
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

0
66

0
32

4
B

1
EP000660324B1
(11) EP 0 660 324 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
23.05.2001 Bulletin 2001/21

(21) Application number: 94309305.4

(22) Date of filing: 13.12.1994

(51) Int Cl.7: G11B 20/12, G11B 27/30

(54) Data recording disk drive

Datenaufzeichnungsdiskettenlaufwerk

Unité à disques d’enregistrement de données

(84) Designated Contracting States:
AT BE CH DE ES FR GB IT LI NL SE

(30) Priority: 23.12.1993 US 173541

(43) Date of publication of application:
28.06.1995 Bulletin 1995/26

(73) Proprietor: International Business Machines
Corporation
Armonk, N.Y. 10504 (US)

(72) Inventors:
• Hetzler, Steven Robert

Sunnyvale, California 94087 (US)
• Kabelac, William John

Morgan Hill, California 95037 (US)

(74) Representative: Litherland, David Peter
IBM United Kingdom Limited
Intellectual Property Department
Hursley Park
Winchester, Hampshire SO21 2JN (GB)

(56) References cited:
EP-A- 0 443 553 EP-A- 0 471 314
EP-A- 0 517 473 EP-A- 0 522 750
EP-A- 0 562 758 GB-A- 2 175 436
US-A- 4 087 843 US-A- 4 402 021
US-A- 4 628 379 US-A- 4 636 885
US-A- 4 984 100 US-A- 5 210 660

• ATT93C010 Servo Channel/Multiprocessor,
Advance Data Sheet, June 1992

EP 0 660 324 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] This invention relates in general to data record-
ing disk drives, and in particular to sector formats for
multiple track data storage media used in fixed block ar-
chitecture (FBA) disk drives.
[0002] All disk drives require some means for deter-
mining the radial and circumferential position of the
read/write heads over the disks so that the heads can
be accurately positioned over any desired track and sec-
tor. Typically, this is accomplished by placing servo in-
formation on one or more of the disk surfaces for use by
magnetic or optical heads in determining their positional
orientation over the disk. In sector-servo (also known as
embedded servo) disk drives, the servo information is
interspersed with data on each disk surface. This ap-
proach has the advantage of providing the positioning
information close to the data sectors it identifies, thereby
eliminating sources of track misregistration which oth-
erwise tend to limit track density. However, a disadvan-
tage of the sector servo approach is that it incurs addi-
tional overhead in order to permit transitions between
data regions and servo regions and to distinguish data
regions from servo regions.
[0003] Much attention has been focused in recent
years on reducing the overhead associated with sector
servo architectures. One approach, known as the no-ID
format, is disclosed in EP-A-522 750. No-ID disk drives
use servo sectors in combination with a defect map to
identify the data sectors and completely eliminate the
use of an ID region. Using the no-ID format, each sector
on a track is composed of two regions: a servo region
and a data region. The servo sectors are located using
a servo ID mark or address mark. ECC may be added
to track ID information to provide a more robust servo
pattern. Each data sector is identified by its cylinder,
head and servo sector number counted from an index
location. This format is the same for substantially all sec-
tors on all tracks of the disk.
[0004] A second strategy which has been used to im-
prove recording density in sector servo disk drives in re-
cent years is known as zone bit recording (ZBR), as
taught by Hetzler in U. S. Patent 5,210,660. In ZBR disk
drives, the disk is divided into multiple zones oriented in
the radial direction. Each zone is comprised of a set of
tracks. Since tracks in the outer zones are longer than
those in the inner zones, the tracks in the outer zones
may store more data than the tracks in the inner zones.
Typically, data is stored in sectors, each of which has
the same number of data bytes. In this configuration, the
additional capacity in the outer zones is utilized by hav-
ing a larger number of data sectors on each track in the
outer zones. This results in the number of data sectors
per track varying from zone to zone. In order to provide
a constant servo sampling rate for all zones, a single
fixed number of servo sectors is used across the entire
disk. The combination of a varying number of data sec-
tors per track and a fixed number of servo sectors per

track can result in some of the data sectors being split
by servo sectors. An example of a disk formatted ac-
cording to US-A-5,210,660 is shown in Fig. 1, where da-
ta recording disk 101 is split into three zones -- 102, 104,
and 106. Each zone is comprised of a plurality of tracks
103. Each track has a number of data sectors 105 with
associated ID fields 107. Various servo sectors, desig-
nated as 108, are shown interspersed with data sectors
105 around the disk. An index location 109 is shown,
where the data sectors in each zone align with a servo
sector 108. A portion of a track on the disk is shown
expanded at 110. Four complete data sectors are shown
(130, 122, 132 and 124), each with their associated ID
field (140, 141, 142 and 143). Three representative ser-
vo sectors 125, 126 and 128 are also shown. As can be
seen from this example, some data sectors will be split
by servo sectors, and some data sectors will not start
immediately following a servo sector. For example, data
sectors 122 and 124 are split by servo sectors 126 and
128, respectively, while data sectors 130 and 132 are
not split by servo sectors. Data sectors 122, 132 and
124 and associated ID fields start immediately after an-
other data sector, rather than immediately following a
servo sector.
[0005] The necessity of splitting data sectors and of
having some data sectors that do not start immediately
following a servo sector presents complications which
heretofore have prevented the use of ZBR and no-ID
together in the same disk drive. For instance, in No-ID
disk drives, the physical location of a data sector is de-
rived from the address mark field, which is also used to
locate the servo sector. However, this technique is de-
pendant on a fixed, constant one-on-one relationship
between the locations of the servo sectors and the data
sectors, a relationship which does not exist in a ZBR-
formatted disk drive.
[0006] A technique has recently been introduced
which addresses part of the problem by providing elec-
tronics to generate timing pulses to mark the locations
of data sectors which are not necessarily adjacent to
servo sectors and which may be split by servo sectors.
The technique was introduced by AT&T in the
ATT93C010 servo channel/multiprocessor chip which
generates a start of data sector pulse for each data sec-
tor starting between two servo sectors. This is achieved
through the use of programmable registers whose val-
ues are updated at every servo sector. Two values are
required at each servo sector: the number of clocks (the
length) from the prior servo sector to the start of the first
complete data sector; and the number of data sectors
which start before the next servo sector. Also, the sys-
tem must know the number of clocks required for a full
data sector, a value which is typically constant for each
zone.
[0007] However, while the ATT93C010 is able to lo-
cate the start of a data sector, it cannot identify a data
sector -- that is, distinguish it from other data sectors,
such as by computing its data sector number. In fact, it

1 2

EP 0 660 324 B1

3

5

10

15

20

25

30

35

40

45

50

55

cannot even compute a partial data sector number for
use in distinguishing a sector from others on the same
part of a track. As such, it is insufficient for use in a disk
architecture which must both locate and identify data
sectors without using an ID field.
[0008] Another possibility for locating data sectors
without using ID information is to add a servo-style ad-
dress mark prior to each data sector. This approach en-
sures that each data sector can be located independ-
ently of a servo sector. However, it suffers several draw-
backs. First, it does not allow the disk drive to be refor-
matted with a sector size different from the original sec-
tor size since the address marks must be written by a
servo writer which permanently fixes the disk format.
Second, this approach can increase the complexity of
the servo write process, because additional steps may
be required to create the additional address marks.
Third, the address marks occupy space on the disk, in-
creasing the overhead. Fourth, the address marks re-
quire a write-to-read recovery region between data sec-
tors, further increasing the overhead. Finally, when used
with a magneto-resistive read/write head and micro jog
technology, each address mark must be reliably read in
a partially off-track position during write operations. This
requires guard bands at the zone boundaries, since the
data address marks do not line up with one another from
one zone to the next. The guard bands, of course, fur-
ther increase the overhead penalty associated with this
method.
[0009] Accordingly, there has existed a heretofore un-
met need in the art for a sector architecture which effec-
tively combines the ZBR and no-ID formats, which sec-
tor architecture enables the data recording head to lo-
cate and identify data sectors for read and write opera-
tions without resorting to an address mark and without
requiring write-to-read recovery between adjacent data
sectors.
[0010] The present invention provides a disk drive
comprising: a data recording disk having a plurality of
generally concentric data tracks divided into a plurality
of radially spaced zones and a number N of generally
equally angularly spaced servo sectors extending gen-
erally radially across the zones, the tracks in at least one
of the zones each having M data sectors, each data sec-
tor storing substantially the same number of bytes of da-
ta; and a recording head for reading information in the
servo sectors and for writing and reading user data in
the data sectors; characterised in that the data sectors
include no identification (ID) information that uniquely
identifies the data sectors; the disk drive being charac-
terised in that it further comprises: a servo sector coun-
ter responsive to information read by the recording head
in the servo sectors, for counting servo sectors as the
disk rotates past the head; memory storage for storing
track format information representing the location of the
data sectors relative to the servo sectors in the track;
and sector logic circuitry coupled to the servo sector
counter and the memory storage for locating, from the

track format information, a data sector where user data
is to be read or written.
[0011] As will be described below, there is provided a
data recording disk for use with a fixed-block architec-
ture disk drive having a head capable of reading posi-
tioning information, the disk being divided into a number
of radially spaced tracks, at least one of the tracks being
divided into a number of angular sectors including only
data sectors for recording user data and servo sectors
having pre-recorded head positioning information for
identifying track and servo sector locations, wherein the
number of servo sectors on the track is not equal to the
number of data sectors on the track, and wherein infor-
mation establishing the circumferential locations and
identities of the data sectors is encoded within the servo
sectors.
[0012] As will be further described, there is also pro-
vided a method for locating and identifying a selected
data sector in a fixed-block architecture embedded ser-
vo disk drive having a data recording disk with radially
spaced tracks and circumferentially spaced angular
sectors including data sectors and servo sectors and
having a recording head which reads information in the
servo sectors and which writes and reads user data in
the data sectors, the method comprising the steps of:
reading information from a preceding servo sector; re-
ceiving from electronic storage sector layout informa-
tion; computing a data sector number from the sector
layout information; and computing a distance from a pre-
ceding servo sector to the start of the data sector as a
function of the sector layout information.
[0013] Preferably, the locations and identities of data
sectors are continuously computed as each data sector
arrives at the recording head until the selected data sec-
tor is located and identified. Alternatively the location
and identity of the selected data sector is computed in
advance of the selected data sector reaching the record-
ing head and wherein its arrival is signalled by a sector
pulse.
[0014] It is a further preferred feature of the method
that the computed distance is represented as a clock
count.
[0015] Preferably the method further comprises, after
computing the data sector number, the step of adjusting
the data sector number to compensate for cylinder and
head skewing. The step of adjustment preferably in-
cludes modifying the data sector number by a skew val-
ue.
[0016] There is also provided a fixed-block architec-
ture embedded servo disk drive comprising: a data re-
cording disk having radially spaced tracks and circum-
ferentially spaced angular sectors including data sec-
tors and servo sectors; a recording head which reads
information in the servo sectors and which writes and
reads user data in the data sectors; servo electronics
which determines, based on information read from a sin-
gle servo sector, the locations and identities of at least
two subsequent data sectors, and which further deter-

