Cambridge Scientific Center July 1966
IBM

Data Processing Division

Application of Combinatorial Programming to a Class of

All-Zero-One Integer Programming Problems

-
¥

36, Y03

APPLICATION OF COMBINATORIAL PROGRAMMING
TO A CLASS OF ALL-ZERO-ONE INTEGER
PROGRAMMING PROBLEMS

J. F. Pierce

IBM Cambridge Scientific Center Report

International Business Machines Corporation
Cambridge Scientific Center
Carnnbridge, Massachusetts

July, 1966

36.Y03

July, 1966

Scientific Center Report
Limited Distribution

APPLICATION OF COMBINATORIAL
PROGRAMMING TO A CLASS OF
ALL-ZERO-ONE INTEGER
PROGRAMMING PROBLEMS

J. F. Pierce

International Business Machines
Corporation

Cambridge Scientific Center
Cambridge, Massachusetts

Abstract

Problem-solving procedures based on the methods of combina-
torial programming are presented for solving a class of integer
programming problems in which all elements are zero or one.
All of the procedures seek first a feasible solution and then
successively better and better feasible solutions until ultimately
one is discovered which is shown to be optimal, By represent-
ing the problem elements in a binary computer as bits in a word
and employing logical "and'" and '"or' operations in the problem-
solving process, a number of problems involving several hundred
integer variables have been solved in a matter of seconds.

Index Terms for the IBM Subject Index

Operations Research
Combinatorial Programming
Integer Programming
05-Computer Application
13-Management Sciences

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication
elsewhere and has been issued as a Technical
Report for early dissemination of its contents.
As a courtesy to the irtended publisher, it should
not be widely distributed until after the date of
outside publication,

1L
III.

IV.

TABLE OF CONTENTS

INTRODICT TN, e o rove o mvw 3 aecn won s s 3 30 s 590 6 5 @9 55 § 5 905 980§ § 1
THE BASIC ALGORITHM. & w3 s w9 5is 35 R AT L L T i 4
COMPUTATIONAL EXPERIENCE ..evvvensn. . . 16
MODIFICATIONS OF THE BASIC ALGORITHM..... vawms 03
EXTENSION TO THE ALL-ZERO-ONE PROBLEM

WITH INEQUALITIES. . it vveetnnnsnneannns RN -1

References....ovvvevennes st a8 8 Te E 8 E W E § SRS N E R 34

I. INTRODUCTION

In this paper are considered some direct algorithms for solving

integer programming problems of the form:

j=n
Minimize Z =] C X,
ZJ=1 i
j=n
Subject to: Zj=1 Xj éj = R (1)
and x, = 0 or 1 [EE_ T . SR
J .
and of the form: -
j=n
Minimize Z =),. ¢, X,
=L 75 T
j=n
Subject to: Z x, A > R (1)
J=l % P W
and xj = 0 or 1 14 @ily Bie Ry 08

where A. is an mxl column vector (a.., a_.,..., a .) , each element
== i 25 mj

of which is zero or one, and R is an mxl column vector (rl, r r

EEEE: m)

in which all elements are one, All c:j are assumed to be nonnegative.
As discussed by Balinski [3] » problems which can be put in

these forms arise in such diverse contexts, for example, as that of the

engineer in designing switching circuits, the logician in seeking a

simplest disjunctive normal form which is equivalent to a given formulal,

and the business man in distributing goods from a central warehouse to

a group of outlying clients. To this diversity might be added that of the

1 For application in the operations research field see, for instance, the
article by Root [18] :

industrial engineer in balancing an assembly line [20] , the PERT-
CPM project manager in selecting from among feasible alternatives
the best means for accomplishing particular tasks {5] , and the
computer systems analyst in retrieving 1nformat10n most eff1c1ent1yr
from a set of files [7]

The methods investigated for solving these problems are those
of combinatorial programming, By combinatorial programming, we
mean, after Rossman and Twery [19] problem-solving procedures
based on: (i) the use of a controlled enumerative procedure for consid-
ering (at least iﬁplicitly) all potential solutions; and (ii) the elirninafién
from explicit consideration of particular potential solutions which are
known from dominance, bounding and feasibility considerations to be
unacceptable. We limit the meaning of combinatorial prograrﬁs to
procedures based on these two concepts which are reliable in the respect
that whe.n carried out to completion they guarantee the discovery of an
acéebtable solution (in the present problem, an optimal feasible solution)
when one exists, Alternately, the methods to be employed might be
termed "branch and bound' after Little et al [13] or, perhaps, |
"reliable heuristic programming'',

While in general there are several basic search strategies that
might be employed in combinatorial programs, principal attention will
be focussed.in the present paper oln one wherein search is directed first
to the d1scovery of a feas1b1e solutmn and then to successwely better and
better feasllble solutions until ultimately one is discovered which is shown
to be optimal. The importance of this feature of course lies in the

possibility of terminating problem-solving prematurely in time-consuming

< 3

problems with a useable although not necessarily optimal solution.

First, attention is focussed on problems of form (1), In the
following section the basic algorithm is described and illustrated by
means of a small example, While completely general, the algorithm
has been developed to capitalize on the fact that since all elements are
either zero or one they may be represented in a binary computer as
bits in a word and operated on with logical "and'" and ''or' operations.
Thus, in a problem with m constraints each column vector éj can
be represented as <m/B + ,99,.. ‘> binary words, where B is the
number of bits pér word in the computer and<9> denotes the largest
integer contained in ® . In Section III computational experience with
the algorithm is discussed as obtained on an IBM 7094, a binary computer
with B =36 . In Section IV several prospective modifications to the
algorithm are noted, and finally, in Section V the extension to problems
of the form (1') is outlined,

In relationship to other algorithms the present procedures appear
most closely akin to the additive algorithm proposed by Balas [1] for
solving the general zero-one integer programming problem, In the
present procedures the underlying enumeration scheme is simpler,
employing throughout problem-solving a fixed, prescribed preordering

As a consequence relatively

of the column vectors é'l’ éz, R . ¢
little problem-solving time is expended on matters of procedural planning
and control, e.g., on performing bookkeeping tasks to record the portions
of the tree elaborated and evaluated so far, on selecting the next variable

J

achieved through representation of vectors as binary words,it has been

x. to consider, etc. With this simplicity and the manipulative economies

0 2 s

possible to solve a number of problems involving several hundred vari-

ables in a matter of seconds.

