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Abstract

ABSTRACT

The APL Assist is a hardware feature which enhances the
performance of APL systems by executing a major subset of
the APL language directly in microcode. The APL135 Assist
is now available on the IBM System/370 Models 135 and 138.
It is invoked by a new System/370 instruction called
"APLEC". The feature can be used under standard operating
systens.

This report describes the details of the APL135
microcode, emphasizing the importance of executors and index
tables as a technique that yields high performance code that
is easy to understand and maintain. The report also
describes the interactive development system designed for
this project and contrasts it with the original Mod 135
batch system. The report also discusses some of the lessons
learned from the experience of microprogramming on these
systems. Perhaps the conclusions and recommendations can
save future microcoding groups some time and trouble.

Terms for the IBM Subject Index:

Microprocgramming

Machine Language

APL

Performance

Program development

IBM System/370 Model 135

07 - Computing
21 - Progranmming
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Introduction

I. INTRODUCTION

A. Objectives of the Project.

The System 370 Models 138 and 148 have recently been
announced and are the leading edge of IBM's intermediate
product line. Their architectures contain the most advanced
high level language processors on the market. Both of these
models, and the Models 135 and 145 from which they came, now
have a special 'assist" feature to interpret and execute APL
programs directly in microcode. This makes them "APL
machines" in the same sense that they are "System 370%
machines”

This report is an attempt to record some of the
experiences, results, and observations concerning the
microcode development process. Although it is based mainly
on work with the Model 135, the conclusions may have a
generality beyond that specific implementation. In addition
to the technical details of the APL/135 project, there is
recorded here how the project was done and some observations
on how such a project should be done.

The original goals of the prcject were threefold:

(1) To study the problems of microprogramming in the
absence of a real target machine.

(2) To develop what promised to be a superior
interactive system for the development and testing of
microcode.

(3) To bring forth a useful microcoded system to
support APL.

The latter goal forced the requirement that standards
be established early so that the resulting programs would be
compatible with agreed-to interfaces.

There are good reasons to study the experience of
microprogranming for its own sake. Microprogrammed
computers have become one of the major new thrusts in
computer science. It seems obvious that microprogramming
will dominate the field of computer architecture and systems
design for the next five or ten years.

Moreover, many of the future products being considered

by IBM include a heavy emphasis on higher level functions
and higher level languages supported by microprogrammed

IBM INTERNAL USE ONLY



APL ASSIST FOR THE MODEL 135 PAGE 2
Introduction

"engines". One goal of the project was to examine the
feasibility of designing, writing, and testing a complex
microcoded system in the absence of real target hardware.
Such a feasibility has been a major assumption behind much
of the future systems work in recent years.

At the beginning of this project, the APL Assist for
the Model 145 was under way at the Palo Alto Scientific
Center. An immediate demand for a similar feature on the
Model 135 was anticipated as soon as the Model 145 APL
Assist was available. There would be an advantage if the
two programs could be presented for forecasting,
development, and marketing as a pair of compatible
products. Another important consideration was the fact that
the Model 145 group was producing the APL/CMS software
product as a part of its effort. Much of it could be used
if the APL/135 and APL/145 were made congruent., Finally,
some understanding of the general problem of
microprogramming a high-level function into a family of
future systems could be studied exactly by attempting it on
a subset of the current System 370 series. ‘

Much of the APL/135 project work was based upon the
earlier work of Tony Hassitt and Len Lyon,(See the
References) x They had created #de much of the context for
this project. They had solved already the very hard problems
of designing and proving an effective APL system. They had
worked out the complex interactions between external
specifications and internal microprogramming. However,
additional problems occured in implementing APL/135 which
were not anticipated from the APL/145 work. Since these may
be of general interest, they are described in detail below.

The APL/135 project achieved its major objective with
the announcement of the APL Assist for the Model 135 on
December 3, 1975. This feature is externally congruent with
the APL Assist for the Model 145. Because of differences in
the internal micro-processors of the two machines, however,
the structure and philosophy of the microprograms are
radically different. The Model 135 is more modular and more
structured and is simpler to maintain and extend. These
differences are described in Sections V and VI.

B. Constraints and Interfaces.
The work on the APL/135 microcode was influenced by

many factors external to the microcode. These affected the
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organization and productivity of the project and the quality
and accuracy of the product. There were five main
constraints:

(1) A small staff.

(2) There was no Model 135 available nearby.

(3) The program had to be delivered in a standard,
rigid format to the customer in SPD.

(4) The control storage allocation was too small
to contain all the functions of APL.

(5) <The microprogram had to be partitioned into
segments to co-reside with any valid Model 135
configuration that might be marketed.

The first three of these constrants affected the
organization and control of the project. The unavailability
of a local Model 135 reinforced the goal of studying the
development process in the absence of real hardware. The
latter two constraints were much more serious. They at
least doubled the effort required.

Microcode is intricate and internal communication is
tricky. The structure of the internal interconnectiomns
dominates the writing of the code. The interfaces between
microcode sequences are more important in the outcome than
the instructions within those sequences which actually
execute the useful work for the user. The interfaces must
control the structure of the productive code, and yet the
interface conventions must be selected to optimize the
productive code on both sides. If performance is a goal
then coding tricks are mandatory. A microprogram without
tricks is either too large or too slow.

The experience of this project leads to the conClusion
that a prime factor in the design of a program or amn
architecture should be the ability of people to implement
it. The design should conform to the way people want or
need to work, not the inverse. 1In the inverse situation a
design is obtained which has a logical, attractive
structure, it is subdivided as necessary for implementation,
and programmers are assigned to the pieces.

In this case the opposite approach was used. Each
person had skills and was interested in doing a particular
kind of work. These skills and interests were merged until
a design was found that could be implemented. The project
was thereby designed to fit the people, and each person had
coherent work.

IBM INTERNAL USE ONLY
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II. The Original Model 135 Batch Microcode Systen.

At the beginning of the effort a copy of the microcode
production system, APSS, used in developing and
manufacturing the 3135 was acquired. Although pieces of it,
heavily modified, still remain, nonetheless the philosophy
with which they are accessed is radically different.

Figure 1 presents an overview of the standard APSS
system. The system, is built arcund the "microprogram
master tape" (MMT) which contains serially by control
section all the microprogramming available for the Model
135. It is oriented toward the production of floppy disks
containing control-storage contents for customized machine
feature configurations. The coding and testing of
microprograms was found to be quite difficult under this
systenm.

In order to code a program change, the programmer nust
generate both update control statements and revised assembly
language source statements. He must sequence each altered
statement with its eight digit sequence number. If he
inserts more than nine cards between two unchanged
statements he must repunch and reenter one of these as well.
APSS checks each statement individually for format and
syntax. If all are correct then they are sorted by sequence
field, skeletally assembled, and merged onto the new-master
MMT. The revised modules are resequenced during this
process. The programmer must check the format~-check output
to locate syntax and format errors and the merge output to
locate sequence (insert, update, delete) errors. Because of
resequencing the numbers he must find in the listing are not
necessarily the numbers he punched on the cards. The "new
master valid" message comes after fifty pages of documentary
listings that the system can not suppress.

Next, in order to install a program change, the
programmer specifies a Model 135 microcode configuration
which contains both the microprogramming in which he is
interested and all the code necessary to operate the real
machine configuration on which he will be working. This
latter category includes the microcode for the System-370
instruction set, the channels, and the native devices and
adapters. The required microcode is selected from the MMT
and assembled. This produces a listing tape which must be
selectively printed (the entire listing is likely to be
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FIGURE 1: The Original Batch Microcode Systen.
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eight inches thick) and a tape from which may be made a
floppy disk for IMPL-ing the hardware. Alternatively the
hardware may be pseudo-IMPL-ed with a program which loads
control store from the listing tape. This often requires a
patch to control store at the termination of the progran.
Some program errors, such as omitted or duplicate labels or
writing too much code to fit within a section of control
store, are detected at this stage.

Finally, in order to test the program change, the
programmer must obtain time on a dedicated Model 135 and
IMPL it with one of the procedures mentioned above. He then
may debug, single-cycling and hard-stopping as necessary,
from the console. When he finds a bug he must mentally
assemble a corrected instruction (no trivial task), manually
enter it, and continue. If, as often happens, the patch
will not fit in the space of existing code, a branch to a
spare section of storage must be inserted, the patch must be
coded there, and an additional branch back to the main line
must be grafted at the end. It is probable, from the
experience of this effort, that one in three or four of
these hand changes will be wrong.

In summary, the problems listed below make the standard
system inconvenient for experimental development:

(1) 2all work must be done in batch mode 0S job steps.
It takes five job steps to make a single test run.

(2) all program changesS are made with control and
update cards. WNot only must the programmer know wvhat he
wants to change, but he must express his intent with
specification and sequence information which does not
directly relate to his intent.

{3) Three separate listings must be examined to
ascertain the successful transcription of a program change.
In two of these there is large amount of extraneous material
printed.

(4) An entire control-storage contents must be
selected and assembled to test even the smallest subroutine.
The basic machine microcode (central processor and channels)
nust be functional to test any additional microcode. A real
Model 135 must be available and congruent with the selected
microcode.

IBM INTERNAL USE ONLY
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(5 It is difficult to debug microcode on a Model
135. The alter display console functions, for example, do
not operate when one needs them in the middle of the tested
microprogram, Switches and lights must be used to access
main storage, control storage, and registers. Virtual
address translation must be done by hand. This involves a
control-store access for the segment table origin register
and main-store accesses for the segment-table and page-~table
lookups--all through a single set of switches and lights.
Only one facility--address or register--may be monitored at
a time, also through that same set of switches and lights.

(6) If a microprogram bug occurs it may destroy the
integrity of the machine, necessitating either a real-IMPL
or a real-IMPL followed by a pseudo-IMPL followed by a
hand-patch IMPL, then an IPL, then the setup of the software
test program, and finally the repatching of bugs found up to
the point of failure.

(7) A large System 370 is needed preceding the testing
to support all the software used to generate the microcode.
One needs an 0S/VS1 machine with three disk drives and three
tape drives. One must be an 0S/VS1 operator and IPL the
three-drive system. A minimum of three tapes must be
mounted during each iteration of the program-changing
sequence described earlier. If all this is done on the same
real Model 135 as the testing, then cne spends ones time in
seemingly endless IMPL-ing, IPL-ing, reconfiguring,
reallocating, etc.

ITI. The Interactive Development Systen.

Study of the standard manufacturing system described in
the last section showed that it was necessary to build a
system that was more optimized for coding and testing.

Unlike the microcode for the System-370 instruction
set, which consists of many short-running nonconnected
noninteracting sections, the segments of the APL code would
be long-running, interconnected, and interacting. The codes
are roughly equivalent in size--15500Afor System 370 and ‘—‘_“4%42‘
13100 bytes for APL. However on a typical call to the
System-370 microcode perhaps only ten microinstructions are
executed before the task is complete. (Some instructions,
of course, such as floating-point arithmetic and
PSW-swapping, take many more.) In all cases there is always
a single entry and a single exit defined in architecture,
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only a small part of the 15500 bytes will be executed, and
no continuity is required across these separate invocations.
Wwith the APL interpreter, however, there is no need for the
microcode ever to finish, and a single call to the code can
pass through a large fraction of the 13100 bytes.

The system to optimize the code-and-test cycle was
built on the philosophy of using interactive computation
wherever possible. A1l components are normally executed
from the VM/CMS terminal. Source program coding and object
program testing--the end points of the cycle--are
interactive. Compiling and assembling are invoked
interactively and complete automatically. No systenm
operator intervention, and no tapes, are required. The
entire system, VM and all, fits on a single disk pack. The
time from the beginning of IPL to useful user work is less
than thirty seconds. All components of the code-and-test
cycle may then be accessed without additional IPL's.

Figure 2 gives an overview of this code-and-test
optimized system. It has two basic sections. First is
source program coding and changing. Programming is done in
a higher-level symbolic microprogramming language, MPL135.
(See Walters and McNabb in the references.)

The VM/CMS editor is used to enter and alter programs.
Each routine is maintained as a separate CMS file. Using
the editor, changes are made directly to the source rather
than indirectly via update control statements. After
editing, the routine is compiled to produce a listing of the
compiler source with errors, if any, and a deck with the
assembly-language source program equivalent to the MPL135
program. This ASM135 deck is also preserved individually as
a CMS file, so that there is one ASM135 deck for each MPL 135
deck in the system. (See Section IV-B and Appendix II).

At this stage all format-check errors have been caught
and all omitted and duplicate labels within the routine have
been detected--something not possible on the original system
until the final assembly. The only errors remaining are
either program logic errors or control-storage assignment
errors (such as "too much code for core").

The second section of the system is program testing.
To prepare for a test, the control sections wanted are named
in an exec procedure. The ASM135 decks are then assembled
to produce an object deck which may be executed by the
simulator. The assembly includes a format check, identical
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in function to that in the original system. The format
check is still necessary because an intermnal translation of
each statement is constructed for the assembly. On occasion
coding may be done directly in assembler source rather than
compiler source. A listing of only the relevant programs is
produced, since they are the only ones assembled.

To execute the test a hardware simulator, SIM135, is
used which is extremely interactive cr extremely automatic
as desired. (See Section IV-C and Appendix I). This proved
to be the most valuable component of the system.

The object deck output by ASM135 and input for SIMN135
is a deck in which each card contains, in EBCDIC characters,
a pair of hexadecimal numbers which are the control storage
address and its contents. It may therefore be easily
patched over several testing sessions.

The VM/CMS system continues to provide all its normal
support during simulation. The simulator merely executes
the microcode presented to it on request from the terminal.
Therefore the real machine hardware and software integrity
is never endangered by a microprogram catastrophe in test
code.

IV. The Importance of Interactive Microprogramming Tools.

Three major programs, mentioned in Section III, were
produced to form the code-and-test system: MPL135, ASM135,
and SIM135. These support programs made it feasible for a
small group to write the microccde. It also vastly improved
the quality and accuracy of the final product. If there is
one major lesson about microprogramming learned from this
project, it is that these support programs are essential.

A microcode compiler, MPL135, was written so that
structured and symbolic programming could be used for
microcode. A hardware simulator, SIM135, was written not
only to duplicate the operation of a real Model 135, but
more important, to aid in diagnosing and debugging the
executing microcode. This was the most valuable support
program. It is in fact far easier to debug microcode on
this simulator than on a real machine.
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FIGURE 2: The Code-and-Test Optimized Systen.
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A. MPL135 Compiler.

