
--------- - ------- - ---- - - ----------- ,-

•

Order Number:
SH20-9229-1

An Introduction to APL2

Program Number:
5668-899

Program
Product

Release Number:
2

--------- -------- -. ---- -- ----------_.-

An Introduction to APL2

Program Number 5668-899
Release 2

SH20-9229-1

Second Edition (December 1985)

This is a major revision of, and makes obsolete, SH20-9229-0.

This edition applies to Release 2 of APL2, Program Product 5668-899, and to any
subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Amendments" following
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of mM systems, consult the latest IBM System/3 70 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to mM products, programs, or services do not imply that
mM intends to make these available in all countries in which mM operates. Any
reference to an mM program product in this publication is not intended to state or imply
that only mM's program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below; requests for mM publications
should be made to your mM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to mM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. mM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1984, 1985

Preface

The APL2 system puts an advanced computing system within the reach of a wide
range of users. APL2 is distinguished from earlier systems by its power and by the
radical simplicity of the instructions that control it. This combination makes APL2
well suited not only to the advanced scientific or technical user and professional
programmer, but also to the occasional user and to the user with little or no
previous experience with computers.

This manual is intended to provide an introduction to the APL2 system. It will
show you the mechanics of using the system, and how to write effective programs
to cover a wide range of applications. It explains in detail many points that the
experienced user will find obvious - and you may therefore prefer to skip some
portions. But be aware that APL2 has a wide range of new features that were not
available in previous versions of APL. Even the advanced APL users in the
audience might find it helpful to review the fundamental sections.

This book makes no attempt to exhaustively define all of the capabilities of APL; it
mentions only a few of the specialized applications that are possible using APL.

It is strongly recommended that you supplement your reading of this manual with a
copy of APL2 Programming: Language Reference, which offers complete formal
definitions of all of the operations in the APL language and all of the features of
the APL2 system. In this manual, we're concerned with providing you with a basic
orientation to the way the system is used, and arming you with the fundamental
skills needed to make APL2 work effectively for you.

Preface iii

Related Publications

GH20-9214
SH20-9215
SH20-9216
SH20-9217
SH20-9218
SH20-9220
SH20-9221
SH20-9222
SX26-3737
SX26-3738
SY26-3931
SY26-3932
SH20-9230
SH20-9227
SH20-9233

APL2 General Information1

APL2 Migration Guide
APL2 Programming: Guide
APL2 Programming: Using Structured Query Language (SQL)
APL2 Programming: System Services Reference
APL2 Messages and Codes
APL2 Installation and Customization under CMS
APL2 Installation and Customization under TSO
APL2 Reference Summary
APL2 Reference Card
APL2 Diagnosis Guide
APL2 Diagnosis Reference
APL2 GRAPHPAK: User's Guide and Reference
AP L2 Programming: Language Reference
APL2 Programming: Using the Supplied Workspaces

Whereas there is no prerequisite publication to this Introduction manual, it is
recommended that you have a copy of APL2 Programming: Language Reference
available while reading this manual.

More advanced topics in APL application programming are covered in APL2
Programming: Guide.

APL2 General Information contains a description of each of the other books in the
APL2 Language Library.

iv An Introduction to APL2

APL2 Program Product Library

Task

Evaluation

Installation

Migration

Reference

Programming

Diagnosis

APL2 Pub6catiODS

General Information
Licensed Program Specifications

Installation and Customization under CMS
Installation and Customization under TSO

Migration Guide

Language Reference
System Services Reference
Reference Summary
Reference Card

An Introduction to APL2
Programming Guide
Using Structured Query Language (SQL)
APL2 GRAPHPAK: User's Guide and Reference
Using the Supplied Workspaces

Messages and Codes
Diagnosis Guide
Diagnosis Reference

Preface V

Summary of Amendments

Release 2, December 1985

Enhancements

Calls to Routines Written in Other Languages

Two associated processors are provided which allow routines written in
FORTRAN, Assembler, or REXX to be called from APL2 applications.

• Access to System Editors

The) ED ITO R command has been extended to allow either a TSO CLIST, or
a CMS command or EXEC to be named. This CMS command or EXEC, or
TSO CLIST will be executed to invoke a system editor such as XEDIT or ISPF
when APL2 editing is requested.

• APL2 Language Enhancements

Vector specification has been included to improve clarity and programmer
productivity.

A new system function, DEC, has been added to allow controlled
execution of APL expressions. This facility further enhances the error
handling facilities introduced in APL2 Release 1.

APL2 character set restrictions have been relaxed to allow a larger number
of acceptable characters in literals and comments and to allow the use of
lowercase alphabetics in APL2 names.

• APL2 Workspace Enhancements

A new workspace, GDMX, is provided to assist users in developing
applications which interface with GDDM.

Improvements have been made to the SQL workspace to support new
function in AP 127, greater productivity in implementing SQL-based
applications, and interface to the GDDM Interactive Chart Utility for
graphic display of relational data.

Summary of Amendments vii

Mi$eeOanf!C) ... ltQprovements

A substantial number of improvements have been made to APL2 in or"'r to
supplement existing function and to improve usability, performance, reUability, ... 41
error reporting. Among these are: .

1. AP 127 has been improved by adding support for the·SQL!DS CONNSCf
command and for retrieval of DB2 message text.

", '~:i ':f~' ~':~;~i~ :~'f ,:~.: '.;:.~ .' '. :.-/
2. Controlled invocation of APL2 has been added to allow APLZ .ppHc;atipns tq

be invoked from other applications without intervening APL2 OlJtpqt ors.er_o
display.

3. In tbe MVS/XA environment, global shared storage is now l)laced in exteoded
CSA thus alleviating storage constraints and alloWing larger gl9bal
storage sizes.

4. TCAM is no longer supported in the MVS/TSO environment.

S. VM/SP Release 3 or later is QOW a prerequisite for APL2 Release ~. inth~
VM/CMS environment.

Cobtents

Chapter 1: Getting the Flavor of Things 1

APL - What Is It? 3
Introduction 3

Power, Relevance, and Simplicity 4
A Short Example of the Use of APL 4
The· Characteristics of APL 5

GettiDg Started in APL 7
Fundamentals 7

The APL Character Set 10
Names 12
Numbers 13
Functions 13
Operators 14
Data 15
Arrays 15
Some Terminology for Adding More Structure to Arrays 21
Spaces 21
Parentheses 24
Order of Evaluation 26
Errors 28

Chapter 2: How To Use Some of the Pieces 31
Understanding Arrays 33

Enclose 35
Scalar Functions 36
Reduction 38
The "Each" Operator 41
The "Outer Product" Operator 42
An Example of the Use of Nested Arrays 43
When To Use Nested Arrays (and When NOT to Use Them) 44
Default Display of Output 46
Report Formatting by Default Display 48
Fill Elements, Empty Arrays, and Prototypes 51

Using Defined Operators 57

Chapter 3: The External Environment 63
System Commands 65

The Categories of System Commands 65
Access to the System 68
Workspaces and Libraries 68

Contents ix

Commands for Workspace Storage and Retrieval 70
Details of Usage 72
Grouping to Facilitate Copying and Erasing 89

Function and Operator Definition 92
Canonical Representation and Fix 92

Defining Your Own Functions 104
Using the Default Editor (EDITOR 1) 104
Using the Full Screen Editor (EDITOR 2) 107
Using a System Editor (EDITOR name) 115

Chapter 4: The Quads 117
System Functions and System Variables 119

System Functions 119
System Variables 135

Shared Variables 149
Distinguished Names for Controlling Shared Variables 150

Event Handling 158
Facilities Available for Event Handling 160
Several Methods for Fixing an Error 164
Execute 169

Chapter 5: Adding a Professional Appearance 191
Description of Features and Facilities 193

Terminal Input and Output 193
Grade 202
Format 204

Chapter 6: Our Own Biased Views of Programming 219
Some Thoughts on Programming Style 221

APL Building Blocks 221
How to Build a Toolbox 227
Where's This Function Going? 228
The One-Liner Syndrome 230
Looping versus Using Arrays 234
Wi! 3-Chr Nms Run Fst? 237
Putting It All Together 238

Appendix. Reference Section 245
List of Major Extensions, New Features and Differences 246
Withdrawal of Obsolete Facilities 252

Index 255

X An Introduction to APL2

Chapter 1: Getting the Flavor of Things

If you're new to APL, this chapter may provide some understanding of what APL
is all about; we'll discuss the syntax and characteristics of the language.

If you're not new to APL, we still recommend following through this chapter.
APL2 offers many capabilities that were not present in other versions of APL.
Reading this chapter may acquaint you with some of the new power of the
language. We'll introduce some new terms here, and give you some examples of
what can be done.

Used with the permission of The Dick Sutphen Studio.

Chapter 1: Getting the Flavor of Things 1

APL - What Is It?

Introduction

APL is a general-purpose language that enjoys extensive use in such diverse
applications as commercial data processing, system design, mathematical and
scientific computation, and the teaching of mathematics and other subjects. It has
proved to be particularly useful in data base applications, where its computational
power and communication facilities combine to enhance the productivity of both
application programmers and end users.

When implemented as a computing system, APL is used from a typewriter-like
keyboard. Statements that specify the work to be done are entered by typing them,
and in response, the computer displays the result of the computation. The result
appears at a device that accompanies the keyboard, such as video display or printer.
In addition to work that is performed purely at the keyboard and its associated
display, entries may also invoke the use of printers, disk-files, tapes or other remote
devices.

The letters APL originated with the initials of a book written by K. E. Iverson, A
Programming Language (New York: Wiley, 1962). Dr. Iverson first worked on the
language at Harvard University, and then continued its development at mM with
the collaboration of A. D. Falkoff and others. The term APL now refers to the
language that is an outgrowth of this work.

APL2 is a particular implementation of that language with extensions that have
been developed within mM over the last several years. The treatment of nested
arrays in APL2 is based on J. A. Brown's dissertation and T. More's theory of
arrays.2

2 J. A. Brown, A Generalization of APL, Ph.D. Dissertation, 1971, Dept. of Computer
and Information Science, Syracuse University, Syracuse, New York, Clearing House
74h004942 AD-770488./5.

T. More, "A Theory of Arrays with Applications to Databases," mM Cambridge
Scientific Center report G320-2106, Sept. 1975.

APL - What Is It? 3

Power, Relevance, and Simplicity

A programming language should be relevant. That is, you should have to write
only what is logically necessary to specify the job you want done. This may seem
an obvious point, but many of the earlier programming languages would have
forced you to be concerned as much with the internal requirements of the machine
as with your own statement of your problem. APL2 takes care of those internal
considerations automatically.

A programming language needs both power and simplicity. By power, we mean the
ability to handle large or complicated tasks. By simplicity, we mean the ability to
state what must be done briefly and neatly, in a way that is easy to read and easy to
write. You might think that power and simplicity are competing requirements, so
that if you have one you can't have the other, but that is not necessarily so.
Simplicity does not mean that the computer is confined to doing simple tasks, but
that the user has a simple way to write his instructions to the computer. The power
of APL as a programming language comes in part from its simplicity; it is this
simplicity that makes it simultaneously well suited to the beginner and to the
advanced user.

A Short Example of the Use of APL

If the work to be done can be adequately specified simply by keying a statement
made up of numbers and symbols, names will not be required; simply typing in the
expression to be evaluated causes the result to be displayed. Let's try out an
example:

Many bacteria can duplicate themselves once every half hour. If a single
infectious organism began reproducing at 9 o'clock in the morning, how
fast would the resultant colony grow?

_____ Our keyboard input
2*2x3 12 16 ~

64 1 6 7 7 7 2 1 6 4 2 949 6 7 2 9 6 f--- The system's response

/~
At noon (three hours
later), we would have a
colony of 64 members ...

At nine o'clock that
same night (12 hours
later), we would have
over 16 million
newcomers around ...

By 1 o'clock the next
morning (16 hours
later), we would be
greeted by four billion
new offspring!

4 An Introduction to APL2

Several distinctive features of APL are illustrated in this example: familiar
symbols, such as "x", are used where possible, other symbols are introduced where
necessary (such as the "*" for the power function), and (~important!) a group
of numbers can be worked on together.

The Characteristics of APL

The primitive objects of the language are arrays (lists, tables, lists of tables, and so
forth). For example, A + B is meaningful for any arrays A and B.

The syntax is simple. There is no hierarchy of function precedence, and built-in
functions and user-defined functions (programs) are treated alike.

The rules of "programming grtl1IUIUlI''' are few. The definitions of the built-in
functions are independent of the type of data to which they apply, and they have
no hidden side effects.

The sequence control is simple. One statement type embraces all types of branches
(conditional, unconditional, or computed), and the termination of the execution of
any function always returns control to the point of use.

External communication is established by means of data that is directly shared
between APL and other systems or subsystems. These shared variables are treated
both syntactically and semantically like other data. A subclass, called system
variables, provides convenient communication between APL programs and their
environment.

The utility of the built-in functions, called primitive functions, is vastly enhanced by
operators which modify their behavior in a systematic manner. For example,
reduction (denoted by " /") modifies a function to apply over all elements of a list,
as in + / L for summation of the elements of L. Axis specification allows functions
like reduction to be applied to a table in a specified direction. In addition, APL
allows you to "roll-your-own"; that is, both functions and operators may be
user-defined for your own needs.

The number of primitive functions is small enough that each is represented by a
single easily-read and easily-written symbol, yet the set of primitives embraces
operations from simple addition to a complex form of grading (sorting) and
formatting.

Used with the permission of Hart Publishing Company, Inc.

APL - What Is It? 5

Getting Started in APL

Fundamentals

APL Is Interactive

Who Typed What?

The APL system takes one APL expression at a time, converts it to "machine
instructions" (the computer's intemallanguage), executes it, and then proceeds to
the next line. This is in contrast to traditional program compilers which convert
complete programs to machine language before executing any expressions. This
allows you a high degree of interaction with the computer. If something that you
enter is invalid, you will get quick feedback on the problem before you proceed
further.

During an APL terminal session, you and APL will take turns using the terminal.
While you type information in, APL waits for some signal from you that it is its
tum to use the terminal for displaying the results from your input. This signal from
you is the depression of the "CARRIAGE-RETURN" or "ENTER" or
"EXECUTE" key-the name of the key differs between different types of
terminals, but the action is the same: it's simply a means of telling APL that you
have finished typing a line, and that you're ready for APL to evaluate that line.

When APL displays information for you, it starts each new line at the left margin.
After it finishes displaying any such output, it signals to you that it is ready for you
to type in another keyboard input by indenting six spaces from the left margin and
halting. This position is the indication that it's ready for you to take "your tum."
For example,

2 + 2 1------
4 ~~I---------------

AREA
12

You typed this in ...
and APL responded with this.
The six-position indent indicated
that you could enter something else.

Getting Started in APL 7

Expressions

8 An Introduction to APL2

A typical expression in APL is of the form:

AREA+3x4

The effect of the statement is to assign to the name" AREA" the value that is the
result of 3 x 4 to the right of the assignment arrow, "+"; it may be read informally
as "area is three times fOUf."

If the leftmost part of an expression is not a name followed by an assignment
arrow, the result of the expression is displayed.3 For example:

12

14

3x4

PERIMETER+2x(3+4)
PERIMETER

Displaying any intermediate result in an APL expression can be obtained by
including the characters "0+" after any portion of the expression which would
produce an intermediate result. Moreover, any number of assignment arrows may
occur in an expression. For example:

12

14

4

A+2+0+3xB+4

A

B

You may also assign a set of names from the items of a vector:

14

(A B)+14 4
A

This is called vector assignment.

3 The "leftmost" part of the expression is significant here, because APL's order of
evaluation is right-to-Ieft. The leftmost part of the line, therefore, is the last part to be
evaluated. But we'll get to the order of evaluation rules a little later on.

The terminal entry and display devices used with APL systems include a variety of
typewriter-like and display-tube devices. Their characteristics vary, but the
essential common characteristics are:

1. The ability to enter and display APL characters.

2. A means of signalling completion (and release to the system) of an entry.

3. Facilities for convenient revision of an entry before release.

4. Facilities to interrupt execution at the end of an expression (attention) and
within an expression (interrupt).

5. A cursor (some form of pointer) to show where on the line the next
character entered will appear.

All examples in this manual are presented as they would appear on a
typewriter-like device. Even though video terminals are in very common use now,
this typewriter-like presentation is done because the characters commonly used on
some of the typewriter-like terminals are distinctive, and you can easily
differentiate them from the explanatory text. The text of this manual, therefore, is
entered in upright characters, and I TAL ICC A PIT A L S will be used to indicate
the portions of the examples that you might actually see at your terminal (even
though your terminal might display upright block characters instead of the italics

. that we use here).

On those typewriter-like terminals, the release signal is produced by the carrier
return key, and revision is handled by backspacing to the point of revision, striking
the ATTENTION button, and entering the revision. An inverted caret supplied by
the system marks the point of correction. For example:

3+4x5+
v
+5+6

18

On terminals of this type the ATTENTION key is also used for interrupting
execution. A single strike of this key while execution is in progress provides an
attention signal, and a double strike provides an interrupt: an attention says "stop
when it's convenient," and an interrupt says "stop immediately."

On some video display terminals, such as those in the mM 3270 and 3290-series,
typing corrections may be entered by simply backspacing the cursor onto the
portion of the line to be corrected, and typing over the line. The "ERASE EOF"
key (meaning "erase to end of field") on the left side of the keyboard will delete
everything from the point where the cursor is positioned through the end of the
current line.

Attention and interrupt is signalled on the 3270 terminals by depressing the PA2
key, once for attention and twice for interrupt.

Getting Started in APL 9

The APL Character Set

A Typical APL Keyboard

The characters that may occur in a statement fall into four main classes:
alphabetic, numeric, special, and blank. The alphabetics are composed of the
roman alphabet in uppercase italic font, the same alphabet underscored, plus" 6",
and "fA". The entire set of alphabetics is shown under the discussion of "Names"
on page 12. The entire set of displayable characters that are supported in APL2
are shown in the chart on page 11 along with suggested names and the scheme for
forming (as composites of other symbols) those characters that may not be directly
available on the keys of some terminals.

IBM 3278/3279 Keyboard

lOAn Introduction to APL2

The APL2 Character Set

A B C D E F G H I J K L M N 0 p Q R S T U V W X Y Z
a ~ Q. 12 ~ E. Q Ii I rl K It. M. li. Q f!. Q 11 §. 'l. If. ~ Ii X- x: ~
a b c d e f g h i j k 1 m n 0 pq r s t u v w x y Z

0 1 2 3 4 5 6 7 8 9

dieresis a alphal ¥ down caret tilde v '"
overbar r up stile '/I(up caret tilde A '"

< less L down stile " del stile V
~ not greater underbar ! delta stile b.
= equal V del 11 delta underbar b.
~ not less b. delta <P circle stile 0 I
> greater 0 jot ~ circle slope 0 \
it not equal quote e circle bar 0 -
v down caret 0 quad • circle star 0 *
A up caret (left paren I down tack up tackl .1 T

bar) right paren 'i del tilde V
7- divide [left bracket .t. down tack jot .1 0

+ plus] right bracket 'i up tack jot T 0

x times c left shoe \ slope bar \ -
7 query ~ right shoe f slash bar /
w omegal n up shoe A up shoe jot n 0

E: epsilon u down shoe [!] quad quote 0 •
p rho .1 down tack quote dot

tilde T up tack Ii) quad divide 0 7-

t up arrow I stile lSI quad slopel 0 \
+ down arrow semicolon 19 quad jotl 0 0

1 iota colon D left bracket right bracketl []
0 circle comma - equal underbar =
* star dot So epsilon underbar E:

-+ right arrow \ slope l iota underbarl 1

+ left arrow / slash dieresis dotl @

blank (space) % percentl 2 / 7-

& ampersandl 2 I E:

¢ centl 2 I c

Note: The lowercase alphabetics ("a" through "z") $ dollarl 2 S /
may be typed as "A" overstruck with" -" through # poundl 2 N =
" Z" overstruck with "-", respectively. @ atl 2 Q 0

exclamation 1 2 • 0

All overstrike combinations may be entered in vertical barl 2 I .1

either order. tildel 2 I
..., not! 2 /

lThese characters have no assigned purpose, other I split barl 2
I ,

than use as decorators. " double quotel 2 ..
{ left bracel 2 - (

2National-use characters may have alternate graphics } right bracel 2 -)
in different countries, although they do not have \ backslashl 2 \ I
alternate overstrikes. accentl 2 \

Getting Started in APL 11

Names

The names suggested are for the symbols themselves and not necessarily for the
functions they represent. For example, the down stile, "L ", represents both the
minimum, a function of two arguments, and the floor (or integer part), a function of
one argument. In general, most of the special characters (such as +, -, x, and T)
are used to denote primitive functions which are assigned fixed meanings, and the
alphabetic characters are used to form names which may be assigned and
reassigned significance as user-defined variables, defined functions and operators,
and labels. The blank serves as a separator to mark divisions between names
(which are of arbitrary length).

Any available display font (or character set) may be used for your APL terminal
session, as long as your terminal permits the display font to be changed without
changing the behavior of the entry keyboard or communication with the system -
as, for instance, in changing the typing element on certain typewriters. For
example, in textual work a font with normal upper- and lowercase roman is
commonly employed.

Valid characters for forming names are:

A B C D E F G H I J K L M N 0 P Q R S T U V W X

A 11 Q l2 E. E Q li. I ,z K. L. l::t Ii. Q E. Q B. Q. 'l. ll. f fl X

0 1 2 3 4 5 6 7 8 9 These cannot start a name

With certain settings of the CASE parameters, lowercase letters are used in place
of underscored letters. In this book, only the underscored letters are used.

Y

r

Names of workspaces, functions, variables, operators, and labels may be formed of
any sequence of the above characters, as long as they contain no blanks, and don't
start with a numeric digit, or with the characters "-,, or " _". For example,

A
ABQ
SALES_REPORT
TAX1984
!J.

A B
1984TAX
_REPORT
DATA.3

- are all valid names

Invalid name - contains a space
Invalid name - starts with a numeric
Invalid name - starts with" "
Invalid name -" • " isn't allowed

The environment in which APL operations take place is bounded by the active
workspace (described in Chapter 3). Hence, the same name may be used to
designate different objects (that is, variables, functions, operators, and labels) in
different workspaces, without interference. Also, because workspaces themselves
are never the subject of APL operations, but only of system commands, it is
possible for a workspace to have the same nam~ as an object it holds.

A workspace name is limited to a length that is governed by the particular type of
system upon which you're running. A typical workspace name-length limit is eight

12 An Introduction to APL2

Z !J.

Z !d

Numbers

Functions

characters. The names of variables, functions, operators, and labels, however, may
be of any desired length. Any length of name that you choose is retained by the
system and is significant.

All numbers entered or displayed are in decimal, either in conventional form
(including a decimal point if appropriate) or in "scaled form." The scaled form
consists of an integer or decimal fraction called the multiplier followed immediately
by an "E" and then by an integer (which must not include a decimal point) called
the scale. The scale specifies the power of ten by which the multiplier is to be
multiplied. Thus 1 • 4 4 E 2 is equivalent to 1 4 4.

In a similar fashion, APL accepts complex numbers with a "J" separating the real
and imaginary parts. Optionally, a polar form is available, with the angle expressed
in either radians or degrees. For example, the square root of negative one may be
entered as OJl in its standard form, as ORl • 570796327 in polar radian form,
and as 1 D 9 0 in polar degree form. Complex numbers are always displayed using
the J form.

Negative numbers are represented by an overbar immediately preceding the
number. For example, -1 .44 and -14 4E- 2 are equivalent negative numbers.
The overbar can be used as part of a numeric constant and is distinguished from
the bar that denotes negation, as in - X. The overbar may not be used to denote
negation of a value stored under a name; that is, ,,- X" is invalid.

The word "function" derives from a word that means to execute or to perform. A
function executes some action on its argument (or arguments) to produce a result
that may serve as an argument to another function. For example:

12

14

2

3x4

2+(3x4)

(-6)73

Functions represented by symbols, such as "+", "-", "x" and """, are called
primitive functions, because they are "primitive" to the system; that is, they are
automatically available for use in any workspace without having to copy them from
somewhere. Functions may also be user-defined and given names.

A function that takes one argument (such as the negation used above) is said to be
monadic, and a function that takes two arguments (such as the times function) is
said to be dyadic. All APL functions are either monadic or dyadic or, in the case of
defined functions only, may also be niladic (taking no argument). With both
primitive and user-defined functions, the same symbol or name can represent both
monadic and dyadic functions. For example, X - Y denotes subtraction of Y from X
(a dyadic function), and - Y denotes negation of Y (a monadic function).

Getting Started in APL 13

Operators

The normal operation of a function may be altered by applying an operator to it.
For example, "+" and" x" are primitive functions; applying the" /" operator to
produce "+ /" and "x /" modifies their normal operation in a precise, defined
manner, and produces a new, derived function. Operators apply equally to
user-defined functions, and, in fact, the operators themselves may be user-defined.

Terminology: Functions versus Operators

Over the years, there has sometimes been confusion between the terms "function"
and "operator." The terms have sometimes been used interchangeably. In APL,
it's useful to differentiate the terms.

A function is that which takes in one or more data objects (or "arguments") and
returns new data (result). An example of a monadic (single-argument) functjon is:
"1 " ... "13" takes in one piece of data (the argument "3"), and returns new data
in the form of the result, "1 2 3 ". An example of a dyadic (two-argument)
function is "+" ... "2 + 3" takes in two arguments and returns new data in the form
of the result, "5".

An operator is that which takes in one or more data objects or functions and returns
a new function. An example of a symbol that can be used as an operator is " /" ..•
"+ /" takes in a function (plus) and returns a new derived function; in this case,
sum reduction. The new derived function, then, acts like any other function. It
takes in data (for example, "+ / 1 2 3") and returns new data (" 6 ").

Both functions and operators may be user-defined. Later discussions in this
manual will discuss both of those constructions.

For some in-depth discussions on functions and operators, see APL2 Programming:
Language Reference. And finally, if you're looking for some all-inclusive generic
term for those funny APL squiggles, call them "symbols" (or even squiggles, if you
must)-but not always operators, please.

14 An Introduction to APL2

Data

Arrays

Rank and Shape

Data used in APL is one of two types: either numeric or character. Data is
produced by:

• Explicit entry at the keyboard,
• Execution of APL functions and operators, or
• Use of shared variables and system variables (described later in this manual).

APL functions apply to collections of individual data items called a"ays. An array
is an ordered collection of items4 arranged along rectangular dimensions (called
axes), where these items are numbers, characters, or other arrays.

The rank of an APL array is the number of dimensions or axes that it has. For
those of you who may already be familiar with some other computer languages, you
may be thinking of the term dimension as the amount of data that be stored; that's
not what we mean here. We are referring to the axes, not the length of the data.
For our purposes, a dimension and an axis are synonymous. When we want to refer
to the amount of data along each of those dimensions, that's what we will call
shape.

For example, a simple list of numbers has only one dimension - only length -
and therefore is of rank one:

V+2 3 5 7 11 13 17 19
V

2 3 5 7 11 13 17 19

Any array may contain both numbers and characters:

V+2 3 'A' 4 'B' 5
V

2 3 A 4 B 5

In APL, data in a list form like this is referred to as a vector.

An example of a rank-two object would be a table of numbers:

M+ 2 5 pliO
M

1 234 5
6 7 8 9 10

(We'll talk about p and 1 in a moment)

In APL, two-dimensional data like this is referred to as a matrix. Either of these
examples could just as easily have used character data, or a mixture of numeric and
character data.

4 These "items" are often conversationally referred to as the "elements" that make up
the array; these two terms mean the same thing.

Getting Started in APL 15

A scalar has no dimensions and is of rank zero. Arrays range from these
dimensionless scalars to multidimensional arrays of arbitrary rank and size. Here
are the three most commonly-used ranks:

APL Equivalent
Rank Name toa

0 Scalar Point
1 Vector Line or list
2 Matrix Table

The vector is a simple form of array which may be formed by listing its elements.
For example:

V+2 3 5 7 11 13 17 19

A+'A' 'B' 'C' 'V' 'E' 'F'
or

A+'ABCVEF'

The shape of an array may be measured by using the shape function, denoted by the
"rho" (p) symbol:

V
2 3 5 7 11 13 17 19

pV
8

A
ABCVEF

pA
6

The shape function returns a count of the number of items along each of the
dimensions. In the case of those vectors, there was only one dimension; a matrix,
because it is "two-dimensional," will return two numbers:

N+ 3 4 P t12
N

1 2 3 4
5 6 7 8
9 10 11 12

pN
3 4

pM
2 5

We showed an example above of how a vector is entered at the terminal, but a
matrix cannot be directly entered. You'll have to use a function to tell APL the
shape that you want. A matrix is commonly formed by listing the items of data that
the matrix is to contain, and then using the reshape function to create the desired
shape. The reshape function uses the same rho-symbol that the shape function
uses, but has a left argument stating the desired resultant shape. The matrix shown
above, for instance, could be formed like this:

16 An Introduction to APL2

Variables

N+ 3 4 p 1 2 3 4 5 6 7 8 9 10 11 12

The number of numbers used to the left of the p -symbol determines the rank of
the object being formed. Here, the two numbers" 3 4" create a rank-two object
- a matrix. In a similar fashion, the rank of an object may be measured by
counting the number of numbers that are returned with the monadic use of the
p -symbol... in other words, measuring the shape of the shape:

N+ 3 4 P 1 2 3 4 5 6 7 8 9 10 11 12
N

1 2 3 4
5 6 7 8
9 10 11 12

pN Shape of N
3 4

ppN Rank of N
2

The right argument for the reshape function may be in any form: it could be a
directly-entered list of items as we discussed above, or it could be data already
stored under a name:

M+2 4pV
M

2 357
11 13 17 19

ABCD
EFAB

B+2 4pA
B

Arrays of arbitrary shape and rank may be produced by the same scheme. For
example:

ABCD
EFGH
IJKL

MNOP
QRST
UVWX

234

T+2 3 4p'ABCDEFGHIJKLMNOPQRSTUVWX'
T

pT

This three-dimensional array has two planes, each with three rows and four
columns. Three-dimensional arrays display with a blank line separating the planes,
and higher-dimensional arrays simply extend this scheme.

An array that is stored under a name is called a variable, because its value may be
varied at any time simply by reassigning a new value to the name. All of the names
that we have shown in this "Arrays" discussion ("V", "A", "M", and so forth) are
variables.

Getting Started in APL 17

Constants

Quotes

Bracket Indexing

A constant is a number or string of numbers or a character or string of characters
that appears explicitly in an APL expression.

A single number entered by itself is accepted by the system as a scalar. A constant
vector may be entered by listing the numeric components in order, separated by one
or more spaces.

A scalar character constant may be entered by placing the character between
quotation marks (as in 'A '), and a character vector may be entered by listing the
characters between quotation marks (as in 'T HIS IS T EXT'). The blanks
are part of the data, and are treated like the other characters - that last example is
twelve characters long. Such a vector is displayed by the system as the sequence of
characters, with no enclosing quotes and with no separation of the successive
elements (characters).

The quote character itself must be entered as a pair of quotes. Thus, the
contraction of CAN NOT is entered as ' CAN' , T' ... APL displays it as CAN'T,
and it consists of five characters.

The elements of an array may be selected by bracket indexing. For example:

5 2 11

V+2 3 5 7 11 13 17 19
V[3 1 5]

(2 3 5 7 11 13 17 19)[3 1 5)
5 2 11

HEAD

HEAD

A+'ABCDEFGH'
A[8 5 1 4)

'ABCDEFGH'[8 5 1 4)

The numbers within the square brackets indicate the positions of the data that is
being selected. If any of the indices are out of range, you'll get an error message:

'ABCDEFGH'[8 5 1 35)
INDEX ERROR

'ABCDEFGH'[8 5 1 35)
A A

Elements may be selected from any array (other than a scalar) by indexing in the
manner shown for vectors, except that indices must be provided for each
dimension:

18 An Introduction to APL2

Index Origin

M[2;3] T[2;1;4]
17 P

M[2 1;2 3 4] T[2;1 2 3;1 2 3 4]
13 17 19 MNOP

3 5 7 QRST
uvwx

pM[2 1;2 3 4] pT[2;1 2 3;1 2 3 4]
2 3 3 4

Elements can't be selected from a scalar through bracket indexing, because a scalar
has no dimensions (or axes) from which to select its data.

The indexing used in the foregoing examples is called origin 1 because the first
element along each axis (or dimension) is selected by the index 1. You may also
use origin 0 indexing by setting the index origin to O. The index origin is controlled
by a system variable denoted by DIO. Thus:

DIO+1 DIO+O

V[l 2 3] V[O 1 2]
2 3 5 235

B[2;3] B[1;2]
A A

13 13
1 2 3 °1

This function is the
"Index Generator"

In APL, you always have the choice of using either origin 1 or origin O. You may
find that the use of origin 0 may make some applications easier to write. This is
especially true where certain mathematical operations are being performed.
Calculations involving number-base conversions, for example, are often cleaner if
you're working in origin O. Some indexing operations themselves are also a little
cleaner. For example:

Getting Started in APL 19

OIO+1

N
1 234
5 678
9 10 11 12

000 0

0000
0000

'00'[1+N>6]

OIO+O

N
1 234
5 6 7 8
9 10 11 12

o 000
0000
0000

'00'[N>6]

However, origin 0 can also be confusing at times, simply because most of us grew
up being accustomed to thinking of a series of numbers as starting with one instead
of zero. [Neither of these is correct, of course; in our hearts we all know that the
number series really begins at negative infinity.] But years of seeing lists numbered
"1, 2, 3" instead of "0, 1, 2" tends to leave its mark. Throughout our
lives we have been taught that:

O. House numbers start with 1 (rarely with 0)
1. Magazine pages so often tend to start with 1
2. Days of the month start with 1 (it's really hard to find an exception here)

So, rather than complicating your life by bucking this ingrained bias, APL uses
origin 1 as its default; you can always change it, but that's what you'll see when
you first sign on.

Because of this default, all further examples in this manual will be shown in origin 1
unless otherwise stated.

Used with the permission of Hart Publishing Company, Inc.

20/ An Introduction to APL2

Some Terminology for Adding More Structure to Arrays

Spaces

Let's assume that we have an array named "A ", which contains two pieces of data:
a string of numeric data having the value "1 2 3 ", and a similar string of
numeric data having the value "4 5 6 ". "A" then can be represented as a
two-item vector. (We're keeping this discussion separate from the discussion of the
particular APL notation that we would use to form such a vector - that will come
a bit later.) For example,

A contains two items

~--t-- Each item is a three-item vector

First item of A

In APL2, an item of an array can be any other array.

For more information, see the section on "Understanding Arrays," following on
pages 33-45.

The blank character is used as a separator. (A "blank"is the character, and
"space" is its result.) The spaces that one or more blank characters produce are
needed to separate names of adjacent defined functions, constants, and variables.
For example, if F is a defined function, then the expression 3 F 4 must be
entered with the indicated spaces. The exact number of spaces used in succession
is of no importance, and extra spaces may be used freely. Spaces are not required
between primitive functions and constants or variables, or between a succession of
primitive functions, but they may be used if desired. For example, the expression
3 + 4 may be entered with no spaces.

Remember that example in the previous section, though: " - 1 4 4 E - 2" is a single
numeric constant, because APL recognizes the" E" as indicating "exponential
form," whereas "-144 E - 2" would attempt to combine a user-defined
function or variable named" E" with two numbers. In this particular context, the
spaces are significant.

Getting Started in APL 21

Whenspacesarerequired (and when they are n't even allowed)

Of all oft he keys on the keyboard , perhaps the space is the most
Even the layout of the keyboard reflects its importance.

The uses of the space can be divided into two categories:

important.5

1. The space is used as a literal blank character, to visually separate words or
numbers.

2. The space is used to separate objects that would take on a different meaning if
they weren't separated (for example, the vector 2 3 is quite different from the
value 23).

When used inside of quotes, the space is treated just like any other character.
Spaces within comments are left just where you enter them; APL doesn't touch
them at all. And, now that comments may peacefully co-exist on the same line as
APL code, the leading blanks between the code and the comment are significant
and are retained. See page 102 for some additional comments on comments.

Other than in character constants and comments, the space is used to ensure proper
syntax of the expression. Its only purpose is to allow the juxtaposition6 of objects
on the same line. When they're used that way, multiple spaces act exactly the same
as a single space.

Consider the expression "3 - 2". No spaces are needed here, because the objects
" 3 ", "-", and "2" cannot be confused with another single object when put
directly next to each other - they simply form an APL expression. If spaces are
inserted the meaning does not change: "3 - 2", or even" 3 2 ".

However, given a dyadic function MIN US, then "3 MIN US 2" is invalid. It would
have to be written as "3 MINUS 2", with one or more spaces separating "3"
from "MINUS" and "MINUS" from "2". Here, the spaces separate the
arguments of a defined function from the name of that function.

Let's consider another example: The expression "- 4 5" contains three objects,
" - ", "4", and "5". The space is used here so that the two numbers "4" and "5"
aren't confused with the number" 4 5 ". The addition of extra spaces won't change
the expression at all. Therefore," - 4 5 "," - 4 5 ", and
" 4 5 ", are all the same as "- 4 5 ". Here, the space is used to
separate the items of a vector.

The space is used to separate objects that are juxtaposed. If the objects do not
create visual ambiguities when they're put directly together, then the space is
unnecessary. (Parentheses can also be used to separate juxtaposed items.) The
objects that can merge are names, numeric constants, and character constants.
Perhaps it would be useful to look at all combinations of the juxtaposition of these
objects to see the possibilities.

5 See?

6 "JuxtapositionH refers to the positioning of terms side-by-side in an expression. The
expression "A BH shows two names in close proximity or "juxtaposition.H

22 An Introduction to APL2

Here are examples of these various possibilities, along with what would be
produced if the space were removed:

Same example Meaning
Example, Meaning with but without without
with a space the space the space the space

NAME NAME Two NAMENAME A longer
separate (and
names different)

name

NAME 3 One name NAME3 A longer
and one (and
number different)

name

NAME 'TEXT' One name NAME'TEXT' (no change)
and a
character
vector

2 NAME A number 2NAME ERROR
and a name

2 3 A two-item 23 A different
numeric numeric
vector scalar

2 'TEXT' A number 2'TEXT' (no change)
and a
character
vector

'TEXT' NAME A character 'TEXT'NAME (no change)
vector and a
name

'TEXT' 3 A character 'TEXT'3 (no change)
vector and a
number

'TEXT' 'TEXT Two 'TEXT' 'TEXT' A single
character character
vectors vector

containing a
quote
character

Parentheses may be used to group and separate objects. Given a defined function
called "REPORT", and a variable called "SALES", either "REPORT SALES"
or "REPORT(SALES)" are valid. Spaces are not needed in the second
example, because the parentheses themselves separate the names.

As long as objects are separated from each other, the semantic rules of APL can
take over to give meaning to expressions.

Getting Started in APL 23

Parentheses

Therefore:

• A space that's not part of a character constant or a comment is used to
separate juxtaposed objects.

• When used to separate objects, extra spaces have no ill effects.

• Parentheses may be, used instead of spaces either to separate objects or to
group objects.

Parentheses are used in the familiar way to control the order of evaluation in a
statement. Any expression within matching parentheses is evaluated before
applying any function to the result outside the matching pair. Parentheses are
always permissible if they are properly paired and what is inside evaluates to an
array, a function, or an operator.

In conventional notation, the order of evaluation of an unparenthesized sequence
of monadic functions may be stated as follows: the (right-hand) argument of any
function is the value of the entire expression to the right. For example, in
conventional notation Log Sin Arctan x means the Log of Sin Arctan x, which
means Log of Sin of Arctan x. In APL, the same rule applies to dyadic functions as
well. Moreover, all functions, both primitive and defined, are treated alike; there is
no hierarchy among functions (such as multiplication being done before addition or
subtraction) .

An equivalent statement of this rule is that an unparenthesized expression is
evaluated in order from right to left. For example, the expression 3 x 8 r 3 * I 5 - 7
is equivalent to 3 x (8 r (3 * (I (5 - 7)))). The result of each expression is
2 7. Parentheses are often used to surround the left argument of a function, so that
it is evaluated in one complete piece. For example, (12 -!- 3) x 2 is 8 and
1 2 -!- 3 x 2 is 2. However, redundant pairs of parentheses can be used at will.
Thus, 1 2 -!- (3 x 2) is also 2.

24 An Introduction to APL2

Here are other ways that parentheses are used to modify the order of evaluation:

1. They group pieces of an expression or data.

2. They separate pieces of an expression or data from other such pieces.

Any parentheses that do not both group and separate are redundant and may be
eliminated without altering the meaning of the expression. For example:

(2 3)

(2) (3)

(2 3) (4 5)

These parentheses group the values 2 and 3
together, but they don't separate them from
anything, so they're redundant. The expression
could be restated as "2 3" without altering
the meaning of the expression. This is a
numeric vector of length two.

These parentheses separate the values 2 and 3
from each other, but they don't group anything,
so they are also redundant. The expression
could also be restated as "2 3" without
altering the meaning of the expression. This is
also a numeric vector of length two and is
equivalent to the previous one.

These parentheses both group the first and
second pairs of values together, and separate
the pairs from each other. The parentheses are
not redundant here; they are needed. Moving
or eliding any of the parentheses would alter
the meaning of the expression. This is a
"nested" array of length two, containing two
two-element numeric vectors.

Getting Started in APL 25

Order of Evaluation

In APL, the order of evaluation is always from right to left for functions, except as
modified by the use of parentheses. In particular, there is no hierarchy among the
functions (such as multiplication being executed before addition, and so forth). All
functions are treated alike. The reason for this is simple: if we're dealing with only
a half-dozen or so functions, the rules of hierarchy are straightforward. But in
APL, the large number of functions would make such hierarchical rules very
cumbersome and difficult to remember. So the rules are concise. The order of
evaluation is right-to-left for any function.

Pairs of parentheses are used in APL in exactly the same way that they are used in
conventional mathematics, or for that matter, the same way that they are used in
most other computer languages. When parentheses are encountered during the
right-to-Ieft evaluation of the input line, the normal order of execution is
interrupted, and expressions within the parentheses are evaluated first (also in a
right-to-Ieft fashion). Then the original right-to-Ieft scan is continued.

APL will always try to use any function in a dyadic sense if it can. It will scan from
right to left until it encounters a function, continue (looking for a left argument, so
that it can use the function dyadically if possible) until it comes to another function
(or to the left end of the expression - whichever comes first). It will then back up
one position, and evaluate everything to the right. It will then begin scanning to
the left again, using that result as the right argument for the next function, or as the
final result if there are no other functions.

It should be seen from those rules that any function takes everything to its right as
its right argument.

For example,

3x4+5
27

(3x4)+5
17

-1+(1 2 3 x 4)+5 6 7
8 13 18

26 An Introduction to APL2

Let's examine APL's evaluation rules a little further. When you enter an
expression into APL, here is how the system would evaluate it, using the rules
stated on the preceding page. The representation here is not what you would see at
the terminal, but rather, a sort of "inside view" of the workings of APL. As bits of
the input line are evaluated, we'll reprint the line, and underscore the portion of the
line that APL is looking at, print the intermediate result at that point, and then
continue on through the line, using that intermediate result as the right argument
for the next function.

2+2 2+2

2+2 2+2,
2

2 +L2.+ 2
2 2

2+2 2+2
4 4

l+2 2+2
2

2+2 2+2
6 6

Here's the expression that we'll try out first.
Be careful; follow all of the rules here!

First pass - examine the right argument for
the first function, the rightmost "+" function.

Look to see if that function, "+", has a left
argument, trying to use the function in a dyadic
manner if possible; that's always the preferred
usage.

Keep going until you see the second" +"
function, then you back up one, and evaluate
everything to the right.

Now use the first result, "4 4", as the right
argument for the next function (the leftmost
"+" function), such that the operation becomes
"2+ 4 4".

Continue scanning to the left, until we come to
another function (or to the end of the
statement); that will be the left argument for
this function.

Now add that left argument to the intermediate
result that we got from the previous addition.

And there's our final result.

Some functions, like the "+" in the previous example, treat data in an item-by-item
manner. These are examples of the dyadic scalar functions:

.----+---+-+ ~
1 2 3 + 4 5 6

That's equivalent to:

(1+4) (2+5) (3+6)
or

579

(We'll discuss scalar
functions in more detail
later on. There will be
a table of them, coming
up on page 37.)

Getting Started in APL 27

Errors

If one side of the expression contains a scalar, 7 that side is (logically) replicated to
match the rank and shape of the other side; that's "scalar extension:"

f.~il
.. .is

rff~ equivalent
to ...

1 + 4 5 6 1 1 1 + 4 5 6

or
(1+4) (1+5) (1+6)

or
567

Entry of a statement that cannot be executed will invoke an error report.
Newcomers to APL often tend to worry needlessly about typing inputs that result
in errors. These error reports are some of the most helpful aids that you could ask
for toward learning the language. APL error reports are designed to be clear,
concise, and precise.

As opposed to doing everything that you could do to prevent generating errors, it
may be helpful to deliberately try out many of the error conditions. This is a good
way of learning how various functions are defined. Learning by doing is always
preferable. And don't worry that you may enter something that you shouldn't
have ... nothing that you can enter can hurt the machine. This gives you full
freedom to experiment.

An APL error report indicates the nature of the error and displays carets, indicating
both where the error occurred and where the execution halted. For example:

B+1 2 3 + A+4 5
LENGTH ERROR

B+1 2 3+A+4 5
A A

7 For convenience, a relaxation of the rules sometimes permits a one-element vector to
be used as though it were a scalar.

28 An Introduction to APL2

There's a wealth of information available from these error reports. Let's see just
what this message is telling us: L Here is the line that you typed in.

r~------~ ,
B+1 2 3 + A+4 5

LENGTH ERROR ~~~-------­
B+1 2 3+A+4 5

"LENGTH ERROR" says
that the lengths of the two
arguments to this function
don't match, so it isn't

A A

1
clear which number is to be
added to which other number.

APL reprints your input line, so that you
can verify that it read it properly
(occasionally a bad telephone connection
will garble things during transmission).
Extraneous blanks will be removed.

There will typically be two carets under the line of code. The
left CIl1'eI shows you how far APL got in its right-to-Ieft scan of
the line (here, the assignment of a value to A has been done,
but the assignment to B has not yet been done). The right
caret shows you the point of the actual error. Normally, that
will indicate which function APL was evaluating when the
error occurred. In this example, the arguments to the" +"
function aren't compatible with each other, so the requested
addition can't be performed.

We'll examine error reports in more detail later on, in the discussion of "Display of
Errors" on pages 161-168.

Getting Started in APL 29

Chapter 2: How To Use Some of the Pieces

Here are detailed descriptions of some of the new facilities of APL2. New
functions are described, and some hints are included to help you get going in the
new directions. If you are relatively experienced with APL, then this chapter may
be helpful. This chapter does assume that you have at least a moderate familiarity
with the language.

Chapter 2: How To Use Some of the Pieces 31

Understanding Arrays

Scalars

Vectors

The data structures in APL2 may be reviewed as follows:

• A single number or character is an "array."
• An array A is a collection of zero or more other arrays, called the "items" of A.

These items are ordered along "n" directions, called "axes" or "dimensions."
• The number of axes or dimensions that an array has is called its "rank."

The following names apply to arrays:

Rank

o
1
2

APL Equivalent
Name

Scalar
Vector
Matrix

to a

Point
Line or list
Table

F or this discussion, we will use a box notation to show the outermost structure of
an array, and a linear notation to indicate an array as part of an APL expression.

A scalar will be shown as a plain box:

and

These arrays have one item (a single number and a single character, respectively)
arranged along zero axes (no axes). When writing an expression, a single number
is entered and displayed in its decimal representation, which may in general contain
more than one digit. A single character is entered as that single character
surrounded by single quotes. It is displayed by the system without the quotes.
Those two scalars in the above example would be entered like this:

2 and 'A'

A vector will be shown as a string of boxes with a single arrow on the top edge
denoting the single axis of a vector:

and

These arrays have three items arranged along one axis. When writing an
expression, a vector is entered by writing down each of the scalar values separated
by a space. The two vectors in the example above would be entered like this:

2 4 6 and 'A' 'B' 'e'

Chapter 2: How To Use Some of the Pieces 33

Matrices

Mixed Arrays

For conservation of symbols, a vector of single characters may be written with a
single pair of enclosing quotes, like this:

'ABC'

A matrix will be shown as a rectangular arrangement of boxes with two arrows, on
the top and left edges, denoting the two axes of a matrix (notice that the vector
picture had only one arrow):

Ir
1 2 3

4 5 6

This array has six items (each one a single number) arranged along two axes.