3 4

EP 0 660 324 B1

4

5

10

15

20

25

30

35

40

45

50

55

mines, based on information read from the same servo
sector, whether that servo sector splits a data sector.
[0017] Preferably the information read from the single
servo sector is used to retrieve additional information
from electronic storage.
[0018] There will also be described below a data re-
cording disk for use with a fixed-block architecture disk
drive having a head capable of reading positioning in-
formation, the disk having radially spaced tracks and cir-
cumferentially spaced angular sectors and a track ar-
chitecture which divides a track into a plurality of repeat-
ing segments, each segment having a plurality of equal-
ly spaced servo sectors and a plurality of data sectors,
at least one of the data sectors being split by a servo
sector, the data sectors containing no data identification
information for use in locating the circumferential posi-
tions of the data sectors and no data identification infor-
mation for use in identifying the data sector numbers of
the data sectors.
[0019] It is preferred that the servo sectors include po-
sitioning information followed by servo pad fields, the
data sectors include data pad fields, and the at least one
split data sector includes a split pad field.
[0020] It is further preferred that the servo sectors
contain information for use in locating the circumferen-
tial positions of the data sectors and information for use
in identifying the data sector numbers of the data sec-
tors.
[0021] It is yet a further preference that the at least
one segment includes a stub field.
[0022] The following description also discusses a
fixed-block architecture embedded servo disk drive
comprising: a data recording disk having radially spaced
tracks and circumferentially spaced angular sectors in-
cluding data sectors and servo sectors, wherein for at
least one track the number of data sectors is not equal
to the number of servo sectors; a recording head which
reads positioning information in the servo sectors and
which writes and reads user data in the data sectors;
and a head positioning system wherein the data sectors
are identified and located using formatter electronics in
cooperation with servo electronics, wherein the format-
ter electronics converts a logical block address to a data
sector number, and wherein the servo electronics uses
the data sector number to provide a byte clock count
representing the distance from a preceding servo sector
to the data sector identified by the data sector number.
[0023] Preferably the servo electronics includes sec-
tor pulse logic which accesses a format table containing
segment information for each core. It is further preferred
that the sector pulse logic includes a data counter, a pad
counter, and a sync counter which count byte clocks
used to locate and identify data sectors. In operation,
the sector pulse logic of the disk drive uses a servo sec-
tor number received from the servo sector counter to
address the format table.
[0024] It is further preferred that, in operation, the sec-
tor pulse logic computes the starting location and data

sector number of data sectors on the data recording
disk. Preferably the sector pulse logic receives a servo
modulo count for use in computing data sector locations
and identities.
[0025] It is a preferred feature that the format table
includes storage, for each segment subdivision of the
data recording disk, and each region within a segment,
containing the location and identification information for
the data sectors in the segment. Preferably the format
table includes storage, for each zone, which enables the
servo electronics to locate and identify data sectors
which are not positioned immediately following a servo
sector.
[0026] It is further preferred that the servo electronics
includes a data sector number counter which counts da-
ta sector pulses from index and which is preset at servo
sectors. Presetting of the data sector number counter
avoids latency after a zone switch and also avoids la-
tency after return from a power saving mode.
[0027] Preferably the preset value provides a skew
between data sectors and servo sectors.
[0028] It is further preferred that the disk drive further
includes a servo modulo counter which continuously
computes segment numbers and servo sector numbers
corresponding to the position of the recording head rel-
ative to the data recording disk. The inputs to the servo
modulo counter preferably include stagger offsets,
which preferably include offset values and timing adjust-
ment values. It is preferred that the stagger offsets are
organized into a look-up table according to head shift
value.
[0029] It is further preferred that the data sector
number is adjusted to compensate for cylinder and head
skewing, said adjustment preferably including modifying
the data sector number by a skew value.
[0030] Thus in a preferred embodiment, to be de-
scribed in detail below, a data recording disk drive is pro-
vided with an FBA sector architecture which enables a
data recording head to identify and locate data sectors
based solely on information obtained from electronic
storage and from servo sectors which need not be ad-
jacent to the data sectors. The data recording disks in
the disk drive are divided radially into zones, each zone
including a number of tracks. Each track contains a
number of data sectors and a number of servo sectors,
with the number of data sectors varying from zone-to-
zone. The tracks contain servo information and data, but
no data sector ID information. Format information is
maintained in the electronic storage to describe the data
sector layout for each zone. The tracks in each zone are
circumferentially divided into segments. Included in
each segment is a number of data regions separated
from one another by servo sectors. All data regions in a
given segment are the same number of bytes in length,
but this length need not be an even multiple of data sec-
tors. Accordingly, various regions may contain any of the
end of a data sector whose start is located in the previ-
ous region, one or more complete data sectors, and the

5 6

EP 0 660 324 B1

5

5

10

15

20

25

30

35

40

45

50

55

start of a data sector whose end is located in the follow-
ing region. The format information provided to identify
and locate data sectors, including ones whose region
locations are not adjacent to servo sectors, includes an
entry for each region in the segment. Each entry in-
cludes the lengths of the first and last data sections in
the region, whether the sectors represented by those
sections are split between two regions, the total number
of data sectors in the region, and the sector number of
the first data sector in the region. In addition to the in-
formation recorded for each region, data is maintained,
for each zone, to locate data sectors which do not start
immediately following servo sectors. This data includes
the number of bytes in a complete data sector, the length
of a complete data sector (measured in byte clocks), the
length of a VCO synchronization field (measured in byte
clocks), the length of a VCO resynchronization field fol-
lowing a servo sector (measured in byte clocks), the
lengths of one or more data pad fields (measured in byte
clocks), and the numerator and denominator of the re-
duced fraction of the ratio of the number of data sectors
per track and the number of servo sectors per track. Por-
tions of both the region information and the zone infor-
mation may be stored in random access memory acces-
sible to electronics in the disk drive; other portions may
be stored in a set of registers also accessible to the mi-
cro processor.
[0031] Also in accordance with the invention, a meth-
od is provided to compute the starting location and sec-
tor number of any data section based on the above-de-
scribed information. A set of counters is used to time the
length of the various fields in the format to compute the
starting location of a required data sector. The data sec-
tor number from index is computed based on a relative
data sector number, the servo sector number from in-
dex, and the reduced number of data sectors per track.
[0032] Further in accordance with the invention, a
method and system are provided for continuously de-
veloping a servo-modulo count for use in computing
segment numbers and servo sector numbers. The ser-
vo-modulo counter computes two quantities: an index
value to the segment layout information for the current
zone; and the data sector number for the first data sector
in the current segment. The continuous availability of the
servo-modulo count allows a disk drive configured in ac-
cordance with the present invention to avoid a latency
penalty which would otherwise be incurred in waiting for
an index mark as a basis to compute segment numbers
and servo sector numbers.
[0033] Further in accordance with the invention, a
method and system are provided to identify the servo
sector number following a head switch, in particular for
disk drives which are written with staggered servo pat-
terns. A portion of the servo sector number is written into
each servo sector, and combined with offset values ob-
tained from electronic storage to produce a servo sector
number following a head switch.
[0034] Further in accordance with the invention, a

method and system are provided for developing data
sector numbers from servo sector numbers where the
relationship between the first data sector on a track and
the first servo sector varies within a zone, and from zone
to zone. This extends the benefits of the present inven-
tion to disk drives designed with track skew which min-
imizes latency for head and cylinder switch operations.
[0035] A preferred embodiment of the invention will
now be described, by way of example only, with refer-
ence to the accompanying drawings in which:
[0036] Fig. 1 is a schematic diagram illustrating a fixed
block sector architecture in accordance with the prior
art.
[0037] Fig. 2 is a schematic diagram illustrating a fixed
block architecture disk drive in accordance with the
present invention.
[0038] Fig. 3a is a schematic diagram illustrating a
segment subdivision of a data recording track in accord-
ance with the present invention.
[0039] Fig. 3b is a schematic diagram illustrating a
track format with a stub in accordance with the present
invention.
[0040] Fig. 4 is a block diagram illustrating a hardware
embodiment of the servo functions of the present inven-
tion.
[0041] Fig. 5 is a block diagram illustrating the storage
components used to compute data sector locations in
accordance with the present invention.
[0042] Fig. 6 is a flowchart illustrating servo-modulo
computations in accordance with the present invention.
[0043] Fig. 7 is a block diagram illustrating a hardware
embodiment of a servo-modulo counter in accordance
with the present invention.
[0044] Fig. 8 is a schematic diagram illustrating a
staggered sector servo written disk drive.
[0045] Fig. 9 is a schematic diagram illustrating an
LBA to PBA mapping architecture in accordance with
the present invention.
[0046] Fig. 10 is a flow chart illustrating LBA to PBA
conversion computations in accordance with the
present invention.
[0047] Fig. 11 is a memory map table illustrating zone
conversion storage components in accordance with the
present invention.
[0048] Fig. 12 is a flow chart illustrating PBA to zone,
cylinder, head, sector computations in accordance with
the present invention.

I. Sector Architecture

[0049] Shown in Fig. 2 is a disk drive configured in
accordance with the present invention. The disk drive is
formatted using a fixed block architecture with sector
servo and zone-bit recording. The disk drive, designated
generally as 202, includes data recording disk 204, ac-
tuator arm 206, data recording transducer 208 (also
called a recording head), voice coil motor 210, servo
electronics 212, read/write electronics 213, interface

7 8

EP 0 660 324 B1

6

5

10

15

20

25

30

35

40

45

50

55

electronics 214, formatter electronics 215, microproces-
sor 216 and RAM 217. Data recording disk 204 includes
center of rotation 211, and is divided for head positioning
purposes into a set of radially spaced tracks, one of
which is shown at 218. The tracks are grouped radially
into a number of zones, three of which are shown as
251, 252 and 253. The disk contains a plurality of servo
sectors 220, which extend across the tracks in a gener-
ally radial direction. Each track has a reference index
221. Within each zone, the tracks are also circumferen-
tially divided into a number of data sectors 254. As will
be discussed hereafter, the data sectors contain no sec-
tor ID fields. In accordance with the normal meaning of
"fixed block architecture", all data sectors are substan-
tially the same size, expressed in bytes of data. Howev-
er, it should be noted that the present invention may eas-
ily be adapted to tolerate some variation in data sector
size, such as from 512 bytes per sector to 520 bytes per
sector, in the event such a configuration was desirable
for a particular implementation. The number of data sec-
tors per track varies from zone to zone, and some of the
data sectors do not begin immediately following a servo
sector. Further, some of the data sectors are split by ser-
vo sectors. If the disk drive has multiple heads, then the
set of tracks which are at the same radius on all surfaces
is referred to as a "cylinder".
[0050] Read/write electronics 213 receives signals
from transducer 208, passes servo information to servo
electronics 212, and passes data signals to formatter
215. Servo electronics 212 uses the servo information
to produce a current at 240 which drives voice coil motor
210 to position recording transducer 208. Interface elec-
tronics 214 communicates with a host system (not
shown) over interface 262, passing data and command
information. Interface electronics 214 also communi-
cates with formatter 215 over interface 264. Microproc-
essor 216 communicates with the various other elec-
tronics over interface 270.
[0051] In the operation of disk drive 202, interface
electronics 214 receives a request for reading or writing
data sectors over interface 262. Formatter electronics
215 receives a list of requested data sectors from inter-
face electronics 214 and converts them into zone, cyl-
inder, head and data sector numbers which uniquely
identify the location of the desired data sectors. The
head and cylinder information are passed to servo elec-
tronics 212, which is responsible for positioning record-
ing head 208 over the appropriate data sector on the
appropriate cylinder. If the cylinder number provided to
servo electronics 212 is not the same as the track
number over which recording head 208 is presently po-
sitioned, servo electronics 212 first executes a seek op-
eration in order to reposition recording head 208 over
the appropriate cylinder.
[0052] Once servo electronics 212 has positioned re-
cording head 208 over the appropriate cylinder, servo
electronics 212 begins executing sector computations
in order to locate and identify the desired data sector.

