Systems

SC20-1846-1
File No. S370-22

APL/CMS User’s Manual
Programming RPQ MF2608

Program Number 5799-ALK

This publication describes APL/CMS. It also describes the
APL/CMS auxiliary processors, which allow the APL program
to perform input and output operations to disks, magnetic
tapes, line printers, and other devices,

The programming RPQ described in this manual, and all
licensed materials available for it, are provided by IBM on a
special quotation basis only, under the terms of the License
Agreement for IBMProgram Products. Your local IBM branch
office can advise you regarding the special quotation and
ordering procedures.

BV

Second Edition (March 1975}

This is a major revision of SC20-1846 and makes obsolete that editione
This edition corresponds to Release 2 of APL/CMS and to ail subsequent
releases until otherwise indicated in new editions or Technical
Newsletters.

Changes eare periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBM System/360 and System/370 Bibliography, Order Noe.
GA22-6822, for the editions that are applicable and currente

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publicatione If the form has been removed, comments concerning the
contents of this publication may be addressed to IBM Scientific Center,
APL/CNS Publications, 2670 Hanover Street, Palo Alto, California 94304.

© Copyright International Business Nachines Corporation 1974, 1975

This publication provides information on
how to use APL/CMS, describes the language
and system features unique to APL/CNS, and
the auxiliary processors available with
APL/CNS.

This manual has the
and two appendixes:

following sections

® Section 1 describes APL under CMS, the
virtual machine concept, logging onto
vM/370, related CP, CMS, and APL

commandsy how APL uses virtual storage,
how to save and copy workspaces, and
common error situations and what +to do
about theme.

® Section 2 describes the language and
system features unigque to APL/CMS.

® Section 3 describes CMS facilities for

the APL/CNS usere.

® Section 4 describes the auxiliary

processors that allow APL programs to

request certain CMS services:

-=—AP100 the Command Processor that
passes commands to CMS and CP.

—-—-AP101 the Stack Input Processor that
stores and supplies input entries for
use by CNS or APL/CMS.

——AP110 the CNS Disk I/0 Processor that
provides sequential and random access
to CNS files.

——AP111 the FILEDEF I/0 Processor that
provides sequential access, via QSAN,

to any I/0 device supported via
FILEDEF. This includes readers,
punches, printers, and real OS disks
{in read/only mode)e.

® Appendixes that describe translation

table options and auxiliary processor

return codese.

The APL/CNS system combines the
programming features of APL and the virtual
machine facility of VM/370. Several
subsets of the system can be defined. One

PREFACE

can learn a subset of the system, use it to
solve problems, and go on to learn more
advanced features as the need arisese. The
study and the use of APL/CMS is as follows:

1. Read Section 1 in this
unfamiliar with APL, one

the APL Language Manuale.

manuale I § 4
should read

See Section 2
features and

2. Try making use of APL.
for language and system
limits unique to APL/CNS.

3¢ Read the remainder of this manual.
Try using the shared variable facility
and the APL/CNS auxiliary processorse.

PREREQUISITE PUBLICATIONS

APL Language Manual, Order No. GC26-—-3847

SUPPLENENTAL PUBLICATIONS

The following publications also provide
information that may be of interest to the
APL/CNS user.

APL/CNS Installation Manual, Order Noe.
SC20-1845

APL\J60 Primer, Order Noe. GH20-0689

IBM Virtual Machine Facility/370:

Command Language Guide for
Users, Order No. GC20-1804
System MNessages, Order No. GC20-1808

General

Terminal User's Guide, Order No.
GC20-1810
APL\360 User's Manual, Order Noe
GH20-0906
APL. Shared Variables (APLSYV) User's

Manual. Order Noe. SH20-9050

SECTION 1: USING APL UNDER CNS o« o«

e o
The Virtual Machinee ¢ ¢ o o o ¢ o o o o
Establishing a Connection to VN/370. « o«
Loadlng APL/CNS. ® © @ o o o @ & e o o o
CP, CHS, and APL CommandSe o o ¢ o ¢ o o
Use of Virtual Stora.ge e ® o o o o o o o
Saving and Restoring WorkspaceSe « ¢ o o
Errors ¢ o« ¢ ¢ ¢ o o o o o ¢ 6 ¢ @ o o o
SECTION 2: LANGUAGE AND SYSTEM
CONSIDERATIONSe o ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o o
Keyboard Entry and Outpute ¢ o ¢ o o o
Double Attention (Strong Interrupt). .
Input Line Limitatione o« o o ¢ ¢ « o o
Open QUOote ¢ o o o« ¢ ¢ « o o ¢ o © o o
Character Errors ¢« « o o ¢« ¢ o o o o o
Commands during Function Definition. .
Error Handllng @ ®© o e e o @ @ ¢ o o o o
Locked Functions ¢ « ¢ o ¢ ¢ o o ¢ o «
Stack Full o« o =« ¢ o ¢ o o o ® ® o o o
Stack Damage ® @ @ o o ® ¢ o o e o o o
Function Definitione « ¢ ¢ ¢ ¢ ¢ ¢ o o o
Immediate Executione ¢« o ¢ o« ¢ o o o o
Line Deletione o ¢ ¢ ¢ o « o o« o o o o
Line Dlspla.y @ ® ¢ e e e o o o & o o o
Function Headere. « « « o o e o o o
Labels e o« o ¢ o o o o o . e o o o
System CommandsSe o ¢ o ¢ o« ¢ ¢ ¢ @ o o o
Communication Commands « ¢ o« ¢ o o o o
The COPY Command ¢ o o ¢ ¢« o o o o o
The LIB commande e o ¢ o o o ¢ o o o o
The STACK Commande o o ¢ ¢ o ¢ o o o o
Environment Commands « o o ¢ o o o o
Workspace Identification ¢ « ¢ ¢ ¢ o o
The CONTINUE Workspace o« o ¢ o« o o o o
System Variables « ¢ o« ¢ ¢ o« ©« ¢ o @« o o
Range Of ValueSe o ¢ ¢ o o o ¢ ¢ o o o
Shared Variables e ¢ ¢ ¢ ¢ o« ¢ o ¢ o o o
Offers « ¢ ¢ o« ©« ¢« ¢ ¢ ¢ o o o o o o o

Using the APL/CNS Auxiliary Processors
Compatlbllity. e ® o o o © @ o o o o o
Distributed WOorkspacCes e o o o o o ¢ o o

CONTENTS

SECTION 3:
APL/CMS USERe ¢ o o o o

CMS FACILITIES AND THE

* - [] - - L] * -

LINK and ACCESS Commands o o o o o e o e
CMSF].ISS................
LISTFILE Command « e s o« e ® @ o o e o o
QUERY Commande ¢ ¢ o ¢ « o« © o o o o o o
ERASE Commande e o « o ¢ o ¢ o = e o o o
Workspaces and CNS Files ¢« ¢ ¢ o o o o o
PRINT, PUNCH’ and TYPE CommandSe o ¢ o o
EDIT and SCRIPT Commands e« o « o o o o o
FILEDEF Commande ¢ « © ¢ o o @ o o e o @
COPYFILE and MOVEFILE Commands ¢ o ¢ o o
Tiﬂle L] L] L J * L] L] - L] - L] L] - - [] - L] L] L]
Saving Workspaces on NMagnetic Tape « « o
Using APL\360 or APLSV WorkspaceSe « « o
Sending Workspaces to Other APL/CMNS
USers ¢ ¢ ©¢ ©¢ ¢ ©« @« ¢ @« « @« ¢ © © o o o
The CMS Batch Facility and APL/CNS « o« «
SECTION 4: APL/CMS AUXILIARY PROCESSORS.
Initial Valuees o ¢« o o ® ® o ® e o o e o
Offer Protocol ¢« « « o« o e @ o e o e o o
Options for Data Conversione o « o ¢ o o
Input/Output Processinge « ¢ o« « = « o o
AP100--The Command Processor « « « « o o
AP101--The Stack Input Processor « « o
AP110--The CMS Disk I/0 ProcessSore. « o o
AP111-—The FILEDEF I/0 ProcesSsor « e o o
Examples Using the Input/Output
ProceSSorse ¢ ¢ o« o ¢ a o« o o o o e e o
Multiple AccesSing « « o « © o ¢ o o o o
Other Auxiliary Processor Details. . -
APPENDIX A: AUXILIARY PROCESSOR
CONVERSION OPTIONSe « ¢ o o o o o o o
The 370 Conversion Optione o« o o o e o
The APL Conversion Optione o« o« o o -

APPENDIX B:
CODES * L] - L] - Ll L] - - L L] L] L] L]

INDEX'..............

-

AUXILIARY PROCESSOR RETURN

52
55
58
59

60

63

67

FIGURES

Figure 1. EBCDIC Codes (integers) to
APL/CNS Characters (Graphics)
via APL Conversion Option « « 61

SECTION 1: USING APL UNDER CMS

THE VIRTUAL MACHINE

VM/370 is a system that manages the resources of a single
computer so that many different computing systems, called
virtual machines, appear to existe. Each virtual machine
appears to have a system console, a CPU, storage and
input/output devices. It is not necessary to understand the
implications of these terms, but you may want to know, for
example, that the storage size of the virtual machine
affects the size of an APL/CMS workspacee.

To use APL/CNS, you need access to a virtual machinee
Usually, your VM/370 system operations group can prepare a
virtual machine for your use and tell you the name (called
the userid) of the machine and a password that controls
access to it.

VM/370 maintains a directory of all the virtual machines
that share the resources of the real computere. The
directory contains the userid, password, accounting
information, normal size of virtual memory, maximum size of
virtual memory, and a 1list of I/0 devices, of varying
properties, identified by numbers. Some of the properties
of the machine can be changed during a terminal session (for
example, increasing the size of the virtual storage up to
the limit specified in the VM/370 directory).

Each user of APL/CMS must have access to a virtual
machine. When the user logs ony, VM/370 1looks wup the
directory entry and supplies a virtual machine with the
appropriate properties. Typically, a virtual machine has a
console (for example, an IBM 2741), a CPU, storage, one or
more virtual disks, a virtual card reader, punch, and line
printere. A virtual disk is a part of the space on a disk
device (for example, five cylinders on an IBM 3330).

ESTABLISHING A CONNECTION TO VM/370

Consult with your system operations group for the location
and properties of the terminals you can use, and to find out
how to establish a connectione. The VM/370: Terminal User's
Guide describes some of the terminals used for APL. 1In this
manual, an IBM 2741 is assumed. The terminal has two type

Section 1: Using APL under CMS 5

elements: one used for VM/370 and one used for APL. Install
the VNM/370 +type element, and establish a connections. The
terminal will type a response that will include VM/370
ONLINE or RESTART. If the keyboard is locked, press the
attention keye. Type LOGON followed by your userid (the name
of your virtual machine) followed by M (short for MNASK).

logon smith m

would be used by someone with the user identification
SMITH. You may enter lowercase letters, as shown in the
examplee. The machine will usually reply in uppercase
letterse Typing the m causes VM/370 to print a mask string
to conceal your passworde The machine response is:

ENTER PASSWORD:
EEEEREEER

Enter your password on top of the printed mask stringe. The
machine then prints the time and date, and any information
that the operator wants you to know abouts If you have
problems logging on, contact your system administrator, or
check the VN/370: Terminal User's Guide for guidance on what
to doe

VM/370 has two major componentse The first component is
CP, which is the Control Programe. It manages the real
resources of the installation to provide independent virtual
resourcesiy in the form of virtual machines, for its userse.
CMS (the Conversational Monitor System) is an interactive
monitor system that runs under CP and offers user—oriented
features which control the virtual machinee.

All programs running on a VM/370 system are under control
of CP; they may or may not use CMS. APL/CMS is a system
that provides the APL language using the facilities of CMS
and CP.

LOADING APL/CNS

After your password is accepted, the introductory message is
printed, the keyboard is unlocked and CP waits for you to
enter a CP commande. Now enter the command which causes CP
to load the APL system. This is done in one of +two ways,
depending on how your system operations group has set up the
APL systeme

6 APL/CMS User's Manual

The first method 1is to install the APL type element and
type

IPL APL

IPL stands for initial program loade This command initiates
the loading of the APL/CMS systeme. The machine responds:?:

APL Y/ CMS
CLEAR WS

When the keyboard unlocks, you can begin to enter APL
statements and commandse. Instead of the above, you may see:

[tl~e| ax(] LOel TO~ ed¢f~

This message is SYSTEM APL DOES NOT EXIST typed with the APL
type elemente. You should verify that APL is the name
assigned to APL/CMS at your installatione.

