
File Number S360-30
GC30-2007-1

Systems Reference Library

IBM System/360

Introduction to Teleprocessing

This publication provides computer applications analysts and program­
mers with an introduction to Teleprocessing. Following a historical
survey and some brief application descriptions is a review of equipment
characteristics and programming techniques. Introductory material on
two levels of IBM System/360 Teleprocessing programming support is
then presented. A bibliography and a technical glossary conclude the
publication.

PREFACE
This publication is designed to present concepts of Telepro­
cessing to persons familiar with computer applications in
the business and scientific fields, but who have not yet used
the “long distance” computing techniques and equipment.
The history of Teleprocessing introduces terminology and
developments such as real-time, multiprogramming, and
time-sharing. Present difficulties and possibilities for the
future are included.

Teleprocessing requires distinctive communication net­
works, codes, and procedures for error detection and for
control of terminals and message transmission. The devel­
opment of specialized programming techniques that can
handle the new complex applications is discussed in the sec­
tion on applications and in the final section, which deals
with the two access methods available: BTAM (Basic Tele­
communications Access Method), and QTAM (Queued
Telecommunications Access Method). A bibliography and
glossary conclude the publication.

Second Edition (July 1968)

Significant changes or additions to the contents of this publication will be reported in
subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form
has been removed, comments may be addressed to IBM Corporation, Programming Doc­
umentation, Department 844, Research Triangle Park, North Carolina 27709.

© Copyright International Business Machines Corporation 1967

Contents

INTRODUCTION .. 5
Historical Review .. 5

TELEPROCESSING SYSTEM APPLICATIONS 9
Data Collection... 9
Message Switching .. 10
Inquiry Applications .. 11
Remote Processing Applications ... 13
Special Characteristics of TP Systems... 13

TELEPROCESSING EQUIPMENT CHARACTERISTICS 15
Communications Networks ... 15
Character Codes.. 16
Error Detection Techniques ... 20
Transmission Control .. 20
Terminal Control .. 21

TELEPROCESSING PROGRAMMING TECHNIQUES 23
Allocation and Scheduling...................... 23
Buffering...24
Q ueu ing ... 25
Message Control... 26

IBM SYSTEM/360 TELECOMMUNICATIONS ACCESS
METHODS ... 29

BTAM ... 29
QTAM ... 31
Summary... 34

GLOSSARY... 35

BIBLIOGRAPHY .. 39

INDEX 7 ... 41

Illustrations

Fig. 1. IBM 1050 Data Communication System 10
Fig. 2. IBM 1030 Data Collection System 11
Fig. 3. IBM 7770 Audio Response U n it 12
Fig. 4. IBM 1060 Data Communication System 12
Fig. 5. IBM 2260 Display Station ... 12
Fig. 6. IBM 2740 Communications Terminal 13

Fig. 7. Baudot Code .. 17
Fig. 8. USASCII C o d e .. 18
Fig. 9. EBCDIC C o d e .. 19
Fig. 10. BTAM and QTAM Device Support................................... 30
Fig. 11. QTAM Organization... 32
Fig. 12. QTAM Message Flow ... 33

Introduction

This publication is an introduction to Teleprocessing con­
cepts, system applications, equipment characteristics, and
programming techniques for persons already familiar with
conventional computer applications, equipment, and pro­
gramming methods. Its purpose is to introduce the overall
capabilities of the programming support for utilizing the
IBM System/360 in Teleprocessing applications. There are
two levels of support: the Basic Telecommunications Access
Method (BTAM) and the more comprehensive Queued Tele­
communications Access Method (QTAM). This publication
provides background information for the detailed technical
material in the corresponding Systems Reference Library
(SRL) manuals concerning these two types of support.

HISTORICAL REVIEW
Although a majority of Teleprocessing (TP) computer sys­
tems have been developed relatively recently, the potential
benefits of these systems were noted by early computer
users. It is important to realize that present TP equipment
and programming techniques are not innovations but evolu­
tionary steps in the development of computing systems.

This evolutionary development has produced significant
factors in present-day TP systems. One such factor is that
much telecommunications equipment was developed long
before the modern digital computer. As a consequence,
facilities that were designed for convenient or economical
data communication are not always ideally suited to a com­
puter system. Teleprocessing demands new techniques not
required for input/output devices designed specifically as
peripheral computer equipment. Another factor is that data
is often entered into a computer directly from a terminal
unit. This direct man-machine communication requires data
validation and programming procedures not encountered in
off-line systems.

Finally, perhaps the most significant factor to computer
personnel first encountering TP applications is the unfamil­
iar technical terminology. This makes TP concepts appear
difficult and discourages many people from learning more
about them. People who have little patience with TP termi­
nology should consider the situation of a communications
expert first encountering such common computer jargon as
compiler, loader, dump, bug, and data set!

The attachment of communications equipment to digital
computers involves much more than establishing appropriate
electrical connections; it also involves a merging of the sep­
arate technologies of communications and computing. Sub­
stantial new capabilities, not previously possible, become

practical; however, to capitalize on this potential, one must
have a general understanding of TP devices and terminology
and of associated computer equipment and programming
techniques. This publication is designed to present this
additional information to persons already familiar with
computer systems.

Developments in Teleprocessing
It comes as a surprise to many that the first use of TP equip­
ment with a computer occurred before the advent of stored
program systems. As early as 1940, scientific calculations
were telegraphed several hundred miles to an electromechan­
ical calculator, and within a minute results were returned to
the distant users. Such pioneering demonstrations indicate
that there was an early awareness of the convenience of
using a powerful calculator from distant locations. It is also
worth noting that these early experiments were considered
to be more than just connecting communications terminals
to calculating equipment, to the extent that a patent was
issued on one such system. Another interesting observation
is that experimenters recognized that a calculator was fast
enough to service several remote terminals concurrently,
and, although the terms were not used then, the concept of
sharing the central calculator was a precursor of recent
advances in multiprogramming (running several interleaved
programs concurrently) and time-sharing (distributing the
resources of a computer system to a number of independent
users).

During the early part of the decade following World War II,
military planners realized that new approaches were needed
to provide an adequate air-defense system. They recognized
that vast amounts of data would have to be collected and
processed, and results returned immediately to command
personnel. These command personnel could interrogate the
system and plan effective defensive action. Here then was a
need for transmitting data from remote sensing devices (for
example, radar stations) to a central computer, processing
the data rapidly enough to influence the environment being
monitored (that is, in “real-time”), and using a man-machine
system to combine the judgment and experience of com­
mand personnel with the rapid, accurate processing of a
computer. The equipment and techniques formulated for
such systems as SAGE (Semi-Automatic Ground Environ­
ment) had a substantial influence on the evolution of
similar systems for commercial applications.

Introduction 5

The $rst commercial applications of communications-
orienteé computer systems were in industries that had
requirements for real-time control or for rapid access to
large data files. Hence, by the late 1950s, computers were
installed for controlling both industrial processes and crit­
ical time-dependent business inventories. A number of
airline reservation systems were developed. At first, these
used special-purpose, fixed-program machines to maintain
inventories of passenger-seat space available on future flights.
Soon, however, general-purpose systems were programmed
to provide more general reservation-accounting functions.
The design of the largest of these, SABRE (for Semi-
Automatic Business Research Environment), was stimulated,
as the name implies, by the earlier military systems.

These general-purpose systems required special terminal
units, separate channels to attach the communications
equipment, modified processors to protect against inadver­
tent destruction of data, additional core storage and special
drums to hold transactions awaiting processing, and large
disk files to hold the reservation data. Not only was com­
mercially available equipment extensively modified and
augmented with special devices, but also complicated,
special-purpose programs were developed to control and
coordinate the equipment complex. Developers soon recog­
nized that the programming of large Teleprocessing systems
was vitally important to system performance and reliability.
Designing and testing these complex programs proved to
require extremely competent personnel, long development
schedules, and extensive amounts of machine time for
testings

Reliability and efficiency became as important for pro­
grams as for equipment. The cost of programming
approached, and in some cases exceeded, the cost of the
equipment itself. Recognition of these factors indicated
that widespread, economical use of such systems in com­
mercial applications would require the development of:

• Computers incorporating TP features as standard equip­
ment rather than as special attachments.

• General-purpose, pretested programs to service the Tele­
processing environment.

A third phase (after the military and business applica­
tions) in the evolution of Teleprocessing systems began in
the early 1960s. Although the earliest application of com­
puters was to scientific problems, the potential of TP sys­
tems in this area went relatively unnoticed. Even though
computer equipment had become more economical and,
with the introduction of operating systems, more conven­
ient and efficient, user access to scientific computers was
not improved. In fact, individual users often were experi­
encing more inconvenience and longer turnaround time (the

interval between submitting a job and receiving results).
The influence of turnaround time upon programmer pro­
ductivity was most obvious where the results of computer
processing were needed before other work could be per­
formed. Several leading university computer centers, recog­
nizing the impact of turnaround time on user productivity,
developed the concept of providing many people with direct
computer access via numerous remote terminal units sharing
the central computer. Experienced people could apply their
knowledge and judgment directly to the formulation and
solution of complex scientific problems; inexperienced users
could program and debug problems with less detailed com­
puter knowledge.

Teleprocessing Today
The following trends summarize this historical introduction :

• TP and computing technologies have different heritages
with attendant differences in equipment requirements
and technical terminology.

• Present combinations of TP and computing technologies
are the result of trends that have evolved over the past
two decades.

• Special-purpose equipment and computer features are
being supplanted by general-purpose, communications-
oriented computer equipment.

• Special-purpose control programs are evolving into
general-purpose, communications-oriented programming
systems.

At the present stage of development, the following factors
are important:

• Direct substitution of a TP system for a conventional
computer system is no more sensible than rigid conver­
sion of a manual accounting application to a computer.
The best use of a new system is made not by doing an
old job in the same manner on new equipment, but by
rethinking the entire approach with consideration of new
capabilities.

• It is not currently feasible to satisfy all requirements with
standard products and programming support.

• However, many application requirements can be satisfied
by standard, general-purpose computer equipment.

• Also, a large number of applications can be processed/
under available operating systems augmented with
communications-oriented control programs.

6

System/360
The IBM System/360 offers a complete set of integrated
communications-oriented features:

• A compatible family of central processing units with an
interrupt facility and instruction repertoire designed spe­
cifically to meet requirements of Teleprocessing;

• A large, directly addressed, protected primary core stor­
age for holding control and application programs and
transaction queues;

• Secondary storage devices with a wide spectrum of speed,
capacity, and price characteristics;

• Several types of transmission control units to attach
communications lines to the computer;

• A broad range of terminal devices for data collection,
message input/output, and graphic display;

• A range of facilities to control and coordinate the central
processing equipment and the multiprogramming essen­
tial for TP applications;

• Two data-management access methods designed specif­
ically for Teleprocessing.

