Reference Manual

IBM 7750 Assembly Program Using the IBM 1401

JLIBIM

Reference Manual
IBM 7750 Assembly Program Using the IBM 1401

{ @ 1962 by_}n{emational Business Machines Corporation

N, -

N~

This publication supersedes the previously published IBM bulletin, "IBM 7750 Assembly
Program Using the IBM 1401, " form J28-0254.

Address comments regarding this publication to
Programming Systems Publications, IBM Corporation, P.O. Box 390, Poughkeepsie, N.Y.

CONTENTS

Page

INTRODUCTION 1
CODING SHEET 3
DECLARATIVE OPERATIONS 7
Storage Reservation 7

Data Definition 8
PROCESSOR CONTROL OPERATIONS 11
CTL - Control 11
Control of Storage Assignment 11
Sequence Checking 14
Control of Listing Format 15
ASSEMBLY OUTPUT 16
Program Listing 16

Error Indications in Program Listing 17
Additional Listed Output 17
Punched Card Output 18
Magnetic Tape Output 19
ASSEMBLY OPERATIONS 20
Operating Procedure 20
Processor Error Indications and Halts 20
APPENDIX A 22

List of 7750 Mnemonic Codes 22

INTRODUCTION

This manual contains a description of the 7750
Assembly Program and has been written with a view
to facilitate the preparation of programs for the IBM
7750 Programmed Transmission Control. The as~
sembly medium is the IBM 1401. That is, the As~
sembly Program runs on the 1401 and produces out-
put suitable for loading into the 7750 through the
IBM 1410 or 7000 Series Data Processing Systems.

It is assumed that the reader is familiar with the
general details and operational techniques of the
7750 Programmed Transmission Control which are
described in the IBM General Information Manual
"IBM 7750 Programmed Transmission Control, "
Form D22-6627.

MACHINE REQUIREMENTS

The 1401 system must have the following minimum
configuration:

1. 4,000 positions of Core Storage.

2., Three IBM 729 II, 729 IV, or 7330 Magnetic
Tape Units.

3. Advanced Programming Features.

4. High-Low-Equal Compare Feature.

5. IBM 1403 Printer, Model 2.

6. IBM 1402 Card Read-Punch.

ASSEMBLY FEATURES

The 7750 Assembly Program will provide the
following:

1. mnemonic operation codes for all 7750
imperative operations;

2. symbolic referencing of instructions, data,
and areas of 7750 storage;

3. pseudo-operations that are made up of two
classes:

a. declarative operations
b. processor control operations.

An imperative statement is a symbolic represen-
tation of a 7750 machine instruction. The Assembly
Program will convert each statement of this type to
a single 7750 instruction word in the object program.

Declarative statements may be of two types: data
definition, and storage reservation. A declarative
statement of the data definition type is used to de-
fine constant information for inclusion in the object
program. One or more data characters, one or
more octal words, or a specially formed word such
as a Limit Word, a Channel Word, or a Process
Word may be defined. Declarative statements of the
storage reservation type cause the Assembly Pro-
gram to reserve areas that will be used by the 7750
program, but these statements do not cause any data
to be loaded with the object program.

Processor control statements do not give rise to
any assembled output; instead, they enable the pro-
grammer to communicate necessary information to

the Assembly Program and to exercise control over
various aspects of the assembly process.

STORAGE ASSIGNMENT

Although the 7750 is a fixed-word machine, a word
may be interpreted in several ways, depending upon
its use in the program. While Instruction Words,
Limit Words, Process Words, and Channel Words
are unique entities, a Data Word contains within it
four characters, each uniquely addressable. Thus,
it is important to note that the basic unit of storage
in the 7750 is a character.

All actual 7750 addresses must be specified to
the Assembly Program as decimal numbers. In a
7750 with 4,096 words of storage, the maximum
actual address is 16383. In a 7750 with 8,192 words
of storage, the maximum actual address is 32767.
In a 7750 with 16,384 words of storage, the maxi-
mum actual address is 65535. A word is defined as
a string of four characters, the first of which must
be located at an address which is exactly divisible
by four.

The Assembly Program utilizes two counters to
control the assignment of storage. The first of
these, the Current Assignment Counter, contains
the address of the next available character location
in the current sequence of storage assignment. Each
time a character is assigned, as in certain data
definition operations, the value of the counter is in-
creased by one. When assembling an instruction or
a word definition, the program must assign a full
word of storage. The Assembly Program first
determines whether the next character available is
the first character of a word, i.e., is the address
of this character exactly divisible by four. If it is
not, the value in the Current Assignment Counter is
increased by one, two, or three until it has reached
the address of the next available word. The word is
assigned and the value of the Current Assignment
Counter is increased by four. Thus, after a word is
assigned, the address in the counter is that of the
next sequential word in 7750 storage.

There are two process control operations which
enable the programmer to affect the value of the
Current Assignment Counter. These are the ORG
and LOC statements, which are discussed in detail
below. It is important here to establish only one
fact. During the assembly, the highest value
attained by the Current Assignment Counter is re-
tained by the program when storage assignments are
made under ORG control. This value is stored in
the High Assignment Counter. The final value of the
High Assignment Counter is used by the Assembly
Program to determine the first available block for
chaining purposes.

CODING SHEET

The 7750 Assembly Program Coding Sheet (Form
X28-1625) is used for writing source program entries
for input to the Assembly Program. Each line on
the coding sheet is punched in a separate card. The
fields comprising each line are discussed below.

HEADING LINE

The space provided at the top of the 7750 Assembly
Program Coding Sheet is meant to identify and date
the program. The information entered in areas
labeled '"Program," '"Programmer,'" and ''Date," is
not a part of the source program language and is
therefore not punched in cards.

IDENTIFICATION (Columns 76-80)

This entry enables the programmer to identify his
program. This field is punched in every card of the
source program. The identification field that ap-
pears in the control card will appear in every rec-
ord of the object program.

PAGE NUMBER (Columns 1 and 2)

This two-character field provides sequencing for

the coding sheets. When page number assignments
are made, any alphameric characters may be used,
but the standard collating sequence of the IBM 1401

PNTED 1N 4 A
IBM 7750 ASSEMBLY PROGRAM SHEET
Program Poge No. . of
Programmer Date Identification
76 80
UINE LABEL Operand .
3 516 30 33 40 45 50 L] 60 5
0! 1 1 i\ 1 1 i 1 !
02 1 1 1 1 1 { 1 1
03 1 i i Il 1 i I 1
04 1 L 1 1 Il It 1 1
05 | - 1 1 i ! I 1 i
os I 1 1 1 1 { { 1
or i ! | 1 1 ! Il 1
os 1 1] 1 1 | 1 1
o9) ! ! ! | ! L |
'o |] ! ! L ! 1 !
e I L L. ! L | ! !
2] | i X 1 1 ! |
'3 1 1 L L 1 ! | |
14 | i 1 ! | I |]
'S 1 L ! 1 1 1 ! I
'8 I el [| o L ! !
' . | i ! i 1 - 1 !
'8 | | 1 ! 4 1) 1
19 1 | i 1 | 1 | 1
20 | [L I ! |] I
Lot L . 1 I | il !
| I |) 1 L I |
i 1 1 1 1 1 [i N
i L I | P 1] 1
L I 1 1. L I !
Figure 1.

should be followed. This procedure is necessary
to take advantage of the Assembly Program's auto-
matic facility for performing sequence checking on
the input program.

