IBM PALO ALTO SCIENTIFIC CENTER TECHNICAL REPORT NO.

FEBRUARY 1975

THE APL ASSIST

{ RPQ S00256)

Ae HASSITT

Le Eo LYON

IBN SCIENTIFIC CENTER
2670 HANOVER STREET
PALO ALTO, CA 94304

2220-6428

IBM INTERNAL USE ONLY

This report describes the APL Assist,
RPQ 8S00256, for the IBN System/370
Model 145. This RPQ was announced on
May 13, 1974 (blue~-letter P74-22) and
was made available on September 30,

1974 (P74-50).

This document obsoletes and supersedes
the earlier IBM Confidential PeAeS.Ce.
~ Technical Report Number ZZ20-6417 by
the same authors (An APL Emulator,
July 1972).

B ,e%gww&mi%«w Y mﬂ‘

IBM INTERNAL USE ONLY

ABSTRACT

The APL Assist 1is a hardware feature which
enhances the performance of APL systems by
providing direct execution of a major subset of
the APL languages The feature can be installed
on an IBN/370 model 145, The feature implements
a new IBM/370 instruction called APLEC. The APL
Assist does not modify any other IBM/370
instructione The assist feature and the APLEC
instruction may be used under standard operating
systems such as VS and VM/370. APL execution is
initiated by loading a general purpose register
with the base address of an APL workspace and
then issuing the APLEC instructione This report
defines the format of the APL workspace required
by the assist featurey, it gives the form of the
APLEC instruction and it describes the results
to be expected from using the instructione.

INDEX TERNS FOR THE IBM SUBJECT INDEX

Microprogramming
NMachine Language
APL

Per formance

IBM System 370/145
07 - Computers

21 - Programming

IBM INTERNAL USE ONLY

CONTENTS

SECTION I: INTRODUCTION AND BACKGROUND ¢ o o o © @ ¢ ¢ o o 1
Introduction o ¢ ¢ o ©« ¢« ¢ ¢ © ¢ ¢ ©¢ ¢ ¢ o @ o @« o o o o o 1
Execution and Machine Language o« o o ¢ ¢ © ¢ o o ¢ o o o o 2
The Environmente ¢« ¢ ¢ ¢« © ¢ « o ¢ ¢ © ¢ o ¢ ©« o ¢ o o o o 4
APL Executione o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ © 06 ¢ ¢ & o o o o 7
The APL SysStem ¢ e ¢ ¢ ¢ ¢ ¢ ¢ 5 ¢ © ¢ o ¢ © @ ¢ @ o o o o 8
The APL Assist RPQe ¢ ¢ ©¢ ¢ ¢ ¢ ¢ ¢ ¢ o © ¢ o © o o o o «10
SECTION II: FORMAT OF THE WORKSPACEe ¢ ¢ ¢ o ¢ ¢ ¢ o o o o12
The WOrkSpacCee o © ¢ ©¢ ¢ ©¢ ¢ o o o o o o o © o o o o o o 12
The Control WordsSe ¢« ¢ ¢ ¢ ¢ ¢ ©« ¢ ¢ o ¢ © ¢ © o ¢ o o o 14
The Address Tablee ¢« ¢ ¢ @« ¢ ¢ ¢ ¢ o ¢ o o o @« ¢ o o o o 19
The StaCkKke ¢ @ ¢ ¢ ¢ ¢ ¢ © ¢ @« ¢ ¢ ¢ © ¢ ¢ o @ o o o e 23
The Use 0f the StacK ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o e 23
Items on the Stack « ¢« ¢« ¢ ¢ ¢ ¢ « ¢ ¢ o o« o« « o« o o o 25
Free Space o« » s o o o o o ‘e @8 e o o o o o o @ @ o o o o 026
Variables in Free SpacCee o ¢ ¢ o o ¢ ¢ o o o o o o ‘e o o 28
AP Vectors e« ¢ o o ¢ ¢ ¢ ¢ ¢ o @ o © 4 © © ¢ o o » o o o «32
SYyNnonyms e o o o ©¢ ©¢ © o o © © @ o © ¢ ¢ © © o o ° o o o ¢33
Operators and Separators ¢ s o o ¢ o ¢ ¢ o ¢ o o ¢ o o o «J6
OperatorsSe o ¢ ¢ ¢ ¢ ¢ ¢ @ ¢ ¢ ¢ ¢ o @ @ o o ¢ o o o o 36
The GOTO Primitive Functione « o ¢ ¢ ¢« ¢ 2 ¢ ¢ o o o o 040
Separators ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ @ ¢ 0 ¢ ¢ ¢ ¢ o o o o o o 41
Special OperatorsSe e ¢ ¢ @« ¢ ¢ ¢ ¢ © @ © o © ¢ o o o o 42
Internal Text of Functions ¢ o ¢ o © ¢ ¢ © o o ¢ ¢ o o o 043
Internal Text of StatementSe ¢« o o ¢ ¢ o ¢ ¢ @ ¢ ¢ o o o 46
Translation of Items ¢ o ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢« o o o o o 46
Use of Labelse o o ¢ o e o o o o o e o e o o o o o047
Example WOorksSpaces o ¢ o o ¢ ©¢ @« ¢ ¢ ¢ o o o o o o o o » «48
SECTION III: APL EXECUTION o ¢ ¢ ¢ ¢ @« ¢ © ¢ ¢ ¢ o o o o 55
APL System/APL Emulator Interfaces « o ¢ o ¢ ¢ ¢ ¢ o o o 55
370 Emulator/APL Emulator Interfacees o ¢ o ¢ ¢ ¢ ¢ o o o «68
APLEC Entry and Terminatione ¢ ¢ ¢ ¢ © ¢ ¢ ¢ « ¢ o o » 68
Page FaultSe o © ¢ ¢ ¢ © ¢ ¢ ¢ o ¢ ¢ ¢ o o o« o » o o o 69
Interrupts and Quantum EndSe o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o «70
Using External Functions « ¢« ¢ » o« ¢ ©« ¢ o« ¢ ¢ o o o o 70
Summary ViewpointsS ¢ ¢ ¢ ¢ ¢« ¢ ¢ ¢ o o ¢ ¢ o ¢ o o o o 71
Statement Scan and Syntax Analysis ¢ ¢ ¢ e o e o o o o 072
Function Invocatione ¢« o« ¢ o ¢ o ¢ o ¢ o o o ¢ o o o o o 76
Function Calle ¢ o ¢ ¢ @ ¢ o © ¢ ¢ ¢ ¢ o o e o o o o o176

IBM INTERNAL USE ONLY

Temporary Functionse ¢ o ¢ ¢ o o
Exit From Permanent Functionse. o«
Function Returne ¢ ¢ o ¢ o ¢ ¢ o
Return From a Temporary Function
Status Indicatione ¢ ¢ o ¢ o o o
APL Assist and the APL Systeme o o o
External Functions « ¢ o o ¢ o ¢ o
The Calling Mechanisme o ¢ ¢ o ¢ o o
370 Registers and External Functions
'GETV. L J [J L J L] *® L] *® L] L] L g L] [] - []
Relocating the Workspace o e o o o
Other Comments on Register Usage .
Scalar Functions e« e o ¢ ¢ ¢ o o o

e & 6 o o
o o

e
Complete 370 Functions e ¢ ¢ ¢ o o o
APL FunctionSe « ¢ ¢ ¢ ¢ ¢ o ¢ o o o
APLRTN and APLSRTN ¢ ¢ ¢ o ¢ o o o o
Treatment of Shared Variablese « o« o
Executee ¢ o o o ¢ ¢ ¢ ¢ ¢ o ¢ o o o
Error recCovery ¢ ¢ ¢ ©¢ ¢ @« o o o o =
Debugging Aids o ¢ o ¢ ¢ ¢ ¢ ¢ ¢ o o o
The Debug Emulator Routine « ¢ ¢ o o
Other AldS ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o
An Example o o ¢ ¢ ¢ o ¢ o ¢ o o o o

SECTION IV: CONCLUSION AND REFERENCES.
Conclusion ¢ ¢ ¢ © ¢ o @ ¢ ¢ @ o o o o
References e ¢ o o ¢ ¢ ¢ ¢ ¢ o o o ¢ o

e & & & & o o o

¢ & & 0 ¢ 0 o &6 0 06 0 ¢ 0 06 0o 0 0o 0 0

e 6 & & ¢ 0 & o ¢ o 0 0o o o

e 06 0 o 6 06 0 06 0 0 & o 0 0 b o 0 0

O ® 6 ¢ 0 ¢ ¢ 0 9 o o o

«79
«80
«81
«82
«83
«86
«86
88
«90
«90
«94
«95
«96
«98

«99

100
101
102
103
105
105
110
111

113
113
114

IBM INTERNAL USE ONLY

FIGURES

Page Numb Title

13 1 Workspace Format

15 2 Codes Used in Figure 3

16 3 Control Word Map

20 4 Address Table Entry Forns

20 S5 Possible Address Table Syntax Bits

21 6 Possible Address Table Primary Descriptor Bits
21 7 Address Table P-bit Assignments

22 8 Unused Name Chein Example

27 9 Basic Free Space Blocks

21 10 General Free Space Block

29 11 Format of Variables in Free Space

29 12 Second Descriptor Byte Definition

29 13 Second Descriptor Byte Cases

30 14 First Descriptor Byte Definition

30 15 Examples of Variables in Free Space

34 16 Address Table and Free Space Items Before and After A«
37 17 Operators Arranged by Hexadecimal Code
38 18 Operators Arranged by Functional Group
38 19 Separators

44 20 Internal Function Text Example

49 21 Example Workspace Console Listing

51 22 Example Workspace Items

52 23 Example Workspace Dump

56 24 Summary of the Various APLxxxx Macros
517 25 Definitions for APL Macros

60 26 GPR Treatment by the Various APLxxxx Service Macros
61 27 APL Error Return Codes

74 28 DTAB[ST:;SN] - The Syntax Decision Table
74 29 Syntactical Types

5 30 Table of Actions Specified by DTAB

89 31 Transfer Vector for External Functions
91 32 Normal GPR Assignments

92 33 GETV Registers

93 34 Normal FPR Assignments

93 35 SWITCH Bit Assignments

106 36 Debugging Summary Sheet

108 37 Debug Box Format

112 38 Example Dump Information

IBM INTERNAL USE ONLY

SECTION I: INTRODUCTION AND BACKGROUND

INTRODUCTION

The APL systems which are currently in use provide

interpretive execution of the APL language . Interpretive
execution offers many advantages in producing a powerful,
safe and elegant programming languagey, however,

interpretation is typically much slower than direct
execution. There are several aspects of the APL language
which make it impossible to provide direct execution of APL
using the machine language of existing computers. The only
way of directly executing APL programs is to provide
hardware specifically designed for that purpose.

The effective utilization of any hardware requires that
it be supported by appropriate softwaree The APL Assist
feature is installed on an IBM/370 model 145 and it is
invoked by a special IBM/370 instruction. The feature can
provide direct execution of a major portion of the APL
language and it can be invoked from IBM/370 software. The
feature supplies an interface so that the remainder of the

APL system can be implemented in software routines
supplemented by the services of a standard operating
systeme.

The first section of this report gives an introduction
to various aspects of APL execution, and it gives an
overview of topics which will be discussed in detail in
subsequent sections. The second section gives a definition
of the workspace format which is required for use of the
assist feature. The third section describes the APLEC
instruction and the way in which it interacts with the
operating system and with the APL systeme.

Section I: Introduction and Background 1

IBM INTERNAL UsE ONLy

EXECUTION AND MACHINE LANGUAGE

Consider the running of a conventional assembler
language programe. The program is written in assembler
languagey, for example:?

L 1,R
A 1,0
ST 1,P

The program is entered into the machine and is processed by
an assemblere. The assembler converts the mnemonic
instructions such as 'L! into machine language instructions
such as hexadecimal *58¢, It also assigns memory locations
to variables such as Re The ouput of the assembler is sent
to the loader which puts the binary instructions into
memory, and which resolves any cross references between
external symbolse. The result is a machine language program
which might, for example, be:?

58102400 5A102404 50102408 hexadecimal

The loader now initiates the execution of the user's program
by branching to the first executable instructione. When the
user's program has finished execution, or when certain
errors occur, control is returned to the operating systeme

As we can see from the above exampley, the execution of
an assembler language program requires the use of an
assembler, a loadery, an operating system, and of course a
machine which can execute IBM/370 machine language
instructionse. The execution of an APL program requires some
analogous features. An APL system contains a translator, a
‘supervisor and a mechanism for executing the translated form
of the APL programe. The supervisor may control the
operation of the complete machiney, or more typically, the
supervisor controls the operation of the APL sub-system
which is itself wunder the control an operating system such
as VS or VM/370e An APL program is, of course,y, written in
APL, for example?

P+~ Q0+ R
The program is entered into the machine and is processed by
the APL translatore The translator converts symbols such as

LR A into internal codes such as 1021 hexadecimal. It
converts names such as R into internal namese. Internal

2 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

codes and internal names are discussed in detail later; for
the moment it is sufficient to know that internal names are
16 bit (4 hexadecimal digit) integers which are multiples of
four. The internal form of the above APL statement might
be?d

0108 1021 0104 7001 0100 AO0O1

where 0100, 0104, 0108 are the internal names of Py Qy and R
respectively. 1021, 7001 and A0O1 are the internal codes
for '+', t'«' and 'end of statement's The translator puts
the internal code directly into memorye Notice that the
tranlator reverses the order of the items within a statement
since this facilitates execution. The translator stores the
address of the first byte of the internal form in a memory
location called NEXTINST and it initiates APL executione. In
a conventional APL system, APL execution is initiated by
branching to the APL interpretere. The APL interpreter is an
IBM/370 program which does interpretive execution of the
internal form of the APL programe. On a machine which has
the APL Assist feature installed, APL execution is initiated
by issuing the APLEC instruction. The APL Assist feature
gets the address from NEXTINST, finds the first byte of the
APL code string, and directly executes the internal form of
the APL statemente.

It should be noted that the APL translator is similar
to an assembler, it is not a compiler. The ma jor part of
the translation process is a one for one substitution of
internal names, constants and codes for external APL names,
constants and operators or primitive functionse. The
translation for Q+R, for example, is independent of +the
properties of Q and Re. The translated form is the samey,
irrespective of whether Q and R are scalars, vectors,
arraysy global variables, local variables, shared variables,
or defined functions. The reversal of items within an APL
statement is similar to the way in which the IBM/ 370
assembler re-arranges the fields in a 'TM' instructione.

We have made an analogy between the IBM/370 assembler
and the APL translatore. It will simplify the description of
the APL Assist feature if we continue the analogy between
the execution of IBM/370 and APL programse The output of
the assembler is an IBM/370 machine language programe We
can regard the output of the APL translator as APL machine
languagee. An IBM/370 system contains hardware which can
execute IBM/370 machine language instructionse The ma jor
~-function of the APL Assist feature is execution of APL

Section I: Introduction and Background 3

IBM INTERNAL USE ONLY

machine language instructions. The PSW contains the address
of the next IBM/370 machine language instructione The
location NEXTINST contains the address of the next half-word
of APL machine language. An IBM/370 with the assist feature
installed can execute IBM/370 or APL machine language
instructions; the APLEC instruction causes the machine to
switch from IBM/370 to APL modee. There is no explicit
instruction for switching from APL to IBM/370 modey but as
we shall see, there is an automatic return to IBM/370 mode
if the APL program terminates, if a page fault occurs, or if
an interrupt is pendinge.

The APL Assist feature does have several minor
functions, in addition to its main function as an emulator;
details are given in section III. We will usually be
concerned with the execution of APL statements so we will
often use the term 'APL emulator' in place of 'APL Assist?.

THE ENVIRONMENT

The execution of IBM/370 programs is determined by the
particular instructions in the program and by the current
environmente The environment is specified by the PSW, the
370 registers (both general purpose registers and floating
point registers) and by the contents of memorye. In the
execution of any instruction only a small part of the
environment is usedes For example, the result of the next
operation might be determined by the fact that the
instruction address is 1234, the contents of location 1234
is 58102400, and register 2 contains 62350. In this
environment, the nachine will put the contents of location
62750 into register 1.

The environment of the APL emulator is the APL
workspace plus the general purpose and floating point
registerse. The workspace is a contiguous piece of memory
which contains APL programs, APL data and status
informatione. The system may contain many different
workspaces, however only one workspace is active at any one
time. The address of the active workspace is specified by
the contents of the WORKBASE register; WORKBASE is in fact
general purpose register 3. The execution of a typical
IBM/370 instruction utilizes and modifies a small part of
the environmente The execution of a typical APL expression
may use and modify a significant part of the workspacee.

4 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

The IBM/370 machine requires a particular format for
machine language instructions and for a limited number of
data items such as integers, floating point numbers and
decimal digits. It does not utilize any specific format for
collections of items; it does not, for example, specify the
ordering of the elements of an arraye APL is a high level
language and the emulator directly executes the statements
of the language. The APL emulator requires a particular
format for instructions and data items, and also for
statementst defined functions, scalars, vectors, arrays and
status informatione The emulator relies on this format when
carrying out such operations as statement scany syntax
analysis, function call and return, subscripting of arrays
and dynamic allocation of memorye.

The workspace is divided into four parts, namely

Control words
Address table
Stack

Free space

The control words area contains certain fixed constants as
well as current status informatione. The address table
contains a one word entry corresponding to each internal
name; it also contains some empty words which will be used
when new names are createde. The address table entry at
location WORKBASE+r is a word which describes the properties
of the variable whose internal name is »r; thus if WORKBASE
contains 123400 and variable R has internal name '0108' then
the word at location 123508 is the address table entry for
Re An address table entry has one of two forms:

+ +
I sep{ p | v |
+ - w4
| s P | A |
+ +

Section I: Introduction and Background 5

IBM INTERNAL USE ONLY

S specifies whether the entry is a variable, a function, a
group name, or a shared variable. P specifies which form of
the address table entry is being used, It also specifies
whether a variable has a value or note. If a variable has a
value the value may be specified by D and V or the value may
be specified by the block of memory beginning at location
Ae The first form is used for scalars which are character,
logical or small integerse.

Free space contains the current values of variables and
functions as well as some unused spacees The address *A?' in
the previous paragraph is a free space address. If R is an
array, its address table entry will point to a block of the
form:

+—+
-
"
<
+—

where D is a sixteen bit descriptor specifying that R is an
array and indicating whether it is logical, integer, real or
charactere The half word shown as r contains the internal
name of Re. V contains the internal representation of: the
ravel of R, the size of R, the rank of Ry and the size of
the ravel of R (see the APL\360 User's Manual <3> for the
meaning of size and ravel). Later sections of this manual
provide further details on the representation of functions
and variablese.

The stack is used to hold temporary values or names
during the execution of a statement, and it is used to keep
a record of function calls and the global values of local
variablese. The APL system commands)SI and)SIV give a
display of most of the information on the stacke

6 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

APL EXECUTION

This report describes how the APL emulator may be used;
it does not describe the inner working of the emulators. It
might, however, be helpful if we give some details of the
execution of a particular statemente. Consider the APL
statement 'P-Q+R? which was discussed abovee. The internal
form of the statement was:

0108 1021 0104 7001 0100 AOO1

The emulator obtains the first two bytes (0108) and examines
the last two bits; in this case these are 00 which indicates
an 'internal name's The emulator forms WORKBASE+0108 and
finds the appropriate S bits (see 'THE ENVIRONMENT').
Assuming that the S bits show that 0108 is a variable and
not a function, the emulator notes this fact and selects the

‘next item (1021). The Llow order bits of '1021¢ indicate

that it is an operator. The emulator now selects the 0104,
finds its S bitsy and, assuming that 0104 is a variable, the
emulator starts to perform the addition of variable 0108
and variable 0104, The <first action is to examine the P
bits of 0108 and check +that the variable has a value (if
not, to signal 'value! error), then check that it is numeric
(if it is character then signal 'domain' error)e Similar
actions are performed for '0104°'. Next the emulator checks
to see if 0104 and 0108 are scalars, vectors, or arrays, and
that their sizes conforme. It then decides on the type of
the result (integer or real), obtains space for the result,
does the additionsy checks for 'range! errors (exponent
overflow), stores the result (which may be a scalar, vector,
or array) and finally proceeds to the next item in the
statement, which is the *'7001°'.

The execution of this expression has been described in
some detail in order to demonstrate that the APL emulator
does execute APL statements directly and is fully cognizant
of the properties of the APL language.

Section I: Introduction and Background 7

IBM INTERNAL USE ONLY

THE APL SYSTEM

We continually reference 'the APL system'e¢ The APL
Assist feature does not presuppose any particular APL
system; the system designer has almost complete freedom in
choosing the facilities which the APL user will seee. The
completeness and reliability of the feature has been
established in its extensive use by the APL/CMS system
{program number 5799-ALK, PRPQ MF2608). Details of APL/CNS
are given in the APL/CMS User's Manual <4> and the APL/CMS
Installation Manual <5> We will outline the relationship
between the assist feature and a typical APL systeme

An APL system will usually contain a supervisor, a
translatory, an interpreter, a shared variable processor and
auxiliary processorse. The supervisor controls the terminal
input/outputy disk I/04 scheduling of users, management of
APL librariesy, and so one The APL Assist feature |is
designed to improve the performance of APL executione It
has a major impact on the interpreter, in fact it can
replace a large part of the interpretere. It has a minor
effect on the translator and very 1little effect on the rest
of the system. The translator must of course be designed to
support the workspace organization specified in this report,
but it makes little use of the assist feature itself,

The APLEC instruction 18 indeed an IBM/370 instruction,
it is interruptable, it does check the protect key before
storing into memory, it does not initiate I/0 operations and
it does not make any unusual assumptions about the behavior
of the operating systeme The APLEC instruction may be used
in a multi-programming environmenty, and it may be used in a
virtual machine running under VM/370.