The second method of invoking APL/CMS is to enter

ipl cms
apl

You will then be asked to install the APL type element and
press the return keye. The system responds as described in
the previous paragraphe. You can now use APL. You can log
off the system by +typing the APL command)OFF. The
following is an example of a short session at the terminale.

d' x38z irvyr; vm/370 online

1 smith m

ENTER PASSWORD:

BEEEEREREEE

LOGON AT 18:01:18 PDT TUESDAY 03/19/74
IPL APL

APL / CMS

CLEAR WS

2+2
4

2x3
6

332
1.5

)OFF

CONNECT= 00:08:45 VIRTCPU= 000:00.66 TOTCPU= 00C:02.20
LOGOFF AT 18:10:03 PDT TUESDAY 03/19/74

Section 1: Using APL under CNS i

CP, CMS, AND APL COMMANDS

Some of the messages
treated as commandse.

at any time

ony

are in the

environmente.
is:

depends
three environments:
you are in
CMS
when in the CMS
A summary

that you

CPy, CMS,

environmente.
environmente.
environment),
of the way the

To go from To Enter

Not logged on CcP logon

cp APL* ipl apl

CcP CMS* ipl cms
CMS APLX ipl apl
CMS APL apl

APL Logged off) OFF

APL CNS JOFF HOLDYT
APL CcP) OFF HOLDt
CMS Logged off logoff

CP Logged off logoff

CMS CcP CcP

*Note that IPL APL and IPL CMS are not

environmente.
When you
If you IPL CMS,
If you IPL APL
then you

enter at the terminal will be

The kind of command that
on the current
and APL.

can be used

There are
first log
then you

{or enter t'apl?

the APL

environment changes

available in some

installationse.
fYou return to CP if you invoked APL by an IPL.

When you are in the CP environment, all input lines are
treated as CP commandse. When you are in the CMS
environment, input lines are treated as CMS commands; it
they are not recognized as CMS commands, then they are
treated as CP commandse. When in the APL environment, all
input lines are treated as APL statements or commandse CMS
does not accept APL commands, nor does APL obey CP or CMS
commandse.

8 APL/CNS User's Manual

If you have made a typing error while entering a CP or
CMS command, then you have a chance to correct the error 1if
you have not yet pressed the return keye. Entering ¢ causes
the machine to ignore everything to the left of the .
Entering @ causes the previous character to be ignored;
entering @d® causes the two previous characters to be
ignored, and so one For example,

ipx a2 ipl cms
igapl cms
ipl dmdadcms

all have the same effect as if "ipl cms"™ had been typed
without any errors. If you make an error and fail to
correct it, then you must wait until CP or CMS has processed
it; typically, the result is an error message indicating an
unknown command, the keyboard unlocks, and you can try
againe. (The @ and ¢ are the characters -~ and 2> of the 987
APl type element and <+ and - of the 988 APL type element.)
These VM/370 logical line edit characters can not be used
while in the APL environment.

When a CMS command has finished execution, it responds as
follows:

R; T=nenn/Xe.xXxx hhemmess

This 1is called a Ready messagee nenn and Xexx are the
virtual and real CPU times (in seconds and hundredths of
seconds) used since the last ready messagee. hhemmess is the
time of day (hours, minutes, and seconds)e. If an error has
occurred,y, then the R is replaced by R(nnnnn) where nnnnn is
an error code; in most cases an explanatory message appears
on a previous linee.

USE OF VIRTUAL STORAGE

APL/CMS uses an area of storage called a workspacee. The
workspace contains user defined functions and data, some
space for system tablesy, and a work area. As new functions
and data are defined, the space they need is taken from the
work areae The amount of work area can be determined by the
APL system variable [JWAe. In some APL systems, the size of
the workspace is fixed when the system is generated and all
users have the same workspace sizee. In APL/CNS the size of
the workspace is determined dynamically when you 1load APL.
After space is allocated for the system and for input/output
areasy the rest of virtual storage is allocated to the
workspacee. Subsequently, when loading a workspace, its work
area 1is adjusted accordinglye.

Section 1: Using APL under CNS 9

The space used by APL/CMS varies from installation to
installation, but a typical figure is about 340,000 bytes,
not including the workspace. The size of your virtual
storage is determined by an entry in your VM/370 directorye.
When in the CP or CMS environment, you can find out what the
size is by entering the command:

gquery storage

The reply may be in units of K (for kilo or 1024) bytes or M
(for mega or 1,048,576) bytes, If the reply 1is, for
example, 512K then the work area in the workspace |is
approximately 170,000 bytese As you become familiar with
APL; you should be able to relate the workspace size to the
kinds of APL programs you can rune The maximum virtual
storage allowed by VM/370 is 16M bytese The maximum work
area under APL/CMS is about 16,400,000 bytes.

SAVING AND RESTORING WORKSPACES

CMS refers to virtual disks by one of the letters A through
Gy Sy Yy and Z. The distributed version of APL/CMS uses the
following disks:

—=— User's private library

-=— Temporary space (used during)COPY, for example)
—= Libraries 1000 through 999999 (read/write access)
-—= Libraries 1 through 999 {read—only access)

NGQU»

The A-disk and D-disk belong to your virtual machine, and

normally only your machine has access to theme The other
disks belong to another virtual machine which every APL/CMS
user can Aaccesse The APL)SAVE command stores a workspace

on the A-diske A library number causes the public library
to be accesseds. A workspace cannot be saved in a read—-only
librarye The read—only library is usually maintained by the
APL system librariane Everyone may save a workspace in the
read/write public libraries if they exist.

In some APL systems, you can load a workspace <from
another wuser's private library by specifying that user's
account number {(and password 1if necessary)e. Under APL/CNS,
@ach private library is maintained on the user's A-diske.
Users cannot directly access ano ther user's private
librarye. Numerous methods exist for transferring workspaces
between users in a secure manner. See "Sending Workspaces
to Other APL/CMS Users" in Section 3.

10 APL/CMS User's Manual

APL/CMS sets no limit on the number of workspaces that
can be stored in the private library; the limit depends upon
the total amount of disk space available. If insufficient
space is available to perform a)SAVE, then a DISK FULL
error occurse You can make room with the)DROP commande
Section 3 contains an explanation as to how you can find the
amount of disk space used by each workspacee.

If the read/write public 1libraries (G disk) are full,
consult the APL/CMS systems staff at your installatione. If
the message DISK NOT AVAILABLE appears when attempting to
save a workspace in the public 1libraries, try it again as
another user was probably accessing that disk momentarilye.

ERRORS

Most of the error messages are from APL and are described in
the APL Language Manuale. You may also get the error
messages discussed in this sectione

NOT IN CP DIRECTORY

This message will be received when attempting to logon
when you are not an authorized usere. It may also
appear if you made a typing error, or if there was line
noise creating a probleme.

PASSWORD INCORRECT

See the installation manager to find out your correct
password to logone. Unlike some APL systems, you cannot
directly respecify this passworde. Typing errors or
line noise may cause this message to appeare.

DNSACC112S DISK 'A(191)' DEVICE ERROR
This message occurs when your disk is not in the proper
CMS format and must be formatted using the CMS FORMNAT
commande. Unless this is doney APL/CMS does not have
the capability to access your private librarye.

SYSTEM APL DOES NOT EXIST
This message is an indication that your installation

has generated APL/CMS under a different name or that
APL/CMS is available only from the CMS environmente.

Section 1: Using APL under CNS 11

CP (keyboard unlocks)

The letters CP are typed as the result of

telephone—line noise or importunate use of the
attention keye. Type the word BEGIN (B for short) and
press the return keye. I£f you are attempting to

generate a double attention, type EXT and press the
return keye

COMMAND COMPLETE <. CLEAR WS

This message (ellipsis indicates several lines of
print) may be caused by an error in APL/CMS. Report
the occurrence(s) to the system operations groupe. You
can continue to work with APL, but your active
workspace has been replaced by a clear workspace.

CP ENTERED, REQUEST PLEASE.

This message indicates that you are in the CP
environment and must reload APL/CMS.

RESTART
VM/370 ONLINE

Either message indicates that VM/370 has been
restartede You must logon to the system and reload
APL/CNSes Your active workspace has been loste

communication line loss

You may 1lose the active workspace because of an
abnormal disconnect of the telephone connection to
VM/370e A 15-minute time period is provided +to allow
you to reestablish the communication 1line and logon
againe For the method of resuming APL execution refer
to Section 2 under the heading "“The CONTINUE
Workspace',

If you have to execute a long running program you
may wish to run with the terminal disconnectede. Load
the workspace 1 APFNS and type DESCRIBE for additional
information and a function to disconnect the terminal.

12 APL/CMS User's Manual

SECTION 2: LANGUAGE AND SYSTEM CONSIDERATIONS

This section discribes the language and system features
unique to APL/CMS. It also gives various system and
language limitations due to the implementatione These are
grouped in terms of keyboard I/0 operations, error handling,
function definition, system commands, system variables, and
shared variablese.

KEYBOARD ENTRY AND OUTPUT

DOUBLE ATTENTION (STRONG INTERRUPT)

Generating a double attention (strong interrupt) under
APL/CNS requires a fine touch as CP monitors attentions for
possible entry to that environmente. Pressing the attention
key twice with deliberate speed should sufficee. If +the
characters n* are typed, indicating entry to the CP
environment, simply type EXT; the effect is the same as a
properly executed double attentione. (If you have entered
the CP environment and wish to generate a single attention
(weak interrupt), not a double attention, type BEGIN.)

INPUT LINE LINITATION

The maximum number of keystrokes which can be entered,
excluding the terminal carriage return, is 130. If the
entry is interrupted by the attention key, causing a caret
to appear, then the keystroke count is begun againe Since
input of this form appends to the line already entered, it
is possible to enter more than 130 keystrokes by striking
the attention on every group of 130 or lessy, the final group
being terminated by the carriage returne. The system
limitation for input of this form 1is 762 keystrokes,
including one character for each attention and carriage
return. These input keystrokes must produce less than 380
APL characterse.

Section 2: Language and System Considerations 13

OPEN QUOTE

All keyboard entries are terminated by a carriage returne A
keyboard entry containing an open guote will invoke no
special system treatmente. It will produce a SYNTAX error
report, similar to an entry with unbalanced parentheses.

CHARACTER ERRORS

The carriage return (except to terminate a keyboard entry)
and the horizontal tabulate are invalid input characterse.
The terminal control characters backspace, horizontal
tabulate, idle, linefeed, and new line are available as a
five element character vector, QUADTC, in the workspace 1
SPECIAL.

COMMANDS DURING FUNCTION DEFINITION

During function definition, every keyboard entry beginning
with a left bracket (supplied by the system for convenience)
is treated as an EDIT or INPUT requeste. APL/CMS reports
some errors (for example, SYNTAX errors) on input but the
entry is acceptede A keyboard entry that does not begin
with a left bracket is treated as an immediate execution
entryoe To produce an entry of this form, backspace and use
the attention %key to erase the beginning of the line
provided by the system.

The following statements apply to immediate execution
when in function definition mode:

[] If a workspace is saved during function definition, then
a subsequent Lloading of the workspace resumes the
function definition at the point when the save command
was glivene.

® If a function, saved during edit mode, is copied from a
workspacey, it will be copied in closed forme

® Any attempt to enter or leave function definition results
in the message DEFN ERROR.

® Any action explicitly or implicitly causing an erasure of

the function being edited terminates function definition
modee.

14 APL/CNS User's Manual

ERROR HANDLING

LOCKED FUNCTIONS i

Execution cannot be suspended within a locked functione.
However, a pendent locked function can occur if execution is
suspended within an unlocked function used by that
functione.

STACK FULL

A por tion of workspace storage, called the stack, is used to
hold APL expressions during the execution of an APL
statement, and to hold status information during the
execution of a user—defined functione. If the space
allocated to the stack has been usedy a STACK FULL error
message is typed. For corrective action, use)SI to display
the state indicatore. Clear the stack by repeated use of the
! KkKeye To change the size of this area, use the)STACK
command as described in the Section 2 under the heading
"System Commands"

STACK DAMAGE

The error report SI DANAGE ENCOUNTERED is issued when
execution can proceed no further because of damage to the
execution stacke. This may be caused by erasure of a pendent
function, for example.

FUNCTION DEFINITION

INMMNEDIATE EXECUTION

Immediate execution of most APL statements can be effected
while in function definitione See this section under the
heading 'Commands During Function Definition' for detailse.

Section 2! Language and System Considerations 15

LINE DELETION

A line of a function is deleted by entering a left bracket,
a deltay, the line number and a right bracket. For example:

{991 [a4]

[41] [AS]
[51
will delete statements 4 and Se. In the above example the

[991, (4], and [5] were supplied by APL and the other
characters were entered by the usere Multiple lines cannot
be deleted with a single edit requeste The attention signal
cannot be used to delete a line.

LINE DISPLAY

Lines of a function which have been modified or added are
not put into canonical form until the function definition is
closede For example, extra spaces are not removed until the
function definition is closede.

FUNCTION HEADER

A function header which contains more than one occuhﬁnce of
the same name is rejected and the report DEFN ERROR is
givene.

LABELS

Names used as labels within a function are active only when
that function is being executed or is the top—most suspended
function and during those times, labels act as local
constantse. At other times, when the function is pendent,
and within any other defined function, these names are
unencumbered by their use as labelse.