There is no linear form for writing a matrix constant as part of an expression.
Rather, the "reshape" function (p) is used with a left argument giving the shape of
the array, and the right argument giving a list of items. For example, the array
shown in the previous example may be written like this:

2 3 p 1 234 5 6

If all of the items of an array are single numbers or characters, then the array is
called simple. Each of the arrays pictured above is simple. The set of simple arrays
which are made up of only numbers or only characters are the arrays traditionally
part of APL. Such arrays are used as items in further examples without further
explanation.

The definition of array given above includes two extensions over the arrays of
traditional APL. These extensions are "mixed arrays" and "nested arrays."

Numbers and characters may appear in the same array. That's called a "mixed
array." For example:

is an array (a vector) which contains two numbers and one character as items. It
may be entered like this:

1 2 'B'

34 An Introduction to APL2

Nested Arrays

Enclose

An item of an array may be another array. For example:

These arrays each have three items. The first and last items are simple scalars, and
the center item is a length-two vector. Such arrays are called nested a"ays. They
are sometimes also called "nonsimple arrays."; the terms are synonymous. These
arrays may be entered like this:

2 (3 4) 6 and 2 ('A' 'B') lei

where the parentheses are used for grouping. Because the center item of the
character example is made up of single characters, it may be written with a single
pair of quotes. Thus, the example could also be written like this:

2 (' AB') 'e'

And, because the quotes already imply a grouping, the parentheses aren't needed,
and the array can be written like this:

2 'AB' lei

Those last two expressions are equivalent to the former expression, and may be
shown pictorially like this:

A vector may be reshaped into a matrix by means of the reshape function (p), as
shown in the previous example. In a similar way, the monadic function enclose,
"e [A] ", may be used to transform a simple array into a nested array. A is a
simple integer scalar or vector which identifies the axes of the argument used to
form the items in the resultant array. The axes not mentioned define the outer
structure of the result. For example, given this array with two rows and three
columns:

,
e[l] 1 2 3

4 5 6

produces a vector whose items come from columns of the argument and whose
outer structure is the left-over dimension" 3":

2 5 3 6

Chapter 2: How To Use Some of the Pieces 35

Scalar Functions

This is a nested three-element vector of two-element vectors.

Similarly applying enclose on the column axis gives an array whose items come
from the rows of the argument leaving outer structure "2":

, .p

c[2] 1 2 3

4 5 6

gives:

123 456

This is a two-element vector of three-element vectors.

Finally, C [1 2] applied to the same matrix requests that both axes be used to
make the items of the result leaving no axes for the outer structure - giving a
scalar result:

~
~

When all of the axes are to be enclosed, it is convenient to leave out the axes
selection and the brackets. Therefore, the c [1 2] of the above example could
have been written as simply c.

The disclose function (=> [A]) is defined as the inverse to enclose, so:

.,
=>[1] 1 4 2 5 3 6

and:

=>[2] I~ 2 3 4 5 6

both produce the original matrix as a result.

The "scalar" functions in APL are those functions which, when applied to scalars,
produce scalars, and which extend to higher-rank arrays and nested arrays in an
item-by-item manner. This can be pictured like this:

36 An Introduction to APL2

3 6

and written:

1 2 3 + 4 5 6

Applying" +" item-by-item gives:

1+4 2+5 3+6

which evaluates to:

Note that there is an implicit requirement that the lengths of the arguments must
match. However, if one argument is a scalar,8 it is extended to be the same shape
as the nonscalar argument.

If the arguments are not simple arrays, the analysis still holds. For example:

3 6

may be written:

1 (2 4) 3 + 4 5 6

Applying" +" item-by-item gives:

2 4+5 3+6

which evaluates to:

This implies a recursive9 use of the definition of scalar functions on arrays. In more
deeply nested arrays, this recursion persists until simple scalars are reached. This
property of a function is called pervasiveness.

8 For convenience, a relaxation of the rules sometimes permits a one-element vector to
be used as though it were a scalar.

9 By "recursive" we mean in this context applying the function to the outer structure,

Chapter 2: How To Use Some of the Pieces 37

Reduction

Our examples have shown the use of "+" as a scalar function; there are, of course,
many other functions that we could have used for the examples. Here's the entire
set of scalar functions in APL2:

Function
Monadic Scalar Symbol Dyadic Scalar

Conjugate + Add
Negative - Subtract
Direction x Multiply
Reciprocal + Divide
Magnitude I Residue
Floor L Minimum
Ceiling r Maximum
Exponential * Power
Natural Log • Logarithm
Pi Times 0 Circular
Factorial ! Binomial
Not "" {Nonscalar Function}
Roll ? {Nonscalar Function}

A And
v Or
1'< Nand
IV' Nor
< Less
S; Not Greater
= Equal
~ Not Less
> Greater
~ Not Equal

Note: All dyadic forms may take an axis.

For more information on these functions, refer to APL2 Programming:
Language Reference.

An operator in APL is applied to a function to produce a related derived function.
The monadic operator "reduce" (/) may be applied to a dyadic scalar function,
producing a monadic function (called a derived function), which is then applied
between the ite:ms of its argument. For example:

then going inside the structure and performing the same operation on the inner
structure, and then going inside that structure, and so forth, until we reach the bottom
level (the "simple scalars").

38 An Introduction to APL2

gives:

1 + 2 + 3

which evaluates to:

Notice that the reduction of a vector gives a scalar (. .. that's why it's called
"reduction"). This same analysis holds if the vector argument of reduction is
nested. For example:

may be written:

t/ 1 (2 4) 3

and gives:

1 + 24+ 3

which evaluates to:

which is a nonsimple scalar.

Reduction, when applied to arrays having more than one axis, implies a splitting of
the array into vectors along one of the axes, and applying the reduction to each
vector. Thus, reduction reduces rank. For example:

,
+/ 1 2 3

4 5 6

will split the array into vectors, like this:

+/ 3

+/ 6

Chapter 2: How To Use Some of the Pieces 39

giving:

This example shows reduction applied to the second axis of a matrix. This could
also be written as "+ / [2 J ". Reduction applied to the first axis is written like
this:

+/[1J

giving:

which evaluates to:

1 2 3

4 5 6

+/[1] rn
+/[1] rn
+/[1] rn

In general, for any rank n arrays, reduction causes the function to be applied to
vectors. The rank of the result will be n-l.

The "+ /" example showed summation applied to the last axis. In similar fashion,
the "+ / [1 J " example showed summation applied to the first axis (in origin 1). A
special short-hand notation is available for reduction, "+ f", applying summation
to the first axis (in either origin).

As you become familiar with APL, you'll learn to structure your data to take
advantage of this ability to specify either the first or the last dimension without
specifying a dimension number. This will frequently allow the same function to
work on arrays of different rank without any change to your functions. Consider,
for instance, a vector whose elements represent monthly sales or a matrix whose
columns represent monthly sales and whose rows represent different products -
"+ /" gives the sum over time in both cases.

A further example of reduction is given on pages 43-44.

40 An Introduction to APL2

The "Each" Operator

A scalar function automatically extends to nonscalar arrays by applying the
function to the items of its arguments, with each application being independent of
the others. Such an item-by-item operation may be desired for nonscalar functions.
For example, suppose that we were given the vectors" 2 3 2"," 3 4 5", and
function "f" (where "f" represents any arbitrary function), and we wished to
form this array:

3f4 2f5

If "f" is a scalar function, then this is what "f" gives by definition. Suppose that
"f" were the reshape function (p). The expression:

2 3 2 p 345

would form a rank-three array - and that's not what we wanted. Therefore, the
"each" operator C·) is introduced, which, when applied to any function "f",
produces a derived function "f··" which applies "f" to the items of its arguments
independently. That is to say, the each operator produces a scalar (but not
necessarily pervasive) function. Now:

,-2 , 3 2 p ,-3 I 4 I 5
,

will produce:

r2P3 3p4 2p5

giving:

,-3 3 444 5 5

Finally, the each operator may be applied to the derived function that is the result
of another operator. For example, suppose that we wanted to do a plus-reduction
on each item of an array:

+ / .. 456

which may be written:

+/- (1 2) (4 5 6)

Chapter 2: How To Use Some of the Pieces 41

which becomes:

+/4 5 6

giving the result:

Because each of the above reductions gives a simple scalar result, the above is a
simple vector.

No matter what function "f" represents, "f··" is a scalar function. "f·· I",
therefore, reduces rank, and (sometimes) increases depth. Therefore, "p •• I"
would reduce rank, and you'd get back a nested array.

The "Outer Product" Operator

The "outer product" operator (0 .) is much like "each" except the function is
applied between pairs of items, one from the left argument and one from the right
argument, in all combinations. For example:

rn o.f 4 5

will produce:

,
2f3 2f4 2f5

3f3 3f4 3f5

no matter what the function "f" is. If" f" is the function "reshape" (p) this
gives:

3 3 4 4 5 5

3 3 3 4 4 4 5 5 5

In general, if the words "all combinations" occur in the problem description, you
can expect to find an outer product in the solution.

* * *

42 An Introduction to APL2

An Example of the Use of Nested Arrays

Here's an example that shows the ability of nested arrays to represent data that is
not so conveniently represented as a simple array.

Suppose that you want to keep track of your deposits and withdrawals for your
bank account. You could do this with two variables; D for deposits and W for
withdrawals, like this:

D+ 10 23 45
W+ 60 25

The total deposited is then "+ I D", the total withdrawn is "+ I W", and your total
worth is "(+ I D) - + I W". [Oh, oh ... you're in trouble!]

This could be represented in a single variable:

JAB+D W

This is a vector with "two items," where the first item represents the deposits, and
the second item represents the withdrawals. Now the total deposited and
withdrawn may be computed at once:

+ I·· JAB
78 85

and, of course, your total worth is the difference between these two numbers:

-1+1·· JAB
7

[Not good.] Notice that this isn't any shorter than the original computation, and
it's certainly doing computation on the same data as before - but it uses only one
name!

Let's look at a computation involving more than two sets of data. Suppose that you
are the bank. You could have one variable per bank account. The money on hand
is then:

but this quickly gets out of hand. Instead, let's represent all of the accounts in a
single vector:

BANK+ JAB JON DAVE

This is a vector with one item per bank account. Each account is a two-element
vector, just as before.

Now we can compute the total worth of each bank account all at once by applying
the previous computation to each account:

-I·· +1···· BANK
7 10 1000000

There's an extra "each" on each function because in this case the accounts are
more deeply nested.

Chapter 2: How To Use Some of the Pieces 43

The bank can compute its total worth by adding up the individual accounts, like
this:

+/ -I" +/"" BANK

This is very much shorter than the computation on many names. This had better
not come out negative, but if it does, the bank can identify the offending accounts
like this:

o > -I" +/"" BANK

Finally, the bank can also tell how many customers it has by simply entering:

pBANK

Of course, you could represent withdrawals as negative numbers and pad accounts
with zeros to the length of the most active account, and represent everything as a
simple array. Doing it that way, some things would take more complicated
expressions to compute and some would be easier. You may find that the nested
representation fits your intuition better, or you may not. The point is thot you hove
the choice.

* * *

When To Use Nested Arrays (and When NOT to Use Them)

Eschew Obfuscation!

The use of simple arrays (as has always been done with traditional APL) is a
powerful tool for the solution of problems. There will, no doubt, be a
temptation to use nested arrays where they are not appropriate.

Problems thllt can be conveniently phrased in te171l.f of simple (nonnested)
arrangements of data should be so phrased.

Nested arrays, however, do provide an option for the representation of data and
increase the set of applications that become simple APL2 programs. Consider the
simple task of printing a message followed by the value of a variable. This might
appear in a function as:

'THE ANSWER IS' A

This is a two-element vector, where the first element is a character vector, and the
second element is the value of the array A. If A has the value 2 3 p 1 6 this
prints as:

THE ANSWER IS 123
456

and this was accomplished without the application of any functions at all! Many
APL programmers would have to think a while to figure out how to produce this
result without nested arrays.

44 An Introduction to APL2

While this is a trivial example, it does show how something which is conceptually
simple is also actually simple. to

Used with the permission of Dover Publications, Inc.

to It's also actually nested, of course

Chapter 2: How To Use Some of the Pieces 45

Default Display of Output

By "default display," we're referring to the form in which APL2 displays arrays
when no formatting functions are being used. This default display of output may
be suitable for much of your formatting requirements, without even bothering to
format data beyond that.

(.1 X 13)0.x1 10 100 100000000000 1000
0.1 1 10 1E10 100
0.2 2 20 2E10 200
0.3 3 30 3E10 300

Notice that each column of the output was formatted individually, so that the
inclusion of large values doesn't cause the entire display to be shown in
"E-format."

OPW+53
1 2 30.016

0.8414709848 0.9092974268 0.1411200081
0.5403023059 0.4161468365 -0.9899924966
1.557407725 -2.185039863 -0.1425465431

0.7568024953
-0.6536436209

1.157821282

0.9589242747 -0.2794154982
0.2836621855 0.9601702867
3.380515006 -0.2910061914

Since APL wasn't able to fit all of the output within the confines of our page, the
output was "scissored" at the printing width specified (53 characters), and the
remaining right-hand portion of the data was placed below the left-hand portion,
indented to indicate a continuation.

Notice that APL2 slices off all of the rows, and continues all of them below, rather
than wrapping each line individually, as previous versions of APL did.

If you send this to a printer and want to create a display that's wider than the
carriage on the printer, no problem - a small amount of cut-and-paste will
produce the desired report.

Here's another example of the use of the default form of display, this time using a
defined operator (which will be defined at length in an upcoming discussion):

46 An Introduction to APL2

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

V Z+L (F SEE) R
ADISPLAYS ARGUMENTS TO AND
A ANY FUNCTION SPECIFIED
+(O=ONC 'L')/MONADIC

DYADIC:Z+L F R AFUNCTION
O+Z '++' L 'f' R
0+' ,
+0

OPERATION OF

CALL IS DYADIC

MONADIC:Z+F R
0+ Z ' ++ , , f ' R
0+' ,

AFUNCTION CALL IS MONADIC

V

A+(3 4pt12)+SEE 3 4p12?12
12 5 9 9 ++ 1 2 3 4 f
12 14 9 18 5 6 7 8
10 19 15 24 9 10 11 12

B+l 2 3 o.xSEE 4 5 6
4 5 6 ++ 1 2 3 f
8 10 12

12 15 18

C+2+SEE 2 2+SEE 2
4 4 ++ 2 2 f 2

6 6 ++ 2 f 4 4

456

11 3 6 5
7 8 2 10
1 9 4 12

Chapter 2: How To Use Some of the Pieces 47

Report Formatting by Default Display

Display of arrays that contain both character and numeric data provides a
convenient means for automatically formatting reports. This default output may be
arranged such that visually pleasing reports may be produced with little or no
additional programming.

Although the following rules for display may seem somewhat arbitrary, their main
justification is to provide a visually pleasing display of tabular data.

The following features are available through default display:

• Automatic alignment of titles above numeric columns
• Automatic alignment of character data within otherwise numeric columns
• Easy control of display by selectively enclosing or formatting items (using the

primitive format function)

The formatting rules for the columns of a matrix appear complex, but bear with us
- they do make sense. These rules are:

1. Simple numeric scalars are formatted the same as if they were in a simple
numeric matrix (that is, their decimal points are aligned, and so forth - a
number is a number; it doesn't matter what else is in the column).

2. Simple character scalar or vector items are left-justified if there are no numeric
simple scalars in that column.

3. Simple scalar or vector character items in a column with a (simple scalar)
number are right justified.

4. Nonscalar items which are not simple character scalars or vectors are
left-justified.

Higher-dimensional arrays follow these rules for each plane, and independently
format their planes (except that the width of a column is the same throughout the
array).

Throughout those rules, we spoke of simple scalars and vectors. Well, nonsimple
items are formatted recursively, and are padded on their left and right by a blank
(to show that they're nonsimple).

There are two key features that these rules provide: First, typical tables are
automatically formatted in a visually pleasing fashion with no additional
programming using default array display. And second, changes in the display can
be made by selectively enclosing or formatting, using the primitive format function
(which will be discussed in detail on pages 204-217). Here is a very typical example
of report formatting:

[1]
[2]

48 An Introduction to APL2

V Z+NAMES REPORT DATA;MONTHS
MONTHS+" 'JANUARY' 'FEBRUARY'
Z+MONTHS,[1] NAMES,DATA

v
'MARCH'

Our data may represent a sales report; we'll enter it like this:

SALES+ 3 3 p 801 97 202 3 98 999 11 1089 'NONE'

SALES
801 97 202

3 98 999

,--------------------v--------------------
This represents our three salesmen
with three values for each person,
showing January through March data

11 1 0 8 9 NON E ..- Character data is okay to include,
though it sure would make it hard
to add them up; "0" would be a lot
better if you're going to be doing
calculations with it.

pSALES
3 3

'BROWN' 'MCGREW' 'VAN DER MEULEN' REPORT SALES

JANUARY FEBRUARY MARCH
BROWN 801 97 202 {Pretty
MCGREW 3 98 999 erratic
VAN DER MEULEN 11 1089 NONE sales,

I t eh?}

Notice that the word NONE is
right-justified (rule 3).

The numeric data, of course, is right-justified (rule 1).

Notice that this field is left-justified, because it's all character data (rule 2).

The REPORT function contains only two trivial lines; yet, it can format a
reasonable-looking report for us. If the numbers that we supply for the report are
too large to fit under these headings, no problem - the columns will simply space
themselves further apart - column headings and all. Likewise, if the names that
we supply are longer or shorter than these, the spacing will automatically be
adjusted. The REP 0 R T function does this by taking advantage of the very good
default formatting that's built right in to APL2. In the past, formatting a report
like this could have required an entire workspace of specialized formatting
functions.

Notice that the result that's produced by the REPORT function is a nested array:

p'BROWN' 'MCGREW' 'VAN DER MEULEN' REPORT SALE.
4 4

Perhaps this report needs to be used by some other process, such as being merged
in with some text. A nested array isn't necessarily what we want. We're using
nested arrays here simply because they automatically handle what would otherwise
be rather complex data formatting. But let's say that we just want the output to be
a simple character array. No problem Let's just make one small change:

Chapter 2: How To Use Some of the Pieces 49

[1]
[2]

4 39

V Z+NAMES REPORT DATA;MONTHS
MONTHS+" 'JANUARY' 'FEBRUARY'
Z+.MONTHS,[l] NAMES,DATA

v \
'MARCH'

The addition of this format function will change the result
to a simple (nonnested) character matrix.

p'BROWN' 'MCGREW' 'VAN DER MEULEN' REPORT SALES

" See? ... Simple!

Even if you don't plan to construct complex data structures for storing your data in
nested arrays, you may find yourself using nested arrays like the ones that we have
here, simply for the advantages that they offer in the output display of the data.

* * *

By the way, if you're working with three~dimensional arrays (or higher), and have a
need to create a simple character matrix that will look just like the original array,
here's a function that can help:

V M+SIMPLE MATRIX A
[1] M+.1 1pcA ATURNS ANY ARRAY INTO A
[2] +(0= =A)/O ASIMPLE CHARACTER MATRIX,
[3] M+O 1+0 -l+M AWHICH DISPLAYS IDENTICALLY

V

This may be needed for such tasks as sending data to a system printer.

50 An Introduction to APL2

Fill Elements, Empty Arrays, and Prototypes

What Is an Empty Array?

Let's talk: about some edge cases of APL functions. What happens when you take
more than you have? What happens when you don't have anything to begin with?
Such cases do show up sometimes in practical applications, but if you're just getting
started in APL, you may want to skip this discussion.

If you've read this far, you presumably know what an array is. [If you haven't read
this far] It's an ordered collection of items arranged along axes, where these
items are numbers, characters, and other arrays. The shape function (monadic p)
measures the length of each dimension or axis, and the number of items in the
array is the product of these lengths. Whenever the length of some axis is zero, the
number of items in the array is zero and the array is called an empty a"ay.

OpO
1.0 , ,
5 0 p , ,

is an empty numeric vector
is the same numeric empty
is an empty character vector
is an empty character matrix with five rows and no columns

Note that the empty arrays display much the same as nonempty arrays. The
5-by-0 array alone will display on five lines, each of which is empty. You may
think that there's nothing left to say, but empty arrays have some interesting
properties which are not immediately apparent. In the following pages, we will
investigate these properties in an informal way by starting with nonempty arrays
(vectors, in fact), where we already understand the properties, then reducing the
number of elements gradually to zero. This will tell us what has to be true about
empty arrays. . .. All set?

Taking More Than You Have

We will now examine the "take" function (dyadic t) when used with a
nonnegative left argument and when applied to various vector right arguments. For
example,

3 + 1 234 5
gives:

123

... and in general, for nonnegative N and vector V,

NtV

gives a vector whose shape is " , N".

Suppose that we take more than we have, as in:

Nt1 2 3
Nt'ABC' ... for N> 3

This is often called an "overtake." We know that the result will be a vector with N
items. But what will the added elements be? Old APL has already answered these
questions, and for N= 5 the answers are:

Chapter 2: How To Use Some of the Pieces 51

Ntl 2 3 ++ 1 2 3 0 0
Nt 'ABC' ++ 'ABC ,

For these examples, we'll write the result
in the same way that you'd enter it, so that
there's no question about the shape or values.

Thus, an all-numeric array is filled with zeros, and an all-character array is filled
with blanks.

"What does this have to do with empty arrays?" you may ask. The answer is "a
lot." Consider:

NtlO
Nt' , ... for N> 0

What do you get when you "overtake" from an empty vector? Again, old APL
answers this question, and for N= 5 the answers are:

NtlO ++ 0 0 0 0 0
Nt " ++ ,

This tells us immediately that there is more to empty arrays than shape! They also
contain information about what item to use as fill.

Let's look at a "well-behaved" nested example. Consider:

Nt (1 2) (3 4) (5 6) ... for N> 3

The argument in this example is called a uniform array, because each item has the
same structure - that is, each item is a two-element numeric vector. We certainly
want the result to be an N -element vector, so the question is, "what do we fill
with?"

Old APL gives us no help here.

Because the argument is uniform, it makes sense to fill with an item that looks like
the others. Therefore, we choose as fill in this example a two-element vector of
zeros. Thus, the answer (for N = 5) is:

(1 2) (3 4) (5 6) (0 0) (0 0)

"Wait a minute!," you cry out. "You chose an easy example. What if the items in
the vector are all different - then what do you do?"

Well ... you're right. In the cases discussed so far, there is little doubt about what to
do. But if the data is not well organized, there is no choice which will always match
the intent of the user. We can, however, follow some general guidelines. They are:

1. Do what old APL does, where defined.
2. Simple arrays should remain simple.
3. Uniform arrays should remain uniform.
4. The result must be predictable.

52 An Introduction to APL2

A definition that follows these guidelines says to fill with the "type" of the fin:t
item, where "first" (monadic t) is the function which selects the first item of any
array (in row-major order), and "type" is the scalar function which turns numbers
into zeros and characters into blanks.

If we apply this to some of the examples that we discussed before, we get:

o +~ TYPE t 1 2 3
+~ TYPE t 'ABC'

o 0 +~ TYPE t (1 2) (3 4) (5 6)

What, you may ask, is this function T Y P E? It's a scalar function that produces
zeros from numbers and blanks from characters. Although it's a defined function,
it's a very simple one, and we'll be using it almost as if it were a primitive function.
Our definition looks like this:

'iJ Z+TYPE R
[lJ Z+tOpcR

'iJ

... So just think of this defined function as being "primitive."

For every nonempty array, TYPEt (type of the first) is well-defined, and the
resulting array is called the prototype of the array ["prototype," after all, means
"first type"].

The concept of a prototype is applied to empty arrays by defining the prototype of
an empty array based upon the operation and data used to create the empty array
- don't panic, you'll see some concrete examples of this in just a bit. When the
"first" function (t) is applied to an empty array, it returns the prototype of the
array.

In summary:

• Every array has a prototype defined as the type of the first item (TYPEt).

• First (t) applied to an empty array returns the prototype.

• The prototype is used as the fill item for overtakes.

If you think that this is circular, think again (and again (and ... ». It is circular.
This is because we are talking about the fundamental properties of data. For a
more complete and formal treatment of this subject, see APL2 Programming:
Language Reference.

Where does all of this lead? ... Several places. First, we've already answered the
question of what to fill with in an overtake. The same also holds true for the
"expand" function, and everything works on "empties" just as well. Second,
because empty arrays have prototypes, empty arrays can be nested!

Chapter 2: How To Use Some of the Pieces 53

Let Me Count the Ways

Consider again,

N + (1 2) (3 4) (5 6) ... but this time, for N < 3.

• H N = 2, the result is a two .. element vector of two-element vectors.

• H N = 1, the result is a one-element vector of two-element vectors.

• H N = 0, the result is a zero-element vector of two-element vectors.

Thus, even empty arrays may have an arbitrary structure, and, as we said before,
this structure (the prototype) is based upon the operations and the data used to
create the empty array.

Thus, we may add the following to our previous examples of empty arrays:

o + c: 0 0 is an empty vector of two-element vectors

5 0 p c: 0 0 0 is an empty matrix of three-element vectors

o p c: t 0 is an empty vector of empty vectors

We discovered the properties of empty arrays by looking at the "take" function
(+). Now we'll take a look at some functions applied to empty arrays and see what
can be learned.

Consider the expression:

(N+ (1 2) (3 4» ~~ (N+ (1 2 3) (4 5 6»

The left argument of the catenation is a vector of two-element vectors, like the one
we used with "take" in the previous discussion. Again, N says how long the vector
is. We know from before that the result of the N + will be a uniform vector of
two-element vectors, for any legal N. The right argument of the catenation is
similar, except that each item is a three-element vector. The function being applied
is "catenate each" (, e). (The "each" operator was discussed back on page 41;
you may want to refer back.) As you may recall, this will cause "catenate" to be
applied between corresponding items of the two arguments, giving five-element
vectors as items of the result. For example, if N= 2 this becomes:

(2+ (1 2) (3 4» ," (2+ (1 2 3) (4 5 6»
(1 2) (3 4) ," (1 2 3) (4 5 6)

(1 2 , 1 2 3) (3 4 , 4 5 6)
(1 2 1 2 3) (3 445 6)

54 An Introduction to APL2

A New Way to Reduce

For N> 2 the arguments will be padded but the result will still be a vector of five­
element vectors. For N = 1 we get a one-element vector of five-element vectors,
and it's probably no surprise now that for N = 0 the result is an empty vector of five­
element vectors. Nothing else would make sense. Try it:

(Ot (1 2) (3 4» ,
/'
Well, it's empty, so it's tough to tell
that it's an empty vector containing
five-element vectors. But look at the
prototype and recall that "first" on an
empty returns the prototype.

(Ot (1 2 3) (4 5 6»

t(Ot (1 2) (3 4» ,- (Ot (1 2 3) (4 5 6»
00 0 00 t---- ... now, that's more like it.

Let's look at this from another angle. Suppose that N = 2. How many times is the
catenate function applied? Well, since it's applied between corresponding items
and there are two items in the arguments, catenate must get applied two times.
Refer back to that last example and verify this. If N = 1 0 0 0 0, then catenate would
be applied 10,000 times. What if N= 1 ? ... No problem: one application. How
about N= 0 ? ... Oh oh! The answer had better be zero times. Yet we know that
the result has a prototype of five-element vectors. How can this be?

The answer is that when we reach the empty case in this situation, the function is
not applied - instead, a related function, called the fill function, is applied. This
function sees the prototypes as arguments, and its result will determine the
prototype of the result of the derived function. In our example, the fill function
would see "0 0" as the left argument and "0 0 0" as the right argument, so its
result would be "0 0 0 0 0" - which is, as we have already seen, the
prototype of the result of the "catenate each" (, ee).

In this case, the fill function for catenate was still a catenate, it just applied to
prototypes. This is generally true of the primitive functions.

APL2 does not provide a way to define the fill function associated with a defined
function.

We're not talking about a new diet plan, we're going to take another look at
reduction. We saw before that:

xli 2 3 ++ ++ 6

Now consider:

xl Nt 1 2 3

For N> 3 we will get 0 for every result, because we'll be multiplying by zero. For
N= 2 we get 2, for N= 1 we get 1, and for N= 0 we also get 1. This is not new in
APL2. Reduction of empty vectors has always given the identity-element of the
function (0 for +, 1 for x, and so forth).

Chapter 2: How To Use Some of the Pieces 55

If we have uniform nested arrays, everything continues to work fine:

xl Nt (1 2) (3 4) (5 6)

For N = 3 we get "e 1 5 4 8 " . The result is an enclosed two-element vector, and
so is a scalar containing a two-element vector. [Whenever you reduce a vector with
a pervasive function (also known as a "scalar" function), you get a scalar.] For
N= 2 we get "e 3 8". For N= 1 we get "e 1 2". And for N= 0 we get "e 1 1".

So, as before, even when the argument becomes empty, the result has the same
structure - in this case, the result is always a scalar containing a two-element
vector.

Let's look at this from another angle. If N = 3, how many times does the" x"
function get applied? Looking at the example, it obviously gets applied two times.
(Of course, it might be applied between array arguments.)

If N = 2 the function is applied one time. If N = 1 the function is not applied at all,
and the result is that one item, now packaged in a scalar rather than in a
one-element vector.

If N = 0 the function is not applied at all - yet we get a nonempty result, which is
clearly related to the function (because we get ones - the identity of times), and
to the empty data (because we get two ones).

What happens is that in the reduction of an empty, a related function called the
identity function is executed.

The identity functions for all of the primitive functions that have them defined can
be found in APL2 Programming: Language Reference.

* * *

This completes the discussion of fill elements, empty arrays, and prototypes.
Empty cases do arise in real applications, and when they do, you'll find that the
APL primitives behave in expected ways.

56 An Introduction to APL2

Using Defined Operators

What's an operator, and why would I want to define one? That's a good question.
Before we try to answer it, however, let's review what a function is. Understanding
operators requires an understanding of functions. Understanding functions, in
tum, requires an understanding of arrays. If you need help with that, go back to
"Understanding Arrays" on pages 33-45.

One Man's Ceiling Is Another Man's Floor

What's an Operator?

This discussion will be limited to monadic and dyadic functions that return explicit
results. They are, after all, the most useful ones, because their results can be
directly used as the argument to the next function on the same line, at which point
one function's result is another function's argument.

A monadic function that returns an explicit result typically modifies its array
argument. The result might be,completely different from the argument, or it might
be very similar.

'V Z+NEGAT IVE N
[lJ Z+-N

'V

NEGATIVE 20
20

Similarly, a dyadic function that returns an explicit result typically combines its two
array arguments in some way to make a new array. The result might be completely
different from, or very similar to, either or both of its arguments.

'V Z+A PLUS B
[lJ Z+A+B

'V

10 PLUS 20
30

An operator is to a function what a function is to an array. Operators can be used to
study and manipulate functions, just as functions can be used to study and
manipulate arrays. Functions are sometimes likened to verbs, as arrays are
sometimes likened to nouns. If we were to continue that analogy, operators would
become the adverbs.

In APL2, you can create your own operators as well as functions. An operator can
be created with one of the system editors, just like defining a function.

One difference between the definition of this operator and a regular APL2 function
is that one or two of the parameters in the operator's header may be functions as
well as variables (which, after all, are only named arrays). The derived function
defined by the operator can thus control the execution of its function operands on
its array arguments.

Another difference between a defined operator and a defined function is the way
they are invoked by an APL2 expression. Operators are invoked only when they

Chapter 2: How To Use Some of the Pieces 57

are found in the syntactical context of an operator. We'll look at some examples of
this context in just a moment.

Suppose that we have an operator called RED U C T ION, which, for purposes of
illustration, will do the same thing as the primitive "reduce" operator:

V RESULT+(FUNCTION REDUCTION) ARGUMENT
[1] RESULT+FUNCTION/ARGUMENT

V

+REDUCTION 10 20 30
60

And, sure, you can use a defined function with a defined operator ... here's the
P L US function from the previous page:

PLUS REDUCTION 10 20 30
60

This RED U C T ION operator is monadic, because its only operand (between the
parentheses) is FUN C T ION. You can think of RED U C T ION as the name of the
operator, and (FUN C T ION RED U C T ION) as the name of the derived function
that it represents. There is an explicit RES U L T, and the derived function is
monadic because there is only one AR G U ME NT.

An operator always has one set of parentheses in its header to indicate the operator
context in which it is to be recognized. A monadic operator takes a single function
or array operand on the left of the operator name. A dyadic operator, of course,
takes its function or array operands on both sides of the operator name. Outside
the parentheses, the header of a defined operator is exactly the same as for a
monadic or dyadic function. It must have a right argument, and it may have a left
argument, an explicit result, and local variables.

RESULTS+0.1+RECIPROCAL VECTOR
,

What you type to call it

What you typed to define it
, It It, ,

V Z+L (F RECIPROCAL) R
[1] Z++(+L) F +R

V

An operator takes as its left operand the function or array to its left, which may
itself be a derived function produced by another operator.

Let's poke around a bit inside this next operator, and see what that function looks
like:

58 An Introduction to APL2

[1J
[2J
[3J
[4J
[5 J

'iJ Z+(F SHOW) R
, ON C F:' (ON C 'F') }
, OCR F:' (OCR 'F') Let's just display
, p OCR F:' (p OCR 'F') some information11
, ,
Z+ F R 1----- ... before we apply the function.

'iJ

xREDUCTION SHOW 10 20 30
ON C F: 3 'II("F" is indeed a function
OCR F: III but we can't display it ...

pOCR F: 0 0 • OCR returns an empty display.

6000

In this case, F is a derived/unction ("xREDUCTION"). We can take the
canonical representation of only a defined function, not a primitive function or a
derived function. So, let's try it with a defined function - we can use that
NEG A T IV E function that we showed on page 57:

NEGATIVE SHOW 10 20 30
oNC F: 3
OCR F: Z+NEGATIVE N

Z+-N
poCR F: 2 12

10 20 30

.. .In fact, we can go a step further

S ~S H a W+ 1 1---------- Set "Stop Control"12

NEGATIVE SHOW 10 20 30
SHOW[1 J If the function is a

'iJ F [0 J 'iJ .-"""''---------- defined function, it
'iJ Z+NEGATIVE N can be displayed by

[1 J Z+- N using OCR, OTF, or
'iJ one of the system's

del-editors.

11 "0 C R" and "0 N C" are "system functions"; we'll be discussing them later (on pages
125 and 130, respectively).

12 "S ~-name" is "stop control," causing the specified defined function or operator to
halt execution at the indicated line number. Stop and Trace are both described in
APL2 Programming: Language Reference.

Chapter 2: How To Use Some of the Pieces 59

Just as a defined function can be written to examine an array, a defined operator
can be written to examine the behavior of a function. For example,

'iJ Z+L (F TRACE) R
[1] 'RIGHT ARGUMENT:
[2J , LEFT ARGUMENT:
[3] Z+L F R
[4] , RESULT:
[5] , ,

'iJ

(2 x 3) +TRACE 4x5
RIGHT ARGUMENT: 20

LEFT ARGUMENT: 6
RESULT: 26

26

, R
, L

, Z

We could even use it to tell us something about how another operator works!

+TRACE/ 1 2 3 4
RIGHT ARGUMENT: 4

LEFT ARGUMENT: 3
RESULT: 7

RIGHT ARGUMENT: 7
LEFT ARGUMENT: 2

RESULT: 9

RIGHT ARGUMENT: 9
LEFT ARGUMENT: 1

RESULT: 10

10

Using an Operator to Modify a Function

More often, a defined operator can be used to modify the behavior of a function in
some systematic way. For example, we could use a dyadic operator to control the
index origin during the execution of an arbitrary function - here is such an
operator, called "IN _ORIGIN":

'iJ Z+L (FUNCTION IN ORIGIN IO) R;OIO
[1] DIO+IO -
[2] Z+L FUNCTION R

'iJ

10 20 30 1 40 20 10
4 2 1

10 20 30 (lIN ORIGIN 0) 40 20 10
3 1 0

Notice that in this last example, we used parentheses around the derived function.
Without parentheses, there may be some visual ambiguity to a newcomer in APL2
circles as to whether the" 0" would have been considered part of a four-item
vector" 0 4 0 2 0 1 0" (all four elements of which would have been taken as
the right operand of "IN _ORIGIN", with nothing left for the right argument), or
whether the" 0" is the right operand of "IN _ OR I GIN" and the" 4 0 2 0 1 0"
vector is the right argument. In fact, the latter case is the way APL2 evaluates it,
but the point is, if you feel that clarity is enhanced by the use of the parentheses,
by all means, use them. A simple rule of thumb is: If you write the calling

60 An Introduction to APL2

expression so that it looks like the header of the operator, with the parentheses in
the same places, it will always work. They are often not needed in the calling
expression - like each of the preceding examples - but they are always allowed.

Dyadic operators taking functions as both operands often combine them in some
way to produce a new derived function. The primitive inner product operator is a
good example. By defining a dyadic operator, we have the opportunity to create
similar types of things in endless variety.

For example, we can write a defined operator which, instead of combining two
functions, just joins their results and returns the two results as a two-element
vector, so that you can visually compare them.

V Z+(F AND G) R
[1J Z+(F R)(G R)

V

Notice that "AND" is a dyadic operator, because it has both left and right
operands, "F" and "G", but its derived function is monadic (because it takes only a
right argument, "R").

!ANDf 1 2 4 3 5
1 243 5 5 342 1

We can even use it to compare two derived functions!

~\ AND «\) 0 0 1 1 1 0
o 0 1 011 001 0 0 0

If we write another defined operator which combines a dyadic function and its left
argument to make a monadic function, then we could compare the result of a
monadic function with the result of a dyadic function.

V Z+(F GLUE L) R
[1J Z+L F R

V

Looks too simple to be useful? Let's use it-

GLUE 2 AND 0 1 2
1 2 4 1 2.71828182 7.389056099

(This example compares powers of two with powers of "e".) Let's try that with
parentheses around the operands, just to show how the evaluation proceeds:

«*GLUE 2) AND*) 0 1 2
1 2 4 1 2.71828182 7.389056099

This is the same as the former example. The parentheses are not needed here, but
they can always be used.

Chapter 2: How To Use Some of the Pieces 61

Living with Murphy's Law

Another application of defined operators is to use them in combination with event
controls (see "Event Handling" on pages 158-189). For example, we can write a
defined operator that attempts to execute a function normally, but returns a "7" if
anything goes wrong:

V Z+L (F TRAP) R
[lJ Z+' "?'" OEA 'L F R'

V

1 2 3 +TRAP 4 5 6
0.25 0.4 0.5

Nothing went wrong, so we get the right answer - this time. But maybe we were
just lucky that time. Let's try it again:

1 2 3 +TRAP 4 0 6

This time, the "0" in the right argument of the derived function would normally
have caused a DOMAIN ERROR, but the TRAP operator circumvented it And
if we use the "each" operator, we can discover where the problem occurred:

1 2 3 +TRAP- 4 0 6
0.25 ? 0.5

* * *

These have been a few scattered examples of how defined operators can be used.
Try them out - their uses are as unlimited as the uses of defined functions.

62 An Introduction to APL2

Chapter 3: The External Environment

This chapter is going to tell you about the details of the environment in which APL
operates. No, we aren't going to talk about the details of the operating system or
the computer that APL is running on. We're going to talk about APL workspaces,
what the rules are for defining your own functions, and how to use the built-in
function editors to define your own functions.

Chapter 3: The External Environment 63

System Commands

An APL system recognizes two broad classes of instructions, expressions and system
commands. System commands control the initiation and termination of a work
session, saving and reactivating copies of a workspace, transferring data from one
workspace to another, and a variety of tasks within the workspace.

System commands can be thought of as being a sort of link to the outside world,
allowing the users of APL functions and variables access to the environment which
may not be defined as properly being a part of the APL Language.

System commands can be invoked only by individual manual entries from the
keyboard and cannot be executed dynamically as part of a defined function. They
are distinguished from APL statements in that they are always prefixed by a right
(closing) parenthesis.

A command that is not recognizable, or is improperly formed, is rejected with the
report INCORRECT COMMAND. Certain commands may also result in more
specific trouble reports; these are discussed in the appropriate context. Both the
system commands and their trouble reports are available in several national
languages. Refer to the discussion of ONLT (National Language Translation) on
pages 143-145. English will be used for all of our examples.

Since these commands are separate from the rest of the APL Language, and are
never under the control of APL functions, they are not subject to Event Handling;
none of the error messages are trappable, and none of the system commands will
set OEM or OET (to be discussed later).

The Categories of System Commands

System commands fall into four broad categories:

1. The active workspace

a. Action
b. Inquiry

2. Workspace storage and retrieval

a. Action
b. Inquiry

3. Access to the system

4. Communication with other users

Just for reference, here's a list of the commands that fall into each of these
categories (don't worry about how to use all of these commands yet; we'll be
getting into the details a bit further on):

Chapter 3: The External Environment 65

The Active Workspace

These commands assist in programming or application usage within the active
workspace:

Comlllllnd

)EDITOR

)ERASE
)FNS

)MORE

)NMS

)PBS

)RESET

)QUOTA

)SI

)SYMBOLS
) TIME
)VARS

)WSID

Page Description

(85) Specifies which system editor you wish to use
when you edit objects in the workspace

(82) Discards selected objects
(74) Lists the names of the functions in the

workspace
(85) Provides additional error information if

available
(74) Lists the names of all of the objects in the

workspace and tells what type of object each
one is

(87) Specifies and reports the setting of the
"printable backspace" character, for entering
certain characters not otherwise available on
the terminal.

(84) Empties the state indicator of all entries or a
selected number of entries

(86) Displays various limits imposed upon your use
ofAPL

(83) Displays the state indicator -) SIN Land
) SIS are variations

(86) Reports and sets the size of the symbol table
(87) Displays the date and time.
(75) Lists the names of the variables in the

workspace
(75) Reports the name of the workspace, and sets

both the name and password of the workspace

Workspace Storage and Retrieval

These commands put workspaces onto permanent storage devices and get them
back again for you, they help you to move workspaces between systems, and they
help you keep track of what you have stored:

66 An Introduction to APL2

Comlllllnd

)CLEAR

)CONTINUE

)COPY

)DROP
)IN

)LIB
)LOAD

)MCOPY

Page

(72)

(82)

(77)

(76)
(80)

(75)
(77)

(80)

Description

Discards the active workspace, giving you a
fresh start
Saves the active workspace under the name
"CONTINUE," and signs you off of APL
Combines selected objects from another
workspace with the active workspace
Discards a stored workspace
Moves transfer forms from a transfer file into
the active workspace
Lists the names of stored workspaces
Brings a stored workspace into the active
workspace
Migrates workspaces from VSAPL

Access to the System

)OUT

)PCOPY

)SAVE

(81) Converts objects to transfer form, and stores
them on a transfer file

(79) Like) COPY, but ensures that you are
protected against damage from name conflicts

(76) Stores a copy of the active workspace on a
permanent storage device for future use

These commands let you sign on to and off from APL:

Command

)123456:ABCDEF

)CONTINUE

)HOST
)OFF

Page Description

(68) On some systems, a command of this format
signs you on to APL

(82) Saves the active workspace under the name
"CONT INUE," and signs you off of APL

(85) Executes host system commands
(82) Discards the active workspace and signs you

off of APL

Communication with Other Users

These commands let you send messages to the terminal of another user who is
currently signed on to the same APL system:

Command

)MSG

)OPR

Page Description

(84) Sends a message to another APL user -
) M S G N is a variation

(85) Sends a message to the APL System Operator
-)OPRN is a variation

Chapter 3: The External Environment 67

Access to the System

Sign On

Each user of the system is assigned by the system manager an account identification
used to identify data storage and charges for use of the system. The account
identification is required in order to sign on.

Each user is also assigned a quota, indicating the maximum number or combined
capacity of saved workspaces, and a shared variable quota, indicating the maximum
number of variables that may be shared simultaneously.

Before work can be started, a physical connection to the computer must first be
established. This may require as little as turning a switch, or may require
establishing a link from a dial-up terminal to a central computer, possibly passing
through intermediary computing systems which are host to APL, depending on the
system employed and the type of terminal device employed.

When you begin the APL session, either a clear workspace or the CONTI N U E
workspace is normally activated, depending on the condition that terminated the
preceding session, and the system in use. If CON TIN U E was activated, the system
reports the date and time at which it was saved.

For more information, refer to APL2 Programming: System Services Reference.

Workspaces and Libraries

The common organizational unit in an APL system is the workspace. When in use,
a workspace is said to be active, and it occupies a block of working storage in the
central computer. Part of each workspace is set aside to serve the internal
workings of the system, and the remainder is used, as required, for storing items of
information and for containing transient information generated in the course of a
computation.

A terminal always has an active workspace associated with it during a work session,
and all transactions with the system are mediated by it. In particular, the names of
variables (data items), defined functions (programs), and defined operators used in
calculations always refer to objects known by those names in the active workspace;
information on the progress of program execution is maintained in the state
indicator of the active workspace; and control information affecting the form of
output is held within the active workspace.

Inactive workspaces are stored in libraries, where they are identified by arbitrary
names. They occupy space in secondary storage facilities of the central computer
and cannot be worked with directly. When required, copies of stored workspaces
can be made active, or selected information may be copied from them into an
active workspace.

68 An Introduction to APL2

The Effects of Selected System Commands

Instructions
or data

Active Workspace

)IN) OUT

Files (not workspaces)
Containing
Transfer Forms

)CLEAR

) LOAD

) SAVE

) CLEAR,) LOAD, and) SAVE
affect the entire active workspace.

) COpy or)PCOpy

Adds all or selected objects
from inactive workspace to
contents of active workspace.

)IN adds to the active workspace all or selected objects
from a file containing transfer forms.

)OUT moves entire workspace or selected objects, but
always replaces the entire file to which it is directed.

Special
Pre-initialized
(empty)
Workspace

Library of
Stored
Workspaces

Chapter 3: The External Environment 69

Commands for Workspace Storage and Retrieval

You may request that a duplicate of your currently active workspace be saved for
later use. When a duplicate of a saved workspace is subsequently reactivated, the
entire environment of computation is restored as it was, except that variables which
were shared in the active workspace are not automatically shared again when the
workspace is reactivated.

Libraries of Saved Workspaces

Passwords

The set of workspaces that you have saved is called your library. Each workspace
is identified by your account identification and the name that you assign to it.
However, in referring to workspaces in your own library, the account identification
may be omitted; your own identification is then supplied automatically.

In systems with multiple users, it is often convenient to use functions or variables
contributed by others. You can activate an entire workspace saved by someone
else, or may copy from it selected items. To do so both the library number and the
name of the desired workspace must be supplied. However, APL provides no way
of learning either the account identification or the names of workspaces belonging
to other users. Thus, you may make use of material from the libraries of others
only if they supply that information.

Certain libraries (usually identified by a particular group of library numbers) are
not assigned to individual users, but are designated as public libraries. Any user
may obtain a list of workspaces in a public library, and may use public workspaces.
However, there are generally restrictions on who can save, drop, or modify a
workspace in a public library.

Stored workspaces and the information they hold can be protected against
unauthorized use by associating a lock, comprised of a colon and a password of the
owner's choice, with the name of the workspace, when the workspace is stored. In
order to activate a locked workspace using APL or copy any information it
contains, a colon and the password must again be used, as a key, in conjunction
with the workspace name. Listings of workspace names, including those in public
libraries, never display the keys, and do not overtly indicate the existence of a lock.

70 An Introduction to APL2

System Commands and Their Syntax

Command

CLEAR

NMS
FNS
OPS
VARS
LIB
WSID

SAVE
DROP
LOAD
COpy
PCOPY
MCOPY
IN
OUT
ERASE

OFF
CONTINUE

SI
SINL
SIS
RESET

MSG
MSG[N]
OPR [N]

HOST
EDITOR
MORE
QUOTA
SYMBOLS
TIME
PBS

Notes:

Pg

72

74
74
74
75
75
75

76
76
77
77
79
80
80
81
82

82
82

83
83
83
84

84
84
85

85
85
85
86
86
87
87

Command Syntax

)CLEAR [size]

)NMS
)FNS
)OPS
)VARS
)LIB
)WSID

[first [last]]
[first [last]]
[first [last]]
[first [last]]
[library] [: [password]] [first [last]]
[[library] workspace [: [password]]]

)SAVE [[library] workspace [:[password]]]
)DROP [library] workspace [: [password]]
)LOAD [library] workspace [:[password]] [size]
)COPY [library] workspace [:[password]] [names
)PCOPY [library] workspace [: [password]] [names]
)MCOPY [library] workspace [: [password]] [names]
)IN filename [list]
)OUT filename [list]
)ERASE names

)OFF [HOLD]
)CONTINUE [HOLD]

)SI
)SINL
)SIS
)RESET [number]

)MSG ON or MSG OFF
)MSG[N] user message
)OPR[N] message

)HOST [command]
)EDITOR [number] or [name]
)MORE
)QUOTA
)SYMBOLS [number]
) TIME
)PBS or)PBS ON or)PBS OFF

Items within brackets [] are optional.

For further discussion on all of the system commands, please refer to APL2
Programming: Language Reference.

