Cambriage Scientific Center

IBM

Data Processing Division

An Introduction to CP-67/CMS
L. H. Seawright, J. A. Kelch

320-2032
September 1968

320-2032

AN INTRODUCTION TO CP-67/CMS

L. H. Seawright

J. A. Kelch

International Business Machines Corporation
Cambridge Scientific Center

Cambridge, Massachusetts

September, 1968

320-2032
September, 1968
Scientific Center Report

AN INTRODUCTION TO CP-67/
CMS

L. H. Seawright and J. A. Kelch

International Business Machines
Corporation

Cambridge Scientific Center

Cambridge, Massachusetts

Abstract

CP-67/CMS is a time-sharing system that provides easy, conversa-
tional use of a terminal-oriented IBM System /360 data-processing
configuration. The system has two independent components: the Con-
trol Program (CP-67) which manages the resources of a System/360
Model 67 such that remote users appear to have a dedicated System/
360 at their disposal; and the Cambridge Monitor System (CMS), a
conversational operating system designed to provide a wide range of
capabilities through relatively simple commands at a terminal. CP-
67/CMS was developed at the IBM Cambridge Scientific Center.

Users communicate with the system through commands that cause com-
pilation, file creation, and numerous other operations. Familiarity
with the entire command set is not necessary in order to use the system;
typically, if the system is to be used for an occasional Fortran compila-
tion and execution, a knowledge of only two or three commands will be
sufficient. Should the user's needs be more varied, however, numerous
commands are provided which support many complex operations.

Index Terms for the IBM Subject Index

Computer Systems

IBM 360-67

Time-Sharing

Virtual Systems
Conversational Computing
Interactive Computing
Remote Computing
On-Line Debugging

07-Computers
21 -Programming

&

The following is a complete list of Cambridge Scientific Center

Technical Reports. Individual copies are available upon request

from IBM Corporation, Cambridge Scientific Center, 545 Technology

Square, Cambridge, Massachusetts, 02139,

320-2000

320-2001

320-2002

320-2003

320-2004

320-2005

320-2006

320-2007

320-2008

320-2009

320-2010

Production Sequencing by Combinatorial Programming
by J. F, Pierce and D. J. Hatfield

On the Solution of Integer Cutting Stock Problems
by Combinatorial Programming - Part I
by J. F. Pierce

Application of Combinatorial Programming to a Class
of All-Zero-One Integer Programming Problems
by J. F. Pierce

A Multi-Item Version of the Economic Lot Size Model
by J. F. Pierce

String Processing on the System/360:
Techniques and Example
by S. E. Madnick

SPL/1: A String Processing Language
by S. E. Madnick

An Approach to the Two Dimensional, Irregular Cutting
Stock Problem
by R. C. Art, Jr.

A Virtual Machine System for the 360/40
by R. J. Adair, R. U. Bayles, L. W. Comeau,
R. J. Creasy

Applications of Time-Shared Computers in a Statistics
Curriculum
by M. Schatzoff

Efficient Calculation of All Possible Regressions
by S. Fienberg, M. Schatzoff, R. Tsao

An Experimental Comparison of Time-Sharing and
Batch-Processing
by M. Schatzoff, R. Tsao, R. Wiig

Cambridge Scientific Center Technical Reports (continued)

320-2011
320-2012

320-2013

320-2014

320-2015

320-2016
320-2017
320-2018
320-2019
320-2020
320-2022

320-2023

Computer Diagnosis:
by E. Hoffer

A Review and Discussion

URBAN5: An On-Line Urban Design Partners
by N. Negroponte, L., Groisser

A Study of the Effect of User Program Optimization
in a Paging System
by L. W. Comeau

A Second Order Exponential Model for Multidimensional

Dichotomous Contingency Tables, with Applications
in Medical Diagnosis
by R. F. Tsao

CP/CMS User's Guide

COMB User's Guide
by M. Schatzoff

Design and Implementation of CHSMOS
by M. Schatzoff, R, Tsao, T. Burhoe

On the Truck Dispatching Problem, Part I
by J. F. Pierce

Computational Probability
by U. Grenander, R. F. Tsao

A Conversational Partition Monitor for OS/360 MFT
by C. Johnson, R. Mitchell

Linguistic Tendencies in Pattern Analysis
by U. Grenander

SCRIPT: An Online Manuscript Processing System
by S. E. Madnick, A. Moulton

*Ekistics, Vol. 24, #142, Sept. 1967, pp.289-291

Cambridge Scientific Center Technical Reports (continued)

320-2024

320-2025

3202026

320-2027

320-2028

320-2029

320-2030

320-2031

320=2032

320-2033

Mass Storage Software Simulated Associative Memory
for PL/I Graphics
by A. J. Symonds

Experimental System for Graphics in PL/I
by C. I. Johnson

A Feature Logic for Clusters
by U. Grenander

Multi- Processor Software Lockout
by S. E. Madnick

The Scattering of Sound by a Gas Bubble In an
Elastic, Viscous Medium
by J. W, Horton

A Formulation of the Carotid-Artery Baroceptor
Transducer Problem
by J. W. Horton

On the Solution of Integer Cutting Stock Problems
by Combinatorial Programming - Part 2
by J. F. Pierce

Pipe Network Analysis in Integrated Civil Engineering
Systems (ICES)
by K. T. H. Liu

An Introduction to CP-67/CMS
by L. H. Seawright and J. A. Kelch

Multi Access Systems - The Virtual Machine Approach
by M. S. Field

II.

