
USOO.5937435A

United States Patent (19) 11 Patent Number: 5,937,435
Dobbek et al. (45) Date of Patent: Aug. 10, 1999

54 SYSTEM AND METHOD FOR SKIP-SECTOR FOREIGN PATENT DOCUMENTS
MENG INA DATA RECORDING DISK O347032 4/1989 European Pat. Off. GO6F 3/06

0420211 9/1990 European Pat. Off. G11B 20/18
O 522 750 A2 1/1993 European Pat. Off. G11B 10/12

75 Inventors: Jeff J. Dobbek, San Jose; Steven 63-70928 3/1988 7/007
Robert Hetzler, Sunnyvale, both of 1-178172 7/1989 7/007
Calif. 3-16068 1/1991 21/10

91/O2354 2/1991 20/12
73 Assignee: International Business Machines 92/00589 1/1992 19/06

Corporation, Armonk, N.Y. OTHER PUBLICATIONS

21 Appl. No.: 08/628,304 Low-Cost DASD 520-Byte To 512-Byte Format Conver
sion IBM TDB vol. 28 No. 7 Dec. 1985, pp.3001-3002 by

22 Filed: Apr. 5, 1996 R.A. Peterson et al.
Servo Channel/Multiprocessor Advance Data Sheet Jun.

Related U.S. Application Data 1992, AT&T Microelectronics.

63 Continuation of application No. 08/173,588, Dec. 23, 1993, Primary Examiner Eddie P. Chan
abandoned. Assistant Examiner Than V. Nguyen

(51) Int. Cl." .. G06F 12/10 Attorney Agent, or Firm-Ingrid M. Foerster; Monica D.
52 U.S. Cl. 711/202; 711/205; 711/206;

711/207; 711/220; 711/221 57 ABSTRACT

58) Field of Searth5/412,415,416 417. . 1. A data recording disk drive includes a System and method
711/4 200 202 205 206 207 220 22 for mapping around Skip Sectors, both bad Sectors and Spare

f4, s s s s s s Sectors. A received logical block address is converted to a
corresponding physical block address by mapping through a

56) References Cited set of tables. A first table includes entries for virtual tracks
which group together LBAS having shared high order bits.

U.S. PATENT DOCUMENTS A Second table contains entries for the Skip Sectors. The high
4,513,392 4/1985 Shenk 364/900 order bits of a given LBA are used to select an entry in the
4,527,273 7/1985 Hibi et al. 371/38 first table, which entry is an index into the second table.
4.575,775 3/1986 Albrecht 360/77 Starting from the indeX point, the Second table is Searched,
4,631,723 12/1986 Rathbun et al. 371/10 using the low order bits of the LBA, for a skip sector beyond
4,656,532 4/1987 Greenberg et al. 360/48 the LBAvalue. Once the appropriate Skip Sector is found, the
4,677,606 6/1987 Ogata et al. 369/59 index of this skip sector within the second table is added to
4,775,969 10/1988 Osterlund 369/53 the LBA to compute the PBA. The PBA is then mapped to
4,792.936 12/1988 Picard 369/59 a Zone, cylinder, head, Sector location on the disk drive. The
4,811,124 3/1989 Dujari et al. 396/59 mapping System reduces the total Storage required to convert
4,827,462 5/1989 Flannagan et al. 369/32 LBAS to ZCHS values and improves the performance of the
4,839,878 6/1989 Inoue .. 369/54 conversion process. Additional features include a third table
4,862.295 8/1989 Tanaka et al............................. 360/48 for distinguishing bad Sectors from Spare Sectors, Schema for

3. E. Ele et al. S. re-mapping spare Sectors to Substitute for data Sectors which
4,953,122 s/1990 Williams. 364/900 al lity asp between th LBA high order and
4,972,316 11/1990 Dixon et al. 364/200 ow order DILS to Turner Improve perIormance.

(List continued on next page.) 7 Claims, 12 Drawing Sheets

p-E.--------------------------. ------------------------. ...,
AM, Deject - 4.52 - ning 42

d * W A :
: 412 A1A - Sector - " , " - a

22- -- - :Unier 31C -

433 48 -- 438 - 4) :
: -- Safety - E. — :

Firm). Table
: 418 Actuator Position -

- - Corro sh
240 ---... ------------------------. --------

for:rder ctronics
r -- - - - 444

215- efect:3 sole Doto Sector : 45 lgerie? 484

480 - ; 488 - as
- - LEA to B. | 4 - 23A to 20-S

264
47El

5,937,435
Page 2

U.S. PATENT DOCUMENTS 5,146,571 9/1992 Logan 395/400
5,172,352 12/1992 Kobayashi . 369/44.26

4,999,720 3/1991 Wilson et al. 360/48 5,193,034 3/1993 Tsuyoshi et al. 360/51
5,034,914 7/1991 Osterlund 364/900 5,196,970 3/1993 Seko et al. 360/77.03
5,050,013 9/1991 Holsinger ... 360/72.1 5,210,660 5/1993 Hetzler 360/51
5,070,421 12/1991 Sumiya et al. 360/77.07 5,271,018 12/1993 Chan ... 371/10.2
5,073,834 12/1991 Best et al....... 360/77.08 5,276,868 1/1994 Poole 395/600
5,105,416 4/1992 Segawa et al. ... 369/116 5,319,627 6/1994 Shinno et al. ... 369/54
5,121,280 6/1992 King 360/135 5,329,629 7/1994 Horst et al. 711/5
5,130,969 7/1992 Sako .. 369/58 5,367,652 11/1994 Golden et al. 711/4

U.S. Patent Aug. 10, 1999 Sheet 1 of 12 5,937,435

LBA to CHS

Conversion with ID Fields

FIC 10
(Prior Art)

124
Defect MOp Toble

130

LBA to PBA PBA to CHS

120 122

Conversion with Defect Mop

FIC. 1b.
(Prior Art)

U.S. Patent Aug. 10, 1999 Sheet 2 of 12 5,937,435

Micro
ProceSSOr

214 216

Interface Formotter
Electronics Electronics

262 264

215 RAM

217
Disk Drive

FIC. 2

U.S. Patent Aug. 10, 1999 Sheet 3 of 12 5,937,435

ServO Sector Doto Sector

POSition Doto
POd

542 544 346 548 352 354 356

Split Doto Sector

560

322 364 512 368 524

Sector Architecture

FIC. 30.

5,937,435 Sheet 4 of 12 Aug. 10, 1999 U.S. Patent

5,937,435 Sheet 5 of 12 Aug. 10, 1999 U.S. Patent

S0\U0]?09||? ggg |---~--~~~~ # $1){ |J0,09S D?00 0|qd| d0W 109190–9,

"" |-------+---------+-----------------_ _ _ |_ _ _ - - - - - - - - ~~~~ ~- - - - ~ ~ ~ *** |

.__ _ _ _ _ - - - - - - - - ~~~~ ~~ - - - - ~ ~55 J?No.???t?j??,

___|__________---~~~~ ~~| 0%

L

U.S. Patent Aug. 10, 1999 Sheet 6 of 12 5,937,435

506
-

Sync Long Register 52O

522

524

526

528

530

552

554

536

Sync Short Register
Pod Long Register
Pod Short Register
Doto Full Register
n Register
m Register
NDS Register
DSkew Register

50 508 516 514 512 518

DS1Num DS1 en DS2Len Numu)| DS1W
Region 1
Region 2

Region n

504

Sector Computation Storage Components

FIC. 5

U.S. Patent Aug. 10, 1999 Sheet 7 of 12 5,937,435

Initialize
Remo inder = ServO COUnt

Initialize
DSB = 0 604

Compute
temp = Remoinder - n

Servo Modulo Computations

FIC, 6

5,937,435 Sheet 8 of 12 Aug. 10, 1999 U.S. Patent

A. '01.H

07/

77/

U.S. Patent Aug. 10, 1999 Sheet 9 of 12 5,937,435

802

804.

842 844 846

840
Disk Drive with Staggered Servo Write

FIC. 8

5,937,435 Sheet 10 of 12 Aug. 10, 1999 U.S. Patent

|-

906

UU S 9 S Ç S 7 S Ç S Z S

Ç Sd Z Sd

~ ~

706

U.S. Patent Aug. 10, 1999 Sheet 11 of 12 5,937,435

= LBA >> D

WSn = LBA & E 1006

VTVt

e = VTvtn + 1
1010

1012 1018

N

C PBA = LBA + p

Y

- 1016

1020

LBA to PBA Conversion Computations

FIC 10

U.S. Patent

Cylinder = (TrockOffset/Num Heads)

Aug. 10, 1999 Sheet 12 of 12

SeOrch ZOne table for PBA
Retrieve:
7OnePBA
ZoneCy
ZOneSect

PBAOffset =
PBA - ZonePBA

Sector =
PBAOffset mod ZOneSect

Trock Offset =
PBAOffset/ZoneSect

1204

12O6

1208

1210

+ Zone Cy.

PBA to Zone, Cylinder, Head, Sector Computations

FIC. 12

5,937,435

5,937,435
1

SYSTEMAND METHOD FOR SKP-SECTOR
MAPPING IN ADATA RECORDING DISK

DRIVE

This is a continuation of application Ser. No. 08/173,588,
filed Dec. 23, 1993, now abandoned.

FIELD OF THE INVENTION

This invention relates in general to data recording disk
drives, and in particular to skip-sector mapping in Such disk
drives.

CROSS REFERENCE TO RELATED
APPLICATION

This application is related to a co-pending patent appli
cation entitled “Sector Architecture for Fixed Block Disk
Drive", filed Dec. 23, 1993, assigned to IBM.

BACKGROUND OF THE INVENTION

Central to the magnetic disk drive is the use of a data
recording disk having a magnetizable layer on its Surface.
Digital data is recorded on the disk in the form of magnetic
transitions Spaced closely together. In modern disk drives in
particular, recording densities both in terms of radial tracks
per inch and linear density along a track have reached a level
which creates extreme Sensitivity to imperfections known as
media defects in the magnetic recording layer which result
in portions of the layer becoming unacceptable for use in
recording the magnetic transitions. Media defects may be
Small, that is affecting only a Small number of transitions on
a Small number of tracks, or large, affecting many transitions
acroSS multiple trackS. However, as recording densities
increase even tiny media defects may impact many transi
tions acroSS many tracks.

