

..

•
•

Systems

•

..

File No.
Order No .

S370-22
SC20-1846

APL/CMS User's Manual
Programming RPQ MF2608

Program Number 5799-ALK

This publication describes APL/CMS. It also describes the
APL/CMS auxiliary processors, which allow the APL program
to perform input and output operations to disks, magnetic
tapes, line printers, and other devices.

The programming RPO described in this manual, and all
licensed materials available for it, are provided by I BM on a
special quotation basis only, under the terms of the License
Agreement for I BM Program Products. Your local I BM branch
office can advise you regarding the special quotation and
ordering procedures .

First Edition (July 1974)

This edItion corresponds to Release 1 o~ APL/CKS And to all subsequent
releases until otherwise indicated in Dew editions or Technical
Newsletters.

Changes are periodically made to the specificatioRs herein; before using
this publication in connectIon with the operation o~ IBM systems,
consult the latest ~ Syatem/360 ~ System/370 BlblioaraphY' Order No.
GA22-6822, 10r the editions that are applicable and current.

Requests 10r copies 01 IBM publications should be made to your IBK
representative or to the IBY branch office serving your 1ocallty.

A 10rm 10r readers' comments is provided at the back 01 this
publication. 11 the 10rm has been removed, commeD~s concernin8 the
contents 01 ~h.s pub~ica~~on may be addressed ~o IBM Sclen~i~ic Cen~er,
APL/CKS Publications, 2670 Hanover Street, Palo Alto, Cali~orDia 94304.

© Copyrlgh~ International Business Machines Corporation 1974

"

. ,

•

•

This publica~ion provides in~orma~ion on
how ~o use APL/CMS, di~~erences be~ween

APL/CMS and APL\360, and ~he auxiliary
processors available wi~h APL/CMS.

This manual has ~he ~ollowing sec~ions

and ~wo appendixes:

• Sec~ion
APL/CMS.

.! is ~he in~roduc~ion to

• Sec~ion 1 describes APL under CMS, ~he
vir~ual machine concep~, lo@ging on ~o
VM/370, rela~ed CP, CMS, and APL
commands, how APL uses vir~ual s~orage,
how ~o save and copy workspaces, and
common error si~uations and wha~ ~o do
abou~ them.

• Sec~ion ~ describes how APL/CMS di~~ers
~rom APL\360 in ~erms o~ keyboard I/O
opera~ions, error handling, ~unc~ion

de£inition, primi~ive £unctions, and APL
commands.

• Section ~ describes new £unc~ions no~
available with APL\360: new primi~ive

~unctions, new sys~em £unc~ions and
sys~em variables and shared variables.

• Sec~ion ~ describes eMS
the APL/CMS user

£acilities ~or

• Section 2 describes ~he auxiliary
processors tha~ allow APL programs to
reques~ cer~ain eMS services:

•

--API00 ~he Command Processor that
passes commands ~o CMS and CP.

--APIOl the S~ack Input Processor ~hat
s~ores and supplies inpu~ entries Lor
use by eMS or APL/CMS.

--APIIO ~he CMS Disk I/O Processor ~hat
provides sequential and random access
~o CMS £i les.

--APlll ~he FILEDEF I/O Processor ~ha~
provides sequen~ial access, via QSAM,
~o any I/O device suppor~ed via
FILEDEF. This inclUdes readers,
punches, printers, and real OS disks
(in read/only mode).

~endixes that
table op~ions and
return codes.

describe translation
auxiliary processor

PREFACE

The APL/CMS sys~em combines the
programming ~ea~ures o£ APL and the vir~ual
machine ~acili~y o~ VM/370. Several
subsets o~ the system can be de£ined. One
can learn a sUbse~ o~ the system, use i~ to
solve problems, and go on to learn more
advanced ~eatures as the need arises. The
study and the use o£ APL/CMS is as Lollows:

1.

2.

3.

Read Sections I and 2 in this manual.
1£ un£amiliar wi~h APL, one should
read the APL\360 User's Manual •

Read Section 3 and Section 4 through
"System Functions and
Variables" o£ this manual.
use o£ these ~eatures.

System
Try making

Read the remainder o~ this manual.
Try using the shared variable £acility
and the APL/CMS auxiliary processors.

PREREQUISITE PUBLICATIONS

APL\360 User's
GH20-0906

Manual,

COREQUISITE PUBLICATIONS

Order No.

The ~ollowing pUblica~ions also provide
in~ormation that may be o~ interest to the
APL/CMS user.

APL/CMS Installation Manual,
SC20-1845

Order No.

APL\360 Primer, Order No. GH20-0689

IBY Virtual Machine Facili~y/370:

Command Language ~ £or General
~, Order No. GC20-1804

System Messages, Order No. GC20-1808
Terminal User's Guide, Order No.

GC20-1810

APL Shared
Manual.

Variables (APLSV) User's
I

!

c

SECTION 1: INTRODUCTION.

SECTION 2: USING APL UNDER CMS
The Vir~ual Machine.
Establishing a Connection to VN/370.
Loading APL/CMS.
CP, CMS, and APL Commands.
Use o£ Virtual S~orage •
Saving and Restoring Workspaces.
Errors • •

SECTION 3: GENERAL SYSTEM CHANGES.
Changes in Keyboard Entry and Ou~put

Double Attention
Input Line Limitation.
Open Quote •
Character Errors
Commands during Func~ion De£inition.
Escape £rom Li~eral Input.
Extended Print Width •
Bare Output.
Heterogeneous Ou~put

Changes in Error Handling.
Depth Error. •
Stack Full Error
St ack Damage •
Errors in Locked Functions
Range Error.
Result o£ De£ined Function •

Changes in Func~ion De£inition •
Immediate Modi£ication •
Print Width Limitation
Line Dele~ion.
Stop and Trace
Stack Damage •
Line Display.

•

•

Stop and Trace in Locked Functions •
Function Header.
Comments
Labels

•

•

•

•
Changes in Primi~ive Functions

Monadic Transpose.
Residue.
Encode •
Generalized Ma~rix Produc~
Divide.

Subscripted Specification.
Compress and Expand. •

Chan@es in System Commands
Communication Commands •
The ERASE Command. •
The SYMBOLS Command.
The STACK Command.
Workspace Identification •
Local Function Names •
The CONTINUE Workspace •

•

•
and Ma~rix

•

• •

•• •

•

•

•

•

•
•

•

•

•

•

•

.5

.6

.6

.6
• 7
.8
.9
10
10

12
12
12
12
12
12
13
13
13
13
14
14
14
14
15
15
15
15
15
15
16
16
16
16
16
16
17
17
17
17
17
17
18

18
20
20
21
21
21
21
21
21
22
22

SECTION 4: NEW LANGUAGE FEATURES
New Primitive Functions.

Scan.
Execute.
Format • •

System Functions and System Variables •
Introduction.
System Functions
System Variables

Shared Variables
Introduction
O££ers •
Re traction •

•
• •

Using the APL/CMS Auxiliary Processors
Compatibility with APLSV •

SECTION 5: CMS FACILITIES AND THE
APL/CMS USER. •

LINK and ACCESS Commands •
CMS Files.
LISTFILE Command •••
QUERY Command.
ERASE Command.
Workspaces and CMS Files

•

PRINT, PUNCH, and TYPE Commands.
EDIT and SCRIPT Commands
FILEDEF Command •
COPYFILE and MOVEFILE Commands •
Time
Saving Workspaces on Magnetic Tape •
Using APL'360 or APLSV Workspaces.
Sending Workspaces to Other APL/CMS

Users •

SECTION 6: APL/CMS AUXILIARY PROCESSORS.
Initial Value.
Offer Protocol

• •

Options for Data Conversion.
Input/Output Processing.
API00--The Command Processor

• •

AP101--The Stack Input Processor
API10--The C~S Disk I/O Processor.
APII1--The FILEDEF I/O Processor
Examples Using the Inpu~/Ou~pu~

Processors.
Multiple Accessing •
Other Auxiliary Processor Details.

APPENDIX A: AUXILIARY PROCESSOR
CONVERSION OPTIONS.

The 370 Conversion Option.
The APL Conversion Option.

APPENDIX B: AUXILIARY PROCESSOR RETURN
CODES.

INDEX.

23
23
23
24
26'
29
29
29
32
34
34
35
36
36
37

39
39
39
40
41
41
41
42
42
42
43
43
43
45

46

47
47
48
48
49
52
53
55
56

57
60
62

63
63
64

67

71

FIGURES

Figure 1. EBCDIC Codes (Integers) to
APL/CMS Characters (Graphics)
via APL Conversion Option. • . 65

•

SECTION 1: INTRODUCTION

APL/CMS is an APL system that runs under CMS (Conversational Monitor
System), a component of VM/370 (IBM Virtual Machine Facility/370). It
provides the facilities of APL\360 together with language enhancements
introduced by APLSV (the APL Shared Variable System).

The APL language and system commands used in APL/CMS are
fundamentally the same as described in the APL\360 User's Manual. The
reader must be familiar with that document. Minor differences are noted
herein beina mainly in the areas of system commands, primitive
functions, function definition, error handling, and keyboard entry and
output. MaJor differences are listed below.

Shared Variables: The addition of a shared variable facility which
provides a simple and effective way of working with CMS disk files,
magnetic tape files, and other high speed input and output devices. The
facility is managed by dynamically executable system functions.

Large Workspaces: The use of virtual memory which allows the workspace
size to vary from user to user up to a maximum of 16,400,000 bytes.

High Performance: A new implementation designed for rapid execution of
the APL language. An APL Assist feature is available for the System/370
Model 145 to provide a further increase in execution speed.

Auxiliary Processors: Four auxiliary processors designed to give the APL
user a convenient way to use the powerful facilities of VM/370 through
the medium of shared variables.

Shared System: APL/CMS utilizes the feature of VM/370 which allows one
copy of the system to service many independently operating APL/CMS
virtual machines.

Scan: A new operator is provided for efficient representation and
execution of algorithms which otherwise require iteration.

Execute and Format: Efficient conversion between character arrays and
numerical arrays is provided by these new primitive functions.

Canonical Representation: System
between defined functions and
matrixes.

functions are provided to convert
their representation as character

System Variables: These specially treated shared variables communicate
with the APL system to control parameters such as the index origin and
to provide information such as the time of day.

Latent Expression: This system varia~le is automaticallY executed when a
workspace is loaded.

Section 1: Introduction 5

»

SECTION ~: USING APL UNDER CMS

THE VIRTUAL MACHINE

VM/370 is a system that mana@es the resources o£ a sing1e computer so
that many dif£erent computing systems, called virtua1 machines, appear
to exist. Each virtua1 machine appears to have a system console, a CPU,
storage and input/output devices. It is not necessary to understand the
implicatIons o£ these terms, but you may want to know, for example, that
the storage size o£ the virtual machine affects the size o£ an APL/CMS
workspace.

To use APL/CMS, you need access to a virtual machine. Usually, your
VM/370 system operations group can prepare a virtual machine for your
use and tell you the name (called the userid) o£ the machine and a
password that controls access to it.

VM/370 maintains a directory o£ all the virtual machines that share
the resources of the real computer. The directory contains the userid,
password, accounting information, normal size of virtual memory, maximum
size of virtual memory, and a list o£ I/O devices, of varying
properties, identified by numbers. Some o£ the properties of the
machine can be changed during a terminal session (for example,
increasing the size o£ the virtual storage up to the limit specified in
the VM/370 directory).

Each user of APL/CMS must have access to a virtual machine. When the
user logs on, VM/370 looks up the directory entry and supplies a virtual
machine with the appropriate properties. Typically, a virtual machine
has a cons01e (for example, an IBM 2741), a CPU, storage, one or mare
virtual disks, a virtual card reader, punch, and line printer. A
virtual disk is a part of the space on a disk device (for example, £ive
cylinders on an IBM 3330).

ESTABLISHING A CONNECTION TO VM/370

Consult with your system operations group for the location and
properties o£ the termina1s you can use, and to find out how to
establish a connection. The APL\360 User's Manual describes some of the
terminals used for APL. In this manua1, an IBM 2741 is assumed. The
terminal has two type elements: one used for VM/370 and one used for
APL. Install the VM/370 type element, and establish a connection. The
terminal will type a response that will include VM/370 ONLINE or
RESTART. 1£ the keyboard is locked, press the attention key. Type
LOGON followed by your userid (the name of your virtual machine)
followed by M (short for MASK).

lo@on smith m

would be used by someone with the user identification SMITH. You may
enter lowercase letters, as shown in the example. The machine will
usually reply in uppercase letters. Typing the ~ causes VM/370 to print
a mask string to conceal your password. The machine response is:

ENTER PASSWORD: _._-.
6 APL/CMS User's Manual

Enter your password on top of the printed mask string. The machine then
prints the time and date, and any information that the operator wants
you to know about. If you have problems logging on, contact your system
administrator, or check the VM/370: Terminal User~ Guide for guidance
on what to do.

VM/370 has two major components. The first component is CP, which is
the control program. It manages the real resources of the installation
to provide independent virtual resources, in the form of virtual
machines, for its users~CMS (the Conversational Monitor System) is an
interactive monitor system that runs under CP and o£fers user-oriented
features which control the virtual machine.

All programs running on a VM/370 system are under control of
mayor may not use CMS. APL/CMS is a system that provides
language using the facilities of CMS and CP under VM/370.

CP; they
the APL

After your password is accepted, the introductory message is printed,
the keyboard is unlocked and CP waits for you to enter a CP command.
Now enter the command which causes CP to load the APL system. This is
done in one of two ways, depending on how your system operations ~oup
has set up the APL system.

The first method is to install the APL type element and type

IPL APL

IPL stands for ~nitial £rogram load. This command initiates the loading
of the APL/CMS system. The machine responds:

~APLICMS
CLEAR WS

When the keyboard unlocks, you can begin
commands. If the machine responds

to enter APL statements and

This message is SYSTEM APL DOES NOT
You should verify that APL is the
installation.

EXIST with the VM/370 type element.
name assigned to APL/CMS at your

The second method of invoking APL/CMS is to enter

ipl ems
apl

You will then be asked to install the APL type element and press the
return key. The system responds as described in the previous
paragraph. You can now use the system in the same way as an APL\360
system. You can log off the system by typing the APL command)OFF. The
following is an example of a short session at the terminal.

Section 2: Using APL under CMS 7

d'x38z irvyr; vm/370 online

1 smith m
ENTER PASSWORD: ----LOGON AT 18:01:18 PDT TUESDAY 03/19/74

i pl apl

A P L 1 C M S
CLEAR WS

2+2
4

2x3
6

3 .. 2
1.5

I OFF
CONNECT= 00:08:45 VIRTCPU= 000:00.66 TOTCPU= 000:02.20
LOGOFF AT 18:10:03 PDT TUESDAY 03/19/74

CP, CMS, AND APL COMMANDS

Some 01 the messages that you enter at the terminal will be treated as
commands. Tbe kind o£ command that can be used at any time depends on
the current environment. There are three environments: CP, CMS, and
APL. When you 1irst log on, you are in a CP environment. 11 you IPL
CMS, then you are In the CMS environment. 11 you IPL APL (or enter 'apl'
when in the CMS environmentl, then you go to the APL environment. A
summary 01 the way the environment changes is:

1:2. B!! 1rom 12 Enter

Not logged on CP logon
CP APL* ipl apl
CP CMS* ipl cms
CMS APL* ipi apl

CMS APL apl
APL Logged 011 IOFF
APL CMS IOFF BOLDt
APL CP IOFF BOLDt

CMS Logged o:f:f 10go:f1
CP Logged 0:f1 10go:f1
CMS CP CP

*Note that IPL APL and IPL CMS are not available in some installations.
tYou return to CP i:f you invoked APL by an IPL.

When you are in tbe CP environment, all input data is treated as CP
commands. When you are in the CMS environment, input data is treated as
CMS commands; i:f they are not recognized as CMS commands, then they are
treated as CP commands. When in the APL environment, all input data is
treated as APL statements or commands. CMS does not accept APL
commands, nor does APL obey CP or CMS commands.

8 APL/CMS User's Manual

...

..

•

If you have made a typing error while entering a CP or CMS command,
then you have a chance to correct the error if you have not yet pressed
the return key. Entering t causes the machine to ignore everything to
the left of the t. Entering a causes the previous character to be
ignored; entering aa causes the two previous characters to be ignored,
and so on. For example,

ipx alit ipl cms
iqapl cms
ipl dmaCilcms

all have the same effect as if "ipl ems" had been typed without any
errors. If you make an error and fail to correct it, then you must wait
until CP or CMS has processed it; typically, the result is an error
message indicating an unknown command, the keyboard unlocks, and you can
try again. (The Cil and t are the characters - and ~ of the 987 APL type
element and - and - of the 988 APL type element., These VM/370 logical
line edit characters can not be used while in the APL environment.

When a CMS command has finished execution, it responds as follows:

R; T=n.nn/x.xx hh.mm.ss

This is called a Ready message. n.nn and x.xx are the virtual and real
CPU times (in seconds and hundredths of seconds'. hh.mm.ss is the time
of day (hours, minutes, and seconds). If an error has occurred, then
the ready message (R;) is replaced by R(nnnnn) where nnnnn is an error
code; in most cases an explanatory message appears on a previous line.

