you type

'THIS IS A SAMPLE OF LITERAL TEXT'

you have entered a quotation. Since you haven't said what is
to be done with the quotation, as usual the computer assumes
that it should be printed. Your dialogue with the computer
looks like this (first your instruction, then the computer's
reply) :

'THIS IS A SAMPLE OF LITERAL TEXT'
THIS IS A SAMPLE OF LITERAL TEXT

The quote marks mean that what you typed between them was a
quotation. They aren't part of the quotation itself, so they
do not appear when the computer types the quotation.

You can store a quotation in the same way that you
store anything else. If you type

X+'IN 1492, COLUMBUS SAILED THE OCEAN BLUE. t

a variable named X is created in the worksp~ce. Its value is
that quotation. If you ask to have X typed, the dialogue
will go like this:

X
IN 1492, COLUMBUS SAILED THE OCEAN BLUE.

Anything that you type between quotation marks is
accepted as literal characters. Quoted text is not executed.

78

Operator signs, variable names, spaces, digits ••• if they are
in quotes, they are just so many literal characters, with no
meaning to the computer as names, operators, or numbers. Any
character you can print from the keyboard can be included
inside the quote. The computer will either store this string
of characters, or print it, as you direct. In this way you
can put together captions and headings that will make your
output easier to understand.

A quotation must have a quote mark at the beginning and
one at the end. Once you use one quote mark, everything that
you type after that is a part of the quotation until you
reach another quote mark. This fact occasionally trips an
inexperienced user. He types one quote mark, and then
changes his mind and decides to do something else. He types
what he thinks is an instruction to the computer, and
meanwhile the computer is still compiling the quotation he
started but never finished.

Lines of a program which call for the printing of
quoted text can be used to get a program to print headings.
For instance, in the QUADROOTS program, ahead of the lines
that calculate and print the two roots, you could insert
lines which call for the printing of appropriate text. Here
is a revised version of that program. Lines 3 and 5 now call
for the printing-of headings.

'V QUADROOTS
[lJ DISC+(B*2)-4xAxC
[2J ~(O>DISC)/O

[3J 'THE VALUE OF THE FIRST ROOT IS'
[4J (-B-DISC*0.5)f2xA
[5J 'THE VALUE OF THE SECOND ROOT IS'
[6] (-B+DISC*0.5)f2 x A

'V

Here is a sample execution of QUADROOTS, as revised:

A+14
B+-2
C+-18.6
QUADROOTS

THE VALUE OF THE FIRST ROOT IS
1.226276384
THE VALUE OF THE SECOND ROOT IS
-1.083419241

79

As a further variation, you can have the program type
another quotation to indicate what has happened when it
finds that the discriminant is negative. To do this, you
have to make the following changes in the QUADROOTS program:

1. On line 2, if it is true that DISC is negative,
instead of branching to 0, branch to a line which
contains some suitable quotation.

2. At the end of the program, add that quotation. It
is to be typed only when DISC is negative.

3. iihen there are real roots, line E? is still the
last executable line of the program. After the
computer executes line 6, you want it to finish
work without running into the quotation about
complex roots. So you should insert a branch to a
after line 6.

Here's the revised p1:ogram, followed by two sample
executions to illustrate the alternative headings:

v QUADROO::rS
[1] DISC+(B*2)-4 xAxC
[2] +(0)DISC)/8
[3] 'THE VALUE OF THE FIRST ROOT IS'
[4] (-B-DISC*0.5)~2xA
[5] 'THE VALUE OF THE SECOND ROOT IS'
[6] (-B+DISC*0.5)f2 xA
[7] +0
[8] 'ROOTS COMPLEX; CALCULATION TERMINA'PED.'

V

A+10
B+12
C+22
QUADROOTS

ROOTS COMPLEX; CALCULATION TERMINATED~

A+10
B+ -22
C+4
QUADROOTS

THE VALUE OF THE FIRST ROOT IS
2
THE VALUE OF THE SECOND ROOT IS
002

80

Results and Heading Appearing on the Same Line

A neater output is sometimes obtained when the heading
and the result are typed so that they appear on the same
line. This is called "mixed output." A line of a program
which calls for mixed output has the following
characteristics:

1. Different items to appear on the same line are
separated by semicolons.

2. An item within a line of mixed output may
variable, literal characters, or the result
expression.

be a
of an

3. If blank spaces are to appear between the items,
the blanks must be specifically included as parts
of the quotations. Mixed output printing does not
automatically supply spaces between the items.

4. A line of mixed output may not be stored as a
single variable.

Here is yet another version of the QUADROOTS program,
this time written to use mixed output, followed by sample
executions that show the same two problems used on page 78.

\l QUADROOTS
[lJ DISC+(B*2)-4 xAxC
[2J +(0)DISC)/6
[3J t FIRST ROOT: t;(-B-DISC*O. 5)~2xA
[11] 'SECOND ROOT: !;(-B-t-DISC*u.!»)f:2 xA
[5J +0
[6J 'ROOTS COMPLEX; CALCULATION TERMINATED. t

\l
A+10
B+-12
C+22
QUADROOTS

ROOTS COMPLEX; CALCULATION TERMINATED.

B+--22
C+4
QUADROOTS

FIRST ROOT: 2
SECOND ROOT: 0.2

81

13: LINE LABELS FOR EASIER BRANCHING

In each of the examples
introduced thus far, you had to
you were branching to. For
instruction

~(O>DISC)/6

of a branch instruction
know the number of the line
instance, in writing the

you had to know that the instruction you wanted next was on
line 6. But as you saw in the discussion of inserting a line
in a program, or deleting a line of a program, it is
possible that the instruction which used to be the sixth
one in the program will be moved up or down as lines are
inserted or deleted ahead of it. In that case, you'd have to
rewrite the branch instruction each time so that it always
showed the correct number of the line you want to branch to.

There is an easier way to handle this problem. You can
create a variable which is automatically assigned a value
that is the number of the line at which a particular
instruction is located. When you write a branch instruction,
you write it in terms of that name. If the discriminant is
negative in the QUADROOTS program, you want the computer to
go to the line that deals with complex roots, wherever that
line may be. Suppose you give that line the name COMP. Then
you write the branch instruction like this:

~(O>DISC)/COMP

A variable like COMP, whose value is the line number
for a particular line of a program, is called a label. You
show the computer what line the label goes with by typing
the label and a colon in front of that instruction.

If the instruction
message saying that the
you had

at COMP asks for the printing of a
roots are complex, where formerly

[6J 'ROOTS COMPLEX; CALCULATION TERMINATED.'

now, with a label on this instruction, it looks like this:

[6J COMP: 'ROOTS COMPLEX; CALCULATION TERMINATED.'

and COMP becomes a variable whose value is 6.

82

The computer automatically sets the values of labels
each time you leave definition mode for that program, so
that after each revision of a program each label again shows
the correct position of the line to which it is attached.
Because a label is a variable, it is necessary that a label
have a name distinct from the name of any program, or any
other variable in the same workspace.

)

83

14: WHAT TO DO WHEN THE PROGRAM STOPS

While you enter the definition of a program, the
computer stores the definition, line by line, in the active
workspace. It doesn't make any check to see whether your
definition makes sense. You won't discover whether the
definition is satisfactory until you try executing it on a
few examples. It's a good idea to start by running a problem
for which you already know the right answer. If the
definition is correct, the computer will run through your
program without mishap, and y.ou will get the appropriate
results. But if some of your definition is in error, your
mistake will come to light in any of the following three
ways:

1. The computer stops without finishing work on your
program because it has come across an instruction
that cannot be executed.

2. The computer doesn't stop work on your program in
a reasonable time, probably because you've
mistakenly given it an endless task. If a simple
program doesn't produce results in a second or
two, you'd better press the ATTN key to interrupt
the computer.

3. The program runs, but the result it produces isn't
what it should be. Your definition is acceptable
to the computer, but it isn't what you really
wanted.

The first of these three is probably the most common.
Mistakes of this kind also come to light first, since if the
computer can't execute the instruction at all, it doesn't
get a chance to reveal any of the other kinds of error.

Halt When an Instruction in Your Program Can't Be Executed

If the computer finds that it cannot execute an
instruction in your program, here's what it does:

1. It types an error message.
type of trouble the computer
to execute the instruction.

This identifies the
ran into as it tried

2. It types the name of the program and the number of
the line on which it was working when the trouble

84

was encountered, together with
instruction on that line.

the complete

3. It types a caret to show you how far along in the
instruction it had gone (working through the
operations from right to left) when the trouble
was encountered.

The error message is the computer's report telling you
what type of trouble it has run into. There are ten
categories that you might possibly encounter during the
execution of a program. Here are three of the more conunon
errors:

Value error means that your instruction refers
variable which has not been assigned a value in
workspace.

to a
this

pyntax error means that your
rules of APL syntax, by such
parentheses, or failing to show
performed on a pair of variables,
argument for an operator.

instruction violates the
things as mis-matching

what operation is to be
or failing to provide an

Domain error means that you have given an APL operator
an argument that is outside the domain of values that that
operator can handle. You would have such an error if you
were inadvertently dividing by zero, or trying to do
arithmetic on a literal character.

There is an extensive summary of error messages in
Append.ix D. You may want to look Lh.r.ough that appendix
briefly, and then refer to it again as the need arises.

A Program Error Doesn't Mean
That Execution Is AllOver

The cure for a great many program errors is to rewrite
the defective instruction. You can do this without having to
abandon execution of the program, and without having to
start over from the beginning 0

Whenever the computer encounters an unexecutable line
in a program, it halts the work and prints an error message.
But that doesn't mean that execution is allover. The
execution is suspended for whatever corrections you wish to
-make. The computer awaits a branch instruction from you to

85

tell it where to resume work on the suspended program. This
fact has two important ·consequences.

First, while execution is suspended, you
any calculation. You can display the values
used in your program, or almost any others.

may perform
of variables

You can enter the definition of a new program, or edit
the definition of almost any program. In particular, you can
usually edit the definition of the suspended program, and
thus correct the mistake that produced the error. (There is
one restriction. You can't edit the definition of a program
whose execution is pendent-- i.e. whose execution has been
started but has not been either terminated or suspended. A
program can be pendent only E an instruction within it calls
for the execution of another program, and that other program
has been halted. (See the discussion of definition errors, in
Appendix D.)

Second, sooner or later you should tell the computer
where to resume work on the suspended program, or else
terminate work by the instruction ~o. The computer will wait
indefinitely for your instruction telling it where to
resume. If you decide to save this workspace and resume work
on it another day, the computer will save along with the
workspace the list of programs whose execution is still
pending. You aren't required to dispose of these halted
executions ••• but it's a good idea, since they take up some
space in the workspace and if you don't dispose of them you
may gradually accumulate a large number of them (see the
discussion of depth errors, Appendix D).

Resuming Execution

If you wish to resume
at the place where work was
and the number of the line
work was halted because
instruction

~3

execution of a suspended program
halted, you enter a right arrow
shown in the error message. If

of an error on line 3, the

causes the computer to resume work where it left off.
Alternatively, you can resume execution at any other line of
the program, by entering a right arrow followed by the
number (or the label) for the line at which you want work to
be resumed.

86

As usual, if you enter the instruction to branch to
zero, or to any line for which there is no definition,
execution is terminated.

Where Was Work Suspended?

It is important to keep track of which programs are
halted, in what sequence, and at what point. You can find
this out by displaying the state indicator. This gives you a
list of the names of the halted programs in order, starting
with the most recently halted one. For each program, the
state indicator shows the line on which work was halted (and
on which work should be resumed if you wish to continue in
sequence). You cause the state indicator to be displayed by
entering the command)SI.

The system distinguishes two different types of program
halt. When a program halts because it has run into an
unexecutable instruction, or because you've interrupted it
by pushing the ATTN key, it is suspended. Work on it can't
resume until you enter a branch lnstruction from the
keyboard.

By contrast, a program may also be halted because one
of its instructions calls for execution of another program,
and that other program has been halted. The earlier program
is waiting for the program it called to finish; if and when
that called program is terminated, the earlier one will
automatically resume execution. A program that is halted
while waiting for another program to terminate is pendent. A
pendent program may not be edited or deleted.

The state indicator shows you which programs are
suspended by typing an asterisk after their names. The ones
without asterisks are pendent.

)SI
AREA [1J *
WORK[2] *
REPE'AT[7J

In this example, three programs are halted. The most
recently started program appears first on the list; when you
type an instruction to resume execution, it always refers to
the program at the top of the state indicator list.

The programs called WORK and AREA are suspended, but
the program called REPEAT is pendent. This indicates that

87

REPEAT has not itself been suspended, but is held up because
execution of the program called WORK has not been
terminated. If and when the execution of WORK is completed,
execution of REPEAT will resume automatically. Evidently the
execution of WORK was initiated not by an instruction
entered directly from the keyboard, but by the instruction
located at line 7 of REPEAT. .

Te~.~E..~t:h£l~~xecuti-on of All Halted ~~~ction~

Anytime you enter from the keyboard a right-pointing
,arrow followed by a line number (or label), it is taken as
an instruction to resume work on the most recently halted
program on the line you indicated. Sometimes you want to
abandon all executions that are halted, and start over
again. This is especially true if you have inadvertently
accumulated a large number of halted executions, or if you
have a pendent function that resumes automatically at an
inconvenient spot whenever you terminate execution of the
program ahead of it.

The state indicator may be cleared back to the last
previous suspended function by entering a single right~
pointing arrow with no value to the right of it, like this:

After you've entered a single right arrow, if you now
ask once more to see the state indicator and it is not
entirely blank, you can continue to clear it by entering
another right-pointing arrow. When it is entirely cleared,
any program can then be displayed or edited, and any program
can then be erased.

Changing Individual Characters Within a Line

Chapter 7 explained how to edit a progra.m by adding new
lines, deleting lines, or substituting new instructions for
individual lines of a program. In addition, APL\360 gives
you a way to change, delete, or insert particular characters
within a line, without having to retype the entire line.
This is particularly handy for long or complicated lines,
because it means that you don't run the risk of introducing
new mistypings while correcting others. The procedure has
three phases:

88

1. The computer types the line the way the definition
is now.

2. Under this display, you enter marks indicating
which characters are to be omitted, and where new
characters are to be inserted.

3. The computer retypes the line, leaving out the
characters you indicated, and inserting spaces
where you requested. Then the computer positions
the typeball at the leftmost inserted space, and
unlocks the keyboard. It does this without
advancing the paper, so that your insertions can
be typed right into the blank spaces left in the
line. Now when you press the carrier return key,
the line is entered the way it appears on the
paper (even though the computer typed some of
those characters and you typed the others).

~llustration: Using Character Editing
To Correct a Mistake in a Program

Suppose you have a p~ogram called AREA, which
calculates the area of a segment of a circle in terms of a
constant called PI, and the variables ANGLE and RADIUS. Here
is the definition:

V AREA
[lJ A+(PIxRADIUS)*2 xANGEL+360

V

Nutice ~nat there are two mistakes: first, ANGLE has been
mistakenly spelled ANGEL; second, the parentheses are in the
wrong place. They should surround the expression RADIUS*2.
The first mistake makes the line impossible to execute
(unless there happens to be a value for ANGEL in the
workspace). The second mistake won't prevent execution, but
it will make the result unreasonable.

Suppose you call for execution of this program called
AREA. The computer encounters the mistaken reference to
ANGEL, which (let's suppose) has never been defined. It
types the following error message:

AREA
VALUE ERROR
AREA[lJ A+(PIxRADIUS)*2 xANGEL+360

A

89

As you look at the display of the offending line, you
recognize the trouble, and you also notice that the
parentheses are wrong. Here's how you could make all of
those corrections.

You re-enter definition mode by typing a V and the
name of the program. Then, instead of defining an additional
line 2, you ask for character editing of line 1. To get
character editing, you type, in brackets, these three
things:

1. The number of the line that you want to edit.

2. A quad symbol.

3. Some integer indicating your guess about the
position in the line at which you will start
making changes. Your guess needn't be very
accurate; the fact that some number appears after
the quad is what tells the computer that you want
to start character editing.

Here's how your paper appears after you ask for
character editing of line 1. (As before, the symbol @
indicates where the typeball is located at the moment that
the keyboard unlocks.)

VAREA
[2J [1012J
[lJ A+(PIxRADIUS)*2 xANGEL+360

@

Now you are in a special editing mode. Anything you type now
will be considered as your instructions about the way the
displayed line is to be edited. Wherever you type a I, the
character immediately above it will be deleted. Wherever you
type a numeral 1 to 9, that many spaces will be inserted in
front of the character immediately above the numeral.
In addition, a letter A means 5 spaces, B 10 spaces, C 15
spaces, and so on.

In the current example, you want to remove both the
parentheses from their present positions, and you also want
to remove the E in ANGEL. You want to insert one space for a
left parenthesis in front of RADIUS, and another space in
front of the multiplication sign that follows 2. You also
want to insert one space in front of the division sign, for
the final E in ANGLE.

90

After you've indicated which characters are to be
deleted, and where you want space for insertions, . the
computer responds by retyping the line with the changes
you've asked for. Then the computer backs up the typeball
until it is opposite the first of the inserted spaces
(without moving the paper up to a new line) and awaits your
ins • You may type anywhere on the line as long as you
don't illegally overstrike the characters that are already
-there ..

Step 1: Enter definition mode and ask for character editing
of line 1 (shown on opposite page).

which characters are to be deleted and
is to be left for insertions.

V AREA
[2J [101]
[lJ A~(PIxRADIUS)*2xANGELt360

/ 1 / 1 //2

Step 3: The computer retypes the
characters that you marked with I, and
you indicated in step 2.

\j AR EA
[2J [1012J
[lJ A~(PIxRADIUS)*2xANGELt360

/ 1 / 1 //2
[lJ A+PIx RADIUS*2 xANG t360

line, deleting the
inserting spaces as

Step 4: You insert the ml83lng characters In the spac~s
provided. (Unless you have a 1050 terminal with 2-color
ribbon, it is now impossible to distinguish which characters
you typed and which characters the computer typed. They all
become part of the definition of that line.)

V AREA
[2J [1012J
[lJ A+(PIxRADIUS)*2 xANGELt360

/ 1 / 1 //2
[lJ A+PIx(RADIUS*2)xANGLEt360

Step 5: The computer invites you to define another line.
Since there is nothing more to do, you type a \j and leave
definition mode. This is illustrated on the next page.

91

V AREA
[2J [1012J
[lJ A+(PIxRADIUS)*2xANGEL+360

/ 1 / 1 //2
[lJ A+PIx(RADIUS*2)xANGLE+360
[2J V

@

Step 6: You resume execution with a branch instruction which
tells the computer to resume work at the line on which it
was suspended (i.e. in this case, at line 1).

V AREA
[2J [1012J
[lJ A+(PIxRADIUS)*2 xANGEL+360

/ 1 / 1 //2
[lJ A+PIx(RADIUS*2)xANGLE+360
[2J V

~1

A
224S.867725

After successful resumption, the result is found.

Editing Characters in the Program Header

Character editing can be applied to the program's
header just as it is to any line in the body of the
definition by referring to it as line 0 of the definition.
This permits you to alter the spelling of the name of a
program, and (more important) to alter the syntax governing
a defined function, or the names of local variables within
it--a topic that isn't discussed until Chapter 25.

Tracing the Execution of a Program

If a program comes out with a result that isn't what
you expected, it is useful to check up on what was done on
certain lines of the program. This is called tracing the
execution of that program. The instruction

T~WORK + 3 4 7

means that, until you instruct otherwise, the computer

92

should trace the execution of the program called WORK on
lines 3, 4, and 7. When the computer traces, each time it
executes a traced line, it prints the name of the program,
the number of the line, and the result of that instruction.

To discontinue tracing, you type

TI:J.WORK+O

Suspending Execution Part Way Through

Sometimes it is useful to check up on what a program
has been doing by suspending its execution at some
intermediate point. You can cause the program WORK to
suspend immediately before the execution of line 2 or line 8
by typing the following instruction:

SI:J.WORK -+ 2 8

When it suspends execution, the computer types the name
of the program and the number of the line which it is about
to execute. After you've done whatever you wanted to do
while execution was suspended there, you can resume
execution in the usual way. That is, by typing a
right-pointing arrow and the number of the line which is to
be executed next.

To discontinue stopping, you type

SI:J.WORK -+ 0

Stop or Trace Can Be Controlled by ~he Pro0ram Itself

A trace or stop instruction can be made part of a
program. For instance, you might want to trace the execution
of line 5 of the program WORK if and only if some variable
B has a value greater than 1.5. That could be done by the
following instruction within the program:

[4J TI:J.WORK + 5 x B>105

If you change the definition of a line within a
program, the revision will also discontinue tracing or
stopping on that line. So after revising some lines within a
program definition, you should restate which lines you want
to have traced or stopped.

93

15: SYSTEM COMMANDS

APL is a language for describing mathematical pro­
cedures. APL\360 is a system for executing procedures
written in the APL language. Most of what we have discussed
so far has dealt with the operators of the APL language, and
how you may define and execute programs using those
operators. In addition to using the APL language itself, you
also need to be able to give instructions directly to the
computer. These concern such practical matters as signing on
and off, saving your workspace for future use, borrowing
variables or programs from other libraries, or establishing
passwords that lock your account or your workspaces against
unwarranted use by others. None of these matters is part of
a mathematical procedure, and so none of them is dealt with
in the APL language. However, the APL\360 System has a
family of instructions called system commands, by which
these and similar instructions to the computer are given. A
few of them have already been introduced. This chapter pulls
together some of the other system commands you are likely to
need~ You won't want them all at once, of course, but you
should read through this chapter and come back to it as
specific needs arise later.

Distinguishing System Commands from Other Instructions

A system command always starts with a right
parenthesis. The right parenthesis was selected because no
conceivable expression in arithmetic starts with a right
parenthesis, and thus system commands can be readily
distinguished from other instructions. Anything that you
type which starts with a right parenthesis is treated as a
sy"stem command.

A system command can never occur as part of a program.
Whenever you enter a system command, it is executed at once,
if possible, and in any case is never accepted as part of
the definition of a program.

Signing On

Signing on has already been described in Chapter 2. In
a way, it is the simplest of the system commands, since it
consists of nothing but the right parenthesis and your user
number. A sign-on will only be accepted if you aren't signed
on already_ If you mistakenly type another sign-on after
you're already signed on, the computer rejects it, and
reminds you that you're "already signed on."

94

If you have established a sign-on password, after your
user number you must type a colon and then the password.

Before your sign-on is accepted by the
,cannot do any work. However, you can send a
operator (see page 103).

Signing Off

computer, you
message to the

When you have finished working, you should sign off.
There are several ways to do this. If next time you sign on
you'll want to resume work right where you left off, you
should sign off with the command)CONTINUE (see page 99).
Otherwise, you sign off simply by entering the command:

)OFF

The system responds by typing a statement showing the amount
of time you worked. Then it signs you off, and breaks the
telephone connection.

Holding the Telephone Line for the Next User

If another user would like to sign on from the same
terminal right after you, you can save him the trouble of
dialling the computer by instructing the computer to hold
the telephone connection after you have signed off. You can
do this by typing the command:

)OFF HOLD

Th;5 ~alu::es the t.:'!ompnter to ",!ai t 60 seconds before it
disconnects the telephone line. During that time, another
user may sign on without having to redial the telephone.

Establishing a Sign-On Password

When you sign off, you may also, if you wish, establish
a password which will thenceforth be required whenever you
sign on. You do this in the following way. At the end of the
sign-off instruction (which may be)OFF or)OFF HOLD or
)CONTINUE , mentioned below, see page 99) you type a colon
followed by any single word. For instance, the password
SHAZAM would be established by signing off like this:

)OFF:SHAZAM

From now on, whenever you sign on, you will have to type not

95

only a right parenthesis and your user number, but also a
colon and the password SHAZAM. This lock remains in effect
until, at some subsequent sign-off, you specify some other
lock. If you sign off with a colon but you don't indicate a
key, that will mean that from now on no password is needed
(and the colon isn't needed either).

Saving a Workspace

After you have done some calculations or defined some
programs, you may want to stop and resume work at some later
time or some other day_ There are two ways to do this: by
using the command to save your workspace, or by signing off
with the command contInUe.

If you give the system command to save your currently
active workspace, the computer makes a complete copy (on
magnetic disc) of everything that's in your workspace at the
moment you give the save command. The entire contents of the
workspace is saved: programs, stored data, the list of
programs awaiting execution--all of it.

The save command does not
workspace, but causes the
duplicate of it.

alter what is in your active
computer to save an exact

When a workspace is saved, it must have a name. This
name will be used to locate it when you subsequently ask to
retrieve a copy of the saved workspace. Once a workspace has
been named, you have only to enter the command)SAVE and the
computer saves a duplicate of your active workspace under
that name. The computer reports to you the date and time at
which the save took place, and the workspace's name. For
example, if your workspace has been named ACCOUNT, then the
dialogue when you save it will look like this:

)SAVE
12045026 07/28/68 ACCOUNT

The most recently saved workspace named ACCOUNT replaces any
earlier workspace of that name in storage. In effect, you
have revised the earlier saved workspace, replacing it with
a later version, whose content may be the same or totally
different, but which has the same name.

96

Naming a Workspace

You may give your active workspace a new name by using
the command)WSID (for "workspace identification") followed
by the name you've selected. To give your active workspace
the name TABLE, you enter:

)WSID TABLE

If the workspace already had a name, the computer reports to
you what the former name was:

)WSID TABLE
WAS ACCOUNT

The name of a workspace can be any single word which
starts with a letter of the alphabet and has any letters or
numerals in the remainder. The computer only reads the first
11 characters in a workspace name.

If you don't recall the name of your currently active
workspace, you may inquire by entering)WSID with no name
after it, and the computer types the workspace name.

The commands to save a workspace and to name it can be
combined by stating a name with the)SAVE command. However,
the computer won't accept this command if you attempt to
save a workspace which now has one name under a name which
is already in use for another saved workspace. This prevents
you from accidentally replacing one workspace with a quite
different one.

Y0ur Library of Saved Workspaces

The collection of all of the workspaces that you have
saved is referred to as your library of saved workspaces.
You may execute a save only into your own private library.
There is no way for you to save a workspace so that it
becomes part of some one else's private library. (However,
it is possible under some circumstances to save your active
workspace into a public library, that does not belong to any
individual user.)