In the prior art, the classical method for dealing with
media defects is called a format operation, in which Surface
analysis testing (SAT) data is used to effectively map defects
found during SAT at the factory out of the disk drive. The
format operation generally designates bad Sectors and also
designates Some good Sectors as Spares So that they may later
be used if additional good Sectors become bad during
operation of the disk drive. During the format operation an
ID field is written onto the disk prior to each data sector. The
ID field contains Specific information concerning the data
Sector which follows it, including a logical block address
(LBA) or a cylinder, head, sector (CHS) entry, either of
which can be used during operation to unambiguously
identify the Succeeding data Sector. Also included in the ID
field are bit flags which indicate whether the data sector is
a reserved (spare) sector or a bad data sector. At the end of
the format operation, all information regarding good Sectors,
bad Sectors, and Spare SectorS is known to the disk drive, and
can be queried by Scanning the entire Set of Sector IDS
written on the disk.

In a typical prior art disk drive the translation from an
LBA to a CHS is accomplished by direct mapping. Such a
mapping is shown in prior art FIG. 1a, where LBA entries
designated as 112 are mapped through LBA to CHS block
110 to produce CHS entries designated as 114. This mapping
typically makes use of Several assumptions: first, that the
data Sectors are grouped according to cylinderS or tracks,
Second, that each group of data Sectors contains a fixed
number of good data Sectors, and third, that the number of
Skip Sectors (either defect or spare) in each group is fixed.
Many modern disk drives use a concept known as Zone bit

recording (ZBR) in which the disk surface is divided into

15

25

35

40

45

50

55

60

65

2
radial Zones and the data is recorded at a different data rate
in each Zone. This concept is well known in the art. The
addition of Zones requires expansion of the cylinder, head,
Sector identification Scheme to a Zone, cylinder, head, Sector
(ZCHS) scheme. Disk drives implementing Zone bit record
ing typically use a table containing a set of Zone entries, one
for each Zone, each entry containing the Starting LBA for the
Zone represented by the entry, the number of good data
Sectors per group (where a group is Some fixed unit Such as
a track or cylinder), the number of Skip data Sectors per
group, the number of data Sectors per track, and Starting
cylinder of the group. In Such an implementation, a Search
for a given LBA Simply requires locating the appropriate
Zone entry in the table. Thus, if the group is defined as a
cylinder, the Zone table can easily be used to determine an
LBA offset, a cylinder offset, a track offset, a head, a Sector,
and a cylinder. Alternatively, if the group is defined as a
track, the table can easily be used to determine an LBA
offset, a track offset, a Sector, a cylinder, and a head. Thus,
regardless of the group definition, the LBA leads readily to
a physical disk location. Once the disk drive completes the
required seek operation to the cylinder and head identified,
the drive formatter Scans for either the desired LBA or the
desired Sector by examining the ID field of each data Sector
as it passes under the head. When the appropriate data Sector
is found, the data is transferred and the operation is com
plete.
AS is apparent from the above description, the LBA to

ZCHS mapping technique translates from an LBA to a first
possible ZCHS. Scanning of IDs must thereafter be under
taken in order to locate the sought-after ZCHS or LBA. In
fact, in Some cases an extensive Search may be required in
order to locate the Sought after Sector starting from the
location produced by the ZCHS mapping. At minimum, this
search involves the reading of multiple ID fields, and in
Some cases may include reseeking to other heads or cylin
ders to find the required LBA. This may occur where a
defect has caused an LBA to map to a ZCHS on a distant
portion of the disk drive, or where a Sought-after LBA maps
to a ZCHS which would be near the end of a track but for
a single defect or relatively small number of defects which
causes it to map to a ZCHS on the next or another nearby
track which nonetheless requires a head Switch or a cylinder
Seek. The result of the added Seek, is a performance penalty
coupled with a power consumption penalty due to the added
time spent Seeking and reading ID fields. This penalty,
coupled with the large number of Sectors which may be
affected by a defect in highly dense modern drives, can make
Skip Sector handling a significant issue in Overall drive
performance.

Another Strategy which has been used in recent years to
increase the capacity of disk drives is known as the no-ID
format. This format is taught by Hetzler in co-pending U.S.
patent application Ser. No. 07/727,680, filed Jul. 10, 1991.
No-ID disk drives use servo Sectors in combination with a
defect map to identify data Sectors and thereby completely
eliminate the use of ID regions. The no-ID skip-sector
mapping concept is illustrated in prior art FIG. 1b in which
an LBA input at 126 enters LBA to PBA conversion block
120. LBA to PBA conversion block 120 refers to a defect
map table designated as 124 via interface 130. For perfor
mance reasons defect map table 124 is typically held in
RAM storage. As disclosed in the aforementioned Hetzler
application, the defect map table is comprised of a Series of
five byte entries which represent the defect information.
Completing prior art FIG. 1b, the output PBA is communi
cated via interface 128 to PBA-to-cylinder, head, sector

5,937,435
3

(CHS) conversion block 122, where additional function
produces a physical CHS value which is further transmitted
via interface 132 to electronics (not shown) which proceed
to position the recording head.

While the aforementioned Hetzler approach solves the
problem of locating defect information in the absence of
data ID fields, it incurs two drawbackS. First, in requiring at
least five bytes per entry to Store the defect information, the
approach is RAM intensive. Second, its performance is
based on a binary Search of three or four byte entries-a very
Slow process when implemented on an eight or sixteen bit
microprocessor.
One way to improve upon the above approach is to use a

table which contains only a three or four byte entry for each
Skip Sector. This may be accomplished by listing the skip
PBAS sequentially rather than listing skip LBAS and offsets;
thereby a Savings of two bytes per entry is realized.
However, this approach occurs an added drawback of its
own while it requires only three to four bytes of RAM per
Skip Sector, it also requires an iterative Search algorithm
whose performance is unacceptable in modern disk drives.
An additional problem that arises in high capacity disk

drives involves the Second category of Skip Sectors described
above-spares. In general, in the prior art it is assumed that
there is a fixed number of good Sectors per group acroSS each
disk of a disk drive. However, for disks which outperform
the assumed number of bad Sectors, Significant waste of
Storage space may occur due to this over Sparing.
A closer examination of the oversparing problem reveals

that it results from two Statistical assumptions. First, in many
disk drive designs it is assumed that the probability of a
"grown' defect-that is, a defect not found during Surface
analysis testing (SAT) but which is revealed during drive
use- is the same as the probability of a defect during SAT.
In fact, however, grown defects are much less likely to occur
after SAT is completed. Second, it is typically assumed that
there is a fixed number of Skip Sectors per group. As a result
of this assumption, when yield decreases spare allotment
must be increased. This effect is multiplied by the number of
groups, causing what is in effect a worse case assumption to
be propagated over Scores of good groups. In a typical
modern disk drive this may involve a multiplication factor of
over 3,000, a number which will continue to grow as track
pitch continues to increase.
A further drawback associated with Sparing as typically

used in the prior art arises when Spares are actually brought
into Service. The usual approach is to have a pool of Spares
gathered together in certain tracks and available for use
acroSS the disk drive. However, if one of these spares must
be brought into Service due to a grown defect, a significant
performance penalty may result each time the Spare Sector is
referred to in operation. The performance penalty results
when the System, which is otherwise reading along Sequen
tial Sectors on a track, is required to perform a Seek operation
to a different cylinder or a different head in order to acceSS
the data on the Spared-in Sector. This operation can in fact
require many multiples of the amount of time required to
perform an access operation on a Sequentially available data
SectOr.

Accordingly there has heretofore existed an unmet need in
the art for a skip Sector mapping technique which achieves
Satisfactory performance and requires minimal Storage.
There has further existed Such an unmet need for a technique
which can effectively provide sparing without wasting disk
Space and without incurring a significant performance pen
alty upon activation of a Spare.

15

25

35

40

45

50

55

60

65

4
SUMMARY OF THE INVENTION

In accordance with the invention, a data recording disk
drive is provided with a System and method for mapping
logical block addresses into disk drive physical block
addresses, for further mapping into Zone, cylinder, head, and
Sector locations. A logical block address (LBA) is numbered
from Zero to N where N is the total number of blocks
(Sectors) available for customer and/or system use. A physi
cal block address (PBA) is defined to include all sectors
numbered from Zero to M where M is greater than N and
where M represents the total number of sectors available on
the disk drive. The physical Storage Space represented by the
total number of MPBAS in the disk drive identifies all LBAS
as well as all Skip Sectors.
Two mapping tables are provided for use in translating

LBAS to PBAS. The first mapping table contains entries for
Virtual tracks defined to group together LBAS having shared
high order bits. The entries themselves are pointers to index
locations in the Second mapping table; each indeX location
identifies a group of Sectors located on the track correspond
ing to the indeX location. The Second mapping table contains
entries for skip Sectors (both defective and spare). The
entries are arranged in numerical order, and contain only the
low order LBA bits corresponding to the Skip Sectors. To
map a given LBA, a mask is used to Select the high order bits
which make up the virtual track number. The virtual track
number of the LBA is used to select an entry in the first table,
which in turn provides an indeX to a Search Start point in the
Second table. Commencing with the Search Start point, the
Second table is Searched in increasing numerical order using
the low order bits of the LBA until a larger entry is found
(corresponding to a Sector beyond the LBA). An index point
up to (but not including) the final Searched entry is then
added to the LBA to provide the PBA. By removing the
shared high order bits from the Second (skip Sector) table, its
Storage requirement is significantly reduced; since the Search
involves Smaller entries, its execution Speed is significantly
increased.
An additional feature of the invention is a third table

which includes an entry corresponding to each entry in the
Skip Sector table. Each entry indicates whether the corre
sponding skip Sector is a defective Sector or a Spare Sector.
This information is used by a further feature of the invention
to remove data Sectors from Service when they become
defective during operation of the disk drive. Using the third
table, the closest Spare Sector to the failed Sector is located.
This spare may then be removed from the skip sector table
and an entry added to the skip sector table for the failed
Sector. A still further feature of the invention is the use of
overlap between the LBA bits used to identify the virtual
tracks and those used in the Skip Sector table. The Overlap
ping bits allow the Skip Sector table to differentiate neigh
boring tracks from one another, thus reducing and in Some
cases eliminating the need to refer to the first mapping table.
This in turn further improves the performance of the disk
drive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a block diagram illustrating a Sector conversion
process in accordance with the prior art.

