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SYSTEMAND METHOD FOR SKP-SECTOR 
MAPPING IN ADATA RECORDING DISK 

DRIVE 

This is a continuation of application Ser. No. 08/173,588, 
filed Dec. 23, 1993, now abandoned. 

FIELD OF THE INVENTION 

This invention relates in general to data recording disk 
drives, and in particular to skip-sector mapping in Such disk 
drives. 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is related to a co-pending patent appli 
cation entitled “Sector Architecture for Fixed Block Disk 
Drive", filed Dec. 23, 1993, assigned to IBM. 

BACKGROUND OF THE INVENTION 

Central to the magnetic disk drive is the use of a data 
recording disk having a magnetizable layer on its Surface. 
Digital data is recorded on the disk in the form of magnetic 
transitions Spaced closely together. In modern disk drives in 
particular, recording densities both in terms of radial tracks 
per inch and linear density along a track have reached a level 
which creates extreme Sensitivity to imperfections known as 
media defects in the magnetic recording layer which result 
in portions of the layer becoming unacceptable for use in 
recording the magnetic transitions. Media defects may be 
Small, that is affecting only a Small number of transitions on 
a Small number of tracks, or large, affecting many transitions 
acroSS multiple trackS. However, as recording densities 
increase even tiny media defects may impact many transi 
tions acroSS many tracks. 

In the prior art, the classical method for dealing with 
media defects is called a format operation, in which Surface 
analysis testing (SAT) data is used to effectively map defects 
found during SAT at the factory out of the disk drive. The 
format operation generally designates bad Sectors and also 
designates Some good Sectors as Spares So that they may later 
be used if additional good Sectors become bad during 
operation of the disk drive. During the format operation an 
ID field is written onto the disk prior to each data sector. The 
ID field contains Specific information concerning the data 
Sector which follows it, including a logical block address 
(LBA) or a cylinder, head, sector (CHS) entry, either of 
which can be used during operation to unambiguously 
identify the Succeeding data Sector. Also included in the ID 
field are bit flags which indicate whether the data sector is 
a reserved (spare) sector or a bad data sector. At the end of 
the format operation, all information regarding good Sectors, 
bad Sectors, and Spare SectorS is known to the disk drive, and 
can be queried by Scanning the entire Set of Sector IDS 
written on the disk. 

In a typical prior art disk drive the translation from an 
LBA to a CHS is accomplished by direct mapping. Such a 
mapping is shown in prior art FIG. 1a, where LBA entries 
designated as 112 are mapped through LBA to CHS block 
110 to produce CHS entries designated as 114. This mapping 
typically makes use of Several assumptions: first, that the 
data Sectors are grouped according to cylinderS or tracks, 
Second, that each group of data Sectors contains a fixed 
number of good data Sectors, and third, that the number of 
Skip Sectors (either defect or spare) in each group is fixed. 
Many modern disk drives use a concept known as Zone bit 
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2 
radial Zones and the data is recorded at a different data rate 
in each Zone. This concept is well known in the art. The 
addition of Zones requires expansion of the cylinder, head, 
Sector identification Scheme to a Zone, cylinder, head, Sector 
(ZCHS) scheme. Disk drives implementing Zone bit record 
ing typically use a table containing a set of Zone entries, one 
for each Zone, each entry containing the Starting LBA for the 
Zone represented by the entry, the number of good data 
Sectors per group (where a group is Some fixed unit Such as 
a track or cylinder), the number of Skip data Sectors per 
group, the number of data Sectors per track, and Starting 
cylinder of the group. In Such an implementation, a Search 
for a given LBA Simply requires locating the appropriate 
Zone entry in the table. Thus, if the group is defined as a 
cylinder, the Zone table can easily be used to determine an 
LBA offset, a cylinder offset, a track offset, a head, a Sector, 
and a cylinder. Alternatively, if the group is defined as a 
track, the table can easily be used to determine an LBA 
offset, a track offset, a Sector, a cylinder, and a head. Thus, 
regardless of the group definition, the LBA leads readily to 
a physical disk location. Once the disk drive completes the 
required seek operation to the cylinder and head identified, 
the drive formatter Scans for either the desired LBA or the 
desired Sector by examining the ID field of each data Sector 
as it passes under the head. When the appropriate data Sector 
is found, the data is transferred and the operation is com 
plete. 
AS is apparent from the above description, the LBA to 

ZCHS mapping technique translates from an LBA to a first 
possible ZCHS. Scanning of IDs must thereafter be under 
taken in order to locate the sought-after ZCHS or LBA. In 
fact, in Some cases an extensive Search may be required in 
order to locate the Sought after Sector starting from the 
location produced by the ZCHS mapping. At minimum, this 
search involves the reading of multiple ID fields, and in 
Some cases may include reseeking to other heads or cylin 
ders to find the required LBA. This may occur where a 
defect has caused an LBA to map to a ZCHS on a distant 
portion of the disk drive, or where a Sought-after LBA maps 
to a ZCHS which would be near the end of a track but for 
a single defect or relatively small number of defects which 
causes it to map to a ZCHS on the next or another nearby 
track which nonetheless requires a head Switch or a cylinder 
Seek. The result of the added Seek, is a performance penalty 
coupled with a power consumption penalty due to the added 
time spent Seeking and reading ID fields. This penalty, 
coupled with the large number of Sectors which may be 
affected by a defect in highly dense modern drives, can make 
Skip Sector handling a significant issue in Overall drive 
performance. 

Another Strategy which has been used in recent years to 
increase the capacity of disk drives is known as the no-ID 
format. This format is taught by Hetzler in co-pending U.S. 
patent application Ser. No. 07/727,680, filed Jul. 10, 1991. 
No-ID disk drives use servo Sectors in combination with a 
defect map to identify data Sectors and thereby completely 
eliminate the use of ID regions. The no-ID skip-sector 
mapping concept is illustrated in prior art FIG. 1b in which 
an LBA input at 126 enters LBA to PBA conversion block 
120. LBA to PBA conversion block 120 refers to a defect 
map table designated as 124 via interface 130. For perfor 
mance reasons defect map table 124 is typically held in 
RAM storage. As disclosed in the aforementioned Hetzler 
application, the defect map table is comprised of a Series of 
five byte entries which represent the defect information. 
Completing prior art FIG. 1b, the output PBA is communi 
cated via interface 128 to PBA-to-cylinder, head, sector 
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(CHS) conversion block 122, where additional function 
produces a physical CHS value which is further transmitted 
via interface 132 to electronics (not shown) which proceed 
to position the recording head. 

While the aforementioned Hetzler approach solves the 
problem of locating defect information in the absence of 
data ID fields, it incurs two drawbackS. First, in requiring at 
least five bytes per entry to Store the defect information, the 
approach is RAM intensive. Second, its performance is 
based on a binary Search of three or four byte entries-a very 
Slow process when implemented on an eight or sixteen bit 
microprocessor. 
One way to improve upon the above approach is to use a 

table which contains only a three or four byte entry for each 
Skip Sector. This may be accomplished by listing the skip 
PBAS sequentially rather than listing skip LBAS and offsets; 
thereby a Savings of two bytes per entry is realized. 
However, this approach occurs an added drawback of its 
own while it requires only three to four bytes of RAM per 
Skip Sector, it also requires an iterative Search algorithm 
whose performance is unacceptable in modern disk drives. 
An additional problem that arises in high capacity disk 

drives involves the Second category of Skip Sectors described 
above-spares. In general, in the prior art it is assumed that 
there is a fixed number of good Sectors per group acroSS each 
disk of a disk drive. However, for disks which outperform 
the assumed number of bad Sectors, Significant waste of 
Storage space may occur due to this over Sparing. 
A closer examination of the oversparing problem reveals 

that it results from two Statistical assumptions. First, in many 
disk drive designs it is assumed that the probability of a 
"grown' defect-that is, a defect not found during Surface 
analysis testing (SAT) but which is revealed during drive 
use- is the same as the probability of a defect during SAT. 
In fact, however, grown defects are much less likely to occur 
after SAT is completed. Second, it is typically assumed that 
there is a fixed number of Skip Sectors per group. As a result 
of this assumption, when yield decreases spare allotment 
must be increased. This effect is multiplied by the number of 
groups, causing what is in effect a worse case assumption to 
be propagated over Scores of good groups. In a typical 
modern disk drive this may involve a multiplication factor of 
over 3,000, a number which will continue to grow as track 
pitch continues to increase. 
A further drawback associated with Sparing as typically 

used in the prior art arises when Spares are actually brought 
into Service. The usual approach is to have a pool of Spares 
gathered together in certain tracks and available for use 
acroSS the disk drive. However, if one of these spares must 
be brought into Service due to a grown defect, a significant 
performance penalty may result each time the Spare Sector is 
referred to in operation. The performance penalty results 
when the System, which is otherwise reading along Sequen 
tial Sectors on a track, is required to perform a Seek operation 
to a different cylinder or a different head in order to acceSS 
the data on the Spared-in Sector. This operation can in fact 
require many multiples of the amount of time required to 
perform an access operation on a Sequentially available data 
SectOr. 