Access Methods
The two access methods for IBM System/360 TP environ­
ments are:

1. Basic Telecommunications Access Method (BTAM),
2. Queued Telecommunications Access Method (QTAM).

Both of these access methods are available under either the
full Operating System (OS) or the smaller Disk Operating

System (DOS). The two different versions of programming
support are necessary because of the considerable variation
in TP system requirements. BTAM (Basic Telecommunica­
tions Access Method) provides the programmer with simple,
efficient access to the communications environment so that
he can program terminal units in a manner consistent with
that used for conventional sequential input/output devices.
BTAM controls data transmission but it does not provide
for elaborate message queuing or for processing of the mes­
sage itself.

The other access method, QTAM (Queued Telecommun­
ications Access Method), provides all the capabilities just
mentioned for BTAM. In addition, as the name implies, it
includes facilities for queuing messages on direct-access
storage devices. It also provides complete capabilities for
data-collection and message-switching applications, among
others. Like BTAM, QTAM insulates the programmer from
most of the details of TP equipment.

BTAM and QTAM alleviate many of the problems tradi­
tionally associated with TP systems. In particular, they
largely eliminate the need to train personnel in the details
of TP equipment. With these tested packages, the program­
mer need not be as concerned with the diabolically elusive
bugs normally encountered in real-time system testing. The
net result is more reliable programs developed sooner and at
lower cost than is usually the case with specialized TP con­
trol programs. BTAM and QTAM are not panaceas; they do
not satisfy all application requirements. However, they do
provide facilities for most applications, and, with modifica­
tions, they can be extended to meet other needs.

Readers desiring more detailed information on BTAM
and QTAM may want to read the IBM System/360 Tele­
communications Access Method section of this manual
before studying the specific SRL manuals. Readers desiring
general information on TP applications, equipment char­
acteristics, and programming techniques should continue
with the next section.

Introduction 7

Teleprocessing System Applications

As already noted, the early use of TP systems in military
command and control applications was necessary since there
was no other realistic way to perform the job. In a commer­
cial situation, whether with a business or a scientific orienta­
tion, the evaluation of a TP system must include considera­
tion of several factors besides mere technical feasibility.
Justification of a TP system involves most of the same fac­
tors that must be considered in installing a conventional
computer system or converting a new application to an
installed computer. Speed, accuracy, economy, and flexibil­
ity must be evaluated as always; however, other factors
become more significant: organizational disruption, system
reliability, and personnel training, for example. It is diffi­
cult to evaluate these factors, much less to assign quantita­
tive measures to them. TP systems, however, are usually
justified by such factors as:

• Customer convenience. Brokerage firms, for example,
require rapid execution and confirmation of customer
orders.

• Inventory control. Manufacturing applications are com­
mon, but there are other “inventories”-such as airline
space availability—that can be effectively controlled by a
TP system.

• Credit Control. Central data files can provide assurance
that a customer has funds or credit approval.

• Management control. Immediate access to centralized
data files provides more timely information for control
of business operations.

• Industrial control. Computer control of key production
factors increases productivity of capital equipment (for
example, petroleum refineries).

• Equipment centralization. In collecting data from remote
sources, either intermittently (as in production data col­
lection) or periodically (as in central summarizing of
statistical data from distant branch offices), one central
computer may do the processing that would otherwise
require a separate system at each remote site.

• Innovation. Some applications are just not possible with­
out a TP system (for example, on-line debugging, text
editing, and computer-assisted instruction).

A brief survey of some common TP applications provides
the background prerequisite to a description of the equip
ment and programming characteristics of the TP environ­
ment. The remainder of this section describes applications
from the user’s viewpoint (that is, what the system does)
rather than from the engineer’s or programmer’s viewpoint
(that is, how the system operates). However, since the user
must communicate with the system by means of a terminal
device, commonly used terminal equipment is described and
illustrated.

DATA COLLECTION
The most basic form of TP application, data entry, may
involve several variations:

1. Data can be transcribed first into some medium (for
example, punched cards or paper tape) readable by the
remote terminal. The medium is then placed in the terminal
and, after contact is established with the central computer,
the terminal reads the data and transmits it to the computer,
which stores it for later processing.

The IBM 1050 Data Communication System (see Fig­
ure 1) is often used for this purpose. The 1050 can be
employed for off-line data preparation as well as for on-line
data transmission. It is a modular unit accommodating (as
can be seen in the picture) data on both punched cards and
paper tape. This form of data collection is similar to the
data-conversion operations (for example, card-to-tape) per­
formed at most computer installations. The principal differ­
ence is that the reader is a terminal device located at a
remote location rather than at the central computer site.

2. Another approach is to key the data directly on-line
to the computer, bypassing transcription to a physical med­
ium. This approach precludes manual data verification and
permits less efficient use of the communications line since
data can be read from a terminal faster than it can be keyed
manually. This manual keying can be described as “on-line
keypunching.”

3. In another variation of data collection, instead of the
terminal site contacting the computer, the computer initiates
the connection. With appropriate equipment, the computer
can dial a terminal, read a batch of data, turn the terminal
off, and “hang-up.” Computer-initiated dialing is known as
autocalling, and terminal operation without an operator is
known as unattended operation. This kind of data entry is

Teleprocessing System Applications 9

Figure 1. IBM 1050 Data Communication System

often used to gather daily operating data from remote sites.
The data is placed in the terminals at the close of the busi­
ness day, and during the night the computer “calls” the
terminals and collects the data.

Often the same facilities that are used during the day for
voice communication are used for data transmission after
business hours, when they are free of voice traffic, or, in
some instances, when lower tariffs (the rates charged by the
communication companies) are in effect.

4. Data may be sent to the computer intermittently
rather than in batches. This requires a different form of
communication with the computer since it would be imprac­
tical to contact the computer every time data is ready.
Instead, a group of terminals share a line that is always con­
nected to the computer. This is termed a multipoint line
since several terminals are connected to it simultaneously.
This line is often “private,” meaning that it is privately
owned or leased from a common carrier (a company provid­
ing communications services). Since only one terminal can
use the line at any one time, there are occasions when a ter­
minal has to wait for the line to become free. Also, there
must be some way to prevent several terminals from trying
to use the line simultaneously. Two types of control are
commonly used for multipoint lines: contention, in which
the terminals contend for the line and an interlocking mech­
anism resolves “tie” situations, and polling, in which a con­
trol mechanism invites each terminal in turn to send any
data that it has.

5. Two other varieties of data collection are often used
in industrial applications. Sometimes a process is monitored
by metering devices that automatically read out their cur­
rent settings. Another form of production data collection
uses an IBM 1030 Data Collection System (see Figure 2).
Upon completion of a job, an employee enters into the 1030
such data as his man number, the number of units produced,
and the job status. This terminal is designed to operate in
industrial environments and has special features for reading
identification badges, coded data cartridges, and numerical
counts. The computer records the time of completion,
stores the record, and later processes it for labor accounting
and production control purposes. The IBM 1030 is a good
example of a job-oriented terminal performing functions
unsuited to conventional data communications equipment.

MESSAGE SWITCHING
Data collection, as described above, involves neither on-line
processing of message data nor transmission of data from
the computer to a terminal. Message switching extends TP
system capabilities to encompass these two additional
functions.

A message-switching configuration includes a number of
terminals connected to a central computer. A message may
be transmitted from a sending terminal to one or more
receiving terminals by noting in the beginning portion of the.

10

INQUIRY APPLICATIONS

Figure 2. IBM 1030 Data Collection System

message, called the message header, one or more symbolic
addresses of the terminals to which the remaining part of
the message, called the message text, is to be sent. The
computer program analyzes the header, converts symbolic
destinations to actual terminal locations, addresses the
receiving terminal (that is, contacts it and determines if it
can receive messages), and transmits the message. If an
addressed terminal is busy sending or receiving other infor­
mation or is otherwise unavailable, the computer program
may store the message until the terminal is available, then
send it. Because of this function, message switching is often
called store and forward switching.

Notice that, in addition to both sending and receiving
data, the computer must also analyze the message header to
identify the receiving terminals. These operations, as well
as storing, or queuing (that is, placing in a waiting line),
messages until the receiving terminals become available, are
functions required for message switching but not needed in
the data-collection applications described earlier. The pro­
grammer must inform theTP program of the control charac­
ters that delimit destination locations in the header and of
means for determining the end of the header and beginning
of the text. Tables relating symbolic locations to actual
terminals must be established. In addition, the system must
provide for checking for lost messages, retransmission in
case of line errors, retrieval of earlier messages, addressing
of groups of terminals, detection of invalid addresses, con­
trol of the allocation of space for storing messages, recogni­
tion of important messages and assignment of priority, and
a number of similar operations.

In this kind of application, an inquiry entered from a termi­
nal is processed by the computer, data is retrieved from a
file, and a reply is returned to the originating terminal. It
differs from message switching in that the complete message
text (in contrast to only the message header) is usually ana­
lyzed, a central data file is referenced and maintained, and a
new message is composed for return to the original (in con­
trast to some other) terminal.

This mode of terminal-computer communication is often
termed conversational since sending and receiving operations
alternate. The time interval between the completion of an
inquiry and the beginning of a computer response is called
the system response time, typically a period of a few sec­
onds. The duration of conversations may vary considerably
since a computer response may stimulate the terminal user
to pose another inquiry. For example, if one particular air­
line flight is fully booked, the customer may be interested
in space available on flights at other times.

Inquiry applications differ greatly according to the type
of terminal employed as well as the type of central data file
employed. A few examples will illustrate this point.

Audio Response
Certainly the most widely available terminal device imagin­
able is the ordinary telephone. Although we all use it for
communication with other people, it can also be employed
for computer inquiry. A simple example is an inventory
application by which a salesman wishes to determine the
delivery period for an item.

Even while in the customer’s office, the salesman can dial
a central computer and then, using touch buttons, enter the
item number of the product. Equipment at the computer
site decodes the stock number, retrieves the associated inven­
tory record from a central file, and determines the delivery
time. Then the computer constructs a reply to the user and
issues a series of codes to an audio-response device. This
equipment obtains from its recorded vocabulary the appro­
priate spoken words and sends them to the inquiring tele­
phone. This audio response informs the salesman of the
expected delivery time. The salesman can then discuss this
with the customer and either enter the order (again via the
telephone) or make another inquiry, perhaps for some
related item.

Figure 3 shows an IBM 7770 Audio Response Unit. A
similar device, the IBM 7772, has a larger vocabulary, but
cannot service as many communication lines as the 7770.

Teleprocessing System Applications 11

Figure 3. IBM 7770 Audio Response Unit

Figure 4. IBM 1060 Data Communication System

Figure 5. IBM 2260 Display Station

Deposit Accounting
Another common inquiry system is used in savings bank
applications. A terminal specifically designed for this pur­
pose, the IBM 1060 Data Communication System, is shown
in Figure 4. Its keyboard is arranged for banking use; it
can print directly upon a customer’s savings passbook. A
typical operation involves keying in the passbook number
together with the dollar amount to be deposited or with­
drawn. This data is used by the computer to check a custo­
mer record and update it with the new balance. Concur­
rently, a message is returned to print the transaction, date,
and new balance in the passbook. Many other functions,
such as checking for overdrafts, stopping payment on lost
books, and computing interest payments, are also provided.