LINE (Columns 3-5)

This three-character field provides sequencing for
the entries on each coding sheet. Columns 3 and 4
of the first twenty lines are prenumbered. The last
five lines are unnumbered and may be used for sub-
sequent insertions. The units position of the field
is used to indicate the location of the insertion. For
example, should it become necessary to insert a
line between 05 and 06, the insertion might be num-
bered 051. Any alphameric character may be used,
but again, the standard 1401 collating sequence
should be observed. This procedure is necessary
because when the Assembly Program performs
sequence checking it does so upon both the page
number and the line number (columns 1-5) of each
card.

LABEL (Columns 6-11)

The label field is provided to enable the programmer
to assign a symbolic designation to an instruction, a
data character, or an area of core storage. This
symbol may consist of a maximum of six alphameric
characters. It must be written left-justified in the
label field. The first character must be alphabetic.
To avoid assembly errors the programmer must
ensure that every symbol used in his program is
uniquely defined, i.e., a particular symbol should
appear in the label field only once. If the pro-
grammer wants to take advantage of the header
facility provided in the Assembly Program, he
should limit the label to a maximum of five alpha-
meric characters.

OPERATION (Columns 13-16)

The three-character mnemonic operation code is po-
sitioned in columns 13-15. (For a complete list of 7750
mnemonic codes see appendix A.) If an instruction
is to be executed using an indirect address, an
asterisk (*) is placed in column 16. Otherwise this
position is left blank. See Figure 2.

OPERATION | s |
. t9 20}

LINE LABEL
3 S

o1 |COMP_
02
03

Figure 2.

4

R (Column 18)

This single character field identifies the register to
be used in the execution of an instruction. All im-
perative operations of the character manipulative
type and some of the control type require that a
register be specified. The register may be speci-
fied by either its numerical or alphabetic designa-
tion. Figure 3 lists all of the addressable 7750
registers, their alphabetic and numerical designa-
tions, and their maximum size.

7750 Program Addressable Registers

EIEEIE
Edi ~J
EEAEE
EREIEREN
2358 g N
REGISTER </|zR|=a@
NULL REGISTER! N [0 |11
X REGISTER X |1 |11
Y REGISTER Yy |2 |11
Z REGISTER z |3 |11
CHANNEL SERVICE REGISTER c |4 |11
INTERFACE DATA REGISTER D |5 9
INTERFACE CONTROL REGISTER | I | 6 8
MODE REQUEST REGISTER M |7 5

1 This is a register which always contains eleven zeros.
It may be used only for address modification, never in
the R field.

Figure 3.

S (Columns 19-20)

This two~character field indicates the size or num-
ber of bits of the register to be involved in a partic-
ular operation. Sig a decimal numher and may
range in value from 0 through 11. S should never
exceed the maximum size of the register specified
by R. IfS is a single digit, it should be placed in
column 20. It is not necessary to insert a high-
order zero. Figure 4 illustrates some uses of the
R and S fields:

LINE LABEL
3 s
01

02
03
04

{oreration

Figure 4.

RS (Columns 18-20)

Imperative operations of the storage-to-storage type
require that the address of a word in Control Storage
be specified. For instructions of this type, the R
and S fields are joined to form a single three-
character field which contains the Control Storage
address. The address is specified as a decimal
number ranging in value from 0 through 127, Any
address that is less than three characters must be
placed right-justified in the field. High-order zeros
may be omitted.

When storage-to-storage instructions are exe-
cuted in Channel Service mode, the Control Storage
word address is obtained from the Channel Service
Register, not from the instruction. However, the
programmer must insert a value in this field, A
single zero will suffice; otherwise, the Assembly
Program will indicate an error. The illustration
in Figure 5 contains some examples of the use of
the RS field:

|oreranion|
“1s 16

o Iz
o2 | [7AC)
03 g
Figure 5.

F (Column 22)

This single character field enables the programmer
to communicate to the Assembly Program that he
wants to flag the operation. A flag may be associ-
ated with any imperative operation. Its presence is
effective at object time. The flag field may contain
digits 1, 2, or 3, or it may be left blank. If the
character is 1, the contents of the Z register will
be decremented by one before the execution of the
instruction, If the character is 2, no change of
mode will be permitted to occur between the execu-
tion of this instruction and the instruction succeed-
ing it in the same mode. If the character is 3, both
of the above actions will be performed: i.e., the Z
register will be decremented and mode change will
be inhibited. If the field is left blank, none of these
actions will take place.

OPERAND (Columns 24-69)

The operand field beginning in column 24 is free-
form. It contains the address of the data to be
acted upon by the imperative command in the oper-
ation field. The address may be a decimal number,
a symbol, or an asterisk (*). If an asterisk is used,
the contents of the Current Assignment Counter will
be substituted. This field must not be left blank in

an imperative statement. It must contain at least
a zero in column 24, or the Assembly Program will
indicate an error.

Character adjustment for symbolic or asterisk
addresses may be specified. All forms of arithmet-
ic manipulation, i.e., addition (+), subtraction (-),
multiplication (*), and division (/), may be used.
The adjustment factors may be decimal numbers or
symbols. A maximum of nine adjustments may be
applied to an address. The usual rules of algebra
apply; that is, multiplication and division are per-
formed before addition and subtraction. Any re-
mainder resulting from a divide operation is
discarded. The actual address specified or the
address generated after character adjustment must
not exceed the maximum character size of the ob-
ject 7750. Figure 6 illustrates an example of ad-
dress adjustment:

LiNE LABEL

0 |

02
03

Figure 6.

The address specified in an imperative operation
may be prefixed by a plus or minus sigh. A plus
sign is equivalent to no sign at all; that is, the As-
sembly Program will generate the address as indi-
cated. However, if the address is prefixed by a
minus sign, the Assembly Program will substitute
for the generated address its complement, modulo
the indicated 7750 machine size. For example, if
the 7750 has 4,096 words of storage (i.e., equal to
16,384 characters), the address field generated in
the example illustrated in Figure 7 will be 614010 .

LINE LABEL OPERATION

01
02

Figure 7.

Address modification, where applicable, is indi-
cated immediately after the address and adjustment
field, and is separated from that field by a comma.
The alphabetic designation of the register to be used
in the modification and a decimal number specifying
the length or number of bits of the register that is
to be effective must be indicated. Figure 8 illus-
trates how address modification is specified:

[{3 LABEL
3 5|6 30
o1l
°2 CETAD
03
0 4
Figure 8.

The Branch on Test operation (BRT) presents a
single exception to the use of the operand field as
discussed above. The location to which control is to
be transferred if the test is successful is indicated
in the usual way. However, immediately following
this address is a comma and a five character field.
The first character is the alphabetic designation of
the register whose content is to be tested. The
succeeding four characters are the octal represen-
tation of the mask to be used in the test., The mask
must always be defined as four octal digits. High-
order zeros may not be omitted, The mask may
range in value from 0000 through 3777. Figure 9

UNE LABEL

Figure 9.

illustrates how the BRT operation is specified. No
R and S fields are specified for this operation. Note
that in line 02 the Z register will be decremented by
one before the test is performed.

COMMENTS

At least one blank must separate the operands from
any comments the programmer may want to include
with the statement. No blanks may appear within
the operands themselves, because the Assembly
Program assumes that all characters following the
first blank encountered after column 24 are com=-
ments, Comments appear on the assembly listing
but do not affect the assembled program in any way.
If the programmer wishes to devote an entire card
to comments, an asterisk must be punched in column
6. The remainder of the card (column 7-69) will
then be treated as comments.