Accordingly there has heretofore existed an unmet need in 
the art for a skip Sector mapping technique which achieves 
Satisfactory performance and requires minimal Storage. 
There has further existed Such an unmet need for a technique 
which can effectively provide sparing without wasting disk 
Space and without incurring a significant performance pen 
alty upon activation of a Spare. 
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4 
SUMMARY OF THE INVENTION 

In accordance with the invention, a data recording disk 
drive is provided with a System and method for mapping 
logical block addresses into disk drive physical block 
addresses, for further mapping into Zone, cylinder, head, and 
Sector locations. A logical block address (LBA) is numbered 
from Zero to N where N is the total number of blocks 
(Sectors) available for customer and/or system use. A physi 
cal block address (PBA) is defined to include all sectors 
numbered from Zero to M where M is greater than N and 
where M represents the total number of sectors available on 
the disk drive. The physical Storage Space represented by the 
total number of MPBAS in the disk drive identifies all LBAS 
as well as all Skip Sectors. 
Two mapping tables are provided for use in translating 

LBAS to PBAS. The first mapping table contains entries for 
Virtual tracks defined to group together LBAS having shared 
high order bits. The entries themselves are pointers to index 
locations in the Second mapping table; each indeX location 
identifies a group of Sectors located on the track correspond 
ing to the indeX location. The Second mapping table contains 
entries for skip Sectors (both defective and spare). The 
entries are arranged in numerical order, and contain only the 
low order LBA bits corresponding to the Skip Sectors. To 
map a given LBA, a mask is used to Select the high order bits 
which make up the virtual track number. The virtual track 
number of the LBA is used to select an entry in the first table, 
which in turn provides an indeX to a Search Start point in the 
Second table. Commencing with the Search Start point, the 
Second table is Searched in increasing numerical order using 
the low order bits of the LBA until a larger entry is found 
(corresponding to a Sector beyond the LBA). An index point 
up to (but not including) the final Searched entry is then 
added to the LBA to provide the PBA. By removing the 
shared high order bits from the Second (skip Sector) table, its 
Storage requirement is significantly reduced; since the Search 
involves Smaller entries, its execution Speed is significantly 
increased. 
An additional feature of the invention is a third table 

which includes an entry corresponding to each entry in the 
Skip Sector table. Each entry indicates whether the corre 
sponding skip Sector is a defective Sector or a Spare Sector. 
This information is used by a further feature of the invention 
to remove data Sectors from Service when they become 
defective during operation of the disk drive. Using the third 
table, the closest Spare Sector to the failed Sector is located. 
This spare may then be removed from the skip sector table 
and an entry added to the skip sector table for the failed 
Sector. A still further feature of the invention is the use of 
overlap between the LBA bits used to identify the virtual 
tracks and those used in the Skip Sector table. The Overlap 
ping bits allow the Skip Sector table to differentiate neigh 
boring tracks from one another, thus reducing and in Some 
cases eliminating the need to refer to the first mapping table. 
This in turn further improves the performance of the disk 
drive. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1a is a block diagram illustrating a Sector conversion 
process in accordance with the prior art. 

FIG. 1b is a block diagram illustrating a Sector conversion 
process using a defect map in accordance with the prior art. 

FIG. 2 is a Schematic diagram illustrating a fixed block 
architecture disk drive in accordance with the present inven 
tion. 

FIG. 3a is a Schematic diagram illustrating a Segment 
Subdivision of a data recording track in accordance with the 
present invention. 
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FIG. 3b is a Schematic diagram illustrating a track format 
with a stub in accordance with the present invention. 

FIG. 4 is a block diagram illustrating a hardware embodi 
ment of the Servo functions of the present invention. 

FIG. 5 is a block diagram illustrating the Storage compo 
nents used to compute data Sector locations in accordance 
with the present invention. 

FIG. 6 is a flowchart illustrating servo-modulo computa 
tions in accordance with the present invention. 

FIG. 7 is a block diagram illustrating a hardware embodi 
ment of a Servo-modulo counter in accordance with the 
present invention. 

FIG. 8 is a Schematic diagram illustrating a Staggered 
Sector servo written disk drive. 

FIG. 9 is a schematic diagram illustrating an LBA to PBA 
mapping architecture in accordance with the present inven 
tion. 

FIG. 10 is a flow chart illustrating LBA to PBA conver 
Sion computations in accordance with the present invention. 

FIG. 11 is a memory map table illustrating Zone conver 
Sion Storage components in accordance with the present 
invention. 

FIG. 12 is a flow chart illustrating PBA to Zone, cylinder, 
head, Sector computations in accordance with the present 
invention. 
I. Sector Architecture 
Shown in FIG. 2 is a disk drive configured in accordance 

with the present invention. The disk drive is formatted using 
a fixed block architecture with sector servo and Zone-bit 
recording. The disk drive, designated generally as 202, 
includes data recording disk 204, actuator arm 206, data 
recording transducer 208 (also called a recording head), 
voice coil motor 210, servo electronics 212, read/write 
electronicS 213, interface electronicS 214, formatter elec 
tronics 215, microprocessor 216 and RAM 217. Data record 
ing disk 204 includes center of rotation 211, and is divided 
for head positioning purposes into a set of radially spaced 
tracks, one of which is shown at 218. The tracks are grouped 
radially into a number of Zones, three of which are shown as 
251, 252 and 253. The disk contains a plurality of servo 
SectorS 220, which extend acroSS the tracks in a generally 
radial direction. Each track has a reference indeX 221. 
Within each Zone, the tracks are also circumferentially 
divided into a number of data sectors 254. As will be 
discussed hereafter, the data Sectors contain no Sector ID 
fields. In accordance with the normal meaning of “fixed 
block architecture', all data Sectors are Substantially the 
Same size, expressed in bytes of data. However, it should be 
noted that the present invention may easily be adapted to 
tolerate Some variation in data Sector size, Such as from 512 
bytes per Sector to 520 bytes per Sector, in the event Such a 
configuration was desirable for a particular implementation. 
The number of data Sectors per track varies from Zone to 
Zone, and Some of the data Sectors do not begin immediately 
following a Servo Sector. Further, Some of the data Sectors 
are split by servo sectors. If the disk drive has multiple 
heads, then the Set of tracks which are at the same radius on 
all surfaces is referred to as a “cylinder'. 

Read/write electronicS 213 receives signals from trans 
ducer 208, passes Servo information to Servo electronics 
212, and passes data Signals to formatter 215. Servo elec 
tronicS 212 uses the Servo information to produce a current 
at 240 which drives voice coil motor 210 to position 
recording transducer 208. Interface electronics 214 commu 
nicates with a host System (not shown) over interface 262, 
passing data and command information. Interface electron 
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6 
ics 214 also communicates with formatter 215 over interface 
264. Microprocessor 216 communicates with the various 
other electronics over interface 270. 

In the operation of disk drive 202, interface electronics 
214 receives a request for reading or writing data Sectors 
over interface 262. Formatter electronics 215 receives a list 
of requested data Sectors from interface electronicS 214 and 
converts them into Zone, cylinder, head and data Sector 
numbers which uniquely identify the location of the desired 
data Sectors. The head and cylinder information are passed 
to Servo electronics 212, which is responsible for positioning 
recording head 208 over the appropriate data Sector on the 
appropriate cylinder. If the cylinder number provided to 
Servo electronicS 212 is not the same as the track number 
over which recording head 208 is presently positioned, servo 
electronicS 212 first executes a Seek operation in order to 
reposition recording head 208 over the appropriate cylinder. 
Once Servo electronics 212 has positioned recording head 

208 over the appropriate cylinder, servo electronics 212 
begins executing Sector computations in order to locate and 
identify the desired data Sector. AS Servo SectorS 220 pass 
under recording head 208, the no-ID approach described in 
aforementioned U.S. patent application Ser. No. 07/727,680 
is used to identify each Servo Sector. In brief, an index mark 
identifies the first Servo Sector, an address mark locates 
Subsequent Servo Sectors, and a count of address marks 
uniquely identifies each Servo Sector. Additional 
information, which is described in greater detail below, is 
maintained in association with Servo electronicS 212 and 
formatter electronics 215 and is used to determine whether 
the present Servo Sector Splits a data Sector or whether a new 
data Sector Starts immediately following the present Servo 
Sector. Further information is maintained in Servo electron 
ics 212 and formatter electronics 215 which identifies the 
location of (or the distance to) the start of the next data Sector 
from the present servo sector. Still further information is 
maintained which identifies the location of (or the distance 
to) any additional data Sectors which begin before the next 
Subsequent servo sector. Still further information identifies 
the number of the data sector from the index mark. This 
information is used to allow formatter electronics 215 to 
compare the data Sector number passing under the recording 
head with the list of sectors received from interface elec 
tronics 214. 
Shown in FIG. 3a is a detailed schematic diagram of the 

Sector architecture for an exemplary track from a data 
recording disk in accordance with the present invention. A 
portion of a track is shown as 302, containing segment 304. 
Segment 304 is subdivided into a plurality of data regions, 
306, 308 and 309. The data regions are separated from one 
another by servo sectors 310, 312, and 314. Segment 304 
also includes a plurality of data Sectors labeled D1 through 
D5. Finally, each data Sector is made up of one or more data 
sections, labeled 320, 322, 324, 326, 328, 330 and 332. 
Logically, a Segment is the Set of Servo Sectors and data 
Sectors having a unique Spatial relationship between the 
sectors. The format for a track may then be produced by 
repeating the Segment. A data region is the Space between 
adjacent Servo Sectors. A data Sector is the Smallest indi 
vidually addressable unit of user data, independently read 
able and Writable. Finally, a data Section is a contiguous 
portion of a data Sector, not interrupted by a Servo Sector. 
The exemplary track of FIG.3a contains a number of data 

Sectors and a number of Servo Sectors, not necessarily equal. 
Note that servo sector 316 is not part of the segment since 
data sector D5 ends just prior to servo sector 316. Each data 
region contains a number of data Sectors, Some of which 
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may be split by servo sectors. For example, region 306 
contains the entire data sector D1 (section 320), and only a 
portion of data sector D2 (section 322). Likewise, data 
sector D2 is split by servo sector 312 into sections 322 and 
324. 