16 APL/CMS User's Manual

SYSTEN CONMANDS

COMMUNICATION COMMANDS

In order to send messages to other virtual machine users,
the commands) PORTS, J)MSG and)JOPR are supplied. The
command)PORTS produces a list of userids of all active
virtual machinese. The command)JMSG followed by a userid
followed by text sends the text to that userid. The userid
should be delineated by blankse The command)OPR followed
by text sends the text to the VM/370 system operatore.

There are occasions when a user may wish to be
undisturbed by messages arriving from another terminale. The
command)MSG OFF blocks all messages from other terminals
and the command JMSG ON restores the acceptance of
messagese.

THE COPY COMMAND

This command can be used +to copy a workspacey a group, a
functiony, or a variable. Only one of these objects can be
copied at a time. The workspace 1 SPECIAL contains a
function called COPY which will cause more than one object
to be copiede. (Type DESCRIBE after loading that workspace
for information.)

THE LIB COMNMAND

The output of the)LIB command under APL/CMS is an unordered
list of workspace names in that library. No provision is
made for printing a subset of that list.

THE STACK COMNMAND

A portion of workspace storagey, called the stack, is used to
hold APL expressions during the execution of an APL
statement, and to hold status indication during the
execution of a user defined function. The amount of space
allocated to the stack may be displayed by)STACK and
changed in a clear workspace by the command)STACK N. When
a clear workspace is loadedy, N has the value 512.

Section 2: Language and System Considerations 17

ENVIRONMENT COMMANDS

)DIGITS Ny JORIGIN N, and)J)WIDTH N can be used to set the
global values of [PP, (IO, and [PW. If N is outside the
range oFf meaningful values for the system variable then
INCORRECT COMMAND 1is reported and the value of the system
variable is unchangede. If the previous value of the system
value is within the meaningful range, that value is printed
in the message WAS N. See "System Variables" in this
section for the meaningful range of these variablese.

WORKSPACE IDENTIFICATION

APL/CMS supports a maximum of eight characters as the
workspace identificatione. If more than eight characters are
used to save, loady, or copy a workspace, a WS NAME IS TOO
LONG report is givene.

THE CONTINUE WORKSPACE

If a workspace named CONTINUE exists in the user's private
library and does not have a lock, it is loaded when APL/CMS
is invokede.

If the machine losies a connection with a terminal, then
the active workspace is not savede However, VM/370 provides
a grace period of about 15 minutes for the user to establish
a new connection and logon on to the systeme. Once
reconnected, type:

term apl on attn off linesize 130 mode wvm
begin

to resume APL executione.

APL/CHMS can be run normally in a disconnected state for
long Jobs which do not require a terminale. A function in 1
APFNS provides this capabilitye. The example shown in
Section 4 for auxiliary processor 101 demonstrates a way to
checkpoint a workspace by use of an APL functione.

18 APL/CMS User's Manual

SYSTEM VARIABLES

See the APL Language Manual for a description of system

variablese

valuese.

The following information gives system dependent

RANGE OF VALUES

Name

ccr

gro

opw

ORL

Value in

Meaningful Range Clear WS
0 TO 2%~ 32 1E713

0 AND 1 1

1 THROUGH 16 10

30 THROUGH 254 120

1 THROUGH ~1+2%31 7%5

(The meaningful values are integers except for [ICT.)

In addition:

0Ar

DAav

rs

grr

guL

Owa

The accounting information is user identification
(always =zero); virtual computer time, connect
time, keying time in milliseconds, presented as a
four element vectore.

The atomic vector is dependent upon internal
character codes of APL/CNS. See below.

The time stamp is year, month, day, hour, minute,
second, milliseconde.

The terminal type is 0 for 1050, 1 for Selectric,
2 for PTTC/BCD, ~ 1 for other devices.

The user load is always reported as 1.

The working area is given in bytese.

Section 2: Language and System Considerations 19

Atomic Vector

The worksipace 1 SPECIAL contains three permutations of [JAV
named QUADAVAPLSYV, QUADAVBINARY and QUADAVEBCDIC.
QUADAVBINARY is arranged so that the internal charactor
codes are in ascending binary sequence starting with zeroe.
QUADAVAPI.SV is arranged so that the APL characters are at
the same index positions as in [JAV in the APLSV systeme.
QUADAVEBCDIC can be indexed by the numeric value of EBCDIC
codes to select characters common to APL and EBCDIC.
Further details are contained in the workspace 1 SPECIAL.

Users with a requirement for the terminal control
characters backspace, horizontal tabulate, idle, line feed,
and new line can copy 1 SPECIAL QUADTC to obtain these as a
five—element character vectore.

SHARED VARIABLES

Shared variables are used to communicate between independent
processorse. The kinds of processors which can be used depend
on the facilities of the host operating system. APL/CMS has
a single APL user on each virtual machine, running under the
CMS component of VM. Processors available in APL/CNS include
the single user's APL programy, the APL/CMS processor and
four APs (auxiliary processors) which are supplied with the
systeme The APs are described in detail in Section 4; for
example, AP110 can read and write CMS disk files. APL/CMS
does not allow active APL users to communicate directly with
each other through the use of shared variablese.

OFFERS

If a user attempts to share more variables than the limit
determined when the system is installed the error reported
is INTERFACE QUOTA EXHAUSTED. This limit is 45 in APL/CMS
as distributed. Other system limits may cause the report
SVP MEMORY FULL or SVP NAME TABLE FULL to be issued; these
limits are described in the APL/CNS Installation Manual and
may be changed when the system is installed.

20 APL/CMS User's Manual

USING THE APL/CMS AUXILIARY PROCESSORS

The APL/CMS auxiliary processors use the initial value of

the shared variable to indicate the source and/or
destination of the processors input/output and to select
certain optionse For example, the following sequence will

write two records to a CMS file called Y“EXAMPLE SCRIPTY,
The "370" conversion option is selected. The first record
is "THIS GOES IN THE FIRST RECORD" and the second record is
WAND THIS GOES IN THE SECONDY,

S-*EXAMPLE SCRIPT(370"
110 {dsvo's?*

2
S«'THIS GOES IN THE FIRST RECORD!'
S«<'AND THIS GOES IN THE SECOND!
[OSVR'S?

2

In this casey, S is the name of the shared variablee.
Notice that the argument to [JSVO and [ISVR is 'S?! not S. See
Section 4 for further details of the auxiliary processorse.

COMPATIBILITY

APL/CMS has one user on one virtual machine. In addition,
CMS is a synchronous system, that is, one which completes
each request before continuing with the nexte. Some APL
systems have many users on one real machine and it is
possible for asynchronous processes to communicate with each
other. APL/CMS provides certain features which have little
value in the CMS environment but which may be useful for
maintaining compatibility with these other APL systemse.

Surrogate Names

APL/CMS allows the use of surrogate names, but since its
auxiliary processors will accept any names offered to them,
surrogate names need not be usede.

Section 2: Language and System Considerations 21

Access Control

The APL/CMS auxiliary processors set the access control
vector to 1 1 1 1, the highest degree of control possible.

If a valid offer is made to a nonexistent processor then
the accesss control vector is set to zero, for example

400 [Osvo'x:?

1
Osvce x*
0000
X+99
X
99
111 1[0sverxe
1111

The access control vector now specifies that successive
accesses by the APL program requires an intervening access
by processor 400. Processor 400 does not exist so it will
neither use or set X. If the APL program attempts to access
X then a permanent wait would resulte APL/CMS detects this
situation, forces an interrupt, and prints the error report
INTERRUPT: PERMANENT SV WAIT.

DISTRIBUTED WORKSPACES

APL/CMS has certain standard workspaces which are
distributed with the systeme The names of all the
workspaces can be displayed by use of the APL command
JLIB 1. The purpose and method of using each workspace can
be displayed by loading the workspace and typing DESCRIBE.
A short description of each workspace followse.

APFNS

Contains functions to simplify and facilitate the use of the
APL/CMS auxiliary processors, especially APl1l1l1.

APLCOURS

Provides computer assisted instruction in the use of APL
functionsie

22 APL/CMS User's Manual

ADVANCED

Provides examples of the APL programs which the user can
study and trace to further an understanding of APLe.

CETEST

Contains functions to test typewriter terminalse.

CONVERT

Provides aid in converting APL\360 and APLSV workspace dump
tapese.

FORMNAT

Illustrates the use of dyadic format and the scan operatore.

NEWS

Describes differences between APL/CMS and APL\360.

PLOTFORM

Contains programs to graph functions on the typewriter using
the APL type ball.

PRINT

Contains programs for transmitting APL programs and data to
a line printer equipped with an APL print traine

REL2NEWS

Describes differences between release 1 and release 2 of
APL/CMS.

Section 2: Language and System Considerations 23

SPECIAL

Contains a character vector whose elements are terminal
control characters and three useful permutations of [JAV.
TYPEDRIL

Provides computer assistance in improving typing skills.

WSFNS

Provides certain functions, such as ORIGIN, which were used
in APLI\360 programs.

XREF
Contains APL programs which can be used to list APL
programs, to prepare Cross reference information on

functions and variables, and to display topological
relationships among programs in a workspacee.

24 APL/CMS User's Manual

SECTION 3: CMS FACILITIES AND THE APL/CMS USER

In this part of the manual, we discuss some CMS concepts and
a subset of CP and CMS commands that may be useful to the
APL user. For further details, see the VN/370: Command
Language Guide for General Userse CMS commands cannot be
used in the APL environment directly but can be transmitted
via auxiliary processor 100 described in Section 4. APL
commands are not recognized by CP or CMS.

LINK AND ACCESS COMMANDS

The VM/370 directory contains the properties of individual
virtual machines. One or more entries specify the virtual
disk(s) that belong to a particular machine. CP identifies
disks by a device addresse. Most machines have a primary
disk at device address 191 and will have 1links to disks
belonging to other machines. For example, the directory for
an APL user may contain an entry of the form:

link vmaplsys 101 101 rr

This indicates the user has access to the 101 disk of a
machine whose userid is VMAPLSYS. The last two operands
define the device address as 101 and the access to the disk
as read-only for this usere.

As noted in the Section 1 discussion on "Saving and
Restoring Workspaces", CMS refers to disks by mode letter.
A correspondence between the CP device addresses and the CMS
usage of the disks is established by an ACCESS command. For
example, ’

access 101 2

allows CMS to use disk 101 as a Z diske CMS accesses 191 as
the A—-disk and APL/CMS accesses 101 as the Z diske.

The CP command LINK and the CMS command ACCESSy can be
used, among cooperating users, to establish a common disk
for storage of workspaces and data filese. Access to a
user's private disk 1is controlled by VM/370 directory
entries and passwordse.

Section 3: CMS Facilities and the APL/CMS User 25

CNS FILES

Items on a virtual disk are organized into CNS filese A CMS
file is known by its filename, filetype, and filemodee. The
filename and the filetype are each composed of one—~ +to
eight—-alphameric characterse The filetype is formed like a
filenamey but CMS commands usually associate a particular
filetype with a particular kind of file. For example,
APL/CMS uses the filetype VMAPLWS for all workspaces in the
private librarye. Files with EXEC filetype usually contain a
list of CNS and CP commands to be executed. The filemode is
one letter followed by one number. The letter specifies the
disk the file is one The numeral 1 indicates a permanent
file avaijilable for both reading and writing,

The information 1in CMS <files is grouped into records,
which are the smallest unit in the file system. Records are
grouped into files. Records in each file are fixed length,
meaning the length of all records 1is the same (and must
remain so0) or variable 1lengthy, which imposes no such
restrictione. The maximum length of a record is 65,532
bytes. CMS allows its files to be accessed sequentially or
by specification of the record position (1l—-origin)e.

Random accessing can be used with files of fixed or
variable length records but it is more efficient with fixed
filese. Records can be changed in existing files, but the
length of any record of a variable file, except +the last
record, cannot be changed without unpredictable results.
Records cannot be deleted from files but can be added to the
end of an existing filee.

The units of information which CMS transmits to and from
disk storage are called blockse. The CMS file system
collects several short records or splits up long records as
it transfers information block by block to and from diske. A
block is 800 bytes longe You need be aware of blocks only
if you wish to compute the amount of disk space used.

LISTFILE COMMAND

At some stage of APL execution, you may encounter a DISK
FULL messagee You can use the APL)LIB command to list the
workspaces on the disk; however, you may have other files
generated by the APL auxilary processors which are not
listed by JLIBe You can list all files with the CMS
LISTFILE command which has some of the following variants:

26 APL/CMS User's Manual

listfile £fn £t £m
displays information concerning the file having the given
filename (fn), filetype (ft), and filemode (fm)e. If fm is
omitted then Al is assumed; if ft and fm are omitted then
all files with name fn on the A—-disk are listed.

listfile * £t fm
lists all files with type ft on disk fme The command

listfile * vmaplws
lists all VMAPLWS files, and

listfile
lists all files on the A-diske. There are several options
that can also be usede If the command line ends im (ALLOC),
then the format (fixed or variable), the number of records,
and the number of blocks are listed for each Tile. For

example:

listfile alpha (alloc)

FILENAME FILETYPE FN FORMAT RECS BLOCK
ALPHA VMAPLWS Al Vv 4616 3 9
ALPHA ASSEMBLE Al F 80 392 40

"y 4616" denotes variable length records, with the longest
record of length 4616 bytese. "F 80" denotes fixed-length
records of 80 bytes eache The number under BLOCK gives the
number of 800-byte blocks occupied by the file.

