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Abstract

This paper describes efficient computational procedures for
calculating all possible 2% regressions of a dependent variable
upon subsets of k independent variables, The principal result

of the paper is contained in theorem 1, which provides a con-
structive proof that all 2® possible regressions can be accom-
plished by ''sweeping' the cross-products matrix exactly 2k times.

It is shown also that further economies in computation can be
achieved by taking advantage of a general symmetry property of
the cross-products matrix at each stage, and applying the sweep
operation itself to a minimal sized submatrix at each step. The
paper provides an example involving four independent variables,
as well as a Fortran routine for generating an optimal sequence
of sweeps.
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I. INTRODUCTION

Numerous procedures have been proposed for the selection of a
subset of k independent variables in fitting a multiple regression equation
to a set of data. Included among these are various forward and backward
stepwise selection techniques (Efroymson 1960, Hamaker 1962, Oosterhoff
1963) and the Cp statistic proposed by C. Mallows (1964.) Theoretically
speaking, none of these methods can claim to achieve optimality, so that
the sure way of finding that regression which is best according to some
criterion is to carry out all possible 2k regressions and use that criteri-
on to select the "best' of the 2 possible regressions. Because the
number of calculations increases exponentially with k, it is particularly
important to have an efficient algorithm for carrying out the necessary
computations. However, if k is sufficiently large, it may not be
practical to carry out all of the possible regressions., In such cases,
Gorman and Toman (1966) have suggested the use of fractional factorial
designs for selecting a subset of the Zk_ regressions, They then use the
Cp statistic as a criterion for selecting the ''best' regression. In this
situation as well, it is important to carry out the computations efficiently
and to extract as much information as possible from the data. In this
paper, we describe an efficient way of fitting all possible regressions, and

offer some comments on the fractional factorial case.
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The calculations required to fit a regression equation to a given set
of data are essentially those of solving a set of simultaneous linear equations.
A commonly used, and usually efficient direct method of carrying out such
calculations is the Gaussian elimination (or pivotal inversion) method.
(Wilkinson, 1965).

In section 2 of this paper we describe a variant of the usual Gaussian
elimination method, hereinafter referred to as sweep (Beaton 1964), and show
how it can be used to add and delete independent variables from a fitted
regression. We then go on to show, in section 3, how to carry out all possible
regressions efficiently. An example of the procedure is given in section 4.

In section 5, we offer some comments about the problem of selecting
balanced fractions of all the possible regressions, as proposed by Gorman and

Toman.

I, APPLICATION OF SWEEPING TO MULTIPLE REGRESSION

Following Beaton (1964), a square matrix A = (a, ) is said to have
1)
th the .. ;
been swept on the r row and column (or r " pivotal element) when it has

been transformed into a matrix B = (bij) such that

B # Ll
bjy =-ajp/ary if¢r
(2.1)
brj 5 arj/arr J # r
bij R { By By arj/arr iyl # %



It is easy to check from (2.1) that the sweep operator possesses the

following useful properties:
1. Sweep is reversible,

That is, sweeping a matrix twice on the same row and column
is equivalent to not having swept the na trix at all.

2, Sweep is commutative,

That is, sweeping a matrix first on the rth and then on the

sth pivotal element is equivalent to sweeping the matrix in

the opposite order.

In terms of regression analysis, consider the normal equations of regres-

sion theory in their matrix representation

1 A 1
(2.2) PEORER
A
X D S X Y B
10 11 1k 1 o AL
where X = : Y = . B = I_Bl
o~ ~ ~ .
Xno an i Xnk Yn a8
n
and X10= =Xn0 = 1.
If the cross product matrix
ol 0
Ar et 1 ~ .
] -]
(2.3) C = “.';{'“‘. ----- T PR k
™~ Y
~r o~ ’ ,‘5 X, 4 k+1

is swept on the first k+1 pivotal elements, then provided that (XtX)_
s ot

exists, the result will be
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where E and 3‘2 are the least squares estimates for the regression co-
efficients and error v.ariance respectively. In general, sweeping C on any
subset of the first k+1 pivotal elements will yield the estimates of the
regression coefficients and error variance corresponding to the regression of
Y on that subset of the X's. Thus, by the reversibility and commutativity
properties of sweep, each application of sweep to a pai‘ticular row and column
of the cross-products matrix either introduces the variable corresponding to
that row and column into the fitted regression equation, or removes it if it
was already in the equation. This property of sweep suggests that it would

provide an efficient method for calculating all regressions.