8 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

The APL Assist feature is implemented as a microprogram
designed to operate in the control store of the IBM/370
model 145. The control store is a valuable resource and any
use of the store must be considered carefully. On the one
hand, the implementation of a feature in microcode may
improve performancee. On the other hand it may reduce the
number of other features which can be added and it may
reduce the amount of real program memorye APL is a very
powerful and extensive language with primitive functions
ranging from '+% {integer or real addition of scalars,
vectors or arrays) to ‘[(matrix division)e It would be
uneconomical and impractical to implement the whole of the
language in microcode. We have chosen to implement a major
subset of the language in microcodee. The remaining
functions may be implemented in IBM/370 or APL machine
language. It was decided, for example, that there would be
little performance advantage to putting matrix division in
microcodee. If the emulator is required to execute a
statement such as:?

A~ (B+C-D)®E

The emulator evaluates the expression B+C-D and gives it a
temporary name such as Te T may be a scalar, a vector or an
arraye The emulator checks that E has a valuee. It puts the
internal names of T and E into general purpose registers,
. reverts to IBM/370 mode and branches to part of the APL
systeme The APL system may now compute +the value of T 8 E,
put the name of the result in a general purpose register and
execute an APLEC. Alternatively, the APL system may put the
name of an APL function into the register and execute the
APLEC. In either case the emulator will continue APL
executione In one case it assigns the result into A. In
the other case it calls the named APL function and assigns
its result to A.

Section I: Introduction and Background 9

IBM INTERNAL USE ONLY

THE APL ASSIST RPQ

The primary purpose of the APL Assist RPQ is to provide
direct execution of APL programse. The feature is intended
to be used by an APL system which is written in (or has been
assembled or compiled into) IBM/370 machine language. The
APL system must prepare the workspace in the correct format
and load the registers with appropriate information before
using the APLEC instruction. The macro defintions in a
later section of this report provide a convenient way of
using APLEC. There are a number of different uses of the
APLEC; they may be grouped into four categorieses The APLEC
may be used to initialize or check that the feature |is
loaded; the appropriate macro is APLCSL. The APLEC may be
used for service functions such as getting or freeing space,
etce; the macros are APLFIND, APLFREE, etce. The APLEC may
be used to return control to the emulator after an
interrupt, quantum end or use of an external function; the
macros are APLRESM, APLSRTN or APLRTN. The APLEC may be
used to execute APL programsy, in which case the macro is
APLSCAN. At this point we are mainly concerned with the use
of APLSCAN,

Assumming that the workspace is in the correct format
and the registers have been loaded correctly, the use of
APLSCAN will cause the assist feature to begin execution of
the APL statement to which NEXTINST pointse. There are
several ways in which the assist feature may relinquish
control so we will give a number of examples. Assume that
NEXTINST points to the internal form of the statement:

P~ Q + R

Assume that the APLEC is at 1location X and that general
purpose register 3 contains W (the workspace base)e. Each
example begins by stating the properties of P,Q and R which
it will assume.

a) Py, Q and R are variablese. Q and R have numeric
valuese. Execution proceeds to completione The next
IBM/370 instruction to be executed is at location X+4.
The APLEC sets the condition code to zeroe. P will have
the value Q+R, which is to say that the address table
entry corresponding to P will have the value or a
pointer to the value specified by Q+R. NEXTINST will
have been updated to reflect the new status.

10 The APL Assist (RPQ S00256)

APL

IBM INTERNAL USE ONLY

b) Same as (a) except that Q has no valuee. The next
IBM/370 instruction to be obeyed will be at location
X+4. The condition code will be one to indicate that
an APL error has occurrede There will be a code in
general purpose register 5 which indicates a 'value!
errore NEXTINST will point to the half-word past Q.

c) Same as (a) except that a page fault occurs. The
assist feature sets the PSW to point to a certain word
in the workspace, it switches to IBM/370 mode and a
storage access exception occurse. The operating system
follows its normal course, it eventually loads the page
and executes the word specified by the PSW; that word
is an APLRESM which returns control to the assist
feature. APL execution is resumed as though the page
fault had not occurrede. This process is transparent to
the APL systeme.

d) Same as (a) except that Q is an APL function. The
assist feature will do the call of Q according to the
rules of APL. Q may call other APL functions. This is
similar to case (a).

e) Same as (d) except that Q uses @ (the matrix
division function)e. The assist proceeds as far as the
matrix dividey, it then reverts to IBM/370 mode with the
next instruction to be taken from location (T+contents
of CALL370F). CALL370F is a control word at location
w-—-Xt90°, T is an offset whose value is given in
section III of this reporte The IBM/370 instruction
should branch to a routine which does the matrix
division or supplies the name of an APL routine which
can do the matrix divisione. In either case the routine
uses an APLRTN +to return control to the assist
featurees The value of X (the location of the APLSCAN
macro call) has been preserved so the instruction at
location X+4 will eventually be reachede.

The APL Assist feature executes a major subset of the
language. The language is described in the APL\360

User's Manual <3>, modified and supplemented by the APL/CMS
User's Manual <4>« The 'EXTERNAL FUNCTIONS' section of this
report delineates which APL functions are implemented in the
APL Assist and which should be handled by the APL systeme.

Section II: Formaet of the Workspace 11

IBM INTERNAL USE ONLY

SECTION II: FORMAT OF THE WORKSPACE

THE WORKSPACE

A computing machine works in an environment and the
execution of the machine causes the environment to changee.
In an IBM/370 operating in non-privileged mode the
environment is essentially the PSW, the registers (16 fixed
point and 4 floating point) and a piece of the main memorye.
The non-privileged program can not change anything outside
this environment but it can make a supervisor call in order
to get information into and out of its environmente. In the
APL emulator the environment is the workspace plus the 370
registerse. One of the registers specifies the 1location of
the workspacee. The other registers and the contents of the
workspace specify the current status of APL executione The
APL emulator has no memory of its own; it simply operates on
a workspace in the manner specified by the status and by the
programs in that workspace. When the APL emulator gives up
control (for example in order to allow an interrupt to be
serviced) it does not assume that when it regains control it
will s8till be operating on the same workspacee.

The main areas of the workspace are shown in figure 1.
The system areas are used only by the APL system and are not

discussed in this document (with minor exceptions)e. The
other areas are summarized below and discussed in detail in
the following sectionse. The 370 registers are also

discussed in a following sectione.

Free space contains the values of APL variables, APL
functions and a block of unused space. The address table
contains a complete description of variables which have no
value and of some scalar variabless For other variables and
for all functions, the address table contains a partial
description and an addresse The address points to a block
in free spacee. The execution stack, or simply the stack, is
a pushdown list used by the APL emulator. The control words
contain status intformation, constants, save areas, and so
One Some control words have the same format as address

12 The APL Assist (RPQ S800256)

IBM INTERNAL USE ONLY

FREE SPACE (TOP)

SYSTEM AREA B
<{=== HIGH MEMORY ADDRESS

+ +
| | <=-- LOW MENORY ADDRESS
| SYSTEM AREA A |
| |
| |
| |
| CONTROL WORDS |
| |
| |
| i
| ADDRESS TABLE |
| | |
| | |
| v |
| |
| = === = - - - - - - - -]
| |
| A |
| | |
| | |
| (EXECUTION) STACK |
| |
| |
| |
| FREE SPACE (BOTTOM) |
| | |
| l |
| v |
| |
| A {
I |
| |
| |
| |
| |
| |
| |
| |
+ +

FIGURE 1: WORKSPACE FORMAT

Section II: Format of the Workspace 13

IBM INTERNAL USE ONLY

table entries, so there is an overlap between the end of the
control words and the beginning of the address table.

Free space 1is used from both the bottom and top as
showne When there is insufficient space left, the emulator
invokes a software routine which performs a garbage
collection to reclaim any unused blockse. The stack and the
address table both grow towards a definite boundary between
theme. Should one of them require additional space, however,
the boundary may be dynamically moved. Note especially that
the stack grows from high memory addresses to Llow memory
addresses. When we speak of the top item on the stack we
refer to the item most recently placed on the stacke. Thus
the top stack item is the stack item with the lowest memory
addresse.

THE CONTROL WORDS

The control words contain constants, addresses, and so
ony which help specify the current status of the workspace.
The only things not included which are necessary to
completely describe the status of a workspace are contained
in the registers (see 'GETV'! in section III)e A map of the
control words is given in figure 3; figure 2 gives a listing
of the codes used in the mape Below is an alphabetic list
of the control words and their definitions. The emulator
instructions can conveniently use only small displacements
(<256)¢ These cany howevery, be either positive or negative
and thus GPR3 is used to point not to the beginning of the
workspacey, but higher up (at TMPSAV). In the codes CBYT
refers to the control byte which is the first byte of the
worde In the definitions the phrase 'Address table entry
fOr see! wmweans that the item is in free space (or in the
system or is an immediate) and the control word follows the
conventions described in 'THE ADDRESS TABLE'. The control
word is thus like a reserved name for a variable which will
be used by the emulator or the systeme. In a paging system
all the control words must reside within a single page.

14 The APL Assist (RPQ S00256)

RELO A
D
R
s
$
X
USED B
E
)
CBYT A
U
v
z
*
WRDS -
RO3 -
FIGURE 2:

IBM INTERNAL

USE ONLY

Absolute value - no base required
Displacement - absolute needing a base
Relocatable - an address in the workspace
System address — treated like 'A?

System address — treated like 'R?

Save area - specialized treatment

Used by both the emulator and the system
Primarily used by the emulator
Primarily used by the system

Control
Control
Control
Control
See the

by te
by te
by te
by te

uses address table conventions
is unused

contains part of the value

is zero

detailed writeup

Actual number of storage words

Displacement from GPRJ

CODES USED IN FIGURE J3

Section II: Format of the Workspace 15

IBM INTERNAL USE ONLY

R U C W

E S B R

L E Y D

O D T S RO3 CONTROL WORDS
- s - 1 «~A8 SYSTEM
- - -1 -A4 UNUSED

A B V 2 -A0 FUZZER

- 8§ <« 1 =98 SYSTEM"
- = .=''1- =94 - UNUSED -

S E U 1 =90 CALL370F

s B 'v't '=8C ° QEND

s E U 1 -88 SCANRTN '

s E' U ‘1 =B84 SERVRTN

A E V 1 -80 INTRTN
"X E V 9 =~ =7C SAVELS
- § =20 '-58 SYSTEM

A E V 1 -08 CHKWRD

- s - 1 -04 SYSTEN
‘X E V 2 00 TMPSAV

- - -5 +08 UNUSED

A B A 1 +1C XARGO

A E A 1 +20 BLANK

A E A 1 +24 ° ZEROVAR'

A E A 1 +28 ONE

$ E A 1 +2C REAL1

$ E A 1 +30 PI

$ E A 1 +34° E

$ E A 1 +38 MIN

$ E A 1 +3cC MAX

- s - 1 +40 SYSTEM

$ E A 1 +44 NULNUMVC

$ E A 1 +48 NULCHRVC

- 8 -1 +4C SYSTEM

A B A 1 +50 NOVALUE

R E A 2 +54 TMPNAM

D B A 1 +5C FUNCTION

R B *x 1 +60 NEXTINST

R E A 1 +64 TSADR

R E A 1 +68 BNDATS

R B A 1 +6C $CT

R B A 1 +70 $10

FIGURE 3: CONTROL WORD MAP

16 The APL Assist (RPQ S00256)

BLANK

BNDATS

CALL370F

CHKWRD

E

FUNCTION

FUZZER

INTRTN

MAX
MIN

NEXTINST

IBM INTERNAL USE ONLY

Address table entry for the blank character
scalar.

Address of the current boundary between the
address table and the stacke This actually
addresses byte zero of the first word below
the stack wordse.

Address of the transfer vector for the
external functionse.

Word used on entry to the emulator to check
that a workspace is properly addressed by
GPR3e A copy of CHEKWRD is assembled into the
emulatore. Originally this word contained
X'3D8942BC'. Bytes 0 and 1 are the workspace
check pattern and are permanente Byte 2 is
the workspace/emulator check pattern; it is
bumped by one whenever an emulator change
requires workspace reformatting. Byte 3 is
the system/emulator check pattern (the system
MVI's this to the workspace on ')LOAD'); it
is bumped by one whenever an emulator change
requires a system change.

Address table entry for 2.718ce¢

The internal name of the current APL
functione.

This double word contains the comparison
tolerance represented as a floating point
number with an exponent of X'40' (unless the
current comparison tolerance has a value
which is non-meaningful)e.

This contains an APLRESM macroe. When the
emulator takes an interrupt, it points the
370 instruction location counter at INTRTN.

Address table entry for the largest possible
real number (X' 7FFece?)e

Address table entry for the smallest possible
real number (X'FFFewne?).

Address table entry for the next APL
instruction half worde. Byte 0 of this

Section II: Format of the Workspace 17

NOVALUE

NULCHRVC

NULNUMVC

ONE

PI

QEND

REAL1

SAVELS

SCANRTN

SERVRTN

SYSTEM

TMPNANM

TMPSAV

IBM INTERNAL USE ONLY

control word is unused but is not preserved
by the emulator. Thus it must be given
special attention during workspace
relocatione.

Address table entry for a variable with no
valueeo

Address table entry for a null character
vectore

Address table entry for a null numeric
vectore.

Address table entry for 1 (logical).

Address table entry for 3Je¢14l.se

Quantum end control worde. Byte 0 contains
the switches (see 'GETV')., Bytes 1-3 contain
the address of the system quantum end

routinee. On entry to the quantum end routine
the emulator registers are active. If bit 31
of this word is on they have also been stored
(see 'APL SYSTEM/APL ENULATOR INTERFACE').

Address table entry for 1 (real)e.

Save area fTor the non-370 registers used by
the emulator at interrupt (or other
checkpoint) times.

Location of the 370 instruction following the
last APLSCAN.

Location of the 370 instruction following the
last A?Lxxxx where xxxx specifies some
service function (FIND, FREE, etc).

Reserved for use by the APL system.

Address table entries reserved for temporary
use by the emulator during stack extension,
function call, etce These two words are
sometimes referred to individually as TMPNAMO
and TMPNAN1.

Temporary save area for the emulator.

18 The APL Assist (RPQ $00256)

IBM INTERNAL USE ONLY

TSADR Address table entry for byte 0 of the next
available word on the stacke.

UNUSED Currently unused.

XARGO Extra argument (i.esy, 'global®®) for APL coded
system functionse.

ZEROVAR Address table entry for 0 (logicall.

$CT Address table entry for QUADCT.

$I10 Address table entry for QUADIO.

THE ADPDRESS TABLE

The address table consists of a series of single word
entries for the various internal namese. Any of these
internal names may correspond to a user's external name,
such as 'A' or 'FUN3', or it may be a name that the APL
system is using for another purpose, such as pointing to the
'print name' for some internal names The APL emulator may
be making temporary use of a name to identify an
intermediate result such as A+B or a name may not be in use
at alle The full details of the address table entries are
given in figures 4 to 7.

The first byte o0f the address table entry consists of
four syntax bits and four primary descriptor bitse. The
syntax bits might, for example, identify the named item as a
function of two arguments or as a variable (see *STATEMENT
SCAN AND SYNTAX ANALYSIS' for a description of the syntax
bits and their use)e The primary descriptor bits
distinguish between permanent and temporary 1items, tell
whether or not a variable has a valuey, and if it does,
identifies it as an addressed value or an immediate valuee.
Entries with addresses point to byte 0 of the DN word (see
*FREE SPACE!').

A variable with an immediate wvalue 1is called an
'address table immediate? and is a scalar character,
logicaly, or small integer. Character immediates have their
value in the last byte; the next to last byte is unusede.
Logical immediates have their value in the last bit; the

Section II: Format of the Workspace 19

IBM INTERNAL USE ONLY

SSSS POPP AAAA AAAA AAAA AAAA AAAA AAOO
SSSS PI1PP MUUU DDDD VVVV VVVV VVVV VVVV

SSSSs Syntax (see figure 5)

PPPP Primary descriptor (see figures 6 and 7)

Aeec A Absolute (virtual) address of the named block

VeeV Value .

NUUU Sign and unused

DDDD Type descriptor (O=logical, 1=integer, 4=character,

DDDD=UUL1U is an 'escape'! case)

FIGURE 4: ADDRESS TABLE ENTRY FORMS

S8SSs=0 Unused name

SSSs=2 Variabley, normal

SSSS=3 Function, dyadic

SSSs=9 Function, niladic
SSSS=B Function, monadic
SSSs=C Variable, shared

SSSS=D . Variable, system

SSSS=F Group

FIGURE 5: POSSIBLE ADDRESS TABLE SYNTAX BITS

20 The APL Assist (RPQ S00256)

PPPP=0
PPPP=4
PPPP=7
PPPP=9
PPPP=B
PPPP=F

FIGURE 6:

BIT
BIT
BIT
BIT

SO b

Note:

FIGURE 7:

IBM INTERNAL USE ONLY

Unused name not on unused name chain
Unused name on unused name chain
Permanent with no value

Temporary with addressed value
Permanent with addressed value
Permanent with immediate value

(ALSO SEE THE NOTE TO FIGURE 7)

O=Has no value 1=Has value
=Addr essed value 1=Immediate value
O=Temporary 1=Permanent

(see note) 1=Normal setting

The emulator does not normally use
the P-bits of shared or system
variables.s The system need not
follow the above conventions in

these casese. For system variables
P-bit 7 is 0 if there is an '"implicit
error!'! associated with the variable.

ADDRESS TABLE P-BIT ASSIGNMENTS

Section II: Format of the Workspace

POSSIBLE ADDRESS TABLE PRIMARY DESCRIPTOR BITS

21

IBM INTERNAL USE ONLY

R o T Y

FPR2 | |
+———==—=| 0400RRRR|
| e e e
|
| e e
| |IN use |
i | 2 |
| | IN USE |
NNNN | +=--—{0400QQQQ|<=~~+
|| {IN USE | |
QQQQ | +-->|10400TTTT|~--C—=+
| |IN use | |
RRRR 4=—===>| 0400ONNNN |=~=+ |
| IN USE | |
{IN USE | |
TTTT | 00UVUUUU | K==t
UuuuU - | s |
| oouvuvuuvy|

I SO §

FIGURE 8: UNUSED NAME CHAIN EXAMNPLE

22 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

remaining bits in the last two bytes are zeroe. Integer
immediates have a 16+~bit value in the last two bytes and a
seventeenth sign bit which is replicated throughout the
first two bytes when the value is extended to a full worde
In figure 4 and other places, U is used to denote an unused
bite The emulator does not use the value of Uy bDut it may
change this value. The 'escape' case is discussed in 'THE
GOTO PRIMITIVE FUNCTION?,

The second word of FPR2 is 0400NNNN where NNNN is the
next available unused name. Whenever a namey say RRRR, is
released to become 'unused!, the FPR2 word is stored in the
address table entry for RRRR and then the FPR2 word is
changed to 0400RRRR. This yields a chain of unused names as
shown in figure 8. When a name is next requestedy, RRRR will
be given and the address table entry for RRRR read oute.
Since this entry is a link in the unused name chain it will
replace the FPR2 word and we thus have restored FPR2 to
0400NNNNe If three more names are requested we will give
NNNN and QQQQ in the same manner. Then we will give TTTT,
but when the TTTT address table entry is read out it will be
found to not be a link in the unused name chaine In this
case four will be added to the FPR2 word to produce a next
available unused name of UUUU. At the same time a check
will be made to insure that UUUU is a valid name and not the
lowest word in the stack area. This test consists of seeing
that byte O of the UUUU entry is zero. Alternatively one
could make a comparison with the contents of BNDATS.

THE STACK

THE USE OF THE STACK

The stack consists of four registers denoted by R1, R2,
R3, R4 (actually these are the 370 registers GPR1, GPRY,
GPR7y GPRE) and a sequence of memory locations M[TS+4],
M{TS+8])y eecee M[BS]. M[{BS] is the beginning of the stacke.
TS is contained in TSADR and its minimum allowable value is
in BNDATS.

Section II: Format of the Workspace 23

IBM INTERNAL USE ONLY

We would like to avoid repeated memory references so we
keep the top stack items in registers and allow these
registers to be marked 'empty‘. The action of pushing an
item onto the stack is as follows:

If R4 is 'empty'! then go to OX
If M[TS]) is 'end stack' then use an external routine
to extend the stack
M{TS})} - R4 and TS « TS-4
OK: R4 « R3y, R3 « R2y R2 « R1 and Rl « item

The end of stack marker is the same as an ®empty!
markery, a zero first bytees An empty item can occur in the
registersy but the emulator never puts one on the memory
part of the stacke Hence an empty marker can be used to
denote the end of the stacke At the beginning of execution

TS=BS-4 and the stack setup is as follows (*'U!? denotes an
unused half-byte):

R1 undef ined

R2 O7UUUUUU = *null?

R3 undef ined

R4 O0UUUUUU = tempty!

MI[BS) O8UUUUU2 = 'phegin stack!
M{BS-4] anything but 'empty!

M[BNDATS+4] anything but 'empty!

M[BNDATS]) 00000000 (hence 'empty!')

We now begin execution with the sequence?

BEGIN: R3 « R4
R4 « 'empty!?
Rl = read next (first) APL token

Analysis and execution now proceed with the setup:
R1 APL token
R2 *null?

R3 tempty"*
R4 ‘empty!?

24 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

At the beginning of, for example, a dyadic operation the
stack registers will be?

R1 left argument

R2 opera tor

R3 right argument

R4 next item on the stack

The emulator routine that executes the operator will leave
the result in R2. It can then branch back to the above
BEGIN. See "STATEMENT SCAN AND SYNTAX ANALYSIS' for fur ther
detailse.

ITEMS ON THE STACK

This section describes operators, names and values on
the stack. The stack can also contain blocks of information
and special stop words (see 'FUNCTION INVOCATION?),

Each item on the stack is a full worde Bits 0-3 are
the syntax bits and identify the item as an operator,
variable, separator, etcs. A complete list of syntax codes
is given in *STATEMENT SCAN AND SYNTAX ANALYSIS'.

Operators go on the stack with hexadecimal form
*1ABCUUUU' where '"1ABC' denotes their opcode and *UUUU"
denotes unusede. The opcodes may g0 through minor

modification during processing, such as setting of the 'is
indexed' bit. The various opcode bits are further specified
in the 'OPERATORS AND SEPARATORS' sectione.