All of the system commands are available in several national languages. Please
refer to ONLT (National Language Translation) on pages 143-145 for details.

Chapter 3: The External Environment 71

Detalls of Usage

) CLEAR [size]

Here are the details of the usage of each of the system commands, which we're sure
you'll enjoy perusing over supper tonight, or riffling through in your copious free
time. The allowable syntax is shown with each command. Items shown within
brackets, "[]," are optional. These brackets are shown only to illustrate the
syntax ... the brackets themselves are never meant to be entered with any of the
system commands.

The system commands shown here are part of the distributed version of APL2.
Some systems may have additional system commands to handle local requirements.

The system commands are available in several languages; refer to the discussion of
ONLT (National Language Translation) on pages 143-145 for information on
usage, and refer to the Appendix of APL2 Programming: Language Reference for a
complete list of both the system commands and their related trouble reports in each
of the available languages. The commands will be shown here only in English.

* * *

This command is used to make a fresh start, discarding the contents of the active
workspace, and resetting the environment to standard initial values (as shown in
the table on the next page). At sign-on to APL, the user receives a clear
workspace characterized by these same initial values (unless the workspace
"C 0 NT I N U E" was automatically loaded).

You can include an optional parameter to indicate the size of the workspace that
you wish to create. Where applicable, the size is to be stated in bytes (characters);
the actual workspace size that you are given will match the requested size as closely
as possible.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the) C LEA R command.

72 An Introduction to APL2

Environment within a Clear Workspace

These values are present at sign-on time (unless reset through the automatic
loading of a CON TIN U E workspace), and will then be carried forward
following a)LOAD or)CLEAR:

OHT Horizontal Tabs to

ONLT National Language ' , (The initial language
Translation 1 depends upon the

country where the
system is located)

OPW Printing Width 1 (Depends upon the type of
terminal being used)

OTZ Time Zone1 (Depends upon the loca-
tion of the system)

)PBS Printable Backspace _ (that is, ON)
)EDITOR System Editor 1

These values are present following)CLEAR; the settings of the entries in the
upper chart will be carried over from the previous workspace:

OL
OR
OCT
OEM
OET
OFC
OIO
OLC
OLX
OPP
OPR
ORL
OSVE
OWA

)WSID

)SI

Left Argument
Right Argument
Comparison Tolerance1

Event Message
Event Type
Format Control
Index Origin
Line Counter
Latent Expression
Printing Precision 1

Prompt Replacement
Random Linkl
Shared Variable Event
Workspace Available1

Workspace name
Workspace password
State indicator

No value
No value
1E-13
3 Opt
o 0
.,*0_
1
to , ,
10 , ,

-

7*5 ++ 16807
o
(Depends upon the local
installation, and in some
systems, upon options
selected by the user)
None (CLEAR WS)
None
Cleared

lThese items have values which may vary from system to system.

For entries where values are shown, those values were chosen as being
widely-used values.

(For your convenience, this table will be repeated in the section "System
Variables" on page 135)

Chapter 3: The External Environment 73

) N M S [first [last]]

) F N S [first [last])

) 0 P S [first [last])

This command displays a list of all of the global objects in the active workspace, in
alphabetical order, starting with the letter indicated by "first," and continuing
through the letter indicated by "last." If ~'last" is elided, the list starts from the
point indicated by "first" and continues to the end. If both "first" and "last" are
elided, the list starts from the beginning and continues to the end.

Beside each name is a number indicating which class the name belongs to; these
classes are the same ones that are used by ONe (Name Classification) and ON L
(Name List). They are:

2. Variable
3. Function
4. Operator

[A value of "1" refers to
labels, which cannot be
global objects.]

For example:

)NMS
ADDRESSES. 2
GOO.3 OP.4
TABLES. 3

)NMS G
000.3 OP.4
TABLES. 3

)NMS F R
FN1.3 FOO.3
REPORT. 3

BEGIN.3 FN1. 3
REPORT. 3
VAR1.2 V2.2

REPORT. 3
VARl .2 V2. 2

FORMAT. 2

FOO.3
SEE.4

SEE.4

GOO.3

FORMAT. 2
TABLE. 2

TABLE. 2

OP.4

This command is similar to the) N M S -command, except that it lists only the global
functions in the active workspace. As with the) N M S -command,) F N S will
accept beginning and ending letters:

)FNS
BEGIN FNl

)FNS F R

FOO

FNl FOa GOO

GOO REPORT TABLES

REPORT

This command displays a list of the global operators in the active workspace. It is
similar to the) N M S -command, but shows only the operators. As with) N M Sand
) F N S,) 0 P S will accept beginning and ending letters:

)OPS
OP SEE

)OPS F R
OP

74 An Introduction to APL2

) VARS (f"trst (last]]

This command displays a list of the global variables in the active workspace. It is
similar to the) F N S -command, but for variables. As with) F N S,) V A R S will
accept beginning and ending letters:

)VARS
ADDRESSES
V2

)VARS G
SALES TABLE

)VARS F R
FORMAT

FORMAT SALES TABLE VARl

VARl V2

) LI B (library] (:(password]] (f"trst (last]]

This command displays, in alphabetical order, the names of the workspaces in your
private library or in an indicated public library. The list starts with the letter
indicated by "first," and continues through the letter indicated by "last." If "last"
is elided, the list starts from the point indicated by "first" and continues to the end.
If both "first" and "last" are elided, the list starts from the beginning and continues
to the end.

On some systems, a password is required to display the contents of some libraries.

For example:

)LIB
ANOTHER CONTINUE DEMO DISPLAY EXAMPLE
EXAMPLES MIGRATE REPORTl

)LIB G
MIGRATE REPORTl

)LIB N R
REPORTl

An attempt to display the list of workspaces in another user's private library or in a
non-existent public library is rejected with the report
IMPROPER LIBRARY REFERENCE.

) W SID ((library] workspace (:(password]]]

This command assigns to the active workspace the name indicated, and (optionally)
the library number or the password indicated. Use of the colon with nothing
following it assigns an empty password; that is, it removes a former password if
there was one. If the active workspace is subsequently saved, future use of the
saved workspace will require use of the password set here.

Setting of the active workspace's identification is acknowledged by the report
"WAS ... " followed by the former name (but not the former password).

Chapter 3: The External Environment 7 5

) SA VE [[library] workspace [:[passwordJ]]

A duplicate of the active workspace is saved (optionally, in the indicated public
library, otherwise in the user's own library) under the indicated name, and
(optionally) with the new password indicated. If the library number, workspace
name, or password are omitted, they are supplied from the workspace
identification. After saving, the active workspace has the same identification
(including library number, name, and password) as the saved workspace.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the)SA VE command.

Although saving does not affect the state of sharing in the active workspace,
current values of the shared variables are saved in the stored copy even if you
haven't actually referenced them yet.

Saving is acknowledged by a report showing the date and time at which the
workspace was saved.

The command to save the active workspace may be rejected, with trouble reports
as follows:

IMPROPER LIBRARY REFERENCE
The system does not permit a workspace to be saved in the private
library of another user, or in a non-existent public library, nor does it
permit a workspace named CONTI N U E to be saved in a public library.

NOT SA VED, THIS WS IS ...
Saving is not permitted when the name given in the command matches
the identification of an existing saved workspace but does not match the
identification of the active workspace. This restriction prevents the user
from inadvertently overwriting one workspace with another.

LIBRARY FULL
Saving is permitted only while the number of workspaces currently saved
or the space used by the saved workspaces is within the user's allocation.
Quotas are set by the system administrator.

WS FULL
The workspace contains a shared variable whose value, when brought in
to the workspace, would require for its storage more work area than is
available in the workspace.

)DROP [library] workspace [:[passwordJ]

This command discards the saved copy of a specified workspace, with no effect on
the active workspace.

On some systems, the workspace password is needed to drop the workspace.

76 An Introduction to APL2

)LOAD [6brary] workspace [:[password]] [size]

This command causes a duplicate of the indicated workspace (including its entire
computing environment) to become your active workspace. The original copy of
the workspace on the permanent storage device remains intact and in place.
Everything that had previously been in your active workspace is discarded. Shared
variable offers in the former active workspace are retracted. Following a successful
) LOA D, the system reports the time and date at which the loaded workspace was

last saved. This time stamp is subject to the time zone variable, OTZ (see page
148). The system then immediately executes the latent expression (~OLX). A
description of the latent expression may be found on page 142.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the)LOAD command.

Invalid requests to load a workspace may result in the following trouble reports:

WS NOT FOUND
The indicated workspace cannot be found.

WS LOCKED
The password supplied in the command does not match the password of
the saved workspace, or is missing from the command when required.

IMPROPER LIBRARY REFERENCE
The user is ineligible to use the indicated library.

Realize that) LOA Ding a workspace and) COP Ying everything from a workspace
are not the same thing. .. . Read on.

) COpy [library] workspace [:[password]] [names]

The) COP Y command is used to bring any APL global objects (functions,
operators, and variables) from any selected workspace into the active workspace;
and merge them with the existing objects already in your active workspace. If a
name conflict occurs, the previously-existing object will be replaced by the new
object. This point will be discussed in a little more detail below.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the) COP Y command.

If no "library" is specified, your own library is assumed. The "namesH parameter is
to be a list of the names 'of the desired objects, separated by blanks. For example:

I
Copy from this workspace ...

.... these objects ,
r~------------~~---------------'

)COPY REPORT1 PRINT PRINTER TERMINAL SALES
SAVED 5/19/1984 7.24.39 (GMT-5)

The names of functions, operators, and variables may be intermixed in any order.

Chapter 3: The External Environment 77

You may also copy "groups" of objects ... the facility for this has changed quite a
bit from earlier implementations. Refer to the discussion of "Grouping to
Facilitate Copying and Erasing" on page 89 for a discussion of "Indirect Copy."

If there is no list of "names" following the) COP.Y command, the entire contents
of the workspace specified will be copied into the active workspace.

Copy from this workspace ...

I
)COP.Y REPORT1

.... all of the objects
that exist in it.

SAVED 5/19/1984 7.24.39 (GMT-5)

If there is insufficient space to copy in one of the objects that you asked for, the
copy command will continue to the next object, and so forth, until all of the objects
that will fit are brought in to the active workspace. If some of them could not be
brought in because of a space problem, you may receive a message of WS FULL.

If a name conflict occurs, the previously-existing object will be replaced by the new
object. That is, if you already have an object called (for example) "PRINT" in
your workspace, and you copy in another object of the same name (through either
of the two forms of the copy command), the old use of the name will be
abandoned, and the new object will be established in the workspace. If you wish to
circumvent this possibility of damage to existing objects, refer to the) PC 0 P.Y
(Protected Copy) command, following. It is possible that the name classification
will have changed in the process; that is, you can replace a function with a variable
of the same name, and so forth.

Now, what happens if the active workspace is empty, and you copy in the entire
contents of another workspace? Okay, let's consider ...

Copying an Entire Workspace Into a Clear Workspace

Are these two sequences synonymous?? NO!!

)CLEAR
)COP.Y REPORT1
)WSID REPORT1

)LOAD REPORT1

If you clear the active workspace, copy an entire workspace into it, and then name
it with the same name as the workspace from which you copied, you might suppose
that that sequence would give you the same end result that you'd get if you had
simply loaded that workspace Sorry, you didn't win the steak knives this time.
There are some differences which, on occasion, may be useful. They depend upon
what is not copied when you copy an entire workspace. Let's review that a bit:

78 An Introduction to APL2

What is copied:

• All global variables, functions, and operators from the source workspace.

What isn't copied:

• Any local variables, functions, or operators.

• The state indicator (the list of where execution had been halted in the
source workspace, described more fully under the) S I command on page
83).

• The symbol table (an internal dictionary by which APL identifies and
locates each of the names that you have used in the workspace).

• The system variables: Distinguished names (those which start with a
"0") are never copied. Many of the system variables are set only by the
system, and a few will persist throughout the session, regardless of when
you) LOA D or) C LEA R. (These distinctions are discussed on page
136.) But a few of them are ones for which you may have set up some
special values; don't forget about them. if you ever copy the entire
workspace. They are:

OCT
OFC
DIO
DLX
Opp
ORL
DSVE

Comparison Tolerance
Format Control characters
Index Origin
Latent Expression
Printing Precision
Random Link
Shared-Variable Event

In addition to these differences, it should be pointed out that) COP Y for an entire
workspace causes the system to do much more work {*huff*puff*} than a simple
) LOA D requires. If all you want to do is get access to the objects in the
workspace, and you aren't trying to combine it with another workspace, use
)LOAD.

)PCOPY [library] workspace [:[password]] [names]

) PC 0 P Y (Protected Copy) works in just the same way as the) COP Y command
(discussed on page 77), except that)PCOPY will alert you to name conflicts and
refuse to overlay an existing object with another object of the same name. If that
situation arises, you will be given a report of "N 0 T COP I ED: ", followed by a
list of the names under concern.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the)PCOPY command.

Chapter 3: The External Environment 79

)MCOPY [library] workspace [:[password]] [names]

) IN rdename [list]

The "M" in) M COP Y stands for "migrate," so as you might expect, the command
provides a means of migrating data into APL2 from other versions of APL. The
) M COP Y command is just like) COP Y except that the objects copied come from
a VSAPL workspace. If you specify) M COP Y without a list of objects, you wiD
get the entire workspace, just as with) COP Y. In that case, the following system
variables are also copied: DIO, DRL, OCT, DPP, and DLX.

The) IN command reads a transfer file, reconstructs each of the items on the file
into APL objects (functions, operators, and variables), and establishes them in the
active workspace. It merges them with the existing objects already in your active
workspace. If a name conflict occurs, the previously-existing object will be
replaced by the new object. This point will be discussed in a little more detail
below.

For a discussion of what a transfer file is (and why you might want one), read
"What's a Transfer Form," under the description of the transfer form system
function, DTF ,on pages 132-135.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the) 0 UT command.

A transfer file may be created by using)OUT (described on page 81), by using
auxiliary processors, or by a process external to APL.

) IN is quite similar to the) COP Y command (described on pages 77-79), except
that the) COP Y command moves APL objects from a stored workspace, and the
)IN command moves transfer forms from a transfer file. There is no form of the
) IN command which corresponds to the) PC 0 P Y command.

If a "list" of APL names is supplied, only those objects will be brought into the
workspace. If no "list" is supplied, everything on the file is retrieved.

Normally,)IN displays no response - there is, for example, no SAVED message,
like the) LOA D command displays. Difficulties encountered during the execution
of the command, however, may result in the following trouble reports:

NOT FOUND
The file doesn't exist (or it exists, but isn't a proper transfer file); no
objects will be transferred.

NOT FOUND: name list
Some of the names in an explicitly-stated list of objects could not be
found; the ones that were found were established in the workspace.

NOT COPIED: name list
Some of the names in an explicitly-stated list of objects were found, but
were determined to not be valid transfer forms; the ones that were found
to be acceptable were established in the workspace.

If there is insufficient space to establish one of the objects that you asked for, you
may receive a message of W S F U L L, causing the transfer of objects to be halted.

80 An Introduction to APL2

) 0 U T filename [list]

If a name conflict occurs, the previously-existing object will be replaced by the new
object. That is, if you already have an object called (for example) "P R I N T" in
your workspace, and you use) INto bring in another object of the same name, the
old use of the name will be abandoned, and the new object will be established in
the workspace. It is possible that the name classification will have changed in the
process; that is, you can replace a function with a variable of the same name, and
so forth.

The format of the file name is system-dependent. Refer to APL2 Programming:
System Services Reference for specific information. And for assistance in migrating
data into APL2 from other versions of APL, refer to APL2 Migration Guide.

The) OUT command converts APL objects (functions, operators, and variables)
into their transfer form, and transfers duplicate copies of them from the active
workspace to a transfer file. The original objects in the active workspace remain
intact and unscathed.

For a discussion of what a transfer file is (and why you might want one), read
"What's a Transfer Form," under the description of the transfer form system
function, DTF, on pages 132-135.

Refer to the diagram on page 69, explaining "The Effects of Selected System
Commands," for a pictorial view of the action of the)IN command.

A transfer file may be read back in by using)IN (described on page 80).

) 0 U T is somewhat similar to the) SA V E command (described on page 76),
except that the) S AV E command stores an entire APL workspace in a specific
format meaningful only to APL, and the) 0 U T command stores transfer forms of
APL objects on a transfer file.

If a "list" of APL names is supplied, only those objects will be stored on the file. If
no "list" is supplied, all of the user-defined objects in the active workspace
(functions, operators, and variables) except shared variables will be copied to the
file. In either form, the most local version of each object that is currently active
will be transferred.

If you explicitly state the names of system variables in the name list, their settings
may also be stored on the file. Use of the command without the name list will not
transfer system variables.

If any names are explicitly requested but are not found in the active workspace, or
if they are found but are not appropriate for transfer (for instance, if they name a
shared-variable), you will be given a message of "NOT COPIED: ", followed
by a list of those names.

Entering the command either with or without a list of object names will cause a
new file to be created, or will completely over-write an existing file. There is no
provision for adding to an existing file.

In CMS, the proper format is ") 0 U T fn. ft • fm" (where fn = filename, ft =
filetype, and fm = filemode). If filemode is not specified, A is assumed. If filetype
is not specified, "A P L T F • A" is assumed.

Chapter 3: The External Environment 81

)ERASE names

)OFF [HOLD]

)CONTINUE [HOLD]

In TSO, ") 0 UTA • B" writes file "userid • A P L T F • A • B", while
") 0 UT 'A. B ' " writes file "A • B".

Refer to APL2 Programming: System Services Reference for more host system file
naming information.

The global objects named are expunged from the active workspace; shared variable
offers with respect to any of them are retracted.

If an object named in the command cannot be found, the report
"NOT ERASED:" is given, followed by a list of the objects not found.

If the riame of a suspended or pendent function is specified with the) ERA S E
command, only its global definition is erased. The copy of the function that is
currently halted is not affected, and execution may resume normally.

It may be instructive to compare the)ERASE command to the OEX system
function (on page 127). One major difference (other than form) is that)ERASE
discards only global references, while OE X discards the most local reference to a
name that is currently active.

This command discards the active workspace and terminates the current APL
session. An accounting report is displayed, showing the connect time and
computing time used during the current session. Some systems may include some
additional accounting information.

The H 0 L D parameter has no effect and is included for compatability with older
APL products.

This command provides the same effect as) W SID CONTI N U E, followed by
)SA VE, followed by)OFF ... your active workspace is saved under the name

"C 0 NT IN U E," and your APL session is terminated. When your next APL2
session is started, the CON TIN U E workspace will be automatically loaded, unless
the IN PUT parameter was used in your invocation statement.

An accounting report is displayed, showing the connect time and computing time
used during the current session. Some systems may include some additional
accounting information.

The H 0 L D parameter has no effect and is included for compatability with older
APL products.

The) CON TIN U E command is often helpful when you need to end your current
session, but wish to easily "continue" pursuing the same task when you return.

The CONTI N U E workspace is otherwise much the same as your other
workspaces. In particular, you may)LOAD and)SA VE and)DROP it in the
same fashion as any other workspace.

82 An Introduction to APL2

}SI • }SINL •

A Mystification to Avoid

When you resume work in your following session, it's recommended that you
rename the CONTI N U E workspace and re- } SA V E it under its original name
whenever you modify the items that you were working on. In this way, the chance
of accidentally overlaying it with unrelated material through the use of a later
} CON TIN U E command will be lessened.

}SIS

These commands display the state indicator, showing the status of halted statements
from immediate-execution mode, or from halted functions and operators, with the
most recently halted one shown first. The list shows the name of the function or
operator (where applicable), and the number of the statement at which work is
halted.

Suspended statements are marked in the state indicator by an asterisk, while
pendent statements appear on the state indicator list without an asterisk. Damage
to the state indicator is shown by a statement number of - 1 alongside the name of
the affected function or operator name.

The } SIN L ("state indicator with name list") command displays the state indicator
in the same way as } S I does, but in addition, with each function or operator
listed, lists the names that are local to its execution.

The } SIS ("state indicator with statements") command displays the state indicator
in the same way as } S I does, but in addition, with each function or operator
listed, it displays the statements that were halted, and the associated error carets
showing where the halt occurred, and how far through the line the execution had
proceeded.

Every now and again, an APL user forgets to tell the system what should be done
with a function whose execution has been suspended. If the suspended function
uses a local variable whose name is also used for a global variable or function, you
may think that you're referring to the global name, and instead, you're getting the
value of the local variable from within that suspended function. Fortunately, the
problem is easily avoided: don't leave suspended executions hanging around
unresolved any longer than necessary.

Any time that you encounter an error, you should take some action. The whole
purpose of the suspensions, of course, is to give you a chance to fix the errors and
be able to resume the execution if you want to, without having to retype everything
or re-execute everything.

To restart execution, enter "+" followed by the line number in the most
recently-suspended function or operator that you wish to begin re-executing; for
example, to restart the execution at line 5, type "+ 5 ". If you want to restart the
same line on which the most recent problem had occurred (perhaps you've fixed
the source of the problem), enter "+DLC", meaning restart the last line that had
been executing. Alternatively, "+ 1 0" means "resume from where you stopped,"
even within the middle of a line.

If you don't want to resume at all, that's fine too, but you should tell the system
that.

Entry of a single right-arrow, "+", followed by ENTER, will cancel the most recent
suspension, back to the point of the keyboard input that invoked it, and) RES E T
will cancel all of the suspensions in the workspace.

Chapter 3: The External Environment 83

)RESET [number]

)MSG message •

For some additional discussion of errors, refer to the "Display of Errors" portion of
the "Event Handling" section, on pages 161-166.

The) RES E T command with no number after it empties the state indicator of all
entries. All suspensions are cleared, and OEM, OET, DL, and OR are reset. For
all of those people who kept meaning to get back to the state indicator and clear up
those suspended entries, this should be easier than (but equivalent to) entering "+"
and pressing "ENTER" for every suspension. A procrastinator's delight.

)RESET followed by a number n will cause the state indicator to be cut back n
levels (that is,)SI will have n fewer lines). This lets you cut back the stack to the
place you want.

)MSG ON •)MSG OFF •)MSGN message

This command sends a message to the terminal of the user indicated. The
designated user must be currently signed on to the same APL system. The method
of specifying the user differs between systems; it may consist of the user's sign-on
or a port number (phone-line connection number). Refer to APL2 Programming:
System Services Reference for specific information.

Proper transmission of the message will result in the message SENT being
displayed at your terminal when the message is received.

On some systems,) M S G will lock your keyboard until a response is received from
the intended recipient. To prematurely abandon the wait, press the ATTENTION
key.

) M S G 0 F F specifies that no subsequent messages are to be received from any
user. This may be helpful, for example, during the printing of a report, so that an
incidental message can't disturb your output. Use this with caution, though, since
) M S G 0 F F will prevent the reception of all messages, including broadcast
messages from the system operator (perhaps warning of an impending unscheduled
system shutdown!).

An attempt to send a message to a user who is not currently signed on or who has
set) M S G 0 F F will result in a display of a NOT SENT message.

) M S G 0 N, of course, is used to reverse the action of) M S G OFF (. .. you
probably could have guessed that).

The) M S G N form of the command is identical to) M S G, except that it does not
attempt to lock the keyboard in anticipation of a reply. On some systems,) M S G
and)MSGN are identical. Again, refer to APL2 Programming: System Services
Reference for specific information.

The ON and OFF options are not used with) M S G N.

84 An Introduction to APL2

)OPR message •

)HOST [command]

)OPRN message

This command sends a message to APL System Operator. Proper transmission of
the message will result in the message SEN T being displayed at your terminal
when the message is received.

On some systems,) 0 P R will lock your keyboard until a response is received from
the intended recipient. To prematurely abandon the wait, press the ATTENTION
key.

The) 0 P R N form of the command is identical to) 0 P R, except that it does not
attempt to lock the keyboard in anticipation of a reply. On some systems,) 0 P R
and) 0 P R N are identical. Refer to APL2 Programming: System Services
Reference for specific information.

The) H 0 S T command is used to send a command to the operating system (CMS
or TSO). For example, in CMS you could list the number of people using the
computing system like this:

)HOST Q U
537 USERS, 009 DIALED, 000 NET

) H 0 S T with no argument reports which Operating System you are on:

)HOST
IS eMS

)EDITOR [number] or [name]

)MORE

The) ED ITO R command is used to select which of the system editors you prefer
for editing functions, operators, and variables.

• ")EDITOR 1" specifies the standard "del"-editor. It is the default at
sign-on time.

• ") ED ITO R 2" specifies the extended full-screen editor.
• ") ED ITO R name" specifies the use of a system editor (such as CMS

XEDIT). "name" is the name of a CMS EXEC on a TSO CLIST.

Used without a number, this command can be used for inquiry; it will return the
number of the editor currently selected. The editor number persists over a
workspace)LOAD or)CLEAR.

For a complete discussion of Editors 1 and 2, refer to "Defining Your Own
Functions" on pages 104-115.

The) M 0 R E command will provide additional information after an error occurs (if
the additional information exists). Generally there will be more information after
an error that occurs during a library operation such as) LOA D or) SA V E, or if an
auxiliary processor cannot handle a request.

Chapter 3: The External Environment 85

)QUOTA

)SYMBOLS [number]

Each APL user is given quotas controlling how much of the system's resources she
can use. These quotas control such things as the total number of (or combined
storage capacity of) workspaces that may be saved concurrently, and the number
of variables that may be shared concurrently. On systems that support variable
workspace sizes, there is generally also a quota controlling the maximum size of the
active workspace.

The) QUO T A command displays these quotas. While the form of the display and
the meaning of the quotas displayed varies from system to system, here is one
form:

Meaning:

LIB
WS
SV

)QUOTA
total

default
number

FREE remaining
MAX maximum
SIZE size

[All of the space measurements are in bytes]

"LIB" is the total amount of space that's currently in use for storing
workspaces in your library.

"LIB FREE" is the amount of space that's left in your library.

"WS" is the size of your active workspace at sign-on time.

"W SMA X" is the size of the largest workspace that may be requested
(as with the)LOAD or)CLEAR commands).

" S V" is the maximum number of shared variables that you may tender
simultaneously.

"SV SIZE" is the size of the shared memory.

Here's a sample display:

LIB
WS
SV

)QUOTA
6420480

753664
88

FREE
MAX
SIZE

520192
753664

32768

This command sets the size of the symbol table; that is, the maximum number of
names that may occur in the workspace. (Note that the occurrence of a name
includes not only the names of functions, operators, and variables themselves, but
also any names occurring within their definitions.) New values of the maximum
may be overridden by the system, and increased automatically as needed. An
attempt to set the maximum outside the range permitted by the system is rejected
with the report "INCORRECT COMMAND." There is no response for a valid
setting.

Used without specifying a number, the)SYMBOLS command will display the
number of symbols that are currently in use.

86 An Introduction to APL2

) TIME

)PBS [ON / OFF]

The) TIME command will display the current date and time of day and the offset
from Greenwich Mean Time. The format of the response is established when
APL2 is installed on your computing system. The three possible formats are:

1984-02-17 11.39.51 (GMT-4) The ISO standard

02/17/1984 11.39.51 (GMT-4) The U.S. convention

17.02.1984 11.39.51 (GMT-4) The European convention

APL2 has seven new characters which weren't available in previous versions of
APL. These are:

Formed by
Character Name Symbol overstriking

Quad Slope lSI 0 \
Quad Jot ~ 0 0

Left Bracket Right Bracket D []

Equal Underbar - = -
Epsilon Underbar £. E -
Iota Underbar .1 t -
Dieresis Dot

On terminals that support overstrikes, these seven characters may be entered
simply by overstriking the appropriate characters. On a 2741, for instance
(remember those?), the""" character may be formed by entering
"0" -backspace-" \ ". However, not all terminals allow backspacing and
overstriking to produce compound characters. [For example, one terminal which
cannot form the new characters directly is the mM 3277.] Therefore, a new
system command has been provided so that users of these terminals can have some
means of entering these new characters.

The)PBS command is used to enable a Printable Back Space character, "_".
This character can then be used as a logical backspace so that the new characters
may be entered or displayed. This logical backspace has meaning only with the
seven characters shown in the table.

With) PBS 0 N, one of the new characters may be specified as a three-character
sequence consisting of the two existing APL characters with the character" _ "
inserted between them.

With) PBS 0 F F, the new characters are also displayed by APL2 as a sequence
of three characters: the two characters which are overstruck to produce the new
character, separated by the character" _".

Chapter 3: The External Environment 8 7

For example:

7
DAVtA

116 118 117 205 207 226 237
A

Either of the two characters which make up each overstrike may come first.

'0 0' = '0 Of
1

You can "undefine" the) PBS character by entering") PBS OFF". If you
attempt to display the new characters when there is no PBS character defined, the
characters may display as other, terminal dependent, characters:

A
D_OE __ t __ [_JO_\=

)PBS OFF
A

88 An Introduction to APL2

Grouping to Facilitate Copying and Erasing

Indirect COpy and Indirect ERA S E:

It is frequently convenient to copy into the active workspace several related
functions and variables, and to erase them when they are no longer needed. To
facilitate such transfers, a group may be defined by supplying a list of names that
are to be copied or erased together. The definition of a group consists of a list of
names. It is not necessary that objects having those names exist in the workspace.

In previous versions of APL, groups were a special type of object, requiring the use
of several system commands to list and update them. Now, in APL2, they no
longer require such special handling - any APL variable which consists of a simple
character matrix containing a list of names (with one name per line) may be treated
as a group. (Also, in keeping with the rules for such functions as ON C, the list may
be a simple character vector or scalar containing just one name.) This allows you
to use all of the power of APL to create and maintain these lists dynamically.

For example, let's assume that we have a workspace that looks like this:

)WSID
REPORTl

)FNS
DISPLAY NEWPAGE PRINT PRINTER REPORT TERMINAL

)VARS
11.s.E.'l.B. DATA GRPPRINT SALES TABLES

Now, let's look at that variable called "GRPPRINT":

pGRPPRINT
6 8

GRPPRINT
GRPPRINT
PRINT
PRINTER
TERMINAL
NEWPAGE
11.s.E.'l.B.

In this case, the variable
named" G R P P R IN T" contains
the names of six objects-
not quite all of the functions,
but of course, it could contain
whatever you wish.

Now let's load another workspace, and see how that group can help us:

Chapter 3: The External Environment 89

)LOAD ANOTHER
SAVED 5/23/82 19.16.43 (GMT)

Now we want to copy some of those functions from that
REPORT1 workspace into this workspace; in particular,
we want the functions that make up the "print group,"
along with a couple of other stray objects... that's easy:

SAVED

/ Copy fr;:: ;::::~ Obje~~
)COpy REPORT1 SALES DATA (GRPPRINT) TABLES

5/19/82 12.2~

... and the objects named in the list
called "GRPPRINT"; the parentheses
cause this to be an indirect copy.

When a)COPY,)PCOPY, or)ERASE command mentions a name that is
contained within parentheses, then all global objects whose names appear in the
membership list are copied (or erased, as the case may be).

If the membership of a list A includes the name B of such list, the act of copying A
causes the membership list of B to be copied, but copying does not extend further.
That is, the objects referred to in the membership list of B are not copied. The
same applies to erasure.

Those items that we copied into the active workspace could be erased with this
command:

)ERASE DATA SALES (GRPPRINT)

By the way, APL2 makes it easy to create the character matrix for the group­
just use disclose on a vector of vectors:

3 7

GRPLIST+~'NAME1' 'ANOTHER' 'LAST'
pGRPLIST

It's also easy to modify a group definition - just use) ED ITO R 2 to add, delete,
or change names in the character matrix.

* * *

90 An Introduction to APL2

For additional information on system commands, refer to APL2 Programming:
System Services Reference.

Used with the permission of The Dick Sutphen Studio.

Chapter 3: The External Environment 91

Function and Operator Definition

While this section will speak of "functions" throughout, these discussions apply
equally to defined operators.

There are three ways in which a defined function can be established in an APL
workspace:

1. It can be loaded or copied from a stored workspace using a system command
(see pages 65-90).

2. It can be established in execution mode, using the system function "fix"
(OFX), either by a direct keyboard entry or by another defined function (see
page 128).

3. It can be established in function definition mode, using one of the system's
"del" -editors (see pages 1 04-115).

Regardless of which facility has been used for establishing a function, its definition
can be displayed or modified in either the function definition mode, in which
certain editing capabilities are built-in, or by the combined use of the system
functions "Canonical Representation" (OCR) and "fix" (OFX).

Canonical Representation and Fix

The character representation of a function is a character matrix satisfying certain
constraints: the first row of the matrix represents the function header and must be
one of the forms specified in the discussion of function headers on page 93. The
remaining rows of the matrix, if any, constitute the function body, and may be
composed of any sequence of characters. If the character representation satisfies
additional constraints (such as no redundant spaces and left justification of the
nonblank characters in each row), it is said to be a canonical representation. The
canonical representation of a function, then, is the minimum form of display which
will completely define a function; it is devoid of such decorations as line numbers.

Applying OCR to the character array (scalar or vector) representing the name of an
already established function will produce its canonical representation.

For further discussion of the use of OCR, see the discussion of "Canonical
Representation" on page 125.

The "fix" function, OF X, provides a facility for dynamically creating APL
functions and operators. OF X is the inverse of 0 CR. A typical input (right
argument) to DFX would be a matrix of characters such as OCR produces. When
OF X is applied to a character matrix which is the canonical representation of some
function, it will cause that function to be established in the workspace. The explicit
result of OFX is the name of the function (as a character vector) or a number
(representing an invalid line in the matrix) if the function couldn't be created.

For a discussion of the rules governing the use of OF X, see the discussion of "fix"
on page 128.

92 An Introduction to APL2

Function and Operator Headers

Arguments and Operands

The valence of a function is defined as the number of explicit arguments that it
takes. A defined function may have anyone of six forms of header, as follows:

Function Header: FN +-+ the function name
L +-+ the left argument
R +-+ the right argument
Z +-+ the explicit result

Type Valence With Result No Result

Niladic 0 Z+FN FN
Monadic 1 Z+FN R FN R
Dyadic 2 Z+L FN R L FN R

The valence of an operator is defined as the number of explicit operands which it
takes. Its derived function, however, may have a different valence. A defined
operator may have anyone of eight forms of header, as follows:

Operator Header: OP +-+ the operator name
L +-+ the left array argument
R +-+ the right array argument
F +-+ the left function or array operand
G +-+ the right function or array operand
Z +-+ the explicit result

Number of
Arguments/Operands With Result No Result

1 1 Z+(F OP) R (F OP) R
1 2 Z+(F OP G) R (F OP G) R
2 1 Z+L (F OP) R L (F OP) R
2 2 Z+L (F OP G) R L (F OP G) R

The names in the header of a defined function which pass data into that function
are called its arguments. The names in the header of a defined operator which pass
functions or data into that operator (entered within parentheses in the header) are
called its operands.

The names used for the arguments and operands of a function or operator become
local to that function or operator, and additional local names may be designated by

Chapter 3: The External Environment 93

Explicit Results

listing them after the function name and argument, with a semicolon preceding
each local name; the name of the function is global. The significance of these
distinctions is explained in "Local and Global Names" on page 97.

A name may not be meaningfully repeated in the header, except for the function
name itself, which may be repeated in the list of local names. It is not obligatory
either for the arguments of a defined function to be used within the body, or for
the result variable to be specified in the course of function execution. Although it
would be unusual for either of those cases to occur, and would probably offer no
advantages, those cases do not result in errors.

The names of the arguments have meaning only within the function. Outside of the
function definition, their only significance is a positional one.

RESULTS+X PLUS 10
,

if , ,

'l Z+L PLUS R
[1J Z+L+R

V

What you type to call it

What you typed to define it

When this P L US function is invoked with the top line, its left argument, L, takes
on the value of the data in X, and its right argument, R, takes on the value 1 o.

At the conclusion of its execution, whatever value that had last been placed in its
local result, Z, will be passed out of the function to the variable RES U L T S . When
a name is assigned (using a specification arrow, "+") both in the header of a
function and somewhere within the body of that function, the function is said to
have an explicit result ... "explicit" in that it is explicitly available for use as part of a
larger expression. Only if the function is defined with an explicit result may the
function be used with more of an APL statement to its left:

V Z+L PLUS R V L PLUS R
[1 J Z+L+R [1 J L+R

V V

10 PLUS 20 10 PLUS 20
30 30

2x10 PLUS 20 2x10 PLUS 20
60 30

VALUE ERROR
2x10 PLUS 20

A A

In the right-hand example, the only thing that line 1 of the function defined was
the addition of the two variables, Land R. Since there was no assignment of the
result to another variable, the default was to print it, which it did (making the two
forms shown look identical for trivial cases). Since there is no explicitly available

94 An Introduction to APL2

result from the P L US function, there's nothing to pass along to be used as the right
argument for the" x" function. The explicit result in the left-hand example makes
that value available. The value that gets passed along as the result of the function
is whatever value was last assigned to the explicit result variable (in this case, Z)
when the function has finished its execution. The assignment does not have to be
made at any special time during the function's execution.

Ambi-Valent Defined Functions

The valence of a function is a count of its explicit arguments: a monadic function
has a valence of one, and a dyadic function has a valence of two. An ambi-valent
function, then, is one which may be used with both valences.

A dyadic user-defined function may be invoked either with or without its left
argument. This allows you to write functions that more closely resemble the
operation of primitive functions. Within the function, you must then check to see if
the left argument was supplied before you reference its value; you can do this with
ON C (name classification, described further on page 130).

To illustrate how (and why) ambi-valence might be used, let's start with a simple
function for finding the n-th root of a number:

V Z+N ROOT A
[1] Z+A * TN

V

2 ROOT 64 729 4096
8 27 64

(2 ROOT 64 729 4096)*2
64 729 4096

3 ROOT 64 729 4096
4 9 16

2 3 ROOT 16 125
4 5

Perhaps a form that would be more convenient to use would be one which would
use a common default value for the left argument if no value is supplied; let's
assume, for instance, that we would usually use this for finding square roots. If the
function is called without a left argument, the name used for the left argument
(" N") would have no value. This can be checked using ON C, like this:

Chapter 3: The External Environment 95

'iJ Z+N ROOT A
[1] +(O~DNC 'N')/RN
[2] N+2
[3] RN:Z+A*-tN

'iJ

2 ROOT 64 729 4096
8 27 64

ROOT 64 729 4096
8 27 64

3 ROOT 64 729 4096
4 9 16

{or}
'iJ Z+N ROOT A

[1]
[2]

'iJ

~(O=DNC 'N')/'N+2'
Z+A*-tN

Notice that ROOT now
works with or without
a left argument, and
uses 2 as a default
if the left argument
is elided.

Ambi-valence can be used to supply a commonly-used value by default, as we did
here, or it can supply an argument which would otherwise require cumbersome
entry. For example, assume that you are using a FIND function which will look
through selected functions (whose names are listed in its left argument) for a
character string (which is specified in its right argument). To tell it that you want
to look through all of the functions in the workspace, it may be necessary to enter
something like (DNL 3) FIND 'CHAR STRING'. Most APL authors
have long recognized common cases like this, and have provided a shorthand
notation: " FIND 'CHAR STRING'. Now, using ambi-valence, the
notation becomes one step easier: FIN D 'C H A R S T R I N G ' .
Ambi-valence, then, is a useful tool for situations where you may frequently want
to indicate all values.

No Two Ways About It, ALL Functions Are Ambi-Valent

If you accidentally call a dyadic defined function without its left argument, it used
to respond with a SYNTAX ERROR in previous versions of APL. Now it will
invoke the function, and (if you haven't provided for it) will produce a VALUE
ERR 0 R the first time that the left argument is referenced. Recognizing this
change may save you some time during troubleshooting.

96 An Introduction to APL2

Local and Global Names

Previous behavior:

V Z+A PLUS
[1] Z+A+B

V

3 PLUS 5
8

PLUS 5
SYNTAX ERROR

PLUS 5
/\

)SI

PLUS
SYNTAX ERROR

PLUS
/\

B

APL2 behavior:

V Z+A PLUS
[1] Z+A+B

V

3 PLUS 5
8

PLUS 5
VALUE ERROR
PLUS[l] Z+A+B

)SI
PLUS[l] *

/\/\

PLUS
SYNTAX ERROR

PLUS
/\

B

Notice, in the last example, that ambi-valence does not allow the function to be
called niladically (that is, with no arguments).

During the execution of a defined function, it's often necessary to work with
intermediate results or temporary functions that have no significance either before
or after the function is used. The use of local names for these purposes, so
designated by their appearance in the function header, avoids cluttering the
workspace with a multitude of objects introduced for such transient purposes, and
allows greater freedom in the choice of names. Names used in the function body,
and not so designated, are said to be global to that function.

A local name may be the same as that for a global object, and any number of
names local to different functions may be the same. During the execution of a
defined function, a local name will temporarily exclude from use a global object of
the same name. If the execution of a function is interrupted (leaving it either
suspended or pendent), the objects retain their dominant position, during the
execution of subsequent APL operations, until such time as the halted function is
completed. However, system commands continue to reference global objects under
these circumstances. (The system editors, by the way, always reference the most
local copy of an object that's currently active - they're described on pages
104-115.)

Local names in suspended functions can sometimes be a source of confusion. The
shadowing of names can alter the operation of a workspace, and leave the user
perplexed about what happened. For some discussion of what to do to overcome
or prevent this confusion, see "A Mystification to Avoid" on page 83.

Chapter 3: The External Environment 97

"Semi-Global" Names

The localization of names is dynamic, in the sense that it has no effect except when
the defined function is being executed. Furthermore, when a defined function uses
another defined function during its execution, a name localized in the first (or
outer) function continues to exclude global objects of the same name from the
purview of the second (or inner) function. This means that a name localized in an
outer function has the significance assigned to it in that function when used without
further localization in an inner function. The same name localized in a sequence of
nested functions has the significance assigned to it at the innermost level of
execution.

The shadowing of a name by localization is complete, in the sense that once a name
has been localized its global and outer values are temporarily hidden, even if no
significance is assigned to it during execution of the function in which it is
localized.

N ames are made local to a function by placing them on the header line, to the right
of one of the eight forms of headers shown above. A semicolon separates the
names of the local objects from each other and from the rest of the function
header. For example:

/
Here is the explicit result, the name
of the function, and its arguments.

These names are local
to this function. ~

r~------A~----_, ,~ ____ ~A~ ____ _

V Z+L FNNAME R;A;B;C;OIO

'- A semicolon precedes each local name

This is a contrived term, but it's one that seems to work itself into lots of literature,
so let's discuss it a bit. In the most strict sense of the term, a "global name" is one
that's not localized at any level; it's active with nothing suspended. To a function
that's executing, though, anything that it is able to reference that isn't in its own
header is considered to be global to that function. A name that has been localized
to a function, which is subsequently accessed "globally" by a subfunction, is
sometimes referred to as a "semi-global" name.

Branching and Statement Numbers

Statements in a function are normally executed sequentially, from top to bottom,
and execution terminates at the end of the last statement in the sequence. This
normal order can be modified by branches. Branches are used in the construction
of iterative procedures, in choosing one out of a number of possible continuations,
or in other situations in which decisions are made during the course of function
execution.

To facilitate branching, the successive statements in a function definition have
reference numbers associated with them, starting with the number one for the first
statement in the function body and continuing with successive integers, as required.
Thus, the expression + 4 denotes a branch to the fourth statement in the function
body, and when executed, causes statement 4 to be executed next, regardless of
where the branch statement itself occurs. [In particular, +4 may be statement 4,

98 An Introduction to APL2

in which case the system will simply execute this "tight loop" indefinitely, until
interrupted by an action from the keyboard. This is a trap to be avoided.]

A branch statement always starts with the branch arrow (or right arrow) on the left,
and this can be followed by any expression. For the statement to be effective,
however, the expression must evaluate to an integer, to a vector whose first
element is an integer, or to an empty vector; any other value results in aDO M A IN
or RANK error. If the expression evaluates to a valid result, then the following
rules apply:

1. If the result is an empty vector, the branch is "vacuous" (or empty, meaning
that no branching occurs), and execution continues with the next statement in
the function if there is one, or else the function terminates.

2. If the result is the number of a statement in the body of the function, then that
statement is the next to be executed.

3. If the result is a number out of the range of statement numbers in the function,
then the function terminates. The number 0 and all negative integers are
outside of the range of statement numbers for any function.

Because zero is often a convenient result to compute, and because it is not the
number of a statement in the body of any function, it is often used as a standard
value for a branch intended to end the execution of a function. It should be noted
that in the function definition mode described below, zero is used to refer to the
header. This has no bearing on its use as a target for a branch.

An example of the use of a branch statement is shown in the following function,
which computes the greatest common divisor of two scalars:

'V Z+M GCD N
[1J Z+M RGREATEST COMMON DIVISOR
[2J M+MIN
[3J N+Z
[4J +(MotO)/1

'V

The compression function (really a derived function of the slash operator), when
it's used in the form "condition/target," or "(Mot 0) / 1 ", returns 1 if the
condition (Mot 0) is true (that is, if M is not equal to zero), and an empty vector if
the condition is false (that is, if M is equal to zero). Thus, the fourth statement in
G CD is a branch statement which causes a branch to the first statement (line 1)
when the condition Mot 0 is true (that is, when M is not equal to zero), and a branch
with an empty vector argument (falling through to the next statement), when the
condition is false. In this case, there is no next statement and so execution of the
function ends.

This form of branching is not the only way to write a branch statement. We'll talk
about a couple of different forms, and make a recommendation on style, right after
we look into labels.

Chapter 3: The External Environment 99

Labels

If a statement occurring in the body of a function definition is prefaced by a name
and a colon, then the name is assigned a value equal to the statement number. A
name used in this way is called a label. Labels are used to advantage when it is
expected that a function definition may be changed for one reason or another,
since a label automatically assumes the new value of its statement's line number as
other statements are inserted or deleted.

Notice in the GCD example, above, that statement 4 branches to line 1 if the
condition (M;t. 0) is met. That's okay initially, but if we ever add some additional
code to the function prior to the line that reads" Z +M", what's now line one will be
automatically given a new line number. That would mean that we would have to
remember to change that last line every time that we added something to the top of
the function; if the function was very big, that could quickly get out of hand.
Therefore, a much better approach is to always branch to a line label. Using a label,
that preceding function would look like this:

[1]
[2]
[3]
[4]

'iJ Z+M GCD N

'iJ

LOOP:Z+M
M+MIN
N+Z
+(M;t.O)/LOOP

RGREATEST COMMON DIVISOR

Now if we add some additional lines to the top of the function, the loop will
continue to execute in exactly the same way that it does now; whenever the
condition for branching is met, the branch at the end of the function will always
cause execution to go to the line with the "L 0 0 P" label, regardless of what line
number it's associated with.

Notice also that line labels are automatically exdented by the system editors; that is,
they are moved out into the margin by one space, so that you can more easily spot
them when you're scanning through the display of a function.

The name of a label is local to the function in which it appears, and must be distinct
from other label names in the same function and from the local names in the
header.

Note also that a label name may not appear immediately to the left of a
specification arrow; that is, it may not be the target of an assignment. In effect, a
label acts like a (local) constant.

A Recommended Form of Branching

There are many ways that a branch statement can be written. People have come
up with lots of different styles ... after all, that's what programming style is all
about. Different solutions from different people, for different problems. However,
some forms - even some of the common ones - have built-in limitations. For
example, a form that seems to get used a lot is of the form "+LOOPx tA =B"; in
origin 1, this equates to "+ L 0 0 P" if A = B, and "+ to", or fall through to the next
line if A ;t.B. Unfortunately, if the function is ever run in origin 0, you're in

100 An Introduction to APL2

trouble, because the A = B case will evaluate to "+ 0 ", meaning "exit from the
function". The" Xl" form of branching is not recommended. You will hear people
make statements that this form (or whatever form) is "faster than other forms."
That's a laudable goal, but it's also strictly implementation dependent. What's fast
on this system may not be fast on another system, and so forth.

A recommended form of branching is the form used in the example above; that is,
"+(condition) /label" ... for instance, "+(A =B) / LOOP". If A =B, this
statement becomes "+ 1 / L 0 0 P", or "+ L 00 P". If A;t B, this statement becomes
"+ 0 / L 0 0 P", or "+ 1 0", meaning "fall through to the next line."

One advantage of this form over some of the other forms is that this one is
origin-independent; you can use origin 1 or origin 0 without changing the
statement. Another advantage of this form over many of the other forms is that
this one form will handle both the simple branching cases like we have just
discussed, and "n" -way branching with equal ease.

Writing n-Way Branch Statements

Sometimes it's desirable to be able to let a function choose which label it should
branch to; there may be several potential paths. This is easily done with
compression branching, like this:

[7J +((A<B) , (A=B) , A>B) / LESS, EQUAL, MORE

This line produces a three-way branch. In this particular statement, one of the
conditions will be true, and the rest will be false. The true condition (expressed as
a 1) will select the corresponding label. Obviously, the list of labels is expected to
be the same length as the list of conditions.