As servo sectors 220 pass under recording head 208,
the no-ID approach described in EP-A-522 750 is used
to identify each servo sector. In brief, an index mark
identifies the first servo sector, an address mark locates
subsequent servo sectors, and a count of address
marks uniquely identifies each servo sector. Additional
information, which is described in greater detail below,
is maintained in association with servo electronics 212
and formatter electronics 215 and is used to determine
whether the present servo sector splits a data sector or
whether a new data sector starts immediately following
the present servo sector. Further information is main-
tained in servo electronics 212 and formatter electronics
215 which identifies the location of (or the distance to)
the start of the next data sector from the present servo
sector. Still further information is maintained which iden-
tifies the location of (or the distance to) any additional
data sectors which begin before the next subsequent
servo sector. Still further information identifies the
number of the data sector from the index mark. This in-
formation is used to allow formatter electronics 215 to
compare the data sector number passing under the re-
cording head with the list of sectors received from inter-
face electronics 214.
[0053] Shown in Fig. 3a is a detailed schematic dia-
gram of the sector architecture for an exemplary track
from a data recording disk in accordance with the
present invention. A portion of a track is shown as 302,
containing segment 304. Segment 304 is subdivided in-
to a plurality of data regions, 306, 308 and 309. The data
regions are separated from one another by servo sec-
tors 310, 312, and 314. Segment 304 also includes a
plurality of data sectors labelled D1 through D5. Finally,
each data sector is made up of one or more data sec-
tions, labelled 320, 322, 324, 326, 328, 330 and 332.
Logically, a segment is the set of servo sectors and data
sectors having a unique spatial relationship between the
sectors. The format for a track may then be produced
by repeating the segment. A data region is the space
between adjacent servo sectors. A data sector is the
smallest individually addressable unit of user data, in-
dependently readable and writable. Finally, a data sec-
tion is a contiguous portion of a data sector, not inter-
rupted by a servo sector.
[0054] The exemplary track of Fig. 3a contains a
number of data sectors and a number of servo sectors,
not necessarily equal. Note that servo sector 316 is not
part of the segment since data sector D5 ends just prior
to servo sector 316. Each data region contains a number
of data sectors, some of which may be split by servo
sectors. For example, region 306 contains the entire da-
ta sector D1 (section 320), and only a portion of data
sector D2 (section 322). Likewise, data sector D2 is split
by servo sector 312 into sections 322 and 324.
[0055] Also shown in Fig. 3a are details of the con-
tents of servo sector 310. Write-to-read recovery and
speed compensation field 342 is used to allow the read/
write electronics to switch from a data writing operation

9 10

EP 0 660 324 B1

7

5

10

15

20

25

30

35

40

45

50

55

to a servo reading operation, and to allow for fluctuations
in the disk rotational speed. Address mark field 344 pre-
cisely identifies a specific position within the servo sec-
tor which is used as a timing reference. Position field
346 contains the actual servo information used to posi-
tion the head, typically including a position error signal
and other information such as a track number (track ID
or TID), index value, servo sector number (or any portion
thereof) and head number (or any portion thereof). Ser-
vo pad field 348 allows for the electronics to switch from
reading servo to writing or reading data, as well as for
disk rotational speed variations.
[0056] Also shown in Fig. 3a are details of the con-
tents of data section 332, which contains a full data sec-
tor D5. VCO sync field 352 permits the read/write elec-
tronics to enable the voltage controlled oscillator (also
known as a phase locked loop) to obtain proper phase
lock for reading the data. Data and ECC field 354 con-
tains the user data and error correction information. Da-
ta pad field 356 allows for differences in processing time
for reading and writing data, as well as for flushing any
encoder/decoder, and for disk rotational speed varia-
tions. It also provides sufficient time for the electronics
to prepare for operating on the following servo or data
sector.
[0057] Also shown in Fig. 3a is a detailed view of split
data sector D2, labelled 360. Two additional fields are
typically required when a data sector is split by a servo
sector: split pad 364 and a VCO resync 368. Field 322
shows a portion of data sector D2 prior to servo sector
312. Split pad field 364 allows for the electronics to in-
terrupt the reading or writing of data in a manner well
known in the art. Servo sector 312 is followed by VCO
resync field 368, which is used to restore the system to
allow for continuation of the read or write operation. Fi-
nally, a portion of data section D2 following servo sector
312 is shown at 324. Note that split pad field 364 may
be the same number of bytes in length as data pad field
356, or it may be different. Also, VCO resync field 368
may be identical in content to VCO sync field 352, but
this is not required. More capacity may be achieved by
making fields 364 and 368 shorter than their counter-
parts 352 and 356; methods for achieving this benefit
are discussed in the prior art.
[0058] For any given data recording disk drive, there
is a fixed number of servo sectors per track (hereinafter
designated as N) throughout the disk. Also, for each
zone there is a fixed number of data sectors on each
track (hereinafter designated as M). If M is not a multiple
of N, then some of the data sectors will be split by servo
sectors. The split portions of each data sector are de-
noted as sections. Further, the first section belonging to
a data sector is called the primary section and any re-
maining sections are called secondary sections. Since
all data sectors on a track have the same number of
bytes, and since the servo sectors are equally spaced,
there will be a limited number of unique data sections
on the disk drive. The set of data sectors and servo sec-

tors which defines one period of the unique pattern of
data sections is called a segment. The number of data
sections in a segment (hereinafter designated as nss)
is given by:

where represents the reduced fraction of .
[0059] Since m and n represent the numerator and
denominator of the reduced fraction of the ratio of the
number of data sectors per track to the number of servo
sectors per track, it is apparent that there are n servo
sectors and m data sectors in a segment. For exemplary
segment 304 shown in Fig. 3a, n = 3, m = 5, nss = 7, N
= 84, M = 140, and nst (the number of segments per
track) = 28. It is to be noted that in accordance with the
no-ID sector architecture, neither the servo sectors nor
the data sectors include data ID fields. Instead, the in-
formation necessary to identify data sector numbers and
data sector locations is provided in servo sectors 310,
312, 314, etc. and in electronic storage accessible to the
servo electronics, as will be described in greater detail
below.
[0060] It should be noted that the choice of the seg-
ment configuration is flexible. For example, the entire
track could be defined as a segment. In some circum-
stances, this may be the natural choice, such as when
M and N are relatively prime, resulting in m = M and n
= N. However, nothing precludes choosing to be an
integer multiple of the reduced fraction.
[0061] Moreover, there are cases where the above
analysis on the ratio of the number of servo sectors to
the number of data sectors is not the preferred choice
for defining a segment. This can occur when a space is
left at the end of a track, where the last data sector on
the track ends substantially prior to the end of the track.
Such a case is illustrated in Fig. 3b. The track is desig-
nated 380, and contains 7 servo sectors 384. There are
11 data sectors, DS1 through DS11. Note that data sec-
tor DS11 ends prior to the end of track 380. The remain-
ing space is stub 385, which contains no user data since
it is shorter than a data sector. In this example, N = 7
and M = 11, which from the above analysis would lead
to a segment size of n = 7 and m = 11. However, Fig 3b
illustrates a second possibility. The unique spatial rela-
tionship between the servo sectors and data sectors is
achieved with n = 3 and m = 5. This choice results in
two full segments, 381 and 382, and one partial segment
383. The disk drive need only know the total number of
data sectors on the track to handle the partial segment.
Once the data sector number has reached the maximum
value, the drive will wait until the next servo sector, which
resets the data sector counter to the first data sector
number. It is to be noted that a track format having mul-
tiple stubs may be selected, including stubs located
within tracks as well as at their ends. In any event, an
advantage may in some cases be achieved in the pres-

nss=m+n-1 (1)

m
n

M
N

m
n

11 12

EP 0 660 324 B1

8

5

10

15

20

25

30

35

40

45

50

55

ence of stubs by redefining the region using a smaller
segment size since this in turn decreases the amount of
memory required to store the format information.

II. Formatter and Servo Electronics

[0062] Fig 4. is a schematic diagram of the preferred
embodiment of the servo and formatter electronics used
to locate and identify data sectors according to the
present invention. Servo electronics 212 includes ad-
dress mark (AM) detector and track number (TID) de-
coder 412, servo sector counter 414, safety logic 416,
actuator position control logic 418, timing generation
logic 420, sector pulse generation logic 421 and format
table 422. Formatter electronics 215 includes defect
map table 450, data sector identifier 454, logical block
address (LBA) to physical block address (PBA) convert-
er 456, PBA to zone, cylinder, head and data sector
(ZCHS) converter 458 and control function 476.
[0063] In operation, formatter 215 receives a request
for a read or write operation on a list of data sectors 264.
The sectors are identified by their LBAs. The LBA list is
converted to a PBA list by converter 456 using defect
information 460. The PBA list 468 is converted to a list
of physical ZCHS. Both of these conversions processed
are discussed fully in section VI below. The cylinder and
head values 466 (C and H) are passed to actuator po-
sition control logic 418 to affect a seek. Actuator position
control logic 418 functions in a manner known in the art.
Zone and sector values 464 (Z and S) are passed to
data sector identifier 454 and to servo electronics 212.
Additionally, servo electronics 212 receives servo infor-
mation 266 from the read/write electronics. AM detector
412 detects the servo address mark, and signals ad-
dress mark found (AMF) at 432. This signal is passed
to timing logic 420, which generates the timing signals
necessary for operation of servo electronics 212. AMF
432 is also passed to servo sector counter 414. In ad-
dition, AM detector 412 decodes the TID information,
including cylinder (track) number, servo index, servo
sector number and head number. Index signal 433 is
used to reset servo sector counter 414, and the counter
is incremented by AMF signal 432 at each subsequent
servo. In this manner, the servo sector counter will al-
ways output the current servo sector number at 436.
Safety logic 416 receives decoded TID information 430,
and servo sector number 436. This logic performs vari-
ous safety tests to ensure the proper operation of the
servo electronics. Its functions include comparing the
generated servo sector number 436 with any servo sec-
tor number information in the TID (including index) and
processing any error handling information in the TID. Er-
ror information, along with the cylinder and head
number, are output at 438. Actuator position control 418
compares the cylinder and head values 438 with the tar-
get values 466, and acts upon any errors. Sector pulse
logic 421 uses servo sector number 436 to generate the
address for format table 422, retrieving segment infor-

mation 440 for the zone (described in detail below). Sec-
tor pulse logic 421 also contains three counters: a sync
counter, a data counter, and a pad counter. Each of
these counters is used to count byte clocks during the
various fields in the format, whereby the data sectors
are located and identified. Sector pulse logic 421 is
thereby able to identify both the starting location and the
data sector number of the data sector about to pass un-
der recording head 208. The current data sector number
442 is sent to formatter electronics 215, and a start of
data sector pulse 444 is sent when the start of a data
sector is under the head, enabling the formatter to per-
form functions with zero latency. Upon receipt of sector
pulse 444, data sector identifier 454 compares the cur-
rent data sector number 442 to the list of ZCHS values
464. If a match is found, this information is passed via
470 to control function logic 476, at which point the data
sector is further processed in accordance with methods
known in the prior art.
[0064] With reference to the fields described above,
it is to be noted that many alternative configurations ex-
ist which would accomplish the same purpose. For in-
stance, the LBA may be replaced with any logical iden-
tifier, while the ZCHS may be replaced with any value
or combination of values identifying a unique sector
number. The combination of the above electronics and
microcode in microprocessor 216 is able to detect and
act on any errors discovered between the target ZCHS
values and the detected values. This provides the disk
drive with a high degree of reliability, even in the ab-
sence of data ID fields. For example, if a detected track
number does not match the target value, a seek error
will be posted, and this error may be handled as is
known in the art. Other errors, such as a mismatch be-
tween the servo sector counter and the TID information
(index and possible servo sector number bits) will be de-
tected by safety logic 416, for action by other parts of
the drive. Such errors may be handled as data ID mis-
compares, and recovered by forcing the servo sector
counter to align with the index mark and repeating the
operation. Finally, as will be described in greater detail
below, an important input required for sector pulse logic
421 to continuously compute data sector locations is a
servo-modulo count. The servo-modulo count allows for
a reduction in the total memory required for the format
information by taking advantage of repetitive patterns in
the format.