II1.

IV.

VI.

VII,

VIII,

TABLE of CONTENTS

COMPONENTS OF THE SYSTEM.,

SYSTEM ENVIRONMENT ,

THE CONTROL PROGRAM-67 .

THE CAMBRIDGE MONITOR SYSTEM ,

File Management under CMS
CMS Commands

CMS Batch Monitor.

CONTROL PROGRAM CONSOLE FUNCTIONS .

CMS COMMANDS |,

CP-67/CMS TERMINAL SESSION.

APPENDIX.

A. Devices Supported by CP-67 .

B. Devices Supported by CMS . .

BIBLIOGRAPHY. .

11

12

13

17

g B

26

. 27

28

I Components of the System

The CP-67/CMS time-sharing system consists of two independent
components: the Control Program (CP-67) and the Cambridge Monitor Sys-
tem (CMS). The Control Program creates the time-sharing part of the
system to allow many users to simultaneously perform work. The Cambridge
Monitor System provides the conversational part of the system to allow a user
to monitor his work in a conversational manner.

Both components are independent of each other. CP-67 can be used
on an appropriate configuration without CMS and CMS can be run on a properly
configured System/360 as a single-user system without CP-67 (see Appendix
A and B for appropriate configurations). If CP-67 is used without CMS, an
operating system or systems must be chosen to provide the conversational
or production aspect of the system as CP only provides the time-sharing cap-
ability.

CP-67 is capable of running any System /360 operating system (includ-
ing OS5/360 and DOS) as long as that system does not include any timing de-
pendencies or self-modifying I/O sequences. CP-67 is also capable of running
any System/360 operating system along with CMS in a multi-programming mode
concurrent with its usual time-shared, multi-access operation. If the System
/360 operating system contains telecommunication facilities, CP will allow
that system to control the 2702 transmission control unit and the user to DIAL

into that system.

II. System Environment

The environment of CP-67 is one of 'virtual machines'. A virtual ma-
chine is a functional simulation of a real computer and its associated I/O de-

vices. CP-67 builds and maintains for each user a virtual System/360 machine

from a predescribed configuration. The virtual 360 is indistinguishable to
the user and his programs from a real System /360, but it is really one of
many that CP-67 is managing. CP allocates the resources of the real ma-
chine to each virtual machine, in turn, for a short '""slice'’ of time, then moves
on to the next virtual machine - thus, time-sharing. h

Since the virtual machines are simulated, their canfigurations may
differ from each other and from the real machine. For instance, the real
machine may have 512K and eight disk drives and the virtual machine can
have 768K and two disk drives. One virtual machine may have a virtual 2702
and run an OS-based system and another virtual machine that does not have a
virtual 2702 may run CMS. One virtual machine may have a remote printer
and a remote card punch while another virtual 360 may have a dedicated
printer and 2250. Regardless of the configuration, each user controls his
virtual machine from his terminal, which is, effectively, his console key-
board.

Like real machines, virtual machines will operate most efficiently under
an operating system. The Cambridge Monitor System (CMS) is designed to
allow full use of a System/360 through a simple command language entered at
the console (in the case of a virtual machine, at the terminal), CMS gives the
user a full range of capabilities -- creating and managing files, compiling and
executing problem programs, and debugging -- using only his remote terminal.
Since each user has his own virtuai machine with his own copy of CMS residing
"in it", mnothing he does can affect any other user; if he destroys the CMS nu-
cleus or abends the CMS system, he can re-IPL his virtual machine and con-
tinue without disturbing other users. In addition, since users cannot get ''out-
side' their virtual machines, CP-67 is protected from any user error, CMS

also provides a batch monitor for compile, load, and go type jobs coming from

tape and cards. The batch monitor can be run from a virtual machine as a

background system with conversational CMS users on other virtual machines.

FIL: The Control Program - 67

Before a user is authorized to use CP, he must be assigned a USERID,
which identifies him to the system, and a password, which is checked when he
"logs in''. Associated with each USERID is a table describing the virtual ma-
chine assigned to that user. Whenever he logs in, CP sets up this virtual 360
machine for him. Although all the virtual machines may be different, most
will be set up with the configuration expected by CMS, the most commonly used
operating system. They will include at least 256K bytes of core storage, two
disk .drives, a console (the terminal), a card-read-punch unit, and a printer.
The real system will usually have a larger number of disk drives and/or a
drum, tape drives, and perhaps more core storage.

Because there is not room in real core for all users' virtual core, a

technique called "paging' is used by the system. Virtual core is divided into
4096-byte blocks of storage called "pages''. All but currently active pages are
kept, by the system, on direct access seconddry storage; as active and inactive
pages change status they are ''paged' in and out of real core on a demand basis.
While the paging operation is being perfomed for one virtual machine, another
virtual machine can be operating. The paging operation, and resultant alloca-
tion of real core to a given user's pages, appear random to the system. Special
hardware is provided on the System /360 Model 67 that translates, at execution
time, the user's (or user program's) addresses into the current real addresses
of the randomly located pages. This is called "dynamic address translation''; it

is transparent to the user.

Because of the virtual machine concept employed by this system, only
the Control Program (CP) may operate in the supervisor state on the real ma-
chine. All programs other than CP - that is, all programs executing on vir-
tual machines -— operate in the problem state on the rcal machine, By a special
interrupt-handling procedure, however, CP supports what amounts to a virtual
supervisor state on the virtual machine, All user interrupts, including those
caused by attempted privileged operations, are handled by CP, which then re-
flects to the user program only those the user program would expect from a
real machine. The user may expect his programs to execute on his virtual ma-
chine in a manner identical to their execution on a real System/360.