[12J +(N~90 70 60 50) / SUPER, GOOD, FAIR, POOR
[13J FAIL:

This line can branch to any of four labels, or can fall through to the" F A I L" label.
In this statement, one or more of the various conditions listed may be true (yielding
a one). The resultant vector of ones and zeros will be used to compress the list of
labels. Typically, this statement will evaluate a branch to a list of labels; that is, it
may evaluate like this:

This line: +(N~90 70 60 50)/SUPER,GOOD,FAIR,POOR
evaluates to: + (7 5 ~ 9 0 7 0 6 0 5 0) / SUPER, GOO D , F A I R , P 0 OR
evaluates to: + 0 1 1 1 / SUPER, GOOD, FAIR, POOR
evaluates to: + GOOD, FAIR, POOR
evaluates to: + 1 7 1 9 27
evaluates to: +1 7

As shown here, a branch to a list of labels (or a vector of numbers) is the same as a
branch to the first (left-most) value in the list. Therefore, an n-way branch will
always branch to the label (or line number) that corresponds to the
left-most "true" condition.

Chapter 3: The External Environment 101

Comments

If none of the conditions were true (as would be the case here if N were less than
5 0), the execution would fall through to the next line (in this case, at the F A I L
label).

Doing the branching with compression allows you to use one simple form for all of
your branching requirements. That will save you time in writing - and reading -
those statements later on.

The lamp symbol, A (the cap-jot), signifies that what follows it is a comment, for
illumination only and not to be executed; it may appear on a line by itself, or may
appear to the right of any expression or label.

Comments are visible only when the function or operator is displayed through the
use of one of the system editors or 0 C R; they do not display when the function is
executed.

Spaces within comments are left just where you enter them; APL2 doesn't touch
them at all. Also, the leading blanks between the code and the comment are
significant. These leading blanks are considered to be part of the comment (even
though they appear before the lamp symbol), and APL2leaves them alone:

[1 J
[2J
[3J
[4J
[5J
[6J
[7J
[8J

'V FOO
ACOMMENTS WITH ~Q CODE TO THE LEFT GET EXDENTED
A(MOVED LEFT BY ONE POSITION) --JUST LIKE LABELS
ADO-- SO THAT YOU CAN FIND THEM EASILY WHEN YOU
AREAD THE FUNCTION.
A

C+O
H+t 1tpM

LOOP:C+C+1

A SPACES ON ~QX~ SIDES OF A COMMENT
A SYMBOL ARE SIGNIFICANT, SO THAT
A YOU CAN LINE UP YOUR COMMENTS.

A statement may be composed of a label, an expression, and a comment. Any of
these three items may be elided; however, when they are present, they must appear
in that order.

102 An Introduction to APL2

If you feel up to wading through some editorial comments on comments, see the
discussion entitled "Where's This Function Going?" on pages 228-229.

Used with the permission of The Dick Sutphen Studio.

Chapter 3: The ExtemalEnvironment 103

Defining Your Own Functions

Now that you know how defined functions can be used, you'll probably want to
write your own functions. You can always do this by building a character matrix
that looks like the definition of the function and applying the function DFX to
"fix" or define it [... you may want to sneak a look at this; it's on page 128]. You,
of course, have all the power of APL to apply to the matrix when you want to
make changes to your function. There is, however, an escape to a more specialized
environment designed especially for editing of functions. In APL2 there are two
similar system editors. These are called the "del" editors because the symbol "V"
(called "del") is used to request them.

If you don't say anything special (or if you enter") ED ITO R 1") you get the
default del editor the next time you attempt to edit a function. This editor is
designed for use at a line oriented terminal. If you enter")EDITOR 2" then
you get the extended editor the next time that you attempt to edit a function. This
editor is designed for use at a screen-oriented terminal where more than one line
can be processed at a time. Such editors are sometimes called "full screen editors."
The extended editor allows you to make additions, deletions, and changes to a
function directly often without the use of editing commands.

If you're not sure which editor you are set up to use, just type")EDITOR" ... with
no editor number specified, it will return the number that's currently in effect.

The editors are designed primarily for the editing of APL functions and operators,
although the extended editor also permits editing of character arrays. Since well­
written APL functions tend to be small, only a small set of commands are needed.
Also -in the spirit of APL- the commands are symbolic rather than English
words. This eliminates any confusions with national languages when using the
editors.

Using the Default Editor (EDITOR 1)

Throughout this discussion, the examples will form a cumulative session, just the
same as you would see at your terminal if you entered all of these commands.

You enter the default editor for a new function by entering a del and a valid header
(line zero) for the function. The system responds by prompting for line one of the
function.

V Z+F X
[lJ

You can then enter line 1 and the system will respond by prompting for line 2.

V Z+F X
[lJ A line 1
[2J

You can continue to enter lines as long as you want.

104 An Introduction to APL2

V Z+F X
[lJ A line 1
[2J A line 2
[3J A line 3
[4J

If you want to insert a line between two existing lines you must choose a number
between the two line numbers and enter that number between brackets and follow
the brackets with the line to be inserted. The system will respond by prompting for
the next insert.

V Z+F X
R line 1
R line 2
R line 3

[1]
[2]
[3]
[4] [2.1] R inserted line
[2 • 2]

You can insert as many lines as you want, subject to the system limitation of
numbers with up to four digits to the right of the decimal point. If possible, the
system will never prompt with the number of an existing line. Should the system
ever prompt with the number of an existing line or should you manually enter such
a line number then the new line you type will replace the existing line with that
number. For example, to replace line 1 with some other line you could enter:

V Z+F X
[1] R line 1
[2] R line 2
[3] R line 3
[4] [2.1] R inserted line
[2.2] [1] R new line 1
[1.1]

In addition to entering line numbers in brackets you may also enter editing
commands in the brackets. The available commands are:

Command
Symbol Meaning

0 Display
!J. Delete
-+ Quit

The display and delete commands have five forms by which the lines acted upon
are specified. They are:

[command]
[command v]
[command f-I]
[command -1]
[command f -]

apply to entire function
apply to lines in vector v
apply to lines numbered f through 1
apply to lines numbered 0 through 1
apply to lines numbered f through end

Given the function we defined above we can display the entire updated function by
entering [0] after the line-number prompt:

V Z+F X
[1] R line 1
[2] R line 2
[3] R line 3
[4] [2.1] R inserted line
[2.2] [1] R new line 1
[1 .1] [0] .. Here's our command

V
[0] Z+F X

Chapter 3: The External Environment 105

[1]
[2]
[2.1]
[3]

'iJ
[4]

A new line 1
A line 2
A inserted line
A line 3

1984-02-16 11.08.18 (GMT-8)

When you are finished defining the function you can close it (that is, establish it as
a function in your active workspace) by typing a del:

'iJ Z+F X
[1] A line 1
[2] A line 2
[3] A line 3
[4] [2.1] A inserted line
[2.2] [1] A new line 1
[1.1] [0]

'iJ
[0]
[1]
[2]
[2.1]
[3]

Z+F X
A new line 1
A line 2
A inserted
A line 3

line

'iJ 1984-02-16 11 • 08 • 18 (GMT- 8)
[4] 'iJ

The closing del may also be typed after any line entered in the function or after any
editing command.

Once a function has been defined, you can edit it again by entering only a del and
the function name.

If you are using a line-oriented terminal:

Alterations to existing lines of a function are achieved by means of the detailed
editing request (also called super-edit). The command:

[nOm]

requests a display of line "n" with the cursor (or type element) positioned at
column "m" of the display. Then, under the line to be altered you may then enter
a " /" for any character to be deleted and a digit (0 - 9) under any character
before which you wish to insert characters. Mter you press ENTER, the system
will respond by re-displaying the line with the requested characters deleted and
with blanks inserted where you want to add characters. You may then type into
the blank spaces to make the additions. For example, to make an insert in line one
of the function F defined above, you would enter:

'iJF[109]
[1] A new line 1

The cursor would be aligned under the "w". You then enter" /" to delete
characters and numbers to add spaces for insertions:

1 06 An Introduction to APL2

[1]

[1]

'iJF[109]
A new line 1

/2 4
A ne line 1

The cursor will be positioned under the first inserted blank, and you can type in the
additions.

[1]

[1]
[1 .1]

'VF[lD9]
A new line 1

/2 4
A next line for 1

When you have finished making all the modifications to the function you establish
the changed function in the workspace by using the closing del, "'V".

Using the Full Screen Editor (EDITOR 2)

The full screen editor can be used to edit defined functions, defined operators, and
character arrays. Throughout this discussion, the examples will each show what
you would see at your terminal if you had entered all of these commands; each
illustration represents the current screen-load of information.

Although the extended editor can be used at a line oriented terminal, the following
discussion is restricted to screen-oriented terminals such as the mM 3276,3277,
3278,3279, 3290, or 8775.

Here are a few principles that make using the extended editor easy:

• A line erased from the screen is not erased from the function if you also delete
the line number

• The cursor never moves unless you move it.
• Whenever you press ENTER, only the lines you have actually changed are

processed.

You enter the extended editor in much the same way as you entered the default
editor:

)EDITOR 2
'VZ+F X

The response, however, is different. The screen is cleared and replaced by the
following display:

[A]'V F.3 0000-00-00 00:00:00
[0] Z+F X

p: 1

The first line is an information line that tells you the name of the object being
edited (F in this case), the class of the object being edited (3 for function in this
case - it could also be 4 for defined operator or 2 for a variable), the time and
date of the last change to this function or operator (or zeros here, because F is a
new function), and the number of lines in the function (1 in this case because we
only defined the header). In the following discussion it's assumed that a function is
being edited. Nothing would change if it were an operator or a variable, except
that there's no timestamp shown if you're editing a variable (because APL2 doesn't
keep track of the last time that a variable was updated, but it does keep track of it
for a function or operator).

Chapter 3: The External Environment 107

At this point the screen is said to have one segment - that is, anything that you
type anywhere on the screen applies to the function F. A little later we'll see how
to specify and use multiple screen segments.

You can then add lines to the function by entering them just below line zero as
follows:

[AJV F.3 0000-00-00 00:00:00
[OJ Z+F X
A line 1
A line 2
A line 3

p: 1

Note that you don't need to type in the line numbers (although you can if you want
to). When you press ENTER, the system will respond like this:

[AJV F.3 0000-00-00 00:00:00
[OJ Z+F X
[lJ A line 1
[2J A line 2
[3J A line 3

p: 4

And again, if you want to add more lines, you type them in just below the function:

[AJV F.3 0000-00-00 00:00:00
[OJ Z+F X
[lJ A line 1
[2J A line 2
[3J A line 3
Z+(4 5 6+2)x7 8

And, as before, pressing ENTER causes this response:

[AJV F.3 0000-00-00 00:00:00
[OJ Z+F X
[lJ A line 1
[2J A line 2
[3J A line 3
[4J Z+(4 5 6+2)X7 8

p: 4

p: 5

If you want to insert a line between two existing lines you just type over the second
of them. For example, to add a line between lines 2 and 3, you just type over line
3 (... be sure to type over the brackets and line number so that APL knows that
you're not just entering some new text for line 3):

[AJV F.3 0000-00-00 00:00:00
[OJ Z+F X
[lJ A line 1
[2J A line 2
A inserted line
[4J Z+(4 5 6+2)X7 8

p: 5

Even though you typed over line 3, you'll find that line 3 is still part of the
function, unchanged. This is because no line is ever changed unless you explicitly
change or delete it. Erasing a line from the screen does not erase it from the
function (as long as the brackets and line number are also erased). Therefore,
upon pressing ENTER, the system will respond like this:

108 An Introduction to APL2

[RJV F.3 0000-00-00 00:00:00
[0 J Z+F X
[1 J R line 1
[2 J R line 2
[2.1J R inserted line
[3 J R line 3
[4 J Z+(4 5 6+2)x7 8

p: 6

In general, whenever you type in lines without line numbers, they are inserted into
the function just after the last line back that does have a line number. In this
example, we could have inserted more than one line by typing over line 4 as well,
and continued with as many insertions as we wanted, all of which would have been
placed between lines 2 and 3.

If you want to alter an existing line, you can just type over the old text of the line
with the change. As long as the line number remains on the line, it will alter that
line rather than insert a new one. For example, to add a comment to line 1:

[RJV F.3 0000-00-00 00:00:00 p: 6
[0 J Z+F X
[1 J R line 1 R NEAT FUNCTION
[2 J R line 2
[2.1J R inserted line
[3 J R line 3
[4 J Z+(4 5 6+2)x7 8

Upon pressing ENTER, the display will not change in this case.

The extended editor includes the same editor commands as the default editor:

Command
Symbol Meaning

0 Display
/). Delete
-+ Quit

and the same forms for the commands:

[commandJ
[command vJ
[command f-l J
[command -1 J
[command f - J

apply to entire function
apply to lines in vector v
apply to lines numbered f through 1
apply to lines numbered 0 through 1
apply to lines numbered f through end

In addition, the extended editor has these commands:

[
[

/ /
/ / /

J search and display
J change

These commands have the same five forms as above, with the additional option of
putting the characters N or •• (or both) after the last slash. "N" means that the
search argument is an APL name and only names should be found. (They will be
found even if they are inside quotes.) " •• " in a change command means that every
occurrence of the search argument should be changed (within the specified line
limits; for example, from lines 3-9). If no " •• " is entered, only the first occurrence
in each line (or each specified line) will be changed.

Chapter 3: The External Environment 1 09

In the extended editor, these commands may be entered on any line. In the case of
the display or search commands, the display will begin on that line and continue on
following lines until all are displayed or until the end of the screen segment.

The following are some examples of search and change commands:

[IABCIJ

[IABCI N 5-J

[IABCIXYZI 00 NJ

Search the entire function for the
characters "ABC".

Search from line 5 to the end of the
function for the name ABC. Note
that if the name ABC 1 appeared in
the function it would not be found,
but if ABC appears to be a name it
will be found even if it is in a
comment or a character constant.

Change the name ABC to X Y Z
everywhere it appears in the function.

Two more commands provide a means to manipulate blocks of lines:

[v name J
[A name J

put lines
insert lines

These commands have the same five forms as the others that have been presented
except they include a name.

The put command causes the selected lines to be saved in the active workspace as a
character matrix with the given name. It's sort of like a save command [V J,
except (in most cases) only part of the object is saved. (Notice that the symbol v
is only part of the symbol V, which makes it easy to remember.)

The insert command causes the selected lines from the named object to be inserted
into the object at the spot where the command is entered. The symbol A is often
used to mean insert and is even on the insert key of some terminals. For example,
all or part of a second function could be inserted into the one currently open. If no
name is specified, then lines from the current function are inserted (that is, it
becomes a move operation).

110 An·Introduction to APL2

Here are some examples:

[RJV F.3 0000-00-00 00:00:00 p: 6
[0 J Z+F X
[1 J R line 1 R NEAT FUNCTION
[2 J R line 2
[2.1J R inserted line
[3 J R line 3
[4 J Z+(4 5 6+2)X7 8
[v QQ 2 4J

This causes line 2 and 4 to be put into a two-row matrix named QQ. Then:

[RJV F.3 0000-00-00 00:00:00
[0 J Z+F X
[A QQJ
[2 J R line 2
[2.1J R inserted line
[3 J R line 3
[4 J Z+(4 5 6+2)X7 8

causes the contents of Q Q to be inserted after line 0:

p: 6

[RJV F.3 0000-00-00 00:00:00 p: 6
[0 J Z+F X
[O.lJ R line 2
[0.2J Z+(4 5 6+2)X7 8
[1 J R line 1 R NEAT FUNCTION
[2 J R line 2
[2.1J R inserted line
[3 J R line 3
[4 J Z+(4 5 6+2)X7 8

Since this function will be used in subsequent examples, let's delete those two lines
that we just inserted:

[RJV F.3 0000-00-00 00:00:00 p: 6
[0 J Z+F X
[O.lJ R line 2
[0.2J Z+(4 5 6+2)X7 8
[1 J R line 1 R NEAT FUNCTION
[2 J R line 2
[2.1J R inserted line
[3 J R line 3
[4 J Z+(4 5 6+2)x7 8
[~ .1 .2J

There are eight other commands that do not follow the above patterns. You have
already seen the "V" command, which closes a function if it is used at the end of a
line. In the extended editor it is normally entered on a line by itself somewhere
below the last line of the function. You have also seen the "~,, command for
exiting from the editor without fixing the function.

Chapter 3: The External Environment 111

You can enter any of the eight commands, although normally the first six are
requested by use of a PF key. The seven commands are:

112 An Introduction to APL2

Command Definition PFkey

'V
[t]
[.j,]

[T]
[1]

['V]
[A]
[-+]

Close definition PF3
Scroll up PF7
Scroll down PF8
Scroll to cursor PF9
Renumber PF2
Save PF6
Do nothing none
Quit none

Close definition ends the editing session for the current object that
you're working on. It establishes the object in the active workspace
and (if no other editing is being performed) returns you to
immediate-execution mode.

[t] Scroll up causes the first line in the segment in which the cursor is
positioned to become the last line displayed in that segment of the
screen. If this command is executed on the first screen of the
definition, no action is taken.

[.j,] Scroll down causes the last line in the segment in which the cursor is
positioned to become the first line displayed in that segment of the
screen.

[T] Scroll to cursor causes the line that the cursor is on to move to the
top of the segment. Note that the editor never moves the cursor. It
will always remain where you last placed it.

[1] Renumber causes the lines to be renumbered with integers starting
with zero. In any case, when the function is closed the lines are
renumbered.

['V] Save causes the function to be established in the workspace but
without terminating editing of the function. This may be helpful if
you are creating several similar functions. You can define the
function under one name and save it, then make changes to it
(including a change to the name), and save it again as a second
function. Realize that the function is not permanently saved on disk
(as it would be with the")SA VE" command - it's simply
established in the workspace. If you want to ensure that it's really
permanently saved, you'll still have to close the definition and
) SA V E the workspace.

[A] Do nothing is the command that the editor puts at the top of a
segment to identify the function being edited. You can enter it, too,
to mark off portions of the function while you're editing ... as soon
as you leave the editor, these lines will disappear.

[-+] Quit causes editing to be abandoned without establishing the
function in the workspace.

* * *

One characteristic of a well-written APL application is the use of many small
functions rather than a few large ones.13 Therefore, it's common when defining a
function to identify some computation that belongs in a subfunction. The extended
editor allows you to leave the first function open for editing while opening a second
function on the same screen.

A second screen segment is defined by using the "'iJ" to open a new function in the
same way that you opened the first one. Wherever you type a new del, that is
where the new screen segment will begin. For example, to open definition for
function G:

[A]'iJ F.3 0000-00-00 00:00:00 p: 6
[0] Z+F X
[1] A line 1 A NEAT FUNCTION
[2] A line 2
[2.1] A inserted line
[3] A line 3
[4] Z+(4 5 6+2)x7 8

'iJZ+G X Here's our command

When you press ENTER, the system will respond like this:

[A]'iJ F.3 0000-00-00 00:00:00 p: 6
[0] Z+F X
[1] A line 1 R NEAT FUNCTION
[2] A line 2
[2.1] A inserted line
[3] A line 3
[4] Z+(4 5 6+2)x7 8

[A]'iJ G.3 0000-00-00 00:00:00
[OJ Z+G X

p: 1

You can now add, insert, alter, and delete lines in this function just as you did in
the first one. You can make changes to both functions at once and they will both
be processed the next time you press ENTER. You may open as many functions as
you want and each time you enter an opening" 'iJ" you cause another screen
segment to be created. Of course you are limited by the size of the screen.

In addition to using a screen segment for a function definition you can define a
segment for use to do immediate calculations. To execute an APL2 expression
without leaving the editor, use the [~] command. The expression that follows this
command is executed and its result is displayed in the segment.

For example, suppose we had not opened function G. We could open an execution
segment as follows:

13 It's hoped, of course, you won't break things down so far that folks will get lost in the
forest of functions when they load the workspace. It's difficult to judge how big
functions should be for the greatest ease of use, and where the breaks should occur.
That sort of judgment simply comes from usage and personal preference. For some of
our thoughts on the subject, though, you can refer to the discussion of "APL Building
Blocks" on pages 221-226.

Chapter 3: The External Environment 113

[A]V F.3 0000-00-00 00:00:00 p: 6
[0] Z+F X
[1] A line 1 A NEAT FUNCTION
[ol] 2 3P16
[2.1] A inserted line
[3] A line 3
[4] Z+(4 5 6+2)x7 8

That will result in this:

[A]V F.3 0000-00-00 00:00:00 p: 6
[0] Z+F X
[1] A line 1 A NEAT FUNCTION
[ol] 2 3P16
123
456

If you press ENTER again the executed expression and its results will disappear
and the original function will re-appear. Remember - only the lines which you
change are processed. If instead of just pressing ENTER, you touch (alter
somehow) selected lines of the result that had been displayed, those lines will be
processed as though you had entered them.

You can execute the function you are defining if you save [V] it first:

[A]V F.3 0000-00-00 00:00:00 p: 6
[0] Z+F X
[1] A line 1 A NEAT FUNCTION
[2] A line 2
[2.1] A inserted line
[3] A line 3
[4] Z+(4 5 6+2)x7 8
[V]

[ol] F 3
LENGTH ERROR
F[5] Z+(4 5 6+2)x7 8

A

F 3
A

A

Notice that the editor does not let the function be suspended if an error occurs.
Also notice the silly error in the function. That's why you'll want to try out the
function to see if it works. Since the editing session for F is still on the screen, it's
a simple matter to move up and repair the offending line, save it again (with [V])
and try it again.

Here it is after it has been corrected:

[A]V F.3 1984-02-16 13:12:02 p: 6
[0] Z+F X
[1] A line 1 A NEAT FUNCTION
[2] A line 2
[2.1] A inserted line
[3] A line 3
[4] Z+(4 5 6+2)x2

The system's response to this last change will be:

114 An Introduction to APL2

[A]~ F.3 1984-02-16 13:13:48 p: 6
[0] Z+F X
[1] A line 1 A NEAT FUNCTION
[2] A line 2
[2.1] A inserted line
[3] A line 3
[4] Z+(4 5 6+2)x2

[.t.] F 3
12 14 16

Now that the function works, we can exit from the editor in any of four ways:

• Enter a closing ~ in each screen segment to establish the new definitions.

• Press PF3 once per segment to establish the new definitions.

• Enter [+] once per segment to abandon the editing without establishing the
new definitions.

• Press P A2 twice to interrupt the editing - none of the new definitions will be
established.

Note that if you are not currently in the editor, the line:

~F[D]~

will cause a display of the entire function in your normal session without entering
full-screen mode.

More detail on both of the APL2 editors is available in APL2 Programming:
Language Reference.

Using a System Editor (EDITOR name)

You may edit an APL defined function, defined operator, or character array using
any of the system editors.

You enter the system editors in the same way you entered the "del" editors:

)EDITOR XEDIT
~Z+F X

In response, a sequential file will be written containing the definition of the object,
and a named editor will be invoked on that file. When you close the editing session
(how you do that is up to the editor you're using), the resulting file is read and the
definition is reestablished in the workspace.

Chapter 3: The External Environment 115

Chapter 4: The Quads

This chapter will discuss the topics of System Functions, System Variables, Shared
Variables, and Event Handling. What do each of these topics have in common?
All of them rely heavily upon the use of "quad" -names ... which we'll define here.

Chapter 4: The Quads 117

System Functions and System Variables

System Functions

Although the primitive functions of APL deal only with abstract objects (arrays of
numbers and characters), it is often desirable to bring the power of the language,to
bear on the management of the environment of the system in which APL operates.
This can be done within the language by identifying certain variables as elements of
the interface between APL and its host system, and using these variables for
communication between them. While they remain abstract objects to APL, the
values of such system variables may have some required significance to the host
system.

In principle, all necessary interaction between APL and its environment could be
managed by use of a complete set of system variables, but there are situations in
which it is more convenient, or otherwise more desirable, to use functions based on
the use of system variables which may not themselves be made explicitly available.
Such functions are called, by analogy, system functions.

System variables and system functions are denoted by distinguished names that
begin with a quad ("0"). The use of such names is reserved for the system and
cannot be applied to user-defined objects. These objects cannot be copied; those
that denote system variables can appear in function headers, but only to be
localized. These localization rules may at times differ from the rules that govern
user-defined variables (taking into account their special requirements). Within
APL statements, distinguished names are subject to all the normal rules of syntax.

Like the primitive abstract functions of APL, the system functions are available
throughout the system, and can be used in defined functions. They are monadic or
dyadic, as appropriate, and have explicit results. In most cases they also have
implicit results, in that their execution causes a change in the environment. The
explicit result always indicates the status of the environment relevant to the
possible implicit result.

Altogether, eighteen system functions are provided. Five of these are concerned
with the management of the shared-variable facility and are described starting on
page 149. Eleven system functions are described here.

Chapter 4: The Quads 119

List of System Functions

OAF: Atomic Function

Monadic usage
Dyadic usage

Symbol Function Name Pages

OAF x ,It Atomic Function 120
OAT x Attributes 121-125
OCR x Canonical Representation 125
ODL x Delay 127
OEA x Execute Alternate 172-176
DEC x Execute Controlled 176-177
DES x x Event Simulation 183-188
OEX x Expunge 127
OFX x x Fix 128-130
DNA x x Name Association 130-130
ONC x Name Classification 130
ONL x x Name List 131
OSVC x x Shared Variable Control 152
OSVO x x Shared Variable Offer 150
OSVQ x Shared Variable Query 156
OSVR x Shared Variable Retraction 156
OSVS x Shared Variable State 155
OTF x Transfer Form 132-135

Note: For formal definitions of all of the system functions, please refer also
to AP L2 Programming: Language Reference.

The atomic function maps integers to characters and characters to integers. The
input may be either of those data types; the output will be the other. This function
is therefore its own self -inverse.

It is the means by which four-byte characters may be accessed for such applications
as Kanji. The atomic vector contains a copy of the first 256 characters from the
list of the four billion characters that the atomic function can access.

The atomic function uses an index origin of zero, regardless of which origin setting
the application has established. With origin set at zero, OA F is analogous to
"OA V t R" for character to numeric conversion and "OA V [R] " for numeric to
character conversion.

The atomic vector is discussed on page 140.

120 An Introduction to APL2

OA T: Attributes

1. Valence

The attributes function, OA T, returns information about each of several properties
of APL objects. Its right argument is the object name (or a matrix of names), and
its left argument shows which of the attributes you wish to interrogate.

Here are the three possible left arguments for OA T, with a list of the results shown
for each one:

Valence

1 Explicit result (1 =yes, 0 =no)
1 OA T namelist 2 Function valence (number of arg uments)

3 Operator valence (number of operands)

Fix Time (time and date of last update, in OTS format)

1 Year
2 Month
3 Day

2 OA T namelist 4 Hour
5 Minute
6 Second
7 Millisecond

Execution Properties

1 Nondisplayable
3 OA T namelist 2 Nonsuspendable

3 Ignores weak interrupts (ATTENTION)
4 Converts errors to DOMAIN ERRORs

Object Size (when written to a file)

4 OA T namelist 1 Bytes that the data and de scrip tion require
2 Bytes that the data-only requires

It may be desirable to determine under program control what the header of a
defined function or operator looks like. Rather than having to analyze the
character representation of it, you have the option of simply asking for the number
of arguments and operands, and receiving an indication of whether or not the
object is defined as having an explicit result.

Chapter 4: The Quads 121

2. Fix Time

'iJ A PLUS
[1] A+B

'iJ

1 OAT

B

'PLUS'

'iJ Z+SORT M
[1] Z+M[ALF!M;]

'iJ

1 OAT 'SORT'
020 110

000

100

)ERASE PLUS
1 OAT 'PLUS'

VAR+10 20 30
1 OAT ' VAR'

Explicit result
(yes, 1)

'iJ Z+L (F OP) R
[1] Z+R F L

'iJ

1 OAT 'OP'
121

J
The function valence

(two arguments)

The operator valence ---'
(one operand)

1 OAT 4 5 P 'PLUS VAR SORT OP
000
100
110
121

One piece of information that's often useful is the date that a function was last
modified. This date is displayed automatically by the system editors when you
display the function:

'iJSORT[O]'iJ
'iJ Z+SORT M

[1] Z+M[ALF!M;]
'iJ 1984-05-01 15.30.37 (GMT-5)

Here's the time and date of last update (the "GMT- 5"
means five hours less than GMT time)

The attribute function can supply that same information dynamically, even if the
function in question is locked.

122 An Introduction to APL2

2 OAT 'SORT'
1983 5 1 15 30 37 390

Human nature being what it is (and programming schedules being what they are),
you probably just would not update these dates every time that you made some
minor change to the function. But if you didn't change them, the whole point of
the dates would be lost. Fortunately, the system does all of the footwork in
maintaining these dates for you. Any time that the function is edited with one of
the system editors or established with OF X, the fix-time t~e stamp is updated.

Using the OAT facility, those functions can then be examined under program
control to find functions which have been updated since a particular date. For
example, here's an expression which will list the names of functions and operators,
sorted by the date of their last update (with most recently changed objects first):

LIST[ALF,2 OAT LIST+ONL 3 ~;]

(" A L F" is a variable containing an alphabet that contains your desired collating
sequence.) If you wanted to get a bit fancier, you could write a small function
which would format the time stamps and display them along with the names of the
functions, like this:

V Z+SHOW_DATES;F;I;T
[1] ADISPLAY FNS AND TIMESTAMPS; LATEST ON TOP
[2] F+F[I+'T+2 OAT F+ONL 3;]
[3] Z+F,' 56:06 06/06/00'.100IT[I;4 5 231]

V

SHOW_DATES
SHOW_DATES 17:37 06/15/83
MIOTA 18:11 04/15/83
SQUAD 18:10 04/15/83
K 17:59 0~/15/83
KWIC 1~:26 0~/1~/83

DISPLAY 8:51 0~/06/83

The time stamp returned by OA T is affected by the setting of the time zone
variable, OTZ, described on page 148.

The fix-time is always all zeros for a variable - in other words, APL2 doesn't
keep track of when each variable is changed. Similarly, any undefined name will
return a time stamp of all zeros:

Chapter 4: The Quads 123

3. Execution Properties

VAR+l0 20 30

2 OAT 'VAR'
0000000

)ERASE VAR

2 OAT 'VAR'
o 0 0 0 0 0 0

The execution properties that are available with a left argument of 3 are the
properties which are set either through use of dyadic OF X, or by locking a function
or operator with a . If all four of the execution properties are invoked, a function
or operator is said to be "locked."

(F or a discussion of dyadic
OFX, see page 129.)

o 0 0 1 OFX 'Z+L (F OP) R'
OP

Operator is now
3 OAT 'OPt nondisplayable

0 0 0 1

'VOP Operator is now
3 OAT 'OPt "locked"

1 1 1 1

'Z+R F L'

The execution properties for a variable or an undefined name are always all zeros.

124 An Introduction to APL2

4. Object Size

Any form of OA T will, of course, accept a matrix of names as its right argument
... or even a nested vector of names, if you care to pair the "each" operator from
page 41 with it:

2 OAT 2 5 p 'SORT OP
1984 5 1 15 30 37 390
1984 7 21 9 16 2 28

pO+2 OAT" 'SORT' 'OPt
1984

2

3

121

5 1 15 30 37 390

A+1 2 3 OAT- ClOP'
pA

3 1 p A

1984 7 21 9 16 2 28
111 1

1984 7 21 9 16 52 128

If you are writing arrays to files, you often need to know how much external
storage space the array will take. A file processor has to store both the data and a
description of the data (so that a matrix can still look like a matrix when it's read
back in from the file). Therefore, "4 OAT name" gives you two numbers. The
first number tells you how much space the data description and the data would
take, and the second number tells you how much space the data would take by
itself. "- / 4 OAT name" tells you how much space the data description takes
(but you almost never want to know this).

OCR: Canonical Representation

The canonical representation of a defined function or operator is obtained as a
result of applying the system function 0 C R to the character vector (or scalar)
representing the name of the function or operator. First, let's understand just what
is meant by canonical representation. The character representation of a function is a
character matrix satisfying certain constraints: the first row of the matrix
represents the function header and must be one of the forms specified in the
discussion of function headers on page 93. The remaining rows of the matrix, if
any, constitute the function body, and may be composed of any sequence of
characters. If the character representation satisfies additional constraints (such as
no redundant spaces and left justification of the nonblank character in each row), it
is said to be a canonical representation. The canonical representation of a function,
then, is the minimum form of display which will completely define the function; it is
devoid of such decorations as line numbers.

Chapter 4: The Quads 125

So, now that we understand what a canonical representation is, let's discuss a bit
more about what OCR does for us. Applying OCR to the character vector (or
scalar) representing the name of an already existing function will produce its
canonical representation. For example, if we have a function called OVERTIME
in the workspace, then:

DEF+OCR 'OVERTIME'

DEF
PAY+R OVERTIME H;TIME
TIME+OrH-40
PAY+Rx1.5xTIME

pDEF
3 21

The use of 0 C R does not change the status of the function 0 V E R TIME. It still
exists, and can be used for calculations. Thus:

7 5 8 OVERTIME 35 40 45
o 0 60

If OVERTIME should be expunged:

OEX 'OVERTIME'
1

it is erased from the workspace, and is no longer available for use:

7 5 8 OVERTIME 35 40 45
VALUE ERROR

7 5 8 OVERTIME 35 40 45
A

Because the variable "D E F" is still in the workspace and is a canonical
representation of "OVERTIME", we can reestablish the function using OFX:

OFX DEF
OVERTIME

When 0 C R is applied to an otherwise valid argument which does not represent the
name of an unlocked defined function or operator, it returns a matrix of shape
o O.

Possible error reports for OCR are RANK ERROR if the argument is not a vector
or a scalar, or DOMAIN ERROR if the argument is not a character array.

126 An Introduction to APL2

DDL: Delay

DE X: Expunge

The delay function, DDL, evokes a pause in the execution of the statement in
which it appears. The argument of the function determines the duration of the
pause, in seconds, but the accuracy is limited by possible competing demands on
the system at the moment of release. Moreover, the delay can be aborted by a
strong interrupt. The explicit result of the delay function is a scalar value equal to
the actual delay. If the argument of ODL is not a scalar with a numeric value, a
RAN K or DO M A IN error will be reported.

Generally speaking, the delay function uses only a negligible amount of computer
time (as opposed to elapsed time). It can therefore be used freely in situations
where repeated tests may be required at intervals to determine whether an expected
event has taken place. This is useful in work with shared variables as well as in
certain kinds of interactions between users and programs.

The expunge function, DE X, provides the facility to dynamically eliminate an
existing use of a name. By "existing use," we mean the current, most local copy.
Thus, DEX 'PQR' will erase the most local copy of the object PQR unless it is a
label; labels may not be expunged. As one example of its use, certain name
conflicts can be avoided by using this function.

The function returns an explicit result of 1 if the name is now unencumbered, and
a result of 0 if it is not, or if the argument does not represent a well-formed name.
A result of 1, therefore, signifies that the name is available for use, whereas a 0
signifies that it may not be used.

Expunging a shared variable will retract the sharing and erase the variable. If a
function or operator is expunged while it is active or halted, the copy that is listed
on the state indicator will persist until the execution has completed. When the
stack entry is cleared the function or operator will cease to exist.

The expunge function applies to a matrix of names and then produces a logical
vector result. DE X will report a RANK error if its argument is of higher rank than
a matrix, or a DOMAIN error if the argument is not a character array. A single
name may also be presented as a vector or scalar, or the "each" operator may be
employed, as in DEX·· 'ABC' , DEF' to erase the two names, "ABC" and
"DEF" (refer to the description of the "each" operator on page 41).

You may wish to compare the operation of DEX with that of the")ERASE"
system command, discussed on page 82. One major difference (other than form) is
that DEX discards the most local reference to a name that is currently active (which
may be a global object), and) ERASE discards only global references.

Chapter 4: The Quads 127

OFX: Fix

The definition of a function or operator can be established, or "fixed," by applying
the system function OF X to its character representation. The function OF X
produces as an explicit result the character vector which represents the name of the
function being fixed, while replacing any existing definition of a function with the
same name. A halted function or operator may be replaced using OF X, but this
will not replace the active copy on the stack.

The fix function has both a monadic and a dyadic form. Let's look at the monadic
case first.

An expression of the form OFX M will establish a function (or operator) if both of
the following conditions are met:

1. M is a valid representation of a function. It may be a matrix (with each row
representing a function line), or it may be a nested vector of vectors (with each
element representing a function line). Any matrix which differs from the
canonical representation only in the addition of nonsignificant spaces is a valid
representation.

2. The name of the function to be established does not conflict with an existing
use of the name for a variable or label.

The first row of the matrix (or first item of the nested vector) represents the
function header and must be one of the forms specified in the discussion of function
headers on page 93. The remaining rows (or items), if any, constitute the function
body, and may be composed of any sequence of valid APL characters (refer to the
table on page 11).

If the expression fails to establish a function then no change occurs in the
workspace and the expression returns a scalar index of the row in the matrix
argument or the element in the nested vector argument where the first fault was
found. If multiple errors are present, only the first will be reported. (This value is
origin dependent.) If the argument of OF X is not a matrix or a nested vector, a
RANK ERROR will be reported, and if it is not a character array, a DOMAIN
ERR 0 R will result.

For example,

M+ 2 8 p 'Z+ROOT NZ+N*.5

M
Z+ROOT N
Z+N*.5

OFX M
ROO T 4(The name of the function is returned

if OF X completed successfully

'VROOT[OJ'V
'V Z+ROOT N newly-created function

[1J Z+N*O.5
'V

128 An Introduction to APL2

OFX 'Z+N ROOT A' 'Z+A*+N'
ROOT

VROOT[O]V
V Z+N ROOT A

[1] Z+A*+N
V

OFX 1 2 3

function has been replaced

DOMA IN ERR 0 R-. argument doesn't match

1~

OF X 1 2 3 conformability rules
A

OFX 'Z+A*+N' 'Z+N ROOT A'

The first item isn't valid as a header
line, so the function can't be created.

Now let's look at the dyadic form of OFX. A left argument may optionally be
supplied to control the execution properties of the newly-created function or
operator. If present, the argument must be composed of four boolean elements. If
there is no left argument, the action will be the same as 0 0 0 0 OFX M. A
1 specifies the inclusion of one of the properties; a 0 declines use of the property.

These four properties are:

1. Prevent the display of the function or operator (use of the built-in editors will
return DEFN ERROR, and OCR will return a 0 by 0 matrix).

2. Prevent suspensions, as is done with primitive functions.

3. Ignore weak interrupts (attention) during its execution.

4. Convert error messages to DOMAIN ERROR, to further hide its internal
workings. [Resource and environment errors, such as W S F U L L, will
continue to be reported.]

If all four of these properties are specified, the resultant function or operator is said
to be "locked." The setting of these properties (among other things) may be read
through the use of the attributes function, OA T, described on pages 121-125.

If the left argument to OF X is a single 1 or 0, the normal rules of scalar extension
will logically replicate that value to apply to all four properties. Therefore,
"1 1 1 1 OFX name" and "1 OFX name" will each create a locked
function.

Chapter 4: The Quads 129

ON A: Name Association

ONC: Name Classification

Normally when you enter a name, its value is determined within the workspace.
You can use 0 NAto declare that the value of the name is determined outside the
workspace.

The left argument is a two-item vector giving the desired name class and the
number of the name-resolving processor.

3 11 DNA 'DAN'
1

This declares that'D AN' is a function whose value is provided by associated
processor 11. Thus using 0 N A, programs written in other languages can be
executed as though they were locked functions. For more information, see APL2
Programming: System Services Reference. The processors supplied with APL2 are:

11 FORTRAN, Assembler Language

10 REXX

Here's an example of some functions available with ON A:

A+1 1 DAN 'NOW IS THE TIME'
A

NOW IS THE TIME
pA

4

The monadic function 0 N C accepts a matrix of characters and returns a numeric
indication of the class of the name represented by each row of the argument.
Alternatively, the "each" operator may be employed, as in
ONC·· 'ABC' , DEF' to return the classification of the two names, "ABC"
and "DEF" (refer to the description of the "each" operator on page 41). A single
name may also be presented as a vector or scalar, as in ONC 'FN'.

The result of ON L is a suitable argument for ON C, but other character arrays may
also be used, in which case the possible results are integers ranging from -1 to 4:

Result Meaning

- 1 Invalid name
0 Unused (but valid) name
1 Label
2 Variable
3 Function
4 Operator

The significance of 1, 2, 3, and 4 are as for ON L; a result of 0 signifies that the
corresponding name is available for any use; a result of -1 signifies that the
argument is not available for use as a name. The latter case may arise because the
name is not a valid name at all (as in ON C 'A. B ').

130 An Introduction to APL2

ON L: Name List

Once a name has been accepted for sharing via OSVO, its classification becomes 2
(variable), even if no value has yet been assigned.

For discussion of a related function, see ON L (name list), following.

The dyadic function ON L yields a character matrix, each row of which represents
the name of an object in the dynamic environment. The rows of the result are
sorted into OA V order.

The right argument is an integer scalar or vector which determines the classes of
the names desired, with the following permissible values:

Right
Argument Result

1 Labels
2 Variables
3 Functions
4 Operators

The left argument is a scalar or vector of alphabetic characters which restricts the
names produced to those with an initial letter occurring in the argument. For
example, 'A Be' ON L 3 4 returns the names of all functions or operators
whose names begin with either A, B, or C.

The monadic function ON L behaves analogously with no restriction on initial
letters. For example, ONL 2 produces a matrix of all variable names, and either
ON L 3 4 or ON L 4 3 produces a matrix of all function and operator names.

The uses of ON Linclude the following:

• In conjunction with DE X, all the objects of a certain class can be dynamically
erased; or a function can be readily defined that will clear a workspace of all
but a preselected set of objects.

• In conjunction with OCR, functions can be written to automatically display the
definitions of all or certain functions in the workspace, or to analyze the
interactions among functions and variables.

• The dyadic form of ON L can be used as a convenient guide in the choice of
names while designing or experimenting with a workspace.

For discussion of a related function, see ONC (name classification) on page 130.

Chapter 4: The Quads 131

OTF: Transfer Form

What's a Transfer Form?

Before we discuss how the transfer form function works, perhaps we should discuss
what "transfer form" is.... Okay:

Transferring workspaces between different versions of APL has always been a
difficult procedure. Transferring workspaces between systems is fine, but if the
two systems are not running the same version of APL, all bets are off. The
problem is that the internal format of the workspace differs wildly between
different implementations. Sure, the workspaces look pretty much the same to you,
as a user, but to the system, foreign workspaces look. .. - well, pretty foreign.

Several years ago, a Standards organization met to discuss this problem. What
resulted was a recommended convention for formatting APL objects (such as
functions and variables) so that they could be moved between systems. To
accomplish this, each system would need to have a means of transferring objects
from APL workspaces to a transfer file. (The file would be in an agreed-upon
format.) The file would then be moved between systems, and the contents of the
file would be moved back into a new workspace, where the objects would be
reestablished as APL objects.

At the heart of this procedure is the need for a function that can convert the APL
objects from the system-dependent format to the standard interchange format and
back again. That function can be (and, in the past, has been) a defined function.
It also can be (and is now) a primitive function. ...Introducing 0 T F (applause).