USE OF VIRTUAL STORAGE

An APL program uses an area of storage called a workspace. The
workspace contains user defined functions and data, some space for
system tables, and a work area. As new functions and data are defined,
the space they need is taken from the work area. The amount of work
area can be determined by the APL system variable

[IWA (:r22 ON APL\360) \/~

U~~-~,:-l ;
In an APL\360 system, the size of the workspace is fJxed when the system
is generated and all users have the same workspace size. In APL/CMS the
size of the workspace is determined dynamically when you load APL.
After space is allocated for the system and for input/output areas, the
rest of virtual storage is allocated to the workspace. Subsequently,
when loading a workspace, its work area is adjusted accordingly.

The space used by APL/CMS varies from installation to installation,
but a typical figure is about 340,000 bytes, not including the
workspace. The size of your virtual storage is determined by an entry
in your VM/370 directory. When in the CP or eNS enVironment, you can
find out what the size is by entering the command:

query storage 7-10

The reply may be in units of K (for kilo or (024) bytes or M (for mega
or 1,048,576) bytes. If the reply is, for example, 512K then the work
area in the workspace is approximately 170,000 bytes. As you become
familiar with APL, you should be able to relate the workspace size to
the kinds of APL programs you can run. The maximum virtual storage
allowed by VN is 16M bytes. The maximum work area under APL/CMS is
about 16,400,000 bytes.)

\
--) f 1,

! -,

"
t., . ," 1 c "\ '6 l 1 v Section 2: Using APL under CMS 9

l,

SAVING AND RESTORING WORKSPACES

CMS refers to virtual disks by one of the letters A through G, S, Y, and
z. The distributed version of APL/CMS uses the following disks:

A User's private library
D Temporary space used during)COPY and)PCOPY, for example
G Libraries 1000 through 999999 (read/write access)
Z Libraries 1 through 999 (read-only access)

The A-disk and D-disk belong to your virtual machine, and normally
only your machine has access to them. The other disks belong to another
virtual machine which every APL/CMS user can access. The APL)SAVE
command stores a workspace on the A-disk. A library number causes the
public library to be accessed. A workspace cannot be saved in a
read-only library. The read-only library is usually maintained by the
APL system librarian. Everyone has access to the read/write public
library if one exists.

Under APL\360 the user's account number identifies the user's private
library to other users. Under APL/CMS, each private library is
maintained on the user's A-disk. Users cannot directly access another
user's private library. Numerous methods exist for transferring
workspaces between users in a secure manner.

APL/CMS sets no limit on the number of workspaces that can be stored
in the private library; the limit depends upon the total amount of disk
space available. If insufficient space is available to perform a) SAVE,
then a disk full error occurs. You can make room with the) DROP
command. Section 5 contains an explanation as to how you can find the
amount of disk space used by each workspace.

If the read/write public library (G- disk) is full, consult the
APL/CMS systems staff at your installation. If the message DISK NOT
AVAILABLE appears when attempting to save a workspace in the public
libraries, try it again in a few seconds as another user was probably
accessing that disk.

ERRORS

APL/CMS fundamentally is like APL\360 in its handling of errors. Most
of the error messages are the standard APL\360 error reports. You may
also get the types of errors discussed in this section.

NOT IN CP DIRECTORY

This message will be received when attempting to logon when you are
not an authorized user. It may also appear if you made a typing
error, or if there was line noise creating a problem.

PASSWORD INCORRECT

See the installation manager to find out your correct password.
Unlike APL\360, you cannot directly respecify your password.
Typing errors or line noise may cause this message to appear.

10 APL/CMS User's Manual

..

..

DMSACC112S DISK IA(191)1 DEVICE ERROR

This message occurs when your disk is not in the proper CMS ~ormat

and must be formatted using the CMS FORMAT command. Unless this is
done, APL/CMS does not have the capability to access your private
library.

SYSTEM APL DOES NOT EXIST

This message is an indication that your installation has generated
APL/CMS under a different name or that APL/CMS is available only
from the CMS environment •

CP (keyboard unlocks)

The letters CP are typed as the result of telephone-line noise or
importunate use of the attention key. Type the word BEGIN (B for
short) and press the return key. If you are attempting to generate
a double attention, type EXT and press the return key.

COMMAND COMPLETE ••• CLEAR WS

This message (ellipsis indicates several lines of print) may be
caused by an error in APL/CMS. Report the occurrence(s) to the
system operations group. You can continue to work with APL, but
your active workspace has been replaced by a clear workspace.

CP ENTERED, REQUEST PLEASE.

This message indicates that you are
reload APL/CMS.

in the CP environment and must

RESTART

-- or

VM/370 ONLINE

Either message indicates that VM/370 has been restarted. You must
logon to the system and reload APL/CMS. Your active workspace has
been lost.

communication line loss

You may lose the active workspace because of an abnormal disconnect
of the telephone connection to VM/370. A IS-minute time period is
provided to allow you to reestablish the communication line and
logon again. For the method of resuming APL execution refer to
Section 3 under the heading "The CONTINUE Workspace".

Section 2: USing APL under CMS 11

')­
.!:" GENERAL SYSTEM CHANGES

This section describes how APL/CMS differs from APL\360. Differences
are grouped in terms of keyboard I/O operations, error handLiqg,
function definition, primitive functions and system commands. This
section is based upon the APLSV User's ManuaL.

CHANGES ~ KEYBOARD ENTRY AND OUTPUT

DOUBLE ATTENTION

Generating a doubLe attention under APL/CMS requires a fine touch as CP
monitors attentions for possibLe entry to that environment. Pressing
the attention key twice with deLiberate speed shouLd suffice. If the
characters CP are typed, indicating entry to the CP environment, simpLy
type EXT; the effect is the same as a properLy executed double
attention.

If you are in the CP environment and do not wish to generate a doubLe
attention, type BEGIN.

INPUT LINE LIMITATION

The maximum number of keystrokes which can be entered, excluding the
terminaL carriage return, is 130. If the entry is interrupted by the
attention key, causing a caret to appear, then the keystroke count is
begun again. Since input of this form appends to the line already
entered, it is possible to enter more than 130 keystrokes by striking
the attention on every group of 130 or Less, the finaL group being
terminated by the carriage return. The system Limitation for input of
this form is 762 keystrokes, inclUding one character for each attention
and carriage return. These input keystrokes must produce Less than 380
APL characters.

OPEN QUOTE

ALL keyboard entries are terminated by a carriage return. A keyboard
entry containing an open quote wiLL invoke no speciaL system treatment.
It wiLL produce a SYNTAX error report, as will an entry with unbalanced
parentheses.

CHARACTER ERRORS

If character errors occur in an inpu~ line, a CHARACTER ERROR report is
issued; the entry is then typed up to the first such error, at which

12 APL/CMS User's Manual

...

•

point the keyboard unlocks to allow further entry as if the printed line
had been entered from the keyboard. Note that the carriage return
(except to terminate a keyboard entry) and the horizontal tabulate are
invalid input characters. The terminal control characters backspace,
horizontal tabulate, idle, linefeed, and new line are available as a
five element character vector, QUADTC, in the workspace 1 SPECIAL.

COMMANDS DURING FUNCTION DEFINITION

During function definition, every keyboard entry beginning with a left
bracket (supplied by the system for convenience) is treated as an EDIT
or INPUT request. APL/CMS reports some errors (for example, SYNTAX and
RANGE errors) on input but the entry is accepted.

A keyboard entry that does not begin with a left bracket is treated
as an immediate execution entry. To produce an entry of this form,
backspace and use the attention key to erase the beginning of the line
provided by the system.

The following statements
function definition mode:

apply to immediate execution when in

• If a workspace is saved during function definition, then a subsequent
loading of the workspace resumes the function definition at the point
when the save command was given.

• If the function in edit is copied from a saved workspace, it will be
copied in closed form.

• Any attempt to enter
message DEFN ERROR.

or leave function definition results in the

• Any action causing an explicit or implicit erasure of
being edited terminates function definition mode.

ESCAPE FROM LITERAL INPUT

the function

Overstruck 0 U T interrupts execution but no longer causes an exit from
the function.

EXTENDED PRINT WIDTH

The maximum printing width (as set by the WIDTH
facilities) can be set to 254 characters.

BARE OUTPUT

command and other

Normal output includes a concluding carriage return so that the
succeeding entry (either input or output) will begin at a standard
position on the following line. Bare output, denoted by expressions of
the form ~X, does not inclUde this carriage return if it is followed
either by another bare output or by a character input (of the form X-~).
Character input follOWing a bare output is treated as if the user had

Section 3: General System Changes 13

-:.;: .. ,

spaced over to the position
output. For example:

occupied at the conclusion o£ the bare

[1]

[2]
[3]
[4]
[5]

V F
~'TRUE OR FALSE: THE SQUARE OF •
1!]-?4
I!]-' IS '
~-(.(?4)*2),·

X-I!: V

F
TRUE OR FALSE: THE SQUARE OF 1 IS 16 FALSE

X
FALSE

1£ the length o£ any single output string is more than the printing
width then the carriage returns normally occasioned by the page width
setting are inserted.

Because any expression o£ the £orm I!J-X entered at the keyboard
(rather than being executed within a de£ined £unction) is necessarily
£ollowed by another keyboard entry, it is concluded by a carriage return
and its e££ect is indistinguishable £rom the e££ect o£ the corresponding
normal output.

HETEROGENEOUS OUTPUT

Parentheses surrounding a heterogeneous output statement are no longer
permitted. They can be systematically removed £rom any unlocked
£unction by user-de£ined editing £unctions, employing the dynamic
:function de£inition capability provided by the £unctions OCR and OFX
described in Section 4.

The £acility :for heterogeneous output does not represent a proper APL
£unctioni in particular, its result cannot be assigned a name. It was
introduced in APL\360 to obviate awkward conversions o:f numbers to
character representations. The :format £unction described in Section 4
now provides such conversions. The user is advised to avoid the use o:f
the heterogeneous output :facility.

~GES IN ERROR HANDLING

DEPTH ERROR

These errors do not occur. The STACK FULL error, described below,
describes a related system limitation.

STACK FULL ERROR

A portion o£ workspace storage, called the stack, is used to hoLd APL
expressions during the execution o£ an APL statement, and to hold status
in:formation during the execution o:f a user-de£ined £unction. I:f the
:fixed space allocated to the stack has been used, a STACK FULL error

14 APL/CMS User's Manual

.;)

message is ~yped. For correc~ive ac~ion, use lSI ~o display ~he s~a~e
indica~or. Clear ~he s~ack by repea~ed use o£ ~he ,_, key. To change
~he size o£ ~his area, use ~he) STACK command as described in ~he

Sec~ion 3 under ~he heading "Changes in Sys~em Commands"

STACK DAMAGE

The error repor~ SI DAMAGE ENCOUNTERED is issued when execution can
proceed no £ur~her because o£ damage to ~he execu~ion stack. This may
be caused by erasure o£ a pendent £unction, £or example.

Generally, APL/CMS prints ~he repor~ SI DAMAGED when damage occurs;
however subsequen~ action can repair such damage. A good example is the
damage which occurs when a suspended func~ion is edited. The stack is
always damaged during the £unction edi~ing process and is normally
res~ored ~o a proper condition upon ~ermina~ion o£ ~he edi~ing.

ERRORS IN LOCKED FUNCTIONS

A locked £unction is trea~ed essen~ially as primi~ive and i~s execution
can invoke only a DOMAIN error, although conditions (such as WS FULL or
RANGE error) arising from sys~em limitations will also be repor~ed.

Moreover, execu~ion o£ a locked £unc~ion is terminated by any error
occurring within it, or by a double at~ention.

RANGE ERROR

1£ an arithmetic resul~ £alls outside ~he range o£ numbers allowed by
~he system, ~hen a RANGE error is given.
evaluate 2*250 causes a RANGE error. An
i~self also produces a RANGE error.

RESULT OF DEFINED FUNCTION

For example, an a~temp~ to
a~~emp~ ~o divide zero by

1£ ~he £unc~ion header specifies ~ha~ a de£ined function has a resul~,
~hen £ailure ~o assign a value to ~he resul~ will lead ~o a VALUE ERROR
report on exit £rom ~he £unc~ion.

CHANGE§ !B FUNCTION DEFINITION

IMMEDIATE MODIFICATION

An en~ry of ~he form [N[M] while in func~ion defini~ion mode now invokes
the £ollowing special action £or the case when M is zero: line N is
displayed with the carrier resting at *he end of the line, as if the
line had Just been entered from the keybo~rd. At this point, the line
can be extended, or modi£ied by backspace and attention, in the usual
manner.

Section 3: General System Changes 15

r.
f---l

PRINT WIDTH LIMITATION

A line will not be extended beyond the printing width during
insertion of blanks. A line longer than the printing width cannot
directly edited. It may be possible to edit the line by setting OPW
its maximum value. Alternatively, a line of this type can be changed
use of the system function [CR to obtain a character representation
the function, modification of the resulting character matrix,
de~inition of the function by use of the system function UFX.

LINE DELETION

the
be
to
by
of

and

A line of a function is deleted by entering a left bracket, a not
symbol, the line number and a right bracket. For example:

{ 99]
[4]
{ 5]

will delete statements 4 and 5. In the above example the [99],
[5] were supplied by APL and the other characters were entered
user. The attention signal cannot be used to delete a line.

STOP AND TRACE

[4], and
by the

The stop and trace vectors associated with a function are nullified when
the definition of that function is edited.

STACK DAMAGE

The stack is always damaged when a suspended or pendent function is
beins edited. This damage is normally repaired when the function
definition is closed. Resumption of the suspended function will produce
a SI DAMAGE ENCOUNTERED report if the damage is still present.

LINE DISPLAY

Lines of a function which have been modified or added are
canonical form until the function definition is closed.
extra spaces are not removed until the function is closed.

STOP AND TRACE IN LOCKED FUNCTIONS

not put into
For example,

Settings of stop and trace are automatically nullified when a function
definition is locked.

•

16 APL/CMS User's Manual

~

..

FUNCTION HEADER

/

A function header which contains more than one occur,rnce of the same
name is rejected and the report DEFN ERROR is given.

COMMENTS

Comments can be placed on the same line as executable code. Characters
to the right of the leftmost lamp character (A), which is not in a
quoted string, are saved as part of the statement but are not executed.

Comments, on lines by themselves, are exdented,
function display.

LABELS

like labels, during

Names used BS labels within a function are active only when that
function is being executed or is suspended and during those times,
labels act as rea~only local variables. At other times, when the
function is pendent, and within any other defined function, these names
are unencumbered by their use as labels.

(

CHANGES IN PRIMITIVE FUNCTIONS

MONADIC TRANSPOSE

The monadic transpose now reverses the order of all coordinates rather
than interchanging only the last two. Formally, it is defined in terms
of the dyadic transpose as follows:

~A - (<j>&.ppA}t\ilA

With this change the identity

whiCh held for matrixes M and N now holds for higher-dimensional
arrays. Indeed, the corresponding identity holds for any inner product
f.g if g is commutative.

RESIDUE

The residue function was previously defined to depend only on the
absolute value of its left argument. It is now defined as follows:

1. If A=O then AlB is equal to B.

2. If A~O then AlB lies between A and zero (being permitted to equal
zero but not A) and is equal to B-NxA for some integer N.

~ .,] ,J,
.. ~ !J

Section 3: General System Changes 17

For example:

Ao.IB
0 1 2 0 1 2 0 1 2 0 1 2 0
6 -5 -4 -3 2 -1 0 1 2 3 4 5 6
0 -2 -1 0 -2 -1 0 2 -1 0 -2 -1 0

x 21.824
.ollx

0.004

The new de£inition 01 residue can be stated £ormally as 10llows:

AlB -- B-AxLB*A+A=O

ENCODE

The de£inition o£ the encode £unction T Is based on the residue £unction
In the manner speci£ied by the £ollowing £unction 10r vector A and
scalar B:

V Z A E B
[1] Z OxA
[2] I pA
[3] L: (I=OI/O
[4] Z[I) AU] I B
[5] (A[I]=OI/O
[6] B (B-Z[I])H[I]
[7] I I-l
[8] -L

V

The de£inition 01 the encode 1unction £or a le£t argument having one
or more negative elements is there£ore a££ected by the change in the
de£inition o£ residue. For example:

2 2 2T13 2 2 2T-13
1 0 1 0 1 1

2 2 -2T13 -2 -2 -2T5
-1 -1 -1 -1 -1 1

2 0 2T13 -2 2 -2T5
0 6 1 0 1 -1

GENERALIZED MATRIX PRODUCT AND MATRIX DIVIDE

The domain o£ the ~ £unction descrIbed in the APL\360 User's Manual, has
been .xtended slightly to inclUde vector and scalar arguments. This
section de£ines the extensions,and also provides a more comprehensive
discussion o£ the £unction and its potential applications.

18 APL/CMS User's Manual

The domino (~) represents two £unctions which are use£ul in a variety
o£ problems includin@ the solution o£ systems o£ linear equations,
determining the projection o£ a vector on the subspace spanned by the
columns o£ a matrix, and determining the coe££icients o£ a polynomial
that best £its a set o£ points in the least-squares sense.

When applied to a nonsingular matrix A the expression [A (monadic)
yields the inverse o~ A, and the expression X-BffiA (dyadic) yields a
value o£ X which satis£ies the relation A/,B=A+.xX and is there£ore the
solution o£ the system o£ linear equations conventionally represented as
A~=b. In the ~ollowing examples the ~loor ~unction is used only to
obtain a compact display:

A-(,4)o.~,4

A L~A LA+.xOOA
1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 -1 1 0 0 0 1 0 0
1 1 1 0 0 -1 1 0 0 0 1 0
1 1 1 1 0 0 -1 1 0 0 0 1

B-1 3 6 10
X-B~A
B X A+.xX (mA)+.xB

1 3 6 10 1 2 3 4 1 3 6 10 1 2 3 4

C-4 2pl 2 3 5 6 9 10 14
Y-C~A

C LY LA+.xY L(~A)+.xC

1 2 1 2 1 2 1 2
3 5 2 3 3 5 2 3
6 9 3 4 6 9 3 4

10 14 4 5 10 14 4 5

The £inal example given shows that i£ the le£t argument is a matrix
C, then C~A yields a solution o£ the system o£ equations ~or each column
o£ C.