III. Locating and Identifying Data Sectors

[0065] Shown in Fig. 5 are the components required
for sector computation in accordance with the present
invention. In general, there is provided a random access
memory 504 and a set of registers designated as 506,
connected to an address and data bus (not shown).
These may reside within servo electronics 212, in format
table 422. Microprocessor 216 (or other electronics)
stores information in the random access memory and in

13 14

EP 0 660 324 B1

9

5

10

15

20

25

30

35

40

45

50

55

the registers, and then accesses this information in or-
der to perform sector identification and location compu-
tations.
[0066] In particular, RAM 504 stores the information
required to identify the data in each region in a given
unique segment. For convenience of description the in-
formation fields are shown organized into a table format,
although any appropriate data structure may be substi-
tuted. RAM 504 is addressed by the region within the
segment (equivalent to the servo sector number within
the segment). The fields required for each region in-
clude DS1Len 508, DS1Num 510, DS1V 512, NumFull
514, DS2Len 516, and DS2V 518. DS1Num is the
number, from the start of the segment, of the first data
sector following the servo. In the preferred embodiment,
this field contains a 7 bit value. DS1Len is the length in
bytes of the first data section in the region. In the pre-
ferred embodiment, this field contains a 10 bit value.
DS2Len is the length in bytes of the last data section in
the region. In the preferred embodiment, this field con-
tains a 10 bit value. NumFull is the number of full (not
split) data sectors in the region. In the preferred embod-
iment, this field contains a 3 bit value. DS1V is a flag,
which if set, indicates that the first data sector is split,
and therefore that the value DS1Len is valid. In the pre-
ferred embodiment, this field contains a 1 bit value.
DS2V is a flag, which if set, indicates that the last data
sector is split, and therefore that the value DS2Len is
valid. In the preferred embodiment, this field contains a
1 bit value.
[0067] Since every segment within a given zone has
the same number of bytes, for each zone it is only nec-
essary to store format information for a single segment.
The servo sector number within the segment (equivalent
to the region number) is used to address the format in-
formation for the appropriate segment. The value
DS1Num is included for performance reasons. Sector
pulse logic 421 includes a data sector number counter,
which starts counting data sector pulses at index. As
long as the servo electronics remain active, the data
sector number counter will be correct. However, when
a zone switch occurs, the data sector number counter
must be preset. On the other hand, it is preferable to
avoid waiting for index to start counting data sectors, as
this causes a latency penalty. With the DS1Num value,
the counter is preset at every servo sector, thereby
avoiding additional latency. Further, this technique al-
lows the disk drive to recover quickly from power saving
modes, where much of the electronics is powered down
when not performing data operations. Using the present
invention, the data sector counter will be preset with the
correct value at the first servo sector following the end
of power saving, rather than at index.
[0068] From the definition of the sector architecture
shown in Fig. 3a, only the first and last data sections in
any given data region may contain partial sectors.
Therefore, only the lengths of these two sections must
be stored in the table; thus the inclusion of DS1Len and

DS2Len. NumFull is the number of complete data sec-
tors in the data region. It is used to prevent the genera-
tion of false data sector pulses prior to the end of a re-
gion, where the end of a data sector may be close the
start of to a servo sector, by disabling the data sector
number counter once NumFull data sector pulses have
been generated. It is also used to control the generation
of data sector pulses for the data sectors which start
within the region. DS1V and DS2V are used to indicate
the validity of the DS1Len and DS2Len values. This is
prompted by the necessity to know if the first data sec-
tion in a region is a primary section so that a read or
write operation initiated at a servo sector will not be start-
ed on a secondary data section. For example, in region
308 the DS1Num value after servo sector 312 is D2 for
data section 324. However, a read or write request for
data sector D2 must start at data section 322, therefore
the servo electronics must ensure that data section 324
is not mis-identified as the start of data sector D2. Sim-
ilarly, DS2V is used to indicate that the last data section
is split by a servo sector. The use of these flag values
is preferred for performance reasons, since they provide
for a direct decode. However, it is apparent that the lim-
ited range of values for DS1Len and DS2Len allows for
the use of specific values (e.g. 0) to provide the same
function.
[0069] Only the lengths of the first and last data sec-
tions in a region must be stored in the table because all
other sections are necessarily full length. Data-section-
split flags are required only for the first and last sections
since all others must be complete. DS1V will be zero if
the first section is primary (that is, not split). DS2V is
likewise used to initiate the split data sector function at
the end of the last section if it is split.
[0070] It is to be noted that the above-described infor-
mation may be stored in RAM memory as shown in Fig.
5, and addressed by the servo sector number within a
segment. However, it is also possible to organize the
information by data sector number, which may in turn
be used to address the RAM. In this case the specific
fields must change, but they still support the functions
described above. Further, any or all of the above infor-
mation may also be stored in any other convenient me-
dium, such as in registers, flash memory, or any other
storage device accessible to servo electronics 212.
[0071] Aside from the above-described information
which is stored for each region in a segment, additional
information is required, for each zone, to enable the ser-
vo processor to locate data sectors which are not posi-
tioned immediately following a servo sector. In Fig. 5,
this information is contained generally in registers 506,
including Sync Long register 520, Sync Short register
522, Pad Long register 524, Pad Short register 526, and
Data Full register 528. Registers 520-528 are used to
load the three counters in Sector Pulse Logic 421. All
three counters (sync counter, data counter, and pad
counter) are down counters whose input clocks are the
current data byte clock. Only one counter is enabled at

15 16

EP 0 660 324 B1

10

5

10

15

20

25

30

35

40

45

50

55

a time, in a sequence determined by the track format.
Additional information for other operations is contained
in n register 530, which holds the reduced numbers of
data sectors per track, m register 532, which holds the
reduced number of servo sectors per track, NDS regis-
ter 534, which holds the number of data sectors per
track, and DSkew register 536, which holds the data
sector skew value.
[0072] Turning in particular to registers 520-528, Sync
Long register 520 contains the number of byte clocks in
VCO sync field 352. Sync Short register 522 contains
the number of byte clocks in VCO Resync field 368. In
the preferred embodiment, this field is shorter than field
352; however, if the fields are of equal length then only
Sync Long register 520 is required. Pad Long register
524 contains the number of byte clocks in Data Pad field
356 when it is followed by VCO Sync field 352. Pad
Short register 526 contains the number of byte clocks
in Data Pad field 356 when it is followed by a servo sec-
tor. The Pad Long and Pad Short values are different
since the servo sector contains W-R and Speed field
342, which shares some common function with Data
Pad 356. Data Full register 528 contains the number of
byte clocks in Data and ECC field 354, which is the total
number of data and ECC bytes in a data sector.
[0073] During operation of servo electronics 212 in
cooperation with RAM 504 and registers 506, the sync
counter is started following a servo sector. Prior to this,
the sync counter is preloaded from Sync Long register
520 if the value of DS1V is 0, and from Sync Short reg-
ister 522 if the value of DS1V is 1. Further, if DS1V is 0,
data sector pulse 444 is generated and the data counter
is preloaded with the value in Data Full register 528. Oth-
erwise it is loaded with the value in DSlLen. When the
sync counter reaches 0, the data counter is started. If
the number of data sector pulses generated in the region
equals NumFull, then the pad counter is loaded with the
value in Pad Short register 526; otherwise it is loaded
with the value in Pad Long register 524. When the data
sector counter reaches 0, the pad counter is started.
When the pad counter reaches zero, the end of the cur-
rent data sector has been reached. If the number of data
sector pulses generated in the region equals NumFull,
then a servo sector follows. Otherwise a data sector
pulse is generated, the data sector number counter is
incremented, and the sync counter is preloaded with the
value in Sync Long register 520. This process repeats
until the region is completed, which is determined by the
generation of NumFull data sector pulses. When the
number of data sector pulses generated in the region
equals NumFull and DS2V is 1, then the data counter is
preloaded with the value in DS2V instead of with the val-
ue in Data Full register 528.
[0074] Three counters are used instead of one due to
the types of fields being counted, to limit the number of
tap points on a single counter, and to allow for each
counter to be preloaded while another counter is run-
ning. It is to be noted that while a particular preferred

counter arrangement has been disclosed, the above
function can be implemented using many alternative
counter and register arrangements whose result would
remain within the spirit and scope of the present inven-
tion.
[0075] Using the above information, servo electronics
212 is able to locate the start of any data sector in a
segment. Further, the sector number from index for a
given data section may be determined using the equa-
tion:

where SN [i] is the data sector number from index (zero
based) for the i-the data sector in the segment, and SGN
is the segment number from index (zero based).
[0076] During operation of disk drive 202, read and
write operations are received which require recording
head 208 to be repositioned over various tracks and
then to read or write various data sectors. Once record-
ing head 208 is positioned over the appropriate track,
the above equation is used to determine when the ap-
propriate data sector is passing under the head. In par-
ticular, the equation is used to compute a current data
sector number which is continuously compared with the
data sector number requested for the read or write op-
eration. If the values compare, the desired operation is
performed. Since there are no ID fields, the data section
lengths computed based on the data values described
above identify the location of data in particular segments
and regions.
[0077] In the preferred embodiment, various ones of
the above-described information fields are maintained
in various storage areas in order to improve operational
performance. For instance, the information for the cur-
rent zone may be maintained in dedicated local storage
analogous to registers 520-536 in order to avoid bus ar-
bitration. The values may be reloaded from general stor-
age such as RAM 217 after each zone switch. The disk
format determines the amount of storage required to
hold the values for a particular implementation. Since
known implementations require 32 or fewer regions per
zone, the local storage requirements for the zone tables
are 30 bits per region or 256 bytes per zone, including
allowance for ECC. Thus, in the preferred embodiment,
high performance may be achieved without incurring a
storage access penalty.