QUERY COMMAND

The CMS command LISTFILE lets you find the space used on a

virtual disk by each file. MNore generally, the CNS command
query disk a

gives a summary of the state of the A-disk (other disks may

be specified by their letter)e An example of the reply to a

query is,

A (191): 3 FILES; 155 REC IN USE, 1173 LEFT (of 1328),
12% FULL (S5 CYL), 3330, R/W

Section 3: CMS Facilities and the APL/CMS User 217

Do not be confused by this inconsistent usage: REC refers
to what LISTFILE calls blockse. The reply shows that 12
percent of the available space is usede The virtual disk
address is 191 and is § cylinders of 3330 disk storage,
which is linked in read/write modee.

As mentioned earlier, the CP command QUERY STORAGE,
indicates to you the size of the user's virtual storagee.
The CP command QUERY NAMES lists the names of the other
virtual machines currently logged on the system.

You can send messages by using the APL) MSG command, or
the CP MNMSG (or MESSAGE) command "“cp msg userid <ecesany
messageese " where userid is the name of the other virtual
machine. (This use of the userid corresponds to the APL\360
use of the port number.)

ERASE COMMAND

You can free the disk space used by unwanted workspaces by
issuing the APL)DROP commande. You can get rid of
workspaces or other unwanted CMS files by using the CMS
command

erase fn £t fm

If fm is omittedy; then A is assumede Replacing £fn with an
asterisk (*) causes all files of type ft to be erasede.

WORKSPACES AND CNS FILES

An APL)SAVE command causes the APL/CMS system to store the
information from the workspace into a CMS file. Only useful
information is storedy, not the work area, so the space on
the disk is related to the APL objects in the workspace, not
the gross workspace sizee The A-—-disk is used for storage of
these workspaces when no library is selectede Libraries are
stored on disks apart from the APL user's virtual machine;
details are supplied in the APL/CNS Installation Manuale.

APL/CNS uses the D—disk, if accessed read—write,
otherwise the A—disk, for storing intermediate and utility
files of type VMAPLUT. These files are used for the APL
stack of auxiliary processor 101, the workspace conversion
utilities, and during the APL)COPY and)PCOPY commands, for
examplee.

28 APL/CMS User®'s Manual

PRINTy PUNCH, AND TYPE COMMANDS

An APL program can create files by using the auxiliary
processors (see Section 4) One of the processors can send
files directly to the line printer or card punche. There are
some occasions when it is easier to use the auxiliary
processor to create a CNS file and then use CMS commands to
type or print the file. When the CMS PRINT command is
issued, as follows:

print fn £t fm

it causes the contents of the specified CMS file to be
printede The graphical representation of each character is
dependent upon the printer characteristicse. The VMAPLWS
files contain nonprintable records; however, the auxiliary
processors supplied with the system can be used to write out
APL variables in printable formate.

The PUNCH command operates like the PRINT command except
that eighty characters of the records are punched into
cardse. The punch reproduces any character. Cards may be
read into the system with the CNS READCARD commande. For
further details, see VM/370: Command Language Guide for
General Userse.

The TYPE command is similar to the PRINT command except
that output appears at the terminale. If the file was
produced with the APL conversion option of the auxiliary
processor AP110, then the commands:

cp term apl on
TYPE FN FT FM
CP TERM APL OFF

should be used to type the filee. The first command
indicates that you are going to use your APL type element
for typing; the +third command indicates the subsequent use
of the VM/370 type element.

EDIT AND SCRIPT COMMANDS

CMS has an editor, called EDIT. For additional information
about the editor, see the publication VM/370: EDIT Guide.
The SCRIPT processor, an Installed User Program (IUP)
available through IBM for a license <fee, can be used to
prepare formatted and paginated output, like this document,
from CMS filese. :

Section 3: CMS Facilities and the APL/CNS User 29

FILEDEF COMMAND

This CMS command is used to simulate the functions of the O0OS
Job Control Language Data Definition (DD) in the CMNS
environment. Device independence is achieved by allowing
the unit specification and file characteristics to be
transmitted to programs that use the 0S simulation macros
and functions. APL/CNS includes an auxiliary processor,
AP111, which supplies sequential access via QSAM to any
device specified by use of the FILEDEF commands

Note: The CMS file processory AP110, does not use FILEDEF
and does not need any DD informatione. The FILDEF commands
most commonly required by APl111 are issued automatically by
some functions in the 1 APFNS workspacee. (Type DESCRIBE
after loading that workspaces)

COPYFILE AND MOVEFILE COMMANDS

The COPYFILE command can be used to copy part or all of a
CNS file, to combine files, to change record formats and to
do various transformations on data in the filee. The
MOVEFILE command moves data from any device supported by
VM/370 to any other device supported by VM/370. The input
and output devices are defined by wuse of the FILEDEF
commande

TIME

When you log off the system, a time message is issued as
follows:

CONNECT hhimm:ss VIRTCPU mmmi:ssihs TOTCPU mmm:ss:hs

where:

hh is hours

mm or mmm is minutes

ss is seconds

hs is hundredths of a second

The connect time is the elapsed time since you logged one
The VIRTCPU is the virtual CPU time you have usede. TOTCPU
is VIRTCPU plus the CPU time that was spent in CP.

The CP command QUERY TIME yields the same result.

30 APL/CMS User's Nanual

SAVING WORKSPACES ON MAGNETIC TAPE

TAPE Command

The TAPE command can be used to save and restore CMS files
on magnetic tapes It is useful for saving infrequently used
workspaces or sending workspaces to other APL/CMS system
installationse To save one or more files on a tape:

1. Log on to your machinee.
2. IPL CMS

3¢ Ask the operator to ready the tape and attach it as 181
to your machine by issuing the following message:?

cp msg op pls attach tape pascl23 as 181 with ring in

{This sample message is based on the assumption that
the tape has "PASC123" as a label.) The phrase "ring
in" tells him to put a file protect ring in the tape;
if the ring is out then it is impossible to write on
the tapee. In general, the operator will notify you
when the tape is readye.

4. To dump the workspaces ALPHA and BETA, issue the
following commands:

tape rew
tape dump alpha vmaplws
tape dump beta vmaplws
tape wtm
tape rew
tape scan

Note that each command starts with the word TAPE followed by
a spacee REW causes the tape to be rewound, but note that
it must be spelled REW, not REWIND. TAPE DUMP writes the
named CMS file onto the tape; you may repeat this command
for as many files as you wish to dumpe. The TAPE WTM
command writes a tape mark on the tapee. A tape mark is
conveniently used to separate groups of workspacese. If you
wish to dump all workspaces, then you can use:

tape dump * vmaplws

Section 3: CMS Facilities and the APL/CMS User 31

TAPE SCAN Command

The TAPE SCAN command reads the tape, verifies the tape
contents, and types out a list of the CNS files on the tape
from its current position to a tape marke.

If the tape appears to be satisfactory then use the
following, CP commands:

cp detach 181
cp msg op remove ring, and save tape

to unload and save the tape.

To retrieve a workspace at a later datey, then log on, IPL
CMS, and issue the command:

cp msg op please attach pascl23 as 181 with ring out

When the tape 1s attachedy, you can then issue the
commands $

tape rew
tape load beta vmaplws

to transfer the CMS file BETA VNAPLWS to your A-disk, which
will overwrite an existing file of the same namee. The
example shows just one file being loadede. Using the command
TAPE LOAD with no additional arguments loads all the
workspaces up to a tape marke. (You should detach unit 181
when you no longer need it.)

If there is insufficient space on your disk, then you may
get a DISK FULL messagee You can, if you wish, make some
space avalilable on the disk, rewind the tape, and try
again.

32 APL/CMS User's Manual

SPOOL Command

This CP command has many options to control the disposition
of files associated with your virtual card reader, card
punchy, and line printer. For example:

spool printer copy n

specifies that n copies be made of your line printer
outpute The command:

spool punch to userid

causes your virtual punch output to be directed to the
virtual card reader of the machine identified by userid.

spool punch off

directs future output to the real card punche.

DISK DUMP and DISK LOAD Commands

The CMS command, DISK, can be used to move =files from disk
to card format using the DUMP option, or the reverse using
the LOAD optione. It is generally not used to punch real
cards (the TAPE command is normally used to move files from
the system); rather, it is used in combination with +the
SPOOL command to direct files toy, or receive files from,
another usere. For example, the commands

cp spool punch to johndoe
disk dump alpha vmaplws
cp spool punch off

transfer the APL/CMS workspace called ALPHA to the card
reader of the machine, JOHNDOE. At that machine, the
command

disk load

creates the file ALPHA VMAPLWS on the A-diske.

Note: Use the SPOOL command before issuing the DISK DUMP
commande If the output is not spooled to another user, it
is punched on real cardse. If you discover you have made

such a mistake, immediately send the following message:

cp msg operator please flush punch output

Section 3: CMS Facilities and the APL/CMS User 33

USING APL\360 OR APLSV WORKSPACES

To transfer APL\360 workspaces to an APL/CMS system requires
several stepse Get the APL\360 system staff to dump your
workspaces onto magnetic tapee Workspaces from an APLSV
system must be dumped in APL\360 compatible form using the
level 0 option of the APLSV utility programe. This tape is
not in the format of the CMNS dump tapey sSo your system staff
must convert the tape to an APL/CMS workspace on your diske

If you are familjar with CMS, then you may wish to do the
conversion yourselfe. The process is described in the
APL/CMS Installation Manual.

The conversion goes in two stepse Suppose the tape
contains a workspace from APL\360 called ALPHA. The first
step reads the tape and produces a CMS file with the name of
ALPHA and filetype of APLWS. The second step accepts ALPHA
APLWS as input, converts this workspace to the form used by
APL/CMS and produces the file called ALPHA VMAPLWS. The
same conversion procedure can be used for APLSV workspacese
APL(CMS) IUP workspaces already exist as APLWS <files, have
the same format as APL\360, and require only the second
conversion stepe.

After conversion, the workspace may contain functions
with the names BADHEADERn, where n goes from 1 to the number
of such namese The original header of these functions
contains at least one duplicate name and is stored as a
comment in the first line of the functione Edit the
function, correct the original header, delete the lamp and
del symbols, change the line number to zero, and close the
functione

The transfer of workspace information to APLSV (or other
foreign APL systems with I/0O capability) can be effected by
writing the canonical representation of the functions in the
workspace along with the variables in the workspace onto
magnetic tapee. Read this tape with APL programs to create a
workspace on APLSV.

SENDING WORKSPACES TO OTHER APL/CMS USERS

The magnetic tape produced by the TAPE DUMP command can be
used to send workspaces to other APL/CMS userse I£f the
other user is on the same physical machine as you, then it
is more efficient to do a direct disk—to—-disk transfer using
the APL/CMS public librarye Although an installation
option, you can normally)LOAD and)SAVE into libraries 1000

34 APL/CMS User's Manual

through 999999. Loading the workspace you wish to transfer
and saving it in the public 1library makes it available to
another user, who can drop it from the public library after
the transfere.

If you get the message
DISK NOT AVAILABLE

while attempting the)SAVE in the public 1library, it means
that the disk is temporarily unavailable for writing because
some other machine is writing on ite. Retry the command in a
few seconds. There is one drawback to this method, namely
the lack of privacy during the transfere. A more secure
transfer is via the previously described DISK commande.

Once a workspace has been transferred, it can be used by
entering the APL environment and using the) LOAD commande
The load command adjusts the size of the workspace to the
available storage. If the virtual storage on your machine
is too small to accommodate the workspace, the message

WS TOO LARGE
results and loading does not take place.

If you need to accommodate a workspace larger than your
virtual storage, you may return to the CP environment and
issue a DEFINE STORAGE command to expand the size of your
virtual storage (within limits set by your installation
manager)es Reload APL/CMS and try againe.

THE CMS BATCH FACILITY AND APL/CMS

VM/370 has a facility which allows CMS Jjobs to be run in
batch modes This facility may prove useful if you have an
APL program which runs for a long time. This Jjob can be
sent to another virtual machine (the CMSBATCH machine) and
it will be run on that machine; meanwhile, you can use your
machine for any other job, such as interactive APL/CNS.

To use the batch facility you must first of all prepare a
CMNS file. The file may have any name, but must have file
type MEMO. Each line of the file should contain one line of
APL inpute Typically, the line will be an APL command or an
APL statement for immediate executione. The file can be
prepared using the CMS editor, or alternatively it could be
written from an APL workspace using auxiliary processor
110.