All virtual machine I/O operations are handled by CP, which must trans-
late them into real machine I/0 operations. This requires two translations,
accomplished as follows: CP intercepts all user I/O when Start I/O is issued.

It translates virtual device addresses into real device addresses, translates
virtual core storage addresses into real core storage addresses, ensures that
all necessary pages are in real core storage, builds a CCW string for the user,
and issues SIO when the channel is free. When CP receives an interrupt indi-
cating I/O completion, it sets a "ready-to-run“' flag in the user's virtual ma-
chine status table; when control is returned to the virtual machine, the proper
I/0 interrupt is simulated. The virtual machine is not given control from the
time it issues an SIO until CP delivers the simulated I/0O interrupt. In the mean-
time, another virtual machine(s) may be operating.

All virtual machine unit record I/O is spooled onto disk by CP. Thus,
any card deck to be ''read'" by a virtual machine must have been read by CP
prior to the user's call for it on his virtual machine or transferred to that user
from another user's files via the XFER console function in CP; the physical

deck must have been preceded by a card containing the USERID, so that CP can

=

&

know who the card-image file is for. Later, when the virtual machine has
"read' the card deck, a card reader end-of-file is simulated. Card and
printer output, similarly spooled, is not queued for physical output until CP
is notified of end-of-file in one of three ways: the user logs off the system
(end-of-file is assumed); the CLOSE console function specifies the (virtual)
address of the device to be clésed; or CP detects an invalid CCW addresses
to the device (end-of-file is assumed). Further output for a closed device is
assumed to start a new file. So that the system operator can separate physi-
cal output, printed and punched output files are always preceded by a record
(supplied by CP) that contains the USERID,

The CP console functions allow the user to control his virtual machine
from the terminal much as an operator controls a real machine. To perform
an IPL, for instance, the user types "IPL'" and a device address or the name
of a ''named' operating system, such as CMS. The user can stop his virtual
machine at any time (by depressing the ATTN key) and request display of any
portion of his storage and registers. He can modify the contents, if desired,
and restart his machine. CP also recognizes a few special purpose commands,
such as the XFER function mentioned above, fhe QUERY function to obtain the
number of users on the system and their USERID's, the MSG function to com-
municate with other users, the TIMER function to control the interval timer,
the DIAL function to connect the terminal to a telecommunications-based opera-
ting system, and the ATTACH and DETACH functions to add or remove 1/O de-
vices from a virtual machine configuration (ATTACH can only be issued by the
OPERATOR). See Section V for a brief description of the CP-67 console func-

tions.

IV, The Cambridge Monitor System

The Cambridge Monitor System (CMS) is a single-user, conversational
operating system, capable of running on a real machine as well as on a virtual
machine. It interprets a simple command language typed in at the operator's
console (in this case, the user's remote terminal).

Whether running on a real or a virtual machine, CMS expects the follow-"

ing machine configuration:

At least 256K bytes of core storage.

1

1

device “virtual symbolic :

' address name :
__ ;
1

1052 009 CON1 console i
2311 190 DSK1 system disk (read-only) ,
2311 191 DSK2 permanent disk (user files) |
#2311 192 DSK3 temporary disk (work space) |
1403 00E PRN1 line printer :
2540 00C RDRI1 card reader ;
2540 00D PCHI1 card punch ;

% 2400 180 TAPI tape drive !
* 2400 181 TAP2 tape. drive :
i

]

e m e e G e e e S o em S A G e M e e e e o N S M s G S e e e e eu Em m mm e A

* The 2311 for the temporary disk and the two 2400 tape urives
are optional devices; they are not included in the-minimum configuration.
]
Under CP, of course, these devices are simulated and remapped to diff- «
erent addresses and/or different devices. For instance, CMS expects a 1052

printer-keyboard operator's console, but most remote terminals are 2741's;

CP handles all channel program modifications necessary for this simulation.

Under CP, all CMS users share the read-only system disk; on it
reside the CMS nucleus routines, which the user IPL's, and the other rou-
tines and libraries that CMS calls as needed. The CMS nucleus is also
shared in core among users under CP, but users may modify the CMS nu-
cleus as they wish without affecting either the system disk version or the
copies in other virtual machines. If a user modifies the CMS nucleus, he
will no longer share the nucleus with other users but will obtain his own

copy of the nucleus.

File Management Under CMS:

Each CMS user is assigned two disks (a third disk is optional), one of
which is shared with other CMS users. These disks, under CP, are seldom
complete disk packs. At the time a user is authorized to use CP-67/CMS, the
size of each disk area is set by the system administrator, according to the
needs of the user and the total amount of disk space available.

The shared disk contains the CMS nucleus, which is loaded into the
virtual machine by the IPL console function, Also on this disk, referred to as
the "system (SY) disk'" are CMS commands which are not core-resident, and
system libraries of routines and macros. No user may write on this disk as
it is read-only. Any attempt to modify any of the system files results in an
error message.