FIG. 1b is a block diagram illustrating a Sector conversion
process using a defect map in accordance with the prior art.

FIG. 2 is a Schematic diagram illustrating a fixed block
architecture disk drive in accordance with the present inven
tion.

FIG. 3a is a Schematic diagram illustrating a Segment
Subdivision of a data recording track in accordance with the
present invention.

5,937,435
S

FIG. 3b is a Schematic diagram illustrating a track format
with a stub in accordance with the present invention.

FIG. 4 is a block diagram illustrating a hardware embodi
ment of the Servo functions of the present invention.

FIG. 5 is a block diagram illustrating the Storage compo
nents used to compute data Sector locations in accordance
with the present invention.

FIG. 6 is a flowchart illustrating servo-modulo computa
tions in accordance with the present invention.

FIG. 7 is a block diagram illustrating a hardware embodi
ment of a Servo-modulo counter in accordance with the
present invention.

FIG. 8 is a Schematic diagram illustrating a Staggered
Sector servo written disk drive.

FIG. 9 is a schematic diagram illustrating an LBA to PBA
mapping architecture in accordance with the present inven
tion.

FIG. 10 is a flow chart illustrating LBA to PBA conver
Sion computations in accordance with the present invention.

FIG. 11 is a memory map table illustrating Zone conver
Sion Storage components in accordance with the present
invention.

FIG. 12 is a flow chart illustrating PBA to Zone, cylinder,
head, Sector computations in accordance with the present
invention.
I. Sector Architecture
Shown in FIG. 2 is a disk drive configured in accordance

with the present invention. The disk drive is formatted using
a fixed block architecture with sector servo and Zone-bit
recording. The disk drive, designated generally as 202,
includes data recording disk 204, actuator arm 206, data
recording transducer 208 (also called a recording head),
voice coil motor 210, servo electronics 212, read/write
electronicS 213, interface electronicS 214, formatter elec
tronics 215, microprocessor 216 and RAM 217. Data record
ing disk 204 includes center of rotation 211, and is divided
for head positioning purposes into a set of radially spaced
tracks, one of which is shown at 218. The tracks are grouped
radially into a number of Zones, three of which are shown as
251, 252 and 253. The disk contains a plurality of servo
SectorS 220, which extend acroSS the tracks in a generally
radial direction. Each track has a reference indeX 221.
Within each Zone, the tracks are also circumferentially
divided into a number of data sectors 254. As will be
discussed hereafter, the data Sectors contain no Sector ID
fields. In accordance with the normal meaning of “fixed
block architecture', all data Sectors are Substantially the
Same size, expressed in bytes of data. However, it should be
noted that the present invention may easily be adapted to
tolerate Some variation in data Sector size, Such as from 512
bytes per Sector to 520 bytes per Sector, in the event Such a
configuration was desirable for a particular implementation.
The number of data Sectors per track varies from Zone to
Zone, and Some of the data Sectors do not begin immediately
following a Servo Sector. Further, Some of the data Sectors
are split by servo sectors. If the disk drive has multiple
heads, then the Set of tracks which are at the same radius on
all surfaces is referred to as a “cylinder'.

Read/write electronicS 213 receives signals from trans
ducer 208, passes Servo information to Servo electronics
212, and passes data Signals to formatter 215. Servo elec
tronicS 212 uses the Servo information to produce a current
at 240 which drives voice coil motor 210 to position
recording transducer 208. Interface electronics 214 commu
nicates with a host System (not shown) over interface 262,
passing data and command information. Interface electron

15

25

35

40

45

50

55

60

65

6
ics 214 also communicates with formatter 215 over interface
264. Microprocessor 216 communicates with the various
other electronics over interface 270.

In the operation of disk drive 202, interface electronics
214 receives a request for reading or writing data Sectors
over interface 262. Formatter electronics 215 receives a list
of requested data Sectors from interface electronicS 214 and
converts them into Zone, cylinder, head and data Sector
numbers which uniquely identify the location of the desired
data Sectors. The head and cylinder information are passed
to Servo electronics 212, which is responsible for positioning
recording head 208 over the appropriate data Sector on the
appropriate cylinder. If the cylinder number provided to
Servo electronicS 212 is not the same as the track number
over which recording head 208 is presently positioned, servo
electronicS 212 first executes a Seek operation in order to
reposition recording head 208 over the appropriate cylinder.
Once Servo electronics 212 has positioned recording head

208 over the appropriate cylinder, servo electronics 212
begins executing Sector computations in order to locate and
identify the desired data Sector. AS Servo SectorS 220 pass
under recording head 208, the no-ID approach described in
aforementioned U.S. patent application Ser. No. 07/727,680
is used to identify each Servo Sector. In brief, an index mark
identifies the first Servo Sector, an address mark locates
Subsequent Servo Sectors, and a count of address marks
uniquely identifies each Servo Sector. Additional
information, which is described in greater detail below, is
maintained in association with Servo electronicS 212 and
formatter electronics 215 and is used to determine whether
the present Servo Sector Splits a data Sector or whether a new
data Sector Starts immediately following the present Servo
Sector. Further information is maintained in Servo electron
ics 212 and formatter electronics 215 which identifies the
location of (or the distance to) the start of the next data Sector
from the present servo sector. Still further information is
maintained which identifies the location of (or the distance
to) any additional data Sectors which begin before the next
Subsequent servo sector. Still further information identifies
the number of the data sector from the index mark. This
information is used to allow formatter electronics 215 to
compare the data Sector number passing under the recording
head with the list of sectors received from interface elec
tronics 214.
Shown in FIG. 3a is a detailed schematic diagram of the

Sector architecture for an exemplary track from a data
recording disk in accordance with the present invention. A
portion of a track is shown as 302, containing segment 304.
Segment 304 is subdivided into a plurality of data regions,
306, 308 and 309. The data regions are separated from one
another by servo sectors 310, 312, and 314. Segment 304
also includes a plurality of data Sectors labeled D1 through
D5. Finally, each data Sector is made up of one or more data
sections, labeled 320, 322, 324, 326, 328, 330 and 332.
Logically, a Segment is the Set of Servo Sectors and data
Sectors having a unique Spatial relationship between the
sectors. The format for a track may then be produced by
repeating the Segment. A data region is the Space between
adjacent Servo Sectors. A data Sector is the Smallest indi
vidually addressable unit of user data, independently read
able and Writable. Finally, a data Section is a contiguous
portion of a data Sector, not interrupted by a Servo Sector.
The exemplary track of FIG.3a contains a number of data

Sectors and a number of Servo Sectors, not necessarily equal.
Note that servo sector 316 is not part of the segment since
data sector D5 ends just prior to servo sector 316. Each data
region contains a number of data Sectors, Some of which

5,937,435
7

may be split by servo sectors. For example, region 306
contains the entire data sector D1 (section 320), and only a
portion of data sector D2 (section 322). Likewise, data
sector D2 is split by servo sector 312 into sections 322 and
324.

Also shown in FIG. 3a are details of the contents of servo
sector 310. Write-to-read recovery and speed compensation
field 342 is used to allow the read/write electronics to Switch
from a data writing operation to a Servo reading operation,
and to allow for fluctuations in the disk rotational Speed.
Address mark field 344 precisely identifies a Specific posi
tion within the Servo Sector which is used as a timing
reference. Position field 346 contains the actual servo infor
mation used to position the head, typically including a
position error Signal and other information Such as a track
number (track ID or TID), index value, servo sector number
(or any portion thereof) and head number (or any portion
thereof). Servo pad field 348 allows for the electronics to
Switch from reading Servo to writing or reading data, as well
as for disk rotational Speed variations.

Also shown in FIG. 3a are details of the contents of data
section 332, which contains a full data sector D5. VCO sync
field 352 permits the read/write electronics to enable the
voltage controlled oscillator (also known as a phase locked
loop) to obtain proper phase lock for reading the data. Data
and ECC field 354 contains the user data and error correction
information. Data pad field 356 allows for differences in
processing time for reading and writing data, as well as for
flushing any encoder/decoder, and for disk rotational Speed
variations. It also provides Sufficient time for the electronics
to prepare for operating on the following Servo or data
SectOr.

Also shown in FIG. 3a is a detailed view of split data
sector D2, labeled 360. Two additional fields are typically
required when a data Sector is split by a Servo Sector: Split
pad 364 and a VCO resync 368. Field 322 shows a portion
of data sector D2 prior to servo sector 312. Split pad field
364 allows for the electronics to interrupt the reading or
Writing of data in a manner well known in the art. Servo
sector 312 is followed by VCO resync field 368, which is
used to restore the System to allow for continuation of the
read or write operation. Finally, a portion of data Section D2
following servo sector 312 is shown at 324. Note that split
pad field 364 may be the same number of bytes in length as
data pad field 356, or it may be different. Also, VCO resync
field 368 may be identical in content to VCO sync field 352,
but this is not required. More capacity may be achieved by
making fields 364 and 368 shorter than their counterparts
352 and 356; methods for achieving this benefit are dis
cussed in the prior art.

For any given data recording disk drive, there is a fixed
number of servo Sectors per track (hereinafter designated as
N) throughout the disk. Also, for each Zone there is a fixed
number of data Sectors on each track (hereinafter designated
as M). If M is not a multiple of N, then some of the data
sectors will be split by servo sectors. The split portions of
each data Sector are denoted as Sections. Further, the first
Section belonging to a data Sector is called the primary
Section and any remaining Sections are called Secondary
Sections. Since all data Sectors on a track have the same
number of bytes, and Since the Servo Sectors are equally
Spaced, there will be a limited number of unique data
Sections on the disk drive. The Set of data Sectors and Servo
Sectors which defines one period of the unique pattern of
data Sections is called a Segment. The number of data
Sections in a segment (hereinafter designated as nSS) is given
by:

1O

15

25

35

40

45

50

55

60

65

(1)
where

i

it.

represents the reduced fraction of

N

Since m and n represent the numerator and denominator of
the reduced fraction of the ratio of the number of data sectors
per track to the number of Servo Sectors per track, it is
apparent that there are n Servo Sectors and m data Sectors in
a segment. For exemplary segment 304 shown in FIG. 3a,
n=3,m=5, nss=7, N=84, M=140, and inst (the number of
Segments per track)=28. It is to be noted that in accordance
with the no-ID Sector architecture, neither the servo sectors
nor the data sectors include data ID fields. Instead, the
information necessary to identify data Sector numbers and
data sector locations is provided in servo sectors 310, 312,
314, etc. and in electronic Storage accessible to the Servo
electronics, as will be described in greater detail below.