The system command)LIB causes the computer to type the
names of the workspaces currently stored in your private
library.

97

Occasional users will probably not require a library of
more than one or tYlTO workspaces. Heavy users may well need
more. Each user is assigned a quota which is the maximum
number of workspaces he may save. The system won't let you
save another workspace if your quota is used up. If there's
no room in your library for something you want to save, you
should drop a saved workspace (see below, p. 99), or ask
the operator how to arrange for a larger library.

Bringing a Saved Workspace into the Active Area

In order to use a previously saved workspace, you have
to give the system command to load that workspace. This
causes the computer to load into your active area a complete
copy of the entire saved workspace. Your active workspace is
now restored so that it is exactly the way it was at the
moment the work,space was saved. Anyt.hing in the active area
before you gave the load command is replaced by the material
from the saved workspace.

After a load command, the computer confirms that a copy
of the saved workspace has indeed been loaded by typing the
date and time at which it was saved. Like this:

)LOAD ACCOUNT
SAVED 12.45.26 07/28/68

You may load a saved workspace into your active area as
often as you wish. Each time, the active area will be
restored so that it is again exactly the way it was at the
moment when that workspace was saved.

Loading a Workspace from a Public Library

An APL\360 System may have several public libraries in
which have been stored workspaces that contain programs or
data that may be generally useful to many users. Public
libraries are assigned numbers less than 1000, while the
private libraries of individuals have numbers greater than
1000. Anyone may load one of these workspaces and thus
acquire a \vide variety of special programs that are alI"eady
written, tested, and ready for use. Or a group of users
whose work is related may use this means for having some
workspaces that can easily be loaded by any of their
members. A listing of public library workspaces is
available, together with directions for the use of prepared
programs that have been stored in them.

98

To load a workspace from one of the public libraries,
you type the system command)LOAD followed by the number of
the public library and the name of the workspace. For
instance, if Public Library I contains a workspace called
NEWS, you can get a copy of it by the following command:

)LOAD 1 NEWS
SAVED 23013.46 07/29/68

Now if you ask for the name of the active workspace, the
computer supplies its library number as well:

)WSID
1 NEWS

Saving a Workspac~ Into a Public Library

If you save a workspace into a public library, that
still counts as part of your ration of saved workspaces.
However, it does not show on your list of saved workspaces
when you use the)LIB command. The public libraries
permit you to save a workspace so that other people can load
it without knowing your private user number. You should
consult the operator if you believe you need to save into a
public library.

A workspace can be saved into a public library only if
the following conditions are met:

1. The number of workspaces now saved on your behalf
(either in your private library or in a public
library) is less than your quota of saved
workspaces.

2. The name proposed for this saved workspace is not
already in use in this public library.

3. The operator has established a Common Library
number for the use of your group.

The only person who can drop or revise a workspace in a
public library is the person who originally stored it there.

Loading a Workspace
From the Private Library of Another User

You can
another user

load a workspace from the private library of
only if he has told you his private library

99

number, and the name of the workspace. Private library
numbers are regarded as confidential, and can not be
obtained from the system or from the operator. Notice that
even if he permits you to load a workspace from his library,
this merely gives you a copy of his workspace, while leaving
his saved version inviolate. If you wish, you may lock a
saved workspace against unauthorized use (see Appendix A, p.
207) •

Dropping a Workspace From Your Library

You can drop a saved workspace from your library by the
system command)DROP followed by the workspace name. The
system confirms that the workspace has been dropped:

)DROP ACCO UNT
11.01013 07/30/68

When a workspace is dropped, it is removed from the
magnetic disc file of saved workspaces. This has no effect
at allan whatever is in your active area. Note also that
you do not need to have the dropped workspace in your active
area at the time it is dropped.

Automatic Saving:
Signing Off with "Continue"

The system command)CONTINUE causes your currently
active workspace to be saved under the name CONTINUE .. Any
earlier version of CONTINUE is replaced by the the newly
saved workspace, even though the active workspace had a
different name. Then you are signed off.

The workspace named CONTINUE is intended primarily as
temporary storage until the next time you sign on. It
doesn't count as part of your quota of saved workspaces. It
is the only workspace in your library which is not protected
against replacement by a workspace that formerly had some
other name. Any time you give the command)CONTINUE or
)SAVE CONTINUE, the earlier version of CONTINUE is replaced
by whatever is in your currently active workspace.

If the last time you signed off you signed off with
)CONTINUE, or if your work was terminated by an automatic
continue (see next paragraph), the next time you sign on,
the workspace named CONTINUE will be loaded into your active
area automatically, without your having to make a specific

100

request for it. However, there is an exception. It is
possible to lock a workspace so that it can be loaded only
if an appropriate key accompanies the load command. If you
saved CONTINUE with a lock, or if the workspace that was
active when an automatic save was executed on your behalf
was locked, then CONTINUE will have the same lock, and won t
be loaded until you make the appropriate request.

Automatic Continue When a Connection is Broken
I

If the computer notices that your telephone connection
has been broken but you haven't signed off, it automatically
executes a)CONTINUE on your behalf. This happens if trouble
with the telephone lines accidentally disconnects you. It
also happens if you simply turn off the power or hang up
your telephone without signing off, or if for some reason
the computer operator has to disconnect your line. However,
if you haven't yet loaded or saved a workspace, and haven't
yet stored anything in the clear workspace you got when you
signed on, the computer does not save CONTINUE.

A new version of CONTINUE is saved any time the
computer detects that your line has been disconnected after
you have done some savable work. This protects you against a
loss of whatever is in your active workspace when you are
disconnected.

If
lock now
well.

you were working in a locked workspace, its
applies to the saved workspace named CONTINUE as

It is not usually possible for the computer to execute
a)CONTINUE if the ~y~rpm is halted by a malfunction of the
computer itself. In that case, the contents of your active
workspace is lost.

101

Diagram Summarizing Information Flow
Between You, Your Active Workspace, and Saved Workspaces

The diagram on the next page represents the flow of
information between you and the computer. It summarizes the
following points:

1. You can see or use only programs or data that are
in your currently active workspace.

2. You can save only what is in your currently active
workspace.

3. You can save only into your own library (except
for the special case in which you save into a
common library).

4. You can load into your active area from your own
library, from a common library, or (provided you
ha.ve the necessary information) from the library
of another user.

102

APL\360 DATA FLOW AND MEMORY STRUCTURE

YOUR

TER~1INAL

YOUR

ACTIVE WORKSPACE

KEY:

Instructions
or data

Entire workspaces

For WSNAME, substitute appropriate workspace name.

For 66, substitute appropriate common library number.

For 123456789, substitute appropriate user number.

)SA VE WSNAME : »
C) LOAD WSNAME

YOUR PRIVATE LIBRARY
I

-
A PUBLIC LIBRARY

.-------~

ANOTHER USER'S PRIVATE LIBRARY

J
I

-

103

Clearing the Active Workspace

If, after doing some work, you wish to start over with
a new, blank workspace (such as you get each time you sign
on), you enter the command

) CLEAR

The entire contents of the active area is replaced by a
clear workspace.

Sending a Message to the Operator

There are two commands which permit you to send a brief
message to the APL\360 System Operator. One of these sends a
message and leaves your keyboard locked so that your
terminal is ready to accept the reply. The other presumes
that there isn't going to be a reply, and unlocks your
keyboard as soon as the message is delivered. These two
conunands are)OPR and)OPRN. The letter N stands for "no
reply ...

Sending a message to the operator and signing on are
the only things you can do before the system has accepted
your sign-on.

Suppose you want to send the operator a message which
says, "Why does computer say 'Not saved' when I try to save
my workspaced ACCT?" That message calls for a reply, so you
enter:

)OPR WHY DOES IT SAY 'NOT SA VED' WHEN I TYPE)SA VE ACCT ?

The operator receives your message, preceded by a number
showing the line you are using, and "also the symbol H, which
indicates that you are awaiting a reply. When your message
is delivered, the computer types "OK" at your terminal, but
doesn't unlock the keyboard. When the operator sends you a
reply, it is typed with the letters "OPR:" in front of it:

OPR: ACTIVE WS HAS DIFFERENT NAME AND NAME 'ACCT' ALREADY IN USE

After a reply has been received, your terminal again indents
and unlocks, ready for whatever you want to enter next.

Suppose now you wish to send a message to the operator
which requires no reply. This' one you enter with the)OPRN
command:

104

)OPRN THAT WAS IT! THANKS

When it is delivered, the operator will receive the message
without the symbol H, and will know that you aren't awaiting
a reply. At the same time, your terminal will again indent
and unlock.

If your terminal remains locked because a message
hasn't been delivered, or because you haven't received a
reply, you can unlock it by pressing ATTN. That will cancel
a message if it hasn't yet been delivered.

~adcast ~~~ .. ~.~ge~.

The system operator has the power to send out broadcast
messages to all users when some special situation warrants.
Such a "public address" message appears at the terminal
preceded by the letters PA!.

PART II

16: VECTORS:
PARALLEL PROCESSING OF THE ELEMENTS OF ARRAYS

In science or business, calculations frequently involve
not just one number but a whole array of them. APL gets much
of its power and simplicity from its approach to the
processing of arrays.

1. A single name can stand for an entire array of
values.

2. The basic operations which apply to single values
can be applied with equal ease to the processing
of entire arrays.

A one-dimensional array is called a vector, and a
two-dimensional array is called a matrix, while arrays of
higher dimensions do not have common names. APL\360 can
handle arrays of numbers (or of literal characters) having
almost any number of dimension"s, but in this primer the
discussion is generally limited to vectors.

A vector is one-dimensional in the following sense: the
various numbers or characters that make up its elements are
arranged in a single chain. Any element can be identified by
its position in the chain. Since a vector has only one
dimension (its length) a single index-number suffices to
identify any element within it, by specifying how far along
from the beginning that element is located.

Entering a Vector of Numbers

If you enter

A+-1 2.5 7 11

A is specified to be a vector of four numbers. Each of those
numbers is an element of the yector A. As you enter the four
numbers, you have to type them with at Least one space
between them. Whenever you enter numbers separated solely by
spaces (that is, with no operator sign between them) they
are assumed to be consecutive elements of a vector. This
applies only to numbers; you can't do it with variables.

Notice that you don't have to say in advance that there
are going to be four elements in the vector called A, or
even that A is going to be a vector. The computer notices

106

that you have entered four values for A, and automatically
makes A a four-element vector.

If you ask to see what has been stored under the name
A, the computer responds by typing all of the elements, like
this:

A
1 2.5 7 11

Parallel Processing of Vectors

If A is a vector of four numbers, and B is another
vector which also consists of four numbers, then the
instruction A+B causes the computer to add the first number
in A to the first number in B, and the second number in A to
the second number in B, and so on. Four separate additions
are performed, and so the result is also a vector of four
numbers. The four additions are done in parallel fashion; as
far as you can see, the answers to the four separate
problems are obtained simultaneously.

B+10 20 30 40
A+B

11 22.5 37 51

The same sort of element-by-element parallel processing
can be obtained with any of the other arithmetic operators.
For instance:

3 5 9 * 4 3 2
81 125 81

Br19 20 21 22
19 20 30 40

AxB
10 50 210 440

tA
1 0.4 0.1428571429 0.09090909091

LA
1 2 7 11

$B
2.302585093 2.995732274 3.401197382 3.688879454

107

Using Parallel Processing
In Some of the Problems Introduced Earlier

On page 34, we presented a short program to calculate
and print F, the focal length of a lens, as a function of
the following variables:

N, the refractive index of the glass
T, the thickness of the lens
Rl and R2, the radii of curvature

The example on page 36 shows how this program calculates a
value for F, provided that the values of the variables N, T,
Rl and R2 are already specified in the workspace. That very
same program, without any change, can just as well calculate
any number of F's in parallel, provided now that N, T, Rl,
and R2 are arrays of the same size. For instance, here is
an example in which N, T, Rl and R2 are five-element
vectors. Because those variables are five-element vectors,
the five focal lengths are calculated simultaneously, as
another five-element vector. (This same program could just
as well handle vectors of any length, or matrices, or even
multi-dimensional arrays, if that's what you should need.)

N + 1.32 1.32 1.32 1.32
T + .65 .65 .65 .. 65
Rl+ 8.1 8.2 8. 3 8.4
R2+ 7.29 7.38 7 .. 47 7.56
FOCAL

12 • 1,141 6 6 6 12.26217727 12.41018832 12.55819974

In similar fashion, the DIESEL program can process any
number of efficiency problems at once, provided the
necessary input variables are vectors of compatible length.
Here's a sample showing three done at once:

R + 8. 5
V3+ 22.8
V2+ 140

GAMMA + 1. 3,5
DIESEL

9.7
25

143
1.38

10.9
32

145
1.42

0.61772102 0.6630320875 0.7074198645

Vectors Must Have Matching Lengths

In the last paragraph, we
vectors must be of compatible

remarked that the various
length. If you enter an

108

instruction such as the following:

1 2 3 + 17 18 19 20

the computer finds 3 rst, vee·tor, a,nd 4
elements in the second onee supposed to be
matched with which? The problem is ambig-uous .. The computer
cannot proceed, so it -types the lowing error message:

1 2 3 + 17 18 19 20
LENGTH ERROR

1 2 3 + 17 18 19 20
1\

Generally speaking, whenever an is to be
performed on two vectors I vee·tors must have same
length (i .. e" t.he same number of) ..

Extending a Single Numbe~_
To Match the Length of a Vecto~

Ordinarily, when an operation on two
vectors, they have to be of the same length .. But is
one important exception to this rule~ exception is when
one of the operands is a vector but other one is a
single number.. Whenever a single number en'ters into an
arithmetic operation with a vector, the single number is
extended to match the length of the vector. For instance, if
you enter

1 3 5 7 9 + 2

the co:;:rLputE!:L r.i.uu~ l:.Llat one argument of the actdl tlon is a
vector of five elements, while the other argument is the
single number 2. It treats the instruction as if i-t were

1 3 5 7 9 + 2 2 2 2 2

In effect, the single number 2 is replicated until it is a
vector of the same length as the other vector. Here are some
examples of operations involving a vector and a single
number.

Take the square roots of nine numbers simultaneously:

2 4 9 16
1.414213562 2 3

25 36 49
456 7

64 83 * 0.5
8 9.110433579

109

Convert four angles in degrees to radians:

1 15 22.5 45 x 2xPIf360
0.01745329252 0.2617993878 0.3926990817 0.7853981634

Is it true that some single number stored under the name C
is divisible by each of four prime integers?

C+20937
0=3 5 7 111C

101 0

The single number B divided by each of the four elements of
the vector H:

B+28
-H+0.014 9E 11 3.5 0.0357142857142857

BfH
2000 3.111111111E11 8 784

Two raised to each of the powers ° through 12:

2*0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

The largest integer whose square is less than or equal to
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100:

L10 20 30 40 50 60 70 80 90 100*.5
3 4 5 6 7 7 8 8 9 10

The frequencies of all the semi tones
with middle C (whose frequency is
nearest integer:

in the octave starting
262), rounded to the

LO.5+ 262 x 2 * 0 1 2 3 4 5 6 7 8 9 10 11 12 f12
262 278 294 312 330 350 371 393 416 441 467 495 524

To make quite clear the way the computer extends a
single number to match the dimensions of an array, it may be
useful to examine that last example in detail. The first
operation to be executed is, as usual, the rightmost one. It
is a division. The dividend is a vector of thirteen
elements, the numbers ° through 12. The divisor is the
single number 12. So the computer replicates the number 12
until there are thirteen of them. Then it executes the
thirteen divisions, producing thirteen quotients.

110

The next operation is exponentiation. The left argument
is the single number 2, but the right argument is the
l3-element vector of quotients arising from the division. So
the 2 is replicated until it is also a l3-element vector of
2s, and then the thirteen exponentiations are executed,
producing thirteen results.

The next operation is multiplication. The left argument
is the single number 262, while the right argument is the
vector of thirteen results from exponentiation. Once again
the single number is replicated to match the length of the
vector, the thirteen multiplications are performed, and
thirteen products found.

The next operation is addition. Its left argument is
the single number .5, and its right argument is the vector
of products resulting from the last operation. As before,
this produces a vector of thirteen results.

The computer reaches the last operation:
the floor of the thirteen results coming from
Once these thirteen integers are found, there
instruction telling what to do with them, so
prints them.

Parallel Processing Requires All the Elements
To Be Treated in the Same Way

it must take
the addition.
is no further
the computer

We've mentioned two programs that were originally
written to work on single numbers, but which turn out to
work just as well on vectors of numbers. This depends on the
fact that each of the elements in those vector~ wa~ tre~ted
in the same way. It isn't always obvious how this can be
done.

In the program to find quadratic roots, the first step
was to find a value for the discriminant (b2 -4ac) and store
it under the name DISC. But after that the program did
either of two different things, depending upon whether DISC
was found to be positive or negative. If you were to give
this program a whole vector to work on at once, DISC would
be a vector. Some of its elements might be positive and
others negative. They would generate a whole vector of line
numbers to which the program should branch. However, it
isn't possible to branch to several different places at
once, and therefore the program would not p:z:-oduce the
results you want.

/

III

To use parallel processing of vectors, you have to have
a procedure that can be applied uniformly to all of the
elements in a vector. Even if some elements of the vector
must be treated in one way and others in another, it is
often possible to devise a single procedure which has that
effect. In the next paragraph, the same problem is handled
first by branching, and then by a formula that applies a
single procedure to all the elements of a vector.

Adjusting a Formula To Facilitate Work with Vectors

During 1967, New York State gave the following formula
for income tax on a weekly paycheck. P is the pay; E is $13
for each exemption. (Although the State didn't say so,
presumably the tax is rounded to the nearest penny, and is
never negative, even if you have little pay and many
exemptions.)

Net Income $350 or less: Tax=(.018+.000105(P-E» (P-E)-.48

Net Income Exceeds $350: Tax= .. 09(P-E)-12.80

If you need a p~ogram to handle only one person's tax,
you could write it with a branch. (To simplify rounding,
this program treats income in pennies rather than in
dollars.) In this program, EX is the number of exemptions,
PAY is the amount paid, TI is the taxable income, and T is
the amount of tax owed.

'i/ TAX
[lJ TI+PAY-1300xEX
[2J +(TI>35000)/OVER
[3J T+orLo.5+-48+TIxO.018+TIx1.05E-6
[4] +0
[5J OVER: T+orLo.5+-1280+TIxO.09

V

This program has two separate instructions (line 3 and
line 5), only one of which is ex~cuted in any use of the
program. The branch instruction at line 2 decides for any
single instance which of them will be executed, 3 or 5.

To take advantage of vector operations, you need a
single formula which works for any execution, so that no
branch is necessary. Suppose you calculate the tax rate by
multiplying the alternative rates by 0 or 1, depending on
whether the taxable income is or is not over $350. This is

112

done in the program called TAXES. The variables EX, TI, and
PAY have the same meaning as before. HI has the value 1 for
a person who is in the high income bracket (taxable income
over $350.00), and 0 otherwise. LO is the negation of HI.

V TAXES
[lJ LO+-HI+35000<TI+PAY-1300xEX
[2] T+orLo.s+(HIx-1280+TIxO.09)+LOx-48+TI xO.018 x 1.05E-6

V

Line 1 of TAXES may be read this way: LO is the
negation of HI, which is the truth of 35000 is less than TI,
which is PAY minus 1300 times EX@

Line 2 computes the tax as sum of two quantities ..
The one within parentheses will always have the value 0
whenever income is low, since the values are all multiplied
by HI, and that will be 0 1. s arf~ not in the
high income bracket. The other quantity comes from the
expression to the right of the parentheses .. Here the values
will always be 0 for anyone who is not in the low bracket.
When the values are added together, for any individual, the
component that isn't multiplied by 0 should his correct
tax.

Whenever they are asked to calculate the tax for only
one person, these two programs give the same answer But
when they are asked to calculate a whole vector of taxes,
the first program, called TAX, will have to decide its
branch solely on the basis of the first element of those
vectors. This may be inappropriate for the other elements,
and so answers other than the first may be wrong~ The second
program, called TAXES, does not involve a branch, and can be
applied correctly to arrays of any size.

A Vector in a Branch Instruction

Whenever the value to the right of a right-pointing
arrow is a vector, the computer branches to the value of the
first element of the vector, and ignores the rest.

113

17: "REDUCING" A VECTOR:
APPLYING THE SAME OPERATION TO ALL THE ELEMENTS

It is often useful to have the sum of all the elements
in a vector, or the product of all of them, or the maximum
of all of them, and so on .. APL has a simple procedure for
applying the same operation cumulatively to all the elements
of a vector. This operation is called "reduction. II It
reduces a vector of numbers down to a single number that
represents their sum, their product, their maximum, and so
on, as the case may bee

~ummation

In conventional notation, the capital sigma (Greek for
S) means that you are to take the sum of the specified
members of an array 0 To sum them all, you have to specify
that the summing starts with the first element and then goes
on summing the consecutive elements until it gets to the
last one& You write it like this:

n

A

In APL, you can sum all the elements of a vector called
A (regardless of how few or how many elements A has) by
typing:

+

The / sign means that the operation on the left of it is to
be applied to all the elements along the last dimension of
the array on the right. Since vectors have only one
dimension anyway, this means summing all the elements. Thus,
if A is a vector, like this:

A+1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

then +/A is executed by the computer as if it were

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15

When you find the sum of the elements of A, your dialogue
with the computer goes like this:

+/A
120

114

Notice that you don't have to tell the computer the
dimensions of A. It reduces the last dimension by applying
the operation all the way along that dimension; when the
elements of A are arranged in one dimension, in a vector,
the computer finds the sum of all of them, for however many
there are.

In speaking, +/A is read as "plus reducing A," or "plus
over A, II or simply "the sum of A."

Product

In conventional notation,
elements in a vector is written
for product) :

n

the product of all of the
with the Greek letter pi (p

In APL, you get the product of all of the elements of a
vector called A by entering:

x/A

That is read as "times over A," or "the product of A." If A
has values as follows:

A+l 2 3 4 5 6 7 8 9 10 11 12 13 14 15

then the computer treats x/A as if it were:

Here's how you get the product of all the elements of A:

x/A
1.307674368E12

Maximum Reduction: Looking for the Largest

To select the single largest element in a vector, you
reduce the vector by the maximum operator, like this

riA

115

If BALDUE is the vector of the balances due for all of
the customers of a store,

BALDUE+62.15 127 4.42 18.65 814.10 76.42 118.50 6.01

r/BALDUE gives the amount owed by the customer who has the
biggest bill.

r/BALDUE
814.1

Minimum Reduction: Looking for the Smallest

In . similar fashion, L/VECTOR
(algebraically) smallest element from a
instance, if ROOTI contains the vector of all
roots of a set of equations,

selects the
vector. For
of the first

ROOT1+ 0.4815 .085236 16.442 0.000625 4 3.17215

L/ROOTl selects whichever value is the smallest.

L/ROOTl
4

OR Reduction: Looking for "Any"

Suppose you need to know whether a particular value
exists anywhere in a long vector. Suppose, for instance, you
want to know if any element of the vector V is equal to the
single number Q. If you type

V=Q

you will have a vector of zeroes and ones indicating for
every element of V whether or not it is equal to Q. You
don't want to examine all those zeroes and ones: you want to
reduce them to a single result, either I or 0, by applying
the logical OR operation so that it puts an OR between each
of the elements:

OVOVOVOVOVOV1VOVOVOVOVOVOV1VOV ••• vOVOVovlvovovO

Thus the instruction that you need is typed like this:

V/V=Q

116

The result is 1 if there is a 1 anywhere in that vector,
and 0 if and only if every element is o.

Suppose N is a vector of integers. You want to know if
any of them is a perfect square. If an element of N is a
perfect square, then its square root is an integer. In that
case, rounding the root off to the nearest integer won't
make any difference. Then, if you square the rounded-off
roots of N, wherever an element of N was a perfect square,
you should be able to get back to the original value of N.
The following expression tests to see if that condition is
met for any elements of N:

1

N+l03 117 142 121 135 176 149 169 128 156 118 124 133
v/N=(LN*.5)*2

And if you need to know not just whether any of them
are perfect squares, but how many, you can find that by
reducing the expression N=(LN*.5)*2 by plus instead of
OR:

2

AND Reduction: Looking for "All"

Suppose you want to know if every one of a set of
equations has real roots. The vector of discriminants for
these equations has been stored as the variable DISC. Then

DL8G>O

is a vector of zeroes and ones, indicating for each element
of DISC whether it is true that DISC is equal to or greater
than O. The operation AND placed between every element will
return the result 1 if and only if every element is 1, and
otherwise O. Thus to find out if the test is true for every
element of DISC, you enter:

A/DISC~O

Suppose you have a vector called KEY, and another
vector called LOCK. Both vectors have the same length. You
need to know whether every element of KEY is equal to the
corresponding element of LOCK:

A/KEY=LOCK

o

117

KEY+l.0l 1.763 1.808 1.2346 1.2272 1.8095 1.1
LOCK+l.0l 1.763 1.898 1.2346 1.2272 1.8095 1.1

A/KEY=LOCK

Evidently at least one of the elements of KEY does not match
an element of LOCK.

Example Using the Sum of Products:
Price Times Quantity Ordered

Suppose that PRICE is a variable which contains the
price list for the various items sold by a store, and Ql and
Q2 are vectors indicating the quantities of the various
items ordered by Customer 1 and Customer 2. Then the total
bill for Customer 1 is the sum of the product of PRICE and
Q1, while the total bill for Customer 2 is the sum of the
product of PRICE and Q2.

PRICE + .66 1.40 27.10 2.39 14.00 7.60 8.45 2.80
Ql + 0 o 2 1 o 0 o 0
Q2 + 12 7 a 5 o 0 o 10
+/Ql x PRICE

56. 59
+/Q2 x PRICE

57.67

The Area Under a Curve

One simple approach to finding the area under a curve
is to divide it into a great many small trapezoids and then
find the sum of the areas of all of them. Suppose you want
to find the area under the curve produced by some function F
of X for all the values of X between 0 and 1. You might get
a suitably fine division by splitting that interval into 100
parts. Counting both end points, that makes 101 values.
Suppose now that you have stored under the name FX the
vector of the 101 values of F of X as X varies from 0.00 up
to 1.00 in steps of .01. The area of anyone of the
trapezoids is the average of the two values of FX that bound
it, times the width of the interval, which is .01. You don't
actually have to average all those adjacent pairs; you can
get the same effect by simply using FX times the width,
provided that you first divide the first and last elements
of FX by 2. Suppose that 0 is a vector whose first and last
elements are 2, with 99 ones in between. Then you get the
area under the curve by the instruction:

AREA + +/FXxWIDTHfD

118

This page intentionally left blank.