DECLARATIVE OPERATIONS

Declarative statements are source language state=-
ments which present information about a program,
e.g., data description,

There are two types of declarative operations
that are used in the 7750 Assembly Program. The
first type is used to make storage reservations for
the characters, words, and blocks, and the second
type is used to define the data. A detailed descrip-
tion of declarative operations that are used to store
constants and define work areas is presented below.
A complete list of declarative operation codes is
illustrated in Appendix A.

STORAGE RESERVATION

CSS: Reserve Character(s)

This operation enables the programmer to reserve
a single character location or a series of sequential
character locations in core storage,

Label: This field may contain a symbolic ad-
dress which will reference the first
character location reserved. If more
than one character location is being re-
served by a single statement, the suc-
ceeding characters may be referenced
by using this label with appropriate
character adjustment.

Operation: CSS

This field is used to specify the number
of characters to be reserved and must
contain either a decimal number or a
symbol,

Operand:

Decimal Number: The actual number,
in decimal, of characters to be reserved
must be specified.

Symbol: A symbol equivalent to the
number of characters to be reserved
must be used, This symbol must not be
character adjusted and must have been
previously defined in the label field of a
preceding statement.

WSS: Reserve Word(s)

This operation is used to reserve one word or a
series of sequential words in core storage.
Label: This field may contain a symbolic ad-
dress which will reference the first

word in the sequence. Character ad-
justment must be provided by the pro-
grammer to reference any other words
in the sequence, For example, if a
statement reserves three words, the
second word would be addressed by the
label +4,

Operation: WSS
Operand: This field is used to specify the number
of words to be reserved in the sequence

and must contain either a decimal num-
ber or a symbol.

Decimal Number: The actual number of
words to be reserved is specified in
decimal form.,

Symbol: A symbol equivalent to the
number of words to be reserved may be
used. This symbol must not be charac-
ter adjusted and must have been previ-
ously defined in the label field of a pre~
ceding statement,

BSS: Reserve Block(s)

This operation enables the programmer to reserve
one block or a series of sequential blocks in core
storage. A block is defined as eight sequential
words, the first of which has a decimal address
which is exactly divisible by 32. When this state-
ment is encountered, and the value in the Current
Assignment Counter is not a block address, the
Assembly Program will automatically increase the
value to the next available block address.

Label: This field may contain a symbolic ad-
dress, which will reference the first
word of the first block reserved, The
programmer must use character ad-
justment to reference other words within
the area reserved, For example, if a
statement is used to reserve two blocks,
the first word of the second block would
be addressed by the label +32,

Operation: This field is used to specify the number
of blocks to be reserved and must con~
tain either a decimal number or a
symbol.

Decimal Number: The actual number of
blocks to be reserved is specified in
decimal form,

Symbol: A symbol equivalent to the
number of blocks to be reserved may be
used. This symbol must not be charac-
ter adjusted and must have been previ-
ously defined in the label field of a pre-
ceding statement.

The format of the CSS, WSS, and BSS operation
codes is illustrated in Figure 10.

Operand

AB MUST HAVE BEEN PRE A
. RESERVE NINE NORDS . s L
HARSAt+4 REFERENCE A CHARACTER WITHIN A STRING

Kt1é CHARALTER ADJUSTM ON A B 4 PDR

DATA DEFINITION

DAC: Define Octal Character(s)

This operation is used to specify a string of up to
ten constant characters as either octal numbers or
symbols.,
Label: This field may contain a symbolic ad~
dress which will be associated with the
first character of the string. If more
than one character is defined by the
statement, succeeding characters may
be referenced by using this label with
appropriate character adjustment.

Operation: DAC
Operand: This field is used to specify the constant
characters and may contain a combina-
tion of up to ien ocial numbers or sym-
bols. Each adjacent constant is sepa~-

rated by a comma, and no blank spaces
are permitted between constants.

Octal Number: The maximum size of
each octal number is 3777 (eleven binary

bits). High-order zeros may be omitted.

Symbol: When the constant character is
a symbolic address, the Assembly Pro-
gram will truncate the five low~order
bits of the symbol's equivalent sixteen-
bit binary address. The remaining
eleven high~order bits will be converted
to an octal constant which is in effect a
block address. Symbolic addresses
must not be character adjusted.

DEC: Define Decimal Character(s)

This operation enables the programmer to specify a
string of up to ten constant characters as decimal
numbers.
Label: This field may contain a symbolic ad-
dress which will be associated with the
first character of the string. If more
than one character is defined by the
statement, succeeding characters may
be referenced by using this label with
appropriate character adjustment.

Operation: DEC

This field is used to specify up to ten
decimal constant characters. The max~-
imum size of each decimal number is
2047 (eleven binary bits). Each adjacent
constant is separated by a comma, and
no blank spaces are permitted between
constants,

Operand:

Restriction on the Use of CSS, DAC, and DEC Codes

If comments or any of the operations HED, SEQ,
USQ, SPC, LST, or ULS are placed in the midst of
the above statements, such an action must be fol-
lowed by an "ORG , 2" statement, or previously
defined data may be overlayed in 7750 core storage.

Figure 11 illustrates the format of the DAC and
DEC operation codes:

Operand

3776,8LKAD

Figure 11.

OCT: Define Octal Word(s)

This operation is used to specify up to four sequen-
tial constant octal words.

Label: This field may contain a symbolic ad-
dress which will be associated with the
first word in the sequence. Character
adjustment must be provided by the pro-
grammer to reference any other words
in the sequence.

Operation: OCT

This field is used to specify up to four
octal constant words. Each octal word
may have a maximum of 16 digits.

Operand:

The low-order digit must be a 0, 2, 4, or 6 be-
cause the Assembly Program determines the correct
parity bit for the word, Each constant word must be
separated from the next by a comma. High-order
zeros may be omitted. No blank spaces are
permitted.

Figure 12 illustrates the basic format of the
OCT operation code:

0 1
0 2
0 3

Figure 12.

LWD: Define Limit Word

This operation is used to define a limit word.
Label: This field may contain a symbolic ad-
dress which will be associated with the
defined word.

Operation: LWD

Operand: This field is used to define the address,
the limit, and a decimal constant, in
exactly the same order and separated
by commas. No blank spaces are per-
mitted. The address or the limit may
be either an actual decimal address or
a symbolic address. Character adjust-
ment is not permitted. The maximum
size of the decimal constant is 2047.

CWD: Define Channel Word

Using this operation the programmer is able to
direct the processor to assemble a Channel Word.
This operation defines the address field and those
portions of the control field that may logically

be specified at assembly time.

T.abel: This field may be used to assign a
~wvmbolic designation to the Channel

Operation: CWD

Operand: This field may contain up to six oper=-

ands. They must be specified in the

following order and be separated by
commas. Blanks must not be inserted
within the operands.

Address: This may be an actual
decimal address or a symbol. Char-
acter adjustment of the address is not
permitted.

Character Length: This must be
specified as a decimal number of one
or two digits. In a regular Channel
Word this value may range up to 11.
In an Error Channel Word this value
must range from 12 through 15.

Start-Stop/Synchronous: This is either
a zero or a one, A zero indicates

that transmission over the channel is
Start-Stop. A one indicates that trans-
mission is Synchronous.