IV. Servo-Modulo Counter

[0078] In order to use the above-described sector
identification/location schema effectively, the system of
the present invention must be able to determine both a
segment number and a servo sector number within the
segment prior to performing a read or write operation.
To avoid the latency penalty created by waiting for an
index mark as a basis to compute the above information,

SN[i] = mxSGN + DS1Num + i (2)

17 18

EP 0 660 324 B1

11

5

10

15

20

25

30

35

40

45

50

55

servo-modulo counter electronics are provided to gen-
erate this information continuously, even after a head or
zone switch. In the preferred embodiment, this is
achieved using a hardware circuit whose inputs are m,
n, servo (servo sector number) and DS1Num.
[0079] The purpose of the servo-modulo counter is to
produce the quantities servo mod n and mx(servo/n).
The former is the remainder of servo/n, the number of
servo sector n from the start of the segment, which is
used as the address for RAM-based zone table 504 de-
scribed previously. The latter is the data sector number
of the first data sector in the segment, hereinafter re-
ferred to as DSB, the data sector base number, which
is also the first term in equation (2). Fig. 6 illustrates in
flowchart form the operations required to perform these
computations. At 602 the remainder value is initialized
to the servo count. At 604, the quantity DSB is initialized
to zero. At 606, a loop is entered which computes the
value of servo mod n (remainder) by repeated subtrac-
tion until an overflow occurs. In particular, at 606 temp,
a temporary variable, is assigned the value of remainder
- n (of servo/n - n). At 608, the underflow test is per-
formed (temp < 0). If an underflow is detected, the proc-
ess is exited at 610. If no underflow is detected, the
processing continues at 612, where the quantity m is
added to DSB. Finally, at 614 the remainder is set equal
to temp (the remainder minus n), and processing returns
to 606. At exit point 610, both DSB (mx(servo/n)) and
the remainder (servo mod n) have been computed.
[0080] Shown in Fig. 7 is a schematic diagram illus-
trating an electronic circuit in accordance with the pre-
ferred embodiment of the present invention. The circuit
computes the values of mx(servo/n) and servo mod n in
accordance with the process shown in the flowchart of
Fig. 6 and described above. As in the flowchart, servo
mod n is computed by repeated subtraction which is
halted by an underflow operation. The circuit includes
control logic 702, subtracter 704, adder 706, registers
708 and 710, MUX 712, adder 714 and data sector
number counter 716. In operation of the servo modulo
counter circuit, control logic 702 receives start signal
720 to begin a computation, and produces done signal
744 when complete. Register 708 stores the result of
the repetitive subtractions and at the end of computa-
tions contains the correct value of servo mod n (the re-
mainder). Subtracter 704 receives input 738 from reg-
ister 708 and input 726 (the value n) from register 530
(shown and discussed previously with reference to Fig.
5). The input to register 708 is from MUX 712. The MUX
allows either the numerator, servo 728, or the results of
the previous subtraction to load register 708. The reg-
ister load signal (not shown) comes from control logic
702, and is asserted once per subtraction operation. Un-
derflow signal 742 is passed to control logic 702. If an
underflow is detected, the register load signal is
stopped, and the remainder value will be stable on 740.
Control logic 702 also controls the output from MUX 712
to register 708 via select line 732. MUX 712 is config-

ured such that the first subtraction uses current servo
count 728 while subsequent subtractions use the inter-
mediate results. Further, register 708 is located prior to
subtracter 704 so that it contains the results of the prior
subtraction when the loop exits, since the exit condition
is an underflow.
[0081] The value of m3(servo/n) is computed by re-
peated addition of the quantity servo mod m for each
subtraction operation performed in the modulo block.
Adder 706 adds input 730 (the value m) from register
532 (shown and discussed previously with reference to
Fig. 5) and the result of the previous addition 746. The
intermediate values of the addition 748 are stored in reg-
ister 710 at the output of adder 706. The register load
signal (not shown) comes from control logic 702, and is
asserted once per addition operation. Control logic 702
synchronizes the addition and subtraction operations
through the register load signals, thereby eliminating the
need for a separate multiplier or an accumulator to com-
pute DSB (m3(servo/n)). When the operation is com-
plete, DSB value 746 produced by the circuit may be
used in accordance with equation 2 to generate the cur-
rent data sector number. Specifically, result DSB 746 is
passed to adder 714, along with DS1Num 754, ad-
dressed by remainder 740. These values are added and
output at 750 as the data sector number from index of
the first data sector in the segment. Data sector number
counter 716 is preloaded with adder value 750 upon re-
ceipt of a load signal from the control logic (not shown).
Data sector number counter 716 increments upon re-
ceiving data sector pulses 756, and outputs the current
sector number at 752.
[0082] To avoid a latency penalty which would other-
wise be created upon head or track switches due to the
time required to settle on the new track, it is well known
in the art to use cylinder and head skewing between disk
surfaces and tracks of a data recording disk drive.
[0083] In accordance with the present invention, a
technique is provided for implementing this skewing by
adjusting the value in data sector counter 716 to account
for the skew. The raw (unskewed) current data sector
number 752 is adjusted by subtracting the value in
Dskew Register 536 from the current data sector
number 752. This subtraction is performed modulo the
value in NDS Register 534. The result is the current
skewed data sector number which may be provided as
input 442 to Data Sector Identifier 454. Finally, it should
be noted that while this skewing technique has been de-
scribed with reference to data sectors, it may also be
used equally effectively to implement skewing on the ba-
sis of servo sector number in a manner analogous to
that described above.

V. Staggered Sector Servo

[0084] The use of a hardware-based servo modulo
counter in accordance with the preferred embodiment
insures that no latency is added for head or zone switch-

19 20

EP 0 660 324 B1

12

5

10

15

20

25

30

35

40

45

50

55

es. For a zone switch, the servo sector counter main-
tains count of the servo location. Once servo and data
modulo values of m and n are changed, the section
length and data sector number will be correct. Similarly,
for a head switch, once the servo count is correct, the
remaining values follow.
[0085] For a disk drive which implements a staggered
sector servo approach, the servo counter value must be
set properly following a head switch in order to account
for the staggering. Fig. 8 illustrates, in cross-sectional
view, a staggered sector servo disk drive. The disk drive
is generally designated 802, and includes spindle 804
and disks 806, 808 and 810. The locations of the servo
sectors are shown schematically as black rectangles in
two groups 820 and 822. The servo sectors are not ver-
tically aligned, rather they are arranged diagonal to per-
mit the servo writing of all surfaces of the disk drive in a
single pass write per track. After using one head to write
a servo sector on one surface, the next head (on the
next surface) is activated and a servo sector is written
there, allowing multiple surfaces to be written in one rev-
olution, decreasing the servo write time and cost.
[0086] To write a staggered sector servo pattern in ac-
cordance with a preferred feature of the present inven-
tion, the servo sector counter must be synchronized with
the servo sector numbers on the surface being switched
to. This function may be accomplished by writing a sub-
set of the servo sector number (possibly the entire sec-
tor number) into the TID information in position field 346.
Alternatively, servo sector counter 414 may be updated
based on a lookup table containing the stagger offsets.
In the former case, the servo sector number read from
the servo sector is decoded by AM detector 412 and
passed to safety logic 416. Safety logic 416 uses this
value to update servo sector counter 414.
[0087] For example, the entire servo sector number
may be encoded in the TID. Following a head switch,
safety logic 416 uses the read value to preload servo
sector counter 414, ensuring synchronization. In the
lookup table case, a table of offsets is kept which is used
to increment or decrement the value in servo sector
counter 414. An exemplary table is shown at 840. The
table comprises 3 columns, head shift 842, servo sector
counter offset 844 and servo timing adjustment 846. Up-
on commencement of a head switch, the head shift val-
ue (plus being down, minus being up) is used to look up
the servo counter offset and timing adjustment. Offset
values 844 are used to increment or decrement servo
sector counter 414. Timing adjustment values are used
by timing logic 420 to adjust for the new servo sector
positions. For convenience, the values in column 846
are listed as fractions of the servo-to-servo spacing.
Thus, for example, if the current head is on the lower
surface of disk 806, and a head switch to the upper sur-
face of disk 810 is desired, the head switch value would
be +3. From lookup table 840 the servo sector count
increment would be 0, and the servo sector timing ad-
justment would be 1/2 of the servo-to-servo spacing.

The table construct shown in Fig. 8 also allows for more
general offsets, such as skewing the index from surface
to surface. This would result in a unique value for each
head shift value. Further, the table may be used in con-
junction with encoding the servo sector number in the
TID to add a further degree of reliability to the system.
Of course, this table may be stored in RAM or any other
appropriate medium.

VI. Converting from LBA to ZCHS

[0088] As discussed previously, in order to find a re-
quested data sector on a disk a received logical block
address (LBA) must be converted into a zone, cylinder,
head, sector (ZCHS) value. In general, this involves first
converting the LBA, which is the user identifier for the
data sector, into a physical block address (PBA) which
is a mapping of the LBA into the physical space of the
disk drive. The aforementioned application EP-A-522
750 teaches the use of a defect map and a basic process
for performing the LBA to PBA mapping. However, since
the LBAs for neighbouring defects share most of their
high order bits, much of the information stored in the
defect map is redundant, serving only to hamper per-
formance and unnecessarily occupy RAM. The present
invention includes a particular map which removes the
high order bits of each LBA to minimize the bits required
in representing each defect. The map takes account of
skip sectors allocated on the disk, either due to defects
or sparing, with use of a minimum amount of RAM and
in a fashion that increases the performance of the disk
drive.
[0089] The map is implemented as a pair of tables
known as a virtual track (VT) table -- which contains en-
tries representing the mostly redundant high order bits
of the LBA -- and a virtual sector (VS) table -- which con-
tains entries representing only the low order bits of the
LBA --. The output of the VT/VS table access, the PBA,
is then located in a zone conversion table in order to
develop coefficients for use in computing the cylinder,
head, and sector at which to perform the desired oper-
ation on the requested data sector. Thus, two conver-
sions are used, the first of which removes skip sectors
and the second of which provides the appropriate ZCHS
value. The invention reduces the storage required for
conversion to either two or one bytes per entry plus an
offset based on the drive capacity and choice of one or
two byte entry. The invention further reduces the mag-
nitude of the search required to locate an LBA and thus
the performance impact of the searching process.
[0090] Shown in Fig. 9 is the LBA to PBA mapping
architecture which forms the basis for the LBA to PBA
portion of the conversion process. In particular, the fig-
ure shows the LBA represented in binary form at 904,
virtual track table 906, virtual sector table 908, and de-
fect spare table 910. As shown at 904, the LBA as re-
ceived from the disk drive interface is first subdivided
into two sections. The full length of the LBA in bits,