A name on the stack has the bit form
SSSS UUP1 UUUU UUUU NNNN NNNN NNNN NNOO

where the U bits are unused, the N bits give the namey, P is
0/1 for temporary/permanent names and the S bits give the
syntax code. The only syntax codes that should occur with
names on the stack are =var iable, 3=dyadic function,
=niladic function and B=monadic functione. We do not stack
all of the name's P-bits because they may be altered while
the name is on the stacke.

Section II: Format of the Workspace 25

IBM INTERNAL USE ONLY

Immediate values may be on the stack with the bit form
0010 1110 MUUU DDDD VVVV VVVV VVVV VVVV

With the exception that the P-bits are 1110 rathef than
1111, this 1is formatted exactly like an address table

immediates However, there is a fundamental difference.
Address table immediates are always permanent variables;
stack immediates are always temporary variables. In a

statement like "Be-(A+-1.5)+A' A may go on the stack when it
is &an address table immediate but it will change to a
non—-immediate before the stack entry is used. Because of
this respecification problem, address table immediates must
be put on the stack in the name form {as opposed to the
immediate form)e. Temporary results like 243 cannot be
respecified, so they are made into stack immediates if
possiblee.

FREE SPACE

Free space is divided into a number of blockse. The
formats of the various blocks are shown in figure 9 and are
summarized in figure 10. The arrangement of these blocks in
free space is

DB GA AB UB AB GA DB
where

DB single word dummy block containing the integer §
GA any mixture of garbage or active blocks

AB an active block

UB the single unallocated block

FREEU (see the section on 'GETV') contains the address of
the beginning of the unallocated blocke When space is to be
found for a new objecty, it will be taken from the bottom or
top of the this blocke. The rightmost bit of FREEU
determines the location selected with O 1indicating the
bottom (low address) and 1 indicating the top (high
address)e. If insufficient space is available then the APL
system is called upon to perform a garbage collectione This
causes all garbage blocks to be removed and all active
blocks to be moved to the bottom of free space so that the

26 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

UNALLOCATED BLOCK

+ + + +
x + 2	X-4 BYTES OF SPACE	x « 2
GARBAGE BLOCK
+ + + +
| | | i
| X | X~4 BYTES OF SPACE | b.¢ |
! I | |
ACTIVE BLOCK
+ + + + +
| | | |
| X+ 1] D: N| X-8 BYTES OF SPACE | x + 1 |
I i : | l
FIGURE 9: BASIC FREE SPACE BLOCKS
| I { |
| C | INTERIOR | c |
I I | i
c SPACE MANAGEMENT CCNTROL WORD EQUAL TO B+T-4

WHERE B IS THE TOTAL NUMBER OF BYTES IN THE
BLOCK AND T IS 0/1/2 ACCORDING TO THE TYPE
BEING GARBAGE/ACTIVE/UNALLOCATED (IF ACTIVE
THE INTERIOR MUST BEGIN WITH A DN WORD)

FIGURE 10: GENERAL FREE SPACE BLOCK

Section II: Format of the Workspace 27

IBM INTERNAL USE ONLY

new configuration is
DB AB AB .. AB UB DB

If there is now sufficlent space then execution continues,
otherwise a *'workspace full! error exit is takene

The second word of an active block is called the !DN
word'e N is the internal name of the blocke. Each active
block is associated with a word at location GPR3+N. This
word has the format SPAAAAAA (see *THE ADDRESS TABLE!
although this word is not necessarily located in the address
table) where AAAAAA is the address of byte 0 of the DN worde.
D is a half word which describes the blocke Further details
about active blocks will be found in the sections
specifically about them: SVARIABLES IN FREE SPACE?Y, TAP
VECTORS' and *SYNONYMS*'.

A garbage block is formed whenever an active block is
freede Whenever +this happens the preceding and following
blocks are also checked andy, 1f either/both of them is/are
inactive (garbage or the unallocated block), themn it/they
are merged with the newly freed blocke. Thus free space
should never contain two adjacent inactive blocks (actually
the APL system may generate this situation during cases,
like editing, where it modifies free space). The £irst and
last dummy blocks in free space contain an odd integer; this
makes them look like active blocks so that the 'free a
block!' routine will never attempt to merge them with an
adjacent blocke When the garbage collector scans free space
the dummy blocks look like active blocks, but with zero
bytes for the interior of the blocke. Since this cannot
occur for a true free space block the routine detects the
end of the scane.

VARIABLES IN FREE SPACE

———

The very general form of variables in free space was
described in the 'FREE SPACE' sectione The more specific
forms are shown in figure 11, All items are full words and
are full word alignede The various Vi represent the value
wordse. We also have the element count in Ey the rank in T,
and the shape in R1 R2 .. RT, T must be less than 64; each
Ri and their product, E, must be less than 2%24. Uees U
denotes an undefined number of undefined wordse. This |is

28 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

NON—-REAL SCALAR C DN VO U...U C

REAL SCALAR C DN VO V1 UeweU C

VECTOR C DN VO V1 +¢ VYN UeesU E C

ARRAY C DN VO VI ¢e VN UeeeU R1 R2 o¢ RT T E C

FIGURE 11: FORMAT OF VARIABLES IN FREE SPACE

o
b
=3

MEANING IF ON

ESCAPE CASE

NOT SINGLE VALUED
ARRAY

ARRAY OR VECTOR
(ALWAYS OFF)
CHARACTER

REAL

REAL OR INTEGER

NN WON=O

FIGURE 12: SECOND DESCRIPTOR BYTE DEFINITION

BITS 123 CASE BITS 567 CASE
000 SCALAR 000 LOGICAL
00t VECTORy E is 1 001 INTEGER
011 ARRAY, E is 1 011 REAL
101 VECTOR, E not 1 100 CHARACTER
111 ARRAY, E not 1

FIGURE 13: SECOND DESCRIPTOR BYTE CASES

Section TI: Format of the Workspace 29

IBM INTERNAL USE ONLY

=]
=t
-]

MEANING

(CURRENTLY UNUSED)
(CURRENTLY UNUSED)

{ CURRENTLY UNUSED)

(CURRENTLY UNUSED)

IF AND ONLY IF AP VECTOR
(MUST ALWAYS BE SO)

(MUST ALWAYS BE SO)

IF AND ONLY IF SYNONYN LINK

QO NBAON=O
= OOmMOOOO

FIGURE 14: FIRST DESCRIPTOR BYTE DEFINITION

SCALAR? 100000
0000000D 0001nnnn 000186A0 0000000D

SCALAR: S
00000011 0003nnnn 40800000 00000000 00000011

VECTOR: 5
0000001S 0013nnnn 40800000 00000000 00000001 00000015

VECTOR: NULL (CHARACTER)
00000000 0054nnnn 00000090 0000000D

VECTOR: *ABCDEF? :
0000001S 0054nnnn C1C2C3C4 C5C60000 00000006 0000001S

ARRAY? VALUES=1 01 001 111 SHAPE=3 3
0000001D 0070nnnn ES010000 00000003 00000003 00000002
00000009 0000001D

FIGURE 15! EXAMPLES OF VARIABLES IN FREE SPACE

30 The APL Assist (RPQ S00256)

IBM INTERNAL USE CNLY

usually null but an expression like 'A«~,A' may produce a
non—null case (see 'SYNONYMS'). The possibility of non-null
UseeU means that the location of E must be computed as
follows: Let d be the address of the DN worde. Then the
address of E is d-9 plus the contents of d-4 (of the form
X+1 because the block is active)e. Ty RTy eee can be
accessed by stepping backwards from E.

Integers are stored in full words and reals are stored
in full word pairs (but not necessarily double words) using
the standard IBM/370 representatione. Characters are stored
sequentially from left to right in bytes and padded on the
right with undefined bytes if necessary to complete a word.
The bit patterns used for character representation are
defined by the APL system and are of no concern to the
emulator. The emulator only needs to know the
representation for a blank (for the 'expansion! and ! take!
operators) and for this it wuses the control word BLANK.
Logical vectors are stored with eight values per byte and
these bytes are stored sequentially as in the character
case. Within a byte the values are stored from right to
left. Hence a logical vector would begin with the elements
E7 E6 ES E4 E3 E2 E1 E0 in the first byte and E15 E14 E13
E12 E11 E10 E9 E8 in the second byte. The byte containing
the last element will be padded with undefined bits on the
left if necessarye.

The descriptor is delineated in figures 12 to 14, It
is a half word consisting of bytes D0 and Dle DO is the
'escape' descriptor and is usually zero; the only exceptions
are hexadecimal values of '01' for synonym links (see
*SYNONYMS?') and '08' for AP vectors (see 'AP VECTORS'). D1
uses bit 0 to flag these escape casese. D1 has bit 4 always
off. Howevery when the emulator 1s using a variable, a copy
of the descriptor exists in the GPR's. In this copy, bit 4
of D1 may be used to flag initialization of the variable by
some emulator routine, etce. The descriptor bits of most
interest are bits 123 and 567 of Dle. These are well
described by figures 12 end 13. Particularly useful is bit
1, the '"pseudo scalar! bit. If this bit is on the variable
is null or has more than one element. Thus if the bit is
off, according to the rules of APL, it can frequently be
used as a scalar, whether or not it is onee.

Some examples are given in figure 15. Characters are

shown Iin EBCDIC but the APL system may use a different
codee. -

Section 1IYI! Format of the Workspace 31

IBM INTERNAL USE ONLY
AP VECTORS

An AP vector is a vector of integers which form an
arithmetic progression. Some examples are?

1 2 3
10 13 16 19 22 25
17 3 -11 -25

Any AP vector can be represented in a compressed form: first
element, step between elements, number of elements. The
internal form for an AP vector is as shown below (all
numbers are hexadecimall).

I
0000:0015]08D1: NANE
|

| : |
NUM ELM |0000:0015]|
l |

FIRST DELTA

P o ———
P e s s
> oms aam e ¢
e e e P

Thus the above examples would become?

00000015 08Dlxxxx 00000001 00000001 00000003 00000015
00000015 08Dlyyyy 0000000A 00000003 00000006 00000015
0000001S 08D1zzzz 00000011 FFFFFFF2 00000004 00000015

The APL emulator does not examine all vectors to see if
they can be represented as AP vectorse But monadic iota
always generates an AP vector if the element count is
greater than one and the emulator will preserve AP vectors
across many operations such as addition of a scalar (do one
addition instead of n of them) and multiplication by a
scalar (do two multiplications instead of n of them)e. When
generating an AP vector the emulator does require that the
following be true

1 < NUM_ELM
2%24 > NUM_ELM
2%28 > | DELTA x NUM_ELM - 1
2*%31 > |FIRST + DELTA x NUM_ELM - 1

32 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

The use of AP vectors reduces the memory requirements
and the execution time of a number of APL expressionse.
Programs fregquently use subscripts of the form "A+Bx¢N'. AP
vectors allow very efficient processing of these subscriptse.
They alsoy, in conjunction with subscript lists, allow the
subscripting emulator routines +to recognize many special
cases for efficient evaluation. There are other instances
of real use as wells For exampley, let TEXT be a string of N
characterss Then the emulator will evaluate

(TEXT=* ')}/«N

in less time and core space than would be possible without
the use of AP vectorse.

SYNONYMS

If B is a vector or an arrays then A«B will usually
cause A and B to become synonymse. In this case a single
copy of the value block will be stored and both A and B will
refer to this blocke The use of synonyms will reduce the
space and running time of most APL programse. Assuming that
B is not already a synonym, figure 16 shows what happens for
this assignmente T is a temporary name (but see below) and
U is undefined. The quantities shown in the blocks (Ay B,
Cy Dy Ty U and =1) are all half word itemse The descriptors
of A and B will have the synonym descriptor bits on (see
*VARIABLES IN FREE SPACE!').,

Several items can be synonymous; suppose Ay, B and C are
synonymse. Then the last two items in the blocks which their
address table entries point to are

Al -1 B
: A C
C: B "'1

In other words these items show the neighboring items on the
synonym chain with -1 (actually any half word with the low
bit on) indicating the end of the chaine. If the statement
D«B occurs and a new synonym is formed then the synonym
chain becomes Ay By Dy C so that the link items become!

Section I1I: Format of the Workspace 33

IBM INTERNAL USE ONLY

BEFORE THE ASSIGNMENT

ADDRESS TABLE

— e, c— o o o

ENTRY FOR A

|
|
{
2
v
w

'

-—====>| D B

&+

ENTRY FOR B VALUES AND SIZE

o

+ -+

v

o et s et s i A Sooen s S e o

s o e —

AFTER THE ASSIGNMENT

ADDRESS TABLE

ENTRY FOR A -——==>| D A

+ —
[=]

+
3
'
-
w
+ -+

— i — o —— —— —

ENTRY FOR B

|
|
§.
-]
o
& —
a
-
o+ —
>
|
it
+ -+

'y
b

e———>| D T

ENTRY FOR T VALUES AND SIZE

4 -4

+—+

o o et s i ot S i i s s s e . e

o cae e o

FIGURE 16: ADDRESS TABLE AND FREE SPACE ITEMS
BEFORE AND AFTER A«~B (THE SPACE
MANAGEMENT CONTROL WORDS HAVE BEEN
OMITTED FOR SIMPLICITY)

34 - The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

(X}
owhr -
=00

A synonym is set up if B is a medium or large nonscalar
(the emulator tests if the space management control word is
greater than 643 see 'VARIABLES IN FREE SPACE') and a copy
of B is regquirede Typical examples: are

B DF E where DF is a dyadic defined function
MF B where MF is a monadic defined function
A« B and the result will not fit in the old A
+B where B is an array

The last case implies that the various synonym links may
have different descriptors and that these descriptors, not
the one in the value block, describe their associated
variabless The last two cases imply that if B is an array
then A+~yB will usually set up a synonym block and that B«,B
will simply change the descriptor of B.

If A and B are synonymous then A«X will cause the old
value of A to be freed and the assignment to be donee I£f B
was synonymous only with A the +the synonym chain reduces to
~1 -1 and in this case the synonym block is freed and B is
made to point directly +to the value block. Although the
name of the value block is a +tenporary name, it is given
permanent status in the address table. This protects it
against freeing by the system in case of a user error (see
*ERROR RECOVERY')e The emulator will ignore this false
permanent status and will free the name at the appropriate
time (ieeey when the synonym chain has only one link).

Section II: Format of the Workspace 35

IBM INTERNAL USE ONLY

OPERATORS AND SEPARATORS

Operators and separators are represented in 16 bits of
the form:

'SSSS DDDPD DDDD DDO1

The last two bits are zero—one and they specify that this is
an operator or separatore The first four blits specify the
syntax (see YSTATEMENT SCAN AND SYNTAX ANALYSIS?). The
D—bits distinguish between the various operatorse There are
some special operators which have non-standard forme ’

OPERATORS
Operator codes are shown in figures 17 and 18. They
have the form: .
0001 CRZM DEFG HIO1
The bit patterns for individual operators are arranged so
that the emulator can quickly detect various groups of

operationse The bits have the following significance:

"

O
"

1 for equal, unequal and fast mixed codes

1 for left slash, right slash (and their '-?
overstrikes) and for period

for operators overstruck with '-¢

for mixed operators

for indexable operators

mEN
W n
-

L}

In the case of scalar operators (M=0) FG is 00 for
comparisons and 01 for logical operationse. Alsoy in the
scalar operator casey character arguments produce a 'domain®
error unless C=1.

36 The APL Assist (RPQ S00256)

INTERNAL USE ONLY

IBM

S W S W

Lot

B Y T WS

I+
I
I

[3
[SERERC W R SR —Y
A s o e e o o o

| o |

110
111

|

I < | =
e e s e 2
Il vial»s]]
o e e e ¢

100
101

| o
o1 4|

e Rt Dt ST
I

|

112
115

[P ORI D G D o

& |

I v 1

1 | e

118

[DU D P W W &

| E |

Il = |

B, [t S R

114

— = — —

ey

'y

me o —— o

+ “*

— o —

102
103

p e P —

o

b o—d

108

Ly a v

I =

v

l ~

I S S W

109

| # |
e T R S—

&

11B

-t 1t i
fm e pm e e e

104

R

?

Y

e

| 11D
+
|

P+

108

+
|

&

<

Y

<

b —

L2

[S S G S §

8 g

e

v
Y
h

180

m—

O SR SR W |

{

+* *

17 | |

155

N o
s e S S

188

I
+

e
fande o

159

+

l |
&
v

ry
*

189

4
r

——

& e
v

AN |

15D

o e e e o o e

I+ 1
e B R s

175

t
I

I x|

17D

+=~-=SCALAR OPS

B L S RS

icl ol

Cc00

MIXED OPS——===-

IO RS S C——

(FAST CODES
OMITTED -~

ADD X'0800')

Row headings give the first three digitse

Column headings give the last digite.

Note

108D is the code for >e.

For example,

OPERATORS ARRANGED BY HEXADECIMAL CODE

.
-

FIGURE 17

Format of the Workspace 37

Section II

F @G
0 O
0o 1
1 0
1 1
0 O
o 1
1 0
1 1
NOTE?:

FIGURE 18:

4001
4005
5001
5005
500D

*Haa—.w

IBM INTERNAL USE ONLY

+ <
f
O= KA

o 0o
[]
S~

-

4 - 5 6 q ~ BITS I H D
= * < > SCALAR OPS
A - ~ ~
x |]
?
1 { 4 T MIXED OPS
/N 4 ¥

E

LOOKING ONLY AT BITS F G AND I H D WE HAVE
THE FOLLOWING EQUIVALENCES: ¢:e [/:4 \:X
NORMAL MIXED OPI:FAST MIXED OP

6001
7001
7101
8005
AO0X1

FIGURE 19: SEPARATORS

38 The APL Assist (RPQ S00256)

OPERATORS ARRANGED BY FUNCTIONAL -GROUP

14
FAST «
NORMAL «

END

IBM INTERNAL USE ONLY

For the mixed operators, C=1 flags the 'fast!? casee.
Suppose V is a variable, X is a mixed operator and the
emulator is evaluating the expression X V. Fur thermore,
suppose that the value of X V is the same as the value of Ve
For example X is ravel and V is a vector, or X is transpose
and V is a scalar, vector or one element arraye. Then:?

if C=1 then the result of X V is V
if C=0 then the result of X V is a copy of V

(In the 1later case the 'copy' may actually be a synonyme)
These results do have the same value but they may have
different side effects. In the statement 'A«~,V' either code
may be used. But, if V is a vector, then in the statement
*{(V-6)+,V! only the normal code will produce the same result
as APL\360 (the fast code produces the scalar 12).

If the emulator detects two contiguous operators and if
either has R=1 then it checks for reduction, scan or inner
or outer producte When the emulator is actually performing
an operation it usually holds a copy of the operator in the
left half of GPRY. However, it may change certain bits to
indicate special condi tionse. For example, in scalar
operations E is usually set to 1 if real arithmetic is
neededs Alsoy Z is set to 1 if an operator is explicitly
indexed.

The operators with M=1 and F=1 cause an exit to the APL
systeme The emulator does not define the properties of
these operatorse. The operator denoted by the boxed star
(X'11BD*') cannot be entered into the system by an APL usere.
It is generated by the emulator during the processing of a
secondary decode special operator (see below)e The emulator
implements it by invoking the system's 'box' functions (see
T APL ASSIST AND THE APL SYSTEM'!).

Section II! Format of the Workspace 39

IBM INTERNAL USE ONLY
THE GOTO PRIMITIVE FUNCTION

There are two internal forms for the GOTO arrow,
namely, 1095 and 1895. The 1095 form should be used if the
arrow is the first item in any statement of a defined
functione The 1895 form must be used if the arrow is not
the first item in a statement or if it is a statement for
immediate executione Both 1095 and 1895 produce a *rank?
error or a 'domain'® error if appropriate. :

The 1095 form is significantly faster than the 1895
forme. It assumes that the next item to be scanned is an end
of statement marker and it checks this item for the trace
bite. If the trace is on then the emulator behaves as if the
1895 form had been used (see below)e. If the trace is off
then it either continues execution on the next statement (if
the argument is null) or it branches to the statement number
specified by the argument.

The 1895 form does not immediately do the branch (or
no—branch) operatione Instead, it produces a result which
is an escape form of stack immediatee. If the argument is
null then the result is X'2E-3UUUU' where '-' is B'1UUUU!
and 'U' is undefinede. If the argument is not null then the
result is X'2EZ3NNNN' where 'Z' is B!'OUUUU' and where 'NNNN'
specifies the branch targete. If the result of a GOTO is
used as the argument of a primitive or defined function, as
for example in 2+-3, then the GETV process (see *370
REGISTERS AND EXTERNAL FUNCTIONS') will cause a *value!?
errore. If a GOTO is used in a context such as 2'929%-2431010 ¢
then the result of the GOTCO (for example, X'2EQ03000S') will
be on the stack when the end of statement is reachede. The
emulator will then make a 'print' error return to the system
(see "APL SYSTEM/APL EMULATOR INTERFACE') which may do the
actual branche.

To summarize the situation: The emulator will process
the usual situation where the GOTO is the first item in a
statement of a defined functione It analyses unusual usages
of GOTO and either gives a 'value! error or presents the
GOTO as the result of the statement.

40 The APL Assist (RPQ S00256)

-IBM INTERNAL USE ONLY
SEPARATORS

The codes for the various separators are shown in
figure 19. The two assignment arrows, 7001 and 7101, have
the same effect in most circumstances, but they have
different side effects if there are maltiple assignments in
one statement. The emulator will produce the same result as
APL\360 if either of the following rules is used:

(a) Always use 7101.
(b) Let £ be the first name in the APL statement
- f X oo

If x is a left arrow and ——— does not contain left
parenthesis or bracket, use code 7001. In all
other cases use 7101.

Rule (b) is more complicated than rule (a) but it leads to
more efficient executione. Let Y be the item being assigned
to somethinge The 7101 arrow leaves the value of Y on the
stack; the 7001 arrow may leave the value of Y on the stack
or it may leave the name of the variable into which the
assignment is madee. In statements like

A« B+ C

the two arrows produce the same resulte In statements like
(A~B) + A~C

they produce different resultse.