II.. THE BASIC ALGORITHM

As has been mentioned, a first principle of combinatorial pro=-
gramming is that of controlled enumeration of potential solutions., To
insure reliability of the resulting problem-solving procedure this implies
that all 2™ of the possibilities X = (XI’XZ’ aess xn) must be considered,
at least implicitly. In the present case the underlying enumeration
scheme used to accomplish this is an elementary tree search method.
If we define a potential solution X" to be lexicographically smaller than

' i ! 4 W

! Mo . = ; ; & .
X' when X1 xl,xz XZ, '”’Xr—l Xr—l’

r, 1 <r <n, then the underlying scheme consists simply in enumerating

11 '
and xr< Xr for some

all 2™ possibilities in lexicographically decreasing order, where the

ordering of the column vectors él’ éz, ¥ hieg

out problem-solving. As suggested in Figure 1, these possibilities can

én remains fixed through-

be conveniently represented in a tree structure where. the jth level of
branches represents the values for x, and where each node at the terminus
J

of a branch at level j represents the subset of all potential solutions

1 xZ,,..,xj,.,”, xn) in which X =x1; x2=x2;...;xj=xj 3

the wvalues of the ;Ei being determined by the path connecting the node

X = (x

with the origin. With the branches emanating from each node ordered
with e 0 on the right, the enumeration of potential solutions in lexi-
cogréph‘ically decreasing order corresponds to elaborating paths in the
tree from left to right. Equivalently, therefore, enumeration may be
viewed as entailing the successive stage by stage specification of a value

oY Ry, BE VS X until a complete combination’ (Xl' Kojeees xn) is

Figure 1. Tree representation of potential solutions as generated
by the basic enumeration procedure.

determined, or as entailing the successive level by level selection of
branches in the tree, one branch per level, until a terminal node is
reached at level n. Upon reaching a terminal node the corresponding
potential solution is evaluated and then the tree-elaboration process
backtracks to the first node in the path for which both branches have not

been enumerated and resumes with the second branch, When the process

s Tl

has backtracked to the origin node and both branches emanating from

this node have been enumerated, generation and therefore problem-
solving is complete.
With this procedure, then, the discovery of an optimal feasible

H nodes

solution is guaranteed by elaborating the complete tree of 2t
and evaluating each of the o resulting potential solutions. If, however,
it becomes known with certainty during enumeration that all paths passing
through a specific node must ultimately result in potential solutions which
are nonfeasible or are dominated” by a feasible solution already dis-
covered, then the further elaboration and investigation of such paths can
be eliminated without compromising the reliability of the procedure.
We consider first some possibilities for reducing search on the basis of
feasibility .considera.tions.

To begin it is noted that the enumeration procedure proceeds by
successively specifying a value for Xy Xpseees X and so on until
ultimately a complete combination X = (XI’ Koseees Xosanes xn) is

specified. At any stage s-1, having specified the values X, Xpseoes X 1

there remains a problem of the same form as (1):

J=n
Minimize Zj—s cj Xj

j=n j=s=-1
Subject to: : R) - B ET W
: dijey Ay = B Z‘j=1 j &y 002
and xj=00r1 j=s, stl,..., n
Denoting by R _ = (r;, r° ® 4 " evaol b B e T, &
= (r r “ie W -
enoting by R Ty By e column vector R i1 xj e
which results upon the completion of stage s-1, it follows from the
nonnegativity of the elements aij that for each Kk, rls{ > riﬂz Ve s rllz

2 Solution X will be said to dominate inf Ej c.x, < Zc, x' .
- - J 4 J J

for all permissible values of Koo X_1seees X0 Hence in specifying

s+l
X if rls(=0 for any k such that a . = 1, feasibility of (2) require s
that '}_cs =0, In such a case none of the 2n+s+1 -1 nodes in the tree

stemming from the branch Es =1 need be explicitly considered, -
Incorporating this feasibility consideration into the enumeration

scheme the resulting procedure may be stated as follows:

(i) Set X, =1:T‘(_§1);x2 =F(Bz);....; Xn=F(B—~n) i
j=n
If R = E 1 x, A , save X as the best feasible solution
=X j= i =j el
0 0 j=n
X discovered so far, setting Z = E ; Cj Xj . Go to (ii).
— J:
(ii) If thereisa j, 1< j< n such that Xj =1, let s be the

largest such j and go to (iii). Otherwise problem-solving
is complete.

fi =X Xy T Xy jees; = i
(iii) Redefine x,] Fg =R Basl ~ sl s s+l

j=n

F(R)i eerix =FR). I R = ijl % A and
j=n 0 . :

zj=1 cj %; < Z° save X as the best feasible solution

discovered so far. Go to (ii).

where
i
R =R -) x, A,
—s — j=l i ==
1 if R ® A = A
and — 8 — 8 —s
- FR) =

0 otherwise .

the symbol ® denoting the logical 'and" opera’cionS.

Another feasibility consideration arises from the fact that a

necessary condition for the existence of a feasible solution to (2) at

stage s is that for all k such that T, = 1 there must exist at least

One simple but effective

one vector i’-‘x_t, s<t<nmn such that akt =1.

means of employing this consideration is to pre-order4 the vectors A
x o)

by sets, Sps SZ’ A B Sm wherein in set S, are placed all vectors Ay

for which ajx =1; .in set. S2 are placed all vectors A, notin Sy

and in general, in set S are placed all vectors ék

for which as = L%

not in Sl'S 300y O S 1 for which a i B 1, g<m . When represented in
q- e

matrix form with column vectors Al’AZ’ s An so ordered, the result-

ing structure is as shown in Figure 2 where all elements in the unshaded

portion of the matrix are zero,

S S S
1 2 m
A A A +1 ce oA
=1 -—Jl +l _J _-.Jm
%é///////
Figure 2. Structural form of matrix of vectors A AZ’ co0s A after
the I yunshaded

preordering by sets, All elements in
portion of the matrix are zero,

.,am)fand _B_ = (bl' bZ"" ,bm)
1 i s=h:=
we mean by A ® B =C that c, = 1an41

- =i = J 0 otherwise

A similar pre-ordering of vectors has been employed by Lawler [12]
in an algorithm for solving the set covering problem (see [3] 3Pl LB

As applied to vectors A = (al, Bysee
2 JiELyly eus 20 o

Denoting by jt the number of vectors in S, there exists with this
t=q

ordering no vector i“x_k, k > JqEZt=l J ¢ for which aqkzl" There -
fore at any stage s there exists no feasible solution to the remaining
problem (2) if riS =1 for any i such that Ji < s : in such cases the
search process can 'backtrack'' immediately without considering further
the variables Kgs Xgqpoeess Xy o

With this same ordering of vectors a variant of the first feasibility
consideration which has considerable 'look ahead' power can readily be
employed. Suppose stage s has just been completed wherein Es and

Bs-bl have been determined. If we denote by t the smallest index i
s+1

such that r " = 1 then explicit investigation can immediately jump to

stage s = Jt-l + 1, and resume with Es' =R since by the ordering
of Ay we must necessarily have ;k =0 for s<k<J

=1 "

In addition to possibilities for reducing search which stem from
feasibility considerations there are possibilities based on dominance
considerations. If the cost of the best feasible solution X € discovered
so far is ZO then in subsequent search no explicit consideration need be
given potential solutions for which it is known that Z > il . At stage
s, then, investigation may be restricted to potential solutions X for
which

j=n j=s-1

0 —
= cC. < Z"v - ; oy 3
ZJ:S J Xj EJ:I CJXJ ()

In essence (3) may be viewed as simply another constraint defining a
"feasible' solution and the solving of the optimization problem perceived
as being accomplished through the solution of a succession of (augmented)

feasibility problems,

- 10 -

j=s-1 _
Denoting by “ the cost (ZO - Z . c.x,) we have first, by

J= =4 :
analogy with (and in addition to) the first feasibility consideration, that

for any particular vector —j}-s’ Es =0 if Cp 2 Zg e Secondly, assuming
the ordering of vectors by sets as described above, we have a relaf.ed
dominance consideration having a degree of 'look ahead' power as
follows. At-the completion of stage s suppose t is the smallest index
i such that ris+1 =1. Then there exists no feasible solution to the
augmented problem ‘ ((2) and (3)) defined at stage s+1 if ¢t—>' Zs+1 5
where ¢'t T <r?1§ Jt{cj}since (2) requires that X = 1 for some
j’Jt—-l <= 'It . In such cases, the search procedure can backtrack im-
mediately.