Information Retrieval
In retrieving information from a large centralized data file,
a user is often interested in examining an amount of data
rather than in obtaining direct responses to specific inquiries.
Consequently, there is a requirement for considerably faster
output than in the other inquiry applications described. A
visual display satisfies this requirement, and the IBM 2260
Display Station (pictured in Figure 5) is often used in
retrieval applications. The user enters a key word or a series

12

Figure 6. IBM 2740 Communications Terminal

of terms describing the area of interest. After analyzing
these, the computer retrieves abstracts of related informa­
tion and returns them to the display station.

Displaying data on a 2260 screen is faster than printing
the same data on a terminal printer. As a consequence, the
user can scan a page and, by entering new keywords, either
indicate a desire to receive another page or obtain more
detailed information on topics currently displayed. In either
case, this display is ideally suited to applications in which
a considerable volume of information must be visually
scanned. A new page of several hundred characters can be
transmitted from computer to terminal in a few seconds.

REMOTE PROCESSING APPLICATIONS
In this type of application, data entered from a terminal is
processed by system programs available under the operating
system, and results are returned later by the computer.
Unlike the applications already described, this requires no
interaction between the separate terminals, and there is little
sharing of common data files among a group of users.
Instead, each terminal user has the impression that he is the
sole user of the computer.

Text Editing
In this application, the user can enter, modify, and print
textual material. The IBM 2740 Communications Terminal
(Figure 6) is often used because it is identical in appearance
and keyboard touch to an electric typewriter. Secretaries
can use it off-line as a conventional office typewriter and
on-line to retrieve form letters or manuscript drafts, modify
them, and then direct the system to print them.

Remote Computing
Here, the user enters computer programs (in contrast to
data) for later input to any of the language processors avail­
able under the operating system. The user may build up a
library of programs, request compilations, receive results or
diagnostic data, and make program modifications.

Communication with the computer may be by any of a
number of terminals, including the IBM 1050 and 2740
already described. AT&T TWX (Teletypewriter Exchange)
service may be employed for remote computing applica­
tions, with the Model 33 or Model 35 Teletypewriter serv­
ing as the terminal unit. TWX is essentially a form of dial-up
teletypewriter service. In the past, this service was used
mostly for point-to-point communication between TWX
terminals. More recently, however, TWX has been used to
access time-shared remote computing centers.

* * * * *

Many TP applications do not fit nicely into the foregoing
categories of data collection, message switching, inquiry, or
remote processing. These classifications are intended to
represent general approaches to TP applications, to illus­
trate the wide range of capabilities in TP systems, and to
describe certain problems. This background material has
introduced some communications terminology together
with a survey of terminal equipment. The next sections
discuss more TP equipment, programming techniques, and
access methods.

More detailed information on terminal devices is con­
tained in technical reference manuals listed in the biblio­
graphy.

SPECIAL CHARACTERISTICS OF TP SYSTEMS
The reader has probably already noticed two characteristics
of the input/output data formats that are not very common
in conventional computer applications. The first is that the
header portion of a message is in “free form” ; that is, its
fields are not delimited by specific character positions, as is
usually the case with unit records. The reason for this is
that Teleprocessing systems must be designed to accom­
modate the people using them, even at the expense of added
programming complexity or decreased system efficiency.
Since it is easier for a person to enter a series of symbols

Teleprocessing System Applications 13

than it would be to enter a fixed number of actual destina­
tion codes, the message header is designed for user, as
opposed to programmer, convenience and efficiency.

A second characteristic of TP systems is that message
lengths are highly variable. In message switching, for exam­
ple, short messages containing just a few words must be
processed with long messages containing thousands of char­
acters of text. The program design must accommodate such
variations with flexibility and efficiency. This is in contrast
to the more rigid record sizes found in a majority of off-line
computer systems.

Unlike conventional batch-job applications, many TP
applications never actually end. At the end of each day’s
operating period, messages still are queued for transmission,
and the job is never completed. Instead, a “closedown” is
performed to temporarily discontinue processing until a
“startup” is initiated the next day.

Another characteristic of message switching and most
other TP applications is the fact that, because the job is
never actually completed, it is not possible simply to do a
rerun in case of a system error. Instead, vital system status
data is recorded at “checkpoints” so that job steps may be
restarted in case of error. Checkpoint/restart procedures
are complicated by the fact that a TP system is seldom
totally idle and, as a consequence, it is difficult to record

the exact status of the many concurrent tasks in operation
at any instant. Yet the importance of checkpoint/restart
procedures is apparent since users are heavily dependent on
the reliability of the central system.

Another point demonstrated by such a relatively simple
application as message switching is that the loads placed on
the system are unpredictable. At some times the system
load is light; at other times the demand for processing time
and storage space is substantially greater. The loading is
determined by the external operating environment and can­
not be dictated by the computer. Instead the programming
system must have considerable agility to be able to acquire
system resources when needed, yet not continually monop­
olize valuable computer facilities in anticipation of worst-
case contingencies.

One final TP characteristic that message switching demon­
strates is the problems of debugging the user-written control
programs. How can peak load conditions be simulated?
How are bugs associated with complex timing or queuing
conditions detected? When the system is “down” because
of equipment malfunction or program error, how are the
users informed? When the system is restarted, what data, if
any, has been destroyed? Who is affected by the loss?
Questions like these give some idea of the problems associ­
ated with the designing and testing of TP programs.

14

Teleprocessing Equipment Characteristics

This section describes the basics of TP equipment. It is
organized around the primary requirements of a TP system:

Communication networks

Character codes

Error detection
Transmission control

Terminal control

COMMUNICATIONS NETWORKS
Communications networks are composed of channels (also
called circuits or lines). There are basically two types of
networks: switched and nonswitched.

A switched network is one in which connection between
a terminal and a computer is made through common-carrier
exchange equipment. Dialing establishes a connection, and
the connection is maintained only while transmitting data.
If the computer is equipped with an automatic calling facil­
ity, it can, under program control, issue a sequence of dial­
ing digits. Otherwise, manual dialing is used at either the
terminal or the computer. Another available facility is auto­
answering whereby the answering location (the called loca­
tion) automatically responds to the originating location (the
calling location). There is also a provision at each location
to change the mode of transmission between talk mode (for
normal voice communication) and data mode (for transmit­
ting data).

A nonswitched network is one in which the lines con­
necting the computer and terminals are permanently estab­
lished. These do not require dialing and are available for
use at any time. They are also known as private or leased
lines since they are reserved for the exclusive, private use of
one customer and are leased from the common carrier on a
contract basis.

A communications line can be further classified accord­
ing to the direction in which it communicates data:

1. A line that can transmit data in only one direction is
a simplex line. A terminal that only sends input data
to a computer is termed send only, and a terminal
that only receives computer output is termed receive
only.

2. A line that can transmit data in either direction, but
not simultaneously, is called half-duplex. A terminal

on such a line is in either send mode or receive mode
(but not both).

3. A line that can transmit data in both directions at the
same time is called duplex. A terminal on such a
line can send and receive at the same time.

Transmission Speed
A line can also be classified by its speed; that is, the max­
imum rate at which it can accommodate data transmission.
This quality is sometimes expressed in terms of bandwidth:
the range of frequencies the line can accommodate.
Directly related to the bandwidth of a line is its speed capa­
bility in bits per second. A character is represented on a
communication line by a series of bits, the number of which
depends on the transmission code and transmission tech­
nique used. Each bit requires a specific amount of time on
the line, and the bit rate, expressed in bits per second, is the
reciprocal of this amount of time.

Another term frequently used to express speed capability
is the baud. To properly define this term would require a
more detailed discussion of transmission techniques than is
warranted in a publication of this scope. Because the numer­
ical value of a line’s speed in bauds and in bits per second is
sometimes the same, the two terms have come to be used
interchangeably. This is, however, incorrect, as the two
terms are not synonymous. The term baud should be
avoided, and the more useful bits per second used instead.

Many different types of channels are available, in a vari­
ety of speed capabilities. For data communications pur­
poses they may be classed as follows:

1. Narrow-band, or low-speed, lines have a bit rate of up
to 300 bits per second (bps). Included in this category
are telegraph-grade and sub-voice grade lines, which
refer to the lower speeds in the narrow-band range.

2. Voice-band, or voice-grade, lines operate at medium
speeds—over 300 bps. The term voice-grade is used
because this range can be accommodated by the cir­
cuits used for ordinary voice communication in the
audio range (frequencies that can be heard by the
human ear).

3. Wideband, or high-speed, lines operate at bit rates of
about 18,000 bps and higher. These lines often are
used for transmitting data directly from one computer
to another at very high speeds.

Teleprocessing Equipment Characteristics 15

Generally, higher line speeds require more sophisticated and
expensive common-carrier facilities, and the tariffs for their
use are correspondingly higher.

Two other measures of a line’s speed are useful: The
character rate equals the bit rate divided by the number of
bits per character, and is expressed in characters per second.
To express speed in words per minute requires that word
be defined. In communications usage a word is usually con­
sidered to be six characters: five symbols followed by a
space character. Using this convention,

, . bits per second
words per minute = rr--------- r---- :—r bits per character X 10

Note that the foregoing discussion pertains to the rated
capacity of a communication line. Actual data rates will be
lower; they depend on the sending speed of the terminals
attached to the line, and, for keyboard-entered data, upon
the keying speed of the terminal operator.

Equipment Connections
Data processing equipment is connected to a communica­
tions network by a device that goes by many names, includ­
ing modulator and demodulator unit, mod/demod, modem,
subset, and data set. Certain trade names such as Data-
Phone {an AT&T trademark) also are used. Whatever its
name, this device provides an interface or common bound­
ary between data processing equipment and communica­
tions equipment. In this publication, the term modem is
used.

Modems vary considerably according to the types of net­
works, data rates, and forms of signalling employed. How­
ever, they all are designed to convert the binary signals of
business machines to the transmission frequencies of
communications equipment and vice versa. For example,
an IBM 1050 terminal sends a sequence of bits to a modem
which converts (that is, modulates) it to an equivalent
sequence of transmission signals. At the receiving computer
site, another modem reconverts (that is, demodulates) this
signal sequence into the same bit sequence originally sent
by the terminal.

The electrical interface between data processing equip­
ment and communications equipment is defined by industry
standards. This fact, coupled with the fact that the
modulation/demodulation process is in most cases “trans­
parent” to the telecommunications equipment, means that
in actual practice, there is little need for system designers
and programmers to become intimately familiar with modu­
lation techniques.

CHARACTER CODES

Teleprocessing systems use several different methods to
represent data characters. Some of these were originally
designed for communications equipment; others are derived
from codes used for representing data on computer I/O
equipment. The codes differ primarily in the number of
bits used to represent the characters (called the level of the
code) and in the particular patterns of bit settings used to
represent the characters. A coded character may be clas­
sified as either a graphic character, representing a symbol,
or a control character, controlling a terminal function. The
number of different characters that can be coded is depend­
ent on the level of the code and on the coding scheme
employed.