The 8005 separator is the bracket used when an operator
is indexede. (It is generated automatically by the APL
system and cannot be entered into the workspace by
overstriking the bracket with a minus.) The X in the end of
statement marker 1is: 0 for no stop or tracey, 1 for trace
(this statement), 2 for stop (tefore the next statement),
and 3 for both stop and trace. APL functions which are part

of the system may use the separator 500D. This separator
works like S005 except that it allows an array to be indexed
like a vectore. In other words, a S00D type subscript on a

scalar, vector or an array has the same effect as a 5005
type subscript on the ravel of a scalar, vector or arraye.
(Like 8005 it cannot be typed by the usere.)

Section II: Format of the Workspace 41

IBM INTERNAL USE ONLY

SPECIAL OPERATORS

A special operator has a 16 bit code ending in 11. The
defined codes are-:

ONNN NNNN NNNN 0011 GOTO Ny corresponds to 1095 form
1INNN NNNN NNNN 0011 GOTO N, corresponds to 1895 form
UUuUU UUUU UUUU Ot111l make an 'escape' emulator exit
UUUU UUUU UUU0 1011 perform an indirect operation
UUuUU UUUU UUotl 1011 skip over some function bytes
VVVV VVVV VVVV 1111 secondary decode

The purpose of the 'escape' operation 1is not defined by the
emulatore. As an example of its use, APL/CMS uses
hexadecimal XX07 to flag an illegal character,y, where XX
gives a representation of the charactery, and it wuses NNNN
TTF7 to flag an assignment to a stop or trace vector of a
function. In this case NNNN is the internal name of the
function and TT is the internal representation of 'S' or
1T, The indirect operation may be used by some APL system
routines (such as the one for the 'scan' operator). I£ i is
the 'indirect operation' operator and N is a name, then Ni
causes the emulator to get the law order eight bits of the
address table entry for N and to use these eight bits as the
low bits of a scalar operatore. Thus if N is an integer
address table immediate with the value five, then the
emulator adds 18 to produce the scalar operator 1805 which
is the code for '=0,

The skip operator is used to skip over a portion of the
internal text. It might be used, for exampley, to include
comments in the texte. The form in which it is used is:

S N Bl B2 .. BN

where S is the skip operator, N is a halfword even integer
and the Bi are the bytes to be skipped over.

The secondary decode operation causes the emulator to
put the word:

0001 0001 1011 1101 VVVV VVVV VVVV 1111
on the stacke. This will subsequently be treated like a
11BD operation and it will eventually call the external

function corresponding to '11BD! (*m box'! or *d box', see
' APL, ASSIST AND THE ‘APL SYSTEM?!). The external function

42 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

will find the VVeeoell in the low half of GPRO and it can use
it to select one of many sub—operationse.

INTERNAL TEXT OF FUNCTIONS

A function has the same internal form as a character
vector,y, however, the syntax bits in the address table will
distinguish between a variable and a function of 0, 1 or 2
argumentse The internal form of a function is:

C DN HEAD BODY TAIL SYS NB C

C is the usual space management control word (see ?FREE
SPACE')s D is the descriptor of a character vector (0054)
and N is the internal name of the functione. HEAD contains
the half word jitems:

M T 8 XK Z L R Li L2 eee LN 2 EZ
where we have esee

highest statement number
byte offset of TAIL from DN .
system information, not used by the emulator
40 + 8 times the the number of locals (decimal)
name of the result or the number 1
name of the left argument or the number 1
name of the right argument of the number 1
i name of the i—-th local wvariable
marker for the end of the locals list
marker for the end of statement 0

oINS R

N

Note that since the low two bits of a name are zero we can
use both 1 and 2 to indicate a non—namee The BODY has the
form:

S1 E1 S2 E2 ee¢ SM EM X EX

where Si is the internal text of statement i (see 'INTERNAL
TEXT OF STATEMENTS'). Ei marks the end of statement i. It
contains the trace bit for statement i and the stop bit for
statement i+1., X is an !immediate go to 0'. Further
details of Ei (see 'SEPARATORS') and X (see 'SPECIAL
OPERATORS!') are given 1in the *OPERATORS AND SEPARATORS'
section. The TAIL contains the byte offsets of EZ, El, E2,

Section II: Format of the Workspace 43

IBN INTERNAL USE ONLY

THE APL FUNCTION ...

v Z « AF B3;C;D3E

[1] Z « A+B

2] a COMMENT
{3) LAB: C « D*E
(4] z:c:A

{5 -A/LAB

v

WITH A TRACE VECTOR OF J3
AND A STOP VECTOR OF 1 4
HAS INTERNAL FORM asee

00000079
00BCO0CO
00Cc81021
8D4C5856
700100cC
A0010116
A0010014A
000300D8

WHERE WE

005400C4
00Cc800cC
00c07001
564E575D
A03100C0
00031555
00260034
0000006C

0005005E
00D000D4
00BCA(OO1
A00100D4
600100cCC
00Cc01095
0040004cC
00000079

HAVE UNDERLINED ALL

00000040
00024021
00180008
103100D0
600100BC
A0010003
00580001

END OF

STATEMENT MARKERS INCLUDING EZ AND EX.

FIGURE 20.1:

44 The APL Assist (RPQ S00256)

INTERNAL FUNCTION TEXT EXAMPLE

IBM INTERNAL USE ONLY

THE CORRESPONDENCE BETWEEN OUR DEFINED
SYMBOLSy, THE APL VARIABLES AND TEBE ACTUAL
INTERNAL FORM IS eee

INTERNAL

o
t
"y
>
")
™

0000 0079

0054 00c4

0005

005E

0000

0040

00BC

00co

00cs8

00ccC

00DO

00D4 .
TAIL 001A 0026 0034 0040 004Cc 0058
sYS 0001 0003 O0OD8

NB 0000 006cC

z

MONRNHEBUO

™
P
moQwWH » N

FIGURE 20e2: INTERNAL FUNCTION TEXT EXAMPLE

Section II: Format of the Workspace 45

IBM INTERNAL USE ONLY

ese EM as half word items. SYS contains system information
such as label names. The emulator is not concerned with the
details of SYSe NB is the number of bytes in the HEAD,
BODY, TAIL and SYSe. Flgure 20 provides an example of a
translated functione.

INTERNAL TEXT OF STATEMENTS

TRANSLATION OF ITEMS

The external form of a statement may contain comments,
labels, names, constants, operators and separatorse See
*OPERATORS AND SEPARATORS! for the various 16 bit codes into
which these items are translatede. The remaining items are
translated as follows:

Comments?

Comments may occur within any statement. See the skip
operator in 'SPECIAL OPERATORS!'.

Labels:

Labels should not occur in the body of a functione. The
system may store labels in the SYS region of the functione.
Also see 'USE OF LABELS?Y,

Names:

An external name is represented by an internal namee. An
internal name is a 16 bit number ending with two zero bitse.
In a given workspacey, an external name has the same internal
name irrespective of whether the name is the name of a local
variable, a shared variable, a global variable or a
functione.

Constants:

A constant may be scalar, 16 bit or general. A constant is
translated into a descriptor followed by +the internal

46 The APL Assist (RPQ S0025%6)

IBM INTERNAL USE ONLY

representation of the constant, according to the following
bit formats:

Scalar: 0000 DDDD UUUU 0010 VVees

16 Bit: MUUU DDDD UUUL 0110 VVeoo

General: DDDD DDDD UUUL 1010 CCCC CCCC CCCC CCOO VVeeoo
or DDDD DDPDD UUUL 1010 CCCC CCCC CCCC CC10

UUUU UUUU UUUU UUUU VVeeo

where U stands for unused and Dee.D is the descriptor bits
described in 'VARIABLES 1IN FREE SPACE'. L is used to flag
label constants (see 'USE OF LABELS'). The first type of
representation is used for integer scalars and real scalarse
Integers are in IBM/370 32<bit integer format and reals are
in IBM/370 64-bit floating point format (VVeee)e The 16 bit
form is used for logical, character and short integer
scalarse In the latter case M is the sign bit and VVeeeo is
16 bits longe As examples of this representation (in
hexadecimal):

0006 0001 logical 1
0106 0040 integer 64
8106 FFCO integer -64
0406 0099 character with internal code of 99

The general form can be used for vectors or arrayse In this
case VVeeo must begin on a full word boundary (hence the two
forms shown)e VVeee must be of the form described in
'*VARIABLES IN FREE SPACE!, This implies that it must be
padded out +to a full word and should end with an element
counte. CCCC CCCC CCCC CCO0 is equal to four times N+2 where
N is the number of words in VVeee As an exampley, the three
element vector 64 -64 1024 has the internal representation
(assumming that it does not begin on a full word boundary):

510A 001A 0000 0000 0040 FFFF FFCO 0000 0400 0000 0003

USE OF LABELS

The emulator does not recognize the use of labels. It
the program contains -ALPHA and ALPHA is a label attached %o
statement 64 then ALPHA has the internal representation 0116
0040. This is the internal representation of the short
integer 64 with the L bit on. The emulator igneres the L
bite. The sSystem may use the L bit when converting from

Section II: Format of the Workspace 47

IEM INTERNAL USE ONLY

internal to external form. The APL user may, of course, use
labels in any legal mannere.

EXAMPLE WORKSPACE

In this section we provide a workspace Wwhich has
intentionally been setup to produce an error, thus supplying
an example with information on the stack, shadowed variables
and so one Figure 21 gives the console listing for the
example, figure 22 delineates several key items and figure
23 gives a dump of the workspacee

In figure 21 we see that the workspace was lLoaded, the
GO function executed and a ‘domain' error producede. Figure
23 shows the contents of the workspace at this point. The
console listing in figure 21 then goes on to show the stack
and the items in the workspacee.

Figure 22 gives the symbols in sequence by both
external name and by internal name as well as several other
items. We note here that on the dump the displayed GPR's
are those active when the system provided the dumps the
GPR's of interest to us are stored in locations 560A8 to
S60E4 in the seguence GPR4, XX X] GPRF, GPRO, seey GPR3.
Thus GPR3 is found to be 563A0. Since 'A' has internal name
00D0 its address table entry is at 563A0+4D0 or 56470.

The beginning of free space was calculated as follows:
TSADR points at the next available stack worde. From here
one scans up the stack through increasing core addresses
until coming to the 'beginning of stack' marker, 08000002.
This is immediately followed by the ifree space bottom dummy
block,y, 0000000S.

The stack in the workspace dump (figure 23) shows a
temporary function calling GO and GO calling F which then
calls Ge These function call blocks will be described later
in the "FUNCTION INVOCATION' section. The reader may wish
t0 review +this section at that pointe. The dump is worth
studying in detail to find such things as a shadowed AP
vector (P in GO) and a synonym chain linking an array (A)
and a vector (shadowed Q).

48 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

J)LOAD EXWKSP
SAVED 13.59.36 02/27/773

GO
DOMAIN ERROR
Gl1] XeU+2

A

)SIV
Gl1] * ¢ U X
F[3] R Q0 P B A Zz
Gof 2]
vGol[1lv
v GO

{1} Re3 3pP19
{21} R F{1t3)oex¢3

VF{{d]v
V Z~A F B;P;Q3R
(1] Q=44
{21 ReA+B
{31 Z~A[G*X*;3;]

veidlv
V X~G U;Q
[1] Xe-U+2

FIGURE 21.1: EXAMPLE WORKSPACE CONSOLE LISTING

Section II: Format of the Workspace 49

IBM INTERNAL USE ONLY

ONL 2
U
A
B
R
A
i 2 3
4 5 6
7 8 9
B
1 2 3
2 4 6
3 6 9
R
2 4 6
6 9 12
10 14 18
U
X

FIGURE 21.2: EXANPLE WORKSPACE CONSOLE LISTING

S50 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

EXTERNAL INTERNAL ENTRY VALUE OR
NAME NAME ADDRESS ADDRESS

A 00D0 56470 57600

B 00D8 56478 575C0

F 00D4 56474 574A0

G 00co 56460 57464

GO 00E4 56484 57508

P 00DC 5647¢C NO VALUE
Q 00cCS8 56468 NO VALUE

R 00EO 56480 57614

U 00c4 56464 IMMEDIATE *x¢
X 00BC 5645C NO VALUE
z 00cc 5646C NO VALUE
X 00BC 5645C NO VALUE
G 00Co 56460 57464

U 00c4 56464 . IMMEDIATE 'X!
Q 00CS8 56468 ° NO VALUE
z 00cc 5646C NO VALUE
A 00D0 56470 57600

F 00D4 56474 574A0

B 00DS8 56478 575C0

P 00DC 5647C NO VALUE
R 00EO 56480 57614

GO OOE4 56484 57508
ITEM ADDRESS VALUE

GPRQA S60E4 563A0 { SEE TEXT)
GPRB 560C4 56000 (SEE TEXT)
TSADR 56404 5739cC

NEXTINST 56400 57484

FUNCTION 563FC 00CO

BNDATS 56408 57058

FREE SPACE 57417cC (SEE TEXT)

FIGURE 22: EXAMPLE WORKSPACE ITEMS

Section 1I: Format of the Workspace 51

{95200S 0da) 3IsST¥SSV 1dV 241 (S

Q
o
o
00
Wn

]
L)
]
N
oo

056060
056080
0560A0
0560C0
0560E0
056100
056120
056140
056160
056180
056140
0s61CO
056240
056260
056280
056240
0562C0
0562E0
056300
056320
056340
056360
056380
U563A0
0563C0
0563E0
056400

00000020
000183EC

0000229B
C4D4E2CS

4000000000001C25
00057624040008C4
0000000000060000
0000000000000000

00000000
0007C354
40000000
FFD50000
000360B2
00057624
00000000
2F040061
00000000
00026C00
00000400
00024E3E
00048888
00000000

5002AC48
10211021
00001C25
70032022
SF9A9191
040008c4
00056000
000563A0
00000000
000263FC
0078FF01
00056000
000000E4
00000000

0002034C
D9D94040

00020000
00000000
00057624
00000201
00000000
0003B762
000575E8
000207E0
81 820£83
00000000
0005758C
4C03173A
00000000
00000000

000021CO
00056000

00021766
00056000
040008cC4
00000000
00000000
00000008
00000009
00000000
8K0E8886
000015A8
00000001
0007CCO00
00000000
00000000

000022Cc2 000022C2
000113E0 0000CBS8S

0003B762 00000008
60031FB2 0007CC00
00000000 00000000
000374A0 000207E0
00000000 00000000
00000002 2E010002
07000000 00000000
064E6160 545C5900
038597D3 F161F1F5
000263F4 0000000A
0007CESC 00000000
0007CESA 400233F4
00000000 00000000
00000000 00000000

TO 056240 SUPPRESSED LINE(S) SAME AS ABOVE escee

00000000
00039F48
4710B28C
00000000
00000000
A0110000
40000000
A0020000
01000001
0007CEA2
00000000
00000000
2F04008D
2F000000
00057484

00000000
00000002
6020B0A0
00000000
00000000
00000000
00001C25
00000000
00000004
00000000
5C031876
00000000
2F000000
2B0O2DEBO
2B05739C

FIGURE 23.1:

80008081
0000060900
9042B0AS8
00000000
00000000
00000000
00000000
00000000
0003BE26
0004947A
00000002
00000000
2F000001
2BO2DECO
2B057058

00000000
00000000
5820B294
00000000
00000000
00000000
00000000
00000030
00000000
000014cC2
00000000
00000000
2B0O2DE4C
27000000
DF00000D

EXAMPLE WORKSPACE

00000000 00000000
00000000 00000000
07F20700 00039C88
00000000 00000000
00000000 00000000
00000000 00000000

00030398
4003C178
0003ACOC
00032F10
00001 0CO
00000000
2B0O2DE60
27000050
DF000001

DUMP

8202DE20
9003 ACSE
00039D66
00048000
0002605C
00000000
2B02DE74
2707¢390
DF000000

00000020
00012620

00000002
07000000
00000000
00056000
00000000
0007Cc354
00000061
00000000
00000400
00000001
00000002
00 G7CES8S
00000000
00000000

00000000
4530B27C
00039F48
00000000
00000000
00000005
00021766
00000000
00000000
0003AA88
3D8943BE
00000000
2BO2DESS
2F040061
DF00000A

FFFFFFES
400113EC

2E010002
40032016
00000000
60035680
00000000
10211021
2F0000C4
00000000
00001000
07000004
00001594
00000008
00000000
00000000

00000000
91083001
00000000
00000000
A0100000
00000000
00031886
00000000
00000000
60039D6C
00000054
00000000
2B02DEYC
2r0000CO
DF000078

Na1

XINO HSN TTVNIHLNI

+1I1 uofFjideg

193]

20vdSHJION 22U} FO 31BWJIO

056420
056440
056460
056480
0564A0
0564C0
056840
056860
056880
0568A0
0568C0
056C40
056C60
056C80
056CA0
057040
057060
057080
057380
0573A0
0573C0
0573E0
057400
057420
057440
057460
057480
0574A0
0574C0
0574E0
057500
057520
057540
057560

© 057580

0575A0
0575¢C6

DF000000
D4000000
BB057464
2B07C350
27000000

TO 056840 SUPPRESSED LINE(S) SAME AS ABOVE

D4000000
D4000000
2F040061
9B0S57508
27000000

D4000000
D4000000
27057614
27000000
27000000

D4000000

D4000000
27000000
27000000
27000000

D4000000 D4000000
D4000000 D4000000
2B07C390 3B0574A0
27000000 27000000
27000000 27000000

LA BN J

27000000 27000000 27000000 27000000 27000000 27000000
0F015000 OFO1S5E00 OFOLSA00 OF016300 OF014A00 OF014F00
OF015B00 0OF025058 07000000 07000000 07000000 07000000
07000000 07000000 07000000 07000000 07000000 07000000
TO 056C40 SUPPRESSED LINE(S) SAME AS ABOVE <ceoe

07000000 07000000 07000000 07000000 07000000 07000000
040008CCc 040008C0 2B0575C0 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
TO 057040 SUPPRESSED LINE(S) SAME AS ABOVE <eceo

00000000 00000000 00000000 00000000 000000006 00000000
FF000000 FF000000 FF000000 FF000000 FFO000000 FFO000000

TO 057380 SUPPRESSED LINE(S) SAME

FF000000
OF000030
2F000001
40054005
2B0S575A8
OF0000E4
2F000001
00000039
102100c4
005400p4
700100CS8
00C05005
00000065
00081109
A0010106
A0010014
00000028
0000002D
007108cC8

FFG00000
2F000002
2F0000BC
07000000
2F0000DC
OF000054
27000000
005400cC0
700100BC
00030050
A00100D8
00D07001
0000006D
710100DC
00031109
00380054
00010001
00000015
00000001

FIGURE 23.2:

FF000000
2B057614
0F0000D4
0F000040
2F0009001
07000000
2F000001
0001002A
A0010003
00000040
10210000
00cCcAQ01
005400E4
1101510A
10251591
00000000
000109002
08D11060
00000002

FF000000
2F0000CS8
0F000042
2F000002
2F0000D8
0F000028
O0F0008BC
00000030
A0010016
00CCO0DO
700100E0
00034001
00020054
00160000
11114001
00000060
A00100E4
00000001
00000003

EXAMPLE WORKSPACE

AS ABOVE eeeece

2F0000C4 10211021
2F000001 2F0000c4
60016001 2E010003
2B057600 2F0000EC
2F000001 2F0000DO
2F000002 27000000
OF000018 07000000
00BCO001 00C400CS8
00240000 0000002C
00D8OODC 0OOCBOOEO
A0014005 60010106
00140024 0030004A
00000028 00010001
00000003 00000003
01060003 11095001
0000006D 0000002D
A0010003 A0010014
00000001 00000009
00000004 00000005

DUMP

D4000000
D4000000
2B07C3A4
27000000
27000000

27000000
OF014B00
07000000
07000000

07000000
00000000
00000000

00000000
FF000000

2E010002
27000000
60016001
2F000001
2F000001
2F000001
08000002
00024001
00000039
00024001
00036001
00000000
00010002
00000002
00D400ED
005408BC
00180000
00000015
00000006

D4000000
27000000
27000000
27000000
27000000

0F016100
OF015900
07000000
07000000

899057578
000000600
00000000

FF000000
FF000000

07000000
2F000001
62016205
2F0000Ce
2F0000ccC
27000000
00000005
01660002
00000065
00Dp011D9
04060061
00000058
A0010106
700100E0
A0010003
0001001E
00000020
00006030
00000007

450 TVNIIINI N4l

XINO

(9G6C00S Od¥) 3ISTSSY 1dV 22Ul ¥PS

0575E0
057600
057620
057640
057660
07Cc340
07¢360
07¢380
07C3A0
07C3CO
07C3E0
07C400
07C420
07C440
07c460
07C480
07Cc00
07cc20
07¢CCc40
07ccé0
07CC80
07CCAQ
07ccco
07CCEO

. 07¢p0o0

07CD20
07CD40
07CD60
07CD80
07CDAO
07CDCO
07CDEO
07CE80
07CEAO
07CECO
07CEEO

00000008 00000009 00000003 00000003 00000002 00000009
01F11050 000008C8 FFFFOODO 00000011 ©0000011 01D11008
00000011 00024D26 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
TO 07C340 SUPPRESSED LINE(S) SANE AS ABOVE eeees

00000000
00000006
00000002
0000003D
00000003
00000014
04E8005C
800004BC
800004DC
00000000

00000000
00000009
00000009
00710008
00000006
08D108C8
00200004
800004CC
00010004
00000000

00024D26
0000000C
0000003D
00000001
00000009
00000001
00080008
000100190
800004CS8
00000000

0000003D
0000000A
00000011
00000002
00000003
00000001
00020014
0002001 4
800004E0
00000000

007100E0
0000000E
01F100D0
00000003
00000003
00000003
01400040
800004D4
800004cC0
00000000

00000002
00000012
000008CS8
00000002
00000002
00000014
00040004
800004c4
800004E4
000600000