Send/Receive: This is either a zero or
a one. A zero indicates that the line is
to be set to Receive status. A one in-
dicates the line is to be set to Send
status.

Hold/Not Hold: This bit is either a zero
or a one. A zero indicates the channel is
to be set in Hold status. A one indicates
the channel is to be set in Not Hold status.
When defining Channel Words that are

to be loaded directly into Control Stor-
age by the 7750 Load Program, this bit
must be specified as zero.

Fractional Sampling Bit: If the charac-
ters transmitted over the channel con-
trolled by this word have non-integer
Stop bits, this bit must be specified as
one, Otherwise it should be omitted.

Restriction on the Use of LWD and CWD Codes

When interpreting the operands specified in these
two statements, the Assembly Program is '"position
sensitive.'" That is, the order in which an operand
is encountered determines how it is handled. There-
fore, an operand within a group must not be omitted.
It must be indicated with a zero. The only excep-
tion to this rule is that an operand or operands at

the end of a group may be omitted if the programmer
does not need to specify them.

PWD: Define Process Word

This operation enables the programmer to set the
instruction counter portion of a Process Word. The
Process Words that are defined by this operation
are those associated with Normal Mode, Out Mode,
Channel Service Mode, and Service Mode. The ad-
dress specified in the operand field is the address of
the first instruction that the programmer desires to
execute in the specified mode.

Label:

Operation:

Operand:

10

This field may be used to assign a sym=-
bolic designation to the Process Word.

PWD

This field may contain an actual decimal
address or a symbol. The symbolic ad-
dress may be character adjusted. In

either case, if the value specified is not

a word address, the Assembly Program,
in truncating the two low-order binary
bits of the address, will generate a full
word reference.

Figure 13 illustrates the basic format of the LWD,
CWD, and PWD operation codes:

|

7,0,1,0

BEGIN+24
SIN .

0372 .

PROCESSOR CONTROL OPERATIONS

Control statements are, in effect, orders to the 1401
processor which give the programmer control over
the assembly process. The 7750 Assembly Program
using the 1401 has twelve control statements, and a
detailed description of the use of these control state-
ments is presented below. A complete list of Pro-
cessor Control operations is illustrated in Appendix
A,

CTL: CONTROL

A control statement must be the first entry (card) in
a source program deck. The user must prepare this
card to specify the storage size of the processing
1401, the storage size of the 7750, the type of output
desired, and the presence or absence of the Punch
Release Feature on the processing 1401.

Label: This field is ignored by the Assembly
Program.

Operation: CTL

Operand: Column 24 - Size of 1401
Digit Core Storage Size
1 4, 000 positions
2 8, 000 positions
3 12, 000 positions
4 16,000 positions

Column 25 - Size of 7750 Process Storage

Digit Core Storage Size
1 4,096 Words
2 8,192 Words
3 16, 384 Words

Column 26 - Card or Tape Output

Digit Type of output
1 Object program card deck.
2 Object program on tape.

3 Object program on cards and
on tape.

Column 27 - Punch Release on 1401
blank = Punch Release Feature is
not present.
1 = Punch Release Feature is
present,

Columns 29-69 - Comments, if desired.

Columns 76-80 - Program identification
to be punched into every card of the ob-
ject program deck.

The basic format of the CTL statement is illus-
trated in Figure 14.

NOTE: If the CTL card is missing from the
source deck, the processor will indicate an error
condition and continue the assembly by assuming
the minimum machine configuration for both the
1401 and the 7750. In such a case the processor
will provide only card output.

CONTROL OF STORAGE ASSIGNMENT

An ORG or LOC statement is used whenever it is
desired to alter the sequence in which storage as-
signments are made by the processor. At the be-
ginning of a source program assembly, both the
Current Assignment Counter and the High Assign-
ment Counter are set at the first available word
location in Process Storage following the area re-
quired by the 7750 Load Program. The actual ad-
dress value used is 600 which is equivalent to
word address 226g. If the first statement of the
source program is not an ORG or a LOC statement,
storage assignments will be made, in order, from
this reference point with both assignment counters
being updated until an ORG or LOC statement is
encountered.

It should be noted that if the programmer uses
an ORG or LOC statement that will result in the
loading of information into Process Storage in the
area occupied by the Load Program, an error will

LINE Operond g
° 4K /200, &K 7750.. 0BJECT LROGEAN
02 /22 . AND NO PUNCH RE/EASE . 8
03 :
Figure 14

11

be indicated on the assembly listing, However, if
the programmer desires to load information into
Control Storage using the pseudo-operations CWD
or PWD, such specifications must be preceded by
an ORG or LOC statement which will reset the Cur-
rent Assignment Counter to a valid Control Storage
address. For example, if the programmer wants
to specify the Channel Service Mode Process Word,
he must set the Current Assignment Counter to
25219, the character address of the sixty-third
word in Control Storage.

ORG: Origin

An Origin statement is used to specify the storage
address at which the programmer desires the pro-
cessor to begin assigning locations to instructions,
constants, and work areas. An Origin statement
also directs the processor to retain the highest value
attained by the Current Assignment Counter in the
High Assignment Counter.

Label: This field may be used to assign a sym-
bolic designation to the address placed
in the Current Assignment Counter.

Operation: ORG
Operand: This field specifies the address which is
to be placed in the Current Assignment

Counter. The address must be in one of
the following forms:

Decimal number: An actual storage
location.

Symbol: The actual storage location
equivalent of the symbol will be used.
The symbol must have been previously
defined and must not be character ad-
justed. The symbolic address may,
however, be immediately followed by a
comma and a decimal number from 1
through 15, which specifies the number
of low-order zeros desired in the binary
address. In this case, the value placed
in the Current Assignment Counter will
be the first address equal to or higher
than the symbol's binary equivalent
which has the specified number of zeros
(1-15).

Comma and number: If column 24 con-
tains a comma followed immediately by
a decimal number in the range 1-15, the
value in the Current Assignment Counter
will be examined to determine whether

12

or not its binary equivalent contains the
specified number of low-order zeros.

If it does not, the value in the Current
Assignment Counter will be increased to
the next higher address whose binary
equivalent does contain the desired num-
ber of zeros.

Blank: If column 24 is left blank, the
present value of the High Assignment
Counter will be inserted in the Current
Assignment Counter,

LOC: Locate

The LOC operation is analogous to the ORG opera~
tion in that it enables the programmer to establish
the setting of the Current Assignment Counter and to
reference the setting of the High Assignment Counter.
Unlike the ORG operation, however, storage assign-
ments made subsequent to a LOC operation have no
effect upon the High Assignment Counter. The LOC
operation is particularly useful when writing pro-
grams or segments of programs that are to be sub-
sequently overlayed.

Label: This field may be used to assign a sym-
bolic designation to the address placed
in the Current Assignment Counter.

Operation: LOC
Operand: The entries that may be made in this

field are exactly the same as those for
an ORG statement.

The basic format of ORG and LOC statements
and the effects of these statements upon the Current
Assignment Counter (CAC) and the High Assignment
Counter (HAC) are illustrated in Figure 15.