Also shown in FIG. 3a are details of the contents of servo 
sector 310. Write-to-read recovery and speed compensation 
field 342 is used to allow the read/write electronics to Switch 
from a data writing operation to a Servo reading operation, 
and to allow for fluctuations in the disk rotational Speed. 
Address mark field 344 precisely identifies a Specific posi 
tion within the Servo Sector which is used as a timing 
reference. Position field 346 contains the actual servo infor 
mation used to position the head, typically including a 
position error Signal and other information Such as a track 
number (track ID or TID), index value, servo sector number 
(or any portion thereof) and head number (or any portion 
thereof). Servo pad field 348 allows for the electronics to 
Switch from reading Servo to writing or reading data, as well 
as for disk rotational Speed variations. 

Also shown in FIG. 3a are details of the contents of data 
section 332, which contains a full data sector D5. VCO sync 
field 352 permits the read/write electronics to enable the 
voltage controlled oscillator (also known as a phase locked 
loop) to obtain proper phase lock for reading the data. Data 
and ECC field 354 contains the user data and error correction 
information. Data pad field 356 allows for differences in 
processing time for reading and writing data, as well as for 
flushing any encoder/decoder, and for disk rotational Speed 
variations. It also provides Sufficient time for the electronics 
to prepare for operating on the following Servo or data 
SectOr. 

Also shown in FIG. 3a is a detailed view of split data 
sector D2, labeled 360. Two additional fields are typically 
required when a data Sector is split by a Servo Sector: Split 
pad 364 and a VCO resync 368. Field 322 shows a portion 
of data sector D2 prior to servo sector 312. Split pad field 
364 allows for the electronics to interrupt the reading or 
Writing of data in a manner well known in the art. Servo 
sector 312 is followed by VCO resync field 368, which is 
used to restore the System to allow for continuation of the 
read or write operation. Finally, a portion of data Section D2 
following servo sector 312 is shown at 324. Note that split 
pad field 364 may be the same number of bytes in length as 
data pad field 356, or it may be different. Also, VCO resync 
field 368 may be identical in content to VCO sync field 352, 
but this is not required. More capacity may be achieved by 
making fields 364 and 368 shorter than their counterparts 
352 and 356; methods for achieving this benefit are dis 
cussed in the prior art. 

For any given data recording disk drive, there is a fixed 
number of servo Sectors per track (hereinafter designated as 
N) throughout the disk. Also, for each Zone there is a fixed 
number of data Sectors on each track (hereinafter designated 
as M). If M is not a multiple of N, then some of the data 
sectors will be split by servo sectors. The split portions of 
each data Sector are denoted as Sections. Further, the first 
Section belonging to a data Sector is called the primary 
Section and any remaining Sections are called Secondary 
Sections. Since all data Sectors on a track have the same 
number of bytes, and Since the Servo Sectors are equally 
Spaced, there will be a limited number of unique data 
Sections on the disk drive. The Set of data Sectors and Servo 
Sectors which defines one period of the unique pattern of 
data Sections is called a Segment. The number of data 
Sections in a segment (hereinafter designated as nSS) is given 
by: 
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where 

i 

it. 

represents the reduced fraction of 

N 

Since m and n represent the numerator and denominator of 
the reduced fraction of the ratio of the number of data sectors 
per track to the number of Servo Sectors per track, it is 
apparent that there are n Servo Sectors and m data Sectors in 
a segment. For exemplary segment 304 shown in FIG. 3a, 
n=3,m=5, nss=7, N=84, M=140, and inst (the number of 
Segments per track)=28. It is to be noted that in accordance 
with the no-ID Sector architecture, neither the servo sectors 
nor the data sectors include data ID fields. Instead, the 
information necessary to identify data Sector numbers and 
data sector locations is provided in servo sectors 310, 312, 
314, etc. and in electronic Storage accessible to the Servo 
electronics, as will be described in greater detail below. 

It should be noted that the choice of the Segment con 
figuration is flexible. For example, the entire track could be 
defined as a Segment. In Some circumstances, this may be the 
natural choice, Such as when M and N are relatively prime, 
resulting in m=M and n=N. However, nothing precludes 
choosing 

i 

it. 

to be an integer multiple of the reduced fraction. Moreover, 
there are cases where the above analysis on the ratio of the 
number of Servo Sectors to the number of data SectorS is not 
the preferred choice for defining a Segment. This can occur 
when a Space is left at the end of a track, where the last data 
Sector on the track ends Substantially prior to the end of the 
track. Such a case is illustrated in FIG. 3b. The track is 
designated 380, and contains 7 servo sectors 384. There are 
11 data sectors, DS1 through DS11. Note that data sector 
DS11 ends prior to the end of track 380. The remaining 
space is stub 385, which contains no user data since it is 
shorter than a data sector. In this example, N=7 and M=11, 
which from the above analysis would lead to a Segment size 
of n=7 and m=11. However, FIG. 3b illustrates a second 
possibility. The unique Spatial relationship between the 
Servo Sectors and data SectorS is achieved with n=3 and m=5. 
This choice results in two full segments, 381 and 382, and 
one partial segment 383. The disk drive need only know the 
total number of data Sectors on the track to handle the partial 
Segment. Once the data Sector number has reached the 
maximum value, the drive will wait until the next servo 
Sector, which resets the data Sector counter to the first data 
Sector number. It is to be noted that a track format having 
multiple StubS may be Selected, including StubS located 
within tracks as well as at their ends. In any event, an 
advantage may in Some cases be achieved in the presence of 
StubS by redefining the region using a Smaller Segment size 
Since this in turn decreases the amount of memory required 
to Store the format information. 
II. Formatter and Servo Electronics 

FIG. 4. is a schematic diagram of the preferred embodi 
ment of the Servo and formatter electronics used to locate 
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and identify data Sectors according to the present invention. 
Servo electronics 212 includes address mark (AM) detector 
and track number (TID) decoder 412, servo sector counter 
414, safety logic 416, actuator position control logic 418, 
timing generation logic 420, Sector pulse generation logic 
421 and format table 422. Formatter electronics 215 
includes defect map table 450, data sector identifier 454, 
logical block address (LBA) to physical block address 
(PBA) converter 456, PBA to Zone, cylinder, head and data 
sector (ZCHS) converter 458 and control function 476. 

In operation, formatter 212 receives a request for a read 
or write operation on a list of data Sectors 264. The Sectors 
are identified by their LBAS. The LBA list is converted to a 
PBA list by converter 456 using defect information 460. The 
PBA list 468 is converted to a list of physical ZCHS. Both 
of these conversions processed are discussed fully in Section 
VI below. The cylinder and head values 466 (C and H) are 
passed to actuator position control logic 418 to affect a Seek. 
Actuator position control logic 418 functions in a manner 
known in the art. Zone and sector values 464 (Z and S) are 
passed to data Sector identifier 454 and to Servo electronics 
212. Additionally, servo electronics 212 receives servo 
information 266 from the read/write electronics. AM detec 
tor 412 detects the Servo address mark, and Signals address 
mark found (AMF) at 432. This signal is passed to timing 
logic 420, which generates the timing Signals necessary for 
operation of servo electronics 212. AMF 432 is also passed 
to servo Sector counter 414. In addition, AM detector 412 
decodes the TID information, including cylinder (track) 
number, Servo index, Servo Sector number and head number. 
Index signal 433 is used to reset servo sector counter 414, 
and the counter is incremented by AMF signal 432 at each 
Subsequent Servo. In this manner, the servo Sector counter 
will always output the current servo sector number at 436. 
Safety logic 416 receives decoded TID information 430, and 
servo sector number 436. This logic performs various safety 
tests to ensure the proper operation of the Servo electronics. 
Its functions include comparing the generated Servo Sector 
number 436 with any servo sector number information in the 
TID (including index) and processing any error handling 
information in the TID. Error information, along with the 
cylinder and head number, are output at 438. Actuator 
position control 418 compares the cylinder and head values 
438 with the target values 466, and acts upon any errors. 
Sector pulse logic 421 uses servo sector number 436 to 
generate the address for format table 422, retrieving Segment 
information 440 for the Zone (described in detail below). 
Sector pulse logic 421 also contains three counters: a Sync 
counter, a data counter, and a pad counter. Each of these 
counterS is used to count byte clockS during the various 
fields in the format, whereby the data Sectors are located and 
identified. Sector pulse logic 421 is thereby able to identify 
both the Starting location and the data Sector number of the 
data sector about to pass under recording head 208. The 
current data Sector number 442 is Sent to formatter electron 
ics 215, and a start of data sector pulse 444 is sent when the 
Start of a data Sector is under the head, enabling the formatter 
to perform functions with Zero latency. Upon receipt of 
sector pulse 444, data sector identifier 454 compares the 
current data sector number 442 to the list of ZCHS values 
464. If a match is found, this information is passed via 470 
to control function logic 476, at which point the data sector 
is further processed in accordance with methods known in 
the prior art. 