TO 07CC00 SUPPRESSED LINE(S) SAME AS ABOVE e¢eceee

4DSE5659
00000000
0005758E
00000000
00000000
00000000
0000004D
00000000
00000000
00000000
4C027D52
0007CESC
00004D58
00000000
00000000

00Cc20041
00000000
00001578
00000000
4C03173A
00000000
00000004
00000000
00000000
00000000
00031FA2
0007CESC
564A5257
00000000
00000000

00000000
00000000
00026E84
00000000
4C031800
00000000
00000004
00026ES8A
00000000
00000000
00020000
00000002
8D4ESB5B
00000000
00000000

00000000
00000000
00000008
00000000
00000000
00010100
000328FC
01820E83
00000000
00000000
00021766
00048888
585B9293
00000000
00000000

00000000
00000600
50580000
0007CES8S
000D00GO
100090000
00000000
880E8886
00000000
00020000
0003B762
00000000
0007C3¢C0
00000000
00000000

00000000
00000000
00000000
00000003
00000000
00000060
00000004
03852009
00000000
00000000
00000008
00000000
00000003
00000000
00000000

TO O7CE80 SUPPRESSED LINE(S) SAME AS ABOVE ceecse
00000000 8D8D8D8D 8DS8DS058 SES56598D 58576054 SCS59848D
92930000 00000000 00000000 00000000 00000060 00000000
00000000 00000000 00000000 00000000 00000000 00000000
TO 07D000 SUPPRESSED LINE(S) SAME AS ABOVE secee

FIGURE 23.3: EXAMPLE WORKSPACE DUMP

0000003D
000008cC8
00000000
00000000

00000004
00000003
10501008
00000004
00000009
00000005
00100010
80000400
00000000
00000000

00000000
00000000
00000003
00000000
00000000
4C03173A
CI9DIC5C3
F161F1F5
00000000
00000001
60031FB2
06000000
00000000
10581050
00000000

81890E83
00000000
00000000

00000011
OODOFFFF
00000000
00000000

00000006
00000003
00000011
00000006
0000003p
04BCOS8SB8
00100014
80000408
00000000
00000000

00000000
00000000
00032EDS
00000000
00000000
5c031876
E3D6DOES
000000090
00000000
00056000
40032010
00000000

00000000

58108200
00000000

820E8845
00000000
00000000

XTINO dS5SNn TVNIFALNI Rd1

IBM INTERNAL USE ONLY

SECTION III: APL EXECUTION

APL SYSTEM/APL EMULATOR INTERFACE

The most important function of the emulator is to
execute APL statements. The emulator also provides service
functions which can be used by the software to assist the
translator, the external functions and the error recovery
procedure. The execution of APL statements and the service
functions are initiated by IBM/370 assembler language macro
instructionses All such macros rely on a single instruction
which has been added to the 370 instruction sete The APL
Emulator Call (APLEC) is an SI instruction with opcode AQ.
It is similar to SVC in that the immediate byte gives a call
code and certain registers may be used for arguments and
resul ts. It is dissimilar in that, additionally, GPR3 must
properly address a workspace or a specification exception
will occur. We pointed out earlier that the APL emulator
works in an environment consisting of a workspace and the
370 registers. This environment is assumed throughout this
reporte Thus when we say, for example, that APLSCAN will
cause scanning and execution of the workspace we are
assuming that GPR3 addresses a workspace as described
earlier, that GPR1, GPRY9, GPR7 and GPRE are properly set up
as stack registers (see 'THE STACK') and so on. Figure 24
summarizes the APL macros, figure 25 gives their assembly
language definitions and figure 26 details their register
usages This section discusses each macro in the order gliven
in figure 24. *Exceptions' are a real program exceptions
like 'specificationt. 'Errors? are APL error returns
signaled by a condition code of 1 and an error code in GPR5.
The APL errors may be true user errors such as fsyntax! or
pseudo errors such as a request for printing a value left on
the the stack at the end of execution of a statemente For
an exception designated as a "Trap?, control will not return
to the next sequential instruction. The exception will be
detected in an external routine which will branch directly
to the error handling routinee. Figure 27 1lists the APL
error return codese.

Section ITI: APL Execution 55

XXXXx

FIND
FREE
FRIF
NAME
UNAM
SCAN
GETV
GETN
RTN

SRTN
RESM
DIAG
csL

ARGUMENT

RS5=bytes
RS=name
RS=name
none
RS=name
none

see text
see text
none
none
none

see text
see text

IBM INTERNAL USE ONLY

RESULT

R4=DN addr
none
none
R4=name
none
none

see text
see text
see text
see text
none

. see text
see text

FUNCTION

find a free space block

free an item

free an item if temporary
provide an unused name
release an obsolete name
scan/execute a workspace

get a stacked variable

get a number from a variable
normal 370 function return
special 370 function return
resume interrupted workspace
diagnostic function

control store load

FIGURE 24: SUMMARY OF THE VARIOUS APLXXXX MACROS

56 The APL Assist (RPQ S00256)

&L
€L

EL
EL

&L
€L

eL
eL

&L
EL

eL
gL

&L
€L

FIGURE 25.1:

IBM INTERNAL USE ONLY

.MACRO

APLEC ECODE

DC AL1(X"AO0',ECODE,0,0)

MEND

MACRO

APLFIND E&MODE=0
APLEC X'63' +8%EMODE
MEND

MACRO

APLFREE ENODE=0
APLEC X'83' +8%SMODE
MEND

MACRO

APLFRIF ENODE=0
APLEC X'AQJ'+8%«EMODE
MEND

MACRO

APLNAME &MODE=0
APLEC X'23'+8%EMODE
MEND

MACRO

APLUNAM EMODE=0
APLEC X'43'+8%ENODE
MEND

MACRO

APLSCAN EMODE=0
APLEC X'00' +8%#EMODE
MEND

Section IYII:

DEFINITIONS FOR APL MACROS

APL Execution

57

IBM INTERNAL USE ONLY

MACRO
eL APLGETV E&VAR,EMODE=0
LCLA E&VARC
eL DS OH
EVARC SETA X'02!
AIF (*EVAR' EQ 'LEFT').VAROCK
EVARC SETA X'68!

AIF (*EVAR' EQ "RIGHT').VAROK

MNOTE 'BAD VARIABLE SPECIFICATION -~ RIGHT ASSUMED!
« VAROK AIF (*EMCDE' EQ '0') .MODED

MVI GPRS5+3,8VARC

AGO «APLEC

« MODEO LA SyEVARC

«APLEC APLEC X'D3'+8%EMODE
MEND
MACRO

&L APLRTN EMODE=0

€L APLEC X'01' +8%gEMODE
MEND
MACRO

eL APLSRTN EMODE=0

eL APLEC X'02* +8%*EMODE
MEND
MACRO

gL APLRESM EMODE=0

eL APLEC X*02% +8%EMODE
MEND
MACRO

EL APLDTAG E&MODE=0

&L APLEC X'EJ' +8%ESMODE
MEND
MACRO

gL APLCSL

«¥ MODE MUST BE ZERO

eL APLEC X*F3¢
MEND

FIGURE 25.2: DEFINITIONS FOR APL MACROS

58 The APL Assist (RPQ S00256)

EL

&L
EVARC

EVARC

« VAROK

EENTRYC

EENTRYC

« ENTRYOK

ETYPEC

SETYPEC

ETYPEC

« TYPECK
EARG

« MODEO
« APLEC

FIGURE 25.3:

MACRO

IBM INTERNAL USE ONLY

APLGETN EVAR,SENTRY,,ETYPE, EMODE=0

LCLA
DS .
SETA
AIF
SETA
AIF
MNOTE
AIF
SETA
AIF
SETA
AIF
MNOTE
AIF
SETA
AIF
SETA
AIF
SETA
ATF
MNOTE
ANOP
SETA
AIF
NVC
AGO
LA
APLEC
MEND

EVARC 4 SENTRYC,E8TYPEC, EARG

OH

XeQ2¢

{*EVAR' EQ *LEFT*).VAROK

X*68"*

(*SVAR' EQ *'RIGHT').VAROCK

¢ BAD VARIABLE SPECIFICATION - RIGHT ASSUMED!
(*SENTRY?' EQ *'FETCH') .ENTRYOK

1

(*SENTRY' EQ "INIT') .ENTRYOK

2

(*SENTRY' EQ *CVT?').ENTRYOK

* BAD ENTRY SPECIFICATION - CVT ASSUMMED!?
("STYPE' EQ 'LOG?).TYPEOK

1

(*ETYPE' EQ *INT').TYPEOK .

3

("STYPE' EQ 'REAL?).TYPEOK

2

("8TYPE' EQ 'ASIS').TYPEOK

*BAD TYPE SPECIFICATION - ASIS ASSUMMED!

EVARC+256% (EENTRYC+4%ETYPEC)
(*&MODE' EQ *0') .MODEO
GPRS5+2(2) y=AL2(EARG)

«APLEC

54yEARG

X?C3!'+8%«EMODE

DEFINITIONS FOR APL MACROS

Section TIII: APL Execution 59

IBM INTERNAL USE ONLY

0 1 2 3 4 5 6 7 8 9 A B C D E F

| I
FIND | P P A P R R P P A P D P A P P P |
| |
FREE | P P P P P D P P P P P P P D P P |
| {
FRIF | P P P P P D P P P P P P P D P P |
| I
NAME | P P P P R P P P P P D P P P P P |
| |
UNAM | Pp P P P P P P P P P P P P D P P |
l |
GETV | U U U P P D*'U U U P D P P P P P |
| |
GETN | U U U P I » U U uUu P p P P P P P |
I |
csL { p P P P U P P P P P P P P P P P |
| I
P Preserved
I Preserved except for the INIT entry
D Destroyed -
D' Destroyed by the macro, then preserved by APLEC
A Addresses preserved — macro may cause a garbage collection,

if the register is doing it's normal addressing function
the new value will be posted, otherwise the register may
be destroyed

U Updated or preserved - for GETV and GETN the macro
references left or right, corresponding registers will be
updated, other registers will be preserved

R Result

Only underlined registers must contain the correct values

expected by the microcode (if the microcode is to maintain

them correctly)

Note: This figure assumes a normal return; an error exit
always destroys registers 4 and Se.

FIGURE 26: GPR TREATMNENT BY THE VARIOUS
APLXXX SERVICE MACROS

60 The APL Assist (RPQ S00256)

DEC

08
12
16
- 20
24
28
32
36
40
44
48
52
§é6
60
64
68
72

FIGURE 27:

IBM INTERNAL USE ONLY

HEX

08
oc
10
14
18
1cC
20
24
28
2C
30
34
38
3¢
40
44
48

REASON

DOMAIN ERROR
ESCAPE OPERATOR
INDEX ERROR
LENGTH ERROR
NONCE ERROR
PRINT EXIT

RANK ERROR

EOS STOP BIT ON
SYNTAX ERROR
SYSTEM ERROR
ERASE EXIT
VALUE ERROR
WORKSPACE FULL
RANGE ERROR
EMPTY EXIT
IMPLICIT ERROR:
IMPLICIT ERROR:

APL ERROR RETURN CODES

QUADCT
QUADIO

Section III: APL Execution

61

IBM INTERNAL USE ONLY

All the APL macros except APLCSL have a mode which
defaults to zeroe. If the mode is zero, the 1IBM/370
registers should contain the information specified in the
appropriate section of this manuale If a mode of one is
used then only GPR3 need be as described. The FPR2 and
GPR4, GPR5; eeesy GPR2 values should be in SAVEREGS (memory
locations GPR3-X'300' through GPR3-X'2BC') and the emulator
will load thesee On the corresponding exit (if any) to the
next sequential instruction FPR2 and GPR4, GPRS, esey GPR3
will be stored into SAVEREGS.

APLFIND

A block of free space of the indicated number of bytes
(rightmost two bits will be forced to 00, must include the
12 necessary for the DN and two control words) will be
founde. Its space management control words and the N portion
of its DN word will be completedes It will be classified as
a temporary variable with an addressed value and its address
table entry will be completed. The address of byte 0 of its
DN word will be returned in GPR4 (byte O of GPR4 will be
zero)e The control word value (block length less 3) will be
returned in GPRS. In the unallocated block this macro
changes only the control words of the unallocated and result
blocks and the DN word (D scratchedy N fixed) of the resulte
Thus the system may build a result in the unallocated block,
set/reset the rightmost bit of FREEU (see 'FREE SPACE?*') and
then do the APLFIND.

Exceptions: Specification
Protection
Operation !

Errors?: Workspace Full

Address Table/Stack Full Trap

62 The APL Assist (RPQ S(00256)

IBM INTERNAL USE ONLY

APLFREE

This releases the free space associated with the named item
unless it is an immediate andy in the case of temporaries,
releases the name as well.

Exceptions: Specification
Protection
Operation
APLFRIF

This performs an APLFREE if the named item is a temporarye.
IJf it is a permanent then nothing is donee. ‘ ’

Exceptions: Specification
Protection
Operation
APLNAME

The next available name will be removed from the unused list
and returned in _the right half word of GPR4; the left half

word is unpredictable. The address table will be
unchangede.
Exceptions: Specification
Protection
Operation
Errors: Address Table/Stack Full Trap
APLUNAM

The specified name will be restored to the list of unused
names and the address table so markedes

Exceptions: Specification

Protection
Operation

Section III: APL Execution 63

IBM INTERNAL USE ONLY

APLSCAN

Scanning and execution of the workspace will commence at the
address specified by the control word *NEXTINST?'.

Exceptions: Specification
Protection
Operation

Errors? Workspace Full

Address Table/Stack Full Trap
Syntax Error
Value Error

Etce —— see figure 27

APLGETV LEFT
RIGHT

This gets a variable from the stack and sets it up for
processing (see 'GETV'). For the left (right) variable GPR1
{7) must contain the stack word; the macro will setup GPRO-2
(6"8).

Exceptions: Specification
Protection
Operation

Errors: Syntax Error
Value

64 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

APLGETN LEFT ,INIT ,LOG
RIGHT FETCH INT

CVT REAL

ASIS

This gets a number from a variable which has been set up by
the emulator or APLGETV. The first call should be with
TINIT®*; this will return the element count in GPR4 as well
as the first number. Subsequent calls should be with
'FETCH' for each additional element. Cyclic fetching will
be done automatically if the element count is onee. If the
user does his own initialization and fetching 'CVT' may be
used for conversion only. In any case one requests the type
of output desired:? logical, integer, real, or 'ASIS?, i.eey
no conversione GPR4 will be altered only by the **INIT®
optione (Note: The *INIT?! entry converts the first value
which was fetched by APLGETV and sSets up the next value
addresse. Additional *FETCH's maintain this next addresse.
Thus, for exampley, to fetch real values from a (non—-AP)
integer vector in the reverse order, skip the 'INIT' call
and point to the last elemente. Then the program Lloop can
make a *FETCH! call followed by a decrementing of the
address by 8.

Exceptions: Specification
Protection
Operation

Errors: Domain Error

Range Error

Section ILII: APL Execution 65

IBM INTERNAL USE ONLY

APLRTN

This returns control from a normal external function to the
APL emulatore. See 'APL ASSIST AND THE APL SYSTEMt.

Exceptions: Specification
Protection
Operation
APLSRTN

This returns control from a special external function to the
APL emulator. See "APL ASSIST AND THE APL SYSTEM®'.

Exceptions: Specification
Protection
Operation
APLRESM

This returns control <from an interrupt or
condition to the APL emulator.

Exceptions: Specification

Protection
Operation

66 The APL Assist (RPQ S00256)

quantum end

IBM INTERNAL USE ONLY

APLDIAG

This macro was used during the development stage but it is
not supported by the distributed version of the APL Assiste.

APLCSL

The APL emulator comes in two parts. A skeletal part exists
with the machine's 370 emulator. This part is essentially a
routine for loading control store from main storee. The
second and main part is microassembled separately and is
loaded into control store by the APL system using APLCSL.
There are two ways to use this macro?

If GPR4 is zero when the APLCSL is executed then no
loading is attemptede. However, the condition code is
set to 0 or 1 to indicate whether the APL emulator is
or is not already loaded.

If GPR4 is non—zero: If the APL emulator is loaded then
the condition code is simply set to 0. If the APL
emulator is not loaded then the skeletal part of the
emulator attempts to load the remainder of the
emulator. GPR4 must point to an address in main memory
which contains an encoded form of the APL emulator.
GPR4 is updated as the loading progressese. If memory
locations having the wrong format are encountered, then
a data exception will occur.

Even with the APL Assist feature installedy, the other APL
macros will cause operation exceptions until control store
is correctly loaded with this macro.

Exceptions: Specification
Protection
Operation
Data

Section III: APL Execution 67

IBM INTERNAL USE ONLY

370 EMULATOR/APL EMULATOR INTERFACE

An earlier section described the APL macros which
provide the interface between the APL system and the APL
emulatore. This section is concerned with the interface
between the two emulatorse

APLEC ENTRY AND TERMINATYON

The only way for the APL emulator to gain control of
the CPU is for the 370 emulator to process the APLEC
instruction. When the 370 emulator encounters an APLEC
instruction, then the emulator does one of two things: (a)
if the APL Assist is not installed on the machine then give
an operation exception or (b) if the APL Assist is installed
then activate ite When APL is activated it first checks the
contents of CHKWRD; if this is incorrect then APL gives a
Sgpecification?! exception, otherwise APL proceeds with its
requested taskes The test of CHKWRD safeguards against APL
activation as a result of a wild branch in some non—APL
programe If the emulator is working with a virtual memory
then the test of CHKWRD accomplishes another vital function:
It insures that the control words page of the workspace is
in real memory. If the page is not in real memory when the
APLEC instruction is encountered, then a page fault results
and the 370 supervisor takes the normal page fault action of
swapping the page into memory and retrying the APLEC
instructione Page faults are discusssed in greater detail
belowe

On termination of the APLEC instruction, the APL Assist
sets the condition code to zero for a normal exit or to one
for an error exite It then retrieves the address following
the APLEC from SCANRTN or SERVRTN (see 'THE CONTROL WORDS!?)
and sets it up as the 370 instruction locatione Control
then passes back to the 370 emulatore.

68 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

PAGE FAULTS

The APL emulator must reference many memory locations
during a single APLEC execution. It cannot anticipate
possible page faults and force all pages to memory prior to
real executione. Rather, page faults must merely cause
execution to be suspended in a particular workspace until
the required page is available. Meanwhile execution may
continue in another workspacee. The following paragraphs
detail this process using "page fault? to mean. a real
translation exception; mere refreshing of the associative
registers is handled by a trap which is transparent to the
APL emulator.

When the 370 page fault routine is activated, it tests
for a 1401 emulation opcode and, if doing 1401, it branches
to a different set of instructions. This routine has been
altered to also test for an APLEC opcode andy, if doing APL,
it branches to the APL page fault routine.

The APL page fault routine compares the faulting
control store address with that of the microinstruction
which reads CHKWRD. If a match occurs it merely returns to
the 370 page fault routine for normal 370 page fault
processinge. If there is a mismatchy then the APL emulator
was actively working in a workspace and must be
checkpointedes Local storage and the control store address
of the faulting microinstruction are saved in SAVELS (this
is possible since all the control words, including CHKWRD,
reside within a single page) and the 370 instruction
location register is set to point at the APLRESM in INTRTN.
The faulting memory address is then loaded into an
appropriate register and a branch is made to the instruction
that reads CHKWRD:. This causes a re~faulting that APL will
allow 370 to process since it occurs on the *read CHKWRD'
microinstructione.

When the paging software has the required page
available and attempts to re-execute the faulting 370
instruction it will actually execute the APLRESM. The
execution of the APLRESM gives control to the APL emulator
which will then continue with the workspace execution.

Section III: APL Execution 69

IBM INTERNAL USE ONLY
INTERRUPTS AND QUANTUM ENDS

As well as making many memory references, execution of
an APLEC may require considerable time, at least in
comparison to the execution times for most other 370
instructionse Thus the APL emulator must be able to pause
periodicallyes This is done in a manner similar to the above
page fault processinge. If the hardware requests a pause for
an interrupty the APL emulator will checkpoint itself in
SAVELS exactly as abovey, set +the 370 instruction location
counter to point at INTRTN and revert to IBM/370 modee The
workspace will be resumed later Jjust as in the page fault
casee.

Such an interrupt might be caused by a time-out
initiated by the 370 APL systeme If so it will set on the
'quantum end desired! switch and cause resumption of +the
workspace by the APL emulator. As well as polling for
interruptsy, the APL emulator polls the quantum end switche.
If this switch is ony the emulator will checkpoint itself in
SAVELS, set the 370 instruction location register to the
contents of QEND (iecey it will point to the APL system's
quantum end routine) and revert to IBM/370 mode. As above,
the workspace can be resumed later, but to do so the APL
system must explicitly execute an APLRESM.

USING EXTERNAL FUNCTIONS

The APL emulator is intended to co-reside with the 370
emulator and must therefore limit the amount of control
store it usese To meet this end it has been necessary to
put some of the slower and less frequently used opcodes,
such as dominoy, and some of the cases where we wish to share
the 370 emulator's microcode, such as floating divide, in
external code (assembly language or APL). Some of the less
frequently used emulator features, such as extending the
name table, have also been put in external code. The
specific linkage conventions,; etce.y, are discussed in 'APL
ASSIST AND THE APL SYSTEM?; here we merely complete our
description of the interface between the 370 and APL
emulatorse.

All breakouts to external functions are processed
through the 'call external function' emulator routinee.

70 The APL Assist {RPQ S00256)

IBM INTERNAL USE ONLY

There are no emulator linkages or working storage values to
be saved. This routine merely sets the 370 instruction
location counter to point to the appropriate entry in the
external function transfer vector using CALL370F and
branches to the common exit portion of emulatore. When the
external function is complete it will issue an APLRTNe. The
370 emulator will decode +the APLEC and branch to the APL
emula tor which will then recognize the "return' APLEC code
and branch back to the *call external function! routine.
This routine then goes back to the appropriate place.