In some codes, often termed shifted codes, certain con­
trol characters are used to specify the way in which follow­
ing graphic characters are to be interpreted. With such a
use of control characters, called a shift convention, each bit
pattern can represent more than one symbol. Thus, in this
type of code, the number of characters that can be repre­
sented is greater than the number of distinct bit combina­
tions. However, these codes have the disadvantage of some­
times requiring two coded characters (a shift control char­
acter and a graphic character (to represent one symbol.
Some five-level telegraphy codes have shift conventions fór
figures and letters, and some seven-level codes have such
conventions for upper and lower case.

Baudot Code
An important shifted code is the widely used Baudot code,
named in honor of a pioneer French telegrapher. It is a
five-level code and can thus represent 25 = 32 different
combinations (see Figure 7). Since this is not sufficient to
represent the alphanumeric data (the 26 letters of the alpha­
bet, 10 digits, plus special characters such as +, -, $) occur­
ring in most message texts, Baudot codes are interpreted
two ways depending on the shift status of the printing
mechanism.

When in letters shift (LTRS) the codes represent letters;
when in figures (FIGS) the codes represent digits and spe­
cial symbols. Four character codes are given the same inter­
pretation independent of shift position: blank (no bits),
delete (all bits), carriage return (CR), and line feed (LF);
two characters are used to change shifts (LTRS and FIGS).
The result, as can be seen in Figure 7, is that Baudot code
can accommodate 2 (25) - 6 = 58 different characters.
Baudot code does not have error checking, and terminal

16

S/360 Main Storage Byte
Positions 0, 1 ,2 ,3 , (0 ,0 , S, 1)

Byte Posit 'ons 0000 0001 0010 0011

(2,3, 4,5) Hex 0 1 2 3

0000 0 Blank E Blank 3

0001 1 T z 5 "

0010 2 CR D CR $

0011 3 O B 9 5 / 8

0100 4 Space S Space Bell

0101 5 H Y ♦ 6

0110 6 N F 7/8 1/4

0111 7 M X • /

1000 8 LF A LF -

1001 9 L W 3/4 2

1010 A R J 4

1011 B G FIGS f & FIGS f

1100 C I U 8 7

1101 D P Q 0 1

1110 E C k 1/8 1/2

1111 F V LTRS \ 3/8 LTRS ♦

t = Upshift character
| = Downshift character

*S bit position 0 (LTRS) or 1 (FIGS) inserted on receive
operation or deleted on transmit operations. Insertion/
deletion performed by equipment.

control is achieved by special sequences of characters.
Thus, for example, the sequence FIGS H LTRS is com­
monly used to indicate the end of a message (often abbre­
viated as EOM).

US ASCI I
The absence of checking and the limitation on the number
of characters representable in Baudot code have led to in­
creasing use of a code termed ASCII or USASCII (United
States of America Standard Code for Information Inter­
change). This is a seven-level code, thus providing 27= 128
possible characters. An eighth parity bit, though not part
of the standard, is often associated with the seven data bits.
The USASCII character set consists of 34 control codes
and 94 text characters including the letters of the alphabet
in both upper and lower case, the 10 digits, and a number of
special characters (see Figure 8).

EBCDIC
Another widely used code is EBCDIC (Extended Binary
Coded Decimal Interchange Code). This is an eight-level
code and, as the name implies, is widely used for exchang­
ing data between computer systems. It has 256 possible
combinations: 17 of these are used for control purposes,
96 are used for text characters, and the remaining code
combinations are unassigned (see Figure 9).

In addition to the dissimilarity of code structure between
the EBCDIC and USASCII codes, their collating sequences
(ordering of the binary representations of the characters)
differ. In the USASCII collating sequence, for example,
digits precede letters; in EBCDIC , digits follow letters.
Thus, the characters A, B, C, 1,2, 3 are in sequential order
(ascending) in EBCDIC, but not in USASCII.

Many TP systems accommodate several different codes
by providing for code conversion, or translation, between
different code representations. For example, data may be
received in one transmission code, converted to a code suit­
able for computer processing, and then converted to still a
third code suitable for transmission to an output terminal.

Translation tables are used to convert from one character
code to another, and special computer instructions often are
available to utilize such tables automatically. Another aid
for conversion to and from 5-bit codes is incorporation of a
shift bit along with the five data bits to form a 6-bit code,
thus eliminating the need for explicit shift characters. This
considerably simplifies internal processing since all char­
acters then are represented by a single byte (8 bits) rather
than sometimes requiring a pair of bytes.

Figure 7. Baudot Code

Teleprocessing Equipment Characteristics 17

S/360 Main Storage Byte Positions 0, 1, 2, 3, (0, h j , b^, b5)

Byte Positions 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
H, J , o, /
(b4, &>3,
*>2, b | ,)

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0 NUL DLE SP 0 (ct P
\

P

0001 1 SOH DC1 / A Q a q

0010 2 STX DC2 2 B R b r •

0011 3 ETX DC3 # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f V

0111 7 BEL ETB ■ 7 G w 9 w

1000 8 BS CAN (8 H X h X

1001 9 HT EM) 9 I Y i y

1010 A LF SUB * J z i z

1011 B VT ESC + ; K [k I

1100 C FF FS 1 < L \ 1 1
1

1101 D CR GS - = M] m I

1110 E SO RS > N . —

m i F SI US / ? O o DEL

0 1 2 3 4 5 6 7

0 b7 b6 b5 b4 b3 b2 bi

System/360 Byte

USASCII Transmission Code
(as appears in main storage)

Note:
Where two characters appear separated by a
diagonal line, the character on the left is thé
primary character, the other is an alternate *

b̂ b2 bg b ̂ b̂ b ̂ b ̂ USASCII character on Communication facility

First bit
on line

Last bit
on line

Figure 8. USASCII Code

18

S/360 Main Storage Byte Positions 0, 1 ,2 , 3, (0, 1, 2, 3)

Byte Positions 0000 0001 0010 0011 0100 0101 0110 0111 1000 100-1 1010 ' 1011 1100 1101 1110 m i
•+,0,0,/
(4 , 5 , 6 , 7) Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0 NUL DLE DS SP & - 0

000) 1 SOH DC1 SOS / a i * A J l

0010 2 STX DC2 FS SYN b k s B K S 2

0011 3 ETX TM c 1 t C L T 3

0100 4 PF RES BYP PN d m U- D M U 4

0101 5 HT NL LF RS e f V B N V 5

0110 6 LC BS ETB
(EOB) UC f o w ' F O W 6

0111 7 DEL IL ESC
(PRE) EOT g P X G P X 7

1000 8 CAN h ' q / H Q Y 8

1001 9 EM i r 2) 1 R* Z 9

1010 A S MM CC SM * j

1011 B VT CU1 CU2 CU3 $, #

1100 C FF IFS DC4 < * %

1101 D CR IGS ENQ NAK () —
i

1110 E SO IRS ACK + ; >

m i F SI IUS BEL SUB 1 —) ? "

O] 2 3 4 5 6 7 System/360 Byte

O 1 2 3 4 5 6 7 EBCDIC Structure

Transmitted and
received character

Figure 9. EBCDIC Code

Teleprocessing Equipment Characteristics 19

ERROR DETECTION TECHNIQUES
Communications circuits are subject to a variety of environ­
mental conditions not encountered in a computer system.
Some of these conditions may create electrical ‘'noise” in
the circuit and cause unpredictable errors in transmitted
data. There are many sources of noise, such as nearby high
voltage circuits, cross-talk (accidental induction between
circuits), and impulses caused by lightning strikes. Requisite
to satisfactory system performance is the ability for such
transmission errors to be detected and, where possible,
corrected. As common-carrier facilities do not generally
provide such a capability, the burden of error detection and
correction falls upon the computer and terminal equipment
at either end of the communication channel.

Error detection is usually performed by means of some
redundant data in the transmitted message. Checking can
be done at the character level and/or at the message level.
Character checking is usually performed with the addition
of an extra bit to the data bits comprising the character
code so that the total number of 1 bits in any character is
always odd (or always even). The receiving unit checks each
character for proper parity. Such checking is identical to
that performed in many computer systems, and, since the
character is often depicted as a vertical set of bits, this
method is called vertical redundancy checking (VRC).

While VRC techniques detect all single bit errors (picking
up or dropping a single bit), it does not detect double
errors. A form of coding called fixed count coding accom­
plishes more thorough checking at the expense of slightly
less efficient transmission and somewhat more sophisticated
checking equipment. The term fixed count code is derived
from the fact that for any character a fixed number of bits
are always one and the remaining bits are always zero. A
common example of fixed count coding is the “4 of 8”
code, in which every character has exactly 4 bits set to one
and the remaining 4 bits set to zero. Two things should be
noticed: more error conditions are detected, but there are
only 70 valid character representations, whereas a VRC
code using the same number of bits has 128 valid characters.

Checking at the character level detects many errors.
However, it does not detect multiple bit errors or missing
characters. To overcome these deficiencies, it is useful to
accumulate parity longitudinally along a message as well as
vertically across characters. In this technique, called longi­
tudinal redundancy checking (LRC), a special check char­
acter is inserted at the end of a message or message block
so that the total of the settings along the same bit position
in all characters is always odd. LRC checking thus detects
missing characters. Again, more sophisticated terminal
equipment is necessary both to generate LRC codes when
sending and to check LRC codes when receiving data.

A more thorough checking technique accumulates check­
ing data both vertically across characters and longitudinally

along messages. These cyclic codes require more elaborate
equipment to generate and test them. A type of cyclic
checking is used on most IBM direct access storage devices.

TRANSMISSION CONTROL
Transmission is controlled by devices called transmission
control units (TCU’s). These provide a control interface
between the computer and the communications network.
Depending on the number and speed of lines to be serviced,
several types of units are available. In the IBM System/360,
for example, up to eight of the following types of trans­
mission control units may be connected to a multiplexer
channel:

2701 for up to 4 low speed lines
2702 for up to 31 low speed lines
2703 for up to 176 low speed lines
7770 for audio response on up to 48 lines
7772 for audio response on up to 8 lines

One of the most important functions performed by the
TCU is coordination of the input and output of data to
and from the communications network. Two modes of
transmission are widely used. Start-stop mode, commonly
used on low speed networks, delimits each character with
special control bits denoting the beginning and the end of
the sequence of bits forming a data character. Synchronous
mode transmission, commonly used on medium and high
speed lines, establishes a timing synchronization between
sending and receiving equipment before sending a stream of
characters. Start-stop mode is simple and inexpensive but
requires extra bits to control each transmitted character.
Synchronous mode requires more sophisticated electronics
in the terminal equipment but more efficiently utilizes the
communications facility.

A specific example will illustrate how a TCU operates in
start-stop mode. First assume a number of low speed lines
(say 30) attached to the same TCU . The TCU contin­
uously apportions its time to each of the lines in turn. In
the case of input data, the TCU continually monitors the
line for an indication that a new character is about to start.
This is indicated by a transition of the line from a mark
(one or more 1 bits) status to space (a 0 bit) status. Then
an oscillator operating at the line’s bit rate causes the TCU
to sample that line during each successive bit time. These
line samples (either 0 or 1 bits) are assembled serially-by-bit
in a shift register until the required number of samples and
a stop bit have been accumulated into a character. The
character is then stripped of start/stop bits and placed in
another register to await transmission (in a parallel-by-bit
manner) to the computer via the multiplexer channel.
Meanwhile the TCU is looking for the start bit of the next
character.