It should be noted that the choice of the Segment con
figuration is flexible. For example, the entire track could be
defined as a Segment. In Some circumstances, this may be the
natural choice, Such as when M and N are relatively prime,
resulting in m=M and n=N. However, nothing precludes
choosing

i

it.

to be an integer multiple of the reduced fraction. Moreover,
there are cases where the above analysis on the ratio of the
number of Servo Sectors to the number of data SectorS is not
the preferred choice for defining a Segment. This can occur
when a Space is left at the end of a track, where the last data
Sector on the track ends Substantially prior to the end of the
track. Such a case is illustrated in FIG. 3b. The track is
designated 380, and contains 7 servo sectors 384. There are
11 data sectors, DS1 through DS11. Note that data sector
DS11 ends prior to the end of track 380. The remaining
space is stub 385, which contains no user data since it is
shorter than a data sector. In this example, N=7 and M=11,
which from the above analysis would lead to a Segment size
of n=7 and m=11. However, FIG. 3b illustrates a second
possibility. The unique Spatial relationship between the
Servo Sectors and data SectorS is achieved with n=3 and m=5.
This choice results in two full segments, 381 and 382, and
one partial segment 383. The disk drive need only know the
total number of data Sectors on the track to handle the partial
Segment. Once the data Sector number has reached the
maximum value, the drive will wait until the next servo
Sector, which resets the data Sector counter to the first data
Sector number. It is to be noted that a track format having
multiple StubS may be Selected, including StubS located
within tracks as well as at their ends. In any event, an
advantage may in Some cases be achieved in the presence of
StubS by redefining the region using a Smaller Segment size
Since this in turn decreases the amount of memory required
to Store the format information.
II. Formatter and Servo Electronics

FIG. 4. is a schematic diagram of the preferred embodi
ment of the Servo and formatter electronics used to locate

5,937,435

and identify data Sectors according to the present invention.
Servo electronics 212 includes address mark (AM) detector
and track number (TID) decoder 412, servo sector counter
414, safety logic 416, actuator position control logic 418,
timing generation logic 420, Sector pulse generation logic
421 and format table 422. Formatter electronics 215
includes defect map table 450, data sector identifier 454,
logical block address (LBA) to physical block address
(PBA) converter 456, PBA to Zone, cylinder, head and data
sector (ZCHS) converter 458 and control function 476.

In operation, formatter 212 receives a request for a read
or write operation on a list of data Sectors 264. The Sectors
are identified by their LBAS. The LBA list is converted to a
PBA list by converter 456 using defect information 460. The
PBA list 468 is converted to a list of physical ZCHS. Both
of these conversions processed are discussed fully in Section
VI below. The cylinder and head values 466 (C and H) are
passed to actuator position control logic 418 to affect a Seek.
Actuator position control logic 418 functions in a manner
known in the art. Zone and sector values 464 (Z and S) are
passed to data Sector identifier 454 and to Servo electronics
212. Additionally, servo electronics 212 receives servo
information 266 from the read/write electronics. AM detec
tor 412 detects the Servo address mark, and Signals address
mark found (AMF) at 432. This signal is passed to timing
logic 420, which generates the timing Signals necessary for
operation of servo electronics 212. AMF 432 is also passed
to servo Sector counter 414. In addition, AM detector 412
decodes the TID information, including cylinder (track)
number, Servo index, Servo Sector number and head number.
Index signal 433 is used to reset servo sector counter 414,
and the counter is incremented by AMF signal 432 at each
Subsequent Servo. In this manner, the servo Sector counter
will always output the current servo sector number at 436.
Safety logic 416 receives decoded TID information 430, and
servo sector number 436. This logic performs various safety
tests to ensure the proper operation of the Servo electronics.
Its functions include comparing the generated Servo Sector
number 436 with any servo sector number information in the
TID (including index) and processing any error handling
information in the TID. Error information, along with the
cylinder and head number, are output at 438. Actuator
position control 418 compares the cylinder and head values
438 with the target values 466, and acts upon any errors.
Sector pulse logic 421 uses servo sector number 436 to
generate the address for format table 422, retrieving Segment
information 440 for the Zone (described in detail below).
Sector pulse logic 421 also contains three counters: a Sync
counter, a data counter, and a pad counter. Each of these
counterS is used to count byte clockS during the various
fields in the format, whereby the data Sectors are located and
identified. Sector pulse logic 421 is thereby able to identify
both the Starting location and the data Sector number of the
data sector about to pass under recording head 208. The
current data Sector number 442 is Sent to formatter electron
ics 215, and a start of data sector pulse 444 is sent when the
Start of a data Sector is under the head, enabling the formatter
to perform functions with Zero latency. Upon receipt of
sector pulse 444, data sector identifier 454 compares the
current data sector number 442 to the list of ZCHS values
464. If a match is found, this information is passed via 470
to control function logic 476, at which point the data sector
is further processed in accordance with methods known in
the prior art.

With reference to the fields described above, it is to be
noted that many alternative configurations exist which
would accomplish the same purpose. For instance, the LBA

15

25

35

40

45

50

55

60

65

10
may be replaced with any logical identifier, while the ZCHS
may be replaced with any value or combination of values
identifying a unique Sector number. The combination of the
above electronicS and microcode in microprocessor 216 is
able to detect and act on any errors discovered between the
target ZCHS values and the detected values. This provides
the disk drive with a high degree of reliability, even in the
absence of data ID fields. For example, if a detected track
number does not match the target value, a Seek error will be
posted, and this error may be handled as is known in the art.
Other errors, Such as a mismatch between the Servo Sector
counter and the TID information (index and possible servo
sector number bits) will be detected by safety logic 416, for
action by other parts of the drive. Such errors may be
handled as data ID mis-compares, and recovered by forcing
the Servo Sector counter to align with the index mark and
repeating the operation. Finally, as will be described in
greater detail below, an important input required for Sector
pulse logic 421 to continuously compute data Sector loca
tions is a Servo-modulo count. The Servo-modulo count
allows for a reduction in the total memory required for the
format information by taking advantage of repetitive pat
terns in the format.
III. Locating and Identifying Data Sectors
Shown in FIG. 5 are the components required for sector

computation in accordance with the present invention. In
general, there is provided a random access memory 504 and
a set of registers designated as 506, connected to an address
and data bus (not shown). These may reside within servo
electronics 212, in format table 422. Microprocessor 216 (or
other electronics) stores information in the random access
memory and in the registers, and then accesses this infor
mation in order to perform sector identification and location
computations.

In particular, RAM 504 stores the information required to
identify the data in each region in a given unique Segment.
For convenience of description the information fields are
shown organized into a table format, although any appro
priate data structure may be substituted. RAM 504 is
addressed by the region within the segment (equivalent to
the servo sector number within the segment). The fields
required for each region include DS1 Len 508, DS1Num
510, DS1V512, NumFull 514, DS2Len 516, and DS2V518.
DS1Num is the number, from the start of the segment, of the
first data sector following the servo. In the preferred
embodiment, this field contains a 7 bit value. DS1 Len is the
length in bytes of the first data Section in the region. In the
preferred embodiment, this field contains a 10 bit value.
DS2Len is the length in bytes of the last data section in the
region. In the preferred embodiment, this field contains a 10
bit value. NumPull is the number of full (not split) data
Sectors in the region. In the preferred embodiment, this field
contains a 3 bit value. DS1V is a flag, which if set, indicates
that the first data Sector is split, and therefore that the value
DS1Len is valid. In the preferred embodiment, this field
contains a 1 bit value. DS2V is a flag, which if set, indicates
that the last data Sector is split, and therefore that the value
DS2Len is valid. In the preferred embodiment, this field
contains a 1 bit value.

Since every Segment within a given Zone has the same
number of bytes, for each Zone it is only necessary to Store
format information for a single Segment. The Servo Sector
number within the segment (equivalent to the region
number) is used to address the format information for the
appropriate segment. The value DS1Num is included for
performance reasons. Sector pulse logic 421 includes a data
Sector number counter, which starts counting data Sector

5,937,435
11

pulses at index. AS long as the Servo electronics remain
active, the data Sector number counter will be correct.
However, when a Zone Switch occurs, the data Sector number
counter must be reset. On the other hand, it is preferable to
avoid waiting for indeX to Start counting data Sectors, as this
causes a latency penalty. With the DS1 Num value, the
counter is preset at every Servo Sector, thereby avoiding
additional latency. Further, this technique allows the disk
drive to recover quickly from power Saving modes, where
much of the electronicS is powered down when not perform
ing data operations. Using the present invention, the data
sector counter will be preset with the correct value at the first
Servo Sector following the end of power Saving, rather than
at indeX.
From the definition of the sector architecture shown in

FIG.3a, only the first and last data Sections in any given data
region may contain partial Sectors. Therefore, only the
lengths of these two Sections must be Stored in the table; thus
the inclusion of DS1 Len and DS2Len. NumFull is the
number of complete data Sectors in the data region. It is used
to prevent the generation of false data Sector pulses prior to
the end of a region, where the end of a data Sector may be
close to the Start of a Servo Sector, by disabling the data
Sector number counter once NumFull data Sector pulses have
been generated. It is also used to control the generation of
data Sector pulses for the data Sectors which start within the
region. DS1V and DS2V are used to indicate the validity of
the DS1 Len and DS2Len values. This is prompted by the
necessity to know if the first data Section in a region is a
primary Section So that a read or write operation initiated at
a Servo Sector will not be started on a Secondary data Section.
For example, in region 308 the DS1 Num value after servo
Sector 312 is D2 for data Section 324. However, a read or
write request for data Sector D2 must start at data Section
322, therefore the Servo electronics must ensure that data
Section 324 is not mis-identified as the start of data sector
D2. Similarly, DS2V is used to indicate that the last data
Section is split by a Servo Sector. The use of these flag Values
is preferred for performance reasons, Since they provide for
a direct decode. However, it is apparent that the limited
range of values for DS1 Len and DS2Len allows for the use
of specific values (e.g. 0) to provide the same function.