Some of the emulator features which are coded as
external functions, such as address table extension, require
the saving of emulator linkages and work registerse. These
checkpoint themselves in SAVELS, as in the page fault casey
before doing the above stepse The corresponding external
functions terminate with APLSRIN rather than APLRTN. This
special return does not trickle back through the 'call
external function® routines, rather, the checkpointed
information is recovered and control passed directly back to
the invoking emulator routinee.

SUMMARY VIEWPOINTS

There are two major ways to look at the APLEC
instructions Each is given a paragraph description below.
The first viewpoint is that seen from the 370 emulatore. The
second is that seeny, or at 1least rationalized, by the APL
system programmer.

The APLEC instruction is a slow conditional branch as
far as the 370 emulator is concernede. It sees +two cases:
Sometimes APLEC causes control to pass to the APL emulator
and after awhile control reverts to the 370 emulator with
the 370 instruction 1location counter pointing at the
instruction following the APLEC. At other times the return
is accompanied by an instruction location counter pointing
to some vastly different address such as INTRTN, c{(QEND), or
some point in the external function transfer vectore. In
both cases the time spent in the APL emulator is
cons iderably longer than is spent executing a 370 BC?
Instructione. The only way in which APLEC is different from
all other 370 instructions is that it may be decoded at
location xyz, but cause a page fault as if it had been
decoded at location abce.

Section III: APL Execution 71

IBM INTERNAL USE ONLY

When the APL system programmer writes APLSCAN, he uses
it like a normal 370 instruction whose execution will always
be followed by the execution of the next sequential
instructione He may %Xnow that the APL emulator can
temporarily breakout at a different point such as the
external function for domino, but the external functions are
logically viewed as mere extensions of the emulator. When
the APLSCAN is complete, control will return to the next
instructione.

STATEMENT SCAN AND SYNTAX ANALYSIS

At the beginning of the execution of an APL statement
the stack contains

U N U E prior
where U denotes undefinedy N denotes null, E denotes empty
and 'prior!? denotes whatever was on the stack before the
current function was enterede The SCAN routine changes the
stack to

U N E E prior

and then does the following:

72 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

LOOP: Get the next half word from the APL statement.
Increase NEXTINST by twoe.
Let H denote the half word just reade.
Branch on the two low order bits of He

BITS=00: H is a namee.
Get its address table entrye.
Put it on the stacke.

BITS=01: H is an operator or separatore.
Put it on the stacke

BITS=10: F begins a literal.
If it is a 16 bit literal, then e.ece.
Put it on the stack as a stack immediate.
Otherwise oee
Get space in free spacee.
Copy the constant and put its
S-bits,y, P-bits and name on the stack.

BITS=11: H is a special operatore.
These cases cause an immediate actione. No further
scanning is done. See 'OPERATORS AND SEPARATORS!'
for a description of the escape casese.

Having put the .item on the stack (and thus erasing the
undefined item at the top of the stack), let ST denote the
syntax bits of the top item on the stack {syntactical types
are shown in figure 29) and let SN denote the syntax bits of
the next~to-top iteme 1If DTAB[ST;SN] (see figure 28) |is
zero then push the contents of the stack as described in
fTHE STACK' and go to LOOP, Otherwise do the action
specified in figure 30.

End of statement processing {action 10) includes
checking to see if printing is required and checking for
stopy trace, attention and gquantum ende. If there is a

temporary on the stack and no print or trace is requested
and the last action was an assignment, then free the name
and space used by the variable (unless it is a stack
immediate)e.

The system uses syntax type F for group namese Tne
emulator should never encounter these names, but if they do
occur due to a user error then the emulator gives a 'syntax!
error.

Section III: APL Execution 73

IBM INTERNAL USE ONLY

ST 1 2 3 4 S 6 7 8 9 A B C/D F
SN + +
0 | 1 0 1- 0 1 0 1 1 Sa 10 1 11 1 |
1 | 3 2 4 0 4 4 4 4 Sa 4 4 11 1 |
2 | 0 1 0 1 8 0 0 9 1 10 50 1
3 | 1 Sc 1 0 1 1 i 1 S5a 1 i 11 1|
4 | 1 0 1 0 14 14 1 | Sa 1 1 11 1 |
S | 12 6 1 0 1 1 1 1 Sa 1 1 11 1 |
6 | 1 0 1 0 14 14 1 1 5a 10 1 11 1 |
7 | 1 7 1 13 1 1 1 1 1 1 1 11 1|

FIGURE 28: DTAB{ST:SN] - THE SYNTAX

null

operator

variable

function of two arguments
) or]

(or [

-~

right indexed—operator bracket
function 0of no agruments

end of statement

function of one argument

[or £ or shared variable
system variable

illegal (group)

MO QW>OBNINANAON=O

FIGURE 29: SYNTACTICAL TYPES

74 The APL Assist (RPQ S00256)

DECISION TABLE

[A) N =

Sa

5b

Sc

(s I I N

10
11
12

13

14

IBN INTERNAL USE ONLY

Continue the scan.

Give a 'syntax' errore.

Do a dyadic operation. The stack is left operand,
operator, right operande.

Check for reduction andy, if so0y do it. Check for
inner or outer product and, if soy encode the
three operators into a single word (for example,
+ex is encoded as the « operator with + and x in
the low half of the word). If neither reduction
nor product then do action number 4.

The stack is operator, operator, operande.
Subtract two from NEXTINST and ignore the top
stack word (the first operator). Do a monadic
operatione.

The stack is function, eee Change it to
undefined, function, undefinedy seoo Do action
Sce

The stack is function, argumenty <ee. Change it to
undefined, function, argument, ecee Do action S5ce
The stack is A1 F A2, U F Aly, or U F U where U is
undefinedy, F 1is a function and Ai is a function
argument.s Do a function call.

Go to the subscript emulator routine.

Go to the assignment emulator routinee.

If the top stack item is a left subscript bracket
then simply continue the scane. Otherwise the top
stack item is a '{('s Erase ite The two items now
on the top of the stack should be a value and ')?',
If this is the case then erase the ')' and
continue the scan. Otherwise give a fsyntax!
errore.

Change syntax type 8 to type 4 and continue the
scCane

Do the end of statement processinge.

Go to the shared variable external routine.

The top stack item is an indexed operatore Remove
the index and brackets from the stacke Encode the
index in 9 bits and store it in the stack word for
the operatore. Then continue the scane.

Mark the right bracket as a right bracket with an
assignment arrow and continue the scane.

Put an empty subscript marker (6201 or 6205) on
the stack and continue the scane

FIGURE 30: TABLE OF ACTIONS SPECIFIED BY DTAB

Section IITI: APL Execution 75

IBM INTERNAL USE ONLY

Some of the dynamic properties of APL can give rise to
some unusual problems, in particular a change of the syntax
type of a variable may produce an errore. The emulator
insists on the following rule: if a name has a syntax type
other than 2 then it must have a descriptor of type
character. As an example, functions (see 'INTERNAL TEXT OF
FUNCTIONS') are of type charactere. The GETV process {(see
YGETV') includes a check of the syntax of all character
items and it gives a 'syntax' error if the syntax type is
not 2. Consider the execution of the statement ¢ Z-F+A',
where F is a niladic function and A is a variablee. The
emulator puts entries for *null', *variable A', *+', and
*function F!' on the stack and then it calls Fe. If the
function F executes correctly and it has a result then the
emulator will attempt to add A to the result of F. The
addition will cause the emulator to do a GETV of Ae. It A is
no longer a variable then a 'syntax'! error resultse The
syntax of A could have changed because A was made into a
shared variable, or because the user stopped the execution
of F and changed A into a function or a group name. The
address table entry for a shared variable does not point
directly to the value of the variable. The method of
storing shared variables is not defined by the emulator, but
the block which the address table points to must be of type
charactere.

FUNCTION INVOCATION

This section describes how function call and return
affect the contents of the stack and 1t shows how the state
indication can be founde. An APL system displays the state
indication when the command)SI is usede.

FUNCTION CALL

Suppose the emulator is executing the statement
B «~ (P F Q) +« R

where P, Qy R are variables and F is a function of tﬁo
arguments with the header information

76 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

V Vie- V2 F V3:;V4;V5;Vé

At the point where the emulator has read P, the stack will
be

PF Q) + R null prior

where ‘prior' denotes whatever was on the stack at the
beginning of execution of this statemente P F Q and) are
actually in the stack registers (see 'THE STACK'!) and '+' is
the last item to be put into the memory stacke. When we say
that 'P' is on the stack, we of course refer to a full word
item which contains the syntax bits and internal name of P
according to the format described in 'THE STACK!?!, The
emulator uses the header information of Fy, and it changes
the stack contents to

Unull E E KL A6 W6 eee A1 W1 C I) + R null prior

The top four items are in the stack registers and K is the
last item in the memory stacke U is undefined, E is empty
and the items) + R null prior are unchangede.

XK = 0000 1111 uvuuu uwvuuu kkkk kkkk kkkk kkO00
where u = undefined and KK ees KkOO = decimal 40 + 8
times the nanumber of local variablese. (In this case
there are three 1local variables and 40 + 24 is 64
decimal or 40 hexadecimal so the 1low half of K is
0040.)

L = 0000 1111 wuuu wuuuu 0000 0000 0000 0010
(This is a special case of Wn and it marks the end of
the W1 Al W2 ... sequencee)

An = address table entry for variable Vn

Wn = 0000 1111 uuuu wvuuu wWWWW wwww wwww ww00
where wWw esee¢ Ww00O = internal name of variable Vn

C = 0000 1111 wuuuu wuuu cccec cccc cccec ccl00
where cc eee cc00 = internal name of function which
contains the statement which calls F

I = 0000 1111 wvwuuu wuwuuu Jifi d1idii ididi 1iii

where ii eee ii = offset of mnext byte of calling
statementy, which in this example is the offset of the (

Section I1II: APL Execution 77

IBM INTERNAL USE CONLY

The extension to functions with a greater or 1less
number of local varibles should be obvious. For functions
with no result then the Al and W1 items still appear but Al
shows 27..¢ (hexadecimal) and W1 shows OFUUO0OOl. Similarly
with A2-W2 for monadic and niladic functions and with A3-W3
for niladic functions.

If Vn is the name of an item which is in free space
then An contains the address of that iteme Let x denote the
address of the word An; let y denote the address in the low
24 bits of Ane. Before function call, the half word at
location y+2 contains the internal name of Vn. During
function call, we change this half word to x minus GPR3.
This change of the contents of y is necessary for correct
operation of garbage collection.

The emulator does the function call as follows:

1. Make a copy of P and Q and give the coples the
names TMPNANO and TMPNAM1.

2. Check that sufficient space is available in the
stacke

3e Stack the items I and C described abovee.

4, For n=1425e¢e¢ stack the items Wn and An described
above. Set the address table entry for Vn to 'no
value!t. If Vo had syntax class other than D
(system variable) then *no value' is X'270UUUUU'.
If Vn did have syntax class D then 'no value?! is
X*D4UUUYVU's If Vn is [OCT or [JIO then set the
apporpriate '"implicit?! error bit in SWITCHES (see
figure 35).

Se Stack the items L and K described abovee.

6e Change the names of the items in TMPNAMO and
TMPNAM1 to V2 and V3.

7. Set stack registers R4, R3 and R2 to Ey, E and
null,

Steps 1 and 6 make sure that V2 1is given the value P. I£ P
is a large vector or array then this means that P and V2 are
made into synonymse. The emulator doesy of course, process
correctly those complicated cases in which P or Q or both P
and Q have the same name as V1 or any other local variable.

78 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

The statement:
U« XGX

where G has the header
VX« AGRB

illustrates one of the more complex casese.

TEMPORARY FUNCTIONS

In APL\360 the user can type a single statement which
receives immediate executione The emulator requires that
such single statements should be converted (by the
translator part of the APL system) into functionse. If the
user types the statement

A~ B+ C

then the translator supplies a head and a tail and the
emulator actually sees an internal representation of a
niladic function having a temporary name. We will refer to
this construct as a temporary functione

There are two other occasions when temporary functions
are usede A statement such as

P e Q + 8X

where X is a character string with value !A«B+C', requires
that the character string X should be treated as an APL
expressione This 1s 1implemented as follows: When the
emulator sees the execute operator it calls the APL system.
The system builds a temporary function, ty like the one
above and returns the name of t to the emulator. The
emulator now behaves as though the statement had been
written

PeQ+ t

and it calls t using the mechanism described in the previous
sectione Quad input is also implemented in this waye.

Section IYTI: APL Execution 79

IBM INTERNAL USE ONLY

The use of temporary functions is a simple but powerful
way of unifying several different concepts in APL; for
example multiple nested execute operations are easily
handled in this waye.

EXIT FROM PERMANENT FUNCTIONS

Consider a function F which contains N statementse. The
program will exit from F if any of the following statements
occur :

-

- integer where the integer is >N or <1

- expression where the expression reduces to an
integer >N or <1

Execution of statement N with no branch

The first case causes the emulator to signal a !syntax':
error; the system should trap the error return and do the
appropriate action. The third case is similar to the second
casee. The fourth case is also similar to the second case
because the translator always includes a fictitious '-(0!
after statement N. As cases two, three, and four are being
executed the stack contains

had v E E K L e

where V is a constant or a varieable, E denotes empty, and.X
L ese denotes the sequence described in 'FUNCTION CALL'.
The first four items are in the stack registers and the X L
cee are in memorye Assuming that V is a scalar (or a
vector) and assuming that V (or the first element of V) is
an integer less than one or greater +than N, then the
emulator frees the space used by V, if necessaryy, and then
it does a function returne.

80 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

FUNCTION RETURN

The contents of the stack registers can be ignored, so
using the example in 'FUNCTION CALL' the stack is

K L A6 W6 <ee¢ Al W1 C I) + R null oprior

The emulator uses the value of K as an offset on the current
stack address and picks up C and I. We said 1in *FUNCTION
CALL' that C begins with a zero bit; howevery, C may now
begin with zero or one. After C was put on the stack, the
user may have suspended execution and then erased the
function named by Ce. Obviously it would be dangerous to
return to a non-existent function, so when the erasure
occursy the APL system changes the first bit of C to one,
and on detecting this case the emulator takes an 'ERASE!'
type error exite J£f the first bit of C is zero then
function return continuese.

The emulator now goes'through the stack and does:
a) Get Wn and hence get the name of Vn
b) If Vn has a value in free space then relecase this space
c) Get An and store it in the address table entry for Vn

d) If An points to an address in free space then store the
name of Vn at that address plus two

There are two variations on this themee. Before doing steps
a) through d), save the current value of Vi, if any, because
this is the resulte Also, if Wn 1is an odd number then
ignore subsequent steps because this 1is an empty slot
corresponding to a no argument or no resulte.

The emulator now checks that the function has a result,
and it gives the result the temporary name t, it sets the
stack (and stack registers) to

U t U) 4+ R null prior

restores NEXTINST (from I) and FUNCTION (from L) and returns
to the part of the emulator which does statement scan and
syntax analysise. If the function has no result then it puts
X*27000050' on the stack (this is the stack entry for the
control word NOVALUE).

Section III: APL Execution 81

IBM INTERNAL USE ONLY
RETURN FROM A TEMPORARY FUNCTION

There are three kinds of temporary functione. These
arise from? {a) immediate execution, (b) guad—input, or (c)
the use of the execute primitive functione. Let us consider
case (a)e. If the statement used in immediate execution
produces an explicit result then the emulator will return to
the system with a *PRINT EXIT'! return code (see figure 27)e.
If the statement does not produce a result then the normal
return (condition code 0) will result.

There is one aspect of the 'PRINT EXIT' which requires
special notee The $PRINT EXIT' specifies that one or more
items are on the stack and that printing may be requirede.
However, if the top item on the stack is the result of a
GOTO (see 'THE GOTO PRIMITIVE FUNCTION?) then the system
must take special actione. In this case the next item on the
stack should be a null {(otherwise it is a *value' error}e.
The top of the stack in memory will be a word with the two
low order bits:

10 BEGIN STACK marker
11 STOP WORD marker
01 originally 11, but the function has been erased

(The 'STATUS INDICATION' section discusses the 'BEGIN STACK®
and 'STOP WORD' markerse.) The system should free the
temporary function and should handle the GOTO according to
the rules of APL.

The emulator provides no special facilities for handling
gquad input or the execute functione As mentioned
previously, the system can implement this case by building a
temporary functione The system must turn on the trace bit
in the temporary function so that it regains control at the
end of the statemente. The system should then remove the
call of the temporary function from the stacky, and then
proceed as in the normal return from an external functione
If the execute has no result then X'27000050! (the stack
entry for the NOVALUE control word) should be put into GPRI.
Note that the emulator will not branch on a GOTO within quad
input or within the execute primitive. In these cases it
will leave the result of the GOTO (see 'THE GOTO PRIMITIVE
FUNCTION?') on the stack for the system to handlee.

82 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

STATUS INDICATION

The execution of an APL program can be terminated in
several wayse Typical examples are (a) the program
completes successfully or (b) the emulator detects an error
or an exceptional condition such as '"WORKSPACE FULL' or {(c)
the emulator de tects a stop bit at the beginning of a
statement or (d) the user gives an attention. 1In all of
these cases the current status is determined by the control
words FUNCTION, NEXTINST, and TSADR, together with the
contents of the stacke An APL system will display the

status when the commands })SI and)SIV are usede. The
following sections describe how this status can be
determinede.

In this section the word stack will refer to the stack
in memory, the contents of the stack registers are
irrelevante Items are placed on the stack in one of three
ways: {1) The statement scan part of the emulator may use
the stack for intermediate workinge (2) The function call
part of the emulator saves certain information which |is
described in a previous section. (3) If an error or stop is
encountered then the APL system puts a stop word on the
stacke Let us denote these three types of stack information
as 'SCAN BLOCK!?!, $CALL BLOCK', and 'STOP WORD'. At the
beginning of execution in a clear workspace, the stack
contains just one word which is the *BEGIN STACK® word.

Suppose the user types in a statement which the system

embeds in a temporary function Ti. Suppose T1 calls
function F, statement 8 of F calls G and G has an error at
statement 5. Suppose the user now types in another
statement, which the system embeds in a temporary function
T2. Suppose T2 calls function H and H has an error at

statement 3. The stack contents and the APL status are

Stack Comment Status
TSADR —=>

STOP WORD HI[3] =*

CALL BLOCK T2 calls H

SCAN BLOCK T2(1]

STOP WORD G[S] =*

CALL BLOCK F calls G FI8]

SCAN BLOCK F[(8]

CALL BLOCK Tl calls F

SCAN BLOCK T1[1]

BEGIN STACK

Section IIT: APL Execution 83

IBM INTERNAL USE ONLY

A STOP WORD has the form
sSTOP = 0000 1111 (YYIIX TIII NNNN NNNN NNNN NNP1

where NN«.eNNOO gives the internal name of the function in
which the statement occurred and IIleesIIII gives the
statement numbere. P is usually one but it gets set to zero
if the function NNe+:«NNOO is erased or edited in a way which
damages the stacke If H has the internal name 007C then a
stop at statement 3 would give the STOP WORD 0803007F
hexadecimale.

A SCAN BLOCK can contain any item which the emulator
will push into the stack (see *THE STACK'). All of these
items are single words of the form

SSSS eeee

where SSSS can be 0000 through 0111, If SSSS is 0000 then
the next four bits are always 0111 so that this case (which
is the null item) has the form

NULL = 0000 0111 e

The CALL BLOCK is described in a previous section, but
notice that it always begins with a word of the form (item K
of 'FUNCTION CALL')

CALL = 0000 1111 eeae 00

Finally the BEGIN STACK word has the form
BEGIN = 0000 1uuu Ueee uull

where u stands for undefined; in practice the BEGIN STACK
word is 08000002 hexadecimal.

The state of the stack on return from an APLSCAN entry
to the emulator is as follows. If the emulator has just
done a 'successful completion'! exit then the top of the
stack will be a STOP WORD or the BEGIN STACK worde. If the
emulator has Just encountered a stop bit in a '*begin
statement' then the top of the stack will be a CALL BLOCK.
The system will then place a STOP WORD on the stacke If the

84 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

emulator has Just encountered an error then the top of the
stack may be (a) part of a SCAN BLOCK or (b) the beginning
of a CALL BLOCK or (c) a STOP WORD or {d) the BEGIN STACK
worde ‘

In order to analyze the contents of the stack, the
system must start at the top of the stacke. The address of
this word is four more than the contents of TSADRe. If the
top of stack word begins with 00001 then it is a CALL WORD
or STOP WORD or BEGIN STACK worde. Otherwise it is part of a
SCAN BLOCK. If the top of the stack is part of a SCAN BLOCK
then it will erase this word (by increasing TSADR by 4) and
repeat the analysise When this analysis is complete then
the top of the stack word has the form

0000 leoe ceee eo XN

where xn=00 indicates a CALL BLOCK, 10 indicates the BEGIN
STACK word, and 01 or 11 indicates & STOP WORD. If the top
of the stack is a CALL BLOCK, then the system will add a
STOP WORD to the stack) it will form this word from the
contents of FUNCTION and NEXTINST.

To summarize the situation: Starting at the top of the
stack it is possible to distinguish among STOP WORDs, words
which begin CALL BLOCKs, the BEGIN STACK word and words
which belong to SCAN BLOCKse. Having recognized a STOP WORD
it is possible to determine the statement number and
function name. Having recognized a beginning of a CALL
BLOCK it is possible to skip over that BLOCK and to find the
name of the calling function as well as the names and old
values of all local variablese.

Section IIT: APL Execution 85

IBM INTERNAL USE ONLY

APL ASSIST AND THE APL SYSTEM

e e - — ————— S ——

In this section we describe the way in which the
emulator and the APL system co—operate to provide all the
APL language features which the APL programmer will see. As
we have mentioned previously, the design of the emulator
required a balance between the use of control store and the
performance improvement to be gained by including particular
functions in the emulatore We tried to achieve this balance
by excluding certain functions from the emulator and by
providing a facility for the emulator to call upon software
implementations of these functionse The software may be in
IBM/370 code ory with a few exceptions, it may be in APL
codee Functions are excluded from the emulator if they use
I/0 (for example [J)y if the emulator version would not be
significantly faster than the software version (for example
@)y or if the function is both complex and infrequently used
(for example rotate with a non—-scalar left argument).