119

18: GENERATING ARRAYS
AND FINDING THEIR DIMENSIONS

As you have seen, in APL, arithmetic operations apply
not only to single numbers, but also to entire arrays.
Array-handling requires a variety of manipulations for which
conventional arithmetic makes no provision. Therefore, in
addition to the arithmetic operators (most but not all of
which have been introduced) APL includes several other
operators specifically designed for manipulating arrays.
They can generate an array of a given size and structure,
tell you the size of an array, pick out certain elements
from an array, find where particular elements are located
within an array, selectively throwaway some elements and
keep others, and so on.

G~nerating an Array by Reshaping

In order to build an array, you have to specify two
things:

1. The shape that the array is to have: the number of
dimensions, and the length of each.

2. The values that are to be assigned to each of the
elements of the new array.

The APL operator which reshapes an array (or a single
element) to form a new' array with a new shape is rh.o, the
Greek form of the letter R, which looks like this: p. The
reshaping operator p is dyadic. The left argument determines
the shape of the resulting array, and the right argument
provides the values for the various elements. As the left
argument of p you enter one number for each of the
dimensions to be generated, indicating the length that that
dimension is to have. Since for the time being we are
limiting the discussion to vectors, which are
one-dimensional arrays, in the examples p will have only one
number as its left argument.

The values of the elements of the new array are taken
from whatever values appear as the right argument of p. The
instruction

7pA

means that a seven-element vector
seven values are to be supplied

is to be generated. Its
from whatever values are

120

found stored under the name A. It doesn't matter whether A
is an array, or what structure A has--just so long as it has
at least one value that can be used in the new array. If A
has more than seven elements, just the first seven are
taken. If A has fewer than seven elements, its elements are
repeated as often as needed to provide seven entries in the
new vector. The following examples may make this clear:

7p 1 2 3
1 2 3 1 2 3 1

2p 1 2 3
1 2

10p1.3
1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3

Vectors of Literal Characters

On page 77, we mentioned that the value of a variable
can be quoted alphabetic letters (or numerals, or any sign
from the keyboard). Although no mention of it was made at
the time, a quotation with several letters in it is in fact
an array. Just as a one-dimensional array of numbers is a
numerical vector, so a one-dimensional array of literal
characters is a literal vector. Each element of a literal
vector is a single literal character. When the computer
prints this sort of a vector, the elements are typed without
any extra space between them. They are typed without
additional spaces for two reasons:

1. Since an element of an array of literals can only
contain one literal character, there isn't any
need to insert spaces to distinguish where one
ends and the next begins.

2. Spaces which occur as part of a quotation are
characters, just like any other character that can
be entered from the keyboard.

The reshaping operator, p, can also be used to qenerate
vectors of literal characters. For instance:

6p'A'
AAAAAA

15p 'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG'
THE QUICK BROWN

121

A vector of literal characters can include numerals or
operator signs as well as alphabetic letters.

60p'++ * ++ 0 '
++ * ++ 0 ++ * ++ 0 ++ * ++ 0 ++ * ++ 0 ++ * ++ 0 ++ * ++ 0

An Array Can Have Zero Length

When you use p to generate a vector, the number of
elements you ask for (i.e. the length of the vector) can be
anything you want, provided that it isn't negative, isn't
fractional, and doesn't generate a vector so large that
there's no room for it in the workspace. In particular, it's
all right to have a vector of length zero. This vector has
no elements at all. If you ask to see such a vector printed,
there is nothing to see. The computer prints a line on which
nothing is writtep: a blank line.

A quotation which has no letters in it is sometimes
useful when you want a program to insert a blank line
between some portions of the typed output. You can get a
blank line typed if one instruction in your program simply
calls for the printing of a vector of zero letters (or zero
numbers, for that matter). Typing two quote marks side by
side, with nothing between them, will also generate a vector
of zero length. The following expressions are equivalent:

o p' , Op'A' Op 0 OpA Op1E60

Generating Consecutive Integers

The operator 1 is called iota, which is the Greek form
of the letter I. Like most other APL operators, 1 has both a
dyadic and a monadic use. The dyadic (i.e. two-argument) use
is explained in Chapter 20. The monadic use of iota (i.e.
with a right argument but no left argument) generates
consecutive integers. The right argument must be a single
positive integer.

112
1 2 3 4 5 6 7 8 9 10 11 12

One way to think of this use of iota is to say that it
generates all the index numbers for a vector of a given
length. Index numbers are always consecutive integers. The
first element of a vector is element number 1, and similarly
the consecutive integers generated by iota also start with

122

1. (The point is worth noting because, as is mentioned in
the Appendix, p. 207, it is also possible to have index
numbers which start at 0, and in that case iota generates
integers which start at 0 also.)

2.5xl12
2. 5 5 7 • 5 10 12.5 15 17. 5 20 22.5 25 27. 5 30

5-110
4 3 2 1 0 1 2 3 4 5

f 1 5
1 O. 5 0.3333333333 0.25 O. 2

The index-generating iota is very handy when you want
to refer to a consecutive block of numbers. You could get
the first 35 powers of 2 simply by typing this instruction:

2 4
2*135
8 16 32 64 128 256
8192 16384 32768 65536
1048576 2097152 4194304

512 1024
131072
8388608

2048 4096
262144 524288

16777216
33554432 67108864 134217728 268435456 536870912
1073741824 2147483648 4294967296 8589934592
1.717986918E10 3.435973837El0

(Note that when the computer finds that a vector is too long
to fit on a line, it continues it on the next line for as
many lines as it needs, but it indents the continuation
lines to show that they're still part of the same vector.
The width used for typing results may be adjusted; see
Appendix, p. 208.)

Finding Out the Shape of an Array

If you use p with no left argument, it no longer means
that an array should be generated. Now it asks the computer
to report on the shape of the array that is the right
argument of p. If A is a vector with eight elements, and you
ask for pA, the computer responds by typing one number
(because A is a one-dimensional array). The one number it
types is 8, which is the length of A's one dimension.

8

o

A+186 17 .00165 3.14159 1.26E45 3 2E-9 .00001
pA

B+OpA
pB

123

p 1 3 5 7 9 11
6

p'l 3 5 7 9 11'
12

There are many useful expressions which use t and p
together. Suppose you'd like to have a vector of consecutive
integers which matches the length of another vector called
A. A is a vector with 13 elements. You can get the correct
number of consecutive integers by entering this instruction:

tpA
1 2 3 4 5 6 7 8 9 10 11 12 13

Perhaps you'd rather have the integers run backwards to
zero. The place-values for the successive columns in the
representation of a number are found by raising the base of
the number system to the Oth power for the last column, the
first power for the next column, and so on. For base 10,
the values of the first 6 columns would be found like this:

10*6-t6
100000 10000 1000 100 10 1

And in base 8 they'd be:

8*6-t6
32768 4096 512 64 8 1

Suppose you want integers that depart from 500 in steps
of 8. You enter:

500+8Xt6
508 516 524 532 540 548

The expression tN always results in a vector of length
N.

pt1000
1000

P t 5
5

ptO
o

124

Thus, still another way to get an empty vector is to
enter the instruction:

~(Here the computer prints a blank line)

What Is the Shape of a Single Number?

The answer to this question depends upon whether the
single number is an array or not. Suppose you generate an
array which has one dimension, and the length of that
dimension is 1. When you ask for the length of that array,
the answer will be 1:

1

A+1p 5
pA

By contrast, if you simply store a single number under
the name A, without involving any of the operations that
generate arrays, then A is not an array. Like a point in
geometry, which is presumed to have no length, breadth or
height, a single number or literal character, unless
produced by some array-generating operation, has no
dimensions, and is called a scalar. If you ask for its
length, the length is neither 1 nor 0: length just isn't an
attribute of a scalar.

When you ask for the shape of a scalar, the result is
itself an empty vector (a vector with no elements).

A+5

~(Here the computer prints a blank line)

When you use the shape operator rho to find the
dimensions of a variable, the result is always a vector.
This vector has one element for each dimension of the
variable you asked about. If you ask for the shape of a
three dimensional. array--a topic we're not otherwise
mentioning in this primer--you get a vector of three
elements, one element for each dimension of the array. If
you ask for "the shape of a vector, you get back a vector of
one element, for the one dimension (length) of the vector.
If you ask for the shape of a scalar, which has no
dimensions, the result is a vector of no elements: an empty
vector.

125

Another Example Using Parallel Processing of vectors:
The Correlation Coefficient

The correlation coefficient is the average product of
two vectors of scores. The average of the elements of a
vector V is readily found by the expression:

(+/V)fpV

And the average of the product of the vectors X and Y is:

(+/XxY)fpX

However, this simple definition requires that the
vectors X and Y be in "standard" form. Scores are
standardized if they are arranged so that their average is
zero and their standard deviation is 1. Since scores are
seldom found already standardized, the first step is to
standardize them, by reducing each score by the mean of its
group, and then dividing each score by the standard
deviation of the group. The steps needed to calculate the
correlation between two vectors of scores called X and Yare
therefore as follows:

1. From X and Y, subtract their respective means.

2. Divide X and divide Y by their respective standard
deviations. Once the means have been subtracted,
the standard deviation is the square root of the
average of the squares.

3. Find the correlation coefficient as the average
product of the standardized scores.

The program called CORR (next page) presumes that the
scores are already stored in X and Y, and that X and Yare
vectors of the same length. The standard deviations are
stored under the names SDX and SDY, and the standard scores

\ .
are stored under the names XX and YY. The correlat~on
coefficient is given the name R. Once XX and YY have been­
set up, the key formula appears on line 10 \of the
definition.

[1 J
[2 J
[3J
[4 J
[5]
[6]
[7 J
[8 J
[9]

[10J

126

'V CORR

'V

(p X) ;' OBSERVATIONS'
XX+X-MEANX+(+/X)fpX
YY+Y-MEANY+(+/Y)fpY
SDX+«+/XX*2)fpX)*0.5
SDY+«+/YY*2)fpY)*0.5
XX+XXfSDX
YY+YYfSDY
'X: MEAN ';MEANX;' STANDARD DEVIATION ';SDX
'Y: MEAN ';MEANY;' STANDARD DEVI ATIO N '; SDY
'CORRELATION ';R+(+/XXxYY)fpX

Here is a sample execution of CORR. The values of X and
Yare taken from an illustration involving the reciprocity
of affection among "steady" couples (8. Diamond, Information
and Error, Basic Books, 1959, p. 167).

X+2 8 7 5 4 4 3 2 5 6 7 3
Y+5 6 5 5 6 3 4 3 3 6 7 2

CORR
12 OBSERVATIONS
X: MEAN 4~666666667 STANDARD DEVIATION 1.92930615
Y: MEAN 4.583333333 STANDARD DEVIATION 1.497683396
CORRELATION: 0.6152566398

127

19: SELECTING PARTICULAR ELEMENTS FROM AN ARRAY
BY USING INDEX NUMBERS

Once an array exists, you may want to refer not to the
whole thing but just to the elements in certain positions
within it. This procedure is called indexing. (Because
historically the index values were written in a smaller type
face and set below the line, index numbers are often loosely
called "subscripts.") In APL, index numbers must be
integers; they are enclosed in brackets and written after
the array to which they apply.

A+l.; 11 1.22 1.33 1.44 1. 55 1.66 1.77
A[2J

1.22
A[3 3 1 5J

1.33 1.33 1.11 1.55

B+2 4 2 6 1
A[B]

1.22 1.44 1.22 1.66 1.11

QQ+'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
QQ[20 8 5 27 3 1 20 27 19 1 20 27 15 14 27 20 8 5 27 13 1 20]

THE CAT SAT ON THE MAT

6.11 6.22 6.33 6.44 6.55 6.66 6.77 6.88[6 6 1 3 2]
6.66 6.66 6.11 6.33 6.22

If you use an index which refers to an element which
doesn't exist in the array, the computer is unable to
execute the instruction, and reports an "index error."

A[8]
INDEX ERROR

A[8]
1\

Respecifying Certain Elements Within an Array

An indexed variable may also appear on the left of a
specification arrow. Then the result on the right is stored
in the indicated positions within the array on the left,
while the rest of the array on the left remains unchanged.

A[3 1]+7E30 7El0
A

7El0 1.22 7E30 1.44 1.55 1.66 1.77

128

You can't index an array until after the entire array
has been specified. Suppose that no value has been assigned
to the name Z. Then an attempt to store some values as
particular elements within Z would be an error:

Z[3 4J + 18 46
VALUE ERROR

Z[3 4J+ 18 46
A

The Index Numbers May Result from an E~pression

Indices (i.e. whatever is inside the brackets) may
include expressions, provided that when those expressions
are finally evaluated, they turn out to have values that are
valid indices for the vector.

BEHMR

BCDEF

ZNS

+-+--+

QQ+'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
X+4 9 16 25 36

QQ[L.5+Xt2J

QQ[10+X[3 1 2JJ

ZED+18 2 31.1
SIGN+'+-'
SIGN[1+0>ZEDJ

118.4 4.96E27 0.2

Indexing an Expression

The thing from which elements are selected does not
have to be a variable. A constant vector may be indexed:

2 3 5 7 11 13 17 19 [7 2 4 2J
17 3 7 3

'ABCDEFGHIJKLMNOPQRSTUVWXYZ '[12 15 15 11 27 16 lJ
LOOK PA

Similarly, an expression may be indexed, provided you
enclose it' in parentheses:

129

(- 1 2 3 4 5 *0.5)[2 1 3J
1.414213562 1 1.732050808

Indexing by An Empty Vector of Indices

A vector of 0 index numbers (i.e. an empty vector
inside the brackets) refers to none of the elements of an
array, and therefore it produces an empty vector of results.
But that is not an illegal operation.

A [Op 1 2 3 J
~(Here the computer prints a blank line)

If selection by indexing is summarized as R+A[XJ, in
which A is an array, R is the result, and X represents
whatever index numbers are used for the selection, then it
is always true that

(pR) = pX

This means that it is possible to index a vector by a
matrix, or indeed by any array all of whose elements are
valid indices for the vector. But that goes beyond the scope
of this primer.

Indexing a Matrix

Matrices don't get much attention in this primer.
Nevertheless, it may be useful to describe how you select
particular elements from within a multidimensional array.

Within the brackets, the index numbers for the various
dimensions are separated by semicolons. Suppose M is a 3 by
4 matrix of consecutive integers, generated like this:

M+3 4pt12

If you ask to see the values of M, they are printed in the
usual matrix form. Note that the computer prints one blank
line before pri~ting a matrix.

!

M

1 2 3 4
567 8
9 10 11 12

130

If you want to refer to the element in row two, column
three, you enter:

M[2;3]
7

If you would like the third and fourth elements in that
row, you enter:

M[2;3 4]
7 8

Similarly, if you would like the elements in column
four, rows one and two and one, you enter:

M[l 2 1;4]
484

You use the same procedure to select a sub-matrix from
within M. If you want the matrix of those elements which are
on rows two and three and columns one, two, and one of M,
you enter:

M[2 3;1 2 1]

565
9 10 9

Now the result is a two by three matrix.

If you fail to state any value for one or more of the
dimensions of the array that is being indexed, the computer
assumes that you want all of that dimension. For instance,
to get all of row two of M, you enter:

M[2;]
5 6 7 8

Or to get all of columns four and one, you enter:

M[;4 1]

4 1
8 5

12 9

Note that you still have to type the semicolon: it's
needed to make clear which dimension is which.

131

20: FINDING THE INDEX NUMBERS THAT LOCATE
PARTICULAR ELEMENTS WITHIN A VECTOR

Suppose that A is a vector which has the following
values:

and B has a single value:

B+102619

Then the instruction

means "Where in A can you find the value of B?" This is the
dyadic (two-argument) use of iota. The instruction is read
as "A iota B" or lithe A-index of B."

The computer responds with the index number that shows
which element of A has the same value as B:

5

If you would like to know where in A its largest value
is located, that can be found too:

A 1 r / A
2

And the smallest value likewise:

A1L/A
7

Finding Several Indices at Once

Suppose instead of being a single number, B is itself
an array. In that case the computer will look ~p the A-index
of each of the elements of B in turn. Like this:

B+1a2619 1 0 2916 1.2961
AlB

516

132

Notice that the result always has in it one element for each
element in the right argument of iota. If the instruction is
in the form X+A\B, then it is always true that

(pX) = pB

Indeed, the right argument of iota may be a matrix or a
multi-dimensional array: the result of AlB always has the
same shape as B. But.this point is not pursued in this
primer.

Indexing Works Just as Well
For Arrays of Literal Characters

Iota can also be used to look up the position in which
a literal character is located. For instance, suppose A and
B are vectors of literal characters as follows:

A+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
B+'CAT'

Then the locations in A at which the values of B can be
found can be obtained by the following instruction:

AlB
3 1 20

And similarly the index numbers for various other literal
characters can be found:

A+'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG'
Q+'CAT SAT ON MAT'
X+"A lQ
X

8 37 1 4 25 37 1 4 13 15 4 23 37 1
A[X]

CAT SAT ON MAT

A[Al 'HELLO IS WHAT A MIRROR SAYS']
HELLO IS WHAT A MIRROR SAYS

NUM+'1234567890'
NUM1'1776'

1 7 7 6

NUMt'1890'
1 8 9 10

10INUM1'1890'
1 8 9 0

10*3 2 1 0
1000 100 10 1

133

+ / <.10 I NUM 1. ' 1890 ') x 10* 3 2 1 0
1890

To prove that that last result is a number, whereas '1890'
is literal, you can try adding 1 to each of them:

1 + '1890'
DOMAIN ERROR

1+'1890'

"
1 + +/(10INUM1.'1890') x 10*3210

1891

Looking for the Index Number
Of a Value that Isn't There

Suppose that one of the values in the right argument of
an iota simply isn't represented anywhere in the left
argument. What number does the computer return as the index
of this nonexistent element?

For a value that isn't represented anywhere in the
vector to the left of an iota, the computer responds with
the first illegal index for that vector. For instance,
suppose that A is a vector of seven elements with the
following values:

A+l1 12 13 14 22 77 18

Then the possible index numbers for this vector are the
integers 1, 2, 3, 4, 5, 6, 7. The first "illegal" index for
this array is 8. If you ask for the index of a value that
isn't anywhere in the vector A, the computer responds by
saying that it is at location 8. For example:

A1.77 15
6 8

'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 1. '?'
27

1 2 3 4 5 1. '5'
6

134

The Index for a Value That Occurs
At Several Locations in the vector

Suppose you ask where in the vector HIK there is an
element with the value 666. And suppose that HIK in fact has
three elements with that value. The computer responds by
giving you the location of the first occurrence of 666 in
HIK. Like this:

4

HIK+18 66 618 666 627 216 616 666 624 466 424 666
HIK1666

(You have already seen an example of this, since the vector
'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG', used on page
132, contains several duplications.)

The computer looks up an index number for every element
of the right argument of iota. It does so even if tne right
argument contains duplicates. For instance, suppose the left
argument of iota contains two occurrences of 'X', while the
right argument is 'XXX'. What are the index numbers of
'XXX'? The computer will respond with three index numbers,
one for each of the elements in 'XXX'. Those three numbers
will all be the same: they will all be the index of the
first 'X, in the left argument. Thus:

'SEX EX MACHINA' 1 'XXX'
333

~n Example Using Iota to Find Index Numbers:
Evaluating Hexadecimal Representations

The internal work of some computers is performed in
base-16 arithmetic, sometimes called pexadecimal arithmetic.
The System/360 computer operates this way internally,
although of course you don't see that when you're using
APL\360. But the people who work closely with such machines
have to have some familiarity with the way numbers act and
look when they are represented in base 16. When numbers are
represented to that base, as usual, the rightmost column is
the ones column. But the next column is the 16s column, and
the one to the left of that is the 256s, and so on. A
problem arises because anyone column can contain any of the
numbers 0-15: that is, a single column may contain a number
which ordinarily would require two places to write. To solve
this problem, the digits 10-15 are represented by the
letters A through F.

135

If you're working with hexadecimal arithmetic, you may
often find that you'd like to be able to translate a
hexadecimal representation back into the more familiar
decimal. Suppose, for example, you are faced with the number
whose hexadecimal representation is 8A2F. How much is that
in decimal?

The index-finding operator gives you an easy way to
work this out. You ask the computer where in a standard set
of digits the digits 8A2F are to be found. Suppose the
standard digits are set up as follows:

DLGITS+' 0123456789ABCDEF'

Then you find the positions of the literals 8A2F this way:

DIGITS l' 8A2F'
9 11 3 16

Evidently '8' is in the 9th position, '2' is in the 3rd
position, and so on. They're all off by 1 because 0 is in
the first position. That's easily remedied by subtracting 1
from the result. Now you have only to mUltiply each of those
values by the appropriate powers of 16, and sum. The program
DH (for "decimal from hex") stores under the name VALUE the
value of the hexadecimal number represented by the literal
vector HEX. The vector CV on line 1 contains the place value
for each column; it doesn't matter how long HEX is, since CV
is generated so that it has the same length.

V DH
[1] CV+16*(pHEX)-lpHEX
[2] VALUE++/CVx-l+'0123456789ABCDEF'lHEX

V

35375

4097

HEX+' 8A2F'
DH
VALUE

HEX+'1001'
DH
VALUE

APL includes two operators, ~ and T, which convert
numbers to their representation in any base, or vice versa.
These operators would further simplify the DH program, but
they are discussed only in the Appendix, page 195.

136

This page intentionally left blank.

137

21: CATENATION:
BUILDING A VECTOR BY CHAINING ITEMS TOGETHER

You can chain together two vectors to make a single
vector by using the catenation operator. The symbol for this
operation is the comma, placed between the vectors which are
to be catenated. The number of elements in the resul~ing
vector is the sum of the number of elements in the two
items that are catenated.

18 2.5 3,3 14 lE7
18 205 3 3 14 lE7

12 13, 13
12 13 13

Here's what happens when you catenate two vectors
called QS and HT:

QS+l 2 3
HT+l02 105

XX+QS,HT
XX

1 2 3 102 105

The things that
vectors or scalars
instance:

QS,6 0 02E23
1 2 3 6.02E23

pQS,6 0 02E23
4

2,HT
2 102 105

A+2*0.5
B+2*+3

A,B
1.414213562 1.25992105

A,A

are to be catenated
(dimensionless single

1 0 414213562 1.414213562

may be either
values). For

H+'NOW IS THE TIME'
H, 'FOR ALL GOOD MEN'

138

NOW IS THE TIME FOR ALL GOOD MEN

Note that when you want to form a vector from numbers
(or literal characters) that you already know (rather than
from stored variables) you don't need to use the catenation
operator. You can form those vectors simply by typing their
values with no operation sign between them. Thus

18,2,40

has the same effect as

18 2 40

and similarly

'A', 'P', 'P', 'L', 'E'

has the same effect as

'APPLE'

When you enter a numerical vector simply by typing
spaces between the successive elements, the machine at once
treats those numbers as a single vector. By contrast, if you
type commas between the elements, then the commas indicate
the operation of catenation, and they are executed according
to the usual rules governing order of execution. For
instance

18 2 10x4

means that the vector 18 2 10 is to be multiplied by four,
whereas

18, 2, 10x4

means that the product of 10 and 4 is to be catenated to 2
and then to 18.

A vector must always be either entirely made up of
numbers or entirely made up of literal characters. Therefore
you can't catenate a number to a literal character. Literals
are not in the domain of things that can be catenated to

139

numbers, and vice versa. If you try it, the computer will
respond with an error message as follows:

NUMB+ 1 5 9
LIT+ '1 FIVE 9'
NUMB ,LIT

DOMAIN ERROR
NUMB ,LIT
A

Building a Vector of Results
~y Catenating the Latest Result to the Earlier Ones

Suppose you have a program that works through a series
of problems by doing them one at a time. One way of
accumulating the answers is to catenate each new result onto
the vector of the results previously obtained. If the most
recent result is in a variable called LATEST, and all the
former ones are in a vector called RESULT, somewhere in the
program you want an instruction like this:

RESULT+RESULT, LATEST

The very first time that this instruction is executed,
there won't be any old result. Therefore, before you get to
the point at which you instruct the computer to catenate the
latest result onto the vector of earlier results, the
program should have a separate instruction which gives
RESULT an initial value. Since before you start there aren't
any results, the appropriate way to initialize this variable
is to make it an empty vector, by an instruction such as
this:

RESULT+tO

~xample Using Catenation: Accumulating Primes

Here is a simple program which finds prime numbers by
considering the odd integers in turn. The number being
considered at any moment is called T, for Trial. The primes
that have been found are in P. ~Vhenever another T is found
to be prime, it is catenated to P. The core of this program
is the proposition that a number is prime if it cannot be
divided evenly by any prime number smaller than itself.

V PR
[lJ P+1+T+1
[2J TEST:+(END~pP)/PRINT
[3J ADD:+(v/o=PIT+T+2)/ADD
[4J P+P,T
[sJ +TEST
[6J PRINT:P

V

140

On line I, initial values are set for P and T. This
program starts by assuming that it is already known that 2
is prime, so line 1 sets P to 2. T is initially set to ~
because the successive values of T are going to be increased
by 2, and each increase is made before the test to see
whether T is prime. The first T that will actually be testeq
is 3.

Line 2 is labelled, because it is the beginning of a
loop. The loop starts with a test, to see whether a variable
called END is less than or equal to the number of primes
already found. If not, the work of testing another T
continues. But if P has grown so that its length is equal to
END, the progr~m branches to an instruction called PRINT,
which calls for printing of the accumulated primes.

Line 3 is a one-line loop. The line will be repeated
indefinitely, each time with the value of T raised by 2,
until a value of T is found which is not divisible by any of
the primes already found. The instruction says, in effect,
"Branch to the line labelled ADD (i.e. repeat this line) if
it is true that any of the P residues of T is zero."

The program gets to line 5 only after it has found,that
none of the P residues of T is zero--that is, when T has
been found to be a new prime number. 'T is catenated to th~
primes already found in the vector P.