There are several forms to discuss, but as a starting point, let's say that the transfer
form function takes as its right argument the name of the object that you wish to
convert into the agreed-upon format. This standard interchange format may be
produced using "1 OTF objectname". That format looks like this:

132 An Introduction to APL2

M+3 4P112

M

! ~ ~ ~} --- Let's say that your data looks like this
9 10 11 12

1 OTF 'M'
NM 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12

~~~----------------------------_I X 
Data t 

Shape: 3 4 

Rank: 2 (matrix) 

Object name: "M" 

Data type: Numeric 

This information is sufficient to recreate that numeric matrix on another system, 
regardless of what version of APL exists there. A similar format, of course, exists 
for other data types, and for functions. 

When the interchange format was put together, nested array systems and 
user-defined operators hadn't yet been developed. The interchange format, 
therefore, didn't address these items at all. So, APL2 has an alternate format that 
is suitable for transferring any APL2 objects onto and off of a transfer file. This 
alternate format is available by using a left argument of 2: 

(1 1~M)+'NESTED' 'ARRAY' 'EXAMPLE' 

M 
NESTED 2 3 4 

5 ARRAY 7 8 
9 10 EXAMPLE 12 

pM 
3 4 

2 OTF 'M' 
M+3 4p'NESTED' 2 3 4 5 'ARRAY' 7 8 9 10 'EXAMPLE' 1~ 

"Gee, that looks really familiar! Isn't that displayed in just the same way that 
you'd enter it?" Well, actually, now that you mention it, it does look 

Chapter 4: The Quads 133 



"coincidently" quite similar. And, yes, it happens to be directly executable on 
APL2. 

Let's try a defined function this time: 

V'Z+A PLUS B 
[lJ Z+A + BV' ........ 1------ Good, not too complicated 

1 OTF 'PLUS' 
FPLUS 2 2 10 Z+A PLUS BZ+A+B 

A+2 OTF 'PLUS' 
A 

OFX 'Z+A PLUS B' 'Z+A+B' 

pA 
24 

Rebullding Transfer Forms Back Into APL Objects 

Now that you've got all of the APL objects into transfer form, how do you convert 
them back? ... What's the inverse of OTF? 

Well, it's OTF. That's right, OTF is its own self-inverse. If the right argument to 
OTF is a valid APL name, it performs the APL-to-transfer-form conversion that 
we've just seen. If, on the other hand, the right argument is not a valid APL name, 
OTF attempts to perform a transfer form-to-APL conversion, and, in true inverse 
fashion, returns the name of the newly-created APL object. If no object could be 
created (perhaps due to an error in the data), OTF returns an empty character 
vector. 

)ERASE PLUS 

PLUS 
VALUE ERROR 

PLUS 
1\ 

A 
DFX 'Z+A PLUS B' 'Z+A+B' 

2 OTF A 
PLUS 

2 PLUS 2 
4 

134 An Introduction to APL2 



Fine. Now we can convert the APL objects both to and from the transfer form. 
But what do we do from here? How does the transfer form get out to a file, or 
back again? 

Moving APL Objects To and From Transfer Flles 

System Variables 

There are two system commands built-in to APL2 for moving these converted 
objects in and out of the workspace. They are" ) IN" (to get the data into the 
workspace) and" ) OUT" (to get the data from the workspace to the file). In fact, 
using ) IN and ) 0 U T, you don't even have to get involved with the nitty-gritty 
detail of running each of your functions and variables through OTF. The system 
commands do all of that for you. But OTF can always be employed for creating 
special files for special conversions. And with a little imagination, the" 2 OT F" 
form really opens up some possibilities for creative constructions. For an example 
of this, we'll be getting to an editing example a little l~ter on (on pages 200-201). 

Those two system commands are discussed at length in the system command 
section. Refer to: 

• )IN 
• )OUT 

(Page 80) 
(Page 81) 

See also the pictorial diagram called "The Effects of Selected System Commands," 
on page 69. 

And for more in-depth coverage of this subject, refer to APL2 Migration Guide. 

System variables are special instances of shared variables, which are discussed in 
depth on pages 149-157. The characteristics of shared variables that are most 
significant here are these: 

• If a variable is shared between two processors, the value of the variable when 
used by one of them may well be different from what that processor last 
specified, and 

• Each processor is free to use or not use a value specified by the other, 
according to its own internal workings. 

System variables are shared between a workspace and the APL processor. Such 
sharing takes place automatically each time a workspace is activated and, when a 
system variable is localized in a function, each time the function is used. 

Chapter 4: The Quads 135 



The table on the next page lists the system variables and gives their significance 
and use. Three classes can be discerned: 

1. With most of the system variables, the value specified by the user (or available 
in a clear workspace) is used by the APL processor during the execution of 
operations to which they relate. If this value is inappropriate, or if no value has 
been specified after localization, a 0 - - ERR 0 R (for instance, a 
"oIO ERROR") will be evoked at the time of execution. These variables are 
reset by the system to a default value following a ) CLEAR operation. 

Examples: OCT 
OEM 
oET 
oFC 
oIO 
oL 
oLX 
opp 
OR 
oRL 
oSVE 

Comparison Tolerance 
Event Message 
Event Type 
Format Control characters 
Index Origin 
Left Argument 
Latent Expression 
Printing Precision 
Right Argument 
Random Link 
Shared Variable Event 

2. Some of the variables are treated the same as those in the first case, except that 
global values set by the user will persist across ) LOA D and ) C LEA R 
operations. These are referred to as session variables, since a single setting can 
persist for the duration of the terminal session. 

Examples: oHT 
oNLT 
oTZ 
oPW 

Horizontal Tabs 
National Language Translation 
Time Zone 
Printing Width 

3. With the remainder of the system variables, localization or setting by the user 
are immaterial. The APL processor will always reset the variable before it can 
be used again. 

136 An Introduction to APL2 

Examples: oAI 
oAV 
oLC 
oTC 
oTS 
OTT 
oUL 
oWA 

Accounting Information 
Atomic Vector 
Line Counter 
Terminal Control characters 
Time Stamp 
Terminal Type 
User Load 
Workspace Available 



Environment within a Clear Workspace 

These values are present at sign-on time (unless reset through the automatic 
loading of a CON TIN U E workspace), and will then be carried forward 
following a )LOAD or )CLEAR: 

OHT Horizontal Tabs to 

ONLT National Language ' , (The initial language 
Translation 1 depends upon the 

country where the 
system is located) 

OPW Printing Width1 (Depends upon the type of 
terminal being used) 

OTZ Time Zone1 (Depends upon the loca-
tion of the system) 

)PBS Printable Backspace _ (that is, 0 N) 
)EDITOR System Editor 1 

These values are present following) CLEAR; the settings of the entries in the 
upper chart will be carried over from the previous workspace: 

OL 
DR 
OCT 
OEM 
OET 
OFC 
OIO 
OLC 
OLX 
OPP 
OPR 
ORL 
OSVE 
OWA 

)WSID 

)SI 

Left Argument 
Right Argument 
Comparison Tolerance1 

Event Message 
Event Type· 
Format Control 
Index Origin 
Line Counter 
Latent Expression 
Printing Precision1 

Prompt Replacement 
Random Linkl 
Shared Variable Event 
Workspace Available1 

Workspace name 
Workspace password 
State indicator 

No value 
No value 
1E-13 
3 Op' 
o 0 
.,*0_ 
1 
to , , 
10 , , 

-

7*5 ++ 16807 
o 
(Depends upon the local 
installation, and in some 
systems, upon options 
selected by the user) 
None (CLEAR WS) 
None 
Cleared 

1 These items have values which may vary from system to system. 

F or entries where values are shown, those values were chosen as being 
widely-used values. 

(For your convenience, this is a repeated copy of the same table that appeared in 
the section "System Commands" on page 65.) 

Chapter 4: The Quads 137 



Comparison of System Variable Characteristics 
Sorted by Class 

Global value persists over a ) C LEA R or a ) LOA D 
Cannot be effectively localized 

Ignores an assignment 
Set by the system upon an error 

Symbol Name 

, , 
· · · · OCT Comparison Tolerance 

· · · · oFC Format Control Characters 

· · · · oIO Index Origin 

· · · · oLX Latent Expression 

· · · · opp Printing Precision 

· · · · oPR Prompt Replacement 

· · · · oRL Random Link 

· • · · . [!] Character Input/Output 

· • · · 0 Evaluated Input/Output 

· • · · oSVE Shared Variable Event 

· • · • oL Left Argument 

· • · • OR Right Argument 

· • • • OEM Event Message 

· • • • oET Event Type 

· • • · oAI Accounting Information 

· • • · oAV Atomic Vector 

· • • · oLC Function Line Counter 

· • • · oTC Terminal Control Characters 

· • • · oTS Time Stamp 

· • • · OTT Terminal Type 

· • • · oUL User Load 

· • • · oWA Workspace Available 

• · · · oHT Horizontal Tabs 

• · · · oNLT National Language Translation 

• · · · oPW Printing Width 

• · · · oTZ Time Zone 

Not all of the system variables are discussed in this manual. 

* For a description of these system variables, please refer to APL2 
Programming: Language Reference. 

138 An Introduction to APL2 

Pages 

* 
216-217 
19-20 
142 
* 
195-201 
* 
195-201 
193,8 
156 
165 
165 
179-182 
177-179 
* 
140 
164 
146 
147 
147 
* 
* 
141 
143-145 
* 
148 



Comparison of System Variable Characteristics 
Sorted Alphabetically by Symbol 

Global value persists over a ) C LEA R or a ) LOA D 
Cannot be effectively localized 

Ignores an assignment 
Set by the system upon an error 

Symbol Name 

, '. Ir 

· • · · I!l Character Input/Output 

· • · · 0 Evaluated Input/Output 

· • • · oAI Accounting Information 

· • • · oAV Atomic Vector 

· · · · OCT Comparison Tolerance 

· • • • OEM Event Message 

· • • • oET Event Type 

· · · · oPC Format Control Characters 

• · · · oHT Horizontal Tabs 

· · · · oIO Index Origin 

· • · • oL Left Argument 

· • • · oLC Function Line Counter 

· · · · oLX Latent Expression 

• · · · oNLT National Language Translation 

· · · · opp Printing Precision 

· · · · oPR Prompt Replacement 

• · · · oPW Printing Width 

· • · • OR Right Argument 

· · · · oRL Random Link 

· • · · oSVE Shared Variable Event 

· • • · oTC Terminal Control Characters 

· • • · oTS Time Stamp 

· • • · OTT Terminal Type 

• · · · oTZ Time Zone 

· • • · oUL User Load 

· • • · oWA Workspace Available 

Not all of the system variables are discussed in this manual. 

* For a description of these system variables, please refer to APL2 
Programming: Language Reference. 

Pages 

195-201 
193,8 
* 
140 
* 
179-182 
177-179 
216-217 
141 
19-20 
165 
164 
142 
143-145 
* 
195-201 
* 
165 
* 
156 
146 
147 
147 
148 
* 
* 

Chapter 4: The Quads 139 



OA V: Atomic Vector 

The atomic vector, OA V, is a 256-element character vector, containing all possible 
characters. Certain elements of OA V may be terminal control characters, such as 
carriage return or linefeed, but other elements of OA V may neither print nor 
exercise control. The indices of any known characters can be determined by an 
expression such as OA V t 'A B C 4.n.Q. ' . 

The sequence of the atomic vector currently matches mM's EBCDIC convention; 
however, the ordering of OA V is always implementation dependent. Its order may 
occasionally be altered to provide different capabilities, and it frequently differs 
between different versions of APL. indexing selected characters out of OA V in 
defined functions may lead to improper operation if the order of OA V changes in 
the future. If you need to access certain characters from OA V by means of 
indexing, you may want to consider the use of a variable containing the special 
characters that your application needs. You may also find that the use of OTC 
could alleviate some of these problems. 

The following chart represents the order of the characters in "1 6 1 6 p OA V". 
Their positions are shown in both decimal (base 10) and hexadecimal (base 16). 
To find the position of any character in the chart, simply add its row and column 
positions together, and add the index origin in which you are working. For 
example, the "$" character is located at decimal position 8 0 + 11 + OI 0, or 
position 92 in origin 1. 

140 An Introduction to APL2 



0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
Decimal 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Decimal 

+------ ------+ 
I Hex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hex I 
I 0 1 2 3 4 5 6 7 8 9 A B C D E F I 
I +-----------------------------------+ 

00 00 00 00 
16 10 10 16 
32 20 20 32 
48 30 30 48 
64 40 4 11 Q 12 E. E Q ll. I ¢ . < ( + 40 64 
80 50 & tl K L. M N. Q P. Q li $ * ) .., 50 80 
96 60 - / S. 'l. If. E fi. X- l ~ , % > ? 60 96 

112 70 A 121 .1 .f v # @ , = " 70 112 
128 80 ,...., a b c d e f g h i + 

'" 
~ r L -+ 80 128 

144 90 0 j k 1 m n 0 p q r ::::> c 0 -+- 90 144 
160 AO ,...., s t u v w x y z n u J. [ ~ 0 AO 160 
176 BO a € 1. P w x \ T 'V h. T ] ;it I BO 176 
192 CO { A B C D E F G H I 'f'< ¥ D <I> lSI ~ CO 192 
208 DO } J K L M N 0 p Q R I " • [!] A DO 208 
224 EO \ S T U V W X Y Z f , .. e m • EO 224 - . 
240 FO 0 1 2 3 4 5 6 7 8 9 Tt} ~ • ~ FO 240 

+-----------------------------------+ 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F Hex 
+------ ------+ 

Decimal 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 Decimal 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

Not shown in the chart, of course, are the terminal-control characters, such as 
backspace and new line. 

Refer also to "OAF" (the atomic function) on page 120. 

OFC: Format Control characters 

o H T: Horizontal tabs 

Format control characters, available from OFC, are used to control the formatting 
of data, primarily through the use of the format function (.). 

For details of the use of OF C, refer to the description of picture format on pages 
209-217; a table showing the usage of OFC appears on pages 216 and 217. 

The system variable OH T is not currently supported on this version of APL2. 
OHT is designed to tell APL where you have set the tabs on your terminal, so that 
APL can use automatic horizontal tabbing to speed up the printing of all of your 
output. Its name is supported on APL2 to provide compatibility with other versions 
of APL, so that existing functions will not get a V A L U E ERR 0 R on the name. 

Chapter 4: The Quads 141 



OL X: Latent Expression 

The APL statement represented by the latent expression is automatically executed 
whenever the workspace is activated with a ")LOAD" command. Formally,OLX 
is used as an argument to the execute function (~OLX), and any error message will 
be appropriate to the use of that function. 

Here are some common forms of the latent expression: 

To invoke an arbitrary function F: 
OLX+'F' 

To print a message upon activation of the workspace: 
OLX+' , 'FOR NEW FEATURES IN THIS WS ENTER: NEW'" 

To automatically restart a suspended function: 
OLX+'+10' 

The variable OL X may also be localized within a function and respecified therein 
to furnish a different latent expression when the function is suspended. For 
example: 

OLX+'START' 

VSTART;OLX 
[1] OLX+'+OpO+"WE CONTINUE FROM WHERE WE LEFT OFF'" 
[2] 'WE NOW BEGIN LESSON 2' 
[3] DRILL_FUNCTION 
[4] V 

)SAVE ABC 
7/18/1984 12.21.39 (GMT-5) 

On the first activation of workspace ABC, the function S TAR T would be 
automatically invoked; if it were later saved with START haIted, subsequent 
activation of the workspace would automatically continue execution from the point 
of interruption. 

142 An Introduction to APL2 



ON LT: National Language Translation 

The national language translation variable, 0 N L T, handles translation of error 
messages and system commands into any of several natural languages. 

ON L T is set by assigning to it the name of a national language, entered in that 
language. For example, to select German, set ONLT+' DEUTSCH'. 

The languages that are currently supported are: 

Language ONLT+ 

Danish 'DANSK' 
English ' , 
Finnish 'SUOMI' 
French 'FRANCAIS' 
German 'DEUTSCH' 
Hebrew 'HEBREW' 
Italian 'ITALIANO' 
Katakana 'KATAKANA' 
Norwegian 'NORSK' 
Portuguese 'PORTUGUES' 
Spanish 'ESPANOL' 
Swedish 'SVENSKA' 

The initial default value of ONLT (at sign-on time) is dependent upon the location 
of the system (so that a system in France can default to French, and so forth). In 
English-speaking countries, this initial value is an empty character vector 
(ONLT+' '), causing the default language to be English. In other countries, the 
initial value may be one of the other entries from the preceding table. In any event, 
a null entry will always select English. 

If ON LT is set to anything invalid, the system will reset it to an empty vector, 
causing translations to be in English. For example, ONLT+' ENGLISH' is 
invalid, so it causes the system to default to English (got that?) ... but then, the 
same could be said of ONLT+' PIG LATIN'. 

Chapter 4: The Quads 143 



Once a national language has been selected through the use of ON L T, error reports 
will be displayed in that language, and system commands may be entered either in 
that national language or in English. For example: 

ONLT+' , ONLT+'FRANCAIS' 

1 2 3+4 5 
LENGTH ERROR 

1 2 3+4 5 
ERREUR DE DIMENSION 

1 2 3+4 5 1 2 3+4 5 
A A A A 

ONLT+'DEUTSCH' ONLT+'NORSK' 

1 2 3+4 5 
LAENGENFEHLER 

1 2 3+4 5 
LENGDE-KONFLIKT 

1 2 3+4 5 1 2 3+4 5 
A A A A 

This setting also affects the display of the error messages in OEM: 

144 An Introduction to APL2 

ONLT+'FRANCAIS' 
XYZ 

VALEUR NON DEFINIE 
XYZ 
A 

OEM 
VALEUR NON DEFINIE 

XYZ 

3 18 

A 

pOEM 

ONLT+'DEUTSCH' 
OEM 

VALEUR NON DEFINIE 
XYZ 
A 

pOEM 
3 18 

The value of OEM is based 
upon the setting of ON LT at 
the time that the error 
occurred. 



The setting of 0 N L T also allows you to enter system commands in other than 
English. For example, 

ONLT+' , 
)LOAD DATA 

SAVED 7/14/1984 12.11.19 (GMT-5) 

ONLT+'DEUTSCH' 

)LADE DATA ...... 10------ ")LOAD", in German. 
GESPEICHERT 7/14/1984 12.11.19 (WEZ-5) 

ONLT 
DEUTSCH 

ONLT+'SUOMI' 

)LATAA DATA ...... ~--- ")LOAD", in Finnish. 
TALLETETTU 7/14/1984 12.11.19 (GMT-5) 

ONLT 
SUOMI 

)TYHJENNYS .. ")CLEAR", in Finnish. 
TYHJ# TY@TILA 

~ By the way, the" #" and "@" symbols are 
national-use symbols, so they will have different 
graphics in Finland than they have in the United 
States. 

Notice, however, that you can always enter the system commands in English: 

ONLT 
SUOMI 

)LOAD DATA 
TALLETETTU 7/14/1984 12.11.19 (GMT-5) 

Notice also that ONLT is a session variable; thus, as shown in the examples above, 
its value will persist over a )LOAD or ) CLEAR. 

For a complete list of the system commands and the error messages in each of the 
supported national languages, refer to the appendix of APL2 Programming: 
Language Reference. 

Chapter 4: The Quads 145 



OTC: Terminal Control Characters 

The Terminal Control variable, OTC, is a character vector containing characters 
which control screen or page positioning on a terminal. These characters are: 

Element Character 

1 Backspace 

2 New line (cursor or carriage-return) 

3 Line feed (feed up one line without 
returning to the left) 

, 'V ' ,OTC[ 1] , ' _' 

(realize that not all terminals are able 
to display lines with backspaces in them) 

'NEW',OTC[2],'LINE',OTC[2],'CHARACTERS' 
NEW 
LINE 
CHARACTERS 

LINE 
'LINE',OTC[3],'FEED',OTC[3],'CHARACTERS' 

FEED 
CHARACTERS 

While OTC currently contains three characters, it is recommended that you don't 
consider its length to be fixed. Future extensions could add additional elements. 

146 An Introduction to APL2 



o T S: Time Stamp 

OT T: Terminal Type 

The time stamp variable, OTS, is a seven-element numeric integer vector, 
containing the current system time and date, in this format: 

Element Meaning Range 

1 Year (Four digits) (year) 
2 Month 1-12 
3 Day of the month 1-31 
4 Hour (on a 24-hour clock) 0-23 
5 Minute 0-59 
6 Second 0-59 
7 Millisecond 0-999 

For example, 

OTS 
1984 6 21 14 15 31 127 

OTS 
1984 6 21 14 15 33 229 

pOTS 
7 

The hours position will roll over to 0 at midnight; therefore, one second past 
midnight will display like this: 

OTS 
1984 6 22 0 0 1 0 

The default setting for the time stamp will usually indicate either GMT or the local 
time for the city where that system is located - either of which may not match 
your own local time. To reset it for your own local time, see OTZ (time zone) on 
page 148. 

o T S is respecified by the system every time it's referenced, so assigning a value to 
it or localizing it has no effect .... You can try it, of course ... 

OTS+1946 5 16 10 30 0 0 
OTS 

1984 6 21 14 16 2 124 
... but do you/eel 
any younger?? 

The Terminal Type variable, OTT, is a numeric scalar showing the type of terminal 
that you are using for your APL session. 

Chapter 4: The Quads 147 



OTZ: Time Zone 

Here are its possible values: 

Value Terminal Type 

0 Indeterminate 
1 Correspondence 
2 PTTC/BCD 
3 (Not currently used) 
4 3270 with APL feature 
S 3270 without APL feature 

OTT is respecified by the system every time it's referenced, so assigning a value to 
it or localizing it has no effect. 

The time zone variable, OTZ, is a numeric scalar showing your local time 
displacement from Greenwich Mean Time (GMT). The initial setting (at sign-on 
time) is chosen by the system which you are using. In general, its initial value will 
usually indicate either GMT or the local time for the city where that system is 
located - either of which may not match your own local time. 

To set it to indicate your time zone, specify the number of hours that must be 
added to Greenwich Mean Time to match your local time. For example, U.S. 
Eastern Standard Time would be set by OTZ+ - S (five hours less than GMT), 
and British Summer Time would be set by OTZ+1 (as in "Spring forward, Fall 
back"). 

The setting of 0 T Z controls the display of 0 T S (time stamp), described on page 
147, and workspace "SA VED"- dates: 

OTZ 
o 

)LOAD MYWORK 
SAVED 7/19/84 4.13.27 (GMT) 

OTZ+-S 
)LOAD MYWORK 

SAVED 7/18/84 23.13.27 (GMT-S) 

OTZ is a session variable, so its value is carried over following a )LOAD or 
) CLEAR [ ... after all, you don't change time zones when you load a workspace.] 

148 An Introduction to APL2 



Shared Variables 

Two otherwise independent concurrently operating processors can communicate, 
and thereby be made to cooperate, if they share one or more variables. Such 
shared variables constitute an interface between the processors, through which 
information may be passed to be used by each for its own purposes. In particular, 
variables may be shared between two active APL workspaces, or between an APL 
workspace and some other processor that is part of the overall APL system, to 
achieve a variety of effects including the control and utilization of devices such as 
printers, card readers, magnetic tape units, and magnetic disk storage units. 

In use in an APL workspace, a shared variable may be either global or local, and is 
syntactically indistinguishable from ordinary variables. It may appear to the left of 
an assignment, in which case its value is said to be set, or elsewhere in a statement, 
where its value is said to be used. Either form of reference is an access. 

At any instant a shared variable has only one value, that last assigned to it by one 
of its owners. Characteristically, however, a processor using a shared variable will 
find its value different from what it might have set earlier. 

A given processor can simultaneously share variables with any number of other 
processors. However, each sharing is bilateral; that is, each shared variable has 
only two owners. This restriction does not represent a loss of generality in the 
systems that can be constructed, and commonly useful arrangements are easily 
designed. For example, a shared file can be made directly accessible to a single 
control processor which communicates bilaterally with (or is integral with) the file 
processor itself. In turn, the central processor shares variables bilaterally with each 
of the using processors, controlling their individual access to the data, as required. 

It was noted on page 135 that system variables are instances of shared variables in 
which the sharing is automatic. It was not pointed out, however, that access 
sequence disciplines are also imposed on certain of these variables, although one 
effect of this was noted; namely, variables like the time stamp accept any value 
specified, but continue to provide the proper information when used. The 
discipline that accomplishes this effect is an inhibition against two successive 
accesses to the variable unless the sharing processor (the system) has set it in the 
interim. 

When ordinary "undistinguished" variables are to be shared, explicit actions are 
necessary to effect the sharing and establish a desired access discipline. Six system 
functions are provided for these purposes: three for the actual management and 
three to provide related information. Hang on; we'll cover those in just a bit. 

Chapter 4: The Quads 149 



Distinguished Names for Controlling Shared Variables 

Symbol 

osvc 
oSVE 
OSVO 
oSVQ 
oSVR 
OSVS 

System variable 

x 

System function with Monadic usage 
System function with Dyadic usage 

x 

x 
x 
x 
x 

Function or Variable Name 

x Shared Variable Control 
Shared Variable Event 

x Shared Variable Offer 
Shared Variable Query 
Shared Variable Retraction 
Shared Variable State 

For formal definitions of all of the system functions and variables, refer 
also to APL2 Programming: Language Reference. 

os V 0: Shared Variable Offer 

Page 

152 
156 
150 
156 
156 
155 

A single offer to share is of the form P OS VON, where P is the identification of 
another processor and N is a character vector representing a pair of names. The 
first of this pair is the name of the variable to be shared, and the second is a 
surrogate name which is offered to match a name offered by the other processor. 
The name of the variable may be its own surrogate, in which case only the one 
name need be used, rather than two. For example, the three sets of actions shown 
below all have the same effect, which is to share one variable between two 
processors 1 2 3 4 and 5 6 7 8, the variable being known to the former as ABC, and 
to the latter as Q. 

150 An Introduction to APL2 



User 1234: User 5678: 

5678 OSVO 'ABC Y' 
1 

1234 OSVO 'Q Y' 
2 

5678 OSVO 'ABC Q' 
1 1234 OSVO 'Q' 

2 

5678 DSVO 'ABC' 1234 OSVO 'Q ABC' 
1 2 

The surrogate names have no effect other than to control the matching, making it 
possible for one processor to operate with no direct knowledge of, or concern with, 
the variable name used by the other. The same surrogate can be used in a 
succession of offers to the same processor, in which case they are matched in 
sequence by appropriate counter-offers. The same surrogate may also be used for 
offers to any number of other processors at the same time. However, since a 
variable may be offered to (or shared with) only one other processor at a time, 
each coincident use of a particular surrogate name must be associated with a 
different variable name. 

The explicit result of the expression P OS VON is the degree of coupling of the 
name or name pair in N: zero if no offer has been made, one if an offer has been 
made but not matched, two if sharing is completed. An offer to any processor 
(other than the offering processor itself) increases the coupling of the name offered 
if the name has zero coupling and is not the name of a label, function, or operator. 
An offer never decreases the coupling. 

The monadic function OS V 0 does not affect the coupling of the name represented 
by its argument, but does report the degree of coupling as its explicit result. If the 
degree of coupling is one or two, a repeated offer has no further implicit result, and 
either monadic or dyadic OSVO may be used for inquiry. Advantage is taken of 
this in the following example of a defined function for establishing sharing with 
processor identification PI D using a shared variable named in N AM E: 

Chapter 4: The Quads 151 



V COUPLING+PID OFFER NAME 
[1] OSVE+10 A START THE COUNTDOWN 
[2] A A MAKE THE OFFER: 
[3] LOOP:+(2=COUPLING+PID OSVO NAME)/OKAY 
[4] +(O~OSVE)/LOOP A WAIT FOR ACCEPTANCE 
[ 5 ] 'NO DEAL' 
[6] +0 
[7] OKAY: 'ACCEPTED' 

V 

If the arguments of OSVO fail to meet any of the basic requirements, the 
appropriate error report is evoked and the function is not executed. If a user 
attempts to share more variables than the quota allotted to him by the system 
administrator, the error report will be SYSTEM LIMIT. (If for any reason the 
shared variable facility itself is not available, the same report could be given.) An 
offer to a processor will be tendered, whether or not the processor happens to be 
available. 

The value of a shared variable when sharing is first completed is determined thus: 
if both owners had assigned values beforehand, the value is that assigned by the 
first to have offered; if only one owner had assigned a value, that value prevails; if 
neither had assigned a value, the variable has no value. Names used in sharing are 
subject to the usual rules of localization. 

A set of offers can be made by using a vector left argument (or a scalar or one­
element vector which is automatically extended) and a matrix right argument, each 
of whose rows represents a name or name pair. The offers are then treated in 
sequence and the explicit result is the vector of the resulting degrees of coupling. If 
the quota of shared variables is exhausted in the course of such a mUltiple offer, as 
many of the offers as possible will be tendered. Monadic OSVO can tell you which 
share offers were successfully tendered. 

An offer made with zero as left argument is a general offer, that is, an offer to any 
processor. A general offer will be matched only with a counteroffer which is not 
general, that is, one that explicitly identifies the processor making the general offer. 
The processor identification associated with a user is the user's account number. 
Auxiliary processors are usually identified by integer numbers from 1 through 
999. 

For discussion of a related function, see OSVR (shared variable retraction) on 
page 156. 

OSVC: Shared Variable Control 

Access control of shared variables is handled by OS V C. Consider the following 
simple example of sharing the variable V between two users 1 2 3 4 and 5 6 7 8 : 

152 An Introduction to APL2 



User 1234: User 5678: 

5678 OSVO I V' 
1 

1234 DSVO I V I 
2 

V+5 

V+3xV*2 

V V 
75 75 

The relative sequence of events in the two workspaces, after sharing, is significant; 
for example, had that last access of V by 1 2 3 4 in the foregoing example 
preceded the setting by 5 6 7 8, the resulting value would have been 5 rather than 
75. 

In most practical applications it is important to know that a new value has been set 
between successive uses of a shared variable, or that use has been made of an 
assigned value before a new one is set. Since, as a practical matter, this cannot be 
left to chance, an access control mechanism is embodied in the shared variable 
facility. 

The access control operates by inhibiting the setting or use of a shared variable by 
one owner or the other, depending upon the access state of the variable, and the 
value of an access control matrix which is set jointly by the two owners, using the 
dyadic form of the system function OS V C. If, in the example above, one user (say 
5 6 7 8, for example) had followed his offer to share V by the expression 
1 1 1 1 OSVC I V I, then the desired sequence would have been enforced. 
That is, the use of V by 5 6 7 8 would be automatically delayed until V is set by 
1234, and the use by 1234 would be delayed until V is set by 5678. 

The delay occasioned by the inhibition of any access uses only a negligible amount 
of computer time. Interruption by a strong interrupt signal during the period of 
delay aborts the access and unlocks the keyboard. 

Chapter 4: The Quads 153 



Let's briefly discuss an access control matrix, which is a two-by-two element binary 
matrix which controls the actions of shared variables. The meanings of the 
positions of this access control matrix for two users "A" and" B" are: 

Set by A Set by B 

Use by A Use by B 

Notice that the first row of A C M is associated with setting of the variable by each 
owner, and the second with its use. 

o If A C M [ 1 ; 1 ] = 1, then two successive sets by A require an intervening 
access (set or use) by B. 

o If A C M [ 1 ; 2 ] = 1, then two successive sets by B require an intervening 
access by A. 

o If A C M [ 2 ; 1 ] = 1, then two successive uses by A require an intervening 
set by B. 

o If A C M [ 2 ; 2 ] = 1, then two successive uses by B require an intervening 
set by A. 

The value of the access control matrix is available to the user through the monadic 
function OS V C. A related access state representation is available to a user through 
the OSVS function (which will be described on page 155). For a shared variable 
V the result of the expression OS V C 'V' executed by user A is the access 
control vector, " ,A CM" (the four-element ravel of A CM). However, if user B 
executed the same expression he would obtain the result " , <I> A C M". The reason 
for the reversal is that sharing is symmetric: neither owner has precedence over the 
other, and each sees a control vector in which the first one of each pair of control 
settings applies to his own accesses. 

The setting of the access control matrix for a shared variable is determined in a 
manner which maintains the functional symmetry. An expression of the form 
L OS V C 'V' executed by user A assigns the value of the logical left argument 
L to a four-element vector which, for the purposes of the present discussion, will 
be called QA. Similar action by user B sets Q B. The value of the access control 
matrix is determined as follows: 

ACM+(2 2pQA)v<l>2 2pQB 

Since ones in A C M inhibit the corresponding actions, it is clear from this expression 
that one user can only increase the degree of control imposed by the other 
(although he can, by using OSVC with a left argument of zeros, restore the control 
to that minimum level at any time). 

Access control can be imposed only after a variable is offered, either before or 
after the degree of coupling reaches two. The initial values of QA and QB when 
sharing is first offered are zero. 

154 An Introduction to APL2 



Here are some settings of the access control vector which are of common practical 
interest: 

Access Control Vector 
as seen by: 

User A: User B: Comments 

0 0 0 0 0 0 0 0 No constraints. 

0 0 1 1 0 0 1 1 Half-duplex. Ensures that each use 
is preceded by a set by the partner. 

1 1 0 0 1 1 0 0 Half-duplex. Ensures that each set 
is preceded by an access by partner. 

0 1 1 0 1 0 0 1 Simplex. Controlled communications 
from B to A (for card reader, etc. ) . 

1 1 1 1 1 1 1 1 Reversing half-duplex. 
Maximum constraint. 

A group of N access control matrices can be set at once by applying the function 
OS Veto an N by 4 matrix left argument and an N -rowed matrix right argument of 
names. The explicit result is an N by 4 matrix giving the current values of the 
(ravels of) control matrices. When control is being set for a single variable the left 
argument may be a single 1 or 0 if all inhibits or none are intended. 

OS V S: Shared Variable State 

The state of any shared variable which you are currently using may be interrogated 
using the monadic system function OSVS. The right argument to OSVS is a the 
name of a variable (or a matrix of names, with one name per row). The result is a 
vector (or matrix) showing the state of that variable (or variables). 

Result Meaning 

0 0 0 0 Not a shared variable 

0 0 1 1 Set by one processor, and referenced by 
the other (the initial state) 

1 0 1 0 Set by A, but not yet referenced by B 

0 1 0 1 Set by B, but not yet referenced by A 

Note: You are processor Ai the other processor 
(the one that you named with dyadic OSVO) 
is processor B. 

Chapter 4: The Quads 155 



OS V R: Shared Variable Retraction 

Sharing offers can be retracted by the monadic function OS V R applied to a name 
or a matrix of names. The explicit result is the degree (or degrees) of coupling 
prior to the retraction. The implicit result is to reduce the degree of coupling to 
zero. 

Retraction of sharing is automatic if the connection to the computer is interrupted 
or if the user signs off, loads a new workspace, erases (or expunges) the variable, 
or replaces the variable by copying an object of the same name into the workspace. 
Sharing of a variable is also retracted by its erasure (either through ) ERA S E or 
through OEX), or if it is a local variable, upon completion of the function in which 
it appeared. 

The nature of the shared variable implementation is often such that the current 
value of a variable set by a partner will not be represented within a user's 
workspace until actually required to be there. This requirement prevails when the 
variable is to be used, when sharing is terminated, or when a ) SA V E command is 
issued (since the current value of the variable must be stored). Under any of these 
conditions it is possible for a W S F U L L error to be reported. In all cases, the 
prior access state remains in effect and the operation can be retried after corrective 
action. 

For discussion of a related function, see OSVO (shared variable offer) on page 
150. 

OS V Q: Shared Variable Query 

There are three monadic inquiry functions which produce information concerning 
the shared variable environment but do not alter it; the functions OS V 0 and 
OSVC already discussed on pages 150 and 152, and the function OSVQ. A user 
who applies the latter function to an empty vector obtains a vector result 
containing the identification of each user making any sharing offer to him. A user 
who applies the function OS V Q to a nonempty argument obtains a matrix of the 
names offered to him by the processor identified in the argument. This matrix 
includes only those names which have not been accepted by counteroffers. 

To produce a character matrix whose rows represent the names of all shared 
variables in the dynamic environment, use either one of these two expressions: 

OS V E: Shared Variable Event 

(O~OSVO M)/[1] M+ONL 2 
or (O~OSVO M)fM+ONL 2 

The system variable OS VE (shared variable event) provides a facility for delaying 
until a shared variable that you are using changes state, so that you don't have to 
continually check to see if the state has changed. OSVE also provides a means for 
stating that you only wish to wait for a maximum of "n" seconds, so that your APL 
function doesn't hang interminably if the change never occurs. 

After OSVE has been set with some nonnegative value, as in OSVE+5, 
(indicating five seconds of delay), referencing it will cause a delay of either the 
number of seconds specified by its value or the time necessary until one of the 
shared variables that you are using changes state (whichever occurs first). 

156 An Introduction to APL2 



The value returned by OS V E represents the approximate time remaining in the 
specified delay. This will usually be 0, because it will normally delay until the time 
has expired. Even if it's interrupted prematurely, when you reference it again (for 
instance, to check the delay), it just resumes the delay. The only time that the 
result will be other than 0 is when a shared variable event has occurred during the 
delay (or, of course, when you explicitly set it to 0). And, after all, knowing when 
a shared variable changes state is what this is all about. Realize that a 0 response 
may be indeterminate, in that a shared variable event could have occurred at the 
same moment that the time in OSVE expired. 

Since OS V E is designed to be sensitive to the state of any shared variable under 
your control, it is not affected by localization. Its value following) CLEAR or 
)LOAD is O. 

Its action is somewhat similar to the action of the OD L (Delay) function, except 
that it will terminate early if a shared variable changes state during the delay time, 
and the value returned indicates the time remaining rather than the time accrued. 
As with DDL, this facility uses almost no compute time for delaying, and may be 
used freely to delay execution. Also, as with DDL, the delay may be prematurely 
interrupted by means of a strong interrupt from the keyboard. For a discussion of 
ODL, see page 127. 

Chapter 4: The Quads 157 



Event Handling 

While we always try to "do things right the first time" (don't we?), there comes 
that inevitable time when we make a mistake. APL2 has planned ahead for this 
eventuality and provides several new facilities to help with problem determination 
and correction. 

U/ claim not to have controlled events, 
but confess plainly that events have 
controlled me. " 

-Abraham Lincoln, 
in a letter to A.G. Hodges, 
4 April 1864 

Sure, every APL programmer has been in this situation. Clearly, we need to let our 
functions control events. But before we learn how to handle those events, perhaps 
we should ask, "What is an event?" Fair enough. Webster defines an "event" as: 

1. A happening or occurrence, esp. when important 
2. A result; consequence; outcome 
3. A particular contest or item in a program (the pole vault, high jump, and 

other "events") 

An "event," then, is simply something that you wish to acknowledge. Some events, 
of course, are more noteworthy than others. People tend not to observe the day 
after a birthday with quite the same zeal as the birthday itself. And in the APL 
environment, the same situations hold. Any action in APL can be considered to be 
an event; assignments, branches, calling functions are all events. . .. They just may 
not be noteworthy events. So what makes an event noteworthy? ... The desire to 
observe it. 

There are many places in programming where foreseeing some situation may not be 
possible, or even if it's possible, may not be practical to measure. Take, for 
instance, the most common example of checking for an error. Your programs, of 
course, should do "extensive error checking" if they are to be used in a production 
environment; anyone will tell you that. 

158 An Introduction to APL2 



McGurk's Law: 

"Any improbable event which would create 
maximum confusion if it did occur, wil/ occur. " 

-H.S. Kindler, 
from "Organizing the Technical Conference," 
Reinhold Publishing Company, 1960 

Used with the permission of The Dick Sutphen Studio. 

But some things just aren't practical to check. There are an infinite number of 
things that could happen during the execution of your programs - all things which 
are outside normal operations. What happens if there's an unexpected DOMAIN 
ERROR? What happens if an error occurs that I haven't thought of? What 
happens if the user presses ATTENTION and interrupts the execution part way 
through? ... Welcome to Event Handling. Here's where we discuss that particular 
"item in a program" that Mr. Webster spoke of, and find out how to get it into our 
own programs. 

APL2 provides the means for letting execution simply run its course, and if an 
abnormal situation occurs, for helping you to determine what occurred and why, 
and then taking corrective action. APL2 also allows you to simulate the error 
conditions that APL2 itself reports, so that you can, for instance, report errors in 
different degrees of detail for different audiences. 

You may have noticed by now that the previous page spoke of events as being a 
broad subject, but that we are now referring mostly to errors. Errors are indeed 
only one type of event that we might want to handle, but errors also happen to be 
the one type of event that the most people have had the greatest interest in 
handling. Because of this, most of the event handling in APL2 is aimed toward the 
handling of errors. So errors aren't the only things that are considered to be 
"events" (controlling the use of the ATTENTION key was one example of another 
kind of event) but errors will be the subject of most of our following discussions. 

Before we get into the in-depth discussions of events, let's take a look at a list of 
the facilities that are available for handling these events. 

Chapter 4: The Quads 159 



Facilities Available for Event Handling 

Distinguished Na1lll!S for Event Handling 

System variable 
System function with Monadic usage 

System function with Dyadic usage 

Symbol f I Function or Variable Name Pages 

DEA x Execute Alternate 172-176 
DEC x Execute Controlled 176-177 
OEM x Event Message 179-182 
DES x x Event Simulation 183-188 
DET x Event Type 177-179 
DL x Left Argument 165 
DR x Right Argument 165 
DSVE x Shared Variable Event 156 

AdditiollQl Facilities for Event Handling 

Facility Purpose Pages 

A A Multiple carets displayed at errors 29, 161, 
165 

-+DLC Restart (at beginning of halted line) 164 
-+10 Resume (inside halted statement) 161-166 
-+ Abort 161-166 
)RESET Resets the State Indicator 163 
)SI Display State Indicator 161-166 

83 
)SINL Display State Indicator with Name List 83 
)SIS Display State Indicator with Statements 161-166, 

83 

Note: For formal definitions of all of these Event Handling facilities, please 
refer to APL2 Programming: Language Reference. 

160 An Introduction to APL2 



Display of Errors 

Entry of a statement which cannot be executed will invoke an error report which 
indicates the nature of the error and displays carets, indicating both where the error 
occurred and where the execution halted: 

The error type. 

I 
ERROR 
Z 0 N K +- 5 -t 0 ..- The complete offending 

1\ 1\ APL expression. 

f i I 'The 10tXditJt/ of the error, and 
stopping point of execution. 

The line number of the function or 
operator in which that error occurred. 

The name of the function (or operator) in which the 
error occurred. This may not have been the function 
that you had invoked manually, but could be one which 
that function invoked during the course of its execution. 

Used with the permission of The Dick Sutphen Studio. 

There will typically be two carets under the line of code. The left caret shows you 
how far APL got in its right-to-Ieft scan of the line. The right caret shows you the 
point of the actual error - normally, that will indicate which function APL was 
evaluating when the error occurred. In this example, division by zero can't be 
performed, because the zero divisor is outside the "domain" (or defined range) of 
the division function. 

It's possible, of course, that the last thing evaluated was the same point that had the 
error. In that situation, there will be only one caret (or you may think of it as being 
as though the two carets are there, but superimposed upon one another). 

Any time that an error is reported by APL, you will be given this type of 
information. Learning to understand these error messages will be a great assistance 
in writing code quickly and easily. The error messages are part of the interactive 
process that APL handles so well. Let APL help you to design applications, by 
learning to interpret and use the error messages. 

Whether you use the results of these reports to modify the code or not, any time 
that you receive an error message from APL, some action is being called for on your 
part. An error does not cancel the execution of a statement; it "suspends" the 
execution. This means that the code that you have entered is kept in a "things to 
do" list, so that APL can get back to it later and resume execution upon request 
from you. If you take no action, this list may accumulate entries, and can create 

Chapter 4: The Quads 161 



Using The State Indicator 

Clearing Out an Error 

some confusing side-effects. (Refer to "A Mystification to Avoid," on page 83.) 
Good practice therefore dictates that you take some action whenever an e"or is 
reported. The choices for action are: 

• Correct the error and resume execution where you stopped. 

• Cancel the execution of that statement; let APL know that you won't be 
coming back to it. 

This "suspended statements" list that we mentioned is a stack of statements which 
have not completed execution either because they contain an error, or because they 
call a function that was stopped for some reason. It is a list showing the "state" of 
the workspace at any given moment. It is therefore called the "state indicator." 
You can display this list by typing" )SI" (state indicator): 

)SI 
FOO[7] 
* 
* 

The list is displayed in the order of the most recent statements first (at the top of 
the list). The stars (" *") mark the entries that were entered manually from the 
keyboard. 

You can also optionally display the actual statements that were being executed 
when the errors occurred. This is done using the " ) SIS" (state indicator with 
statements) command: 

)SIS 
FOO[7] ZONK+570 

* FOO 
A 

* 3+(YxX) 
AA 

A A 

The "F 0 0" entry is the name of the most recent function in which we had an 
error. The stars in the display mean that this statement was a user input (as 
opposed to a line from a function). Entries will accumulate both from running 
functions and from direct keyboard entries of statements ("immediate-execution 
mode"). 

There are two ways to discard the entries from the state indicator. You may either 
selectively cancel one suspension at a time, or you may simply cancel all of the 
suspensions. 

162 An Introduction to APL2 



Abort 

)RESET 

You can cancel the execution of a statement by entering a right-arrow (-+) and 
pressing ENTER (or CARRIAGE-RETURN, or EXECUTE, or whatever your 
particular terminal calls it). Doing so will remove the top entry or entries from the 
state indicator, up to the line with a star on it. This takes you back to the point of 
the last keyboard input: 

-+ 
)SI 

* 
We had two entries originally; there is now just one left. If we don't want to 
resume execution of that statement, it can be cleared out by entering another right 
arrow: 

-+ 
)SI 

Since there are no more errors pending completion, the state indicator is now 
"clear." 

Let's assume for a moment that you had a lot of suspensions. If you wish to clear 
all of the entries from the state indicator, you may do so in one swell foop, by 
entering" ) RES E T": 

)SI 
FOO[7] 
* THISNAMEISLONGERTHANIWOULDHAVEPREFERRED[3] 
* ANOTHER_NAME[6] 
* REPORT[9] 
* 
* 
* )RESET 

)SI 

By entering ) RES E T n, you could also have cleared just the "n" most recent 
entries from the state indicator, instead of having to clear all of them. Some 
additional detail regarding this command is available on page 84. 

Chapter 4: The Quads 163 



Several Methods for Fixing an Error 

Restart 

Resume 

In the case of a defined function or operator, you can edit the function and branch 
to the fixed line to start that line over: 

PROCESS JULY 
SYNTAX ERROR 
PROCESS [ 6] +3 4pDATA ....... ~--- Here's our error 

A 

6 

123 
456 

VPROCESS[ 6] M+3 4pDATAV 4l1li"-- This will 
repair the 
statement. 

OLC ....... 1----

+OLC ....... ~--

The line counter indicates the line numbers 
where the halt occurred in a defined function 

This restarts the last line 
(and is equivalent to "+6") 
And here's our final result. 

All well and good, but suppose that "D AT A" in the above example was a shared 
variable - or a long-running subfunction. We don't want to have to restart that 
line from the beginning! What we'd like to do is to correct the problem and pick up 
from right where we stopped ... in the middle of the line. No problem. That can be 
done by following the same steps shown above, but substituting "+ to" for the 
"+OLC". "+OLC" says to restart the current line from the beginning, and 
"+ to" says to resume the line from the point where it halted. 

164 An Introduction to APL2 



[1J 
[2J 

'V FOO 
C+O 
A+C+C+1 

FOO 
VALUE ERROR 
FOO[2J A+C+C+1 

AA 

A+O 

-+-OLC 
2 

OL and DR: Left and Right Arguments 

[1J 
[2J 

'V FOO 
C+O 
A+C+C+1 

FOO 
VALUE ERROR 
FOO[2J A+C+C+1 

AA 

A+O 

-+-10 
1 