Thé third dominance consideration is one whose implementation
requires slightly more problem-solving time but appears to have a
fairly high degree of "look ahead'" power. Considering again the problem
(2) at stage s suppose the constraint equations are summed to form the
single constraint Zj:; h, x, = rns s where h, is the number of unit

Jd o

elements in vector Aj, Zi aij , and m is the number of constraints
e s

i=m
in (1) remaining to be satisfied at stage" s, Zizl =

S
; » Using this single
constraint the following subproblem may be formed:

i E_]:n 2
lnimize " C,y. =

J=8 JYJ .8
Byl I ol 4
ubject to: j=s jyj = (4)
and Yj =0 or 1' j=s, stl,...,n

sk A %k
It Zg denotes the minimum value for (2) then bg X ZS since in (2)

In the terminology of Glover [10] this constraint is a '"surrogate
constraint'',

= 1] =

feasibility requires that each of the m individual constraints be satisfied

A
also. Therefore if at any stage s, Zs > z , the search procedure can
- s

backtrack immediately since there can exist no solution to (2) resulting
in a feasible solution better than 2(_0 .

The subproblem defined in (4), being one-dimensional knapsack
problem, can in practice be solved by any one of a number of algorithms,
€. g., by dynamic programming [8] » by combinatorial programming
[9, 14] . In the present context an approach of the latter type might be
preferable that has the desirable characteristic that search proceeds first
to the discovery of a feasible solution Y and then to successively better
feasible solutions until ultimately an optimal feasible solution _X_O is

discovered; with such an algorithm knapsack problem-solving can then

be terminated at any time a feasible solution Y is discovered for which

B i
j=s 5573 %s

A
Alternately, rather than actually solve the knapsack problem for Z

A
we might simply determine a lower bound ZS for Z , and check at
A S

A
each stage s whether Zy> Zg e While less powerful, this test requires
the expenditure of considerably less problem- solving time to implement.
For suppose that vectors As, A MEERRE An were ordered so that
=g' 2y o
C(S)/h(s) < C(s+l)/h(s+1) <.ee X C(n)/ h(n) . Then by weakening the
integer requirements yj =0orl in(4)to 0<y, < 1 alower bound on
=75=

the cost of satisfying u constraints at stage s is given by the function

hown in Fi 3, where h —zkzj ST
BS (r) as shown in Figure , Wwhere G) = Lix=1 h(k) an C(j)— Zkzl
If, then, at stage s, 8 S(ms) > z g the search procedure can backtrack,

Or, an alternative requiring even less implementation time is

one in which the quantity (0 o u) is used as a lower bound on f3 S(u) i

C,.

s P

where § = min { c:f h,} . In this case the test then becomes simply
8 jas U

"y g » Mg > z ? ", This alternative is investigated in the following
sectic;n.

Finally, there are a number of heuristics that might be employed
for ordering the vectors A, within each set S5 as, for instance,
"increasing cost, cj "', or "decreasing number of constraints satisfied,
hj .'" For present purposes we employ a heuristic representing a composite
of these: vectors will be ordered such that —A-J <A in the order implies
Cj/hj < Ck/hk g

Imbedding these various considerations and heuristics in the basic
enumeration procedure there results an algorithm whose logic is shown
in the flow chart of Figure 4, In this procedure record is maintained of

only the nonzero elements in the partial solution ;Es = (;1’ §2, - ’Es)'

defined at each stage s, this being accomplished simply by maintaining

Figure 3. Lower bound f (u) at stage s on the cost of
satisfying u constraints,

- 13 &

Start
W

a. For all vectors éj determine ej, the smallest index i, 1<i<m, such
that a,, = 1 and sort the vectors into sets SI,SZ, «ee3S such that ék
ij m
is in set Sq when € = 4d -
b. Order the sets of vectors such that S; <S2 Laws K Sm .
¢, For each vector compute G'j = cj/hj and order allvectors within each
" <-A“t in the ordering implies . < & -

d. Determine the number of vectors jq in set Sq, q = 1y 25 . «pn and the
t

set Sq such that é

quantities Jtz Z ji’ t= liZsesaym s

i=1
e. For each set S determine § = _ min {ci}.
d Tq-1<i<Ty
f, For each vector A. determine &, = min é).
=] J j<i<n J
o
Set ZO=¢o, s =2, =z =c1,R =R - A, m = m-h, w =1 and
s —s - 1 s
iij =1
comsen B SO
Does R =_O_ ?
No Yes
L v
Petermine the smallsest LW Save this solution as the
index k such ‘ghat rg =1. best discovered so far,
Is z +4 > 2°°? Set 29 =z,
L
No Yes rﬁd_
Setj=J +1 Does w =0 2
k-1 8 N
15z+ms-(’j.>Z ? Yes o]
s i
Yes - Terrninate
I No . , r*“/\— K.
Does there exist an index u, t =i
j Su< 3, suchthat both R =R_+A
L = ' —s e ==
BS®§u=éuandaS+cu< VAN s = ZS_ Ctt
s s
Yesy Nol—o-—! m =m +h
Let v be the smallest such index u . & N t
Is z_+c_+m_-h)-06_> 2° 2 Wi e]
s v s v i
Yes)l, No J‘
[Set j=v +1 | g |
- 8 2]
‘ | _P_{S B BS- _{Lv Does t = Jet : '
Z = Z = C -
s
T, =T - hv Yes
w=w + 1
g

Figure 4, Flow chart of basic algorithm,

- 14 -

a list il, iz, ¢ & A iw of the indicies of the w nonzero elements, x;, .
Otherwise each of the facets of the procedure are as has been described.

As an illustration Table 1 gives the data for an example with m =5
and n =31. Upon determining the row indices ej , the number of nonzero
elemeﬁts hj and the average costs @ it /hj the vectors are sorted into
sets and then ordered within sets, The resulting order is then as shown
in the Table. Upon the completion of the ordering, the quantities ¢i and
Ji for each row i are determined as is the quantity 0 j for each vector
A .. The results are as shown in the Table, Search then commences.

As can be verified by tracing through the procedure in Figure 4,

the search process can be summarized by the tree in Figure 5 which shows

the nonzero elements ;{'j specified during the process, The values adjacent

Qe61* 46

Figure 5, Tree of nonzero variables elaborated for illustrative
problem of Table 1.