Section 3! CNS Facilities and the APL/CMS User 35

When the file has been preparedy, it should be sent to the
CMSBATCH machine by using the CNS command BATCHAPL. The
BATCHAPL command takes five arguments which arel 1) the
userid to be used in charging for time on the batch machine,
2) the account number, 3) an arbitrary name used to identify
the _job, 4) the name of the MEMO file, 5) an optional
argument which is described belowe. As an exampley, BATCHAPL
SMITH 999 TEST1 INPUT1 will send a job which is to be called
TEST1 to the BATCHCNS machinee. The Jjob is sent as a series
of card images which go into the card reader of the batch
machinee. The first card specifies the accounting
information. Subsequent cards cause the APL/CMS system to
be loaded in the batch machine. APL/CMS operates in the
normal way except that it receives input from the virtual
card reader; each line of TEST1 MEMO is read as one line of
APL inputy and it generates the normal APL responsee.

Since the batch Jjob is being run on another machine, it
has access to the APL public libraries, but it does not have
access to the user's private librarye. If the Jjob requires a
workspace from the private library +then this workspace must
be sent to CMSBATCH by specifying its name as the =Tifth
argument of the BATCHAPL commande. As an example, suppose
the batch job is to use the functions INITIAL, COMPUTE, and
DISPLAY from the workspace MYFNS. Assuming an appropriate
MEMO file has been prepared, it could be checked by typing
it out:

cp term apl on
TYPE INPUT1 MEMO

JLOAD MYFNS
INITIAL
COMPUTE
DISPLAY

CP TERM APL OFF

The job is sent to the batch machine by:
batchapl smith 999 testl inputl myfns

The user should consult the VM/370: Command Language Guide
for General Users for restrictions on the CP commands
available under batche The memo file must not contain an
JOFF command; the BATCHAPL EXEC will supply the proper
termination sequencee. If the CMS editor is used to prepare
the MEMO file then the IMAGE OFF option of the editor should
be usedes The BATCHAPL EXEC is adequate for many batch jobs,
however it could be modified by your VM/370 system staff to
allow additional workspaces and input files to be used.

36 APL/CMS User's Manual

SECTION 4: APL/CMS AUXILIARY PROCESSORS

The APL/CMS system includes the following auxiliary
processors:?

AP100 COMNMAND

AP101 STACK INPUT
AP110 CMS DISK I/0
AP111 FILEDEF I/O

The COMMAND processor enables an APL/CMNS user to issue CP
and CMS commandse The STACK INPUT processor stores data for
input at the first opportunity to APL/CNS. The CMS DISK I/0
processor provides sequential and random access using the
CMS file systeme. The FILEDEF 1I/0 processor provides
sequential access to devices supported by the 0S simulation
facilities of CMS available through the FILEDEF command
using QSAM.

The example introduced in Section 2, "Using the APL/CMS
Auxiliary Processors®", is given in more detail below; refer
to 1t as you read the following sections.

S« 'EXAMPLE SCRIPT(370" SET INITIAL

S VALUE AND
EXAMPLE SCRIPT(370 DISPLAY IT.

110 [Jsvo's? SHARE VARIABLE
2 eee SHARE OK

S DISPLAY RESPONSE
011 TO INITIAL VALUE.

S«~'THIS GOES IN THE FIRST RECORD' SET A VALUE
S+~YAND THIS GOES IN THE SECOND?' SET ANOTHER

Q@ THE FILE NOW CONTAINS TWO RECORDS.

S REFERENCE
THIS GOES IN THE FIRST RECORD AND DISPLAY

S FIRST TWO
AND THIS GOES IN THE SECOND RECORDS.

OSVR'S" RETRACT VARIABLE
2 TO CLOSE FILE.

Section 4: APL/CMS Auxiliary Processors 37

Remember that APL/CMS is an interactive systeme. The best
method of learning to use the auxiliary processors is to get
on the system and experimente. Try the previous examplee.
The auxiliary processors are used within several workspaces
in library 12 APFNS, CONVERT CPWSVMNWS, and PRINT, for
examplee.

INITIAL VALUE

When an offer +to share with an APL/CMS auxiliary processor
is made, the value of the variable being offered should be a
character vector specifying the argument and options (irf
any) required by that auxiliary processor.

The general format for all initial values is:
fargument (options!

The auxiliary processors supplied with APL/CMS assist the
APL user in the transmission of data to a destination and
the receipt of data from a sourcee. The argument passed in
the initial value is used to determine this source and/or
destinatione.

Following the source or destination argument is & left
parenthesiis used to indicate "options follow". It should be
present only when options are specified by the usere. The
APL/CMS sauxiliary processors ignore extra Lleft parentheses
and disallow right parenthesese. The interpretation of the
initial value |is covered later for each auxiliary
processore.

OFFER PROTOCOL

The APL/CMS auxiliary processors match all shared variable
offers by the user with counterofferse. The initial value of
the shared variable is interpreted by the auxiliary
processor as a user requeste. After inspecting the operating
environment, the auxiliary processor specifies a new value
for the shared variable. This value, when referenced by the
user, will be a scalar 1 if the request is rejectede A new
value of the variable can then be specified by the user
after which the auxiliary processor (AP) repeats this
procedures.

When an acceptable initial value is specified, the AP

sets the shared variable to a scalar zero or a vector with
the first element =zeroe. After the user references this

38 APL/CMS User's Manual

value, the effect of all subsequent references and
specifications of this shared variable is to move data and
control information between the APL program and the
auxiliary processor, as described for each processore To
specify a different argument or options for a shared
variable, that variable must be retracted and reoffered with

the required initial value.

OPTIONS FOR DATA CONVERSION

Data transmitted between the APL program and the auxiliary
processors can be in three distinct forms:

1. APL variables, complete with size, shapey and type
information. This 1is the most convenient and efficient
form for most applicationse The conversion option for
this type of data is VAR.

2 Character vectorse. This form is used primarily for
interchange with other non—APL processorse Two
conversion options, APL and 370, are described below.

3. Bit vectors (that is, zeros and ones) that provide the
most general form of data transmission and
interchangee. The conversion option for this type of
data is BIT.

Characters outside of the workspace (for example, data
file records, punched cards, and printer lines) are
transferrable, as characters, to and from the workspace in
two ways:

1. Characters accepted by APL as input (processed as
though entered from a keyboard) and produced by APL as
output (as though for typing on a terminall)e. This
option is called APL.

2. EBCDIC codes used by the System/370. This option is
called 370.

You must have some knowledge of these two forms in order
to transmit character data to and from external mediae. Some
general information followsy, with details in YAppendix A:
Auxiliary Processor Conversion Options."

Section 4: APL/CNS Auxiliary Processors 39

The APL script conversion option (APL) produces
characters in the workspace as though the input data were
entered from the keyboard; output data is created as though
the characters in the workspace were typed at the terminal.
For example, the character "A" in the workspace is converted
to an %"A", and the character %A" in the workspace is

converted to the three characters: WAW, "hackspace", and
"w

The System/370 EBCDIC conversion option (370) provides a
direct mapping between some APL characters and some EBCDIC
characterse. For example, the character %A" in the APL
workspace converts to the EBCDIC WA", and the APL character
"A" converts to EBCDIC "a',

INPUT/OUTPUT PROCESSING

Introduction

The APL/CMS system includes two auxiliary processors that
provide file input and output capabilities. AP110, CMNS DISK
I/0, supports the NS file system which allows both
sequential and random accessings, AP110 creates files with
fixed or variable length unblocked recordse. Random access
of variable length records is inefficient compared to random
access of fixed length recordse. AP110 processes blocked or
unblocked fixed length records and unblocked variable length
recordse.

AP111, FILEDEF 1I/0;, may be used for sequential access to
CMS disk files and other types of devices such as magnetic
tapes card readers, line printers, and terminalse. This
device independence 1s achieved by using the OS simulation
facilities in CMSe The AP111 user must issue an appropriate
FILEDEF command to CMS (using AP100) before the specified
data set can be openede.s APl11l1 supports QSAM so that blocked
or unblocked and fixed or variable length records can be
sequentially processed. The workspace 1 APFNS contains
functions which simplify the use of AP11l1. One function,
for exampley, will automatically issue appropriate FILEDEF
commands required in common situationse Load the workspace
and type DESCRIBE.

CMS disk files with fixed length records can be processed
by either processor regardless of blockinge. Both I/O
processors open files for reading and writing although
switching between read and write is time—consuminge.

40 APL/CMS User's Manual

Record Variables

An APL variable used to transmit data records is called a
record variablee. Except for the initial reference after
properly specifying an initial value, all references of the

record variable yield records from the file being
processede All specifications into the record variable
cause records t0o be written into the filee. The previous

example used 'S' as a record variablee.

Continuing the previous example:

S~'EXAMPLE SCRIPT(370' SET INITIAL VALUE
FOR RECORD VARIABLE.

110 [Jsvo's!* SHARE VARIABLE
2 eee SHARE OK

S DISPLAY RESPONSE
013 ‘ TO INITIAL VALUE.

The file Jjust opened has two records; the 0 indicates
acceptance of the initial value by AP110, the 1 is the
position of the read pointer at the first record, the J is
the position of the write pointer following the last record
of the filee. '

Control Variables

An APL variable used to control or monitor data transmission
is called a control variablee. It is paired with the most
recently offered, but unpaired, record variable specifying
the same file or ddnames A control variable may be required
t0o query certain status informatione. For AP110, it is
required to achieve indexed selection of records from the
file.

Except for the first reference after a proper initial
value has been specified, the reference of a control
variable returns a scalar (AP111) or vector (AP110) whose
first element indicates the status of the previous
specification or reference of its paired record variable. A
zero indicates successful completione. For return codes and
status indicators, see “"Appendix B: Auxiliary Processor
Return Codese."

Section 4: APL/CMS Auxiliary Processors 41

The use of a control variable 1is illustrated by
continuing the example:

C~'EXAMPLE SCRIPT (CTL' SET INITIAL VALUE
FOR CONTROL VARIABLE.

110 QOsvo'c" SHARE VARIABLE
2 eee SHARE OK

C DISPLAY RESPONSE
0 TO INITIAL VALUE.

The '0' indicates acceptance of the initial value by AP110.

Record Pointers

AP110 maintains both a read pointer and a write pointere.
These pointers are independent and they indicate the
position of the record to be processed by a reference or
specification of the record variable. The value of the
control variable 1is the status indicator followed by the
read and write pointerse AP110) initializes these record
pointers to 1 and N+1, where N is the number of records in
the file, when the file is openede The initial reference of
the record variable returns a zero followed by these
pointerse.

Continuing our previous example:?

o} DISPLAY CONTROL
013 VARIABLE.

AP110 increments the read or write pointer by one after
each successful read or write of the file. Record pointers
can be reset by the user at any time by specifying an
integer into the control variablee A scalar sets the read
pointer; a two—element vector sets both pointers. An
integer of less than one does not change the pointere.

Continuing our previous example:

A+S READ RECORDe.

C DISPLAY CONTROL
023 VARIABLE.

S«Y WRITE RECORD.

c DISPLAY CONTROL
02 4 VARIABLE.

S«Z WRITE RECORD.

B«S READ RECORD.

42 APL/CMS User's Manual

C DISPLAY CONTROL

035 VARIABLE.
Ce2 RESET READ POINTER.
(& DISPLAY CONTROL
025 VARIABLE.
S READ RECORD.

AND THIS GOES IN THE SECOND

OSVR 2 1p*scC! RETRACT VARIABLES.
22

Now A and B contain the first two records from EXAMPLE
SCRIPT. Records 3 and 4 contain the variables Y and Z
(assuming these variables were character vectors since the
370 conversion option was specified)e.

AP111 processes files sequentially and does not support
record pointerse. The FILEDEF command, as an option, sets
both read and write pointers to the top of a file (the
default) or to the bottom of a file (DISP MOD). This
setting of the record pointers is in effect every +time a
file is opened for read, write, or switching between read
and writeo AP111 does not explicitly alter the position of
a file ({magnetic tape, for example) when the record variable
is retracted.

End File and Error Conditions

Whenever you reference a record variable and an end of file
is read, the I/O processor assigns a null wvector to the
variable. This is also done if a read error occurse. These
cases can be differentiated by inspecting the return code
available via a control variablee. Null variables can be
written only with the VAR optione.

Space Used by Auxiliary Processors

INPUT/OUTPUT BUFFERS: AP110 and AP111 need virtual storage
space for input/output bufferse. This space is located
outside the workspace in an area whose size is fixed
immediately after APL is invoked. The standard size is 8192
bytese. If the auxiliary processors are used to transmit
long records or to access many files simultaneously, they
may fail to find buffer space and will post an error in the
control variablee.

Section 4: APL/CNS Auxiliary Processors 43

The size of the buffer space can be set by supplying an
argument when APL is invoked, thus:

ipl apl parm x
-—— or ——

ipl cms
apl x

where:

x is the number of bytes (for example, 4096) or the
number of kilobytes (for example, 12K) or the
number of megabytes (for example, 2M).

parm is a necessary part of the IPL commande

The amount of space allocated is that requested, rounded up
to the next page boundarye. If the space is not available, a
JOFF HOLD is issuede.