If the offending line was from immediate execution mode rather than from a 
defined function, we don't have the option of editing the line and picking up from 
where we left off. But what we can do is to respecify the arguments of the failing 
function, and then resume (assuming that the error is one where that is 
appropriate) . 

Here is a statement with an obvious error. (They won't always be so obvious): 

1+(A+2 3)x4 5 6+2 

When you attempt to execute it, you are immediately given an indication that 
something went wrong. Here's what would display at your terminal: 

LENGTH ERROR 
1+(A+2 3)x4 5 6+2 

A A 

The first line tells you what error was detected. The second line gives you the 
statement in which the error occurred. In this case you just entered the line in 
immediate-execution mode, but in other cases it could be a line from a defined 
function. The third line contains two carets to tell you where in the execution of 
the line the error was detected. 

The left caret says how much of the statement has been looked at. In particular, 
everything to the right of the left caret has been scanned and whatever possible has 
been evaluated. So, for example, the assignment of the value 2 3 to the name A 
has been done. 

The right caret identifies the function in which the error was detected. In this case 
it was the "x" function. 

Since the arguments to "x" were calculated, it is not immediately apparent what 
they were. Therefore, the system variables OL and DR are set to the values of the 
arguments of the failing function. Thus, we can display the values of the left and 
right arguments that caused the failure and see immediately why aLE N G T H 
ERR 0 R was produced. 

Chapter 4: The Quads 165 



2 3 

678 

OL 

OR 
These are the left and right 
arguments of the failing function 
(intermediate results) 

We can respecify the left argument of the "x" function, and tell APL2 to pick up 
right where it left off ... in the middle of the line: 

OL+1 2 3 
+to ...... f-----

7 15 25 
Resume at the point where 
the error occurred 

Keep in mind that this does not change the statement; it only changes this 
execution of it. In particular, if another error occurs, the original statement will 
display. Also notice that specifying new values for OL and OR replaces the 
evaluated left and right arguments, but affects no names. In our case, A will be 
unchanged, even though 0 L was specified. 

Some Other Ways to Fix Errors 

Specifying new values for OL and DR won't always get things going again. OL and 
OR provide a means for viewing and setting the arguments for a function that has 
failed during execution. If the error that had been reported was a V A L U E 
ERR 0 R, no function would be currently under execution, so OL and OR wouldn't 
be involved at all. To resume after a V A L U E ERROR, you can assign a value 
directly to the name being reported, and resume: 

X+5 
(.YxX)+3 

VALUE ERROR 
(.YxX)+3 

AA 

53 

.Y+10 
+t 0 

In similar fashion, since a S.Y NT A X ERR 0 R indicates a problem with the 
statement as opposed to a problem with the data, S.Y N T A X ERRORs can never 
be fixed by resetting OL and DR. You'll find scattered other errors which will 
refuse the assistance of OL and OR. A W S F U L L problem, to cite another 
example, is best handled by freeing up some additional space. OL and OR are used 
only for those errors that are related to problems with the data. 

166 An Introduction to APL2 

Rememberl 

Whenever you have an APL error message reported, it is best to either fix the 
error and· resume execution by entering a branch to an empty vector (+ to), 
or clear the entry by entering an "abort" statement (+). 



Text of 
Message14 

AXIS 
ERROR 

DEFN 
ERROR 

DOMAIN 
ERROR 

ENTRY 
ERROR 

INDEX 
ERROR 

INTERRUPT 

LENGTH 
ERROR 

0-- ERROR 

RANK 
ERROR 

Common APL Error Reports 

Cause of Error; CORRECTIVE ACTION 

Axis specified does not exist, or is inappropriate for the context in which it appears. 

Misuse of V symbol: 

1. Improper request for an edit command while in an editor. 

2. Use of other than a function name alone in re-opening a definition. 

Argument(s) outside the range of valid argument(s) (domain) of the function, or 
invalid operands for an operator. 

An invalid character has been transmitted or received. BE SURE THAT ALL 
CHARACTERS ENTERED ARE AMONG THE SET SHOWN ON PAGE 11. 

This could also be caused by a communications line transmission failure. 
RE-ENTER. IF CHRONIC, RE-DIAL OR HA VB TERMINAL OR PHONE 
REPAIRED. IF YOU SUSPECT PHONE LINE PROBLEMS, CONTACT YOUR 
TELEPHONE LINE SERVICES GROUP. 

Index value out of range. 

Execution was suspended within an APL statement. TO RESUME EXECUTION, 
ENTER A BRANCH TO THE STATEMENT INTERRUPTED: +OLC WILL 
RESTART THE LINE, OR + 1. 0 WILL RESUME AT THE POINT WHERE THE 
HALT OCCURRED. 

Shape(s) not conformable. 

The system variable "0- -" (for example,OIO) has been set to an inappropriate 
value, or has been localized and not been assigned a value. 

Rank(s) not conformable. 

14 The text of these error messages may be displayed in any of several national languages 
through the use of the system variable "ON LT." Refer to pages 143-145. 

Chapter 4: The Quads 167 



Text of 
Message 14 

SI 
WARNING 

SYNTAX 
ERROR 

SYSTEM 
ERROR 

SYSTEM· 
LIMIT 

VALUE 
ERROR 

VALENCE 
ERROR 

WS FULL 

Common APL El7'Or Reports, continued 

Cause of Error; CORRECTIVE ACTION 

The state indicator (an internal list of halted functions and operators) has been 
altered by editing a function or in performing a ) COP Y . "+ 1 0" is disabled, but 
"+OL C" will restart line. 

Invalid syntax; for example, function or operator used without appropriate 
arguments or operands; unmatched parentheses, brackets, or quotes. 

Fault in internal operation of the system. RELOAD. IF POSSmLE, SEND A 
PRINTED RECORD, INCLUDING ALL WORK LEADING TO THE ERROR, 
TO YOUR APL PROGRAMMING SUPPORT GROUP. 

A syntactically correct statement has been entered, but cannot be executed because 
of an APL implementation restriction. 

If you are using shared variables, one possible restriction may be an attempt to 
simultaneously share more variables than your allotted quota permits. REQUEST A 
LARGER SHARED-VARIABLE QUOTA FROM YOUR APL 
ADMINISTRATOR. Additionally, the error could arise from attempting to share a 
variable when the Shared Variable Processor is not in operation. CONTACT 
YOUR APL SYSTEM SUPPORT REPRESENTATIVES. 

Use of a name that does not have a value, or trying to assign the "result" of a 
function that doesn't return a result. ASSIGN A VALUE TO THE VARIABLE 
OR DEFINE THE FUNCTION OR OPERATOR. 

Use of function with the wrong number of arguments. SUPPL Y THE PROPER 
ARGUMENT(S) OR ELIDE THE EXTRA ARGUMENT(S). 

Workspace is filled (perhaps by temporary values produced in evaluating a 
multiple-step expression, or by values of shared variables). 

1. CLEAR THE STATE INDICATOR 
2. ERASE UNNEEDED OBJECTS 
3. REVISE CALCULATIONS TO USE LESS SPACE 
4. REWRITE APPLICATION TO USE EXTERNAL FILES FOR DATA 

STORAGE 

For further information on APL2 error reports, refer to APL2 Messages and Codes. 

168 An Introduction to APL2 



Execute 

In our discussions of event handling, we should take a look at the "execute" 
function. Execute isn't properly an event handling function, but its action is so 
similar to that of "execute alternate" - the prime event-handling function - that 
execute just seems like required reading for this context. So, here goes. 

Any character vector or scalar can be regarded as a representation of an APL2 
statement (which mayor may not be well-formed). The monadic function denoted 
by " ~" takes as its argument a character vector or scalar and evaluates or executes 
the APL2 statement it represents. When applied to a character array that might be 
construed as a system command or the opening of function definition, an error will 
necessarily result when evaluation is attempted, because neither of these is a 
well-formed APL2 statement. 

The execute function may appear anywhere in a statement, but it will successfully 
evaluate only valid (complete) expressions, and its result must be at least 
syntactically acceptable to its context. Thus, execute applied to a vector that is 
empty, contains only spaces, or starts with "+" (branch symbol) or A (comment 
symbol) produces no explicit result and therefore can be used only on the extreme 
left. For example: 

~, , 
Z+~' , 

VALUE ERROR 
Z+~' , 

AA 

The domain of ~ is any simple character array of rank less than two,15 and RANK 
and DOMAIN errors are reported in the usual way: 

7 

C+'3 4' 
+/~C 

~1 3pC 
RANK ERROR 

~1 3pC 
A 

~3 4 
DOMAIN ERROR 

~3 4 
A 

An error can also occur in the attempted execution of the APL expression 
represented by the argument of ~; such an indirect error is reported by the error 
type and followed by the character string and the caret marking the point of 
difficulty, with the calling expression under that. For example: 

15 There's an additional restriction that only rarely surfaces: the character string must be 
composed only of valid APL2 characters; refer to the table on page 11 for a list of the 
complete character set. 

Chapter 4: The Quads 169 



.l'5+0' 
DOMAIN ERROR 

5+0 
1\1\ 

.l'5+0' 
1\ 

.l ' )WSID' 
VALUE ERROR 

)WSID 
1\ 

.l ' )WSID' 
1\ 

Using Execute to Assign a Value to a Supplied Name 

An example of the use of Execute is a situation in which the user of the application 
is supplying a name for a variable, which then needs to have data assigned to it. 
The problem is to find a way to get data stored into a name which is really just 
represented as a character string. So that you don't lose sleep over this one, we'll 
just show you how it's done: 

170 An Introduction to APL2 

DATA ~4~------------
3 5 7 11 13 17 19 23 

NAME 
MYDATA ~4~----------------

MYDATA 
VALUE ERROR ~4~---------­

MYDATA 
1\ 

pNAME 
6 

.lNAME, '+DATA ' ..... 4~-

MYDATA ....... ~------
3 5 7 11 13 17 19 23 

Here's some existing data 

We want to move it into a 
variable having this name 

... which doesn't currently 
exist. 

This will do it 

Here's the new variable 



Now, if you wish to extend it, and catenate more data to what's already there, you 
can do this: 

or this: 
~NAMEt'+'tNAMEt't29 31 37 41' 

~NAMEt'+(~NAME)t29 31 37 41' 

\ Store under 1 \. 
this name ... 

v 

The data that previously 
existed under the same name ... 

Followed by this new data 

MYDATA 
3 5 7 11 13 17 19 23 29 31 37 41 

Chapter 4: The Quads 1 71 



OE A: Execute Alternate 

Discussions of execute have often alluded to the idea that .t [!) can be used as "an 
alternative to 0 input offering more program control." Well, maybe, but any of 
you who have tried to actually do this have probably discovered that the problems 
start when the first user of your application types in an entry that's not a 
"well-formed APL expression": 

.t[!) 
2+ 
SYNTAX ERROR 

2+ 
AA 

.t[!) 
A 

A function that is trying to prompt for a character string that represents a vector of 
floating-point numbers, and then execute it to get the string into numeric form, 
may well spend most of its time simply ensuring that the execution is going to 
work; every possibility of an erroneous input must first be checked. Perhaps the 
classic example of this is using "li/" to invert a matrix: there are rules governing the 
acceptability of the matrix for inversion, but checking the matrix will probably take 
longer than the inversion. A nice approach would be to simply try it, and back off 
if it fails. Normal error behavior involves a halt to execution if it fails. But 
sometimes it's undesirable for an application to stop. Some means of getting 
control when an error occurs is needed. This may easily be done with execute 
alternate. 

Consider the case of .tR. If R can't be executed, an error message will be returned 
(such as SYNTAX ERROR, LENGTH ERROR, WS FULL, and so forth). 
Execute alternate, L OEA R, will return exactly the same result as .tR if the 
execution is successful; the left argument will be ignored. But if R can't be 
executed, the expression will be treated just as if it was .t L. In particular, if the left 
and right arguments are both invalid, an error message will be reported that will 
look just as if the expression had been .t L : 

172 An Introduction to APL2 



.t.'3+' 
SYNTAX ERROR 

3+ 

4 

AA 

.t.' 3+' 
A 

'2+2' OEA '3+' 

'2+' OEA '3+' 
SYNTAX ERROR 

2+ 
AA 

'2+' OEA '3+' 
A A 

A particularly useful application of execute alternate is" '+OOPS' OEA FOO", 
in which any problem in the character string FOO which would prevent it from 
being executed will cause a branch to label 00 P S . 

Execute Alternate will switch arguments after any occurrence of an error in the 
right argument, regardless of the depth of the function calls that may have occurred 
in the right argument. For example, consider'" +OOPS' OEA 'FN' ", where 
F N is a function. If F N calls another function, F N 2, which subsequently 
encounters a DOMAIN ERROR, the error will not be reported, but rather, OEA 
will immediately abandon execution of the right argument, and instead will execute 
the left argument (+OOPS). 

Be aware of a frequent trap: a common approach is to enter an expression such as 
"Z+' +OOPS' OEA [!]" with the idea that an error would cause the function to 
branch. . .. 'taint so, McGee. If the input is executable, the expression can be 
viewed as "Z+.t.[!]". But if it's not executable, the expression becomes 
"Z+.t. '+OOPS''', or "Z++OOPS" ... an immediate error. Therefore, although 
it's longer, a bit slower, and somewhat more cumbersome, what's really needed is 
" '+OOPS' OEA 'Z+.t.[!]'''. 

Please realize that this primitive is not meant to be an all-encompassing coverage of 
generalized error side-tracking all by itself. There are many situations where 
recovering from an error during execution will not be possible. But for situations in 
which you can anticipate a specific problem, and have a remedy for it, execute 
alternate may be just the ticket. One of the first things that you will discover as 
you start to use OE A is that you need to know what the error was that occurred, 
and precisely where it occurred. Never fear - we'll cover those points in just a bit. 

* * * 

Chapter 4: The Quads 173 



Here's an example of a simple input-checking function which will prompt for 
numeric data, and will reprompt if the input can't be executed: 

V Z+NUM T 
[lJ APROMPTS USER WITH MSG IN RT ARG, EXECUTES INPUT 
[2J START:[!]+T 
[3J Z+[!] 
[4J +(ZA.=' ')/EXIT 
[5J '+OOPS' OEA 'Z+,~Z' 
[6J +0 
[7J OOPS:O+'INVALID, PLEASE RETRY ••• ' 
[8J +START 
[9J EXIT:Z+tO 

V 6/15/1984 14.32.18 (GMT-5) 

R+NUM 'ENTER NUMERIC STRING: 
ENTER NUMERIC STRING: 1 2 3 4.5.6 
INVALID, PLEASE RETRY •.• 
ENTER NUMERIC STRING: -3.7 
INVALID, PLEASE RETRY .•• 
ENTER NUMERIC STRING: 1 2 3 4. 5.6 

pR 
5 

R 
1 2 3 4 5.6 

R+NUM 'ENTER NUMERIC STRING: 
ENTER NUMERIC STRING: [user just presses ENTER] 

pR 
o 

174 An Introduction to APL2 



Note that if the function were "simplified" a bit, it could become difficult for a 
well-meaning user to exit the function: 

'iJ Z+NUM2 T 
[lJ APROMPTS USER WITH MSG IN RT ARG, EXECUTES INPUT 
[2J START:[!]+T 
[3J '+OOPS' OEA 'Z+,~~' 
[4J +0 
[5J OOPS:O+'INVALID, PLEASE RETRY ••. ' 
[6J +START 

'iJ 6/15/1984 15.27.21 (GMT-5) 

[The user calls the function, 
but then decides to cancel 
or interrupt the function] 

R+NUM2 'ENTER NUMERIC STRING: 
ENTER NUMERIC STRING: [user presses ENTER] 
INVALID, PLEASE RETRY .•• 
ENTER NUMERIC STRING: • [the user depresses the INTERRUPT key, 
INVALID, PLEASE RETRY... trying to halt the execution, but to 
ENTER NUMERIC STRING: no avail.] 

C .. and on, ad infinitum ... ) 

... The Moral: Although there may be some legitimate times where you want to 
"trap" a user's input without letting him interrupt the function, be sure that you use 
this sort of capability with discretion; don't make your functions unresponsive to 
the user. 

Be aware that, using execute alternate, it is possible to write uninterruptible 
functions. Be careful that you don't work yourself into a box. 

Also take care to avoid name conflicts in functions that use either execute or 
execute alternate. A user who is entering lots of repetitive data may wish to set up 
a variable in the workspace, and enter its name in response to the prompt for input. 
That's fine, but with this particular function he would suddenly discover 
"mysterious" operations occurring if the name that he chose was "T" or "Z." 

Chapter 4: The Quads 175 



DEC: Execute Controlled 

Another trap 

"After reading the section on execute alternate, I was surprised that its 
usefulness was not demonstrated in the section on ambivalent functions. 
Your example of the ROOT function could very easily have employed OEA: 

\/ Z+N ROOT A 
[lJ 'Z+A*+2' DEA 'Z+A*+N' {~otreconunended} 

\/ 

-A Reader" 

We received several such statements. Say what you will about programming style, 
but we feel that this sample function brings up a potentially dangerous situation. 
You are anticipating a V A L U E ERR 0 R if N isn't assigned, forcing execution of 
the left argument. However, any error arising from the use of the left argument will 
have the same effect - even W S F U L L. 

As an example of this, "3 ROO T 6 4 7 2 9 4 0 9 6" correctly finds the cube 
root of each of the values, yielding" 4 9 1 6." So far, so good. But 
" 2 3 ROO T 6 4 7 2 9 40 9 6" should produce aLE N G THE R R 0 R; instead 
it returns "8 2 7 6 4" -the wrong answer- and would allow a calling function to 
continue. 

We recommend against using execute alternate to circumvent normal, quick checks 
like this that have been traditional in the past, and we especially recommend against 
it if it's used as a return to "one-liners." (See our discussion of one-liners on pages 
230-233.) 

"Execute Controlled" is a way to really know what happened during execution of 
an expression. 

The character vector right argument is executed as in "execute" (.t.), except you 
always get a three item result: a return code, a OET value, and an array. 

Here's a summary of the types of expressions which can be differentiated, ordered 
by return code: 

0- expression in error, DET and OEM returned 

DEC '2+' 
o 2 1 SYNTAX ERROR 

2+ 
/\/\ 

1 - expression with result 

DEC '2 3P16' 
100 123 

456 

176 An Introduction to APL2 



DE T: Event Type 

2 - assignment 

3-

4-

DEC 'A+2 3pt6' 
200 123 

456 

an expression with no result 

DFX 'F X' 'Y+2*X' 
F 

DEC 'F 20 ' 
3 0 0 

branch expression, returns branch target 

DEC '+9+1' 
4 0 0 10 

5 - branch escape 

DEC '+' 
500 

If an error occurs during execution of a function, one of the first things that you 
need to know is, "What was the error?" This can be determined through the use of 
the system variable, DET. 

The event type variable, DE T, indicates the type of error or event which most 
recently occurred. Its value following) CLEAR is 0 o. 

DET is a two-element vector, in which the first element indicates the category of 
event, and the second element indicates a more specific nature of the event. 

Chapter 4: The Quads 177 



Event Type Classifications 

Class 

o n 
Defaults 

1 n 

Resource 
Errors 

2 n 

SYNTAX 
ERRORs 

3 n 
VALUE 
ERRORs 

4 n 

Implicit 
Argument 

Errors 

5 n 

Explicit 
Argument 

Errors 

Value 

o 0 
o 1 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 
1 11 
1 12 

2 1 
2 2 
2 3 
2 4 
2 5 

3 1 
3 2 

4 1 
4 2 
4 3 
4 4 
4 5 
4 6 
4 7 

5 1 
5 2 
5 3 
5 4 
5 5 
5 6 

Meaning 

No error 
Unclassified event (DES '??') 

INTERRUPT 
SYSTEM ERROR 
WS FULL 
SYSTEM LIMIT: Symbol table full 
SYSTEM LIMIT: No shares available 
SYSTEM LIMIT: Interface quota exhausted 
SYSTEM LIMIT: Interface capacity exceeded 
SYSTEM LIMIT: Array rank too great 
SYSTEM LIMIT: Array size too large 
SYSTEM LIMIT: Array depth too great 
SYSTEM LIMIT: Length of prompt (via [!]+) exceeds device input length 
SYSTEM LIMIT: Interface representation 

SYNTAX ERROR: No array (2 x) 
SYNTAX ERROR: Ill-formed line ([ ( ]) 
SYNTAX ERROR: Name class (3+2) 
SYNTAX ERROR: Illegal operation in context « A +B )+2) 
SYNTAX ERROR: )CS not 0 

VALUE ERROR: Name with no value 
V A L U E ERR 0 R: Function with no result 

Opp ERROR 
OIO ERROR 
OCT ERROR 
OFC ERROR 
ORL ERROR 
(unassigned) 
OPR ERROR 

VALENCE ERROR 
RANK ERROR 
LENGTH ERROR 
DOMAIN ERROR 
INDEX ERROR 
AXIS ERROR 

Note: The numbers 0 through 99 are reserved for system use; user-defined events 
should always be given values of 1 0 0 or higher. 

178 An Introduction to APL2 



OEM: Event Message 

OET is set by the system every time an error occurs. You may set it (indirectly) 
through the use of the system function DES (event simulation). OET is respecified 
by the system every time an error occurs, so assigning a value to it directly or 
localizing it is not meaningful. 

One of the common things that you need to know about any error is, "Where 
precisely did the error occur?" This can be determined through the use of the 
system variable, OEM. 

The event message variable, OEM, indicates the text of the error or event which 
most recently occurred. Its value following ) C LEA R is 3 0 p , 

OEM shows exactly the same messages that you would see if APL was reporting 
the errors directly. Let's go back to a previous example that we used: 

F 00 ...... 11------- We type this in, 
DOMAIN ERROR ... and get this .... 
FOO[7] ZONK+5+0 

A A 

OEM .... 411-------­

DOMAIN ERROR 
OEM now contains the text 
of the last error, as a 
simple character matrix. FOO[7] ZONK+5+0 

A A 

pOEM 
3 15 

That character matrix from OEM is 
now explicitly available, so that 
you can use pieces of the text in 
your own messages, store the text 
on a file, Of, well- you name it. 

DOMAIN ERROR 
FOO[7] ZONK+5+0 

A A 

OEM usually has three rows, but it could have more, if the original error display had 
more: 

.i.'2+' 
SYNTAX ERROR 

2+ 
AA 

.i.'2+' 
A 

pOEM 
5 12 

Chapter 4: The Quads 179 



An Example of the Use of OEM 

Let's say that you want to report the normal error messages that the system always 
reports, but you don't want to halt execution . ... Piece of cake. Here's a part of an 
APL tutorial which evaluates what the user enters by simply passing it back to APL 
to execute, and then reports the result and continues: 

ENTER AN EXPRESSION TO ASSIGN TO "AREA" 
THE RESULT OF PI TIMES R SQUARED 
(THE AREA OF A CIRCLE): 

AREA+ol )xR*2 ...... 1----­

SYNTAX ERROR 
AREA+ol )xR*2 
A 

We typed this in, 
but we forgot the 
other parenthesis. 

••• NOT QUITE RIGHT; THE CORRECT ANSWER IS: 

AREA+(ol)xR*2 
OR AREA +oR* 2 

OR 
OR 

AREA+(ol)xRxR 
AREA+oRxR 

Hmmm ... how did this lesson display the error that the student created - the 
student, of course, could have typed in anything. How can the lesson check for all 
of the possibilities? Well, it can't - and it doesn't. It simply uses execute 
alternate to try to execute the input, and if it doesn't work, it reports the error that 
would have been generated, using OEM - and then continues execution of the 
lesson ( ... very important!). 

Here is an example of the code that could be used for that previous example: 

180 An Introduction to APL2 



[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8 ] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 
[17] 
[18] 
[19] 

v SCORE+QUIZ19;INPUT;AREA;R;ANS 
'ENTER AN EXPRESSION TO ASSIGN TO "AREA'" 
'THE RESULT OF PI TIMES R SQUARED' 
'(THE AREA OF A CIRCLE):' 
ANS+(01)xRxR+AREA+*7 
INPUT+ASK ' 
'+ERROR' oEA INPUT 
+(AREA=ANS)/RIGHT 
+WRONG 

ERROR: OEM 
WRONG: 

We will talk about 
this" ASK" function 
on page 196. 

Here is the display of OEM. 

' ..• NOT QUITE RIGHT; THE CORRECT ANSWER IS:' , , 

, , 
AREA+(o1)xR*2 

OR AREA+oR*2 

SCORE+O 
+0 

RIGHT:SCORE+1 
'THAT"S RIGHT!' 

V 

OR 
OR 

AREA+(o1)xRxR' 
AREA+oRxR' 

That last example is trying to show a real application in which OEM may 
realistically be used. In its bare-bones form, however, that example may be 
reduced to a form as simple as this: 

, OEM' OEA INPUT ..... l1li(1-'------- Execute the input; if an 
error occurs, report it, 
but continue processing. 

Chapter 4: The Quads 181 



The display of the message in OEM is affected by the setting of ON LT (national 
language translation; see pages 143-145): 

ONLT+'FRANCAIS' 
XYZ 

VALEUR NON DEFINIE 
XYZ 
A 

OEM 
VALEUR NON DEFINIE 

XYZ 

3 18 

A 

pOEM 

ONLT+'DEUTSCH' 
OEM 

VALEUR NON DEFINIE ~~~----­
XYZ 
A 

pOEM 
3 18 

The value of OEM is based 
upon the setting of ONLT 
at the time that the 
error occurred. 

You may notice that OEM - and in fact, the APL error messages themselves­
don't have as fine a resolution of the problem as OET. As an example of this, 

both 
3 1 (name with no value) 

and 
3 2 (function with no explicit result) 

will be reported at the terminal and in DEMas" V A L U E ERR 0 R." 

Also, because OEM is affected by ONLT, it is strongly recommended that you do not 
try to keep a table of error messages and look up the text from OEM when an error 
occurs. The first time that a user of your application sets ONLT to something 
unexpected, the application would mysteriously stop working. And, no, you can't 
just localize ONLT when you look at OEM, because as we saw above, OEM shows 
the message in the language that was active when the event occurred. Besides, 
table look-up with OEM is too much like work ... you'll find life much easier if you 
just look at OET to determine the event type ( ... that's what it's for). Just in case 
you missed OET, it's back on pages 177-179. Go for it. 

OEM is set by the system every time an error occurs. You may set it (indirectly) 
through the use of the system function DES (event simulation). OEM is respecified 
by the system every time an error occurs, so assigning a value to it directly or 
localizing it is not meaningful. 

182 An Introduction to APL2 



DES: Event Simulation 

Monadic DES: 

Did you ever want to have the capability of issuing your own error messages that 
acted just like the system-generated variety? No? ... Then skip this section. 

If you did ever consider trying to write such a piece of code, you would find that 
knowing where to point the error carets and where to return control would be a 
formidable task. It would be quite a task without DES, that is. DES is a system 
function that allows you to simulate the system's action with respect to the display 
of error messages. 

When an error occurs, the system does several things: 

• An error message is issued. 
• The offending line is displayed. (It may be a line in a function, or a line from 

immedia te-execution.) 
Error carets are displayed to show where the events occurred. 

• OEM is assigned the error message. 
• DE T is assigned the event type. 
• oL and OR are assigned the values of the left and right arguments. 

The execution is halted and suspended (if appropriate), unless it's under the 
control of DEA (described on pages 172-176). 

Just as primitive functions can generate errors in your statements when they're 
unhappy about your arguments, you can cause your programs to generate errors in 
the functions that called your function, using event simulation. DE S allows you to 
control the actions listed above, while giving you full control to selectively change 
portions of them. Let's examine the rules for coding the arguments of DES. 

The right argument for DES can be either a numeric event type (like we used with 
oET), or a message. 

If you supply the event type, it must be a two-element numeric vector - again, just 
like DET. If the values are found in the oET table on page 178, the corresponding 
message shown there will be reported (that is, a 1 3 will report a W S F U L L, and 
so forth). If the values that you supply aren't in that table, then no message will be 
displayed. But you'll still get the rest of the error report, replete with error carets 
and all of the standard embellishments. 

In any event (as it were), DET will be set to the value which you supply. This lets 
you check things as you go along; you can make up your own error codes (in 
effect, create your own table), but it's suggested that you use a first element of 
1 0 0 or higher for your events, so that you won't run into a conflict if APL2 
extends its list someday. 

If you supply a message as the right argument, DE T will always be set to 0 1 
(meaning "unclassified event"), and that message will be displayed along with the 
rest of the regular bells and whistles. 

A DES with an argument of 0 0 will reset DET and OEM to their default values, 
but will not simulate an event. 

Chapter 4: The Quads 183 



'V Faa 
[1] DES 5 3 
[2J 2+2 

'V 

Faa 
LENGTH ERROR 

Faa 
A 

DET 
5 3 

'V GOO 
[1J DES 'MESSAGE' 

'V 

GOO 
MESSAGE 

GOO 
A 

DET 
o 1 
~ (unclassified event) 

OEM 
MESSAGE 

GOO 
A 

pOEM 
3 9 

[1J 
[2J 

Notice that the error is reported 
as though the Faa function was a 
locked function (or a primitive); 
that is, F a a is not suspended and 
the line that displays is the one 
that called the F a a function, and 
it is the one that gets suspended. 

Notice also that execution never 
proceeded past the DES statement. 

'V HOO 
'ANOTHER MESSAGE' 
DES 100 11 

HOO 
ANOTHER MESSAGE 

HOO 
A 

DET 
100 11 

OEM 

HOO 
A 

pOEM 
3 9 

But what if you want to supply both a message of your own and an event type of 
your own, and you didn't like the two-line approach shown in the HOO example? 
In that case, you can use the dyadic form of DES, discussed below. 

184 An Introduction to APL2 



Dyadic DES: 

In its dyadic form, DES accepts a two element numeric vector representing an 
event type as its right argument, and your message as its left argument. As in the 
monadic case, the numeric right argument will set DE T, and the message in the left 
argument will be displayed. 

'iJ MOO 
[1] 'YOUR MESSAGE HERE' DES 5 3 

'iJ 

MOO 
YOUR MESSAGE HERE 

MOO 
A. 

DET 
5 3 .. This is listed as a LENGTH ERROR 

in the table on page 178 

OEM 
YOUR MESSAGE HERE 

MOO 
A. 

pOEM 
3 17 

Chapter 4: The Quads 185 



Displaying "No Event" 

You never have to bother branching around DES; you can issue a test as part of 
the right argument, allowing that argument to be either one of the forms described 
above, or an empty vector. An empty vector right argument causes DES to be 
ignored. Execution will proceed right on past DES, with no event reported, and no 
setting of DET. 

As an example, here's a defined function called PROGRAM which expects 
three-element vectors as arguments. On line one it checks to see if the shape of the 
data is 3 and if not, it selects 5 3 (which is the DE T code for LEN G T H 
ERROR). Therefore, the argument that DES sees is 5 3 unless the length of the 
input is 3: 

'V Z+PROGRAM DATA 
[1] DES (3~pDATA)/5 3 

'V 

Now let's execute the function, giving it only a two-element vector: 

PROGRAM 'AB' 
LENGTH ERROR 

PROGRAM 'AB' 

" 
As requested, we get aLE N G THE RR 0 R in the calling expression as though 
PRO GRAM were a primitive function. 

186 An Introduction to APL2 



Let's look at a few more examples: 

V Z+A DIVIDED_BY B 
[1] DES (OeB)/'DIVISION BY ZERO NOT ALLOWED' 
[2] Z+AfB 

V 

10 20 30 DIVIDED_BY 1 2 5 
10 10 6 

10 20 30 DIVIDED_BY 1 2 5-1 
DIVISION BY ZERO NOT ALLOWED 

10 20 30 DIVIDED_BY 1 2 5-1 
A A 

DET 
o 1 

V RESULT+SQUARE ARRAY 
[1] 'MUST BE SIMPLE' DES (1<=,ARRAY)/101 1 
[2] 'MUST BE NUMERIC' DES (' '=ltOpARRAY)/101 2 
[3] RESULT+ARRAY*2 

V 

SQUARE 1234 
1522756 

SQUARE 1 2 3 (4 5) 
MUST BE SIMPLE 

SQUARE 1 2 3(4 5)6 
A 

DET 
101 1 

SQUARE '65536' 
MUST BE NUMERIC 

SQUARE '65536' 
A 

DET 
101 2 

6 7 

7 

And have you ever wished that you could just get in a couple of extra instructions 
between the time that APL detects an error and the time that it reports that error? 
(Well, pretend that you have, so that we can discuss it.) The combination of 
execute alternate (DEA), event type (DET), and event simulation (DES) allows 
you to construct a function which can proceed until it detects an error, and then do 
whatever additional processing you wish before it reports that error. For example: 

Chapter 4: The Quads 187 



V RESULT+A DIVIDED_BY B 
[1J '+ERROR' OEA 'RESULT+A+B' 
[2J +0 
[3J ERROR: 
[4J ~(O€B)/'O+' 'DIVISION BY ZERO'" 
[5J DES OET 

V 

Errors in a Defined Function: Normal Behavior 

When an error in a defined function occurs, the name of the function, the line 
number in brackets, and the line from the function are displayed. 

For example, given the function F which does addition: 

V Z+L F R 
[1J Z+L+R 

V 

... executing it with a character argument will cause a DOMAIN ERROR on line 
one of the function: 

2 3 F 'A' 
DOMAIN ERROR 
F[1J Z+L+R 

A A 

You would also find the same three lines in OEM. 

) SIS shows the line in error as well as the expression that caused the defined 
function to be called: 

)SIS 
F[1J Z+L+R 

A A 

* 2 3 F 'A' 
A A 

This is what happens by default, but you can alter this behavior in several ways 
which we will discuss next. 

188 An Introduction to APL2 



Errors in a Defined Function: Special Behavior 

Execution Properties 

There are four properties of functions that can affect what happens when an error 
occurs. 

1. Cannot Be Displayed or Altered 

If a function is marked nondisplayable, then the statement in error will not be 
displayed. Also, the function may not be edited. 

2. Cannot Be Suspended 

If the function is marked nonsuspendable, then after error processing in the 
function, it is removed from the state indicator and an error is generated in the 
calling environment of the function. 

3. Weak Attention Ignored 

This does not affect error conditions. It means that a weak attention will not 
stop the execution of this function. 

4. Errors Cllllnged to DOMAIN ERROR 

Any error other than a resource error is turned into a DOMAIN ERROR. By 
a "resource error," we mean one that is reporting a physical limitation of the 
system - such as a W S F U L L. These environmental errors are always 
reported in their usual way; they are not mapped to DOMAIN ERRORs. 

APL2 primitive functions have the first three options enabled; your own programs 
may have any combination. 

Your functions are given these properties when they are defined by using dyadic 
OF X with a four-element left argument, which is set to one for each of the 
properties desired. Refer to page 129 for additional details. 

This will fix a function named PROGRAM, which will cause any errors to be 
reflected back to the caller of the function: 

o 1 0 0 OFX 'Z+PROGRAM DATA' 'LINE l' 'LINE 2' 

Chapter 4: The Quads 189 





CI1.apter 5: Adding a Professional Appearance 

This chapter shows you some tips on how to make your application packages look 
better to other users. It's important to consider human factors with any 
programming endeavor. We'll be discussing Terminal Input and Output, so that you 
can communicate with the user more effectively, Grade, so that your data can be 
sorted in human-readable fashion, and Formatting, so that you can make your 
numeric data look better and convey more meaning. 

Used with the permission of The Dick Sutphen Studio. 

Chapter 5: Adding a Professional Appearance 191 





Description of Features and Facilities 

Terminal Input and Output 

Evaluated Input 

In many significant applications, such as text processing, for example, it is 
necessary that the user supply information as the execution of the application 
programs progresses. It is also often convenient, even in the use of an isolated 
function, to supply information in response to a request, rather than as arguments 
to the function as part of the original entry. This is illustrated by considering the 
use of the function C I, which determines the growth of a unit amount invested at 
periodic interest rate RATE for number of periods TIME: 

V Z+RATE CI TIME 
[1] Z+(1+RATE)*TIME 

V 

For example, the value of 1000 dollars at 18 per cent for 7 years, compounded 
quarterly, might be found by: 

1000 x (.18+4) CI 7x4 
3429.699993 

The casual user of such a function might, however, find it difficult to remember 
which argument of CI is which, how to adjust the rate and period stated in years 
for the frequency of compounding, and whether the interest rate is to be entered as 
the actual rate (for example, 0.18) or as a percentage (for example, 18). An 
exchange of the following form might be more suitable: 

INVEST 
ENTER CAPITAL AMOUNT IN DOLLARS 
0: 

1000 
ENTER NUMBER OF TIMES COMPOUNDED 
0: 

4 

IN ONE 

ENTER ANNUAL INTEREST RATE IN PERCENT 
0: 

18 
ENTER PERIOD IN YEARS 
0: 

7 
VALUE IS 3429.699993 

YEAR 

It is necessary that each of the entries (1 0 0 0, 4, 1 8, and 7) occurring in such an 
exchange be accepted not as an ordinary entry (which would only evoke the 
response 1000, and so forth), but as data to be used within the function 
INVEST. Facilities for this are provided in two ways, termed evaluated input, and 
character input. A definition of the function IN V EST, which uses evaluated input, 
is as follows: 

Chapter 5: Adding a Professional Appearance 193 



Character Input 

'V INVEST;C;F;R;T 
[1] 'ENTER CAPITAL AMOUNT IN DOLLARS' 
[2] C+O 
[3] 'ENTER NUMBER OF TIMES COMPOUNDED IN ONE YEAR' 
[4] F+O 
[5] 'ENTER ANNUAL INTEREST RATE IN PERCENT' 
[6] R+0+Fx100 
[7] 'ENTER PERIOD IN YEARS' 
[8] T+FxO 
[9] 'VALUE IS ' ,.CxR CI T 

'V 

This use of the 0 for input is also sometimes called simply "quad input." The term 
"evaluated input" springs from the fact that 0, when used for input, evaluates 
whatever is entered before passing along the result. Therefore, if the user had 
entered "5 0 0 x 2" in response to that first prompt, the variable C (on line 2) 
would have been given the same value of 1 0 0 O. 

If an error occurs during the entry of an input, the user will be reprompted with 
another "0: "- but not with the text preceding it. This inability to react more 
fully to errors during keyboard entry, and the inability to repeat the character 
prompt if the user types in an entry which results in an error, make evaluated input 
generally undesirable for a production application with users who may not be 
familiar with APL. 

Better control over the input, and therefore, better communication and interaction 
with the user, can be accomplished through the use of character input. The 
trade-off is that character input returns its data in character form (of course), and 
therefore must rely upon the execute function (or OEA) in instances where a 
numeric form is required. See the description of OEA on pages 172-176 for some 
considerations on this subject. (But stick around for the rest of the character input 
discussions first.) 

Since both numeric and character inputs are required for any real applications, and 
since the use of execute on the character inputs can bring up a sizable set of 
additional programming considerations, both 0 and I!J input have their place. 

It is often desired to prompt a user for some text which he would like to be able to 
enter in much the same fashion as he would enter it on a typewriter. For example, 
the casual user shouldn't have to be concerned with such programming details as 
putting quotation marks around his response. 

This is easily handled by using quad quote (I!J) for input, which returns a character 
vector. It's used like this: 

'V REPORT;TITLE;NAME;X 
[1] 'ENTER A TITLE FOR THIS REPORT:' 
[2] TITLE+I!J 
[3] 'ENTER YOUR NAME:' 
[4] NAME+I!J 
[5] 'TURN TO A NEW PAGE AND PRESS RETURN:' 
[6] X+I!J 
[7] 'REPORT ON ',TITLE,', COMPILED BY ',NAME 
[8] SUB_FUNCTION 

'V 

194 An Introduction to APL2 



Bare Output 

Prompting 

The user of this R E PO RT function wouldn't be required to know much about the 
details of APL to use this; the prompts ask him for whatever is needed, and he just 
types in his responses. Whatever he enters will be taken as text, with no evaluation 
whatsoever. Therefore, he doesn't need to enter his name, DAVIS, as • DAVIS' 
.. . nor does he have to be concerned with the "intricacies" of entering 0 • R I LEY 
as • O' • RILE Y·. If he did enter • O· • RILE Y' , the result of the (!] input 
would be a ten-element vector. 

Note that referencing (!] always returns a vector. In particular, if the input is a 
single character, it is returned as a one-element vector rather than as a scalar. 
Some of the previous versions of APL returned a scalar if a single character was 
entered via "(!]", but it seemed that most APL programmers tended to ravel that 
result every time to ensure that they had a vector, so this ended up being a a 
simplification of the rules for most applications. There's no need to ravel this; it 
will always be a vector. 

Normal output includes a concluding new line signal so that the succeeding display 
(either input or output) will begin at a standard position on the following line. 
Bare output, denoted by expressions of the form (!]+ X, does not include this signal 
if it is followed either by another bare output or by character input (of the form 
X +(!]). The new line signals that would be supplied by the system in order to break 
lines that exceed the printing width are not supplied with bare output. However, 
since an expression of the form (!]+X entered directly from the keyboard (rather 
than being executed as part of a defined function) must necessarily be followed by 
another keyboard entry, the output it causes is concluded with a new line signal. 
The effect is in this case indistinguishable from normal output, except for the 
possibility of exceeding the printing width limitation. 

We can readily discern two distinct classes of operations for which bare output 
followed by character input is most commonly used; these are prompting and 
editing. You can tell APL which of these two actions you wish to invoke by setting 
a system variable, DPR (prompt replacement). Let's look at some examples of 
each of these. 

If the Prompt Replacement variable is set to a single blank, DPR+' " then the 
text of the prompt will be replaced by blanks. This is the default case in a clear 
workspace. In the above example, character input following a bare output is 
treated as though the user had spaced over to the position occupied at the 
conclusion of the bare output, so that the characters received in response will 
normally be prefixed by a number of space characters. This allows for the 
possibility that, after the keyboard is unlocked, the user backspaces into the area 
occupied by the preceding output. 

Chapter 5: Adding a Professional Appearance 195 



The following function prompts the user with whatever message is supplied as its 
argument, and returns the response: 

V ANSWER+ASK QUESTION 
[1J ~+QUESTION 
[2J ANSWER+~ 

V 

Using such a function, the expression: 

RESPONSE+ASK 'ENTER CAPITAL: 

would have the following effect: 

displayed by the system 

I 
ENTER CAPITAL: 1000 

~ entered by the user 

The value of RES P 0 N S E is as many blank characters as there are characters in 
QUEST ION, followed by the characters entered by the user. In this case, 
RESPONSE will have fifteen blanks followed by the four characters "1000". 

It is worth noting here that we're depending upon the global value of OP R being a 
blank for this function to work properly. In actual practice, it may be set to some 
other value in whatever workspace this function gets used. If its value is other than 
a blank, this function could start to fail in unusual situations; its operation may then 
be unpredictable. For this reason, it's always smart to localize OPR to the 
prompting function. In that way, you can guarantee a proper setting of OPR, and 
therefore, can guarantee the operation of the function. With OPR localized, the 
function would look like this: 

V ANSWER+ASK QUESTION;OPR 
[1 J OPR+" 
[2J ~+QUESTION 
[3J ANSWER+~ 

V 

It is strongly recommended that prompting for user input be done with a prompting 
sub/unction, such as we have looked at here. This gives you several advantages: 
First, if you ever transfer your functions to a system whose behavior with respect 
to quad quote differs from this system, a change to that single prompting function 
is sufficient to modify all of the prompting for your application. Second, it gives 
you the ability to easily introduce additional function in the future. And finally, the 
use of a prompting subfunction allows you to modify the appearance of all of the 
prompts by changing one function. You can easily start with a very simple 
function, like the one above, and add structure as it's needed. Try it; you'll quickly 
find that an ASK function is worth its weight in gold (however much that is). 

There are some other common cases that you'll undoubtedly want to handle with 
this prompting function. Let's get some background in the editing case first, and 
then we'll talk about prompting some more. 

196 An Introduction to APL2 



Editing 

If the prompt replacement variable is set to an empty vector, OPR+' ',then the 
text of the prompt will not be replaced at all. In this case, character input following 
a bare output will cause both the text of the output and the user's response to be 
returned. The characters received in response will normally be prefixed by the text 
of the original output. Normally in this case, you will be expecting the user to 
backspace into the area occupied by the preceding output and to type over the 
original text. 

The following function presents the user with whatever text is supplied as its 
argument, and returns both that text and the response: 

V RESULT+EDIT STRING;OPR 
[1 J OPR+' , 
[2J r!J+STRING 
[3J RESULT+f!j 

V 

Using such a function, the expression: 

NEW_TEXT+EDIT 'THIS IS A LINE OF TEXT' 

would have the following effect: 

displayed by the system 

I 
THIS IS A LINE OF TEXT 

TO EDIT 

" the user backspaces and 
types on top of the output. 

The value of NEW _TEXT is now "THIS IS A LINE TO EDIT". 

Chapter 5: Adding a Professional Appearance 197 



Here are some comparisons of various forms of bare output followed by character 
input: 

DPR+' , 

Output 
Input 
Result 

DPR+' , 

Output 
Input 
Result 

DPR+' , 

Output 
Input 
Result 

DPR+' , 

Output 
Input 
Result 

DPR+'=' 

Output 
Input 
Result 

DPR+'=' 

Output 
Input 
Result 

DPR+'=' 

Output 
Input 
Result 

198 An Introduction to APL2 

----+----1----+----1 
ENTER NAME: 

JON 
JON 

----+----1----+----1 
ENTER NAME: 

XYZ User backspaces 
XYZ 

----+----1----+----1 
ENTER NAME: 

JON 
ENTER NAME: JON 

----+----1----+----1 
ENTER NAME: 

XYZ User backspaces 
EXYZR NAME: 

----+----1----+----1 
ENTER NAME: 

JON 
=============JON 

----+----1----+----1 
ENTER NAME: 

XYZ User backspaces 
=XYZ========= 

----+----1----+----1 
ENTER NAME: 

XYZ 
=XYZ , 

User backspaced 
and pressed the 
"ERASE EOF" key 
or "ATTENTION." 

Length 
13 

3 
16 

Length 
13 

13 

Length 
13 

3 
16 

Length 
13 

13 

Length 
13 

3 
16 

Length 
13 

13 

Length 
13 

4 



If you are using bare output followed by quad quote input for prompting (as 
opposed to editing), you probably will want to end up with only the text that the 
user typed in. The prompt itself and any extraneous blanks or fill characters need 
to get discarded somewhere along the way. If you have OP R set to an empty 
vector, the prompt will be returned, and that could be messy to remove - you 
shouldn't just use (p ,S T R I N G ) ... I!I because the user may have backspaced into 
the prompting area, and dropping off those characters would cause you to lose 
some of his response. And if you set OP R to a single blank, the prompt will get 
replaced by blanks - but compressing out all of the blanks isn't a good method 
either, because his response may have contained one or more blanks. What you 
really want to do is to get back just the text that the user keyed in, with no 
extraneous characters. Fortunately, there's an easy way to do this. 

In that last group of three examples, we assigned an arbitrary character (in this case 
an "equals" sign) to OPR. This gives us the capability of determining that the user 
entered a space character - in other words, a space on the input is distinct from 
the replacement character. 

Be careful, though: If you use this last technique, make sure that the character that 
you choose is one that the user can't enter himself. It's generally not good enough 
to simply choose one that the user probably won't enter, since surprises may greet 
the user who enters something just a little different. An example of a value that 
can't match the user's input would be a carriage-return. 

If you set OPR+OTC[ 2] (which is a carriage-return character in origin 1), then 
each position of the prompt will be replaced with a carriage-return. Quad quote 
returns everything up to but not including the first carriage-return that the user 
enters (by definition), so it can't contain a carriage-return. This replacement 
process then substitutes carriage-return characters for all of the unchanged 
positions of the prompt. Therefore, using a carriage-return character for the 
prompt replacement character guarantees that it can't ever get confused with what 
the user enters. 

If you then wish to return only the user's response, without the prompt or leading 
blanks (and, of course, without the carriage-return characters), you may simply use 
the "without" function (dyadic ""'''), like this: 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 

V ANSWER+ASK2 
OIO+1 
OPR+OTC[2] 

A 
r!j+QUESTION 

A 
ANSWER+r!j"'OPR 

QUESTION;OPR;OIO 
AORIGIN 1 
AREPLACE PROMPT WITH CARRIAGE­
RETURN CHARACTERS 

ADISPLAY THE PROMPT; 
RETURN USER'S RESPONSE 
ARI~HQQ~ THE PROMPT 

Using such a function, the expression: 

RESPONSE+ASK2 'ENTER YOUR NAME: 

would have the following effect: 

Chapter 5: Adding a Professional Appearance 199 



"Ask Each" 

displayed by system 

I 
ENTER YOUR NAME: JON 

user's input 

The value of RESPONSE is now "JON", and contains only three characters. 

For places where you don't necessarily need to check and verify the contents of the 
response from the user between each prompt, here's a quick way to issue multiple 
prompts: 

NAME+ASK2·· 'FIRST NAME: 'LAST NAME: 
FIRST NAME: JOHN 
LAST NAME: DOE 

NAME 
JOHN DOE 

pNAME 
2 

p .. NAME 
4 3 

NAME now contains a two-item nested vector, where the first item contains a 
four-element vector, "JOHN", and the second item contains a three-element 
vector, "DOE". 

Because the APL function can't examine the results until everything within the 
scope of the "each" operator has been processed, and because the user can't even 
exit from the prompts without interrupting the function, this construction isn't 
being shown with the idea that you'll necessarily find a place for it in your own 
applications. But it is a construction that's often surprising at first appearance, and 
may spur some creative ideas for your applications. 

Editing the Contents of a Function or Variable 

Remember the discussion of the transfer form function, OTF, back on pages 
132-135? ... Here's a little creative application of its abilities. 

The following function takes as its argument the name of a function or variable, 
and gives you an easy way to edit the lines of that function or the values stored in 
that variable: 

200 An Introduction to APL2 

[lJ 
[2J 
[3J 

V MODIFY IT;OPR 
OPR+' , 

v 

1!J+2 OTF IT ....... f----
2 OTF I!J~ ... ~-------

display the transfer form 
and reconstruct the object 



Assume that we have a variable in the workspace that looks like this: 

M 
105 20 8 

40 1000 NONE 
107 

15 N/A 12 

pM 
4 3 

The function is used like this: 

MODIFY 'M' 
M+4 3pl05 20 8 40 1000 'NONE' 1 0 '7' 

The cursor stops at the end of the line (way over here) 
and the user is free to back up and type over the 
"M+ ... " line; whatever he sees on his screen when he 
presses ENTER will be re-assigned to the variable M. 

While this approach is certainly only reasonable for small arrays, it does makes the 
editing of those arrays very easy. 

We could even use the MODIFY function to modify the MODIFY function(!): 

MODIFY 'MODIFY' 
DFX 'MODIFY IT;DPR' 'OPR+"'" '~+2 DTF IT' 

The cursor stops at the end of the line again, and the 