- 15 -

Table 1, Data for Ilustrative All- Zero-One Problem
with m=5 and n=31
] CJ éJ (a].j’ azj, sy amJ) hj eJ aj 6‘]
1 68 1 1 1 1 1 5 1 13.60 6.00
2 5b 1 1 0 1 1 4 1 13,75 6.00
3 57 1 1 1 1 0 4 1 14, 25 6, 00
4 60 1 0 1 1 1 4 1 15.00 6. 00
5 64 1 1 1 G 1 4 1 16. 00 6. 00
6 49 1 1 0 1 0 3 1 16, 33 6.00
7 50 1 1 0 0 1 3 1 16, 67 6.00
8 51 1 0 1 e 1 3 1 17.00 6. 00
9 54 1 1 1 0 0 3 1 18, 00 6. 00
10 54 1 0 0 1 1 3 1 18, 00 6. 00
11 40 1 1 0 0 0 2 1 20, 00 6. 00
12 62 1 0 il 1 0 3 1 20,67 6.00
13 45 1 0 0 0 1 2 1 22,50 6. 00
‘14 53 1 0 1 0 0 2 1 26.50 6.00
15 58 1 0 0 1 0 2 1 29.00 6. 00
16 50 1 0 0 0 0 1 1 50,00 6. 00
17 32 0 1 0 1 1 3 2 10, 67 6. 00
18 45 0 1 1 1 1 4 2 11.25 6.00
19 34 0 1 1 1 0 3 2 11,33 6. 00
20 34 0 1 1 0 1 3 2 11, 33 6.00
21 23 0 1 1 0 0 2 2 11,50 6.00
22 26 0 1 0 1 0 2 2 13. 00 6.00
23 42 0 1 0 0 1 2 2 21, 00 6.00
24 31 0 1 0 0 0 1 2 31. 00 6,00
25 6 0 0 1 0 0 1 3 6.00 6,00
26 17 0 0 1 0 1 2 3 8.50 8.50
27 47 0 0 1 1 1 3 3 15,67 | 11.00
28 36 0 0 1 1 0 2 3 18, 00 11,00
29 34 0 0 0 1 1 2 4 17,00 11,00
30 28 0 0 0 1 0 1 4 |28.00 11, 00
31 11 0 0 0 0 1 1 5 11,00 11,00

1 2 3 4 5

16 24 28 30 31

HR St I

40 23 6 28 1

- 16 -

to the nodes are the costs incurred up to and including the specification
of xg =1; the asterisk indicates that R_ =0 andthat a better feasible
solution EO has been discovered, First X = 1 is specified which
results in the first feasible solution with 29 = 68, The process then
backtracks to the origin and proceeds forward, specifying x, =1 followed
by Xop = 1. The result is a better feasible solution with 20 = 61,
Backtracking to the previous node (XZ =1) , the test is made for a vector
u, Z6_~_<_ u < 28 , such that __R__._S ® iaL-u :éu . Since no such vector

is found the process backtracks again to the origin. The procedure then
investigates in turn x5 =1, Xy = YT X9 =1 finding in each case that
R ® A, =A, and ¢ <6l butthat c + (rnV -h,) .0 i 61. Finally,
for wv=11 the latter condition fails to hold so that Xy = 1 is specified,
followed by x,g =1 . Determining the smallest index k such that

ri =1 to be 4, and ¢4 to be 28, the result is . + ¢k > 61. The pro-
cedure therefore backtracks, setting Xyp = 0 , and proceeds to consider

in turn x5, =1, Xon = 1 and XZS =1 but in each case 40 + cv+(3—hv)5 v> 61.
Hence, the procedure backtracks again to the origin and proceeds to consider
in turn x, =1,... X = 1. In each case it is found that c + (5-hv)'5 V_261.
At that point, since w=0, problem-solving is complete: the solution

x, =1, Xp5 =1 is optimal, Of the 233 nodesina complete tree of the

problem, it was necessary for the procedure to explicitly evaluate but 25,

III. COMPUTATIONAL EXPERIENCE

To investigatethe computational feasibility of the general approach
computer programs were written in MAD (Michigan Algorithm Decoder)
and a number of problems run on an IBM 7094 computer., For discussion

purposes we denote as Algorithm 2 the procedure as flow charted in

= 17 =

Figure 4. Algorithm 1 represents the same procedure with the two
‘"knapsack' type tests employing the average- costs & and number of
remaining unsatisfied constraints m_ omitted, :

In Table 2 is shown the solution times6 for a sample of thirteen
problems arising in a truck dispatching context [2., 6, -17] . In'this
context there is a central depot from which commodities are to Vbe
shipped by truck to m destinations. Vector é_] in (1) represents
the j‘:h truck route, the route starting at the de.pot and visiting each of
the destinations i for which aij = 1. All commodities for destination
i are delivered in the same trip. The problem is to select a combination
of routes with which to make all m deliveries at minimum cost, the
cost of employing route j being Cj .

Each of these sample problems were solved by both Algorithm 1
and Algorithm 2, the solution times in Table 2 representing the time
to discover an optimal solution and to prove its optimality. A comparison
of times for the two algorithms indicates that the performance of the
"knapsack'' tests is a good investment of problem-~solving time which
frequently results in a major reduction in total solution time., For
instance, in Example 10 the investment reduces total solution time to less

than 1/18 of the problem-solving time required otherwise.

6 The times shown are exclusive of computer input and output time and
are accurate to + 1/60 of a second.

- 18 -

Table 2. Solution Times for Sample of Truck
Dispatching Problems

Problem Solution Times (Seconds) NU-I(;nbEI'

Size Algorithm Algorithm | IPM2 |Pivots

(m x n) 1 2 (IPM 2)
1 5x31 ;050 . 050 1. 867 4
2 b6x62 <167 i T . 367 4
3 8x92 « D67 . 200 2,067 14
4 13x91 5. 161 6,367 4,933 33
5 11x231 9.183 1,383 - o
6 11x561 12,91% 2,867 = A
7 11x1023 27,267 14, 383 = i
8 11x1485 34,950 19.317 - e
9 12x298 89.133 3.500 - el
10 12x538 131,033 7.117 -- --
11 12x793 77, 667 4,567 -- i
12 15x575 600, 000" 69. 483 . -
13 | 19x1159 il 2400, 000% e s

+ Problem-solving terminated without having proved optimality

-19 -

To obtain an indication of the efficiency of these algorithms re-
lative to existing integer programming methods a number of problems
were solved by Gomory's all-integer algorithm [i l] on the IBM 7094
using SHARE code IPM2 fZl] . For those sample problems which were
solvable with IPMZ2 (i, e,,those for which n < 100) the solution time togeth--
‘er with the number of pivot steps required is shown in Table 2. From the
limited computational experience gained with these algorithms to date the
conclusion is that Algorithm 2 is frequently but not invariably preferred to
the all-integer algorithm. For instance, in Example 1 Algorithm 2 required
1essTthan]/36 ofthe time of IPM2, but in Example 4 some 50%more, Fur-
ther experience is needed to identify attributes of problems which would
indicate a priori the preferred method to be used for problems of this size.