1£ A is nonsingular and i~ I is an identity matrix o£ the same
dimension then the matrix inverse mA is equivalent to the matrix divide
ImA. More generally, for any matrix P the expression ~P is equivalent
to the expression

where R is the number o£ rows in P.

Section 3: General System Changes 19

The domino ~unctions app~y more genera~~y to singu~ar and nonsquare
matrixes, and to vectors and scalars; any argument o~ rank greater than
2 is rejected (RANK ERROR). For matrix arguments A and B the expression
X-B~A is executed only i~

1. A and B have the same number o~ rows, and

2. the columns o~ A are linearly independent.

I~ the expression X-B~A is executable, then pX is equal to

and X is determined so as to minimize the value o£ the expression

The domino ~unctions apply to vector and scalar arguments as £Ollows:
except that the shape o~ the result is determined as speci£ied above, a
vector is treated as a one-column matrix (since a one-rowed matrix o£
more than one column would be rejected by condition 2 above) and a
scalar is treated as a one-by-one matrix. In the case o£ scalar
arguments X and Y, the expression X~Yis equivalent to X*Y and the
expression ~Y is equivalent to *Y.

The APLSV User's Nanual contains severa~ more examples which may be
o£ interest to the reader familiar with problems of polynomial £itting
and o£ geometry.

SUBSCRIPTED SPECIFICATION

In an expression such as,

R[P]-Q

--or--

R[S;T]-Q

APL/CMS requires the shape o£ the array subscript, pP or (pS),pT to be
the same as the shape o~ Q unless Q is a scalar or one-element array.

COMPRESS AND EXPAND

As stated in
compress and
left argument.

the APL~~ User's Manua~, a scalar right argument o£
expand is not extended automatically i~ required by the

A multiple condition branch may be coded:

-(v/C1,C2, ••• ,CN)/LABEL

One E~ement

argument of
drop, and as
£unctions.

Arrays: One-e~ement arrays are acceptable as the ~e~t

take, drop, and reshape, the right argument o~ take and
the coordinate indicator for subscripted operators and

20 APL/CMS User's Manua~

Enclosed Specification: Enclosing a specification
parentheses causes an explicit result to be produced.
be printed i1 it is leftmost on the line.

statement within
This result will

CHANGES IN SYSTEM COMMANDS

COMMUNICATION COMMANDS

There are occasions when a user may wish to be undisturbed by messages
arriving 1rom another terminal. The command)MSG OFF blocks all
messages from other terminals and the command)MSG ON restores the
acceptance 01 messages. The commands)OPR and)MSG do not lock the
keyboard; under APL/CMS they have the same effect as)OPRN and)MSGN.
The)MSG command must specify the userid of the virtual machine to
receive the message.

THE ERASE COMMAND

The ERASE command now acts on any global object, and no longer
distinguishes between pendent functions and others. Problems that may
possibly arise from erasing a pendent function are forestalled by the
response SI DAMAGE, which advises the user to take appropriate action
before resuming execution. If execution is resumed and SI damage is
encountered, an SI DAMAGE ENCOUNTERED report is given and the SI is
reduced.

THE SYMBOLS COMMAND

The command)SYMBOLS without a number prints the current number of names
accommodated. The number of symbols can be set in a clear workspace by
the command)SYMBOLS N. The minimum number of symbols allowed is 50.
Once a name is used, it occupies space in the symbol table even if
erased. Copying a workspace into a clear workspace witt minimize the
number of occupied spaces in the symbol table.

THE STACK COMMAND

A portion of workspace storage, called the stack, is used to hold APL
expressions during the execution of an APL statement, and to hold status
indication during the execution of a user defined function. The amount
of space allocated to
the command)STACK N.
512.

the stack may be changed in a clear workspace by
When a clear workspace is loaded, N has the value

WORKSPACE IDENTIFICATION

The command)WSID can be used to set a lock as well as
name, using the same form as the)SAVE command. Used as
IWSID returns only the workspace identification.

the workspace
an inquiry,

Section 3: General System Changes 21

Note: APL/CMS supports a maximum of eight characters as the workspace
identifica~ion. If more than eight charac~ers are used to save, load,
or copy a workspace, a WS NAME IS TOO LONG repor~ is given.

LOCAL FUNCTION NAMES

As a resul~ of
Section 4),
variables.

the introduction of the system function DFX (defined in
local names may now refer to functions as well as

THE CONTINUE WORKSPACE

If a workspace named CONTINUE exists and does not
loaded when APL/CMS is invoked.

have a lock, it is

If the machine loses
workspace is not saved.
about 15 minutes for the

a connection with a terminal, then the active
However, VM/370 provldes a grace period of

user to establish a new connection and logon on
to the sys~em. Once reconnected, type:

term apl on attn off linesize 130 mode vm
begin

to resume APL execution.

APL/CMS can be run normally in a disconnected state for long Jobs
which do not require a terminal. A function in 1 APFNS provides this
capability. The example shown in Section 6 for auxiliary processor 101
demonstrates a way to checkpoint a workspace by use of an APL function.

22 APL/CMS User's Manual

SECTION~! NEW LANGUAGE FEATU~ES

This section describes the new primitive functions, system functions,
and system variables introduced by the APLSV system and available in
APL/CMS. This section is based upon the APLSV User's Manual.

NEW PRIMITIVE FUNCTIONS

SCAN

For any dyadic function a and any vector X, the a-~ of X (denoted by
a\X) yields a result R of the same shape as X such that R[I) is equal to
a/ItX. For example:

+\1 2 3 4 5 6
1 3 6 10 15 21

p+\,O
o

(' C:"

7 \ .. ,'

~ .-,

The scan is extended to any array as follows! if R-a\[I]A, then pR
equa.ls pA and the vectors alon@ the Ith coordinate of R are the a-scans
over the vectors along the Ith coordinate of A; scan applied to a
scalar yields the scalar unchanged.

The following examples show some interesting uses of the scan:

L-O 0 1 0 1 0 1
L

0 0 1 0 1 0 1
-L

1 1 0 1 0 1 0
v\L

0 0 1 1 1 1 1 ALL I'S FOLLOWING THE FIRST 1
A\-L

1 1 0 000 0 ALL O'S FOLLOWING THE FIRST 0
<\L

0 0 1 0 0 0 0 REMOVE ALL l'S FOLLOWING THE FIRST

X
2 3 5 7
3 1 7 8
4 7 9 2

A/X==r\X I'S INDICATE ROWS OF X
1 0 0 WHICH ARE IN ASCENDING ORDER

+\,5
1 3 6 10 15 TRIANGULAR NUMBERS

><\,5
1 2 6 24 120 FACTORIALS

For any associative function,a the following definition of R-a\X is
formally equivalent to the definition R[I]=a/ItX:

R[l]=X[I]
R[I]=R[I-l]aX[I] FOR Iel',pX

Section 4: New Language Features 23

This de£ini~ion requires only -1+pX applica~ions o£ a (as compared to
.5x(pX)x-l+pX), and is ~he one ac~ually used £or associa~ive £unc~ions.
Because o£ ~he £inite precision used in machine arithme~ic ~he resul~s

o£ ~he ~wo defini~ions may dif£er, and di1fer significan~ly, if the
elemen~s of X dif£er by many orders of magni~ude. For example, compare
~he last elemen~ o£ ~he scan wi~h the corresponding reduc~ions in ~he
£ollowing case:

X~IE6 -IE6 lE-16
+\X

1000000 0 lE-16
+/X

o
+/~X

There£ore, the scan, as well as reduction, should be
in work requiring high precision.

EXECUTE

used with care

Any character vector can be regarded as a representation of an APL
s~atement (which mayor may not be well-formed). The monadic £unction
denoted by • (~ and 0 overstruck) takes as its argument a character
vector or scalar and evaluates or executes the APL statement it
represents. When applied to a character argument that might be
construed as a system command or the opening of function definition, an
error will necessarily result when evaluation is attempted, because
neither of these is a well-formed APL statement.

There are several major uses of the execute function:

1. In those instances where it is desired to use the ~ of an APL
object as an argument of a function, rather than its value, the
name can be enclosed in quotes, and the argument later evaluated
within the function by means of the execute function. A common
example o£ this is in the use of a general integration £unction
whose arguments might be the vector of grid pOints and the name of
the £unction to be integrated. For example:

V Z~L INT X;Y
[1] Z-(1'X--l~X)+.xO.5xl'Y+-l~Y-.L,' X'

V

V Z-Q X
[1] Z-X*3

V

0.0162

2. When applied to a vector of characters representing numerical
constants, the execute £unction will convert them to numerical
values. This is particularly use£ul in this system, in which
access to data generated by alien systems is provided through the
shared variable facility, and large quantities of such data may
need to be converted to numerical APL arrays.

3. Where it is necessary to treat collections of data that are related
but cannot be combined into a single array, the execute £unction

24 APL/CMS User's Manual

allows :families o:f names to be used :for related variable. The
proper variables :for each case can be generated and used under
program control, either by selecting one o:f a set o:f names :from a
character matrix, by computing a numerical su:f:fix to a generic
name, or by other means.

4. The construction .~ is nearly equivalent to the use o:f 0 :for
requesting input :from the keyboard during :function execution, and
has certain advantages: it allows complete control over output
prior to the requested input, and permits the input to be examined
by the :function prior to the attempted execution.

5. Conditional expressions can be constructed in which execution is
applied only to the expression selected by the condition, avoiding
possible error generation or unnecessary computation. For example,
a recursive de:finition o:f the :factorial :function can be written as
a single conditional statement:

VZ-FACT N
[1] .3 -12[I+N~0]t'Z-1

V

The execute :function may appear anywhere in a statement, but it will
success1ully evaluate only valid (complete) expressions, and its result
must be at least syntactically acceptable to its context. Thus, execute
applied to a vector which is empty, contains only spaces, or starts with
~ (branch symbol, or A (comment symbol) produces no explicit result and
there10re can be used only on the extreme le1t. For example: .' . Z-.' •

SYNTAX ERROR

Z ... • •

"

The domain o:f. is any character array 01 rank less than
RANK and DOMAIN errors are reported in the usual way:

C"'3 4'
+/.C

7
.1 3pC .3 4

RANK ERROR DOMAIN ERROR .
• 1 3pC Jl3 4

" "

two, and

An error can also occur in the attempted execution 01 the APL
expression represented by the argument 01 Ai such an indirect error is
reported by the usual error message :followed by a display o:f the
argument o:f the execute :function, a caret showing the point o:f
di:f:ficulty, a display o:f the statement containing the execute :function
and another caret marking the point 01 di11iculty. For example:

123+*'4+0'
RANGE ERROR
.: 4+0

"
123+.'4+0'

"

Section 4: New Language Features 25

FORMAT

The symbol • (T and 0 overstruck) denotes two format functions which
convert numerical
significant uses of
composing tabular

arrays to character arrays. There are several
these functions in addition to the obvious one for
output. For example, the use of format is

complementary to the use of execute in treating bulk input and output
(via the shared variable facility), and in the management of combined
alphabetic and numeric data.

The monadic format function produces a character array identical to
the printing normally produced by its argument, but makes this result
explicitly available. For example:

M-2=?4 4p2
R-.M
M R R[;-1+2x,4]

0 1 0 1 0 1 0 1 0101
0 0 1 1 0 0 1 1 0011
1 0 1 1 1 0 1 1 1011
0 0 1 1 0 0 1 1 0011

pM pR
4 4 4 8

p_2 5
3

A/,R=_R
1

.'ABCD'
ABCD

The format function applied to a character array yields the array
unchanged, as illustrated by the last two examples above. For a
numerical array, the shape of the result is the same as the shape of the
argument except for the required expansion along the last coordinate,
each number going, in general, to several characters. The format of a
scalar number is always a vector.

The dyadic format function accepts only numerical arrays as its right
argument, and uses variations in the left argument to provide
progressively more detailed control over the result. Thus, for F.A, the
argument F may be a single
length 2x-lfl,pA.

number, a pair of numbers, or a vector of

In general, a pair of numbers is used to control the result: the
first determines the total width of a number field, and the second sets
the precision. For decimal form the preciSion is specified as the
number of digits to the right of the decimal point, and for scaled form
it is specified as the number of digits in the multiplier. The form to
be used is determined by the sign of the precision indicator, negative
numbers indicating scaled form. Thus:

26 APL/CMS User's Manual

p[-A
12.34

0
-0.26

3 2

R-9 2'-A
S-9 -2'-A

p[-R
12.34 -34.57
0.00 12.00

-0.26 -123.45
3 18

p[-S
1.2EOl -3.5EOl
O.OEOO 1.2EOl

-2.6E-Ol -1.2E02
3 18

-34.567
12

-123.45
3 24

po-12 3l1A
12.340
0.000

-0.260

-34.567
12.000

-123.450

po-6 01JA
12 -35

o 12
o -123

3 12

pC-7 -l1JA
lEOl -3EOl
OEOO lEOl

-3E-Ol -lE02
3 14

I~ the width indicator o~ the control pair is zero, a ~ield is chosen
such that at least one space will be le~t between adjacent numbers. I~

only a single control number is used, it is treated like a number pair
with a width indicator o~ zero:

p[-2'-A
12.34 -34.57
0.00 12.00

-0.26 -123.45
3 16

p[-O 2lfA
12.34 -34.57
0.00 12.00

-0.26 -123.45
3 16

po--21JA
1.2EOl -3.5EOl
O.OEOO 1.2EOl

-2.6E-Ol -1.2E02
3 18

po-O
1.2EOl
O.OEOO

-2.6E-Ol
3 18

-21JA
-3.5EOl

1.2EOl
-1.2E02

Each column o~ an array can be individually composed by a le~t

argument that has a control pair for each:

p[-O 2 0 21JA po-s 3 0 21JA
12.34 -34.57 12.340 -34.57
0.00 12.00 0.000 12.00

-0.26 -123.45 -0.260 -123.45
3 15 3 16

p[-6 2 12 -31JA po-s 0 o -2'-A
12.34 -3.46EOl 12 -3.5EOl
0.00 1.20EOl 0 1.2EOl

-0.26 -1.23E02 0 -1.2E02
3 18 3 17

6 2 8 3 3 0 4 0 5 0 12 41J,A
12.34 -34.567 0 12 0 -123.4500

Section 4: New Language Features 27

[\

The £ormat £unction applied to an
applies to each o£ the planes de£ined
example:

array o£ rank greater than two
by the last two coordinates. For

L-2=?2 2 5p2
L 4 l .. L

1 1 0 0 1 1.0 1.0 0.0 0.0 1.0
1 1 1 0 1 1.0 1.0 1.0 0.0 1.0

1 0 0 1 0 1.0 0.0 0.0 1.0 0.0
0 0 0 0 0 0.0 0.0 0.0 0.0 0.0

Tabular displays incorporating row and column headings, or other
in£ormation between columns and rows, are easily con£igured using the
£ormat £unction together with extended catenation. For example:

\,

JAN
APR
JUL
OCT

ROWHEADS-4 3p' JANAPRJULOCT 'i
YEARS-71+,S !

TABLE-.00lx-4E5+?4 Sp8E5 ..
(' ',(1]ROWHEADS),(2~9 0.YEARS),[1]9 2 .. TABLE

72 73 74 75 76
204.49
264.77

71.18
-190.04

26.21
-357.23

276.93
188.87

136.92
-326.43

106.11

143.44
-93.27

-93.20
-66.01

-67.20 328.26
392.83 -202.37

I t is no
conveniently
example:

longer necessary
combine literal

to use heterogeneous output in order to
statements with numerical results. For

X-17.34

'THE VALUE OF X IS ,;X
THE VALUE OF X IS 17.34

'THE VALUE OF X IS ',.X
THE VALUE OF X IS 17.34

THE

THE

.11-' THE VALUE OF X IS ,
X-25.4
M;X

VALUE OF X IS 25.4
(• .11), (.X)
VALUE OF X IS 25.4

There are obvious restrictions on the le£t argument o£ £ormat, since
the width o£ the £ield must be large enough to hold the requested £orm,
and i£ the specified width is inadequate the result will be a DOMAIN
error. However, the width need not provide open spaces between adjacent
numbers. For example, boolean arrays can be tightly packed:

1111
0110
0100
0000

1 0.2=?4 4p2

The £ollowing £ormal characteristics o£
concern the general user, but may be
applications.

the £ormat £unction need not
o£ interest in certain

The least width, W, required to represent a column o£ numbers C £or
an indicated precision P is determined as £ollows:

w-tr (vIC<O)+ ("'P~O -1)+ (Ip) + (4, riO, l+L 1001 C+C=O) [1+P2:0] ,~

28 APL/CMS User's Manual

The expressIons (M.A),N.B and (M,N).A,B are equIvalent 1£ M and N are
£ull control vectors, that Is, 1£

SYSTEM FUNCTIONS AND SYSTEM VARIABLES

INTRODUCTION

Although the prImitive £unctions o~ APL deal only with abstract objects
(arrays o£ numbers and characters), it is often desirable to bring the
power o£ the language to bear on the management of the concrete
resources or the environment of the system in which APL operates. This
can be done within the language by identifying certain variables as
elements of the interface between APL and its host system, and usin~
these variables for communication between them. While still abstract
objects to APL, the values of such system variables may have any
required concrete significance to the host system.