user can type over the present lines in the function. 
When he presses enter, the system prints 
"MODIFY" ... the name of the new function. Of 
course, if the name was part of what was modified, an 
entirely new function will be created. 

As with the previous example, this approach is certainly only reasonable for very 
small functions - but it's elegant for those, and it might be the most compact 
function editor you'll ever see! 

Chapter 5: Adding a Professional Appearance 201 



Grade 

An easy-to-use sorting capability is available through the use of the grade function. 
Grade can directly sort character arrays. By specifying the desired collating 
sequence as the left argument, you may order the rows of the array according to 
your application requirements: 

M+4 4p'NOW IS THE TIME' 
ALF+' ABCDEFGHIJKLMNOPQRSTUVWXUZ0123456789 , 

ALF!M 
2 1 3 4 

IS 
NOW 
THE 
TIME 

M[ALF!M; ] 

The left argument of grade can be whatever alphabet is best suited to your own 
application. Here is a sample text matrix sorted four different ways:16 

16 The examples are from "Sorting - A New/Old Problem," by Howard 1. Smith, from 
the APL 79 Conference Proceedings. Copyright 1979 by the Association for 
Computing Machinery, Inc., Reprinted by permission. This paper also provides some 
additional discussion of sorting, and the use of dyadic grade. 

202 An Introduction to APL2 



, abc ••. xyz' 

ama 
phosphate 
pH 
Philodendron 
Ama 
AMA 

, aAbBcCdD •.. ' 

ama 
Ama 
AMA 
phosphate 
pH 
Philodendron 

, abc •.• ABC • .• ' 

ama 
phosphate 
pH 
Ama 
AMA 
Philodendron 

2 2 7 p abc •.• xy.2 
ABC • •• XYZ 

ama 
Ama 
AMA 
pH 
Philodendron 
phosphate 

Note that any of the sorting methods can take care of the obvious cases, such as 
putting "ama" first, but the cases rapidly become more complex when we 
introduce different fonts (both underscored and nonunderscored characters, or 
caps and lowercase) within the same matrix. In the fourth case, a matrix left 
argument was used, looking like this: 

ALF+2 27p' abc .•• xyz ABC ••• XYZ' 

ALF 
abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

This case says that our primary interest in sorting the text should be spelling. Both 
fonts have the same weighting, because the alphabetics in each row are aligned. 
But if several words have identical spelling ("ama", "Ama", and "AMA"), then 
they should be sorted according to the row order of the fonts in the left argument. 
Thus, "ama", "Ama", and "A M A" are grouped together in the final list. 

If a character in the right argument doesn't appear at all in the left argument, it's 
treated in a fashion analogous to the action of AlB - the unknown characters will 
be pushed to the end of the list, in "first-come-first-served" order: 

Chapter 5: Adding a Professional Appearance 203 



Format 

000 
000 
nnn 
XXX 
AAA 

M+5 3p'000XXXAAAOOOnnn' 

M[ , 00 n ' J:.M; ] 

The symbol "l''' denotes three format functions which convert numeric arrays to 
character arrays. These three functions are: 

Monadic format 
• Format by Specification (numeric left argument) 
• Format by Example, also known as Picture Format (character left argument) 

There are several significant uses of these three functions in addition to the obvious 
one for composing tabular output. For example, the use of format is 
complementary to the use of execute in treating bulk input and output, and in the 
management of combined alphabetic and numeric data. 

204 An Introduction to APL2 



Monadic Format 

The monadic format function produces a character array which will display 
identically to the display normally produced by its argument, but makes this 
character array explicitly available. For example: 

M+2=?4 4p2 

C+.M 

M C C[;l 
0 1 0 1 0 1 0 1 0101 
0 0 1 1 0 0 1 1 0011 
1 0 1 1 1 0 1 1 1011 
0 0 1 1 0 0 1 1 0011 

pM pC 
4 4 4 7 

p.2 5 
3 

C=.C 
1 

.'ABCD' 
ABCD 

3 5 

The format function applied to a simple character array yields the array unchanged, 
as illustrated by the last two examples above. For a numeric array, the shape of the 
result is the same as the shape of the argument except for the required expansion 
along the last coordinate, each number going, in general, to several characters. The 
format of a scalar number is always a vector. 

The format of a nested array yields a simple (nonnested) array. Therefore, 

.10 20 'NONE' 
10 20 NONE 

'=.10 20 'NONE' 
1 0 0 1 0 0 1 0 0 0 0 1 

The printing normally produced by &APL. systems may vary slightly from system 
to system, but in the case of a simple (nonnested) vector or scalar argument, the 
result produced by the monadic format will have no initial spaces and no final 
column of all spaces. 

Chapter 5: Adding a Professional Appearance 205 

7J 



Format by Specification 

Dyadic format with a numeric left argument is sometimes called Format by 
Specification. This dyadic format function uses variations in the left argument to 
provide progressively more detailed control over the result. Thus, for F"fA, the 
argument F may be a single number, a pair of numbers, or a vector of length 
2x -1t1,pA. 

In general, a pair of numbers is used to control the result: the first determines the 
total width of a number field, and the second sets the precision. For decimal form 
the precision is specified as the number of digits to the right of the decimal point, 
and for scaled form it is specified as the number of digits in the multiplier. The 
form to be used is determined by the sign of the precision indicator, negative 
numbers indicating scaled form. Thus: 

A+ 3 2 p 12.34 34.567 0 'NONE' -.26 -123.45 

pO+A pO+12 3 "fA 
12.34 34.567 12.340 34.567 

0 NONE .000 NONE 
0.26 123.45 .260 -123.450 

3 2 3 24 

pO+9 2.A pO+6 o "fA 
12.34 34.57 12 35 

.00 NONE 0 NONE 

.26 123.45 0 123 
3 18 3 12 

pD+9 2 "fA pO+7 - 1 "fA 
1.2E1 3.5E1 1E1 3E1 
O.OEO NONE OEO NONE 
2.6E 1 1.2E2 3E 1 1E2 

3 18 3 14 

If the width indicator of the control pair is zero, a field width is chosen such that at 
least one space will be left between adjacent numbers. If only a single control 
number is used, it is treated like a number pair with a width indicator of zero: 

206 An Introduction to APL2 



pO+O 2'iA 
12.34 -34.57 

.00 NONE 

.26 123.45 
3 14 

pO+2'iA 
12.34 -34.57 

.00 NONE 

.26 123.45 
3 14 

pO+O -2'iA 
1.2E1 -3.5E1 
O.OEO NONE 
2.6E 1 1.2E2 

3 15 

pO+-2'iA 
1.2E1 -3.5E1 
O.OEO NONE 
2.6E 1 1.2E2 

3 15 

Each column of an array can be individually composed by a left argument that has 
a control pair for each: 

pO+O 2 0 2'iA 
12.34 34.57 

.00 NONE 

.26 123.45 
3 14 

pO+6 
12.34 

.00 

.26 
3 18 

2 12 3'iA 
3.46E1 

NONE 
1.23E2 

pO+8 3 0 2'iA 
12.340 -34.57 

.000 NONE 

.260 123.45 
3 16 

3 15 

pO+8 0 0 -2'fA 
12 3.5E1 

o NONE 
o 1.2E2 

6 2 8 3 3 0 4 0 5 0 12 4'i,A 
12.34 34.567 ONONE 0 123.4500 

Chapter 5: Adding a Professional Appearance 207 



The format function applied to an array of rank greater than two applies to each of 
the planes defined by the last two axes. For example: 

L+2=?2 2 Sp2 
L 4 1.L 

1 1 0 0 1 1.0 1 • 0 .0 • 0 1.0 
1 1 1 0 1 1.0 1.0 1.0 .0 1.0 

1 0 0 1 0 1.0 • 0 • 0 1.0 .0 
0 0 0 0 0 • 0 .0 .0 .0 .0 

pL p4 1.L 
2 2 S 2 2 20 

Tabular displays incorporating row and column headings, or other information 
between columns or rows, are easily configured using the format function together 
with catenation. For example: 

ROWHEADS+' , 'JAN' 'APR' 'JUL' 'OCT' 
YEARS+79+1S 
TABLE+.00lx-4ES+?4 Sp8ES 
ROWHEADS,(2<j>9 O.YEARS),[l] 9 2.TABLE 

80 81 82 83 84 
JAN 294.77 33.08 224.83 143.09 347.76 
APR lS.S3 372.34 23.76 393.84 66.01 
JUL 71.18 276.93 326.43 67.20 328.26 
OCT 190.04 188.87 106.11 392.83 202.37 

There are obvious restrictions on the left argument of format, because the width of 
a field must be large enough to hold the requested form; and if the specified width 
is inadequate, the result will be a DOMAIN ERROR (unless OFC[ 4];t , 0 ' 
... see the description of "Overflow Control" in the reference table on page 216). 
However, the width need not provide open spaces between adjacent numbers. For 
example, boolean arrays can be tightly packed: 

208 An Introduction to APL2 

1001 
0000 
1101 
0111 

1 0.2=?4 4p2 



Picture Format 

One of the most common requirements of business data processing is formatting 
data for reports. This has sometimes been a difficult task, with the output often 
lacking the decorators that were desired for a truly readable report. How many of 
you, for example, have taken the trouble to insert commas into large numbers for 
readability? "4 5 4 2 1 7 3 2 9" becomes much more understandable as 
"4 5 4 , 21 7 , 3 2 9", but as nice as that might be on the final report, formatting it 
that way used to be a formidable task. With picture format (also known as 
"format-by-example"), such tasks become trivial. 

The picture format primitive shares the same symbol with the other formatting 
primitives: 't". But as well as using a numeric left argument, (5 0 't" M), format may 
also use a character left argument ( , 5 5 , 5 5 5 • 0 0 ' 't" M). When the left 
argument is a character string, the function is picture format. 

Picture format provides an easy method for you to: 

't" Print numeric output with controlled commas: 16, 777 , 215 

't" Use any "negative" indicator that you wish, in case the APL "-,, symbol 
isn't available with the printer or type ball that you want to print your 
report on; use "-", "eRE D I T", or whatever you want 

't" Optionally suppress fields that represent values of 0, so that they print as 
blank fields 

't" Print values with leading or trailing zeros 

't" Float a decorator, such as a dollar sign, in against your data 

't" Print numeric values in European notation, with a comma separating the 
integer and decimal portions of a number: 1 2 , 3 4 

't" Display negative numbers within parentheses, as on accounting reports: 
(12.50) 

... or, well, you name it. 

Picture format can often make short work of what had previously been complex 
formatting jobs. 

There are, of course, very specific rules for the format of the left argument ... but 
we'll come back to that. For now, let's just say that the left argument (or 
"pattern") shows APL a sample "picture" of what we want the results to look like. 

We should point out that the right argument for picture format must be a simple 
all-numeric array; it may not contain character data, and it may not be nested. 

Using picture format, we can do a lot of formatting with a minimal amount of 
programming. Let's say that we want to build a report function that will dress up 
the output for us. Here's a sample function that could do the formatting for us. 
Again, don't be concerned right now with just what the rules are for coding the left 
argument for picture format... we'll get to that in a bit. For right now, simply 
notice how compact the actual formatting is when we use picture format: 

Chapter 5: Adding a Professional Appearance 209 



V Z+REPORT M 
[1] AFORMAT ALL THE DATA, ADD DOLLAR SIGNS AND 
[2] A 'CR' NOTES, AND ADD TOTAL LINE: 
[3] Z+' $35,555.19_CR'.M,[1]+IM 

[4] AADD COLUMN HEADINGS: 
[5] Z+' ITEM 1 ITEM 2 ',[1] Z 

AADD ROW MARKINGS: [6] 
[7] Z+(57p'GROUP DEPT A:DEPT B:DEPT C:TOTAL: '),Z 

[8] 
[9] 
[10] 

V 

AINSERT BLANK LINES BETWEEN HEADING AND BODY, 
A AND BETWEEN BODY AND TOTAL: 

Z+ 1 0 1 1 1 0 1 \Z 

Here's the data that we're working with: 

pDATA 
3 2 

DATA 
12345.67 

34.15 
227.5 

1 
1234.56 

o 

Running the" REP 0 R T" function, we get this finished report: 

210 An Introduction to APL2 

REPORT DATA 
GROUP ITEM 1 

DEPT A: 
DEPT B: 
DEPT C: 

TOTAL: 

$12,345.67 
$34.15 

$227.50 

$12,607.32 

* * * 

ITEM 2 

$1.00 
$1,234.56 CR 

$1,233.56 CR 



One of the problems that you may have experienced in the past is specifying the 
proper numeric left argument for the format primitive in such a way that the output 
properly lines up with your column headings. With picture format, the length of 
the left argument is the length of the result, so this becomes a good deal simpler: 

V FMT V 
[1] APROBLEM: WHEN USING FORMAT (~), 
[2] A IT'S DIFFICULT TO ALIGN COLUMNS: 
[3] 0+' USERS CONNECT COMPUTE WORKSPACES' 
[4] 0+ 8 0 9 0 9 1 12 0 .V 
[5] 0+' , 

[6] 
[7] 
[8] 
[9] 
[10] 

V 

ASOLUTION: PICTURE FORMAT ALLOWS HEADINGS 
A AND FORMAT CONTROL TO ALIGN: 
0+' USERS CONNECT COMPUTE WORKSPACES' 
0+' 55,555 55,555 555.0 555,555'.V 
0+' , 

FMT V 
USERS CONNECT COMPUTE 

107.3 
WORKSPACES 

33658 3513 11173 

USERS CONNECT COMPUTE WORKSPACES 
3,513 11,173 107.3 33,658 

As we mentioned, the length of the result from picture format is the same as the 
length of its left argument (except for the case where picture format contains just 
one field, which will then apply to each column of data). Similarly, the positions of 
such things as commas and decimal points will match the position of these items in 
the output. 

Fields within the left argument are typically separated by blanks (although we'll see 
a way to let other characters separate the fields, too). The number of fields in the 
left argument must match the last dimension of the data being formatted, although 
if there is only a single field, that's acceptable too ... it will be used for every column 
of data. So then, what's a field? A field is a sequence of characters bounded by 
blanks (or the end of the pattern) containing at least one digit. If it doesn't have 
any digits, it's a decoration. That's allowed, too; this example has two fields: 

'I DATA 55 55 1'.2 2p10 20 30 40 
I DATA 10 20 I 
I DATA 30 40 I 

The vertical bars and the word "D A T A" aren't fields, because they don't contain 
any digits; they therefore become simple decorators. 

Here's an application of the previous example: 

Chapter 5: Adding a Professional Appearance 211 



V Z+PART V 
[1] Z+'COST OF PART-NUMBER 5555: $ 5.50/BOX'.V 

V 

PART 2117 4.25 
COST OF PART-NUMBER 2117: $ 4.25/BOX 

Consider how you would have to do this without the assistance of picture format: 

V Z+PART1 V 
[1] Z+'COST OF PART-NUMBER ' ,( • V[ 1 ] ) , ' : $ 

(4 2 .V[2]),'/BOX' 
V 

PART1 2117 4.25 
COST OF PART-NUMBER 2117: $ 4.25/BOX 

Digits in the pattern serve a dual purpose: they show where digits may appear in 
the result, but further, specific digits in the left argument have specific meanings 
regarding the formatting that is to take place. They are called "distinguished 
digits," and a table of them follo~s shortly. 

Nonnumeric characters in the left argument can be: 

• Simple decorators (like the example just shown) 
• Controlled decorators (such as a comma, which appears or is suppressed 

according to established conventions) 

, 

• Floating decorators (such as a dollar sign, which can be made to nestle in 
against the left side of the data). The action of these floating decorators is also 
controlled by selecting which of the "distinguished digits" you use. 

Further control is provided through the use of a system variable, OF C (format 
control). This variable acts as another (implicit) argument for picture format. A 
table explaining its operation is also following. 

212 An Introduction to APL2 

, 



This page has been intentionally left blank so that the following 
table is on facing pages. 

Chapter 5: Adding a Professional Appearance 213 



Distinguished Digits for Picture Format 

(In general, use 5 's for the pattern except where special handling is desired, as noted in the table.) 

1 Float the decorator in against the number only if the value is negative. (See notes with digits 1 
and 3.) 

, -551.50'~ 1 10 100 
-1.00 10.00 -100.00 

- -, 551.50-'~ 1 10 100 
1.00- 10.00 100.00-

-, (55,551)'~ -10000 1 10 100 
(10,000) (1) 10 (100) 

Note that it's up to you to provide a "negative" indicator that's appropriate to your own 
application. Picture format provides the capability of using any sign that you wish (" -", "-", 
"CR", or whatever else you may want to choose). If this is not done (that is, if the pattern 
doesn't include "l"s or "2"s), a DOMAIN ERROR will result (see ope[ 4 ] in the 
"Description of OPC" to override this). 

2 Float the decorator in against the number only if the value is nonnegative. (See note with digit 
3.) 

, +552.50'~ 

1.00 +10.00 

- 1 10 
100.00 

- 100 

3 Float the decorator in against the number for all values (positive or negative). (See note 
below.) 

, $553.50'~ 1 10 100 
$1.00 $10.00 $100.00 

, $553.10-'. -1 10 -100 
$1.00- $10.00 $100.00-

, $553.10CR'. -1 10 -100 
$1.00CR $10.00 $100.00CR 

If only one of distinguished digits 1, 2, or 3 appears within a given pattern, its effect applies to 
both right and left floating decorations. If more than one appears, each one affects its own 
side. 

4 Counteracts the action of a 1, 2, or 3, preventing it from affecting the other side of the field, 
which is then treated as a simple decorator. 

, -SSl.40CR'. :1 10 -100 
-1.00CR 10.00CR -100.00CR 

214 An Introduction to APL2 



5 Perform normal formatting, observing normal APL rules of removing leading and trailing zeros, 
except that a value of zero will display as all blank. Be careful, though; it's up to you to include 
an appropriate sign character if you expect any negative values, and a "1" or "2" to control it. 
See the note with digit 3. 

, 555.55'~1.1 10.01 100 0 100.10 
1.1 10.01 100 100.1 

6 The decorator to the right also marks the end of this field; treat it as though there's a blank 
between the fields, but also print the decorator. 

'05/55/55'~32580 03/25/80 

'06/06/05'~ 3 25 80 03/25/80 

7 The next nonnumeric character to the right is the symbol to be used for exponential notation 
("E-format"). 

, -1.70E-Ol'~ -.001 100 10000 -10000000000 
- - -1.00E 03 1.00E 02 1.00E 04 1.00E 10 

-1.70*-10'~ -.001 100 10000 - 10000000000 
- 3 1.00* 2 1.00* 4 - 1.00* 10 - 1.00* 

8 "Check-protection": fill empty portions of the field with whatever character is in OFC[ 3] (in 
origin 1). The default character is *. 

, 8555.50'~ 1 10 100 
***1.00 **10.00 *100.00 

, 5855.50'~ 1 10 100 
**1.00 *10.00 100.00 

9 Pad with leading or trailing zeros out to this point (before or after the decimal point, 
respectively), unless the value is zero (then use all blanks). (Compare with 0.) 

, 555.59'~ 1.1 10.01 0 100 
1.10 10.01 100.00 

, 555.50'~ 1.1 10.01 0 100 
1.10 10.01 .00 100.00 

o Pad with leading or trailing zeros out to this point (before or after the decimal point, 
respectively). (Compare with 9.) 

, 055.50'~ 1 10 100 
001.00 010.00 100.00 

Chapter 5: Adding a Professional Appearance 215 



Description of OFC - Format Control 

OFC[l] 

OFC[2] 

OFC[3] * 

OFC[4] o 

Default setting: OFC+' • , * 0 _ - , 

Decimal point: the character that's to be substituted for the period where a 
decimal point is required in the result. This also affects numeric-left-argument 
format. 

OFC[ 1]+' • ' OFC[l]+',' 

'55.55'.12.34 
12.34 12,34 

12.34 12,34 

Comma: the character to be substituted for the comma where a controlled 
comma is required in the result. 

DFC[ 2]+' , , OFC[2]+' , 

'5,555'.1234 '5,555'.1234 
1,234 1 234 

Check Protection character: the character to be printed in response to the "8 "'s 
in the pattern. 

OFC[3]+'*' 

, 855'.1 10 100 
**1 *10 100 

OFC[3]+'I' 

, 855'.1 10 100 
III 110 100 

Overflow control: If the default character appears here, a value which is too 
large to fit into a field specified will cause aDO M A IN ERR 0 R. If any other 
character appears here, the error will not occur and instead the offending field 
will be filled with the character specified. This also affects numeric-Ieft­
argument format. 

OFC[4]+'0' 

, 00'.1 10 100 
DOMAIN ERROR 

, 00'. 1 10 100 
A A 

OFC[4]+'?' 

, 00'.1 10 100 
01 10 ?? 

??? 

216 An Introduction to APL2 



OFC[5] 

OFC[6] 

"Print-as-blank" character: any place that this character appears in the pattern, 
it will print as a blank; it functions normally in the analysis of the pattern, but is 
replaced by a blank in the result. In OF C, it may not be a blank, period, comma, 
or a digit. 

, $_35,555'~12345 250 5000 
$ 12,345 $ 250 $ 5,000 

- -, 15,555_CR'~ 12345 250 5000 
12,345 CR 250 5,000 CR 

Negative number indicator. This character is used as the negative sign when you 
use format by specification. It has no effect when you use picture format. 

- 1 
3 0~-112 

-2 -3 -4 -5 -6 -7 -8 -9-10-11-12 

OFC [ 6}+·' - , 
3 0~-112 

-1 -2 -3 -4 -5 -6 -7 -8 -9-10-11-12 

While OF C currently contains six characters, it is recommended that you don't 
consider its length to be fixed. Future extensions could add additional elements. 

The only valid current configuration for OF C is six character elements. Any 
setting other than this will cause a OF C ERR 0 R to be evoked when any use of 
dyadic format is attempted. 

Note that the first two elements show what characters are to be printed where the 
decimal point and controlled comma are required in the result. The pattern is 
always coded using U.S. conventions; OFC can be changed to allow display of 
British or other standards. This requirement for the pattern was done to allow an 
easy transfer of programs between countries ... a change to all the patterns in the 
workspace isn't needed for such a move - only a simple change to OFC. 

Chapter 5: Adding a Professional Appearance 217 





Chapter 6: Our Own Biased Views of Programming 

Congratulations! You've read the rest of the manual [let's assume]; now you know 
what many of the pieces do. But how do you put them together into a usable 
application? Where do you even begin?? 

Fair enough. You begin here. This chapter describes some of the pitfalls that are 
common to APL programming - in fact to programming in almost any language 
- and some ways in which you can avoid the problems. These thoughts are very 
subjective, and really only represent opinions. They are not Ustandards". And by 
no means are they meant to be a statement of "the proper way of doing things"; 
they are simply some "tricks of the trade" which have proven to be helpful to us. 
Maybe they can help you, too. 

Used with the permission of Hart Publishing Company, Inc. 

Any sufficiently advanced technology is 
indistinguishable from magic. 

-Arthur C. Clarke 
Profiles of the Future, 
Harper & Row, 1962 

Chapter 6: Our Own Biased Views of Programming 219 





Some Thoughts on Programming Style 

What would it be worth to you to find a way to write functions more quickly and 
easily, make trouble-shooting considerably faster, aid documentation, and reduce 
WS FULL problems, all with one technique? ... Read on, Macduff .... 

A "building-block," or "modular," approach to writing APL functions is a writing 
style in which the main function calls sub-functions to perform the details of the 
work, rather than all of the code being in the main function. Developing an APL 
writing style like this can result in some rather substantial benefits for you. 

Answering lots of phone calls from our customers as I do, I see quite a bit of 
programming written by people with a wide variety of backgrounds and 
approaches. One distressing sight that I often see is a workspace containing an 
extremely lengthy function with no subroutines. Now, I realize that most of the 
users of most APL systems aren't programmers, but it's sad to see APL functions 
like this because substantial savings could have been realized both in original 
writing time and in subsequent troubleshooting if the author had used a 
building-block approach in writing his application. 

Probably each of you have seen examples like the ones here; probably many of you 
also have some similar ones of your own. (I have lots of them, but I'm fixing them 
little by little.) First, take the case of this portion of a billing function that I once 
worked with: 

Chapter 6: Our Own Biased Views of Programming 221 



[65] 
[66] 
[67 ] 
[68] 
[69] 
[70] 
[71] 
[72] 
[73] 
[74] 

PRTOTi:.Y+ 0 60 60 TTT[4;O] 
Z+ 0 6 0 6 0 T ( T T [ 4 ; 1 ] x·3 • 3 3 ) ,f 1 0 0 0 
CON + (4 0 • YT 0] ) t ':' t 2 O .• .Y [1 ] 
-+-(O=v/S+CON[-6tt 7]=" , )/£20, 
CON[S/-6t17 ]+' 0" 

,., i 

L 2 0 : CPU+( 3 O. Z [ 0 ] ) t ': " (2 O. Z [ 1 ] ) , , : ' , 2 0 .. Z [ 2 ] 
-+- ( 0 = v / S+C P U [ - 8 t 19 ] =' ') / L 21 
CPU[S/-8t19]+'O' 

L21: OUTPUT+TEMP[CHG],' ',CON"t·;~ iCPlJ,.PT[4i',';REtST] 
PRINT OUTPUT 

Now don't get me wrong; this function does work. ..~It's just a little obscure. It's 
an example of opacity in ~oding (perhaps the real meaning of "coding"). However, 
a reader of the function doesn't normally need to know 'minute detail of any 
portion of the, code until he identifies the portion that needs repairs. This can 
easily be achieved by simply enclosing pieces of the function in subfunctions, 
whose contents are unimportant until we need to see their own particular piece of 
the operation: . 

[21] PRTOT1:CON+FORMAT RATES[0]xTT[4;0] 
[2'2] CPU+FORMAT RATES[ 1] xTT[4; 1] 
[23] PRINT TEMP[CHG],' ',CON,' 'tCPU,.TT[4;REST] 

Notice that this function is notably shorter than the previous one. The original one 
:was 118 lines long (ugh!). How long should a function be? Well, Abraham Lincoln 
obserVed that a person's legs are ,the right length when,they just touch the ground. 
In the same spirit, there's no particular rule that says how long a function can be. 
But if youpropedy observe building-block techniques, you'll probably find that 
your average function length is fairly short. 

Andwhat's that? I checked my own workspaces,andbere's the tally: distributed 
through 12,366 unlocked functions were 145,090 linesof code, giving an overall 
average of 11.7 lines per function (countingco1l)lIlent,li,nes). The average width, 
by the way (excluding comment lines) was 19.2 ch,aracters. 

Keeping the average to under twenty lines ensures that you will be able to display 
and edit the function much more easily on a 3270 display terminal, and you'll save 
a lot of ,printing time on a typewriter-type terminal. Also as a rule of thumb, any 
one single function should always fit on an 8.5xll-inchsheet of paper when it's 
printed. Of course, Lincoln also observed, that "itnp9rtant principles may and must 
be flexible," but if an APL function is longer than a page, you're probably trying to 
accomplish too much with one function. See the discussion of abstracts, "Where's 
This Function Going?," on pages 228-229, for more on this. 

222 An Introduction to APL2 



Sa.ey....rw ....... nme 

This benefit comes in several flavors. First, a short function is very easy to display 
and edit. Imagine having to repeatedly display that 118 line function during its 
development. Second, there is a finite amount of material that you can concentrate 
on at one time. Keep a given function focused on a specific goal. In that way,you 
can also concentrate on that same goal without being drowned in extraneous 
details. And third, once you identify the specific purpose of the function, you may 
not even have to write it at all! What's that you say?? Very simple .... 

Take advantage of the voluminous resources of the APL Public Libraries that are 
available on many APL systems. If you're trying to accomplish some very standard 
operation, why reinvent the wheel? While perhaps no one else has ever written a 
package just like the one that you're working on, certainly many of the building 
blocks will be the same. You may have designed your own very unique house, but 
chances are you didn't have to design the bricks, lumber, nails, and wiring 
components. Why do that with your APL code? 

The classic analogy to making your own nails is writing a lengthy REP 0 R T 
function which spends several lines, labels, and branches just formatting the current 
time and date to print on the report. What a waste of time for an author to spend 
his good time figuring that stuff out, when his real goal is to produce a specific 
report. Does he assume that he's the first one who has had to timestamp a report? 
Building blocks like this are available in abundance in the Public Libraries on many 
APL systems, free for the taking. 

Debugging any program can become a tedious task; anything that helps to lessen 
that task is a welcome treat. A building-block approach immediately reduces the 
task. In the aforementioned billing function, let's suppose that the connect and 
CPU times were printing improperly. In the first example, you may have had to 
print over seventy lines of code to find the code that was causing the problem, and 
even then it would have required making the same change to several sections of 
code. Using building blocks (and assuming that you have used obvious names for 
the blocks), you or anyone else should be able to quickly locate the culprit. With 
the subfunctions in the second example, changing the FORMAT function (which is 
perhaps five lines long) could solve the problem; you wouldn't have to be 
concerned with the main function at all. And changing that one function would fix 
the problem wherever the function is called. 

You'll find that a modular approach to functions will immediately put at your 
disposal the considerable resources of (again) the Public Library for debugging 
aids. Some Public Libraries contain applications which will analyze the interaction 
of functions without being very concerned with what's inside those blocks. 

Chapter 6: Our Own Biased Views of Programming 223 



Simplify The Job of Documenting Your Application 

Documentation is usually considered to be most programmer's anathema. There 
are several forms of documentation. One is in the form of a formal manual. 
Another is comments within the code. Another is the code itself. Compare the 
two examples that we have discussed so far. Certainly the second function would 
be the easier one for a reader of its user's guide to correlate to the text. The 
number of comments required in the code is drastically reduced if appropriately 
named subfunctions are employed, since the code itself becomes much more 
self-documenting. 

Prevent W S F U L L Problems with BuDding Blocks 

The first example in this discussion of building blocks shows some identical lines of 
code being repeated. Everything that gets entered in the function uses space that 
can't be used for something else. Using a subfunction allows one copy of the code 
to be used several places in the workspace without taking several times its storage 
space. And, by properly localizing variables you don't have to take any special care 
to expunge variables that you're through using; they'll go away on their own, 
thereby freeing up the space that they were consuming. 

Considering the rather substantial benefits that can be realized by using a 
building-block approach, it's really a shame that more people aren't taking 
advantage of it. Don't cheat yourself; give it a try. Start by making a conscious 
effort to use the technique. Chances are, you'll soon have altered your writing 
style to the point where you'll wonder why you didn't always write that way. 

Some Considerations in Writing BuDding Blocks 

A building block should represent a single isolated operation. It should be 
something that can be commonly used, usually without any modification, by many 
applications. For example, a REPORT function that reads the contents of one of 
your datasets and breaks your data down into subtotals is not a building block. The 
function that opens the file could be a building block, if sufficient thought is given 
to it so that it can also be used elsewhere. The same could be said of the function 
that reads each block of data from the file, or of the function that checks the return 
code from a file processor. There's no reason to burden the main calling function 
with specialized code to do this sort of thing when you're going to have to do the 
same thing with many applications. Write it one time, and be done with it. 

So, how can a function be generalized? Well, to be considered a building block, a 
function almost certainly has to use arguments and an explicit result. Refer back to 
pages 93-95 if you're hazy on how to use these properly. If a function doesn't 
have arguments, where is it getting its data? The use of global variables makes for 
very obscure applications. And if the function doesn't have an explicit result, it 
can't pass data along to another function for continued processing. 

An example of a real ground level building-block function (a real nail) is a function 
that we'll call DMB. This function is designed to "delete multiple blanks," by 
dropping all leading and trailing blanks, and reducing multiple contiguous blanks 
within a character string to single blanks. 

224 An Introduction to APL2 



~ Z+DMB V A DELETE MULTIPLE BLANKS 
[1] A ••• REMOVES LEAD, TRAIL, REDUNDANT BLANKS 
[2] Z+lt-1t("" '.s.Z)/Z+,' ,,V,' 

~ 

L+' THIS IS IT 

pL 
21 

DMB L 
THIS IS IT 

pDMB L 
10 

This function is so generalized that it can be considered to be almost a primitive; it 
just happens to be written in APL. This function is very useful when you wish to 
pull a line out of a character matrix and use it elsewhere; DMB lops off all of the 
unneeded blanks. It is also quite helpful when prompting for input with [!). Using 
DMB means that you don't have to be concerned if you get back a few extra blanks 
along with the response (as may happen with bare output, for example). 

Another tiny building block would be a function called THRU. (For example, 
3 THRU 7 yields 3 4 5 6 7.) It's obviously not related to any particular 
application; it's just a useful tool for saving yourself a little bit of effort. 

Most of the building blocks that you put together may well be more complex, and 
therefore more specialized, than these examples. But remember that the more 
generalized you can make the function, the higher the probability is that you will be 
able to use it again in another application. 

You will undoubtedly find that some things that you use building blocks for early in 
your APL career may later on be discarded in favor of just entering their 
definitions directly. For example, where you used to use a function for right­
justifying a matrix of text ... 

M+RIGHT_JUSTIFY M 

... you might replace it later with its definition: 

M+(-+/A\~' '=M)~M 

"What gives? I thought you just tried to talk me into using building blocks?" True, 
true. But building blocks may also serve the purpose of providing education. If 
you haven't had to left- or right-justify a matrix of text before, having a small 
stand-alone function to experiment with is certainly much more convenient than 
trying to observe that one line of code within a larger application. If that 

Chapter 6: Our Own Biased Views of Programming 225 



expression is something that you use several places within one workspace (as would 
typically be the case with D M B), then it should remain as a separate building block. 
If it's used only once in the workspace, but you don't know how to code it from 
memory, then a building block would also make sense. But if it's only going to be 
used once in the workspace, if you know how to code it, and (as with the above 
example) if the actual working code is no longer than its name - it may be just as 
easy to code it directly. These short expressions that you may find yourself using 
repeatedly are referred to as "APL idioms." 

* * * 

Occasionally we see an application that has a set of defined functions that look like 
this: 

'iJ Z+A PLUS B 
[1] Z+A+B 

'iJ 

If the authors of these functions are using them as textbook examples of how 
defined functions work, that's fine, but if they're actually trying to run these 
functions in an application, they have possibly missed the point of modular 
approaches ... they aren't making the overall function any easier to read or 
maintain, and they aren't saving space by reducing multiple definitions. Don't 
break things down this far. 

Precisely where the divisions should occur, we can't say. We can give some 
examples, but there are no rules. A big factor in how far you break them down is 
your degree of familiarity with APL. The discussion entitled "Putting It All 
Together" on pages 238-243 gives some examples of a good approach to one 
project. 

Used with the permission of The Dick Sutphen Studio. 

226 An Introduction to APL2 



How to Build a Toolbox 

Used with the permission of Hart Publishing Company,lnc. 

• 

Have you ever seen a really devoted home handyman with an extensively-equipped 
woodwork shop? These guys seem to be able to whip up a beautifully-made walnut 
coffee table in the time that it would take me to gouge out my own specialty (an 
ash tray), using my trusty (rusty) combination screwdriver/chisel. So how do they 
do it? Obviously, part of it is careful training and skill. But an equally important 
element is having a well-equipped toolbox, knowing where all of these tools are, 
and knowing how to use each of them the right way . 

E T.,~ j; -rA 

The same idea holds true with APL programming, or with nearly any undertaking. 
If you want to build big complex packages quickly, you need to have a 
well-equipped toolbox. In APL terms, that means having access to workspaces that 
contain some basic building blocks. These blocks can then be used repeatedly as 
elements of many larger applications. 

When you first get into APL programming, things are very slow; you're often left 
with the feeling that in order to do anything, you have to concern yourself with all 
of the details of the universe. But as time goes by, you may realize that many of 
the components of a new application that you're working on are really identical to 
the same blocks in your last application. And so, those don't need to be written. 
The longer you work with it, the more building blocks you have at your disposal; 
hence, the faster, easier, and more pleasurable the work becomes ... more 
pleasurable because you can concentrate your efforts on the truly creative aspects 
of each new job, rather than being buried by the drudgery of low-level details. 

In the discussion of "Building Blocks" (on pages 221-226), we recommended that 
you gather subroutines from the Public Library rather than writing your own. 
Where else can building blocks come from? Well, many of them you will 
undoubtedly write yourself. Others will come from friends, or from examples in 
textbooks. And that brings us to our next topic. 

If you're not already taking advantage of the abundant resources of the APL Public 
Libraries, you're probably doing things the hard way. The Public Library repre­
sents an impressive storehouse of knowledge on a wide variety of subjects. 

Chapter 6: Our Own Biased Views of Programming 227 



Whether you need complete packages (like file access systems), or building blocks 
(like time and date functions), try the library. 

When you're writing an application, your goal is the overall operation of that 
package. You shouldn't have to spend the time concerning yourself with minute 
details that have certainly been solved before by others. By using Public Library 
functions, not only are you saving yourself from re-inventing the wheel, but you are 
using building blocks that are often better than the ones that you would have been 
able to build yourself. Keep in mind that the author of a workspace containing 
building blocks had those blocks as his goals, and therefore probably had the time to 
consider (and solve) many problems that you might not have thought of. 

Where's This Function Going? 

In the discussion of creating "building block" applications (on pages 221-226), we 
made it sound like all you had to do was put things in small packages and you'd be 
all set. Well, there's one obvious problem that arises. How do you keep track of 
all of those subroutines? 

But hold on; there's a simple solution (did you really think we were going to say 
there isn't any solution?). 

"Would you tell me, please, which way 
I ought to go from here?" 

"That depends a good deal on where 
you want to get to," said the Cat. 

"I don't much care where-," 
said Alice. 

"Then it doesn't matter which way you go," 
said the Cat. 

-Lewis Carroll, 
"Alice's Adventures in Wonderland" 

I Used with the permission of MacMillan PUblishe~~, Ltd. 

It may seem obvious that you should decide what each APL function is supposed to 
do before you write it, but this fundamental seems to get overlooked rather often. 
We've all seen examples of functions that just seem to ramble about aimlessly, 
without any discernible purpose in life. Roget's Thesaurus shows "purpose" as a 

228 An Introduction to APL2 



suitable synonym for "function" (of course, realize that it also shows "gathering," 
and that one may be more suitable for some of the functions that we've seen). Do 
each of your own APL functions have a single specific purpose?17 

When you begin to write a function, the first thing that you should do is decide 
what one particular operation you wish to perform, and document that with a 
comment line in the beginning of the function before you write any code. This line 
is called an "abstract" (and hopefully prevents the rest of the function from 
becoming the abstract portion). The abstract line shouldn't ever exceed 60-80 
characters. You may find that you can't state the function's purpose in just one 
line. Stop! Don't just write a longer one! That's probably a good indication that 
you're trying to do too much with that function. Narrow its scope a bit and get it 
down to one operation before you start to write any code. 

After you are into the writing of the function, this comment line will give you a 
good reference point to be sure that you aren't wandering from your purpose. 
You'll be surprised how much time you can save in writing the function by taking a 
minute to consider the scope of the function before you start, and clear your mind 
of any side purposes. Leave them for the next function. 

The next advantage that comes from this comment line is that the person who has 
to maintain the application will be able to understand the purpose of the function 
by reading just one line, even though the rest of it may be completely obscure to 
him. And remember, that person who has to go back and modify this strange beast 
two years from now may be you. 

If the particular algorithm that's being used to meet the stated purpose isn't clear, 
or seems undesirable, the person charged with the maintenance has the option of 
simply replacing the module with a functionally equivalent one which is more 
obvious or runs faster. 

Let's assume that you're given the job of maintaining an APL application which 
you've never seen before. How do you learn what it's composed of, and what each 
of the building blocks do? If each function contains a one-line abstract, it's rather 
easy to write a function that simply displays each of the function names along with 
its corresponding description. In this way, the workspace could be made to explain 
itself. 

17 Refer also to the discussion of "Building Blocks" (on pages 221-226) for a discussion 
of creating a connected series of "black-boxes." 

Chapter 6: Our Own Biased Views of Programming 229 



The One-Liner Syndrome 

Early APL terminal, designed for printing 
only one-liners; quite the vogue in 1894. 

Used with the permission of The Dick Sutphen Studio. 

In APL, a line of code isn't restricted to having just one or a small number of 
primitives; it can be of any arbitrary length. Indeed, if one so desired, a champion­
ship chess program could be written in one line. However, it is appropriate to 
mention at this point that just because something can be done doesn't mean that it 
should be done. 

One of the biggest criticism that APL receives is that it is often obtuse, opaque, and 
just plain hard to follow. Unfortunately, that's often true. But the fault isn't with 
APL, it's with the "clever" [sic] programmer who shows how much he can pack 
into one line. 

The One-Liner Syndrome is an affliction that seems to hit every APLer at some 
time in their APL career ... I'm not sure why. I certainly wasn't bypassed; 
everything that I wrote used to be packed into very few lines, all of which were 
hundred-character-Iong twisted barbed-wire tangles of circles, slashes, and stars, 
looking like the wrath of Zeus bolting from the heavens, or perhaps like that crack 
in the living room wall. The one thing that they didn't look like was readable code. 

230 An Introduction to APL2 



Over the years I slowly came to my senses, after noticing all of the obstacles that I 
was throwing into my own path. The most obvious problem is that such functions 
can't be understood without extensive study. This should be reason enough to stop 
using them, since the author most often has to maintain his own code. But there 
are other arguments against one-liners. 

One-liners can't be meaningfully traced, using the "T 6-name" facility.18 Trace 
shows only the last (leftmost) result of each line, and when the entire function is on 
one line, that's not too meaningful. 

Since a one-liner normally has to hold many temporary results in intermediate 
storage while it's parsing the rest of the line, one-liners are much more susceptible 
to W S F U L Ls than other (more reasonable) functions. Many is the time that I 
couldn't get past a W S F U L L, until I finally bit the bullet and broke the offending 
line into several shorter lines. 

This brings up the next problem: one-liners are just plain hard to edit. Those 
one-liners frequently exceed the page or screen width. True, that doesn't 
necessarily mean that you can'l edit them, but it does generally make it more 
cumbersome. Why put yourself through that? 

First Known Example of One-Liners 

Used with the permission of The Dick Sutphen Studio. 

Everything that we've discussed so far has had to do with programmer efficiency, 
not program efficiency. One of the arguments that I have heard in favor of 
one-liners is that such a function will run faster. I always wonder if the proponents 
of this school of thought have actually tried any timing tests. I urge you to do so. 
One-liners aren't by nature faster or slower, but in actual practice, they are 
normally very much slower. One of the reasons for this is what I shall call "fake 
catenation" (a contrived phrase, but I think it communicates). 

"Fake catenation" is an artificial construction that is employed as a trick simply to 
glue two lines together into one line. It should be avoided like the plague. For 
example, let's assume that we wish to assign a value of 0 to both A and B. One 
method would be to have two lines, A +0 and B+O. There is nothing wrong, 
though, with A+B+O. The computer doesn't have to do any extra work (and 
neither does the programmer when he reads the code six months later). However, 
let's now assume that we wish to assign A + 0 and B+ 1. My preferred method 
would be two lines, stated just as they are in this statement of the problem. But a 
construction that I see all too often is B + 1 + A + o. Notice that this time APL has 
to do an extra addition that it wouldn't otherwise have to do; the addition isn't part 
of any of the productive work that the function is trying to accomplish. Of course, 

18 "T Ll-name" is "trace control," causing the final value of each line in a defined function 
or operator to be displayed at the terminal. Stop and Trace are both described in 
APL2 Programming: Language Reference. 

Chapter 6: Our Own Biased Views of Programming 231 



the time to do an addition is extremely small, but then so is the time to go to a new 
line. 

A larger problem associated with the above example is in readability. Sure, that 
last example isn't too bad, but let's suppose now that you were going to set A +19 
and B+4 5 7. If that's stated in one line (and I often see examples like this), you 
have your choice of B+4 3 8 + A +19 or A + - 438 + B+4 57. Now, try to read that 
and know what the values of the two variables are. To do so you have to mentally 
perform those same meaningless calculations that shouldn't be there in the first 
place. In an effort to prevent this problem, many programmers turn to the next 
(and more devastating) trick. 

Using that last example, where we want A +19 and B+4 57, many programmers 
just automatically enter either" A + 1 9 , 0 / B + 4 5 7" or "A + 1 9 , 0 p B + 4 5 7". In 
each case, the value is assigned to B, then that value is reshaped in a null vector, 
catenated onto another value (1 9), and assigned to A. This is the real essence of 
fake catenation. One would expect that (other than the computer doing some extra 
work) this would be pretty much the same as entering those two statements on two 
lines; in particular, the resultant values in A and B should still end up being the 
same. .., 'taint so, McGee. 

Several times I have gotten calls from people who claim to have mysterious APL 
errors that just seemed to spring up out of the woodwork, when "Not Much of 
Anything" had been changed in the code. Well, picture the following two cases: 

OCR·· 'FN1' 'FN2' 
FN1 M;C;H;L 
C+O 
H+ltpM 
LOOP:C+C+1 
+(C>H)/O 
L+M[C;] 
'THIS IS ',L 
+LOOP 

FN2 M;C;H;L 
AHERE'S TROUBLE •.• 
C+ 0 , 0 pH + 1 t pM ....... It----- set up variables 
L 00 P : C+C + 1 ... increment counter 
+( C> H) / 0 ... check for the end 
L+M[ C;] ... get the next line 
, T HIS IS', L ... print the line 
+LOOP ... go back to loop 

Well, the differences seem innocuous enough. And except for a slight case of fake 
catenation in F N 2, the two functions appear to be identical. ... Oh, yes, there is 
one other difference: F N 2 doesn't work .... 

FN2 MATRIX 
LENGTH ERROR 
FN2[5] 'THIS IS ',L 

A A 

This problem is due entirely to the fake catenation, but that may not be at all 
apparent to the person who has to fix it at this point. 

In FN1, with C assigned on a separate line, C took on a scalar (dimensionless) 
value of O. In F N 2, " , a p " caused the value that was put into C to be a 
one-element vector. Throughout the operation of these functions, C retains its given 
dimension. On the line containing L+M[ C; ], C is used as a subscript for a 
matrix. The shape of the result of any subscripting is the same as the catenation of 

232 An Introduction to APL2 



the shapes of each of the subscripts [that is, (psubl),psub2]. No column positions 
are indicated, so all columns are selected. In F N 1, the scalar subscript causes L to 
be a vector, while in F N 2, the vector subscript causes L to be a 1 x n matrix. 

Now, the statement that's trying to print the words "THIS IS "in front of the 
line has no problem when L is a vector. But when F N 2 attempts to catenate an 
eight-element vector (" T HIS IS") with a 1 x n-matrix, aLE N G THE R R 0 R 
results. At this point, there isn't likely to be any suspicion directed toward C until 
much time has been wasted. 

This is the real problem with fake catenation: unless great care is exercised, it 
often produces treacherous (and elusive) side effects. 

Remember also that each of those extra symbols that are used for the fake 
catenation takes up storage space as well as execution time. We recently had an 
interesting discussion with an APLer who was tracing the execution of a workspace 
and carefully measuring the results. Since the workspace was filled with functions 
containing artificially-long lines, he decided to take the time to rid the workspace of 
the fake catenation once and for all. Well, at the conclusion of his efforts he 
measured it again: he had saved twenty percent on storage space and fifty percent 
on execution time! Now, we can't guarantee that your functions will run twice as 
fast if you remove the instances of fake catenation, but everything helps ... and they 
certainly won't be any slower. 

In general, one-liners are a waste of time ... yours and the computer's. Abolishing 
one-liners from your library can save you needless errors and debugging time, and 
can ease your lot in life in understanding the code. It can also save you W S F U L L 
problems and let your code run faster, saving you money and your own time. 

Much more productivity can be realized if each line of an APL function contains 
one thought. 

Chapter 6: Our Own Biased Views of Programming 233 



versus 

Part of the real power of APL is its ability to deal directly with arrays, without 