As seen from the solution times in the Table, problem-solving
time for the combinatorial programming algorithms tends to increase on
the average both with the number of vectors n and the number of con-
straints m in the problem. For a specific problem, however, the time
is quite unpredictable. For instance, problem-solving time required for
Example 10 exceeds substantially that required for the larger problem of
Example 11, where in fact the vectors in the smaller problem are a subset
of those in the larger.

As has been mentioned earlier, an important attribute of the com-
binatorial programming algorithms is that search is directed first to the
discovery of a feasible solution and then to successively better and better
feasible solutions until ultimately one is discovered that is shown to be
optimal. Hence it may be possible to terminate problem- solving with a
usable (feasible) solution prior to the ultimate completion of the problem- -

solving process,

7 This is the problem illustrated in the previous section,

2 D =

The importance of this attribute can be seen in Example 13 for which the
process had not been completed after 40 minutes of computation on the
IBM 7094. However, as shown in Table 3 problem-solving could have
been terminated any time after the first 5.6 seconds with a feasible
solution, | In Table 3 is shown the rate of problem-solving progress for
this example together with two others, For each example the Talle shows
the value of the objective function 7 for each successive feasible solution
discovered together with the elapsed time t at which it was discovered.?
The first elapsed time for each example includes both the time necessary
to arrange the vectors from an arbitrary input order into the prescribed
order for search and the subsequent time required to find a first feasible
solution. As these results indicate the time required to find the first
feasible solution tends in general to constitute a rather small fraction of
the total problem-solving time, In addition, they sugge st? that a large
fraction of the total fime is commonly expended in proving optimality, a
characteristic that has also been observed with other combinatorial programs,é”
While most of the problems investigated to date have been of the truck
dispatching type, a number of random problems have been solved with the
algorithms, The resulting times for 6 problems with n=60 and 100, and
m=10, 20 and 35 are shown in Table 4. In each case the problem was
formed by generating (n-m) vectors _éj.with h}. randomly distributed
nonzero elements, hj being uniformly distributed over the range lfhjs_m,
and affixing to thesé (n-m) vectors the m wunits vectors, For all n
véctors the cost Cj was a uniformly distributed random variable in the

range 0< Cj < 100,

8 The diflerence in total time between Tables 1 and 2 for Examples 4 and 10
is the time required to print intermediate solutions in the latter case.

9 In Example 13 it is conjectured that Z = 683 is an optimal value.

10 See, for instance, the experience reported in [:15] with a class of
sequencing problems,

SUOLINIOog 21qIsea d 9AISS2IONG I0J SwWl] SUIAJOG-WL[qOIg ‘¢ 21qe],
uoljeurwras J, paacadg
4+000°00%7 Lyrrewnado -uoN L1979 £yrrewrnido
L9L 6% € €89 L90 % 0LL
059 °592 269 €86 °¢ LL
€8% "G97 L69 0GL" 1 8LL
poaocag

00€ "94T 20L L9€ "L £f1rewnido €89 °1 $8L
L98 "Z€T 90L 00L "2 067 0691 G8L
' LTF "2Z€T LOL €8G°2 20¢ L9G° T 118
wm €€1°09 60L 056 "7 90¢ L1 T ¥18
L98" 65 8ZL L1G°2 80¢ LTF " 1 818
LIL"S X} 00% *2 01¢€ 00¢ * 128
€89 °g 08L €8¢ 2 22¢ L9Z° €278
€€9°9 ¥8L 05€ "2 92¢ 002" €58
L19°§ $18 €€€ A4 €81° 168

1 awl], SurAjog 7 onleA 31 swt], 3urafog 7 onreap 31 2wl], SUIAJOg 7 ON[EeA

~warqoag pesdelq

uotjoun g aA1192[qQ

-waTqoxg pesdery

uorjdoun g 241399fqO

~we[qoig pasderd

uo1joun g 241393(qO

€l HTdINVXH

01 TTINVXH

S HTdNVXH

a2 s

Table 4. Solution Times for Sample of Randomly
Generated Problems

Problem Solution Times (Seconds)
Size Algorithm Algorithm

(m x n) 1 2
a 10x60 117 =150 x
b 10x100 ¢ 250 . 283
e | 20x60 067 167 4
d 20x100 Lo « 283
e 35x60 J2k7 2T
f 35x100 « 217 . 283

In contrast to the results for the truck dispatching type problems shown
in Table 2, these results indicate that investment of problem-solving time in
performing "knapsack'' tests is a poor investment: the added time spent in
implementing the tests is not offset by a commensurate reduction in search
time., Of the two algorithms, Algorithm 1l is thus preferred for the randomly
generated problems. This difference in the effectiveness of the algorithms
when applied to the two type of problems stems from differences in the charac-
teristics of the problems. The truck dispatching problems are characterized
b'} the facts that there tend to be a large number of feasible solutions to the
problem and a high correlation between the hj and the cj with the consequence
that the lower bounds used in the tests teﬁd to be close to the minimum attain-
able cost for a feasible solution; hence the discrimination power of the tests
tends to be sufficiently strong to effectively reduce search. On the other hand,
for randomly generated problems the lower bounds tend to markedly under-
state the attainable cost for feasible solutions, and hence to be less effective
in pruning the tree. In the extreme case there is no resultant pruning, and
total problem-solving time is simply extended by the time expended on fruitless

testing. Thus for randomly generated problems this time should be eliminated,

- 2

or perhaps more effectively expended in performing additional feasibility
tests, some of which are suggested in the following section,

IV. MODIFICATIONS OF THE BASIC ALGORITHM

While the computational feasibility of the general approach for solving
all-zero-one type problems has been demonstrated with these basic algorithms,
there are a number of simple modifications to these procedures which might
result in more efficient procedures.

For instance, Balinski [3] has noted that there are a number of pre-
analysis considerations that might profitably be applied to the problem prior
to the actual execution of the algorithms, First, in the absence of knowledge
regarding the structure of the vectors —j}j comprising the problem, it would
most likely be worthwhile to ascertain that for each row i, aij =1 for at least
one j, for otherwise there exists no feasible solution to the problem, Secondly,
it might be possible to reduce the number of vectors n in the problem through
dominance considerations: vector ék may be eliminated from the problem if

there exists vectors A. such that Z A =A and Z e; & g Lhirdly,
=i R LN i %S %k

should there exist a row i with only a single vector —%k having a nonzero ele-
ment a0 this row and column vector may be removed, yielding a smaller
problem of dimensions (m-1) x (n-1) with requirements R'= E_{-ék . Finally,
if by permuting rows and columns of the matrix T formed by the column
vectors éj it is possible to form a matrix T' having the diagonal structure as
shown in Figure 6, ‘then an optimal solution can be obtained by decomposing

the problem into the p subproblems defined by the diagonal submatrices Ti'

and solving each of them independently.

Within the algorithms themselves, more efficient procedures may re-

sult through use of additional feasibility and/{r dominance considerations,

o Pl

N

Yo7
i
i 7%

Figure 6. Structural form of decomposable problem. All
elements in the unshaded portion of the matrix are zero.