In principle all necessary interaction between APL and its
environment could be managed by use of a complete set o£ system
variables, but there are situations where it is more convenient, or
otherwise more desirable, to use functions based on the use of system
variables which may not themselves be made explicitly available. Such
functions are called, by analogy, ~stem functions.

System variables and system functions are denoted
~~ that begin with a quad. The use of such names is
system and cannot be applied to user-de~ined objects.

by distinguished
reserved ~or the

They cannot be
copied, grouped, or erased;
appear In ~unction headers,
statements, distinguished names
syntax.

those that
but only to

denote system variables
be localized. Within

can
APL

are subject to all the normal rules o£

SYSTEM FUNCTIONS

Like the primitive abstract funtions o~ APL, the system functions are
available throughout the syste~; and can be used in de£ined functions.
They are monadic or dyadic, as appropriate, and have explicit results.
In most cases, they also have implicit results, in that their execution
causes a change in the environment. The explicit result always
indicates the status of the environment relevant to the possible
implicit results. Several of the system functions are used to control
the shared variable facility and are described below in this section
under the heading "Shared Variables"; the rest follow.

Canonical Representation

The character array printed in displaying the definition of a function F
is clearly an unambiguous representation of the function F. The
representation remains unambiguous if the V symbols and the line numbers

Section 4: New Language Features 29

with their brackets are removed and the lines made flush le£t. 1£ the
rows are then padded with spaces on the right, where necessary to make
them all ~f equal length, the resulting matrix is called the canonical
representation o£ F. The canonical representation o£ a defined function
is obtained as a result o£ applying the system function OCR to the
character scalar or vector representing the name of the function. For
example:

VBIN[[J]11
V Z-BIN X

[11 Z-1
[2] Ll:Z-(O,Z)+Z,O
[3] -(X~pZ)/LI

[4] A ILLUSTRATE
V

M-[CR 'BIN'
M

Z-BIN X
Z-1
Ll:Z-(O,Z)+Z,O
-(X~pZ)/LI

A ILLUSTRATE [CR

pM
5 16

BIN 4
1 464 1

[CR

The function [JCR applied to any argument which does not represent the
name of an unlocked function yields a matrix of dimension 0 by O.
Possible error reports £or [JCR are RANK error if the argument is not a
vector or a scalar, or DOMAIN error if the argument is not a character
array.

Function Establishment

The definition 01 a function can be established or 1ixed by applying the
system function [FX to its canonical representation. To continue the
preceding example:

BIN

M[3;11]-'-'
[FX M

I1BIN[[]V
V Z-BIN X

[11 Z-1
[2] Ll:Z-(O,Z)-Z,O
[3] -(X~pZ)/LI

[4] A ILLUSTRATE [CR
V

As shown in the foregoing example, the 1unction OFX produces as an
explicit result the vector 01 characters which represents the name of
the function being fixed, while replacing any existing definition of the
1unction with the same name. The argument of OFX is, of course,
unaffected. The name provided by the explicit result can be
conveniently used in a variety of ways. For example:

30 APL/CMS User's Manual

a([FX M),' 4'
1 -4 6 -4 1

The name o£ any function established by the £unction OFX obeys the
normal rules of localization. Thus if a £unction ABC is established
within a function G in which the name ABC is local, the definition of
ABC disappears upon termination of execution of G. Function definition
mode continues to apply to global names only.

An expression of the form [FX M will establish a function
following conditions are met:

if the

1. M is a valid representation o£ a
differs £rom a canonical matrix
nonsigni£icant spaces (other than a
is a valid representation.

function.
only in

Any matrix which
the addition of

row consisting of spaces only)

The name o£ the function to be established does not conflict with
an existing use of the name £or a pendent, suspended or the current
£unction or for a label, @roup, or variable.

3. Certain system restrictions must be satis£iedi for example, the
number of rows of the function must be less than 2049. A NONCE
error is reported in these cases.

If the expression fails to establish a function then E2 change occurs in
the workspace and the expression returns a scalar index of the row in
the matrix argument where the fault was found. 1£ the argument of OFX
is not a matrix a RANK error will be reported, and if it is not a
character array a DOMAIN error will result. If condition 3 above is
violated, a NONCE error is reported.

Dynamic Erasure

Certain name conflicts can be avoided by using the expunge function OEX
to dynamically eliminate an existing use of a name. Thus [EX 'PQR' will
erase the object PQR unless it is a label, a group, or a pendant or
suspended function. The function returns an explicit result of 1 if the
name is now unencumbered, and a result of 0 if it is not, or if the
argument does not represent a well-formed name. The expunge function
applies to a matrix of names and then produces a logical vector result.
OEX will report a RANK error i£ its argument is of higher rank than a
matrix, or a DOMAIN error if the araument is not a character array.

The expunge £unction
applies to the active

is like the)ERASE command
refer ant o£ a name (which may

cannot expunge certain names.

except that
be local),

it
and

The dyadic function [NL yields a character matrix, each row of which
represents the name o£ an object in the dynamic environment. The right
argument is an integer scalar or vector which determines the class of
names produced as £ollows: 1, 2, and 3, respectively, invoke the names
of labels, variables, and functions. The left argument is a scalar or
vector of alphabetic characters which restricts the names produced to
those with an initial letter occurring in the argument. The ordering of
the rows is accidental.

Section 4: New Language Features 31

The monadic ~unction [NL behaves analogously with no restriction on
initial letters. For example, [NL 2 produces a matrix o~ all variable
names, and either o£ [NL 2 3 or ONL 3 2 produces a matrix o~ all
variable and ~unction names.

•
The uses o~ ONL include the £ollowing:

In conjunction with
dynamically erased;
clear a workspace o~

OEX, all the objects o~ a certain class can be
or a ~unction can be readily de£ined that will
all but a preselected set o~ objects.

• In conjunction with OCR, £unctions can be written to automatically
display the de£initions o£ all or certain ~unctions in the workspace,
or to analyze the interactions among £unctions and variables.

• The dyadic £orm o~ [NL can be used as a convenient guide in the
choice o£ names while desi~ning or experimenting with a workspace.

Nam~ Classi£ication

The monadic ~unction [NC accepts a matrix o~ characters and returns a
numerical indication o£ the class o£ the name represented by each row o£
the argument. A single name may also be presented as a vector or a
scalar.

The result o£ CNL is a suitable argument £or ONC, but other character
arrays may be used, in which case the possible results are integers
ranging £rom 0 to 4. The signi£icance o£ 1, 2, and 3 are as ~or ONL; a
result o£ 0 signi£ies the corresponding name is available £or any use; a
result o£ 4 signi£ies that the argument is not available £or use as a
name. The latter case may arise because the name is in use £or denoting
a group, or because the argument is a distinguished name or not a valid
name at all.

The delay £unction, denoted by ODL, evokes a pause in the execution o£
the statement in which it appears. The argument o£ the £unction
determines the duration o£ the pause, in seconds, but the accuracy is
limited by possible contending demands on the system at the moment o£
release. The delay can be prematurely terminated by a single or double
attention. A single attention causes execution o£ the statment to be
resumed. A double attention causes an INTERRUPT report and the keyboard
unlocks. The explicit result o£ ODL is a scalar value equal to the
actual delay. 1£ the argument o£ DDL is not a scalar or a vector with a
single numerical value, a RANK or DOMAIN error will be reported.

SYSTEM VARIABLES

System variables are instances o£ shared variables. The characteristics
o£ shared variables that are most si~ni£icant here are these:

1. 1£ a variable is shared between two processors, the value o£ the
variable when used by one o£ them may well be di££erent £rom What
that processor last speci£ied.

32 APL/CMS User's Manual

2. Each processor is free to use or not use a value specified by the
other, according to its own internal workings.

System variables are shared between a workspace
processor. Sharing takes place automatically each time
activated and, when a system variable is localized in a
time the function is used.

and the APL
a workspace is
function, each

The system variables are listed below. Also listed are the workspace
functions and I-beam functions they are intended to replace. These
earlier ad hoc facilities are still available, but are expected to be
supplanted by the use of system variables. The old definitions of the
workspace functions will no longer work. New definitions may be copied
from 1 WSFNS, or defined, as in the following example:

V Z ORIGIN N
[1] Z [IO
[2] OIO N

V

The system variables are:

Value in
Name Purpose Clear WS
OCT Comparison tolerance

(relative)
-/2*-43

010

oLX

OPP

]PW
ORL
OAI

Index origin used in
indexing, 7, f,., and,

Latent expression executed
on activation of workspace

Printing precision: affects
numeric output and monadic V

Printing width
Random link: used in 7
Accounting information:

identification (always
zero), computer, connect,
keying times, measured in
milliseconds

1

••
10

120
7*5

oLC Line counter: line numbers

oTS

OTT

oUL
OWA

of functions in execution
Time stamp: year, month, day,

hour, minute, second, millisecond
Terminal type: 0 for 1050,

1 for Selectric, 2 for
PTTC/BCD, -1 for other devices

User load (always 1)
Working area available

Range
55 0 to

-/2*-24 55
0 1

Characters

,16

29+,225
,-1+2*31

Two classes of system variables can be discerned:

Repla~

SETFUZZ

ORIGIN

none

DIGITS

WIDTH
SETLINK
I29 21

127 26

I25 20

I28

I23
I22

24 19

• Comparison tolerance, index origin, latent expression, printing
precision, printing width, ~ random link: In these cases the value
specified by the user (or available in a clear workspace) is used by
the APL processor during the execution of operations to which they
relate. If the user attempts t~ specify an inappropriate value to a
system variable, the specification is suspended and a NONCE error is
reported. On entry to a function whose header specifies the local
instance of a system variable, that system variable is made local and
then the value extant on entry to the function is assigned to the
local instance.

Section 4: New Language Features 33

• Account in£ormation, line counter, time stamp, terminal ~,~
load and work ~~: In these cases localization or setting by the
user are immaterial. The APL processor will always reset the
variable be£ore it can be used again. When using APL/CMS, CUL is
always 1 because there is only one user on a virtual machine.

Latent Expression: The APL
expression is automatically

statement represented
executed whenver the

,\

acti vated.
(... [LX) and
£unction.

Formally, [LX is used as an argument to the
any error message will be appropriate to

Common uses o£ the latent expression include

DLX-'G'

used to invoke the arbitrary £unction G, and the £orm:

[LX-" 'FOR NEW FEATURES IN THIS WS ENTER: NEW'"

by the latent
workspace is

execute £unction
the use o£ that
the £orm:

used to print a message on activation o£ the workspace. The £orm
DLX-'-CLC' can be used to automatically restart a suspended £unction.
The variable [LX may also be localized within a £unction and respeci£ied
therein to £urnish a di££erent latent expression when the £unction is
suspended.

Atomic Vector: This system variable £ound in APLSV is not present in
APL/CMS. Users with a requirement £or the terminal control characters
backspace, horizontal tabulate, idle, line £eed, and new line can copy 1
SPECIAL QUADTC to obtain these as a ~ive-element character vector.

SHARED VARIABLES

INTRODUCTION

Two otherwise independent concurrently operating processors can
communicate, and thereby be enabled to cooperate, i£ they share one or
more variables. Such shared variables constitute an inter£ace between
the processors, through which in£ormation can be passed to be used by
each £or its own purposes. In particular, variables can be shared
between an APL workspace and some other processor that is part o£ the
overall APL system, to achieve a variety o£ e££ects including the
control and utilization o£ devices such as printers, card readers,
magnetic tape units, and magnetic disk storage units.

In an APL workspace, a shared variable may be either global or local,
and is syntactically indistInguishable £rom ordinary variables. It may
appear to the le£t o£ an assIgnment, in which case its value is said to
be set, or elseWhere in a statement, where its value is said to be ~.
Either £orm of re1erence is an access.

At any instant
assigned to it by
processor using a
what it might have

a shared variable has only one value, that last
one of its owners. Characteristically, however, a

shared variable will ~ind its value di££erent £rom
set earlier. A 1amiliar example 01 this in APL is the

quote quad when it is used successively £or output £rom a £unction and
input to it £rom the keyboard; ~ is, in £act, a variable shared between
the £unction and the user at the terminal.

34 APL/CMS User's Manual

A given processor can simultaneously share variables with any number
of other processors. However, each sharing is bilateral; that is, each
shared variable has only two owners. This restriction does not
represent a loss of generality in the systems that can be constructed,
and commonly useful arrangements are easily designed.

Shared variables are used to communicate between independent
processors. The kinds of processors which can be used depend on the
facilities of the host operating system. APL/CMS has a single APL user
on each virtual machine, running under the CMS component of VM.
Processors available in APL/CMS inclUde the single user's APL program,
the APL/CMS processor and four APs (auxiliary processors) which are
supplied with the system. The APs are described in detail in Section 6;
for example, APII0 can read and write CMS disk files.

The full power of the shared variable concept can be gained by
reading the APLSV User's Manual. APLSV runs under the OS/VS operating
system. It allows an APL program to share a variable with an auxiliary
processor. It also allows two active APL users to share a variable; in
other words two APL users can communicate with each other via shared
variables.

Note: APL/CMS does not allow active APL users to communicate directly
with each other through the use of shared variables.

We now describe the shared variable system
normally used under APL/CMS. We then describe
present for compatibility with APLSV.

OFFERS

functions, as they are
some additional features

A single offer to share is of the form P OSVO N, where P is the
identification of another processor and N is a character scalar or
vector which represents a name. The result is a number which gives the
de~ee of coupling: ~ if no offer has been made, ~ if an offer has
been made but not matched, two if sharing is completed. An offer can
never decrease the degree of coupling. For example:

110 OSVO'99'
0

110 OSVO'ALPHA'
2

999 [SVO'ALPHA'
0

999 [SVO'BETA'
1

The first offer is rejected because 99 is not a name. The result 0
indicates no coupling. The second offer is offered and accepted
resulting in a degree of coupling of 2. The third offer is rejected
because AL~HA is already shared with auxiliary processor 110. The
fourth offer produces a degree of coupling of 1 because it is offered
but not accepted by a matching counter offer.

If a user attempts to share more variables than the limit determined
when the system is installed the error reported is INTERFACE QUOTA
EXHAUSTED. This limit is 45 in APL/CMS as distributed. Other system
limits may cause the report SVP MEMORY FULL or SVP NAME TABLE FULL to be
issued; these limits are described in the APL/CMS Installation Manual
and may be changed when the system is installed.

Section 4: New Language Features 35

1 1 ____ '

A se~ o~ o~£ers can be made by using a vec~or le£~ argumen~ (or a
scalar or one-elemen~ vec~or which is au~oma~ically ex~ended) and a
ma~rix righ~ argumen~, each o~ whose rows represen~s a name (or a name
pair: see below £or surroga~e names). The o££ers are ~hen ~rea~ed in
sequence and ~he explici~ resul~ is ~he vec~or o£ ~he resul~ing degrees
o£ coupling. For example:

110 CSVO J 5p'DELTA12345RHO
202

1£ ~he quo~a o£ shared variables is exhaus~ed in ~he course o£ such a
mul~iple o~£er, none o£ ~he o~£ers will be ~endered.

The monadic £unc~ion OSVO accep~s an argumen~ N which is a scalar,
vec~or or ma~rix o£ charac~ers. I~ does no~ change ~he degree o£
coupling bu~ does have an explici~ resul~ which gives ~he degree o£
coupling o£ ~he name or names in N. 1£ ~he degree o£ coupling o£ a name
is 1 or 2, dyadic o££er opera~es, in e££ec~, as a query ~he same as ~he
monadic form. The expression

(O*OSVO [NL 2)1 [NL 2

f.. i produces a charac~er ma~rix o£ shared variable names, one per row.

RETRACTION

Sharing o££ers can be re~rac~ed by ~he monadic £unc~ion OSVR applied ~o
a name or a ma~rix of names. The explici~ resul~ is ~he degree (or
degrees) o£ coupling prior ~o the re~rac~ion. The implici~ resul~ is ~o
reduce ~he degree o£ coupling ~o zero.

Re~rac~ion of sharing is automa~ic if ~he user signs o££ or loads a
new workspace. Sharing o£ a variable is also re~rac~ed by i~s erasure
or, i£ i~ is a local variable, upon comple~ion o£ the £unction in which
i~ appeared, or i£ an object wi~h ~he same name is copied in~o ~he

workspace.

USING THE APL/CMS AUXILIARY PROCESSORS

The APL/CMS auxiliary processors use ~he Inl~ial value o£ ~he shared
variable ~o indicate the source and/or destination o£ ~he processors
input/output and to select certain options. For example, the £ollowing
sequence will write ~wo records to a CMS £ile called "EXAMPLE SCRIPT".
The "370" conversion op~ion is selec~ed. The £irst record is "THIS GOES
IN THE FIRST RECORD" and ~he second record is "AND THIS GOES IN THE
SECOND".

2

2

S-'EXAMPLE SCRIPT(370'
110 CSVO'S'

S-'THIS GOES IN THE FIRST RECORD'
S-'AND THIS GOES IN THE SECOND'
[1SVR'S'

36 APL/CMS User's Manual

In this case, S is the name of the shared variable. Notice that the
argument to [SVO and [SVR is'S' not S. See Section 6 for further
details of the auxiliary processors.

