

Systems

File No. $370-22 i

Order No. SC20-1846

APL/CMS User’'s Manual
Programming RPQ MF2608

Program Number 5799-ALK

This publication describes APL/CMS. It also describes the
APL/CMS auxiliary processors, which allow the APL program
to perform input and output operations to disks, magnetic
tapes, line printers, and other devices.

The programming RPQ described in this manual, and all
licensed materials available for it, are provided by IBM on a
special quotation basis only, under the terms of the License
Agreement for |BMProgram Products. Your local IBM branch
office can advise you regarding the special quotation and
ordering procedures.

JLIBIM

First Edition (July 1974)

This edition corresponds to Release 1 of APL/CNS and to all subsequent
releases until otherwise indicated in new editions or Technical
Newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBN System/360 and System/370 Bibliography, Order No.
GA22-6822, for the editions that are applicable and currente.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBN branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. I£f the form has been removed, comments concerning the
contents of this publication may be addressed to IBM Scientific Center,
APL/CNS Publications, 2670 Hanover Street, Palo Alto, California 94304.

© Copyright International Business Nachines Corporation 1974

This publication provides information on
how to use APL/CMS, differences between
APL/CMS and APL\360, and the auxiliary

processors available with APL/CMS.

This manual has the
and two appendixes:

following sections

® Section 1 is the introduction to

APL/CMS.

® Section 2 describes APL under CMS, the
virtual machine concept, logging on to
VM/370, related CP, CNS, and APL
commandsy how APL uses virtual storage,
how to save and copy workspaces, and
common error situations and what to do
about theme.

® Section 3 describes how APL/CMS differs
from APL\J360 in terms of keyboard 1I/0
operations, error handling, function
definition, primitive functions, and APL
commandse

® Section 4 describes new functions not
available with APL\360: new primitive
functions, new system functions and
system variables and shared variables.

® Section £ describes CMS
the APL/CMS user

facilities for

® Section 6 describes the auxiliary
processors that allow APL programs to
request certain CMS services:
——AP100 the Command Processor that
passes commands to CMS and CPe.

-—AP101 the Stack Input Processor that
stores and supplies input entries for
use by CMS or APL/CMS.

-—AP110 the CMS Disk I/0 Processor that
provides sequential and random access
to CMS files.

——AP111 the FILEDEF I/0 Processor that
provides sequential access, via QSAM,
to any I/0 device suppor ted via
FILEDEF. This includes readers,
punches, printers, and real O0S disks
(in read/only mode).

translation
processor

describe
auxiliary

® Appendixes that
table options and
return codese.

PREFACE

The APL/CMS system combines the
programming features of APL and the virtual
machine facility of vM/370. Several
subsets of the system can be defined. One
can learn a subset of the system, use it to
solve problems, and go on to learn more
advanced features as the need arisese. The
study and the use of APL/CMS is as follows:

1« Read Sections 1 and 2 in this manual.

If unfamiliar with APL, one should
read the APL\360 User's Manual,.

2« Read Section 3 and Section 4 through
"System Functions and System

Variables"™ of this manuale Try making

use of these featureses

3¢ Read the remainder of +this manuale.
Try using the shared variable facility
and the APL/CMS auxiliary processorse

PREREQUISITE PUBLICATIONS

APL\360 User's
GH20-0906

Manual, Order No.

COREQUISITE PUBLICATIONS

The following publications also provide
information that may be of interest to the
APL/CMS usere.

APL/CMS Installation Manual, Order Noe.
SC20-1845

APL\ 360 Primer, Order No. GH20-0689

IBM Virtual Machine Facility/370:

Command Language Guide for
Users, Order No. GC20-1804
System Nessages, Order Noe. GC20-1808

General

Terminal User's Guide, Order Noe
GC20-1810
APL Shared Variables (APLSYV) User's

Manuale.

C

SECTION 1: INTRODUCTIONe ¢ ¢ o o o o
SECTION 2: USING APL UNDER CMS ¢ o o
The Virtual Machinee o ¢ ¢ o ¢ o o o
Establishing a Connection to VM/370.
Loading APL/CMS. ® e ®© e o o o o o o
CPy, CMSy, and APL CommandSe e ¢ ¢ o o
Use of Virtual Storage « o ¢ ¢ o o o
Saving and Restoring Workspacese o« o

Errors e ¢ ¢ ¢ ¢« ¢ o ¢ o o ¢ o ¢ o o

SECTION 3: GENERAL SYSTEM CHANGES. o
Changes in Keyboard Entry and Qutput
Double Attention ¢ ¢ ¢ ¢ ¢ ¢ o o o
Input Line Limitatione o« ¢ ¢ o o o
Open QuUote o ¢ ¢ ¢ ¢ ¢ ¢ o o o o o
Character Errors « ¢ ¢ ¢ o ¢ o o o

Commands during Function Definition. .

Escape from Literal Inpute o ¢ o o

Extended Print Width ¢ ¢ ¢ o o o o
Bare Output. e ®© e e e © o & o o© o
He terogeneous Output ¢ ¢ o o o o o
Changes in Error Handlinge ¢« o ¢ o o
Depth Errore ¢« ¢ o ¢ ¢ ¢ o o o o o
Stack Full Error <« ¢ e ¢ e o o o o
Stack Damage e o © o © o ¢ o o o o
Errors in Locked Functions « ¢ « o
Range Errore ¢ ¢ o o o @ ¢ o ¢ o o
Result of Defined Function ¢ ¢ ¢ o
Changes in Function Definition « « e
Immediate Modification e« ¢ ¢ ¢ o o
Print Width Limitation « ¢ ¢ ¢ ¢ o
Line Deletione « o ¢ ¢ ¢ ¢ o o o o
Stop and Trace ¢ ¢ e o ¢ ¢ o o o o
Stack Damage ¢ ¢ ¢ o ¢ o o o o o o
Line Dlsplay e ®© ® @ o o o o o o o
Stop and Trace in Locked Functions
Function Headere ¢ ¢ ¢ o ¢ ¢ o o o
CommentsS ¢ ¢ ¢« o ¢ @ ¢ o o o o o @
LabelsS o ¢ ¢ ¢ ¢ o o o o o e o o o
Changes in Primitive Functions « « o
Nonadic TransposSee o o o o o ¢ o o
ResiduCe e ¢ ¢ ¢ ¢ @« ©¢ ¢ ¢ ¢ o o o
Encode e ¢ o ¢ ¢ ©¢ ¢ ¢ o o o o o o
Generalized Matrix Product and Matr
Dividee o ¢ ¢ ¢ « ¢ ¢ ¢ o o o o o
Subscripted Specificatione ¢ ¢ o o
Compress and Expande o o o o o o o
Changes in System Commands ¢« o o o o
Communication Commands e o o ¢ o o
The ERASE Commande e o o o ¢ ¢ o o
The SYMBOLS Commande o o ¢ o o .
The STACK Commande e ¢ ¢ ¢ o o o o
Workspace Identification ¢ ¢ ¢ ¢ o
Local Function NameS o o ¢ o o o o
The CONTINUE Workspace « o o o o o

L] L]
L] L]
- L]
L] -
*® L]
L] L]
L] L]
- L]
L] L]
* L]
- L]
* -
L] L]
L] -
L] L]
L] L]
L] L]
L] L]
ix
L] L]
- L]
L]
L] L]
L] L]
[] L]
L] *®
L] L]
. L]

12
12
12
12
12
12
13
13
13
13
14
14
14
14
15
15
15
15
15
15
16
16
16
16
16
16
17
17
17
17
17
17
18

18
20
20
21
21
21
21
21
21
22
22

CONTENTS
SECTION 4: NEW LANGUAGE FEATURES « o o « 23
New Primitive FunctionsSe o o o o ¢ o o « 23
SCAn e ¢ ©¢ ©¢ ¢ ¢ ©¢ o © e o © o o o o o 23
EXecutCe o ¢ o o o o ¢ o o o o o o o o 24
Format « o« « ¢ ¢ ¢ ¢« o o« o o o o o o o 26
System Functions and System Variablese. « 29
Introduction ¢ ¢« ¢« ¢ ¢ ¢« ¢ ¢ ¢ o o o o 29
System Functions e o« ¢ ¢« o ¢ o ¢« o o ¢ 29
System Variables e o« ¢« ¢« ¢ ¢ o o o o o 32
Shared Variables o« « ¢ ¢ o o« o « o o o o 34
Introduction ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o o« 34
Offers o« « ¢ ©« ¢ o« o« o« o o« o« o o o o ¢ 35
Retraction ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ « o« o o o o 36
Using the APL/CMS Auxiliary Processors 36
Compatibillty with APLSV ¢ ¢ ¢ ¢ ¢ o o 37
SECTION 5: CMS FACILITIES AND THE
APL/CMS USERe ¢ o ¢ ¢« ¢ ¢ o o ¢« o o o o 39
LINK and ACCESS Commands e o e o e o ¢ o 39
CMS FileSe e ¢ ¢ © ¢ ¢ ¢ o« @« ¢ o o o o o 39
LISTFILE Command « ¢ ¢ ¢« e« o« o« o o o« o o 40
QUERY Commande e ¢ ¢ ¢ ¢ ¢ o © ¢ o ¢ o o 41
ERASE Commande o o o ¢ ¢ o o o o o o o o 41
Workspaces and CMS Files e o o o ¢ ¢ o o« 41
PRINT, PUNCH, and TYPE CommandSe o o o o 42
EDIT and SCRIPT Commands ¢ o o ¢ o o o o 42
FILEDEF Commande o o o o o o o o o o o o 42
COPYFILE and MOVEFILE Commands « ¢« « o o 43
Time o o ¢ ¢ @« ¢ ¢ ©¢ ¢ ¢ o o o o o o o o 43
Saving Workspaces on Magnetic Tape o« ¢« « 43
Using APL\360 or APLSV WorkspaceSe o o o 45
Sending Workspaces to Other APL/CMS
USers e e o o © © o o o o o o« o o o o o 46
SECTION 6: APL/CMS AUXILIARY PROCESSORS. 47
Initial Valuee ¢ @ ¢ ¢ ¢ o o o o o o o o 47
Offer Protocol o« ¢ o ¢ ¢ « ©« o« ¢« o o« o o 48
Options for Data Conversione ¢ ¢« ¢ ¢ « o« 48
Input/Output Processinge o« ¢« ¢ ¢ ¢ ¢ o o« 49
AP100-—The Command Processor « « ¢« o o o 52
AP101--The Stack Input Processor « « « « 53
AP110——The CNS Disk I/O Processore. « « « S5
AP111-—The FILEDEF I/0 Processor « « « ¢ 56
Examples Using the Input/Output
ProcesSsorSe « o o o« « o« @« « o o o o o o 57
Multiple Accesslng e e ¢« @« o« o o o o o o 60
Other Auxiliary Processor Detailse ¢« ¢« o 62
APPENDIX A: AUXILIARY PROCESSOR
CONVERSION OPTIONSe ¢ o o o © o o ¢ o o 63
The 370 Conversion Optione o o o o o o o 63
The APL Conversion Optione o« o o o ¢ o o« 64
APPENDIX B: AUXILIARY PROCESSOR RETURN
CODES o ¢ ¢ @ © ¢ ©« ¢ o« ¢ ©« o &« o o o o 67
INDEX. L] L] L] e L] L] - L] L] L]] * L] L] L] L] L] 71

FIGURES

Figure 1. EBCDIC Codes (Integers) to
APL/CMS Characters (Graphics)
via APL Conversion Option. . . 65

-4

SECTION 1: INTRODUCTION

APL/CMS is an APL system that runs under CMS (Conversational Monitor
System), a component of VM/370 (IBM Virtual Machine Facility/370). It
provides the facilities of APL\360 together with language enhancements
introduced by APLSV (the APL Shared Variable System).

The APL language and system commands used in APL/CNS are
fundamentally the same as described in the APL\J360 User's Manual. The
reader must be familiar with that documents Minor differences are noted
herein being mainly in the areas of system commands, primitive
functions, function definition, error handling, and keyboard entry and
output, Major differences are listed belowe.

Shared Variables: The addition of a shared variable facility which
provides a simple and effective way of working with CMNS disk files,
magnetic tape files, and other high speed input and output devicese. The
facility is managed by dynamically executable system functionse.

Large Workspaces: The use of virtual memory which allows the workspace
size to vary from user to user up to a maximum of 16,400,000 bytese.

High Performance: A new implementation designed for rapid execution of
the APL languagee An APL Assist feature is available for the System/370
Model 145 to provide a further increase in execution speed.

Auxiliary Processors: Four auxiliary processors designed to give the APL
user a convenient way to use the powerful facilities of VM/370 through
the medium of shared variablese.

Shared System: APL/CNS utilizes the feature of VM/370 which allows one
copy of the system to service many independently operating APL/CNS
virtual machines.

Scan: A new opera tor is provided for efficient representation and
execution of algorithms which otherwise require iteratione.

Execute and Format: Efficient conversion between character arrays and
numer ical arrays is provided by these new primitive functionse

Canonical Representation: System functions are provided to convert
between defined functions and their representation as character
matrixese.

System Variables: These specially treated shared variables communicate
with the APL system to control parameters such as the index origin and
to provide information such as the time of daye.

Latent Expression: This system variable is automatically executed when a
workspace is loadede.

Section 1: Introduction S

SECTION 2: USING APL UNDER CMS

THE VIRTUAL MACHINE

VM/370 is a system that manages the resources of a single computer so
that many different computing systemsy called virtual machines, appear
to exist,. Each virtual machine appears to have a system console, a CPU,
storage and input/output devices. It is not necessary to understand the
implications of these terms, but you may want to know, for example, that
the storage size of the virtual machine affects the size of an APL/CMS
workspacee.

To use APL/CMS, you need access to a virtual machinee. Usually, your
VM/370 system operations group can prepare a virtual machine for your
use and tell you the name (called the userid) of +the machine and a
password that controls access to ite.

VM/370 maintains a directory of all the virtual machines that share
the resources of the real computere. The directory contains the userid,
password, accounting information, normal size of virtual memory, maximum
size of virtual memory, and a 1list of I/0 devices, of varying
properties, identified by numberse. Some of +the properties of the
machine can be changed during a terminal session (for example,
increasing the size of the virtual storage up to the limit specified in
the VM/370 directoryle.

Each user of APL/CMS must have access to a virtual machine. When the
user logs ony, VM/370 looks up the directory entry and supplies a virtual
machine with the appropriate propertiese Typically, a virtual machine
has a console (for example, an IBM 2741), a CPU, storage, one or mdre
virtual disksy, a virtual card reader, punch, and line printer. A
virtual disk is a part of the space on a disk device (for example, five
cylinders on an IBM 3330).

ESTABLISHING A CONNECTION TO VM/370

Consult with your system operations group for the 1location and
properties of the terminals you can usey, and to find out how to
establish a connection. The APL\360 User's Manual describes some of the
terminals used for APL. In this manualy, an IBM 2741 is assumede The
terminal has two type elements: one used for VM/370 and one used for
APL. Install the VM/370 type element, and establish a connectione The
terminal will +type a response that will include VM/370 ONLINE or
RESTARTe. If the keyboard is locked, press the attention keye Type
LOGON followed by your userid {the name of your virtual machine)
followed by N (short for MASK).

logon smith m

would be used by someone with the user identification SMITH. You may
enter lowercase letters, as shown in the examplee. The machine will
usually reply in uppercase letterse. Typing the m causes VM/370 to print
a mask string to conceal your passworde. The machine response is:

ENTER PASSWORD:
IS ENNN

6 APL/CMS User's Manual

Enter your password on top of the printed mask stringe The machine then
prints the time and datey, and any information that the operator wants
you to know aboute. If you have problems logging on, contact your system
administrator, or check the VM/370: Terminal User's Guide for guidance
on what to doe

VM/370 has two major componentse The first component is CP, which is
the control programe It manages the real resources of the installation
to provide independent virtual resources, in the form of virtual
machines, for its users\CMS (the Conversational Monitor System) is an
interactive monitor system that runs under CP and offers user—oriented
features which control the virtual machinee.

All programs running on a VM/370 system are under control of CP; they

may or may not use CMS, APL/CMS is a system that provides the APL
language using the facilities of CMS and CP under VM/370.

LOADING APL/CMS

After your password is accepted, the introductory message is printed,
the keyboard is unlocked and CP waits for you to enter a CP commande
Now enter the command which causes CP to load the APL systeme This is
done in one of two waysy depending on how your system operations group
has set up the APL systeme.

The first method is to install the APL type element and type
IPL APL
IPL stands for initial program load. This command initiates the loading
of the APL/CMS systeme. The machine responds:
¥

A PL / CMS
CLEAR WS

When the keyboard unlocks, you can begin to enter APL statements and
commandse If the machine responds

[ti~e| ax[Loel TO~ edul~

This message is SYSTEM APL DOES NOT EXIST with the VM/370 type elemente.
You should verify that APL is the name assigned to APL/CMS at your
installatione.

The second method of invoking APL/CMS is to enter

ipl cms
apl

You will then be asked to install the APL +type element and press the
return keye The system responds as descr ibed in the previous
paragraphe You can now use the system in the same way as an APL\360
systeme You can log off the system by typing the APL command)OFF. The
following is an example of a short session at the terminale.