20

Output is performed in a similar fashion. A character is
received from the computer and, after having start-stop bits
added, is moved in parallel to a shift register which shifts
the bits onto the line at the proper bit rate.

Depending on the particular types of lines involved, the
TCU also has other functions. It may perform validity
checks on incoming data, delete certain “idle” characters
from the data stream, and detect shift codes and automat­
ically control shift status (upper case or lower case) of a
terminal. The TCU performs all these functions without
program intervention, on a number of lines concurrently.
As far as the programmer is concerned, the TCU presents
much the same appearance as any other control unit (for
example, a card reader) attached to the multiplexer channel.

The computer must assemble incoming characters into
messages, translate codes, and edit messages prior to per­
forming conventional processing operations. For output,
it performs similar operations: converts codes, inserts ter­
minal selection and control characters, and passes the out­
going message, character by character, to the TCU via the
multiplexer channel.

TERM INAL CONTROL
Most computer input/output equipment uses separate paths
(or lines) to transmit data and to indicate control functions.
Communications equipment is connected to a computer
with one or (in the case of duplex transmission) two
lines. Consequently, conventions must be established to
identify and distinguish between the data and the control
information that must be transmitted over the same com­
munications channels. Several factors are involved.

A first factor is that, unlike other I/O devices, a terminal
often is not continuously connected to the system. The
terminal user may dial the computer to submit input, or the
computer may establish contact with the terminal (via the
automatic calling facility described earlier) prior to trans­
mitting output data. Although much of this is handled by
automatic calling and answering, the system must still
initiate and confirm the communication link to the ter­
minal. This introductory communication is sometimes
called “handshaking.”

A second factor is that several terminals may be attached
to the same private line. This reduces the cost of the com­
munication facilities but requires additional control conven­
tions to determine which of the several terminals is to send
or receive data. Terminals designed to operate on multi­
point lines (those connected to multiple terminals) have
special control units or “stunt boxes” (a telegraphy term)
that provide this capability, and operate in one of two
modes: control or text. When in control mode, a terminal

interprets received characters as special control codes; when
in text mode, a terminal treats most characters as normal
textual data.

In the case of input, the computer sends one or more
control characters putting all terminals in the control mode
and then, using polling characters, invites a specific termi­
nal to send any messages it may have. If a polled terminal
is ready and has a message to send, it reverts to text mode
to transmit the message. Other terminals on the same line
remain dormant. A special code or sequence of codes indi­
cates the end of message (EOM) and returns the terminal to
control mode. If a polled terminal is ready but does not
have a message to send, it usually responds with a code
indicating its ready status. If the computer does not receive
any response (a text message or status code) within a brief
time, then the terminal “times out” and is considered not
ready (for example, is off-line).

Output from the computer to the terminal is controlled
in a similar fashion. The computer first addresses (attempts
to select) the receiving terminal by means of a control
sequence or, in telegraphy terms, a call directing code
(CDC). If the terminal is ready to receive, it responds to
the computer with an acknowledge character, and goes into
text mode. The computer then transmits the output
message.

A final elaboration on the line control methods is con­
cerned with error correction. With some types of terminals,
transmission can be error checked as discussed earlier.
Following input of a message from terminal to computer,
the computer may respond with control codes indicating
that transmission was correct and that the terminal should
go ahead and transmit the next message. Or, if an error has
been detected, the computer may respond with control
codes to request retransmission of the message. For some
terminals, retransmission requires manual intervention; for
others, it is performed automatically.

For output from the computer to a terminal, a similar
process is used. The terminal performs error detection,
and, following receipt of a message, sends a control
sequence to the computer indicating either correct transmis­
sion or detection of an error. In the former case, the
computer will start sending the next message; in the latter,
the computer usually retransmits the same message.

He * * * *

This section has introduced some of the more important
characteristics of commonly used communications equip­
ment. More detailed information may be found in the tech­
nical reference manuals listed in the bibliography.

Teleprocessing Equipment Characteristics 21

Teleprocessing Programming Techniques

Since programming techniques vary considerably according
to specific equipment configuration and processing require­
ments, it is difficult to give a concise description of general
TP programming techniques. This section describes some
programming functions that have unique characteristics in
TP systems:

• allocation and scheduling

• buffering

• queuing

• message control

• message processing.

ALLOCATION AND SCHEDULING
How the total resources (processing time, main storage, I/O
paths, etc.) of a TP system are apportioned is termed alloca­
tion. When these resources are apportioned is termed sched­
uling. In early systems, the only allocation necessary was
the assignment of storage areas for program routines,
constants, working storage, and I/O areas. Such allocation
was planned ahead of time by the programmer and then
specified at the time a program was assembled. This alloca­
tion is termed static since, once specified, it cannot be
changed without reassembling (or recompiling) the program.
In later systems, the allocation of storage was deferred until
the time the program was loaded. This enabled separately
compiled programs to share common data and I/O areas,
but once the program was loaded, no further allocation was
possible. More recently, responsibility for the allocation of
portions of storage and the assignment of I/O units was
undertaken by operating systems, some of which have been
extended to the point where they now control all storage,
I/O units, and data channels. Not only are more resources
allocated in a more flexible manner, but, wherever possible,
allocation is deferred until the resources are actually needed.

In a similar manner, jobs that once were manually sched­
uled for execution later were scheduled by the operating
system, but only one job was initiated at a time. Once
started, a job ran to, completion or until an error was detected
or a time allotment expired. The next advance in the
evolution of job scheduling techniques was initiation of
several jobs concurrently and dynamic interleaving of

their executions. This interleaved execution of several pro­
grams is termed multiprogramming, while the sharing of
computer time is quite naturally called time-sharing.

Thus, not only has the range of system resources alloca­
ble been increased, so that now even central processing
unit time can be allocated; the time range over which they
can be allocated has been increased as well, so that some
resources now can be allocated during program execution.

There are several reasons for this increased generality in
scheduling and allocating resources:

• Efficiency is increased since resources that might other­
wise be idle can be used by other tasks.

• Flexibility is improved since the system can readily
adjust to varying demands for resources.

• Growth potential is enhanced since added storage or
other facilities can be readily accommodated without
extensive reprogramming of the scheduling and allo­
cation routines.

• Response rates are improved since tasks can progress in
in parallel rather than serially.

These factors, fundamental to any computer system, are
even more vital to a TP system in which the demands for
system resources vary dynamically and unpredictably.
Designing a good allocation and scheduling system for the
TP environment proves to be an extremely difficult under­
taking. Some of the factors that must be considered
include:

1. Which responsibilities are reserved for operating per­
sonnel, and which are handled automatically by the
system? The man-machine tradeoffs are necessary to
permit human intervention and control and yet not
hinder the trivial administrative functions best per­
formed automatically by the system. Too much
human intervention leads to inefficiency and human
error; too little human intervention leads to loss of
control and of adaptability to changes in processing
priorities.

2. Which allocations are static and which are dynamic?
Some resources must be reserved for use by the
operating system itself. In addition, it is often con­

Teleprocessing Programming Techniques 23

venient to dedicate certain system units to specialized
functions. On the other hand, some units must be
statically assigned to a pool of resources from which
the system may dynamically draw to satisfy pro­
cessing needs.

3. How should resources be divided into useful units for
purposes of allocation? The larger the number of
units, the more flexibly and efficiently they may be
utilized. Unfortunately, however, the greater atten­
tion that must be devoted to scheduling and account­
ing for the resource units may far outweigh the
improved utilization of the resource itself. For
example, core storage is often partitioned into a
number of units, which are allocated only in whole
multiples. The larger these units, the greater the
possible “trim loss” (the portion of the unit that is
unused, where only a portion of a unit is needed).
The amount of trim loss must be weighed against the
additional table space and supervisor overhead that
would be entailed if storage were partitioned into
more, but smaller, allocation units.

4. Finally, what is the proper relationship between allo­
cation and scheduling? That is, should scheduling be
a function of resource allocation, or should it be the
other way around? There is no one correct answer to
this question; in practice, the distinction becomes
biurred. To achieve the theoretical maximum
resource utilization would require almost continuous
reallocation; the supervisor time required for this is
prohibitive. The designer of a programming system
must discover the optimum balance between efficient
utilization and minimal supervisor time devoted to
allocation.

The treatment of allocation-scheduling interaction has a
profound influence on the power and efficiency of any
modern operating system. Some allocation and scheduling
functions are peculiar to the TP environment, and it would
unnecessarily burden a general purpose operating system to
accommodate them as a standard capability. As a conse­
quence, specialized modules are often available to encom­
pass those additional functions. The most important of
these functions are the buffering, queuing, and terminal
control functions which are discussed below in more detail.

BUFFERING
A buffer is a storage area that temporarily stores data during
transmission from one device to another. Buffers are used
to compensate for differences either in data rates or in times
of occurrence of related events. An example of the first use
occurs in a data entry application in which incoming char­
acters are collected in core storage buffers. Often, as each
buffer becomes filled with data, the data is written from

this buffer to another buffer area in a disk file. The core
buffer compensates for the difference in data rates between
a communications terminal (typically 15 characters per
second) and a computer data channel (typically over
150,000 characters per second).

An example of using a buffer to compensate for time dif­
ferences occurs frequently in message switching applica­
tions. A message is received and collected in a disk buffer
area until the destination terminal becomes available. The
buffer is used to compensate for the difference in time
between receiving a message and forwarding it to the desti­
nation terminal.

The programming techniques used to assign and control
allocation of buffer storage, called buffering, are a critical
factor in the design of TP systems since there are vast differ­
ences both in data rates and in the time intervals between
events. As mentioned earlier, a third complicating factor is
that in many TP applications (message switching being a
prime example), both data volumes and message lengths
may vary widely and at unpredictable times.

Buffer Allocation
Buffers generally must be maintained on several different
storage devices, and a system design objective is to effi­
ciently utilize each of these. With core and disk buffers the
following questions arise: what should be retained in core,
what should be moved to the disk, and when should this be
done? If core buffers are not made available for reuse
promptly, there may be no place left for arriving input data.
Loss of data is possible in a TP system since much simulta­
neous data input may be in process at any instant and the
program does not have the same close control over terminal
input as it does over input from tape or disk units. Other
consequences of having insufficient core buffers or of not
making them available promptly are a reduction in system
operating efficiency and a slowing of terminal responses
while waiting for the buffer congestion to clear.

In many conventional computer systems, buffering is
used to obtain overlap of I/O operations with computing.
In the simplest case, data is moved from a work area to an
output buffer; then data is moved from an input buffer to
the work area; and, finally, while the computer is processing
the record in the work area, data channels are concurrently
transmitting the output buffer and refilling the input buffer.
The amount of read/write/compute overlap depends on the
balance between these three concurrent operations. Elab­
orations of this approach involve using multiple buffers,
performing the processing in the buffer rather than in a
work area, and using a group of buffers (called a buffer
pool) to supply buffer areas dynamically rather than having
fixed buffer assignments. Each of these techniques provides
for greater flexibility and more efficient utilization of
buffer storage.

