THE IMPLEMENTATION OF APL\360

by

L. M. Breed
R.. H. Lathwell

IBM Watson Research Center
Yorktown Heights, New York

Presented at the ACM Symposium
on Experimental Systems for
Interactive Applied Mathematics.

Breed-APL Implementation 1

THE IMPLEMENTATION OF APL\360

Introduction

APL\360 is an’experimental, conversational System/360
implementation of APL, the Iverson language*. It
provides fast response and efficient execution to a
large number of typewriter terminals. With 40 to 50
terminals connected and in normal use, each with a
block of storage (called a workspace) allocated, re-

action time (defined as the time from completion of

- an input message until the user's program begins

execution) is typically 0.2 to 0.5 seconds. At the
terminal this is manifested by nearly instantaneous
response ﬁo a trivial request. Under these conditions,
the CPU is executing user programs about 75% of the
time and supervisor overhead and I/O wait time amount
to less than 1%. The APL processor is interpretive;
however, because of the efficiencies afforded by array
operations, pngram execution is often one-tenth to

one-fifth as fast as compiled code.

*

APL\360 as it appears to the user is described in
(1). As of November 1967, APL\360 is an IBM Re-
search proprietary program, and is not available

for distribution.

Breed-APL Implementation 2

APL\360 is currently running on a System/360 Model 50
with 262,144 bytes of core storage, a 2314 Direct
Access Storagé Facility, and two 2702 Transmission
Controls td which IBM 1050 and 2741 Communication

Terminals are connected via telephone lines.

System Characteristics

The APL\360 program is divided into two parts, the
supervisor and the APL interpreter.l The supervisor

is responsible for disk and typewriter I/O, scheduling
the CPU and user storage (which is normally on disk
and is swapped into main storage as required),
maintenance of the interval timer, and processing

APL system commands. The interpreter is a read-only
program which executes APL statements and relays

system commands to the supervisor.

APL\360's performance can be traced to the following
salient features, which arose‘naturally from the
characteristics of APL and the implementation's initial
design as a dedicated system.
1. The supervisor has complete control over
system resources, so that all fofms of storage

can be allocated according to a single overall

Breed-APL Implementation 3

strategy, and swapping can take place at
full disk transfer rate.

2. The system design was directed by an advance
analysis of the nature of APL user programs.
For instance, execution speed of array
operations is enhanced at the expense of
speed in APL program loops. Also, processing
of an input line may require access to many
parts of a workséace, so the supervisor pro-
vides for efficient monolithic transfer of
workspaces between disk and core.

3. System overhead, swap time, and address re-
location problems are minimized, and supervisor-
interpreter communications simplified, by the
adoption of specialized programming conventions

in the interpreter.

Workspace Organization

The APL workspace, illustrated in figure 1, is de-
signed to minimize the amount of information which
must be transferred during a swap operation. 1000
bytes of storage at the ;ower end of the workspace
and 3000 bytes at the upper end are fixed, and the

rest is allocated dynamically.

Breed-APL Implementation 4

To keep unused storage contiguous, allocation occurs
from both ends of the workspace toward the center.
The execution stack, created by the system, extends
downward from the bottom of the symbol table. The
variable SVI points to the 'top' of this inverted
stack. Storage for data and programs created by the
user are allocated in blocks of arbitrary size
called M-entries, which extend upward from the‘low
fixed area. The variable MX indicates the end of
this storage. During a swap, only the portions of
the workspace below MX and above SVI need be trans-
ferred. This typically amounts to about half the

workspace size.

An M-entry may hold an entire array, a statement in

a user program, or other data of arbitrary size and
structure. It requires only the space needed for

the data, plus two words of storage allocation over-
head. One word holds the length of the M-entry;

the other is a pointer to an entry in the symbol table
or execution stack,which in turn points back to the
M-entry. References to a variable or user program

are always to the symbol table entry, which has a
fixed location, rather than to the M-entry itself.

Thus, the symbol table or stack entry is the only

Breed-APL Implementation 5

pointer that must be modified when an M-entry is

relocated, for instance by garbage collection.

" The Interpreter

An APL statement transmitted from a typewriter is
immediately converted symbol-for-symbol to an internal

form called a codestring, in which variables and

function identifiers are represented by 16-bit symbol
table pointers, special characters by 8-bit internal
codes, and constants by a code, a count, and their
converted hexadecimal values. No other preprocessing,
such as conversion to Polish, is done. APL is suf-
ficiently.close to Polish prefix form, because of its
right-to-left operator precedence, that further con-
version would yield little improvement in processing
speed. It would, moreover, complicate the conversion

back to input form that is done for typewriter display.

Figure 2 shows the codestring corresponding to the
APL statement

A « EVTP[2 3 71%0.5

where A is global, occupying a symbol location 176
bytes from the end of the symbol table, and EVIP
is the fourth local variable. Note that 2 3 7

is carried as a single, vector, constant.