The assembly language for Model 135 microprogramming is
conmplex, not only because it must mirror the myriad features
and latches and data paths in the hardware but also because
it is itself very low-level and format sensitive. The job
would be much simpler if one could do most of the program
writing in a higher level language which possessed (1) the
power of structured programming technology, (2) had the
flexibility and simplicity of the symbolic programming, and
(3) was free of burden of card-column fixed-format fields.
For these reasons, the special syntax-driven compiler
program, MPL135, was prepared for the project.

The MEL135 compiler accepts source programs written in
its own high-level language and compiles them into
equivalent assembly-language statements acceptable to the
standard Model 135 microprogramming system. During most of
the effort, however, the virtual assembly-language source
decks produced by the compiler were merely a convenient
internal staging point.

The compiler provided structured, symbolic, free-form
programming. The MPL135 language SuUpports structure
statements like "DOY“, "DO-COUNT", "DO-WHILE", "DO-CASE",
WIF-THEN", and "IF-THEN-ELSE". These may be arbitrarily
nested. Further, MPL135 permits the coder to provide
symbolic names for the registers and latches in the machine
(and to provide indirect-address specifications in the
symbolic names). A single mnemonic may thereby replace
several parsing-oriented tokens. Finally, the absence of
the fixed-field card-column assignments enables one to
indent the source program to emphasize its logical
structure.

An example of the MPL135 language is the following:

IF RDESC(B 9)=1 THEN GOTO QUITS
XVALU=XVALU+LVALU

The compiler produces the following ASM135 source:

QUITS BNZ)W6.1.1
WO0-3=H0-3+GPR (W4DO) DW
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This example illustrates a necessary restriction on the
compiler: The generated assembler statements must be
completely predictable. The MPL135 compiler does not try to
optimize. It does bookkeeping, allows one to write in a
logical way, and translates the statements one-for-one into
assembly-language statements.

Several features of the MPL135 compiler were very
helpful. The logic of IF-THEN-ELSE was inherent in all the
programming. The assembler requires otherwise useless
labels to support the branching implicit in these structure
statements. MPL135 does all this involuted labelwork
automatically.

Symbolic names were also very helpful. Writing "LNAME"
or "RVALU" for the left-operand name or the right-operand
value is simpler and conveys more information than
MGPR (W4D2)" or "FPR(W4DO)DW"; "y03 = W03 + LVALU"™ is better
than "WO-3=WO-3+FPR(W4DO0)". The free-form source to support
the symbolic structure was also valuable.

B. ASM135 Assembler.

The second of the three major software tools was the
ASM135 assembler. This assembler combines several functions
wvhich are separate in the original system described in
Section II.

The ASM135 assembler provides all of its functiomns in
much the same way as a normal system assembler and linkage
editor. It is fed assembler source subroutines which are
mapped into a resulting control storage image. Each
statement is format checked, and the totality is then
assigned to addresses in control storage. The output is a
deck, akin to an object deck, containing control storage
addresses and contents for each instruction or data item in
the input source. No linkage editing is required
thereafter.

More accurately, no linkage editing is possible. For
one reason, the microinstructions for the Model 135 often
include nonrelocatable address fields. To completely
assemble the instruction, therefore, its actual address in
the machine must be assigned. Additionally, the programmer
may specify that certain instructions must be assigned at
specific addresses, within a specific range, or with
specific low-order or high-order address bits.
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A further constraint is the limited range of many of
the branch instructions. These limits imply not only that
the code containing these must be written in small blocks
without branches across blocks, but also that the
instructions within a block must be assembled into locations
which lie within the range of the branch. The assembler
assignment tries to resolve all these demands.

The assembler was made to run without tapes or operator
intervention. All data is maintained in CMS datasets. The
printed output, no longer the eight-inch stack of the
original procedure, is passed through an editor which
physically prints only requested portions. It also
eliminates all the double-spacing, headings, and formatting
overhead in the original listing to provide a further
two-to-one compression.

One kernal in the assembler was reprogrammed for
speed. This one critical routine improved the running time
by a factor of ten. The final ASM135 was made into a simple
"send a deck in, get a deck out" operation. More detail is
given in Appendix II.

C. SIM135 Simulator.

The major component of the code-and-test system is the
SIM135 simulator. It was crucial to the success of the
project, because it made programming in the absence of a
real target machine possible.

As indicated earlier, when the APL Assist is invoked
for any given call, a large part of the 13100 bytes of code
may be executed. Further, it is not necessary that
execution ever terminate (APL programs may validly continue
execution indefinitely until interrupted). The Model 135
hardware console is hard to use for debugging such extensive
sections of microcode, especially since the inadvertent
execution of any wrong code can require a hardware reset.

O0f course, SIM135 is much less expensive to use than a
dedicated Model 135.

SIM135 is an interactive simulator written in
System-370 assembler language and executing under VM/CMS.
The simulation covers the physical hardware facilities
accessible to the microprogrammer. It omits certain obscure
facilities, particularly the outboard ends of the native
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adapters, not germane to debugging microcode. The simulated
machine contains System-370 GPRs, FPRs, and processor
storage as well as Model-135 control registers, work
registers, some of the external registers, local storage,
control storage, and latches.

one of its goals which SINM135 met very well was
performance. The simulator is fast. Running on a Model 145
it executes over 4500 microinstructions per second. It
takes roughly 550 seconds to simulate one second of Model
135 execution. Since a typical APL test statement might
execute between 1500 and 2500 microinstructions, the
simulator imposed no bottleneck on the work. It was much
faster for debugging than a real Model 135.

SIM135 can be made to run in two modes. 1In the
stand-alone mode it is loaded and started like any other CMS
program. The user has access to all its facilities and he
may initialize and execute as he rleases. The simulated
processor storage is in fact the main storage of the user's
virtual machine except for that storage containing the
simulator (a simulated address exception will be generated
for simulated accesses to this reserved storage). In this
mode the simulator is driven solely by the commands entered
by the user.

For the bulk of the work, a small interface routine was
added to the simulator. This interface initializes itself
so that later it will gain control after amy program check
in the virtual machine. It then passes control to an
independent, nonsimulator, user program. In the present
case this user program was the software for APL/CMS. The
APL/CHMS software issues the special opcode 'A0' whenever it
wants service from the APL Assist microcode. If the
microcode is not present this will cause an operation
exception program check. If the microcode is present this
will cause a specification exception program check if the
active APL workspace is not at the same "EC-level" as the
microcode. A version number, contained both in the
microcode and in the workspace, is ccmpared at each entrance
to the microcode.

To simulate APL microcode, the workspace version number
is changed to an arbitrary number. Thereafter, whenever the
APL software wants to execute microccde, a program check
results and the simulator interface is invoked at exactly
the point where the APL software calls for microcode
execution to begin. The interface transfers the real
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System-370 registers to their simulated counterparts,
simulates the Model-135 actions when the Model 135 initially
accesses an 'A0' opcode, and lets the simulated microcode
carry it from there. The simulation terminates when the
simulated microcode issues a fetch for the next real
instruction from main memory--when it therefore has
completed the 'A0' operation. The real registers are
restored with their simulated counterparts and the native
machine regains immediate control.

This interface did not require that all the APL
microcode be written before any of it could be tested. Test
cases using the APL software were set up, and then the
simulated microcode was invoked for just the functions that
had been completed to date. The ability to switch between
APL versions using the simulator immediately gave values to
compare against for all test results. An I-beam function
was added to APL to do this switching in APL while APL was
executing. I-beam 31, 32, and 33 respectively invoked real
(Model 145) microcode, plain software (no microcode), and
test (Model 135) microcode; I-beam 30 stated which currently
was active. It then became possible to write functions
which would test an operation in all versions and compare
the results automatically. '

V. Lessons learned from Microprogramming Experience.
A. Version One and why it was Unsuccessful.

In the first of the APL coding efforts, the strategy
was to take the Model 145 microcode which was being
developed concurrently and transform it into Model 135
microcode. The initial objective was to find a method for
doing this automatically. This proved to be a more
difficult theoretical problem than doing APL itself, so the
direct approach of tramscribing the code by hand was tried.

If this stratedy were successful then only a single
development project would be necessary to implement a
microcode feature on two--and then also on more--machines in
a product line. Whatever had been programmed and debugged
on the Model 145 would be translated to execute on the Model
135. The incremental cost would be small.

At first the strategy seemed to be working. The Model

145 internal registers and latches were mapped into Model
135 internal registers and latches and theq/%faas;aisd the
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code, under these conventions. At first the transcription
proceeded quickly, but then serious obstacles began to

appear. Three main problems with the transcription strategy
were discovered:

(1) The fundamental problem was the bulkiness of the
135 code required to shadow the 145 machine facilities. 1In
the Model 145 each microinstructicn specifies the execution
of several things in parallel. Most microinstructions
include the address of the next instruction to be executed,
and many of these permit testing of condition codes or data
bits to perform four-way branching without timing penalties.
Much of the APL/145 microcode takes advantage of this
embedded branching flexibility. The Model 135, however, has
no such parallel capability. Each of the four-way branches
had to be replaced by separate branch-on-bit iastructions to
get the same logical effect. This is a three-for-one
increase in transcribing the branch field alone.

(2) The basic arithmetic and logical operations require
more instructions on the Model 135 than on the Model 145.
Processor storage accesses need two rather than one.
Register references often require a preceding instructijion to
initialize a register address pointer. Literal fields must
be developed digit by digit where the Model 145 can build a
byte at a time.

(3) The shadowing of registers proved very costly.
The Model 135 has only seven half-words of registers in
which arithmetic can be done. This shortage of
computational registers forced many loads and stores of
shadowed Model 145 registers and of intermediate or partial
results.

The programs resulting from this direct transcripton
were so large and slow that it had to be abandoned. The
control storage limit assigned to APL135 was 13100 bytes
(necessary to permit it to merge with other machine
features). At the end of this first attempt the code
exceeded 26000 bytes. It was clear that it was necessary to
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tailor the program more closely tc the target machine.

B. Version Two--The Native-Mode Approach.

The strategy underlying the second version was to write
the APL Assist as finely tuned to the Model 135 hardware as
possible. This promised the necessary increase in
performance and decrease in control-storage size.
Concurrently, the program would be forced into a structure
of independent modules and the quantity of test-and-branch
instructions would be restricted.

The Model 135 has very few computational elements
internally. 1In addition to the System-370 GPRs and FPRs
there are eight directly addressable scratch registers. All
arithmetic, however, is done in a separate set of seven
halfword registers. These computational registers may be
accessed as halfwords, fullwords, or doublewords during the
simple arithmetic operations. '

However, these registers are also used for addressing
and controlling the other machine facilities. To address a
GPR or FPR one must have its hex-digit register number in
one of the even-numbered work registers, thus destroying one
of the fullword slots. One may branch and link only with two
specific work registers. Transfers from storage require
that both storage address and storage data be placed in work
registers. These computational elements, so few in number
yet so central to the machine, proved to be the real
bottleneck.

The programming method therefore became almost the
opposite of top-down program design, since it began with the
lowest-level hardware as the focus. This hardware had to be
driven efficiently in speed and space if the program was to
be successful. From this level there was a search for a
structure which would produce the lowest-level optimized
environment efficiently. Obviously some initial top-down
analysis was done to locate the heavily used parts of APL
processing. Many top-down structures are possible
implementations for the central processes of APL. These
processes are themselves quite invariant when properly
chosen.

The strategy chosen was to make the central, or

lowest-level, loops in the code be as optimized as possible.
Several important consequences came from this approach:
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(1) Testing and branching disappear from the inner
parts of the program. It is redundant to interpret
something on each iteration of a loop, and clearly it is
inefficient on a machine where each test and each branch
costs a cycle. The case-by-case and bit-by<bit testing,
which were so costly in the earlier version were purged from
inner loops. Instead, the analysis was done once, during
initialization, and the resulting decisions were preserved
in a directly accessible manner. This is equivalent to a
local compiling of the inner loops.

(2) The control of execution now becomes separable
from the actual execution itself. The lowest-level
subroutines do very little interpretation. They work very
much like opcodes on a normal machine. The caller governs
all the variable parameters of execution, but does not
engage in the execution itself. These calling routines are
quite analogous to dynamic assemblers. They accept input,
compile calls to the opcode-like subroutines, and issue an
nexecute" instruction to get work done. The task of the
calling routines is simply control--they generate, maintain,
and modify parameters.

(3) Since all the control has been collected into one
place, the control itself can then be implemented with
almost no explicit decision-making. When all the
case-by-case bit-by-bit testing has been moved onto a single
page, the redundancy and parallelism of most of the tests is
apparent. Often a table look-up, using the bits which had
been tested, can be performed instead of testing to yield a
result directly. The table entry can be a value or the
address of a subroutine for generating a value or executing
a case. The decision-making, rather than being performed by
explicit instructions, is inherent in the design of the
table and index.

(4) A surprising consequence was that the higher-level
routines in the structure were simplified even though they
were written to optimize the interface to the lower-level
subroutines. The caller issues orders--commands--to the
lower levels. These lower levels, rather than interpreting
the environment and deciding their purpose dynamically,
simply perform as directed. There is only one copy of
control information; it is analyzed and specified by the
caller and modified by execution by the subroutine. What
the caller needs as data in its analysis commonly becomes
the controlling parameters to the subroutine. The result is
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an interface scheme which allocates registers and other
machinery in a manner not only optimized for the lowest
level but also patterned in a rational and useful way for
the work done at the higher levels as well.

(5) This approach results in a program that is strongly
modular. The lowest level subroutines stand as unconnected
individuals. The higher level routines have a similar
character, however, since the programming is done with a
microinstruction set augmented by a subroutine set. There
is little cross-talk between routines. Where complex code
does occur in a routine it tends to be rigorously bounded.

(6) The modular design has the effect that physical
interfaces can change very late in implementation as a
matter of convenience--mainly because the conceptual
interface is unaffected. Team programming to write the
subroutines is then clearly feasible. '

In conclusion, this strategy paid off very well
indeed: the resulting microcode runs twice as fast in half
the core! Where the execution of inner loops dominates
performance, the improvement was in fact much greater.

VI. Overview of the Microcode Emulator.

A. Executors and Index Tables.

The major effort of the second APL implementation was
the search for interfaces which would optimize the hardware
and which would also logically partition the application in
a structured programming sense. Writing the application
oriented instructions within a module posed no basic
problem. To find clean divisions between these modules, and
to create frictionless communication between them, was the
essence of the task.

The "executors" and "index-tables" are the most
fundamental structural elements in the APL/135. APL
operations are performed wherever possible in two disjoint
phases. First, parameters are analyzed to determine exactly
what must be done. This information is reduced to two data
fields for each action necessary: (1) The address in
control storage of a specific routine which will without
additional interpretation do exactly the required operation;
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and (2) A field of register pointers indicating the
registers which hold the data required in the operation.