III . DOING ALL POSSIBLE REGRESSIONS

In using the sweeping method to do all possible regressions, computational
efficiency can be achieved in two ways. First, it is important to obtain the 2k
regressions with a minimum number of sweeps. Having achieved this, we
would like to carry out each sweep as efficiently as possible. In theorem 1
below, we give a constructive proof that thé 2k possible regressions can be
carried out in a sequence of just 2k sweeps, which is of course the minimum

- number of required sweeps. We then go on to show how to effect a significant

~et



reduction in the number of calculations needed for each sweep in the sequence.
These economies are brought about by sweeping the smallest possible sub-
matrix at each stage and using the inherent symmetry properties of the
matrix in such a way as to operate only on the upper triangular part of the

submatrix.

THEOREM 1. All possible Zk regressions of a dependent variable on a
set of k independent variables can be obtained through a sequence of
exactly Zk sweeps of the (k+2) x (k+2) cross product matrix ’(E'
Proof: (By mathematical induction)

First, sweep S on the zeroth pivotal element to produce the

A A
regression Y = B . Denote the resulting matrix by ‘V‘_V‘ We proceed

to show that the additional Zk- 1 regressions can be obtained with

exactly Zk- 1 sweeps of W,
A A
ke 8

When k=1, 27 -1 =1 and the single regression Y = & 1%

performed by sweeping on the first pivotal element of w.

k
Assume that the 2 -1 possible regressions on k-1 wvariables can

k=1

be obtained in a sequence Sk-l of exactly 2 -1 sweeps on the first k

pivotal elements. Now, sweeping on the (k,k) pivotal element will

produce a new regression which adds the variable to the regression .

produced by the sequence Sk—l' Since the sequence S, _; produced
Zk'l distinct regressions not including the kth variable, repetition of the

sequence S will now produce another anl distinct regressions inclu-

k-1
ding the k‘-Eh variable, The total number of sweeps in Sk = (Sk -1’ k, Sk_l)

is thus seen to be (Zk'l 1)+ 1+ (Zk"l -1) = Zk -1, Together with the sweep

which produced W and the reg?ession Y=B,, we see that all possible 2k gistinct



regressions will have been produced in exactly B sweeps.,

. The proof suggests a recursive algorithm for constructing the sequence

Sy, that is Sk = (Sk-l’ k, Sk-l ), as illustrated in Table 1.

TABLE 1.

k Sy

1 1

2 1.2 1

3 i o T |

4 Phg ol go prgisaprap g 10 351 g
§3 4 S3

5

Kk

k-1, x, Sk-1

However, it is not actually necessary to construct the sequence

th

recursively, since the recursion formula for S; reveals that the i pivotal

i-1st
element (1=1,2,...,k) is swept for the first time on the 2t ! . Sweep

and is swept on every 2' th sweep thereafter. Table 2 provides a simple Fortran

program for generating S, directly by the above considerations.

k



Fortran Routine for Generating Sequence of All Regressidns

TABLE 2
k = no. of variables
Zk-l = no. of possible regressions (in addition to the regression
A A
Y8, )
input k

output I = vector of length Zk - 1 containing sequence of sweeps

SUBROUTINE REGR (K, I)
DIMENSION I (2048)
DO1J=1,K

IJ = 2 %% (J-1)

JINGR = 2% JI°

1

1(JI)=17J
JIT = 2 *#%(K-J) -1
W 35 11,3

3 DO 2 M=1,JIJ
J3=3J + INCR

g HITy =3

1 CONTINUE

RETURN

END




Having obtained an optimum sequence of sweeps, we now turn
to the problem of carrying out each sweep as efficiently as possible. We
note from (2. 1) that the symmetric property of the cross product matrix

is partially destroyed by the sweep operation. That is, when a symmetric

th

matrix A is swept on the r pivotal element, the resulting matrix B

has the Iﬁroperty bir =-b . and bij = bji for i, j#r. This particular
property of sweep gives rise to the definition of an absolute symmetric
matrix Ib..]=|b,,] for all i and j.