After that, the program returns to the line labelled TEST,
to see whether it has yet found enough primes.

Here is a sample execution, finding the first sixteen
prime numbers:

END+16
PR

2 3 S 7 11 13 17 19 23 29 31 37 41 43 47 sa

141

Making Any Variable Into a Vector

Occasionally it is useful to be able to turn a scalar
into a one-element vector. For instance, suppose you have a
program that works on whatever values have been stored under
the name INPUT. In order to find out how many elements there
are in INPUT, you might use pINPUT. But if INPUT was
specified as a single dimensionless value (i.e. a scalar)
rho of INPUT will be an empty vector. You won't be able to
use its numerical value, since it has none. The remedy is
first to convert INPUT so that it is always a vector, by
using the ravel operator.

When the comma is used monadically (i.e. with no left
argument) it ravels whatever is to the right of it. That is,
it converts its argument to a vector, no matter what
structure the argument previously had. If applied to a
scalar, the ravel operator produces a one-element vector.

When a program asks for the shape of a variable that
may be a vector or may be a scalar, it is prudent first of
all to make sure that the variable is a vector by an
instruction something like this:

INPUT+,INPUT

When the ravel operator is applied to multidimensional
arrays, it produces vectors made by taking all of the
elements in the multidimensional array and arranging them
into a single vector. If the variable you ravel is a vector
already, the result is the same vector, without change.

~nserting New Elements
Between Existing Elements of a Vector

Suppose V is a long vector. It contains, perhaps,
several hundred elements. Now you find that you would like
to insert several new elements between what are now the
l35th and l36th elements. The new version of V can be as­
sembled if you can catenate together these three vectors:

1. The vector containing V's elements 1 through 135.

2. The vector that is to be inserted; call it INSERT.

3. The vector containing V's elements from 136 to
the end.

142

Getting the first 135 elements of V is '~·easy: you just
ask for V[1135]. The INSERT (we'll assume) you have alread¥~

There are several ways of getting the elements fremt.i36
to the end; here's one. You index V by the consecbtj;:it~
integers starting after 135, and going until they reach the
last element of V. Like this:

V[1 3 5 + 1 (P V) - 1 3 5]

The complete expression to reassemble a new V, longer than
the old by the number of inserted elements, becomes:

V[1135], INSERT, V[135+1(pV)-135]

The same technique can be used to delete elements from
within a vector. Suppose that you wish to keep elements 1
through D, but delete the N elements that follow element D.
Then you want to keep all that remains after element D+N.

The formula for the first part of the new vector is:

V[1D]

and the formula for the remaining part is:

V[D+N +l(pV)-D+N]

so the formula for the whole new vector becomes:

V[(lD), D+N+1(pV)-D+N]

Here's an example. The vector G is a string of
literals, like this:

G+'NOW IS THE TIME FOR ALL GOOD MEN TO COME TO OUR AID'

You decide to keep elements I through 23, omit the next
five, and then retain the rest. Like this:

G[(123), 28+1(pG)-28]
NOW IS THE TIME FOR ALL MEN TO COME TO OUR AID

There are several other techniques for inserting
elements within a vector, or removing some. Some of them
involve operations that have not yet been introduced, or
which are mentioned only in the Appendix.

143

Building Pascal's Triangle:
An Example Using Catenation

The famous triangle that bears Pascal's name starts out
like this:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Each row has one more element than the row above it.
The value of each element is the sum of the two elements
nearest it in the row above. The triangle has many
interesting properties; among the best known is the fact
that each row provides a set of binomial coefficients. That
is, the values of the nth row are the coefficients for the
expansion of (a+b) n-I •

You can construct Pascal's triangle in the following
way. Notice that to get any row, you leave the elements on
the end unchanged (they are always 1), and add all the pairs
of adjacent elements. The fourth row is 1 3 3 1. You can
get the fifth row by the following addition:

1

1

3
1

4

3
3

6

1
3

4

1

1

In APL terms, this can be written as follows. First
catenate a zero at one end of the row. Then add to that the
same row but with a zero catenated at the other end. Like
this:

P+ (0, P) + P, 0

Here is a program that prints the first N rows of
Pascal's triangle.

V PASCAL
[1] P+l
[2J P
[3J +2 x N2pP+(O,P)+P,O

V

144

N+12
PASCAL

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
4- 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 -1

.J..

The triangle, as printed by this program, turns out to
be an erect right triangle rather than the more convention­
al form, but a triangle nonetheless. If you'd really like it
Christmas-tree shaped, here's an alternate version which
inserts a calculated number of spaces at the left--just
enough to make the triangle symmetrical about its vertical
axis. A sample execution of this program appears below it.

'V TRI
[1 J P+, 1
[2J SPACES+(OrMIDPAGE-LO.5 x+/3+Ll0ep)p"
[3J SPACES;P
[4J +2xN~pP+(0,P)+P,0

'V

MIDPAGE+30
TRI

1
1 6

1
5

1
1

1 3
4
10

15
1 7 21 35

1 8 28 56
1 9 36 84 126

1 10 45 120 210

1
1

2 1
3 1

6 4 1
10 5 1

20 15 6 1
35 21 7"

70 56 28 8
126 84 36

252 210 120

1

1 11 55 165 330 462 462 330 165

1
9 1
45 10 1

55 11 1

145

22: LOOPS

A repeated sequence of instructions is called a loop.
LOops have already been discussed briefly on p. 70, and
there's a loop in the program which accumulates prime
numbers (pp. 139-40). This chapter brings together some
points to be observed in writing programs with loops.

Exit from a Loop

Whenever a program contains a loop, you must provide
the computer some way of knowing when to stop. It needs to
have a test which tells when it has executed the
instructions in the loop a sufficient number of times. The
exit test is a branch instruction, written so that the line
to which the computer branches depends upon whether the loop
has been sufficiently repeated.

Here is a program called GCD. It finds G, the greatest
common divisor of two numbers NI and N2, by the Euclidean
algorithm. The method depends upon the fact that a number
which is an even divisor of both Nl and N2 must also be an
even divisor of the remainder when N2 is divided by Nl.

If there is no remainder when N2 is divided by NI, then
we can immediately conclude that Nl is itself the greatest
common divisor. But if Nl doesn't go into N2 evenly, then
the g.c.d. must be some smaller number; in particular, it
must be sQme number that is a factor of the remainder. So "i,ve
look next for the g.c.d. of NI and the remainder when N2 is
divided by Nl.

The program starts off by arbitrarily supposing that
one member of the pair is the g.c.d., and assigns G the
value of Nl.Then on line 2 we have a test to see whether the
G-residue of N2 is zero. This is the exit test: if the
remainder is zero, then we may let G stand as the value of
the g.c.d.

But if the remainder is not zero, then we respecify Nl
as the remainder, and N2 as G (i.e. what Nl used to be), and
try again.

V GCD
[1] G+N1
[2] -+(O=N1+GIN2)/O
[3] N2+G
[4] -+1

V

146

In this example, the entire program is a single loop.
The conditional branch in line 2 either permits another
iteration to proceed or terminates the work. The loop is
"closed" by an unconditional branch back to the first line
of the program.

Is the program sure to reach an exit eventually, no
matter what the values of Nl and N2? As long as Nl and N2
are integers, at each iteration G will be smaller. If the
test at line 2 is not satisfied earlier, eventually G will
be 1, and the I-residue of any integer is zero. At that
point the instruction on line 2 will result in a branch to
zero, and the work will be complete.

Here is a sample execution when Nl is 1155 and N2 is
12298.

11

N1+1:tS5
N2+12298

GeD
G

You might want to trace the execution of GCD. For
instance, what happens if you transpose the two values so
that Nl is initially the larger of the two?

Leading Decisions

As we remarked on page 74, sometimes the right number
of times to repeat the execution of a loop is zero
times--i.e. the work in the loop ~honld not be executed at
all. For that reason, it is better practice (whenever
possible) to put the instruction which decides whether the
loop should be entered at the beginning, rather than at the
end.

Loops which involve repeating a sequence a specified
number of times require a way of counting how many times the
loop has been repeated. This is commonly done by using a
variable whose sole function is to count which iteration of
the loop is now in progress. Counters are not always needed;
there are some calculations in which you could deduce how
many times the work had been repeated without having an
explicit counter, or others in which you want to ha.ve the
loop repeated indefinitely until some other condition is
satisfied, as in the preceding example.

147

Before the computer gets to the instructions that will
be repeated in the loop, you will need to specify the
initial values of the counter (if one is used), and perhaps
the initial value of a result. Setting these initial values
is often called "initializing" a loop.

Standard Procedure for writing a Loop With a Counter

There are many ways of writing loops. The outline that
follows isn't the only way things can be done. But it is
quite general, and is recommended for many situations.

1. Pick some convenient name for the variable which
is to be used as a counter. Any name not already
in use for something else will do. I, J and K are
conventional favorites for counters.

2. Give the counter its initial value. This should be
one less than the first value that will be used
inside the loop. The reason for this will be
apparent when we get to step 4.

3. Give an initial value to the variable which
contains the result of work on this loop, if that
is appropriate. This should be the value that you
want left as the result if it turns out that the
loop is not executed at all.

4. Label the first line of the loop, so that you can
come back to it easily. The labelled instruction
is the test that decides whether the computer will
continue on through the loop or will skip on to
the next part of the program. This means that the
form of the test is this:

"If it is true that work on
finished, branch to another part of
Otherwise, continue into the loop."

Thus you
executing the
false.

want the computer to
loop when the tested

the loop is
the program.

go ahead with
condition is

The test can be combined with the instruction
that increases the counter, so that that needn't
take a separate instruction:

LABEL: +(TOTAL<COUNTER+COUNTER+l)/NEXTPART

148

Now the test instruction says in effect: "If it is
true that the desired number of iterations of this
loop is less than the new (augmented) value of the
counter, you are about to overshoot, so branch.
But if not, continue through the loop."

5. Write the working instructions for the loop. If
you need to pick out individual elements of a
vector, the counter may be used to index them.

6. After the last repeated instruction in the loop,
branch (unconditionally) back to the labelled line
that contains the exit test, at the beginning of
the loop.

A summary of procedures for writing loops should also
be accompanied by a caution: there are a great many
situations in which the array-processing capabilities of APL
make it unnecessary to use a loop. Earlier programming
languages, which lacked provision for the parallel
processing of the elements of an array, could express
procedures on arrays only by the writing of loops. If you've
had prior experience with one of these languages, or if you
are writing an APL program by transcribing the procedure
from another language, you may find that you've written a
program with loops that aren't necessary. Such a program
will still work in APL; it just won't be as concise or
elegant as it might have been, nor as efficient in its use
of the computer's time.

An Iterative Program to Print an Interest Table

An interest table shows the dmount to which an initial
sum will grow at various rates after each of the intervals
at which interest is compounded. Suppose that the various
columns of the table are the various rates of interest,
while the rows are the successive compoundings. If PRINe is
a scalar, containing the principal sum, and RATES is a
vector of interest rates, while YEARS is the number of years
for which interest is annually compounded, a simple program
to generate the table might be as follows:

'iJ INT1
[1] I+-O
[2 J ~(YEARS<I+-I+1)/O
[3 J PRINCx(1+RATES)*I
[4J ~2

'iJ

)

149

Here's an execution of INTI, for five years and three
different rates of interest:

PRINC+l00
YEARS+5
RATES+ o 05 006 .07
INTl

105 106 107
110 0 25 112.36 114.49
115~7625 119 01016 122.5043
121 0 550625 126.247696 1310079601
12706281562 133.8225578 140.2551731

The output reveals a problem: because the various lines
of output were printed independently, each line is spaced
for a convenient display of the numbers appearing on that
line, but without regard to alignment with the other lines.
So now let's modify the program to take care of that
difficulty.

Alignment of Output in Columns

If you want the successive lines of
program to be vertically aligned, you have a
procedures:

output from a
choice of two

1. Instead of printing each line separately, one at
each iteration of the loop, accumulate them until
they can all be printed as a matrix. The computer
automatically aligns the decimal points in the
columns of a matrix.

2. Print each line separately, but instead of having
the computer print the values directly, convert
the numerical values to literal characters in a
fixed format. There are many ways this can be
done; one possibility is illustrated on page 151.

Interest Table with Output as a Matrix

The program INT2, shown overleaf, accumulates OUTPUT
as a long vector, until the very last instruction, which
restructures that vector as a matrix. The matrix has o~e
more row than there are years, and one more column than

. there are rates. That permits the top row to show what the
rates are, and the leftmost column to number the years. The
zero in the top left corner doesn't do anything, but a

150

matrix must always have some value for every one of its
elements.

\I I NT2
[1] OUTPUT+O,RATES
[2] I+O
[3] I2LOOP:+(YEARS<I+I+l)/I2PRINT
[4] OUTPUT+OUTPUT,I,PRINCx(l+RATES)*I
[5] +I2LOOP
[6J I2PRINT:(1+YEARS,pRATES)pOUTPUT

\I

INT2 instructs that OUTPUT is to be printed as a
matrix. The width of the columns is therefore sufficient to
accommodate any value that might appear, given the usual
rules for the representation of numbers. Since APL\360
usually prints up to ten significant digits, the columns are
spaced widely enough to accommodate numbers that long. It is
possible to alter the maximum number of digits printed by
the system with the command)DIGITS (see page 53), and that
will make a corresponding adjustment in the column width of
matrices.

o
1
2
3

5

PRINC+l00
YEARS+5
RATES+~05 .06 007
INT2

0" 0 5
105
110025
115,,7625

127.6281562

0.06
106
112036
119.1016
126.247696
133.8225578

Interest Table with Fixed Format on Each Line

0.07
107
114.49
122.5043
131.07960.1
140.2551731

The program INT3 generates each row of the interest
table independently. Then INT3 calls on another program
called PRINT to do the actual typing of the result.

The definition of PRINT does not really concern us at
this point, although it is shown as a footnote to page 152.
(PRINT is a program which takes two arguments, like an APL
dyadic operator. Functions with arguments are discussed in
Chapter 25. This one prints the value of whatever expression
appears to the right of it. The left argument indicates the
maximum number of digits to be printed. All numbers are

\.-' .. " ,

151

printed with a decimal point and two places after the point,
a format that is appropriate for typing sums of money. The
definition of PRINT makes use of the representation encodinq
operator, which is otherwise discussed only in the Appendix,
p. 195.)

Suffice it to say that PRINT sets up a vector of
literal characters to represent the various values within
the right argument of PRINT, always assigning the same field
width for each element, and always putting the decimal
points in the same position. Because the format is always
the same, regardless of the values that are printed, the
successive printings of the various rows of the table always
have the same horizontal spacing, and so the columns are.
aligned even though printed independently.

Apart from its use of PRINT, INT3 is identical to INTI.
Here is the definition, followed by- a sample execution of
the same problem used in the two preceding examples.

V INT3
[1] 5 PRINT RATES
[2] J+O
[3] , ,

[4] I3LOOP:~(YEARS<J+J+1)/0

[5] 5 PRINT PRINCx(l+RATES)*J
[6] ~I3LOOP

V

PRINC+l00
YEARS+5
RATES+.05 .06 007

INT3
O. 05 O. 06 0.07

105.00 106000 107000
110.25 112036 114.49
115.76 119.10 122.50
121.55 126.25 131.08
127.63 133.82 140.26

152

A Footnote: the PRINT Program

The program which does the printing for INT3 is listed
below. Unless you have some immediate need to use PRINT, or
are especially interested in its definition, you should skip
this note and go on to the next page. Similar programs may
well be available through the system library. You may often
find yourself making use of a program whose inner workings
are quite unknown to you--so it isn't essential at this
point to trace through what happens in PRINT. But if you
need it, here it is.

All of the names appearing in the program are local
variables (see Chapter 25). DGTS is the maximum number of
digits to appear in a printed number. FLD is the total field
for representing one number. SHP is the shape (i.e. rho) of
the right argument, X, it will be used at the end to
reshape the literals back into a shape that matches the
original shape of X.

PL is a vector showing the number of digits to be used
for each of the elements of X, but always at least 3 and
never more than DGTS. RSLT, starts out as a vector of blanks
and decimal points, ready to receive the encoded
representations as they are calculated. REP is the
representation of a single element, including its sign, and
I is the counter, that controls the iterations of the loop
that generates the result for each number.

In the last line, the literal vector RSLT is
restructured. The last dimension of the literal array is
FIELD times longer than the last dimension of X.

V RSLT+DGTS PRINT X;POS;FLD;SHP;PL;REP;I
[lJ POS+(lFLD-3), -10 +FLD+3+DGTS
[2J SHP+pX
[3J RSLT+(FLDxpX+,X)p(DGTSp"),'.
[4J PL+DGTSL3f3+Ll0$(X=I+O)+IX
[5J EBf1:~((pX)<I+I+1)/EBI2
[6J REP+(1+0>X[I]),3+(PL[I]p10)TLO.5+100 x IX[IJ
[7J RSLT[(FLDxI-1)+(-pREP)tPOSJ+' -0123456789'[REPJ
[8J ~EBll
[9J EH12:RSLT+(((-1+0=pSHP)+SHP),FLDx-1t1,SHP)pRSLT

V

153

Paying the Mortgage

Suppose that a loan is to be repayed so that the
payments are always of the same size, and at regular
intervals. Suppose that the principal sum and the interest
rate are fixed. For a given number of payments, you can
solve for the size that each must be. Conversely, given the
amount paid each tlme, you can solve for the number of
payments to payoff the entire debt.

It turns out that the size of each flat-rate payment
can be found, at least approximately, without using a loop.
The following program does that. PRINe is the principal sum
borrowed, T is the number of times a payment will be made,
and RATE is the interest in one time interval. The program
is approximate since it does not include the effects of
rounding to the nearest penny at each iteration.

V SIZE
[1J PAYMENT+(PRINCx(1+RATE)*TIMES)f+!(1+RATE)*TIMES-1TIMES

V

Suppose that the principal to be borrowed is $17,300,
the interest rate is .055 per year, and it is to be paid in
240 monthly installments (i.e. 20 years). Then RATE should
be one twelfth 9f .005.

PRINC+17300
RATE+.055f12
TIMES+240
SIZE
PAYMENT

119.0045043

Next we consider a program which counts the number of
payments needed to payoff the mortgage. This is an
iterative program, and so it can include at each iteration
the correction for rounding to the nearest cent. As usual,
the program that follows contains a loop and a counter. But
the exit-test is whether the balance due has been reduced to
zero, while the counter keeps track of the number of
iterations needed. At the same time, the program notes the
amount of the last payment, since that may be for the odd
amount due at the end.

For the first execution, let's see if the approximation
obtained as the result of the program called SIZE does
indeed payoff the mortgage in exactly 20 years.

[1 J
[2 J
[3 J
[4J
[5 J
[6 J
[7 J
[8J
[9J
[10J

154

'iJ REPAY

'iJ

BAL+-PRINCx100
PAY+-PAYMENTx 1 0 0
COUNT+-O
RPLOOP:+(0~BAL+-LO.5+BALx1+RATE)/RPEND

BAL+-BAL-LASTPAY+-PAYLBAL
COUNT+-COUNT+1
+RPLOOP
RPEND: 'TOTAL OF '; COUNT;' PAYMENTS'
'OF WHICH '; COUNT-1;' ARE '; PAYMENT
'AND THE LAST IS ';LASTPAY+100

PRINC+-17300
RATE+-o055+12
PAYMENT+119
REPAY

TOTAL OF 241 PAYMENTS
OF WHICH 240 ARE 119
AND THE LAST IS 1099

As it turns out, the payment of $119.00 is
sufficient to payoff everything in 240 months.
again with a slightly larger payment.

PAYMENT+119 0 01
REPAY

TOTAL OF 240 PAYMENTS
OF WHICH 239 ARE 119 0 01
AND THE LAST IS 116.67

An Iterative Program for Finding Prime Factors

not qui te
Let's try

Suppose NUMBER is a scalar integer. You need to find
all of the prime factors of NUMBER. This isn't just a matter
of finding which primes are factors of NUMBER, since you
also want to know how many times any particular prime is a
factor.

The program called PF finds prime factors. It presumes
that you already have in the workspace a vector called
PRIME, which contains all the prime numbers you are likely
to need, in ascending order.

On line 1, X is given the same value as NUMBER. As
factors are extracted, X will be reduced by dividing it by
each new factor as it is found, but NUMBER will be left
unchanged.

[1 J
[2 J
[3 J
[4 J
[5 J
[6]
[7J
[8]
[9]

155

V PF
X+INUMBER
FACTORS+1I+0
~E~XE:~«X*Oo5)<TF+PRIME[I+I+1J)IQIER
lRIXE:~(O~TFIX)/M~~XE
FACTORS+FACTORS,TF
X+XfTF
~XRl.z:.f.
QIEB:FACTORS+FACTORS,(X~l)pX
~(l=pFACTORS)/ER

[10 J
[11]
[12]

'PRIME FACTORS OF '; NUMBER; , : , ; FACTORS
~O

ER:NUMBER;' IS PRIME'
v

On line 2, I is given
FACTORS (which will contain
vector.

an initial
the result)

value of 0, and
is made an empty

The line labelled NEWTF tests to see whether work has
been completed. TF (for-iitrlal factor") is selected as the
next prime number from the vector PRIME. Then TF is compared
with the square root of X. At the first iteration, X has the
same value as NUMBER, but in subsequent iterations X is the
quotient after NUMBER has been divided by each of the
factors already found. If TF is larger than the square root
of X, TF can't be a factor of X, and nor can any other
number larger than TF, so it is safe to conclude that no new
value of TF, other than X itself, is going to be a factor of
X. If there are no new factors to be found, the program
branches to OVER.

But if there may be factors yet unfound, the program
proceeds to the next line in sequence, which is labelled
~B¥!~. Here the current value of TF is tested to see if it
is a factor of X. If it is, the program catenates TF to the
FACTORS already found, di~ides X by TF, and branches back to
~BX!r. Note that it does not go back to the line labelled
N~W±t', since the old value of TF may still be a factor of
the newly-divided X.

Only when it is established that
X does the program return to ~~~!~,
prime number as a value for TF.

TF is not a factor of
and select the next

When the computer reaches the line labelled OVER, there
are two possible situations. If the successive values of TF
which were catenated to form the vector called FACTORS

156

indeed account for all the prime factors of NUMBER, then the
value of X must be 1. That is, X now has the value that you
get when NUMBER is successively divided by all of its
factors.

But it is also possible for the program to reach the
line labelled OVER if the last value of X is a prime
different from any of those so far used in TF. In that case,
the test on line 3 will correctly reveal that there is no
other factor of X smaller than the square root of X. In this
case, however, X itself should be counted among the prime
factors of NUMBER.

So on line 8, to
catenated either one or
value X.

the end of the vector FACTORS
zero extra elements, having

is
~e

Notice that line 8, although not formally a branch
instruction, has the effect of either catenating the value
of X or not catenating it, depending upon whether or not the
value of X is 1.

Line 9 represents a small refinement in the output. If
only one prime factor has been found, then the NUMBER was a
prime, and the result may be printed in a different format.

Here are some examples of the PF program at work:

NUMBER+1505
PF

PRIME FACTORS OF 1505: 5 7 43

NUMH~H+1128

PF
PRIME FACTORS OF 1728: 2 2 2 2 2 2 3 3 3

NUMBER+12345679
PF

PRIME FACTORS OF 12345679: 37 333667

NUMBER+333667
PF

333667 IS PRIME

157

23: COMPRESSION:
SELECTING SOME ELEMENTS FROM A VECTOR

AND OMITTING OTHERS

Suppose you have a vector named V. You would like to
generate a new vector that contains some of the elements
from V, but omits others. For instance, you want to keep all
those that are greater than zero, while omitting those that
aren't. The APL operator that does this is called
compression_. The sign for compression is a slash--the same
sign that is used for reduction. The two operations,
compression and reduction, are easily distinguished by the
fact that in reduction the slash has an operator sign
immediately to the left of it, whereas in compression there
must be an expression resulting in a vector of zeroes and
ones in that position.

The way qompression works is this: wherever there is a
1 in the vector on the left, the corresponding element of
the array on the right is retained. But where there's a 0 on
the left, the corresponding element on the right is omitted.
The left argument must contain a 0 or a I for each element
on the right; that is, the two vectors must have the same
length.

Suppose that as the right argument of a compression you
have a vector called V, composed like this:

202 3 .. 3 4.4 5.5 6 0 6 7.7 8.8

You want to keep all the elements from V except the second
and fifth. So as a left argument for compression you need a
vector that has the same length as V, and all of whose
elements have the value I except the second and the fifth,
which must be zero.

1 0 1 1 0 1 1 l/V
101 3.3 4.4 6.6 7.7 8.8

If the selection vector (i.e. the left argument of
compression) is made up entirely of ones, then all the
elements from the array on the right are preserved:

1 1 1 1 1 1 1 l/V
101 202 3.3 404 505 6 .. 6 7.7 808

158

Conversely, if the selection vector consists of nothing
but zeroes, then none of the elements on the right is
selected, and so the result is an empty vector:

o 0 0 0 0 0 0 o/v
~(Here the computer prints a blank line)

In general, the vectors on either side of the
compression sign must be of the same length, so that the
ones and zeroes on the left can be matched one-to-one with
the elements on the right. However, if either argument is a
single element, as usual the computer first replicates it
until it matches the length of the vector on the other side.
Thus a single 1 on the left of a compression keeps
everything from the vector on the right:

l/V
1. 1 2'.2 3.3 404 505 6.6 7.7 8.8

and a single a on the left of a compression selects none of
the elements on the right.

O/V
~(Here the computer prints a blank line)

Similarly, if a selection vector having several ones
and zeroes is used to compress a single number, you get that
number selected once for each of the ones on the left:

1 0 1 1 0/6.02
6.02 6.02 6.02

In fact, whenever the left argument of a compression
contains more than one element, the length of the result is
tile same as the number of ones in the selection vector.