URE Ladey O”n"d %
s sle ki 38 a0 Ay . L]
OREYATA A0 SET T70. 1000
o 2 : L
03 s L L L 1
o« ’ POINT HAC=CAC= {
0 5 . . 2 0 0
0 6 1 L 1 i
0 7 g n i 1 1 ,
oo l¢ 4SS A AC=1.200 =1 140
09 i A 0 /

t o 7 i i 1 L L
[N A ‘ 1 n I 1 1 /
12 SSUM OINT HAC=CAC= 1
13 - CAC SET T0 600 .)

e 3 . . s . AN
K} "B n I t L . \
Te 4SS PO A AL=668 HAC=13E

7 : CAC SET 101384 . \
) I R N ! s ! L
Figure 15

EQU: Equate and interrupt prefixing. Prefixes do not appear in
- the listing.
This operation enables the programmer to equate

two symbolic addresses or a symbolic address and Start Prefixing

an actual storage address. This statement is used

when it is necessary or desirable to reference a Label : This field is ignored by the processor.
storage location by more than one label or when the

programmer desires to assign an actual storage Operation: HED

address to a label.
Operand: A single alphabetic character, the pre-

Label: This field must contain the symbol whose fix code, must be placed in column 24.
equivalence is being defined. It must not
be blank. Stop Prefixing

Operation: EQU Label: This field is ignored.

Operand: This field must contain either a symbolic Operation: HED
address or an actual decimal address.
It should not be blank. If a symbolic ad- Operand: A blank character must be present in
dress is used, it must not be character column 24. Symbolic addresses in the
adjusted and it must have been previously subsequent statements will remain
defined, i.e., it must have appeared in unaltered.

the label field of a preceding statement.

Interrupt Prefixing
An actual address may be any decimal

number which is a valid machine address. 15 5 gection of a program is under HED control, it

o is possible to change the prefixing of a single pro-
The basic format of the EQU statement is illus- gram statement within the section. This option
trated in Figure 16. applies to symbolic address in the operand field

only. To suspend prefixing of a symbolic address,
a dollar sign ($) is placed immediately to the left of
the symbolic address in the operand field. In order
to alter the prefix character to be associated with
a symbolic address, first the desired prefix code-
a single alphabetic character-and then a dollar
sign are placed immediately to the left of the sym-
bolic address.

See the example for using prefix codes in Figure

HED: Prefix Header

This operation directs the processor to associate

a prefix code with symbolic addresses in the sub- 17.
sequent section of the program. The prefix is as- END: End
sociated with all symbolic addresses in both the —_—
label and the operand fields that have five or fewer The last entry of the source program must be an
characters. Any six-character symbolic addresses END statement. This statement signals the pro-
will remain unaltered. It is possible to start, stop, cessor that all the source program entries have
[m g§ 5 Operond
3 24 30 £1] 40 8, 00w [(] []
! LT . START. PREFINING . . .
02 D 11aLP44 BOT BOLI.C ADDRE PREFINED
o2 BRI, ADDR 1S MOT PREFIXED

0 4
0 S
0 6

| |BSAREA | ARER PREFIXED BY B L
. STOP PREF/XING .

DATA . DATA iS5 NOT PREFINED | 4

1
1
1
i

o ALPHA ADDRESS DIFFER FROM THOSE ON. L4
os $ENTRY, PREFIXED., WILL PRANCH JD. LINEZ
o9 i L)3 1 1 i 1 1

Figure 17

i3

been read. It also causes the processor to generate
a special transfer card. The transfer card is used
by the 7750 Load Program to begin object program
execution automatically after the entire program
has been loaded into core storage. The Load Pro-
gram accomplishes this by branching to the address
specified in the operand field of the END statement.
Since the Load Program is executed entirely in
In Mode, the transfer address specified by the pro-
grammer should be the address of the instruction
in the object program which causes the 7750 to leave
In Mode. The execution of this instruction will ac-
complish two things. First, it will cause the In
Mode Process Word Instruction Counter to be reset
to the first address of the In Mode program. Sec-
ond, it will cause the 7750 to revert to Normal
Mode. The Normal Mode Process Word Instruction
Counter should be specified to contain the address
of the first instruction the programmer wants exe-
cuted in Normal Mode.
Label: This field is ignored by the Assembly
Program.
Operation: END
Operand: This field must contain either a symbolic
address or an actual address. It must
not be blank. A symbolic address must
not be character adjusted and must have
been previously defined. An actual ad-

dress may be any decimal machine
location.

EXE: Execute

During the loading of the object program it may be
desirable to discontinue the loading process tem-
porarily to execute the portion of the program just
An EXE statement performs this function.
An EXE statement in the symbolic program
causes the processor to generate a special transfer
card. This card, when recognized by the 7750 Load
Program, will cause it to halt the loading process
and execute a branch instruction. The branch is

1nadad
10alUTGe

To continue the loading process after the desired
portion of the program has been executed, the pro-
grammer must provide, as the last instruction of
the portion executed, a branch back to the load
routine,
Label: This field is ignored by the Assembly
Program.

Operation: EXE

Operand: This field must contain either a sym-
bolic address or an actual address. It
must not be blank. A symbolic address
must not be character adjusted and must
have been previously defined. An actual
address may be any decimal machine
location.

Figure 18 illustrates the basic format of the EXE
and END statements .

SEQUENCE CHECKING

Unless instructed otherwise, the Assembly Pro-
gram will perform a sequence check on the page
number and the line number fields (columns 1-5) of
each input card. The 1401 collating sequence is
used. While performing this operation, if a card is
discovered to be out of sequence, an error will be
indicated on the program listing. This error is
meant to alert the programmer to the possibility
that a card may have been misplaced in the source
deck; however, a sequence error has no effect upon
the processing of the input statement,

USQ: Suspend Sequence Checking

The processor automatically checks page and line
numbers to determine whether the source cards
are in sequential order. If the programmer de-
sires the Assembly Program to suspend this check-

ing operation, he should use the USQ operation.

made to the address that is in the operand portion of Label: This field is disregarded by the proces-
the EXE statement. sor,
ung LABEL Lorenstion Operand

[t S|6 30 38 40 45 50

°! 3000 ., ACTUAL ADDRES

02 . TART . _SYMPOLIC, ADDRESS

03 : 1 1 1 1 1

Figure 18

14

Operation: USQ

This field is ignored by the processor
when processing an USQ entry. It may
be used for comments.

Operand:

SEQ: Resume Sequence Checking

If the Assembly Program had been instructed to
suspend sequence checking of the page and line
numbers, the operations may be resumed by insert-
ing an SEQ entry. Checking will resume on the
next card. It is not necessary to insert an SEQ
entry at the beginning of the source program deck
because the processor automatically begins se-
quence checking.

Label: This field is disregarded by the Assem-~

bly Program.
Operation: SEQ

The operand field is ignored by the pro-
cessor. It may be used for comments.

Operand:

CONTROL OF LISTING FORMAT

The processor automatically produces a combined
listing of the source and object programs in single
space format, skipping to a new page when the pre-
vious page is filled. It is possible to alter or inter-
rupt this listing by using the operation SPC (Spacing
Control), ULS (Suspend Listing), and LST (Resume
Listing).

SPC: Spacing Control

The normal format of the listing may be altered by
including SPC statements in the source program

deck.
Label: The processor ignores this field.

Operation: SPC

One of the following entries must be
made in column 24.

Operand:

Digit Action

0 Double space the listing from
this point forward.

Blank Resume single spacing from this
point forward.