The two other disks are known as the "permanent'' and "temporary"
disks. The user does not normally share these disks with any other user,
as they are accessible only to him after he has logged in with the correct
USERID and password. The permanent disk is used for files which are to be

saved from one terminal session to the next. The temporary disk, which is

optional, provides space for work files which need not be retained between
sessions. This disk is erased whenever the user logs out,
If a user knows the correct password, additional permanent disks can

be concatenated or 'linked' to his permanent disk to allow file-sharing among

users,

CMS uses a three-field file identification to catalog both system and user
files. The fields are referred to as the filename, filetype, and filemode of the
file. Uniqueness of any one of the fields is sufficient to differentiate a file from
other files. CMS maintains a directory (the ""User File Directory') of each
user's files, which includes information on the file format, size, and location.
This allows the user to specify files by using only the file identification or a
poftion of it.

All CMS disk files are written in 800-byte physical records. The sys-
tem I/O routines handle packing of logical records into this format. The re-
cord blocks are written onto the user's disk area in random order. CMS main-
tains chains of disk addresses to keep track of the files. These chains are
linked to the User File Directory, which has an entry for each user file. The
directory is brought into storage when the user logs in, and is updated when-
ever files are used. Periodically, and at least as often as once per command,
the updated file directory in core is written out onto disk, so that the perman-
ent copy is as current as possible. This insures an accurate directory if it is
necessary to re-IPL. CMS during a terminal session.

The directory handles files up to 12. 8 million bytes in length, which is
56 cylinders of a 2314 disk pack and is beyond the capacity of an eatire 2311
disk pack. In practice, the user's disk will not normally require files of that

length, since the typical user uses less than 25 cylinders. Whenever CMS de-

":File—sharing is currently being debugged.

%

ik

tects that only a few tracks are left on the user's disk, a warning message is
typed, and the files currently open are closed. A program or command in ex-
ecution is halted, so the user may create more free space on the disk by eras-
ing some files, or copying them from disk to other media.

Although most of the CMS commands operate on disk-resident files, the
user also has access to the card-read-punch, printer, and tape drives. The
commands, in general, create sequential files of fixed-length records; however,
the programmer using the CMS I/O support routines is able to use any record
format with either fixed-length or variable-length records.

Files are automatically "opened' for reading or writing when the first
read or write is issued. Only eight files may be open at the same time. CMS
routines automatically close files after every command, and after user pro-
grams that complete normally. If a user program needs to access more than
eight files during execution, the FINIS command must be called to close some

files. Files must also be closed between writing and reading.

CMS Commands:

CMS commands fall naturally into four categories: file manipulation,
compilation, execution con‘_a-rol, and debugging aids.

The file handling commands allow the user to create, copy, move, com-
bine, update, print, compare, and erase disk files, Other commands provide
access to the tape units, printer, and card-read-punch. Under the CMS linkage
scheme, all of these commands are available to executing programs as well as
to the user at the terminal.

The CMS language processors are the same ones used under Operating
System /360 (OS); these include Assembler (F), FORTRAN IV (G), and PL/I(F).
The Assembler produces object programs that may be executed under either

CMS or OS, depending on the macros used in the source program. Special file-

= 10 =

handling routines for macro libraries are included. The FORTRAN and PL/I
compilers also produce OS-compatible object programs. (The FORTRAN ex-
ecution - time support programs have been modified for CMS.) The SNOBOL
compiler and assembler-interpreter were adapted from programs designed to
execute under OS,

The execution control commands allow the user to load his programs
from single object decks called TEXT files (the fileeype TEXT is reserved for
relocatable object programs) or from a library of programs. He can pass a
list of parameters to his program from the terminal, and specify the point at
which execution is to begin. To avoid relocation (bypass the relocating loader)
he can create a file consisting of an image of the portion of core storage con-
taining his program, and load that non-relocatable copy back at any time. Since
the loading commands can be accessed by executing programs, overlay struc-
tures may be set up. The user can also create a file which is a series of com-
mands, and then execute these commands by typing a single line; logic state-
ments can also be placed in the file with the commands such that if errors
occur from a command, no more commands will execute from that file.

The debugging command in CMS is called DEBUG. It allows the user to
stop his programs at pre—détermined points and examine his registers, PSW,
and storage, and modify these if he so desires. This information may be typed
out at his terminal or printed offline. A program interrupt gives control to
DEBUG, as does the external interrupt caused by the EXTERNAL console fun‘c-
tion. The user may also employ the program tracing routines, which record
all SVC transfers, or just those SVC's in which an error return is made.

There are other miscellaneous commands which give the user the facility
to terminate the typeout at his terminal, to shorten the length of the line typing
at the terminal, and to kill program execution. The user can also obtain statis-

tics on his file space and share additional permanent disks with other users.

4

= 11 =

Each of the CMS commands is described briefly in Section VI.
A sample terminal session for CMS running under CP-67 is shown

and described in Section VII.

CMS Batch Monitor:

As well as being a conversational monitor, CMS provides a batch faci-
lity for running compile, load, and go type jobs. The CMS batch monitor
accepts a job stream from a tape unit or the card-reader and writes the output
either on tapes, the printer, or the card-punch. The job stream can consist
of a System /360 Operating System SYSIN job stream with FORTRAN (G),
Assembler (F), and PL/I (F) compile load and go jobs calling cataloged pro-
cedures or it can cansist of CMS commands along with control cards and card
decks for compile, load, and go jobs for the supported compilers.

. Just as the conversational CMS does, the batch monitor can run from
either a virtual machine or a real machine. Under CP, it can be used as a
background monitor along with other conversational CMS users. |

To eliminate the possibility of one job modifying the CMS nucleus in
such a way as to effect the next job, CMS is ré—IPLed before each job begins. Files
can also be written onto the batch monitor's permanent disk and then punched
or printed, such as files written by Fortran programs; these files should be of
limited size and considered as temporary, as they are erased between each job

control card.