Tests of the Truth of a Relationship
Provide the Zeroes and Ones Needed to Control Compression

You will recall that when the computer tests whether
a relationship is true, it responds with 1 for true, and a
for false. These ones and zeroes are just what is needed
for the selection vector during compression. For instance,
suppose you would like to keep from V only those elements
that are greater than some constant X. The expression

V>X
000 1 1 111

159

generates a response for each element in V. That response is
1 for each element of V that is greater than X, and 0 for
each that is not. This expression can be used directly in
the compression, like this:

(V>X)/V
404 6.f3 7.7 8.8

(Evidently X was something smaller than 4.4, but greater
than 3.3)

(V~O)/V
202 -5.5

Example: Compression and the Sieve of Eratosthenes

Our earlier program for finding prime numbers
considered at each iteration whether a single number N was
or was not a prime. If it was, it was catenated to the list
of primes found already. Then N was increased by 2, and
checked again. A different procedure was proposed by
Eratosthenes around 200 BC. He suggested that you start with
all the integers (or as many as you have patience for) and
successively cross out all those divisible by various
divisors. The numbers that remain when all possible divisors
have been tried are the primes.

You don't have to try all possible divisors; once a
number has dropped through the sieve, it doesn't need to be
considered as a divisor either. After you finish with one
trial divisor, the next trial divisor is the next higher
number from among the potential primes still remaining.

Here is a program to find primes by the sieve method.
In the earlier program, the test for finishing work was
whether sufficient primes had been found. But with the sieve
method it is easier to count how many numbers are in the
sieve at first; you can't say in advance exactly how many of
them will turn out to be prime. So the test for stopping is
whether you've reached a divisor so high that it couldn't
possibly divide any of the remainin9 numbers in the initial
set. The square root of the largest number in the sieve is
such a number. The initial divisor is 2, and
values for the potential primes are the integers from 2 to
N.

V ERATOS
[lJ PP+l+1N-l
[2J LAST+N*fD+2
[3J +(LAST<D)/ERPRINT
[4J PP+((D=PP)vO~DIPp)/Pp
[5J D+PP[1+PP1DJ
[6J +3
[7J ERPRINT:PP

V

160

The compression on line 4 is the sieve. An element of
PP is retained if it meets either of two conditions: if it
is equal to D, the divisor, or if it is not exactly
divisible by D.

After each use of the sieve, D is respecified as the
next of the potential primes now remaining (line 5).

Here is a sample execution showing selection of the
numbers that are prime up to 20.

N+20
ERATOS

2 3 5 7 11 13 17 19

It might be interesting to trace the execution of
ERATOS to see how many different trial divisors are used
before all the prime numbers up to 20 can be found. If you
trace the execution of lines 4 and 5, you will see on line 4
the potential primes as they are sifted until only genuine
primes remain, and on line 5 the successive values of D
following the initial value of 2. (Tracing was discussed on
page 91.) To start tracing, you enter:

TI1ERATOS+4 5

Now when you execute ERATOS, you see
each execution of lines four and five,
printing of the result.

ERATOS
ERATOS[4J 2 3 5 7 9 11 13 15 17 19
ERATOS[5 J 3
ERATOS[4J 2 3 5 7 11 13 17 19
ERATOS[5 J 5
2 3 5 7 11 13 17 19

the values after
before the final

161

Two iterations were needed. After the initial value of
2, D took on the value 3 and then 5. No compression was done
for D=5, since that value already exceeds the square root of
N.

How many iterations would it take to select all the
primes up to 1000? This time, if we just trace line 5, we
shall see each of the successive values of D, and then the
answer:

T6.ERATOS+-5
N+-l000
ERATOS

ERATOS[5J 3
ERATOS[5 J 5
ERATOS[5 J 7
ERATOS[5] 11
ERATOS[5 J 13
ERATOS[5] 17
ERATOS[5] 19
ERATOS[5] 23
ERATOS[5] 29
ERATOS[5] 31
ERATOS[5] 37
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

59 61 67 71 73 79 83 89 97 101 103 107 109
113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233
239 241 251 257 263 269 271 277 281 283 293
307 311 313 317 331 337 347 349 353 359 367
373 379 383 389 397 401 409 419 421 431 433
439 443 449 457 461 463 467 479 487 491 499
503 509 521 523 541 547 557 563 569 571 577
587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719
727 733 739 743 751 757 761 769 773 787 797
809 811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941 947
953 967 971 977 983 991 997

Evidently eleven iterations sufficed. By contrast, the
earlier program PR would have taken 499 iterations to find
that many primes.

162

Another Program Using Catenation and Compression:
Sorting the Elements of a Vector

Sorting the elements of a vector so that they are
arranged in ascending order is a classical problem to which
there are a great many solutions. Indeed, a sorting function
is directly available in APL as a primitive function (see
the next section). But suppose it were not: how might a
sorting program be written? Here is one which uses
compression to find which elements should go first, and
catenation to reassemble them into a new, ordered vector.
The steps in the procedure are as follows:

" [1 J
[2 J
[3 J
[4J
[5 J
[6J

"

1. Call the vector that is to be sorted UNS (for
unsorted). Call the sorted vector that results ORD
(for ordered). Start with ORD being an empty
vector.

2. Test to see whether any elements remain in UNS. If
there are none, exit.

3. Set up the logical vector WHICH, with a 1
corresponding to each element of UNS that is equal
to the minimum of UNS.

4. Compress UNS by WHICH. That is, pick out from UNS
those elements that are equal to its minimum.
Catenate them to those already found in ORD.

5. Compress UNS by the negation of WHICH. That is,
respecify UNS to be all those elements that were
not selected.

6. Return to line 2.

SORT
ORD+OpUNS+,UNSORTED
-+(O=pUNS)/O
WHICH+UNS=L fUNS
ORD+ORD,WHICH/UNS
UNS+(-WHICH)/UNS
-+2

)

163

Here is a sample execution of SORT:

UNSORTED+18 43 6 22 17 6 44 29 8 19 24 17
SORT
ORD

6 6 8 17 17 18 19 22 24 29 32 43 44

A More General Form of. the Sorting ProSIram

The program called SORT starts with a vector that may
be in scrambled order and produces a vector with the same
values arranged in ascending order. Sometimes it is more
useful to produce as your result not the values themselves
arranged in order, but the index numbers which, if used to
index the scrambled vector, would order it. The advantage of
doing it that way is that, once you have the ordered index
numbers, you can then apply them not only to the original
scrambled vector, but to any other vector of the same
length. For instance, suppose FINAL is a vector of the
grades obtained by a class of students, and ID is a vector
of their identification numbers. Then you could arrange ID
in an order based upon the order of their grades. (Or, when
you get into multidimensional arrays, you could have their
names arranged as the rows of a matrix, and print their
names in an order determined by their grades.)

To do that, you again find a logical vector WHICH. But
now instead of using it to select values from the scrambled
vector, you use it to select index numbers. Now you remove
elements from the vector of index numbers as well as from
UNS. But you still iterate until all the elements of UNS are
used up. Here is such a definition:

V SORTX
[1J ORDX+OpINDEX+lpUNS+,UNSORTED
[2J +(O~pUNS)/O

[3J WHICH+UNS=L/UNS
[4J ORDX+ORDX,WHICH/INDEX
[5J UNS+(~WHICH)/UNS

[6J INDEX+(~WHICH)/INDEX
[7J +2

V

Using SORTX, in order to put the elements of a variable
called Y into order, you have to index Y by ORDX, the vector
of ordered indices that the program produces:

32

164

UNSORTED+Y+18 6 24 72 14 27 6 31 17 14 20
SORTX
Y[ORDXJ

6 6 14 14 17 18 20 24 27 31 72

In the next example, a vector called FINAL contains the
grades for a class of students. Their names are stored as
the rows of the matrix NAMES. The program called REPORT
prints both the names and grades in rank order by grade.

NAMES

BRENNER, WILLIAM
DRISCOLL, KEITH
GALTO, JUL18
KURTZBERG, BURTON
ROTHWELL, DA VIS
STRONG, VERA
SUGARMAN, DA VI D
THOMPSON, EDWARD
WATSON, EDWIN
YANG, TSIAO

FINAL
73 80 79 84 90 85 76 94 62 80

V REPORT
[lJ 1+0
[2] UNSORTED+FINAL
[3J SORTX
[4J +((pFINAL)<I+I+l)/O
[5J NAMES[ORDX[IJ;J;' '; FINAL [ORDX[IJJ
[6 J +4

V

REPORT
WATSON :> EDWIN 62
BRENNER, WILLIAM 73
SUGARMAN s DAVID 76
GALTO, JULIE 79
DRISCOLL, KEITH 80
YANG, TSIAO 80
KURTZBERG, BURTON 84
STRONG, VERA 85
ROTHWELL, DAVIS 90
THOMPSON, EDWARD 94

)

165

The Primitive Functions for Sorting

The result produced by the program SORTX can be
obtained directly with the APL operator called grade. If the
argument of grade is a numerical vector, then the result is
the indices that will arrange that vector in either
ascending or descending order. The operator which arranges
in ascending order is called grade up, and is formed by
overstriking the delta f:., and the vertical line I otherwise
used for absolute value. The operator which arranges the
values in descending order is called grade down, and is
formed by overstriking with the del instead of the delta: W.

Using this primitive
would arrange the scores on
be:

operator, an expression which
a final exam called FINAL would

FINAL[~FINALJ

In order to print the matrix NAMES in ascending order
of the vector FINAL (assuming there is a row of NAMES for
each element of FINAL) the instruction would be:

NAMES[~FINAL;J

Why the Branch-or-Continue Instruction
Includes a Compression

On page 71, we remarked that a conditional branch
instruction may be written

-+CONDITIONILINE

The value of CONDITION is logical (i.e. either 1 or 0). The
result of the compression is therefore either the value of
the variable called LINE (when CONDITION is 1), or else an
empty vector (when CONDITION is 0).

A branch to an empty vector
taken to mean "Continue with
sequence."

is no branch at all: it is
the next instruction in

Thus a branch-or-continue instruction is any
instruction in which a right-pointing arrow is followed by
an expression which, when evaluated, yields either the
number of a line to which the program is to branch, or else
an empty vector if no branch is to be taken.

166

Compression is not the only operator which would give
that effect. Recall that to also produces an empty vector.
So another form of the branch instruction can be written as
follows. Suppose LINE is a label for the line to which the
program is to branch if it is true that X is smaller than
the square root of Y. Otherwise the program should continue
in sequence. You could get that by using compression (as is
done in almost all the illustrative programs in this primer)
like this:

Or you could get it by this instruction, which has the
advantage of putting the label at the beginning rather than
the end:

You can read that instruction
less than the square root

as "Branch
of Y. "

to LINE if X is

167

24: THE PROGRAM ASKS FOR INPUT,
GETS IT, AND THEN PROCEEDS

The quad symbol 0 stands for input and output. If a
quad appears immediately to the left of a sp~cification
arrow, it means that the value to the right of the arrow is
to be printed. You don't often need this sort of explicit
instruction to print something, since th.e computer prints a
value automatically anytime you fail to specify what else is
to be done with it.

If a quad symbol appears anywhere else in an
instruction (that is, anywhere but immediately to the left
of a specification arrow), it means tha.t the computer should
at that point ask for input from the terminal. Suppose you
enter an instruction like this:

Z+O

The value of Z is to be specified as whatever value is
entered from the terminal in response to the quad. For this
reason, input in response to a quad is called evaluated
input. To show that it is requesting input, the computer
types a quad and colon at the left margin, and then indents
and unlocks. The value of the expression that you type now
is taken as the value of OJ in this case, that value is now
assigned to the variable z.

Here's how it looks: first the instruction containing a
quad. Then the quad typed by the computer, to show that it
is requesting input. Then your response to that request.
Finally, if you ask to see the value of Z, you find that the
value of the expression you entered at the quad has indeed
been assigned to Z.

0:

6

Z+O

2x3
Z

Anytime a quad occurs in an instruction, when the
computer reaches that point in its evaluation of the
instruction, it goes to the terminal for input, evaluates
what you enter then, and then returns to the original
instruction. Suppose you enter this instruction:

XxD+AxB

168

Recall that the computer performs the rightmost operation
first, so first it finds the product of A and B. Then it
encounters the D symbol; the product of A and B is to be
added to the value of D. Whatever you enter now becomes the
value used in the instruction. If you enter 6, that value is
added to the product of A and B. But if you enter an
expression, that entire expression is evaluated at once,- and
its result becomes the value used.

In the illustrations that follow, A has the value 5, B
has the value 2, and X has the value 1.

XxD+AxB
0:

6
16

0:
2

2 0 414213562

X+D
0:

AxE
11

0:
A*15

5 25 125 625 3125

Example of Input to a Program:
Crystal Lattice proble~

In the examples used in earlier chapters, the data
needed for a particular program had to be assigned to
variables before execution of the program. It may be more
convenient to have the program ask for the data it needs as
it goes along. You can do that by using the 0 in the
program. For instance, here is a program intended for work
with some problems in the geometry of crystal lattices. The
program finds D, the distance between adjacent planes of a

169

hexagonal crystal, as a function of 5 parameters. The first
two, A and C, are constant for a given compound. The other
three, called H, K, and L, are integers which identify the
set of planes under consideration. In conventional notation,
D can be found from the following formula:

1: = 1. (H 2 + HK + K2) + L2
D2 3 A2 C2

At the bottom of the page you will find an APL program
which first asks for the values of A and C (as a single
2-element vector) and then asks for an HKL combination.
After printing the value of D, the program returns and asks
for a new HKL combination. It will keep repeating until you
enter a scalar instead of a vector for HKL.

Notice that when the 0 asks you for input, you're free
to enter numerical values, or an expression, or the name of
a variable. For instance, suppose you may want to work
repeatedly with germanium oxide. You could store the values
of A and C for germanium oxide under the name GE02.
Similarly, since the program ends by testing to see if HKL
is a scalar, you could store a scalar under the name END,
and henceforth END will suffice to indicate the end of your
execution of the program. Both of these points are
illustrated on the next page.

V HEXAGONAL
[1 J 'SPECIFY A AND C (IN ANGSTROMS)'
[2J AC+O
[3J 'SPECIFY H K L'
[4J HKL+O
[5J +(O=ppHKL)/O
[6J D+f(+/ 4 4 4.3 xijKL[l 2 2 3JxHKL[1 1 2 3Jf3xAC[1 1 1 2J*2)*0.5
[7J 'D IS ';D;' ANGSTROMS'
[8J +4

V

GE02+4.987 50652

END+O

170

HEXAGONAL
SPECIFY A AND C (IN ANGSTROMS)
0:

GE02
SPECIFY H K L
0:

1 0 0
D IS 4.318868689 ANGSTROMS
0:

1 0 1
D IS 3.431678812 ANGSTROMS
0:

1 1 0
D IS 2.4935 ANGSTROMS
0:

1 0 2
D IS 2.364743232 ANGSTROMS
0:

1 1 1
D IS 2.281351922 ANGSTROMS
0:

2 0 0
D IS 2.159434344 ANGSTROMS
0:

2 1 1
D IS 1.568280737 ANGSTROMS
0:

END

Ordinarily, the system types 0: (followed by a
line-feed) each time it requests evaluated input. It is
possible, if you prefer, to substitute any other characters
t.lidt. you may prefer for tne 0:. This can be done by using
the program SFEI (for "symbol for evaluated input"). That
program is to be found in one of the public workspaces
supplied with the APL\360 System. See the APL\360 Manual,
discussion of Evaluated Input in part three, and discussion
of Library Functions in part four.

!nput as Literal Characters

The symbol ~ is called quote-quad; it is formed by
overstriking the quad symbol with a quote mark. Quote-quad
asks for input in the same way that quad does, but with two
important differences:

1. When the computer requests input from a~, it
simply unlocks the keyboard with the typeball at
the left margin. It doesn't print a quad symbol,
and it doesn't indent.

~

171

2. Whatever you enter in response to a ~ is accepted
as literal characters. If you enter just one
character, it goes in as a literal scalar. If you
enter any other number of characters, they go in
as a literal vector. In particular, if you don't
type anything but a carrier return, a vector of
length 0 is entered.

Suppose you would like to build up a list of names. The
list might be a long literal vector containing all the
various names. At the same time that you enter new items to
the list, you want to keep a record of where each entry
starts and how long it is. Then later on you can recover a
name from the list by indexing the vector called LIST. The
following pair of programs illustrate how this might be
done.

The first one compiles a vector of literal entries. It
continues to accept new entries until you enter an empty
vector. Line 6 tests the length of the entry, and terminates
execution when the length is O.

The second program prints entries from that vector
--those that are indicated by the values of NO. Actually, it
prints only one entry at a time. A counter called J steps
through the various elements of NO. Since NO is indexed by
J, NO has to be a vector. So the first line of PRINT ravels
NO.

V ENTER
[lJ LENGTH+LIST+lSTART+,O
[2 J pSTART
[3 J -+(0 =p ENTR Y+[!]) / °
[4J LENGTH+~ENGTH,pENTRY

[5 J START+START, pLIST+LIST, ENTRY
[6J -+2

V

V PRINT
[1 J NO+,NO
[2 J J+O
[3 J -+((pNO)<J+J+1)/O
[4 J LIST[START[NO[JJJ+lLENGTH[NO[JJJJ
[5 J ' ,
[6 J -+3

V

172

Below; there are samples of the execution of these two
programs. Notice that, since the input is literal charac­
ters, any character on the typeball can be included in th~
input. Indeed, you don't have to use an APL ball at all,
but you can type input with any other typeball that fits
your terminal. In the following example, a script typeball
was fitted while the names were being entered and then again
when printing of the names numbered 4, 2, and 5 was asked
for.

ENTER
1
M~. and M~~. John H. Hoe, 245 Cente~ St~eet, Plaine~ville, Miehiga~
2
Mi~~ Ba~ba~a Halve~~on, 12245 South B~oadway, Alameda, Olkahoma
3
V~. Ha~old Jacob~, RFV 4, Ba~tontown, New Je~~ey
4
M~. Jonathan Le~te~, 614 24th Avenue NW, Ceda~ Fall~, Iowa
5
M~. and M~~. J. Q. Walden, T~ade Cente~, Pt. Ba~~ow, Ala~ka
6
IBM Re~ea~eh Cente~, Yo~ktown Height~, New Yo~k 10598
7

NO+4 2 5
PRINT

M~. Jonathan Le~te~, 614 24th Avenue NW, Ceda~ Fall~, Iowa

M~. and M~~. J. Q. Walden, T~ade Cente~, Pt. Ba~~ow, Ala~ka

173

25: DEFINED FUNCTIONS
THAT HAVE ARGUMENTS AND RESULTS

Up to now, the discussion of how to write a program has
dealt only with what on page 33 we called "stand alone"
programs. The instruction that calls for the execution of
such a program always consists of just one word: the name of
the program. With that sort of program, the data the program
works on must either be stored in the workspace before you
execute it, or else entered from the typewriter when the
program calls for input. However, APL provides for some
other forms of definition which are more powerful and often
far more useful than the simple type to which discussion has
been confined. This chapter is devoted to introducing these
more general forms of program definition.

the Idea of a Functiop

To a mathematician, a function is a correspondence
between one set of values (the domain) and another {the
range}. This correspondence can be represented in various
ways. One way would be to have a table in which each value
of the domain appears beside the corresponding value of the
range.

Another way to represent a function is to state an
algorithm {or procedure} by which, given any particular
value within the domain as input, you {or a computer} could
determine the corresponding value as an output, or result.
In APL, a program is considered to be the algorithmic
definition of a function, and a program may be used like a
function, provided it is properly defined.

The Arguments and the Result of a Function

The operations of arithmetic are functions; if you
perform an addition, you start with the addends {the input}
and you follow a procedure which gives you the sum (the
output, or the result). The input values to a function are
called its arguments. In the instruction 3+4, the function
is addition, and the arguments are 3 and 4. You have already
seen that the primitive functions of APL (each of which has
its own symbol) are always written in one of two forms: for
a function of two arguments, the function symbol always
appears between the two arguments (like A+B, or A*B, and so
on). For a function of only one argument, the argument
appears to the right of the function symbol.

174

Suppose A, B, and C are variables. Consider the
instruction

A+BfC

It contains two primitive functions, addition and division.
The division function has two arguments: Band C; B is the
dividend, since it's on the left of the f sign, and C is the
divisor, since it's on the right.

What are the arguments of the addition function? The
left argument of + is A. The right argument of + is whatever
result you get when you finish executing the division of B
by C. The point is important: an instruction which calls for
the execution of two functions depends upon the fact that
the first returns a result which then becomes the argument
of the second.

Programs as the Definitions of Functions

A program is a statement of a procedure. It generally
works on some input data, and processes the input until it
produces a result; the value of the result depends on what
the input values are: i.e. the result is a f~nction of the
input. So it is perfectly reasonable a"nd consistent to think
of a program as a function.

If the system in which you're working has a primitive
operator.for everything you ever want to do, you never need
to write programs. A program is a way of telling the
computer the procedure it must follow in order to evaluate a
function that it doesn't otherwise have.

APL uses the general word "function" to refer both to
the operators that are primitive to the language, and to the
programs that APL users write. A program is simply a
user-defined function.

When you use a defined function, it would be very handy
to be able to use it in the same way that you use primitive
functions. For instance, you'd like to be able to say what
function is to be used, what values it is to work on, and
what is to be done with the result, all in the same
instruction.

Suppose that
resistance RR of

you sometimes need
several resistors in

to calculate the
parallel. Their

175

resistances, considered separately, are stored as the
elements of a vector called R. In conventional notation, the
formula for RR is:

1
RR = . . . +

1
Rn

There is no APL primitive which, when applied to R,
gives you RR. So you would like to define a function which
does that. Suppose that function is called PR (for "parallel
resistance"). Before we discuss how to write a definition
for this function PR, consider how you would like to be able
to use it.

To find the parallel resistance for the vector R, you'd
like to be able to enter simply:

PR R

Or to find the parallel resistance of a resistor of 800 ohms
and another of 1200 ohms, you'd like to be able to enter:

PR 1200 800

You'd like to get back the answer simply by entering the
instruction:

PR 1200 800
480

Or conversely you'd like to be able to assign the result of
PR R to a variable, like this:

RESIST+PR R

just as you would if PR were an APL primitive.

This description implies that PR, just like a primitive
operator, takes as its argument whatever comes to the right
of it in the instruction. Like a primitive operator, it
returns a result that may be stored, or passed on to the
next operator to the left, or printed if neither of the
other two is indicated.

It is a simple matter to write the definition of PR so
that it behaves in this way. Indeed, everyone of the
program definitions used in the various examples in the

176

early chapters of this primer could be written in tha.t way,
and would thereby become a great deal more convenient to
use.

The Definition of a Function
!g.~t !akes an Argument and Returns a Result

The joint resistance of several resistors in parallel
may be found as the reciprocal of the sum of the reciprocals
of the separate resistances. In APL, that is:

RR+ f+/fR

Here is the definition for the function PR:

V RR+PR R
[1J RR+f+/fR

V

It differs from the definitions that appeared in the earlier
examples in two ways:

1. Its header (that is, the top line which contains
the V symbol and the name of the function) now
includes some other items which serve to indicate
that this function takes one argument and returns
a result.

2. The definition does not contain any statement
calling for the printing of the result. Now that
the function has a formal result, the result will
be printed automatically whenever the instruction
calling for execution of tnls function doesn't
indicate some other use for the result.

The header of a function definition always stipulates
the name of the function. At the same time, the header
serves as a paradigm, illustrating the syntax that is to
govern the way this function will be used.

If the header includes a specification arrow (with some
name to the left of it) it means that the function returns a
result. That result may be stored (as illustrated in the
header), or passed on to some other function appearing
further to the left in the same instruction, or printed,
just like the result of a primitive function.

177

If in the header the name of the function appears with
one or two other names next to it, those other names
indicate the arguments of the function. When you use the
function, you must provide a variable or expression next to
the name of the function, in the positions illustrated in
the paradigm. As with the primitive functions, if there's
one argument, it comes after the function, and if there are
two they go on either side of the name of the function.

GCD: A Simple Function of Two Arguments

On page 145 we gave a definition for a program to find
the greatest common divisor of two numbers Nl and N2.
Leaving the body of the definition exactly as it was, we can
write a second version with a different header, making Nl
and N2 the arguments of GCD, and G the result.

V G+N1 GCD N2
[lJ G+N1
[2J +(O=N1+GIN2)/O
[3J N2+G
[4J +1

V

Now to find the greatest common divisor of 1155 and 12298,
you enter those values with the name GCD between them:

1155 GCD 12298
11

Six Possible Forms for a Function Header

result, and it may
no arguments. That

header contains a
returns a result, and
the name used within

A function mayor may not return a
have one argument, two arguments, or
makes six possibilities. If the
specification arrow, then the function
the name to the left of the arrow is
the function to identify the result.

To the right of the arrow (if any) there may be one,
two or three names. If there's only one, it is the name of
the function. If there are two, the one on the right is the
name of the argument, and the one on the left is the
function name. If there are three, the one in the middle is
the name of the function, and those around it are the names
of the two arguments.

178

~at Happens When the Computer Executes
A Function with Arguments or a Result

Consider what the machine does when you ask for an
execution of the function PR. Here is the definition of PR:

V RR+PR R
[1J RR+f+/fR

V

Here is an instruction that calls for its execution:

RESIST+PR 800 200

When the computer encounters the name PR, it finds that
in this workspace PR is a function. Checking the header of
function PR, it finds that PR has one argument, named R. So
the computer creates a new local variable called R, whose
value is the vector 800 1200. Then it carries out the work
specified in the body of the function definition, using the
new local meaning of R wherever that name may occur.

When the computer finds that it has no further work to
do in the execution of PR, it again consults the header:
does this function require a formal result? In our case, the
answer is yes; there is a result, called RR. The computer
takes the latest value of RR, and reports that as the
result. ~at must be done with the result? The computer
returns to the instruction which called for this execution
of PR, and finds that the result is to be assigned as the
value of a variable called RESIST, and does that.

A~ soon as the execution of FR is cOfi~lete and its
result has been reported, the variables Rand RR which were
created during this execution of the function have no
further use. They cease to exist; they are removed from the
workspace.

Suppose you had entered the instruction RR+PR R. In
that case, the argument of PR happens to have the name Rand
the result happens to be assigned to a variable called RR~
As far as the computer is concerned, it is merely a
coincidence that the names are the same as those occurring
in the header of PR. Your instruction refers to the meanings
of Rand RR outside the function. During execution, the
computer goes ahead and as usual creates new local variables
with the names Rand RR, keeping those distinct from the
meanings of Rand RR outside this definition.