Breed-APL Implementation 6

Long and short syllables in a codestring (except for
constants) are differentiated by the rightmost bit of
each syllable, because interpretation proceeds from
right to left. The right-to-left interpretation was
suggested by APL's operator precedence, but inter-
pretation proceeding left to right migﬁt have been

as appropriate.

Because APL block structure is static, local variables
may be bound at input, and no symbol table searches
are required during execution. In a codestring, a
global variable is represented by a negative number --
thé address of its symbol table entry relative to the
end of the symbol table. A local variable or para-
meter to a function F is represented by a small
positive number interpreted as an address in the ex-
ecution stack relative ﬁo the position of function-call
information for F. The stack entry thus addressed
serves during the life of the function call as a
symbol table entry, pointing to the Mfentry which is

the value of the local variable.

An earlier implementation kept constants in a special
symbol table and represented them in codestrings by
symbol table pointers. It was soon discovered

that without an elaborate garbage collector, the

Breed-APL Implementation 7

workspace quickly became filled with constants no
longer needed. 1In the present implementation, the
constants automatically vanish when the codestring

carrying them is deleted.

Syntax analysis is performed using Conway transition
diagrams(z). Although APL does not require such a
general method, transition diagrams have made experi-
ments with the syntax of the language particularly
easy. Figure 3 shows the diagram for the syntax of

a 'basic'. Passage through the diagram via paths
corresponding to successive codestring elements indi-
cates a sﬁccessful syntax analysis of a 'basic'.
'"List' is the name of a syntactic quantity defined

by another diagram which may use the 'basic' diagram

recursively. The boxed letters indicate interpretation

rules, or actions to be taken when the corresponding

paths are successfully traversed.

The uniformity of APL operator definitions lets a single
contrgl program perform nearly all operator execution. |
Conversions betWeen the three numeric data types
(logical, integer and long floating point) are done
automatically by the operator execution control

program, and with a few exceptions it is impossible

for a user to determine the representation of his data.

Breed-APL Implementation 8

Execution is strongly biased toward operations on
arrays. The overhead time for the syntax analysis
and setup for evaluation of a simple expfession is
two to three milliseconds, while execution time for
each scalar element is typically 40 to 250 micro-

seconds.

Main Storage Management and Disk Swapping

Core storage for users is divided into fixed-size
areas (in the present system, 36000 bytes), each of
which may hold a workspace. A minimum of two such
areas 1s required, but system performance, in terms
of response time and reduced I/0 waits, improves
significantly with three or more areas. The first
two areas are necessary to permit I/0O buffering
during swap operations; any additional areas increase
the probability that some workspaces in core are
active (ready to run) and therefore that the CPU is

not idle.

With minor exceptions, all pointers to storage
locations within a workspace are kept relative to the
beginning of the workspace. Because of this, and the
fact that their size is fixed, workspaces may be
transferred between any disk and any main storage

area with no relocation or storage fragmentation

Breed-APL Implementation 9

problems. This makes possible a very efficient and
simple time-sharing scheduler. Absolute addresses
may, of course, be produced during program execution.
By convention, the interpreter acts on a supervisor
request for end-of-quantum only when program execution
requires no absolute addresses (typically every 0.1

to 10 milliseconds) and may therefore be suspended.

The scheduler attempts to keep as many active work-
spaces as possible in main storage, while minimizing
unnecessary swaps. No swapping takes place unless
some workspace on the disk is active. If such a
workspace'exists and all core areas‘are occupied, some
workspace in core must first be written onto the disk.
An inactive workspace (one that is awaiting completion
of a typewriter message) in core is selected to be
written; or; if all workspaces are active, the one
whiéh has been given the most CPU time since it was
last brought in is selected. A workspace is always
written to the area from which a workspace was last
read, so disk arm motion is required only in read

operations.

An undesirable situation arises when more workspaces
than can fit into main storage are engaged in long

computations. Under this condition, the swap

Breed-APL Implementation 10

algorithm causes continuous swapping of active work-
spaces, which reduces system performance due to

storage interference and increases response time.

A modification to the algorithm, not yet implemented,
would arbitrarily reduce the swap rate to one swap

every ten quanta unless an input message had just

been completed for some workspace not in main storage.
CPU service is thus concentrated on a subset of the
active workspaces. The subset receiving the concentrated

service changes slowly as swapping occurs.

Error Recovery

The treatment of user-program errors has been described
in (1). Recovery from such errors involves immediate
discontinuation of execution, cutting back the exe-
cution stack to the level of the most‘recently called
function, and requesting typewriter input. Error
recovery is rarely unsuccessful, because the integrity
of the symbol table, stack, and storage allocation
information is protected during execution by array-

bounds checking of all subscripted variables.