With reference to the fields described above, it is to be 
noted that many alternative configurations exist which 
would accomplish the same purpose. For instance, the LBA 
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10 
may be replaced with any logical identifier, while the ZCHS 
may be replaced with any value or combination of values 
identifying a unique Sector number. The combination of the 
above electronicS and microcode in microprocessor 216 is 
able to detect and act on any errors discovered between the 
target ZCHS values and the detected values. This provides 
the disk drive with a high degree of reliability, even in the 
absence of data ID fields. For example, if a detected track 
number does not match the target value, a Seek error will be 
posted, and this error may be handled as is known in the art. 
Other errors, Such as a mismatch between the Servo Sector 
counter and the TID information (index and possible servo 
sector number bits) will be detected by safety logic 416, for 
action by other parts of the drive. Such errors may be 
handled as data ID mis-compares, and recovered by forcing 
the Servo Sector counter to align with the index mark and 
repeating the operation. Finally, as will be described in 
greater detail below, an important input required for Sector 
pulse logic 421 to continuously compute data Sector loca 
tions is a Servo-modulo count. The Servo-modulo count 
allows for a reduction in the total memory required for the 
format information by taking advantage of repetitive pat 
terns in the format. 
III. Locating and Identifying Data Sectors 
Shown in FIG. 5 are the components required for sector 

computation in accordance with the present invention. In 
general, there is provided a random access memory 504 and 
a set of registers designated as 506, connected to an address 
and data bus (not shown). These may reside within servo 
electronics 212, in format table 422. Microprocessor 216 (or 
other electronics) stores information in the random access 
memory and in the registers, and then accesses this infor 
mation in order to perform sector identification and location 
computations. 

In particular, RAM 504 stores the information required to 
identify the data in each region in a given unique Segment. 
For convenience of description the information fields are 
shown organized into a table format, although any appro 
priate data structure may be substituted. RAM 504 is 
addressed by the region within the segment (equivalent to 
the servo sector number within the segment). The fields 
required for each region include DS1 Len 508, DS1Num 
510, DS1V512, NumFull 514, DS2Len 516, and DS2V518. 
DS1Num is the number, from the start of the segment, of the 
first data sector following the servo. In the preferred 
embodiment, this field contains a 7 bit value. DS1 Len is the 
length in bytes of the first data Section in the region. In the 
preferred embodiment, this field contains a 10 bit value. 
DS2Len is the length in bytes of the last data section in the 
region. In the preferred embodiment, this field contains a 10 
bit value. NumPull is the number of full (not split) data 
Sectors in the region. In the preferred embodiment, this field 
contains a 3 bit value. DS1V is a flag, which if set, indicates 
that the first data Sector is split, and therefore that the value 
DS1Len is valid. In the preferred embodiment, this field 
contains a 1 bit value. DS2V is a flag, which if set, indicates 
that the last data Sector is split, and therefore that the value 
DS2Len is valid. In the preferred embodiment, this field 
contains a 1 bit value. 

Since every Segment within a given Zone has the same 
number of bytes, for each Zone it is only necessary to Store 
format information for a single Segment. The Servo Sector 
number within the segment (equivalent to the region 
number) is used to address the format information for the 
appropriate segment. The value DS1Num is included for 
performance reasons. Sector pulse logic 421 includes a data 
Sector number counter, which starts counting data Sector 
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pulses at index. AS long as the Servo electronics remain 
active, the data Sector number counter will be correct. 
However, when a Zone Switch occurs, the data Sector number 
counter must be reset. On the other hand, it is preferable to 
avoid waiting for indeX to Start counting data Sectors, as this 
causes a latency penalty. With the DS1 Num value, the 
counter is preset at every Servo Sector, thereby avoiding 
additional latency. Further, this technique allows the disk 
drive to recover quickly from power Saving modes, where 
much of the electronicS is powered down when not perform 
ing data operations. Using the present invention, the data 
sector counter will be preset with the correct value at the first 
Servo Sector following the end of power Saving, rather than 
at indeX. 
From the definition of the sector architecture shown in 

FIG.3a, only the first and last data Sections in any given data 
region may contain partial Sectors. Therefore, only the 
lengths of these two Sections must be Stored in the table; thus 
the inclusion of DS1 Len and DS2Len. NumFull is the 
number of complete data Sectors in the data region. It is used 
to prevent the generation of false data Sector pulses prior to 
the end of a region, where the end of a data Sector may be 
close to the Start of a Servo Sector, by disabling the data 
Sector number counter once NumFull data Sector pulses have 
been generated. It is also used to control the generation of 
data Sector pulses for the data Sectors which start within the 
region. DS1V and DS2V are used to indicate the validity of 
the DS1 Len and DS2Len values. This is prompted by the 
necessity to know if the first data Section in a region is a 
primary Section So that a read or write operation initiated at 
a Servo Sector will not be started on a Secondary data Section. 
For example, in region 308 the DS1 Num value after servo 
Sector 312 is D2 for data Section 324. However, a read or 
write request for data Sector D2 must start at data Section 
322, therefore the Servo electronics must ensure that data 
Section 324 is not mis-identified as the start of data sector 
D2. Similarly, DS2V is used to indicate that the last data 
Section is split by a Servo Sector. The use of these flag Values 
is preferred for performance reasons, Since they provide for 
a direct decode. However, it is apparent that the limited 
range of values for DS1 Len and DS2Len allows for the use 
of specific values (e.g. 0) to provide the same function. 

Only the lengths of the first and last data Sections in a 
region must be Stored in the table because all other Sections 
are necessarily full length. Data-Section-split flags are 
required only for the first and last Sections Since all others 
must be complete. DS1V will be zero if the first section is 
primary (that is, not split). DS2V is likewise used to initiate 
the Split data Sector function at the end of the last Section if 
it is split. 

It is to be noted that the above-described information may 
be stored in RAM memory as shown in FIG. 5, and 
addressed by the Servo Sector number within a Segment. 
However, it is also possible to organize the information by 
data Sector number, which may in turn be used to address the 
RAM. In this case the specific fields must change, but they 
still support the functions described above. Further, any or 
all of the above information may also be stored in any other 
convenient medium, Such as in registers, flash memory, or 
any other Storage device accessible to Servo electronicS 212. 

Aside from the above-described information which is 
Stored for each region in a Segment, additional information 
is required, for each Zone, to enable the Servo processor to 
locate data Sectors which are not positioned immediately 
following a servo sector. In FIG. 5, this information is 
contained generally in registers 506, including Sync Long 
register 520, Sync Short register 522, Pad Long register 524, 
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12 
Pad Short register 526, and Data Full register 528. Registers 
520-528 are used to load the three counters in Sector Pulse 
Logic 421. All three counters (Sync counter, data counter, 
and pad counter) are down counters whose input clocks are 
the current data byte clock. Only one counter is enabled at 
a time, in a Sequence determined by the track format. 
Additional information for other operations is contained in 
in register 530, which holds the reduced numbers of data 
Sectors per track, m register 532, which holds the reduced 
number of servo sectors per track, NDS register 534, which 
holds the number of data sectors per track, and DSkew 
register 536, which holds the data sector skew value. 

Turning in particular to registers 520–528, Sync Long 
register 520 contains the number of byte clocks in VCO sync 
field 352. Sync Short register 522 contains the number of 
byte clocks in VCO Resync field 368. In the preferred 
embodiment, this field is shorter than field 352; however, if 
the fields are of equal length then only Sync Long register 
520 is required. Pad Long register 524 contains the number 
of byte clocks in Data Pad field 356 when it is followed by 
VCO Sync field 352. Pad Short register 526 contains the 
number of byte clocks in Data Pad field 356 when it is 
followed by a servo sector. The Pad Long and Pad Short 
values are different since the servo sector contains W-R and 
Speed field 342, which shares some common function with 
Data Pad 356. Data Full register 528 contains the number of 
byte clocks in Data and ECC field 354, which is the total 
number of data and ECC bytes in a data sector. 

During operation of Servo electronics 212 in cooperation 
with RAM 504 and registers 506, the sync counter is started 
following a servo Sector. Prior to this, the Sync counter is 
preloaded from Sync Long register 520 if the value of DS1V 
is 0, and from Sync Short register 522 if the value of DS1V 
is 1. Further, if DS1V is 0, data sector pulse 444 is generated 
and the data counter is preloaded with the value in Data Full 
register 528. Otherwise it is loaded with the value in 
DS1Len. When the sync counter reaches 0, the data counter 
is started. If the number of data Sector pulses generated in the 
region equals NumPull, then the pad counter is loaded with 
the value in Pad Short register 526; otherwise it is loaded 
with the value in Pad Long register 524. When the data 
Sector counter reaches 0, the pad counter is started. When the 
pad counter reaches Zero, the end of the current data Sector 
has been reached. If the number of data Sector pulses 
generated in the region equals NumPull, then a Servo Sector 
follows. Otherwise a data Sector pulse is generated, the data 
Sector number counter is incremented, and the Sync counter 
is preloaded with the value in Sync Long register 520. This 
process repeats until the region is completed, which is 
determined by the generation of NumFull data sector pulses. 
When the number of data Sector pulses generated in the 
region equals NumFull and DS2V is 1, then the data counter 
is preloaded with the value in DS2Len instead of with the 
value in Data Full register 528. 

Three counters are used instead of one due to the types of 
fields being counted, to limit the number of tap points on a 
Single counter, and to allow for each counter to be preloaded 
while another counter is running. It is to be noted that while 
a particular preferred counter arrangement has been 
disclosed, the above function can be implemented using 
many alternative counter and register arrangements whose 
result would remain within the Spirit and Scope of the present 
invention. 

Using the above information, Servo electronicS 212 is able 
to locate the Start of any data Sector in a Segment. Further, 
the Sector number from indeX for a given data Section may 
be determined using the equation: 
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where SN i is the data sector number from index (zero 
based) for the i-th data sector in the segment, and SGN is the 
Segment number from index (Zero based). 