For instance, it may be advantageous at each stage s to verify that the
feasibility test Yt < m is satisfied, where m is the number of con-
straints to be satisfied at stage s and Y = min {h }for the smallest
s<u<J; Y
row index t for which ris = 1; whenever the test is not satisfied the search
process can backtrack immediately. Another feasibility consideration of
potential value within the algorithm itself, especially when solving random
problems, is that described earlier as a pre-analysis consideration wherein
there must be at least one nonzero element ai_ for each i . Similarly, at
each stage s during problem-solving there must exist for each i such
that riS = 1 at least one vector éj , 8 < j < n, such that aij =1. This
test can be easily implemented by defining recursively, after ordering the
vectors at the outset of the algorithm, the vectors EJ y j=mn, n-1,...,1,

11

where Ej = @ é_ and En — An ; and then, throughout problem-solv-
) j o, 23

E.
—j+l
ing, verifying at each stage s that BS Es =R, -

With regard to dominance considerations, as was suggested in Section
II a test more stringent than 5S-ms< z can be devised by using additional

segments in the function (u) shown in Figure 2 to get a higher lower
g L 5 gl 24 g

A
bound Zs on the remaining cost Z: . An alternative to this which would

N rhe symbol @ denotes the logical 'or' operation; as applied to vectors

A = (al’aZ"' ,,am) and B = (bl’bZ""’bm) we mean by A (P B = C that
0if a,=b;=0

c.= ij for j=1,2,...,m,

J |1 otherwise

LB

require considerably more setup effort, storage, and implementation time
* 5
but which would be expected to yield higher lower bounds on Z, 1s to
A i=m s S i <
employ the bound g = Zi=1 r, x{it s, where T, 0 for 1 £y

for a =0
'eg,t+l it

/K = ,tzl’zjl'-,n-l
min [’e’i,tﬂ s Ct/ht] otherwise

oo for a. = 0
in

c otherwise
n/hn

This test would subsume the last feasibility consideration given in the pre-

ceeding paragraph. Or, possibly it would prove more efficient to store and

base tests only on the values ﬂ’

it for-t =1 J

L, It L., I L

1

With the exception of the first and third pre-analysis considerations,
the problem-solving time that would be consumed in implementing these
modifications would not appear to be insignificant. Further investigation is
required to determine whether, on the average, the reduction in search time
occasionned by the use of these added considerations exceeds the time spent
in implementing them,

Finally, there are two general possibilities for improvement which
are applicable to all combinatorial programming procedures employing a
strategy of the type used in the present algorithms: pre-specification of

upper and/0Or lower bounds on the value of the objective function, ZUE ZEZL,

w Db =

and searching by 'successive approximations', Clearly if values of ZU
and/)r ZL can be pre-specified to the algorithm at the outset,the possibility
exists of reducing the amount of search time required by the algorithm -
perhaps quite dramatically, as in cases when the values are close to or
equal to the optimum value. In some instances such values may be readily
supplied from previous experience, related problems, etc, without the necessity
of expending significant amounts of problem-solving effort. More generally,
this possibility for overall improvement through pre-specification of bounds
leads to the general quest for ''good'" ways to get '"good' initial solutions and
bounds, and to the question of the optimal allocation of total problem-solving
time between the preliminary search for 'good' bounds to pre-specify to the
algorithm and the execution of the algorithm per se. In the following section
a strategy in which bounds are determined by linear programming is des-
cribed, but in general the topic is beyond the scope of the present paper.

In searching by ''successive approximations' the basic algorithm is
modified so that in searching for successively better and better feasible
solutions it is now required that each feasible solution exhibit an improve-
ment over its predecessor of at least an amountlzv. By imposing this
requirement it is hoped that greater portions of the tree will be pruned and
problem-solving time thereby reduced. Upon termination a solution will
have been discovered \;i/ith a solution value Z* that is within of the
optimum: Z*_> Z >7* - < . At this point the algorithm can be re-applied,

if desired, to search the intermediate ra.ngelgS for an optimal solution, or

12 In the basic algorithm this modification consists simply in substituting
the quantity (Z°-<7) for Z2 in (3).
= This strategy thus entails the re-elaboration and re-evaluation (at least

implicitly) of portions of the tree that have already been considered earler,
With the enumeration procedures employed in the algorithms in this paper
the reconsideration applies to paths in the tree corresponding to potential

solutions lexicographically smaller than the solution which yielded the
value Z7,

o D

for one within, gay /3 of an optimum,
Both of these general possibilities for improvement remain toplcs
for future investigation.

v. EXTENSION TO THE ALL-ZERO-ONE PROBLEM WITH INEQUALITIES

With rﬁinor changes the discussion and algorithms for the all-zero-one
problem of form (1) can be extended to the problem with inequalities of the
+ form given by (1').. In this last section we cémment briefly on this extension,
Paralleling the discussion in Section II, we will assume in the basic
enumeration pro'ces's' for problérns of form (2) that the column vectors A,
are pre~ord'e(re"d in a fixed order, and that potential solutions zl:(XI, Xz; < v xn)

are generated in lexicographically decreasing order. Corresponding to (2)

we have that at stage s-1 in the enumerating process, having specified values

X Xorens ;Es—l' ,there remains a problem of the form (2'):
Minimize ZJ e x
JoJ
: : j=n jmgel —
Subject to: . ¢ ®: A 5 R = x. A 2R 2!
E: J) - ~ Zj_l I —=j —g ()
and . xj=00r1 j=s, stl,...,n

Frorn the nonnegativity of the elements a_ and the 1nequa11ty in (2)

ij
it follows that_ for each k, 1 > riz riz cee> 15{ >rk> oo . The

th . ; i .
k™ inequaiity becomes satisfied as soon as a stage t is reached for which

T < 0; tnereafter in the formulation of problem (2') at stage s, s >t itis
equivalent to set r; = 0. That is, in general we set rIS{ = max [0, -
Z, 33 J] - -The importance of this equivalence is that we can thus

continue to represent the elements of vectors Rs as bits in binary words.

Computationally we now have for _135

R _R"S 1 —'S"].@(_S 1. é —5 _l@x *. és*]_)’ S-_-Z, 3....,11

~ 28 -

where A] denotes the column vector whose elements are the binary
£

complements of the elements of és- ,

With this equivalence the basic ennumeration procedure for pro-

blems of form (2) becomes:

(i) Set x, =F (R;); %, =F (R,);...; x, =F (R).

If _]E_{n =0 save X as the best feasibly solution _)SO

=n o

c, X,

=l

(ii) If thereisa j, 1< j <n suchthat x, =1 let s be the
el J

discovered so far, setting g9 = Zj . Go to (ii).
largest such j and go to (iii). Otherwise problem-solving
is complete.