COMPATIBILITY WITH APLSV

APL/CMS has one user on one virtual machine. In addition, CMS is a
synchronous system, that is, one which completes each request before
continuing with the next. APLSV has many users on one real machine and
it is possible for asynchronous processes to communicate with each
other. APL/CMS provides certain features which have little value in the
CMS environment but which may be useful for maintaining compatibility
with APLSV. We give a brief description of the APL/CMS feature herei
full details of the APLSV feature will be found in the APLSV User's
Manual.

Surrogate Names

The description of [SVO implied that two processors which share a
variable must agree on a common name for the variable. Since it may be
difficult for two processors to agree on a common name, OSVO will accept
a single name, such as 'ALPHA', or a pair of names such as 'ALPHA
BETA'. The second name of the pair is called a surrosate name. In the
case of a single name, the name is its own surrogate. The process of
sharing causes variables with the same surrogate names tO l matched. I'
APL/CMS allows the use of surrogate names, but since the auxiliary
processors will accept any names offered to them, surrogate names need
not be used.

Access Control

In certain practical applications of shared variables, it is important
to know that a new value has been assigned since the variable was last
referenced, or that the old value has been used before a new one is
assigned. The shared variable facility has an access control mechanism
which allows processors to enforce an access discipline.

The access control operates by inhibiting the setting or use of a
shared variable by one owner or the other, depending on the access ~
of the variable and the value of the access control matrix. Access
control is set by an expression of the form B OSVC N, where N is a
character vector representing the name of a shared variable and B is a
four element vector of zeroes and ones (or a scalar or one-element
vector which is extended in the usual way). See the APLSV User's Manual
for a complete explanation.

The monadic form of OSVC reports the current setting of the control
matrix, one four element row per name in N. The argument N of OSVC may
specify a matrix of names, and in the dyadic case, the argument B may be
a matrix of zeroes and ones with one row for each name.

Not~: The APL/CMS auxiliary processors set the access control vector to
1 1 1 1, the highest degree of control possible, and are programmed to
access variables shared with them in such a way as to prevent
interlocks.

Section 4: New Language Features 37

1£ a valid o1fer is made to a nonexistent processor
control vector is set to zero, for example

400 OSVO'X'
1

CSVC'X'
000 0

X-99
X

99
1 1 1 1 [SVC'X'

111 1

then the access

The access control vector now specifies that successive accesses by
the APL program requires an intervening access by processor 400.
Processor 400 does not exist so it will neither use or set X. If the APL
program attempts to access X then a permanent wait would result. APL/CMS
detects this situation, forces an interrupt, and prints the error report
INTERRUPT: PERMANENT SV WAIT.

Inquiries

There are three monadic inquiry functions which produce information
concerning the shared variable environment: OSVO, OSVC, and CSVQ. The
£irst two have been discussed in this section. A user who applies the
shared variable query function, OSVQ, to an empty vector obtains a
vector result containing the identification of each other user making
any sharing offer to the user.

Applying the same function to an integer scalar or one-element vector
obtains a matrix o£ the names offered by the processor identified in the
argument. This matrix includes only those names which have not been
accepted by counter offers from the inquiring user.

38 APL/CMS User's Manual

SECTION Q: CMS FACILITIES ~ THE APL/CMS USER

In this part o£ the manual, we discuss some CMS concepts and a subset o£
CP and CMS commands that may be use£ul to the APL user. For £urther
details, see the VM/310: Command Lansuage ~ £or General Users. CMS
commands cannot be used in the APL environment directly but can be
transmitted via auxiliary processor 100 described in Section 6. APL
commands are not recognized by CP or CMS.

L
, \

1!B! AND ACCESS COMMANDS

The VM/310 directory contains the properties o£ individual virtual
machines. One or more entries speci£y the virtual disk(s) that belong
to a particular machine. CP identi£ies disks by a device address. Most
machines have a primary disk at device address 191 and will have links
to disks belonging to other machines. For example, the directory £or an
APL user may contain an entry o£ the £orm:

link vmaplsys 101 101 rr

This indicates the user has access to the 101 disk o£ a machine whose
userid is VMAPLSYS. The last two operands de£ine the device address as
101 and the access to the disk as read-only £or this user.

As noted in the Section 2 discussion on "Saving
Workspaces," CMS re£ers to disks by mode letter. A
between the CP device addresses and the CMS usage o£
established by an ACCESS command. For example,

access 101 z

and Restorin"j':(
correspondence

the disks is

allows CMS to use disk 101 as a Z disk.
and APL/CMS accesses 101 as the Z disk.

CMS accesses 191 as the A-disk

The CP command LINK and the CMS command ACCESS, can be used, among
cooperating users, to establish a common disk £or storage o£ workspaces
and data files. Access to a user's private disk is controlled by VM/310
directory entries and passwords.

Items on a virtual disk are organized into CMS files. A CMS £ile is

10

knolwn by its :filename, :fi letype, and f i lemodel • The f11ename and Tthe ,1\,' -1.\1\
fi etype are each composed o:f one- to eight-a phameric characters. he r
filetype is formed Like a filename, but CMS commands usually associate a
particular f11etype with a particular kind of file. For example,
APL/CMS uses the £iletype VMAPLWS £or all workspaces in the private
library. EXEC £iles usually contain a list o:f CMS and CP commands t~ be
executed. The filemode is one letter followed by one number. The
letter specifies the disk the £ile is on. The numeral 1 indicates a
permanent £ile availabLe £or both reading and writing.

The information in CMS files is grouped into records, which are the
smallest unit in the £ile system. Records are grouped into files.
Records in each £ile are fixed length, meaning the length of all records

Section 5: CMS Facilities and the APL/CMS User 39

is the same (and must remain so) or variable length, which imposes no
such restriction. The maximum length o£ a record is 65,532 bytes. CMS
allows its £iles to be accessed sequentially or by speci£ication o~ the
record position (I-origin).

Random accessing can be used with £ixed or variable £iles but it is
more e££icient with £ixed £iles. Records can be changed in existing
£iles, but the length o£ any record o£ a variable £ile, except the last
record, cannot be changed without unpredictable results. Records cannot
be deleted £rom £iles but can be added to the end o£ an existing £ile.

The units o£ in£ormation which CMS transmits to and £rom disk storage
are called blocks. The CMS £ile system collects several short records
or splits up long records as it trans£ers in£ormation blOCk by block to
and £rom disk. A block is 800 bytes long. You need be aware o£ blocks
only i£ you wish to compute the amount o£ disk space used.

LISTFILE COMMAND

At some stage o£ APL execution, you may encounter a DISK FULL message.
You can use the APL)LIB command to list the workspaces on the disk;
however, you may have other £iles generated by the APL auxilary
processors which are not listed by)LIB. You can list all £iles with
the CMS LISTFILE command which has some o£ the £ollowing variants:

list£ile £n £t £m

displays in£ormation concerning the £ile having the given £ilename (£n),
£iletype (£t), and £ilemode (1m). 11 £m is omitted then A is assumed;
i£ ft and £m are omitted then all £iles with name £n on the A-disk are
listed.

list£ile * £t £m

lists all £iles with type £t on disk £m. The command

list£ile * vmaplws

lists all VMAPLWS £iles, and

list£ile

lists all £iles on the A-disk. There are several options that can also
be used. 1£ the command line ends in (ALLOC), then the £ormat (£ixed or
variable), the number o£ records, and the number 01 blocks are listed
10r each £ile. For example:

list£ile alpha (alloc)
FILENAME FILETYPE FM
ALPHA VMAPLWS A1
ALPHA ASSEMBLE A1

FORMAT
V 4616
F 80

RECS BLOCK
3 9

392 40

"V 4616" denotes variable length records, with the longest record 01
length 4616 bytes. "F 80" denotes £ixed-length records 01 80 bytes
each. The number under BLOCK gives the number 01 800-byte blocks
occupied by the 1ile.

40 APL/CMS User's Manual

QUER! COMMAND

The CMS command LISTFILE lets you £ind the space used on a virtual disk
by each £i lee \tore generally, the CIIS command

query disk a

gives a summary o£ the state o£ the A-disk (other disks may be speci£ied
by their letter). An example o£ the reply to a query is,

A (191): 3 FILES; 155 REC IN USE, 1173 LEFT (0£ 1328),
12% FULL (5 CYL), 3330, R/W

Do not be con£used by this inconsistent usage: REC re£ers to what
LISTFILE calls blocks. The reply shows that 12 percent o£ the available
space is used. The virtual disk address is 191 and is 5 cylinders o£
3330 disk storage, which is linked in read/write mode.

As mentioned earlier, the CP command QUERY STORAGE, indicates to you
the size o£ the user's virtual storage. The CP command QUERY NAMES
lists the names o£ the other virtual machines currently logged on the
system. You can send messages by using the APL)MSG command, or the CP
MSG (or MESSAGE) command

cp msg userid ••• any message •••

where userid is the name o£ the other virtual machine. (This use o£ the
userid corresponds to the APL'360 use o£ the port number.)

ERASE COMMAND

You can £ree the disk space used by
APL)DROP command. You can get rid
files by using the CMS command

erase £n £t £m

unwanted workspaces by issuing the
o£ workspaces or other unwanted CMS

1£ fm is omitted, then A is assumed. Replacing £n with an asterisk (*)
causes all files o£ type ft to be erased.

WORKSPACES AND CMS FILES

An APL)SAVE command causes the APL/CMS system to store the in£ormation
from the workspace into a CMS £ile. Only use£ul in£ormation is stored,
not the work area, so the space on the disk is related to the APL
obJects in the workspace, not the gross workspace size. The A-disk is
used for storage of these workspaces when no library is selected.
Libraries are stored on disks apart £rom the APL user's virtual machine;
details are supplied in the APL/CMS Installation Manual.

APL/CMS uses the D-disk, if accessed read-write, otherwise the
A-disk, £or storing intermediate and utility £iles o£ type VMAPLUT.
These files are used for the APL stack of auxiliary processor 101, the
workspace conversion utilities, and during the APL)COPY,)PCOPY, and
)SAVE commands, £or example.

Section 5: CMS Facilities and the APL/CMS User 41

PRINT, PUNCH, AND TYPE COMMANDS

An APL program can create files by using the auxiliary processors (see
Section 6). One of the processors can send files directly to the line
printer or card punch. There are some occasions when it is easier to
use the auxiliary processor to create a CMS file and then use CMS
commands to type or print the file. When the CMS PRINT command is
issued, as follows:

print fn ft fm

it causes the contents of the specified CMS file to be printed. The
graphical representation of each character is dependent upon the printer
characteristics. The VMAPLWS files contain nonprintable records;
however, the auxiliary processors supplied with the system can be used
to write out APL variables in printable format.

The PUNCH command operates like the PRINT command except that the
contents of the records are punched into cards. The punch reproduces
any character. Cards may be read into the system with the CMS READCARD
command. For further details, see VM/370: Command Languase Guide for
General Users.

The TYPE command is similar to the PRINT command except that output
appears at the terminal. If the file was produced with the APL
conversion option of the auxiliary processor APII0, then the commands:

cp term apl on
type fn ft fm
cp term apl off

should be used to type the file. The first command indicates that you
are going to use your APL type element for typing; the third command
indicates the subsequent use of the VM/370 type element.

EDIT AND SCRIPT COMMANDS

CMS has an editor, called EDIT. For additional information about the
editor, see the publication VM/370: EDIT Guide. The SCRIPT processor,

.j an Installed User Program (IUP) available through IBM for a license fee,
can be used to prepare formatted and paginated output like this document
from CMS files.

FILEDEF COMMAND

This CMS command is used to simulate the functions of the OS Job Control
Language Data Definition (DD) in the CMS environment. Device
independence is achieved by allowing the unit specification and file
characteristics to be transmitted to programs that use the OS simulation
macros and functions. APL/CMS inclUdes an auxiliary processor, APttt,
which supplies sequential access via QSAM to any device specified by use
of the FILEDEF command.

Note: The CMS file processor, API10, does not use FILEDEF
need any DD information.

42 APL/CMS User's Manual

and does not

COPYFILE AND MOVEFILE COMMANDS

The COPYFILE command can be used to copy part or all o£ a CMS £ile, to
combine £iles, to change record £ormats and to do various
trans£ormations on data in the £ile. The MOVEFILE command moves data
~rom any device supported by VM/370 to any other device supported by
VM/370. The input and output devices are de£ined by use o£ the FILEDEF
command.

When you log of£ the system, a time message is issued as follows:

CONNECT hh:mm:ss VIRTCPU mmm:ss:hs TOTCPU mmm:ss:hs

hh is hours
mm or mmm is minutes
ss is seconds
hs is hundredths o£ a second

The connect time is
is the virtual CPU

the elapsed time since you logged on. The VIRTCPU
time you have used. TOTCPU is VIRTCPU plus the CPU

time that was spent in CP.

The CP command QUERY TIME yields the same result.

TAPE Command

The TAPE command can be used to save and restore CMS £iles on magnetic
tape. It is useful £or saving in£requently used workspaces or sending
workspaces to other APL/CMS system installations. To save one or more
£i les on a tape:

1. Ask the operator £or a tape.

2. Log on to your machine.

3. IPL CMS

4. Ask the operator to ready the tape and attach
machine by issuing the ~ollowing message:

it as 181

cp mag op please attach tape PASC123 as 181 with ring in

to your

(This sample message is based on the assumption that the tape has
"PASC123" as a label.) The phrase "ring in" tells him to put a
£ile protect ring in the tape; i£ the ring is out then it is
impossible to write on the tape. In general, the operator will
noti£y you when the tape is ready.

Section 5: CMS Facilities and the APL/CMS User 43

5. To dump ~he workspaces ALPHA and BETA, issue ~he £ollowing
commands:

~ape rew
~ape dump alpha vmaplws
~ape dump be~a vmaplws
~ape w~m

~ape rew
~ape scan

No~e ~ha~ each command s~ar~s wi~h ~he word TAPE £ollowed by a space.
REW causes ~he ~ape ~o be rewound, bu~ note tha~ i~ mus~ be spelled REW,
no~ REWIND. TAPE DUMP wri~es ~he named CMS £ile on~o ~he ~ape; you may
repea~ ~his command £or as many £iles as you wish ~o dump. The TAPE WTM
command wri~es a ~ape mark on ~he ~ape. A ~ape mark is convenien~ly
used ~o separa~e groups o£ workspaces. 1£ you wish ~o dump all
workspaces, ~hen you can use:

~ape dump * vmaplws

TAPE SCAN Command

The TAPE SCAN command reads ~he tape, veri£ies ~he ~ape con~ents, and
~ypes ou~ a list o£ ~he CMS £iles on ~he ~ape £rom i~s curren~ posi~ion
~o a ~ape mark.

1£ ~he
commands:

~ape appears ~o be sa~is~ac~ory ~hen use ~he £ollowing CP

cp de~ach 181
cp msg op remove ring, and save ~ape

~o unload and save ~he ~ape.

To re~rieve a workspace a~ a la~er

issue the command:
da~e, ~hen log on,

cp msg op please a~~ach PASC123 as 181 with ring ou~

IPL CMS, and

When ~he ~ape is a~~ached, you can ~hen issue ~he commands:

~ape rew
~ape load be~a vmaplws

~o ~rans£er ~he CMS £ile BETA VMAPLWS ~o your A-disk, which will
overwri~e an existing £ile o£ ~he same name. The example shows Jus~ one
£ile being loaded. Using ~he command TAPE LOAD loads all ~he workspaces
up ~o a ~ape mark. (You should de~ach uni~ 181 when you no longer need
it.)

1£ there is insu££icien~ space on your disk, ~hen you may ge~ a DISK
FULL message. You can, i£ you wish, make some space available on ~he
disk, rewind ~he ~ape, and ~ry again.

44 APL/CMS User's Manual

SPOOL Command

This CP command has many options to control the disposition of files
associated with your virtual card reader, card punch, and line printer.
For example:

spool printer copy n

spec ifies
command:

that Q copies be made

spool punch to userid

of your line printer output. The

causes your virtual punch output to be directed to the virtual card
reader of the machine identified by userid.

spool punch off

directs future output to the real punch.

The CMS command, DISK, can be used to move files from disk to card
format using the DUMP option, or the reverse using the LOAD option. It
is generally not used to punch real cards (the TAPE command is normally
used to move files from the system); rather, it is used in combination
with the SPOOL command to direct files to, or receive files from,
another user. For example, the commands

cp spool punch to Johndoe
disk dump alpha vmaplws
cp spool punch off

transfer the APL/CMS workspace called ALPHA to the card reader
machine, JOHNDOE. At that machine, the command

disk load

creates the file ALPHA VMAPLWS on the A-disk.

of the

Note: Use the SPOOL command before
the output is not spooled to another
If you discover you have made such
following message:

issuing the DISK DUMP command. If
user, it is punched on real cards.

a mistake, immediately send the

cp msg operator please flush punch output

USING APL\360 OR APLSV WORKSPACES

To transfer APL\360 workspaces to an APL/CMS system requires several
steps. Get the APL\360 system staff to dump your workspaces onto
magnetic tape. Workspaces from an APLSV system must be dumped in
APL\360 compatible form usin@ the level 0 option of the APLSV utility
program. This tape is not in the format of the CMS dump tape, so your
system staff must convert the tape to an APL/CMS workspace on your
disk.

Section 5: CMS Facilities and the APL/CMS User 45

1£ you are £amiliar with CMS, then you may wish to do the conversion
yourself. The process is described in the APL/CMS Installation Manual.