Control is then passed to the executor routine to do
the processing required. The addresses of the executor
routines are located by using the variable parameters of the
operation to index into tables of executor addresses. The
intent was to eliminate explicit decisions. Instead
parameters are manipulated to yield the address of a routine
which does the specific task.

B. Comparison between Mod 135 and Mod 145 Microcode.

The APL/145 microcode was written in what can be called
an "interpretive scheme" as contrasted to the "index and
execute" method discussd above. Each schene has been
designed for optimizing the hardvare implementing it.
Neither works well when it is implemented on the other
machine.

For example, consider the processing for a dyadic
scalar operator (such as '0 1 2 3 4 - 5 6 7 8 9') starting
where the scan invokes the dyadic scalar routine with the
names of the tvo operands and the opcode for the operation.
The dyadic scalar routine is to return the name of a
variable with the result value.

Both machines begin by initializing the left and right
operands. A subroutine is called to obtain the descriptors,
the address of the data values, and the first data value.
Both machines then check that the operands are conformable
(have compatible shapes) and they then obtain space for the
result. There is little basic difference in this
processing.

part of the above analysis, however, is to determine
the arithmetic mode for the operation and for the result.
If both operands are logicals or integers then integer
arithmetic will be performed and an integer result (barring
overflows) produced. If one or both operands are real then
floating point arithmetic will be required.

The Model 145 records this analysis in some immediately
settable-resettable-testable latches. The Model 135 records
it by writing a numeric literal value into a work register.
This value will later be used to index into a table to
locate the specific executors required for the data mode.
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At this point the Model 145 begins an element by
element execution of the inner loop. It calls a subroutine
to fetch and convert the left operand. The subroutine .
fetches the variable descriptor to determine what mode it &méhug
has, branches to some statements withafetch a variable in
that mode, branches to other statements which contrast the
actual mode with the desired mode (recorded in latches
during the initialization), and branches to statements to do
the conversion if required. The dyadic routine then calls
the same subroutine to fetch and convert the right operand.
With both operands then available and in the appropriate
mode the dyadic routine itself enters a network of branches
which interpret the opcode, bit-pair by bit-pair or
bit-by-bit, to arrive finally at the statements which
implement the operation in the appropriate precision.

When the operation for one element is complete, a
subroutine is called to store the result. It interrogates
the result descriptor and effects the storage. 1In all of
these four operations--fetch left, fetch right, execute
opcode, and store result--the process is implemented by
branch networks which fan out, decoding descriptors and
parameters,. to cover the set of known cases. This procedure
is then repeated for each element in the vectors.

This scheme is fast and compact on the Model 145 since
the testing and branching is done in parallel with other
work. A remarkably few instructions implement the large
variety of cases which arise. This is critical in the Model
145, where each instruction costs four bytes and the
allocation for the microcode is small.

However, as discovered in the earlier microcode
version, this scheme causes problems on the Model 135. For
each Model 145 instruction executed in the branch networks
the Model 135 has to execute four--the actual operation in
the microinstruction and the parallel decode of two data
bits. For each four-byte Model 145 instruction at least
eight bytes would be needed in the Model 135. Additional
instructions would be required if the data accessed by these
instructions had to be fetched from a shadow register.

The index and execute method eliminates the need for
these branches. Consider the examples of the tables for
opcode executors and for the fetch-and-convert executors.
Opcodes are six-bit entities with two more bits added
implicity to indicate the mode of arithmetic. The Mod 145
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interpretively decodes these eight bits, whereas the opcode
is added as an index to a table base address and the address
of the code specific to the opcode and mode is fetched
directly. The fetch-and-convert executors are similar. The
table has entries for each combination of source and target
data type (such as integer-~to-real or logical-to-logical),
and it is indexed with the actual data type and the desired
data type for the operation. The tables cost core, but not
as much as the branching instructions on the Mod 135.

The main payoff is in repeated iterations of the inner
vector loops. Once the table index has been performed and
the address of the necessary executor obtained, it can be
saved and used repeatedly. No decoding at all need be done
in the inner loop. Consequently these table indexings are
performed as initializations. They prepare four registers
with the addresses of the four necessary executors
(left-fetch, right-fetch, opcode-~execute, and result-store).
The innermost loop then looks exactly like 'BALR, BALR,
BALR, BALR, BCTR' implemented with microinstructions.

The advantages of the index and execute approach may be
sumparized as follows:

(1) There are no branch networks to code, debug, and
maintain. Instead one must only discover a satisfactory
format for the table and method for the index.

(2) The executors promote extreme modularity and
simplicity. The table-index routines, which are actuwally
the decision routines, are separate from the executors, so
that the code which ultimately does the work is not mixed
with decision-making requirements. The executors may be
written independently without diminishing efficiency.

'(3) The executors cah be used like subroutines by many
callers. The dyadic scalar opcode executors, for example,
are also used by the inner-product, outer-product, reduce,
and iota-epsilomn routines under the same conventions.

(4) It is easy to maintain an executor, since each is
sinple and stands apart from the others. It is also easy to
add new ones to the system. A new operator is supported
simply by replacing the 'system error' executor address
presently in the table with the address of a new executor to
support the operator.

(5) Finally, the executor structure is fast on the real
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Model 135. With the exception of the four BALRs and the
BCTR, almost all instructions in the inner loop contribute
directly to the work cf that loop.

C. Other Programming Technigques.

Usually branch networks were replaced with tables and
indexing even where the ultimate target of the branching was
not executable code but the identification of a data item.
Index tables were used to select executors or control
information for processing monadic and dyadic scalar and
mixed operators, reduction operators, arithmetic overflowing
operator replacement, subscripting operations, variable
fetches, variable stores, and several local minor
functions. 1In each case this saved time, core and work and
made it easier to expand and maintain the microcode.

In indexing (subscripting) routines, three executors
are invoked for each element in the central loop. The first
fetches the next subscripting variable and converts it to an
integer. The second and third respectively fetch and store
the subscripted variable. Whether the fetched or the stored
item is the subscripted item depends on the APL statement.
There are separate executors for each data type and
direction. All the executors (with a few exceptions) for
these three actions were constructed within sixteen-way
branch spaces in the Model 135. The sixteen-way branch uses
a hex digit in a work register to select one of the sixteen
targets four instructions apart. Most of the executors
could be constructed within this space. Since all sixteen
values in the table were not needed, the vacant targets
could be used to complete the larger executors. What the
table index produced in this case was not the address of the
executors but a data word containing the hex-digit numbers
of the necessary executors. Then the sixteen-way branch was
entered and each executor, instead of returning to its
caller, just branched sixteen-ways on the digit from the
table for the next executor in 1line.

Of course, it is not possible everywhere to reduce
bit-testing and decision-making to automated table lookups.
The language itself demands some highly asymmetric involuted
examination of strange cases. One of the worst cases is the
conformality testing, in the dyadic scalar operators, of
operands with different sized arrays where both are single
valued.
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Other sections of the code are highly serial. The
scan, for example, examines each new token in turn and
decides what to do as each new token is examined. Function
calls, similarly, localize variables one by one, and each
may be different in kind from its precursors.

The scan of the top two tokens is a sixteen-way branch
on the first followed at each target by an eight-way branch
on the second. Each possible combination of the top two
tokens thereby is routed to a specific address, and this is
simply a branch to the appropriate routine for the
combination. The entire logic is representable by a two-way
table and the correlation between table and code is
immediately clear. This branching was fully populated even
though for some top tokens only two or three next tokeans
actually may occur. These could have been isolated by
specific testing in fewer than the eight branch targets now
used. However, this was precisely the "spaghetti" one tries
to avoid.

The interfaces to subroutines were evaluated to
optimize performance in the subroutine. Often the output of
a subroutine became the input of a following subroutine or
process. Therefore the computational registers were
carefully allocated to the active fields, and each active
field was forced into the same register for all
subroutines. As a result the shuttling of arguments almost
disappeared.

D. Documentation.

Aside from this report, APL/135 is documented solely by
the comments included in the listings. These comments fall
into two categories:

(1) Line-by-line comments which describe the local
effect of the individual instructions. These comments speak
more in terms of APL data items than in terms of registers
and arithmetic.

(2) Descriptive paragraphs preceding each section of
code and each subroutine in the emulator. These describe
the intent and method of the program and identify
specifically the inputs and outputs.

Putting the documentation directly into the code
greatly reduces the problen of keeping two separate
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resources (the document and the program) synchronized.

Preparing comments imposes a considerable burden on the
productivity of the programmer. In Version 2 all 13100
bytes of the microprogram was produced initially without a
single comment. The MPL135 symbolic nomenclatures and
structured indentation provided all the memory refreshing
required. Toward the end of the project, however, when
comments were being added as precursor of completiom, it
became much more difficult to modify the code. It took two,
three, or four times as long, since not only the
instructions but also the descriptions had to change.

VII. Detailed Description of the APL135 Microcode.

A. The Organization of APL135
1. Invoking the Microcode.

The APL emulator is envoked when the special ‘A0’
operation code (The APL opcode, 'APLEC') is detected in an
instruction sequence by the System 370. The emulator does
not modify any other System 370 instruction, so it may be
used in the presence of standard operating systems, such as
VS and VM/370.

The specification of the 'A0' opcode or 'APLEC' is
given by Hassitt and Lyon in "The APL Assist". (See
References). The details are not repeated here, since the
intent is to limit this report to the details of the
implementation of the Mod 135 microcode only.

The following quantities are assumed to be correctly
implemented on entrance to the emulator. They are not
verified within the Mod 135 microcode:

(1) Base registers: GPRB (the base used by software)
is assumed to contain an address ending in x'000* and GPR3
(the base used by microcode) is assumed to contain that same
address ending in x'8F0'. The microcode destroys GPRB
during execution, but recreates it from GPR3 before
termination. The high-order byte of both addresses is
assumed to be '00°'.

(2) Control words: All control words and microstore
save areas are assumed to lie within the same DAT page as
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the workspace validation checkword. This guarantees that,
having successfully accessed the checkword, the microcode
environment can be preserved in the workspace for relocate
exceptions and hardware interrupts without generating a page
fault.

(3) Workspace format: The workspace format is assumed
to be valid and execution of an invalid workspace will
produce unpredictable results.

2. oOrganization of the Microcode Routines.

The APL emulator consists of many routines (CSECTS)
which may be grouped for conceptual convenience. The names
of the routines contain only three letters (a restriction
imposed by the APSS assembler). The routines begin with the
letter 'H'. This letter was assigned to APL135 so that none
of its routines would conflict with any other CSECT names on
the Model 135 manufacturing master tape. The remaining two
letters are chosen to be mnemonic, (See the Glossary for
the meaning of the acronyms.)

Throughout most of the execution of the APL emulator
the microcode is dealing with an operator 'OCODE' on two
operands, the left operand 'LITEM' and the right operand
'‘RITEM', to produce a result variable "ZITEM'. These
operands or variables--'XITEM's--generally have a name
'*XNAME', an address 'XADDR', a description 'XDESC', a type
'*XTYPE', a shape 'XSHAP', and a value *XVALU'. Conments
within the microcode refer to these xitems with these
abreviated xterms. Some of this information is regularly
contained in specific registers while other information does
not possess a customary registration.

3. The Hardware Trap Required for APL Relocation.

A hardware pseudotrap--EXT3 bit 4--is required to
execute APL emulation. Setting the pseudotrap causes a
hardware logout and a transition into the console zone
(exactly like program-event-recording except that a flag bit
is flipped to distinguish these two cases). This pseudotrap
has three specific necessary attributes: It preserves all
CPU-zone registers (intact in zone-0), it retains the fault
address (logged into zone-1), and it branches to a trap
routine (location '0004'). These pseudotrap instructions
are placed following each main-storage reference (each with
its skip) and are executed when the storage access fails--
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TABLE 1: THE NAMES OF THE 52 MICROCODE CSECTS
HAA: Apnalysis and interfacé between software

and microcode.

HDA ,HDM,HDS: Dyadic mixed and scalar operators
(except mixed operators requiring separate routines

(see HQ*)).

HEP,HER: Inner-outer products and reduce-scan
operations.

HFA,HFE,HFI,HFX: Function control-—-invoke,
branch, un-invoke, and software-execute.

HIA,HIE,HIF,HII,HIS,HIV,HIX: Indexing operations.
HMA ,HMM,HMS: Monadic mixed and scalar operators
(except mixed operators requiring separate routines
(see HP*)).

HOF,HOP: Arithmetic routines--fixed-point and
progression-vector.

HPC,HPI,HPO,HPR: Monadic-mixed operators.
HQC ,HQE,HQI,HQO,HQR,HQT: Dyadic-mixed operators.

HRA,HRE,HRI,HRS: Resource management--obtain and
release names and cores and assign and synonym values.

HSA,HSI: Scanning and execution selection.
HUX: Utilities.

HVA,HVC,HVF,HVP,HVS: Variable management-~-
initialize, fetch, store, point, and copy.

HWC ,HWD ,HWE,HWF: Linkages between microcode blocks.

HZI ,HZR,HZT,HZX: System-support--interrupt,
dynamic-address-translation, and tables.
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TABLE 2: ORGANIZATION OF THF HARDWARE REGISTERS.

Hardware registers are used by the emulator generally
for the following purposes: (The GPR's and FPR's are the
standard S-370 general purpose registers and floating point

registers. The
135 microcode.)

GPRO:
GPR1:
GPR2:
GPR3:
GPRU:
GPRS:
GPR6:
GPR7:
GPR8S8:
GPR9:
GPRA:

CWR's and WWR's are internal to the Model

Lvalu if ltype=(char,logi,inte)
Litem= (ldesc,lname)

Laddr

tO0WWWBFO': Workspace base
Scratch

Scratch

Rvalu if rtype=(char,logi,inte)
Ritem= (rdesc,rname)

Raddr

Ocode or zitem=(zdesc,zname)
*PASSSSSSY: 'ASCAN' APL scans pointer

(address of next scannable function token)

GPRB:

'2BSSSSSS': 'ASTAK' APL stack pointer

(address of next fillable stack position)

GPRC:
GPRD:
GPRE:
GPRF:

Zaddr

Scratch

Token preceding *LITEM OCODE RITEM' in scan
* 197ERRII': Where 197E=!'XSTAK', the
register pointers, RR=extermnal-function
return code, and II=operator index.