1] Ji

In general, the relation between bi.j and bji may be found

readily if we know how many times A has been swept on the ith and jth

pivotal elements. Define a parity vector T = (to, CTRERE tk) where

ti =1 if the matrix A has been swept an even number of times on the ith

pivotal element and t, = - 1 otherwise. The property of absolute sym-
i

metry, combined with the parity vector T permits us to sweep only the

upper triangular part of the matrix at each step, wherethe sweep operation(z’ 1)

is redefined by (3. 1) below.

brr = llarr
bir > -air/arr Lr
b .= a j
rj a'rj/ rr 17
bij =B Ay al‘j/arr §id
where CI tutvavu ifu>v .

It should be noted that tr = 1 for all r initially (i.e. = for

th

symmetric A). Each time the matrix is swept on the r pivotal element,

the sign of tr must be reversed. At any step in a sequence of sweeps, the

~a



variable Xr is included in the regression equation if tr = =1,

It should be noted that theorem 1 gives a sequence of sweeps
to be applied to the entire (k+2) x (k+2) cross product matrix S However,
a further substantial savings in computing time can be achieved by applying
the sweep operator only to that submatrix containing the relevant elements
at the pai‘ticular stage of the regression,

In the case of sweeping the matrix on a pivotal element which
results in adding a variable, say Xi' to the regression equation, the
submatrix to be swept must include all variables which are already in the
equation, any variable which will be entered into the equation before Xi is
removed, and the dependent variable. When the variable Xi is next
deleted, the same submatrix must be swept. The procedure is summarized

by the following simple rule, which gives the sequence of minimum sized

submatrices associated with the successive sweeps.

Rule 1:

When sweeping the ith

variable, the submatrix to be swept
consists of the rows and columns with indices 0,1,2,...,
i+l, all j»i+ 1 such that tj = -1, and k+1 (the index of

the dependent variable).

To summarize then, the recommended procedure for calculating
all 2k regressions in a minimum number of computations is as follows:
1. Carry out a sequence of sweeps as given by theorem 1.
2. For each such sweep:
a. Apply Rule 1 to obtain the minimum sized submatrix to

~

be swept.
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b. Use (3.1) to apply the sweep operator only to the
upper triangular part of the submatrix !!defined in
2a above,

In the next section, we will apply the above procedure to an

example in which k=4 .
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IV. A FOUR VARIABLE EXAMPLE

The basis for the fundamental result of the previous section
(i.e., Theorem 1) can be illustrated by figure 1, which gives a geometric
representation of a four variable example in terms of travelling along

edges of cubes, where the ith coordinate of a vertex indicates the presence

th

(1) or absence (0) of the i variable in the regression equation. Starting

at (0,0, 0,0) the arrows indicate the successive regressions, and the number
alongside each arrow indicates the pivotal element to be swept in order
to move from the regression represented by the starting vertex to that of
the ending vertex. Thus, for example, the vertex (1, 1,0,0) represents the

; Q. A . : ;
regression Y = 60 + ﬁl Xl +B2X2 » and sweeping variable Xl will re-

move it from the regression, taking us to the vertex (0, 1,0,0), which

A A

A
represents the regression Y=B +B¥ X . Table 3 summarizes the se-

0 2 2
quence of sweeps, the resulting regressions, and the applicable submatrices

corresponding to the sweep sequence depicted in figure 1.

s 5 & ; ;
Geometric Representation of 2~ Regressions in 2% sweeps
(1,1,1,0) (10 {54y 1)
[
\

1
UooO

Ll

1 ‘5Q£') 1
I
o}r);)o) (o, i,G:!ﬂk =iltbcnc) 1)
I 5 A
i

(0,0,1,0)  (0,0,0,1 &(o,oJ )

Figure 1.

KEY: 1. The iP coordinate of each vertex indicates the presence (1) or
absence (0) of the ith variable in the regression.