1 Skip to a new page at this point
in the listing. Listing will then
continue in the previous mode of
spacing.

ULS: Suspend Listing

This operation enables the programmer to suspend
the listing of any section of a program. When this
operation is encountered in the source program the
processor will discontinue the listing from that
point forward.

Label: This field is ignored.

Operation: ULS

Operand: This entire field may be used for

comments.

LST: Resume Listing

With this operation it is possible to resume the
listing of a later section of the program following
a section which is under the control of a ULS
operation.

Label : This field is ignored.

Operation: LST

Operand: This entire field may be used for

comments.

15

ASSEMBLY OUTPUT

The Assembly Program produces as output a pro-
gram listing and the assembled program punched in
cards or written on magnetic tape. The program-
mer instructs the Assembly Program as to whether
the output is required on tape or in cards. If the
output is desired on both, this can be obtained.

PROGRAM LISTING

The Assembly Program prints one (and sometimes
more than one) line of output for each source state-
ment in the program unless instructed otherwise.
Each line of the listing is divided into nine fields.
The names of these fields are listed at the top of
each page. They are from left to right as follows:
Locn, Field Defined Word, Actual Word, Pgin,
Label, Op, RS, F, Operand. The first three fields
are in octal notation and contain information about
the assembled statement. The contents of each of
these fields is discussed below. The last six fields
duplicate the information on the source statement
card and are self-explanatory.

Locn

This field contains the octal address of the location
at which the assembled word will be positioned in
7750 storage. Although all actual addresses are
specified to the Assembly Program as decimal num-
bers representing character locations, they are
converted by the program to octal word addresses
with character positions within the word suffixed if
necessary.

For example, the decimal character address
8176 is equivalent to the octal word address 3774.
This is also the octal address of the A character in
that word. The B character of the word is indicated
ag octal 3774-1, Its equivalent decimal character
address is 8177. The C and D characters of the
word are indicated as octal 3774-2 and 3774-3.
Their respective decimal addresses are 8178 and
8179.

For all imperative statements and data definitions
of full words, the Locn field will contain only the
octal word address. When listing character data
definition statements, if the first character defined
is not located in the A character of a word, the octal
word address with the character position suffix will
appear in the Locn field.

Field Defined Word

This field contains the contents of the assembled
word. The contents of this assembled word are

16

divided into subfields according to the type of word
being used, and these subfields are listed in octal
form. There are six possible word formats. Figure
19 illustrates them and identifies the various sub-
fields in each format.

Instruction Word
Address R S ™M L F
XXXXX-X X XX X

Operation
XX X XXXX

BRT Instruction Word

Address Mask M F Operation
XXXXX=X XXXX X b4 0544
Data Word

A B C D
XXXX XXXX XXXX XXXX

Limit Word
Address Limit D
XXXXX~X XXXXX~X XXXX

Channel Word
Address

XXXXX=X

Control
XXXXXXX

Process Word
Instruction Counter
XXXXX

Figure 19

Actual Word

The Actual Word field contains the sixteen octal digits
which represent the assembled word. These sixteen
digits in cards or on tape are the output for subse-
quent loading into the 7750. Whereas the Field De-
fined Word represents only those portions of the
word defined by the programmer, the Actual Word
indicates the entire contents of the word including
the parity bit. Since the Actual Word represents
the entire forty eight bits of the binary word divided
into sixteen sequential groups of three (each three
bits represented by a single octal digit), it usually
bears little resemblance to the Field Defined Word
whose subfields are based upon the binary word di-
vided into its logical groupings. The following ex-
ample is offered as an illustration:

Source Statement
Field Defined Word
Actual Word

LOD* X09 1 22094, Z7
12623-2 1 11 3 071 3312
2544 7014 4335 6624

Field Defined Word

1 2 6 2 3 -2

0101011001001110000:.)11

1

Actual Word
Figure 20

As a further illustration see Figure 20 and note
how the two octal forms representing the word are
derived from the binary word.

ERROR INDICATIONS IN PROGRAM LISTING

Whenever an error is detected anywhere in a source
statement, a pound sign (#) will be printed on the
listing to the left of the Pgln field. This is the gen~
eral error indication. The Assembly Program will
further attempt to pinpoint the error by placing a
pound sign immediately to the left of the particular
field or fields that are in error. The chart below
lists the specific error being indicated when a pound
sign is associated with a particular field.

1

4 4

3 0 7 1 3 3 1 2

Ay Ay Ay Ay A Ay A A A A
100100011011101110110010100

3 3 5 6 6 2 4

ADDITIONAL LISTED OUTPUT

Several different types of messages and error in-
dications may be printed out prior to or during the

actual program listing.

The following is a list of

messages and a brief description of their meaning.
Messages 1,3,4,10, and 11 (indicated with an *
sign) will always appear in the listing. The rest of
the messages, i.e., 2,5,6,7,8, and 9 will appear
only when the indicated error occurs.

*1.

One of the following messages must appear in

the listing:

Field Error Indicated

Locn An ORG or LOC statement has directed
the processor to assemble words which
when loaded will overlay the Load Program.

Pgln A sequence error has been detected.

Label Label contains an invalid character.
Label is multi-defined.

The CAC setting has exceeded maximum
specified 7750 size. Storage assignments
are made modulo the specified size.

Oper Invalid operation code.

RS RS specification necessary, but omitted.
RS specified, but not valid for this
operation,

Invalid R specified.
S specified exceeds maximum size of R.

F Flag invalid in this operation.

Operand Operand omitted.

Invalid character(s) in operand.
Multi-defined symbolic operand.
Undefined symbolic operand.

Too many terms in operand.

Address adjustment specified, but invalid
in this operation.

*3

4K 1401, 8K 7750, OUTPUT ON CARDS AND
TAPE

Explanation: A message of this type lists the
information obtained from the CTL card which
is to be applied during this assembly run.

CORRECTED CONTROL CARD 4K 1401, 8K 7750,
OUTPUT ON CARDS AND TAPE

Explanation: A message of this type indicates
that one or more of the controls specified was
invalid. The processor assumes the minimum
case for such a specification and lists it accord-
ingly.

NO CONTROL CARD ASSUME 4K 1401, 4K 7750,
OUTPUT ON CARDS ONLY

Explanation: This message will appear if the first
card of the source program deck is not the CTL
card.

. NO END CARD

Explanation: This message is printed if no END
card is found in the source program deck. The
program creates an END card by assuming a
transfer address of 00000.

.INSTRUCTION COUNT xxxx
Explanation: This message indicates the total

number of imperative statements in the source
program.

*4,LABEL COUNT xxxx

ML specified, but invalid in this operation.

Invalid M specified.
L specified exceeds maximum size of M.

Explanation: This message indicates the total

number of labels that appear in the source

program.

17

5, MULTI-DEFINED SYMBOL IN PPO (Image of

statement in error)

This message is printed for either of these reasons.
Explanation: (1) This is produced if the processor
discovers that a symbolic operand used in aprin-
cipal pseudo-operation, i.e., CSS, WSS, BSS,
ORG, LOC, EQU, EXE, END, has been defined
more than once. All subsequent definitions of the
symbol after the first are considered errors.

(2) If a multi-defined symbol is discovered in the
PPO table, any principal pseudo-operation which
uses this symbol as an operand will cause the
printing of this message.

6. UNDEFINED SYMBOL IN PPO (Image of State-
ment in error)
Explanation: If a principal pseudo-operation with
a symbolic operand is encountered and the oper-
and's actual equivalent is not found in the PPO
table, this error will be indicated.