24

Buffer pools have an added advantage in TP systems.
Because record sizes (i.e., message sizes) are highly variable,
it would be wasteful of storage space always to assign for
each message, regardless of length, a single buffer area large
enough to hold the largest expected message. Instead, each
message is contained in a series of buffers that are allocated
dynamically as needed. Requiring the buffers containing
the segments of a message to be in contiguous storage loca­
tions would unduly restrict buffer utilization. Each buffer
is therefore allocated without regard for the location of
previously allocated buffers, but is linked to the next buffer
by chaining: each buffer contains the storage address of the
buffer containing the next segment of the message. (Some
convention is used to identify the last buffer in a chain;
often, a zero chaining address signifies this.) Thus, although
the segments of a message are contained in buffers dispersed
throughout a buffer pool, a computer or channel program
can access the entire message by progressing through the
chain sequentially. When the message contained in the
buffer chain has been processed, the buffers are returned to
the chain of available buffers. This is easy to do since only
the first of the newly available buffers need be chained to
the chain of available buffers; the remaining buffers are, by
their association with the first buffer,automatically returned.

Buffering Considerations
The size of the buffer pool and the size of the individual
buffers depend on a number of factors, including the
average and peak amount of input/output data, the ratio of
input volume to output volume, the data rates of the TP
equipment, the amount of storage available, and the form
of allocation used with secondary storage units.

The program must dynamically adjust its operation to
meet unpredictable changes in the operating environment.
To overdesign a program to handle the worst possible case
as the typical situation leads to excessive waste of expensive
system resources. Conversely, to design a program without
recognition of every infrequent, yet possible, situation is
equally undesirable. Programs must be designed to effi­
ciently handle the average case and yet manage to cope with
the worst situations. Some parameters must be changed
dynamically; others must be established at system generation
time to “tune” the system to the typical load profile of the
specific TP environment.

QUEUING
A queue is a waiting line, and the term queuing is used to
denote the programming techniques employed to control
transactions awaiting servicing by some computer facility.
Queues are a consequence of items arriving for service at an
unpredictable rate. If each item is serviced before the next
item arrives, then no queue develops. Conversely, if the
arrival rate continually exceeds the servicing time, then an

infinitely long queue develops. The most common queuing
situation is that in which, although the average arrival rate
is less than the service rate, intermittent surges in the arrival
rate cause a queue to form.

Like buffering, queuing is a function which, though
present in some conventional computing systems, assumes
far greater importance in the TP environment. In some
conventional systems, especially those with both multi­
programming and direct access storage devices, queues may
develop when several programs make requests for data
faster than the device can access the data. A queue of file
requests is formed, and some form of queue management is
used to determine which item in the queue is to be serviced
next. A number of different techniques are possible.

Sequence Handling
Probably the most common queuing technique is to service
the queued items in the sequence that they arrive. This
method, sometimes called FIFO (first in, first out), is
certainly the simplest to implement. However, other
approaches may be more efficient. For example, some
situations may require a LIFO (last in, first out) rule. This
approach, often called a “pushdown” or “stack” in computer
terminology, is frequently used in performing arithmetic
operations. In the case of a disk storage request queue,
access times might be reduced if the current position of the
access arm is noted and the queue is scanned for the item
requiring the shortest motion of the access mechanism. In
this case, safeguards must be established to prevent some
item in the queue from being delayed an intolerable time
because it is continually bypassed in favor of other items
closer to the current position of the access mechanism.
Other methods of queue management would be to assign
priorities to the queued items depending not on the
servicing device, as in the previous example, but on the
resources needed to process the queued item, or to give
favor to the oldest items in the queue, or to give output
priority over input operations.

The purpose of the foregoing discussion is to illustrate
that although the concept of queuing is simple, the tech­
niques used to process queues can have a significant influ­
ence on overall system performance. This is especially true
of TP systems, in which queues are very common, because
continually varying demands are being made for a number
of facilities and because unpredictable utilization of commu­
nication lines inevitably causes temporary queuing of output
messages.

Now, whereas buffering is frequently accommodated in
primary storage, it is more common to relegate queues to
secondary storage devices. Control information containing
enough data for queue management is retained in primary
storage. The queues then can be rapidly scanned to deter­
mine the next item to be serviced. When ready for servicing,
the item can be retrieved from secondary storage. As with

Teleprocessing Programming Techniques 25

buffering, the TP control program must provide for assigning
and reclaiming storage areas allocated to queuing functions.
In addition, provision must be made to recognize when
queues are building up to critical lengths and to modify
normal program execution to give top priority to reducing
the backlog of queued items to a safer level.

Problems in Queuing
Queuing in the TP environment creates some special prob­
lems not encountered in conventional computer systems.
One problem is that a message may belong to more than one
queue at the same time. Consider the case of a multiple-
addressed message in a store-and-forward switching applica­
tion. It would be wasteful to duplicate the entire message
in the queue for each destination. Instead, only one copy
of the message is queued, but control entries referencing the
message are put in the pertinent output queue control areas.
The same message text can then be directed, at different
times, to the various destinations.

Another queuing facility necessary in many TP systems
also can be illustrated by an example from the message
switching application. Suppose a user has a very important
message to send, and the system is loaded to the level at
which transmission delays of perhaps one-half hour are
occurring. The user desires to have the system send this
message to its destination ahead of other items queued for
the same destination. He can do this by inserting a priority
code in the message header. The queue management routine
recognizes this code and gives the message priority treat­
ment when scanning the output queue. An elaboration of
this approach is to have a number of levels of priority, and,
in fact, most TP systems do provide for multiple priority
levels.

In summary, these examples illustrate that TP systems
must have queuing capabilities far beyond those found in
conventional systems. It is seen that the flexibility of the
queuing techniques employed can enhance the use of the
system. In addition, the efficiency and modularity of the
queuing techniques can have a substantial impact on overall
system efficiency.

MESSAGE CONTROL

This section considers the programming aspects of the TP
equipment described in the section, Teleprocessing Equip­
ment Characteristics. It assumes that all communication
channels are half-duplex and that only terminals of the same
type are connected to any one line.

Once the line configuration is determined, information
regarding the detailed characteristics of different types of
terminal units must be associated with specific lines. Each
device has an I/O module containing model channel pro­

grams that are used when READ/WRITE routines are in­
voked from macro instructions embedded in the user prob­
lem program. In addition, associations between lines and
control units must be established. This kind of TP config­
uration information is established at the time a system is
initially generated and need be modified only when the
configuration is changed.

Further information is provided through declarative
macro instructions contained in a user program. These
determine, at assembly time, the allocation of core storage
space for each type of communication line to be used. For
example, such items as buffer pool size, buffer size, and
type of buffering are indicated together with information
relating which lines are to share common control areas.
Another kind of information, also provided through dec­
larations, defines the structure of the lists used for such
functions as polling, addressing, calling, and answering. For
example, a polling list for each line indicates the sequence in
which the terminals on that line are to be polled. Con­
siderable flexibility is usually possible. For instance, the
same polling code can appear several times in the list to
cause the corresponding terminal to be polled more fre­
quently than the others.

Information Handling
Once presented with the necessary declarative information,
the TP control program accesses terminal units in such a
manner that the programmer is relatively unaware of the
details of the terminal operation. For example, upon
receiving control from a READ macro instruction executed
in a user program, the control program will:

1. Send a control character placing all terminals on the
line in control mode;

2. Send the polling characters for the designated ter­
minal ;

3. Wait for a response indicating whether the polled ter­
minal has input ready to send;

4. Receive the message, test each block of the message
for errors, and request retransmission of any block
containing errors;

5. Upon completion of input from the polled terminal,
poll another terminal on the line.

This example is considerably simplified. In reality, the
program performs many other functions, and numerous
options are available to the problem programmer.

The previous section outlined the programming tech­
niques used to allocate buffer storage and to read and write
messages. If queuing is desired or if records are to be ref­
erenced at the logical level via GET/PUT -type access, further
facilities must be added.

26

Message Routing
Routing of messages in accordance with data contained in
their headers is a function common to many applications.
Here the programmer must establish terminal tables relating
each symbolic terminal identifier to the terminal it rep­
resents. This simplest case must usually be extended to
accommodate group addressing and distribution lists, by
which several terminals can be represented by the same sym­
bolic identifier. For example, in the case of all those branch
locations that provide a particular service, it is more con­
venient and less error prone to reference the entire group
by a single symbolic name.

In many applications, messages are routed not to another
terminal but to one of several processing programs. Here
the TP routing data is used as a transaction code to cause
control to pass to the proper processing routines. The
programmer employs essentially the same technique used
for message routing, the only difference being that the des­
tination location is not a terminal address but the symbolic
entry point of a routine that is to receive control when the
message is ready for processing.

An example is an inquiry system: inquiry messages
arrive in the transmission code of the type of terminal from
which they were entered, and are usually translated to a
character code (e.g., EBCDIC) suitable for processing. Sim­
ilarly, reply messages generated in the processing code are
converted to the transmission code of the destination ter­
minal. Code translation is usually performed by a table
look-up technique in which, for each character in succes­
sion, the original code representation of a character is
applied as an index value to the beginning of the translation
table, to find the corresponding new code representation.

In the IBM System/360, this translation from one char­
acter code to another is greatly facilitated by an instruction
designed for this purpose. If new terminal types are added
or different translations are desired, it is easy to accommo­
date them by adding another table or by modifying an
existing table. The programmer need not be concerned with
the control codes used by each terminal, since, as explained
earlier, terminal control and error checking are automat­
ically performed by message control routines.

Message Processing
Although the message control facilities described above en­
compass a number of functions common to a wide range of
TP applications, they cannot accommodate all requirements
of all applications for which they are used. Even if these re­
quirements could be adequately defined, a general purpose
program capable of fulfilling them would require a machine
configuration far beyond that required for any specific
application. Therefore, the key to generalizing TP programs
is knowing the tradeoff between technical feasibility and
general utility. Some functions must be provided in a basic
programming package, additional functions may be provided
in an extended package, and some functions of value to
some users cannot be accommodated without penalizing the
majority of users.

Message processing functions unique to a specific appli­
cation are programmed by the user. In many applications,
the programmer can, through use of message control rou­
tines, construct an interface to the communications environ­
ment such that the message processing routines may be
designed, coded, and tested without consideration of the
fact that they will be executed in a TP system. Since the
application programmer is in effect insulated from the
environment, he does not need a detailed knowledge of TP
equipment, programming methods, and testing techniques.
This fact can result in lowered development schedule time
and costs.

This section has introduced some of the programming tech­
niques that play important roles in TP systems. The best
sources of additional information are to be found in the
reference manuals describing specific telecommunications
access methods. A list of these is contained in the bibliog­
raphy of this publication.

Teleprocessing Programming Techniques 27

IBM System/360 Telecommunications Access Methods

IBM programming support for TP systems is provided in the
form of access methods under the Data Management
portion of both the S/360 Operating System and the S/360
Disk Operating System.