PROGRAM STORAGE: Many CMS commands require some program
storage space 1in which to operatee. The size of this area
varies greatly among commandse. No such space 1is required
for CP commandse

AP100 is wused to invoke CP and CMS commandse If the
APL/CMNS system, ags distributed, is invoked by an IPL
commandy, then about 57,000 bytes of program storage are
available for CMS commands called by AP100. In general,
commands which reguire more program storage than is
available will fall because the CMS storage management
system should not allocate storage used by APL/CMS +to the
command; no harm should befall the APL/CMS system.

This is not the case if APL/CMS has been invoked as a
command under CMS. The CMS storage management system will
allocate space used by APL/CMS to any command which needs
ite This means that any CMS command invoked via AP100

needing program storage space will cause an abrupt
termination of APL/CMS. CMS commands available in the
subset mode do not regquire program memorye. The 1 APFNS

workspace includes a function to temporarily invoke the CMS
SUBSET mode which allows direct interactive CMS usagee. An
expert should be consulted if you wish to explore this
areae Details are supplied in the APL/CMS 1Installation
Manuale.

44 APL/CMS User's Manual

AP100-—THE COMMAND PROCESSOR

Initial Value

env
CMNS
cp

Description

The operating environment available to the user of APL/CNS
includes the environments of CNS and CP. Commands can be
processed by CNS and CP to dynamically change the
characteristics of these two environmentse. Character
vectors, or one—element arrays, when specified into the
shared variable, are immediately processed by the selected
environmente. Notice that the CMS environment includes a
command, CP, that passes the rest of the arguments +to CP.
Subsequent references of the shared variable yield the
return code set by CP or CMSe. For details on return codes,
see "Appendix B: Auxiliary Processor Return Codes". CP and
CMS commands are described in the VM/370: Command Language
Guide for Gemneral Userse.

The commands destined for CMS are broken into "tokens".
A token is a parenthesis or a series of nonblank
characterse. Only the first eight characters of each token
are usede. For both CP and CNS, all characters are conver ted
via the 370 option immediately prior to transmission (see
"Appendix A: Auxiliary Processor Conversion Options").

Varning: Some commands may cause abrupt failure of APL/CMS
and loss of the active workspace; refer to "Space Used by
Auxiliary Processors"s The CP command to define the size of
virtual machine storage or to IPL is an example of a
disasterous command under all circumstances.

Argument

env
specifies the command environment and defaults to CMSe.

Section 4: APL/CMS Auxiliary Processors 45

Examples:

The function below requests multiple copies of any printed
outpute

V COPIES N;3X

(11} X«~t'CP" SET INITIAL VALUE
[2] 100 [Jsvo'x! SHARE VARIABLE
(3] X+ 'SPOOL PRT COPY '",%N ISSUE COMMAND

v

The function below will erase the file specified by the
character right argumente

V Z+<ERASE R;CMS
(1] Z+100 [JSVO CMS+~'CMS'
[21 CMS«<'ERASE '4+R
[31 Z«~CMS

v

The value returned 1is 0 if the file is erasede A non—zero
value would indicate an error conditiong the value 28
indicates an nonexistent filee.

46 APL/CMS User's MNanual

AP101—-—THE STACK INPUT PROCESSOR

Initial Value

stk (cvt ord
CMS 370 END

APL BEG

LIFO

FIFO
stk
APL

Description

Character vectors can be stored for subsequent input at the
first opportunity to CMS and APL/CMS. Two areas are
availables The first, in storage and used by CNS and APL,
is called the CMS input stack; the second, a disk file used
only by APL, is called the APL input stacke. The CMS stack
is efficient to use but limited by available storage; the
APL stack is 1limited only by disk storage. Only character
vectors (or one—element arrays) can be stored by this
Processore. A reference of the shared variable obtains the
return code set by the last specification; zero indicates
successe For other return codes, see "Appendix B: Auxiliary
Processor Return Codes."

When CMS or APL/CMS issues a request for keyboard input,
a value from the beginning of the stack is used and no entry
is reguested from the usere. This entry is made as though
the user backspaces to the left margin, strikes the
attention, and enters the value. The CNS stack has priority
over the APL stacke If the user generates an APL interrupt
or if a character error is detected by APL/CMS when using
stacked input, both input stack areas are flushed and the
keyboard unlocks for inpute.

Warning: Certain values such as HX, HT, and RT cause
immediate action by CMS (and are not actually stacked) when
placed in the CNS stacke. Refer to the section on "Immediate
Commands"™ in the VYM/370: Command Language Guide for General
Userse.

Section 4: APL/CMS Auxiliary Processors 47

Argument and Options

stk
specifies the input stack to be usede. The default is

CMS.

cvt
is the standard option for character translation and
defaults to 370 This option may be used only with the
CMS stacke The APL stack is maintained in an internal
code which requires no conversione.

ord
indicates whether +the processor places data at the
beginning of the stack (BEG or LIFO) or at the end (END or
FIFO)e The default is ENDe This option may be used only
with the CMS stacke Entries into the APL stack always use
the FIFO method.

Example:

This function will save the active workspace and return.
The method used is to place a)SAVE CONTINUE command and a
branch to the statement RESUME at the beginning of the CMS
stacke The CMS stack has priority over the APL stack and
the BEG option will place the command in front of anything
already in that stacke. Execution is suspended by setting
the stop vector for a stop on statement with the label
RESUME. The stack entry is read at this point which saves
the worksipacee. The stack is read agaein whereupon the branch
causes execution to be resumede. The special CMS immediate
commandsy HT and RT, are used to prevent the normal terminal
outpute.

V CHECKPOINT:S;T

(1] S«t'CMS (APL BEG! SELECT CMS STACK, LIFO

[2] T—101 [OSvo's? SHARE S, IGNORE RESULT

[31] SetHrt HALT TERMINAL OUTPUT

[(4] S« "-<RESUME" SECOND OUT OF STACK

(sl S+')SAVE CONTINUE!" FIRST OUT OF STACK

(6] SACHECKPOINT«RESUME SET STOP VECTOR

[{7)] RESUME:S«'RT! RESUME TERMINAL OUTPUT
v

48 APL/CNS User's Manual

AP110——THE CMS DISK I/O PROCESSOR

Initial Value

nam (cvt fmt
VAR FIX
APL
370
BIT

v () Y

nam (typ
CTL

Description

This processor provides sequential and random access to disk
files under control of the CNS file systeme. The operation
of +this processor is described in the section on
input/output file processinge. The CMS disk file system is
described in the VM/370: Command Language Guide for General
Users.

Argument and Options

nam
specifies the name of the CMS disk file to be accessede.
It has one of the forms:

filename
filename filetype
filename filetype filemode

The default filemode is Al. The default filetype is
VMAPLcF, where c is the =first character of the conversion
method usede.

Section 4: APL/CMS Auxiliary Processors 49

cvt

specifies the standard option for conversion which
defaults to VAR except when the user gives a filetype of
VMAPLcFe. In this casey, the default will be the cvt cption
with matching first lettere. For example, if the user
gives VNAPL3F as the filetype, then the default conversion
is 370.

Note: All combinations of filetype and conversion can be
explicitly specified. The 370 conversion option is used
for filename, filetype, and filemode.

£fmt

indicates the type of file to be created. The default is
a file with variable length recordse. When FIX 1is
specifiedy, the file will contain fixed length records; the
record length is the length of the first record written
into the file. Each subsequent record must have this same
length or an error 1is reported (in the control variable)e.

Note: If the file already exists when the offer is made,
the FIX option is ignored and the existing file
characteristics are usede.

typ

50

establishes a control variable for the file, if an
unpaired record variable already exists for the same
file. The cvt and fmt options may be given but are
ignored if the CTL option is presente.

APL/CNS User's Manual

AP111-—-THE FILEDEF 1I/0 PROCESSOR

Initial Value

ddn (cvt
VAR
APL
370
BIT

——Q -

ddn (typ
CTL

Description

This processor provides sequential access, via QSAM, to any
device suppor ted by VM/370. The device and its
characteristics are specified by use of the CMS command,
FILEDEF. The operation of this processor is described in
the section on input/output file processinge. The FILEDEF
command is described in the VM/370: Command Language Guide
for General Userse. The workspace 1 APFNS contains functions
to facilitate AP111 usage.

Argument and Options

ddn
specifies the ddname to be accesseds It must be the
ddname defined by a FILEDEF command that the APL user has
already issued to CMSe.

cvt
specifies the standard option for conversion and defaults
to VARe. .

typ
establishes a control variable for the file, if an
unpaired record variable already exists for the same
ddnamees The cvt option may be given but is ignored if the
CTL option is presente.

Section 4: APL/CMS Auxiliary Processors 51

EXAMPLES USING THE INPUT/OUTPUT PROCESSORS

Examples for AP110

Example 1 uses CMS disk files for a sequential update
functione. SUP is given the name of a CNS file as an
argumente It updates "name VMAPLAF Al1" using "name CHANGES
Al1" and creating "name WORKFIL A1l" as a temporary new filee.
When the update is completey, SUP erases the old file and
renames the new file. The <files SUP processes contain
personnel records that are identified by the person's social
security number as the first nine characterse. The changes
file consists of complete replacement records or, if the
record is to be deleted, merely the social security numbere.
SUP provides a return code of O=successful completion,
l=update performed but no file erased or renamed, or
2=znothing donee.

Example 1:

V Z+«SUP FILENAME;OLDFIL;OLDREC;OLDSEQ;CNGFIL;
CNGREC ;CNGSEQ; NEWFIL ;NUMS ;CMS QIO

(1] Ze2

{21 OLDFIL~-FILENAME,' VMAPLAF!'

3] CNGFIL-FILENAME,' CHANGES (APL!

(4] NEWFIL+~FILENAME,* WORKFIL (APL"

£5] 110 [OSVO'OLDFIL"

(6] 110 [OSVO'CNGFIL"

{71 110 OSVO'NEWFIL"

(8] < (9#pOLDFILCNGFIL ,NEWFIL) /[JI0«0

[9] *CNGREC+9INUMS+'0123456789"

[10]) -+STRT

[11) USEO:NEWFIL«OLDREC

f12) OLDSEQ+«10LNUMS ¢9tOLDREC~OLDFIL

[{13] LOOP:-(OLDSEQ<CNGSEQ)/USEO

[14) --{OLDSEQ>CNGSEQ)/USEC

[15]1 - (0=pOLDREC,CNGREC)/ENDF

[16] STRT:0LDSEQ+10LNUMS¢9 tOLDREC~OLDFIL

[17] USEC:—+(9=pCNGREC)/DLET

[{18) NEWFIL«CNGREC

{191 DLET:CNGSEQ+~10LNUMS 9 1CNGREC+~CNGFIL

[20] -LoOOP

[21] ENDF:[JSVR 3 6p'OLDFILCNGFILNEWFIL"

[22] 100 [OSvo'CMS?

(23] =(z<CMS)/O

[24] CMS+~'ERASE ',FILENAME,' VMAPLAF"

[25] CMS+~'"RENAME ' ,FILENAME,' WORKFIL Al = VMAPLAF =‘
v

52 APL/CMS User's Manual

Example 2 illustrates the CMS disk file random accesse. The
FIND <function is given a personnel file, such as that
updated by SUP, and a social security numbere. It is to find
the location of the corresponding record (if any) in the
fileeo In particular, if it returns an integer (n), then the
nth record has the matching social security number. If it
returns a real (ne.5), then the given social security number
is not 1in the filee. If it were, it would occur between
records n and n+tl (0 <= n <= number of records in the file).
The only other possible return value is "SHARE ERROR"™ which
indicates that the FIND command could not establish the
necessary shares with AP110.

Example 2

V Z+FILE FIND SS;REC;NUM;[JIO;BOT ;TOP; ID
[1] REC+~FILE,' VMAPLAF!'
(2] NUM«REC, "' (CTL"
(3] 110 (OSVO'REC!
[4] 110 [OSVO* NUM!
(5] -~ (NUMV1tREC)/FAIL
[6] Z«2%[2071 tNUM
[71 I 0«-BOT+«0
(8] DROP:TOP«Z
[8] LOOP:Z«NUM+«~0.5xBOT+TOP
{101 -—=(z#lZ)/0
[11] ID«101'0123456789" (9 tREC
{12) - (SS<ID)/DRoOP
(131 BoOT<Z
{14] -LOOPxSS>ID
[15) FAIL:Z+°'SHARE ERROR!
v

Example 3 assumes that a function 1is suspended with a
domain errore. The function was using AP110 to sequentially
read and process INPUT DATA and the domain error occurred
because the latest record read had alphabetic characters
where a numeric field was supposed to be. To locate where
in the <file the bad record occursy use the following
sequencey using O—-origin, to determine its record number:

Example 3:

X« ' INPUT DATA (CTL®
110 [Osvo'x!*

D¢

BAD<"1+X[1)

Section 4: APL/CMS Auxiliary Processors 83

Examples for AP111

Example 4 uses the unit record equipment for a
card—to-printer functione The program, CTOP, expects as
input a series of decks stacked 1in the card reader as a

single file. These cards contain a sequence field in the
last four columns and a deck identification code in the
preceding four columns. The cards are to be listed on the

printer and each deck should start on a fresh pagee.