179

A Simple Function of TWo Arguments:
Area of a Segment of a Circle

Suppose that you need to calculate the areas of
sector of circles. For each sector, you know its radius
and the angle it subtends. You would like to have a function
called CA (for "circular area") so that when you need the
area of a sector whose radius is 415 feet and whose angle
is 42 degrees, you have only to enter the instruction:

415 GA 42

The function needs two arguments and should return a
result. You might as well give them names which will be easy
to interpret if you subsequently check back to see what is
in this definition. Let's assume that the angle is given in
degrees, rather than in radians, and that PI has been
assigned the value 3.14159.

V AREA+RADIUS GA DEGREE
[lJ AREA+(PIxRADIUS*2)xDEGREE+360

v

Here is the area (in square feet) for the problem we just
mentioned (415 feet, 42 degrees):

415 GA 42
63123.70607

This defined function works just as well if the arguments
are arrays. However, the arguments must either have the same
dimensions, or at least one of them must have only one
element:

112 240 88 GA 45 110 70
4926.017281 55291 0 0307 4730 0 540405

100 GA 45 55 60 90
3926.990817 4799 0 655443 5235.987756 7853.981634

10 20 30 40 GA 90
78053981634 314.1592654 706.8583471 1256.637061

144 200 GA 30 45 60
LENGTH ERROR
GA[lJ AREA+(PIxRADIUS*2)xDEGREE+360

"

180

The last example on the preceding page illustrates
several things. To begin with, you can't specify two radii
and three angles, at least not with this definition of CA.
But notice some additional points:

1. Execution of CA has not been abandoned, but
suspended. You can take some corrective action and
resume work.

2. Since an execution of CA has been started but not
finished, and no more recent function is in
execution, you can display the variables RADIUS
and DEGREE, containing the value of the arguments
for this execution of CA.

3. While execution is suspended, you can alter the
definition itself, or the values of the arguments.
In this case, it would be useful to respecify one
or the other of the arguments so they're the same
length, and then resume execution.

In the following example, the instruction and the
computer's response are repeated from the bottom of the
preceding page, so that the entire exchange is visible in
one place. That doesn't mean that the same problem was
started over again.

144 200 CA 30 45 50

LENGTH ERROR
CA[l] AREA+(PIxRADIUS*2)xDEGREEf350

A
PIITlTTlC'
.Ll.l.~LJ...LVU

144 200
DEGREE

30 45 60

DEGREE+2pDEGREE

+1

5428.672105 15707.96327

DEGREE
VALUE ERROR

DEGREE
A

Your instruction

Error Message

YOU ask for display of
each of the arguments
of CA

You respecify one
the arguments
resume execution

Result is printed

of
and

Now that execution is
complete, the variable
DEGREE no longer
exists.

181

Another Example with Two Arguments:
Converting Pounds to Dollars

The British use a currency with three units: pounds,
shillings, and pence. There are 12 pence in a shilling, and
20 shillings in a pound. The dollar value of a pound varies;
during 1967, it went from $2.80 per pound to $2.40 per
pound. Here is a function which calculates the dollar value
of an expression in pounds, shillings, and pence. It is
called 8L, for "dollars from pounds." (8 stands for dollars;
the British use L for pounds.)

'V S+RATE SL BRIT
[lJ BRIT+3p«Or3-pBRIT)pO),BRIT
[2J S+RATEx+/BRIT+ 1 20 240

'V

The first line of the program respecifies its own
argument. Firsttit inserts up to three zeroes ahead of BRIT,
so as to fill the high-order positions with zeroes if an
amount is stated solely in pence, or in pence and shillings
with no pounds. Then it takes the first three elements of
the resulting vector. If the argument contained three
elements to begin with, this won't produce any change. But
if the argument stated only the pence, the argument will be
respecified as a vector whose first two elements are zero.

On line two, the argument (now assured of having three
elements) is divided by 1 20 240, converting all three
columns to pounds. Then those are summed, and the sum is
multiplied by the other argument (the exchange rate.)

2.80 SL 14 7 6
40.25

2.42 SL 10 6
1.2705

As written, this function won't process several
different British amounts at once, since no matter how long
the BRIT vector starts off, the program always converts it
to three elements which it presumes to represent a single
sum of money. But the function will accept any number of
exchange rates:

4020 2080 2.40 2 010 SL 0 13 8
2087 1.913333333 1.64 1.435

182

Compound Expressions Using Defined Functions:
Another Approach to the Correlation Coefficient

The great advantage of permitting defined functions to
have arguments and results is that you can use them in
compound expressions, just as you can write compound
expressions involving the primitive operators. As a simple
example, let's return to the correlation coefficient, which
we discussed earlier on pages 125-126.

The correlation coefficient is defined as the average
product of two vectors of scores, provided that the scores
are in standard form. You could therefore write a simple
one-~ine program for the correlation coefficient like this:

V R+X CORR Y
[1J R+AVG(STD X)xSTD Y

V

Clearly, this definition depends upon having
definitions for AVG and STD; it also depends upon the fact
that each of them can take a right argument and can return a
result.

To define AVG, you could treat its argument as a
vector, and divide the sum of the elements by the number of
elements:

V R+AVG X
[1J R+(+/X)tpX

V

Tu standardize a vector of scores, first you center
them (that is, reduce each of them by their average) and
then you divide them by their standard deviation:

V R+STD X
[lJ R+(CTR X)tSD X

V

Centering the elements of a vector means this:

V R+CTR X
[1J R+X-AVG X

V

183

Finally, you need a definition for standard deviation.
It is the square root of the average of the squares of the
centered scores:

V R+SD X
[1J R+AVG(OTR X)*2
[2J R+R*O.5

V

In this definition of SD, the header declares that inside
this function, its result will be called R. Line 1 specifies
a value for R, and then line 2 respecifies R with a new
value. When this function is executed, it will return as its
result the last value of R arising from this particular
execution of SD (i.e. the one stored in response to line 2
of the definition).

You should keep in mind that the set of definitions
just presented is devised to illustrate one approach to
programming, making maximum use of sub-programs and compound
expressions. For a problem of this scale, perhaps you
wouldn't really want to break the main program into quite so
many parts. Moreover, this particular· illustration doesn't
give you the most economical way of doing the work in terms
of the computer's internal operations; the average of the
scores is computed more than once, and there are other such
minor extravagances. But these definitions do illustrate a
style of programming which starts from the most general
description of the procedure, and then fills in the other
definitions as they are required. This makes for a highly
readable program, and one which corresponds closely to the
original English description of the procedure.

Notice that everyone of the definitions on the last
two pages uses the name X for one of its arguments. Each of
these XiS refers only to the argument of a single execution
of that particular function. There is no problem of overlap,
even though the same name occurs as an argument in each of
the functions. When these functions are used to process
variables stored in your workspace, there is no need for
those variables to be called X--nor is there any reason why
they should not be called X.

Suppose your workspace contains two vectors of scores,
called Hand W. You can examine their averages, their
standard deviations, and the correlation between them with
instructions such as those on the next page:

(pH),pW
100 100

(AVG H),AVG W
801,0938 545.57689

(SD H),SD W
77.41809831 49.21222692

AVG STD H
2 0 183586645E-14

3D STD H
1

H CORR W
0.5312751892

H CORR -W
0.5312751892

H CORR H+W
0.9276489928

H CORR H-W
0.7758668562

H CORR H
1

Changing a Function's Syntax

184

Lengths of Hand W

Averages of Hand W

Standard deviations of Hand W

Average of standardized H
(Close enough to theoretical 0)

Standard deviation of standardized H
(As it should be)

Correlation of H with W

Correlation of H with -W
(Same, but opposite sign)

Correlation of H with sum of Hand W

Correlation of H with difference
petween Hand W

Correlation of H with itself

After You've Entered its Definition

Suppose you have entered the definition of a function
without arguments or result, and you decide you would prefer
to have it take an argument and return a result. Or you
decide that you'd prefer to convert a function of two
arguments so that it becomes a monadic function. How can you
do that?

You do it by editing the header, in the same way as you
edit qny other line of a program (see pages 47 and 91).

185

Variables that are Local
To the Execution of a Function

When you write a definition so that the function has
arguments or a result, you cause the creation of some
variable names which are not permanently stored in the
workspace, but which exist only during execution of that
function. They are called local variables. The arguments and
the result of a function are automatically local variables.
If you wish, you can also make other variables local to a
function (see the next page).

The variables named as the arguments of a function get
their values as soon as the computer starts an execution of
that function, even before it starts to execute line 1. The
result, and any other variables local to the function, get
their values only by being specified by some instruction
within the function. Thus the result gets its value only if
and when the instructions within the program assign it
one--possibly never, if you don't include the appropriate
instructions in the definition.

Global vs Local Variables

Unless the header of a function specifically indicates
otherwise, APL\360 assumes that all variables are global
variables. A global variable is one that is generally
available to any calculation or any function in the
workspace. (The only exception is this: access to the global
meaning of a name is blocked while the computer is executing
a function to which that name is local.) All the variables
mentioned in all the chapters before this one were global
variables.

A name becomes
of a function. Then

local if it is mentioned in the header
it exists only while that function's

execution remains incomplete.

Whenever a name occurs within the body of a function
definition, it falls into one of these two categories:

1. If the name is local to
appears in the function
meaning is understood.

that function
header), then

(i.e. it
the local

2. Otherwise it refers to the next
meaning, if any. That is, it refers

higher local
to the local

186

meaning in the most recently called function whose
execution was started earlier than this one, but
hasn't yet been completed. If there aren't any
such higher local meanings of a name, then the
global meaning is understood.

Displaying the Value of a Local Variable

Since the value of a local variable disappears as soon
as the computer finishes executing that function, the only
time you can ever display the value of a local variable is
while execution of the function to which it belongs is still
incomplete. That is precisely the point: the local variable
is available if you need to check up on it while debugging a
program, but doesn't clutter up the workspace when normal
execution of the function is completed.

A variable local to a function that is suspended may
still be inaccessible if its name is also local to any more
recently called function. Putting it the other way, the
value that you can use or display is always the most recent
local meaning of the name. That's also what you get if you
copy from that workspace (see the next chapter).

A local variable is not merely local to the function in
which it occurs, but local to each specific execution of
that function. If you start executing a function and it is
suspended~ and then you start a new execution of the same
function and that too is suspended, you can see and use only
the most recent meanings of the local variables. Of course,
as execution of the more recently called functions is
completed. the next earlier meaning of each will again be
accessible.

Additional Local Variables
Other than the Arguments or Result

A program may involve temporary variables that are of
no further interest once execution is complete. If you
prefer, you can make them local to the function in which
they're used. As many extra names as you like can be made
local by listing them in the header, to the right of the
name of the function and the right argument (if any). They
are set off from the rest of the header, and from each
other, by semicolons (see, for example, the definition of
PRINT, P • 152).

187

A I1ystification to Avoid

Every now and again an APL user forgets to tell the
computer what should be done with a function whose execution
has been suspended. Ordinarily this may not matter much, but
if the suspended function uses a local variable whose name
is also used for a function or for a global variable, you
may think you're referring to the function or to the global
variable, and instead you're getting the value of the local
variable from within that suspended function. But the
problem is easily avoided: don't leave suspended executions
hanging around unresolved any longer than necessary. You can
always check to see which functions remain suspended by
displaying the state indicator (using the command)SI). If
any of those functions contain local variables, it may be
important to you to know which variables are local to which
functions. For this purpose you can use the command)SIV.
This command causes the state indicator to be displayed in
the usual way, but to the right of each halted program, the
computer types a list of the variables that are local to
that program.

Editing the Definition of a Function
That Has Arguments, a Result, or Local Variables

When you reopen the definition of a function, whether
to change it or just to display it, enter V followed solely
by the name of the function. You should not re-enter the
entire function header. An attempt to do so will be rejected
as a "definition error."

If you wish to make local variables global, or global
variables local, you can do so by editing the header of the
function to which they belong in the usual way (see pages 47
and 91).

Spaces Separate a Function from its Arguments

When you use functions which take arguments or return
results, it is possible to construct an expression in which
several names occur next to each other, or the name of a
function occurs next to a number which is its argument. So
you have to make clear to the computer where each name
begins and ends.

188

A numerical digit may be part of the name of a variable
or function, provided that the first character of the name
is a letter of the alphabet. That means that FN6, for
instance, is an allowable name, so the computer must be able
to distinguish between FN 6 10 (meaning the function FN with
an argument of 6 10) and FN6 10 (meaning the function FN6
with an argument of 10).

APL uses spaces as delimiters, to mark where b~e name
of a function or variable begins and ends. When a name is
used in an expression, it must be separated from another
name or a number by one or more spaces. Since the symbols
used for the primitive operators can never occur in names,
it isn't necessary to enter spaces next to them, but you may
if you wish.

189

26: TRANSFERRING PROGRAMS OR DATA
FROM SAVED WORKSPACES TO THE ACTIVE WORKSPACE

There are several situations in which it is handy to be
able to transfer programs or data between workspaces. You
may wish to load a package of programs from a public library
into your own workspace, for use with the data you have
already stored there. Or you may wish to set aside data you
have produced, leaving it in a different workspace until at
some future time you need it and recall it to the active
area. APL\360 provides a family of related commands which
let you copy items from saved workspaces into your active
workspace, while leaving unchanged most of what was
previously in the active workspace.

If you give the command to copy an entire saved
workspace, the computer reads into your active workspace all
of the programs and all of the global variables from
whatever saved workspace you name. But, unlike the load
command, copying (as far as possible) leaves unchanged the
programs or variables already in your active area. For
instance, the command

)COpy ACCOUNT

copies into your active workspace the definition of every
program now in your saved workspace called ACCOUNT, and
every global variable in ACCOUNT. (There are some things
that are not copied; we'll get to that in a moment.)

Alternatively, instead o£ copying all
variables and programs from a workspace, you
single program or a single variable. The command

)COPY ACCOUNT OBJECT

the global
may copy a

copies into your
variable) called

active workspace the program (or global
OBJECT from your workspace named ACCOUNT.

When a copy is completed, the computer acknowledges by
typing the time and date at which the workspace from which
you're copying was saved.

Grouping of Functions and Variables

It is often the case that
package of related functions and

what you want to copy is a
data items, which are more

190

than a single item but less than the entire contents of a
workspace. To facilitate copying groups of items, APL\360
permits you to collect together whatever programs or
variables you wish and treat them (for some purposes) as a
single object. A group can be made up of the names of
functions, or of global variables, or of some of each. A
group can also include another group.

Suppose in your active area you have the functions
AREA, TAX, and TRAJECTORY, and the variables PAYROLL,
WITHHOLDING, and ELEVATION. You believe it would be handy
(once this workspace has been saved) to be able to treat as
a group the functions called AREA and TRAJECTORY, and the
variable called ELEVATION. You anticipate that you'll want
this group to include the variable RADII for which you
haven't supplied any value yet. So you need to create a
group comprising those members, and give it a name. Suppose
you want the group to be called TRIG. You do that by using
the command)GROUP, followed first by the name the group is
to have and then the names of its members. Like this:

)GROUP TRIG AREA TRAJECTORY ELEVATION RADII

When a group is formed, it is simply a group of names.
It doesn't matter if nothing of that name exists in the
workspace at the time the group is formed. You can define
the group in advance; then, at any subsequent time that you
enter a, program or variable of that name, it will
automatically be included in any reference you make to the
group.

The usaful thing about the group, of course, is that
once the workspace containing it has been saved, you can
copy the entire group simply by referring to the group name.
If the group TRIG exists in a saved workspace, you can copy
it by the command

)COpy TRIG

Any time you ask to copy a group, you get the following
things:

1. The group name and the list of the names of its
members.

2. The definitions or values of as many of the group
members as have them in the source workspace.

)

191

Listing the Names of Groups and their Members

The system command)GRPS causes the computer to type a
list of the groups for which there are definitions in your
active workspace.

The system command)GRP followed by the name of a group
causes the computer to type the list of names that are
members of the group (whether or not there are values or
definitions for those names).

Dispersing a Group

If you use the command to form a group, name the group,
but then don't list any members for it, you have dispersed
the group. The various variables or functions whose names
were members of the group are unchanged.

Erasing the Members of a Group

The)ERASE conunand, if applied to the name of a qroup,
erases not only the group-name, but also the values' o'r
definitions of all the objects that were members of the
group. This is a handy way to erase an entire package that
is no longer wanted. But watch out: erasing a group isn't
the same thing as dispersing it!

Protected and Unprotected Copying

What happens if you execute a copy, and try to copy
into the workspace a program or variable whose name was
already in use for some other program or variable in the
active workspace?

There are two different forms of the copy command. They
differ only with respect to what they do about this problem.

The command lCOPY (the only one we've mentioned so far)
causes the copied value or definition to replace whatever
value or definition that object formerly had in the active
workspace.

The other form of the copy command is the ~rotected
~. The command)PCOPY causes objects to be copie only if
their names are not in use as the names of groups,
functions, or global variables in the active workspace. If
an object that you asked to have copied is not copied
because of this protecti9n, the computer prints a list of
the objects that weren't copied. (Even with an 'unprotected

192

copy, you can't copy an object that has the same name as
a pendent function, since that would cause the definition of
the pendent function to be erased, and that isn't ever
permitted. }

Copying an Entire WorksEace into a Cleared Workspace

You might suppose that clearing the active area (using
the)CLEAR command), copying an entire workspace into it,
and then naming it with the same name as the workspace from
which you copied ••• you might suppose that that sequence
would give you the same end result that you'd get if you
simply loaded that workspace. But there are some differences
which on occasion may be useful. They depend upon what is
not copied when you copy an entire workspace.

What Is Copied

1. All global variables, all functions, and all group
definitions in the source workspace.

What Isn't Copied

1. The list of functions awaiting execution in the
source workspace (the state indicator).

2. Any local variable.

3. The index origin, maximum digits printed, and
width of the source workspace.

4. The internal symbol table of the source workspace.

You can't see the symbol table; it is a dictionary by
which the computer identifies names used in a workspace. It
includes all the function or variable names ever used in
that workspace, even names that have since been deleted.
Even though you no longer have any use for those entries in
the table, they still take up space. The symbol table has a
total capacity of 256 names; if it should get full, you will
encounter the message SYMBOL TABLE FULL. Hence if you have a
workspace that has had many names and much use, it may be
advisable to save it, enter the system command)CLEAR, and
then copy it into the cleared workspace. Then you will have
to drop the saved version of that wox-kspace, and then save
the active workspace to replace it.

19·3

Copying an entire workspace leaves behind the list of
programs whose execution is halted. This would serve to
abanQon all halted program executions ..• but that can also
be done by simply entering right-pointing arrows with
nothing to the right of them as explained on p. 87.

Commands that Summarize What's In your Workspace

The following commands are useful in summarizing the
contents of the active workspace:

) VARS

)FNS

)GRPS

)S1

)SIV

List of global variables.

List of functions.

List of groups •
.

State indicator (list of halted programs).

State indicator with list of local variables
in each halted program.

194

This page intentionally left blank.

195

APPENDIX A: NOTES ABOUT
WHAT HASN'T BEEN MENTIONED

For the purposes of this primer, we have deliberately
refrained from mentioning some APL operators and certain
features of the APL\360 System. To keep things in
perspective, we present here a list of topics which have
received little if any attention in this primer.

Encodi~E..."A.I'!~ ... _P_~q.9..g.:!:~9:...J:'.h~._.Bf?.Q±~31E?n.t.2:t_~Q~H~ .. ~9_f ____ ~'llJIDP..~±?

The encoding operator T converts the value of a
number into its representation in any nUILiber system. 'fhe
left argument is a vector which specifies the base, one
element for each column of the representation. For instance,
1277 expressed in 7 columns of base 3 could be found by:

(7p3) T 1277
1 2 020 2 2

Mixed bases are allowed: 105246 inches expressed in miles,
yards, feet, and inches is found by:

o 1760 3 12 T 105246
1 1163 1 6

The decoding operator L does the converse: it reduces a
representation vector in any number system to a value. The
left argument specifies the base. It may be either a vector
of the same length as the right argument, or a single number
which is then extended to match the length of the right
argument. The base-8 value of 1 7 7 6 is found by:

8 L 1 7 7 6
1022

The number of seconds in 14 days, 12 hour-s, 20 minutes, and
57 seconds is found by:

0 24 60 60 L 14 12 20 57
1254057

Encoding and decoding have a variety of uses apart from
explicit shifts of number system. For instance, the indices
of an array A might be considered as the base pA encoding of
lx/pAl The integer and fractional portions of a number N may
be separated by taking the 0 1 T N.

196

Factorial

In conventional notation, factorial A is written: A!
Following the uniform syntax rules, APL places the operator
first and its argument to the right:

!A

The ! symbol
period. When
x/lAo

is formed. by overstriking the quote and the
A is a positive integer, !A is equivalent to

!A is also defined when A is not an integer. It is then
equivalent to the gamma function:

(! A) - r A+ 1

Combinations Operator

When the! symbol is used dyadically, it indicates the
combination operator. A!B means the number of possible
combinations of B things taken A at a time. Where A and B
are positive integers and B is not less than A, the value of
A!B is (1B)+(!A)x!B-A

Residue Function With Non-Integral Left Argument

The definition for residue given on page 59 does not
exclude having a fractional left argument:

Nor and Nand

The symbols for AND A, and OR v, may be overstruck with
the NOT symbol to form NOR and NAND.

ANB is equivalent to ~AAB.

A¥B is equivalent to ~AVB.

Unlike A and v, the operators Nand ¥ are not associative,
and in general

N/X is not equivalent to -A/X.

197

Multidimensional Array~

Rectangular arrays can have any number of dimensions.
All arithmetic operators extend automatically on an
element-by-element basis to arrays of any rank (i.e. any
number of dimensions).

Indexing of Multidimensional Arrays

The values of the indices in each dimension are
separated by semicolons. The elements selected are those at
the intersection of the specified positions in each
dimension. Thus

A[2 4;2 3 8J

means those elements of A located at the intersection of
positions 2 and 4 of the first dimension with positions 2 3
8 of the second dimension. If A is a 4 by 9 matrix Of
literals, like this:

ABCDEFGHI
JKLMNOPQR
STUVWXYZ1
234567890

the expression A[2 4; 2 3 8J selects from A the following
matrix:

KLQ
349

The dimensions of an array produced by indexing are
given by catenating the rank-vector (i.e. rho) for the
indices of each dimension considered separately. Thus, if an
array X is indexed by an expression in which A represents
the indices for the first dimension, B represents the
indices for the second dimension, and so on, like this:
X[A;B;CJ, then the dimensions of the resulting array are
(pA),(pB),pC. Notice that if any of the terms A, B, C, etc.
is a scalar, then pA or pB or pC will be an empty vector,
and hence the result will not have any extent in that
dimension. For this reason, X[2;3;SJ is a scalar, while
X[,2;,3;,SJ is a l-by-l-by-l three-dimensional array.

."

198

Matrix Products

APL provides for three general forms of matrix
multiplication. ~he simple element-by-element product of two
matrices A and B is obtained directly from the instruction

AxB

It is necessary that A and B have the same rank, and the
same length in each dimension, except (as usual) for the
case in which either A or B has only one element.

Generalized Matrix Product

In matrix algebra, the nmatrix product" (or "inner
product") of two matrices A and B is found by a procedure in
which the element liJ of the result is the sum of the
products of the elements in the ith row of A with those in
the jth column of B. APL indicates these two component
operations explicitly, and writes the conventional matrix
product of A and B like this:

A+. xB

The advantage of this notation is that it permits the
user to substitute any other dyadic arithmetic operator for

+ or x, thus generalizing matrix product to permit such
forms as

Ax. fB A L • r B Av 0 ~B

For ins tan c e , A r . -B ret urn s for the i i j e 1 em e n t 0 f the
(e~Ul L lne maximum difference between the pairs of elements
in the ith row of A and the jth column of B. AA.=B returns a
1 where each row of A is equal in all its elements to a
column of B. Many other matrix products are possible and
usefu 1 .

APL' permi ts matri x products on arrays of any rank,
subject only to the restriction that the last dimension of
the left argument must match the length of the fi rst
d imens i Qn of the ri ght argument. I n the resul t, these
matched dimensions disappear, and the dimensions of the
result become all-but-the-last-dimension-of-A catenated to
all-but-the-first-dimension-of-B.

199

Outer Product

An outer product requires that each element of A
operate on every element of B. The result is a higher order
array. Its dimensions are the dimensions of A catenated to
the dimensions of B. Outer product is written in a form that
resembles the standard matrix product, but with a null
symbol 0 replacing the first operator:

The outer product of the vector 2 3 4 and the vector
4 5 6 7 is the following 3-by-4 matrix:

8 10 12 14
12 15 18 21
16 20 24 28

Transposition of an Array

An array can be restructured so that its coordinates
appear in a permuted order. If M is a matrix, then ~M
transposes the rows and columns of M. If A is an array
having more than two dimensions, ~A simply transposes the
last two, leaving the others unchanged.

More elaborate transpositions may be obtained by using
an explicit left argument for the transposition operator.
Suppose that a result R is to be obtained from the Q
transposition of an array A, by this expression:

R+Q~A

Q, the left argument of the transposition operator, is
a vector containing one element for each of the dimensions
of A.

The values appearing in Q indicate the dimensions of
the resulting array. Let ppR indicate the rank of the
desired result. Then the vector Q must contain values which
are limited to values from the sequence lppR, and which
contain each value in lppR at least once.

If the same value occurs more than once in Q, it means
that the indicated dimension of R is to be formed from more

200

than one dimension of A. Suppose, for ins tance, tho.t A is a
four dimensional array, and you ask for 2 2 1 2 ~A. The
result will be a two dimensional array in which the second
dimension is formed from the first! second, and fourth
dimensions of A. The elements selected are those for which
the first, second, and fourth coordinates of A have the same
value: that is, from A's diagonal through the first, second,
and fourth dimensions. A diagonal has as many elements as
the shortest of the dimensions from which it is taken.