During operation of disk drive 202, read and write opera 
tions are received which require recording head 208 to be 
repositioned over various tracks and then to read or write 
various data Sectors. Once recording head 208 is positioned 
over the appropriate track, the above equation is used to 
determine when the appropriate data Sector is passing under 
the head. In particular, the equation is used to compute a 
current data Sector number which is continuously compared 
with the data Sector number requested for the read or write 
operation. If the values compare, the desired operation is 
performed. Since there are no ID fields, the data section 
lengths computed based on the data values described above 
identify the location of data in particular Segments and 
regions. 

In the preferred embodiment, various ones of the above 
described information fields are maintained in various Stor 
age areas in order to improve operational performance. For 
instance, the information for the current Zone may be 
maintained in dedicated local Storage analogous to registers 
520-536 in order to avoid bus arbitration. The values may be 
reloaded from general storage such as RAM 217 after each 
Zone Switch. The disk format determines the amount of 
Storage required to hold the values for a particular imple 
mentation. Since known implementations require 32 or 
fewer regions per Zone, the local Storage requirements for 
the Zone tables are 30 bits per region or 256 bytes per Zone, 
including allowance for ECC. Thus, in the preferred 
embodiment, high performance may be achieved without 
incurring a Storage acceSS penalty. 
IV. Servo-Modulo Counter 

In order to use the above-described sector identification/ 
location Schema effectively, the System of the present inven 
tion must be able to determine both a Segment number and 
a Servo Sector number within the Segment prior to perform 
ing a read or write operation. To avoid the latency penalty 
created by waiting for an index mark as a basis to compute 
the above information, Servo-modulo counter electronics are 
provided to generate this information continuously, even 
after a head or Zone Switch. In the preferred embodiment, 
this is achieved using a hardware circuit whose inputs are m, 
n, servo (servo sector number) and DS1Num. 
The purpose of the Servo-modulo counter is to produce 

the quantities servo mod n and mx(servo /n). The former is 
the remainder of servo/n, the number of servo sector n from 
the Start of the Segment, which is used as the address for 
RAM-based Zone table 504 described previously. The latter 
is the data Sector number of the first data Sector in the 
Segment, hereinafter referred to as DSB, the data Sector base 
number, which is also the first term in equation (2). FIG. 6 
illustrates in flowchart form the operations required to 
perform these computations. At 602 the remainder value is 
initialized to the servo count. At 604, the quantity DSB is 
initialized to zero. At 606, a loop is entered which computes 
the value of Servo mod n (remainder) by repeated Subtrac 
tion until an overflow occurs. In particular, at 606 temp, a 
temporary variable, is assigned the value of remainder -n (of 
servo/n-n). At 608, the underflow test is performed (temp 
<0). If an underflow is detected, the process is exited at 610. 
If no underflow is detected, the processing continues at 612, 
where the quantity m is added to DSB. Finally, at 614 the 
remainder is set equal to temp (the remainder minus n), and 
processing returns to 606. At exit point 610, both DSB 
(mx(servo/n)) and the remainder (servo mod n) have been 
computed. 
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14 
Shown in FIG. 7 is a schematic diagram illustrating an 

electronic circuit in accordance with the preferred embodi 
ment of the present invention. The circuit computes the 
values of mix(servo/n) and servo mod n in accordance with 
the process shown in the flowchart of FIG. 6 and described 
above. AS in the flowchart, Servo mod n is computed by 
repeated Subtraction which is halted by an underflow opera 
tion. The circuit includes control logic 702, subtracter 704, 
adder 706, registers 708 and 710, MUX 712, adder 714 and 
data sector number counter 716. In operation of the servo 
modulo counter circuit, control logic 702 receives Start 
Signal 720 to begin a computation, and produces done signal 
744 when complete. Register 708 stores the result of the 
repetitive Subtractions and at the end of computations con 
tains the correct value of servo mod n (the remainder). 
Subtracter 704 receives input 738 from register 708 and 
input 726 (the value n) from register 530 (shown and 
discussed previously with reference to FIG. 5). The input to 
register 708 is from MUX 712. The MUX allows either the 
numerator, servo 728, or the results of the previous subtrac 
tion to load register 708. The registerload signal (not shown) 
comes from control logic 702, and is asserted once per 
Subtraction operation. Underflow signal 742 is passed to 
control logic 702. If an underflow is detected, the register 
load Signal is stopped, and the remainder value will be stable 
on 740. Control logic 702 also controls the output from 
MUX 712 to register 708 via select line 732. MUX 712 is 
configured Such that the first Subtraction uses current Servo 
count 728 while subsequent subtractions use the intermedi 
ate results. Further, register 708 is located prior to subtracter 
704 so that it contains the results of the prior subtraction 
when the loop exits, Since the exit condition is an underflow. 

The value of mx(servo/n) is computed by repeated addi 
tion of the quantity Servo mod m for each Subtraction 
operation performed in the modulo block. Adder 706 adds 
input 730 (the value m) from register 532 (shown and 
discussed previously with reference to FIG. 5) and the result 
of the previous addition 746. The intermediate values of the 
addition 748 are stored in register 710 at the output of adder 
706. The register load signal (not shown) comes from 
control logic 702, and is asserted once per addition opera 
tion. Control logic 702 synchronizes the addition and Sub 
traction operations through the register load Signals, thereby 
eliminating the need for a separate multiplier or an accu 
mulator to compute DSB (mx(servo/n)). When the opera 
tion is complete, DSB value 746 produced by the circuit may 
be used in accordance with equation 2 to generate the current 
data sector number. Specifically, result DSB 746 is passed to 
adder 714, along with DS1 Num 754, addressed by remain 
der 740. These values are added and output at 750 as the data 
Sector number from index of the first data sector in the 
segment. Data sector number counter 716 is preloaded with 
adder value 750 upon receipt of a load signal from the 
control logic (not shown). Data sector number counter 716 
increments upon receiving data Sector pulses 756, and 
outputs the current sector number at 752. 
To avoid a latency penalty which would otherwise be 

created upon head or track Switches due to the time required 
to Settle on the new track, it is well known in the art to use 
cylinder and head skewing between disk Surfaces and tracks 
of a data recording disk drive. 

In accordance with the present invention, a technique is 
provided for implementing this skewing by adjusting the 
value in data sector counter 716 to account for the skew. The 
raw (unskewed) current data sector number 752 is adjusted 
by subtracting the value in Dskew Register 536 from the 
current data sector number 752. This subtraction is per 
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formed modulo the value in NDS Register 534. The result is 
the current Skewed data Sector number which may be 
provided as input 442 to Data Sector Identifier 454. Finally, 
it should be noted that while this skewing technique has been 
described with reference to data Sectors, it may also be used 
equally effectively to implement skewing on the basis of 
Servo Sector number in a manner analogous to that described 
above. 
V. Staggered Sector Servo 
The use of a hardware-based servo modulo counter in 

accordance with the preferred embodiment insures that no 
latency is added for head or Zone Switches. For a Zone 
Switch, the Servo Sector counter maintains count of the Servo 
location. Once Servo and data modulo Values of m and n are 
changed, the Section length and data Sector number will be 
correct. Similarly, for a head Switch, once the Servo count is 
correct, the remaining values follow. 

For a disk drive which implements a Staggered Sector 
Servo approach, the Servo counter value must be set properly 
following a head Switch in order to account for the Stagger 
ing. FIG. 8 illustrates, in cross-sectional view, a Staggered 
Sector Servo disk drive. The disk drive is generally desig 
nated 802, and includes spindle 804 and disks 806, 808 and 
810. The locations of the servo sectors are shown Schemati 
cally as black rectangles in two groups 820 and 822. The 
Servo Sectors are not vertically aligned, rather they are 
arranged diagonally to permit the Servo writing of all 
Surfaces of the disk drive in a Single pass write per track. 
After using one head to write a Servo Sector on one Surface, 
the next head (on the next Surface) is activated and a servo 
Sector is written there, allowing multiple Surfaces to be 
written in one revolution, decreasing the Servo write time 
and cost. 
To write a Staggered Sector Servo pattern in accordance 

with the present invention, the Servo Sector counter must be 
Synchronized with the Servo Sector numbers on the Surface 
being Switched to. This function may be accomplished by 
writing a Subset of the servo Sector number (possibly the 
entire sector number) into the TID information in position 
field 346. Alternatively, servo sector counter 414 may be 
updated based on a lookup table containing the Stagger 
offsets. In the former case, the Servo Sector number read 
from the servo sector is decoded by AM detector 412 and 
passed to safety logic 416. Safety logic 416 uses this value 
to update Servo Sector counter 414. 