Recovery from system errors is accomplished differently.
To prevent an interpreter bug from taking down the
system, all main storage except for the workspace

being executed is store-protected, and infinite loops

Breed-APL Implementation 11

are forcibly terminated by the interval timer routine.
Any program check within the interpretef causes the
error routine to print the general registers on the
user's typewriter (which will show the particular
sequence of inputs and outputs leading to the diffi-
culty) and attempt an error recovery as above. Other
users remain unaware of the program check; in fact,

it is impossible for a user to take down the system

without assistance from the machine operator.

A noteworthy distinction of a conversational as
opposed to a batch-processing system is that the
environment of a user program (in APL\360, the work-
space) is maintained for long periods of time --
months instead of seconds -- and that usually this
environment contains the only record bf the user's
work. In a batch-processing system, if a wild store
modifies a program, only one run is lost. One
simply corrects and resubmits the deck. In a con-
versational system, however, it is critically
important to guard against system Or user errors
that may compromise the integrity of the environment

and remain undetected for several days.

Breed-APL Implementation 12

Another consequence of this distinction is that pro-
gram and data representations not usually a concern

of the user (internal table formats or collating
sequences, for example) are very difficult to change
because they are carried semipermanently as part of

the user program environment. If they are to give
continuity to the environment, different versions of
the system must, in a sense, be compatible at the bit
level rather than the source language level. Generally
speaking, the more pre-execution processing of programs
is done, the more difficult it becomes to introduce

system changes.

System Measurement

While running, APL\360 gathers statistics on its per-
formance and on user behavior. These statistics are
made available (via a special operator) asbdata to
APL programs, permitting comprehensive and easily
modified monitoring of the system. Figures 4 and 5
are examplés of such measurements. Figure 4 shows

the distribution of reaction times for an average

load of 40 terminals over a period of 36 hours.

Figure 5 shows the distribution of keying time, de-
fined as the interval between requesting and receiving

an input message, for the same period.

Breed-APL Implementation 13

Acknowledgements

We wish to acknowledge our very fruitful collaboration
with Philip S. Abrams, Stanford University, on an
earlier implementation. We are also grateful to

Luther Woodrum, IBM, for his continuing contributions
to the implementation. Lastly, APL\360 owes much of

its superior time-sharing performance to Roger D. Moore,
of I.P. Sharp Associates, Toronto, who was principally
responsible for the supervisor. Its design has not

been described to the extent it deserves.

References

1
Falkoff, A. D., and Iverson, K. E., "The APL\360

Terminal System". Proceedings of the ACM Symposium
on Interactive Systems for Experimental Applied
Mathematics.

2 ,
Conway, M. E., "Design of a Separable Transition-

Diagram Compiler", C. ACM 6, 396 (1963).

DATA CHAINING

L--‘----_-~-----~---~

INTERPRETER STACK
(FIXED)

SYMBOL TABLE
(FITXED)

EXECUTION STACK
(DYNAMIC)

FREE STORAGE

(NOT SWAPPED)

DATA AND PROGRAM
(M - ENTRIES)

(DYNAMIC)

INTERPRETER VARIABLES AND

REGISTER SAVE AREA

@— SVI

FIGURE 1: APL\360 WORKSPACE ORGANIZATION

[% T 35 [3a[176 [uél & | 29] coooooo200}p0007] 3 J23[31]e1]u0s000¢f 0oo] 1 |]os]

— e s ——— ‘
FLOATING
CONSTANT
INDICATOR
NUMBER OF
i ELEMENTS
i CONSTANT 0.5
CODE FOR =
CODE FOR 1]

'
INTEGER CONSTANT INDICATOR

!

NUMBER OF ELEMENTS

CONSTANT 2, 3, 7

'

CODE FOR {

STACK POSITION OF EVTP

CODE FOR =«

SYMBOL TABLE POSITION -OF A

)
END-OF-STATEMENT INDICATOR

BYTE COUNT OF CODESTRING

Y
STORAGE ALLOCATION INFORMATION

'FIGURE 2: CODESTRING FOR THE STATEMENT A « EVTP[2 3 71%0.5

DEFINED FUNCTION
WITH NO PARAMETERS

VARIABLE

EXPRESSION

[r1

o]

FIGURE 3: TRANSITION DIAGRAM FOR THE

SYNTACTIC QUANTITY 'BASIC'

50 60 PLOT CRESPONSH VS (150)%10

+

RESPONSES

FRACTION OF

......................................
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

o
.

o
(@}

REACTION TIME IN SECONDS

FIGURE 4: APL\360 REACTION TIMES FOR 40 USERS
(SAMPLE : 1u46,341)

FRACTION OF RESPONSES

40 80 PLOT CKEYTIME VS 161

0.100
A
0.075 \\\
+
0,050} + \
\
+4
Ny
++\f
++ .
+ 1\1-~x~-r~+~n-<1-++\§-)
+tH+++rrrtrEttt ettt +
0.000 i i i ! : !] ; e
0 10 20 30 40 60

USER KEYING TIME.IN SECONDS

FIGURE 5: APL\36O USER KEYING TIME
(SAMPLE

146, 341)