If A is a matrix, the main diagonal is obtained by the
instruction:

1 1 ~A

Reversal of an Array

The elements lying in one of the dimensions of an array
can be restated so that they are in reverse order. If the
dimension to be reversed is not stated, it is presumed to be
the last dimension. A different dimension may be indicated
by indexing the reversal

Suppose A is the same 4 by 9 literal matrix introduced
on page 197:

A

ABCDEFGHI
JKLMNOPQR
STUVWXYZ1
234567890

<1> A

IHGFEDCBA
RQPONMLKJ
1ZXYWVUTS
098765432

<1>[1]A

234567890
STUVWXYZ1
JKLMNOPQR
ABCDEFGHI

201

Notice that reversing a matrix in both of its
dimensions is not the same as transposing it:

<P<p[1JA

098765432
1ZYXWVU'TS
RQPONMLKJ
IHGFEDCBA

AJS2
BKT3
CLU4
DMV5
ENW6
FOX7
GPY8
HQZO
IR10

~A

Rotation of an Array

An array may be restructured so that the elements are
rotated by a specified amount in one of the dimensions of
the array. For a vector, a single integer specifies the
amount of rotation; a positive rotation is a left shift,
while a negative rotation is a right shift:

3<p'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
DEFGHIJKLMNOPQRSTUVWXYZABC

-7<P'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
TUVWXYZABCDEFGHIJKLMNOPQRS

When a multidimensional array is rotated, the computer
presumes tha.t rotation is to take place in the last
dimension, unless the operator is indexed to indicate some
other dimension. The coefficient of rotation may be a single
number or an array whose dimensions are the dimensions of A
with the dimension of rotation omitted. If a 4 by 9 matrix
is rotated in its last dimension, the rotation coefficients
may therefore be a single number or a four-element vector.
If it is rotated in the first dimension, the coefficients
may be a single number or a 9-element vector.

o 1 2 3<1>A

ABCDEFGHI
KLMNOPQRJ
UVWXYZ1ST
567890234

1 1 2 2 3 3 4 4 5~[lJA

JKUV67GHR
ST45EFPQl
23CDNOYZO
ABLMWX891

202

Rotation provides an alternative procedure for
selecting a consecutive sequence of elements from the middle
or the end of a long vector (see pp. 141-2). For instance,
the 116 elements of V which follow element 135 can be
obtained by the expression:

116p135¢V

Compressing a Multi-Dimensional Array

Compression may be applied to an array of any number of
dimensions. If no dimension is specified, it is presumed to
be the last. The logical selection vector must have the same
length as the array in the dimension being compressed.
Consider the literal array A, which is the same 4 by 9
matrix as before:

A

ABCDEFGHI
JKLMNOPQR
STUVWXYZl
234567890

If the last dimension (columns) is compressed, the selection
vector must have a length of nine. Columns 3 and 6 are
omitted by the following compression:

1 1 0 1 1 0 1 1 l/A

ABDEGHI
JKMNPQR
STVWYZl
2356890

203

Compression along any dimension other than the last is
indicated by indexing the compression symbol. In the case of
a matrix, the only other dimension is the first. Compression
to remove the second of the four rows of A is achieved this
way:

1 0 1 l/[l]A

ABCDEFGHI
STUVWXYZ 1
234567890

!~~n~ion of an Array

An array A may be expanded in one of its dimensions by
the insertion of zeroes (or blanks, as appropriate) in
designated positions between the elements. The expansion
operator is the backslash \, with a left argument that is a
logical vector. The number of ones in the left argument must
be the same as the length of the dimension of A that is
being expanded. The zeroes in the left argument indicate
where the extra zeroes or spaces must be inserted.

Expanding a numerical vector:

1 1 0 1 0 1\1.1 1.2 1.3 1.4
1.1 102 0 1.3 0 1.4

Expanding a literal vector:

1 1 0 1 0 l\'ABCD'
AB C D

Expanding the literal matrix A
(columns) :

1 1 0 1 0 1 1 1 1 0 0 1 1\A

AB C DEFG HI
JK L MNOP QR
ST U VWXY Z1
23 4 5678 90

in its last dimension

204

Random Numbers: Roll and Deal

You can generate random numbers by using the operator
whose symbol is? This operator has two forms, one monadic
and the other dyadic. The monadic operator? generates an
array of independent random integers--the sort of thing
you might get from rolling a handful of dice. 'rhe dyadic
operator? produces a number of elements randomly selected
from a single population of consecutive integers--the sort
of thing you might get by dealing from a deck of cards.

First consider E2!l. In the expression

?B

each element of the array B must be a positive integer. The
result is an array of the same dimensions as B, with each of
its elements a random integer in the range between 1 and the
value of the corresponding element of B. For instance, the
instruction ?6 10 produces a vector of two elements, the
first between 1 and 6, and the second between 1 and 10.

?6 10
1 8

?4 7p100

46 54 22 5 69 68 94
39 52 83 4 6 53 68

1 39 7 42 69 59 94
85 53 10 66 42 71 92

~uw cunsider deal. Both the lett and the right argument
of? must be a single positive integer. The result of A?B
is a random deal of A elements from the population LB. That
means that the elements are selected from LB without re­
placement, so that no two elements of the result are ever
the same. Thus in the expression A?B, A may not be greater
than B. And if A=B, you are getting a random permutation of
tB.

2?5
4 1

10?10
7 3 2 6 1 9 10 5 4 8

205

System and Program Information

APL\360 permits you access to several items of
information concerning the status of programs in your
workspace and the status of the APL System. These are called
"I-beam" functions; the I-beam symbol I is formed by
overstriking T and i. The following I-beam functions are
currently available to users:

I19 Cumulative keyboard-unlocked time since
sign-on in 60ths of a second

I20 Time of day in 60ths of a second.

I21 Your compute time since sign-on in 60ths of a
second.

I22 The amount of unused space remaining in your
workspace, in bytes.

I23 The number of users currently signed on.

I24 Your connect time since sign-on in 60ths of a
second.

I25 Today's date.

I26 The number of the line of the function currently
being executed.

I27 A vector containing the line numbers of all
functions whose execution has been started but not
yet completed, with the most recent function
first.

Library Functions

Each APL\360 System includes a common library of
workspaces containing defined functions for a variety of
special purposes. These workspaces may be loaded into your
active area, or individual functions from within them may be
copied and incorporated into your own library. The use of
these pre-written library functions in effect provides extra
operations, in addition to those available as primitive
operators. While the contents of individual libraries may

206

vary, they may likely include provision for such things as
trigonometric functions, complex arithmetic, graph plotting,
format control for output, text editing, matrix inversion,
and so on. Some systems may use these libraries for notices
of system modification or the posting of schedules of
operating hours. For details of the library functions
available, you should consult the operator of the system you
are using.

As distributed, APL\360 provides a public library space
1 WSFNS which contains the locked definitions of a number of
special functions. These functions have the same effect as
several of the system commands for workspace control, such as
control of the maximum number of digits printed in displays
of numbers, the index origin, width of printed output, and
so on. The fact that these are defined functions means that
you can copy them into your own workspace, and then call for
their execution in programs that you write yourself, thereby
giving a program control of these matters. By contrast, the
usual system commands can never be included as part of a
program's definition.

207

Additional System Commands

9hange of Origin

Ordinarily APL operates in I-origin indexing. However,
the system command)ORIGIN 0 sets the index origin to O. The
first element of a vector is now A[O], and the index-finding
and index generating operators both start counting at 0
rather than at 1. The following operators follow the index
origin: random; indexing; index-finding and generating;
transpose.

The index origin is not changed by saving a workspace.
If desired, the index origin may be reset to 1 by the
command)ORIGIN 1.

Locking a Function

The definition of a function may be locked. Once it is
locked, it can not be displayed or edited; when an error is
encountered within it, the computer reports the line on
which it was working when it found it was unable to
continue, but does not print the offending line.

A function is locked by closing its definition with ~,
formed by a del overstruck with the tilde (for "not"), at
the time of its initial definition or at any subsequent time
when the definition has been reopened. Locking a function is
not reversible. A locked function may be copied, and may be
deleted, but it may never again be displayed or edited.

Locking a Workspace

When the command to save a workspace is given, you may
add a password. The workspace can not be loaded, nor can
anything in the workspace be copied, unless the subsequent
)LOAD or)COPY commands are accompanied by the password. The
command

)SAVE WORK:SESAME

saves the workspace under the name WORK and establishes the
password SESAME. Subsequent)LOAD or)COPY commands must
include the colon and the password. The password remains in
effect until the next time that the workspace is saved.

208

The system operator has no way of finding out what
password was used, and no means to override a workspace
password. There is no remedy for a lost password. However, a
locked workspace may be dropped even if you don't know its
password.

Width Control

The width of the output field to the terminal may be
set by the command)WIDTH followed by an integer in the
range 30 to 130. This controls the maximum length of an
output line in that workspace. When you sign on, the initial
empty workspace has a width of 120 characters.

Setting the width has no effect on the line-length you
may type in, and no effect upon the length of messages sent
to you from the operator or from other users, and no effect
upon register dumps caused by system malfunction. But all
other output is broken into lines that fit within the limits
set.

~essages Between Terminals

You can exchange brief messages with other users of the
system while they are signed on. Messages are directed by
the number of the line to which the users are attached
(generally identified by the numbers 1 up to the maximum
capacity of the system). The command

)MSG 68 HAPPY BIRTHDAY!

sends the message to the terminal currently signed on to
_____ • co
PUL l.. UU.

Messages mayor may not wait for a reply; the
distinction is the same as for messages directed to the
computer operator (see p. 103).

When you receive a message, the source terminal's line
number is typed first, followed by a colon and then the
message. If the terminal sending the message expects a
reply, the message when delivered is preceded by an
underlined R.

Identifying Who Else is Signed On

The.system command }PORTS gives you a list of the ports
currently in use, plus the first three characters in the
names of their current users.

209

APPENDIX B
SUMMARY OF SYSTEM COMMANDS

To illustrate the way the various system commands work,
the summary that follows shows them arranged into groups
according to the type of effect they produce. To illustrate
the format in which they are used, samples are shown. These
samples refer to various fictitious names. Naturally, you
should substitute for these names the ones that make sense
in your context. The names used are as follows:

123456789

601

WSNAME

FUNG

VARB

~1

OBJ1

OBJ2

PSST

SESAME

Sign-on and library number of a fic­
titious user.

Number of a fictitious public library.

Name of a workspace.

Name of a function (program).

Name of a global variable.

Name of a group.

Name of a global object (could be a
function, a group, or a global variable).

Name of another global object.

Password used as key to a locked work­
space.

Password used as key to a locked sign-on
number.

Terminal Control Commands

1. Sign On. Right parenthesis followed by user number.

)123456789

2. Sign On with KeX. If the sign-on number is locked,
the sign-on number must be followed with a colon and then
the key you specified earlier.

)123456789:SESAME

210

3. Sign Off. At the time you sign off, you mayor may
not exercise any or all of three options: (a) to have your
active workspace saved under the name CONTINUE; (b) to set a
new lock for subsequent sign-ons; (c) to have the computer
hold the telephone connection (if you're using a dial-up
system) for 30 seconds in order to receive a new sign-on.
That means there are 2x2x2 ways to sign off. The three
options are listed separately, and then their eight permu­
tations are shown.

3a. Savin ace for Continued l'vork. If
you want to go rig t on wor 1ng were you eft 0 at the
start of the next work session, you can sign off with the
command) CONTINUE. This causes the active workspace to be
saved under the name CONTINUE. If the active workspace was
loaded from a locked workspace, the same lock now applies
to the workspace named CONTINUE. Next time you sign on, if
CONTINUE was not locked, it will be loaded automatically as
soon as you sign on for the next work session. But if you
don't want to have the active workspace saved, you just sign
off with the command)OFF. Then the active workspace is
lost.

3b. Holding the Tele~hone Connection. If the word HOLD
appears following either OFF or) CONTINUE, the telephone
connection (if there is one) is held for 30 seconds. Other­
wise the telephone connection is broken following sign-off.

3c. Establishin2 a New Si2n-On Lock.
command <whatever it is) is followed by a
word after the colon becomes the new lock
effect at sign-on. If there's nothing after
no passwuLd will be required.

If the sign-off
colon, the one
thenceforth in
the colon, then

The eight possible sign-off commands are therefore:

)OFF

) OFF: SESAME

)OFF HOLD

)OFF HOLD:SESAME

211

)CONTINUE HOLD

)CONTINUE HOLD:SESAME

4. Statement of Time and Work. Any of the eight forms
of sign-off causes the computer to type a statement of the
time at which you were signed off, and the time you were
connected, and the time used by the central processing unit
(CPU) during actual calculations. These are also shown cumu­
latively since the date of the last system accounting.

5. Forced Sign-Off. If there is a break of more than a
few seconds in your ttne connection to the computer, or if
the System Operator in some emergency situation so directs,
the computer executes an automatic)CONTINUE on your behalf.
However, you should not sign off by simply hanging up the
telephone or turning orr the terminal, since this leaves
the line you were uSing open to calls dialled in during the
few seconds before the computer decides you must have been
disconnected.

Works£a.ce Control Commands

The following commands affect onlyfue active workspace.

1. Clearing the Active Workspace. The command

)CDEAR

clears the active workspace. The resulting active workspace
contains no definitions, and has origin 1, width 120, and
prints up to 10 digits in numerical output.

2. Loading a Workspace. The load command has the
following format: First, the word LOAD; second, the library
number from which a workspace is to be taken (if that is not
your own library); third, the name of the workspace; fourth,
(if the workspace is locked) the key, consisting of a colon
and the password. For instance:

) LOAD WS NAME

)LOAD WSNAME:PSST

)LOAD 601 WSNAME

Load the workspace WSNAME from
your own private library.

Load the locked workspace WSNAME
from your own private library.

Load the workspace WSNAME from
public library 601.

212

3. COPt. The copy commands cause some but not all of
the materia in a saved workspace to be transferred to the
active workspace. The source workspace (i.e. the one from
which the copied material is taken) is identified in the
same way as for the load command.

If another name appears after the workspace identifi­
cation, the named object (global variable, function, or
group) is copied. But if no name appears after the workspace
identification, all global variables, functions, and groups
in the source workspace are copied.

During a protected copy, objects are copied only if
their names are not already in use as the names of global
variables, functions, or groups in the active workspace. But
during an un~rotected copy, a copied object replaces any
object having tne same name in the active workspace.

Some possible copy commands are as follows:

) COpy WSNAME

)PCOpy WSNAME

Copy all global objects from your
workspace named WSNAME.

Copy from WSNAME all global ob­
jects whose names don't overlap
with the names of global objects
in the active workspace.

)PCOPY 601 WSNAME:PSST GP1 Copy from locked
workspace WSNAME of public library
601 the membership list of the
group GP1, plus the definitions of
all of the functions and global
variables named within GP1, or
named in any of the groups named
within GP1, provided that their
names don't overlap the names of
global objects in the active work­
space.

4.Formin~ and Dispersin~ Grou2s. This command causes
a group to Ee formed from the functions, global variables
or groups named.

)GROUP GP1 FUNC VARB Form a group with the name
GP1, composed of the names FUNC
and VARB, and whatever values or
definitions those may have in the
active workspace now or later.

~ ,

213

) GROUP GP1 GP1 OBJ1 Redefine the group GP1 so
that it includes all the former
members of GPl and also the object
OBJ1.

)GROUP GP1 Redefine the group GP1 so
that it has no members (i.e. dis­
perse GP1).

6. Erase. Global variables, functions or groups may be
erased by the command)ERASE followed by all the objects to
be erased. The command

)ERASE PUNG VARB GP1

causes the erasure of the function FUNC, the variable VARB,
the group definition GP1, and the values or definitions of
all the members of GP1 whicn-are now in existence. You are
not permitted to erase a pendent function.

7. set Index Origin. The index origin for array operat­
ions may be set to 0 or 1 by the command

)ORIGIN 0 or)ORIGIN 1

8. Set DiiitS. The maximum number of digits printed for
a numerical va ue is normally 10. It may be reset to any
value between 1 and 16 by a command such as

)DIGITS 12

9. Width Control. The maximum number of characters on a
line of output may be set to any integer between 30 and 130.
The clear workspace uses a width of 120. To set width to 80:

)WIDTH 80

10. Renamin the Active Works ace. If the command)WSID
is use W1t a name a ter 1t, 1t serves to rename the active
workspace with the indicated name. This does not alter the
lock for this workspace, if any.

214

Following a change of origin, width, digits, or work­
space identification, the system reports what these were be­
fore the change.

Librarx Control Commands

Workspaces may be placed in a library by the save com­
mand, and removed from a library by the dro2 comman~Load­
ing or copying material from a library workspace has no
effect upon the library, but serves to duplicate in the
active workspace material from the library workspace.

1. Saving a Workspace. The command

)SAVE

causes your active workspace to be saved with whatever name
and whatever lock it now has. Until renamed, a workspace
bears the name of its source. The command save cannot be
used for a workspace with no name, or a name from a library
other than your own.

The command

)SAVE WSNAME

assigns the name WSNAME to the active workspace, and saves
the workspace under that name in your private library. But
the command can't be accepted if it would result in changing
the name of the active workspace to a name already in use as
the name of a workspace in your library.

)SAVE WSNAME: PSST

assigns the indicated lock at the same time that the work­
space is named and saved.

2. Drop~in9 a workspace. The command

)DROP WSNAME

removes that workspace from your library. Locks and keys are
not used with the drop command. Dropping a workspace from
your library has no effect upon the active workspace.

)

215

Inquiry Commands

1. Library List. You get a list of the names of work­
spaces in your own library by the command

)LIB

2.
the wor
library

)LIB 601

l.n a pu c l.
the command)LIB

You get a list of
by inserting its

3. State Indicator. You get a list of all halted
functions in your active workspace by the command

)SI

The list is typed with the most recently halted function at
the top. The number in brackets is the line about to be exe­
cuted. Functions marked with an asterisk are suspended.

4. State Indicator with Local Variables. The command

)SIV

gives you the state indicator as before, but with a list of
the variables local to each of the halted functions.

5. Name of the Active workspace. The command

)WSID

gives you the name of the active workspace.

6. Names of Objects in the Active Workspace. 'There are
three commands which cause the computer to type a list of
objects defined in the active workspace. The list is printed
in alphabetical order. If you name any single letter of the
alphabet after o~e of these commands, the list is typed in
order starting with t!la letter you named.

)VARS List of global variables.

)FNS List of functions.

)GRPS List of groups.

)VARS R

216

List of global variables,
in alphabetic order starting with
the letter R.

7. List the Members of a Designated Group. The command

)GRP GPl

gives you the list of the members of the group called GP1.
Note that the fact that a name appears on this list is not
proof that a function, group, or variable of that name has
been defined.

8. Ports in Use and their Users. The system command

)PORTS

gives you a list (in numerical order) of the computer's
ports currently in use, and the first three letters of the
identification of their current users. For the sake of pri­
vacy, the system refrains from giving the full name.

9. Port of a Specific User. If you'd like to know at
what port (if any) a particular user is signed on, you can
inquire by using the command)PORT followed by the first
three letters of his name. For instance:

)PORT PCB

Communication Commands

)OPR ANY TEXT Send message to Operator~ keep
keyboard locked to receive reply.

)OPRN ANY TEXT Send message to Operator; no reply.

)MSG 123 ANY TEXT Send message to indicated port;
lock keyboard to await reply.

)MSGN 123 ANY TEXT Send message to indicated port; no
reply.

Incoming messages awaiting reply are prefixed by E:

The system types SENT when an outgoing message has been sent.

~

217

APPENDIX C: TABLE OF APL OPERATORS

S~~~d~_rd Scalar Operator~

The following operators return a scalar result when
their arguments are scalars. They may also be applied on an­
element-by-element basis to arrays of any rank, provided
that where used dyadically, either both arguments have the
same rank and the same length in every dimension, or that at
least one argument has only one element. Any of the scalar
dyadic operators may be used in reduction, or in the
generalized inner and outer products.

X+Y X plus Y

+Y Y (no change)

X-Y X minus Y

-Y Minus Y

XxY X times Y

xY Signum of Y

XtY X divided by Y

tY Reciprocal of Y

X*Y X to the Yth power

*Y e to the Yth power

xrx Maximum of X and Y

ry Ceiling of Y

XLY Minimum of X and Y

LY Floor of Y

X/Y X residue of Y

/Y Absolute value of Y

xeY Log of Y to the base X

flY Natural log of Y

218

oY PI times Y

XOY Trigonometric functions and inverses

X!Y Number of combinations of Y things taken X at a
time

!Y Y factorial; Ganuna of Y-l

?Y Random equi-probable selection of an integer from
'lY

X<Y X less than Y

X-5:Y X less than or equal to Y

X=Y X equals Y

X greater than or equal to Y

X>Y X greater than Y

X not equal to Y

XAY X and y

Xvy X or Y

X¥Y Neither X nor Y

X*Y Not both X and Y (X nand Y)

..... y Not y

In the entries below, the symbol @ stands for "any
standard scalar dyadic operator."

X+.xY Ordinary matrix product of X and Y

Generalized inner product of X and Y

Generalized outer product of X and Y

O/Y

o/[z]y

X/Y

X/[Z]Y

X\Y

X\[Z]Y

XpY

pY

X[Y]

XlY

lY

XEY

XTY

Xl.Y

X?Y

X<pY

X<p[Z]Y

219

Generalized Reduction

The 0 reduction along the last dimension of Y

The 0 reduction along the Zth dimension of Y

Compression and Expansion

X (logical) compressing along the last dimension

X (logical) compressing along the Zth dimension

X (logical) expanding along the last dimension

X (logical) expanding along the Zth dimension of

Other Operators

Reshape Y to have dimensions X

Dimension of Y

The elements of X at locations Y

Locations of Y within vector X

of Y

of Y

of Y

Y

The first Y consecutive integers (follows index oriqin)

Each element of X is a member of Y

Representation of Y in number system X

Value of the representation Y in number system X

X integers selected without replacement from lY

Rotation by X along the last dimension of Y

Rotation by X along the Zth dimension of Y

CPY

CP[Z]Y

X~Y

X,Y

,Y

XtY

X+Y

X+Y

220

Reversal along the last dimension of Y

Reversal along the Zth dimension of Y

Transpose by X of the coordinates of Y

Ordinary transpose of Y (tranposing last two
coordinates only)

Y catenated to X

Ravel of Y (make Y a vector)

Take the first (or last) X elements of Y

Leave the first (or last) X elements of Y

X specified by Y: the name X receives the value of
Y. Value and dimensions of Yare passed on
unchanged to to the next operator to the left of X,
if any.

Grade up of X

Grade down of X

Symbols Having Special Functions

The following symbols are not operators, but may appear
in APL expressions with the sense indicated below:

()

+X

Parentheses. Expression within
eVdludt~u before being used as the
operator or defined function

them is to be
argument of an

Branch to X. Where X is a scalar
branch tolpXi where X is an empty
the next line in sequence.

or a vector,
vector, go to

O+X Print the value of X. The value of X is also passed
on to the next operator further to the left.

X+D Request input. Value of 0 is the resulting value
after expression entered is evaluated.

X+~ Request input. Value of ~ is entire input text as
literal characters, up to but not including carrier
return.

'XYZ' The literal characters XYZn

221

Comment. Precedes an unexecuted line of comments
in a function definition.

Illegal character having the special property of
halting a request for literal input. Formed by
overstriking the characters OUT.

222

APPENDIX D
TRIALS AND ERRORS

One of the advantages of a conversational computing
system is that it becomes very easy to experiment. If you
don't know what the result of an instruction will be, you
can try it and see. Indeed, you could discover for yourself
the effect of all the various APL operators just by trial
and error--plus a certain amount of patience and ingenuity.
"Try it and see" is a practical strategy with a
conversational computing system because the result comes
back so rapidly. If you're in doubt about what the computer
does in some particular case, or what an unfamiliar operator
does, you are encouraged to experiment.

Of course, trial and error does entail some risks. One
risk is that you will incorrectly generalize the results of
your experimentation; that's why primers and manuals exist.
Another risk is that you run into some errors that you don't
understand, because they go beyond the topics to which
you've been introduced. This appendix lists a great many of
the possible error messages, even including some whose
significance may not at first be clear, and some which are
not otherwise discussed at all in this primer.

Form of Error Messages

When you enter
to read it, then it
arise because the
instruction. One is
to electrical faults

an instruction, first the computer has
has to execute it. Two types of errors

computer is unable to read your
a transmission error, which may be due
or noisy transmission lines. The other

..! ____ 1- ,...-. ___ 1 ______________ ,_~ __ ,_

J.Q Cl I.,;UCl.LClc...:I...Cd.L t,;:.L.LUL, Wl1J.c...:l1

technically adequate, but
allowable APL character.

Cl,LJ.::st:::s

still

- _,_ - __ ,I 1 __

wut:u I...ut: tran.51ui55ion. l5
doesn't refer to an

Once the computer has received your instruction, it
starts work on executing it. If you have entered an
instruction which the computer cannot execute, it stops work
on that instruction and sends you an error message. Each
error message consists of three lines. The first identifies
the type of error . that the computer has encountered. The
second restates the instruction as the computer understands
it. The third shows a caret mark indicating where the
computer ran into trouble. If the trouble was an instruction
that could not be executed, the caret shows how far the
computer had worked (proceeding from right to left) when it
found it could go no further.

223

Errors Are Described from the Computer's Point of View

Errors arise in various ways. You may have mis­
understood the proper use of an operation. You may have
tried to carry out a sequence of instructions in the wrong
order. You may have forgotten, what value is associated with
a variable. A great many errors are simply mistypings. The
computer, of course, has no way of knowing what you intend.
It executes each of the instructions you enter as best it
can, until it encounters something that it cannot execute.
Then it reports the trouble that it has encountered. The
computer's classification of the error is, of necessity,
written from its own point of view, since it can't very well
guess how the error departs from what you privately had in
mind.

For example, if you misspell the name of a variable,
the computer may read this as a reference to some other
variable, and it will report an error only if the value of
that other variable makes the instruction impossible to
execute. It can't stop and tell you "spelling error," even
if that is how the error really arose.

Similarly, if you put a parenthesis in the wrong place,
or leave one out by mistake, the computer can only tell you
what problem it encountered as it tried to execute the
instruction that you did enter. Thus, while the computer
reports the type of error it has found, it can't tell you
what you should have typed; you have to figure that out for
yourself.

Generally speaking, when the computer finds an error in
an instruction, you have to reenter the entire instruction.
The value of an intermediate expression within the
instruction is not saved, unless of course your instruction
specifically directs that it should be stored as the value
of a named variable. This arises only when there is a
specification arrow further to the right (and hence executed
earlier) than the caret that indicates where the trouble is.
If the result of an intermediate step has been stored, you
need only reenter (correctly!) the part of the instruction
that appears to its left.