For example, the entire Servo Sector number may be 
encoded in the TID. Following a head switch, safety logic 
416 uses the read value to preload servo sector counter 414, 
ensuring Synchronization. In the lookup table case, a table of 
offsets is kept which is used to increment or decrement the 
value in Servo Sector counter 414. An exemplary table is 
shown at 840. The table comprises 3 columns, head shift 
842, servo sector counter offset 844 and servo timing 
adjustment 846. Upon commencement of a head Switch, the 
head shift value (plus being down, minus being up) is used 
to look up the Servo counter offset and timing adjustment. 
Offset values 844 are used to increment or decrement servo 
Sector counter 414. Timing adjustment values are used by 
timing logic 420 to adjust for the new servo Sector positions. 
For convenience, the values in column 846 are listed as 
fractions of the Servo-to-Servo Spacing. Thus, for example, if 
the current head is on the lower Surface of disk 806, and a 
head switch to the upper surface of disk 810 is desired, the 
head Switch value would be +3. From lookup table 840 the 
Servo Sector count increment would be 0, and the Servo 
Sector timing adjustment would be /2 of the Servo-to-Servo 
spacing. The table construct shown in FIG. 8 also allows for 
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more general offsets, Such as skewing the indeX from Surface 
to Surface. This would result in a unique value for each head 
shift value. Further, the table may be used in conjunction 
with encoding the servo sector number in the TID to add a 
further degree of reliability to the system. Of course, this 
table may be stored in RAM or any other appropriate 
medium. 
VI. Converting from LBA to ZCHS 
AS discussed previously, in order to find a requested data 

Sector on a disk a received logical blockaddress (LBA) must 
be converted into a Zone, cylinder, head, sector (ZCHS) 
value. In general, this involves first converting the LBA, 
which is the user identifier for the data Sector, into a physical 
blockaddress (PBA) which is a mapping of the LBA into the 
physical space of the disk drive. The aforementioned Hetzler 
application (07/727,680) teaches the use of a defect map and 
a basic process for performing the LBA to PBA mapping. 
However, since the LBAS for neighboring defects share 
most of their high order bits, much of the information stored 
in the defect map is redundant, Serving only to hamper 
performance and unnecessarily occupy RAM. The present 
invention includes a particular map which removes the high 
order bits of each LBA to minimize the bits required in 
representing each defect. The map takes account of skip 
SectorS allocated on the disk, either due to defects or sparing, 
with use of a minimum amount of RAM and in a fashion that 
increases the performance of the disk drive. 
The map is implemented as a pair of tables known as a 

virtual track (VT) table-which contains entries represent 
ing the mostly redundant high order bits of the LBA and 
a virtual sector (VS) table-which contains entries repre 
senting only the low order bits of the LBA-. The output of 
the VT/VS table access, the PBA, is then located in a Zone 
conversion table in order to develop coefficients for use in 
computing the cylinder, head, and Sector at which to perform 
the desired operation on the requested data Sector. Thus, two 
conversions are used, the first of which removes Skip Sectors 
and the second of which provides the appropriate ZCHS 
value. The invention reduces the Storage required for con 
version to either two or one bytes per entry plus an offset 
based on the drive capacity and choice of one or two byte 
entry. The invention further reduces the magnitude of the 
Search required to locate an LBA and thus the performance 
impact of the Searching process. 
Shown in FIG. 9 is the LBA to PBA mapping architecture 

which forms the basis for the LBA to PBA portion of the 
conversion process. In particular, the figure shows the LBA 
represented in binary form at 904, virtual track table 906, 
virtual sector table 908, and defect spare table 910. As 
shown at 904, the LBA as received from the disk drive 
interface is first subdivided into two sections. The full length 
of the LBA in bits, shown as A, includes the number of bits 
in the high order portion required to hold the Virtual track 
number, designated as B, as well as the number of bits 
required to hold the Virtual Sector number, designated as C. 
A virtual track is defined as a contiguous Set of data 

sectors which have exactly 2 good data sectors. A virtual 
track may contain both good Sectors and Skip Sectors or 
alternatively it may contain only good Sectors. All virtual 
tracks are contiguous with one another Starting from a 
defined virtual track of Zero at the beginning of the disk 
drive and running through the entire disk drive. Sub Spaces 
of the disk drive may also be mapped separately in the same 
manner. The virtual track number may be obtained from the 
LBA either by simply tapping the high order bits of the LBA 
or by logically shifting the LBA to the right by the quantity 
A-B shifts. A virtual Sector is defined as a good Sector 
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contained within a virtual track. There are 2 different 
virtual sector numbers available. Thus, all virtual sectors 
within a virtual track are numbered consecutively Starting at 
the first good Sector in the track and ending at the last Sector 
in the track. 

Given a Subdivision of an LBA into a virtual track number 
and a virtual Sector number, the virtual track number is 
referenced into virtual track table 906 in order to obtain an 
index point into virtual sector table 908. The index point is 
used as a starting point in VS table 908 at which a sequential 
Search is commenced, which Search continues until a virtual 
sector number which is higher than the searched-for virtual 
Sector number is located in virtual sector table 908 or the 
index exceeds the entry for the next virtual track. Once the 
appropriate entry is found, the PBA is computed as the 
received LBA plus an index into VS table 908 corresponding 
to the final Search entry. 
VT table 906 contains an entry corresponding to every 

virtual track in the disk drive. Each entry is at least B bits 
wide and contains a pointer into VS table 908. The arrange 
ment of the table thus gives each entry two meanings. First, 
the entry value identifies the total number of skip data 
Sectors prior to the virtual track represented by the entry. 
Second, this Same value represents the correct entry point 
into the virtual Sector table at which the Skip Sectors are 
listed for the virtual track number represented by the entry. 
In operation, VT table 906 is entered by indexing into it 
according to the value of B, the virtual track number, 
obtained from entry 904. The value found at the determined 
index point is then added to the start of VS table 908 to 
locate the first skip Sector associated with the applicable 
Virtual track. 

Unlike VT table 906, VS table 908 does not contain an 
entry for every virtual Sector on the disk drive. In contrast, 
VS table 908 need only contain entries for skip sectors 
(defective Sectors and/or spare first Sectors). Each entry in 
VS table 908 corresponds to the good virtual sector follow 
ing skip sector. As discussed above, VS table 908 is entered 
at the index value established through use of VT table 906. 
Starting at that index value, a Sequential Search is conducted 
against the value of the C bits received from the low order 
of LBA value 904 until a virtual sector number is located 
which is greater than the value obtained from the low order 
C bits of 904. This greater-than virtual sector number 
establishes the number of Skips which must be passed in 
order to arrive at the correct virtual sector number. An offset 
value which is equal to the offset into virtual sector table 908 
of the first entry which is greater than the Sought-after virtual 
Sector number is added to the LBA to arrive at the PBAvalue 
unless the next virtual track Starts where the indeX is, in 
which case this offset/index is added to the PBA value. 
DS table 910 contains an entry for each entry in VS table 

908. The purpose of DS table 910 is to distinguish the virtual 
sector entries in VS table 908 as either corresponding to 
defective data Sectors, also known as bad blocks, or to Spare 
data Sectors, also known as Spare blockS. In the preferred 
embodiment, DS table 910 comprises a single bit entry 
corresponding to each entry of VS table 908, wherein the 
polarity of the bit in each entry is used to distinguish 
between bad blocks and spare blocks. It is to be noted that 
an advantage of DS table 910 is that this table does not need 
to be resident in RAM Storage except during reassignment 
operations. Reassignment operations occur when grown 
defects develop during use of the disk drive, at which time 
Spare Sectors are reassigned as active Sectors, and the 
defective active Sectors are reassigned as Skip Sectors. Part 
of the reassignment operation involves changing bit values 
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in DS table 910, in addition to various values in VT table 906 
and VS table 908. Of course, in order to change values in DS 
table 910, this table must be resident in RAM accessible to 
the microprocessor. At all other times, DS table 910 need not 
be resident or readily accessible to the disk drive electronics, 
because there is no requirement that the electronics deter 
mine whether a sector identified in VS table 908 is bad or 
Spare; rather it is only necessary for the electronics to 
determine that the Sector is a skip Sector. 
Shown in FIG. 10 is a flowchart illustrating the LBA to 

PBA conversion computations. The conversion computa 
tions perform three basic functions. First, they set the 
bounds on the search to be conducted through VS table 908. 
This is accomplished by examining the Virtual track number 
entry identified in the LBA along with the Succeeding virtual 
track number entry in VT table 906 to establish starting and 
ending offsets in the Virtual Sector table. Second, once the 
bounds of the Search are Set, the conversion proceSS Sequen 
tially searches through VS numbers in the VS table until its 
position in the table corresponds to the Starting point of the 
next virtual track (that is, the upperbound of the Search) or 
a VS table entry greater than the C bits is found. Third, as 
a criterion of the Search, each virtual Sector number in Virtual 
sector table 908 must be greater than or equal to its prede 
ceSSor unless a virtual track boundary is crossed, at which 
point Searching is ended. 
With particular reference to FIG. 10, the variable D is 

taken to represent the quantity A-B, where A is equal to the 
number of bits in the LBA while B is equal to the number 
of bits in the virtual track number. Thus, D corresponds to 
the number of right-hand shifts of the LBA required to 
obtain the virtual track number. The variable E represents 
the quantity 2-1, where c is equal to the number of bits in 
the virtual sector number. Thus, E simply provides an AND 
mask for use in determining the Virtual Sector number. It is 
to be noted that the values of D and E are established 
according to System parameters. For instance, Since most 
modern microprocessors handle bits in multiples of 8, it may 
be desirable to establish D and E So that all values are 
provided in multiples of 8 bits. Finally, p refers to the present 
offset in the virtual sector table. 
The flow chart of FIG. 10 is entered at 1004, where VTN 

is set equal to the LBA shifted right by a quantity of D bits. 
Next, at 1006, the virtual sector number is set equal to the 
LBA anded with E. Thus, at this point the logical block 
address has been Separated into its virtual track number and 
virtual sector number components. Next, at step 1008, the 
present offset into the Virtual Sector table is Set equal to the 
value found in the virtual track table at the virtual track 
number offset. This establishes a starting point for further 
searching in the virtual sector table. Next, at step 1010, the 
value of E is set to the next virtual track number (the upper 
bound of the search to be executed on the virtual sector 
table). 
At 1012, a loop is entered in which a test is performed to 