- 12 -

V.Control Program Console Functions

Each of the CP-67 console functions that can be issued by a user from

BEGIN

CLOSE

DETACH

DIAL

DISPLAY

DUMP

EXTERNAL

IPL

LOGOUT

MSG

QUERY

READY

RESET

SET

STORE

the terminal is describel helow.

begins execution at the specified address or, if no address
is given, at the location at which execution was interrupted.

releases the spooling areas containing input from the card
reader or output to the printer or card punch.

removes the specified device from the user's virtual
machine configuration.

is used in place of LOGIN to connect a user's terminal with
a vintual telecommunications operating system or a virtual
time-sharing system.

types at the terrhinal the contents of the specified register(s),
core location(s), or program status word.

prints the contents of the specified register(s), core
location(s), or program status word on the offline printer,

simulates an external interrupt to the virtual machine,
causing control to pass to the CMS DEBUG command when
CMS is entered.

simulates the Initial Program Load sequence on the specified
unit.

releases the user's virtual machine, including his temporary
disk area, and closes any spooling areas which have not
been released.

types out the specified message at the terminal of the person
whose USERID is specified.

types out either the number of users logged onto the system,
the names of these users, or the maximum number of users
allowed to log on.

simulates a device end for the specified unit.

simulates the system reset key on the 360 console by re-
setting any pending 1/0 interrupts.

controls the saving of virtual card-reader files and the
typing of messages at the terminal.

replaces the contents of the specified register(s), core
location(s), or program status word with the specified
information.

TIMER

XFER

VI. CMS Commands

w 18 =

controls whether real time or CPU time is maintained
for the virtual machine.

controls the passing of files betwcen users.

e Fach of the commands that can he issued by a user to CMS3 are de-

scribed below.

ALTER

ASSEMBLE

CLOSIO

CLROVER

COMBINE

DEBUG

DISK

DUMPREST

ECHO

EDIT

changes all or part of the identifier (filename, filetype,
and filemode) of a file stored on the user's permanent
or temporary disk without altering the contents of the file,

converts assembler language source code into relocatable
object code using the OS/360 F level assembler.

signals the Control Program that I/O to offline unit

record equipment has been completed and that the spooling
areas for this I/O may be processed. CLOSIO is generally
issued automatically by the commands which access unit
record equipment.

clears overrides set by the SETERR and/or SETOVER
commands and causes all recorded trace information to
be printed on the offline printer.

copies the specified file(s), concatenating them in the
order given, into a new file which is placed on the user's
permanent or temporary disk and assigned the specified
identifier.

allows the user to stop and re-start programs at specified
points and to inspect and change the contents of registers,
core locations, and hardware control words online.

causes a CMS disk file to be punched out or read in from
cards which are in CMS card format,

dumps the contents of an entire disk to magnetic tape or
restores the contents of an entire disk from magnetic tape.

tests terminal line transmission by repeating as typeout
whatever is typed in by the user.

allows the user to create card-image files on disk and to
make changes to existing files from his terminal.

ERASE

EXEC

FINIS

FORMAT

FORTRAN

GENMOD

GLOBAL

KE

KO

KT

KX

LISTF

a I8 =

deletes the entry for a specified file (or files) from the
appropriate directory, rendering the file inaccessible
to the user, and freeing the disk area containing that file.

executes a file containing one or more CMS commands,
allowing a sequence of commands to be executed by
issuing a single command.

closes the specified file (or files) by writing the last record
of that file on disk, updating the User File Directory, and
removing the entry for that file from the user's table of
active files.

prepares the user's permanent or temporary disk area for
CMS use by writing blank records over the currently stored
information.

converts Fortran language source code into relocatable
object code using the OS/360 FORTRAN G compiler,

creates a non-relocatable core-image file on the user's
permanent disk which is a copy of the contents of core
between two given locations.

specifies (1) macro definition libraries to be searched
during the assembly process or (2) text libraries to be
searched when loading files containing relocatable object
code, '

truncates information currently being typed at the terminal
to 72 characters per line, This truncation will remain in
effect for the duration of the currently executing command
or user program.

clears overrides previously set by the SETOVER or SETERR
commands and causes all trace information recorded by
these commands to be printed on the offline printer.

stops typeout at the terminal for the duration of the currently
executing command or user program.

terminates the currently executing program, updates the User
File Directory, and logs out from CMS, transferring control
to the Control Program.

either types out at the terminal the identifier and size of the
specified disk file(s), or creates a file on the user's per-
manent disk containing information for use by the EXEC
and/or $ commands.

LOAD

LOADMOD

LOGIN

LOGOUT

MACLIB

OF FLINE

PLI

PRINTF

REUSE

SCRIPT

SETERR

SETOVER

reads the specified TEXT file(s) -- containing relocatable
object code -- from disk, loads them into core, and
establishes the proper linkages.

reads a MODULE file -- which is in non-relocatable
core-image form -- from disk and loads it into core.

causes the user's permanent disk files to be either saved
or deleted, as specified, If LOGIN is not issued, the
files will be saved.

compacts the User File Directory, executes any CMS
command specified as an operand, and logs out of CMS,
transferring control to the Control Program.

generates or adds to a specified macro library, or types
out the contents of the dictionary of that library.

creates a disk file from card input, prints a disk file on
the offline printer, or punches a disk file on cards.

converts PL/I language source code into relocatable
object code using the OS/360 PL/I F compiler.

types at the terminal the contents of all or part of a
specified disk file.

reads the specified TEXT file(s) -- containing relocatable
object code -- from disk and loads them into core,
establishing linkages with previously loaded files and
changing the default entry point of these files to that of
the first file specified in the REUSE command.

either (1) allows the user to create arbitrary alpha-
numeric text files on disk and to make changes to
existing files of this type from the terminal or (2) types
out the contents of the specified file, formatting it as
indicated by control words contained in the text.

sets error overrides which will cause trace information
to be recorded for each SVC-called program which returns
with an error code in general purpose register 15.

sets normal and error overrides which will cause trace
information to be recorded for all SVC-called programs --
both those which are executed normally and those which
return an error code in general purpose register 15.