Section 2: Using APL under CNS 7

d'x38z irvyr; vm/370 online

1 smith m

ENTER PASSWORD:

o BN

LOGON AT 18:01:18 PDT TUESDAY 03/19/74
ipl apl

APL/CMS

CLEAR WS

2+2
4

2x3
6

332
1.5

)OFF

CONNECT= 00:08:45 VIRTCPU= 000:00.66 TOTCPU= 000:02.20
LOGOFF AT 18:10:03 PDT TUESDAY 03/19/74

CP, CMS, AND APL COMMANDS

Some of the messages that you enter at the terminal will be treated as
commandSe The kind of command that can be used at any time depends on
the current environmente. There are three environments: CP, CMS, and
APL. When you first log ony, you are in a CP environmente. If you IPL
CMS, then you are in the CMS environment. If you IPL APL (or enter ‘'apl?!
when in the CMS environment), then you go to the APL environmente. A
summary of the way the environment changes is:

To go from To Enter

Not logged on CP logon

CP APL* ipl apl

CP CMS* ipl cms
CMS APL* ipl apl
CMS APL apl

APL Logged off) OFF

APL CMS)OFF HOLDt
APL CcP)OFF HOLDYt
CMS Logged off logoff

CcP Logged off logoff

CMS CP CP

*Note that IPL APL and IPL CMS are not available in some installationse
TYou return to CP if you invoked APL by an IPL.

When you are in the CP environment, all input data is treated as CP
commandse. When you are in the CMS environment, input data is treated as
CMS commands; if they are not recognized as CMS commands, then they are
treated as CP commands. When in the APL environment, all input data is
treated as APL statements or commandsSe. CMS does not accept APL
commandsy nor does APL obey CP or CMS commandse

8 APL/CMS User's Manual

9

If you have made a typing error while entering a CP or CMS command,
then you have a chance to correct the error if you have not yet pressed
the return keye. Entering ¢ causes the machine to ignore everything to
the left of the €. Entering @ causes the previous character to be
ignored; entering 2 causes the two previous characters to be ignored,
and so one. For example,

ipx a¢ ipl cms
igqapl cms
ipl dmdacms

all have the same effect as if "ipl cms" had been typed without any
errorse. If you make an error and fail to correct ity then you must wait
until CP or CMS has processed it; typically, the result is an error
message indicating an unknown command, the keyboard unlocks, and you can
try againe (The @ and ¢ are the characters ~ and 2 of the 987 APL type
element and < and - of the 988 APL type element.) These VM/370 logical
line edit characters can not be used while in the APL environmente.

When a CMS command has finished execution, it responds as follows:

R; T=nenn/Xexx hhemmess
This is called a Ready messagee nenn and Xexx are the virtual and real
CPU times (in seconds and hundredths of seconds)e hhemmess is the time
of day (hours, minutes, and seconds). If an error has occurred, then

the ready message (R;) is replaced by R(nnnnn) where nnnnn is an error
code; in most cases an explanatory message appears on a previous linee.

USE OF VIRTUAL STORAGE

An APL program uses an area of storage called a workspacee The
workspace contains user defined functions and data, some space for
system tablesy, and a work areae. As new functions and data are defined,
the space they need is taken from the work areae. The amount of work
area can be determined by the APL system variable

WA (I22 ON APL\360) e U e s

In an APL\360 system, the size of the workspace is fixed when thekéiéfém“

is generated and all users have the same workspace sizee. In APL/CMS the
size of the workspace is determined dynamically when you load APL.
After space is allocated for the system and for input/output areas, the
rest of virtual storage is allocated to the workspacee. Subsequently,
when loading a workspace, its work area is adjusted accordinglye.

The space used by APL/CMS varies from installation to installation,
but a typical figure is about 340,000 bytesy not including the
work spacee The size of your virtual storage is determined by an entry
in your VYM/370 directorye. When in the CP or CMS environment, you can
find out what the size is by entering the command:

query storage ;LM)
The reply may be in units of K (for kilo or 1024) bytes or M (for mega
or 1,048,576) bytese If the reply is, for example, 512K then the work
area in the workspace 1is approximately 170,000 bytese. As you become
familiar with APL, you should be able to relate the workspace size to

the kinds of APL programs you can rune The maximum virtual storage

allowed by VM is 16M bytese The maximum work area under APL/CMS is

about 16,400,000 bytese. I
Vo o

E 3

AR Section 2: Using APL under CMS 9

SAVING AND RESTORING WORKSPACES

CMS refers to virtual disks by one of the letters A through G, S, Y, and
Ze The distributed version of APL/CMS uses the following disks:

—— User'!s private library

Temporary space used during)}COPY and)PCOPY, for example
—— Libraries 1000 through 999999 (read/write access)

—— Libraries 1 through 999 (read—-only access)

NQU >
|
I

The A-disk and D-disk belong to your virtual machine, and normally
only your machine has access to theme. The other disks belong to another
virtual machine which every APL/CMS user c¢an accesSe The APL)SAVE
command stores a workspace on the A-diske A library number causes the

public 1library to be accessede. A workspace cannot be saved in a
read—only librarye The read—-only library is usually maintained by the
APL system librariane Everyone has access to the read/write public

library if one existse.

Under APL\J360 the user's account number identifies the user's private

library to other userse Under APL/CMS, each private 1library is
maintained on the user's A-diske Users cannot directly access another
user?'s private librarye. Numerous methods exist for transferring

work spaces between users in a secure mannere.

APL/CMS sets no limit on the number of workspaces that can be stored
in the private library; the limit depends wupon the total amount of disk
space availablee. If insufficient space is available to perform a)SAVE,
then a disk full error occurse. You can make room with the)DROP
commnande Section 5 contains an explanation as to how you can find the
amount of disk space used by each workspacee.

If the read/write public 1library (G- disk) is full, consult the
APL/CMS systems staff at your installatione. If the message DISK NOT
AVAILABLE appears when attempting to save a workspace in the public
libraries, try it again in a few seconds as another user was probably
accessing that diske

ERRORS

APL/CMS fundamentally is 1like APL\360 in its handling of errors. Most
of the error messages are the standard APL\360 error reportse. You may
also get the types of errors discussed in this sectione.

NOT IN CP DIRECTORY
This message will be received when attempting to logon when you are

not an authorized wusere. It may also appear if you made a typing
errory or if there was line noise creating a probleme.

PASSWORD INCORRECT
See the installation manager to find out your correct passworde

Unlike APL\360y, you cannot directly respecify your passworde.
Typing errors or line noise may cause this message to appeare.

10 APL/CMS User's Manual

DMSACC112S DISK 'A(191)' DEVICE ERROR

This message occurs when your disk is not in the proper CMS format
and must be formatted using the CMS FORMAT commande. Unless this is
doney, APL/CMS does not have the capability to access Yyour private
librarye.

SYSTEM APL DOES NOT EXIST

This message is an indication that your installation has generated
APL/CMS under a different name or that APL/CMS is available only
from the CMS environmente

CP (keyboard unlocks)

The letters CP are typed as the result of telephone-line noise or
impor tunate use of the attention keye. Type the word BEGIN (B for
short) and press the return keye. If you are attempting to generate
a double attention, type EXT and press the return keye.

COMMAND COMPLETE ee¢e¢ CLEAR WS

This message (ellipsis indicates several lines of print) may be
caused by an error in APL/CMS. Report the occurrencel(s) to the
system operations groupe. You can continue to work with APL, but
your active workspace has been replaced by a clear workspacees

CP ENTERED, REQUEST PLEASE.
This message indicates that you are in the CP environment and must
reload APL/CMS.

RESTART

—_— or ——

VM/370 ONLINE
Either message indicates that VM/370 has been restartede You must

logon to the system and reload APL/CMS. Your active workspace has
been loste.

communication line loss

You may lose the active workspace because of an abnormal disconnect
of the telephone connection to VM/370. A 15-minute time period is
provided to allow you to reestablish the communication 1line and
logon againe For the method of resuming APL execution refer to
Section 3 under the heading "The CONTINUE Workspace"W,

Section 2: Using APL under CMS 11

SECTION 2: GENERAL SYSTEM CHANGES

This section describes how APL/CMS differs from APL\J360. Differences
are grouped in terms of keyboard I/0 operations, error handling,
function definition, primitive functions and system commandse This
section is based upon the APLSV User's Manuale.

CHANGES IN KEYBOARD ENTRY AND QUTPUT

DOUBLE ATTENTION

Generating a double attention under APL/CMS requires a fine touch as CP
moni tors attentions for possible entry to that environmente. Pressing
the attention key twice with deliberate speed should sufficee. If the
characters CP are typed, indicating entry to the CP environment, simply
type EXT; the effect 1is the same as a properly executed double
attentione.

If you are in the CP environment and do not wish to generate a double
attention, type BEGIN,

INPUT LINE LIMITATION

The maximum number of keystrokes which can be entered, excluding the
terminal carriage return, is 130. If the entry is interrupted by the
attention key, causing a caret to appear, then the keystroke count is
begun againe Since input of this form appends to the line already
enteredy it is possible to enter more than 130 keystrokes by striking
the attention on every group of 130 or 1less, the final group being
terminated by the carriage returne. The system limitation for input of
this form is 762 keystrokes, including one character for each attention
and carriage returne These input keystrokes must produce less than 380
APL characterse.

OPEN QUOTE

All keyboard entries are terminated by a carriage returne A keyboard
entry containing an open gquote will invoke no special system treatmente
It will produce a SYNTAX error report, as will an entry with unbalanced
parenthesese.

CHARACTER ERRORS

If character errors occur in an input liney, a CHARACTER ERROR report is
issued; the entry is then typed up to the first such error, at which

12 APL/CMS User's Nanual

9

point the keyboard unlocks to allow further entry as if the printed line
had been entered from the keyboard. Note that the carriage return
(except to terminate a keyboard entry) and the horizontal tabulate are
invalid input characterse The terminal control characters backspace,
horizontal tabulate, idley, linefeed, and new line are available as a
five element character vector, QUADTC, in the workspace 1 SPECIAL.

COMMANDS DURING FUNCTION DEFINITION

During function definition, every keyboard entry beginning with a left
bracket (supplied by the system for convenience) is treated as an EDIT
or INPUT reqgueste. APL/CMS reports some errors (for exampley, SYNTAX and
RANGE errors) on input but the entry is acceptede.

A keyboard entry that does not begin with a left bracket is treated
as an immediate execution entrye. To produce an entry of this form,
backspace and use the attention key to erase the beginning of the line
provided by the systeme.

The following statements apply to immediate execution when in
function definition mode:

® If a workspace is saved during function definition, then a subsequent
loading of the workspace resumes the function definition at the point
when the save command was givene.

® If the function in edit is copied <from a saved workspace, it will be
copied in closed forme.

® Any attempt +to enter or leave function definition results in the
message DEFN ERROR.

® Any action causing an explicit or implicit erasure of the function
being edited terminates function definition modee.

ESCAPE FROM LITERAL INPUT

Overstruck O U T interrupts execution but no longer causes an exit from
the functione.

EXTENDED PRINT WIDTH

The maximum printing width {(as set by the WIDTH command and other
facilities) can be set to 254 characterse.

BARE OUTPUT

Normal output includes a concluding carriage return so that the
succeeding entry (either input or output) will begin at a standard
posi tion on the following line. Bare output, denoted by expressions of
the form [-X, does not include this carriage return if it 1is followed
either by another bare output or by a character input (of the form X«[).
Character input following a bare output is treated as if the user had

Section 3! General System Changes 13

spaced over to the position occupied at the conclusion of the bare
output. For example:

vV F
[11 [<-'TRUE OR FALSE: THE SQUARE OF '
[2] M+74

[3] et IS5 0
(4] Fi-(w(?4)%2)," ¢
[5] X« Vv

F
TRUE OR FALSE: THE SQUARE OF 1 IS 16 FALSE
X
FALSE

If the length of any single output string is more +than the printing
width then the carriage returns normally occasioned by the page width
setting are inser ted.

Because any expression of the form [~X entered at the keyboard
(rather than being executed within a defined function) is necessarily
followed by another keyboard entry, it is concluded by a carriage return
and its effect is indistinguishable from the effect of the corresponding
normal outpute.

HETEROGENEQUS OUTPUT

Parentheses surrounding a heterogeneous output statement are no longer
permi ttede. They can be systematically removed from any unlocked
function by user—defined editing functions, employing the dynamic
function definition capability provided by the functions [[CR and JFX
described in Section 4.

The facility for heterogeneous output does not represent a proper APL
func tion; in particular, its result cannot be assigned a namee. It was
introduced in APL\360 to obviate awkward conversions of numbers to
character representationse. The format function described in Section 4
now provides such conversionse. The user is advised to avoid the use of
the heterogeneous output facilitye.

CHANGES IN ERROR HANDLING

DEPTH ERROR

These errors do not occure. The STACK FULL error, described below,
describes a related system limitatione

STACK FULL ERROR

A portion of workspace storage, called the stacky is used to hold APL
expressions during the execution of an APL statement, and to hold status
information during the execution of a user—defined functione If the
fixed space allocated to the stack has been usedy, a STACK FULL error

14 APL/CMS User's Manual

message is typede. For corrective action, use)SI to display the state
indicatore. Clear the stack by repeated use of the '-! keye To change
the size of this area, use the)STACK command as described in the
Section 3 under the heading "Changes in System Commands"

STACK DAMAGE

The error report SI DAMAGE ENCOUNTERED is issued when execution can
proceed no further because of damage to the execution stacke. This may
be caused by erasure of a pendent function, for example.

Generally, APL/CMS prints the report SI DAMAGED when damage occurs;
however subsequent action can repair such damagee. A good example is the
damage which occurs when a suspended function is edited. The stack is
always damaged during the function editing process and is normally
restored to a proper condition upon termination of the editinge

ERRORS IN LOCKED FUNCTIONS

A locked function is treated essentially as primitive and its execution
can invoke only a DONAIN error, although conditions (such as WS FULL or
RANGE error) arising from system Llimitations will also be reported.
Moreover, execution of a locked function is terminated by any error
occurring within it, or by a double attention.

RANGE ERROR

If an arithmetic result falls outside the range of numbers allowed by
the system, then a RANGE error is givene. For example, an attempt to
evaluate 2*%250 causes a RANGE errore« An attempt to divide zero by
itself also produces a RANGE errore.

RESULT OF DEFINED FUNCTION

If the function header specifies that a defined function has a result,
then failure to assign a value to the result will lead to a VALUE ERROR
report on exit from the function.

CHANGES IN FUNCTION DEFINITION

IMMEDIATE MODIFICATION

An entry of the form [NCM] while in function definition mode now invokes
the following special action for the case when M is =zero: line N is
displayed with the carrier resting at the end of the line, as if the
line had just been entered from the keyboarde At this point, the line
can be extendedy or modified by backspace and attention, in the usual
mannere.

Section 3: General System Changes 15

PRINT WIDTH LIMITATION

A line will not be extended beyond the printing width during the
insertion of blankse A line longer than the printing width cannot be
directly editede. It may be possible to edit the line by setting [PV to
its maximum valuee Alternatively, a line of this type can be changed by
use of the system function [CCR to obtain a character representation of
the function, modification of the resulting character wmatrix, and
definition of the function by use of the system function [FXe.

LINE DELETION

A line of a function is deleted by entering a left brackety, a not
symbol, the line number and a right brackete. For example:

[88] [~4]
[4] [~5]
(5]

will delete statements 4 and 5« In the above example the [99], [4], and
[5] were supplied by APL and the other characters were entered by the
user e The attention signal cannot be used to delete a linee.

STOP AND TRACE

The stop and trace vectors associated with a function are nullified when
the definition of that function is editede.

STACK DAMAGE

The stack 1is always damaged when a suspended or pendent function is
being editede. This damage is normally repaired when the function
definition is closed. Resumption of the suspended function will produce
a SI DAMAGE ENCOUNTERED report if the damage is still presente.

LINE DISPLAY

Lines of a function which have been modified or added are not put into
canonical form until the function definition is closede. For example,
extra spaces are not removed until the function is closed.

STOP AND TRACE IN LOCKED FUNCTIONS

Settings of stop and trace are automatically nullified when a function
definition is lockede.

16 APL/CMS User 's Manual

3

J

FUNCTION HEADER

‘ A function header which contains more than one occugﬁgce of the same
name is rejected and the report DEFN ERROR is givene

COMMENTS

Comments can be placed on the same line as executable codee. Characters
M to the right of the leftmost lamp character (A), which is not in a
quoted string, are saved as part of the statement but are not executede.

Comments,y, on lines by themselves, are exdented, like labels, during
func tion displaye.

LABELS
AN

Names used as Llabels within a function are active only when that
function 1s being executed or is suspended and during those times,

labels act as read-only local variablese. At other times, when the
function is pendent, and within any other defined function, these names
are unencumbered by their use as labels. - . ~
¥ ! —r/ . ’ (‘
(CHANGES IN PRINITIVE FUNCTIONS

MONADIC TRANSPOSE

The monadic transpose now reverses the order of all coordinates rather
than interchanging only the last twoe. Formally, it is defined in terms
of the dyadic transpose as follows:

QA «— ($LppA)RA

With this change the identity
M+ e XN «= Q(QN)+.xQM

which held for matrixes MM and N now holds for higher—-dimensional
arraysSe Indeedy the corresponding identity holds for any inner product
feg if g is commutativee.