FPRO-FPR1: Lvalu if ltype=real
FPR2-FPR3: *‘FCORE' free~core anchor and 'FNAME'

free-name anchor

FPRU4-FPRS: Scratch
FPR6~FPR7: Rvalu if rtype=real
CWRO-CWR7: Scratch
WWRO-WWR7: Scratch

Control storage is used by the emulator generally for
the following purposes:

DSCO08:

DSC17:

Address of relocation routine or relocate-
exception interrupt code
Bf: APL-active flag (tested by System-370
Machine~check and program-interrupt
Microcode) : ’

t0*--gset on AFL termination

*1'--set on APL initiation
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DSC48-DSC49: System-370 instruction counter

DSC50-DSC53,DsSC56-DSC57: Scratch (save area
during dynamic address translation)

C(DSC17+('00'-'0C')) (lex-mode hard save list):
Save area during timer-update service.

Hardware controls (external-immediate addresses) are
used by the emulator generally for the following purposes:

X0: B1: Irequ: Quantum-end request pending.
X1:
BO: Dalow: '1'--mandatory
B1: Dpurg: '0'--mandatory
B2: Dtrap:
*0'--set on APL initiation
*1'+-set on APL termination
B3: Dlexe: Signal visibly on the systen
control console APL emulation (but
sometimes a flag--see the comments
in routine HZA):
'O*'~--set on APL termination
"1*--set on APL initiation
B6: Dtalu: '0'--mandatory
B7: Duwrit:
'0*~--set on APL termination
'1'--set on APL initiation
X2: B1,B3: CCODE: External return code and
internal flag:
'0'--remove normal termination and inter
zitem=(operator-result)
'1'--remove error termination
'2'--inter zitem=(assignment-result)
X3:
B3: Idump:
'0'--set on APL termination (by IFETCH)
'1'--set on APL initiation
B4: Atrap:
'0'--execute microcode
'1'--execute pseudotrap
X5: B2: Bwrit:
'0'--set on APL termination (by IFETCH)
'1*--set on APL initiation
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normally because of a relocation exception. Such storage
access failures can then be serviced completely
transparently to the local microcode and registers.

B. The Scanning and Execution of APL Programs.

The execution of APL programs is done by the scanning
of tokens from an expression within an APL workspace. The
line is scanned from right to left (viewed in its original
typed-in form). The current value of the scan address
(ASCAN) is the equivalent to the instruction counter in
System 370.

Scanning is the cyclic activity of fetching, decoding,
and executing APL tokens. A token is read and expanded into
its fullword stack-token format. The top two stack tokens
are jointly decoded. An act specific to the top tokenmns is
performed (Examples: to add the new token to the stack and
continue, to execute an operator, and to imnvoke a
function). Each of these acts leaves at least one token on
the stack. Scanning then continues with the next APL
token. The syntax decision table is similar to that of
APL/145. It differs only in minor details of the decoding.

Variables placed on the stack represent a value and not
a name. When the variable is finally accessed it must have
the value it had when it was stacked. It is, however,
possible to reassign the value of a stacked variable before
the stacked variable is accessed. Consequently, whenever a
stacked variable is followed by syntax which makes it
possible to change the value of the variable, the value is
copied and placed on the stack either as a stack-immediate
or as a temporary variable. These g:z;ggz be changed in

value. 1 ot 2

The decoding of the top two stack tokens is
accomplished by two sixteen-way branches. The first decodes
the top stack token on its syntax class; each of its sixteen
targets is the second branch which decodes the next-to-top
stack token on its syntax class. The targets of this second
group of branches (one for each first-branch target) are the
instructions labelled *XXXYZ' ('Y2*' hexadecimally numeric).
ty' is the syntax of the top token and 'Z' is the syntax of
the next-to-top token: XXX15, for example, is reached when
the first tokem is '1XXX' and the second token is 'S5XXX*.
These XXXYZ instructions finally branch to the specific
'"ACTYX® routine which will handle properly the tokens on the
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stack. Note that the top token can have syntax '0'-'F' but
that the next-to-top token can have syntax '0*-'7'--only the
necessary targets in the branches are supplied.

The top four stack tokens are maintained in general
registers 1, 9, 7, and E logically in that order. On
entrance and exit the tokens are physically in their logical
positions but during scan only the lcgical precedence is
preserved. The ordering is controlled by the ‘XSTAK!
register (normally W6) whose digits respectively address--
digit-0 points at stack-0--the top four stack positiomns. On
entrance and exit, therefore, xstak will contain '197E'.
When a newly-fetched token is placed into a register it will
be placed into the register addressed by digit-0. When a
token must be moved to main storage it will be the token in
the register addressed by digit-3. When the three
register-remaining tokens must be pushed down one logical
position in the stack this is done simply through a "ring
shift right four" of the xstak register. (note that the
cyclic ordering of '197E' must be preserved ('179E*' for
example is invalid)--several subroutines depend on this
ordering and the xsave routine locates the home position by
looking for the 'E'.)

The detailed documentation of APL/135 uses the
following nomenclature and registers. The top four stack
tokens are called stak0, stakl, stak2, and stak3. The
current scanning address *ASCAN' is maintained (usually)
either in W2-W3 or in GPRA and its first byte always
contains the register pointers 'FA'. The current stacking
address 'ASTAK' is maintained (usually) either in wO0-w1 or
in GPRB and its first byte always contains the address-table
bits and register pointers '2B'. The current logical
ordering of the stack registers *XSTAK' is (usually)
contained in W6 and its home position ('197E') is contained
in GPRF,

Some microinstructions in the scan routine are
hard-code, that is, represented by numeric constants and not
assembled. This is necessary because the assembler will not
accept sixteen-way branches for which all legs are not
defined. In the decoding of the second stack token there
are twelve sixteen-way branches for which only the first
eight paths can ever be taken and therefore, to save 96
micro instructions, only the first eight paths are
provided. :
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C. The Execution of Dyadic Operators.

The execution of dyadic mixed operators is accomplished
by separate execution subroutines. The dyadic analysis
routine (HDA) detects mixed operators, obtains the address
of the proper execution subroutine, and transfers control to
the execution subroutine which performs the operation.

The execution of dyadic scalar operators is organized
around the use of executors. These are short single-purpose
subroutines which execute small specific pieces of work:
fetch-and-convert an input variable, or execute a scalar
operation, or store an output variable. All executors of a
given type (fetch, execu, store) have a common interface
with respect to inputs and outputs. Only the data type
(char, logi, inte, real) used with the specific executors
differs. All executors of all types have a common interface
with respect to linkage:

W4--register pointers
W5--executor address
W6--return address

Given a fullword register containing the register-
pointers and executor-address, this linkage interface is
very much like a System-370 BALR. This technique eliminates
opcode-operand decoding during execution iterations, enables
nulti-routine accessing of executors without requiring the
executors to determine the correct return point, and permits
a one-instruction inline linkage in the calling routines.
This has proved to be a very important concept in giving
performance to the Model 135 APL emulator.

The task of dyadic scalar analysis then becomes
threefold: First it must validate the operation and obtain
result storage. Second it must determine the fetch, execu,
and store executors appropriate to the operands and
operation. Third it must invoke the selected executors,
element-by-element in vector-array cases, to evaluate the
operation.

Operation validation is done with branch-laden routines
which determine the mode of arithmetic and result, check the
conformality of the operands, and obtain storage for the
result (if vector or array).

Executor selection is done by indexing into tables of
executor addresses. All such index-tables have a base
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address. Offsets are added to this base to obtain the
address of an element within the table. The element is
fetched to obtain the desired executor address. The offsets
into the table are generated by manipulations of various
data items--there is no general rule and the individual
rules are matters of convenience and efficiency. Each table
is described elsewhere in detail. When an executor address
is obtained it is retained, with the requisite register
pointers, in a fullword register.

Executor execution is done by calling a subroutine to
effect a pseudo-BALR as mentioned earlier. The subroutine
restores the executor-invoking fullword and goes to the
address in that fullword. Consequently the specific
instructions in the calling routine to execute a
vector-operation consists of five pseudo-BALRs: Fetch
rvalu, fetch lvalu, execu xexec, store zitem, and
count-and-branch until finished.

D. Dyadic Analysis and Control.

This secticn summarizes in more detail the processing
of dyadic operations by the HDA routine. Portions of the
HDA routine are also used for outer-product and for dyadic
iota-epsi. These other operators are initialized elsewhere,
they enter HDA with case-switches set, and are completed
there. The paragraph names below correspond to the main
parts of the HDA routine.

Begin: Operand and operation descriptors are
accessed. Mixed operators are detected and, through a
table-index, are sent to specific sukroutines for
execution. Scalar operators are analyzed to determine the
mode of arithmetic during execution and the mode of the
result to be generated.

Valid: The operands are checked for
conformality. Operands involving true scalars are isolated
and expedited; otherwise separate shape-check routines are
entered for the various shape-shape combinations.
Arithmetic-progression-vectors versus (pseudo)scalars are
sent into immediate apv arithmetic execution if the opcode
is suitable.

Iopie,iprod,iioep: Special initialization is
performed for outer-product and iota-epsi.
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Space: Space for nomnscalar results is obtained.

Opera: A table-index is performed to obtain the
executor address of the dyadic-scalar executor and of the
variable-store executor. Nonvector operations requiring no
operand conversions are expedited to execution. Otherwise a
further table-index is performed for both the left and right
operands to obtain the executor address of the
variable-fetch (convert) executors. All executor~addresses
are retained with register-pointers for use during operation
execution.

Xloop: Vector operations are executed, element by
element, until complete.

Ximed: Nonvector nonconverting operations are
executed expeditiously. :

Xopie,xprod,xioep: Final initialization of
outer-product and iota-epsi is performed. The separate
cases are then executed in specific element-by-element
loops.

Quits: Operands are released and coantrol is
returned to scan analysis.

Addresses in the HDA routine are hard-assigned because
it calls subroutines the parameters for which are passed in
the return address. Micro instructions which must be fixed
parametrically (or immediately adjacent micro instructions)
are identified by labels of the form *ZYYXX*: 'Z%* flags
these micro instructions; 'YY' groups related fixed micro
instructions; and 'XX' is the parametric value which must be
contained in the low-order byte of the address of the
labelled micro instruction.

One case of this address-fixation deserves further
comment. A subroutine is called to execute the count and
branch which terminates the iterative execution sequences
mentioned earlier. This subroutine, HUX-ITERX, has
parameters passed as described. It does not return to the
next-sequential-instruction. If the count is not exhausted
it returns upstream a specified number of instructions. If
the count is exhausted it returns either down stream a
specified number of instructions (prod and iota-epsi or to a
fixed offset within the calling control storage module (dyad
vector). The entire procedure seems unnecessarily
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involuted, but it conserves control storage.

E. Dyadic Scalar Execution.

The executors employ one of three general procedures to
evaluate the scalar operation:

(1) Most executors execute inline microcode which
directly produces the result.

(2) Some executors (such as those for
trigonometric and logaritmic functions) exit to software
which produces the result. The software is responsible for
returning with the result through a standard interface. The
executor then resumes as if no exit had occurred.

(3) Some executors (fixed-point divide and
floating- point arithmetic) branch directly into the
System-370 microcode which produces the result. These
executors preserve the necessary registers and simulate the
internal environment generated by the execution of an
appropriate System-370 instruction. The APL-active switch
remains set and the simulated PSW-address is made odd. This
odd-address generates a PRI-trap when the System-370
instruction microcode terminates with an IFETCH. The
System/370 PRI-trap microcode tests if the APL-active switch
is set and if so then it returns to the invoking executor.
The executor restores its registers and then resumes as if
no exit had occurred. B

Arithmetic overflows may occur in some scalar
operations. These cause a branch to the dyadic analysis
overflow subroutine. The overflow code passed to that
subroutine is generated through the address assignments of
the overflowable executors.

The address-assignments of certain executors are
significant. 1In all cases the specific bit assignments are
arbitrary and respecifiable provided that the assignments
and the examinations are consistent. The following
summarizes the uses of the address.

(1) The low-order byte contains the overflow code
for those executors which can overflow. This is tested by
HDA.Ovflo for overflov processing. ’

(2) The high-order byte contains two bits to
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control processing of executors which branch to the
System-370 microcode. These are tested by HDS.Error for
program-exception processing, or HDS.Zexex for fixed-float
initialization.

(3) The high-order byte contains two bits to
control initialization of executors of fullword logical
operators. These are tested by HVF.Inikk during
initialization.

F. The Execution of Monadic Operatioas.

Monadic operations are recognized in the Scan analysis
routine and sent to the HMA routine for further analysis.
The right operand has been initialized. The monadic
operation is evaluated, as mixed or ‘scalar and in microcode
or software, the operand is released, and the result is
placed on the stack. Control is then returned to scan
analysis.

The execution of monadic operators is accomplised by
separate execution routines. Mixed operators are each
handled either in distinct routines or in software. Scalar
operators are reinitialized to appear as dyadic and are then
executed as dyadic operators. The HMA routine merely routes
the operations to appropriate execution procedures.

G. Workspace Resource Management.

A group of routines~-HRA, HRE, HRI, HRS~-provide the
essential management of resources during the execution of
the emulator. These tasks--to obtain and to release names
and storage, and to assign and synonym values-- are those
which give APL its unique dynamic features.

1. Obtaining Names and Space.

The HRI routine contains two separate subroutines which
obtain names and storage, respectively, from the pools of
available names and storage. The names sub¥Xoutine is
straightforward and uncomplicated.

The space subroutines are manifold, but differ
primarily in the invocation interface. To simplify the
requirements in calling routines, space may be requested
under several different interfaces. The most common of
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these are:

(1) Refer,shape: Obtain a variable with a parametric
datatype but with the shape of an existing variable. In the
refer case the shape-vector has not yet been located while
in the shape case the shape-vector has already been
located. '

(2) Elemx: Obtain a variable with a parametric
datatype containing a parametric number of elements and
dimensions. 1Insure the validity of the element count and
reset the pseudoscalar description bit if the variable has
only a single element.

(3) Bytez: Obtain a variable with a parametric
description containing a parametric number of bytes.

These entries, gradually merging, all funnel into the
label "bytex" which acquires a specified amount of storage
and initializes it based on parameters set by the caller and
by the entries.

Several levels of initialization may be requested for
the acquired storage (although not all combinations of
invocation-initialization are valid). An element count or
an entire shape vector can be copied into the new space. A
value-vector can be copied into the new space. The space
can be initialized for use by the variable store-executors
in routine HVS. The space name can ke placed on the stack
as the result stack entry for a monadic or dyadic operation.
These services are provided to simplify the processing and
reduce the control-storage requirements in the invoking
routines.