If the instruction that's causing the trouble is a line
within a program, you may ask to have the line retried-­
presumably after you've taken some steps to correct whatever
was wrong. Correcting and restarting a program are discussed
in Chapter 14.

224

Resend (Transmission Error)

Because of some malfunction of equipment between you
and the computer, the computer may receive a garbled or
unreadable transmission. When this happens, the computer
immediately requests that your last transmission be
repeated.

If you are using a 1050 terminal, you will notice that
a little lamp marked RESEND lights up and stays lit. (It
remains lit until you manually extinguish it, by pressing
the button beside it.) The carrier does not indent, but this
time unlocks at the left margin, waiting for you to retype
the last transmission.

The 2741 terminal does not have a resend lamp, so the
computer types the word RESEND. Here again the keyboard
unlocks without the usual indentation of six spaces, and
waits for you to reenter your last instruction--that is, to
be more precise, you must reenter everything since the last
time you pressed the carrier return key.

Character Error

Your message contains an illegal overstrike. The
computer types back as much as it can of the instruction as
received, up to the first unacceptable character. The
computer makes no start on executing any part of an
instruction containing a character error. The caret mark
indicates where the instruction is unreadable rather than
where it is unexecutable. You have to reenter the entire
instruction.

Value Error

Your instruction refers to a variable for which no
value can be found in this workspace. This may arise because
you have failed to assign a value to that variable, or
because you have misspelled the variable name so that the
computer does not recognize it. In that case, you may
correct the situation by entering a value for the missing
variable, or correcting the misspelled name.

You may also encounter
.cO-Il£.usecl the local and global

a value error if you have
.meanings of a name, and are

225

getting one when the other was intended. See the discussion
of local variables, and an avoidable mystification, page
186. Displaying the state indicator)SI and branching to 0
may resolve the difficulty by taking you out of the function
to which the name is local.

Value errors may also arise if you attempt to make use
of the result of a defined function, but the function
definition fails to provide one. You can remedy this by
rewriting the function definition so as to provide an
explicit result, or (if it already has one) by making sure
that the body of the definition in fact specifies a value
for the result before execution of the functi"on is complete.

Domain Error

You have entered an instruction which asks an APL
operator to operate on a value outside the domain that that
operator can handle. You may get a domain error if you try
to divide by zero, or to do arithmetic on a value which is
not a number, or to perform an operation whose execution
would develop a result too large to be handled. You will
also get a domain error if you attempt to catenate a literal
vector with a numeric vector, or to insert literal elements
into a numeric array, or numeric elements into a literal
array.

Syntax Error

You have entered an expression whose syntax is
impossible. Some examples of impossible syntax are:

1. Two variable names are juxtaposed with no
indication of the operation tnat is to be
performed on them.

2. An operator symbol is used with no indication of a
value on which it is to operate~

3. A parenthesis or bracket is opened but not closed,
or closed but not opened.

4. A defined function is
inconsistent with the
header.

used in a way that
syntax specified in

is
its

You will have to correct the instruction and reenter it.

226

~ank Error

The rank of a variable is the number of dimensions it
has. You have entered an instruction which uses variables of
different rank for an operation which requires that the
ranks be matched, or you have used a variable whose rank is
too large for the particular operation. While the scalar
operators extend to arrays of any rank, a number of the
other operators, such as ~, T, or t, can take arguments only
of rank 1 or rank O.

Length Error

You have entered an instruction involving two arrays
whose lengths do not match properly.

Definition Error

You have entered an instruction
symbol ~ improperly. This symbol is
definition of a function, or to revise

which employs the
used to begin the
(edit) an existing

function. A definition error is reported
one of the following improper ways:

if you use a V in

1. The ~ is not
instruction.

the first character in the

2. You attempt to reopen the definition of a function
whose execution has been started but not finished,
and which is not suspended (i.e. it is waiting for
the result of some other function which it calls
and which has been suspended). Check the state
indicator by entering)SI.

3. You attempt to start a new definition for a
function whose header contains a result, an
argument, or a local variable when a definition
for a function of that name already exists in the
workspace.

4. While in definition mode, you enter a defective
request to edit a line of the function.

227

Depth Error

It is possible to start the execution of one program
before the execution of earlier programs is complete. This
may happen if you suspend execution of a program and enter a
new instruction from the keyboard, or if one program itself
contains instructions calling for the execution of other
programs, or of itself. A depth error occurs when too many
calls to execute functions are stacked up at one time. The
two common causes of depth errors are these:

1. You have a program which inadvertently calls for
its own execution and produces an infinte
recursion. This occasionally arises because you
enter definition mode to display the definition,
find the definition satisfactory, and then enter
the name of the function in order to execute it.
If you did this without leaving definition mode,
you have appended to the definition a new line
calling for its own execution.

2. After a program is suspended in mid-execution, you
keep starting new executions without disposing of
those already started but not yet completed.

After a depth error, the easiest way to get rid of all
those pending executions is to enter a single right pointing
arrow, which serves to clear the state indicator. The same
effect is also achieved by saving the workspace, clearing,
copying the saved version, and then renaming the active area
appropriately.

Label Error

You have used a colon improperly. Within the definition
of a function, the colon separates a label from the
instruction. Only one colon may appear on any line, and it
must have one and only one label to the left of it. The name
may not be a name that is already in use as the name of a
function; it is unwise to use as a label a name that has any
other use in the same workspace. Any use of a colon outside
definition mode gives rise to a label error.

228

!is Full

You have entered an instruction which requires more
storage in your workspace than is now available. This may
arise because you have assigned to a variable a value that
involves a large array, or because some of the intermediate
steps in your calculation (even though not assigned to a
variable) require too much space even for temporary storage
during the calculation. You should check over the list of
variables in the workspace to see if some may be removed
when no longer needed. You should also check the state
indicator for functions whose execution is suspended, since
space is required for the values of their arguments or of
other local variables occurring within them, and these are
stored separately for each execution of a function.

S:ystem Error

The computer has detected some fault in its own
internal operations, either because of mechanical
difficulties or because of errors in its own system program.
System errors should be brought to the attention of the
system operator. As an aid to diagnosis, in several
instances the computer will cause the typing of hexadecimal
numbers representing the state of the computer when the
trouble was encountered. This block of eighteen 8-character
words consisting of the numeral 0-9 or the letters A-F is
c;=alled a "register dump." The register dump, together with
the printout showing what you were doing before the trouble
occurred, should be sent to the system operator.

229

APPENDIX E
EQUIPMENT YOU NEED TO USE APL\360

The physical equipment needed to use APL\360 is a
terminal equipped with an APL typing element, and a means
of connecting the terminal to the APL computer. APL\360 can
be used with either of two kinds of terminal: the IBM 2741
or the IBM 1050. Each of these includes a tele-processing
typewriter, equipped to transmit what you type to a remote
computer, or to receive and type messages transmitted from
the computer.

The 1050 System

In addition to the basic keyboard, typewriter, and the
associated electronic controls, the 1050 System may be
obtained with a card reader, a punch which may be operated
either from the 1050 keyboard or on-line from the computer,
or with units for punching or reading paper tape. Whether or
not these will be useful will depend upon the type of use
you have for them; if you want to process data which are
readily available in punched form, the reader may be useful.
If your hours of access to the APL computer are limited, it
may be useful to punch cards off-line and then read them.
But you should note that the APL\360 System is primarily a
conversational system, neither requiring nor adapted to
batch-processing from a terminal.

The APL\360 system does not explicitly select one or
another form of input or output, but accepts input from, or
transmits output to, whichever units of the 1050 system are
connected at a particular time.

Note that cards or tape punched elsewhere must use an
encoding compatible with the reader at which they are read.
Because APL\360 is a conversational system, each input, even
those from card or tape readers, must include the syn~ols
for "carrier return" and "end of block" (in tha.t order). If
these codes are not generated automatically by the terminal
equipment (as they may be in some installations), they must
be typed or punched explicitly 0

It is preferable to use a 1050 terminal equipped with
Time-out Suppress Feature, but not equipped with the Request
Feature. An automatic end-of-block signal is useful only if
the EOB signal is emitted after the carrier return.

230

The APL typing element for use with. the 1050 terminal
is part number 1167988.

The 2741 Terminal

The 2741 terminal is basically a typewriter, and
includes no. provision for card or paper - tape attachments.
Although the typing speeds of the two types of terminal are
identical, the 2741 eliminates delay between the typing of
successive lines, and therefore has a markedly faster
response for conversational use, or for the typing of output
involving many lines.

It is recommended that a 2741 terminal intended for use
with APL 360 be ordered with the Interrupt Feature.

The 2741 terminal is manufactured with either of two
systems for encoding the typing element. For terminals built
with the standard SELECTRIC®keyboard correspondence, the APL
typing element is number 1167987. Such a terminal may also
use any of the typing elements intended for SELECTRIC
typewriters.

Some 2741 terminals are built with the PTTC/EBCD
correspondence, which is also employed in the 1050. These
terminals require typing element number 1167988, and are
compatible with elements used in some other computer
systems •

When a new terminal is delivered, it is provided with
key tops to match the typing element with which it was
ordered. Terminals ordered wi th an APL typeba.ll will show
APL characters on thA key tops_ Terwinals which were ordered
with some other typing element, and which therefore have
key tops showing a different character set, may be converted
with a stick-on conversion kit, or by use of an overlay or a
keyboard map.

Coupling to the Transmission Line

A device is required to couple the terminal to the line
running to the central computer. Where this is done by
dial-up over telephone circuits, a Western Electric l03-A2
Dataset may be used. Other devices providing the same
encoding are possible, including acoustic couplers which may
be used with any voice telephone circuit, and which are not
electrically connected to the telephone equipment.

231

The equipment needed to couple the terminal to the line
may depend upon the equipment used by the central computer,
so you should check this out with the installation to whi.ch
you expect to be connected. In some cases, direct wiring
rather than a telephone circuit may be possible, and then
you'd need the appropriate modulator-demodulator instead of
a Dataset or acoustic coupler.

233

INDEX

A table of all the t sys em commands appears on pages
209-216 and a table of all the APL operators on pages
217-221· The index does not contain any references to the
entries in those tables.

Absolute value 59
Absolute value of difference

in approximation 63
Acoustic coupling 230
Active workspace, def. 13
Active workspace (diag.) 101
Active workspace only one
that can be saved 95

Adding a line to program 41
Addition 14, 19
Addition of logarithms 62
Alignment of output in

columns 149
All of a vector 116
Alphabetics, APL typeface 8
And reduction 116
And (logical) 62
Antilog 62
Any of a vector 115
APL, meaning of name 2
APL language, compared

to English and algebra 3
Area of circle: example

of editing 87 ff
Area of segment of circle,
definition with 2 arguments
179

Area under curve 117
Argument, execution of

function which has, 178
Argument of function re­
specified in execution 181

Argument of function,
display while executing 180

Arguments, def. of function
having arguments 176

Arguments of functions 33
Arguments of a function 173

Array processing 105 ff
Arrays: order of presen­
tation in primer,S

ATTN key for erase 11
ATTN key to delete line of

program definition 46
ATTN key (interrupt feature)

230
Auto EOB 229
Automatic save: continue 99
Average of a vector 125, 182
Avogadro's number 50

Backspace, in "erase" 11
Base value 195, 135
Binomial coefficients: see

combinations operator 196
Branch 67 ff
Branch exit from program 68
Branch instruction to resume
execution 84, 85

Branch or continue 71
Branch out of loop 147
Branch to a vector 112
Broadcast message 9, 104

Captions 77
Card input from terminal 229
Card punching at terminal

229
Caret, inverted, to mark
erasure 11

Caret mark to indicate
location of error 84

Carrier return as message
delimiter 9

Catenation: Building
Pascal's Triangle 143

Catenation 137
Catenation of results 139
Catenation of primes 139
Ceiling 25
Centering a vector 182
Chaining (catenation) 137
Change workspace name 96
Changing definition of a
program 41

Character Error 11
Character editing 87 ff
Charge account 24, 31
Circular 66
Clear command 103
COM switch, 2741 terminal 9
Column alignment 149 ff
Combinations operator 196
Communication commands 216
Complement: see not 65
Complex arithmetic: see
library functions 205

Compound expre"ssions 27
Compound expressions using
defined functions 182

Compound interest 22, 31
Compression in branch
instructions 165

Compression controlled by
test of relation 158

Compression of multidimen­
sional array 202

Compression to find prime
numbers 159

Compression of vector 157
Compute time 205
Computed branch 68
Computer output, distin-
guished from user's 10

Concatenation (see
catenation) 137

Consecutive integers 121
Continue-in-sequence is
branch to empty vector 165

Continue or branch 71

234

Continue (workspace) 99-100
Control of width typed 208
Copy: protected 191
Copy: unprotected 191
Copy: what is and is not

copied 192
Copying a function 189
Copying a variable 189
Copying into cleared work-

space 192
Copying workspace 190
Correcting typing errors 10
Correlation coefficient

125, 182
Counter and branch 68
Coupling to telephone line

7, 222
Crystal lattice 168

Data telephone 7, 222
Dataflow diagram 101
Date tOday 205
Decibel 61
Decimal form of numbers 49
Decoding operator 195
Definition error 226
Definition mode 13
Definition of program 33
Definition of function with

arguments and result 176
D~l~Lillg a variable 47
Deleting entire program 47
Deleting program line 46
DeMorgan's Rule 65
Depth error 227
Diagonal of an array 200
Dial-up procedure 8
Diesel efficiency example 37
Diesel program with vectors

107
Digits, setting significant,

52 .
Dimension other than last
selected by indexing the
operator symbol 198, 199
200, 201

Dimensions of result of
indexing 197

Displaying program 41
Displaying program: entire
definition 44

Displaying program: single
line 42

Displaying values of local
variables 186

Division 14, 26
Domain Error 84, 139, 225
Dropping workspace 99
Dyadic, def. 21

e, powers of, 60
Editing a program 41 ff
Editing a program header 47
Editing function which has

arguments and result 187
Editing individual charac­
ters in line 87 ff

Editing text: see library
functions 205

Empty vector 121
Encoding operator 195
End of program 67
Endless loop 70, 83
English and order of exe-
cution in APL compared 28

Entering a vector 105
Entering definition of a

program 33
Equality: how close
is equal? 57

Equals 55
Equipment needed 7, 229
Erasing groups 191
Erasing programs 47
Erasing typing errors 11
Erasing variables 47
Error message 83

235

Error message classification
223

Error message format 222
Euclidean algorithm 145

Exclusive or 64
Execution mode 13
Execution mode reentered
after definition 36

Execution suspended 86
Exit from loop 145
Expansion of an array 203
Exponential form, printing

numbers 50
Exponentiation 22, 26
Expression as input in

response to quad 168
Expression indexed 128
Expression, indexing by, 128
Extraction of root 22

Factorial: sample program
with branches 69, 73

Factorial operator 196
Factors, prime 154
FICA tax 25, 31
Finding index numbers 131
First elements, see take

and leave 220
Fixing typing errors 10
Floating vs. fixed numbers:'
this distinction not needed
in APL. See 49 ff.

Floor 25
Focal length of lens 34
Focal length executions 36
Focal length program with
vectors 107

Form of numbers selected
by computer 53

Format control for printing
numerical vectors 152

Fraction disregarded 25
Function concept 173
Function definition 33,
with arguments 176 ff

Function header, six forms
of, 177

Function locked against
displaying definition 207

Function represented by a
program 174

Functions defined in active
workspace, list of, 193

Functions with variables
local to the function 185

Gamma function 196
Generating arrays 119
Global vs. local vars. 185
Grade: up and down 165
Grades and names sorted 164
Greater than 55
Greater than or Equal 55
Greatest common divisor

145, 177
Groups, forming, 189
Groups, using, 190, 191

Halt on indicated line 92
Halt on unexecutable
instruction 83 ff

Header, editing of, 47
Header, six forms of, 177
Headings in the same line
with results of program 80

Hexadecimal 134
Hold line for next user 94

Illegal overstrike 224
Indentation of 6 spaces

10, 14
Indentation omitted during
literal input 78, 170

Indentation omitted after
"resend" 2 24

Index by an expression 128
Index-finding 131
Index-finding to select
next element of vector 160

ILdex-finding in literal
arrays 132

Index-finding for non­
existent element 133

236

Index-finding when the ele­
ment occurs at several
locations 134

Index-finding example:
hexadecimal 134

Index origin 207
Indexing, dimension of the
result of, 197

Indexing a vector 127
Indexing a matrix 129
Indexing an expression 128
Indexing by empty vector 129
Indexing of multidimensional
arrays 197

Indexing on the left of
specification 127

Indexing operator symbol
to indicate operation on
dimension other than the
last in multidimensional
array 200, 201, 202, 203

Indexing to get entire row
or column of matrix 130

Initial value of counter 18
In~tializing loop 147
Inner product (see matrix
product) 198

Input-output at terminal
other than by typing 229

Input requested by program
167 ff

Inquiry commands 215
Inserting new line 44
Inserting new elements be-

tween vector elements 141
Integer portion 25
Integers, generating
consecutive, 121

Integration 117
Interest table 148
Interpolated line 44, 45
Interrupting computer 12
Inverse indexing 131
Inversion of matrix: see
library functions 205

Iterations needed to find
nrimf:' nllmb~r~ 161 r ~ -~--~~ ------- -- ---

Iterative program 148
Iterative program: paying
the mortgage 153

Iverson 2

237

Juxtaposition (for multi­
plication) not permitted 26

Juxtaposition without oper­
ator as syntax error 225

Keyboard for APL 6
Keyboard correspondence for
typewriter 230

Keying time 205

Label Error 227
Labels in programs 81
Labels with loops 147
Large numbers, represen-

tation of, 50
Larger 23
Largest number APL\360 can

process 52
Last elements, see take

and leave 220
Leading decisions 74, 146
Leave operator 220
Left arrow 15
Length error 108, 226
Length of single number 124
Length of vectors 107
Length of vector, how to

find, 122
Less than 55
Less than or equal 55
Library 95-6
Library control commands 214
Library functions 205
Library list 96
Library structure 101
Line drops, automatic save

following, 100

Line labels 81
Line length, output 208
List of saved workspaces 96
Literal characters as input
to a program 172

Literal input to a pro-
gram 170

Literal text in output 77
Literal vectors 120
Loading a workspace 97
Loading workspace from
public library 97

Local means local to that
execution of the func. 186

Local variables 185
Local variables other than

argument or result 186
Location where suspended 86
Locking a function 207
Locking a workspace 207
Locking of keyboard 9
Locking sign-on number 210
Logarithm 61
Logical operations 62
Loop, endless, 70, 83
Loop with counter 147
Loops 70, 145

Machine instructions 4
Magnitude (absolute value)

59
Matrix product 198
Matrix product generalized

for other operators 198
Maximum 23, 26
Maximum of vector 114
Maximum reduction 114
Membership operator 219
Memory structure (diag.) 101
Message to operator 103
Message from operator 9, 103
Message to other user 208
Minimum 24, 26
Minimum of vector 115
~inimum reduction 115
Mixed output 80

Mixed number systems 195
Modem (modulator-

demodulator) 231
Modulus (see residue) 59
Monadic, def. 21
Month: testing when 12th

month reached 60
Mortgage payments 153
Multiplication 14, 26
Multiplication sign must
be explicitly stated 26

Name and value of a
variable 15

Name list entry program 171
Name of an array 105
Name of arguments may over-

lap global var. names 183
Names of variables 17
Names sorted by grade 164
Nand 196
Natural logarithm 62
Negation (subtraction

from 0) 21
Negative numbers 51
Negative sign 51
Nor 196
Normal curve formula 60
Not equal to 55
Not (logical negation) 65
Number system: converting

from one to another 195
Numbers, prime 139, 154
Numerals in APL typeface 8

Off 94, 99
Off-hold 94
One-line form of program 38
One program called by

another 39
Operator signs in APL

typeface 8
Or 62, 63
Or reduction 115
Order in which characters

are typed 11

238

Order of execution 27, 30
Origin in workspace 207
Outer product 199
Output aligned in columns

149 ff
Output as matrix 149
Output on cards 7, 229
Output requires no "print"

statement if formal result
176

Over-writing during copy
191-92

Overstrike, illegal, 224
Overstrikes 11

Paper tape input 229
Parallelism: vector program

must treat all alike 110
Parentheses 27, 29
Pascal's Triangle 143
Password, sign-on 9, 94
Password for workspace 207
Pcopy 191
Pendent functions 86
PI times 66
Plotting: see library

functions 205
Ports 9
Pounds to dollars: example
of function of 2 args. 181

Power (exponentiation) 22
Precision and test for
equality 57-8

Precision of numbers 52
Price times quantity 117
Prime Factors 154
Prime numbers 139, 159
Primes by Eratosthenes

method 159
Printing of name list 171
Printing program's result 35
Printing result 15
Private library: load from
other user's library 98

Private library (diag.) 101
Product of vector 114
Program, computer. 2

Program, what is, 13
Program called by another

program 39
Program definition 33
Program stops: what to do 83
Programming language, def. 4
Programs as functions 174
Protected copying 191
Public library (diagram) 101
Public library, establish-
ing, 98

Public library, listing of
workspaces in, 215

Public library, loading
from, 97

Public library, saving
into, 96

Quad input 167
Quadratic roots as example
of program with branch 70

Quota, workspace, 97
Quotation (literals) 120
Quote-quad input 170

Random numbers 204
Range of numbers that can be
expressed in APL\360 52

Rank error 226
Ravel 141
Reciprocal 21, 26, 176
Recursion, excessive, 227
Reduction of a vector 113
Register dump 228
Relation controlling

compression 158
Relationals 55
Remainder 59
Remote terminal system 2
Replacing a line 42
Reply for message 103
Representation operator 195
Request feature 229
Resend 224
Resend lamp 224

239

Reshaping an array 119
Residue 59, 194
Residue to check primes 160
Residue to test divisor 155
Resistance of parallel
resistors 175

Respecifying some elements
of a vector 127

Result, def. of function
having a formal, 176

Result, execution of a func­
tion having an explicit,
178

Result of a function 173
Results accumulated by
catenation 139

Results and headings in the
same line 80

Resuming program execution
after halt f'or error 84

Retrieve saved workspace 96
Reversal of an array 200
Revising definition of a
program 43

Revising own saved workspace
98

Revising value of a vari-
able already named 17

Right-to-left rule 29
Root, extraction of, 22, 31
Rotation of an array 201
Rounding fractions 26

Save (diagram) 101
Saving a workspace 95
Scalar 124
Scalar operators 217
Schedule of APL hours:

see library functions 205
Selection according to
test (compression) 157

Semicolon in indexing of
arrays of two or more
dimensions 129, 197

Semitone ratio 23, 31
Sequence in which keys are

struck while typing 11

Sequence of instructions 67
Service charge 24, 31
Set membership operator 219
Several operations in same
instruction 27

Sign on 9, 93
Sign-on password 94
Significant digits control:

see library functions 205
Significant digits in
printed result 52

Signing off 94
Signum function 65
Simplicity of APL 4
Single line programs 32, 38
Single number extends to
match array 108

Smallest number APL\360 can
process 52

Sorting 162
Sorting one array by the
order of another 163

Sorting operators: see grade
165

Space remaining in work­
space 205

Spaces in printing of
literal arrays 120

Spaces needed between
defined function and
its arguments 187

Stand-alone programs 33
StandRY~ ~eviRtion 12S; 1.83
Standard scalar ops. 217
Standardized score 125, 182
State indicator: list of

programs whose execution is
incomplete 86,187,192

State indicator: number of
line now being executed,
215; vector of all lines to
be executed, 205

Stop on indicated line 92
Storage blocks 13
Storing result 15
Student's score: example
with test for equal 56

240

Sub-programs 39-40
Subtraction 14, 26
Subtraction and order of
execution 51

Suspended execution 86
Symbol table full 192

TALK button on dataset 8
TALK-DATA buttons 12
Table of APL operators 217
Take operator 220
Tax example 112
Telephone noise: see trans­
mission error 224

Telephone trouble: autosave
100

Terminal control commands
209

Terminals used with APL 7
229

Text editing: see library
functions 205

Text printing 77
Time of day 205
Time-out suppress 229
Time-sharing 2
Time since connected 205
Tone in dial-up 8
Tracing 91
Tracing of prime number
program 160

Transmission error 224
Transposition of array 199
Trial and error method 222
Trigonometric functions: 66

see library functions 205
Truth of a relation 55
Turn to type, whose? 9
Two-color ribbon 10
Typeface used with APL 7
Typing element for terminal

230
Typing errors 10

)

Undefined name: see value
error 224

Unequal 55
Unlock, by computer, when

ready for next input 10
Unlock keyboard after mes­

sage sent 103
Unlock keyboard during

sign on 9
Unlock without indent after
interruption 12

Unlock without indent: see
transmission error 224

Unlock without indent during
open quote 78

Unlock without indent for
quote quad 170

Unlocking keyboard after
message by ATTN 104,208

Unprotected copy 191
Users now signed on,

number of, 205

241

Width of typed output 208
Workspace, def. 13
Workspace: width 208; index
origin 207

Workspace: cleaning up by
copying into clear ws 192

Workspace control commands
211

Workspace dropped 99
Workspace full 228
Workspace items not copied

when entire ws copied 192
Workspace locked against

unauthorized use 207
Workspace quota used up 97,

99
Workspace saved ~5
WS Full Error 228

Zero-length vector 207
Zero-origin indexing 207,
see library functions 205

GH20-0689-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

)

KI:AUI:K ~ ",V.YIIYIIiiI,. 1 r"'ft..n

APL\360 Primer GH20-0689-1

Program Numbers 5734-XMI and 5736-XMI

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GH20-o689-1

YOUR COMMENTS PLEASE ...

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please· note that requests for copies of publications. and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold
... ,

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

...

fold

International Business Machines CorporatiDn
Data Processing Division
112 East Post Road, White Plains, N.Y.I06ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International J

fold

)

APL\ 360 Primer GH20-0689-1

Program Numbers S734-XMl and S736-XMI

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GH20-o689"-1

YOUR COMMENTS PLEASE .••

Your comments on the other side of this form will help us improve future editions <?f this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold
...

AtTenTion: lechnicai Pubiications

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY .•.

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

••• e •••

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060l
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, NewYork,NewYork 10017
[International]

fold