RESIDUE

The residue function was previously defined +to depend only on the
absolute value of its left argumente It is now defined as follows:

1« If A=0 then A|B is equal to Be.

‘ 2. If A#0 then A|B 1lies between A and zero (being permitted to equal
zero but not A) and is equal to B—NxA for some integer Ne. :.AK

{ o -
\ — { ARt

v
Section 3: General System Changes 17

(.

For example:

k|
A<3 0 73)

B~"6 57473 7271012345¢%

Ao.|B
o1 2 o0 1 2 0 1 2 0 1 2 O
65 74737271 0 1 2 3 4 5 6
07271 07271 07271 07271 o0
X+21.824
«01]Xx
0.004

The new definition of residue can be stated formally as follows:

A|B +-= B—-Ax|BtA+A=0

ENCODE

The definition of the encode function T is based on the residue function
in the manner specified by the following function for vector A and
scalar B:

V Z«A E B

[1] Z+0xA "
[2] I+~pA '
[3]1 L:-=(I=0)/0

[4] ZLIl-ALI|B
[51 -(Al11=0)/0
[61 Be(B-Z[I])*A[I]
[71 I-1-1
(81 L
v

The definition of the encode function for a left argument having one
or more negative elements is therefore affected by the change in the
definition of residue. For example:

2 2 27113 2 2 21713

101 o11 -
T2 T2 72113 T2 T2 7275

171 71 171 71
2 0 2113 T2 2 72715

061 0171

GENERALIZED MATRIX PRODUCT AND NATRIX DIVIDE

The domain of the f function described in the APL\ 360 User's Manual, has
been extended slightly to include vector and scalar argumentse. This]

section defines the extensions, and also provides a more comprehensive
discussion of the function and its potential applications.

18 APL/CMS User's Manual

C

The domino () represents two functions which are useful in a variety
of problems including the solution of systems of linear equations,
determining the projection of a vector on the subspace spanned by the
columns of a matrixy, and determining the coefficients of a polynomial
that best fits a set of points in the least-squares sensee.

When applied to a nonsingular matrix A the expression A (monadic)
yields the inverse of A, and the expression X«~BEA (dyadic) yields a
value of X which satisfies the relation A/yB=A+exX and is therefore the
solution of the system of linear equations conventionally represented as
Aizb. In the following examples the floor function is used only to
obtain a compact display.:

A*={i14)o0.21 4

A LEA L A+.xHA
1000 1 0 0 O 1 0 0 o0
1100 1 1 0 o 0 1 0 O
1110 0"1 1 o o 0 1 o
1111 0 071 1 0O 0 o0 1
B+~1 3 6 10
X-BEA
B X A+exX {BA)+e.xB
1 3 6 10 1 23 4 1 3 6 10 1 2 3 4
C-4 2p1 2 3 5 6 9 10 14
Y«CEA
C LY LA+exY L{FA)+exC
1 2 1 2 1 2 1 2
3 5 2 3 3) 2 3
6 9 3 4 6 9 3 4
10 14 4 5 10 14 4 5

The final example given shows that if the left argument is a matrix
Cy then CEA ylelds a solution of the system of equations for each column
of Ce

I£ A is nonsingular and if I is an identity matrix of the same
dimension then the matrix inverse A 1is equivalent to the matrix divide
IHA. More generally, for any matrix P the expression P is equivalent
to the expression

((lR)°.=LR)EP

where R 1is the number of rows in Pe.

Section 3: General System Changes 19

The domino functions apply more generally to singular and nonsquare
matrixes, and to vectors and scalars; any argument of rank greater than
2 is rejected (RANK ERROR)e For matrix arguments A and B the expression
X-BHA is executed only if

1. A and B have the same number of rows, and
2. the columns of A are linearly independente.
If the expression X+«BffA is executable, then pX is equal to
(1lpA)y1ipB
and X is determined so as to minimize the value of the expression

+/9(B—A+exX)*2

The domino functions apply to vector and scalar arguments as follows:
except that the shape of the result is determined as specified above, a
vector is treated as a one—column matrix (since a one-rowed matrix of
more than one column would be rejected by condition 2 above) and a
scal ar is treated as a one—by—one matrixe. In the case of scalar
arguments X and Y, the expression X@HYis equivalent to X:Y and the
expression BY is equivalent to tYe.

The APLSV User's Manual contains several more examples which may be
of interest to the reader familiar with problems of polynomial fitting
and of geometrye.

SUBSCRIPTED SPECIFICATION

In an expression such as,

RL[P]«Q

——or——

RLS;T1+Q

APL/CMS requires the shape of the array subscript, pP or (p0S),pT to be
the same as the shape of Q unless Q is a scalar or one—element arraye.

COMPRESS AND EXPAND

As stated in the APL\J360 User's Manual, a scalar right argument of
compress and expand is not extended automatically if required by the
left argumente A multiple condition branch may be coded:

"(V/CI'C21 eee ,CN)/LABEL

One Element Arrays: One—element arrays are acceptable as the left
argument of take,y, drop, and reshape, the right argument of take and
drop, and as the coordinate indicator for subscripted operators and
functionse.

20 APL/CMS User's Manual

Enclosed Specification: Enclosing a specification statement within
parentheses causes an explicit result to be produced. This result will
be printed if it is leftmost on the line.

CHANGES IN SYSTEM COMMANDS

COMMUNICATION COMMANDS

There are occasions when a user may wish to be undisturbed by messages
arriving from another terminale. The command)JMSG OFF blocks all
messages from other terminals and the command)MSG ON restores the
acceptance of messagese The commands JOPR and)MSG do not lock the
keyboard; under APL/CMS they have the same effect as)JOPRN and)MSGNe.
The JMSG command must specify the userid of the virtual machine to
receive the messagee.

THE ERASE COMMAND

The ERASE command now acts on any global object, and no longer
distinguishes between pendent functions and otherse. Problems that may
possibly arise <from erasing a pendent function are forestalled by the
response SI DAMAGE, which advises the user to take appropriate action
before resuming executione. It execution is resumed and SI damage is
encountered, an SI DAMAGE ENCOUNTERED report is given and the SI is
reducede.

THE SYMBOLS COMMAND

The command)SYMBOLS without a number prints the current number of names
accommodatede The number of symbols can be set in a clear workspace by
the command)J)SYMBOLS N. The minimum number of symbols allowed is 50e.
Once a name is used, it occupies space in the symbol table even if
erasede Copying a workspace into a clear workspace will minimize the
number of occupied spaces in the symbol table.

THE STACK COMMAND

A portion of workspace storagey, called the stack, is used to hold APL
expressions during the execution of an APL statement, and to hold status
indication during the execution of a user defined functione The amount
of space allocated to the stack may be changed in a clear workspace by
the command)STACK Ne. When a clear workspace is loaded, N has the value
512

WORKSPACE IDENTIFICATION

The command JWSID can be used to set a lock as well as the workspace
namey, using the same form as the)SAVE commande. Used as an inquiry,
JWSID returns only the workspace identificatione.

Section 3: General System Changes 21

Note: APL/CMS supports a maximum of eight characters as the workspace
identificatione. If more +than eight characters are used to save, load,
or copy a workspace, a WS NAME IS TOO LONG report is givene.

LOCAL FUNCTION NAMES

As a result of the introduction of the system function [FX (defined in
Section 4), local names may now refer to functions as well as
variablese.

THE CONTINUE WORKSPACE

If a workspace named CONTINUE exists and does not have a lock, it is
loaded when APL/CMS is invokede.

If the machine loses a connection with a terminal, then the active
workspace is not saved. However, VM/370 provijdes a grace period of
about 15 minutes for the user to establish a new connection and logon on
to the systeme. Once reconnected, type:

term apl on attn off linesize 130 mode vm
begin

to resume APL executione.
APL/CMS can be run normally in a disconnected state for long jobs
which do not require a terminale. A function in 1 APFNS provides this

capabilitye. The example shown in Section 6 for auxiliary processor 101
demonstrates a way to checkpoint a workspace by use of an APL functione

22 APL/CMS User's Manual

9

SECTION 4: NEW LANGUAGE FEATURES

This section describes the new primitive functions, system functions,
and system variables introduced by the APLSV system and available in
APL/CMSe This section is based upon the APLSV User's Manual.

NEW PRIMITIVE FUNCTIONS

SCAN

For any dyadic function a and any vector Xy the a—-scan of X {(denoted by
a\X) yields a result R of the same shape as X such that R[I] is equal to
a/ItX. For example? -

+\1 2 3 45 6
13 6 10 15 21

p+\e 0 ok E N T
0 /!

- .
e N n e e
. . 3. LA

The scan 1s extended to any array as follows: if Rea\[I]JA, then pR
equals pA and the vectors along the Ith coordinate of R are the a-scans
over the vectors along the Ith coordinate of A, scan applied to a
scalar yields the scalar unchangede.

L The following examples show some interesting uses of the scan:?

L~-0 01 0101
L

0010101
~L

1101010
v\L

0011111 ALL 1'S FOLLOWING THE FIRST 1
AN\~L

1100000 ALL 0'S FOLLOWING THE FIRST O
<\L

001 0O0O00O REMOVE ALL 1'S FOLLOWING THE FIRST

X

[AN S
-
(<<)]
N oo

A/X=[\X 1'S INDICATE ROWS OF X

100 WHICH ARE IN ASCENDING ORDER
+\¢5

1 3 6 10 15 TRIANGULAR NUMBERS
x\¢5

1 2 6 24 120 FACTORIALS

For any associative function,a the following definition of Re«a\X is
formally equivalent to the definition RIIl=a/ItX:

c RI1]1=x[1]

RIIJ=R{I-1]aX[I] FOR IellipX

Section 4: New Language Features 23

This definition requires only ~1+pX applications of a (as compared to
«5x(pX)x 1+pX), and is the one actually used for associative functionse.
Because of the finite precision used in machine arithmetic the results
of the two definitions may differ, and differ significantly, if the
elements of X differ by many orders of magnitude. For example, compare
the last element of the scan with the corresponding reductions in the
following case?

X+~1E6 T1E6 1E” 16
+\X
1000000 0 1E"16
+/X
0
+/¢x
1ET 16

Therefore,y, the scany, as well as reduction, should be used with care
in work requiring high precisione.

EXECUTE

Any character vector can be regarded as a representation of an APL
statement (which may or may not be well—formed)e. The monadic function
denoted by e (1L and o overstruck) takes as its argument a character
vector or scalar and evaluates or exXxecutes the APL statement it
representse. When applied to a character argument that might be
construed as a system command or the opening of function definition, an
error will necessarily result when evaluation is attempted, because
neither of these is a well—-formed APL statemente.

There are several major uses of the execute function:

1. In those instances where it is desired +to use the name of an APL
object as an argument of a function, rather than its value, the
name can be enclosed in quotes, and the argument later evaluated
within the function by means of the execute functione. A common
example of this is in the use of a general integration function
whose arguments might be the vector of grid points and the name of
the function to be integratede. For example:

V Z«L INT XY
[11] Ze(11X-"10X)+ex0e5x1 Y+ 1¢YeoL,* X!

v

V ZeQ X
[1] Z+X*3

v

Q' INT 1x:5

0.0162

2. When applied to a vector of characters representing numerical
constants, the execute function will convert them to numerical
valuese This is particularly useful in this systemy in which
access to data generated by alien systems is provided through the
shared variable facility, and large quantities of such data may
need to be converted to numerical APL arrayse

3¢ Where it is necessary to treat collections of data that are related
but cannot be combined into a single array, the execute function

24 APL/CNS User's Manual

J

allows families of names to be used for related variable. The
proper variables for each case can be generated and used under
program control, either by selecting one of a set of names from a
character matrix, by computing a numerical suffix to a generic
namey, or by other means.

4. The construction 28aFf is nearly equivalent to the use of [J for
requesting input from the keyboard during function execution, and
has certain advantages: it allows complete control over output
prior to the requested input, and permits the input to be examined
by the function prior to the attempted executione.

Se Conditional expressions can be constructed 1in which execution is
applied only to the expression selected by the condition, avoiding
possible error generation or unnecessary computation. For example,
a recursive definition of the factorial function can be written as
a single conditional statement:

VZ«FACT N
[1] 23 T12[14+N#0]1'2«-1 Z<NxFACT N-1'
v ,

The execute function may appear anywhere in a statement, but it will
successfully evaluate only valid (complete) expressions, and its result
must be at least syntactically acceptable to its contexts Thus, execute
applied to a vector which is empty, contains only spacesy, or starts with
- (branch symbol) or R (comment symbol) produces no explicit result and
therefore can be used only on the extreme left. For example:

ety
Zeat?

SYNTAX ERROR
Zegt
A

The domain of & is any character array of rank less than two, and
RANK and DOMAIN errors are reported in the usual way?

C-'3 4?
+/aC
7
21 3pC 23 4
RANK ERROB DOMAIN ERROR
21 3pC 23 4
A A

An error can also occur in the attempted execution of the APL
expression represented by the argument of &; such an indirect error is
reported by the usual error message followed by a display of the
argument of the execute function, a caret showing the point of
difficulty, a display of the statement containing the execute function
and another caret marking the point of difficulty. For example:

123+2'4320"
RANGE ERROR
a2 4320
A
123+2%410"
A

Section 4: New Language Features 25

FORMAT

The symbol ¥ (T and o overstruck) denotes two format functions which
convert numerical arrays to character arrayse There are several
significant uses of these functions in addition to the obvious one for
composing tabular outpute For example, the use of format |is

complementary to the use of execute in treating bulk input and output
(via the shared variable facility), and in the management of combined
alphabetic and numeric datae.

The monadic format func tion produces a character array identical to
the printing normally produced by its argument, but makes this result
explicitly availablee. For example:

M«2=7?4 4p2

R+¥%M

M R RI; 1+2x¢4]
0101 0191 0101
0011 o011 0011
1011 1011 1011
0011 0011 0011

PM PR
4 4 4 8

p¥2 5
3

A/ 4yR=%R
1

¥1'ABCD!
ABCD

The format function applied to a character array yields the array
unchanged, as illustrated by the last two examples abovee. For a
numerical array, the shape of the result is the same as the shape of the
argument except for the required expansion along the last coordinate,
each number going, in general, to several characterse The format of a
scalar number is always a vectore.

The dyadic format function accepts only numerical arrays as its right
argument, and uses variations in the 1left argument to provide
progressively more detailed control over the resulte Thus,y, for FV¥A, the
argument F may be a single number, a pair of numbersy or a vector of
length 2x 111,pA.

In general, a pair of numbers is used to control the result: the
first determines the total width of a number field, and the second sets
the precisione. For decimal form the precision is specified as the
number of digits to the right of the decimal point, and for scaled form
it is specified as the number of digits in the multipliere The form to
be used is determined by the sign of the precision indicator, negative
numbers indicating scaled forme Thus:

26 APL/CMS User's Manual

5

pl+A
12.34
0
026
3 2
R«9 2¥%A
S«9 “2w%A
pC=R
12.34 34.57
0.00 12.00
T0e26 T 123.45
3 18
pLS_
1.2E01 3.5E01
0.0E00 1.2E01
T2e6E 01 T1.2E02
3 18

If the width indicator of the control pair is zero,

such that at least one
only a single control
with a width indicator

T34.567
12
T123.45
J 24
3
3

be le
i

space will
number is used,
of zero:

pd-12 3vA
12.340
0.000

T0.260

T34.567
12.000
T123.450

pJ-6 OWA
—35
12
123

12
0
0
12

p+7 “1vaA
1E01 ~3EO01
0EO0O 1EO01
T3E 01 T1E02
14

a field is chosen
ft between adjacent numberse. It
t is treated 1like a number pair

pC+2¥A o~ 2%4A
1234 ~34.57 1.2E01 ~3.5E01
0.00 12.00 0.0E00 1.2E01
T0e26 T123.45 T2.6E 01 T1.2E02
3 16 3 18
p[C+~0 2%A p=0 ~2wA
12.34 ~34.57 1.2E01 ~3.5E01
0.00 12.00 0.0E00 1.2E01
T0e.26 "123.45 T2.6E701 T1.2E02
3 16 3 18
Each column of an array can be individually composed by a left
argument that has a control pair for each:
pC+0 2 0 29A p(=-8 3 0 2¥%A
12.34 T 34.57 12.340 ~34.57
0.00 12.00 0.000 12.00
T0e26 T123.45 T0e260 T123.45
3 15 3 16
p[+6 2 12 ~3%A p0-8 0 0 ~2w%A
12.34 T3.46E01 12 T3.5E01
0.00 1.20E01 0 1.2E01
T0.26 T1.23E02 0 T1.2E02
3 18 3 17
6 28 3304050 12 4v,4
12.34 T34.567 0 12 0 ~123.4500
Section 4: New Language Features 27

The format

example:

L 4 1%L
11001 1.0 1.0 0.0 0.0 1.0
11101 1e0 1.0 1.0 0.0 1.0
10010 1.0 0.0 0.0 1.0 0.0
00000 0.0 0.0 0.0 0.0 0.0
Tabular displays incorporating row and column

information between
format function together with extended catenatione.