Only the lengths of the first and last data Sections in a
region must be Stored in the table because all other Sections
are necessarily full length. Data-Section-split flags are
required only for the first and last Sections Since all others
must be complete. DS1V will be zero if the first section is
primary (that is, not split). DS2V is likewise used to initiate
the Split data Sector function at the end of the last Section if
it is split.

It is to be noted that the above-described information may
be stored in RAM memory as shown in FIG. 5, and
addressed by the Servo Sector number within a Segment.
However, it is also possible to organize the information by
data Sector number, which may in turn be used to address the
RAM. In this case the specific fields must change, but they
still support the functions described above. Further, any or
all of the above information may also be stored in any other
convenient medium, Such as in registers, flash memory, or
any other Storage device accessible to Servo electronicS 212.

Aside from the above-described information which is
Stored for each region in a Segment, additional information
is required, for each Zone, to enable the Servo processor to
locate data Sectors which are not positioned immediately
following a servo sector. In FIG. 5, this information is
contained generally in registers 506, including Sync Long
register 520, Sync Short register 522, Pad Long register 524,

15

25

35

40

45

50

55

60

65

12
Pad Short register 526, and Data Full register 528. Registers
520-528 are used to load the three counters in Sector Pulse
Logic 421. All three counters (Sync counter, data counter,
and pad counter) are down counters whose input clocks are
the current data byte clock. Only one counter is enabled at
a time, in a Sequence determined by the track format.
Additional information for other operations is contained in
in register 530, which holds the reduced numbers of data
Sectors per track, m register 532, which holds the reduced
number of servo sectors per track, NDS register 534, which
holds the number of data sectors per track, and DSkew
register 536, which holds the data sector skew value.

Turning in particular to registers 520–528, Sync Long
register 520 contains the number of byte clocks in VCO sync
field 352. Sync Short register 522 contains the number of
byte clocks in VCO Resync field 368. In the preferred
embodiment, this field is shorter than field 352; however, if
the fields are of equal length then only Sync Long register
520 is required. Pad Long register 524 contains the number
of byte clocks in Data Pad field 356 when it is followed by
VCO Sync field 352. Pad Short register 526 contains the
number of byte clocks in Data Pad field 356 when it is
followed by a servo sector. The Pad Long and Pad Short
values are different since the servo sector contains W-R and
Speed field 342, which shares some common function with
Data Pad 356. Data Full register 528 contains the number of
byte clocks in Data and ECC field 354, which is the total
number of data and ECC bytes in a data sector.

During operation of Servo electronics 212 in cooperation
with RAM 504 and registers 506, the sync counter is started
following a servo Sector. Prior to this, the Sync counter is
preloaded from Sync Long register 520 if the value of DS1V
is 0, and from Sync Short register 522 if the value of DS1V
is 1. Further, if DS1V is 0, data sector pulse 444 is generated
and the data counter is preloaded with the value in Data Full
register 528. Otherwise it is loaded with the value in
DS1Len. When the sync counter reaches 0, the data counter
is started. If the number of data Sector pulses generated in the
region equals NumPull, then the pad counter is loaded with
the value in Pad Short register 526; otherwise it is loaded
with the value in Pad Long register 524. When the data
Sector counter reaches 0, the pad counter is started. When the
pad counter reaches Zero, the end of the current data Sector
has been reached. If the number of data Sector pulses
generated in the region equals NumPull, then a Servo Sector
follows. Otherwise a data Sector pulse is generated, the data
Sector number counter is incremented, and the Sync counter
is preloaded with the value in Sync Long register 520. This
process repeats until the region is completed, which is
determined by the generation of NumFull data sector pulses.
When the number of data Sector pulses generated in the
region equals NumFull and DS2V is 1, then the data counter
is preloaded with the value in DS2Len instead of with the
value in Data Full register 528.

Three counters are used instead of one due to the types of
fields being counted, to limit the number of tap points on a
Single counter, and to allow for each counter to be preloaded
while another counter is running. It is to be noted that while
a particular preferred counter arrangement has been
disclosed, the above function can be implemented using
many alternative counter and register arrangements whose
result would remain within the Spirit and Scope of the present
invention.

Using the above information, Servo electronicS 212 is able
to locate the Start of any data Sector in a Segment. Further,
the Sector number from indeX for a given data Section may
be determined using the equation:

5,937,435
13

where SN i is the data sector number from index (zero
based) for the i-th data sector in the segment, and SGN is the
Segment number from index (Zero based).

During operation of disk drive 202, read and write opera
tions are received which require recording head 208 to be
repositioned over various tracks and then to read or write
various data Sectors. Once recording head 208 is positioned
over the appropriate track, the above equation is used to
determine when the appropriate data Sector is passing under
the head. In particular, the equation is used to compute a
current data Sector number which is continuously compared
with the data Sector number requested for the read or write
operation. If the values compare, the desired operation is
performed. Since there are no ID fields, the data section
lengths computed based on the data values described above
identify the location of data in particular Segments and
regions.

In the preferred embodiment, various ones of the above
described information fields are maintained in various Stor
age areas in order to improve operational performance. For
instance, the information for the current Zone may be
maintained in dedicated local Storage analogous to registers
520-536 in order to avoid bus arbitration. The values may be
reloaded from general storage such as RAM 217 after each
Zone Switch. The disk format determines the amount of
Storage required to hold the values for a particular imple
mentation. Since known implementations require 32 or
fewer regions per Zone, the local Storage requirements for
the Zone tables are 30 bits per region or 256 bytes per Zone,
including allowance for ECC. Thus, in the preferred
embodiment, high performance may be achieved without
incurring a Storage acceSS penalty.
IV. Servo-Modulo Counter

In order to use the above-described sector identification/
location Schema effectively, the System of the present inven
tion must be able to determine both a Segment number and
a Servo Sector number within the Segment prior to perform
ing a read or write operation. To avoid the latency penalty
created by waiting for an index mark as a basis to compute
the above information, Servo-modulo counter electronics are
provided to generate this information continuously, even
after a head or Zone Switch. In the preferred embodiment,
this is achieved using a hardware circuit whose inputs are m,
n, servo (servo sector number) and DS1Num.
The purpose of the Servo-modulo counter is to produce

the quantities servo mod n and mx(servo /n). The former is
the remainder of servo/n, the number of servo sector n from
the Start of the Segment, which is used as the address for
RAM-based Zone table 504 described previously. The latter
is the data Sector number of the first data Sector in the
Segment, hereinafter referred to as DSB, the data Sector base
number, which is also the first term in equation (2). FIG. 6
illustrates in flowchart form the operations required to
perform these computations. At 602 the remainder value is
initialized to the servo count. At 604, the quantity DSB is
initialized to zero. At 606, a loop is entered which computes
the value of Servo mod n (remainder) by repeated Subtrac
tion until an overflow occurs. In particular, at 606 temp, a
temporary variable, is assigned the value of remainder -n (of
servo/n-n). At 608, the underflow test is performed (temp
<0). If an underflow is detected, the process is exited at 610.
If no underflow is detected, the processing continues at 612,
where the quantity m is added to DSB. Finally, at 614 the
remainder is set equal to temp (the remainder minus n), and
processing returns to 606. At exit point 610, both DSB
(mx(servo/n)) and the remainder (servo mod n) have been
computed.

15

25

35

40

45

50

55

60

65

14
Shown in FIG. 7 is a schematic diagram illustrating an

electronic circuit in accordance with the preferred embodi
ment of the present invention. The circuit computes the
values of mix(servo/n) and servo mod n in accordance with
the process shown in the flowchart of FIG. 6 and described
above. AS in the flowchart, Servo mod n is computed by
repeated Subtraction which is halted by an underflow opera
tion. The circuit includes control logic 702, subtracter 704,
adder 706, registers 708 and 710, MUX 712, adder 714 and
data sector number counter 716. In operation of the servo
modulo counter circuit, control logic 702 receives Start
Signal 720 to begin a computation, and produces done signal
744 when complete. Register 708 stores the result of the
repetitive Subtractions and at the end of computations con
tains the correct value of servo mod n (the remainder).
Subtracter 704 receives input 738 from register 708 and
input 726 (the value n) from register 530 (shown and
discussed previously with reference to FIG. 5). The input to
register 708 is from MUX 712. The MUX allows either the
numerator, servo 728, or the results of the previous subtrac
tion to load register 708. The registerload signal (not shown)
comes from control logic 702, and is asserted once per
Subtraction operation. Underflow signal 742 is passed to
control logic 702. If an underflow is detected, the register
load Signal is stopped, and the remainder value will be stable
on 740. Control logic 702 also controls the output from
MUX 712 to register 708 via select line 732. MUX 712 is
configured Such that the first Subtraction uses current Servo
count 728 while subsequent subtractions use the intermedi
ate results. Further, register 708 is located prior to subtracter
704 so that it contains the results of the prior subtraction
when the loop exits, Since the exit condition is an underflow.

The value of mx(servo/n) is computed by repeated addi
tion of the quantity Servo mod m for each Subtraction
operation performed in the modulo block. Adder 706 adds
input 730 (the value m) from register 532 (shown and
discussed previously with reference to FIG. 5) and the result
of the previous addition 746. The intermediate values of the
addition 748 are stored in register 710 at the output of adder
706. The register load signal (not shown) comes from
control logic 702, and is asserted once per addition opera
tion. Control logic 702 synchronizes the addition and Sub
traction operations through the register load Signals, thereby
eliminating the need for a separate multiplier or an accu
mulator to compute DSB (mx(servo/n)). When the opera
tion is complete, DSB value 746 produced by the circuit may
be used in accordance with equation 2 to generate the current
data sector number. Specifically, result DSB 746 is passed to
adder 714, along with DS1 Num 754, addressed by remain
der 740. These values are added and output at 750 as the data
Sector number from index of the first data sector in the
segment. Data sector number counter 716 is preloaded with
adder value 750 upon receipt of a load signal from the
control logic (not shown). Data sector number counter 716
increments upon receiving data Sector pulses 756, and
outputs the current sector number at 752.
To avoid a latency penalty which would otherwise be

created upon head or track Switches due to the time required
to Settle on the new track, it is well known in the art to use
cylinder and head skewing between disk Surfaces and tracks
of a data recording disk drive.