7. 7750 OVERFLOW (Image of statement currently
being processed)
Explanation: If the Current Assignment Counter
should attain a value greater than the size of the
object 7750, this message will be printed.

8. MULTI-DEFINED SYMBOL (Image of statement
in error)
Explanation: Should more than one definition of
a single symbol be encountered during processing,
all but the first will be treated as errors and this
message will be printed.

9. UNDEFINED SYMBOL (Image of statement in
error)
Explanation: Should a statement contain a sym-
bolic operand which has not been defined in the
label field of another statement, this error will

Tan 3aaAdlnadnd
VT LauLvaltcu.

*10. LOWEST UNUSED 7750 Location Is xxxxx-x
Explanation: This message indicates the octal
address of the first available character of storage
in the object 7750 after the assembled program is
loaded.

*11. AVAILABLE BLOCK STORAGE LIMITS
XXXKX —XXKXX

Explanation: This message indicates the limits
of block storage available for chaining., The first
address is that of the first available block. The
second address is that of the last block in the ob-
ject 7750. This block will not be included in the
chain set up by the Load Program since it may
be needed in conjunction with the Action Delay
Feature.

18

PUNCHED CARD OUTPUT

The Assembly Program will produce a deck of cards
containing the assembled instructions unless the pro-
grammer specifies only tape output. This deck may
be loaded into the 7750 through the computer. The
eighty-column card is divided into five sixteen-
character fields. Field I contains control information
needed by the 7750 Load Program. Fields II, III,
and IV contain the assembled words. Field V con-
tains the program identification and a sequence num-
ber. Because a zero is transferred to the 7750 as
an 8-bit and a 2-bit, all zeros in Fields I-IV are
converted to blanks before a card is punched. A
blank, when transferred to the 7750, produces the
desired configuration - three binary zero bits.

The Control Field (Field I) contains in its first
five positions the address of the location in 7750
storage into which the word in Field II is to be loaded.
This address is based upon the octal word address
listed in the Locn field for this statement. However,
where the octal word address represents fourteen
binary bits grouped 2, 3, 3, 3,3, the address punched
in the card assumes the addition of a fifteenth low-
order binary bit, always zero, and a grouping 3, 3,
3,3,3. For example, if the assembled word in
Field II is to be loaded into octal location 05374,
the address in the Control Field will be 12770.

This adjustment is necessary because of the way
the 7750 accepts information when it is being loaded.

Other characters in the Control Field indicate how
many assembled words are punched in the card,
whether they are to be loaded into Process Storage
or Control Storage, or whether this is an END or
EXE card.

Column 16 of the Control Field contains:

(a) the parity for the control word so that it
may be loaded into the 7750 (bit 1 of the
octal character); and

(b) the count (0-3) of the number of words in
the card to be loaded into Process Storage
(bits 2 and 4 of the octal character).

If the word count indicated in column 16 is zero,
no words on the card are to be loaded into Process
Storage. Column 12 should be examined next. This
contains the count (0-3) of the number of words in
the card to be loaded into Control Storage.

If both the Process Storage and the Control Stor-
age word counts are zero, the card is either an
END or EXE card. This distinction is indicated in
column 10. If column 10 contains a zero, this is an
END card. If column 10 contains a one, this is an
EXE card.

Each card may contain up to three assembled
words that are to be loaded into sequential words in
either Process Storage or Control Storage. These

words occupy Fields II, III, and IV. If a card con-
tains less than three assembled words, each of the
unused fields is filled with a blank word. A blank
word consists of fifteen blank characters and a one in
the sixteenth character. This enables the first four
fields of every card to be loaded into the 7750 with
no parity errors. An EXE card has three blank
words in fields II, III, and IV. In an END card,
field IT is a limit word which contains the available
block storage limits. This word is used by the 7750
Load Program to establish the chain of empty stor-
age. Fields IIT and IV of an END card are blank
words.

Field V is provided as a convenience for the pro-
grammer. The identification enables him to ascer-
tain quickly the program's identity. The sequence
numbers are provided for checking that the cards
are in order and that none is missing,.

MAGNETIC TAPE OUTPUT

Each eighty-character record written on tape con-
tains exactly the same information as is punched in
one card. The programmer may obtain card output
or tape output, or both.

19

ASSEMBLY OPERATIONS

CHECKING THE SOURCE PROGRAM DECK

The programmer should make the following checks
of the source program deck prior to the start of the
assembly operations in order to ensure that no gross
errors will hamper the assembly procedure:

1. The first card of the source program deck
must be the CTL card containing the proper control
information for this run. (See description of CTL
card on p. 11.) If CTL card is not the first card of
the source program deck, the processor will assume
the minimum machine configuration for both
the 1401 and the 7750 and produce only the card
output.

2. If the programmer wants the processor to be-
gin making storage assignments at a location other
than 6001 (word address 226g), the statement im-
mediately following the CTL card must be an ORG
or LOC specifying the desired beginning address.
(See pp. 11-12.)

3. If the assembling 1401 contains no more than
4,000 positions of storage, the total number of
unique symbolic operands used in the following oper-
ations - CSS, WSS, BSS, ORG, LOC, EQU, EXE,
END - must not exceed twenty.

4. Care must be taken to ensure that no symbolic
operand is undefined or multi-defined.

5, The last card of the source program deck
must be an END statement card. The address in
the END statement must be the address of the in-
struction in the object program which causes the
7750 to leave In mode. (See pp. 13-14.)

OPERATING PROCEDURE

When all of the above listed checks have been made,
the following steps may be taken to start the actual
aggsembly operation,

1. Mount the 7750/1401 Assembly Program sys-
tem tape on tape unit 1 and place the unit in ready
status. This tape must be rewound before starting.

2. Mount the two work tapes on tape units 2 and
3 and place the units in ready status. These tapes
will be rewound by the program, if necessary.

3. Place the source program deck inthe card
reader.

4. Put Sense Switch A and the I/0 Check Stop
Switch on (up).

5. Reset the machine by pressing the Start Reset
button.

6. Press the Tape Load button,

7. When the assembly process is completed,
the machine will stop at a programmed halt (oper-
ation code - BA821) with the value 0770 in the B
Address Register.

20

PROCESSING ERROR INDICATIONS AND HALTS

Control Card Errors

An error in control card specification.
Explanation: If the CTL card specifies in column
24 a processor machine size which is greater
than that of the machine being used, the program
will hang up when trying to use the additional
storage.
Action: Correct the CTL card and restart the
program,

Card Reader Errors

READER ERROR. READY DECK AND PUSH START
Explanation: If an error in Card Reader is sensed,
this message will be printed, and the program will
halt with a value of 0110 in the B Address Register.
Action: Set I/O Check Stop Switch on, re-ready
the source program deck, and press START.

NO CARDS IN READER
Explanation: If the last card is sensed at the be-
ginning of the run, this message will be printed.
The program will halt and the B Address Register
will have the value 0115.
Action: Put the cards in proper order, ready the
deck, and press START.

Tape Errors

TAPE READ REDUNDANCY
Explanation: Read Redundancy on System Tape -
If a read redundancy occurs during the loading of
any pass of the processor from tape unit 1, the
load program will halt after back-spacing the tape.
Pressing the I Address Register key will display
the value 0007 in the Storage Address Lights.
Action: Press the Start key so that the loader
may reread the record.