SNOBOL

SPLIT

START

STAT

TAPE

TXTLIB

UPDATE

USE

converts a card-image file in Snobol source language
into SPLI1 interpreter language and executes SPLI1
programs.

copies the specified portion of a card-image file and
appends it to a second specified card-image file,

begins execution of the loaded programs(s) at the specified
or default entry point and passes the address of a string of
user arguments to the program(s).

types statistics regarding the amount of permanent and/or
temporary disk space used or compacts the User File
Directory.

writes the contents of CMS disk files of any type or size
onto magnetic tape, or restores these files by writing them
from tape onto disk.

either (1) generates or adds to a specified text library,

(2) types out the contents of the dictionary for that library,
or (3) creates a file containing a list of entry points and
control section names contained in that library.

updates the specified disk file with a file containing control
cards, where each control card indicates whether the
information immediately following it is to be resequenced,
inserted, replaced, or deleted.

reads the specified TEXT file(s) -- containing relocatable
object code -- from disk and loads them into core, estab-
lishing linkages with previously loaded files.

executes a file containing one or more CMS commands, or
loads into core a file which is in either core-image form
or relocatable object code and begins execution of that
file.

- T -

VII. CP-67/CMS Terminal Session

A sample terminal session is given on the following pages. User
input is in lower case; typcout from the system appears in upper-case. The

following is a description of the terminal session:

After logging in to CP and ulilizing CMS, a LISTF command is issued to
obtain a list of all files stored on user CSCl's permancnt disk. The file
"MAIN FORTRAN'" is then created and filed on the user's permanent disk,
Compilation of the file is terminated due to program crrors (indicated by a

$ symbol below the error encountered). The file is then modified and edited
to correct the line in error, and the new source file stored on disk. Again an

error is encountered and the file re-edited.

After a successful compilation, the $ command is called to load the file
into core and execute it. LOAD and START perform the same function as $,
as shown. Specifying the XEQ option with the LOAD command will also cause ex-

ecution to begin after the file is loaded.

LISTF and ERASE commadsare used to selectively list and erase files, and
the PRINTF command is used to print all and then part of the contents of a
file, KT causes typeout to bée discontinued if entered after the attention key

is hit twice.

The OFFLINE command punches or prints the specified file on offline devices.
STAT types out statistics regarding the amount of disk space used and remaining.
The ALTER command changes the identifier of a file., KX, entered after hitting
the attention key twice, stops execution of the current program and returns con-

trol to CP.

.18 -

A new copy of CMS is obtained by issuing the IPL console function and an
EXEC file (consisting of CMS commands) is created and filed, The file is
then executed by issuing the EXEC command, which will cause each of the
commands contained in the file to be executed individually. Operand substi-

tution is illustrated by modifying and .re-executing the file using & arguments.

Hitting the attention key once transfers control to the Control Program where
the QUERY console function is issued to determine the number of users on
the system, their names, and the message of the day from the operator. The

BEGIN console function then returns control to CMS and the user logs out from

both CMS and CP,

- 19 -

#
CP/67 Online XDh65 Qsyosu

1 cscl The user's id is specified upon logging in.
ENTER PASSWORD: : P Bging

< The protected password does not
CP WILL BE UP UNTIL 1500 CONTINUOUSLY. print when entered.
READY AT 09,55,29 ON 04/12/68

ipl cms
CMS.,..VERSION 4,0 - 04/01/68

listf
FILENAME FILETYPE MODE NO.,REC.
INDIAN LISTING P1 003

DUMPREST SYSIN P1 009
SUPERSCR SYSIN P1 070
MY FORTRAN P1 001
INDIAN TEXT Fl 002
FORTCLG EXEC P1 001
LOAD MAP P5 003
DUMPREST SYSUT1 P1 019
DUMPREST SYSUT2 P1 019
FIN SCRIPT Pl 001
TUES SCRIPT P1 ool
FRST SCRIPT P1 001
DUMPREST SYSUT3 Pl 001

DUMPREST LISTING Pl 007
AGENDA SCRIPT Pl 001
INDIAN FORTRAN Pl 001
R; T=0.00

edit main fortran
FILE DOES NOT EXIST; WILL BE CREATED,
INPUT:
c main program April 12, 1968
write (6,10) -

l0#format (' a = ') g=—— The # is a logical tab character that inserts
#read (5,20) a blanks and places the following characters
20#format (8.3) typed on the line into column 7 of the card
fwrite (6,25) a,x image in a FORTRAN file.