The principal function of a telecommunications access
method is to control the transmission of information
between a computer and remote TP equipment in much the
same manner as other access methods support other types
of input/output equipment. The programmer designs,
writes, and tests his application routines in the usual
manner, and he performs input/output operations by means
of macro instructions supplied by the access method. The
user may also develop his own macro instructions to replace,
or augment those supplied by the access method.

There are two levels of telecommunications access
methods: one, at the READ/WRITE level, is called Basic
(BTAM); the other, at the GET/PUT level, is called Queued
(QTAM).

BTAM is designed to provide the basic modules for con­
structing a TP program, including routines for controlling a
variety of terminal units, communications lines, and trans­
mission control units. With a minimum of system overhead,
it not only provides the basic tools to build a sophisticated
system but also is modified easily to support special config­
urations not supported by other programming packages.
BTAM provides the basic capabilities to:

• Poll terminals and receive messages,

• Address terminals and send messages,

• Dynamically chain input buffers,

• Dial and answer,

• Detect and correct errors,

• Write output buffer chains,

• Perform code translation.

QTAM has two characteristics that distinguish it from other
access methods:

• Scheduling and' allocation functions are performed by a
separate control program within the operating system. •

• Operations to control and process communications data
are specified by a unique macro language.

QTAM includes the BTAM capabilities mentioned above
and, in addition, provides extensive queuing facilities.
QTAM is directly applicable without modification to a
number of common TP applications, for example, data
collection and message switching. QTAM provides the
basic capabilities for:

• Controlled and automatic terminal polling and message
input,

• Controlled and automatic terminal addressing and mes­
sage output,

• Input/output buffering,

• Error detection and checking,

• Message queuing, logging, and routing,

• Code translation.

Figure 10 shows the various types of terminals supported by
BTAM and QTAM.

As already stated, BTAM controls terminal input/output
operations initiated by READ and WRITE macro instruc­
tions issued in the user’s problem program. The primary
purpose of BTAM is to provide input/output support at the
message level under the operating system. As a consequence
there are really two BTAMs: one for the full Operating
System (OS) and one for the Disk Operating System (DOS).
These two versions of BTAM have a similar appearance to
to the user. The principal external differences are:

• Audio response equipment (IBM 7770 apd 7772 Audio
Response Units) is supported only under DOS.

• Operating systems incorporating BTAM have a minimum
memory size of 32K bytes for DOS and 64K bytes for
OS.

The principal internal difference is that buffers are allo­
cated to accept a maximum size message under DOS, while
READ/WRITE buffers are allocated dynamically under OS.

BTAM

IBM System/360 Telecommunications Access Methods 29

SU P P O R TED D E V IC E S
O S D O S

BTAM Q T A M BTAM Q T A M

Start-S to p D e v ic e Support

IBM 1030 Data C o lle c t io n System X X X X

IBM 1050 Data C o m m unicatio n System X X X X

IBM 1060 Data C om m unications System X X X X

IBM 2260 - 2848 D isp la y Co m p lex (Rem ote) X X X X

IBM 2260 - 2848 D isp la y C o m p lex (L o c a l) X

IBM 2740 Com m unications Term inal X X X X

IBM 7770 A u d io Response U n it X X

IBM 7772 A u d io Response U n it X X

AT& T 83B3 S e le c t iv e C a ll in g Stations X X X X

W estern Union Plan 115A O u tsta tio n s X X X X

A T& T M odel 33/35 T e le ty p e w rite r Exchang e Term ina l X X X X

B inary Synchronous Com m un icatio n Support

IBM System /360 to IBM System /360 X X

IBM System /360 to IBM 1130 X X

IBM System /360 to IBM 2780 X X

Figure 10. BTAM and QTAM Device Support

The use of BTAM is recommended for those systems
having one or more of the following characteristics:

• A small number (1-4) of communication lines.

• A requirement for a specialized TP control program.

Storage Requirements
The primary storage requirements of BTAM depend on the
particular configuration of terminal equipment, the buffer­
ing requirements, and the macro instructions used. A typ­
ical configuration might consist of 4 lines, each with four

1050 terminals, attached to an IBM System/360 by means
of an IBM 2701 TCU . Assuming one 140-byte buffer for
each line, and polling and addressing lists each having one 3-
byte entry for each of the 16 terminals, the total core stor­
age needed is in the range of 3,000-4,000 bytes for BTAM
under OS and about 4,500-5,500 bytes for BTAM under
DOS.

Description
BTAM facilities must be incorporated into the operating
system at system generation time.

30

Three facilities are made available through the macro
generation capabilities of any OS/360 or DOS/360 assem­
bler language translator. During assembly of a problem
program, macro instructions coded by the user are expanded
into:

• Linkages to the executable BTAM routines,

• Tables defining the lines, terminals, and options to be
used,

• Buffer areas.

Initial communication between a user problem program
and BTAM is established upon execution of an OPEN macro
in the problem program. This also establishes communica­
tion between BTAM and I/O supervisor.

After an OPEN is executed, a message may be sent or
received by the simple execution of a WRITE or READ
macro instruction, causing a branch and a link transfer of
control to the BTAM Read/Write routine. This routine
first builds a channel program to perform the operation,
then passes control to the I/O supervisor which starts exe­
cuting the channel program just developed. At this point,
control passes back to the problem program, and the chan­
nel program is executed concurrently with the problem
program.

An important feature of BTAM is the ability to
repeatedly restart channel programs in response to condi­
tions occurring on the communications line. Thus, a single
READ macro instruction can cause successive polling of a
number of terminals without any intervening direction from
the problem program, which is notified only when a message
has been read. Similarly a single WRITE can signal a
number of terminals to prepare to receive.

Another feature of OS BTAM is dynamic buffering, by
which BTAM can interrupt the problem program to secure
additional input buffer areas as needed.

BTAM Facilities
BTAM is easy to use. The programmer need only define
control blocks and terminal lists (for polling and addressing)
before performing the following simple functions:

• Open

• Read/Write messages

• REQBUF/RELBUF—to request and release buffers

BTAM is not a complete TP system. The BTAM user must:

• Comprehend its basic capabilities and limitations;

• Have a reasonable understanding of terminal and TCU
equipment;

• Provide programs, initiate operations, test for excep­
tional conditions, and make decisions on control flow
and the disposition of data;

• Provide routines for any necessary scheduling and alloca­
tion functions.

BTAM is an ideal tool for constructing TP programs.
Since it is a general purpose interface for input/output with
TP equipment, it can be used as a component in the devel­
opment of more sophisticated TP systems. It can also be
employed in supporting a few TP lines on a computer con­
figuration with limited available memory space.

Installations considering extensive augmentation of
BTAM functions should carefully weigh this task against the
alternative of using the more comprehensive QTAM program.

QTAM
QTAM includes all the facilities previously described for
BTAM. In fact, QTAM branches to a variation of BTAM
for dynamic generation of channel programs to send and
receive messages. However, QTAM is much more than an
extension of BTAM capabilities. It not only controls mes­
sage transmission between remote terminals and the central
computer but also controls message queuing on a direct
access secondary storage device. QTAM is a control
program in its own right, and it provides synchronous oper­
ation for all programming based on completion of events,
availability of resources, and processing priorities.

Storage Requirements
QTAM operates under both the Disk Operating System and
the full Operating System. Although operating systems
incorporating QTAM have a minimum storage size of 32K
bytes for DOS and 64K bytes for OS , representative systems
generally require 64K and 128K bytes respectively. The
space taken by QTAM varies according to user-selected
options, and there is no simple rule to provide a realistic
storage estimate. However, the following approximations
may be useful for obtaining a general awareness of QTAM
storage requirements.

IBM System/360 Telecommunications Access Methods 31

The subroutines for message control occupy about
8K-12K bytes for primary storage. Many of the macro
instructions generate in-line linkages to functional subrou­
tines. If the same macro is used more than once, space is
needed for the linkage, but only one copy of the subroutine
is provided. A typical macro might generate 10-15 bytes of
in-line linkage, while the subroutine might occupy 100 or
so bytes. Space is also needed for control blocks, tables,
polling/addressing lists, and channel programs and related
areas. In addition, since QTAM performs message process­
ing functions, as well as message control functions, storage
is needed for these processing routines.

The following example indicates the approximate storage
needed by QTAM to process a typical large TP config­
uration. Assume 15 lines each with 6 IBM 1050 terminals
and another 15 lines each with 6 AT&T 83B3 stations or
Western Union Plan 115A stations. Assume further that
two 100-character buffers are allocated for each line and
that message processing has three representative routines
operating on three process queues held on one direct access
device. The QTAM storage requirements for this system
would be in the range of 25,000 - 35,000 bytes.

Description
The overall organization of QTAM is shown in Figure 11.
As can be seen, data sent by terminals is collected in core

buffers and then moved to disk queues for later message
processing. Results are then moved to another queue to
await output, again via a core buffer, to a destination ter­
minal.

This message flow, shown in more detail in Figure 12,
can be considered in the following seven steps:

1. The input message, consisting of message header and
text, is prepared at a remote terminal. The header
portion normally contains codes denoting source and
destination terminals as well as a message sequence
number and priority information. When the source
terminal is polled, the message is sent to the com­
puter.

2. The message enters the computer and is placed in
user-defined, fixed-length buffers. As many buffers
are allocated as are necessary to contain the message.
QTAM affixes a header prefix containing information
for control and queuing purposes. Each of the
remaining buffers has a text prefix, also containing
control and queuing information, that precedes the
text data. As soon as each buffer is filled, QTAM
performs such user-selected functions as code trans­
lation, routing, time and date stamping, and sequence
checking.

Message Control Message Processing

Figure 11. QTAM Organization

32

r

o Input Message Output Message

Communications Lines
and Terminals

Message
Header Message Text Message

Header Message Text

Main Storage
(5)© Input Buffer © Output Buffer

Header Prefix Message Message
Q Info Control Info Header Text

>
Text Prefix

Q Info Control Info
i c a i

Text Prefix
Message Text

Q Info Control Info
Text
Prefix Message Text

Main Storage

© Work Area
f \

GET/PUT Prefix Message Text

)

Header
Prefix

Message
Header

Message
Text

> Text
Prefix Message Text

Header
Prefix

Message
Header

Message
Text

>
Text
Prefix Message Text

Text
Prefix Message Text

Header
Prefix

Message
Header

Message
Text

>
Text
Prefix

Message Text

Text
Prefix

Message Text

Figure 12. QTAM Message Flow

IBM System/360 Telecommunications Access Methods 33

3. If the message requires additional processing, each
segment is sent to a process queue (input queue),
which may be either in main storage or on a direct
access storage device.

4. User-written routines can GET messages, segments, or
records from this queue and process them. Following
this, the user can PUT the message into an output
(destination) queue.

5. If no processing (steps 3 and 4 above) is required, the
message may proceed directly to a destination queue.

6. Message segments are retrieved from the output queue
on a FIFO basis within priority groups.

7. Message segments are stripped of header and text
prefixes and sent to the destination terminal as one
continuous message.

Facilities
Since QTAM employs many of the programming techniques
described earlier (under Teleprocessing Programming Tech­
niques), the remainder of this section, briefly describing
some QTAM facilities, is organized around the same
topics used earlier: allocation and scheduling, buffering,
queuing, message control, and message processing.