21 22

EP 0 660 324 B1

13

5

10

15

20

25

30

35

40

45

50

55

shown as A, includes the number of bits in the high order
portion required to hold the virtual track number, desig-
nated as B, as well as the number of bits required to
hold the virtual sector number, designated as C.
[0091] A virtual track is defined as a contiguous set of
data sectors which have exactly 2(A-B) good data sec-
tors. A virtual track may contain both good sectors and
skip sectors or alternatively it may contain only good
sectors. All virtual tracks are contiguous with one anoth-
er starting from a defined virtual track of zero at the be-
ginning of the disk drive and running through the entire
disk drive. Sub spaces of the disk drive may also be
mapped separately in the same manner. The virtual
track number may be obtained from the LBA either by
simply tapping the high order bits of the LBA or by log-
ically shifting the LBA to the right by the quantity A-B
shifts. A virtual sector is defined as a good sector con-
tained within a virtual track. There are 2A-B different vir-
tual sector numbers available. Thus, all virtual sectors
within a virtual track are numbered consecutively start-
ing at the first good sector in the track and ending at the
last sector in the track.
[0092] Given a subdivision of an LBA into a virtual
track number and a virtual sector number, the virtual
track number is referenced into virtual track table 906 in
order to obtain an index point into virtual sector table
908. The index point is used as a starting point in VS
table 908 at which a sequential search is commenced,
which search continues until a virtual sector number
which is higher than the searched-for virtual sector
number is located in virtual sector table 908 or the index
exceeds the entry for the next virtual track. Once the
appropriate entry is found, the PBA is computed as the
received LBA plus an index into VS table 908 corre-
sponding to the final search entry.
[0093] VT table 906 contains an entry corresponding
to every virtual track in the disk drive. Each entry is at
least B bits wide and contains a pointer into VS table
908. The arrangement of the table thus gives each entry
two meanings. First, the entry value identifies the total
number of skip data sectors prior to the virtual track rep-
resented by the entry. Second, this same value repre-
sents the correct entry point into the virtual sector table
at which the skip sectors are listed for the virtual track
number represented by the entry. In operation, VT table
906 is entered by indexing into it according to the value
of B, the virtual track number, obtained from entry 904.
The value found at the determined index point is then
added to the start of VS table 908 to locate the first skip
sector associated with the applicable virtual track.
[0094] Unlike VT table 906, VS table 908 does not
contain an entry for every virtual sector on the disk drive.
In contrast, VS table 908 need only contain entries for
skip sectors (defective sectors and/or spare first sec-
tors). Each entry in VS table 908 corresponds to the
good virtual sector following skip sector. As discussed
above, VS table 908 is entered at the index value es-
tablished through use of VT table 906. Starting at that

index value, a sequential search is conducted against
the value of the C bits received from the low order of
LBA value 904 until a virtual sector number is located
which is greater than the value obtained from the low
order C bits of 904. This greater-than virtual sector
number establishes the number of skips which must be
passed in order to arrive at the correct virtual sector
number. An offset value which is equal to the offset into
virtual sector table 908 of the first entry which is greater
than the sought-after virtual sector number is added to
the LBA to arrive at the PBA value unless the next virtual
track starts where the index is, in which case this offset/
index is added to the PBA value.
[0095] DS table 910 contains an entry for each entry
in VS table 908. The purpose of DS table 910 is to dis-
tinguish the virtual sector entries in VS table 908 as ei-
ther corresponding to defective data sectors, also
known as bad blocks, or to spare data sectors, also
known as spare blocks. In the preferred embodiment,
DS table 910 comprises a single bit entry corresponding
to each entry of VS table 908, wherein the polarity of the
bit in each entry is used to distinguish between bad
blocks and spare blocks. It is to be noted that an advan-
tage of DS table 910 is that this table does not need to
be resident in RAM storage except during reassignment
operations. Reassignment operations occur when
grown defects develop during use of the disk drive, at
which time spare sectors are reassigned as active sec-
tors, and the defective active sectors are reassigned as
skip sectors. Part of the reassignment operation in-
volves changing bit values in DS table 910, in addition
to various values in VT table 906 and VS table 908. Of
course, in order to change values in DS table 910, this
table must be resident in RAM accessible to the micro-
processor. At all other times, DS table 910 need not be
resident or readily accessible to the disk drive electron-
ics, because there is no requirement that the electronics
determine whether a sector identified in VS table 908 is
bad or spare; rather it is only necessary for the electron-
ics to determine that the sector is a skip sector.
[0096] Shown in Fig. 10 is a flowchart illustrating the
LBA to PBA conversion computations. The conversion
computations perform three basic functions. First, they
set the bounds on the search to be conducted through
VS table 908. This is accomplished by examining the
virtual track number entry identified in the LBA along
with the succeeding virtual track number entry in VT ta-
ble 906 to establish starting and ending offsets in the
virtual sector table. Second, once the bounds of the
search are set, the conversion process sequentially
searches through VS numbers in the VS table until its
position in the table corresponds to the starting point of
the next virtual track (that is, the upperbound of the
search) or a VS table entry greater than the C bits is
found. Third, as a criterion of the search, each virtual
sector number in virtual sector table 908 must be greater
than or equal to its predecessor unless a virtual track
boundary is crossed, at which point searching is ended.

23 24

EP 0 660 324 B1

14

5

10

15

20

25

30

35

40

45

50

55

[0097] With particular reference to Fig. 10, the varia-
ble D is taken to represent the quantity A-B, where A is
equal to the number of bits in the LBA while B is equal
to the number of bits in the virtual track number. Thus,
D corresponds to the number of right-hand shifts of the
LBA required to obtain the virtual track number. The var-
iable E represents the quantity 2c - 1, where c is equal
to the number of bits in the virtual sector number. Thus,
E simply provides an AND mask for use in determining
the virtual sector number. It is to be noted that the values
of D and E are established according to system param-
eters. For instance, since most modern microproces-
sors handle bits in multiples of 8, it may be desirable to
establish D and E so that all values are provided in mul-
tiples of 8 bits. Finally, p refers to the present offset in
the virtual sector table.
[0098] The flow chart of Fig. 10 is entered at 1004,
where VTN is set equal to the LBA shifted right by a
quantity of D bits. Next, at 1006, the virtual sector
number is set equal to the LBA anded with E. Thus, at
this point the logical block address has been separated
into its virtual track number and virtual sector number
components. Next, at step 1008, the present offset into
the virtual sector table is set equal to the value found in
the virtual track table at the virtual track number offset.
This establishes a starting point for further searching in
the virtual sector table. Next, at step 1010, the value of
E is set to the next virtual track number (the upper bound
of the search to be executed on the virtual sector table).
[0099] At 1012, a loop is entered in which a test is
performed to determine whether the end of the virtual
track has been reached. It is to be noted that if this case
occurs on the first iteration through the loop, the result
would indicate that the present track contains no defec-
tive sectors. If the end of the track has not been reached,
at 1014 a second test is performed in which it is deter-
mined whether the virtual sector being searched for still
exceeds the virtual sector entry being tested in the vir-
tual sector table. If the result of the test is positive, this
indicates that the sought after index has not yet been
located. In this case step 1016 is executed to increment
the present offset into the virtual sector table to the next
virtual sector table entry. After this, control is returned
to the beginning of the loop at 1012. If the result of the
virtual sector number comparison conducted at step
1014 is negative, this indicates that the sought-after vir-
tual sector index has been located in the virtual sector
table. The effect on the flow control is the same as if the
end of the track is detected at step 1012, and results in
entry to step 1018. At 1018, the search is finalized by
setting the PBA equal to the LBA added to the value of
the present offset in the virtual sector table. Finally, the
process is exited at 1020.
[0100] An important advantage is achieved through
the use of overlap between certain portions of the virtual
track number and the virtual sector number. This overlap
feature can be seen in the definition of the LBA shown
at element 904 in Fig. 9 with reference to the B bits and

C bits defining the virtual track number and the virtual
sector number, respectively. When such an overlap is
present, a portion of the virtual sector number corre-
sponds to the least significant bits of the virtual track
number. This overlap is intentionally provided in order
to improve the mapping efficiency from the LBA to the
PBA. The overlapping bits between the virtual track
number and the virtual sector number give the virtual
sectors the ability to distinguish between adjacent and
nearby virtual tracks without having to refer back to the
virtual track table. The amount of overlap between the
virtual track number and the virtual sector number es-
tablishes the quantity of virtual tracks that may be dis-
tinguished from one another using a single virtual sector
number. Since the entries in the virtual sector table oc-
cur in increasing numerical order, so long as there is at
least one skip sector represented in the virtual sector
table within the quantity of virtual tracks that can be dis-
tinguished using a single virtual sector number, the vir-
tual sector table alone can be used to detect all changes
in the virtual track number and indeed can be further
used to count the virtual track number associated with
the various entries in the virtual sector table. Thus, the
search through the virtual sector table may be per-
formed without having to revisit the virtual track table
each time a virtual track boundary is crossed.
[0101] A second advantage of encoding some of the
least significant bits of the virtual track numbers into the
virtual sector numbers becomes apparent when com-
puting absolute distances between skips across track
boundaries. For two skips which are separated by one
or more track crossings, so long as the distance be-
tween them is within the resolution of the overlap bits
provided in the virtual sector, the virtual sector value for
one skip sector can be subtracted from the other to es-
tablish an absolute number of sectors between the
skips. Thus, absolute distance computations may be
performed across track boundaries also without refer-
ence to the virtual track table.
[0102] Once the physical block address has been
computed, a second conversion takes place in which the
PBA is further converted to zone, cylinder, head, and
sector location. Fig. 11 illustrates the zone conversion
storage components required to initiate the conversion
process in a zone bit recording disk drive. The table is
generally designated as 1104 and is preferably stored
in RAM, but may alternatively be stored on any other
convenient media. Zone table 1104 includes three col-
umns, zone PBA column 1110, zone cylinder column
1112, and zone sector column 1113. Zone table 1104
includes an entry for each zone in the disk drive. The
first column of each entry, zone PBA 1110, identifies the
starting PBA of that zone, and is used to determine
which zone a desired PBA is located in. Thus, the top
entry in the table would identify the first PBA in zone 1
of the disk drive, etc. The sought-after PBA number is
compared with each zone PBA entry until the zone con-
taining the PBA is located. The corresponding entries in

25 26

EP 0 660 324 B1

15

5

10

15

20

25

30

35

40

45

50

55

zone cylinder column 1112 and zone sector column 1113
are then used to perform the conversion computations
which will be described below.
[0103] Fig. 12 illustrates in flowchart form the steps
which are preformed, once the zone conversion storage
components have been located, to convert from PBA to
ZCHS. At step 1204, the zone table is searched for the
sought-after PBA number to retrieve the zone PBA,
zone cylinder, and zone sector entries as described with
reference to Fig. 11. At step 1206, zone PBA is subtract-
ed from PBA to determine how many physical blocks
(sectors) into the zone the desired PBA resides. A PBA
offset into the zone is returned from this operation. At
1208, the PBA offset is divided by the number of sectors
per track. The mod, or remainder of this operation is des-
ignated as the starting sector number of the data trans-
fer. At step 1210, the quotient of the same division proc-
ess is taken as the track offset from the start of the zone
at which the data transfer is to begin. At 1212, the ab-
solute cylinder number which starts the data transfer is
computed by dividing the track offset by the number of
heads in the disk drive to produce a cylinder offset which
is then added to the starting cylinder of the zone. Finally,
at 1214 the remainder, or mod of the same division pro-
vided in 1212 is taken as the selected head for the start
of the data transfer. At this point the process exits at
1216, having computed the zone, cylinder, head, and
sector at which to begin the data transfer.
[0104] One beneficial result of decoupling the LBA to
ZCHS conversion process into two stages is a two step
mapping process which significantly reduces the
number of spares that must be allocated across the disk
drive to handle grown defects occurring in the field. The
two step LBA to ZCHS process in turn allows the allo-
cation of skip sectors to be broken into a two step proc-
ess. First, surface analysis testing (SAT) is performed
across the entire disk drive to determine the factory de-
fect locations before the disk drive is shipped from the
factory. The defect locations are mapped into a virtual
sector table by inserting skip sectors in numerical order.
Also, a virtual track table is created and updated as re-
quired by incrementing each virtual track entry following
that track in which the error is detected. Second, after
SAT is complete, spare locations are sprinkled evenly
across the disk at distances consistent with the proba-
bility of a grown defect. It is to be noted that the proba-
bility of a grown defect, and thus the density of spares,
may vary as a function of position on the disk. The result
is that sparing is reduced to minimal levels.
[0105] Given the above scheme for sparing, two al-
ternative embodiments for reassignment of sectors are
presented. Both reassignment techniques are intended
to map a spare sector into the logical address space of
the disk drive as well as to map the defective sector into
the virtual sector table and, if necessary, the virtual track
table, in order to establish the defective sector as a skip
sector.
[0106] For either technique the re-assignment proc-