Two special cautions are in order: (1) The return
address for the space subroutine contains embedded
parameters. (2) Since both the names and the space
subroutines can exit to software (for name-table extension
and for garbage-collection), no information except the xscan
registers (described in the scan-analysis routine) may be
preserved in GPRA-GPRB.

2. Use of Synonyms in Resource Management.
A crucial procedure for ccocnserving resources during APL

execution is the use of synonyms. It not only saves space,
by not duplicating arrays, but saves the time which copying
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the arrays would take.

The HRS subroutine sets the value of a given variable
equal to that of a second variable. It is invoked mainly
(1) to execute the assignment operator when the right
variable is not an immediate variable, (2) to set the result
of an operation equal to one of the operands in that
operation, (3) to shadow during function invocation the
arguments into and the local-variables within the function,
and (4) to shadow permanent variables on the token stack
when subsequently-scanned tokens hazard the value of the
variables.

Control reaches HRS either through branches in other
routines (zisrx) in which cases control passes to the scan
analysis routine at the completion of processing, or through
subroutine calls in other routines (synon) in which cases
control returns to the calling routine at the completion of
processing.

The synonym generation may be done in one of several
ways. If xitem is temporary then it will be renamed into
zitem. If xitem is immediate then zitem will be made an
equivalent immediate. If xitem is already a synonym then
zitem will be made an additional synonym. If xitem is an
addressed (pseudo)scalar or APV-vector, or if xitem requires
less than 6U4-bytes of storage then zitem will be made a copy
of xitem. Otherwise zitem will be made a synonym of xitem.

The following illustrates the possible cases before and
after linking. The entries represent the contents of the
link-name field in the synonym block.

Litem and Ritem are the left-and-right links of xitenm.
The link-names for litem, xitem, ritem, zitenm,
dont-care-items, and null-link~-items (end-links on the
chain) are represented respectively by *L', ‘X', ‘R', ‘Z°¢,
Q', and '0°'. ‘

Before 1linking After 1linking
litem xitem riten litem zitem xitem ritem
0-X L-R X-0 Q-2 L-X Z-R X<Q

Q-X 1-0 Q-X X-0 L-2
0-R X-Q 0-X Z-R X-Q
0-0 0-X z-0

The zitem and xitem link-name fields are constructed
into and initialized from WWR2-WWR3 and WWR4-WWRS,
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respectively. Then they are initialized by subroutine if
litem requires alteration.

Resource synonyms are released by the HRE routine. It
consists of two separate subroutines which release names and
storage, respectively, and return them to pools of available
names and storage.

If the released storage was a synonym black in a
synonym chain, then the synonym chain must be relinked to
exclude the released block. The following illustrates the
possible cases before and after relinking. The illustration
entries represent the contents of the link-name field in the
synonym block: Litem and ritem are the left-and-right links
of the current item xitem; link-names for litem, xitenm,
ritem, dont-care-items, and null-link-items (eand-links on
the chain) are represented respectively by 'L', 'X', *RY,
'Q', and '0'.):

Before relinking After relinking
litem xiten riten liten ritem
Q- L-R X-Q Q-R L-Q
0-R X-Q 0-0
0-X L-0 Q-0
0-R X-0 make ritem nonsynonynm
0-Xx L-0 make litem nonsynonym

0-0 release value block

In the two next-to-last cases the single remaining synonynm
is desynonymed by releasing the synonym block and making the
variable a free-standing variable resident in the value
block. 1In the last case--a synonym format without sibling
entries (generated only when a workspace-full error occurs
in the synonym-allocation process)--the value block is
simply released.

H. The Management of Variables.

A group of routines, HVA, HVC, HVF, HVP, HVS provide
for the management of variables. The tasks include:
initialization, fetching, storing, converting and copying.

1. Vvariable Initialization.

The initialization is done by HVA which prepares the

variable for accessing by the fetch executors. The
following summarizes the processing of this subroutine:
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If requested then the register rointers for the
standard variables litem or ritem are obtained. The
variable is analyzed. Immediate variables are made to
appear as permanent-immediate and their values are expanded
into standard representation. Addressed variables are
obtained from storage. Their descriptions are marked

permanent or temporary.

control information @eéion in the hi-order byte.
initial value is fetched.

parametric GPRs and FPRs.

Their addresses are made to point
at the value block and are modified by the addition of

Their

The information generated for
both immediate and addressed variables is placed in the

The following illustrates the completed initialization
for various variables (assuming input W4=*QRS3°).

GPRr

Immediate

Char
Logi
Inte
Inte

2E0400CC
2E000001
2E012222
2E813333

Addressed

Char
Logi
Inte
Apvv
Real

29XXNNNN
29XXNNNN
29XXNNNN
29XXNNNN
29XXNNNN

GPRs

000000cCC
00000001
00002222
FFFF3333

000000cCC
00000001
00000002
00000003
XXXXXXXX

GPRq

0604XXCC
06000001
06012222
06013333

TTTTNNNN
TTTTNNNN
TTTTNNNN
TTTTNNNN
TTTTNNNN

FPRr

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXLLLLLL
01LLLLLL
XXLLLLLL
QVILILLLL
QRLLLLLL

FPRs

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
saguuuuy

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
Gugquuuy

'TITT' is the variable descriptor plus '0200* if it is a
. permanent variable, *NNNN' is the variable name, 'LLLLLL?
4 Xs the variable value-block (first-element) address, and

'VI='R*'+'1* (*'R' assumed even for apvv and real).

2. Variable Fetching--Analysis.

The analysis subroutine is called when an initialized
variable is to be prepared for fetching and converting to a
specific internal format. The subroutine determines the
element count of the variable (useful information for many
callers), obtains the address of the fetch-executor
appropriate to the into-from conversion request, and
constructs a fullword which can be used to invoke the
executor with the executor execution subroutines in routine
HUX. This analysis subroutine is called by routines which
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need to fetch a variable in a standard arithmetic mode.
3. Variable Fetching--Execution.

The executors execute all variable fetch~and-convert
operations. There are two executors, one for scalar
variables and one for vector variables, for each valid
(char, logi, inte, real) into-from conversion combination.
All of these executors have a common interface. All are
given an initialized xitem from which they obtain the next
value. the converted xvalu and the incremented xaddr (if
vector) are returned.

In addition to the standard executors are two sets of
nonstandard executors which support the execute-reduction
routine. One of these sets is the reduction fetch-
executors. These serve the same purpose as the standard
executors but fetch the variable elements in descending, not
ascending, order. The other of the sets is the reduction
store-executors. These serve two functions~--they store the
result of an operation and they fetch the rite-operand
(identical to the result but perhaps in a different
arithmetic mode) for the next operation. The three sets of
executors are distinguished by the naming convention
detailed in HVF-Enter.

4. Variable Storing--Analysis.

The HVS routine handles the analysis and storing of
variables. The analysis-and-store scalar-variable
subroutines are called when various kinds of results must be
stored. Many entries are provided (all matters of
convenience) and these are detailed in HVS. The stored
variable is placed on the stack as a stack immediate if
possible; otherwise it is stored as a temporary variable in
main storage. Two entries, however, make use of permanent
workspace variables.

5. Variable Storing--Execution.

The executors execute all scalar and vector store
operations. These executors are accessed indirectly through
index-tables in varicus routines. The vector executors are
all given a zaddr and a zvalu which they store at zaddr
which they increment to address the next element position.
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The scalar executors, overlaping heavily with the
subroutines described above, produce the same form of
stored-and-stacked variable as those subroutines. The
scalar executors are intended to be invoked once per
(monadic or dyadic) operation while the vector executors are
intended to be invoked once per (monadic or dyadic)
operation execution element.

I. The Control of APL Functions.

The routines HFA, HFE, HFI, HFX control the use of
functions. This includes the branch arrow (GO TO) as well
as the invoking and releasing of functions and the calls for
software function execution.

1. The RIGHT ARROW (GO TO) Operation.

The HFA routine executes the GO TO operator which may
be represented internally either as the monadic scalar right
arrow with the right operand containing the value of the
branch target, or as a single APL GOTO token integrally
containing the value of the target. ‘

There are four entries to the HFA routine corresponding
to the four cases where branches are detected:

(1) Begin: Scalar-operator branches reach here
through a direct branch from the scan analysis routine. The
right operand has been initialized.

(2) Begis: Special-token branches reach here through
a direct decode from the scan analysis routine. The
branch-target value has been extracted.

(3) Begcc: 'GOTO SCALAR COMPRESS SOMETHING' branches
reach here in a special optimization through a direct branch
from the execute-compress routine. Conditions are
substantially the same as in the begin case above.

(4) Begix: Scalar-operator branches with complex
syntax context reach here through a table index from the
moadic analysis routine; the right operand has been
initialized.

All branches in the first three cases which reach the
HFA are executable branches. Any unusual conditions which
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inhibit branching in the microcode have been detected
elsewhere and any branching under these conditions is
executed in software. Specifically regarding the branches
executed in microcode: The branch is not traced; the branch
does not appear in an immediate (directly entered terminal
statement) function; and the branch has simple syntax
(nothing else is stacked).

While these branch-inhibit ccnditions are explicitly
checked by the branch sources described above, the check of
the stack syntax status is less explicit. The single token
goto appears only in valid syntax (where it will be the only
token in the APL statement). The scalar-operator ’
simple-syntax branch is entered from scan analysis only when
'END-OF-LINE RITE~ARRO' is decoded and it is guaranteed by
the operation of scan-analysis on software-provided
Statements that the remaining stacked tokens are 'VARI NULL®
only. The scalar-operator complex-syntax branch is entered
when the rite-arrow appears with any other token on its
left. The scalar compress does, however, examine its
context to insure simple syntax.

Three outcomes are possible from the HFA routine. If
the branch-target value is a null vector (this can not occur
in the single-token case) then no branch is taken and the
scan continues in sequence. If the branch-target value is
equal to the number of a statement in the currently invoked
function (other than statement zero) then the branch is
taken and the scan continues at that statement. If,
otherwise, the branch-target value is outside the range of
the function then a function release is effected by passing
control to the function release routine. 1In the branch
cases a null result is supplied to permit a resource-release
attempt for zitem to succeed without problems. In the
scalar-operator cases the rite operand is released.

2. Invoking and Releasing APL Functions.

The HFI routine performs the invocation of an APL
function. Control reaches the routine through a direct
branch from scan analysis after the function and its
arguments have been detected. This routine preserves the
values of the arguments, constructs a function invocation
block (FIB) on the APL stack, shadows the values of all
local variables, and assigns to the function local-named
arguments their preserved invoking values. Control is
returned to scan analysis with the APL-scan address pointing
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at the start of the invoked function.

The HFE routine releases an active APL function. HFE
is called when it detects a branch to a statement outside
the range of the function. The routine preserves the
function result value (or generates a nonvalued result),
releases and unshadows local variables, removes the function
invocaton block (FIB) from the stack, and adjusts the
APL-scan address to point at its previous position in the
function which invoked the currently-releasing function.
Control is then passed to scan analysis.

J. Indexing Operations.

1. Terminology and Organization.

Indexing is one of the most complicated parts of the
APL emulator. The performance on application progranms
depends to a large part on hov efficiently indexing is
done. The array cases in the Model 135 emulator follow the
method given by A. Hassitt and L., E. Lyon (See References).

The following describes the indexing operations. The
emphasis has been on speed, even when it costs storage and
complexity. The indexing operations involve three distinct
variables:

(1) Ritem: The randomly-accessed (hence 'R')
variable-~the variable which is indexed.

(2) Sitem: The sequentially-accessed (hence 'S')
variable~-the variable which is the input into or output
from ritenm.

(3) Qitem: The indexing variables--one variable or
semicolon for each dimensicn of ritean.

Indexing operations have two different forms depending
on the direction of assignment. The first plucks values
from an indexed variable while the second sticks values into
an indexed variable:

(1) Sitem gets ritem(indexed by gitenm)
(2) Ritem(indexed by gitem) gets sitem

These are called respectively fetch indexing (ritem=fech)
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and store indexing (ritem=stor). In both cases the zitem
supplied as the result of the indexing is siten.

The basic method of the indexing routines is to reduce
gitem, which may be a complex sequence of variables and
semicolons, into a compressed, accessible, and optimized
form. 1In all cases the index gvalu resulting from this
reduction will be an origin-zero index on the ravel of
ritem. The final indexing routines, the executors which
actually fetch and store the indexed elements, therefore are
presented with an ritem which they treat as a vector and
with a series of qvalus which identify the specific elements
which are indexed in that vector.

The final gvalu sequence will be presented to the
executors in one of four basic modes. The executors are not
actually given the gvalus themselves; they are given
initialized addresses or counters in one of these four modes
and the executors fetch the indexes using these parameters.
Reducing gitem into one of these four modes is in fact
therefore the reduction of gitem into one of four parameter
forms which will control the executlon of the final specific
executors.

2. The Four Basic Modes of Indexing.
The four basic index modes, known as 'XMODE's, are:

(1) Xmode=scal: If all dimensions of ritem are
indexed by scalars then gitem will be reduced to a single
number contained in registers and all subscripting variables
will be released. The parameters inherent in this xmode
are:

Xbase: Index of single indexed element

(2) Xmode=apvv: If ritem is indexed, in all
dimensions not indexed by scalars, either by a single
arithmetic-progression-vector or by a single contiguous set
of elided subscripts then gitem will be reduced to a single
progression vector contained in registers and all
subscripting variables will be released. The parameters
inherent in this xmode are:

Xbase: Index of initial indexed element. The effect

of all scalar gitems and of the base gvalu for the
gitem=apvv is incorporated into this xbase.
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Xstep: Increment to index for each subsequent indexed
element. This is the step value for generating the indexes.
For cases where gitem=apvv indexes the innermost ritem
dimension then xstep equals gstep and for other cases then
xstep equals gstep times xwate, the dimension multiplier
weight for the indexed dimension.

Xlimi: Number of indexed elements.

(3) Xmode=vect: If ritem is indexed, in all
dimensions not indexed by scalars, by a single vector or
array then gitem will be reduced to this single vector and
all other subscripting variables will be released. The case
where both ritem and gitem are arithmetic-
progression-vectors will be forced into this mode. The
paramaters inherent in this xmode are:

Xbase: 1Index of initial indexed element (ignoring
xitem). The effect of all scalar gitems is incorporated
into this xbase.

Xwate: Multiplier for each xvalu in xitem. For cases
where xitem indexes the innermost ritem dimension then xwate
equals zero (a flag for this case) and for all other cases
then xwate equals the dimension multiplier weight for the
indexed dimension.