In accordance with the present invention, a technique is
provided for implementing this skewing by adjusting the
value in data sector counter 716 to account for the skew. The
raw (unskewed) current data sector number 752 is adjusted
by subtracting the value in Dskew Register 536 from the
current data sector number 752. This subtraction is per

5,937,435
15

formed modulo the value in NDS Register 534. The result is
the current Skewed data Sector number which may be
provided as input 442 to Data Sector Identifier 454. Finally,
it should be noted that while this skewing technique has been
described with reference to data Sectors, it may also be used
equally effectively to implement skewing on the basis of
Servo Sector number in a manner analogous to that described
above.
V. Staggered Sector Servo
The use of a hardware-based servo modulo counter in

accordance with the preferred embodiment insures that no
latency is added for head or Zone Switches. For a Zone
Switch, the Servo Sector counter maintains count of the Servo
location. Once Servo and data modulo Values of m and n are
changed, the Section length and data Sector number will be
correct. Similarly, for a head Switch, once the Servo count is
correct, the remaining values follow.

For a disk drive which implements a Staggered Sector
Servo approach, the Servo counter value must be set properly
following a head Switch in order to account for the Stagger
ing. FIG. 8 illustrates, in cross-sectional view, a Staggered
Sector Servo disk drive. The disk drive is generally desig
nated 802, and includes spindle 804 and disks 806, 808 and
810. The locations of the servo sectors are shown Schemati
cally as black rectangles in two groups 820 and 822. The
Servo Sectors are not vertically aligned, rather they are
arranged diagonally to permit the Servo writing of all
Surfaces of the disk drive in a Single pass write per track.
After using one head to write a Servo Sector on one Surface,
the next head (on the next Surface) is activated and a servo
Sector is written there, allowing multiple Surfaces to be
written in one revolution, decreasing the Servo write time
and cost.
To write a Staggered Sector Servo pattern in accordance

with the present invention, the Servo Sector counter must be
Synchronized with the Servo Sector numbers on the Surface
being Switched to. This function may be accomplished by
writing a Subset of the servo Sector number (possibly the
entire sector number) into the TID information in position
field 346. Alternatively, servo sector counter 414 may be
updated based on a lookup table containing the Stagger
offsets. In the former case, the Servo Sector number read
from the servo sector is decoded by AM detector 412 and
passed to safety logic 416. Safety logic 416 uses this value
to update Servo Sector counter 414.

For example, the entire Servo Sector number may be
encoded in the TID. Following a head switch, safety logic
416 uses the read value to preload servo sector counter 414,
ensuring Synchronization. In the lookup table case, a table of
offsets is kept which is used to increment or decrement the
value in Servo Sector counter 414. An exemplary table is
shown at 840. The table comprises 3 columns, head shift
842, servo sector counter offset 844 and servo timing
adjustment 846. Upon commencement of a head Switch, the
head shift value (plus being down, minus being up) is used
to look up the Servo counter offset and timing adjustment.
Offset values 844 are used to increment or decrement servo
Sector counter 414. Timing adjustment values are used by
timing logic 420 to adjust for the new servo Sector positions.
For convenience, the values in column 846 are listed as
fractions of the Servo-to-Servo Spacing. Thus, for example, if
the current head is on the lower Surface of disk 806, and a
head switch to the upper surface of disk 810 is desired, the
head Switch value would be +3. From lookup table 840 the
Servo Sector count increment would be 0, and the Servo
Sector timing adjustment would be /2 of the Servo-to-Servo
spacing. The table construct shown in FIG. 8 also allows for

5

15

25

35

40

45

50

55

60

65

16
more general offsets, Such as skewing the indeX from Surface
to Surface. This would result in a unique value for each head
shift value. Further, the table may be used in conjunction
with encoding the servo sector number in the TID to add a
further degree of reliability to the system. Of course, this
table may be stored in RAM or any other appropriate
medium.
VI. Converting from LBA to ZCHS
AS discussed previously, in order to find a requested data

Sector on a disk a received logical blockaddress (LBA) must
be converted into a Zone, cylinder, head, sector (ZCHS)
value. In general, this involves first converting the LBA,
which is the user identifier for the data Sector, into a physical
blockaddress (PBA) which is a mapping of the LBA into the
physical space of the disk drive. The aforementioned Hetzler
application (07/727,680) teaches the use of a defect map and
a basic process for performing the LBA to PBA mapping.
However, since the LBAS for neighboring defects share
most of their high order bits, much of the information stored
in the defect map is redundant, Serving only to hamper
performance and unnecessarily occupy RAM. The present
invention includes a particular map which removes the high
order bits of each LBA to minimize the bits required in
representing each defect. The map takes account of skip
SectorS allocated on the disk, either due to defects or sparing,
with use of a minimum amount of RAM and in a fashion that
increases the performance of the disk drive.
The map is implemented as a pair of tables known as a

virtual track (VT) table-which contains entries represent
ing the mostly redundant high order bits of the LBA and
a virtual sector (VS) table-which contains entries repre
senting only the low order bits of the LBA-. The output of
the VT/VS table access, the PBA, is then located in a Zone
conversion table in order to develop coefficients for use in
computing the cylinder, head, and Sector at which to perform
the desired operation on the requested data Sector. Thus, two
conversions are used, the first of which removes Skip Sectors
and the second of which provides the appropriate ZCHS
value. The invention reduces the Storage required for con
version to either two or one bytes per entry plus an offset
based on the drive capacity and choice of one or two byte
entry. The invention further reduces the magnitude of the
Search required to locate an LBA and thus the performance
impact of the Searching process.
Shown in FIG. 9 is the LBA to PBA mapping architecture

which forms the basis for the LBA to PBA portion of the
conversion process. In particular, the figure shows the LBA
represented in binary form at 904, virtual track table 906,
virtual sector table 908, and defect spare table 910. As
shown at 904, the LBA as received from the disk drive
interface is first subdivided into two sections. The full length
of the LBA in bits, shown as A, includes the number of bits
in the high order portion required to hold the Virtual track
number, designated as B, as well as the number of bits
required to hold the Virtual Sector number, designated as C.
A virtual track is defined as a contiguous Set of data

sectors which have exactly 2 good data sectors. A virtual
track may contain both good Sectors and Skip Sectors or
alternatively it may contain only good Sectors. All virtual
tracks are contiguous with one another Starting from a
defined virtual track of Zero at the beginning of the disk
drive and running through the entire disk drive. Sub Spaces
of the disk drive may also be mapped separately in the same
manner. The virtual track number may be obtained from the
LBA either by simply tapping the high order bits of the LBA
or by logically shifting the LBA to the right by the quantity
A-B shifts. A virtual Sector is defined as a good Sector

5,937,435
17

contained within a virtual track. There are 2 different
virtual sector numbers available. Thus, all virtual sectors
within a virtual track are numbered consecutively Starting at
the first good Sector in the track and ending at the last Sector
in the track.

Given a Subdivision of an LBA into a virtual track number
and a virtual Sector number, the virtual track number is
referenced into virtual track table 906 in order to obtain an
index point into virtual sector table 908. The index point is
used as a starting point in VS table 908 at which a sequential
Search is commenced, which Search continues until a virtual
sector number which is higher than the searched-for virtual
Sector number is located in virtual sector table 908 or the
index exceeds the entry for the next virtual track. Once the
appropriate entry is found, the PBA is computed as the
received LBA plus an index into VS table 908 corresponding
to the final Search entry.
VT table 906 contains an entry corresponding to every

virtual track in the disk drive. Each entry is at least B bits
wide and contains a pointer into VS table 908. The arrange
ment of the table thus gives each entry two meanings. First,
the entry value identifies the total number of skip data
Sectors prior to the virtual track represented by the entry.
Second, this Same value represents the correct entry point
into the virtual Sector table at which the Skip Sectors are
listed for the virtual track number represented by the entry.
In operation, VT table 906 is entered by indexing into it
according to the value of B, the virtual track number,
obtained from entry 904. The value found at the determined
index point is then added to the start of VS table 908 to
locate the first skip Sector associated with the applicable
Virtual track.

Unlike VT table 906, VS table 908 does not contain an
entry for every virtual Sector on the disk drive. In contrast,
VS table 908 need only contain entries for skip sectors
(defective Sectors and/or spare first Sectors). Each entry in
VS table 908 corresponds to the good virtual sector follow
ing skip sector. As discussed above, VS table 908 is entered
at the index value established through use of VT table 906.
Starting at that index value, a Sequential Search is conducted
against the value of the C bits received from the low order
of LBA value 904 until a virtual sector number is located
which is greater than the value obtained from the low order
C bits of 904. This greater-than virtual sector number
establishes the number of Skips which must be passed in
order to arrive at the correct virtual sector number. An offset
value which is equal to the offset into virtual sector table 908
of the first entry which is greater than the Sought-after virtual
Sector number is added to the LBA to arrive at the PBAvalue
unless the next virtual track Starts where the indeX is, in
which case this offset/index is added to the PBA value.
DS table 910 contains an entry for each entry in VS table

908. The purpose of DS table 910 is to distinguish the virtual
sector entries in VS table 908 as either corresponding to
defective data Sectors, also known as bad blocks, or to Spare
data Sectors, also known as Spare blockS. In the preferred
embodiment, DS table 910 comprises a single bit entry
corresponding to each entry of VS table 908, wherein the
polarity of the bit in each entry is used to distinguish
between bad blocks and spare blocks. It is to be noted that
an advantage of DS table 910 is that this table does not need
to be resident in RAM Storage except during reassignment
operations. Reassignment operations occur when grown
defects develop during use of the disk drive, at which time
Spare Sectors are reassigned as active Sectors, and the
defective active Sectors are reassigned as Skip Sectors. Part
of the reassignment operation involves changing bit values

15

25

35

40

45

50

55

60

65

18
in DS table 910, in addition to various values in VT table 906
and VS table 908. Of course, in order to change values in DS
table 910, this table must be resident in RAM accessible to
the microprocessor. At all other times, DS table 910 need not
be resident or readily accessible to the disk drive electronics,
because there is no requirement that the electronics deter
mine whether a sector identified in VS table 908 is bad or
Spare; rather it is only necessary for the electronics to
determine that the Sector is a skip Sector.
Shown in FIG. 10 is a flowchart illustrating the LBA to