(iii) Redefine Xl =X KT X jeeed Xy) TX 30X S 0; Eap ™ F {Bs+l);

cees X =F (Bn). I R, =0and ZJZT Cj Xj < 2° save X
J:
as the best solution discovered so far, Go to (ii).

where 0 is the m-dimensional column vector with all elements zero and
0 if R A =0
F (—Rs) = —5 —5 —
1 otherwise
Continuing on, it follows as in the case of problem (2) that a feasible
solution can exist to problem (2') only if there exists for each k such that
kt -

simply implemented in a manner similar to that used for problem (2) by

rls{’:l at least one vector ét with a, =1, t >s., This consideration can be

{, S;."“’S;n of the vectors ék and pre-

ordering vectors on the basis of these sets. In the present case, however,

'

appropriately defining sets S

this is accomplished at the expense of a marked increase in problem size'l5

resulting from the replication of vectors A, . For the present problem

14 That x;=0 when R @A, =0 follows from dominance considerations, and
that ¥, =1 when _I}S@f_xs /_Q_ from feasibility considerations.

15 Alternately it can be accomplished at the expense of additonal bookkeeping
which is probably more efficient computationally, especially when m > B,
The present discussion is facilitated, however, by assuming the vectors
explicitly replicated.

= 29 g

y
sets S{. SE, wi o Sm are defined such that S’/ contains all vectors for which

ajk =1, If vector -ék is then replicated (Ej:{n ajk) times and placed in each

of the relevant sets, and the N = Z"jk ajk vectors pre-ordered so that those

’ .
, etc., we can then proceed exactly as in

2
casé of pro.blem (1). That is, if jt is the number of vectors in S‘: , and Jq =

in set Sfpfécede those in set S

Zz:l jt’ then the search process after specifying ;{-s’ s=.]'i » 151, 2,...y,m=1,

; s
can backtrack if r, = 1. Also, in the forward search process if t denotes

s+l

the smallest index i such that z =1 at the completion of stagré s, then

explicit investigation can jump to stage s’=Jt_1+l and resume with —E-{s"=£{s+1 .

Proceeding to dominance considerations we have as before: (i)

is =0 if 'csz z (ii) search may backtrack at stage s+l if,@’tz Z 4 where

s+

’Kt = min {c} and t is the smallest index i such that pSH ='1; and
“.‘L:-l<jf_Jt J A ” a ” N
(iii) search may backtrack at stage s if ZS > ZS or Z > Zg, where Z_ is

»

a lower bound on the value of an optimal solution Z.S to the knapsack problem

defined by (4) with the constraint Z‘],zNh, y, = mg replaced by the inequa.lify
: J=s]]
=N ;
‘}_ ; yj > mg . In this latter instance all of the bounding considerations
j=s -

discussed in Section II apply to the present problem. In the present case the
quantity 'hj for vector Aj is redefined to be h, = lem a‘ij where Aj is a

-] i:q .
member of set S; 5

Finally, turning to the modifications in Section IV each of Balinski's
four pre-analysis considerations apply when the second is appropriately
changed for the present problem: vector f-’k may be removed from the pro-

blem if there exists vectors Aj such that Z A > Ak and). c. < c
-3 i P = iy, =
i

i Ji k*

Within the algorithm itself the test for /Z\s > Z; remains valid,where Z _ =
Z& rf/ei/t . (Again the quantity ht appearing in the expressions for "e/it

is red_efined, as above.) And, of course, both of the general possibilities
for improvement apply to the present problem: pre-specification of upper

and/or lower bounds on the objective function, and searching by ''successive

approximations, "

< 304

As an illustration we consider again the problem with m=5 and
n=31 in Table 1. Applying Balinski's second pre-analysis dominance con-
sideration twenty of the original vectors hf}a—- are eliminated, leaving vec-
tors y = 2,6,7,10,11,13,17, 21, 22, 25 and 31l. Upon replicating each of

these remaining vectors A+~ to form the sets S{, Sé",. 3 s SS/ there results
E_ ’3"' aia- = 26 vectors Aj . Sorting these vectors into sets, and order-
i 23

ing within sets in increasing value of g = cﬁy » there results the equiva-
J J

lent problem whose data is given in Table 5. Proceeding with the solution
of the problem, the result is as indicated by the tree in Figure 7 which
shows the non-zero variables specified during the process. First %= 1

is specified, followed by X1 4 =1 to yield a feasible solution with Z=61.

The process then backtracks to the node at x, =1 and considers in turn

1
j=15 and 16 but findsinboth cases zs+ Cj > 61, Hence the process back-
tracks to the origin and investigates in turn j=2,3 and 4 finding that c.<6l
but that Cj + (m - hj) . Gj >6l. For j=5 cj-l-(m—hj)- Gj < 61 so that we speéify
xg = 1 followed by X4 = 1. Then, however, z +,0'4= 46 + 26 > 61 so the

process backtracks to the node X = 1 and tries j=15. Since z5+ c. =63>61

it backtracks again to the origin, For j=6, c6+ (m—h6) 56 = 45 + 3(6) > 61

and, since w=o, problem-solving is complete.

46

Figure 7. Tree of nonzero variables elaborated for
illustrative problem of Table 5.

3] -

Table 5. Data for Illustrative All-Zero-One Problem
With Inequalities as Derived from Problem
in Table 1

j 3 Cj é}.:(alj,azj,;.. i amj) hj e, a; Gj

1 . 2 - b5 1 1 0 il 4 1 13,75 6.00
2 6 49 1 1 0 1 0 3 1 16, 33 6.00
3 7 50 1 1 0 01 3 1 16, 67 6.00
4 10 54 1 0 0 1 1 3 1 18.00 6.00
5. 11 40 1 1 0 0 0 2 1 20,00 6. 00
6 13 45 1 0 0 01 2 1 22,50 6. 00
7 17 32 0 1 0 11 3 2 10. 67 6. 00
8 21 23 0 1 1 0 0 2 2 11.50 6. 00
9 22 26 0 1 0 1 0 2 2 13.00 6. 00
10 2 55 1 1 0 11 3 2 18,33 6. 00
11 6 49 1 1 0 1 0 2 2 24,50 6.00
12 7 50 1 1 0 0 1 2 2 25,00 6.00
13 11 40 1 1 0 0 0 1 2 40, 00 6. 00
14 25 6 0 0 1 0 0 1 3 6.00 6. 00
15 21 23 0 1 1 0 0 1 3 23.00 | 11,00
16 17 32 0 1 0 11 2 4 16,00 | 11.00
A7 22 26 0 1 0.i%2:0 1 4 26.00 | 11.00
18 10 54 1 0 0 11 2 4 27.00 | 11.00
19 2 55 1 1 0 11 2 4 27.50 | 11,00
20 6 49 1 1 0 1 0 1 4 49,00 | 11,00
21 31 11 0 © 0 0 1 1 5 11,00 | 11,00
22 17 32 0 1 0 11 1 5 32,00 | 32,00
23 13 45 1 0 0 0 1 1 5 45,00 | 45,00
24 7 50 1 1 0 0 1 1 5 50,00 | 50.00
25 10 54 1 0 0 11 1 5 54,00 | 54.00
26 2 55 1 1 0 11 1 5 55,00 | 55.00

i1 2 3 4 5

6 1315 20:26

- |

40 23 6 26 11

e B o

In conclusion, we comment briefly on possibilities for improve-
ment through pre-specification of bounds, As remarked in the previous

section it may in practice be more efficient to first obtain by some means

L

upper and lower bounds for the optimal value of Z, Z and ZU, and then

employ the combinatorial programming procedure for reliably searching the
‘intermedia.te range. For the present problem both bounds can be readily
derived from an optimal noninteger solution to the problem given in (2)

as determined by a linear programminé algorithm., I Y = (yl,yz, o ,yn)

represents an optimal noninteger solution to (2) thenl6 ZL = Z‘F? c:j y
J= J

U j= -
and Z = ‘] ? Cj y. where y_ =<y. + 99 ...9), the representation<&>
2= J J J

denoting the largest integer contained in <e> .
As an alternative, problem-solving time might first be spent in

searching for a rounded feasible integer solution W = (w_, w W)