determine whether the end of the virtual track has been 
reached. It is to be noted that if this case occurs on the first 
iteration through the loop, the result would indicate that the 
present track contains no defective Sectors. If the end of the 
track has not been reached, at 1014 a Second test is per 
formed in which it is determined whether the virtual sector 
being Searched for Still exceeds the virtual Sector entry being 
tested in the virtual sector table. If the result of the test is 
positive, this indicates that the Sought after indeX has not yet 
been located. In this case step 1016 is executed to increment 
the present offset into the virtual sector table to the next 
virtual sector table entry. After this, control is returned to the 
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beginning of the loop at 1012. If the result of the virtual 
Sector number comparison conducted at Step 1014 is 
negative, this indicates that the Sought-after virtual Sector 
index has been located in the virtual sector table. The effect 
on the flow control is the same as if the end of the track is 
detected at step 1012, and results in entry to step 1018. At 
1018, the search is finalized by setting the PBA equal to the 
LBA added to the value of the present offset in the virtual 
sector table. Finally, the process is exited at 1020. 
An important advantage is achieved through the use of 

overlap between certain portions of the Virtual track number 
and the virtual sector number. This overlap feature can be 
seen in the definition of the LBA shown at element 904 in 
FIG. 9 with reference to the B bits and C bits defining the 
Virtual track number and the virtual Sector number, respec 
tively. When Such an overlap is present, a portion of the 
Virtual Sector number corresponds to the least Significant bits 
of the virtual track number. This overlap is intentionally 
provided in order to improve the mapping efficiency from 
the LBA to the PBA. The overlapping bits between the 
Virtual track number and the virtual Sector number give the 
Virtual Sectors the ability to distinguish between adjacent 
and nearby virtual tracks without having to refer back to the 
virtual track table. The amount of overlap between the 
virtual track number and the virtual sector number estab 
lishes the quantity of virtual tracks that may be distinguished 
from one another using a single virtual Sector number. Since 
the entries in the Virtual Sector table occur in increasing 
numerical order, So long as there is at least one skip Sector 
represented in the virtual Sector table within the quantity of 
Virtual tracks that can be distinguished using a single virtual 
Sector number, the virtual Sector table alone can be used to 
detect all changes in the virtual track number and indeed can 
be further used to count the virtual track number associated 
with the various entries in the virtual sector table. Thus, the 
Search through the virtual Sector table may be performed 
without having to revisit the Virtual track table each time a 
Virtual track boundary is crossed. 
A Second advantage of encoding Some of the least Sig 

nificant bits of the virtual track numbers into the virtual 
Sector numbers becomes apparent when computing absolute 
distances between Skips acroSS track boundaries. For two 
skips which are separated by one or more track crossings, So 
long as the distance between them is within the resolution of 
the overlap bits provided in the virtual sector, the virtual 
Sector value for one skip Sector can be Subtracted from the 
other to establish an absolute number of sectors between the 
skips. Thus, absolute distance computations may be per 
formed acroSS track boundaries also without reference to the 
virtual track table. 

Once the physical block address has been computed, a 
second conversion takes place in which the PBA is further 
converted to Zone, cylinder, head, and Sector location. FIG. 
11 illustrates the Zone conversion Storage components 
required to initiate the conversion proceSS in a Zone bit 
recording disk drive. The table is generally designated as 
1104 and is preferably stored in RAM, but may alternatively 
be stored on any other convenient media. Zone table 1104 
includes three columns, Zone PBA column 1110, Zone cyl 
inder column 1112, and Zone sector column 1113. Zone table 
1104 includes an entry for each Zone in the disk drive. The 
first column of each entry, Zone PBA 1110, identifies the 
starting PBA of that Zone, and is used to determine which 
Zone a desired PBA is located in. Thus, the top entry in the 
table would identify the first PBA in Zone 1 of the disk drive, 
etc. The sought-after PBA number is compared with each 
Zone PBA entry until the Zone containing the PBA is located. 
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The corresponding entries in Zone cylinder column 1112 and 
Zone sector column 1113 are then used to perform the 
conversion computations which will be described below. 

FIG. 12 illustrates in flowchart form the steps which are 
preformed, once the Zone conversion Storage components 
have been located, to convert from PBA to ZCHS. At step 
1204, the Zone table is searched for the sought-after PBA 
number to retrieve the Zone PBA, Zone cylinder, and Zone 
sector entries as described with reference to FIG. 11. At step 
1206, Zone PBA is Subtracted from PBA to determine how 
many physical blocks (Sectors) into the Zone the desired 
PBA resides. APBA offset into the Zone is returned from this 
operation. At 1208, the PBA offset is divided by the number 
of Sectors per track. The mod, or remainder of this operation 
is designated as the Starting Sector number of the data 
transfer. At step 1210, the quotient of the same division 
process is taken as the track offset from the Start of the Zone 
at which the data transfer is to begin. At 1212, the absolute 
cylinder number which starts the data transfer is computed 
by dividing the track offset by the number of heads in the 
disk drive to produce a cylinder offset which is then added 
to the starting cylinder of the Zone. Finally, at 1214 the 
remainder, or mod of the same division provided in 1212 is 
taken as the Selected head for the Start of the data transfer. 
At this point the process exits at 1216, having computed the 
Zone, cylinder, head, and Sector at which to begin the data 
transfer. 
One beneficial result of decoupling the LBA to ZCHS 

conversion proceSS into two stages is a two step mapping 
process which Significantly reduces the number of Spares 
that must be allocated across the disk drive to handle grown 
defects occurring in the field. The two step LBA to ZCHS 
process in turn allows the allocation of Skip Sectors to be 
broken into a two step process. First, Surface analysis testing 
(SAT) is performed across the entire disk drive to determine 
the factory defect locations before the disk drive is shipped 
from the factory. The defect locations are mapped into a 
Virtual Sector table by inserting Skip Sectors in numerical 
order. Also, a virtual track table is created and updated as 
required by incrementing each virtual track entry following 
that track in which the error is detected. Second, after SAT 
is complete, Spare locations are sprinkled evenly acroSS the 
disk at distances consistent with the probability of a grown 
defect. It is to be noted that the probability of a grown defect, 
and thus the density of Spares, may vary as a function of 
position on the disk. The result is that sparing is reduced to 
minimal levels. 

Given the above Scheme for sparing, two alternative 
embodiments for reassignment of Sectors are presented. 
Both reassignment techniques are intended to map a Spare 
Sector into the logical address Space of the disk drive as well 
as to map the defective Sector into the Virtual Sector table 
and, if necessary, the virtual track table, in order to establish 
the defective Sector as a skip Sector. 

For either technique the re-assignment proceSS begins by 
identifying the closest available spare Sector (to be used as 
the reassignment Sector). This involves accessing the DS 
table and searching both forward and backward from the 
entry closest to the defect until a spare entry is found. The 
locations of the forward and backward entries are Subtracted 
from the defect location, and the lowest absolute value result 
is used to Select the re-assigned Sector. Once the 
re-assignment Sector has been identified, one of the two 
re-assignment techniques is applied. 

Turning to the first, the original tables are left unmodified, 
and a separate list of re-assigned SectorS is maintained. This 
Separate list contains Sectors chosen from the Sprinkle list 
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which have been used as re-assigned Sectors. The list is in 
the form of a map which includes a first column representing 
grown defective ZCHS Values and a Second corresponding 
column representing new ZCHS values. The list itself may 
be organized either by LBA number or ZCHS number. If it 
is organized by LBA number, it is checked before translation 
from LBA to PBA. In this case, the list entries are interpreted 
to indicate which LBAS are mapped out and what new LBAS 
they are mapped to. If the list is organized according to 
ZCHS values, then it is referenced after translation from 
LBA to PBA and from PBA to ZCHS, and its entries are 
interpreted to indicate which ZCHS values are mapped out 
and what new ZCHSs they are mapped to. In any event, 
when the defective reassigned Sector is encountered during 
a data transfer operation, a Second Seek is executed to the 
assigned spare location and the data is read or written there. 
However, as discussed above, Since the Spares are Sprinkled 
throughout the disk drive and the drive has selected for use 
the Sprinkled spare nearest the defective re-assigned Sector, 
the length of the Seek is minimized and performance is 
thereby improved. 

The Second re-assignment technique effectively replaces 
the grown defective spare with the Selected re-assign spare 
in the virtual track and virtual sector tables. The virtual 
Sector table is modified by inserting a new Skip Sector at the 
grown defect and then shifting all values between the grown 
defect and the reassigned Sector. If the closest Spare is acroSS 
a track boundary from the defect, the virtual track table is 
also updated to indicate the pointer changes. Thus, by Simply 
shifting LBAS in the virtual sector table between the defect 
and the reassigned Sector, the Spare takes the logical place of 
the defect and no performance degradation is experienced 
thereafter. 

It is to be noted that the Skip Sector conversion Schema has 
the additional advantageous property of operating in the 
presence of skewing without further modification. Where 
skewing is in effect, prior computations which compute 
Sector number are considered to be with reference to 
unskewed Sectors. Conversion to skewed Sector then occurs 
outside the conversion process, as was described previously. 
One modification to the above-presented embodiment, 

which may be useful in cases where simplified mapping is 
desired, is to use a single table conversion proceSS which 
maps directly from LBA to ZCHS. The table entries still 
require three or four bytes as in the prior art, however the 
new table construction is based on LBAS adjusted by table 
location. Thus, the table contains LBAS which directly 
follow a given skip. The advantage of this approach is that 
the table look-up process requires only a simple Single level 
Search, either Sequential or binary. The RAM requirement is 
fairly Small So long as the number of Skips in the System is 
kept Small. However, for large modern disk drives the 
Storage requirement expands rapidly as the number of 
defects increases, thereby overwhelming the utility of this 
approach. 