ess begins by identifying the closest available spare
sector (to be used as the reassignment sector). This in-
volves accessing the DS table and searching both for-
ward and backward from the entry closest to the defect
until a spare entry is found. The locations of the forward
and backward entries are subtracted from the defect lo-
cation, and the lowest absolute value result is used to
select the re-assigned sector. Once the re-assignment
sector has been identified, one of the two re-assignment
techniques is applied. Turning to the first, the original
tables are left unmodified, and a separate list of re-as-
signed sectors is maintained. This separate list contains
sectors chosen from the sprinkle list which have been
used as re-assigned sectors. The list is in the form of a
map which includes a first column representing grown
defective ZCHS values and a second corresponding
column representing new ZCHS values. The list itself
may be organized either by LBA number or ZCHS
number. If it is organized by LBA number, it is checked
before translation from LBA to PBA. In this case, the list
entries are interpreted to indicate which LBAs are
mapped out and what new LBAs they are mapped to. If
the list is organized according to ZCHS values, then it
is referenced after translation from LBA to PBA and from
PBA to ZCHS, and its entries are interpreted to indicate
which ZCHS values are mapped out and what new
ZCHSs they are mapped to. In any event, when the de-
fective reassigned sector is encountered during a data
transfer operation, a second seek is executed to the as-
signed spare location and the data is read or written
there. However, as discussed above, since the spares
are sprinkled throughout the disk drive and the drive has
selected for use the sprinkled spare nearest the defec-
tive re-assigned sector, the length of the seek is mini-
mized and performance is thereby improved.
[0107] The second re-assignment technique effec-
tively replaces the grown defective spare with the se-
lected re-assign spare in the virtual track and virtual sec-
tor tables. The virtual sector table is modified by insert-
ing a new skip sector at the grown defect and then shift-
ing all values between the grown defect and the reas-
signed sector. If the closest spare is across a track
boundary from the defect, the virtual track table is also
updated to indicate the pointer changes. Thus, by simply
shifting LBAs in the virtual sector table between the de-
fect and the reassigned sector, the spare takes the log-
ical place of the defect and no performance degradation
is experienced thereafter.
[0108] It is to be noted that the skip sector conversion
schema has the additional advantageous property of
operating in the presence of skewing without further
modification. Where skewing is in effect, prior computa-
tions which compute sector number are considered to
be with reference to unskewed sectors. Conversion to
skewed sector then occurs outside the conversion proc-
ess, as was described previously.
[0109] One modification to the above-presented em-
bodiment, which may be useful in cases where simpli-

27 28

EP 0 660 324 B1

16

5

10

15

20

25

30

35

40

45

50

55

fied mapping is desired, is to use a single table conver-
sion process which maps directly from LBA to ZCHS.
The table entries still require three or four bytes as in
the prior art, however the new table construction is
based on LBAs adjusted by table location. Thus, the ta-
ble contains LBAs which directly follow a given skip. The
advantage of this approach is that the table look-up
process requires only a simple single level search, ei-
ther sequential or binary. The RAM requirement is fairly
small so long as the number of skips in the system is
kept small. However, for large modern disk drives the
storage requirement expands rapidly as the number of
defects increases, thereby overwhelming the utility of
this approach.
[0110] It is also to be noted that the skip sector map-
ping technique disclosed in this section is useful beyond
the realm of no-ID disk drives. In fact, this technique is
considered applicable to any disk drive in which benefit
may be obtained from knowing conclusively at the be-
ginning of every seek operation exactly what the final
target zone, cylinder, head, and sector are. Thus, in all
disk drives, including those using ID fields and those us-
ing no ID information, the disclosed LBA to ZCHS map-
ping avoids the requirement to slip heads in order to
handle spares and defects. Moreover, the system leads
to easy implementation of just-in-time seek profiles,
where knowledge of the exact seek destination is used
to plan the seek trajectory so that the head settles on
track just before the desired sector arrives at the head.
Finally, the system allows for implementation of seek re-
ordering including latency minimization, since the exact
seek destination is known before seeking.
[0111] Most importantly, it should be noted that while
the above description has focused on partitioning the
LBA into two portions, the concept may easily be ex-
tended to three or more partitions. For example, a virtual
cylinder partition may be added which contains neigh-
bouring virtual tracks. This becomes advantageous as
the number of virtual tracks becomes large, since it re-
duces the amount of storage required for the virtual track
table. Thus, in general the mapping schema presented
above should be taken to encompass n-level hierarchi-
cal storage of skip sectors.

VII. Conclusion

[0112] A further advantage of the preferred embodi-
ment hardware design lies in its built-in power manage-
ment features. Since the servo-modulo count block ac-
tually computes the modulos, the system requires only
a single servo sector time for initialization. The field
length counters in sector pulse logic 421 must operate
only during read and write modes, and may be powered
down otherwise. Thus, in a low power implementation
of the present invention, much of servo electronics 212
and formatter electronics 215 is powered down between
read and write operations. Typically, timing logic 420 is
active during this time, and generates signals to activate

AM detector 412 and other electronics at each servo
sector. Since the servo sector counter is active, a read
or write operation may commence following the next
servo sector. If even greater power savings is desired,
an additional stage may be added in which the servo
sector counter and associated electronics are powered
down. In this mode, the system must wait for an index
to initialize itself if the full servo sector number is not
encoded within the TID. If it is encoded, the system need
only wait for the next servo sector.
[0113] While the invention has been described with
reference to data sectors which are shorter than the data
regions separating servo sectors, it is to be noted that
the invention is equally applicable to the opposite case
-- that is, a sector size or servo spacing selected such
that the data sector length exceeds the data region
length. This may occur in an implementation which uses
closely-spaced servo sectors for performance or other
reasons. It may also occur where the data sector size is
chosen to be relatively large for use in applications deal-
ing with long blocks of information, such as multimedia
presentations and scientific data. The result of the data
sector size exceeding the data region size is that a sin-
gle data sector may span two or more servo sectors.
This is handled seamlessly according to the invention
as disclosed above by simply programming the register
and RAM values accordingly.
[0114] While the preferred embodiment hardware de-
sign uses a servo modulo counter to reduce memory
requirements, it is apparent that the segment informa-
tion may be expanded to store the information for an
entire track. In this case, there is no need for the servo
modulo counter, since RAM 504 will be addressed di-
rectly by servo sector number. Such a design uses more
RAM than the preferred embodiment, but will have sim-
plified hardware. The choice of designs depends on fac-
tors such as circuit cost for the two implementations.
Further, the data in RAM 504 may be organized to allow
addressing by values other than the servo sector
number. Specifically, the data sector number may be
used to address the table.
[0115] Further, it is to be noted that in some imple-
mentations it may be judged beneficial for error handling
purposes to include some portion of the LBA in each
data sector. This allows for LBA verification during read
operations, but is of no use during write operations since
the sought-after sector is being overwritten rather than
read. Accordingly, LBA encoding in data sectors is not
to be considered as analogous to ID information encod-
ing in data sectors. Moreover, it is intended that the re-
moval or exclusion of ID information as discussed above
encompasses an implementation which removes the ID
from data sectors information, but includes the LBA.
[0116] It is also apparent that the locations of the var-
ious functions shown in the electronics may be altered,
and that software may be substituted for some of the
hardware shown and described. It is further apparent
that while the preferred embodiment has been de-

29 30

EP 0 660 324 B1

17

5

10

15

20

25

30

35

40

45

50

55

scribed in the context of a zone recording format, the
invention may be applied to other complex formats
where the number of data sectors on a track is not equal
to the number of servo sectors on a track, so long as the
format details are known to the disk drive. Moreover, the
terms register and RAM should be viewed as inter-
changeable, and the specific locations of the registers
and RAM as unimportant. For example, registers 506
and RAM 504 may be located within RAM 217 instead
of format table 422. Finally, it should be noted that while
the values and tables described above are stored in
RAM and registers during operation of the disk drive,
they must be stored in non-volatile storage when the
drive is not operating. Any non-volatile storage may be
used, but it is preferred to store the information on the
disk drive itself. The use of modifiable storage (i.e., the
disk drive) allows for the disk drive to alter its own format
without need for external intervention.
[0117] While the invention has been particularly de-
scribed and illustrated with reference to a preferred em-
bodiment, it will be understood by those skilled in the art
that changes in the description and illustrations may be
made with respect to form and detail without departing
from the scope of the invention. Accordingly, the present
invention is to be considered as encompassing all mod-
ifications and variations coming within the scope defined
by the following claims.

Claims

1. A disk drive comprising;
a data recording disk (204) having a plurality

of generally concentric data tracks (218) divided in-
to a plurality of radially spaced zones (251, 252,
253) and a number N of generally equally angularly
spaced servo sectors (220) extending generally ra-
dially across the zones, the tracks in at least one of
the zones each having M data sectors (254), each
data sector storing substantially the same number
of bytes of data; and a recording head (208) for
reading information in the servo sectors and for writ-
ing and reading user data in the data sectors;

characterised in that the data sectors include
no identification (ID) information that uniquely iden-
tifies the data sectors; the disk drive being charac-
terised in that it further comprises:

a servo sector counter (414) responsive to in-
formation read by the recording head in the ser-
vo sectors, for counting servo sectors as the
disk rotates past the head;

memory storage (422) for storing track format
information representing the location of the da-
ta sectors relative to the servo sectors in the
track; and

sector logic circuitry (454) coupled to the servo
sector counter and the memory storage for lo-
cating, from the track format information, a data
sector where user data is to be read or written.

2. A disk drive as claimed in claim 1, wherein the mem-
ory storage further stores a skew value represent-
ing the offset of data sector numbers of the data
sectors in a first track of one of said at least one of
the zones from the generally radially aligned data
sectors in a second track of the same zone.

3. A disk drive as claimed in claim 1 or claim 2 wherein
each of the tracks in at least one of the zones is
divided into a number of identical track segments,
each of the segments having n servo sectors and
m data sectors, wherein m/n is a reduced integer
fraction of M/N, the m data sectors being split into
data sections by the m servo sectors in each seg-
ment; and wherein the track format information
stored in the memory storage is track segment in-
formation representing the location of the data sec-
tors relative to the servo sectors within the segment.

4. A disk drive as claimed in claim 3 further comprising
a servo-modulo counter coupled to the sector logic
circuitry for generating, from known values of m and
n, a value representative of the servo sector number
within the track segment, the servo-modulo counter
being resettable every n servo sectors.