2. Starting at (0,0, 0,0)y arrows indicate successive regressions,
and the number alongside each arrow indicates the pivotal element
to be swept.
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SEQUENCE OF SWEEPS AND CORRESPONDING REGRESSIONS

Order of Sequence of Independent variables Submatrix
Sweep Sweeps (S;) Vertex included inRegression to be swept
1 0 (0,0,0,0) none 0,1,2,3,4,5
2 1 (1,0,0,0) 1 0:1;,2:5
3 2 (1,1, 0,0) 1,2 0, 1.2, 3,5
4 1 (0,1,0,0) 2 0,1,2,5
B 3 (0,1, 1,0) 2;3 0, 1,2, 3,4,:5
6 1 (1,1, 1, 0) L2y 3 0,1,2,3,5
7 2 (1,0, 1, 0) 1,3 051525355
8 1 (0,0,1,0) 3 0y 1; 25 3;:5
9 % (0,0,1,1) 3,4 05 1,2-35:845
10 1 (1,0, 1, 1) 1,3,4 0,1,2,3,4,5
11 2 R T 1,2,3,4 0,1, 253,4, 5
12 1 (0,1, 1, 1) 2,3,4 0,1,2,3,4,5
13 3 (0,1,0, 1) 2,4 Oy Lo 24535455
14 1 {1, 1,0,1) 1,2,4 0: 13 25455
15 2 (1,0,0,1) 1,4 0,1,2,3,4,5
16 1 (0,0,0,1) 4 0,1,2,4,5
Table 3.
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V. SOME COMMENTS ON FRACTIONAL REPLICATION

If the number of independent variables under consideration is
sufficiently large, it may be impractical to calculate all possible regre.ssions.
However, in such instances,itmay be possible toidentify the important variables by
restricting the search to a subset of the possible regressions. '

Gorman and Toman (1966) have proposed a procedure involving
calculation of only a balanced fraction of the possible regressions, and use
of the CP statistic to select one of these. We shall, in this section, investi-
gate the use of this procedure in terms of the sweep operation.

With reference to figure 1, if X1X2X3X4 is chosen as the de-

fining contrast for a 1/2 replicate, we obtain the regressions corresponding

to the circled vertices as listed in Table 4.

Order of Sequence of Vertex Treatment Combination (independent
Sweeps Sweeps Variables Included in Regression)
1 0 (0,0,0,0) none
243 1;2 (1, 1, 0,0) 1,2
4,5 1,3 (0,1,1,0) 27'3
6,7 1,2 (1,0, 1,0) 1; 8
8,9 1,4 (0,0,1,1) 3, 4
10,11 1,2 (1,1, 1, 1) 1,2, 3,4
12, 13 1,5 (0,1,0,1) 2, 4
14, 15 1,2 (1,0,0, 1) 1, 4
Table 4.

It is immediately apparent from the above listing of treatment
combinations that at least two sweeps are required to move from any vertex
in the design to any other vertex in the design. Thus, the computation re-

quired to find the regressions corresponding to a half replicate of all the
~t
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possible regressions will actually produce all possible regressions. (In
this example, one additional sweep is required in order to reach (0, 0,0, 1)
but if the other half-replicate had been selected, this sweep would have
been required anyhow.) It is readily seen that regardless of the number
of variables, any balanced half replicate requires us, at least, to move
along two edges of a cube to get from one point to another in the design.
Similarly, in the one quarter replicate case, one must again travel along
at least three edges of a éube before reaching another admissible vertex.
Thus, in general, at least 2k-ptl sweeps will be required to carry out a
balanced 2K"P fraction of the possible 2X regressions.

The situation may be summarized as follows:

1. In using a sequence of sweep operations to calculate a
subset of the possible regressions, it is meaningless to
consider a half-replicate since the required computations
will automatically yield the entire Zk regressions.

2 The.computatiOns required to carry out a quarter-
replicate, automatically yield an additional (unbalanced)
quarter-replicate.

3. In carrying out a Zk-p fraction of all the possible re-
gressions, it does not cost anything to look at the additional
regressions which are automatically produced in the course
of moving from one regression to another.

The authors do not know of any method for generating balanced
fractions of all regressions in an optimal fashion. Since as noted earlier,
the number of possible regressions increases exponentially with k, the
number of independent variables, 3 solution to the above problem, if it can

be obtained, would constitute a valuable contribution.
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