Xlimi: Number of indexed elements.
Xitem: The nonscalar gitem (initialized).

(4) Xmode=list: If ritem is indexed by anything
outside of the above three cases then a special indexing
variable will be constructied and all subscripting variables
will be released. These lists must be differentiated
occasionally by the nature of the innermost dimension
subscript: It may be either a progression vector (xlist=
prog) or a vector of distinct index values (xlist=valu).

The parameters inherent in this xmode are:

Xbase: Index of initial indexed element {ignoring
vector or array gitems). The effect of all scalar gitems
and of the base gvalus of all progression-vector gitems is
incorporated into this xbase.

Xitem: The special indexing variable.
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TABLE 3: FLAGS USED IN THE INDEXING ROUTINES

Throughout the indexing procedures a collection of
sixteen flags--'XFLAG'~-is used to record and decode the
status and nature of the operation. These flags are
contained in a single halfword. The flag name in general
contains the name of the item (g, r, or s) described by the
flag and the name of the alternative states ('1' or '0') for
the described condition. The flags are: )

BO--xqfr: (if xrav=aray) gqitem is fake or real:

t1v-~-fake:
1Q'--real:
B1--xqvs:
t1'--vect:
10t --scal:
B2--xoev:
'1'--erro:

'0'--vali:
B3--x00z:
t1'--jorig
'0t--iorig
B4--xrcs: (if
'1'--copy:

Q' -~-same:
B5-~xrds: (if
or

t1v--diff:

0t --same:
B6--xsvs: (if
'1V-=-vect:
'Q0'~--scal:
B7--xrcd: (if

Xmode= (scal,apvv,vect)
Xmode=1list

Qitem is vector or scalar:

Xmode= (apvv,vect,list)
Xmode=scal

Index origin is error or valid:

Index origin is erroneous
(forces xooz=ones)
Index origin is valid

Index origin is ones or zero:

is 1!

is '0°

xrsf=stor) ritem is copy or same:
Ritem must be copied before
indexing (ritem=(syno,apvv) or
stype is higher than rtype)
Ritem may be indexed directly
xrsf=stor) rtype-stype are diff

same (after any rtype conversion):
Rtype and stype differ

Rtype and stype are the same
xrsf=stor) sitem is vect or scal:
Sitem is not (pseudo) scalar
Sitem is (pseudo)scalar
xrsf=stor and xrcs=copy) rtype-

stype are diff or same (before any

rtype conversion)

*1'--diff:
't --same:
B8--xrav:
*1'-~aray:

10t --vect:
B9--xqpv:
'1*--prog:

(forces xrcs=copy):
Rtype and stype differ
Rtype and stype are the same

Ritem is aray or vect:

Ritem is an array or is a vector
indexed with an elision
Ritem is a vector

(if xqvs=vect) gitem is prog or valu:

Xmode=apvv or xmode=list=prog
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10t--yalu: Xmode=vect or xmode=list=valu
Ba--xrpv: Ritem is prog or valu:
*1'--prog: Rdesc=apvv
1Q0'-~-valu: Rdesc=(vect,aray)
Bb--xrss: (if xrsf=stor) ritem is shared assign
t1v--shar: Ritem is shared variable
10'--golo: Ritem is not shared variable
Bc--xrsf: Ritem is stor or fech:
'1'--stor: Ritem is stored
10*--fech: Ritem is fetched
Bd-bf--xtype: Type of indexing (if xrsf=fech then rtype,
and if xrsf=stor then rtype after any coaversion)

3. The Routines Used in Indexing.

4VMQ§>L“'”‘"“’"TEE objective of these indexing goutines is speed in
the execution of indexing at the expense of program storage
or simplicity in initialization. Much of the complexity of
indexing operations results from the attempt to detect,
decode, and execute the four distinct xmodes. But each of
these modes invokes only the minimum initialization
processing required. For example, no special indexing
variable is constructed unless there are two or more
non-scalar indexing variables and in these cases such an
item is mandatory. And the executors, given the compacted
and optimized parameters which this initialization
generates, are extremely compact in control storage and
extremely optimized in execution iteration.

Indexing operations are executed by a sequence through
several routines. HII analyzes the operation, collects and
records information about it, and passes control either to
routine HIA if ritem is an array or to routine HIV if ritenm
is a vector. These routines reduce the indexing information
into one of the standard xmodes, check the conformality of
ritem and gitem, and pass control either to routine HIF if
ritem is fetched or to routine HIS if ritem is stored. HIF
obtains space for the result and HIS, after obtaining a copy
of ritem if ritem may not have sitem stored into it, checks
the conformality of sitem and gitem. These both then pass
control to routine HIE. HIE executes directly scalar
indexings and invokes HIX to execute batches of vector
indexings.

Three other routines--monadic reverse, dyadic reverse,
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and dyadic rotate--branch into the indexing routines to
complete their operations. These other routines initialize
flags and registers as required. Their processing is then
identical to that of standard indexing operationms. .
—— :914“"{(771{ .
4%%#ﬁ%¢;

4. The Indexing of Arrays.

The routine HIA handles the case of array indices. It
reduces the index, Qitem, from its external form to one of
the four standard index modes. The following describes the
procedure:

The xmode to be used is already known because of the
scanning performed by HII and is determined by the xflag:

Xflags Xmodes
Xqgfr xqpv xqvs
Fake .... Scal scal
Fake valu vect vect
Fake prog vect apvv
Real valu vect list=valu
Real procg vect list=prog -

The special indexing list *XLIST' is a compacted and
optimized representation of the separate index tokens
specified for the indexing operation. It collects in one
place all the information required to execute the requested
fetching or storing. Xlist has the description and shape
vector of the concatenated nonscalar indexes (the shape of
the result for fetching and the conformality requirement on
sitem for storing).

The data space within xlist has two sections: A set of
line items 'XLINE's, each representing an execution
iteration loop (much like a set of nested do-loops) for an
indexed dimension; and a set of index values 'XVALU's copied
form the qgitems for which gdesc=(vect,aray) and not
gdesc=(scal,apvv) and adjusted for the index origin and the
dimension in which they index.

The xlines are the first data items following the
desc-name word in xlist storage. Xlines are ordered with
the outermost (left-most) dimension appearing first and the
innermost (rite-most) dimension appearing last. Each xline
contains four words. There are four forms of xline
{depending on whether the line represents a progression
vector (xline=prog) or a vector of values (xline=valu) and
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on whether the line is the innermost (xline=inne) or not
(xline=oute)):

Oute-valu: B8OMMMMMM XXXXXXXX XXXXXXXX XXVVVVVV
Oute-prog: UGOMMMMMM XXXXXXXX XXXXXXXX 00SSSSSS
Inne-valu: OONNNNNN XXXXXXXX XXXXXXXX XXUUUUUU
Inne-prog: OONNNNNN XXXXXXXX XXXXXXXX 00SSSSSS

The data within the xlines is:

TMMMMMM Y (qelen-*1')%%4¢ jiteration counter for
the dimension

*NNNNNN': OQelem iteration counter for the
dimension

15$S5SS': Xstep index increment in elements on
ravel (ritem) represented by an increment
of gstep in gvalu on the dimension

'"guluUuU': Offset from xaddr at init to first
xvalu for the dimension

'"YYVYVVV': Offset from xaddr at init to final
xvalu for the dimemnsion

The xvalus are the final data items preceding the shape
vector in xlist storage. Xvalus are stored in descending
order within each dimension and the innermost dimension is
stored first. PBach xvalu is the origin zero index in
ravel(ritem) of the element implicitly addressed by that
gvalu in the indexed dimension--it is the origin zero
product of the gvalu and the dimensicn multiplier xwate for
the indexed dimension.

Dimensions are processed from the innermost to the
outermost and certain data items are accumulated during this
process. Zelem is the number of elements involved in the
indexing operation and it is the product of the gelems for
the nonscalar qitems. Xwate is the number of elements in
ravel (ritem) represented by an increment of one in an index
value in a dimension=--it is the dimension multiplier applied
to all indexes in a dimension to alter them from indexes on
a dimension in an array into indexes on the ravel of the
array--and it is the product of any innermore dimension
sizes. Those of these accumulators which are equal toc '1°
on the innermost dimension are instead initialized with a
negative number--this is tested at all points where a
refetence is necessary and this obviates many
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multiplications.

VIII. Conclusions and Recommendations.
A. Conclusions.

In this section are identified the specific hardware,
software, and environmental features which affected this
effort, either negatively or positively. The intent is to
make comments which can be relevant to other complex
programming projects. The main conclusions are:

(1) Feasiblity.

It is possible to write a complex machine feature in
microcode, given the right environment and tools. The
System 370 Model 135 APL Assist met its goals of speed and
space.

(2) The Importance of Interactive Development.

Interactive development using VM/CMS provides an
excellent vehicle for almost all aspects of research and
development activities.

(3) Direct Translation of Microcode is Risky.

A direct microcode translaticn from one machine to
another is not a straight-forward process. This is
particularly true if optimized results are desired. The
direct MPL145 to MPL135 translation resulted in a program
that was twice as large and twice as slow as a design native
to the Model 135.

(4) The Importance of the use of Simulators.

It is not only possitkle but even desirable to develop
and debug microprograms using only simulators. A
well-written simulator magnifies the microprogrammer's
procductivity beyond all reasonable expectations. The fact
that certain peripheral aspects of the machine are not
simulated is of little consequence compared to the many
additional central facilities offered by the simulator.

(S) The Importance of High Level Languages.

A higher-level-language structured compiler is an
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important tool for the production of microcode. The use of
structured programming prevents many label and branch errors
and improves the legibility and modifiability of the code.
The compiler simplifies the programming job since one may
use application symbolic names for machine facilities and
system variables.

(6) The Importance of Optimized Tools.

The software supporting microcode development should be
optimized for the code-and-test environment rather than the
manufacturing environment. This can also result in faster
manufacturing since the quality of the resulting code should
be better.

(7) *Inside-out" Programming is best for Performance.

The best implementation strategy for microcode seems to
be to optimize from the bottom to the top (or inside out).
In doing so one examines the interfaces thus created until a
simple, consistent set is found. The subroutines thus
created then look like new and more powerful op codes in
which the upper levels of the program may be implemented.

If the interfaces in each case consist only of the variable
parameters for the subroutine, and these are maintained in
accessable and invariant locations, then the structuring
will be efficient in speed and space, and will be logically
and physically congruent.

Separating the code into small free-standing
subroutines works excellently in terms of productivity,
maintainability, and expandability. The executor concept
involving independent non-decision-making single-purpose
subsubmodules especially facilitates development.
Partitioning the remaining processing into two disjoint
sections which respectively select executors and invoke
executors greatly reduces the complexity of the control
logic.

(8) Small Programming Teams yield the best Code.

If a highly optimized program is desired, as was the
case with APL/135, a small team is more productive than a
large group. A small team can make the necessary design
tradeoffs much more readily. Even major changes in design
topology are possible at a late date.

(9) Documentation should be done late in the Project.
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The final code including its comments should be the
main documentation of a program. The comments should be
done as late in the devlopment cycle as possible to make
sure that the documentation is consistent in format and
content with the delivered programming. This is a dangerous
reconmendation and could cause serious trouble if the main
structure of the program itself were not well organized and
well written. ‘

(10) Accurate Time Estimates are still hard to make.

In spite of all advanced programming tools and computer
science, in spite of having a well-defined program and a
well-defined goal, it was still difficult to make a accurate
estimates as to how long various tasks would take.

B. Hardware Recommendations.
(1) The Need for a Relocation Trap.

The hardware which underlies an emulator in a
virtual-memory machine must have a cocmpetent trap for
relocation exceptions. When a storage reference to an
untranslatable main-store address occurs, the hardware
should trap to a translation routine, recording the address
from which the trap was made, but modifying none of the
active working registers. These latter can be saved by the
relocation routine if necessary but they must not be altered
by the trap itself. Through a small hardware modification
an adequate trap for the Model 135 was created. The bare
Model 135 does not record the location of the trapping
microinstruction on a relocation exception. It was designed
to support only the "trial fetch" philosophy needed for
emulation of System-370.

(2) The Need for extra Hardware latches.

The hardware should have immediately accessable
settable-resettable-testable latches for microprogram use.
Often one needs to remember some condition for a short
while. There rarely is a register available to hold this
scratch information. Some individually maintainable
hardware latch bits (eight is a good number) would simplify
this greatly. They must, however, be allocated solely by
the local-level microprogram. There should be no demand to
save and restore them in subroutines.
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(3) The Need for better Bit and Byte Instructions.

The hardware should have reasonably powerful
instructions for masking and shifting data bits embedded in
bytes and halfwords. The mask and shift values should be
immediate literals within the instruction. Some of the
table indexing was awkward because it is difficult on the
Model 135 to extract from the operation and variable
descriptions the data bits needed as table indexes, and then
to position them in the appropriate position of the index
field. Some of this was solved by building awkward tables,
aligning the entries to the vagaries of the initial data-bit
alignment, but this scatters the table elements through
sections of control storage and decreases legibility and
maintainability.

(4) The Need for an Adequate "Branch and Count".

The hardware should have a hardware loop-counter which
can be decremented and tested in a single branch instruction
(exactly analogous to a System-370 'BCT'). The Model 135
has such a counter, but its value at any instant can not be
recovered from the counter itself. Since on an interrupt
the emulator needs to save the value of all the hardware
components it employs, the counter was useless. (The Model
135 system-370 emulator uses the counter when it knows no
interrupt is possible or when it can recover the value from
other data conveniently available.)

(5) The Need for a "Branch and Link" with Return.

The hardware should have an efficient BALR
microinstruction. 1In the central loops the code looked like
YBALR BALR BALR BALR BCTR'. Unfortunately each of these
instructions actually was a pseudosubroutine call. The BALR
is implemented on the Model 135 by

EXEC7 BAL) W6

EXEC7 W4 /WS=CWR7
RETURN) W5

where the first instruction sets the return address
(executes the '.AL.') and the pseudosubroutine EXEC7 loads
work storage (from which a branch can be made) and branches
(executes the 'B..R'). A separate EXECn subroutine was
needed for each of the CWRns holding the branch-target field
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used in a pseudo-BALR. Worse, executing three instructioms
instead of one for each action in the innermost loops of an
emulator is costly. (It still was much faster, and much

smaller, than the interpretive execution that it replaced.)

(6) The Need for Ample Microcode Control Storage.

Control storage should be large enough for the project.
In this case the lack of adequate storage greatly increased
the total amount of work necessary. Three methods were used
to compensate for the lack of storage:

(1) Some functions which might have been microcoded
were left to software. The rarely used routines were
omitted whenever possible.