The conversion goes in two steps. Suppose the tape contains a
workspace from APL\360 called ALPHA. The first step reads the tape and
produces a CMS £ile with the name of ALPHA and £iletype o£ APLWS. The
second step accepts ALPHA APLWS as input, converts this workspace to the
£oi~~sed by APL/CMS and produces the file called ALPHA VMAPLWS. The
.~ conversion procedure can be used for APLSV workspaces. APL(CMS)
IUP workspaces already exist as APLWS files, have the same format as
APL\360, and require only the second conversion step.

After conversion, the workspace may contain functions with the names
BADHEADERn, where n goes £rom 1 to the number o£ such names. The
original header of these functions contains at least one duplicate name
and is stored as a comment in the first line of the function. Edit the
£unction, correct the original header, delete the lamp and del symbols,
change the line number to zero, and close the function.

The transfer of workspace information to APLSV (or other £oreign APL
systems with I/O capability) can be e£fected by writing the canonical
representation of the functions in the workspace along with the
variables in the workspace onto magnetic tape. Read this tape with APL
programs to create a workspace on APLSV.

SENDING WORKSPACES TO OTHER APL/CMS USERS

The magnetic tape produced by the TAPE DUMP command can be used to send
workspaces to other APL/CMS users. If the other user is on the same
physical machine as you, then it is more efficient to do a direct
disk-to-disk transfer using the APL/CMS public library. Although an
installation option, you can normally)LOAD and)SAVE into libraries
1000 through 999999. Loading the workspace you wish to transfer and
saving it in the public library makes it available to another user, who
can drop it £rom the public library after the transfer.

If you get the message

DISK NOT AVAILABLE

while attempting the)SAVE in the public library, it means that the disk
is temporarily unavailable for writing because some other machine is
writing on it. Retry the command in a £ew seconds. There is one
drawback to this method, namely the lack of privacy during the
transfer.

A more secure transfer is via the previously described DISK command.

Once a workspace has been transferred, it can be used by entering the
APL environment and using the)LOAO command. The load command adjusts
the size of the workspace to the available storage. If the virtual
storage on your machine is too small to accommodate the workspace, the
message

WS TOO LARGE

results and loading does not take place.

If you need to accommodate a workspace larger than your virtual
storage, you may return to the CP environment and issue a DEFINE STORAGE
command to expand the size of your virtual storage (within limits set by
your installation manager). Reload APL/CMS and try again.

46 APL/CMS User's Manual

SECTION ~: APL/CMS l~UXILIARY PROCESSORS

The APL/CMS system inc~udes the £ollowing auxiliary processors:

AP100
AP10l
APll0
APlll

COMMAND
STACK INPUT
CMS DISK I/O
FILEDEF I/O

The COMMAND processor enables an APL/CMS user to issue CP and CMS
commands. The STACK INPUT processor stores data £or input at the ~irst
opportunity to APL/CMS. The CMS DISK I/O processor provides sequential
and random access using the CMS £ile system. The FILEDEF I/O processor
provides sequential access to devices supported by the OS simulation I·'
:facilities o:f CMS available through the FILEDEF command using QSAM.

The example introduced in Section 4 is given in more detai~ below;
re:fer to it as you read the £ollowing sections.

./

S-'EXAMPLE SCRIPT(370' A SET INITIAL VAL,UE
S A DISPLAY VALUE

EXAMPLE SCRIPT(370
110 [SVO'S' A SHARE THE VARIABLE

2
S A REFERENCE AND DISPLAY VALUE

011 -/

S-I THI S GOES IN THE FIRST RECORD' A SET ,l VALUE
S-'AND THIS GOES IN THE SECOND' A SET ANOTHER
S A REFERENCE AND DISPLAY VALUE

THIS GOES IN THE FIRST RECORD
S A REFERENCE AGAIN

AND THIS GOES IN THE SECOND
CSVR'S' A RETRACT VARIABLE

2

INITIAL VALUE

When an o££er to share with an APL/CMS auxiliary processor is made, the
value o£ the variable being o££ered should be a character vector
speci£ying the argument and options (i£ any) required by that auxiliary
processor.

The general :format :for all initial values is:

'argument options l

Tbe auxiliary processors supplied with APL/CMS assist the APL user in
the transmission o£ data to a destination and the receipt o£ data £rom a
source. The argument passed in the initial value is used to determine
this source and/or destination.

Following the source or destination argument is a le£t parenthesis
used to indicate "options £ollow". It shou~d be present on~y when
options are speci£ied by the user. The APL/CMS auxiliary processors
ignore extra le£t parentheses and disallow right parentheses. The
interpretation o£ the initial value is covered tater £or each auxiliary
processor.

Section 6: APL/CMS Auxiliary Processors 47

I '; ,

The APL/CMS auxiliary processors match all shared variable offers by the
user with matching counteroffers. The initial value of the shared
variable is interpreted by the auxiliary processor as a user request.
After inspecting the operating environment, the auxiliary processor
specifies a new value for the shared variable. This value, when
referenced by the user, will be a scalar 1 if the request is rejected.
A new value of the variable can then be specified by the user after
which the auxiliary processor (AP) repeats this procedure.

When an acceptable initial value is specified, the AP sets the shared
variable to a scalar zero or a vector with the first element zero. The
effect of all subsequent references and specifications of this shared
variable is to move data and control information between the APL program
and the auxiliary processor, as described for each processor. To
specify a different argument or options for a shared variable, that
variable must be retracted and reoffered with the required initial
value.

OPTION~ FOR DATA CONVERSION

Data transmitted between the APL program and the
can be in three distinct forms:

auxiliary processors

1.

2.

APL variables,
This is the
applications.

complete with size, shape, and type information.
most convenient and efficient form for most

The conversion option for this type of data is VAR.

Character vectors. This form
with other non-APL processors.
370, are described below.

is used primarily for interchange
Two conversion options, APL and

3. Bit vectors (that is, zeros and ones) that provide the most general
form of data transmission and interchange. The conversion option
for this type of data is BIT.

Characters outside of the workspace (for example,
punched cards, and printer lines) are transferrable,
and from the workspace in two ways:

data file records,
as characters, to

1. Characters accepted by APL as input (processed as
from a keyboard) and produced by APL as output
typing on a terminal). This option is called A~L.

though entered
(as though for

2. EBCDIC codes used by the System/370. This option is called 370.

You must have some knowledge of these two forms in order to transmit
character data to and from external media. Some general information
follows, with details in "Appendix A: Auxiliary Processor Conversion
Options." /r

\~ vi

The APL script conversion option (APL) produces characters in the
workspace as though the input data were entered from the keyboard;
output data is created as though the characters in the workspace were
typed at the terminal. Por example, the character "A" in the workspace
is converted to an "A", and the character n!n in the workspace is
converted to the three characters: "A", "backspace", and "_".

48 APL/CMS Userls Manual

..

•

The System/370 EBCDIC
mapping between some APL
example, the character "A"

conversion option (370) provides a direct
characters and some EBCDIC characters. For

in APL converts to the "A", and the APL
character "~" converts to "a".

INPUT/OUTPUT PROCBSSING

Intr oduct ion

The APL/CMS system includes two auxiliary processors that provide £ile
input and output capabilities. APII0, CMS DISK I/O, supports the CMS
£ile system which allows both sequential and random accessing. APII0
creates £iles with £ixed or variable length unblocked records. Random
access o£ variable length records is ine££icient compared to random
access o£ £ixed length records. APII0 processes blocked or unblocked
£ixed length records and unblocked variable length records.

APlll, FILEDEF I/O, may be used £or sequential access to CMS disk
£iles and other types o£ devices such as magnetic tape, card readers,
line printers, and terminals. This device independence is aChieved by
using the OS simulation £acilities in CMS. The APlll user must issue an
appropriate FILEDBF command to CMS (using API00) be£ore the speci£ied
data set can be opened. AP111 supports QSAM so that blocked or
unblocked and £ixed or variable length records can be sequentially
processed.

CMS disk £iles with £ixed length records can be processed
processor regardless o£ blocking. Both I/O processors open
reading and writing although switching between read and
time-consuming.

Record Variables

by either
£iles £or
wri te is

An APL variable used to transmit data records is called a record
variable. Except £or the initial re£erence a£ter properly speci£ying an
initial value, all re£erences o£ the record variable yield records £rom
the £ile being processed. All speci£ications into the record variable
cause records to be written into the £ile. The previous example used ~
as a record variable.

Control Variables

An APL variable used to control or monitor data transmission is called a
control variable. It is paired with the most recently o££ered, but
unpaired, record variable speci~ying the same £ile or ddname. A control
variable may be required to query certain status in£ormation. For
APII0, it is required to achieve indexed selection o£ records £rom the
£ile. Except £or the £irst re£erence a£ter a proper initial value has
been speci£ied, the re£erence o£ a control variable returns a scalar
(AP111) or vector (APII0) whose £irst element indicates the status o£
the previous speci£ication or re£erence o£ its paired record variable.
A zero indicates success£ul completion. For return codes and status
indicators, see "Appendix B: Auxiliary Processor Return Codes."

Section 6: APL/CMS Auxiliary Processors 49

I, v.

Record Pointers

AP110 maintains a read pointer and a write pointer that indicate the
position o~ the record to be processed by a re~erence or speci~ication
o~ the record variable. The value o~ the control variable is the status
indicator ~ollowed by the read and write pointers. AP110 initializes
these record pointers to 1 and N+1, where ~ is the number o~ records in
the ~ile, when the £ile is opened. The initial re£erence o~ the record
variable returns a zero ~ollowed by these pointers.

AP110 increments the read or write pointer by one a£ter each
success£ul read or wri~e o~ ~he £ile. Record pointers can be reset by
~he user a~ any time by speci£ying an in~eger into ~he control variable.
A scalar se~s ~he read pointer; a ~wo-element vector sets bo~h pointers.
An integer o£ less ~han one does not change ~he poin~er.

Continuing our previous example:

2

0 1 3

F-'EXAMPLE SCRIPT (370'
110 DSVO'F'

F

A-F
F-Y
F-Z
B-F

Now A and B contain the £irs~ two records £rom EXAMPLE SCRIPT.
3 and 4 contain the variables Y and Z.

Records

AP111 processes £iles sequentially and does not suppor~ record
poin~ers. The FILEDEF command, as an option, sets bo~h read and write
pointers to the ~op of a £ile (the de£ault) or ~o the bottom o£ a £ile
(DISP MOD). This se~ting o~ the record pointers is in e~£ect every time
a ~ile is opened ~or read, write, or swi~ching between read and wri~e.
AP111 does not explicitly alter the position o~ a ~ile (magnetic tape,
for example) when the record variable is retracted.

End File and Error Condi~ions

Whenever you re£erence a record variable and an end o£ £ile is read, the
I/O processor assigns a null vector to the variable. This is also done
if a read error occurs. These cases can be di~~erentiated by inspecting
~he return code available via a control variable. Notice that null
variables can be written only with the VAR option.

Space Used ~ Auxiliary Processors

INPUT/OUTPUT BUFFERS: AP110 and AP111 need vir~ual storage space £or
input/output bu££ers. This space is located outside the workspace in an
area whose size is fixed immediately a£ter APL is invoked. The s~andard
size is 8192 bytes. 1£ the auxiliary processors are used to transmi~
long records or ~o access many £iles simultaneously, they may £ail to
£ind bu££er space and will pos~ an error in the con~rol variable.

50 APL/CMS User's Manual

..

The size of the buffer space can be set by supplying an argument when
APL is invoked, thus:

x

parlll

ipl apl parm x

-- or

ipl cms
apl x

is the number of bytes (for example, 4096)
kilobytes (for example, 12K) or the number
example, 2M).

is a necessary part of the IPL command.

or the number of
of megabytes (for

The amount of space allocated is that requested, rounded up to the next
page boundary. If the space is not available, a)OFF HOLD is issued.

PROGRAM STORAGE: Many CMS commands require some program storage space in
which to operate. The size of this area varies greatly among commands.
No such space is required for CP commands.

API00 is used to invoke CP and CMS commands. If the APL/CMS system,
as distributed, is invoked by an IPL command, then about 57,000 bytes of
program storage are available for CMS commands called by API00. In
general, commands which require more program storage than is available
will fail because the CMS storage management system should not allocate
storage used by APL/CMS to the command; no harm should befall the
APL/CMS system.

This is not the case if APL/CMS has been invoked as a command under
CMS. The CMS storage management system will allocate space used by
APL/CMS to any command which needs it. This means that any CMS command
invoked via API00 needing program storage space will cause an abrupt
termination of APL/CMS. CMS commands available in the subset mode do
not require program memory. An expert should be consulted if you wish
to explore this area. Details are supplied in the APL/CMS Installation
Manual.

Section 6: APL/CMS Auxiliary Processors 51

API00--THE COMMAND PROCESSOR

Init ial Value

env
CMS
CP

Description

./
The operating environment available to the user o~ APL/CMS includes the
environments o~ CMS and CP. Commands can be processed by CMS and CP to
dynamically change the characteristics o~ these two environments.
Character vectors, or one-element arrays, when speci~ied into the shared
variable, are immediately prgcessed by the selected enviro~ment. Notice
that the CMS environment includes a command, CP, that passes the rest o~
the arguments to CP. Subsequent re~erences o~ the shared variable yield
the return code set by CP or CMS. For details on return codes, see
"Appendix B: Auxi liary Processor Return Codes". CP and CMS commands are
described in the VM/370: Command LanguaQe Guide ~ General ~.

The commands destined for CMS are broken into "tokens." A token is a
parenthesis or a series o~ nonblank characters. Only the ~irst eight
characters o~ each token are used. For both CP and CMS, all characters
are converted via the 370 option immediately prior to transmission (see
"Appendix A: Auxiliary Processor Conversion Options").

Warnin&: Some commands may cause abrupt ~ailure of APL/CMS and loss o~
the active workspace; re~er to "Space Used by Auxiliary Processors".
The CP command to de~ine the size o~ virtual machine storage ,or t~~.
is an example o~ a disast~ous command under all circumstances.\

. I

Argument

env
speci~ies the command environment and de~aults to CMS.

Example:

The function below requests multiple copies o~ any printed output.

'fl COPIES N;X
[1] X-'CP'
[2] 100 OSVO'X'
[3] X-'SPOOL PRT COpy ·,.N

V

52 APL/CMS User's Manual

•

l }

AP10l--THE STAcK INPUT PROCESSOR

Inlt ia! Value

stk cvt ord
CMS 370 END

APL BEG
LIFO
FIFO

--or--

stk
APL

Character vectors can be stored £or subsequent input at the £irst
opportunity to CMS and APL/CMS. Two areas are available. The £irst, in
storage and<~~ed by CMS and APL, is called the CMS input stack; the
second, a ~isk: £ile used ~!Z by APL, is called the APL input stack.
The CMS stae:k is e££icient to use but limited by available storage; the
APL stack is limited only by disk storage. Only character vectors (or
one-element arrays) can be stored by this processor. A re£erence o£ the
shared variable obtains the return code set by the last speci£ication;
zero indicates success. For other
Auxiliary Processor Return Codes."

return codes, see "Appendix B:

When CMS or APL/CMS issues a request £or keyboard input, a value £rom \1\ l\
the beginnin~ o£ the stack is used anK no entry is requested from the
user. This entry is made as though the user backspaces to the left
margin, strikes the attention, and enters the value. The CMS stack has
priority over the APL stack. 1£ the user generates an APL interrupt or
i£ a character error is detected by APL/CMS when using stacked input,
both input stack areas are flushed and the keyboard unlocks for input.

Warning: Certain values such as HT and RT cause immediate action by CMS
(and are not actually stacked) when placed in the CMS stack. Re£er to
the section on "Immediate Commands" in the VM/370: Command Language
Guide £or General Users.

Argument and Options

stk
speci£ies the input stack to be used. The de£ault is CMS.

cvt
is the standard option £or character translation and de£aults to 370.
This option may be used only with the CMS stack. The APL stack is
maintained in an internal code which requires no conversion.

ord
indicates whether the processor places data at the beginning o£ the
stack (BEG or LIFO) or at the end (END or FIFO). The de£ault is END.
Entries into the APL stack always use the END option.

Section 6: APL/CMS Auxiliary Processors 53

Exampte:

This 1unction witt save the active workspace and return. The method
used is to ptace a)SAVE CONTINUE command at the beginning 01 the CMS
stack. The CMS stack has priority over the APL stack and the BEG option
witt ptace the command in 1ront 01 anything already in that stack.
Execution is suspended by setting the stop vector 10r a stop on
statement LABEL. The stack entry is read at this point which saves the
workspace. The stack is read again whereupon the branch causes
execution to be resumed. The special CMS immediate commands, HT and RT,
are used to prevent the normal terminat output.

v CHECKPOINT;S
[1] S-'CMS (APL BEG' A USE CMS STACK, LAST IN, FIRST OUT
[2] S-101 [SVO'S' A SHARE S AND IGNORE RESULT
[3] S-'HT' A HALT TERMINAL OUTPUT
[4] S-'-LABEL' A THIS WILL RESUME EXECUTION
[5] S-')SAVE CONTINUE' A FIRST OUT OF STACK
[6] SACHECKPOINT-LABEL A SET STOP VECTOR
(7] LABEL:S-'RT' A RESUME TYPING WHEN RESTARTED

V

54 APL/CMS User's Manuat

•

•

APILO--THE CMS DISK I/O PROCESSOR

nam (cvt fmt
VAR FIX
APL
370
BIT

--or--

nam (typ
CTL

This processor provides sequential and random access to disk files under
control of the CMS file system. The operation of this processor is
described in the section on input/output file processing. The CMS disk
file system is described in the VM/370: Command Language Guide for
General Users.