L<2=?2 2 5p2

ROWHEADS+4 3p'JANAPRJULOCT?

YEARS+71+.5

function applied
applies to each of the planes defined by the last two coordinatese

columns and rows,

to an array of

TABLE+.001x 4ES5+7?4 S5p8ES

rank greater

are easily configured

than two

For
headings, or other
using the

For example?

(' *,[1JROWHEADS), (209 O¥YEARS),[1]19 29TABLE

o 4
P
A 72 73

JAN 204.49 26.21
APR 264.77 ~357.23
JUL 71.18 27693
OCT ~190.04 188.87

It is no longer necessary

conveniently

example:

combine literal

X+-17.34

'*THE VALUE OF X IS

THE VALUE OF X IS 17.34

*THE VALUE OF X IS

THE VALUE OF X IS 17.34

There are obvious restrictions on the

74 75
T362.36 143.44 T93.20
136.92 T93.27 T66.01
T 326443 67420 328.26
106.11 392.83 7202.37
to use heterogeneous output in order to

statements with numerical resultse. For
M«'THE VALUE OF X IS !
X"25. 4
' X M3X
THE VALUE OF X IS 25.4
" ®X (¥M), (¥X)
THE VALUE OF X IS 25.4
left argument of format, since

the width of the field must be

and if the specified width
errore However,
numbers. For example,
1 0¥2=74 4p2

1111

0110

0100

0000

The following formal characteristics of
the general

concern

usery

is inadequate the
the width need not provide open spaces between adjacent

but

large enough to hold the requested form,

may be of

result will be

boolean arrays can be tightly packed:

the format function need not
interest in

a DOMAIN

certain

applicationse.

The least width,

Wy required to represent a column of

an indicated precision P is determined as follows:

W1l (V/C<O0)+(~Pe0 “1)+(|P)+(4,{/0,1+1100|C+C=0)[1+P20]

28 APL/CMS User's Manual

numbers C for

35

The expressions (M¥A),N¥B and (M,N)¥A,B are equivalent if ¥ and N are
full control vectors, that is, if

((pM)=2x"11pA)A(pN)=2x"11pB

If 2=pM, then (M¥A),M¥B and MVA,B are equivalent.

SYSTEM FUNCTIONS AND SYSTEM VARIABLES

INTRODUCT ION

Although the primitive functions of APL deal only with abstract objects
(arrays of numbers and characters), it is often desirable to bring the
power of the language to bear on the management of the concrete
resources or the environment of the system in which APL operatese. This
can be done within the language by identifying certain variables as
elements of the interface between APL and its host system, and using
these variables for communication between them. While still abstract
objects to APL, the values of such system variables may have any
required concrete significance to the host systeme.

In principle all necessary interaction between APL and 1its
environment could be managed by use of a complete set of system
variables, but there are situations where it is more convenient, or
otherwise more desirable, to use functions based on the use of system
varjables which may not themselves be made explicitly available. Such
func tions are calledy, by analogy, system functionse.

System variables and system functions are denoted by distinguished
names that begin with a quade. The use of such names 1s reserved for the
system and cannot be applied to user—defined objectse They cannot be
copied, grouped, or erased; those that denote system variables can
appear in function headers, but only to be 1localizede. Within APL
statementsy, distinguished names are subject to all the normal rules of
syntaxe

SYSTEM FUNCTIONS

Like the primitive abstract funtions of APL, the system functions are
available throughout the systed; and can be used in defined functions.
They are monadic or dyadic, as appropriate, and have explicit results.
In most cases, they also have implicit resultsy, in that their execution
causes a change in the environmente. The explicit result always
indicates the status of the environment relevant to the possible
implicit results. Several of the system functions are used to control
the shared variable facility and are described bdbelow in this section
under the heading "Shared Variables"; the rest followe.

Canonical Representation

The character array printed in displaying the definition of a function F
is clearly an unambiguous representation of the function Fe. The
representation remains unambiguous if the V symbols and the line numbers

Section 4: New Language Features 29

with their brackets are removed and the lines made flush lefte. If the
rows are then padded with spaces on the right, where necessary to make
them all of equal lengthy the resulting matrix is called the canonical
representation of Fe The canonical representation of a defined function
is obtained as a result of applying the system function [JCR to the
character scalar or vector representing the name of the functione. For

example:

VBIN[[C]V
V Z+BIN X
[11] Z+1

[31] -(Xx2pZ)/L1
[4] a ILLUSTRATE [CR
v
M«<[CR 'BIN'
M
Z«BIN X
Z-1
L1:Z+-(042)+Z,0
-(X2pzZ)/L1
A ILLUSTRATE [CR

M
5 16

BIN 4
146 41

The function [CR applied to any argument which does not represent the
name of an unlocked function yields a matrix of dimension 0 by Oe.
Possible error reports for [ICR are RANK error if the argument is not a
vector or a scalar, or DOMAIN error if the argument is not a character

arraye

Function Establishment

The definition of a function can be established or fixed by applying the
system function [FX to its canonical representatione. To continue the

preceding example?:

M[3311]«"-"¢

CFX M
BIN
VBINI[C1v
V Ze~BIN X
[11] Z-~1

{2] L1:2+-(0,2)—2,0
[31] - (X2pZ) /L1
[4] a ILLUSTRATE [CR
v
BIN 4
1 746 "41

As shown in the foregoing example, the function [JFX produces as an
explicit result the vector of characters which represents the name of
the function being fixed, while replacing any existing definition of the
function with the same namee. The argument of [JFX is, of course,
unaffectedes The name provided by the explicit result can be
conveniently used in a variety of wayse For example:

30 APL/CMS User's Manual

J

o ([FX M),"' 4°'
1 746 41

The name of any function established by the function [JFX obeys the
normal rules of localization. Thus if a function ABC is established
within a function G in which the name ABC is local, the definition of
ABC disappears upon termination of execution of Ge. Function definition
mode continues to apply to global names onlye.

An expression of the form [FX M will establish a function if the
following conditions are met:

le« M is a valid representation of a functione. Any matrix which
differs from a canonical matrix only in the addition of
nonsignificant spaces (other than a row consisting of spaces only)
is a valid representatione.

2e The name of the function to be established does not conflict with
an existing use of the name for a pendent, suspended or the current
function or for a label, group, or variable.

3. Certain system restrictions must be satisfied; for example, the
number of rows of the function must be Lless than 2049. A NONCE
error is reported in these casese.

If the expression fails to establish a function then no change occurs in
the workspace and the expression returns a scalar index of the row in
the matrix argument where the fault was founde If the ar gument of [JFX
is not a matrix a RANK error will be reported, and if it is not a
character array a DOMAIN error will resulte. If condition 3 above is
violatedy, a NONCE error is reported.

Dynamic Erasure

Certain name conflicts can be avoided by using the expunge function [JEX
to dynamically eliminate an existing use of a name. Thus [EX 'PQR' will
erase the obJject PQR unless it is a label, a groupy or a pendant or
suspended functione The function returns an explicit result of 1 if the
name is now unencumbered, and a result of O if it is noty or if the
argument does not represent a well-formed name. The expunge function
applies to a matrix of names and then produces a logical vector resulte.
[JEX will report a RANK error if its argument is of higher rank than a
matrix, or a DOMAIN error if the argument is not a character arraye.

The expunge function 1is like the) ERASE command except that it
applies to the active referant of a name (which may be local), and
cannot expunge certain namese.

Name List

The dyadic function [NL yields a character matrix, each row of which
represents the name of an object in the dynamic environmente. The right
argument is an integer scalar or vector which determines the class of
names produced as follows: 1, 2, and 3, respectively, invoke the names
of labels, variables, and functionse The left argument is a scalar or
vector of alphabetic characters which restricts the names produced to
those with an initial letter occurring in the argumentes The ordering of
the rows is accidentale.

Section 4: New Language Features 31

The monadic function [NL behaves analogously with no restriction on
initial letters. For exampley, CNL 2 produces a matrix of all variable
namesy, and either of [NL 2 3 or OCNL 3 2 produces a matrix of all
variable and function namese.

The uses of [INL include the following:

®© In conjunction with [EX, all the objects of a certain class can be
dynamically erased; or a function can be readily defined that will
clear a workspace of all but a preselected set of objects.

® 1In conjunction with [ICRy functions can be written to automatically
display the definitions of all or certain functions in the workspace,

or to analyze the interactions among functions and variablese.

® The dyadic form of [NL can be used as a convenient guide in the
choice of names while designing or experimenting with a workspace.

Name Classification

The monadic function CNC accepts a matrix of characters and returns a
numerical indication of the class of the name represented by each row of
the argument. A single name may also be presented as a vector or a
scalare.

The result of [[NL is a suitable argument for [INC, but other character
arrays may be used, in which case the possible results are integers
ranging from 0 to 4. The significance of 1, 2, and 3 are as for [INL; a
result of Q) signifies the corresponding name is available for any use; a
result of 4 signifies that the argument is not available for use as a
name o The latter case may arise because the name is in use for denoting
a groupy or because the argument is a distinguished name or not a valid
name at alle. /

Delay

The delay function, denoted by [DL, evokes a pause in the execution of
the statement in which it appearse. The argument of the function
determines the duration of the pause, in seconds, but the accuracy is
limi ted by possible contending demands on the system at the moment of
releases The delay can be prematurely terminated by a single or double
attentione. A single attention causes execution of the statment to be
resumede A double attention causes an INTERRUPT report and the keyboard
unlockse The explicit result of [OJDL is a scalar value equal to the
actual delaye. If the argument of [JDL is not a scalar or a vector with a
single numer ical valuey a RANK or DOMAIN error will be reportede.

SYSTEM VARIABLES

System variables are instances of shared variablese. The characteristics
of shared variables that are most significant here are these:

1. If a varjable is shared between +two processors, the value of the
varjiable when used by one of them may well be different from what
that processor last specifiede.

32 APL/CMS User's Manual

C

2. Each processor is free to use or not use a value specified by the
other, according to its own internal workingse.

System variables are shared between a workspace and the APL
Proc essore. Sharing takes place automatically each time a workspace is
activated and, when a system variable is localized in a function, each
time the function is usede.

The system variables are listed belowe Also listed are the workspace
func tions and I-beam functions they are intended to replace. These
earlier ad hoc facilities are still available, but are expected +to be
supplanted by the use of system variablese. The old definitions of the
workspace functions will no longer worke. New definitions may be copied
from 1 WSFNSy or definedy as in the following example:

V Z<ORIGIN N
[11] z«[CI0

[2] OIO«N
v

The system variables are:

Value in

Name Purpose Clear WS Range Replaces
0OCT Comparison tolerance -/2%-43 55 0 to SETFUZZ
(relative)
-/2%-24 55
0JIO0 1Index origin used in 1 o1 ORIGIN
indexing, ?, V,4, and ¢
JLX Latent expression executed e Characters none
on activation of workspace
OPP Printing precision: affects 10 16 DIGITS
numer ic output and monadic ¥
JPW Printing width 120 2944225 WIDTH
JRL Random link: used in ? T*5 ¢ 142%31 SETLINK
AT Accounting information: I29 21 24 19
identification (always
zero), computer, connect,
keying times, measured in
milliseconds
OLC Line counter: line numbers 0 127 26
of functions in execution
TS Time stamp?! year, month, day, I25 20
hour, minute, secondy, millisecond
CTT Terminal type: 0 for 1050, I28
1 for Selectric, 2 for
PTTC/BCD, ~ 1 for other devices
JUL User load (always 1) 123
WA VWorking area available I22

Two classes of system variables can be discerned:

© Comparison tolerance, index origin, latent expression, printing
precision, printing width, and random link: In these cases the value
specified by the user (or available in a clear workspace) is used by
the APL processor during the execution of operations to which they
relatees If the user attempts tog specify an inappropriate value to a
system variable, the specification is suspended and a NONCE error is
repor tede. On entry to a function whose header specifies the local
instance of a system variabley, that system variable is made local and
then the value extant on entry to the function is assigned to the
local instancee.

Section 4: New Language Features 33

® Account information, line counter, time stamp, terminal type, user
load and work area: In these cases localization or setting by the
user are immateriale. The APL processor will always reset the
variable before it can be used againe When using APL/CNS, CUL is
always 1 because there is only one user on a virtual machinee.

Latent Expression: The APL statement represented by the latent
expression is automatically executed wheqyer the workspace is
acti vatede. Formally, [LX is used as an argument to the execute function
(2[LX) and any error message will be appropriate to the use of that
func tione Common uses of the latent expression include the form:

OLX<t'G"*
used to invoke the arbitrary function G, and the form:
CLX«'"* '*FOR NEW FEATURES IN THIS WS ENTER: NEwW'"?

used to print a message on activation of the workspacee. The form
JLX-*-<[LC' can be used to automatically restart a suspended functione
The variable [LX may also be localized within a function and respecified
therein to furnish a different latent expression when the function is
suspendede

Atomic Vector: This system variable found in APLSV is not present in
APL/CMS. Users with a requirement for the terminal control characters
back spacey horizontal tabulate, idle, line feed, and new line can copy 1
SPECIAL QUADTC to obtain these as a five—element character vectore.

SHARED VARIABLES

INTRODUCTION

Two otherwise independent concurrently operating processors can
communicate, and thereby be enabled to cooperate, if they share one or
more variablese. Such shared variables constitute an interface between
the processors, through which information can be passed to be used by
each for its own purposese In particular, variables can be shared
between an APL workspace and some other processor that is part of the
overall APL system, to achieve a variety of effects including the
control and utilization of devices such as printers, card readers,
magnetic tape units, and magnetic disk storage unitse.

In an APL workspacey a shared variable may be either global or local,
and is syntactically indistinguishable from ordinary variablese. It may
appear to the left of an assignment, in which case its value is said to
be set, or elsewhere in a statement, where its value is said to be usede.
Either form of reference is an accesse.

At any instant a shared variable has only one value, that last
assigned to it by one of its ownerse. Characteristically, however, a
processor using a shared variable will find its value different from
what it might have set earlier. A familiar example of this in APL is the
quote guad when it is used successively for output from a function and
input to it from the keyboard; W is, in fact, a variable shared between
the function and the user at the terminal.

34 APL/CMS User's Manual

A given processor can simultaneously share variables with any number
of other processors. However, each sharing is bilateral; that is, each
shared variable has only two ownerse This restriction does not
represent a loss of generality in the systems that can be constructed,
and commonly useful arrangements are easily designede.

Shared variables are used to communicate between 1independent
processorse The kinds of processors which can be used depend on the
facilities of the host operating systeme. APL/CMS has a single APL user
on each virtual machine, running under the CMS component of VM.
Processors available in APL/CMS include the single wuser's APL program,
the APL/CMS processor and four APs (auxiliary processors) which are
supplied with the systemes The APs are described in detail in Section 6;
for exampley, AP110 can read and write CMS disk filese.

The full power of the shared variable concept can be gained by
reading the APLSV User's Manuale APLSV runs under the OS/VS operating
systeme It allows an APL program to share a variable with an auxiliary
processore It also allows two active APL wusers to share a variable; in
other words two APL users can communicate with each other via shared
variablese.

Note: APL/CMS does not allow active APL users to communicate directly
with each other through the use of shared variablese.

We now describe the shared variable system functions, as they are
normally used under APL/CMS. We then describe some additional features
present for compatibility with APLSV.

OFFERS

A single offer to share is of the form P [JSVO N, where P is the
identification of another processor and N is a character scalar or
vector which represents a names The result is a number which gives the
degree of coupling: zero if no offer has been made, one if an offer has
been made but not matched, two if sharing is completede. An offer can
never decrease the degree of couplinge For example:

110 Osvo'99!

0

110 OSVO'ALPHA"
2

999 [SVOYALPHA!
0

999 [CSVO'BETA"
1

The first offer is rejected because 99 is not a name. The result 0
indicates no couplinge The second offer 1is offered and accepted
resulting in a degree of coupling of 2. The third offer 1is rejected
because AL¢HA is already shared with auxiliary processor 110. The
four th offer produces a degree of coupling of 1 because it is offered
but not accepted by a matching counter offer.

If a user attempts to share more variables than the limit determined
when the system is installed the error reported 1is INTERFACE QUOTA
EXHAUSTEDe This 1limit is 45 in APL/CMS as distributed. Other system
limi ts may cause the report SVP MEMORY FULL or SVP NAME TABLE FULL to be
issued; these 1limits are described in the APL/CMS Installation Manual
and may be changed when the system is installede.

Section 4: New Language Features 35

A set of offers can be made by using a vector left argument (or a
scalar or one—element vector which is automatically extended) and a
matrix right argument, each of whose rows represents a name (or a name
pair: see below for surrogate names)e. The offers are then treated in
sequence and the explicit result is the vector of the resulting degrees
of couplinge For example?

110 SVO 3 Sp'"DELTA12345RHO '
20 2

If the quota of shared variables is exhausted in the course of such a
multiple offer, none of the offers will be tenderede.