(2) All microcode was carefully optimized for storage
utilization. This was a tedious waste of programmer tinme.

(3) Coding artifices which served no other useful
purpose were invented to compress the code further. They
cost time and reduced the flexibility of the code.

C. Recommendations Concerning the Assembler.

(1) The Need for Convenient Handling of N-Way
Branches.

The assembly language for microprograms should
facilitate, rather than refuse to accept, some of the coding
techniques needed to save space or gain speed. For example,
the APSS assembler requires that all sixteen targets of a
sixteen-way branch be defined even if the data underlying
the branch makes it impossible for many of them to be
reached. This is wasteful of space (or the programmer
writes as hard hexadecimal constants the instructions
required to implement the branch).

(2) The Need for more control over Branch Address
Assignment.

The assembler should be able to float the address
assignments of assembled microinstructions to meet the
branch limits of the instructions and the specifications of
the microprogrammer. The programmer often must use bits in
an address as flags. For example, bits in the address of a
subroutine obtained by a table index can be used to indicate
attributes about that subroutine (or the cases it is
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designed to handle). Bits in the address from which a
subroutine is called (via a branch-and-link) can be used to
contain parameters for the subroutine. Often only certain
bits need be fixed in these cases. Some combinations of
fixed bits the assembler will allow to float (it will assign
the others arbitrarily to meet the requirements of other
code modules) but others it will not. The programmer nust
fix these addresses absolutely, with the result that control
storage becomes unnecessarily chunky, discrete, and
fragmented.
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APPENDIX I:

SIM135 - SYSTEM 370 MODEL 135 MICROCODE SIMULATOR

SIM135 is an interactive simulator written in
System-370 assembler language and executing under VM/CMS.
The simulation covers the physical hardware facilities of
the Model 135 accessible to the microprogrammer. It omits
certain obscure facilities, particularly the outboard ends
of the native adapters. The simulated machine contains
System-370 GPR's, FPR's, and processor storage as well as
Model 135 microcode control registers, work registers, some
of the external registers, local storage, control storage,
and latches.

The description of the individual commands which follows
will explain SIM135 from the user's point of view.

High performance was one of the main goals achieved by
SIM135. ‘Running on the Model 145 it executes over 4500
simulated microinstructions per second. It takes roughly
550 seconds to simulate one second of Model 135 execution
time. Since typical APL test statements execute only a few
thousand microinstructions, the simulation time was very
small. Even when long traces of complete functions were run
(see the TRAX command), the running time was never
excessive.

A. Invoking SIM135

The simulator is executed under CMS, and exists as a
module 'SIM135 MODULE!'. It is invoked by issuing the nanme
of the CMS EXEC file "APLSIMN".

The simulator will load its simulated control store
from a CMS file called CONTROL MEM135. If the file does not
exist, then simulated control store will be set to all
zZeros.

The simulator indicates when it is ready for use by
displaying the message:

CONTROL MEM135 LOADED

following which a CLEAR WS will be loaded. APL mode will

IBM INTERNAL USE ONLY



APL ASSIST FOR THE MODEL 135 PAGE 58
Appendix I. Mod 135 Microcode Simulator

then be entered. The following table describes the
simulator commands :

TABLE OF SIMULATOR CCMMANDS

(note- "display" can mean to type at user's terminal):

B.

DI
DT
AI
Dx

Ax

DI
DW
DA
DC
DM
DP
DT
AX
AW
Al
AC
AM

display next microinstruction address
display work store,

display aux store

display control store

display main store

display program (simulator)

display time (accumulated microinstruction time)
alter next microinstruction address
alter work store

alter aux store

alter control store

alter main store

EXEC execute microinstruction (s)

OLDT display last microinstruction address

PRINT print contents of listed facilities, offline
QUIT terminate simulation program

STOP interrupt simulation on condition

SHOW automatically display changed facilities

INIT initialize facilities

LIST execute a list of stacked commands

TRAX write a trace of executed microprogram to CMS
CODE source statement entry mode (for patching)

Format of SIM135 Commands

All commands may be entered using CMS conventions, i.e.
the command may be entered in lower case, and the
character-delete and line-delete symbols may be used.

TABLE OF COMMAND ARGUMENTS

no arguments

no arqguments

new value for microintruction address

a single hex value, or two values separated by
a dash (-).

a single hex value, or two values separated by
a dash (the second value is ignored)
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EXEC n (decimal), or no argument, in which case 1 is
assumed.

OLDI no arguments

PRINT facility list

QUIT (CLEAR)

STOP stop address list

SHOW ON or OFF

INIT facility or file, see below

For commands which may refer to aux store (DA, AA,
PRINT), the mnemonics GPRn, FPRn, and CWRn are accepted,
where GPRO-GPRF correspond to aux 00-O0F, FPRO-FPR7
correspond to aux 10-17, and CWRO-CWR7 correspond to aux
18-1F.

C. Description of Individual Commands.
(1) The Display Commands (DI,Dx, etc.)

Workstore is always addressed at the halfword level,
and aux store at the full word level. Work store and
control store are displayed in units of a half word, while
aux store and main store are displayed in units of a full
word. Note that where a pair of addresses is used to
specify an address range, e.g. DW 3-5, if the second
argumnent is less than the first, then the second argument is
ignored. Aux store mnemonics are individually converted to
absolute aux store addresses, e.g. DA CWRO-CWR3 is
equivalent to DA 18-1B, which displays 4 words, whereas DA
CWR0-3 is equivalent to DA 18-03, which displays one word.

(2) The Alter Commands (AI, AW, etc.)

The "alter" commands use only the first argument to
determine the starting address of the data to be entered.
In the cases of main and control store, the address may be
any byte in legal range. Upon entering an ALTER command,
the keyboard is unlocked for entry of up to 16 bytes (32 hex
digits), which will be stored consecutively starting at the
address specified in the command. The digits may be entered
with arbitrary spacing. If the number of digits entered is
over 32, or if the data would extend beyond the limit of the
facility, the excess is ignored. If the digit count is odd,
or if invalid digits are entered, an error message is
displayed, and the keyboard is again unlocked for re-entry
of the data. A carriage return without data cancels the
alteration request.
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(3) The Print Command.
The facility list of a PRINT command is:
W A a-a Cc~Cc M m-n

where W refers to work store (always 8 registers), a-a is an
aux-store address or pair of addresses, c-c is a
control-store address or pair of addresses, m-m is a
main-store address or pair of addresses. The facility list
may be followed by an apostrophe (preceded by at least one
blank); up to 75 bytes of commentary may follow the
apostrophe and will be printed in place.

The arguments are separated by ktlanks, and any argument
is optional. If the same facility type appears more than
once, only the last specification is used.

(4) The EXEC Command

The EXEC command argument is n, a decimal number, which
defaults to 1 if the argument is onmitted.

When the EXEC command is entered, the simulator
simulates n microinstructions, unless it reaches a
simulation interruption condition (to be defined later).
Upon completion of n microinstructions, the message

LAST CYCLE: k, I=iiii NEXT=j3j3ij
is displayed, where (1) k is the cycle number of the last
microinstruction executed, (2) iiii is the control-store
address of the last microinstruction, (3) jjjj is the
address of the next microinstruction.

The keyboard is unlocked for further command entry.

(5) The STOP Command

The STOP address list is a list of control store
addresses, separated by blanks, at which the simulator is to
stop and unlock the keyboard for command entry. Existing

stop flags can be turned off with this command. There are
three subargument formats:

S addr for stopping after microinstruction
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execution.

P addr for stopping before microinstruction
execution.

OFF addr to turn off stop flags (both types)

'P' and 'OFF' must precede each address to which they
apply. 'S' is the default and may be omitted.

For example: STOP 8 24 P 30 OFF 16

would mean stop after instructions at addresses 0008 and
0024, stop before instruction at address 0030, and turn off
STOP flags at instruction 0016.

(6) The INIT Command

The "INIT" command may have three forms of argument -
the facility form, the file form, and the list form.

The facility form is:
INIT x addr data,data,...
or
INIT I addr

where x may be W, A, C, or M for work store, aux store,
control store, or main store, respectively. Addr represents
an address at which the initialization is to begin. I
refers to the next address from which to fetch a
microinstruction for execution when an "EXEC" command is
issued.

The command argument data (following the facility
address) consists of "units" of hex digits separated by
commas. A unit is up to four digits for work and control
store, and up to 8 digits for aux and main store. The data
is stored starting at the specified address. A comna (with
no digits) indicates skip a unit. If the digit count is low
in a unit, then the unit is zero-filled from the left.

The file form of the "INIT" command is:
INIT FILE filenanme

where filename is the name of a CMS file (maximum 7

IBM INTERNAL USE ONLY



APL ASSIST FOR THE MOLEL 135 PAGE 62
Appendix I. Mod 135 Microcode Simulator

characters) with file type "DATA". The file may contain
images of WINIT" commands, exactly as above (beginning with
the word INIT), and may also contain images of "“STOP"
commands, exactly as above (beginning with the word STOP),
and may contain LIST initialization commands as described
below.

The LIST form (in an INIT FILE) is:
INIT LIST n

where n is a decimal number from 1 to 127. Following this
conmand may be images of commands as they would be entered
from the terminal. The legal commands in a list are DI, DA,
DW, DC, DM, PRINT, SHOW. The list must be terminated by an
WEND" command. At initialization time, only the command
keywords are examined for legality; the arguments are
checked when the commands are executed.

If INIT LIST n is entered from the terminal, then a
message will be displayed indicating the number of commands
currently in list n. If list n is empty, the number 1: will
be displayed, at which time a command image may be entered
into the list. If the command keyword is legal for a list,
it will be stacked, and the number 2: will be displayed,
etc. To terminate list initialization mode, enter the
command "END". If the list is not empty, the first conmmand
will be displayed, after which it may be overwritten by
entering a new command, or it may be deleted from the list
by entering “DELETE", or the next command may be displayed
by entering a carriage return. The list edit mode is exited
by entering “END".

The %“LIST" command has five formats:

LIST n addr addr (1)
LIST 0 addr addr (2)
LIST n OFF , (3)
LIST n ON 4)
LIST n (5)

Format (1) causes the execution of list n whenever any
of the addresses in the argument list are fetched as
microinstruction addresses during simulation; the list is
executed before the microinstruction. Format (2) has the
effect of turning off the list flags at the indicated
addresses. Format (3) causes list n to be deactivated
during simulation. Format (4) causes list n to be
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reactivated. Format (5) causes immediate execution of list
n regardless of whether it is deactivated.

(7) The SHOW Command

The SHOW command will cause a display of the cycle
number and microinstruction address of any microinstruction
which causes a change in the contents of work or aux store,
or causes a store operation to main or control store
(vhether or not the new value differs from the old), along
with the value of such changes.

SHOW OFF disables the SHOW function.

SHOW ON may be followed by a facility list for
selective tracing, for example:

SHOW ON W 0 W 4-6 A 3 A 10-1A C 600-5FFF M O-7FFFF

which monitors work regs 0, 4, 5, 6, aux regs 3 and 10
through TA, control store in the range 0600 through S5FFF,
and main store in the range 000000 through 7FFFF.

Notice that only one control store range and one main
store range may be specified in the argument list.

In addition, the argument list may include "P", for
offline print, and/or "T", for full trace, i.e. trace
branches. If "T" is used, it should precede the list of
facilities whose changes are to be displayed.

The command "SHOW ON TV
would produce an instruction trace without showing the
values of any facilities.

(8) The QUIT Command

The QUIT command signals the end of the session. The
QUIT command may take the argument "CLEAR"™, which causes a
CLEAR WS to be loaded, provided the simulator was entered

via 'A0'. If it as entered by an external interrupt then
QUIT, with or without argument, is equivalent to "APLX".

(9) The TRAX Command.
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The TRAX command provides a trace of microaddresses in
an external CMS file (e.g. disk). This provides a faster
tracing facility than SHOW. Also one can use other programs
to study the results of a long trace. It was used to locate
high use kernels in the APL emulator for special
optimization. It was also used tc verify that all the
correct branch .paths were executed in test cases.

(10) The CODE Command

The CODE command put the simulator in source-statement
entry mode. It thus provides a direct capability to patch
the microcode being simulated by providing the hex code
corresponding to the source statements entered. The inputs
are regular assembly language statements. WEND" terminates
the use of CODE. For example:

User: CODE
_ User: WO/W1=MS (WO1) FW SK -
SIN: 0246
User: #0-3=wW0-3,0R,GPR (W6DO) DW
SINM: 0793
User: END

D. THE SIM135 TO CMS/APL INTERFACE

The simulator is interfaced to CMS/APL so as to allow
simulation of microcode while using the APL software. The
interface allows terminal editing while in the simulator,
but disallows it in APL mode.

A clear workspace will be loaded, and the system will
be APL mode. At this point (assuming the 145 APL emulator
is loaded) the system should behave as a normal APL systenm.

The simulator is entered by depressing the "atta" key
and issuing the CP command "EXT", for external interrupt.
This causes the simulator to be entered, at which time all
ordinary simulator functions are possible.

Three commands have been added for use with APL:
APCT set microinstruction count (on "AO" entry)

(requires decimal argument).
APSM activate simulation of "AQ"™ op code
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APLX exit to APL
APLX has three forms:
APLX (no argument): resume APL from external interrupt

APLX addr addr ...: return to APL upon execution of
microinstruction at any indicated
address (the microinstructions at
these points should be "IFETCH"
microinstructions)

APLX TO addr: immediate return to APL via micro
instruction at indicated address
(which should be an IFETCH).

Note that the no-argument form is valid if and only if
the simulator was entered via external interrupt, while the
nTo" form is valid if and only if the simulator was entered
via the 370 op code "AQY,

APLX (second form) may be used in an INIT file.

E. LINKAGE CONVENTIONS.

Entering the simulator via the external interrupt
causes the real general purpose registers to be saved. They
will be reloaded upon exit from the simulator via "APLX"
command (except register 14).

Entering the simulator via 370 op code "AO" causes the
real GPR's to be stored in the simulated GPR's, the real
floating point registers to be stored in the simulated
FPR's, and the real condition code to be set in the
simulated condition code. When returning to APL, the real
GPR's are loaded from the simulator, the real FPR's are
loaded from the simulator, and the simulated condition code
is set in the real machine.

It is important to note that entering the simulator via
"AQ" causes the microword at control store location 0002 to
be overlaid with an IFETCH which is used to begin -
simulation; therefore, location 0002 should be avoided in
the assembly of microcode to be simulated together with the
APL systen.