Example 4:

V CTOP3;CMSsSVPRINT;SVREAD;IDCARD
(1] 100 [OSvo'CuS!

[2] CMS«'FILEDEF CTOPOUT PRINTER (RECFM VA BLKSIZE 137"

{31 CMS«<*'FILEDEF CTOPIN READER (RECFM F BLKSIZE 80'
[41] SVPRINT«*CTOPOUT (370"
(5] SVREAD+'"CTOPIN (370"
[6] 111 OSVvO 2 7 p*SVPRINTSVREAD '
[71 -(SVPRINTVSVREAD) /O
(8] IDe'~1¢
[9]1 LOOP:-(0=pCARD+SVREAD)/O0
{10] -=(v/ID#41 S81CARD)/SKIP
f11] SVPRINT«' ',CARD
{121 -LoOOP
{131 SKIP:ID+41" 8tCARD
[14] SVPRINT«'1',CARD
[15) -LooP
v

The function shown in Example 4 would take care of many
card=-to—printer taskse However, because it uses characters,
the input is converted from 370 to APL and the output is
converted back from APL to 370. Thusy for example, CTOP
will not print cent symbols (Z).

54 APL/CMS User's Manual

Example 5 is a card—-to-card function that has the same
conversion problem as example 4. In fact, its conversion
problem is even more acute since CTOC might be used to
reproduce text deckse CTOC solves the problem by using BIT
conversione. As 1inputy, CTOC expects a series of decks
stacked in the card reader as separate files. The first
card of each deck has an identification code in columns one
to foure. The remainder of the deck is to be reproduced
except for the last eight columns of each carde. The last
eight output columns are to contain the deck identification
code and a seguence number.

Example S:

V CTOC FILES ;(QIO;BITS ;PUN;RDR;NUM;ID;CARD;SEQ;:F
(1] O1o0«0
(2] BITS+« (10 4p1),82 2 2 2T¢10
£31] 100 OSVO'F?*
[4] F+~'FILEDEF FILEO PUNCH(RECFM F BLKSIZE 80!
[51] F<~'FILEDEF FILEI READER(RECFM F BLKSIZE 80"
{61 BEGF:PUN~'FILEO(BIT"
{71 RDR-'"FILEI(BIT?
8] 111 (OSvOo 2 3p'PUNRDR!
[9] ~(PUNVYRDR) /NUM«0
{101 ID+<32tRDR
{11] LOOP:-{0=pCARD+~RDR) /ENDF
(12] SEQ+«,BITS[10 10 10 10TNUM~NUM+10;:]
[13) PUN~("641CARD),ID,SEQ
[14]) -LoOOP
{15] ENDF:[JSVR'PUN"
[16) [SVR'RDR'
{17) -(O<KFILES+~FILES-1)/BEGF
v

MULTIPLE ACCESSING

The preceding examples have been in terms of single
variables:

1« How do you read a file?
2 How do you send commands to CP via a shared variable?

Let us consider the implications of the ing of multiple
variables with an auxiliary processore.

The auxiliary processorsy COMMAND and STACK INPUT, can

share multiple varjiables with different or identical
destinationse Consider the following example:

Section 4: APL/CMS Auxiliary Processors 55

Example 62

A~B+~C+'CP*
100 Osvo 3 1pt'ABC!

A~'"INCORRECT REQUEST?'
B~ SPOOL OQOE OFF"
C-'Q F!
FILES: NO RDR, NO PRT, NO PUN

The variables A, By and C in Example 6 are independent,
yet they have something in commone. No one of them can
affect any of the otherse. If you reference A, you obtain
the return code that indicates an invalid CP commande. Using
B and C to execute successful commands has not changed this
return codee. In common, they share the same destination, so
their assignments are “"merged",; they are all sent to CPe.
For COMMMAND and STACK INPUT this is not significant, but
for other auxiliary processors it ise.

The I/0 auxiliary processors accept multiple record
variables; thus, they allow simultaneous access to several
filese Example 1 for AP110 is an update function that reads
both the old =file and the changes filee. The I/0 auxiliary
processors also accept multiple record variables with
identical data sources or destinations. Access to the same
file with multiple variables can be very useful, (to use
more than one conversion method, for example) although it
may be confusinge The following examples explore this
situatione.

If A and B are both shared variables using the card
reader as their source and you reference Ay, By, and finally A
again, then the second reference of A does not read the
second carde. Rather, its value is for the third card since
the second card was read by the reference to Be. Independent
variables causing a merged effect can allow, for example,
any APL function to print information without knowing
whether or not some higher calling function 1is also
printinge

Now assume that A and B are both shared with the APL/CMS
DISK 1I/O processor and that both had the initial wvalue
WSOMEFILE", If one references A, then B, and finally A
againg then the second reference of A reads the second
recorde The first B reference and the first A reference
each obtain the first recorde. These A and B accesses are
independentes)

Assume that A and B are both shared with the FILEDEF I/0

processor and that both are using the same CMS disk fileo
If they are using different ddnames (for example, different

56 APL/CMS User's Manual

FILEDEF commands were issued each specifying the same CMS
disk file) then A and B read records independentlye The APL

user should not attempt multiple access while the file is
being created by APl1l1.

The I/0 processors also allow multiple control variablese.
Because a control variable is accepted only if there is an
unpaired record variable for the corresponding file, the
meaning of these multiple control variables is cleare.
However, one should be aware of the method used for matching
control variables with record variablese. The control
variable will be paired with the most recently shared
unpaired record variable for the corresponding file (see
Example 7).

Example 72

V PROG;DATA; NUMB
[1] NUMB« (DATA«'FT70 FILE'),'(CTL"
{2] 110 [JSVO'DATA?
[3] 110 OsSvo*'NUMB?!

Example 7 shows that NUNB is paired with DATA. There is
no problem if some higher calling function is also reading

FT70 FILE without a control variable. Now consider Example
8.

Example 8:

V F1 COMPAR F2;R1:;I1;R2;I2
£1] I1<(R1+~F1),'(CTL?"
[2] I2«(R2«F2),'(CTL?
[3] 110 [OSVO'R1"
[4] 110 OSVO*R2¢?
(5] 110 Csvo'r1?
[6] 110 Osvo'r12!*

In most casesy the COMPAR function will worke However,
if the fileid in F2 is the same as that in F1, then Il is
paired with R2 and I2 1is paired with Rl. To avoid
malfunction, statements 4 and 5 should be reversede.

Section 4: APL/CMS Auxiliary Processors 57

OTHER AUXILYARY PROCESSOR DETAILS

All initial values are converted using the 370 option before
they are Inspected, thus allowing you to refer to filenames
that include 370 characters such as the $ (see "Appendix A:
Auxiliary Processor Conversion Options" for details)e.

Options can occur in any ordere. If conflicting options
occur (for example, 370 and BIT), then the option selected
depends on the auxiliary processore. Blanks can be used
freely? the initial value can use or omit leading or
tralling blankse The 'options follow! left parenthesis can
occur with or without a preceeding or following blanke Any
blank can be replaced by multiple blankse.

In some cases, records must be changed in length. When
made longer, the process is known as padding; the elements
added as a result are called pad characterse. The APL/CMNS
auxiliary processors pad records on occasione. When this is
necessary,y, character records are padded with blanks and bit
records are padded with zerose Records using VAR conversion
are never paddede. BIT records may require padding, even if
they are of variable format, due to hardware limitationse
On the IBM System/370, for exampley, all BIT records must
have a length that is some multiple of eighte. There is no
case in which character records must be paddede.

Note: The APL/CMS system includes a workspace called 1
APFNS. This workspace contains functions that facilitate
usage of the auxiliary processorse For example, one
function issues appropriate FILEDEF commands and offers
shared variables to AP111. For details, load this workspace
and type DESCRIBE.

58 APL/CMS User's Manual

APPENDIX A: AUXILIARY PROCESSOR CONVERSION OPTIONS

The CMS auxiliary processors provide conversion to and from
the workspacee. The details of the conversion are given
belowa

THE 370 CONVERSION OPTION

Many characters are common to both +the APL and EBCDIC
character setse. The conversion preserves most of these
characterse. These characters are the same in both sets:

A THROUGH Z O THROUGH 9 SPACE
< = > + - x

' - . HE Y ?)

«C » N | v/

These characters have different graphics:
APL: ATHROUGH Z ~ A * a + # & © ¢
370: a THROUGH z -~ §& " D2 % $ # -0 +0

(Note that +0 and -0 are the EBCDIC left and right braces.)
For example, "A" is converted to "a" on output and "a" is
converted to "A" on input.

The following conversion occurs only when going from APL
to 370.

APL: -
370: = -

The terminal control characters backspace, horizontal
tabulate, idle, line feedy and new line, are translated one
for onee All other EBCDIC codes are converted to "o" when
translated to APLe. All other APL characters are converted
to a space when going to 370. Those with graphics are:

I 4 T 2 L J € 3 p w

[1 7 L x + v ¥ &~ =< 2 x
O § ® o - t i 4 ¥

c > n U q @0 0O v » a

Appendix A: Auxiliary Processor Conversion Options 59

THE APL CONVERSION OPTION

Figure 1 shows the EBCDIC code as decimal integers, with
corresponding APL graphicse This table is indicative of the
conversion done by VM/370 when the APL type element is
specifieds The full APL character set is formed by use of
the backspace (BS) terminal control code in conjunction with
the other characters. For example, "A" is converted to "AY,
backspace, % " on output and " ", backspace, WA" |is
converted to A on inpute.

Output to and input from files are both converted by the
APL/CMS system as if going to or coming from the normal APL
terminale. For input, all characters not in the APL/CMS
input character set belowy such as invalid codes and invalid
compound characters (that is, those producing a character

error on keyboard entry) are converted to one unique
internal APL code, with no graphic, which CP normally prints
as a spacee For output, all characters other than the

APL/CMS output character set below, are converted to the
EBCDIC code O.

The Input Character Set of APL/CMS:

The input character set comprises the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZA
ABCDEFGHIJKLMNOPQRSTUVWXYZA
0123456789 ()L IFLX\|/#_eiIT™
AELPpw —+EXKVAMAIS=2D LT LAY
oPRecoaAnUCOVI~[ME' 1 .:°°; ,?

and SPACE.

The Output Character Set of APL/CMS:

The output character set comprises the input character set,
abovey, plus the terminal control characters:

BS - backspace

HT - horizontal tabulate
IL — idle

LF — line feed

NL — new line

60 APL/CMS User's Manual

vV Xxfpuoddy

Suof3dQ UO FSJIDAUO) JOSSIDO0IJ AJIeT]TXNY

19

370 APL 270 APL 370 APL 370 APL 370
0 32 64 SPACE 96 - 128
1 33 65 - 97 / 129
2 34 66 - 98 - 130
3 35 67 < 99 a 131
4 36 68 -2 100 T 132
5 37 69 # 101 L 133
6 38 70 v 102 v 134
7 39 71 A 103 A 135
8 40 72 £ 104 o 136
9 41 73 x 105 O 137

10 42 74 106 L 138

11 43 75 . 107 ’ 139

12 44 76 < 108 140

13 45 77 (109 _ 141

14 46 78 + 110 > 142

15 47 79 | 111 ? 143

16 48 80 112 1 144

17 49 81 w 113 c 145

18 50 82 € 114 = 146

19 51 83 P 115 n 147

20 52 84 ~ 116 u 148

21 53 8§ 1 117 4 149

22 (BS) 54 86 { 118 T 150

23 55 87 L 119 \ 151

24 56 88 [e] 120 152

25 57 89 - 121 153

26 58 90 122 H 154

27 59 91 123 155

28 60 92 * 124 156

29 61 93) 125 ' 157

30 62 94 H 126 = 158

31 63 95 127 159

Figure 1.

APL

370 APL 370 APL 370
160 192 224
161 193 A 225
162 194 B 226
163 195 C 227
164 196 D 228
165 197 E 229
166 198 F 230
167 199 G 231
168 200 H 232
169 201 I 233
170 202 234
171 203 235
172 204 236
173 205 237
174 206 238
175 207 239
176 208 240
177 209 J 241
178 210 K 242
179 211 L 243
180 212 M 244
181 213 N 245
182 214 o 246
183 215 P 247
184 216 Q 248
185 217 R 249
186 218 250
187 219 251
188 220 252
189 221 253
190 222 254
191 223 255

>
v
|

NHMMILQAHNL

QO NhWNMO

EBCDIC Codes (Integers) to APL/CMS Characters (Graphics) via APL Conversion Option

APPENDIX B: AUXILIARY PROCESSOR RETURN CODES

Section 4 indicates that the APL/CMS auxiliary processors
provide return codes describing the results of a previous
operatione With the COMMAND and STACK INPUT processors, you
reference the shared variable to obtain the return code.
The I/0 processors provide return codes via a control-type
shared variable.