PERMANENT READ ERROR (Image of the record

in error)
Explanation: Read Redundancy on Work Tape -
In case the read redundancy occurs from tape
unit 2 or 3, the processor will attempt to read
the tape an additional ten times. If the read is
still unsuccessful, the program will backspace
and reread three records. I the error still
persists, this message will be printed, and the
processor will then continue further operations
as if the information had been correctly read.

Tape Write Redundancy

WRITE ERROR - 10 ERASES UNSUCCESSFUL

SHORT WRITE ERROR - 10 ERASES

UNSUCCESSFUL
Explanation: The first message will be written
when invalid information has been written. The
second message will be written when a short
length record has been written. In the event of
a write redundancy on tape unit 2 or 3, the pro-
cessor will attempt the following procedure 10
times - backspace and rewrite; if the error per-
sists, backspace, skip and erase tape, and re-
write, If the record is still unwritten, one of
the above messages will be printed and the pro-
gram will halt. Pressing the B Address Register
key will display one of the following values in the
Storage Address Lights:

Value Tape Unit
0160 2o0r3
0662 2
0763 3

Action: Press the Start key at this point, in
order to cause the processor to make 10 more
attempts to write the record. I the error still
persists, change the tape reel, and begin the
operation again,

OUTPUT TAPE END OF FILE

Explanation: End of File on Work Tapes - If
end of file is reached while the processor is
writing tape, this message will be printed. The
program will halt and the B Address Register
will display one of the following values:

Value Tape Unit
0130 2or3
0632 2

0733 3

Action: Replace the short tape reel and begin
again,

21

APPENDIX A

LIST OF 7750 MNEMONIC CODES

Following is a list of the imperative operation codes
(with their machine-language equivalents), declara-
tive operation codes, and processor control operation
statements that are used in the 7750 Assembly
Program.

IMPERATIVE OPERATIONS

MNEMONIC
TYPE OP CODE DESCRIPTION MACHINE CODE
Character LOD Load Character 1302

LOD* Load Character Indirect 1312

LOI Load Character and Increment 1332

LOI™* Load Character Indirect and 1332
Increment

LDC Load Complemented Character 1342

LDC* Load Complemented Character 1352
Indirect

LCI Load Complemented Character 1362
and Increment

LCI* Load Complemented Character 1372

Indirect and Increment

NOTE: Any of the above listed Load opera-
tions referencing the Channel Service Regis-
ter (C) will always reset the four high-order

bits.

UNL Unload Character 1202

UNL* Unload Character Indirect 1212

ULI* Unload Character Indirect 1232
and Increment

ULC Unload Complemented Character 1242

ULC* Unload Complemented Character 1252
Indirect

ucrx Unload Complemented Character 1272
Indirect and Increment

XOR Exclusive Or 1101

XOR* Exclusive Or Indirect 1111

XOI Exclusive Or and Increment 1121

XOr* Exclusive Or Indirect and 1131
Increment

XOC Exclusive Or Complement 1141

XOC* Exclusive Or Complement 1151
Indirect

XCI Exclusive Or Complement and 1161
Increment

XCr* Exclusive Or Complement Indirect 1171

and Increment

NOTE: All of the above listed Exclusive Or
operations must reference the X Register.

IOR Inclusive Or 1102

IOR* Inclusive Or Indirect 1112

101 Inclusive Or and Increment 1122

101* Inclusive Or Indirect and 1132
Increment

10C Inclusive Or Compl t 1142

T0C* Inclusive Or Complement 1152
Indirect

ICI Inclusive Or Complement 1162
and Increment

ICr* Inclusive Or Complement 1172

Indirect and Increment

NOTE: Inclusive Or Operations listed above
must not reference the Channel Service Regis-
ter (C).

IMPERATIVE OPERATIONS

MNEMONIC
TYPE OP CODE DESCRIPTION MACHINE CODE
ORP Or to Process Storage 1002
ORP* Or to Process Storage 1012
Indirect
ORI* Or to Process Storage Indi- 1032
rect and Increment
OoCcP Or Complement to Process 1042
Storage
OCP* Or Complement to Process 1052
Storage Indirect
ocr* Or Complement to Process 1072
Storage Indirect and Increment
AND And 1145
AND* And Indirect 1155
ANI And and Increment 1165
ANT* And Indirect and Increment 1175
ANC And Complement 1105
ANC* And Complement Indirect 1115
ACI And Complement and Increment 1125
ACI* .And Complement Indirect and 1135
Increment
NOTE: And operations listed above must not
reference the Channel Service Register (C)
or the Interface Data Register (D).
Address GTA Get Address 0702
Limit GTA* Get Address Indirect 0712
GTL Get Limit 0302
GTL* Get Limit Indirect 0312
GOA Get and Or Address 0502
GOA* Get and Or Address Indirect 0512
GOL Get and Or Limit 0102
GOL* Get and Or Limit Indirect o112
PTA Put Address 0602
PTA* Put Address Indirect 0612
PTL Put Limit 0202
PTL* Put Limit Indirect 0212
Storage- TAP Transmit Address to Process 0606
to-Storage Storage
TAP* Transmit Address to Process 0616
Storage Indirect
TAC Transmit Address to Control 0706
Storage
TAC* Transmit Address to Control 0716
Storage Indirect
TOC Transmit and Or Address to 0506
Control Storage
TOC* Transmit and Or Address to 0516
Control Storage Indirect
MWP Move Word to Process Storage 0206
MW P* Move Word to Process Storage 0216
Indirect
MWC Move Word to Control Storage 0306
MWC* Move Word to Control Storage 0316
Indirect
MOC Move Word and Or to Control 0106
Storage
MOC* Move Word and Or to Control 0116
Storage Indirect
Control BRA Branch 0707
BRA* Branch Indirect 0717
BRZ Branch on Zero 0704
BRZ* Branch on Zero Indirect 0714
BRO Branch on Ones 0744
BRO* Branch on Ones Indirect 0754
BRT Branch on Test 0544
CAL Compare Address to Limit 0003
CAI Compare Address to Limit and 0023

NOTE: With the single exception of BRA*, none

Increment

of the control type imperative operations listed
above may be address modified.

22

DECLARATIVE OPERATIONS

PROCESSOR CONTROL OPERATIONS

MNEMONIC MNEMONIC
TYPE OPCODE DESCRIPTION OP CODE DESCRIPTION
Storage CSs Reserve Character(s) CTL Control
Reservation WSS Reserve Word(s) ORG Origin
BSS Reserve Block(s) LOC Locate
EQU Equate
Data HED Prefix Header
Definition DAC Define Octal Character(s) EXE Execute
DEC Define Decimal Character(s) END End
OCT Define Octal Word(s) UsQ Suspend Sequence Checking
LWD Define Limit Word SEQ Resume Sequence Checking
CwWD Define Channel Word ULS Suspend Listing
PWD Define Process Word LST Resume Listing
SPC Spacing Control

NOTE: When assembling on a 1401 that has 4,000 positions of core storage, a restriction

must be observed in the use of symbolic operands in the following pseudo-operations:
CSS, WSS, BSS, ORG, LOC, EQU, EXE, END. For these operations, the total number of

unique symbolic operands used must not exceed twenty.

23

C28-6259

I

International Business Machines Caorpaoration
Data Processing Division
112 East Post Road, White Plains, New York

6579-82D VSN ul pajuiy

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	xBack