Argument and Options

nam
specifies the name of the CMS disk file to be accessed.
the forms:

I t has one of

filename
filename
filename

filetype
filetype

The default filemode is AI.

filemode

The default filetype is
is the first character of the conversion method used.

cvt
specifies the standard option for conversion which defaults to VAR
except when the user gives a filetype of V
default will be the cvt option with m.,,1:ching
example, if the user gives VMAPL3F as the'filetype,

this case, the
rst letter. For
then the default

conversion is 370.

Note: All
specified •

combinations of filetype and conversion can be explicitly

fmt
is ignored except when a new file is created. This is a variable
length file unless FIX is specified. In this case, the file is fixed
with a record length set to the length of the first record written
into the file. Each subsequent record must have this same length or
an error is reported (in the control variable).

typ
establishes a control variable
variable already exists for the
are ignored if the CTL option is

for the file,
same file.
present.

if an unpaired record
The cvt and fmt options

Section 6: APL/CMS Auxiliary Processors 55

APll I--THE FILEDEF I/O PROCESSOR

Initial Value

ddn (cvt
VAR
APL
370
BIT

--or--

ddn (typ
CTL

Description

This processor provides sequential access, via QSAM, to any device
supported by VM/370. The device and its characteristics are speci~ied
by use o~ the CMS command, FILEDEF. The operation o~ this processor is
described in the section on input/output ~ile processing. The FILEDEF
com~and is described in the VN/370: Command Language Guide £or General
User~.

~~nt and Options

ddn
speci£ies the ddname to be accessed. It must be the ddname de£ined by
a FILEDEF command that the APL user has already issued to CMS.

cvt
speci£ies the standard option ~or conversion and generally de~aults to
VAR. 1£ the FILEDEF speci~ies a CMS disk ~ile, the de~ault conversion
option is determined in the same way as with APII0.

typ
establishes a control variable £or the £ile, i£
variable already exists £or the same ddname.
ignored ~or a control variable.

56 APL/CMS User's Manual

an unpaired record
The cvt option is

•

•

•

EXAMPLES USING THE INPUT/OUTPUT PROCESSORS

Examples ~or APII0

Example 1 uses CMS disk ~iles £or a sequential update ~unction. SUP is
given the name o£ a CMS £ile as an argument. It updates "name VMAPLAF
AI" using "name CHANGES AI" and creating "name WORKFIL AI" as a
temporary new £ile. When the update is complete, SUP erases the old
£ile and renames the new £ile. The files SUP processes contain
personnel records that are identi£ied by the person's social security
number as the £irst nine characters. The changes ~ile consists o£
complete replacement records or, i~ the record is to be deleted, merely
the social security number. SUP provides a return code o£ O=success£ul
completion, l=update per£ormed but no ~ile erased or renamed, or
2=nothing done •

Example 1:

[1]
[2]
[3]
[4]

[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[211
[22]
[23]
[24]
[25]

v Z~SUP FILENAME;OLDFILiOLDREC;OLDSEQ;CNGFIL;
CNGRECiCNGSEQ;NEWFIL;NUMSiCMS;OIO

v

Z~2

OLDFIL-FILENAME,' VMAPLAF'
CNGFIL-FILENAME,' CHANGES (APL'
NEWFIL-FILENAME,' WORKFIL (APL'
110 OSVO'OLDFIL'
110 [iSVO'CNGFIL'
110 [SVO'NEWFIL'
-(9*pOLDFIL,CNGFIL,NEWFILI/OIO-0
CNGREC-9fNUMS-'0123456789'
-STRT

USEO:NEWFIL-OLDREC
OLDSEQ-I0~NUMS,9fOLDREC-OLDFIL

LOOP:-(OLDSEQ<CNGSEQI/USEO
-(OLDSEQ>CNGSEQI/USEC
-(O=pOLDREC,CNGREC)/ENDF

STRT:OLDSEQ-I0~NUMS,9fOLDREC-OLDFIL

USEC:-(9=pCNGREC)/DLET
NEWFIL-CNGREC
DLET:CNGSEQ-I0~NUMS,9fCNGREC-CNGFIL

-LOOP
ENDF:DSVR 3 6p'OLDFILCNGFILNEWFIL'

100 [SVO'CMS'
-(Z-CMS)/O
CMS-'ERASE ',FILENAME,' VMAPLAF'
CMS-'RENAME ',FILENAME,' WORKFIL Al = VMAPLAF ='

Section 6: APL/CMS Auxiliary Processors 57

Example 2 illustrates the eMS disk 1ile random access. The FIND
1unction is given a personnel 1ile, such as that updated by SUP, and a
social security number. It is to 1ind the location 01 the corresponding
record (i1 any) in the 1ile. In particular, if it returns an integer
(Q), then the Qth record has the matching social security number. If it
returns a real (Q.5), then the given social security number is not in
the file. If it were, it would occur between records ~ and ~+1 (0 <= Q
<= number of records in the 1ile). The only other possible return value
is "SHARE ERROR" which indicates that the FIND command could not
establish the necessary shares with APII0.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]

V Z-FILE FIND SS;REC;NUM;OIO;BOT;TOP;ID
REC-FILE,' VMAPLAF'
NUM-REC, ' (CTL'
110 C:SVO'REC'
110 CSVO'NUM'
-(NUMv lfREC)/FAIL
Z-2* r 2.-1 f NUM
DIO-BOT-O

DROP:TOP-Z
LOOP:Z-NUM-0.5xBOT+TOP
-(Z:i'f Z) /0
ID-I0L'0123456789',9fREC
-(SS<ID)/DROP
BOT-Z
-LOOpxSS>ID
-0

FAIL:Z-'SHARE ERROR'
V

Example 3 assumes that a function is suspended with a domain error.
The 1unction was using APII0 to sequentially read and process INPUT DATA
and the domain error occurred because the latest record read had
alphabetic characters where a numeric field was supposed to be. To
locate where in the file the bad record occurs, use the 1ol10wing
sequence, in O-origin, to determine its record number:

2

X-'INPUT DATA (CTL'
110 [JSVO'X'

BAD--l+X[l]

58 APL/CMS User's Manual

Examples ~or APlll

Example 4 uses the unit record equipment ~or a card-to-printer ~unction.
The program, CTOP, expects as input a series o~ decks stacked in the
card reader as a single file. These cards contain a sequence field in
the last four columns and a deck identi~ication code in the preceding
four columns. The cards are to be listed on the printer and each deck
should start on a ~resh page.

v CTOP;CMSiSVPRINTiSVREADiIDiCARD
[1] 100 [SVO'CMS'
[2] CMS-'FILEDEF CTOPOUT PRINTER (RECFM VA BLKSIZE 137'
[3] CMS-'FILEDEF CTOPIN READER (RECFM F BLKSIZE SO'
[4] SVPRINT-'CTOPOUT (370'
[5] SVREAD-'CTOPIN (370'
[6] 111 CSVO 2 7 p' SVPRINTSVREAD ,
[7] -(SVPRINTvSVREADI/O
[S] ID-'~'

[9] LOOP:-(O=pCARD-SVREADI/O
[10] -(v/ID*4t-StCARDI/SKIP
[11] SVPRINT-' , ,CARD
[12] -LOOP
[13] SKIP:ID-4t StCARD
[14] SVPRINT-'1',CARD
[15] -LOOP

V

The function shown in Example 4 would take care of many
card-to-printer tasks. However, because it uses characters, the input
is converted from 370 to APL and the output is converted back from APL
to 370. Thus, in the example, CTOP will not print cent symbols (el.

Section 6: APL/CMS Auxiliary Processors 59

Example 5 is a card-to-card ~unction that has the same conversion
problem. In £act, its conversion problem is even more acute since CTOC
might be used to reproduce text decks. CTOC solves the problem by using
BIT conversion. As input, CTOC expects a series o~ decks stacked in the
card reader as separate ~i~es. The ~irst card o~ each deck has an
identi~ication code in co~umns one to £our. The remainder o~ the deck
is to be reproduced except ~or the ~ast eight columns o~ each card. The
last eight output columns are to contain the deck identi£ication code
and a sequence number.

Example .§:

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(11]

[12]
[13]
[14]
[15]
[16]
[17]

V CTOC FILES;[IO;BITS;PUN;RDR;NUM;ID;CARD;SEQ;F
010-0
BITS-(10 4pl),~2 2 2 2T,10
100 OSVO'F'
F-'FILEDEF FILEO PUNCH(RECFM F BLKSIZE 80'
F-'FILEDEF FILEI READER(RECFM F BLKSIZE 80'

BEGF:PUN-'FILEO(BIT'
RDR-'FILEI(BIT'
111 OSVO 2 3p'PUNRDR'
-(PUNVRDR)/NUM-O
ID-32fRDR

LOOP:-(O=pCARD-RDR)/ENDF
SEQ-,BITS[10 10 10 10TNUM-NUM+l0;]
PUN-(-641CARD),ID,SEQ
-LOOP

ENDF:QSVR'PUN'
OSVR'RDR'
-(O<FILES-FILES-l)/BEGF

MULTIPLE ACCESSING

The preceding examp~es have been in terms o£ single variables:

1. How do you read a ~i~e?

2. How do you send commands to CP via a shared variable?

Let us consider the imp~ications o~ the sharing o~ mu~tiple variab~es
with an auxi~iary processor.

r he auxi 1 iary
variables with

processors,
di~£erent or

~ollowing example:

222

A-B-C-'CP'
100 OSVO 3 lp'ABC'

A-'INCORRECT REQUEST'
B-'SPOOL OOE OFF'
C-'Q F'

COMMAND and STACK INPUT,
identical destinations.

FILES: NO RDR, NO PRT, NO PUN

60 APL/CMS User's Manual

share mu~tipte

Consider the

..

..

The variables A, B, and C in Example 6 are independent, yet they have
something in common. Not one of them can affect any of the others. If
you reference A, you obtain the return code that indicates an invalid CP
command. Using Band C to execute success~ul commands has not changed
this return code. In common, they share the same destination, so their
assignments are "merged"; they are all sent to CP. For COMMMAND and
STACK INPUT this is not significant, but for other auxiliary processors
it is.

The I/O auxiliary processors accept multiple record variables; thus,
they allow simultaneous access to several files. Example 1 for APII0 is
an update function that reads both the old file and the changes file.
The I/O auxiliary processors also accept multiple record variables with
identical data sources or destinations. Access to the same file with
multiple variables can be very useful, although it may be con~using.
The following examples explore this situation •

I~ A and B are both shared variables using the card reader as their
source and you reference A, B, and ~inally A again, then the second
reference of A does not read the second card. Rather, its value is for
the third card since the second card was read by the reference to B.
Independent variables causing a merged effect can allow, for example,
any APL function to print information without knowing whether or not
some higher calling function is also printing.

Now assume that A and B are both shared with the APL/CMS DISK I/O
processor and that both had the initial value "SOMEFILE". If one
references A, then B, and finally A again, then the second reference of
A reads the second record. The first B reference and the ~irst A
reference obtain the first record. These A and B accesses are
independent.

Assume that A and B are both shared with the FILEDEF I/O processor
and that both are using the same CMS disk file. If they are using
different ddnames (for example, different FILEDEF commands were issued
each specifying the same CMS disk file) then A and B read records
independently. The APL user should not attempt multiple access while
the file is being created by APlll.

The I/O processors also allow multiple control variables. Because a
control variable is accepted only if there is an unpaired record
variable for the corresponding file, the meaning of these multiple
control variables is clear. However, one should be aware of the method
used for matching control variables with record variables. The control
variable will be paired with the most recently shared unpaired record
variable for the corresponding file (see Example 7).

v PROG;DATA;NUMB
[1) NUMB-(DATA-'FT70 FILE'),'(CTL'
[2] 110 OSVO'DATA'
[3] 110 [SVO'NUMB'

•

Example 7 shows that NUMB is paired with DATA.
if some higher calling function is also reading
control variable. Now consider the data in Example

There is no problem
FT70 FILE without a
8.

Section 6: APL/CMS Auxiliary Processors 61

[11
[2]
[3]
[4]

[5]
[6]

v Fl COMPAR F2;Rl;Il;R2;I2
Il-(Rl-Fl),'(CTL'
I2-(R2-F2),'(CTL'
110 [SVO'Rl'
110 [SVO'R2'
110 [JSVO'Il'
110 OSVO'I2'

In most cases, the
in F2 is the same as
paired with Rl. To
reversed.

COMPAR £unction will work. However, i£ the £ileid
that in Fl, then 11 is paired with R2 and 12 is
avoid mal£unction, statements 4 and 5 should be

OTHER AUXILIARY PROCESSOR DETAILS

All initial values are converted using the 370 option be£ore they are
inspected, thus allowing you to re£er to £ilenames that include 370
characters such as the $ (see "Appendix A: Auxiliary Processor
Conversion Options" £or details).

Options can occur in any order. 1£ con£licting options occur (£or
example, 370 and BIT), then the option selected depends on the auxiliary
processor. Blanks can be used £reely: the initial value can use or
omit leading or trailing blanks. The 'options £ollow' le£t parenthesis
can occur with or without a preceeding or £ollowing blank. Any blank
can be replaced by multiple blanks.

In some cases, records must be changed in length. When made longer,
the process is known as padding; the elements added as a result are
called pad characters. The APL/CMS auxiliary processors pad records on
occasion. When this is necessary, character records are padded with
blanks and bit records are padded with zeros. Records using VAR
conversion are never padded. BIT records may require padding, even i£
they are o£ variable £ormat, due to hardware limitations. On the IBM
System/370, £or example, all BIT records must have a length that is some
multiple o£ eight. There is no case in which character records must be
padded.

The APL/CMS system inclUdes a workspace called 1 APFNS. This
workspace contains £unctions that £acilitate usage o£ the auxiliary
processors. For example, one £unction issues appropriate FILEDEF
commands and o££ers shared variables to APlll. For details, load this
workspace and type DESCRIBE.

62 APL/CMS User's Manual

..

APPENOIX A: AUXILIARY PROCESSOR CONVERSION OPTIONS

The CMS auxi~iary processors provide conversion to and
workspace. The detai~s o~ the conversion are given be~ow.

~rom the

THE 37Q CONVERSION OPTION

Many characters are common to both the APL and EBCDIC character sets.
The conversion preserves most o~ these characters. These characters are
the same in both sets:

A THROUGH Z 0 THROUGH 9 SPACE
< > + *

• , ? I
\ I

These characters have di~~erent graphics:

APL: 4 THROUGH .! " a; i- *- b. e <I>

370: a 'IHROUGH z 8 " ii) % $ # -0 +0

(Note that +0 and -0 are the EBCDIC left and right braces.) For
example, " .!" is converted to "a" on output and "a" is converted to ".!"
on input.

The ~ollowing conversion occurs on~y when going ~rom APL to 370.

APL:

370:

The terminal contro~ characters backspace, horizontal tabulate, id~e,

line ~eed, and new ~ine, are translated one for one. All other EBCDIC
codes are converted to "0" when translated to APL.

A~l other APL characters are converted to a space when going to 370.
Those with graphics are:

:r J. T .. •
[] r ~ -f
0 tQ • 0

c :;) n u A

f: , P w
V ¥ tot :S ~ x

f • • t
II ~ 0 V iii A

Appendix A: Auxiliary Processor Conversion Options 63

THE ~ CONVERSION OPTION

Figure 1 shows the EBCDIC code as decimal integers, with corresponding
APL graphics. This table is indicative of the conversion done by VM/370
when the APL type element is specified. The full APL character set is
formed by use of the backspace (BS) terminal control code in conjunction
with the other characters. For example, "A" is converted to "A",
backspace, " "on output and "_", backspace, "A" is converted to .! on
input.

Output to and input from files are both converted by the APL/CMS
system as if going to or coming from the normal APL terminal. For
input, all characters not in the APL/CMS input character set below, such
as invalid codes and invalid compound characters (that is, those
producing a character error on keyboard entry) are converted to one
unique internal APL code with no graphic which CP normally prints as a
space.

For output, all characters other than the APL/CMS output character
set below, are converted to the EBCDIC code O.

The Input Character Set of APL/CMS:

The input character set comprises the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ6
ABCDEFGHIJKLMNOPQRSTUVWXYZ6
0123456789()[]rL~\I/f_AiXTV
ae,pw--+.x*vA~<S=~>*--tl ••
ecp \SlElO 0 A nUc::::>Vlli'-[l!)~' , • :.'; , ?

and SPACE.

The Output Character ~ ~ APL/CMS:

The output character set comprises the input character set, above, plus
the terminal control characters:

BS backspace
HT horizontal tabulate
IL idle
LF line :feed
NL new line

64 APL/CMS User's Manual

..