PBA conversion computations. The conversion computa
tions perform three basic functions. First, they set the
bounds on the search to be conducted through VS table 908.
This is accomplished by examining the Virtual track number
entry identified in the LBA along with the Succeeding virtual
track number entry in VT table 906 to establish starting and
ending offsets in the Virtual Sector table. Second, once the
bounds of the Search are Set, the conversion proceSS Sequen
tially searches through VS numbers in the VS table until its
position in the table corresponds to the Starting point of the
next virtual track (that is, the upperbound of the Search) or
a VS table entry greater than the C bits is found. Third, as
a criterion of the Search, each virtual Sector number in Virtual
sector table 908 must be greater than or equal to its prede
ceSSor unless a virtual track boundary is crossed, at which
point Searching is ended.
With particular reference to FIG. 10, the variable D is

taken to represent the quantity A-B, where A is equal to the
number of bits in the LBA while B is equal to the number
of bits in the virtual track number. Thus, D corresponds to
the number of right-hand shifts of the LBA required to
obtain the virtual track number. The variable E represents
the quantity 2-1, where c is equal to the number of bits in
the virtual sector number. Thus, E simply provides an AND
mask for use in determining the Virtual Sector number. It is
to be noted that the values of D and E are established
according to System parameters. For instance, Since most
modern microprocessors handle bits in multiples of 8, it may
be desirable to establish D and E So that all values are
provided in multiples of 8 bits. Finally, p refers to the present
offset in the virtual sector table.
The flow chart of FIG. 10 is entered at 1004, where VTN

is set equal to the LBA shifted right by a quantity of D bits.
Next, at 1006, the virtual sector number is set equal to the
LBA anded with E. Thus, at this point the logical block
address has been Separated into its virtual track number and
virtual sector number components. Next, at step 1008, the
present offset into the Virtual Sector table is Set equal to the
value found in the virtual track table at the virtual track
number offset. This establishes a starting point for further
searching in the virtual sector table. Next, at step 1010, the
value of E is set to the next virtual track number (the upper
bound of the search to be executed on the virtual sector
table).
At 1012, a loop is entered in which a test is performed to

determine whether the end of the virtual track has been
reached. It is to be noted that if this case occurs on the first
iteration through the loop, the result would indicate that the
present track contains no defective Sectors. If the end of the
track has not been reached, at 1014 a Second test is per
formed in which it is determined whether the virtual sector
being Searched for Still exceeds the virtual Sector entry being
tested in the virtual sector table. If the result of the test is
positive, this indicates that the Sought after indeX has not yet
been located. In this case step 1016 is executed to increment
the present offset into the virtual sector table to the next
virtual sector table entry. After this, control is returned to the

5,937,435
19

beginning of the loop at 1012. If the result of the virtual
Sector number comparison conducted at Step 1014 is
negative, this indicates that the Sought-after virtual Sector
index has been located in the virtual sector table. The effect
on the flow control is the same as if the end of the track is
detected at step 1012, and results in entry to step 1018. At
1018, the search is finalized by setting the PBA equal to the
LBA added to the value of the present offset in the virtual
sector table. Finally, the process is exited at 1020.
An important advantage is achieved through the use of

overlap between certain portions of the Virtual track number
and the virtual sector number. This overlap feature can be
seen in the definition of the LBA shown at element 904 in
FIG. 9 with reference to the B bits and C bits defining the
Virtual track number and the virtual Sector number, respec
tively. When Such an overlap is present, a portion of the
Virtual Sector number corresponds to the least Significant bits
of the virtual track number. This overlap is intentionally
provided in order to improve the mapping efficiency from
the LBA to the PBA. The overlapping bits between the
Virtual track number and the virtual Sector number give the
Virtual Sectors the ability to distinguish between adjacent
and nearby virtual tracks without having to refer back to the
virtual track table. The amount of overlap between the
virtual track number and the virtual sector number estab
lishes the quantity of virtual tracks that may be distinguished
from one another using a single virtual Sector number. Since
the entries in the Virtual Sector table occur in increasing
numerical order, So long as there is at least one skip Sector
represented in the virtual Sector table within the quantity of
Virtual tracks that can be distinguished using a single virtual
Sector number, the virtual Sector table alone can be used to
detect all changes in the virtual track number and indeed can
be further used to count the virtual track number associated
with the various entries in the virtual sector table. Thus, the
Search through the virtual Sector table may be performed
without having to revisit the Virtual track table each time a
Virtual track boundary is crossed.
A Second advantage of encoding Some of the least Sig

nificant bits of the virtual track numbers into the virtual
Sector numbers becomes apparent when computing absolute
distances between Skips acroSS track boundaries. For two
skips which are separated by one or more track crossings, So
long as the distance between them is within the resolution of
the overlap bits provided in the virtual sector, the virtual
Sector value for one skip Sector can be Subtracted from the
other to establish an absolute number of sectors between the
skips. Thus, absolute distance computations may be per
formed acroSS track boundaries also without reference to the
virtual track table.

Once the physical block address has been computed, a
second conversion takes place in which the PBA is further
converted to Zone, cylinder, head, and Sector location. FIG.
11 illustrates the Zone conversion Storage components
required to initiate the conversion proceSS in a Zone bit
recording disk drive. The table is generally designated as
1104 and is preferably stored in RAM, but may alternatively
be stored on any other convenient media. Zone table 1104
includes three columns, Zone PBA column 1110, Zone cyl
inder column 1112, and Zone sector column 1113. Zone table
1104 includes an entry for each Zone in the disk drive. The
first column of each entry, Zone PBA 1110, identifies the
starting PBA of that Zone, and is used to determine which
Zone a desired PBA is located in. Thus, the top entry in the
table would identify the first PBA in Zone 1 of the disk drive,
etc. The sought-after PBA number is compared with each
Zone PBA entry until the Zone containing the PBA is located.

15

25

35

40

45

50

55

60

65

20
The corresponding entries in Zone cylinder column 1112 and
Zone sector column 1113 are then used to perform the
conversion computations which will be described below.

FIG. 12 illustrates in flowchart form the steps which are
preformed, once the Zone conversion Storage components
have been located, to convert from PBA to ZCHS. At step
1204, the Zone table is searched for the sought-after PBA
number to retrieve the Zone PBA, Zone cylinder, and Zone
sector entries as described with reference to FIG. 11. At step
1206, Zone PBA is Subtracted from PBA to determine how
many physical blocks (Sectors) into the Zone the desired
PBA resides. APBA offset into the Zone is returned from this
operation. At 1208, the PBA offset is divided by the number
of Sectors per track. The mod, or remainder of this operation
is designated as the Starting Sector number of the data
transfer. At step 1210, the quotient of the same division
process is taken as the track offset from the Start of the Zone
at which the data transfer is to begin. At 1212, the absolute
cylinder number which starts the data transfer is computed
by dividing the track offset by the number of heads in the
disk drive to produce a cylinder offset which is then added
to the starting cylinder of the Zone. Finally, at 1214 the
remainder, or mod of the same division provided in 1212 is
taken as the Selected head for the Start of the data transfer.
At this point the process exits at 1216, having computed the
Zone, cylinder, head, and Sector at which to begin the data
transfer.
One beneficial result of decoupling the LBA to ZCHS

conversion proceSS into two stages is a two step mapping
process which Significantly reduces the number of Spares
that must be allocated across the disk drive to handle grown
defects occurring in the field. The two step LBA to ZCHS
process in turn allows the allocation of Skip Sectors to be
broken into a two step process. First, Surface analysis testing
(SAT) is performed across the entire disk drive to determine
the factory defect locations before the disk drive is shipped
from the factory. The defect locations are mapped into a
Virtual Sector table by inserting Skip Sectors in numerical
order. Also, a virtual track table is created and updated as
required by incrementing each virtual track entry following
that track in which the error is detected. Second, after SAT
is complete, Spare locations are sprinkled evenly acroSS the
disk at distances consistent with the probability of a grown
defect. It is to be noted that the probability of a grown defect,
and thus the density of Spares, may vary as a function of
position on the disk. The result is that sparing is reduced to
minimal levels.

Given the above Scheme for sparing, two alternative
embodiments for reassignment of Sectors are presented.
Both reassignment techniques are intended to map a Spare
Sector into the logical address Space of the disk drive as well
as to map the defective Sector into the Virtual Sector table
and, if necessary, the virtual track table, in order to establish
the defective Sector as a skip Sector.

For either technique the re-assignment proceSS begins by
identifying the closest available spare Sector (to be used as
the reassignment Sector). This involves accessing the DS
table and searching both forward and backward from the
entry closest to the defect until a spare entry is found. The
locations of the forward and backward entries are Subtracted
from the defect location, and the lowest absolute value result
is used to Select the re-assigned Sector. Once the
re-assignment Sector has been identified, one of the two
re-assignment techniques is applied.

Turning to the first, the original tables are left unmodified,
and a separate list of re-assigned SectorS is maintained. This
Separate list contains Sectors chosen from the Sprinkle list

5,937,435
21

which have been used as re-assigned Sectors. The list is in
the form of a map which includes a first column representing
grown defective ZCHS Values and a Second corresponding
column representing new ZCHS values. The list itself may
be organized either by LBA number or ZCHS number. If it
is organized by LBA number, it is checked before translation
from LBA to PBA. In this case, the list entries are interpreted
to indicate which LBAS are mapped out and what new LBAS
they are mapped to. If the list is organized according to
ZCHS values, then it is referenced after translation from
LBA to PBA and from PBA to ZCHS, and its entries are
interpreted to indicate which ZCHS values are mapped out
and what new ZCHSs they are mapped to. In any event,
when the defective reassigned Sector is encountered during
a data transfer operation, a Second Seek is executed to the
assigned spare location and the data is read or written there.
However, as discussed above, Since the Spares are Sprinkled
throughout the disk drive and the drive has selected for use
the Sprinkled spare nearest the defective re-assigned Sector,
the length of the Seek is minimized and performance is
thereby improved.

The Second re-assignment technique effectively replaces
the grown defective spare with the Selected re-assign spare
in the virtual track and virtual sector tables. The virtual
Sector table is modified by inserting a new Skip Sector at the
grown defect and then shifting all values between the grown
defect and the reassigned Sector. If the closest Spare is acroSS
a track boundary from the defect, the virtual track table is
also updated to indicate the pointer changes. Thus, by Simply
shifting LBAS in the virtual sector table between the defect
and the reassigned Sector, the Spare takes the logical place of
the defect and no performance degradation is experienced
thereafter.