The monadic function [SVO accepts an argument N which is a scalar,
vector or matrix of characterse. It does not change the degree of
coupling but does have an explicit result which gives the degree of
coupling of the name or names in Ne. If the degree of coupling of a name
is 1 or 2, dyadic offer operatesy, in effect, as a query the same as the
monadic forme The expression

(0£[CSVvOo [NL 2)# [NL 2

produces a character matrix of shared variable names, one per rowe

RETRACTION

Sharing offers can be retracted by the monadic function [JSVR applied to
a name or a matrix of namese The explicit result is the degree (or
degrees) of coupling prior to the retraction. The implicit result is to
reduce the degree of coupling to zeroe.

Retraction of sharing is automatic if the user signs off or loads a
new workspacee Sharing of a variable is also retracted by its erasure
ory if it is a local variable, upon completion of the function in which
it appeared, or if an object with the same name is copied 1into the
workspacee

USING THE APL/CMS AUXILYARY PROCESSORS

The APL/CMS auxiliary processors use the initial value of the shared
variable to indicate the source and/or destination of the processors
input/output and to select certain optionse For exampley, the following
sequence will write two records to a CMS file called "EXAMPLE SCRIPT",
The "370" conversion option is selectede The first record is "THIS GOES
IN THE FIRST RECORDY and the second record is "AND THIS GOES IN THE
SECONDY,

S«"EXAMPLE SCRIPT(370°"
110 [svo's?*

S«'THIS GOES IN THE FIRST RECORD'

S+~VAND THIS GOES IN THE SECOND'

OSVR' S? 2
NP
e

J

e

36 APL/CNS User's Manual

In this casey S is the name of the shared variable. Notice that the
argument to [SVO and [SVR 1is 'S'! not S. See Section 6 for further
details of the auxiliary processorse

COMPATIBILITY WITH APLSV

APL/CMS has one user on one virtual machinee. In addition, CMS is a
synchronous system, that is, one which completes each request before
continuing with the nexte. APLSV has many users on one real machine and
it 1is possible for asynchronous processes to communicate with each
othere APL/CMS provides certain features which have little value in the
CMS environment but which may be useful for maintaining compatibility
with APLSV. We give a brief description of the APL/CMS feature here;
full details of the APLSV feature will be found in the APLSV User's
Manuale.

Surrogate Names

The description of [SVO implied that two processors which share a
variable must agree on a common name for the variablee. Since it may be
difficult for two processors to agree on a common namey JSVO will accept
a single name, such as 'ALPHA', or a pair of names such as 'ALPHA
BETA'. The second name of the pair is called a surrogate namee. In the
case of a single name, the name is its own surrogate. The process of
sharing causes variables with the same surrogate names to , matchede.
APL/CNS allows the use of surrogate names, but since the auxiliary
processors will accept any names offered to them, surrogate names need
not be usede.

Access Control

In certain practical applications of shared variables, it is important
to know that a new value has been assigned since the variable was last
referenced, or that the old value has been used before a new oOne is
assignede The shared variable facility has an access control mechanism
which allows processors to enforce an access discipline.

The access control operates by inhibiting the setting or use of a
shared variable by one owner or the other, depending on the access state
of the variable and the value of the access control matrix. Access
control is set by an expression of the form B [JSVC N, where N 1is a
character vector representing the name of a shared variable and B is a
four element vector of zeroes and ones (or a scalar or one—element
vector which is extended in the usual way)e. See the APLSV User's Manual
for a complete explanatione.

The monadic form of [JSVC reports the current setting of the control
matrix, one four element row per name in Ne The argument N of [JSVC may
specify a matrix of names, and in the dyadic case, the argument B may be
a matrix of zeroes and ones with one row for each namee.

Note: The APL/CMS auxiliary processors set the access control vector to
1111, the highest degree of control possible, and are programmed to
access variables shared with them in such a way as to prevent
interlockse.

Section 4: New Language Features 37

If a valid offer is made to a nonexistent processor then the access
control vector is set to zero, for example

400 [Csvo'x!

1
osverx!
0 00O
X+99
b'e
99
111 1Csvcex?
1111

The access control vector now specifies that successive accesses by
the APL program requires an intervening access by processor 400,
Processor 400 does not exist so it will neither use or set X« If the APL
program attempts to access X then a permanent wait would resulte APL/CMS
detects this situation, forces an interrupt, and prints the error report
INTERRUPT: PERMANENT SV WAIT.

Inguiries

There are three monadic inquiry functions which produce information
concerning the shared variable environment: [JSVO, [JSVCy, and [SVQe The
first two have been discussed in this sectione A user who applies the
shared variable query function, [JSVQ, to an empty vector obtains a
vector result containing the identification of each other user making
any sharing offer to the usere.

Applying the same function to an integer scalar or one—element vector
obtains a matrix of the names offered by the processor identified in the
argumente This matrix includes only those names which have not been
accepted by counter offers from the inquiring usere.

38 APL/CMNS User's Manual

9

SECTION 5: CMS FACILITIES AND THE APL/CMS USER

In this part of the manual, we discuss some CMS concepts and a subset of
CP and CMS commands that may be useful to the APL usere. For further
details, see the VM/370: Command Language Guide for General Users. CMS
commands cannot be used in the APL environment directly but can be
transmitted via auxiliary processor 100 described 1in Section 6. APL
commands are not recognized by CP or CMS.

I i

CAQDE. LT T e
i .

—
: '

iINK AND ACCESS COMMANDS

The VM/370 directory contains the properties of individual virtual
machines.s One or more entries specify the virtual disk(s) that belong
to a particular machines CP identifies disks by a device addresses Most
machines have a primary disk at device address 191 and will have links
to disks belonging to other machinese. For example, the directory for an
APL user may contain an entry of the form:

link vmaplsys 101 101 rr
This indicates the user has access to the 101 disk of a machine whose

user id is VMAPLSYSe. The last two operands define the device address as
101 and the access to the disk as read—-only for this usere

o / "‘)
As noted in the Section 2 discussion on "Saving and Restorinimﬂr

Workspaces," CMS refers to disks by mode lettere. A correspondence
between the CP device addresses and the CMS usage of the disks is
established by an ACCESS command. For example,

access 101 =z

allows CMS to use disk 101 as a Z diske CMNS accesses 191 as the A-disk
and APL/CMS accesses 101 as the Z diske.

The CP command LINK and the CMS command ACCESS, can be used, among
cooperating users, to establish a common disk for storage of workspaces
and data files. Access to a user's private disk is controlled by VM/370
directory entries and passwordse.

CMS FILES

Items on a virtual disk are organized into CMS files. A CMS file is
known by its filename, filetypey and filemodee. The filename and the
filetype are each composed of one— to eight—alphamer ic characterse The
filetype is formed like a filename, but CMS commands usually associate a
particular filetype with a particular kind of filee For example,
APL/CMS uses the filetype VMAPLWS for all workspaces in the private
librarye EXEC files usually contain a list of CMS and CP commands te be
executed. The filemode 1is one 1letter followed by one numbere. The
letter specifies the disk the file is one The numeral 1 indicates a
permanent file available for both reading and writinge ;

The information in CMS files is grouped into records, which are the

smallest unit in the file systeme Records are grouped into filese.
Records in each file are fixed length, meaning the length of all records

Section 5! CMS Facilities and the APL/CMS User 39

1
{
|
!
!
1

—_

is the same (and must remain so) or variable lengthy, which imposes no
such restriction. The maximum length of a record is 65,532 bytese. CMS
allows its files to be accessed sequentially or by specification of the
record position (l-origin)e.

Random accessing can be used with fixed or variable files but it is
more efficient with fixed filese. Records can be changed in existing
filesy but the length of any record of a variable file, except the last
record, cannot be changed without unpredictable resultse. Records cannot
be deleted from files but can be added to the end of an existing filee.

The units of information which CMS transmits to and from disk storage
are called blockse The CMS file system collects several short records
or splits up long records as it transfers information block by block to
and from diske. A block is 800 bytes longe You need be aware of blocks
only if you wish to compute the amount of disk space usede.

LISTFILE COMMAND

At some stage of APL execution, you may encounter a DISK FULL messagee.
You can use the APL JLIB command to list the workspaces on the disk;
howe ver, you may have other files generated by the APL auxilary
processors which are not listed by)LIBe. You can list all files with
the CMS LISTFILE command which has some of the following variants:

listfile fn £t fm
displays information concerning the file having the given filename (fn),
filetype (£ft), and filemode (fm). If fm is omitted then A is assumed;
if ft and fm are omitted then all files with name fn on the A-disk are
listede.

listfile * £t fm
lists all files with type ft on disk fme The command

listfile * vmaplws
lists all VNAPLWS files, and

listfile
lists all files on the A-diske There are several options that can also
be useds If the command line ends in (ALLOC), then the format (fixed or
variable), the number of records, and the number of blocks are listed

for each filee. For example:

listfile alpha (alloc)

FILENAME FILETYPE FM FORMAT RECS BLOCK
ALPHA VMAPLWS Al V 4616 3 9
ALPHA ASSEMBLE Al F 80 392 40

"V 4616" denotes variable length records, with the longest record of
length 4616 bytese "F 80" denotes fixed—length records of 80 bytes
eache The number under BLOCK gives the number of 800-byte blocks
occupied by the filee.

40 APL/CMS User 's Manual

QUERY COMMAND

The CMS command LISTFILE lets you find the space used on a virtual disk
by each filee. More generally, the CMS command

query disk a

gives a summary of the state of the A-disk (other disks may be specified
by their letter)e. An example of the reply to a query is,

A (191): 3 FILES; 155 REC IN USE, 1173 LEFT (of 1328),
12% FULL (5 CYL), 3330, R/W

Do not be confused by this inconsistent usage: REC refers to what
LISTFILE calls blockse. The reply shows that 12 percent of the available
space is usede. The virtual disk address 1s 191 and is 5 cylinders of
3330 disk storage, which is linked in read/write mode.

As mentioned earlier,y, the CP command QUERY STORAGE, indicates to you
the size of the user's virtual storagee. The CP command QUERY NAMES
lists the names of the other virtual machines currently logged on the
systeme You can send messages by using the APL)MSG command, or the CP
MSG (or MESSAGE) command

cp msg userid oseccany message€eee

where userid is the name of the other virtual machinee (This use of the
userid corresponds to the APL\360 use of the port number.)

ERASE COMMAND

You can free the disk space used by unwanted workspaces by issuing the
APL)DROP commande. You can get rid of workspaces or other unwanted CMS
files by using the CMS command

erase fn ft fm

If fm is omitted, then A is assumed. Replacing fn with an asterisk (%)
causes all files of type ft to be erased.

WORKSPACES AND CMS FILES

An APL)SAVE command causes the APL/CMS system to store the information
from the workspace into a CMS file. Only useful information is stored,
not the work area, so the space on the disk is related to the APL
objects in the workspacey, not the gross workspace sizee. The A-disk is
used for storage of these workspaces when no library is selectede.
Libraries are stored on disks apart from the APL user's virtual machine;
details are supplied in the APL/CMS Installation Manual.

APL/CMS uses the D-disk, if accessed read—write, otherwise the
A-disk, for storing intermediate and utility files of type VMAPLUT.
These files are used for the APL stack of auxiliary processor 101, the
workspace conversion utilitiesy, and during the APL)COPY,) PCOPY, and
)SAVE commands, for example.

Section 5: CMS Facilities and the APL/CMS User 41

PRINT, PUNCH, AND TYPE COMMANDS

An APL program can create files by using the auxiliary processors (see
Section 6)e. One of the processors can send files directly to the line
printer or card punche There are some occasions when it is easier to
use the auxiliary processor to create a CMS file and then use CMS
commands to type or print the file. When the CMS PRINT command is
issued, as follows:

print £fn £t fm

it causes the contents of the specified CMS file to be printede. The
graphical representation of each character is dependent upon the printer
characteristicse. The VMAPLWS files contain nonprintable records;
however, the auxiliary processors supplied with the system can be used
to write out APL variables in printable formate.

The PUNCH command operates like the PRINT command except that the
contents of the records are punched into cardse. The punch reproduces
any charactere. Cards may be read into the system with the CMS READCARD
commande For further details, see VM/370: Command Language Guide for
General Userse

The TYPE command is similar to the PRINT command except that output
appears at the terminale. If the file was produced with the APL
conversion option of the auxiliary processor AP110, then the commands:

cp term apl on
type fn ft fm
cp term apl off

should be used to type the filee. The first command indicates that you

are going to use your APL type element for typing; the third command
indicates the subsequent use of the VM/370 type element.

EDIT AND SCRIPT COMMANDS

CMS has an editor, called EDIT. For additional information about the
editor, see the publication VM/370: EDIT Guidee The SCRIPT processor,
an Installed User Program (IUP) available through IBM for a license feey
can be used to prepare formatted and paginated output like this document
from CMS filese.

FILEDEF COMMAND

This CMS command is used to simulate the functions of the 0S Job Control
Language Data Definition (DD) in the CMS environmente Device
independence is achieved by allowing the unit specification and file
characteristics to be transmitted to programs that use the 0S simulation
macros and functions,. APL/CMS includes an auxiliary processor, AP11l1,
which supplies sequential access via QSAM to any device specified by use
of the FILEDEF commande

Note: The CMS file processory, AP110, does not use FILEDEF and does not
need any DD informatione.

42 APL/CMS User's Manual

COPYFILE AND MOVEFILE COMMANDS

The COPYFILE command can be used to copy part or all of a CMS file, to
combine files, to change record formats and to do various
transformations on data in the filee. The MOVEFILE command moves data
from any device supported by VM/370 to any other device supported by
VM/370. The input and output devices are defined by use of the FILEDEF
commande

TIME

When you log off the systemy, a time message is issued as follows:

CONNECT hhi:mm:ss VIRTCPU mmm:ss:hs TOTCPU mmm:ss:hs

where:

hh is hours

om or mmm is minutes

ss is seconds

hs is hundredths of a second

The connect time is the elapsed time since you logged one. The VIRTCPU
is the virtual CPU time you have usede TOTCPU is VIRTCPU plus the CPU
time that was spent in CP.

The CP command QUERY TIME yields the same resulte.

SAVING WORKSPACES ON MAGNETIC TAPE

TAPE Command

The TAPE command can be used to save and restore CMS files on magnetic
tapee. It is useful for saving infrequently used workspaces or sending
workspaces to other APL/CMS system installationse To save one or more
files on a tape:

1« Ask the operator for a tapee.
2« Log on to your machinee.
3e IPL CMS

4. Ask the operator to ready the tape and attach it as 181 to your
machine by issuing the following message:

cp msz op please attach tape PASC123 as 181 with ring in

(This sample message is based on the assumption that the tape has
WPASC123" as a labels) The phrase "ring in" tells him to put a
file protect ring 1in the tape; if the ring is out then it is
impossible to write on the tapee In general, the operator will
notify you when the tape is readyes

Section 5: CMS Facilities and the APL/CMS User 43

S¢ To dump the workspaces ALPHA and BETA, issue the following
commands?:

tape rew
tape dump alpha vmaplws
tape dump beta vmaplws
tape wtm
tape rew
tape scan

Note that each command starts with the word TAPE followed by a spacee.
REW causes the tape to be rewound, but note that it must be spelled REW,
not REWIND. TAPE DUMP writes the named CMS file onto the tape; you may
repeat this command for as many files as you wish to dumpe. The TAPE WTM
command writes a tape mark on the tapee. A tape mark is conveniently
used to separate groups of workspacese. If you wish to dump all
workspacesy, then you can use:

tape dump * vmaplws

TAPE SCAN Command

The TAPE SCAN command reads the tape, verifies the tape contents, and
types out a list of the CMS files on the tape from its current position
to a tape marke.

If the tape appears to be satisfactory then use the following CP
commands?:

cp detach 181
cp msg op remove ring, and save tape

to unload and save the tapee.

To retrieve a workspace at a later datey, then log on, IPL CMS, and
issue the command:?:

cp msg op please attach PASC123 as 181 with ring out

When the tape is attachedy, you can then issue the commands:

tape rew
tape load beta vmaplws

to transfer the CMS file BETA VMAPLWS to your A-disk, which will
overwrite an existing file of the same namee. The example shows just one
file being loadede Using the command TAPE LOAD loads all the workspaces
up to a tape marke. (You should detach unit 181 when you no longer need
ite)

If there is insufficient space on your disky, then you may get a DISK
FULL messagee You cany if you wish, make some space available on the
disk, rewind the tape, and try againe

44 APL/CNS User's Manual

SPOOL Command

This CP command has many options to control the disposition of files
associated with your virtual card reader, card punch, and line printere.
For example:

spool printer copy n

specifies that n copies be made of your Lline printer outpute. The
command:?:

spool punch to userid

causes your virtual punch output to be directed to the virtual card
reader of the machine identified by userid.

spool punch off

directs future output to the real punche

DISK DUNMP and DISK LOAD Commands

The CMS command, DISK, can be used to move files from disk to card
format using the DUMP option, or the reverse using the LOAD option. It
is generally not used to punch real cards (the TAPE command is normally
used to move files from the system); rathery, it is used in combination
with the SPOOL command to direct files to, or receive files from,
anot her usere. For exampley, the commands

cp spool punch to johndoe
disk dump alpha vmaplws
cp spool punch off

transfer the APL/CMS workspace called ALPHA to the card reader of the
machine, JOHNDOE., At that machine, the command

disk load
creates the file ALPHA VMAPLWS on the A-diske.
Note: Use the SPOOL command before issuing the DISK DUMP commande If
the output is not spooled to another user,y, it is punched on real cardse
If you discover you have made such a mistake, immediately send the

following message:

cp msg operator please flush punch output

USING APL\ 360 OR APLSV WORKSPACES

To transfer APL\ 360 workspaces to an APL/CMS system requires several
stepse Get the APL\360 system staff to dump your workspaces onto
magnetic tapee. Workspaces from an APLSV system must be dumped in
APL\ 360 compatible form using the level 0 option of the APLSV utility
programe This tape is not in the format of the CMS dump tape, so your
system staff must convert the tape to an APL/CMS workspace on your
diske

Section 5: CMS Facilities and the APL/CMS User 45

If you are familiar with CMS, then you may wish to do the conversion
yourself, The process 1is described in the APL/CMS Installation Manual.