•
('" r' r'

37Q APL 270 APL 370 APL 370 ~ 370 APL 370 APL 370 APL 370 APL

0 32 64 SPACE 96 128 160 192 224
1 33 65 97 / 129 161 193 A 225
2 34 66 98 130 162 194 B 226 S

3 35 67 ~ 99 a 131 163 195 C 227 T
> 4 36 68 ;2 100 r 132 164 196 D 228 u
'tl
'tl 5 37 69 :t:- 101 L 133 165 197 E 229 V
(1)

6 38 70 v 102 V 134 166 198 F 230 W ::s
Q. 7 39 71 ,.. 103 11 135 167 199 G 231 X
"" >< 8 40 72 * 104 0 136 168 200 H 232 Y

> 9 41 73 " 105 0 137 169 201 I 233 z .. 10 42 74 106 [138 170 202 234

> 11 43 75 107 139 171 203 235
c: 12 44 76 < 108 140 172 204 236
><

"" 13 45 77 { 109 141 173 205 237
"" 14 46 78 + 110 > 142 174 206 238
I» 15 47 79 111 ? 143 175 207 239 .,
'< 16 48 80 112] 144 176 208 240 0
." 17 49 81 IN 113 c 145 177 209 J 241 1 .,

18 50 82 114 146 178 210 242 2 0 e :::> 1{

n 19 51 83 p 115 n 147 179 211 L 243 3
(1)

Ul 20 52 84 116 u 148 180 212 M 244 4
Ul 21 53 85 f 117 .l 149 181 213 N 245 5 0 .,

22 {BS} 54 86 , 118 T 150 182 214 0 246 6
('J 23 55 87 &. 119 \ 151 183 215 P 247 7
0 24 56 88 0 120 152 184 216 Q 248 8 ::s
< 25 57 89 121 153 185 217 R 249 9
(1) ., 26 58 90 122 154 186 218 250
Ul 27 59 91 123 155 187 219 251 ...
0 28 60 92 * 124 156 188 220 252
::s

29 61 93 125 157 189 221 253
0 30 62 94 126 158 190 222 254 'tl .. 31 63 95
""

127 159 191 223 255
0
::s Figure 1. EBCDIC Codes (Integers' to APL/CMS Characters (Graphics' via APL Conversion Option Ul

Q\
U1

..

..

APPENDIX ~: AUXILIARY PROCESSON RETURN CODES

Section 6 indicates that the APL/CMS auxiliary processors provide return
codes describing the results of a previous operation. With the COMMAND
and STACK INPUT processors, you reference the shared variable to obtain
the return code. The I/O processors provide return codes via a
control-type shared variable.

The return codes from the COMMANO processor are generally the return
code from the command previously assigned to the shared variable. Since
you can issue any number of commands, including commands written by
yourself, it is impossible to list all possible COMMAND return codes. A
few errors are intercepted and result in return codes that have been
aenerated by the auxiliary processor itself. If an I/O problem causes
the CMS OS simulation routines to take a SYNAD exit, AP111 generates a
decimal return code which, when converted to hexadecimal, has the
four-byte representation NO,N1,AO,A1. The first two values are the two
sense bytes and the latter two values are the two status bytes. All
other return codes are generated by the auxiliary processors or result
from some known CMS macro instruction. All specific return codes are
given below.

Numerical Listing

-3 Unknown CMS command.

o No error exists.

1 Attempt to read a nonexistent file or unknown CP command.

3 Permanent read error.

5 Attempt to read a file with too many records for CMS.t

6 Attempt to write too many records in a CMS file.t

7 Attempt to read a record with invalid format or attempt to write
past the end of a variable-length file. You can always write at
the end of file (that is, you may append a record to the file).
With a fixed-length file you may also write past this point and one
or more blank records are inserted into the file; this is not
possible with variable length files.

8 Attempt to read a record with incorrect record length from a file
with fixed format.

10 Attempt to create a file when you already have the maximum allowed
by CMS.t

12 End-of-file read or attempt to write on a read-only disk.

13 Attempt to write on a full disk.

tThe VM/370: Command Language Guide ~ ~al ~ gives these
limi ts.

Appendix B: Auxiliary Processor Return Codes 67

14 Attempt to write on an unformatted disk.

15 Attempt to write a record with incorrect length into a ~ile with
fixed format.

17 Attempt to write a record that is
~ile. t

too large into a variable ~ength

19 Attempt to write in a ~ile already containing as many data blocks
as CMS will allow.t

440 Data set cannot be opened for output.

441 Data set cannot be opened ~or input.

442 ABEND from the CMS OS simulation routines.

443* Insufficient free storage for the CMS OS simulation routines.

444* You assigned an invalid value to a shared variable. This cannot
happen with VAR conversion. The value is invalid because it is
null or is an array, has the wrong type, or is too big. An error
occurs, ~or example, if BIT conversion is being used and the value
is 1 2 3. An error occurs with the APL and 370 conversion options
if the value to be converted is numeric instead of character.

445 You re~erenced a shared variable that is reading a file using VAR
conversion and the resulting record is not a valid APL variable in
internal form. For example, it may not have a descriptor, the
element count may not equal the times reduction of the shape
vector, etc.

tThe VM/370: Command Language Guide for General Users gives these
limits.

*If these errors occur, you can restart APL/CMS with more free storage
and try again. For details, see Section 6, heading "Space Used by
Auxiliary Processors."

68 APL/CMS User's Manual

$

Return Codes ~ Processor

This in~ormation is included ~or the experienced VM/370 user o~

APL/CMS. Each auxiliary processor is listed with an indication o~ the
origin o~ its return codes. Each processor can, in addition, return the
44x codes.

AP100

CP:
CMS:

AP101

APL:
CMS:

AP110

Result Register a~ter Diagnose.
Register 15 a£ter SVC 202.

Register 15 a~ter FSWRITE
Register 15 a~ter SVC 202 ~or the ATTN ~unction.

Register 15 a~ter FSREAD or FSWRITE

APll1

Sense/Status In~ormation on SYNAD exit.
Errors 12, 15, 17

Appendix B: Auxiliary Processor Return Codes 69

~

Il execute 24

• format 26
\ scan 23
OAI 33
OCR 30
OCT 33
CDL 32
DEX 31
OFX 30
[110 33
OLC 33
DLX 33
nNC 32
ONL 31
DPP 33
DPW 33
DRL 33
DSVC 37
DSVO 35,37
DSVQ 38
OSVR 36
DTS 33
[ITT 33
DUL 33
'JWA 33

)DIGITS 33
)ERASE 21
)MSG 20
)MSGN 20
)OPR 20
)OPRN 20
)OfHGIN 33
)SAVE 41
) STACK 15,21
)SYMBOLS 21
)WSID 21

A
abnormal disconnect 11
ACCESS, command 39
access

control 37
multiple 60
random 40,49,55,58
sequential 49,55,56

accounting information
address of device 39
A-disk 10,41

33

ALLOC, option of LISTFILE 40
AP (auxiliary processor)
AP 62,67

control variables 48
conversions options 48
initial value for 47
offer protocol 47

options
record
use of

62
variabl.es 48

36
APFNS, in
APL

LIB 1 22,62

command (~I)I entries)
commands 8
conversion of APL\360 ws 45
environment 8
in TERM command 42
library 41
workspace 9

APLSV
compatibility with 37
conversion of APLSV ws 45

APLWS files 46
AP100 52
AP10l 53
APll0 48,55
AP111 48,56
atomic vector 34
attention 12,16,32

double 12,32
auxiliary processor

B
backspace 13,56
bare output 13
BIT conversion 55
block 40

(~ API

blocking messages 20
buffers, input-output 50

C
canonical representation 30
carriage return 12,12,13
character, errors 12
character set

input 63
output 63

checkpoint a workspace 22
classification, name 32
CMS

commands 8
commands in APL environment
disk I/O processor 55
environment 8
files 39
stack 53

codes
error 67
return 67

command
ACCESS 39
APL (~ 1)1 entries)

52

CMS commands in APL environment
COPYFILE 43

52

Index 71

CP in APL environment 52
DISK DUMP 45
DISK LOAD 45
during £unction de£inition 13
ERASE 41
FILEDEF 42,49,56,62
LINK 39
LISTFILE 40
MOVEFILE 43
PRINT 42
PUNCH 42
QUERY 41
QUERY TIME 43
READCARD 42
SPOOL 44
TAPE SCAN 44
TERM APL 42
TYPE 42

COMMAND COMPLETE 11
commands

APL 8
eMS 8
CP 8

comments in apl £unctions 17
communication, line loss 11,22
comparison tolerance 33
compress 20
CONTINUE workspace 22
control

o£ access 37
variables used with APs 48

control variable 67
conversion

character to numeric
in APll0 55
o£ APLSV workspaces
o£ APL\360 workspaces
option in AP 48
option in APs 63

COPYFILE command 43
coupling, degree o£ 35
CP

24

45
45

(and keyboard unlockS) 11,12
commands 8
commands in APL environment
ENTERED 11
environment
stack 53

8,12

D
damage,
D-disk

SI DAMAGE
10

15

de£inition,
DEFN ERROR

£unction
13,17

degree o£ coupling
delay 32
deletion o£ a line
DEPTH error 14
device, address 39
DEVICE, ERROR 11
DIGITS 33
directory

VM/370 39
VM/370 user 6

35

16

13

52

disconnect, abnormal 11
disconnected, running APL/CMS 22

72 APL/CMS User's Manual

disk
A 10
D 10
£iles 55
G 10
vir tua 1 6 , 10
Z 10

DISK DUMP command 45
DISK LOAD command 45
DISK NOT AVAILABLE message 46
distinguished names 29
divide by zero 15
domino 18
double attention 12
drop 20
dyadic

access control 37
£ormat 26
o££er to share 35

dynamic erasure 31

E
EBCDIC (~~ AP conversion option)
edit

APL £unction 13
CMS edi tor 42
limitation on width 16
line deletion 16

enclosed speci£ication 20
encode 18
end :file 50
environment 52

APL 8
CMS 8
CP 8,12

erase 31
ERASE command 41
error

abrupt termination 51
character 12
codes used by APs 67
DEFN 13,17
DEPTH 14
DEVICE 11
in execute :function
in locked :function

24
15

in reading/writing £iles 50
messages 10
RANGE 15
STACK FULL 14
typing CMS commands 9
WS NAME TOO LONG 21

escape,
execute
expand

:from literal input
24

20
expression, latent 33,34
expunge 31
EXT 12

F
~ile, listing names o:f 40
£ile name 39
:file processing 55

13

"

~
FILEDEF 62

command 42,49
FILEDEF commmand 56
FILEDEF I/O processor
filemode 39
files, 11
file1:ype 39

VNAPLAF 55
VNAPLBF 55
VNAPLUT 41
VNAPLVF 55
VNAPLWS 39
VNAPL3F 55

fixed leng1:h records
forma1:

dyadic 26
monadic 26

func 1:ion
defini1:ion 13
es1:ablishmen1: 30

functions, local 31

G

G-di sk 10,41

H

(~

39,55

he1:erogeneous output 14
horizontal tabulate 13,64

I
I-bea~ func1:ions 33

AP111)

idle control character
immediate modification
incorrect password 10
information, accounting
initial program load 7
input

13,64
15

character set 63
line length 12

input buffers 50
input-outpu1: conversion
INTERFACE QUOTA EXHAUSTED
INTERRUPT 32

33

63
35

INTERRUPT: PERMANENT SV WAIT 38
IPL 7

L
labels 17
la1:en1: expression 33,34
length

fixed length records 39
variable leng1:h records 39

LIB 1
APFNS 22
SPECIAL 13

library 10,41
limi1:a1:ion

on edi1: width 16
on workspace name 21

line
counter 33
deletion in edit
feed 13,64
input 12
loss 11

LINK command 39
LISTFILE command 40
local

func1:ions 31

16

system variables 33
lock, set lock on workspace 21
locked function 15,16
LOGOFF 8
LOGON 6
loss of communication line 22

to(

matrix divide 18
maximum

line leng1:h 12
records in CMS file 67
virtual storage 9
work area 9

message
DISK NOT AVAILABLE 46
error 10
ready 9
REQUEST PLEASE 11
WS TOO LARGE 46

messages, blocking 20
mode of CMS file 39
monadic

access control 37
forma1: 26
offer to share 35
re1:rac1:ion of a share
transpose 17

MOVEFILE command 43

N
name

classifica1:ion
list func1:ion
of CllS files

names

32
31

39

distinguished 29
surrogate 37

new line 64
control character 13

number of workspaces 10

o
offer to share 35
open quote 12
ORIGIN 33,33

36

OS files (~FILEDEF command)
ou1:pu"t

bare 13
character set 63
heterogeneous 14

output buffers 50

Index 73

P
paren1:heses 14
password 6

incorrec1: 10
PERMANENT SV WAIT
poin 1:er

read 48
record 48
wri1:e 48

prin1:
wid1:h 13
wid1:h ~lml1:a1:1on

PRINT command 42
prin1:ing

precision 33
wid1:h 33

38

16

program s1:orage, use o~ 51
PUNCH command 42

Q

QSAM £lle access me1:hod
QUADTC 34
QUADTC workspace 13
QUERY

R

command 41
DISK 41
NAMES 41
STORAGE 9
TIME 43

56

random access
random ~ink
RANGE ERROR

40,49,55,58
33
15

READCARD command
read-on~y ~ibrary

read/wri1:e ~ibrary
ready message 9
record

poin1:er 48

42
10

10

variab~es used wi1:h APs 48
records

xixed ~ength 55
in CMS ~i ~es 39

REQUEST PLEASE message 11
reshape 20
residue 17
retraction o~ a share 36

S
SAVE 41
scan 23
Script processor 42
sending workspaces
sequen1:iat access
SETFUZZ 33
SETLINK 33

1:0 other users
49,55,56

share, oIIer 1:0 35
SHARE, RETRACTION OF 36
shared variab~es 33,34

74 APL/CMS User's Manua~

46

SI
DAMAGE 21
DAMAGE ENCOUNTERED
DAMAGED 15

size
o£ APL/CMS 9
vir1:ua~ s1:orage 9
workspace 9

16,21

space, use o£ program s1:orage space 51
SPECIAL (workspace in LIB 1) 13
speci~ication

enc~osed 20
subscripted

SPOOL command
STACK 21
stack 21

CMS 53
command 15
CP 53

20
44

damage 15,16
£ul ~ error 14

stop vector 16,16
storage, query 9
s1:orage managmen1: 51
subscripted

£unc1:ions 20
opera1:ors 20
speci£ica1:ion 20

surroga1:e names 37
SV WAIT 38
SVP MEMORY FULL 35
SVP SYMBOL TABLE FULL
symbo~ 1:able 21
SYMBOLS 21
sys1:em

£unctions
variab~es

29,29
29,33

35

sys1:em variables loca~ized

T
1:abulate, horizon1:al 13
take 20
TAPE REW 44
TAPE SCAN 44,44
TERN APL 42
termina~, type 33
1:ime 43
1:ime s1:amp 33
1:race vec1:or 16,16

33

1:rans~a1:ion during input-outpu1:
1:ranspose, monadic 17
TYPE command 42
type OI CMS £i~es 39

63

typing error in CMS environment 9

U
unba~anced parentheses
use o£ program storage

12
51

....

V
variab~e length records 39
vari ables

contro~ (see AP control variables)
record (~AP record variables)
shared 33,34
system 33,34

virtual
disk 6
storage

maximum 9
size 9

virtual machine 6
virtual storage, use o~ 9
VMAPLAF, as a ~iletype 55
VMAPLBF, as a ~iletype 55
VMAPLUT, as a ~iletype 41
VMAPLVF, as a ~iletype 55
VMAPLWS, as a ~iletype 39
V~APL3F, as a ~iletype 55
VM/370

directory 39
ONLINE 11
user directory 6

W
WAIT, in PERMANENT SV WAIT
width

print 13
printing 33

working area 33
workspace 9

as a eMS ~ile 41
number o~ 10
saving on magnetic tape
sending to other users
size 9

ws NAME TOO LONG error 21
WS TOO LARGE message 46
WSID 21

Z
Z-disk 10
zero, divide by 15

3
370 conversion 55

38

43
46

Index 75

READER'S COMMENTS

Title: APL/CMS User's Manual
Programming RPQ MF2608
Program Number 5799-ALK

Order No. SC20-1846

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes yourjob?

o Customer Engineer o Manager o Programmer
o Engineer o Mathematician o Sales Representative
o Instructor o Operator o Student/Trainee

How did you use this publication?

o Systems Analyst
o Systems Engineer
o Other (explain below)

o Introductory text o Reference manual o Student/D Instructor text
o Other (explain) _________________________ _

Did you find the material easy to read and understand? 0 Yes

Did you find the material organized for convenient use? 0 Yes

Specific criticisms (explain below)
Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

o No (explain below)

o No (explain below)

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SC20·1846

YOUR COMMENTS PLEASE . ..

This manual is one of a series which serves as a reference source for
systems analysts, programmers, and operators of I BM systems. Your
comments on the back of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All com·
ments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your IBM representative
or to the IBM sales office serving your locality.

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

IBM SCIENTIFIC CENTER

APL/CMS Publications

2670 Hanover Street

Palo Alto, California 94304

FOLD

FIRST CLASS

PE RM IT NO. 38

PALO ALTO, CA.

: ~
: 3
: l>
'0'
• :l .'" : ~
• :l"
• iji'

:c
• :l
• to

:J>
'-0 :r
.""" ·n
:s:
:en
:c
·en
.(1) . .
.<1)

:s:
'",

::l
·c
:~

:-0
• 0
,(Q
:3
:3
::i'
,(Q

, .. ::0
.-0

FOLD FOLD :0

International Bu.lne .. Machine. Corporation
Data Proce •• lng Dlvl.lon
1133 We.tche.ter Avenue, White Plain., New York 10804
(U.S.A. only)

IBM World Trade Corporation
121 United Nation. Plaza, New York, New York 10017
(International)

:s: . ."
'1\..)

:~
.CO

:-0
-:::!.

'en :n
.1\..)
-0 -.
:00
-~ :0)