#tend

EDIT:

file

R; T=0.11

fortran main
oo 20 FORMAT (8,3)

$
01) ERR 13 SYNTAX
COMPILATION CANCELLED DUE TO SOURCE PROGRAM ERROR(S).
E(00032); T=0.32

- 20 -

edit main fortran
EDIT:
p 20

C MAIN PROGRAM APRIL 12, 1968
WRITE (6,10)

10 FORMAT (' A = ')
READ (5,20) A

20 FORMAT (8,3)
WRITE (6,25) A,X

END
EOF REACHED BY:
P 20
1 /format/
10 FORMAT (' A = ")
1 /format/
20 FORMAT (8.3)
c /8/f8/
20 FORMAT (F8.3)
u 2
10 FORMAT (' A = ")
g -\ 2y
10 FORMAT (' A = 2")
f 20 v
20 FORMAT (F8.3)
i #x = axx2
EDIT:
p

X = A*xx2
t
p 20
C MAIN PROGRAM APRIL 12, 1968

WRITE (6,10)

10 FORMAT (' A = 2?2")
READ (5,20) A

20 FORMAT (F&.,3)
X = Axx?
WRITE (6,25) A,X
END

EOF REACHED BY:

P 20

file

R; T=0,51

fortran main
ERR 22 UNDEFINED LABEL
25
COMPILATION CANCELLED DUE TO SOURCE PROGRAM ERROR(S) .,
EC00032); T=0.40

- 21 -

edit main fortran
EDIT:
1 /25/

WRITE (6,25) A,X
i 25#format (' a = 'f8.3,' x = 20.3)

P

25 FORMAT (' A = 'F8.3,"' X
c /20/" f20/

25 FORMAT (' A = 'F8.,3,"' X
file

R; T=0.14

]

20.3)
' F20.3)

$ ma¢c g The ¢ deletes the line.
fortran main
R; T=0,46

A = 2,500 X = 6.250

load main
R; T=0.25

start

EXECUTION BEGINS.,..

A =7

3.1

A = 3,100 X = 9.610
R; T=0,05

load main (xeq)
EXECUTION BEGINS...

5,200 X = 10,240

listf main *
FILENAME FILETYPE MODE NO.,REC.

MAIN LISTING Pl 003
MAIN FORTRAN P1 001
MAIN TEXT Pl 002
R; T=0.03

listf * listing
FILENAME FILETYPE MODE NO,REC,
INDIAN LISTING P1 003

MAIN LISTING P1 003
DUMPREST LISTING Pl 007
R; T=0.01

erase * listing
R; T=0.03

listf * listing - 22 =
FILE NOT FOUND
EC00002); T=0,03

printf main fortran

C MAIN PROGRAM APRIL 12, 1968
WRITE (6,10)

10 FORMAT (' A = ?2')
READ (5,20) A

20 FORMAT (F8,3)

X = A*%2
WRITE (6,25) A,X

25 FORMAT ('A = 'F8.3,' X ="' F20.3)
END

R; T=0.06

printf main fortran = 3 25

C MAIN PROGRAM APRIL 12
WRITE (6,10)

10 FORMAT (' A = 2")

R; T=0.04
printf main fortran

C MAIN PROGRAM APRIL 12, 1968
WRITE (6,10)

10 "
< The ATTI key was hit twice to
Et S enter KT for killing the typeout.
s I=0,

offline punch main text@@@@fortran ¢—The four @ characters delete the
R; T=0.07 previous four characters.

offline print main fortran
R, T=0.06

offline printcc main listing
FILE NOT FOUND
EC00002); T=0.02

listf

FILENAME FILETYPE MODE NO.REC.
DUMPREST SYSIN P1 009
SUPERSCR SYSIN P1 070

MY FORTRAN P1 001
FORTCLG EXEC P1 001
LOAD MAP P5 003
MAIN FORTRAN P1 0601

DUMPREST SYSUT1 PZ 019
DUMPREST SYSUT2 Pl 019

FIN SCRIPT Pl 001
TUES SCRIPT P1 001
FRST SCRIPT Pl 001
DUMPREST SYSUT3 P1 001
AGENDA SCRIPT P1 001
MA TN TEXT Pl 002

INDIAN FORTRAN P1 001
R; T=0.05

- 23 -

stat

P-DISK: 0142 RECORDS IN USE, 0258 LEFT (of 040O0), 36% FULL (of 010 CYL.)
R; T=0.02

alter main fortran * mainone * =*
R; T=0.02

listf main fortran
FILE NOT FOUND
E(00002); T=0.03

listf *» fortran

FILENAME FILETYPE MODE NO.REC.
MY FORTRAN P1 001
MAITNONE FORTRAN Pl 001
INDIAN FORTRAN P1 001

R; T=0.01
$ main
q The ATTN key was hit twice to
enter KX for killing execution of $.
k x

KILLING CMS EXECUTION...

P-DISK: 0142 RECORDS IN USE, 0258 LEFT (of 0400), 36% FULL (of 010 CYL.)
TOTAL CPU-TIME (IN SECONDS) = 11.18

CP ENTERED, READY.

ipl cms '
CMS...VERSION 4,0 - 04/01/68

listf mainonn@e =* < The @ deletes one character.
FILENAME FILETYPE MODE NO.REC.

MAINONE FORTRAN P1 002

R; T=0,03

edit fortclgo exec
FILE DOES NOT EXIST; WILL BE CREATED
INPUT:

fortran mainone
$@load mainone (xeq)

EDIT:
file
R; T=0,10

printf fortclgo exec

FORTRAN MAINONE
LOAD MAINONE (XEQ)

R; T=0.04

exec fortclgo

FORTRAN MAINONE

LOAD MAINONE (XEQ)
EXECUTION BEGINS.,..