The conversion goes 1in two stepse. Suppose the tape contains a
workspace from APL\360 called ALPHA. The first step reads the tape and
produces a CMS file with the name of ALPHA and <filetype of APLWS. The
second step accepts ALPHA APLWS as input,y, converts this workspace to the
form used by APL/CMS and produces the file called ALPHA VMAPLWS. The
same conversion procedure can be used for APLSV workspacese APL(CMS)
IUP workspaces already exist as APLWS files, have the same format as
APL\ 360, and require only the second conversion stepe

After conversion, the workspace may contain functions with the names
BADHEADERnN, where n goes from 1 to the number of such namese. The
original header of these functions contains at least one duplicate name
and is stored as a comment in the first line of the functione. Edit the
function, correct the original header, delete the lamp and del symbols,
change the line number to zero, and close the functione.

The transfer of workspace information to APLSV (or other foreign APL
systems with I/0 capability) can be effected by writing the canonical
representation of the functions in the workspace along with the
variables in the workspace onto magnetic tapee. Read this tape with APL
programs to create a workspace on APLSV,

SENDING WORKSPACES TO OTHER APL/CMS USERS

The magnetic tape produced by the TAPE DUMP command can be used to send
workspaces to other APL/CMS userse If the other wuser is on the same
physical machine as you, then it is more efficient to do a direct
disk—to—disk transfer using the APL/CMS public 1librarye. Although an
installation option, you can normally)J)LOAD and)SAVE into libraries
1000 through 999999. Loading the workspace you wish to transfer and
saving it in the public library makes it available to another user, who
can drop it from the public library after the transfere.

If you get the message
DISK NOT AVAILABLE

while attempting the)SAVE in the public library, it means that the disk
is temporarily wunavailable for writing because some other machine is
writing on 1ite Retry the command in a few secondse. There 1s one
drawback to +this method, namely the lack of privacy during the
transfere.

A more secure transfer is via the previously described DISK commande

Once a workspace has been transferred, it can be used by entering the
APL environment and using the)LOAD commande The load command adjusts
the size of the workspace to the available storagee It the virtual
storage on your machine is too small to accommodate the workspace, the
message

WS TOO LARGE
results and loading does not take placees

If you need to accommodate a workspace larger than your virtual
storage, you may return to the CP environment and issue a DEFINE STORAGE

command to expand the size of your virtual storage (within limits set by
your installation manager)e. Reload APL/CMS and try againe.

46 APL/CNS User's Manual

9

SECTION 6: APL/CMS AUXILIARY PROCESSORS

The APL/CMS system includes the following auxiliary processors:

AP100 COMMAND

AP101 STACK INPUT
AP110 CMS DISX I/0
AP111 FILEDEF I/0

The COMMAND processor enables an APL/CMS user to issue CP and CMS
commandse The STACK INPUT processor stores data for input at the first
opportunity to APL/CMS. The CMS DISK I/0 processor provides sequential
and random access using the CMS file systeme. The FILEDEF I/O processor
provides sequential access to devices supported by the OS simulation
facilities of CMS available through the FILEDEF command using QSAM.

The example introduced in Section 4 1is given in more detail below;
refer to it as you read the following sectionse.

/ v

S«'EXAMPLE SCRIPT(370' A SET INITIAL VALUE
S A DISPLAY VALUE

EXAMPLE SCRIPT (370
110 CSVO'S' a SHARE THE VARIABLE

2
S A REFERENCE AND DISPLAY VALUE

011 v v
S«~'THIS GOES IN THE FIRST RECORD' an SET A VALUE
S«'AND THIS GOES IN THE SECOND' a SET ANOTHER
S A REFERENCE AND DISPLAY VALUE

THIS GOES IN THE FIRST RECORD
S A REFERENCE AGAIN

AND THIS GOES IN THE SECOND
CSVR'S' a RETRACT VARIABLE

2

INITIAL VALUE

When an offer to share with an APL/CMS auxiliary processor is made, the
value of the variable being offered should be a character vector
specifying the argument and options (if any) required by that auxiliary
processors.

The general format for all initial values is:
‘argument (options!'
The auxiliary processors supplied with APL/CMS assist the APL user in
the transmission of data to a destination and the receipt of data from a
sourcee The argument passed in the initial value is used to determine

this source and/or destinatione.

Following the source or destination argument is a Lleft parenthesis

used to indicate Yoptions follow", It should be present only when
options are specified by the usere. The APL/CMS auxiliary processors
ignore extra left parentheses and disallow right parenthesese. The

interpretation of the initial value is covered later for each auxiliary
processore.

Section 6: APL/CMS Auxiliary Processors 47

V.V

OFFER PROTOCOL

The APL/CMS auxiliary processors match all shared variable offers by the
user with matching counterofferse. The initial value of the shared
variable is interpreted by the auxiliary processor as a user requeste.
After inspecting the operating environment, the auxiliary processor
specifies a new value for the shared variables This value, when
referenced by the usery, will be a scalar 1 if the request is rejected.
A new value of the variable can then be specified by the user after
which the auxiliary processor (AP) repeats this proceduree.

When an acceptable initial value is specified, the AP sets the shared
variable to a scalar zero or a vector with the first element zeroe. The
effect of all subsequent references and specifications of this shared
variable is to move data and control information between the APL program
and the auxiliary processor, as described for each processore. To
specify a different argument or options for a shared variable, that
variable must be retracted and reoffered with the reguired initial
valuee

OPTIONS FOR DATA CONVERSION

Data transmitted between the APL program and the auxiliary processors
can be in three distinct forms:

1. APL variables, complete with size, shape, and type informatione.
This |is the most convenient and efficient form for most
applications. The conversion option for this type of data is VAR,

2. Character vectorse This form is used primarily for interchange
with other non—APL processorse. Two conversion options, APL and
370, are described belowe.

3. Bit vectors (that is, zeros and ones) that provide the most general
form of data transmission and interchangee. The conversion option
for this type of data is PBIT.

Characters outside of the workspace (for example, data file records,
punched cardsy, and printer lines) are transferrable, as characters, to
and from the workspace in two ways:

1. Characters accepted by APL as input (processed as though entered
from a keyboard) and produced by APL as output (as though for
typing on a terminall. This option is called APL.

2e EBCDIC codes used by the System/370. This option is called 370.

You must have some knowledge of these two forms in order to transmit
character data to and from external mediae. Some general information

followsy with details in "Appendix tf Auxiliary Processor Conversion
Opt oM . LA
ptions \L g

The APL script conversion option (APL) produces characters in the

workspace as though the input data were entered from the keyboard;
output data is created as though the characters in the workspace were
typed at the terminal. For example, the character A" in the workspace
is converted to an "“AW, and the character "YA" in the workspace is
converted to the three characters: "A", "backspace", and "_".

48 APL/CMS User 's Manual

The System/370 EBCDIC conversion option (370) provides a direct
mapping between some APL characters and some EBCDIC characterse. For
example, the character "A" in APL converts to the "A", and the APL
character YA" converts to "a'.

INPUT/OQUTPUT PROCESSING

Introduction

The APL/CMS system includes two auxiliary processors that provide file
input and output capabilities. AP110, CNS DISK I/0, supports the CMS
file system which allows both sequential and random accessinge AP110
creates files with fixed or variable length unblocked recordse. Random
access of variable length records is inefficient compared to random
access of fixed length recordse. AP110 processes blocked or unblocked
fixed length records and unblocked variable length recordse

AP111, FILEDEF I1/0, may be used for sequential access to CMS disk
files and other types of devices such as magnetic tape, card readers,
line printers, and terminalse. This device independence is achieved by
using the 0S simulation facilities in CMS. The AP111 user must issue an
appropriate FILEDEF command to CMS (using AP100) before +the specified
data set can be openede. AP111 supports QSAM so that blocked or
unblocked and fixed or variable length records can be sequentially
processede

CMS disk files with fixed length records can be processed by either
processor regardless of blockinge. Both I/0 processors open files for
reading and writing although switching between read and write |is
time—consuminge.

Record Variables

An APL variable used to transmit data records is called a record
variablee Except for the initial reference after properly specifying an
initial value, all references of the record variable yield records from
the file being processede. All specifications into the record variable
cause records to be written into the file. The previous example used s
as a record variablee.

Control Variables

An APL variable used to control or monitor data transmission is called a

control variable. It is paired with the most recently offered, but
unpaired, record variable specifying the same file or ddnamee A control
variable may be required to query certain status informatione. For

AP110, it is required to achieve indexed selection of records from the
filee Except for the first reference after a proper initial value has
been specified, the reference of a control variable returns a scalar
(AP111) or vector (AP110) whose first element indicates the status of
the previous specification or reference of its paired record variablee.
A zero indicates successful completione For return codes and status
indicators, see "Appendix B: Auxiliary Processor Return Codes."

Section 6: APL/CMS Auxiliary Processors 49

Record Pointers

AP110 maintains a read pointer and a write pointer that indicate the
posi tion of the record to be processed by a reference or specification
of the record variablee The value of the control variable is the status
indicator followed by the read and write pointers. AP110 initjializes
these record pointers to 1 and N+1, where N is the number of records in
the filey, when the file is openede. The initial reference of the record
variable returns a zero followed by these pointerse.

AP110 increments the read or write pointer by one after each
successful read or write of the file. Record pointers can be reset by
the user at any time by specifying an integer into the control variable.
A scalar sets the read pointer; a two-element vector sets both pointerse.
An integer of less than one does not change the pointer.

Continuing our previous example:

F<YEXAMPLE SCRIPT (370"
110 OSVO'F?

2
F
013
A«F
F+Y
F+Z2
B«F

Now A and B contain the first two records from EXAMPLE SCRIPT. Records
d and 4 contain the variables Y and Z.

AP111 processes files sequentially and does not support record
poin terse The FILEDEF commandy as an option, sets both read and write
pointers to the top of a file (the default) or to the bottom of a file
(DISP MOD). This setting of the record pointers is in effect every time
a file is opened for read, write, or switching between read and writee.
AP111 does not explicitly alter the position of a file (magnetic tape,
for example) when the record variable is retractede.

End File and Error Conditions

Whenever you reference a record variable and an end of file is read, the
I/0 processor assigns a null vector to the variable. This is also done
if a read error occurse These cases can be differentiated by inspecting
the return code available via a control variablee. Notice that null
variables can be written only with the VAR option.

Space Used by Auxiliary Processors

INPUT/OUTPUT BUFFERS: AP110 and AP111 need virtual storage space for

input/output bufferse. This space is located outside the workspace in an
area whose size is fixed immediately after APL is invokede. The standard
size is 8192 bytes. If the auxiliary processors are used to transmit
long records or to access many files simultaneously, they may fail to
find buffer space and will post an error in the control variablees

50 APL/CMS User's Manual

9

The size of the buffer space can be set by supplying an argument when

(APL is invoked, thus:

ipl apl parm x

- opr --—
ipl cms
apl x

where:

x is the number of bytes (for exampley, 4096) or the number of

kilobytes (for example, 12K) or the number of megabytes (for
example, 2M)e.

parm is a necessary part of the IPL commande.
The amount of space allocated is that requested, rounded up to the next

page boundarye. If the space 1is not available, a)OFF HOLD is issuede.

PROGRAM STORAGE: Many CMS commands require some program storage space in
which to operatee. The size of this area varies greatly among commandse
No such space is required for CP commandse

AP100 is used to invoke CP and CMS commandse If the APL/CMS system,
as distributed, is invoked by an IPL command, then about 57,000 bytes of
program storage are available for CMS commands called by AP100. In
general, commands which require more program storage than is available
will fail because the CMS storage management system should not allocate
storage used by APL/CMS +to the command; no harm should befall +the

L APL/CMS systeme

This is not the case if APL/CMS has been invoked as a command under
CMS. The CMS storage management system will allocate space used by
APL/CMS to any command which needs ite. This means that any CMS command
invoked via AP100 needing program storage space will cause an abrupt
termination of APL/CMS. CMS commands available in the subset mode do
not reqguire program memorye. An expert should be consulted if you wish
to explore this areae. Details are supplied in the APL/CMS Installation
Manuale.

Section 6: APL/CMS Auxiliary Processors 51

AP100—--—THE COMMAND PROCESSOR

Initial Value

env
CMS
CP

Description

The operating environment available to the user of APL/CMS includes the
environments of CMS and CP. Commands can be processed by CNS and CP to
dynamically change the characteristics of these two environments.
Character vectors, or one—element arrays, when specified into the shared
variable, are immediately procesgsed by the selected environmente. Notice
that the CMS environment includes a commandy, CP, that passes the rest of
the arguments to CP. Subsequent references of the shared variable yield
the return code set by CP or CMSe. For details on return codes, see
" Appendix B: Auxiliary Processor Return Codes". CP and CNS commands are
described in the VM/370: Command Language Guide for General Userse.

The commands destined for CMS are broken into "tokense" A token is a
parenthesis or a series of nonblank characterse. Only the first eight
characters of each token are usede. For both CP and CNS, all characters
are converted via the 370 option immediately prior to transmission (see
WAppendix A: Auxiliary Processor Conversion Options®").

Warning: Some commands may cause abrupt failure of APL/CMS and loss of
the active workspace; refer to "Space Used by Auxiliary Processors",

The CP command to define the size of virtual machine storage or to IPL.

is an example of a disasterous command under all circumstances.

Argument)

env
specifies the command environment and defaults to CMS.

Example:

The function below requests multiple copies of any printed outpute.

V COPIES N;:X

(1] X+'CP!

[2] 100 Osvo'x?

[3] X+'SPOOL PRT COPY ',®N
v

52 APL/CMS User 's MNanual

C

C

AP10 1-—-THE STACK INPUT PROCESSOR //

Initial Value

stk (cvt ord
CMS 370 END

APL BEG
LIFO
FIFO
——op——
stk
APL
Description

Character vectors can be stored for subsequent input at the first
opportunity to CMS and APL/CMS. Two areas are available. The first, in
storage andwwqud by CMS and APL, is called the CMS input stack; the
second, a ﬁlsk'file used only by APL, is called the APL input stacke.
The CMS stack is efficient to use but limited by available storage; the
APL stack is 1limited only by disk storagee. Only character vectors (or
one—-element arrays) can be stored by this processore. A reference of the
shared variable obtains the return code set by the last specification;
zero indicates successe For other return codes, see "Appendix B:
Auxi liary Processor Return Codes."

When CMS or APL/CMS issues a request for keyboard input, a value from
the beginning of +the stack is dEE3“333—33_;;¥=;-T;-=E;Lested from the
user . This entry is made as though the user backspaces to the left
margin, strikes the attention, and enters the valuee The CMS stack has
priority over the APL stacke. If the user generates an APL interrupt or
if a character error is detected by APL/CMS when using stacked input,
both input stack areas are flushed and the keyboard unlocks for inpute

Warning: Cer tain values such as HT and RT cause immediate action by CMS
(and are not actually stacked) when placed in the CMS stacke. Refer to
the section on "Immediate Commands" in the ¥VN/370: Command Language
Guide for General Userse.

Argument and Options

stk
specifies the input stack to be usede. The default is CMS.

cvt
is the standard option for character translation and defaults to 370.
This option may be used only with the CMS stacke The APL stack is
maintained in an internal code which requires no conversione.

ord
indicates whether the processor places data at the beginning of the
stack (BEG or LIFO) or at the end (END or FIFO)e The default is END.
Entries into the APL stack always use the END optione

Section 6: APL/CMNS Auxiliary Processors 53

o b

Example:

This function will save the active workspace and returne. The method
used is to place a)SAVE CONTINUE command at the beginning of the CMS
stacke The CMS stack has priority over the APL stack and the BEG option
will place the command in front of anything already in that stacke
Execution is suspended by setting the stop vector for a stop on
statement LABEL, The stack entry is read at this point which saves the
workspacee The stack is read again whereupon the branch causes
execution to be resumed. The special CMS immediate commands, HT and RT,
are used to prevent the normal terminal outpute.