2‘,..- n

1

n "
to (2) with value zj—l Cj w_closer to optimum than Y = (y_l,?'z, o oy e
= j n

L 8] ;
thereby reducing the range Z < Z < Z to be searched. With reference
again to the optimal noninteger solution Y, the solution W = (\?fl,'@z, 5% 5 \?n)

derived by setting \;v—j =<yj> for all j constitutes an optimal integer solu-

tion to the problem with requirements ZJ__I \}CS A . With these require-

J= —J

ments fulfilled by Wthere remains a smaller problem of the form of (2)
=

o : j g =
with requirements R - Zj=i Wj ’&j . I W = (_vl,wz,.. .,wn) represents

~ any feasible solution to this remaining problem then W=W+W constitutes a

feasible solution to the original problem having requirements R , If

1= 1= e j=n (-

zL_ ZJ - c.w < Z J n c.w < ZU - EJ C, W, solution W constitutes
j=L 3 37 T sl o 2 49

a feasible solution with value Z closer to optimal than Y; in the special

event that sz]; & ﬁ;—‘ = ,zL - Z‘F]lﬂ ¢, % solution W constitutes an optimal
= J=t 3)

solution,

16 In the event that all coefficients cj are integers, the higher lower bound
n
j=1 Sj ¥; + . 59, ,9> may be used.,

- 33 2

Pursuing this latter alternative, a reasonable problem-solving
strategy would appear to be to first obtain an optimal noninteger solu-
tion Y for the original problem. Then from Y formulate the remain-
ing subproblem with requirements R - Zj:l Wj _P}J with bounds ZL -

j=n - U j=n e | _ :
. ., C.w, and Z - Z._ ¢. w,, and search by the combinatorial pro-
=L J) =L 7] ¥

gramming procedure the intermediate range, obtaining-an optimal

integer subproblem solution W*! Forming W = W+Wk we test if

j:n ' .
521 'Cj Wj = Z ,; if so, problem-solving is complete; otherwise the
combinatorial programming procedure is applied to the original pro-

blem to investigate the range 2+

< Z< Ejzl c:j Wj . In the context of
the basic one- dimensional cutting stock problem [_16] this'.general

_ strategy was found to be quite successful in that for each of the approxi-
m:afély one hundred cases investigated, solution W constituted an |
.optimal solution, making it unneée ssary to subsequently apply the com-
binatorial programming procedure to the original problem. For the

present class of all-zero-one problems,possibly the investigations of

Balinski and Norman (see [4]) will yield information regarding the

effectiveness of problem-solving strategies of this type,

10,

1 1.

12,

13.

14,

- 34 -

REFERENCES

Balas, E., "An Additive Algorithm for Solving Linear Programs with
Zero-One Variables' Operations Research, Vol. 13, No. 4
(July-August, 1965) p.517-545.

Balinski, M. L. and Quandt, R.E., "On an Integer Program for a
Delivery Problem'", Operations Research, Vol. 12, No. 2
(March-April, 1964), p.300-304.

Balinski, M. L., 'Integer Programming: Methods, Uses, Computation"
Management Science, Vol. 12, No, 3 (November, 1965)p. 253-313.

Balinski, M, L., '"Integer Programming' (Abstract), Chapter 6 of
Pierce,J.F., (Ed), Operations Research and the Design of
Management Information Systems, Technical Association of
Pulp and Paper Industry, New York, N.Y.,1967,

Crowston, W.C., '"Network Planning Models', forthcoming.

Dantzig, G.B. and Ramser, J.H,, ""The Truck Dispatching Problem',
Management Science, Vol. 6, No, 1 (October, 1959)p. 80-91.

Da.y., R. H., "On Optimal Extracting From a Multiple File Data Storage
System: An Application of Integer Programming'!, Operations
Research, Vol,13, No.3 (May-June,1965)p. 482-494,

Gilmore, P.C. aﬁd Gomory, R.E., "A Linear Programming Approach
to the Cutting Stock Problem', Operations Research, Vol. 9,
No. 6 (November-December,196I) p.849-859,

Gilmore, P.C. and Gomory, R.E., "A Linear Programming Approach
to the Cutting Stock Problem-Part II"', Operations Research,
Vol, 11, No. 6 (November-December, 1963)p. 863-888,

Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integei'
Programming Problem', Operations Research, Vol.13, No. 6
(November-Decembe r,1965) p. 879-919,

Gomory, R.E., ""An All-Integer Integer Programming Algorithm'),
Chapter 13 of Muth, J. F. and Thompson, G. L. (Editors),
Industrial Scheduling, Prentice-Hall, Englewood Cliffs,
New Jersey, 1963.

Lawler, E.L., "An Algorithm for Solving Covering Problems'', Uni-
versity of Michigan, mimeograph report, December, 1964.

Little, J. D, C., Murty, K. G., Sweeney, D. W, and Karel, C., "An
Algorithm for the Traveling Salesman Problem', Operations
Research, Vol.1l, No. 6 (November-December, 1963) p.972-989.

Pierce, J. F., Some Large Scale Production Scheduling Problems in

the Paper Industry , Prentice-Hall, Englewood Cliff, New Jersey, 1964,

15,

16,

17,

18,

19

20.

- .

-~ 3B .

Pierce, J. F. and Hatfield, D, J., "Production Sequencing by Combina-
torial Programming'', Chapter 17 of Pierce, J. F., (Ed),
Operations Research and the Design of Management Information
Sy stems, A"I_‘(achnical Association of Pulp and Paper Industry
New York, N, Y., 1967,

Pierce, J. F., "On the Solution of Integer Cutting Stock Problems by
Combinatorial Programming - Part I, IBM Cambridge Scientific
Center Technical Report 36, Y02, May, 1966,

Pierce, J. F., "On the Truck Dispatching Problem', IBM Cambridge
Scientific Center Technical Report 36, Y07, forthcoming.

Root, J. G., "An Application of Symbolic Logic to a Selection Problem",
Operations Research, Vol, 12, No, 4 (July-August,1964)
p. 519‘526-

Rossman, M. J. and Twery, R. J., "Combinatorial Programming'’,
Unpublished paper presented at 6th Annual Meeting of the
Operations Research Society of America, Boston, Massachusetts,1958.

Salveson, M. E., '"The Assembly Line Balancing Problem', Journal of
Industrial Engineering, Vol., VI, No. 3 (May-June,1955) p.18-25,

Wade, C.S. and Gomory, R.E,, IPM 2, Share Distribution Number 1191,
September 1961,

IBM