having to be concerned with lots of nuts-and-bolts details; the APL designers have 
done an admirable job of hiding all of that stuff beneath the surface. If you have a 
thousand numbers stored in an array called TAB L E, and you choose to add two to 
every element, TABLE + 2 or 2 + TAB LEis all that's needed. Show a table of 
numbers to a youngster, and tell him that it is called "TABLE," then ask him to 
write down the arithmetic for adding two to each number. 

It seems sad, then, with APL working in such straightforward ways, that so many 
people insist on writing loops into all of their code. I recently saw this example, not 
once, but many times in one function: 

ARRAY[1;8;]+MATRIX[1;] 
ARRAY[2;8;]+MATRIX[2;] 
ARRAY[3;8;]+MATRIX[3;] 
ARRAY[4;8;]+MATRIX[4;] 
ARRAY[5;8;]+MATRIX[5;] 
ARRAY[6;8;]+MATRIX[6;] 

Bad Example Number One 

In this example, ARRAY is a three-dimensional array, although the only row that 
we are changing is row 8. It is being fed some data from MAT R I X, which has the 
same number of columns as ARRAY has. And, the number of planes in ARRAY is 
the same as the number of rows in MAT R I X; in other words, their first dimensions 
match. 

This isn't meant to be a reflection upon the person who wrote the function. He 
was simply using the background that he had acquired in using other languages, 
and perhaps didn't realize how much effort he could have saved by going to simpler 

~ approaches. Now, unfortunately, the "simpler" approaches that some people resort 
~ to is to remove that in-line code, and replace it with a loop, like this: 

234 An Introduction to APL2 



C+O 
H+1 + pMATRIX 

LP:C+C+1 
+(C>H)/O 
ARRAY[C;8;]+MATRIX[C;] 
+LP 

Bad Example Number Two 

Bad Example Number Two does have some advantages over Bad Example Number 
One. For instance, since it checks the height of ARRAY, notice that it will work 
regardless of how many planes there are in ARRAY. Well, that's progress; at least 
the author wouldn't have to add more lines of code if the size of the array were 
increased some day. 

However, all that's needed to accomplish that same task is one concise expression: 

ARRAY[;8;]+MATRIX 

[I figured that I'd better set this one off from the text the same as the other two 
examples, or everybody would go skipping right past it.] 

Yep, that last example does just the same thing as the first two examples ... but it 
does it much more quickly, and with many fewer keystrokes for the author. And 
consider the job that APL has to go through to execute any of these functions. 

One of the frequent criticisms of APL is that it is "interpretive"; that is, each 
symbol that you key in has to be separately resolved by APL before it can do any 
useful work for you. An alternate approach is a "compiled" program, in which the 
compilation step sets up internal pointers to the data and operations and allows that 
program to run very fast. Taking advantage of arrays, however, gives you the best 
of both worlds. Some of the computer time that you use is spent resolving the 
interpretation of the names and symbols, and some of it is spent actually 
manipUlating your data. Obviously, we would like the first time to be zero and the 
second time to be 1000/0. If the number of names and symbols that you use is 
small, the interpretation is very quick, and the bulk of the execution time is 
expended toward your end product. The internal coding for each of the APL 
primitive functions has been written in System 370 Assembler Code by some very 
knowledgeable system programmers, and most of the code has been optimized for 
lots of special cases. Doing things in big steps with arrays instead of little steps 
with loops allows most of the data movement to be handled by these optimized 
modules. In some cases, you'd be hard pressed to beat the speed even if you were 
writing your own programs in Assembler Language instead of APL, because the 
APL modules have years of optimization behind them. 

As an example of how significant the gains in using arrays can be, consider the 
following examples: 

Chapter 6: Our Own Biased Views of Programming 235 



SCALAR+2 
VECTOR+l000p2 

We constructed several expressions and timed each of them carefully, running each 
expression 100 times, and then took the average. "A +SCALAR+SCALAR" took 
0.2 milliseconds, while "A + V E C TOR + V E C TOR" took 1.0 millisecond.19 That 
says that we can add a thousand numbers to a thousand other numbers in just five 
times as long as it takes to add two numbers together (2 + 2). Almost all of the 
time for the SCALAR+SCALAR case is used for interpretation. 

Projecting that out a bit, that says that if we added those two scalars together a 
thousand times (to equal the work done by VECTOR+ VECTOR), it would take 
200 milliseconds ... two hundred times as long as the array operation. Would you 
care for an easy 200 x speed-up for your functions? But wait, even that isn't the 
whole story ... If you are adding two numbers together a thousand times, it's 
unlikely that you actually have 1000 identical lines of SCALAR+SCALAR in your 
function; you're probably using that old devil loop again. And, of course, each of 
the symbols that comprise the loop have to be interpreted 1000 times. Trying this, 
we came up with an average time of 892.3 milliseconds. That's 892 times longer 
than the V E C TOR + V E C TOR case, and the result is the same. 

Where else can you get an 892x performance improvement by removing code? 

This brief dissertation isn't meant to teach anyone how to use arrays; it's simply 
meant to interest you in pursuing them further. For more information on the use of 
arrays, look in APL2 Programming: Language Reference, under "Arrays" or 
"Scalar Functions." 

* * * 

19 These numbers are for comparison only; your actual mileage may differ. 

236 An Introduction to APL2 



Wil 3-Chr Nms Run Fst? 

... Sure, sure. 

Used with the permission of Hart Publishing Company, Inc. 

Perhaps you've heard the scam: "Hey, buddy, wanna make your APL functions 
run real fast? ... jes' keep all of the names to three characters or less .... " 

Well, first of all, it is true that most APL systems process short names better than 
they process long names - APL simply ends up doing more work to manipulate 
long names. But ... that extra amount of work that it has to do is trivial. Probably 
you won't even be able to measure the difference, whereas we just finished 
discussing other changes in programming techniques that can result in 
improvements that may make the code run hundreds of times faster. Don't even 
consider the three-character limit as being significant; on most early APL systems 
the limit was three, but that limit is purely implementation dependent, and isn't 
even being used anymore. 

If there is ever any chance that a longer name will be more readable or more 
descriptive, vote in favor of the more meaningful name. 

Chapter 6: Our Own Biased Views of Programming 237 



Putting it all 

Used with the permission of Hart Publishing Company. Inc. 

Okay, I would like to write modular code.... But how? 

* * * 

Your manager just walked into your office and asked you if there is any chance of 
whipping up a part number inventory report by tomorrow morning. You say "no 
problem," and he quickly leaves before your brain has a chance to interpret the 
words your mouth has just volunteered. Oh oh. 

Where Do You Go From Here? 

Obviously, you go for a cup of coffee; that's an important step in programming. Of 
course, you ask your office mate to join you, knowing that he created the part 
number inventory file that you will be using. That free coffee that you get hlm 
quickly yields some free information for you. Not bad. As you return to your 
desk, still scribbling record formats on your coffee cup, you begin to think about 
the last five "quick and dirty" functions you have written that never died, but 
rather continue to haunt you with daily updates and fixes. You suddenly make up 
your mind that this program is going to be the eagle of functions, not another 
albatross. It's going to be complete, dependable, logical, efficient, idiot proof, and 
also maintainable. Sounds like you'll be burning the midnight oil? Maybe not; 
read on .... 

238 An Introduction to APL2 



Should Yo .. Make a Flowchart? 

... or a "HJPO"? 

... or maybe a Nassi-Schneiderman chart? 
( ... whatever that is) 

Well, you could do that if you had the time, but when you finish it, you only have 
something that is human readable (at best), not machine readable. Perhaps there is 
a way to do the problem analysis at the terminal. First, get a fresh, clean APL 
flowchart pad, via: 

)CLEAR 
CLEAR WS 

Probably it would be good to ensure the that you haven't used up your workspace 
~~: . 

)SAVE INVENTORY 
7/13/1984 11.55.18 (GMT-5) 

Now, in the most basic terms (probably those of your manager), what are you 
going to accomplish? 

VINVENTORY 
[1] AREPORTS CURRENT PART NBR QTY FROM FILE 

Now what logically needs to be done first? Is there any input required? 
Remembering that your manager doesn't have time to scan through lengthy reports, 
you decide to allow for part number selection: 

[2] APROMPT FOR PART NUMBERS: 
[3] PN+GETPN 

Hmmm ... let's see, what happens if he types in something invalid? Well, you can 
put some code in the GET P N function to check for this and print an appropriate 
error message. But then how do you get it to exit the main calling function 
(INVENTORY)? Or what if he just presses return without typing in any part 
nlimber? In either case, having the GET P N function return a null vector is an easy 
(and fairly common) way of signalling that some other action is to be taken. So 
let's use a null response from GET P N to cause an exit from IN V EN TOR Y: 

[4] +(O=pPN)/O 

What do you need to do next? Remember, don't go into any detail at this point. 
You just want a general overview. 

[5] ASEARCH INV FILE, RETURN PN'S AND QTYS: 
[6] PNQ+SEARCH PN 

It might help to sort the part numbers on your report. 

[7] ASORT BY PART NUMBER: 
[8] PNQ+SORT PNQ 

You can't think of anything else you need to do besides producing the report? Ok, 
then wrap up this function. 

Chapter 6: Our Own Biased Views of Programming 239 



[9] 
[10] 
[11] 

RFORMAT AND DISPLAY: 
DISPLAY PNQ 
V 

You probably recognize by now that I am suggesting a top-down approach to APL 
programming. By breaking the problem down into logical steps, you will find 
yourself writing modular code without even thinking about it. And by freely 
supplying comments, your functions will be even more easily maintained. If you 
are concerned about OWA (the amount of workspace available), you can strip the 
comments (and, optionally, lock the functions) and save them in a production 
workspace, leaving your original, commented version as the maintenance copy. 
There may even be functions for doing this available in the APL Public Library on 
your system. Check around. 

Now that you have the main function written for your inventory report, you can 
define the first subfunction that you called: GET P N. 

[1] 
[2] 

[7] 

VPN+GETPN 
RPROMPTS USER FOR PART NUMBERS 
RPN

1

++ NUMERIC VECTOR OF PART NUMBERS 

( ... more detail will be shown in 
the neit subfunction, SEA R C H) , 

I Without going into detail on this particular function, I would like to offer a couple 
r of general comments on prompting for input. 

Keep Your Prompts Shortl 

Do Lots of Auditing 

This will be greatly appreciated by your users, especially if your function does 
I repetitive prompting. You may wish to use a longer initial prompt, followed by a 

short form thereafter. I sometimes expect that when I meet programmers who use 
prompts like "EN T E R YOUR N AM E : ", they will greet me with 
"TELL ME YOUR NAME", and "TELL ME HOW YOU ARE". What's 
wrong with simple questions like "N AM E ?", "RANK?", or 
"S E RIA L N U M BE R ?". However, watch out for ambiguous short prompts; your 
intentions may be misunderstood. 

You will thank yourself every night that you don't get a frantic 3am call from a user 
who mistyped an "0" for a "0." Here's a good place to use "toolbox" functions. 
You can write, beg, or borrow functions (or APL idioms) for auditing numeric or 
character data, testing dimensions of input, and for auditing special inputs like 
dates and times. 

Now, let's get back to the part number inventory report. Forgot where you left 
off? No problem, just look back at your "APL flowchart": 

240 An Introduction to APL2 



[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 

'VINVENTORY[O]'V 
'V INVENTORY 

'V 

AREPORTS CURRENT PART NBR QTY FROM FILE 
APROMPT FOR PART NUMBERS: 

PN+GETPN 
+(O=pPN)/O 

ASEARCH INV FILE, RETURN PN'S AND QTYS: 
PNQ+SEARCH PN 

ASORT BY PART NUMBER: 
PNQ+SORT PNQ 

AFORMAT AND DISPLAY: 
DISPLAY PNQ 

7/13/1984 12.22.13 (GMT-5) 

Ok, you've got some part numbers (via GETPN). Now search the inventory file. 

'VZ+SEARCH PN 
[1] ASEARCHES FILE TO GET TOTAL PN QTYS 

Always be sure to describe the arguments and the explicit result of your function. 

[2] APN ++ NUMERIC VECTOR OF PART NUMBERS 
[3] AZ ++ TWO-COLUMN MATRIX OF PN'S AND QTYS 

First you have to open the file. You could open it for either direct access or 
sequential reading. For this project (assuming that you need to go all the way 
through the file) a sequential read is reasonable. If you don't already have a 
toolbox function for opening a dataset, try to generalize this function by using 
arguments, so that you can use it again on another project. 

[4] OPEN 'PNINV' 

Next, the plan is to read a block of records at a time, each containing a part 
number and serial number (according to the notes on your coffee cup). You will 
increment the appropriate part number quantity for each serial number. Before 
you start, you want to set the P N quantities to O. 

[5] Z+PN,[1.5] 0 
[6] READLOOP: 
[7J +(O=l+pBLOCK+READ)/END 
[8J AUPDATE QTYS BASED ON PN'S IN BLOCK[;l]: 

At this point you have two options. If you are not sure of the APL expression to 
do this, don't let that slow you down now. Simply call a subfunction to do the job. 
(You can code it later.) 

[9] Z+BLOCK[;l] UPDATE Z 

... Or, if the content of the UPDATE function is just one brief line and you know 
what the process is to be, you can just enter it here directly: 

[10] [9] 
[9] Z[;2]+Z[;2]++/PNo.=BLOCK[;1] 

... and now you can go back and get the next record: 

[10] +READLOOP 

Well, you've done what you said you were going to do at the beginning of this 
SEA R C H function, so close it out: 

Chapter 6: Our Own Biased Views of Programming 241 



[llJ END: 
[12J [OJ'V 

'V Z+SEARCH PN 
[lJ ASEARCHES FILE TO GET TOTAL PN QTYS 
[2J APN ++ NUMERIC VECTOR OF PART NUMBERS 
[3J AZ ++ TWO-COLUMN MATRIX OF PN'S AND QTYS 
[4J OPEN 'PNINV' 
[5J Z+PN,[1.5J 0 
[6J READLOOP: 
[7J +(O=l+pBLOCK+READ)/END 
[8J AUPDATE QTYS BASED ON PN'S IN BLOCK[;lJ: 
[9J Z[;2]+Z[;2]++/PNo.=BLOCK[;lJ 
[10J +READLOOP 
[llJ END: 

'V 7/13/1984 12.40.37 (GMT-5) 

Looking back at your main function IN V E N TOR Y, you can see that your next job 
is to sort the part numbers. At this point you realize that this particular sort is 
really quite trivial, and a function call probably isn't necessary. You could easily go 
back and edit your "flowchart": 

'VINVENTORY[08] 
[8J PNQ+SORT PNQ 
[8J PNQ+PNQ[!PNQ[;l];J 
[9J 'V 

However, if this had been a more complicated sort (perhaps a file sort) you could 
have checked the APL Public Library ... there may be all sorts of sorts around. 

You've reached the end of your main function. You can now write the DISPLAY 
function (with appropriate bells and whistles to impress your manager). Then go 
back and take care of the next lower level of subfunctions (that is, 0 PEN, REA D, 
and so forth) in a similar manner. Also, you will need to localize some variables in 
the functions you have written. And do take the time to be neat about localization 
of variables. Don't leave variables around as global objects unnecessarily. That 
could cause some confusions later (as described in the "Mystification to Avoid" 
discussion on page 83). 

A side benefit of this top-down programming approach is that you can start testing 
your functions at any point along the way by writing dummy subfunctions. For 
instance, suppose that the input file (P N I N V) hadn't yet been created by the time 
you were ready to test your functions. You could quickly write a null 0 PEN 
function (just a header line) and aREA D function that simply returned a matrix 
of sample records. 

At this point, you (hopefully) feel that you've done a good job, so don't forget to 
sign your work: 

'VINVENTORY[.lJ 
[O.lJ AVAN DER MEULEN, INVENTORY CONTROL DEPT 
[0.2J 'V 

'VGETPN[.lJ 
[O.lJ AVAN DER MEULEN, INVENTORY CONTROL DEPT 
[0.2J 'V 

'VSEARCH[.lJ 
[O.lJ AVAN DER MEULEN, INVENTORY CONTROL DEPT 
[0.2] 'V 

)SAVE 
7/13/1984 12.45.17 (GMT-5) INVENTORY 

242 An Introduction to APL2 



Here, let's even include some "human factors" stuff, to make it easier for someone 
else to get started with it: 

'VLX 
[1] 'REPORTS CURRENT PART NUMBER QUANTITIES' 
[2] ' ••• TYPE INVENTORY TO START' 
[3] "'V 

OLX+'LX' 

)SAVE 
7/13/1984 12.46.52 (GMT-5) INVENTORY 

Now it will "come up running"; let's try it: 

)LOAD INVENTORY 
SAVED 7/13/1984 12.46.52 (GMT-5) 
REPORTS CURRENT PART NUMBER QUANTITIES 
.•. TYPE INVENTORY TO START 

When you look back at your functions after finishing the project, you see a lot of 
short, concise modules, logically linked together under a main function. As you 
look closer at individual functions, you're almost embarrassed by their simplicity. 
Congratulate yourself on a job well done. 

Chapter 6: Our Own Biased Views of Programming 243 





Appendix. Reference Section 

Used with the permission of The Dick Sutphen Studio. 

Appendix. Reference Section 245 



List of Major Extensions, New Features and Differences 

Extended Items 

APL2 offers a lot of power that wasn't previously available to APL users. For 
reasons of conversion and compatibility, it may be important to identify the new 
features. Here is a list of the items which have been added, extended, or changed 
with respect to previous versions of APL. Some of these changes are discussed in 
this manual; all of them are documented in detail in APL2 Programming: Language 
Reference. Further discussions of differences between various versions of APL can 
be found in APL2 Migration Guide. 

1. MisceUaneous: 

a. "-,, and "_" are alphanumeric characters 
b. Selective specification 
c. Parentheses are accepted in function expressions 
d. Any statement may end with a comment 
e. Overstrike combinations exist for national characters and lowercase 

characters 
f. Error reports normally show two error carets 
g. Some system va.riables are session variables 
h. 'Some empty arrays may display on multiple lines 
i. The active workspace is saved into the user's library after a S.YSTEM 

ERROR 
j. Halted, partially-executed statements may be resumed 
k. The four properties of a locked function may be set independently 
1. System commands may have comments 

2. Monadic Primitive Functions: 

a. .. formats columns independently 
b. / accepts integer left argument 
c. 'accepts arrays of any nonscalar rank 
d. • accepts arrays of any nonscalar rank 

3. Dyadic Primitive Functions: 

a. 0 accepts 1 2 11 1 0 9 8 8 9 1 0 11 1 2 left argument 
b. .. accepts a character left argument 

4. Monadic Primitive Operators: 

a. / accepts a defined or derived function operand 
b. \ accepts a defined or derived function operand 

5. Dyadic Primitive Operators: 

a. • accepts a defined or derived function operand 

246 An Introduction to APL2 



6. Monadic System Functions: 

a. DE X may expunge a suspended, pendent or active function 
b. OF X accepts vector of vectors and operator definitions 
c. OF X may fix a suspended, pendent or active function 
d. ONC class 4 means operator 
e. ON L accepts 4 

7. System Variables: 

a. Opp may be up to 18 

8. Dyadic System Functions: 

a. 0 N L accepts 4 in its right argument 

9. System Commands: 

a. ) COP Y accepts indirect lists in parentheses 
b. ) COP Y will attempt to continue after a W S F U L L 
c. ) PC 0 P Y accepts indirect lists in parentheses 
d. ) PC 0 P Y will attempt to continue after a W S F U L L 
e. ) ERA S E accepts indirect lists in parentheses 
f. ) F N S accepts an optional second argument 
g. ) LIB lists workspace names across the page 
h. ) S Y M B 0 L S may change the size of the symbol table at any time 
i. ) V A R S accepts an optional second argument 
j. Comments may be entered on system command lines 

10. 'V Editor (Default): 

a. The editor will edit defined operators 
b. [ +] command to abort 
c. [ On] accepts a vector argument 
d. [ II n] accepts a vector argument 
e. [ On] accepts an interval argument with "-" 
f. [ II n] accepts an interval argument with "-" 
g. Previous function kept following a name change 
h. Recursive editing 

Appendix. Reference Section 247 



New Items 

l. Miscellaneous: 

a. N ationallanguage translation 
b. Defined operators 
c. Vector notation 
d. Characters eJ .1 &. D lSI = •• - . 
e. Session parameters 

2. Data Types: 

a. Complex numbers 
b. Mixed arrays 
c. Nested arrays 

3. Monadic Primitive Functions: 

a. - Depth 
b. c Enclose 
c. + First 
d. ::> Disclose 
e. ::> [A] Disclose with Axis 
f. c [A] Enclose with Axis 
g. , [A] Ravel with Axis 

4. Dyadic Primitive Functions: 

a. &. Find 
b. , Grade Down 
c. ~ Grade Up 
d. - Match 
e. ::> Pick 
f. Without 
g. 1- [A ] Drop with Axis 
h. + [A ] - Take with Axis 

248 An Introduction to APL2 



5. Monadic Primitive Operators: 

a. [A] 
b. .. 

- Axis specification for scalar functions 
Each 

c. / - N-wise Reduce 

6. System Variables: 

a. OEM 
b. OET 
c. OFC 
d. OL 

Event Message 
Event Type DET 
Format Control 
Left Argument 

e. ONLT 
f. OPR 

National Language Translation 
Prompt Replacement 

g. OR 
h. OSVE 
i. OTZ 

Right Argument 
Shared Variable Event 
Time Zone 

7. Monadic System Functions: DEC DNA 

a. OAF 
b. DEC 
c. DES 
d. DNA 
e. OSVS 

Atomic Function 
Execute Controlled 
Event Simulation 
Name Association 
Shared Variable State 

8. Dyadic System Functions: 

a. OAT Attributes 
b. OEA Execute Alternate 
c. DES Event Simulation 
d. OFX Fix 
e. DNA Name Association 
f. OTF Transfer Form 

9. System Commands: 

a. ) ED ITO R specifies 'iJ system editor 
b. ) H 0 S T executes host system commands 
c. ) I N retrieves objects from transfer file 
d. ) M COP Y copies objects from VS APL workspaces 
e. ) M 0 R E provides additional error information 
f. ) N M S lists names of objects 
g. ) 0 P S list names of operators 
h. ) 0 U T saves objects onto transfer file 
i. ) PBS sets the printable backspace character 
j. ) RES E T clears the state indicator 
k. ) SIS lists the state indicator with statements 
1. ) TIME displays the date and time 

10. 'iJ Editor (Extended): 

a. Full screen processing 

11. Messages: 

Appendix. Reference Section 249 



a. AXIS ERROR 
b. SYSTEM LIMIT 
c. VALENCE ERROR 

Items Which May Return Different Results 

There are several features or operations in APL2 that can produce different results 
from those in previous versions of APL. This list does not include extensions 
(operations which produced errors in previous versions, but do not produce errors 
in APL2). 

1. The Atomic Vector (OA V) is different. In particular, the alphabets are not 
contiguous. 

2. " -" and "_" are alphanumeric characters. 

3. ON C name class 4 means operator. 

4. ONC name class -1 means invalid name. 

5. The system function name class (ON C) applies to distinguished names (system 
variables and system functions). 

6. The result of OEX, ONC, OSVO, or OSVR applied to a vector is a scalar. 

7. The backspace character, the new line character (carriage return), and the line 
feed character are not permitted in a character constant or in function 
definition. 

8. Lowercase letters, new APL2 characters ~ .s..1. 0 lSI::·:, national use 
characters ¢ I ! $ -, : ' # @ " ,..., { } \, and special characters & and % are 
permitted in character constants and comments. 

9. The result of the system function canonical representation (OCR) separates 
local names in the function header with blanks. 

10. The result of OCR may contain some lines which are entirely blank. 

11. Numeric constants in the canonical representation of a function retain the same 
precision with which they were entered. 

12. The system function fix (OFX) will accept blanks as the separator between 
local names in a function header. 

13. Suspended, pendent or active defined functions may be expunged (with DE X) 
or fixed (with OFX). 

14. Referencing [!J always produces a vector. 

15. Referencing [!J after setting [!J with a prompt returns the composite of the 
prompt and the keyboard entry. 

16. 0 C T is an implicit argument of the function residue ( I ). 

17. 0 C T is an implicit argument of the function encode (T). 

250 An Introduction to APL2 



18. Negative integers are not in the domain of the dyadic binomial (!) function. 

19. An odd root of a negative number (like - 8 * T 3) is a complex number. 

20. The result of - 40 R is the negative square root if the argument R is negative. 

21. The monadic format ('i) or default display of a (simple) numeric matrix has its 
columns formatted independently; therefore, it does not contain a leading 
column of blanks. 

22. The result of dyadic format L 'i R, where L is a single nonzero integer, and R is 
less than 1, does not leave a blank for the units digit. 

23. The display of a multidimensional array is folded at OPW, if necessary, plane by 
plane, rather than line by line. 

24. The display of an empty array having rank greater than one may use zero lines, 
or may extend to multiple lines. 

25. The execution of the dyadic system function 08 V 0 is not necessarily atomic. 
If multiple shares are offered simultaneously, it is possible to exhaust the 
shared variable quota before all shares are fulfilled. In such a case, after a 
8 Y 8 T E M LIMIT error, some shares may be fulfilled while others are not. 

26. If the left argument of the dyadic system function 08VO is a one-element 
vector, then it does not extend (although a scalar left argument will still extend 
in the normal fashion). 

27. The dyadic system function shared variable query (08VQ) is not supported. 

28. The edit command [On] will display only line n of the function being edited. 
The command [On - ] will display from line n to the end of the function. 

29. Changing the name of a function with the system editor creates a new function 
without affecting the original function. 

30. Settings of stop control (86.) and trace control (T 6.) are not relocated as a 
result of line insertion or deletion by the system editor. 

31. Statements entered in immediate execution that are interrupted by an error are 
placed in the 8 I stack, and may be resumed by entering + 'l O. 

Appendix. Reference Section 251 



Withdrawal of Obsolete Facilities 

I-Beams Have Been Removed 

The ancient I-beam functions left over from the early APL \360 days, are no 
longer supported. In their place, you should be using these system variables: 

Approximate 
I-beam replacement Purpose 

-I19 1tOAI Keyboard Unlock time 
I20 3.J.OTS Time of day 
I21 OAI[ 2 ] CPU time (compute) time used during this session 
I22 OWA Amount of workspace available 
I23 OUL User load 
I24 OAI[ 3 ] Session start time 
I25 3tOTS Current date 
I26 1tOLC Current line number being executed 
I27 OLC Vector of line numbers in the State Indicator 
I28 OTT Terminal type 
I29 1tOAI User number 

By "approximate replacement," we mean that the recommended expression yields 
roughly the same information, although it's typically in different units. The newer 
facilities are in generally much more "user-friendly" units than the I-beams were. 
For example, OTS returns the current time and date as year-month-day-hour­
minute-second-millisecond... I 2 0 gave the time in 60-ths of a second since the 
last midnight previous to your sign-on. It would therefore make sense to rewrite 
the expression in which they appear rather than to convert the quads to old units, 
and then back to "friendly" units. 

Heterogeneous Output Has Been Removed 

Heterogeneous output (sometimes called mixed output), was the old practice of 
printing both numeric and character data on the same line by separating them with 
semicolons: 

N+127 
'HEIGHT IS ';N;' UNITS' 

HEIGHT IS 127 UNITS 

A better approach is to format the numeric data into character data, like this: 

'HEIGHT IS ',(.N),' UNITS' 
HEIGHT IS 127 UNITS 

or, to simply catenate the character and numeric data together, like this: 

'HEIGHT IS',N,'UNITS' 
HEIGHT IS 127 UNITS 

or, finally, to simply display the character and numeric data side-by-side, without 
catenation, like this: 

252 An Introduction to APL2 



'HEIGHT IS' N 'UNITS' 
HEIGHT IS 127 UNITS 

This last method is particularly effective where the data to be displayed may not be 
conformable for catenation, and you wish to have APL handle the display 
formatting: 

M+3 4pt12 
'THE RESULT IS' M 

THE RESULT IS 1 2 3 4 
5 6 7 8 
9 10 11 12 

The withdrawal of heterogeneous output was not an arbitrary change. The old 
construction was offered back in APL \360 days, when there was no easy way to 
format the numerics into character data, but this use of the semicolon never was a 
proper APL construction. In particular, its "result" cannot be assigned to a 
variable or passed to a function as an argument. It was a convenience whose 
necessity has been outlived. 

Appendix. Reference Section 253 





Index 

abort (~) 83, 161, 163, 166 
abstracts 228 
accent (national)' 11 
access 

to the system 68 
access control 

shared variables 152 
account identification 68 
accounting reports 209-217 
active workspace 68 
add + 38 
adverbs 57 
alignment 

columnar 46,48-50,208,210 
numbers 46,48-50,208 

alpha a 11 
alphabetic 10 
ambi-valence 95-97, 176 
ampersand (national) & 11 
and 1\ 38 

See also up caret 
angle 

See polar form 
Anything 

Not Much of 232 
APL2 iii 

differences 250 
application package 238 
arguments 13,22,57,93-94,224 

scalar extension 28, 37 
arrays 15,33-45,51,234-236 

empty 51-56 
nested 53 

mixed 34 
nested 21,33-45 

bank account example 43~44 

rectangular 44 
simple 33-45 

conversion to 50 
ash tray 227 
ASK each 200 
ASK function 196 
Assembler code 235 
assignment 8 
assignment arrow -+- 8 
asterisk 

See star 
at (national) @ 11 
atomic function 120 

See also atomic vector 
atomic vector 140 

See also atomic function 
attention 9, 159 

See also interrupts 
attributes 

of a defined function or operator 121-125 
auditing inputs 240 
axes 16,33-45 
AXIS ERROR 

cause and recovery 167 

backs lash \ 
See slope 

backslash (national) \ 11 
backslash bar , 

See slope bar 
backspace 146 

printable 87-88 
bar - 11 
bare output 193-201,225 
base .1. 

See down tack 
base jot .t 

See down tack jot 
bells 242 

See also whistles 
binomial 1 38 
blank 10, 11, 12,21-24,224 

print-as-blank character 217 
blocks 

See building blocks 
bracket indexing 18-20 
brackets 

for indexing 20 
brackets [ ] 

for indeXing 18 
round 

See parens 
square 11 

branch 
abort (~) 161, 163, 166 
resume (~t 0) 164, 166 
vacuous (~t 0) 

to reSllme 164, 166 
branching 5, 98 

See also looping 
n-way 101 
recommended form 100 
to labels 100 
vacuous (~t 0)99 

bricks 223 
British Summer Time (BST) 148 
building blocks 221-226,228,238-243 
business data processing 

formatting 209-217 

Index 255 



canonical representation 59, 125-126 
cap n 

See up shoe 
cap jot A 

See up shoe jot 
caret 9,28, 161 
carriage return 146 

elimination of 195 
CARRIAGE-RETURN key 7 
Carroll, L. 228 
catenate each 54 
catenation 44 

"fake" 231 
ceiling r 38 
cent (national) ¢ 11 
changes 

from previous versions of APL 246-251 
character input 194 
character representation 

function or operator 125-126 
character set 10, 11 

keyboard chart 10 
characteristics 

of APL 5,9 
characters 9, 10, 11,22, 120, 140 

new in APL2 87 -88 
terminal control 146 

check-protection fill-characters 215,216 
circle 0 11 
circle backslash ~ 

See circle slope 
circle bar e 11 
circle slope ~ 11 
circle star. 11 
circle stile <I> 11 
circular 0 38 
Clarke, A. 219 
)CLEAR command 72,238 

clock 147 
code 

Assembler 235 
compiled 7, 235 
generalized 241 
internal 27, 235, 237 
interpretive 7, 235 
modular 

See building blocks 
readability 232 
self-documenting 224,238-243 

coefficients 
vector of 26 

coffee 
role in programming 238 

coffee table 
walnut 227 

collating sequence 202-204 
colon: 11, 70 

256 An Introduction to APL2 

columnar alignment 46,48-50,208,210 
comma, 11,209-217 
command 

system 
See system commands 

comments 22, 102 
communication 

with other users 84 
compatibility 

with previous versions of APL 252 
compiled code 7, 235 
compiler 7 
complex numbers 13 
compute time 252 
conjugate + 38 
connect time 252 
constants 18, 21, 22 
) CONTINUE command 82 
CONTINUE workspace 68,82 
controlling events 158-189 
conversion 

from previous versions of APL 252 
)COPY command 77 

indirect form 89 
protected, see )PCOPY 79 
versus ) LOA D command 78 

correction 
typing 9 

CPU time 252 
cup u 

See down shoe 
cursor 9 

Danish 143 
DANSK 143 
data 15 

See also variables 
data alignment 48 
data base 224,241 

See also external file 
data structures 21,33-45 
date 147,252 
day of the month 147,252 
decimal point 216 
decorators on reports 209-217 
default display of output 46-47 
default editor 104 
default values 95-97 
defined operator 

See operator, defined 
DEFN ERROR 

cause and recovery 167 
degrees 13 
del V 11 
del editor 104-115 
del stile' 11 



del tilde Ttl 11 
to lock a function 124, 129 

delay function 127 
delta 6. 11, 12 
delta stile ~ 11 
delta underbar!d 11, 12 
derived function 38,57 
DEUTSCH 143, 144 
dieresis 00 11 
dieresis dot 0: 11 

forming 87-88 
differences 

from previous versions of APL 246-251 
dimensions 16 

See also axes 
direction x 38 
disclose 36 
distinguished digits (for picture format) 212,214-215 
distinguished names 119-148 
divide 7 11, 38 
D M B defined function 224 
documentation 224, 238-243 
dollar sign (national) $ 11, 209 
DOMAIN ERROR 

cause and recovery 167 
from format (.) 208,214,216 

domino m 
See quad divide 

dot 0 11 
dotted del 0: 

See dieresis dot 
double quote (national)" 11 
down arrow"" 11 
down caret v 11 
down caret tilde It/' 11 
down shoe u 11 
down stile L 11 
down tack.L 11 
down tack jot.t 11 
down tack up tack I 11 
)DROP command 76 

dyadic 13, 14,93,95-97 

each ( operator) 41 
Eastern Standard Time (EST) 148 
edge cases 51 
editing 

function and operator 104-115 
of keyboard input 197 

editor 
default 104 
extended 107 
full-screen 107 

)EDITOR command 85,104 
)EDITOR 1 104 
)EDITOR 2 104,107 

education 225 

efficiency 
programmer 231 

E-format 13,21,46,206,215 
elements 18,21,33-45 
empty array 51-56 

nested 53 
empty vector 99 

response to prompts 174,239 
used in reduction 55 

enclose 35-36 
English 143 
ENTERkey 7 
ENTRY ERROR 

cause and recovery 167 
environment 

clear workspace 73, 137 
epsilon E: 11 
epsilon underbar £. 11 

forming 87 -88 
equal = 11,38 
equal underbar:: 11 

forming 87 -88 
erase 

dynamic 127 
workspace 

See )DROP 
)ERASE command 82 

indirect form 89 
ERASE EOF key 9 
error 

correction 9 
deliberate 28 
handling 158-189 
messages (table) 166, 167 
numbers 178 
0--

cause and recovery 167 
report 28-29, 143-145, 161-166, 167-168 
side-tracking 172-176 
simulation 183 
trapping 158-189 

facilities for (table) 160 
errors 

examples of dealing with 158-189 
eschewal of obfuscation 44 
ESPANOL 143 
European notation 209, 217 
evaluated input 193 
evaluation 

See order of evaluation 
event handling 158-189 

facilities for (table) 160 
event message 179 
event simulation 183 
event type 177 

table 178 
exclamation (national) 11 
exdented lines 100 
execute 169-171, 172-176 
execute alternate 172-176 
EXECUTE key 7 

Index 257 



execution 
abort (+) 161, 163 
abort ( + 1 0) 166 
resume (+10) 164,166 

execution properties 124, 129 
expand 53 
explicit result 57, 121,224 

definition of 94-95 
exponential * 38 
exponential form 13,21,46,206,215 
exponents 

vector of 26 
expression 8 
expunge 127 
extended editor 107 
extension of scalar arguments 28, 37 
extensions 

from previous versions of APL 246-251 
external file 80,81, 125, 132-135,224,241 

factorial! 38 
"fake" catenation 231 
FBE (format-by-example) 209-217 
feedback 7 
fields 211 
files 

external 80,81, 125, 132-135,224,241 
fill elements 51 
FIN D function 96 
Finnish 143, 145 
first t 53 
Fix function 128 

dyadic 129 
fix-time 122 
flat arrays 

See arrays, simple 
floor L 38 

another man's 57 
flowchart 238-243 
)FNS command 74 

folding of output 46 
font 12 
Faa 102,161,162,165,173,179,184 
foop 

swell type 163 
foreign language translation 

See ON LT (national language translation) 
format 204-217 

by example 209-217 
by specification 205 
monadic 204 
picture 209-217 

format control (OFC) 212,216 
formatting 141,209-217 

258 An Introduction to APL2 

reports 48-50 
FRANCAIS 143, 144 
French 143, 144 
full-screen editor 107 
function 12, 13, 14,23 

abstracts 228 
attributes 121 
defined 

listing names 74 
definition 92-103 
derived 38,57 
editing 104-115,200 
header 57,93 
identity 56 
"purpose" 229 
locked 124, 129 
primitive 14 
scalar 27, 36, 53, 56 

(table) 38 
time stamp 121, 122 
uninterruptible 175 
valence 95-97, 121 
versus operator 14 

G CD defined function 99, 100 
generalized code 224,225,241 
German 143, 144 
global variables 

variables, global 224 
grade 202-204 
grammar 5 
greater > 11,38 
Greenwich Mean Time (GMT) 148 
grouping 

See also parentheses 
to aid copying and erasing 89-90 

halted statements 83,84,97 
header 

of a function 57, 93 
of an operator 57, 93 

Hebrew 143 
heterogeneous output 252 
hexadecimal 140 
hierarchy 5,24,26 
high-minus - 13 
Hodges, A. G. 158 
horizontal tabs 141 
)HOST command 85 
hour 147,252 



I-beam I 

See down tack up tack 
identification 

of account 68 
identity function 56 
idioms 226, 240 
illumination 

See lamp 
imaginary numbers 

See complex numbers 
) IN command 80 
INCORRECT COMMAND 65 
indent 7 
index origin 19-20,60 
INDEX ERROR 397 

cause and recovery 167 
indexing 18-20 
indirect copy 89-90 
indirect erase 89-90 
input 29, 193-201,225,240 

auditing 240 
character 194 
evaluated 193 
garbled 29 

interactive 7 
INTERFACE QUOTA EXHAUSTED 

see SYSTEM LIMIT 168 
intermediate result 8,26 
internal code 27,235,237 
interpretive code 7, 235 
INTERRUPT 

cause and recovery 167 
interrupts 9, 159, 167, 175 

See also event handling 
iota t 11 
iota underbar.l 11 

forming 87 -88 
Italian 143 
ITALIANO 143 
italics 9 
item-by-item evaluation 27, 36, 41 
items 21, 33-45 

J-format 13 
jot 0 11 
juxtaposition 

of terms 22 

Kanji 120 
Katakana 143 
key 70 
keyboard 

characters not on 87-88 
chart 10 

keyboard unlock time 252 
Kindler, H. 159 

labels 100 
lamp A 11, 102 
latent expression 142 
leading zeros 

padding with 215 
suppressing 209-217 

left arrow -4- 11 
left brace (national) { 11 
left bracket [ 11 
left bracket right bracket 0 11 

forming 87 
left paren ( 11 
left shoe c 11 
LENGTH ERROR 

cause and recovery 167 
example 29 

less < 11,38 
)LIB command 75 

libraries 68, 70 
public 70,223,227,240,242 

library space quota 86 
Lincoln, A. 158,222 
line feed 146 
line labels 100 
line number 252 
linescan 26 
)LOAD command 77 

versus )COPY command 78 
local time 148 
local variables 

See variables, local 
localization 

of system variables 136, 138, 139 
lock 70 
locked function 124,129 
logarithm. 38 
logical backspace 87 -88 
looping 

tight 99 
versus using arrays 234-236 

lumber 223 

Index 259 



Macduff 221 
machine instructions 7 
machine language 7 
magic 219 
magnitude I 38 

See also polar form 
manager 

impressing 
See bells and whistles 

matrix 15, 16,33-45,234-236 
maximum r 38 
McGee, F. 173, 232 
McGurk's Law 159 
)MCOPY command 80 

messages 
sending 84 

millisecond 147,252 
minimum l 38 
minus sign - 209 
minute 147,252 
minutia 

See toolbox 
mixed arrays 34 
mixed output 252 
modular approach 

See building blocks 
monadic 13, 14, 93, 95-97 
month 147,252 
)MORE command 85 
) M S G command 84 
)MSGN command 84 

multiplier 13,21,46,206,215 
multiply x 38 
Murphy, E. 62 
mysteries of life 

See traps 

nails 223, 224 
name classification 95, 130 
name list 131 
names 8, 12 

conflicts 175 
listing names 74 
local versus global 97 
quad 119-148 
semi-global 98 
shadowed 83 
short 237 
workspace 12 

displaying 75 
names lengths 12 
names, local 

260 An Introduction to APL2 

See variables, local 
nand 'IV 38 

See also up caret tilde 
national language translation 

See ONLT 
national-use characters 11 
natural logarithm • 38 
negation 13 
negative - 38 
negative numbers 13, 2.17 
negative symbol 

user-defined 209, 217 
nested arrays 21,33-45 

bank account example 43-44 
well-behaved 52 

new line 146 
elimination of 195 

niladic 13, 93, 97 
)NMS command 74 

nor IV' 38 
See also down caret tilde 

NORSK 143,144 
Norwegian 143, 144 
not"" 38 
not (national)., 11 
not equal;t 11,38 
not greater S 11,38 
not less ~ 11,38 
Not Much of Anything 232 
nouns 57 
null 

See empty array 
number sign # 

See pound 
numbers 

alignment 46,48-50,208 
complex 13 
decimal 13,21,46,206,215 
imaginary 

See complex numbers 
negative 13,217 
scaled form 13,21,46,206,215 

numerics 10, 11 

obfuscation 
eschewal of 44 

object size 125 
objects 68 
obsolete facilities 252 
)OFF command 82 

offline storage 
files 80,81, 125, 132-135 
workspaces 68 

omega ((J 11 
one-element vector 28, 37 
one-liners 176, 230-233 



opaque code 
See one-liners 
See readability 
~ 57,93-94 
operator 14, 38, 68 

defined 57-62 
listing names 74 

definition 92-103 
editing 104-115 
header 57,93 
versus function 14 

) 0 P R command 85 
)OPRN command 85 
lOPS command 74 

optimization 
of code 235 

or v 38 
See also down caret 

order of evaluation 26-28 
origin 19-20,60 
)OUT command 81 

outer product (operator) o. f 42 
output 193 

bare 193-201,225 
default display 46-47 

output scissoring 46 
overbar - 11, 12, 13 
overflow control 216 
overstrikes 87-88 
overtake 51 

parens ( ) 11 
parentheses 22, 23, 24, 33-45 

around negative numbers 209 
for indirect copy and erase 89 
in operator header 58, 93 
redundant 24 

parsing 
See order of evaluation 

password 70 
pattern 209 
pausing during execution 127 
PA2 key 9 
)PBS command 87 
)PCOpy command 79 

indirect form 89 
pendent statements 82, 83 
percent (national) % 11 
performance 

of code 234-236,237 
pervasiveness 37, 41 
pi times 0 38 
picture format 209-217 
Pig Latin 143 
plus + 11 
polar form 13 
polynomials 26 

PORTUGUES 143 
Portuguese 143 
pound (national) # 11 
power 4 
power * 38 
power of ten 13,21,46,206,215 
precedence hierarchy 5 
primitive 

almost 53, 225 
functions 12, 14 

print-as-blank character 217 
printable backspace 87-88 
productivity 233 
program 

readability 232 
programmer 

system 235 
programming 

grammar 5 
projects 238-243 
style 176,221-243 
top-down 240 

programs 68 
prompt replacement 195 
prompted input 193-201,225,240 
prompting 195 
protected copy 79 
protection del 

See del tilde 
prototypes 51,53 
Public Library 70,223,227,240,242 

quad D 11 
quad divide m 11, 172 
quad jot eI 11 

forming 87-88 
quad names 119-148 
quad quote I!l 11, 193-201, 225 
quad slash lSI 

See quad slope 
quad slope lSI 11 

forming 87 
0-- ERROR 136 

cause and recovery 167 
OAF 120 
OAI 252 
OAT 121 
OAV 140 
OCR 125 
ODL 127 
OEA 172-176 
DEC 120,160,176-177 
OEM 179 
DES 183 
DET 136, 138, 139, 177 
OEX 127 

Index 261 



oFC 141,212,216 
oFX 128 
oHT 141 
oIO 19 
oL 165 
oLC 83,252 
oLX 142 
DNA 120,130 
oNC 95,130 
oNL 131 
oNLT 143, 168 
oPR 195 
OR 165 
OSVC 152 
OSVE 156 
oSVO' 150 
oSVQ 156 
OSVR 156 
OSVS 155 
oTC 146 
oTF 200 
OTS 147,252 
OTT 147,252 
OTZ 148 
OUL 252 
oWA \ 240~ 252 
query? 11 
)QUOTA command 86 

quotas 68 
quotation marks 11, 18 
quote' 11 
quote dot! 11 
quote quad[!) 

See quad quote 

radians 13 
rank 16 
RANK ERROR 

cause and recovery 167 
readability 22,232,237 
reciprocal + 38 
recovery 

See event handling 
rectangular arrays 

See arrays, simple 
recursion 37 
reduction 38, 58 

over empty vectors 55 
relevance 4 
replication 

of scalar elements 28 
report formatting 48-50, 209-217 
RESEND 

See ENTRY ERROR 167 
)RESET command 84~ 163 

reshape 16 

262 An Introduction to APL2 

residue I 38 
restart (+oLC) 83, 164, 166 
result 13 

explicit 57, 121,224 
definition of 94-95 

intermediate 26 
resume execution (+ to) 164, 166 
resume (+t 0) 83,164,166 
return code 224 
rho p 11, 16-17 
right arrow + 11 
right brace (national) 11 
right bracket] 11 
right paren) 11 
right shoe:> 11 
right-to-Ieft 24, 26-28 
roll? 38 
round brackets ( ) 

See parens 

)SAVE command 76,238 
scalar 16, 18,33-45,234-236 
scalar extension 28,37,41,211 
scalar functions 27, 36, 53, 56 

(table) 38 
scale 13,21,46,206,215 
scams 237 
scissoring of output 46 
screwdriver/chisel 

combination tool 227 
second 147,252 
secondary storage 

files 80,81,,125, 132-135,241 
workspaces 68 

security 70 
SEE defined operator 46 
semantics 23 
semi-global names 98 
semicolon 

11,98,252 
sending messages 84 
sequence control 

See branching 
session start time 252 
session termination 82 
session variables 136, 138, 139 
shadowing of names 83 
shape 16 
shared memory size 86 
shared variables 5, 149-157 

access control 152 
events 156 
offer 150 
query 156 
quota 86 
retraction 156 



state 155 
table 150 

S HOW defined operator 59 
shriek! 11 
)SI command 68t 83t 161 t 162 

side-effects 5t 233 
signing off 82 
signing on 68 
sign-on command 68 
simple arrays 

See also arrayst simple 
conversion to 50 

simplicity 4t 243 
simulation of errors 183 
sin 24 
)SINL command 83 
)SIS command 83 t 162 
) S I V command 

See )SINL 83 
SI WARNING 

cause and recovery 168 
size of workspace 72 
slash / 11 
slash bar I- 11 
slope \ 11 
slope bar \ 11 
Smitht Howard J. 202 
sophistication 

See simplicity 
sorting 202-204 
space 

available in workspace 240 
spaces llt 21-24 

extra 21 
Spanish 143 
specification 

See also assignment 
to a supplied name 170 

speed 
See performance 

split bar (national): 11 
squad D 

See left bracket right bracket 
square brackets [ ] 

See brackets 
squiggles 14 
Standard Time 148 
star * 11 
state indicator 68t 83 t 84t 97t 161-166t 168t 252 

damage 83 
statement 

numbers 98 
steak knives 

winning 78 
stile I 11 
strand 

See vector notation 
structure 21t 33-45 
style 

programming 
See programming style 

subscript 233 
subtract - 38 
SUOMI 143t 145 
suspended statements 82 
suspensions 83 

clearing 83t 84 
SVENSKA 143 
Swedish 143 
symbol table 86 
symb~ls 5t 12t 13t 14 

composite 10 
)SYMBOLS command 86 

syntax 5 
of system commands 71 

SYNTAX ERROR 
cause and recovery 168 

system commands 65-91 
categories 65-67 
details of usage 72-88 
effects of 68 

(picture) 69 
for libraries 70 
for workspaces 70 
language support 72 
locally implemented 72 
overview 65 
syntax (table) 71 

system editor 104-115 
system functions 119-135 

table 120 
system functions and system variables 119-148 
system variables 135t 148 

classes 136 
comparison 138t 139 
initial values 73t 137 
resetting after ) COP Y 79 

SYSTEM ERROR 
cause and recovery 168 

SYSTEM LIMIT 
cause and recovery 168 

Tl1-name 231 
tab character 141 
table 16t 234 

coffee 227 
tabular report 208t 210 
take function 51 
telephone calls 

preventing 240 
terminal 

mM 3270 and 3290 9t 87, 107, 147,222 
typewriter 9 
video 9 

terminal control characters 146 
terminal input and output 193-201 
terminal type 147,252 

Index 263 



terminating APL session 82 
terminology 14t 21t 33-45 
text of errors 179 
tight loop 99 
tilde '" 11 
tilde (national) '" 11 
time 

compute (CPU) 252 
connect 252 - . 
current 147t 252 
function update 121 t 122 
keyboard unlock 252 
session start 252 
waste 223t 233t 237 

) TIME command 87 
time of day 147t 223 t 252 
time stamp 147 
time zone 148 
times x 11 
toolbox 

building 227-228 
using 240 

top T 

See up tack 
top-down approach 240 
top jot • 

See up tack jot 
T R ACE defined operator 60 
trace facility 231 
trailing zeros 

suppressing 209-217 
transfer form 80t 81 t 132-135t 200 
translation of error messages 

See ON LT (national language translation) 
T RAP defined operator 62 
trapping errors 

See error side-tracking 
traps 83t 96t 99t 173t 175t 176t 224t 231-233 
tricks of the trade 219 
TYPE defined function 53 
type of the first T Y PEt 53 
typewriter 22 
typing correction 9 
typing element 12t 209 

underbar 11,12 
Universe 

all of the details of 227 
unreadable code 

See one-liners 
See readability 

up arrow t 11 
up caret 1\ 11 
up caret tilde '1< 11 
up shoe n 11 
up shoe jot A 11 

264 An Introduction to APL2 

up stile r 11 
up tack T 11 
up tack jot. 11 
user-friendly 175t 209t 252 
user identification 68 
user load 252 
user number 252 

vacuous branch (-+ 1 0) 99 
to resume 164t 166 

valence 93t 95-97 t 121 
See also ambi-valence 

VALENCE ERROR 
cause and recovery 168 

VALUE ERROR 
cause and recovery 94 t 166, 168 

variables 68 
editing 200 
global 224 
listing names 75 
local 224 

listing names 83 
local versus global 97 

'- session 136, 138, 139 
shared 149-157 

table 150 
)VARS command 75 

vector 15t 16, 18,33-45 
assignment 8 
empty 51-56t 99 
one-element 28,37 

vector notation 27 
verbs 57 
vertical bar (national) 11 

wheel 
re-inventing 223 

whistles 242 
See also bells 

woodwork 227t 232 
workspace 68 

CONTINUE 82 
interchange format 132 
listing names 75 
measuring 240 
name 75 

workspace available 252 
setting size 72 

workspace size 72, 86 
wrapping of output 46 
WS FULL 



cause and recovery 168,221,224,231,233 
during )COPY 78 
during ) IN 80 
during )SA VE 76 

)WSID command 75 

year 147,252 

zero length 51 
zero suppression 209-217 
Zeus 

wrath of 230 
See also one-liners 

Index 265 





Q) 

(5 
z 

An Introduction to APL2 
SH20-9229-1 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dirf!ct any 
requests for copies ofpublications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _________ _ 

Previous TNL ________ _ 

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



SH20-9229-1 

Reader's Comment Form 

d and tape 
Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES » 

~ 

~ 
.-+ .., 
o c.. 
c: 
o 
.-+ o· 
~ 
.-+ o 
» 
"'0 
r 
I\.) 

'T1 

CD 
z 
!=' 
en w 
-...J 
o 
~ 
9 
"'0 
~. ............................................................................................................................... ~ 

and tape 

.... _-­----- -------- - ---- - - _ .. -
---~------,-

® 

Please do not staple Fold and tape 

.-+ 
en c.. 
3' 
c 
en 
~ 
en ::c 
I\.) 
o 
cO 
I\.) 
I\.) 

cp 
--. 



iii 
(5 
z 

An Introduction to APL2 
SH20-9229-1 

Heaaer-s 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dirf!ct any 
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

~stTNL __________________ _ 

Previous TNL ________ _ 

Previous TNL ________ __ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



SH 20-9229-1 

Reader's Comment Form 

FOld and tape Fold and tape 

.................................................................................. ~ .... , ..... , , ................. " ................ . 

BUSINESS REPLY MAIL 
FIRST C~ASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIII NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES ):> 

;j 

;j 
r+ .., 
o 
0-
c: 
() 
r+ o· 
;j 

r+ o 
):> 
"'0 
r 
I\,) 

"T1 

CD 
Z 
~ 
en 
w ...... 
o 
~ 
9 
"'0 
::::!. ······ .. ··.· .. · ... ·····.······r···.· .... · ... ···· .. ···· .. ,......................................................................... ::1 

lid and tape 

.... ~- .... 
--~-- ----= = =---= - --... --.... -...-...... --......... -.­(J) 

PI.,aS8 do not staple Fold and tape 

r+ 

~ 
:5" 
c 
en 
~ 
en 
:I: 
I\,) 
o 
c.b 
I\,) 
I\,) 

'P -



--------- ------- An Introduction to APL2 File Number S370-40 - - ---- - - ----------_.-
<Ii 

• 

• 

SH2G-9229-Gl • Printed in U.SA 