It is also to be noted that the Skip Sector mapping 
technique disclosed in this Section is useful beyond the 
realm of no-ID disk drives. In fact, this technique is con 
sidered applicable to any disk drive in which benefit may be 
obtained from knowing conclusively at the beginning of 
every Seek operation exactly what the final target Zone, 
cylinder, head, and Sector are. Thus, in all disk drives, 
including those using ID fields and those using no ID 
information, the disclosed LBA to ZCHS mapping avoids 
the requirement to Slip heads in order to handle Spares and 
defects. Moreover, the System leads to easy implementation 
of just-in-time Seek profiles, where knowledge of the exact 
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Seek destination is used to plan the Seek trajectory So that the 
head Settles on track just before the desired Sector arrives at 
the head. Finally, the system allows for implementation of 
Seek reordering including latency minimization, Since the 
exact seek destination is known before Seeking. 
Most importantly, it should be noted that while the above 

description has focussed on partitioning the LBA into two 
portions, the concept may easily be extended to three or 
more partitions. For example, a virtual cylinder partition 
may be added which contains neighboring virtual tracks. 
This becomes advantageous as the number of Virtual tracks 
becomes large, Since it reduces the amount of Storage 
required for the virtual track table. Thus, in general the 
mapping Schema presented above should be taken to encom 
pass n-level hierarchical Storage of Skip Sectors. 
VII. Conclusion 
A further advantage of the preferred embodiment hard 

ware design lies in its built-in power management features. 
Since the Servo-modulo count block actually computes the 
modulos, the System requires only a Single Servo Sector time 
for initialization. The field length counters in Sector pulse 
logic 421 must operate only during read and write modes, 
and may be powered down otherwise. Thus, in a low power 
implementation of the present invention, much of Servo 
electronics 212 and formatter electronics 215 is powered 
down between read and write operations. Typically, timing 
logic 420 is active during this time, and generates Signals to 
activate AM detector 412 and other electronics at each servo 
Sector. Since the Servo Sector counter is active, a read or 
write operation may commence following the next Servo 
Sector. If even greater power Savings is desired, an additional 
Stage may be added in which the Servo Sector counter and 
asSociated electronics are powered down. In this mode, the 
system must wait for an index to initialize itself if the full 
servo sector number is not encoded within the TID. If it is 
encoded, the System need only wait for the next servo Sector. 
While the invention has been described with reference to 

data Sectors which are shorter than the data regions Sepa 
rating Servo Sectors, it is to be noted that the invention is 
equally applicable to the opposite case-that is, a Sector Size 
or Servo Spacing Selected Such that the data Sector length 
exceeds the data region length. This may occur in an 
implementation which uses closely-spaced Servo Sectors for 
performance or other reasons. It may also occur where the 
data Sector Size is chosen to be relatively large for use in 
applications dealing with long blocks of information, Such 
as multimedia presentations and Scientific data. The result of 
the data Sector Size exceeding the data region size is that a 
Single data Sector may span two or more Servo Sectors. This 
is handled Seemlessly according to the invention as dis 
closed above by Simply programming the register and RAM 
values accordingly. 

While the preferred embodiment hardware design uses a 
Servo modulo counter to reduce memory requirements, it is 
apparent that the Segment information may be expanded to 
Store the information for an entire track. In this case, there 
is no need for the servo modulo counter, since RAM 504 will 
be addressed directly by Servo Sector number. Such a design 
uses more RAM than the preferred embodiment, but will 
have simplified hardware. The choice of designs depends on 
factorS Such as circuit cost for the two implementations. 
Further, the data in RAM 504 may be organized to allow 
addressing by values other than the Servo Sector number. 
Specifically, the data Sector number may be used to address 
the table. 

Further, it is to be noted that in Some implementations it 
may be judged beneficial for error handling purposes to 
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include some portion of the LBA in each data sector. This 
allows for LBA verification during read operations, but is of 
no use during write operations Since the Sought-after Sector 
is being overwritten rather than read. Accordingly, LBA 
encoding in data SectorS is not to be considered as analogous 
to ID information encoding in data Sectors. Moreover, it is 
intended that the removal or exclusion of ID information as 
discussed above encompasses an implementation which 
removes the ID from data sectors information, but includes 
the LBA. 

It is also apparent that the locations of the various 
functions shown in the electronicS may be altered, and that 
Software may be substituted for some of the hardware shown 
without departing from the Spirit and Scope of the invention. 
It is further apparent that while the preferred embodiment 
has been described in the context of a Zone recording format, 
the invention may be applied to other complex formats 
where the number of data Sectors on a track is not equal to 
the number of Servo Sectors on a track, So long as the format 
details are known to the disk drive. Moreover, the terms 
register and RAM should be viewed as interchangeable, and 
the Specific locations of the registers and RAM as unimpor 
tant. For example, registers 506 and RAM 504 may be 
located within RAM 217 instead of format table 422. 
Finally, it should be noted that while the values and tables 
described above are Stored in RAM and registers during 
operation of the disk drive, they must be stored in non 
Volatile Storage when the drive is not operating. Any non 
Volatile Storage may be used, but it is preferred to Store the 
information on the disk drive itself. The use of modifiable 
Storage (i.e., the disk drive) allows for the disk drive to alter 
its own format without need for external intervention. 

While the invention has been particularly described and 
illustrated with reference to a preferred embodiment, it will 
be understood by those skilled in the art that changes in the 
description and illustrations may be made with respect to 
form and detail without departing from the Spirit and Scope 
of the invention. Accordingly, the present invention is to be 
considered as encompassing all modifications and variations 
coming within the Scope defined by the following claims. 
We claim: 
1. In a disk drive having a data recording disk with 

radially Spaced tracks and circumferentially spaced Sectors 
and a head capable of reading information from the data 
recording disk, a method for converting a logical address to 
a physical address, comprising the Steps of: 

receiving a requested logical address, 
Selecting a first Subset of bits from the logical address, 
referencing the first Subset of bits into a first sector 
mapping table to Select a first indeX value; 

referencing the first index value into a Second Sector 
mapping table to Select a Search Start location; 

Selecting a Second Subset of bits from the logical address, 
Searching the Second Sector mapping table, Starting at the 

Search Start location, until a table entry value greater 
than or equal to the value of the second subset of bits 
is found; 

upon completion of the Search, determining a Second 
index value associated with the found table entry value 
wherein the Second index value represents an offset 
from a physical location on the disk, and 

combining the Second index value with the logical address 
to obtain the physical address. 

2. The method as recited in claim 1, wherein the first 
Subset of bits is selected from a high order portion of the 
logical address. 
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3. The method as recited in claim 2, wherein the second 

Subset of bits is selected from a low order portion of the 
logical address. 

4. The method as recited in claim 1, wherein the entries 
in the Second Sector mapping table represent any of defec 
tive Sectors and Spare Sectors. 

5. In a disk drive having a data recording disk with 
radially Spaced tracks and circumferentially Spaced Sectors, 
a hierarchical Sector map for mapping out Skip Sectors, the 
hierarchical Sector map having entries arranged in groups 
according to shared logical address bits, wherein an index 
value associated with each entry represents an offset from a 
physical location on Said disk, the groups having at least 
Some of the shared bits omitted from the entries, wherein the 
groups are indexed from a higher level in the hierarchy 
according to at least Some of the shared logical address bits, 
wherein a high order portion of a logical address Specified in 
a data request received by the disk drive is used to Select an 
entry in the higher level of the hierarchy, wherein a low 
order portion of the Specified logical address is used to 
search within the lower level of the hierarchy, wherein the 
low order portion of the Specified logical address overlaps 
the high order portion of the logical address. 

6. In a disk drive having a data recording disk with 
radially Spaced tracks and circumferentially Spaced Sectors, 
a System for mapping logical block addresses around skip 
Sectors, the logical block addresses having logical address 
bits, comprising: 

a first Sector mapping table having entries grouped 
according to track identifiers associated with the 
entries, each entry corresponding to a skip Sector and 
being associated with an indeX representing an offset 
from a physical location on the disk, the entries includ 
ing a first subset of the logical address bits; and 

a Second Sector mapping table having entries arranged 
Sequentially according to a Second Subset of the logical 
address bits, each entry comprising an indeX into the 
first Sector mapping table, wherein a high order portion 
of a logical address Specified in a data request received 
by the disk drive is used to Select an entry in the Second 
Sector mapping table, wherein a low order portion of 
the Specified logical address is used to Search within an 
indexed group of entries in the first Sector mapping 
table, wherein the low order portion of the specified 
logical address overlaps the high order portion of the 
Specified logical address. 

7. In a disk drive having a data recording disk with 
radially spaced tracks and circumferentially spaced Sectors 
and a head capable of reading information from the data 
recording disk, a method for converting a logical address to 
a physical address, comprising the Steps of: 

receiving a requested logical address, 
Selecting a first Subset of bits from the logical address, 

wherein the first Subset of bits is selected from a high 
order portion of the logical address, 

referencing the first subset of bits into a first sector 
mapping table to Select a first indeX value; 

referencing the first indeX value into a Second Sector 
mapping table to Select a Search Start location; 

Selecting a Second Subset of bits from the logical address, 
wherein the second Subset of bits is selected from a low 
order portion of the logical address and the first Subset 
of bits overlaps the second Subset of bits; 

Searching the Second Sector mapping table, Starting at the 
Search Start location, until a table entry value greater 
than or equal to the value of the second subset of bits 
is found; 
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upon completion of the Search, determining a Second combining the Second index value with the logical address 
index value associated with the found table entry value to obtain the physical address. 
wherein the Second index value represents an offset 
from a physical location on the disk, and k . . . . 