- 24 _

A = ?

3.4

A = 3.400 X =
R; T=0.86

edit fortclgo exec
EDIT:

c /mainone/ &1/ * g
LOAD &1 (XEQ)

EOF REACHED BY:

C /MAINONE/ &1/ =* G
file

R; T=0.11

exec fortclgo mainone
FORTRAN MAINONE

LOAD MAINONE (XEQ)
EXECUTION BEGINS.,..

A =7 '

5.1

= 5.100 X =
T=0,89

Ne Iv e

R

dit fortclgo exec
DIT:

&set err exit
p 9

&SET ERR EXIT
FORTRAN &l
LOAD &1 (XEQ)
EOF REACHED BY:
P 9

file

R; T=0.11

e
E
i

edit mainone fortran
EDIT:
P L

C MAIN PROGRAM APRIL 12, 1968
WRITE (6,10) '

10 FORMAT (' A = 2'")

b aa
FORMAT ('Aa = 2?2')

file badone

R; T=0.15

listf * fortran

FILENAME FILETYPE MODE NO.REC.
MY FORTRAN P1 001
MAITNONE FORTRAN P1 001
INDIAN FORTRAN P1 001
BADONE FORTRAN P1l 001

R; T=0,03

11.560

26,010

« 28 .

exec fortclgo badone
FORTRAN BADONE

0002

01

FORMAT (' A = 2')
$
) ERR 02 LABEL

COMPILATION CANCELLED DUE TO SOURCE PROGRAM ERROR(S).

!'11 E(0003
R; T=0.4k4

2)

[N
L

edit fortclgo exec

EDIT:

c /&1/&1 &2
FORTRAN &1
LOAD &1 &2
EOF REACHED
C /&1/&1 &2
file

R; T=0,12

&3
&2
&3
BY
&3

&L &5/ =*g
&3 &4 &5
&4 &5 (XEQ)

&4 &5/ x G

exec m@fortclgo mainone
FORTRAN MAINONE

LOAD MAINONE (XEQ)
EXECUTION BEGINS,..

A =27
1.9 -
A = 1.900 X = 3.610
R; 7T=0,.93
4 The ATTN key was hit once to enter CP.
g user
10 USERS

g user name
CURRENT USE
MADN I CK
MARK

MEYER
OPERATOR
BAYLES
CJONES
ROSATO

WHJ
SEYMOUR
LOVE

q logmsg
CP WILL BE

begin
CMS

logout

S

RS
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

up

ARE...
029
0L4cC
07
009
049
020
027
024
L5
028

UNTIL 1500 CONTINUOUSLY.

<t

BEGIN returns control to CMS.

CMS LOGGING 0OUT...
TOTAL CPU-TIME (IN SECONDS) = 2.99
READY.

CP ENTERED,

1

LOGOFF AT 12.06.06 ON 04/12/68

s P

APPENDIX A

Devices Supported by CP-67

The minimum configuration required for CP-67 is as follows:

2067-1 or 2067-2 Central Processing Unit

2365
1052
1403
2540 or
2540
2 2311
2702

Core Storage Unit

On-Line Console Typewriter

Printer

2501 Card Reader

Card Punch

Disk Drives or 1 2314 Storage Unit
Transmission Control Unit

Required features:

#3233

15 Data-Set Adaptor

#4615 IBM Terminal Ctl Type 1
#8055 2741 Break (if 2741's used)

RPQ #E-46765 Break Command (if terminals used)

The devices that are supported in addition to the minimum configuration
are described below:

1051/1052 Model 2 Data Communications System

Required features:

#26903 Receive Interrupt Control
#27428 Transmit Interrupt Control

#5050

Master Station

2741 (-1, 2) Communications Terminals

Required features:

#4708
#3255

Interrupt
Dial-up

RPQ #E-40681 Receive Interrupt

Desirable feature:

RPQ #E-46151 Print Inhibit

2250

Graphic Display

2820/2301 Drum Storage Controller/Unit

2303
2400

Drum Storage Unit
Series Magnetic Tape Drives

" .

APPENDIX B

Devices Supported by CTMS

The minimum configuration for CMS is any System /360 with the
following specifications:

256K Core Storage

1052 On-Line Console Typewriter

1403 Printer

2540 Card Reader/Punch

2 2311 Disk Storage Drives or 1 2314 Disk Storage Unit

CMS will also support the following additional devices:

2 2400 Series Tape Drives
1 additional 2311 Disk Storage Drive or equivalent
2314 Disk Storage Unit

- 28 -

BIBLIOGRAPHY

For further information on the CP-67/CMS system and the
virtual machine concept, refer to the following publications:

Adair, R.J., R.U. Bayles, L.W. Comeau, and R.J. Creasy,
A Virtual Machine System for the 360/40, IBM Cambridge
Scientific Center Report 320-2007, Cambridge, Massachusetts,
May 1966.

Dorn, W.S., A FORTRAN Programmer's Introduction to CMS, IBM
- T.J. Watson Research Center Report #RC1942, Yorktown
Heights, New York, November 1967.

, CP-67/CMS, Type III Documentation, Program #360D-05, 2,005,
IBM Corporation, DP Program Information Department, 40
Saw Mill River Road, Hawthorne, New York, May 1968.

, CP-67/CMS User's Guide, IBM Cambridge Scientific Center
Report 320-2015, Cambridge, Massachusetts, October 1967.

IBM