V CHECKPOINT;S
[1] S«<'CMS (APL BEG' a USE CMS STACK, LAST IN, FIRST OUT
[2] S+«101 [SVO'S' @ SHARE S AND IGNORE RESULT
[3] S«'HT' @ HALT TERMINAL OUTPUT
[4] S«'SLABEL'" a THIS WILL RESUME EXECUTION
[5] S+')SAVE CONTINUE' a FIRST OUT OF STACK
[6] SACHECKPOINT~LABEL a SET STOP VECTOR
[7] LABEL:S«'RT' @ RESUME TYPING WHEN RESTARTED
v

54 APL/CMS User 's Manual

AP1L 0——THE CMS DISK I/0 PROCESSOR

‘ Initial Value

nam (cvt fmt
VAR FIX
APL
370
BIT

—_or——

nam (typ
CTL

Description

This processor provides sequential and random access to disk files under
control of the CMS file systeme The operation of this processor is
described in the section on input/output file processinge The CMS disk
file system is described in the YVM/370: Command Language Guide for
General Userse.

Argument and Options

nam
L specifies the name of the CMS disk file to be accessede. It has one of
the forms:

filename

filename filetype o X/
filename filetype filemode)%)

i
The default filemode is A1l. The default filetype is VMAPL¢F, where c
is the first character of the conversion method usede.

cvt
specifies the standard option for conversion which defaults to VAR
except when the user gives a filetype of V In this casey the
default will be the cvt option with matching rst lettere. For
example, if the user gives VMAPL3F as the filetype, then the default
conversion is 370.

Note: All combinations of filetype and conversion can be explicitly
- specifiede.

fmt
is ignored except when a new file is createde. This is a wvariable
length file unless FIX is specifiede In this case, the file is fixed
with a record length set to the length of the first record written
into the file. Each subsequent record must have this same length or
an error is reported (in the control variable)e.

typ
establishes a control variable for the file, if an unpaired record
variable already exists for the same file. The cvt and fmt options
are ignored if the CTL option is presente.

Section 6: APL/CMS Auxiliary Processors 55

AP11 1-—THE FILEDEF I/0 PROCESSOR

Initial Value

ddn (cvt
VAR
APL
370
BIT

—_—or ——

ddn (typ
CTL

Description

This processor provides sequential access, via QSAM, to any device
suppor ted by VM/370. The device and its characteristics are specified
by use of the CMS command, FILEDEF. The operation of this processor is
described in the section on input/output fjile processinge. The FILEDEF
comnand is described in the VN/370: Command Language Guide for General
Userse.

Argument and Options

ddn
specifies the ddname to be accessedes It must be the ddname defined by
a FILEDEF command that the APL user has already issued to CMS,

cvt
specifies the standard option for conversion and generally defaults to
VAR. If the FILEDEF specifies a CMS disk file, the default conversion
option is determined in the same way as with AP110.

typ
establishes a control variable for the file, if an unpaired record
variable already exists for the same ddnamee. The cvt option is

ignored for a control variable.

56 APL/CMS User's Nanual

9

EXAMPLES USING THE INPUT/OQUTPUT PROCESSORS

Examples for AP110

Example 1 uses CMS disk files for a sequential update function. SUP is
given the name of a CMS file as an argumente. It updates "name VMAPLAF
A1l" using "name CHANGES Al1" and creating "name WORKFIL A1" as a
temporary new filee. When the update is completey, SUP erases the old

file and renames the new filee. The files SUP processes contain
personnel records that are identified by the person's social security
number as the first nine characterse. The changes file consists of

complete replacement records or, if the record is to be deleted, merely
the social security numbere. SUP provides a return code of O=successful
completion, 1=update performed but no file erased or renamed, or
2=no thing donee.

Example 1:

V Z+SUP FILENAME;OLDFIL;OLDREC;OLDSEQ;CNGFIL;
CNGREC;CNGSEQ;NEWFIL ; NUMS ;CMS ;[1I0
[1] Z+2
[2] OLDFIL«FILENAME,!' VMAPLAF!
[31] CNGFIL+~FILENAME,' CHANGES (APL!
[4] NEWFIL+-FILENAME,"' WORKFIL (APL?®
[5] 110 OSVO'OLDFIL"
[6] 110 OSVO'CNGFIL?*
[7] 110 CSVO'NEWFIL"
[8] —~(9#£pOLDFIL yCNGFIL NEWFIL) /0I0«0
[9] CNGREC+9tNUMS+~'0123456789"
[10] -STRT
[11] USEO:NEWFIL+-OLDREC
[12] OLDSEQ+«101NUMS.t9tOLDREC+~OLDFIL
[13) LOOP:-+(OLDSEQ<CNGSEQ)/USEO
[14] - (OLDSEQ>CNGSEQ)/USEC
[15] - (0=pOLDREC,CNGREC)/ENDF
[16) STRT:0LDSEQ+10LNUMS 1+ 9tOLDREC~OLDFIL
[17) USEC:—-(9=pCNGREC) /DLET
[18) NEWFIL+~CNGREC
[19] DLET:CNGSEQ«10LNUMS 1 9tCNGREC+~CNGFIL
[20] -LOOP
[21] ENDF:[JSVR 3 6p'OLDFILCNGFILNEWFIL"
[22]1 100 CSvo'CMs!
(23] -—=(ZeCMS)/0
{24]) CMS+~'ERASE ',FILENAME,' VMAPLAF?'
{251 CMS«'"RENAME ',FILENAME,' WORKFIL Al = VMAPLAF =!

Section 6: APL/CMS Auxiliary Processors 57

Example 2 illustrates the CMS disk file random accesse The FIND
func tion is given a personnel file, such as that updated by SUP, and a
social security numbere. It is to find the location of the corresponding
record (if any) in the file. In particulary, if it returns an integer
(n)y, then the nth record has the matching social security number. If it
returns a real (ne5), then the given social security number is not in
the files If it were, it would occur between records n and ntl (0 <= n
<= number of records in the file)e The only other possible return value
is M"SHARE ERROR"™ which indicates that the FIND command could not
establish the necessary shares with AP110.

Example 2:

V Z«FILE FIND SS;REC3;NUM;[JIO;BOT;TOP;ID
[11] REC+«FILE,' VMAPLAF!'
[2] NUM«REC,'(CTL"
[31] 110 CSVO'REC!'
[4] 110 CSVO'NUM®
[5] - (NUMV1tREC)/FAIL
[6] Z+2%[2@ 11NUM
[71] OIO«BOT«0
[8] DROP:TOP+2Z
[9] LOOP:Z+NUM«0«5xBOT+TOP
[10] -=(z%[Zz)/0
[11] ID«101'0123456789"'(9tREC
[12] - (SS<ID)/DROP
[13] BOT+Z
[14] -LOOPxSS>ID
[15] -0
[16] FAIL:Z«<"SHARE ERROR!'
v

Example 3 assumes that a function is suspended with a domain errore.
The function was using AP110 to sequentially read and process INPUT DATA
and the domain error occurred because the latest record read had
alphabetic characters where a numeric field was supposed to be. To
locate where in the file the bad record occursy, use the following
sequencey in O-originy, to determine its record number:

Example 3:

X<'INPUT DATA (CTL®
110 Csvor'x!

BAD+ 1+X(1]

58 APL/CMS User's Nanual

C

Examples for AP111

Example 4 uses the unit record equipment for a card-—to—printer functione.
The program, CTOP, expects as input a series of decks stacked in the
card reader as a single filee. These cards contain a sequence field in
the last four columns and a deck identification code in the preceding
four columnse. The cards are to be listed on the printer and each deck
should start on a fresh pagee.

Example 4:

V CTOP;CMS;SVPRINT;SVREAD; ID;CARD
[1] 100 CSVOo'CHS!
[2] CMS+~'FILEDEF CTOPOUT PRINTER (RECFM VA BLKSIZE 137!
[3] CMS+~'FILEDEF CTOPIN READER (RECFM F BLKSIZE 80!
[4] SVPRINT«'CTOPOUT (370"
[5] SVREAD<'CTOPIN (370"
[6] 111 OSVO 2 7 p'SVPRINTSVREAD !
[71 ~(SVPRINTVSVREAD)/O
[8] IDe1"~1"
(9] LOOP:-(0=pCARD+SVREAD)/O
(101 —=(v/ID#4t 8tCARD)/SKIP
[11] SVPRINT«' ',CARD
[12] -—-LooOP
[13] SKIP:ID+~41” 8tCARD
[14] SVPRINT«'1',CARD
[15]1 --LOOP
v

The function shown in Example 4 would take care of many
card—to—printer taskse However, because it uses characters, the input
is converted from 370 to APL and the output is converted back from APL
to 370« Thusy in the example, CTOP will not print cent symbols (Z)e.

Section 6: APL/CMS Auxiliary Processors 59

Example S is a card-to—-card function that has the same conversion
probleme In facty, its conversion problem is even more acute since CTOC
might be used to reproduce text deckse CTOC solves the problem by using
BIT conversione As input, CTOC expects a series of decks stacked in the
card reader as separate filese. The first card of each deck has an
identification code in columns one to four. The remainder of the deck
is to be reproduced except for the last eight columns of each carde The
last eight output columns are to contain the deck identification code
and a sequence numbere.

Example S:

V CTOC FILES;[IO;BITS ;PUN;RDR;NUM;ID;CARD;SEQ;F
[11] J1ro«0
[2] BITS+-(10 4p1),82 2 2 27T¢10
[3] 100 OSVO'F?
(4] F<'FILEDEF FILEO PUNCH(RECFM F BLKSIZE 80!
[5] F~'"FILEDEF FILEI READER(RECFM F BLKSIZE 80!
[{6] BEGF:PUN~'FILEO(BIT"'
[7] RDR-'FILEI(BIT"
[8] 111 OSVO 2 3p'PUNRDR!
[91] - (PUNVRDR) /NUM«0
[10] ID«32tRDR
[11] LOOP:-(0=pCARD+~RDR) /ENDF
[12] SEQe,BITS[10 10 10 10TNUM-NUM+10;]
[13]1 PUN«<(T641CARD),ID,SEQ
[14] -LOOP
[15] ENDF:[CSVR'PUN'
[16]1 [OSVR'RDR!
{171 —(O<KFILES~FILES—-1) /BEGF
v

MULTIPLE ACCESSING

The preceding examples have been in terms of single variables:
1e How do you read a file?
2. How do you send commands to CP via a shared variable?

Let us consider the implications of the sharing of multiple variables
with an auxiliary processore

The auxiliary processors, COMMAND and STACK INPUT, share multiple
variables with different or identical destinationse Consider the
following example:

Example 6:

A+«B+~C+'CP'
100 OSsvo 3 1p'ABC!

A«<'"INCORRECT REQUEST?!
B«'SPOOL Q0E OFF!
Ce-'Q F1?

FILES: NO RDRy, NO PRT, NO PUN

60 APL/CMS User 's Manual

C

The variables A, B, and C in Example 6 are independent, yet they have
some thing in commone Not one of them <can affect any of the otherse. If
you reference A, you obtain the return code that indicates an invalid CP
commande Using B and C to execute successful commands has not changed
this return codee. In common, they share the same destination, so their
assignments are "merged"; they are all sent to CPe For COMMMAND and
STACK INPUT this is not significant, but for other auxiliary processors
it ise

The I/0 auxiliary processors accept multiple record variables; thus,
they allow simultaneous access to several filese Example 1 for AP110 is
an update function that reads both the old file and the <changes filee.
The I/0O auxiliary processors also accept multiple record variables with
identical data sources or destinationse. Access to the same file with
multiple variables can be very useful, although it may be confusinge.
The following examples explore this situatione.

If A and B are both shared variables using the card reader as their
source and you reference A, B, and finally A againy then the second
reference of A does not read the second carde. Rather, its value is for
the third card since the second card was read by the reference to Be
Independent variables causing a merged effect can allow, for example,
any APL function to print information without knowing whether or not
some higher calling function is also printinge.

Now assume that A and B are both shared with the APL/CMS DISK I/0
processor and that both had the initial value "“SOMEFILE"Y, If one
references A, then B, and finally A again, then the second reference of
A reads the second recorde. The first B reference and the first A
reference obtain the first recorde. These A and B accesses are
independente.

Assume that A and B are both shared with the FILEDEF I/0 processor
and that both are using the same CMS disk filee. If they are using
different ddnames (for example, different FILEDEF commands were issued
each specifying the same CMS disk file) then A and B read records
independentlye The APL user should not attempt multiple access while
the file is being created by APl111,

The I/0 processors also allow multiple control variables. Because a
control variable is accepted only if there is an unpaired record
variable for the corresponding <file, the meaning of these multiple
control variables is cleare. However, one should be aware of the method
used for matching control variables with record variables, The control
variable will be paired with the most recently shared unpaired record
variable for the corresponding file (see Example 7).

Example 7:

V PROG;DATA; NUMB
[1] NUMB«~(DATA«'FT70 FILE'),"(CTL"
[2] 110 CSVO'DATA!"
[3] 110 CSVO'NUMB!
L) v

Example 7 shows that NUMB is paired with DATA. There is no problem
if some higher calling function is also reading FT70 FILE without a
control variablee. Now consider the data in Example 8.

Section 6: APL/CMS Auxiliary Processors 61

V F1 COMPAR F23;R1;I13R2;1I2
[1] I1<(R1«<F1),'(CTL?"
[2] I2«(R2«F2) " (CTL"
[31 110 CSVO'R1?
[4] 110 CSVO'R2!
[51] 110 0Osvor'r1it
[6] 110 CsvortrI2!

In most casesy, the COMPAR function will worke. However, if the fileid
in F2 is the same as that in Fl, then Il is paired with R2 and I2 is
paired with Rl. To avoid malfunction, statements 4 and 5 should be
reversede.

OTHER AUXILIARY PROCESSOR DETAILS

All initial values are converted using the 370 option before they are
inspectedy thus allowing you to refer to filenames that include 370
characters such as the 3 (see "Appendix A: Auxiliary Processor
Conversion Options" for details)e.

Options can occur in any ordere. If conflicting options occur (for
example, 370 and BIT), then the option selected depends on the auxiliary
processore. Blanks can be used freely: the initial value can use or
omit leading or trailing blankse. The 'options follow' left parenthesis
can occur with or without a preceeding or following blanke Any blank
can be replaced by multiple blankse.

In some casesSy records must be changed in length. When made longer,
the process is known as padding; the elements added as a result are
called pad characters. The APL/CMS auxiliary processors pad records on
occasione. When this is necessary,y, character records are padded with
blanks and bit records are padded with =zerose. Records using VAR
conversion are never paddede. BIT records may require padding, even if
they are of variable formaty, due to hardware limitationse On the IBM
System/370, for exampley, all BIT records must have a length that is some
multiple of eighte There is no case in which character records must be
paddede

The APL/CMS system includes a workspace called 1 APFNS. This
workspace contains functions that facilitate usage of the auxiliary
Proc essorse For example, one function issues appropriate FILEDEF
commands and offers shared variables to APl11l. For details,y, load this
workspace and type DESCRIBE.

62 APL/CNS User 's Manual

C

APPENDIX A: AUXILIARY PROCESSOR CONVERSION OPTIONS

The CMS auxiliary processors provide conversion to and from the
workspaces The details of the conversion are given belowe

THE 370 CONVERSION OPTYON

Many characters are common to both the APL and EBCDIC character setse.
The conversion preserves most of these characterses These characters are
the same in both sets:

A THROUGH Z 0 THROUGH 9 SPACE
< = > + - %

' . . H ’ ? 1

«C > N | 7

These characters have different graphics:
APL: A THROUGH Z ~ A = a + # A © ¢
370: a THROUGH z -~ &€ " 2 % $ # -0 +0
(Note that +0 and -0 are the EBCDIC left and right braces.) For
exampley "A" is converted to "a'" on output and "a" is converted to "A"
on inpute
The following conversion occurs only when going from APL to 370.

APL: -

370:

The terminal control characters backspacey, horizontal tabulate, idle,
line feedy, and new line, are translated one for one. All other EBCDIC
codes are converted to "o" when translated to APL.

All other APL characters are converted to a space when going to 370.
Those with graphics are:

I 1 T [X ¥

L 1 17 L x +
o ¥ ® o

c =} n (1) n

€ [3 P w

v » o~ < 2 X
-t 1 b ¥

E & O VvV #» 4

Appendix A: Auxiliary Processor Conversion Options 63

THE APL CONVERSICN OPTION

Figure 1 shows the EBCDIC code as decimal integers, with corresponding
APL graphicse. This table is indicative of the conversion done by VM/370
when the APL type element is specifiede. The full APL character set is
formed by use of the backspace (BS) terminal control code in conjunction

with the other characterse. For example, "YA"™ is converted to "AY,
backspacey "_" on output and "_", backspace, "A" is converted to A on
inpute.

Output to and input from files are both converted by the APL/CMS
system as 1if going to or coming from the normal APL terminale. For
input,y, all characters not in the APL/CMS input character set below, such
as invalid codes and invalid compound characters (that is, those
producing a character error on keyboard entry) are converted to one
unique internal APL code with no graphic which CP normally prints as a
spacee

For outputy, all characters other than the APL/CMS output character
set below, are converted to the EBCDIC code Q.