Note that the branch address following an IFETCH is
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determined by hardware, and in the case of “A0" the branch
address is 0304.

Upon returning from an "AO" entry the address at which
to resume APL execution is calculated from the contents of
work registers Wu/W5. If these registers contain the resune
address, and the simulator is exited via IFETCH, the correct
address will be calculated. IFETCH updates W4/W5 by +2 or
+4 depending on whether the 370 op code which is fetched is
an “RR" type or not. Therefore, great care should be
exercised in exiting via any microinstruction other than
IFETCH. Note also that IFETCH sets the condition code to be
reflected to the real Model 135,

The APSM command initiates simulation by invalidating
the checkword used by the 145 APL emulator for "AO" op
codes. This checkword is part of the workspace, and is
reloaded when a workspace is loaded.
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APPENDIX II:
THE ASSEMBLER FOR MODEL 135 MICROCODE (ASM 135)

One of the major microprogrammning development tools
was ASM135, the microcode assembler and linkage editor. It
was part of the interactive code-and-test system described
in Sections III and IV. Since it was built on the original
APSS batch system, it is proper to start with a description
of APSS, then describe how it was modified to becone
ASM135.

A. The Original APSS.

1. Organization and Purpose.

APSS (A Processor Support System) is a library of
05/360 application programs designed to aid the development
and generation of microprogram control store information for
the 370/3135. The programs were written at the IBM UK
Laboratories in Hursley.

APSS provides two important engineering services,
namely the maintenance of program records and generation of
the data that is to be written onto the initial microprogram
disk of the 3135 console file. (See Figure 1). It also
produces the associated field engineering microprogram
documentation. The various APSS programs are normally
involked by catalogued procedures of job control language
(JCL) statements.

2. Use of the APSS Microprogram Master Tape

The 370/3135 microinstruction statements are released
by SCD to the manufacturing plants on an 0S/360 magnetic
tape data set. This data set is referred to as the
microprogram master tape (MMT). The MMT contains data
comprising the source microinstruction statements, encoded
control word bit patterns and various tables relating the
feature bill of material (BM) numbers to microprogram names
that are recognised by APSS.

The MMT can be altered using the APSS maintenance
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programs. Such changes would normally be made as a result
of a request for engineering action (REA). The maintenance
programs merge the data obtained from the current MMT with
the REA information provided on punched cards and produces
as an output a new MMT; the current MNT remaining
unchanged.

The incoming micro instruction changes to the MMT are
translated into a corresponding two byte control word bit
pattern and recorded with the eighty byte card onto the new
MMT. Microinstruction branches are not completely
translated because the absolute location of the microprogram
is nct known at this stage of processing. The translator
program scans each symbolic microinstruction and searches a
dictionary of microinstruction primitives and prototype
templates contained within the APSS program library.

3. How APSS is used in Manufacturing.

The MMT contains all of the 3135 basic and feature
microprogram data. The console disc file however, must
contain microprcgram corresponding to a customers individual
control store requirements. The selection of this
microprogram is specified by punched cards containing
production control information. This includes feature BM
numbers corresponding to the customers individual feature
requirements, CPU serial and order number. APSS attempts to
match each BM number from the production control cards with
a corresponding feature BM number recorded in a table on the
MMT.

The entries in this table are derived from the 3135
microprogram bill structure and represent every possible
feature that requires microprogram. If a match occurs,
further information is obtained from the MMT which
identifies the micro program associated with the matching BM
number. This information is accumulated until every BN
nunber present on the production control input is matched.
APSS then commences to read the desired microprogram from
the MMT: the selection is written onto an intermediate data
set.

While the program is reading the MMT, various
conditional selection statements will be encountered
interspersed with the microinstructions. These statements
contain mnemonic operands that are exact counterparts of the
BM numbers that occur in the BM tables mentioned above. If
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one of these BM's is present on the production control cards
then the conditional selection statement is obeyed and the
following microinstructions are either skipped, or included
in the selection.

4. The Assembly Process.

The microinstructions recorded on the intermediate data
set represents a sub-set of the tctal MMT and exactly suit
the customer's individual control stcre requirement. During
the selection process, the microinstruction branches are
completely cross-referenced. This is a necessary
preliminary to the allocation of control store addresses and
generation of the microrrogram listing.

The control store address assignment programs analyse
the selected source microinstructions and allocate the
necessary control storage space while checking the network
of branch microinstruction connecticns. Subsequent programs
complete the partially assembled bit patterns of the
branching microinstructions mentioned above and sort the
microinstructions into control store address order. The
final stages of the generation creates the disc data by
attaching track/sector control information to the sorted and
encoded microprogram. The print data comprising the micro
program listing and control store contents map are also
produced at this tinme.

The output from APSS is recorded on the print image
data set and the microprogram image data set. These data
sets are subsequently used to write an disc for the console
file and the supporting field engineering documents. The
actual writing of the disc and production of the documents
is not a part of the APSS system. On-line output provides
detailed status information about the run and indicators and
failures that may have occured.

5. summary of the Data used and produced by APSS.

An MMT contains a leader (X) and trailer (Z) record, as
well as CSECTs, which are of the following types:

Bill of Material CSECT
Load CSECT

History CSECT
Configuration CSECT
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Routine CSECT

The CSECTs are made up from cards, which are of the
following types: '

Title card

End Card

comment card

Routine card (Microinstruction)
Load CSECT card

Bill of Material card
configuration card

Assignment Control card
Selection Control card

These cards are CSECT detail cards. These cards plus
control cards (CREATE| UPDATE| DELETE| AND LIST) provide
input for the create/ update phase.

Input for the assignment phase consists of a MMT and
production Control (PC) cards. There are 6 types of PC
cards. They pernit specifying BM, system identification,
CSECT| specific MMT, and feature. Those cards are used to
select some or all of the cards on a MMT to create a
selected file corresponding to a specific 3135 being
manufactured. This selected file then ha assigned to all
instructions. Program listings and console file IMP disk
images are produced.

B. Modifications made to the APSS Systen.
1. The Creation of the 0S Version.

The first assembler used was an 05 version. Since APSS
was available in both symbolic and object module form, the
main effort involved deleting functioms and packaging the
program. APSS contains 2 procedures which in turn contain 4
job steps. It utilizes 40 data sets, some in multiple job
steps.

The first decision was to eliminate the use of the
MMT. Most of this project involves assembly of new or major
reworks of present code. The code is very unstable, and the
concept of a MMT did not seenm practical in a development
atmosphere. This decision permitted the deletion of the
UPDATE job step and the PROCON and SELSIN phases of XASSIGN.
It also permitted deleting the SORT job step.
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The second decision was to eliminate the microprogram
image data set, and produce instead a data set for input to
the SIM135 simulator. This permitted deleting the MINFORM
phase of XASSIGN.

The next decision was to imbed FORMAT as a subprogranm
of XASSIGN to produce a single job step. It was now a
single program which accepted a subset of APSS input and
produced as output listings and simulator input, i.e., an
assembler. The number of data sets had been reduced to 10.
This system ran under 0S and was in use for several months.

2. The CMS Version.

The second version of the assembler was a CMS version.
As the use of the assembler grew, the OS overhead became
excessive, and a CMS version offered the prospect of less
overhead and greater speed. A second advantage was the
prospect of several people being able to use ASM 135
simultaneously. Only one 0S machine was active in the CP
environment, which meant only one 135 microcode assembly at
a time was possible.

Two major changes were made. The first was the
replacement of 0S I/0 by CMS I/O. The second change was in
the method of main storage allocation. In the 0S version,
each subroutine is dynamically loaded on demand, and the
space released when the subroutine is finished. This is the
standard method of conserving main memory in a standard
system. However, if CP/CMS is to be utilized, there is no
advantage to this dynamic loading and releasing. The sanme
effect is obtained by the paging performed by CP. Thus it
was decided to link all subroutines together as one large
core load and let CP perform store management.

Another effort was made to incorporate subroutines
inline. Again simplification and common notation were the
desired objectives. It had been observed that code was
present in subroutines which was needed in the original
system, but which was never executed in the new system since
some functions had been deleted at a higher level. Multiple
independent subroutines make detection of this redundant
code difficult. The number of subroutines was cut to 13 and
the number of data sets to 6.

The programming techniques used in APSS made its
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modification relatively easy. Common labeling schemes,
conmon names for identical constants and variables, and the
many comments made the work easier. The general procedure
involved in substituting subroutines in line consisted of
replacing the CALL by the body of the subroutine, adding the
variables and constants to the calling programs variables
and constants, and adding DSECT's to the calling DSECT's.
Global changes had to be made to convert parameters into
arguments. Addressibility and register usage had to be
arranged for, as did exiting. In many cases, the exit of a
subroutine was physically at the end of the code, so that it
could be deleted, producing a fall-thru case. In other
cases, a branch to the return point was necessary. The
parameter initialization was removed also. The work was
greatly facilitated by the use of the CMS editor.

The last version incorporated only one basic change.
It was observed that most of the time in the assembly
process was being spent in the statement scan during the
first pass. This was a subroutine which had never been
modified since it provided a necessary function, and did not
superfically have redundant facilities. However a
replacement subroutine was coded which turned out to be
faster by a factor of greater than 10. This was imbedded.

Many minor changes had been made in other sections
also, but not actually incorporated. With the replacement
of the scanning subroutine, however, the other changes were
incorporated. The result is ASM135.
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ABEND
ACTxx =~
APLEC -
APSS -
APV
ASCAN
ASM135
ASTACK
a0
BALR -
BM -
CCODE -
CHAR -
CONVE -
CPU -
CSECT =~
CWRx -
DAT -
DLEXE -

DSC -
DTRAP -

EC-lLevel
EXECUO -
FAKE -
FETCH
FIB

FINIS
FNAME
FPRx
GPRx
Hxx -

HIPE
IFETCH

IMPL -
INTE -
IPL -
IORIG
IREQU
JCL

LBRAK
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GLOSSARY OF ACRONYMS AND ABBREVIATIONS

Abnormal end.

Actions taken as a result of SCAN.

S/370 opcode invoking the APL assist. (see 10)
"A Processor Support System". Mod 135 assembler.
Arithmetic progression vector.

Current scanning address.

VM/CHNS Asembler for Mod 135 microcode.

Current stacking address.

Special S/370 opcode. Invokes the APL assist.
Branch and 1link with return op code.

Bill of materials. List of machine features.
Condition code.

Character type variable.

In copying--type to which variable is converted.
Central Processing Unit.

Control section. A named microcode routine.
Mod 135 microcode 8 working registers. (CWR0-7)
Dynamic address translaticn.

A Mod 135 external immediate. Signal on the
control console.

Directly addressable common control store.

A Mod 135 external immediate. Set when APL is
being emulated.

Engineering change level.

Execution. Part of the FETCH~EXECU-STORE loop.
Short name for "pseudo-scalar".

Fetch. Part of the FETCH-EXECU-STORE loop.
Function Invocation Block. Is put on the stack
for a function.

End of the FETCH-EXECU-STORE loop.

A function's internal name.

5/370 8 Floating point registers. (FPR0-7)
S/370 16 general purpose registers. (GPRO-F)
Three letter names used for the APL-135
microcode routines or CSECTs ~(See Table 1).
Highest operand precision (of logi, inte, real)
A Mod 135 microcode instruction. Beginning of
a S/370 operation. ,
Initial micro-program load.

Integer type variable.

Initial prcgram load.

Index origin in APL. (0 or 1)

Mod 135 external immediate. Quantum-end request.
Job control language statements for OS.

Token representing the left bracket of index.
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LITEM Left operand for a dyadic APL operator.

LNAME Name of left operand of an APL operator.

LOGI - Logical type variable.

MMT Microprogram master tape.

MPL135 High level language compiler for Mod 135.

OCODE - Op code. Usually means an APL operator.

ocopuy - Op code. Second step of inner/cuter product.

0ocODV - Op code. First step of inner/outer product.

OMODE - Type of arithmetic for execution of an APL
operator (logi, inte, real).

PRI - Pending real interrupt (hardware interrupt)

PSW - §/370 Program Status Word.

QITEM - An intermediate operand in the execution of a
complicated operaticn.

QITEM - In Indexing--the indexing variables.

RBRAK - Token representing the right bracket of index.

REAL - Real type variable.

RITEM - 1In Indexing--randcmly accessed variable.

RITEM - Right operand of an APL operator.

RNAME - WName of right operand of an APL operator.

SIM135 - Simulation program for executing Mod 135
microcode programs.

SITEM - A shared or distinguished variable.

SITEM - In Indexing--a sequentially accessed variable.

SITEM - In copying--the source item.

STORE - Store. Part of the FETCH-EXECU-STORE loop.

TITEM - In copying--the target iten.

TLB - Translation look-aside buffer.

TNAME - Target name.

VDELT - Delta--no. of elements frcm the first to final
value of an APV. :

VELEM - Number of elements in APL indexing.

VM/CMS - Virtual machine conversational monitor system

VSAPL - Version of APL running under VS.

VSTEP - Step or increment in APV indexing.

WS - Workspace in APL. ‘

WWR - Mod 135 microcode 8 working registers. (WWR0-7)

XADDR - Internal address of an API Variable,

XARGn - Internal synonym names for arguments of
functions.

XBASE - 1Index of the first indexed element.

XDESC - Internal descriptor of an APL Variable.
(Scalar, Vector, Array).

XELEM - An element (value) of an APL vector or array.

XFAKE - Dummy variable used to make a monadic operator
into a dyadic operator.

YFLAG - 16 index flags. Used to record the status of
and to decode index ops.

1
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XITEM

XLIMI
XLINE
XLIST
XMASK
XNAME
XPARNM
XSHAP
XSTAK

XSTAT
XSTEP
XTYPE
XVALU
XWATE

ZITEM
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Any operand of an APL operator. (e.g. LITEN,
RITEM, LNAME).

Number of Indexed elements.

Indexing--represents an index iteration loop.
Indexing-- control list,

A byte used in logical arithmetic operations.
Internal name of an APL variable.

Parameter for and indexing operation.

Shape of an APL vector or array variable,
Logical order of the tor 4 stack iteams.
(Normally ®197E').

Registers to maintain address of a third wvariable
in an operation.

Index step or increment as computed from XLINE.
Type of an APL Variable (part of XDESC)

Value of an APL variable. Sometimes means first
value or next value of a vector or array.
Indexing weight. The no. of elements represented
by a step of one in an index.

Result variable from the execution of an APL
operator.
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report also discusses some of the lessons systems., Perhaps
the conclusions .and recommendations can save future microcoding
groups some time and trouble.

8. REMARKS :
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