It is to be noted that the Skip Sector conversion Schema has
the additional advantageous property of operating in the
presence of skewing without further modification. Where
skewing is in effect, prior computations which compute
Sector number are considered to be with reference to
unskewed Sectors. Conversion to skewed Sector then occurs
outside the conversion process, as was described previously.
One modification to the above-presented embodiment,

which may be useful in cases where simplified mapping is
desired, is to use a single table conversion proceSS which
maps directly from LBA to ZCHS. The table entries still
require three or four bytes as in the prior art, however the
new table construction is based on LBAS adjusted by table
location. Thus, the table contains LBAS which directly
follow a given skip. The advantage of this approach is that
the table look-up process requires only a simple Single level
Search, either Sequential or binary. The RAM requirement is
fairly Small So long as the number of Skips in the System is
kept Small. However, for large modern disk drives the
Storage requirement expands rapidly as the number of
defects increases, thereby overwhelming the utility of this
approach.

It is also to be noted that the Skip Sector mapping
technique disclosed in this Section is useful beyond the
realm of no-ID disk drives. In fact, this technique is con
sidered applicable to any disk drive in which benefit may be
obtained from knowing conclusively at the beginning of
every Seek operation exactly what the final target Zone,
cylinder, head, and Sector are. Thus, in all disk drives,
including those using ID fields and those using no ID
information, the disclosed LBA to ZCHS mapping avoids
the requirement to Slip heads in order to handle Spares and
defects. Moreover, the System leads to easy implementation
of just-in-time Seek profiles, where knowledge of the exact

15

25

35

40

45

50

55

60

65

22
Seek destination is used to plan the Seek trajectory So that the
head Settles on track just before the desired Sector arrives at
the head. Finally, the system allows for implementation of
Seek reordering including latency minimization, Since the
exact seek destination is known before Seeking.
Most importantly, it should be noted that while the above

description has focussed on partitioning the LBA into two
portions, the concept may easily be extended to three or
more partitions. For example, a virtual cylinder partition
may be added which contains neighboring virtual tracks.
This becomes advantageous as the number of Virtual tracks
becomes large, Since it reduces the amount of Storage
required for the virtual track table. Thus, in general the
mapping Schema presented above should be taken to encom
pass n-level hierarchical Storage of Skip Sectors.
VII. Conclusion
A further advantage of the preferred embodiment hard

ware design lies in its built-in power management features.
Since the Servo-modulo count block actually computes the
modulos, the System requires only a Single Servo Sector time
for initialization. The field length counters in Sector pulse
logic 421 must operate only during read and write modes,
and may be powered down otherwise. Thus, in a low power
implementation of the present invention, much of Servo
electronics 212 and formatter electronics 215 is powered
down between read and write operations. Typically, timing
logic 420 is active during this time, and generates Signals to
activate AM detector 412 and other electronics at each servo
Sector. Since the Servo Sector counter is active, a read or
write operation may commence following the next Servo
Sector. If even greater power Savings is desired, an additional
Stage may be added in which the Servo Sector counter and
asSociated electronics are powered down. In this mode, the
system must wait for an index to initialize itself if the full
servo sector number is not encoded within the TID. If it is
encoded, the System need only wait for the next servo Sector.
While the invention has been described with reference to

data Sectors which are shorter than the data regions Sepa
rating Servo Sectors, it is to be noted that the invention is
equally applicable to the opposite case-that is, a Sector Size
or Servo Spacing Selected Such that the data Sector length
exceeds the data region length. This may occur in an
implementation which uses closely-spaced Servo Sectors for
performance or other reasons. It may also occur where the
data Sector Size is chosen to be relatively large for use in
applications dealing with long blocks of information, Such
as multimedia presentations and Scientific data. The result of
the data Sector Size exceeding the data region size is that a
Single data Sector may span two or more Servo Sectors. This
is handled Seemlessly according to the invention as dis
closed above by Simply programming the register and RAM
values accordingly.

While the preferred embodiment hardware design uses a
Servo modulo counter to reduce memory requirements, it is
apparent that the Segment information may be expanded to
Store the information for an entire track. In this case, there
is no need for the servo modulo counter, since RAM 504 will
be addressed directly by Servo Sector number. Such a design
uses more RAM than the preferred embodiment, but will
have simplified hardware. The choice of designs depends on
factorS Such as circuit cost for the two implementations.
Further, the data in RAM 504 may be organized to allow
addressing by values other than the Servo Sector number.
Specifically, the data Sector number may be used to address
the table.

Further, it is to be noted that in Some implementations it
may be judged beneficial for error handling purposes to

5,937,435
23

include some portion of the LBA in each data sector. This
allows for LBA verification during read operations, but is of
no use during write operations Since the Sought-after Sector
is being overwritten rather than read. Accordingly, LBA
encoding in data SectorS is not to be considered as analogous
to ID information encoding in data Sectors. Moreover, it is
intended that the removal or exclusion of ID information as
discussed above encompasses an implementation which
removes the ID from data sectors information, but includes
the LBA.

It is also apparent that the locations of the various
functions shown in the electronicS may be altered, and that
Software may be substituted for some of the hardware shown
without departing from the Spirit and Scope of the invention.
It is further apparent that while the preferred embodiment
has been described in the context of a Zone recording format,
the invention may be applied to other complex formats
where the number of data Sectors on a track is not equal to
the number of Servo Sectors on a track, So long as the format
details are known to the disk drive. Moreover, the terms
register and RAM should be viewed as interchangeable, and
the Specific locations of the registers and RAM as unimpor
tant. For example, registers 506 and RAM 504 may be
located within RAM 217 instead of format table 422.
Finally, it should be noted that while the values and tables
described above are Stored in RAM and registers during
operation of the disk drive, they must be stored in non
Volatile Storage when the drive is not operating. Any non
Volatile Storage may be used, but it is preferred to Store the
information on the disk drive itself. The use of modifiable
Storage (i.e., the disk drive) allows for the disk drive to alter
its own format without need for external intervention.

While the invention has been particularly described and
illustrated with reference to a preferred embodiment, it will
be understood by those skilled in the art that changes in the
description and illustrations may be made with respect to
form and detail without departing from the Spirit and Scope
of the invention. Accordingly, the present invention is to be
considered as encompassing all modifications and variations
coming within the Scope defined by the following claims.
We claim:
1. In a disk drive having a data recording disk with

radially Spaced tracks and circumferentially spaced Sectors
and a head capable of reading information from the data
recording disk, a method for converting a logical address to
a physical address, comprising the Steps of:

receiving a requested logical address,
Selecting a first Subset of bits from the logical address,
referencing the first Subset of bits into a first sector
mapping table to Select a first indeX value;

referencing the first index value into a Second Sector
mapping table to Select a Search Start location;

Selecting a Second Subset of bits from the logical address,
Searching the Second Sector mapping table, Starting at the

Search Start location, until a table entry value greater
than or equal to the value of the second subset of bits
is found;

upon completion of the Search, determining a Second
index value associated with the found table entry value
wherein the Second index value represents an offset
from a physical location on the disk, and

combining the Second index value with the logical address
to obtain the physical address.

2. The method as recited in claim 1, wherein the first
Subset of bits is selected from a high order portion of the
logical address.

5

15

25

35

40

45

50

55

60

65

24
3. The method as recited in claim 2, wherein the second

Subset of bits is selected from a low order portion of the
logical address.

4. The method as recited in claim 1, wherein the entries
in the Second Sector mapping table represent any of defec
tive Sectors and Spare Sectors.

5. In a disk drive having a data recording disk with
radially Spaced tracks and circumferentially Spaced Sectors,
a hierarchical Sector map for mapping out Skip Sectors, the
hierarchical Sector map having entries arranged in groups
according to shared logical address bits, wherein an index
value associated with each entry represents an offset from a
physical location on Said disk, the groups having at least
Some of the shared bits omitted from the entries, wherein the
groups are indexed from a higher level in the hierarchy
according to at least Some of the shared logical address bits,
wherein a high order portion of a logical address Specified in
a data request received by the disk drive is used to Select an
entry in the higher level of the hierarchy, wherein a low
order portion of the Specified logical address is used to
search within the lower level of the hierarchy, wherein the
low order portion of the Specified logical address overlaps
the high order portion of the logical address.

6. In a disk drive having a data recording disk with
radially Spaced tracks and circumferentially Spaced Sectors,
a System for mapping logical block addresses around skip
Sectors, the logical block addresses having logical address
bits, comprising:

a first Sector mapping table having entries grouped
according to track identifiers associated with the
entries, each entry corresponding to a skip Sector and
being associated with an indeX representing an offset
from a physical location on the disk, the entries includ
ing a first subset of the logical address bits; and

a Second Sector mapping table having entries arranged
Sequentially according to a Second Subset of the logical
address bits, each entry comprising an indeX into the
first Sector mapping table, wherein a high order portion
of a logical address Specified in a data request received
by the disk drive is used to Select an entry in the Second
Sector mapping table, wherein a low order portion of
the Specified logical address is used to Search within an
indexed group of entries in the first Sector mapping
table, wherein the low order portion of the specified
logical address overlaps the high order portion of the
Specified logical address.

7. In a disk drive having a data recording disk with
radially spaced tracks and circumferentially spaced Sectors
and a head capable of reading information from the data
recording disk, a method for converting a logical address to
a physical address, comprising the Steps of:

receiving a requested logical address,
Selecting a first Subset of bits from the logical address,

wherein the first Subset of bits is selected from a high
order portion of the logical address,

referencing the first subset of bits into a first sector
mapping table to Select a first indeX value;

referencing the first indeX value into a Second Sector
mapping table to Select a Search Start location;

Selecting a Second Subset of bits from the logical address,
wherein the second Subset of bits is selected from a low
order portion of the logical address and the first Subset
of bits overlaps the second Subset of bits;

Searching the Second Sector mapping table, Starting at the
Search Start location, until a table entry value greater
than or equal to the value of the second subset of bits
is found;

5,937,435
25 26

upon completion of the Search, determining a Second combining the Second index value with the logical address
index value associated with the found table entry value to obtain the physical address.
wherein the Second index value represents an offset
from a physical location on the disk, and k