The return codes from the COMMAND processor are generally
the return code from the command previously assigned to the
shared variablee. Since you can issue any number of
commands ¢ including commands written by yourself, it is
impossible to list all possible COMMAND return codese. A few
errors are intercepted and result in return codes that have
been generated by the auxiliary processor itself. If an I/0
problem causes the CMS OS simulation routines +to take a
SYNAD exit, AP111 generates a decimal return code which,
when conver ted to hexadecimal, has the four—byte
representation NO,N1,A0,Al. The first two values are the
two sense bytes and the latter two values are the two status
bytese. All other return codes are generated by the
auxiliary processors or result from some Xnown CMS macro
instructione All specific return codes are given below.

Appendix B: Auxiliary Processor Return Codes 63

Numerical Listing

10

12

13

Unknown CMS commande
No error existse.

Attempt to read a nonexistent file or unknown CP
commande

Permanent read errore.

Attempt to write in a file with a bad filemode (second
character) or to read a file with too many records for
cus.t

Attempt to write too many records in a CMS Iile.f

Attempt to read a record with invalid format or attempt
to write past the end of a variable—length file. You
can always write at the end of file (that is, you may
append a record to the file)e With a fixed—length file
you may also write past this point and one or more
blank records are inserted into the file; this is not
possible with variable length filese.

Attempt to read a record with incorrect record length
from a file with fixed formate.

Attempt to create a file when you already have the
maximum allowed by CMS.T

End-—-of—-file read or attempt to write on a read—-only
diske

Attempt to write on a full diske.

tThe VM/370: Command Language Guide for General Users gives
these limitse.

64

APL/CMS User's Manual

14

15

17

19

440

441

442 %

443 %

444%

445

Attempt to write on an unformatted diske.

Attempt to write a record with incorrect length into a
file with fixed formate

Attempt to write a record that is too large into a
variable length file.t

Attempt to write in a file already containing as many
data blocks as CMS will allow.?t

Data set cannot be opened for outpute.
Data set cannot be opened for inpute.
ABEND from the CMS OS simulation routinese.

Insufficient free storage for the CMS O0S simulation
routines.

You assigned an invalid value to a shared variable.
This cannot happen with VAR conversion. The value is
invalid because it is null or is an array, has the
wrong type, or is too bige. An error occurs, for
example, if BIT conversion is being used and the value
is 1 2 3. An error occurs with the APL and 370
conversion options if the value to be converted is
numeric instead of charactere.

You referenced a shared variable that is reading a file
using VAR conversion and the resulting record is not a
valid APL variable in internal form. For example, it
may not have a descriptor, the element count may not
equal the times reduction of the shape vector, etce

tThe

VM/370: Command Language Guide for General Users gives

these limitse.

*If these errors occury you can restart APL/CMS with more
free storage and try againe For details, see Section 4,
heading "Space Used by Auxiliary Processors."

Appendix B: Auxiliary Processor Return Codes 65

Return Codes by Processor

This information is included for the experienced VM/370 user
of APL/CMS. Each auxiliary processor is listed with an
indication of the origin of its return codese Each
processor cany in addition, return the 44x codes.
AP100
CP: Result Register after Diagnose.

CMS: Register 15 after SVC 202.
AP101

APL: Register 15 after FSWRITE

CMS: Register 15 after SVC 202 for the ATTN functione.

AP110

Register 15 after FSREAD or FSWRITE

AP111

Sense/Status Information on SYNAD exite.
Errors 12, 15, 17

66 APL/CMS User's Manual

n* (and keyboard unlocks) 13
DAI 19

0OAv 19, 20
gcT 19

0Jro 19

Oopp 19

Opw 19

OrL 19
gsvc 22
gsvo 21, 22
gsve 22
OsSVR 21

ors 19

grr 19

guoL 19

Owa 9, 19

JcorPY 17
)DIGITS 18
JLIB 17
)MSG 17
JOPR 17
JORIGIN 18
) PORTS 17
)SAVE 28
}STACK 15, 17
)JWIDTH 18
JWSID 18

A
abnormal disconnect 12
access
control 22
command (CMS) 2§
multiple 55
random 26, 40, 49
sequential 40, 49, 51
address of device 25
A-diskx 10, 28
AP (auxiliary processor)
control variables 41
data conversion options 39
description 45, 47, 49, 51
initial value for 38
offer protocol J8
options 381 45' 47’ 49, 51
record variables 41
use of 21, 37
APFNS, in LIB 1 18, 58
APL
command (see ')! entries)
commands 8
conversion of APL\360 ws 34
conversion option 39
environment 8
in TERM command 29
library 28
workspace 9
APLSV
compatibility with 21
conversion of APLSV ws 34
APLWS files 34

INDEX

AP100 45
AP101 47
AP110 40, 49
AP111 40, 51
atomic vector 20
attention 13, 16
double 13
auxiliary processor (see AP)

B

backspace 14, 59

batch facility 35
BATCHAPL command 36

BIT conversion option 39
block 26, 27

blocking messages 17
buffers, input-output 43

C
carriage return 13, 14, 14
character, errors 14
character set of APL/CNS
input 59
output 59
checkpoint a workspace 18
CNS '
batch facility 35
commands 8
commands in APL environment 45
disk I/0 processor 49
environment 8

tiles 26
stack 47
codes

error 63
return 63
command
ACCESS 2§
APL (gsee ')' entries) 8
BATCHAPL 36
CNS 8
CMS commands in APL environment 45
COPYFILE 30
cp 8
CP in APL environment 45
DISK DUMP 33
DISK LOAD 33
during function definition 14
ERASE 28
FILEDEF 30, 43, 51, 58
LINK 25
LISTFILE 26
MOVEFILE 230

PRINT 29
PUNCH 29
QUERY 27

QUERY TINE 30
READCARD 29
SPOOL 33

TAPE SCAN 232
TERN APL 29
TYPE 29

Index

67

COMMAND COMPLETE 12
communication line loss 12
CONTINUE workspace 22
control

of access 22

variables used with APs
conversion

of APLSV workspaces J34

s 18

41

of APL\360 workspaces 34

option in APs 39, 59
COPYFILE command 30
CcpP
{and keyboard unlocks)
commands 8

12,

commands in APL environment

ENTERED 12
environment 8, 13

D

damage, SI DAMAGE ENCOUNTERED

D—-disk 10

definition, function 14
DEFN ERROR 14

deletion of a line 16
device address 25
DEVICEy,; ERROR 11
directory, VM user 5, 25
disconnecty, abnormal 12

disconnected, running APL/CMS

disk
A 10
D 10
files 49
G 10
virtual 5, 10
z 10

DISK DUMP command 33
DISK LOAD command 33
DISK NOT AVAILABLE message
distributed workspaces 22
double attention 13

E
EBCDIC
edit
APL function 14
CMS editor 29
line deletion 16
end filte 43
environment 45
APL 8
CMS 8
CP 8, 13
ERASE command 28
error
abrupt termination 44
character 14
codes used by APs 63
DEFN 14
DEVICE 11
in locked function 15
in reading/writing files
nessages 11
STACK FULL 15
typing CNS commands 9
WS NAME TOO LONG 21
EXT CP command 13

68 APL/CNS User's Nanual

35

43

13

45

15

18

(see AP conversion option)

F
file processing 49, 51
examples 52
FILEDEF command 30, 43, 51, 18
FILEDEF I/0 processor (gee AP111)
filemode 26
filename 26, 49
filetype 26
VNAPLAF 49
VMAPLBF 49
VMAPLUT 28
VMAPLVF 49
VMAPLWS 26
VMAPL3F 49
fixed length records 26, 50
function definition 14
function header 16

G
G-disk 10, 28

H
horizontal tabulate 14, 59

I
idle control character 14, 59
immediate execution during function
definition 13, 15
incorrect password 11
initial program load 7
input

character set 59

line length 13
input buffers 43
input—output conversion 59
INTERFACE QUOTA EXHAUSTED 20
INTERRUPT: PERNANENT SV WAIT 22
IPL 7

L
labels in functions 16
length
fixed length records 26
variable length records 26
LIB 1 workspaces 22
library conventions 10, 28
limitation on workspace name 18
line
deletion in edit 16
feed 14, 59
input 13
loss 12
LINK command 25
LISTFILE command 26
locked function 15
LOGOFF 7
LOGON 6
loss of communication line 18

M
maximum
line length 13
records in CMS file 63
virtual storage 10
work area 10
message
CP ENTERED,) eeo 12
DISK NOT AVAILABLE 35
error 11
ready 9
WS TOO LARGE 35
messages, blocking 17
mode of CMS file 26
MOVEFILE command 30

N
name, of CMS files 26
names, surrogate 21
new line 59

control character 14
number of workspaces 11

(o]

offer to share 20

open quote 14

OS files (see FILEDEF command)
output character set 59
output buffers 43

P
password 6
incorrect 11
pendent locked functions 15
PERNANENT SV WAIT 22

pointer
read 42
record 42
write 42

PRINT command 29
program storage, use of 44
PUNCH command 29

Q
QSAM file access method 51
QUADTC 14, 20
QUERY
command 27
DISK 27
NAMES 28
STORAGE 10
TIME 30

R
random access 26, 40, 49
READCARD command 29
read—only library 10
read/write library 10
ready message 9
record

pointer 42

variables used with APs 41
records

fixed length 50

in CMS files 26
REQUEST PLEASE message 12
retraction of a share 20

S
SAVE 28
Script processor 29
sending workspaces to other users J34
sequential access 40, 49, 51
share, offer to 20
share, retraction of 20
shared variables 20
SI DANAGE ENCOUNTERED 15
size
of APL/CNS 10
virtual storage 10
workspace 9
spacey use of program storage space 44
SPECIAL, in LIB 1 14, 17, 20
SPOOL command 33
stack 17
CNS 47
command 15
CP 47
damage 15
full error 15
storage, query 10
storage managment 44
strong interrupt 13
surrogate names 21
SV WAIT 22
SVP MEMORY FULL 20
SVP SYMBOL TABLE FULL 20
system APL does not exiat 11

T

tabulate, horizontal 14

TAPE REW 31

TAPE SCAN 31, 32

TERM APL 29

time 30

translation during input—-output 59
TYPE command 29

type of CMS files 26

typing error in CNS environment 9

Index

69

v

VAR conversion option 39

variable length records 26

variables
control (see AP control variables)
record (see AP record variables)
shared 20

virtual
disk §
storage
maximum 10
size 10

virtual machine S
virtual storage, use of 10
VMAPLAF, as a tiletype 49
VMAPLBF, as filetype 49
VMAPLUT, as filetype 28
VMAPLVF, as filetype 49
VMAPLWS, as filetype 26
VMAPL3F, as filetype 49
VM/370

directory 25

ONLINE 12

user directory 5

PPppRD

70 APL/CMS User's Manual

w
WAIT, in PERNANENT SV WAIT 22
workspace 9
as a CMS file 28
number of 11
saving on magnetic tape 31
sending to other users 34
size 9
workspacesy distributed 22
WS NANE TOO LONG error 18
WS TOO LARGE message 35
WSID 18

Z-disk 10

370 conversion option 39

Trim Along This Line

8 8 e e P et 0 000 reE0000000000s0000000000000000000000CcIsssacssassssscscncsssosscss

N Y YR Y]

eecesssscsesessessescsesssenescsssoen

“escsessrscsessessccssnsnnns

READER’S COMMENTS

Title: APL/CMS User’s Manual Order No. SC20-1846-1
Programming RPQ MF2608
Program Number 5799-ALK

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

0O Customer Engineer 0 Manager 0O Programmer] Systems Analyst
O Engineer O Mathematician O Sales Representative [Systems Engineer
O Instructor 0 Operator O Student/Trainee O Other (explain below)

How did you use this publication?
O Introductory text O Reference manual 0O Student/ O Instructor text
O Other (explain)

Did you find the material easy to read and understand? [Yes O No (explain below)
Did you find the material organized for convenient use? [J Yes O No (explain below)

Specific criticisms (explain below)
Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SC20-1846-1

YOUR COMMENTS PLEASE . ..

This manual is one of a series which serves as a referenge source for
systems analysts, programmers, and operators of {BM systems. Your
comments on the back of this form will be carefuily reviewed by the
persons responsible for writing and publishing this material. All com-
ments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your IBM representative
or to the IBM sales office serving your locality.

auiT siyL Buoiy wial

cesecsssecscsccse

sen

eRUSIN SIS SHA TV

boid’

.

il

bui

B et aaeaaas e .LLOP :
FIRST CLASS
PERMIT NO. 38
PALO ALTO, CA.
]
BUSINESS REPLY MAIL O
| NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I——
: A
L]
POSTAGE WILL BE PAID BY I
P
IBM SCIENTIFIC CENTER
APL/CMS Publications
2670 Hanover Street
Palo Alto, California 94304
Cerenean IS F LR LRI Cerenenenes e irrererens A SRS

BV

0

International Business Machines Corporation

Data Processing Division

1133 Westchestor Avenue, White Plains, New York 10604
(U.S.A. only)

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

.

T ip81°020S VST Ul peiliig T BO9E AN DdY