5. A disk drive as claimed in claim 4 wherein the mem-
ory storage is addressable by the track segment
servo sector number generated by the servo-mod-
ulo counter.

6. A disk drive as claimed in any of claims 3 to 5 where-
in the memory storage stores the lengths of the first
and last data sections in the track segment.

7. A disk drive as claimed in any of claims 3 to 6 where-
in the memory storage stores the number of com-
plete data sectors in the track segment.

8. A disk drive as claimed in any preceding claim
wherein each of the tracks includes an index mark
identifying a fixed location on the track representing
the beginning of the track, and wherein the servo
sector counter is responsive to the index marker.

9. A disk drive as claimed in claim 1 wherein the tracks
in at least one of the zones is divided into a number
of identical track segments and a partial segment,
the partial segment including a stub having a length
less than a data sector, each of the identical track
segments including n' servo sectors and m' data
sectors, the m' data sectors being split into data sec-
tions by the servo sectors, wherein if m/n is the

31 32

EP 0 660 324 B1

18

5

10

15

20

25

30

35

40

45

50

55

smallest reduced integer fraction of M/N then as a
result of the stub, m'+n' is less than m+n.

Patentansprüche

1. Ein Plattenlaufwerk, enthaltend:
Eine Datenaufzeichnungsplatte (204) mit ei-

ner Vielzahl von im allgemeinen konzentrischen
Datenspuren (218), unterteilt in eine Vielzahl von
radial beabstandeten Zonen (251, 252, 253), und
eine Anzahl N von im allgemeinen winkelgleich be-
abstandeten Servosektoren (220), die sich im all-
gemeinen radial über die Zonen erstrecken, wobei
die Spuren mindestens einer Zone jeweils M Daten-
sektoren (254) aufweisen, jeder Datensektor im we-
sentlichen die gleiche Anzahl von Datenbytes ab-
speichert; und einen Aufzeichnungskopf (208) zum
Lesen von Informationen in den Servosektoren und
zum Schreiben und Lesen von Anwenderdaten in
den Datensektoren;
dadurch gekennzeichnet, dass die Datensektoren
keine Identifizierungs- (ID)-Information enthalten,
die die Datensektoren unverwechselbar identifi-
ziert; das Plattenlaufwerk ferner dadurch gekenn-
zeichnet ist, dass es beinhaltet:

einen Servosektorzähler (414), der auf Infor-
mationen anspricht, die vom Aufzeichnungs-
kopf in den Servosektoren gelesen wird zum
Zählen der Servosektoren, wenn sich die Platte
am Kopf vorbeidreht;

Speicherplatz (422) zum Speichern von Spur-
format-Informationen, die den Speicherplatz
der Datensektoren relativ zu den Servo-Sekto-
ren in der Spur repräsentieren; und

eine Sektorlogikschaltung (454), gekoppelt an
den Servosektorzähler, und Speicherplatz zum
Ausfindigmachen eines Datensektors aus der
Spurinformation, in dem Anwenderdaten gele-
sen oder geschrieben werden sollen.

2. Ein Plattenlaufwerk gemäß Anspruch 1, in dem der
Speicherplatz ferner einen Schieflaufwert abspei-
chert, darstellend den Offset der Datensektorzah-
len der Datensektoren in einer ersten Spur einer
dieser mindestens einen der Zonen von den in all-
gemeinen radial ausgerichteten Datensektoren in
einer zweiten Spur der gleichen Zone.

3. Ein Plattenlaufwerk gemäß Anspruch 1 oder An-
spruch 2, in dem jede der Spuren in wenigstens ei-
ner der Zonen in eine Anzahl identischer Spurseg-
mente unterteilt ist, wobei jedes der Segmente n
Servosektoren und m Datensektoren aufweist, wo-
bei m/n ein gekürzter ganzzahliger Bruch von M/N

ist, die m Datensektoren durch die m Servosektoren
in jedem Segment in Datensektionen zertrennt
sind; und in dem die Spurformat-Informationen, die
im Speicher abgespeichert sind, eine Spurseg-
ment-Information sind, die den Speicherort der Da-
tensektoren relativ zu den Servosektoren im Seg-
ment repräsentieren.

4. Ein Plattenlaufwerk gemäß Anspruch 3, das ferner
enthält einen Servo-Modulo-Zähler, gekoppelt an
die Sektorlogikschaltung zum Generieren eines
Werts aus bekannten Werten für m und n, der re-
präsentativ für die Servosektorzahl innerhalb des
Spursegments ist, wobei der Servo-Modulo-Zähler
alle n Servosektoren rückstellbar ist.

5. Ein Plattenlaufwerk gemäß Anspruch 4, in dem der
Speicherplatz adressierbar ist durch die Spurseg-
ment-Servosektornummer, die vom Servo-Modulo-
Zähler generiert wurde.

6. Ein Plattenlaufwerk gemäß einem beliebigen der
Ansprüche 3 bis 5, in dem der Speicherplatz die
Längen der ersten und der letzen Datensektionen
im Spursegment abspeichert.

7. Ein Plattenlaufwerk gemäß einem beliebigen der
Ansprüche 3 bis 6, in dem der Speicherplatz die An-
zahl der kompletten Datensektoren im Spurseg-
ment abspeichert.

8. Ein Plattenlaufwerk gemäß einem beliebigen vor-
stehenden Anspruch, in dem jede der Spuren eine
Indexmarke aufweist, die einen festen Ort auf der
Spur identifiziert, der den Anfang der Spur reprä-
sentiert, und in dem der Servosektorzähler auf die
Indexmarke anspricht.

9. Ein Plattenlaufwerk gemäß Anspruch 1, in dem die
Spuren in wenigstens einer der Zonen unterteilt ist
in eine Anzahl identischer Spursegmente und ein
teilweises Segment, wobei das teilweise Segment
ein Blindfeld beinhaltet, das eine Länge von weni-
ger als ein Datensektor aufweist, jedes der identi-
schen Spursegmente n' Servosektoren und m' Da-
tensektoren aufweist, die m' Datensektoren von
den Servosektoren in Datensektionen aufgeteilt
sind, wobei m/n der kleinste gekürzte ganzzahlige
Bruch von M/N ist, und dann als Ergebnis des Blind-
felds m'+n' kleiner ist als m+n.

Revendications

1. Unité de disque comprenant :
un disque d'enregistrement de données (204) com-
portant une pluralité de pistes de données généra-
lement concentriques (218) divisées en une plura-

33 34

EP 0 660 324 B1

19

5

10

15

20

25

30

35

40

45

50

55

lité de régions espacées radialement (251, 252,
253) et un certain nombre N de secteurs d'asser-
vissement espacés généralement régulièrement
angulairement (220), s'étendant généralement ra-
dialement au travers des régions, les pistes dans
au moins une des régions comportant chacune M
secteurs de données (254), chaque secteur de don-
nées mémorisant sensiblement le même nombre
d'octets de données, et une tête d'enregistrement
(208) destinée à lire les informations dans les sec-
teurs d'asservissement et destinée à écrire et à lire
des données d'utilisateur dans les secteurs de don-
nées,
caractérisée en ce que les secteurs de données ne
comprennent aucune information d'identification
(ID) qui identifie de façon unique les secteurs de
données, l'unité de disque étant caractérisée en ce
qu'elle comprend en outre :

un compteur de secteurs d'asservissement
(414) sensible aux informations lues par la tête
d'enregistrement dans les secteurs d'asservis-
sement, afin de compter les secteurs d'asser-
vissement lorsque le disque tourne devant la
tête,
un dispositif de mémoire (422) destiné à mé-
moriser des informations de format de piste re-
présentant l'emplacement des secteurs de
données relativement aux secteurs d'asservis-
sement dans la piste, et
des circuits logiques de secteur (454) reliés au
compteur de secteurs d'asservissement et au
dispositif de mémoire afin de localiser, à partir
des informations de format de piste, un secteur
de données où des données de l'utilisateur doi-
vent être lues ou écrites.

2. Unité de disque selon la revendication 1, dans la-
quelle le dispositif de mémoire mémorise en outre
une valeur d'obliquité représentant le décalage des
numéros de secteurs de données des secteurs de
données d'une première piste de l'une desdites au
moins une des régions par rapport aux secteurs de
données alignés généralement radialement dans
une seconde piste de la même région.

3. Unité de disque selon la revendication 1 ou la re-
vendication 2, dans laquelle chacune des pistes
dans au moins une des régions est divisée en un
certain nombre de segments de piste identiques,
chacun des segments comportant n secteurs d'as-
servissement et m secteurs de données, dans la-
quelle m/n est une fraction de nombres entiers ré-
duite de M/N, les m secteurs de données étant sé-
parés en des sections de données par les m sec-
teurs d'asservissement dans chaque segment, et
dans laquelle les informations de format de piste
mémorisées dans le dispositif de mémoire sont des

informations de segments de piste représentant
l'emplacement des secteurs de données relative-
ment aux secteurs d'asservissement à l'intérieur du
segment.

4. Unité de disque selon la revendication 3, compre-
nant en outre un compteur de valeur d'asservisse-
ment à congruence, relié aux circuits logiques de
secteur afin de générer, à partir de valeurs connues
de n et m, une valeur représentative du numéro de
secteur d'asservissement à l'intérieur du segment
de piste, le compteur de valeur d'asservissement à
congruence pouvant être réinitialisé tous les n sec-
teurs d'asservissement.

5. Unité de disque selon la revendication 4, dans la-
quelle le dispositif de mémoire peut être adressé
par le numéro de secteur d'asservissement de seg-
ment de piste généré par le compteur de valeur
d'asservissement à congruence.

6. Unité de disque selon l'une quelconque des reven-
dications 3 à 5, dans laquelle le dispositif de mé-
moire mémorise les longueurs des première et der-
nière sections de données dans le segment de pis-
te.

7. Unité de disque selon l'une quelconque des reven-
dications 3 à 6, dans laquelle le dispositif de mé-
moire mémorise le nombre des secteurs de don-
nées complets dans le segment de piste.

8. Unité de disque selon l'une quelconque des reven-
dications précédentes, dans laquelle chacune des
pistes comprend un repère d'index identifiant un
emplacement fixe sur la piste représentant le début
de la piste, et dans laquelle le compteur de secteurs
d'asservissement est sensible au repère d'index.

9. Unité de disque selon la revendication 1, dans la-
quelle les pistes dans au moins l'une des régions
sont divisées en un certain nombre de segments de
piste identiques et un segment partiel, le segment
partiel comprenant un tronçon présentant une lon-
gueur inférieure à celle d'un secteur de données,
chacun des segments de piste identiques compre-
nant n' secteurs d'asservissement et m' secteurs de
données, les m' secteurs de données étant séparés
en des sections de données par les secteurs d'as-
servissement, dans laquelle si m/n est la fraction de
nombres entiers réduite la plus petite de M/N, alors
il résulte du tronçon que m'+n' est inférieur à m+n.

35 36

EP 0 660 324 B1

20

EP 0 660 324 B1

21

EP 0 660 324 B1

22

EP 0 660 324 B1

23

EP 0 660 324 B1

24

EP 0 660 324 B1

25

EP 0 660 324 B1

26

E
P

0 660 324
B

1

27

EP 0 660 324 B1

28

E
P

0 660 324
B

1

29

EP 0 660 324 B1

30

EP 0 660 324 B1

31

	bibliography
	description
	claims
	drawings