EXTERNAL FUNCTIONS

The division between functions intérnal to the emulator
and functions which the APL system should supply is as
follows:

(a) Operations done completely by the emulator:

statement scan and syntax analysis

finding and freeing of temporary space
function call and return

plus, minus, negative, signum

nagnitude, maximum, minimum

all logical operations and comparisons
sizey, reshape, catenate, laminate, ravel
index generator, index of, compress, expand
membership, reverse

goto, assignment, subscripting

integer cases of times, residue, floor, ceiling
integer cases of divide with no remainder
raising to power 2

86 The APL Assist (RPQ S00256)

(b)

(c)

()

IBM INTERNAL USE ONLY

Analysis and operand fetch/store in the emulator;
operation on one element or one pair of elements is
done in an external function (see *SCALAR FUNCTIONS?
later in this section):

logarithm, binomial, circular

real residue, factorial

rolly real multiply, real floor, real ceiling
divide and power except as noted in (a)

Function not done by the emulator; complete function
should be done by an external routine?

grade upy grade down, deal, domino

scany format, translation part of execute, I—beam
shared and system variables, encode/decode
garbage collection

In the remaining cases the emulator does the function
for some operands and exits to external functions in
other casese. Let ttrue! vector/array denote a
non—-pseudo scalar vector/array (ie.eey one with an
element count not equal to 1).

transpose uses the method described by Hassitt and
Lyon <1>. The emulator exits to an
external routine which should generate
an appropriate subscript liste. The
emulator takes this list with the right
argument of the transpose and generates
the final resulte.

take,y, drop requires an external routine if the left
argument is a true vector and the right
argument is either a pseudo scalar or a
true arraye All other cases are done by
the emulatore.

rotate requires an external routine if the
right argument is an array and the left
argument has more than one element. All
other cases are done by the emulatore.

reduction on scalars and non—AP vectors is done by
the emulatore. Reduction on AP vectors
and arrays 1s done by an external
routine.

Section II1I: APL Execution 87

IBM INTERNAL USE ONLY

products inner product is done by the emulator if
either argument is scalar or if both are
vectorsy otherwise an external routine
must be usede Outer products are split
in the same way as inner products,
except that the vector—-vector case
requires an external routine if either
argument is charactere.

The APL emulator occupies 18.5K bytes of control memory and
can co-reside with an IBM/370 emulator which will fit in the
remaining 47.5K bytese. We could conveniently have put the
items in class (d) and the items in rows three and four of
class (b) 1in the emulator but did not do so because of a
lack of space. The use of IBM/370 code for items in rows
one and two of class (b) is quite satisfactory and we can
see no reason for microcoding theme. Likewise, there is no
reason to alter most of class (c)e. The grade operation
might seem like a good candidate <for the emulator but a
superficial examination indicates that on the model 145 the
emulator would not be appreciably faster. Scany encode and
decode might be faster in microcodey however there are very
many special situations to consider and an efficient
microcode implementation would require a large amount of
control storee. Garbage collection was microprogrammed but
was removed due to limitations on control store sizee.

THE CALLING MECHANISM

The external functions are used in several ways but
they are all called in the same waYe There is a control
word named CALL370F which contains an address which we will

denote by C. Beginning at Location Cy there is a transfer
vector with one entry per external function. The transfer
vector entries are shown in figure 31. Suppose the APL

emulator is in control and it decides to call the dyadic
I-beam external functione The emulator puts the arguments
of the I-beam into the general purpose registers using the
process specified in the section on 'GETV', It sets GPR4
equal to C. It sets the 370 instruction location counter
equal to C plus X'70* (according to the table the dyadic
I-beam entry is at X'70') and reverts to IBM/370 mode.
Location C+X®*70%' contains a branch to the 370 function which
does the dyadic i-beam and it can use GPR4 as a base

88 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

Scalar functions:

00 multiply 04 cee 08 divide 0C eee

10 floor/ceil 14 factorial 18 roll i1C I roll
20 power 24 logarithm 28 circle 2C residue
30 binomial 34 deal

Complete functions:

40 en/decode 44 grade 48 takex* 4C drop¥*x

50 reducex 54 scan S8 inner prod%* 5C outer prod*
60 m I-beam 64 m domino 68 m format 6C m box

70 4 I-beam 74 4 domino 78 ¢ format 7C d box

80 share-in 84 share-out 88 share—post 8C execute

90 rotatex*x 98 m tranpose+ 9C d tranpose+

Special functions:
38 extend the stack 3C extend the name table

94 garbage collection

* Some cases are done completely in emulator,
other cases exit to the softwaree.

+ Part of the operation is done in emulator,
part is done in softwaree.

m = monadicy d = dyadic

FIGURE 31: TRANSFER VECTOR FOR EXTERNAL FUNCTIONS

Section III: APL Execution 89

IBM INTERNAL USE ONLY

register. The external function computes the result, if
any, and uses an APLRTIN instruction to return control to the
APL emulatore. The transfer vector, the 370 functions and

the APL functions are resident in the APL system; the
functions are re-—entrant and may be used by any number of
users. With the exception of the exits for multiply and
divide, before the APL emulator exits to the system for an
external function, it stores FPR2 and GPR4-GPR3 in the
workspace in the area named SAVEREGS (see 'APL SYSTEM/APL
EMULATOR INTERFACE').

370 REGISTERS AND EXTERNAL FUNCTIONS

Most of the external functions will require one or two
arguments as input and will produce a single resulte The
emulator uses certain GPR's and FPR's to communicate the
arguments to the external functions and it expects the
result in a specific GPR or FPR. General register
assignments are delineated in figures 32 (GPR's) and 34
(FPR's)e Register usage may vary a little during some of
the emulator operations but the figures represent the normal
state of affairse.

*GETV!

The information in the registers may be easier to
appreciate if we describe the context in which it is
generated. Consider the execution of a statement such as
'Z+L+R! where Z, Ly and R are variables. The emulator will
scan this statement until it has detected the 'L+R'. At
this stage the stack registers (see 'THE STACK') will
contain:

GPR1 = stack word for L
GPRY9 = stack word for +
GPR7 = stack word for R
GPRE = null

The emulator now uses a process which we will refer to as
GETVe. The GETV process takes a stack word and gets the
properties and initial value of an APL variable. The GETV
process is used in all monadic and dyadic operations, in
assignment and in subscripting. The results of the GETV

80 The APL Assist (KPQ S00256)

IBM INTERNAL USE ONLY

d] i 1 | 2 i 3

| 0 |LEFT GETV REGISTERS
i
I
——t
| 2 |
| 3 |EMULATOR WORKSPACE BASE REGISTER
| 4 |ABEN LINKAGE AND MISC
-
| 3 |MISC
+ + - -
| 6 |RIGHT GETV REGISTERS
o
171
tm——t
1 81|
e 2 -

9 | OPCODE | RESULT NAME

FY

A |LINKAGE AND NISC

*

B |RESERVED FOR THE APL SYSTEM

e

*

|MISC | RESULT CURRENT ADDRESS

&

h

&

D |MASK AND MISC|RESULT ELEMENT COUNT AND MISC

a g

E |NEXT STACK WORD

T

Y

F |RESULT BYTE |RESULT DESCE1|MASK AND CODE| INDEX VALUE

PO S G G SN e ape e
Q

g -

FIGURE 32: NORMAL GPR ASSIGNMENTS

Section ITI:Z

APL Execution

21

PO S N QU I R i S ok I i R ot

IBM INTERNAL USE ONLY

-

—
[

—
N
—
(&)

0

3 <4 -

*r

|0/6 | UNDEFINED

A ————

|1/7|STACK WORD FOR A VARIABLE OR IMMEDIATE

|2/8 | UNDEFINED

v >

FIGURE 33.1: GETV REGISTERS - INPUT

b—r—t— -

I o 1 1 { 2 | =3
iO/éiVALUB UNLESS IT IS REAL
il/?ipn DESCRIPTOR | NAME
izlsiuAs; ICU;RENT ADDRESS

PSS R

v T - -

NOTE: GETV DOES NOT ACTUALLY INITIALIZE MASK

FIGURE 33.2: GETV REGISTERS - OUTPUT

92 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

+ + + + +

| 0 | 1 | 2 | 3 |
| 0 |{LEFT VALUE IF IT IS REAL |
t——t |
P |
+ + +
| 2 |SWITCHES | UNALLOCATED BLOCK ADDRESS (FREEU) |
+ + +
| | 0 4 | UNUSED |NEXT AVAILABLE NAME |
| 4 |RESULT VALUE IF REAL, LINKAGE AND MISC |
t———t |
b |
| 6 |RIGHT VALUE IF IT IS REAL |
——t I
o |
+ + +

FIGURE 34: NORMAL FPR ASSIGNMENTS

BIT RESERVED FOK THE SYSTEM)
ATTN - STOP AT STATEMENT END
QUADCT HAS ILLEGAL VALUE
QUADIO HAS ILLEGAL VALUE
QUANTUM END DESIRED

DOING SERVICE FUNCTION

INDEX ORIGIN

RESERVED FOR THE EMULATOR%

NoNthWN=O

* CURRENTLY UNUSED

FIGURE 35: SWITCH BIT ASSIGNMENTS

Section TIY: APL Execution 93

IBM INTERNAL USE ONLY

process affect the operation of a large part of the emulator
and a significant part of the systeme

The input to GETV is a stack word in either GPR1 or
GPR7, and the output is as shown in figure 33« The 'value!?
referred to is the value of the variable, if it is a scalar,
or the first element if it is a vector or an arraye I£f the
variable is real then the value will be in the corresponding
floating point registers (FPRO or FPR6). Logical values
will be setup as full words so that they may be treated like
integerse The value of a character variable is in the
rightmost byte; the content of the other three bytes is not
definede.

The PD DESCRIPTOR is the regular descriptor halfword
{see 'VARIABLES 1IN FREE SPACE') with P-bits 5§ and 6 (see
*THE ADDRESS TABLE') ort'ed into the first byte (which is why
those bits must be 00 in the descriptor)e These P-bits
identify ‘'addressed value! or ' immediate value? and
* temporary’ or 'permanent! statese A stack immediate is
given P-bits 11. The 'permanent! state is set so that the
emulator will not attempt to release the name of the
variable after it is used in the operatione. There is no way
to distinguish between stack immediates and address table
immediates once they have been through GETV.

GETV will set the current address to point to the
beginning of the value portion of the variable block (of the
value block in the case of synonyms)e. In later stages of
executing an operator this is usually the address of the
element following the element currently given in the
registerse.

The MASK is not actually setup by GETV; it will be set
later if a logical vector is being used.

RELOCATING THE WORKSPACE

The APL system may suspend execution on a workspace and
swap the workspace onto secondary storagee. At some later
time the system may swap the workspace back into the main
memory and resume executione. If the new main memory space
begins at a different address from the old space then any
absolute addresses must be relocatede. All address table
entries have a bit which shows if relocation is needed (sece
*THE ADDRESS TABLE'). Some entries in the stack may need to
be relocated {(see 'FUNCTION INVOCATION'). There are no
absolute addresses in the free space areae. GPR3 and FPR2

94 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

contain absolute addresses and they must be relocatede.
GPR2, GPR8 and GPRC will be either unused or will contain
absolute addresses; they should be relocatede. If the last
exit from the emulator was for an interrupt or for a
*gspecial' function (extend the stack or name table, or
garbage collection}, then the workspace must not be
relocated since the registers may be in a non-standard
conditione.

OTHER COMNENTS ON REGISTER USAGE

Two bytes (GPRD.0 and GPRF.2) are marked as being masks
in figure 32. Both refer to a mask for a logical vector
resulte. Some operators will use one byte, others will use
the alternative byte. Never will both be in use as masks
and freguently neither will be. GPRF.2 also serves as the
external function return code byte (see SAPLRTN and
APLSRTN').

The result byte (GPRF.0) is used to build up a byte of
values prior to storing during some of the cases with
logical vector results., The last byte of the result
descriptor is usually kept in GPRFel. The O-origin index
{(or its ceiling if real) is kept in GPRF.3 during execution
of indexable operators; the default value is given if a
value was not explicitly specified.

Normally the first byte of QEND contains the SWITCHES
bytee When the APL emulator has control, however, they are
maintained in the first byte of FPR2. The individual switch
assignments are given in figure 35 FPR2 is also described
in 'FREE SPACE' (FREEU) and in 'THE ADDRESS TABLE' (NEXT
AVAILABLE NAME).

Section ITII: APL Execution 95

IBM INTERNAL USE ONLY

SCALAR FUNCTIONS

Consider the execution of 'L d R'! where L and R are
variables and d is a scalar dyadic operator. The emulator
does the steps described in the section on 'GETV! then it
does the following:

check for character arguments

if L and R are both scalar, then
do operation
check for 16 bit result, if so, put on stack
else get spacey store result and put descriptor
and name on stack
g0 to DONE

if either L or R are non-scalar,y then
check that size of L conforms with size of R
get space for result
go to EXIT if null result

LOOP: do operation on first elements of L and R
store result
g0 to exit if all elements have been done
get next two elements and go to loop

EXIT: put descriptor and name on stack

DONE: free the space used by L and R if necessary

Actually there is another step which is not described above;
if the results of integer arithmetic overflow, then we
convert all existing results to floating point and continue
in floating point mode. If the operation is plus, minus,
less than, etcey then the 'do operation! step 1is done
completely in the APL emulatore. In the following cases we
g0 to a external function using the calling mechanism
described earlier:

power, log, real residue, binomial, circular

We also use the same calling mechanism for real divide and
real multiply but in these cases the transfer vector entries
reduce to:

DDR 4,6 and MDR 4,6
APLRTN APLRTN

96 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

In these two cases the calling mechanism may seem somewhat
elaborate but it ensures a clean interface between the APL
and IBM/370 emulators. In all of these dyadic scalar cases
we are calling an external function with two 32 bit or 64
bit arguments and we expect a 32 bit or 64 bit resulte The
APL emulator does all the analysis of the argumentsy fetch
of the operands one at a time, conversion, if necessary,
storing of result and counting the number of operations that
must be donee As the *DDR 4,6¢ implies, if the left and
right operands are real, they are in FPR4 and FPR6, and the
result goes in FPR4. If the external function detects an
error (for example, negative input to be logarithm routine)
then it should go directly to the appropriate error exit in
the APL system. The external functions may look at the
descriptor bits (see the section on *GETV') to determine the
properties of the arguments.

The monadic operations, ‘namely:
floory ceiling, factorial and roll

use a similar process. There input is in FPR6 and, in the
case of factorial and roll, the result should go in FPR4.
The 'floor/ceil' routine does a floor or ceiling with an
integer or real result according to the following rules:

Let X=GPR9 byte 1 bit O
Y=GPR9 byte 1 bit 1
Z=GPRF byte 2 bit O
A=contents of FPR6

if X=0 then set R equal to the ceiling of Ay else set R
equal to the floor of A

if Y=1 then put R into FPR4

i® Y=0 and R can be expressed as a 32 bit integer, then put
it in GPRS, else set Z=1 and put R in FPR4

An external function called 'I roll'! is also required. It

should set GPRS equal to a random choice from iota N where N
is the integer in GPR6.

Section YIII: APL Execution 97

IBM INTERNAL USE ONLY

COMPLETE 370 FUNCTIONS

In a case such as 'L d R? where d stands for dyadic
I-beamy then the emulator goes through YGETV'! for L and R
and then calls the 370 dyadic I-beam function immediatelye
The emulator has checked that L and R have a value and if
they were functions or shared variables then it will have
got their valuesy, but it does no other checkinge. On entry
to the external function the registers are as specified by
1GETV'e The external function should compute the result and
put the stack entry for the result in GPR9. The result can
be a stack entry for one of the following:

null

a stack immediate

a temporary or permanent variable
an APL function

All APL operations which can be used by the ordinary users
must have a resulte The null result may be required in the
case of the execute functione. In the first three cases, the
APL emulator will free the space used by the arguments, if
necessary, and continue with the statement scan and syntax
analysise. The fourth case 1Is discussed below. Monadic
external functions are treated in the same way except that
the 'left'! argument will be missing and an immediate zero
will have been substituted.

The emulator provides two additional ways of returning
from a complete function; these are referred to as 'partial
function® in the section on 'APLRIN and APLSRTN*. The Zfirst
partial function return specifies that the result is the
same as the right argument. The emulator will then free the
left argument, if necessaryy and properly adjust the stack
before continuing with the executione The second partial
function return simplifies the external function for the
monadic or dyadic tranpose function. The external function
builds a subscript list (see reference <1>) and sets up:

GPR1 stack word for right argument
GPR?7 stack word for subscript list
GPRE x*82%, right rank, UU, UU
GPRE unchanged

The emulator then uses the subscripting routines to evaluate
the resulte.

98 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

There are some functions, such as rotate, where the
emulator does the simpler and more freguently used cases and
where it calls an external function for the complex casese.
In these cases, the external function may, if it chooses,
evaluate the complex cases using an APL functione. The APL
function may express the complex use of the primitive
function in terms of a simple usey where the simple use
invokes the emulator's implementation of the functione For
example, an APL function to do reduction on a matrix could
utilize the emualtor to do reduction along a row or column
of the matrixe.

APL FUNCTIONS

Any of the complete functions (but not +the scalar
functions) may be written in either IBM/370 code or in APL
or in both; the emulator does not care which is used and the
system programmer can make the choicee. Suppose the system
programmer decides to write dyadic domino in APL. He writes
the appropriate APL functiony, he converts it to hexadecimal,
expresses it in the form of assembler DC (define constants)
statementsy and assembles it using the IBM/370 assembler.
The resulting CSECT is loaded as part of the APL system.
When the APL emulator detects the dyadic domino operator,
then it «calls the appropriate external functione That
external function should get a temporary name, let us call
it *t', in the user's workspace. It should set the address
table entry for 't' to?

3F address of CSECT for APL domino function
and should set GPRY9 to
3F uu internal name of ¢

and do an APLRTNe. After the return the emulator will detect
the syntax of '3' so it calls the dyadic APL function whose
name is 't*, Notice +that only one copy of the domino
function exists, but it can be used by any number of users;
the arguments for the function, the local variables, and the
status are stored in the user's workspacee. When the
emulator returns from a function which has the immediate bit
on (see 'THE ADDRESS TABLE' for immediate bit) then it frees
that name.

Section YII: APL Execution 99

IBM INTERNAL USE ONLY

APLRTN AND APLSRIN

The APLRTN instruction causes the following actione.
The APL emulator gets control, it checks the CHKWRD (see
2370 EMULATOR/APL EMULATOR INTERFACE'), and then it looks at
byte 2 of GPRF. It interprets that byte as indicating a
return from ece.

uuuu uulo scalar dyadic function

uuuu uull scalar monadic function

uuuu 0010 complete function

uull1l 0110 partial function (transpose - subscript)
uull 0110 partial £unction (result is right)

uuuu 1010 share post

uuuu 1110 processing of system or shared local

variable during function exit
uuuu 0011 share out or execute
uuuu 0111 share in or execute

In the cases which we have described so far the emulator
will have set GPRF byte 2 before it exits to the 370
emulator so, except for the partial functions, the assist
routines do not have to be aware of this byte.

All of the functions discussed thus far are normal
functionse When they exit, all information defining the
current status is contained iIn the registers and workspace
as previously described. There are also a few special
functions such -as the routine to extend the stacke. These
special exits, like exits to service an interrupt, cannot be
well planned for by the emulator and it is necessary to save
additional status information such as the current values of
some of the emulator work registerse. These routines must
return to the emulator using an APLSRTIN which will function
in a manner similar to APLRESM. These routines may not
allow quantum end nor may they use any APL macro other than
APLSRTN.-

100 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

TREATMENT OF SHARED VARIABLES

The emulator does not lnitiate any input or outputy but
it does call the system whenever 1I/0 is requirede. If the
the end of an APL statement is reached, and the stack is not
null, and the last operation was not an assign, then the
emulator takes a 'print' exit from APLSCANe. Another type of
I/0 is initiated when the emulator detects a shared variable
or the quad symbol. Let S represent the quad or gquad prime
symbol or a shared variable. When the emulator reads the S
then it calls the external ‘!share-in' or ‘'share—-out!?
functione. At this stage the stack is 1in one of four
possible states:

1’ S - o000
2’ S X ooco
3) S{oco] X eooe
4) S[ooo] - omve
where x is any symbol other than '«?, S is in GPR1 (see

'THE STACK'), and GETV has not been done. Case one causes a
'*share-out! exit; the other three cases cause a 'share—in!
exit. In cases three and four, the system will have to
search down the stack until it finds the first closing
bracket and then it can distinguish between the two casese.

In case one, the third item on the stack (which is in
GPR7) will be a variable. The system should check that the
variable has a value and then transmit the appropriate
information to the shared variable processore. The system
should now move GPR7 into GPR9 and APLRTN. The contents of
GPR1 and 7 will not be usede. The emulator will have set
GPRF byte 2 to 3 before exite

Now let us consider case two where S is not quade The
system should do the input and store the result in the
workspacees The system should form either a stack immediate
{if the result is a scalar logical, character or short
integer) or a stack entry for a temporary variablee. In the
latter case the system should have stored the result in the
workspacee The stack entry should be put in GPR1 and an
APLRTN should be given. The quad input case is similar to
the ordinary input case, except that the system should form
a temporary function which contains the internal text of the
inpute. The system should put the stack entry for a niladic
function in GPR1 and then APLRTN.