The Input Character Set of APL/CMS:

The input character set comprises the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZA
ABCDEFGHI JKLMNOPQRSTUVWXYZA
0123456789() ITLXx\|/#_2eiIT®
Q€L pw —+EXEVAMNSS=2>Fe—=1 A}
ePREe0oaNUCOVN~ MR L o2, 7

and SPACE.

The OQutput Character Set of APL/CMS:

The output character set comprises the input character set, above, plus
the terminal control characters:

BS - backspace

HT — horizontal tabulate
IL — idle

LF — line feed

NL — new line

64 APL/CMS User's Manual

vV Xxypuaddy

sSuofjdp UO FSJISAUO)D JOSS3D20Jdd AJeF]FXNY

370 APL 270 APL 370 APL 370 APL 370
0 32 64 SPACE 96 - 128
1 33 65 - 97 / 129
2 34 66 - 98 - 130
3 35 67 < 99 a 131
4 36 68 > 100 r 132
5 37 69 # 101 L 133
6 38 70 v 102 v 134
7 39 71 A 103 A 135
8 40 72 + 104 o 136
9 41 73 x 105 0 137

10 42 74 106 f 138

11 43 75 . 107 ’ 139

12 44 76 < 108 140

13 45 77 (109 _ 141

14 46 78 + 110 > 142

15 47 79 | 111 ? 143

16 48 80 112] 144

17 49 81 w 113 c 145
18 50 82 € 114 > 146
19 51 83 p 115 n 147

20 52 84 ~ 116 v 148

21 53 85 t 117 n 149

22 (BS) 54 86) 118 T 150

23 55 87 ¢ 119 \ 151

24 56 88 o 120 152

25 57 89 - 121 153

26 58 90 122 : 154

27 59 91 123 155

28 60 92 * 124 156

29 61 93) 125 157

30 62 94 H 126 = 158

31 63 95 127 159

Figure 1.

APL

370 APL 370
160 192
161 193
162 194
163 195
164 196
165 197
166 198
167 199
168 200
169 201
170 202
171 203
172 204
173 205
174 206
175 207
176 208
177 209
178 210
179 211
180 212
181 213
182 214
183 215
184 216
185 217
186 218
187 219
188 220
189 221
190 222
191 223

APL

N QMo Ow

JTovoZRAY

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

APL

NKX IS

CONTNBRON=O

EBCDIC Codes (Integers) to APL/CMS Characters (Graphics) via APL Conversion Option

APPENDIX B: AUXILIARY PROCESSOR RETURN CODES

Section 6 indicates that the APL/CMS auxiliary processors provide return
codes describing the results of a previous operation. With the COMMAND
and STACK INPUT processorsy you reference the shared variable to obtain
the return codee. The I1/0 processors provide return codes via a
control—type shared variablee.

The return codes from the COMMAND processor are generally the return
~ code from the command previously assigned to the shared variables. Since
you can issue any number of commands, including commands written by
yourself, it is impossible to list all possible COMMAND return codes. A
few errors are intercepted and result in return codes that have been
Zenerated by the auxiliary processor itself. If an I/0 problem causes
the CMS OS simulation routines to take a SYNAD exit, APl111 generates a
decimal return code which, when converted to hexadecimal, has the
four—byte representation NO,N1,A0,Al. The first two values are the two
sense bytes and the latter two values are the two status bytese. All
other return codes are generated by the auxiliary processors or result
from some known CMS macro instructione All specific return codes are
given belowe.

Numerical Listing

3 Unknown CMS commande.

‘ 0 No error existse.

1 Attempt to read a nonexistent file or unknown CP commande.
J3 Permanent read errore.

5 Attempt to read a file with too many records for CMS.t

6 Attempt to write too many records in a CMS iile.f

7 Attempt to read a record with invalid format or attempt to write
past the end of a variable—length file. You can always write at
the end of file (that is, you may append a record to the file)e
With a fixed-length file you may also write past this point and one
or more blank records are inserted into the file; this is not
possible with variable length filese.

8 Attempt to read a record with incorrect record length from a file
with fixed formate.

10 Attempt to create a file when you already have the maximum allowed
by CMS.Tt

12 End-of—file read or attempt to write on a read-only diske.

13 Attempt to write on a full diske.

fThe VM/370: Command Language Guide for General Users gives these
limitse.

C

Appendix B: Auxiliary Processor Return Codes 67

14 Attempt to write on an unformatted diske

15 Attempt to write a record with incorrect length into a file with
fixed formate.

17 Attempt to write a record that is too large into a variable length
flle.'f

19 Attempt to write in a file already containing as many data blocks
as CMS will allow.t

440 Data set cannot be opened for output.

441 Data set cannot be opened for inpute.

442 ABEND from the CMS OS simulation routinese.

443% Insufficient free storage for the CNS OS simulation routinese.

444% You assigned an invalid value to a shared variable. This cannot
happen with VAR conversione. The value is invalid because it is
null or is an array, has the wrong type, or is too bige An error
occurs, for example, if BIT conversion is being used and the value
is 1 2 3¢« An error occurs with the APL and 370 conversion options
if the value to be converted is numeric instead of charactere.

445 You referenced a shared variable that is reading a file using VAR
conversion and the resulting record is not a valid APL variable in
internal forme For example, it may not have a descriptor, the
element count may not equal the times reduction of the shape
vector, etce.

tThe VM/370: Command Language Guide for General Users gives these
limitse.

*If these errors occur, you can restart APL/CMS with more free storage
and try againe For detailsy see Section 6, heading "Space Used by
Auxiliary Processorse" i

68 APL/CMS User's Manual

9

Return Codes by Processor

This information 1is included for the experienced VM/370 user of
APL/CMS. Each auxiliary processor is listed with an indication of the
origin of its return codese. Each processor cany in additiony, return the
44x codese

AP100

CP: Result Register after Diagnose.
CMS: Register 15 after SVC 202.

AP101

APL: Register 15 after FSWRITE
CMS: Register 15 after SVC 202 for the ATTN functione

AP110

Register 15 after FSREAD or FSWRITE

AP111

Sense/Status Information on SYNAD exite.
Errors 12, 15, 17

Appendix B: Auxiliary Processor Return Codes 69

INDEX

2 execute 24 options 62
¥ format 26 record variables 48
\ scan 23 use of 36
CAI 33 APFNS, in LIB 1 22,62
[JCR 30 APL
Jct 33 command (see ')!' entries)
OpL 32 commands 8
JEX 31 conversion of APL\360 ws 45
OFx 30 environment 8
1o 33 in TERM command 42
gLc 33 library 41
gux 33 workspace 9
ONC 32 APLSV
ONL 31 compatibility with 37
Oopp 33 conversion of APLSV ws 45
Jpw 33 APLWS files 46
OrRL 33 AP100 52
gsvc 37 AP101 53
Osvo 35,37 AP110 48,55
OsvQ 38 AP111 48,56
OsvrR 36 atomic vector 34
grs 33 attention 12,16,32
arT 33 double 12,32
JuL 33 auxiliary processor (see AP)
TwA 33
B
)DIGITS 33 backspace 13,56
}JERASE 21 bare output 13
JMSG 20 BIT conversion 55
}JMSGN 20 block 40
JOPR 20 blocking messages 20
JOPRN 20 buffers, input—-output 50
JORIGIN 33
)SAVE 41
) STACK 15,21
})SYMBOLS 21 (o]
JWSID 21 canonical representation 30

carriage return 12,12,13
character, errors 12
character set

input 63

A output 63

abnormal disconnect 11 checkpoint a workspace 22

ACCESSy command 39 classification, name 32

access CMS
control 37 commands 8
multiple 60 commands in APL environment 52
random 40,49,55,58 disk I/0 processor 55
sequential 49,55,56 environment 8

accounting information 33 files 39

address of device 39 stack 53

A-disk 10,41 codes

ALLOC, option of LISTFILE 40 error 67

AP ({auxiliary processor) return 67

AP 62,67 command
control variables 48 ACCESS 39
conversions options 48 APL (see ')' entries)
initial value for 47 CMS commands in APL environment 52
offer protocol 47 COPYFILE 43

Index 71

CP in APL environment 52

DISK DUMP 45

DISK LOAD 45

during function definition 13
ERASE 41

FILEDEF 42,49,56,62

LINK 39

LISTFILE 40

MOVEFILE 43

PRINT 42
PUNCH 42
QUERY 41

QUERY TIME 43
READCARD 42
SPOOL 44
TAPE SCAN 44
TERM APL 42
TYPE 42
COMMAND COMPLETE 11
commands
APL 8
CMS 8
CP 8
comments in apl functions 17
communication, line loss 11,22
comparison tolerance 33
compress 20
CONT INUE workspace 22
control
of access 37
variables used with APs 48
control variable 67
conversion
character to numeric 24
in AP110 55
of APLSV workspaces 45
of APL\360 workspaces 45
option in AP 48
option in APs 63
COPYFILE command 43
coupling, degree of 35
CP
(and keyboard unlocks) 11,12
commands 8
commands in APL environment 52
ENTERED 11
environment 8,12
stack 53

D
damage, SI DAMAGE 15
D-diskx 10
definition, function 13
DEFN ERROR 13,17
degree of coupling 35
delay 32
deletion of a line 16
DEPTH error 14
device, address 39
DEVICE, ERROR 11
DIGITS 33
directory

vM/370 39

VM/370 user 6
disconnect, abnormal 11
disconnected, running APL/CNS 22

72 APL/CMS User's Manual

disk
A 10
D 10
files 55
G 10
virtual 6,10
z 10

DISK DUMP command 45
DISK LOAD command 45
DISK NOT AVAILABLE message 46
distinguished names 29
divide by zero 15
domino 18
double attention 12
drop 20
dyadic

access control 37

format 26

offer to share 35
dynamic erasure 31

E
EBCDIC (see AP conversion option)
edit
APL function 13
CMS editor 42
limitation on width 16
line deletion 16
enclosed specification 20
encode 18
end file 50
environment 52

APL 8
CMS 8
CP 8,12

erase 31
ERASE command 41
error
abrupt termination 51
character 12
codes used by APs 67
DEFN 13,17
DEPTH 14
DEVICE 11
in execute function 24
in locked function 15
in reading/writing files 50
messages 10
RANGE 15
STACK FULL 14
typing CMS commands 9
WS NAME TOO LONG 21
escapey from literal input 13
execute 24
expand 20
expressiony, latent 33,34
expunge J31
EXT 12

F

file, listing names of 40
file name 39

file processing 55

FILEDEF 62
command 42,49
FILEDEF commmand 56
FILEDEF 1I/0 processor (see AP111)
filemode 39
files, 11
filetype 39
VNAPLAF 55
VNAPLBF 55
VMAPLUT 41
VMAPLVF 55
VMAPLWS 39
VMAPLJF 55
fixed length records 39,55
format
dyadic 26
monadic 26
func tion
definition 13
establishment 30
func tionsy, local 31

G
G-disk 10,41

H
heterogeneous output 14
horizontal tabulate 13,64

I
I-beam functions 33
idle control character 13,64
immediate modification 15
incorrect password 10
information, accounting 33
initial program load 7
input

character set 63

line length 12
input buffers 50
input-output conversion 63
INTERFACE QUOTA EXHAUSTED 35
INTERRUPT 32
INTERRUPT: PERMANENT SV WAIT 38
IPL 7

L
labels 17
latent expression 33,34
length
fixed length records 39
variable length records 39
LIB 1
APFNS 22
SPECIAL 13
library 10,41
limi tation
on edit width 16
on workspace name 21

line
counter 33
deletion in edit 16
feed 13,64
input 12
loss 11
LINK command 39
LISTFILE command 40
local
functions 31
system variables 33
lock, set lock on workspace 21
locked function 15,16
LOGOFF 8
LOGON 6
loss of communication line 22

N
matrix divide 18
maximum
line length 12
records in CMS file 67
virtual storage 9
work area 9
me ssage
DISK NOT AVAILABLE 46
error 10
ready 9
REQUEST PLEASE 11
WS TOO LARGE 46
messages, blocking 20
mode of CMS file 39
monadic
access control 37
format 26
offer to share 35
retraction of a share 36
transpose 17
MOVEFILE command 43

N
name
classification 32
list function 31
of CNS files 39
names
distinguished 29
surrogate 37
new line 64
control character 13
number of workspaces 10

o]
offer to share 35
open quote 12
ORIGIN 33,33
0S files (see FILEDEF command)
output
bare 13
character set 63
heterogeneous 14
output buffers 50

Index

73

P

parentheses 14 [+

password 6 ’
incorrect 10

PERMANENT SV WAIT 38

poin ter
read 48
record 48
write 48
print
width 13

width limitation 16
PRINT command 42

printing
precision 33
width 33

program storage, use of 51
PUNCH command 42

Q
QSAM file access method 56
QUADTC 34
QUADTC workspace 13
QUERY
command 41
DISK 41
NAMES 41
STORAGE 9
TIME 43

R
random access 40,49,55,58
random link 33
RANGE ERROR 15
READCARD command 42
read—only library 10
read/write library 10
ready message 9
record

pointer 48

variables used with APs 48
records

fixed length 55

in CMS files 39
REQUEST PLEASE message 11
reshape 20
residue 17
retraction of a share 36

S

SAVE 41

scan 23

Script processor 42
sending workspaces to other users
sequential access 49,55,56
SETFUZZ 33

SETLINK 33

shar ey, offer to 35

SHARE, RETRACTION OF 36
shared variables 33,34

74 APL/CMS User's Manual

46

SI
DAMAGE 21
DAMAGE ENCOUNTERED 16,21
DAMAGED 15
size
of APL/CMS 9
virtual storage 9
workspace 9
space, use of program storage space
SPECIAL (workspace in LIB 1) 13
specification
enclosed 20
subscripted 20
SPOOL command 44
STACK 21
stack 21
CMS 53
command 15
CP 53
damage 15,16
full error 14
stop vector 16,16
storagey, query 9
storage managment 51
subscripted
functions 20
operators 20
specification 20
surrogate names 37
SV WAIT 38
SVP MEMORY FULL 35
SVP SYMBOL TABLE FULL 35
symbol table 21
SYMBOLS 21
system
functions 29,29
variables 29,33
system variables localized 33

T
tabulate, horizontal 13
take 20

TAPE REW 44

TAPE SCAN 44,44

TERM APL 42

terminal, type 33

time 43

time stamp 33

trace vector 16,16

translation during input—output 63
transpose, monadic 17

TYPE command 42

type of CMS files 39

typing error in CMS environment 9

U
unbalanced parentheses 12
use of program storage 51

51

IS

v
variable length records 39
variables

control (see AP control variables)

record (see AP record variables)

shared 33,34

system 33,34
virtual

disk 6

storage

maximum 9
size 9

virtual machine 6
virtual storage, use of 9
VMAPLAF, as a filetype 55
VMAPLBF, as filetype 55
VMAPLUT, as filetype 41
VMAPLVF, as filetype 55
VMAPLWS, as filetype 39
VMAPL3F, as filetype 55
VM/370

directory 39

ONLINE 11

user directory 6

P PR PP

w

WAIT, in PERMANENT SV WAIT 38

width
print 13
printing 33
working area 33
workspace 9
as a CMS file
number of 10

saving on magnetic tape

41

sending to other users

size 9

WS NAME TOO LONG error

WS TOO LARGE message

wsIip 21

z
Z—-disk 10
zeroy divide by

3

370 conversion

15

55

46

21

43
46

Index

75

IS

Trim Along This Line

READER’S COMMENTS

Title: APL/CMS User’s Manual Order No. SC20-1846
Programming RPQ MF2608
Program Number 5799-ALK

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

O Customer Engineer O Manager O Programmer O Systems Analyst
O Engineer [0 Mathematician O Sales Representative 1 Systems Engineer
O Instructor O Operator O Student/Trainee [0 Other (explain below)

How did you use this publication?
0O Introductory text O Reference manual O Student/ O Instructor text
O Other (explain)

Did you find the material easy to read and understand? [Yes 0 No (explain below)
Did you find the material organized for convenient use? [Yes O No (explain below)

Specific criticisms (explain below)
Clarifications on pages

Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SC20-1846

YOUR COMMENTS PLEASE . . .

This manual is one of a series which serves as a reference source for
systems analysts, programmers, and operators of |IBM systems. Your
comments on the back of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All com-
ments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your IBM representative
or to the |BM sales office serving your locality.

IEHUBV\IS,JasﬂSV\IO/'IdV

au siyl buoly wiay

....... B D et e e eeenea. FoLp :
FIRST CLASS
PERMIT NO. 38
PALO ALTO, CA.
|
BUSINESS REPLY MAIL I
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I
]
|
POSTAGE WILL BE PAID BY]
|
IBM SCIENTIFIC CENTER
APL/CMS Publications
2670 Hanover Street
Palo Alto, California 94304
....... L

BN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM Worid Trade Corporation
821 United Nations Plaza, New York, New York 10017
(international)

T'9p81-0¢0S v ST Ul PAlUINY " §09Z I Dal Bulliteiboly’

SC20-1846

TSIV

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604

(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

809Z4IN DdY bulwwesboliy jenuepy s, iasn SIND/1dV

“V'S'N Ui parutg

9181-020S