Section III: APL Execution 101

IBM INTERNAL USE ONLY

After the system has found +the closing bracket and has
distinguished between cases three and four then it should
proceed as followse. For case three, simply proceed as in
case twoe. In case four, the stack entry for the closing
bracket was originally 40esee It is now 48... (see action
13 in 'STATEMENT SCAN AND SYNTAX ANALYSIS!). It should be
changed to 4Cesee Replace GPR1 by the stack entry for a
permanent variable which contains the latest value of S,

then APLRTN. If there are no errors (possible errors are
*value?t, *domain', *index?! and 'workspace full?!), the
emulator will do the subscripted assign and them it wiltl
call the 'share~post! external routinee. At this stage
NEXTINST-2 will point to the name of the subscripted
variablee. The system shoutld communicate whatever

information is necessary to the shared variable processor,
and then it should APLRIN. The emulator will also call the
*share~post? external function if it detects a shared
variable during function exit. This case occurs if a local
variable has been shared and not subsequently retracted.
Note that this case may be distinguished from the
subscripted assign use of share—post by inspecting byte 2 of
GPRF.

EXECUTE

Suppose the emulator encounters #Xe. The emulator will
do a 'GETV' and call the external execute—-operator functione.
That function should check that X is a legal character
string, convert it to internal form, embed it in a temporary
function 't? (see the section on 'TEMPORARY FUNCTIONS' in
Tt FUNCTION INVOCATION'), set GPRY9 with the stack entry for
t ¢t and returne. The emulator now follows the actions
specified above in 'APL FUNCTIONS'. 't* may call other
functions, including, of course, a recursive call to the
function which called 't', The internal form of *'t' should
contain a trace bit at the end of statement one (there is
only one statement). When the trace is reached, the
emulator takes a normal trace exite The system should save
bit 4 of byte 2 of GPR4; let us denote this bit by 'a'e.
The stack contains the function call block for the call of
1¢' (see the 'FUNCTION CALL®' part of 'FUNCTION INVOCATION').
The system should remove the call block from the stack and
then:

102 The APL Assist (RPQ S00256)

IBM INTERNAL USE CNLY

If bit a=0 proceed as in shared input. Set GPRF byte 2 -
to 7, GPR1 equal to the result of the execute (if any)
or null and GPRYy T7ees equal to the previous contents
of, the stacke Give an APLRIN. ‘

If bit a=1 then the execute ended with an assign and
the emulator has to ensure that X in the context
ceootBXooe does produce a result whereas X in the
context #Xjyeee does not cause printinge In this case,
proceed with shared output, namely, set GPRF byte 2 to
3. GPR1 and 7 are undefined. GPR9 is the result of
the executee GPREge s« has the previous contents of the
stacke

Obviously the procedure outlined in this section is not
simple but 1t requires very little extra 370 code or
microcode and it gives a very powerful facilitye.

ERROR RECOVERY

The use of the emulator may cause various errors to be
detectede. Some 0of these are pseudo error returns from the
emulator requesting printing, etce The real errors can be
divided into several types:

1) Erreors in the user's program or datae.

2) APL 'system' error returne.

3) Program exceptions such as 'specification‘.
4) APL error returns other than type 1 and 2.

The first type of error will cause an error exit from the
emulator with a return code showing the type of errore. The
APL system will presumably wish to recover from this error
in the manner described belowe The second and third type of
error implies that the system or the emulator or the
hardware has a buge It will be necessary to dump the
workspace and to trace the cause of the error, see
' DEBUGGING AIDS'se When this type of error is detectedy then
the workspace may contain unknown errors and execution on
this workspace should not be continued. The fourth type of
error is almost certainly due to a system program error and
the cause should be easy to determine. Errors of type two,
three and four should happen very infrequentlye.

Section TII: APL Execution 103

IBN INTERNAL USE ONLY

Errors of type one may happen quite frequently and they
are a normal part of APL execution. When these errors occur
the system should print out an appropriate message and then
clean up the stacke To clean up the stack the system should
delete all memory—-stack entries back to the nearest STOP
WORD, BEGIN STACK word or function CALL BLOCK. If a deleted
jtem is the stack entry for a temporary variable then the
name and the free space associated with the name (if any)
should be freed; there is an APL macro for doing this. It
the item which remains at the top of the stack is a CALL
BLOCK then the system should add a STOP WORDe The method of
analyzing the contents of the stack is given in the section
on 'STATUS INDICATION? (see C*FUNCTION INVOCATION®). The
data needed for the STOP WORD is found in the workspace in
FUNCTION, NEXTINST and in the tail of the current functione
Part of the stack information is held in the general purpose
registerses During the SCAN process, the registers will have
the format described in *THE STACK'; at other times the
format of these registers will vary according to the
operation being performede. When an error occurs the format

of these registers is unclear. It is possible that these
registers will contain the names of some temporary
variables.s The names and space used by variables must be
releasede. These names cannot be determined from the

reglsters, but they can be determined as follows: Search
the address table for entries which belong to temporary
variablese If such an entry is found then search all SCAN
BLOCKs on the stack (see *STATUS INDICATION!? for a
definition of SCAN BLOCK) for a use of the temporary
variablee. If no use is found thenm free the name and its
associated block in free space (if any). This search
requires the system to look at every address table entry
however the search 1is fast and it only occurs when APL
execution has terminated due to a user errore.

There 1is another area which the error recovery
procedure must checks The control word TMPNAMO usually has
the form 27ese; after an error exity, if TMPNAMO is 29... or
2Bees then it should be changed to 27... and the space whose
address is in the low 24 bits of TMPNAMO must be freed.
The same remarks apply to TMPNAMl. These control words are
used to hold function arguments during +the function call
processe The arguments will have received permanent names
by the time the function is entered and the control words
will have been reset to 27cecee TMPNAMO may also be used to
hold the result of a function during the function return
processinge

104 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

If an error occurs in a locked function, a system
functiony, or a temporary function used for quad prime or
execute, then the system will need to take special actione.
These actions are not defined by the emulator.

DEBUGGING AIDS

Several debugging aids are discussed below and an
example is then provided. Figure 36 summarizes much of the
debugging aids informatione. These aids were of great value
during the early development stages but are of much less
importance now that the emulator is complete.

THE DEBUG EMULATOR ROUTINE

The debug routine is a section of microcode which is
not distributed with the APL Assist; it was used during the
development stagese If debug is part of an emulator
coreloady, then it may be either active or inactive. When
activey it monitors all entries to and exits from the APL
emulator and provides useful debugging information. It
represents considerable entry/exit overhead and is normally
inactive. If the debug routine is included in a emulator
coreload, then after a normal IMPL debug is inactive. Let
XX denote 'the debug module! of the coreload (the value of
XX may be found by consulting the debug routine listing for
the coreload). To activate the debug routine the following
control words must be patched in as part of the IMPL
procedure {(ie.e. in the patch deck) or later (i.e. using the
console alter/display facility):

0000XX80 at PLAM.CHECK.OX
0000XX81 at PLAM.SAVGPR.O1
0100XX80 at PLPA.REFALT

Debug may be deactivated by patching these locations back to
their assembled valuese.

The debug routine uses a *debug box? stored in the

workspace. The debug box is at the 1location GPR3-X'2D4'.
The format of the debug box is given in figure 37.

Section III: APL Execution 105

IBM INTERNAL USE ONLY

WORKSPACE DISPLACEMENTS

R11 RO3J CONTENTS R11 RO3 CONTENTS
0AO — SAVEREGS 3A0 00 TMPSAV
2p4 —— DEBUG BOX 3AS8 +08 UNUSED
2F8 —AS8 TIDYS 3BC +1C XARGO
2FC —-A4 UNUSED 3CO +20 BLANK
300 ~A0Q FUZZERO 3c4 +24 ZEROVAR
304 -9C FUZZER1 acs +28 CONE

308 -98 SEED 3CC +2C REAL1
30cC -94 UNUSED 300 +30 PI

310 -90 CALL370F 3D4 +34 E

J14 -8C QEND 3D8 +38 MIN

318 -88 SCANRTN 3DC +3C MAX

31cC -84 SERVRTN 3E0 +40 SYSTEM
320 -80 INTRTIN 3E4 +44 NULNUMVC
324 -7C SAVELS 3ES8 +48 NULCHRVC
348 -58 PEMWORK 3EC +4C INDEX
390 -10 FREES 3F¥0 +50 NOVALUE
394 -0C FREET 3F4 +54 TMPNAM
398 -08 CHKWRD 3FC +5C FUNCTION
38C -04 FRSTRELO 400 +60 NEXTINST
3A0 00 TMPSAV 404 +64 TSADR

408 +68 BNDATS
40C +6C $CT
410 +70 $10

SAVELS FORMAT

324=LS14 334=W 340=LINK
328=LS15 338=V 344=SUTL
32c=Ls16 33cC=I

330=Ls17

FIGURE 36.1: DEBUGGING SUMMARY SHEET

106 The APL Assist (RPQ S00256)

DEBUG BOX

SAVE AX LINK
CP ADSTOP SLOT
A0 10 00 00
AO 11 00 00
*C *E AQ *A
I0 11 12 I3
prior *C*XEAO*A
prior I0I11213
PFADR or ECNUM

IBM INTERNAL USE ONLY

*E = (0 if entry
05 if page fault exit
03 if other exit
*A = APLEC code if *E is 00
*#¥C:H = ILC and CC if *E is not 00
10 = PSW key
I1-3 = location
PFADR = fault address in bytes 1-2
if *E is 05
ECNUM = total emulator call number

if *E is not 05

APLEC CODES (also + X*08%)

00 SCAN
01 RTN
02 RESM

23 NAME 83 FREE D3 GETV
43 UNAM A3 FRIF E3 DIAG
63 FIND C3 GEIN F3 CSL

SPECIAL MICRO ADBRESSES

XX00
XX04
XX08
Xxo0c
Xx10
XX80-XXx88

total emulator call number
emulator call count down number
DEBUG BOX WORD 4 RO3 displacement
return to I-cycles

one instruction stop—-loop

DEBUG transfer vector

ALTER/DISPLAY USING MICRO—-ADDRESS TRAP

1. ADR CCMP CONTROL
ADDRESS COMPARE

RATE
DIALS
2. When trap
3. When done

STOP (down)

CTR WORD ADR TRAP

PROCESS

XX10wxyz {wxyz=micro address)
occurs press ALTER/DISPLAY, etc.

you should be back in the loop at XX10. Set

woonon

RATE to SINGLE CYCLE to check NREG. If it is not XX10
you are temporarily in a 370 trap: set RATE to PROCESS
and push START, pause briefly and repeat this step.

4. Set ADDRESS COMPARE to CTR WORD ADR.
Push CONTROL ADDRESS SET.
Push START several times.

Se Repeat step 1 and push START.

FIGURE 36.2: DEBUGGING SUMMARY SHEET

Section IYI: APL Execution 107

IBM INTERNAL USE ONLY

ry &

|SAVE AX LINK|

WORD 0

WORD 1 |cP ADSTOP SLOT|
WORD 2 A0 10 00 00|
WORD 3 {A0 11 00 00]
WORD 4 |*C *E A0 =*A]
WORD § {10 11 12 I3
WORD 6 | prior *C*EOB#A|
WORD 7 |prior 10111213|
WORD 8

| PFADR or ECNUM|

<
h «

where ceo

*E 00 if entry log
05 if page fault exit log
03 if other exit log

kA APLEC code if *E is 00
*Cihigh ILC and CC if *E is not 00
10 key

11-3 location

PFADR fault address in bytes 1-2

(bytes 0 and 3 are Jjunk)
if *E is 05

ECNUM total emulator call number
if *¥*E is not 05

FIGURE 37: DEBUG BOX FORMAT

108 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

When the debug routine is active and any call is made
to the APL emulator, the debug box is updated and the APLEC
in word 2 of the debug box is executed. Similarly any exit
from the APL emulator will be filtered through the APLEC in
word 3. This provides two convenient address stop locations
for emulator/system tracinge

In figure 37 ECNUM is the current value of control
store location XX00e. At -INMPL this location is set to zero
and location XX04 is set to minus onee On each real
emulator call (the pseudo calls out of the debug box are
ignored) XX00 is incremented and XX04 is decremented. The
emulator instruction STOP.0 in the debug routine will be
executed only when the countdown word reaches zeroe This
mechanism is for use with bugs that occur deeply imbedded in
an APL functione. With only one APL user on the system the
count—up word can be set to zero and the workspace rune
When the bug occurs ECNUM determines a setting to key into
the count-down worde. Using the control store address stop
switch it is now possible to rerun the workspace and stop on
the entry during which the problem will show upe. Then one
can microstepy; etce

The debug package contains a 'return to I-cycles'! at
XX0C and a 'stop and branch to XX10!' at XX10. The first of
these is useful in recovering from an APL emulator disaster
(such as a microloop)le The second is useful in conjunction
with alter/display and the control store address trap
console feature {see figure 36). The debug package also
contains the APLDIAG function, which allows dynamic control
store modification and provides a skeleton loop for other
usesy and code to allow the dynamic use of the control store
address trap featuree. These are very useful debugging
toolsy, but they are also quite dangerouse. Hence they are
documented only in the debug (trap modification) and service
macro (APLDYIAG) emulator routinese.

Section III: APL Execution 109

IBM INTERNAL USE ONLY

OTHER AIDS

In other sections of this document we have described
the APL emulator and the emulator/system interfacees We have
deliberately avoided any specification of the systeme This
gives the system programmer greater flexibility in designing
the system and allows him to change the system without

modifying the emulator. In this section we have described
the debug box which is in the system's part ot the
workspacee We further note that the system usually

maintains FPR2 and the GPR's in SAVEREGS (see 'APL
SYSTEM/APL EMULATOR INTERFACE!'). We also givey, in figure
36, the GPRB control word displacements and the following
control words which belong to the system?

TIDYS garbage collection count

SEED for random numbers

PEMWORK work area for system

FREES start of free space

FREET top of free space

FRSTRELO first relocatable control word
INDEX for an indexable operator

On exits for page faults, to take interrupts, or to
allow quantum ends, local storage will be saved in SAVELS.
The format is: LS14, LS15, LS16, LS17, W, V, I, LS13 (the
linkage register), SUTL where SUTL 1is SPTL with u(d)
replacing Pe.

In addition to the above aids there are the obvious
things to look for in workspace dumps: what is NEXTINST and
the APL statement to which it points? what is the current
APL opcode (GPR9)? the common Llinkage registers (GPRA,
FPR4, GPRD)? the error linkage register (GPR4)7?

110 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY
AN EXAMPLE

Figure 38 1lists debugging information found in a
workspace dumpe We will begin to examine the dump as an
illustration of debugging techniquese. The actual control
store addresses and microinstruction sequence numbers are
obviously valid only for the APL emulator as assembled on
the date of the dumpe.

We first note that the emulator last exited for a page
fault (DEBUG BOX: THIS EXIT). The faulting address was
540XxX (DEBUG BOX: PFADR)s This 1is outside the address
space of the particular machine which was running (DUMP PSW
confirms an addressing exception) so the emulator must have
developed a bad addresse.

The microinstruction causing the page fault was at
control store location SBE8 (SAVELS: LINK) which is in the
function call portion of the emulatore The microinstruction
there is 'RDH LS17 ADJ,W+2' and we can see that W was indeed
0054006C (SAVELS: W).

The bad contents of W look suspiciously like +the DN
word for a character vector (D=0054). This can be quickly
supported: GPRJ3 is added to 006C to find the address table
entry for the variable with internal name 006C. This entry
is 9B028034. Syntax code 9 is a miladic function and the
internal form of all functions is ‘'character vector'.
Indeedy, when we look at location 028034 we find the 0054006C
DN worde. We now have a good handle on the bug which we
suspect to be in the function call mechanisme

Some of the other debugging information which might
have proved useful includes: The emulator was last entered
by &a return from the external function (DEBUG BOX: LAST
ENTRY) having an APLRTN at address 016340-4 (DEBUG BOX: LAST
LOC). There is a history of the assignment routine calling
the 'GETV! processing code (LINKAGE REGISTERS: GPRA) and of
the service macro routine calling the FREE entry point in
the space management routines (LINKAGE REGISTERS: GPRD).

Section III: APL Execution 111

00000000
00000000
A0100000
A0110000
4005A000
F0027322
40000BO1
F0016340
54540020

0054006C
2B028044
0001002C
00000003
0054006C
F0027400
F0028030
03025BES8
9c013127

7002359D
00000000
38021500

FF050005

FIGURE 38:

IBM

W ununnn

PFADR

LS14
LS15
LS16
Ls17
w
v
I
LINK
SUTL

GPRA
FRP4
GPRD

Hnn

40027322

{NOT USED)
(NOT USED)
PSEUDO ENTRY
PSEUDC EXIT
THIS EXIT
THIS LOC
LAST ENTRY
"LAST LOC

INTERNAL USE ONLY

DEBUG BOX

SAVELS

LINKAGE REGISTERS

DUMP PSW

EXAMPLE DUMP INFCRMATION

112 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

SECTION 1IV: CONCLUSION AND REFERENCES

CONCLUSION

The architecture of the APL emulator and the design of
the APL emulator-IBM/370 interface was completed in October
1970 The implementation was begun soon afterwardse Some
design changes were made as the implementation progressed,
but on the whole few changes were necessaryes Shared
variables were added at a later stagey, but since the bulk of
the shared varjiable processing is done by the software, few
changes were required in the emulator. An initial and
partial version of the emulator and an APL system were
operational in November 1971. A complete emulator and APL
system were running successfully and reliably in April
1972. This sytem was Llater developed into the APL/CMS
systeme. The emulator has seen extensive use by APL
programmers using the APL/CMS systeme. The APL emulator
supports a major subset of the APL language (see 'APL ASSIST
AND THE APL SYSTEM')e. APL/CMS fully supports the language
described in the APL\360 User®s Manual <3> and the APL/CMS
User's Manual <4>.

It 1is obvious that a project of this size and
complexity will atilize the programs, techniques and
co-operation of a number of people. The emulator was

written in a microprogramming language designed by Daniel L.
McNabb and John Re. Walters, Jre. <2>e The use of this
language played a major part in helping us to write and
debug the APIL. emulator and we believe that it provides
excellent documentation for the finished producte. The
debugging of the emulator was greatly simplified by an
excellent and reliable assembler and simulator provided by
the model 145 group in SDD, Endicott; we are also indebted
to We Deckery Re Dunbar, G. Kinsella and E. Wassel of that
group for answering many questions about the workings of the
hardware and the assembler and simulatore. The authors of
this report were responsible for the design of the
architecture as well as the writing and debugging of the
microcode for the APL emulator. The APLCSL emulator routine

Section IV: Conclusion and References 113

IBM INTERNAL USE ONLY

was developed by Ro. Losingere. The synonym technique
resulted from some remarks by Je. A+ Browne

The implementation and testing of the APL Assist
feature would have been Iimpossible without the software
support provided by APL/CMS. M. J. Beniston was responsible
for the design and implementation of a major part of APL/CMS
including the software for the translatory, the editor, and
error recoveryes The shared variable interface was designed
by M. Carlitz. *The remainder of APL/CMS (utilities,
external routines, auxiliary processors, etce) was written
by Je We Lageschulte, Hassitt, Lyon and Ne Se Gussine Re Jo
Creasy provided advice and encouragement throughout the
projecty, wrote a number of the early versions of +the APL
system functions and solved one of our ma jor problems by
pointing out that the problem could not occure. We are
grateful to We Be Phelps for his work in detecting errors
and delineating problem areas when the system was first put
into productive use.

REFERENCES

<1> A. Hassitt and Le Ee. Lyon, "Efficient Evaluation of
Array Subscripts of Arrays", IBM Journal of Research
and Development, 16 No. 1, 45-57 (Jan 1972)

<2> Daniel L. NcNabb and John Re. Walters, Jre, MPL/ 145 A
Language and Compiler for System/370 Model 145
Microprogramming, IBM Palo Alto Scientific Center
report number ZZ20-6410 (May 1971)

<3> APL\360-0S and APL§360—DOS User's Manual, IBM form
number GH20-0906

<4> APL/CMS User'®s Manual, IBM form number SC20-1846

114 The APL Assist (RPQ S00256)

IBM INTERNAL USE ONLY

<5> APL/CMS Installation NManual, IBM form number SC20-1845

Some other sources of related information are?

L M. Breed and Re H. Lathwell, "Implementation of
APL\ 360", Symposium on Interactive Systems for

Experimental Applied Mathematicsy Me Klerer and J.
Reinfelds ede.y Academic Press, New York (1968)

This paper describes some of the details of the
APLA\360 workspace formate

A Hassitt, J. We Lageschulte and L. Ee Lyong,
“Implementation of a High Level Language Machine",
Communications of the ACN, 16 Noe. 4 (April 1973)

This describes am earlier and different microcoded
version of APL on the model 2S. It shares many of
the concepts and is somewhat more narative.

Re He Lathwell and J. E. Mezeiy A Formal Description of
APL, IBM Philadelphia Scientific Center report number
320-3008 (Nov 1971)

This provides APL descriptions of some APL
primitive functionse.

An Introgduction to Microprogramming, IBM form number

GF20-038S
This gives a short introduction to
microprogramming and includes some specific

examples for an IBM/370 model 145,

Section IV: Conclusion and References 115

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1. AUTHOR(S) : 9. SUBJECT INDEX TERMS
__A. Hassitt and L. E. Lyon Microprogramming
2. TITLE : Machine Language
APL
[mhe APL Assist (RPQ 500256) Performance

IBM System 370/145

3. ORIGINATING DEPARTMENT
07 - Computers

Palo Alto Scientific Center - 63G 21 - Programming
4. REPORT NUMBER
7Z7220-6428
5a. NUMBER OF PAGES 5b. NUMBER OF REFERENCES
115 9
6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING | 6c. DATE OF LAST PRINTING
10-30-74 February 1975
7. ABSTRACT :

The APL Assist is a hardware feature which enhances the
performance of APL systems by providing direct execution

of a major subset of the APL language. The feature can be
installed on an IBM/370 model 145. The feature implements a new
IBM/370 instruction called APLEC. The APL Assist does not modify
any other IBM/370 instructiohi The assist feature and the APLEC
instruction may be used under standard operating systems such as
VS and VM/370. APL execution is initiated by loading a general
purpose register with the base address of an APL workspace and
then issuing the APLEC instruction. This report defines the
format of the APL workspace required by the assist feature, it
gives the form of the APLEC instruction and it describes the
results to be expected from using the instruction.

IBM INTERNAL USE ONLY

8. REMARKS :

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117