The initial allocation of the storage areas is static and is
specified by the user, while allocation of individual seg­
ments within these areas is done dynamically. Normally,
messages move to a disk queue while awaiting processing,
but there are programmer options available to expedite
messages by bypassing the disk phase.

QTAM scheduling is designed to optimize use of the com­
munication lines. The scheduling is a function of resource
allocation in contrast to the opposite approach of first allo­
cating resources and then scheduling by events.

Buffering is accomplished by dynamic assignment of stor­
age segments. To conserve storage space, buffers are
emptied as quickly as possible. The same buffer pool is used
both for terminal input/output and for holding messages
awaiting service by message processing programs.

Queues are specified for both processing tasks and desti­
nation terminals. Queues are organized to minimize the arm
motion of the disk access mechanism and are managed by

means of queue control blocks residing in core memory and
containing all information necessary to schedule and locate
the associated queued items on the disk.

An enumeration of other QTAM functions in addition to
the allocation and scheduling, buffering, and queuing func­
tions just described gives some idea of its message control
capabilities:

• Controls all message traffic between central computer
and remote terminals;

• Performs such message editing functions as code transla­
tion and header analysis;

• Routes messages to destination terminals or to processing
routines;

• Optionally logs all or certain messages;

• Performs numerous error detection and correction proce­
dures including intercepting, rerouting, or cancelling of
messages in error

The user-written message processing programs operate as
one or more individual tasks and communicate with QTAM
to initiate, activate, and terminate the QTAM message con­
trol program. In addition, GET/PUT logic is used for pass­
ing messages through the message queue, which is the main
connection between a system message control task and a
user message processing task.

SUMMARY
BTAM is a general purpose input/output interface; QTAM
is a complete TP system in its own right. Without modi­
fication, QTAM can perform some applications, message
switching for example, in their entirety; in other cases, it
provides most processing functions that are common to a
variety of TP applications. Its design accommodates a
majority of the system applications, equipment character­
istics, and programming techniques introduced in this
manual.

More detailed information on BTAM and QTAM is con­
tained in the reference manuals listed in the bibliography.

Glossary

acknowledge . . . to respond to polling or addressing, or to
receipt of a message.

acknowledgment . . . the act of sending a response to
polling or addressing, or to receipt of a message; also, the
character or character sequence comprising the response.
An acknowledgment to polling or addressing may indi­
cate the status of the terminal that sends it; an acknowl­
edgment to a message may indicate whether it was
received without error.

address (n.) . . . the coded representation of the destination
of a message.

address (v.) . . . to condition a terminal for receiving data,
allocate . . . to assign a system resource to a specific func­

tion.
answering station . . . the station responding to a dialed call;

opposite of originating station,
audio (a.) . . . within the range of frequencies which can be

heard by the human ear (usually in the range 15-20,000
Hertz [cycles per second]).

Auto Answer . . . the facility of an answering station to
automatically respond to a call.

Auto Call . . . the facility of an originating station to auto­
matically initiate a call.

band . . . the range of frequencies between two defined
frequencies.

bandwidth . . . the difference, expressed in Hertz (cycles
per second), between the two limiting frequencies of a
band.

batch processing . . . processing of data after a number of
similar input items have been accumulated and grouped
together; contrast with in-line processing,

bit . . . contraction of binary digit.
bit rate . . . the speed at which bits travel over a communi­

cation channel, usually expressed in bits per second.
buffer. . . a storage device used to compensate for a differ­

ence in the rate of flow of information, or the time of
occurrence of events.

call directing code (CDC) . . . a code used to address a ter­
minal (a Western Union term),

channel. . . a path for electrical data transmission between
two or more stations; also called circuit (not synonymous
with data channel in computer usage),

channel, duplex . . . a channel providing simultaneous
transmission in both directions,

channel, half-duplex . . . a channel capable of transmission
in both directions, but only one direction at a time.

channel, simplex . . . a channel which permits transmission
in one direction only.

channel, voice-grade . . . a channel suitable for transmission
of speech.

character . . . the actual or coded representation of a digit,
letter, special symbol, or control function,

character, check . . . a character used for validity checking
purposes.

character, control. . . a character used for control purposes,
character, graphic . . . a character used for printing or display,
checkpoint . . . a point in a computer program at which suf­

ficient information can be stored to permit restart of
processing from that point.

circuit . . . a connection between two or more points; usu­
ally, a physical, metallic path,

coaxial cable . . . a cable consisting of two concentric con­
ductors insulated from each other,

code . . . a system of symbols and rules for their use in rep­
resenting information; also, the coded representation of a
character.

code unit . . . the number of bits used to represent a trans­
mission character.

code level . . . the number of bits used to represent a data
character.

communication . . . the transfer of information from one
point to another.

communication common carrier. . . a company recognized
by an appropriate regulatory agency as having a vested
interest in furnishing communication services,

contention (n .) . . . the condition on a multipoint communi­
cation channel when two or more locations try to trans­
mit at the same time.

contention (a.) . . . relating to a communication system in
which contention can occur.

conversational . . . a mode of communication involving the
alternate sending and receiving of data,

cyclic checking . . . a method of error control employing a
weighted sum of transmitted bits.

data collection . . . the process of bringing data from one or
more remote points to a central point.

Data Phone . . . a term used by AT&T to describe any of a
family of data set devices.

data s e t . . . a device containing the electrical circuitry nec­
essary to connect data processing equipment to a com­
munication channel; also, called subset, Data Phone,
modulator/demodulator, modem. (Not to be confused
with the IBM System/360 Operating System term.)

Glossary 35

data transmission . . . the sending of data from one place to
another or from one part of a system to another,

demodulation . . . the process used to convert communi­
cation signals to a form compatible with data processing
equipment.

dial exchange . . . a common carrier exchange in which all
subscribers originate their calls by dialing,

display unit . . . a terminal device that presents data visu­
ally, usually by means of a cathode ray tube,

dynamic allocation . . . the technique of assigning storage
areas during processing; contrast with static allocation.

EBCDIC . . . abbreviation for extended binary coded
decimal interchange code.

end of address . . . control character(s) separating message
address(es) from message text; often abbreviated EOA.

end of message . . . control character(s) denoting the end
of a message; often abbreviated EOM.

end of transmission . . . control character(s) denoting the
conclusion of data transmission; often abbreviated EOT.
It is usually sent by an originating station to signify that
it is finished with the communication line,

exchange service . . . a service permiting interconnection of
two customers’ telephones through the use of switching
equipment.

FIFO . . . abbreviation for first-in, first-out queuing, in
which items are removed from a queue in the same order
as entered; contrast with LIFO,

free form . . . formatting of data fields by embedded delim­
iter characters rather than organizing of data in fixed-
length fields.

group addressing . . . a technique for addressing a group of
terminals by use of a single address.

hard copy . . . a machine-printed document, as opposed to
visually displayed data.

header. . . initial portion of a message containing any infor­
mation, control codes, etc., that is not a part of the text.
Usually includes information for routing the message to
its destination(s).

in-line processing . . . processing of input data in random
order, without preliminary editing, sorting, or batching;
contrast with batch processing,

in-plant system . . . a system confined to one plant locality,
interface . . . a shared common boundary between two

systems or two devices; for example, a physical connec­
tion or a programming convention.

LIFO . . . abbreviation for last-in, first-out queuing, in
which the next item to be removed is the most recently
entered item in the queue. Also called “stack” or “push­
down;” contrast with FIFO.

LRC . . . abbreviation for longitudinal redundancy checking
method, in which parity is checked longitudinally along
all the characters comprising a transmitted record.

mark state . . . state of a communication line corresponding
to an on, closed, or logical one condition; contrast with
space state.

message . . . a finite sequence of transmitted words and/or
symbols.

message routing . . . the function of selecting the route, or
alternate route, by which a message will proceed to its
destination. Sometimes used to mean “message
switching.”

message switching . . . the technique of receiving a message,
storing it until the proper outgoing circuit is available,
and then retransmitting it. Also called “store and
forward switching.”

modulation . . . process used to convert signals from data
processing equipment to a form compatible with com­
munication facilities.

modem . . . contraction of modulator-demodulator (see
data set).

multiple address message . . . a message which is to be deliv­
ered to more than one destination.

multiplexing . . . the interleaved or simultaneous trans­
mission of two or more messages on a single channel
during a given time interval.

multipoint line . . . a communication line interconnecting
several stations.

multiprogramming . . . the interleaved (that is, concurrent)
execution of two or more programs by a single computer.

narrow-band (a .) . . . denoting a communication channel
capable of a transmission rate of up to 300 bits per
second.

network . . . a series of points interconnected by communi­
cation channels.

network, leased line or private wire . . . a network reserved
for the exclusive use of one customer.

off-line . . . pertaining to devices not in direct communica­
tion with a computer.

on-line . . . pertaining to devices in direct communication
with a computer.

out-plant system . . . a system not confined to one plant or
locality.

parity check . . . a test to determine whether the number of
ones (or zeros) in an array of binary digits is odd or
even.

point-to-point transmission . . . transmission of data between
two points.

polling . . . a flexible, systematic, centrally controlled method,
for permitting stations on a multipoint circuit to transmit
without contending for the line.

36

priority indicators . . . groups of characters in the header of
a message, specifying the order of transmission of messages
over a communication channel.

queue . . . a group of items awaiting processing by some
facility.

real-time processing . . . processing data rapidly enough to
provide results useful in directly controlling a physical
process or guiding a human user,

record .'. . a group of related data items treated as a unit,
response . . . equivalent to acknowledgment (which see),
response time . . . the interval between completion of an

input message and receipt of an output response,
restart . . . to return to a previous point in a program and

resume operation from that point; often associated with
a checkpoint.

shutdown . . . temporary termination of computer proc­
essing to be resumed at some later time,

space state . . . state of a communication line corresponding
to an off, open, or logical zero condition; contrast with
mark state.

startup . . . initiation of computer processing or resumption
of it from a point of temporary termination,

start-stop mode . . . a mode of data transmission in which
each character is delimited by special control bits
denoting the beginning and end of the sequence of data
bits representing the character; contrast with synchronous
mode.

static allocation . . . the technique of assigning fixed storage
areas prior to processing; contrast with dynamic alloca­
tion.

store and forward switching . . . see message switching.
stunt box . . . a device to control non-printing functions of

a teletypewriter terminal.
subset . . . a modulation/demodulation device designed to

provide compatibility of signals between data processing
equipment and communication facilities. Also called
modem.

synchronous mode . . . a mode of data transmission in
which character synchronism is controlled by timing
signals generated at the sending and receiving stations;
contrast with start-stop mode.

tariff . . . the published rate for a particular approved com­
mercial service of a common carrier; also, a list of
services provided and requirements for their use.

telecommunication . . . communication by electromagnetic
systems; often used interchangeably with communication.

TCU . . . abbreviation for transmission control unit.
Teleprinter . . . trade name used by Western Union to refer

specifically to telegraph page printers.
Teletype . . . trademark of the Teletype Corporation.

Teletypewriter. . . trade name used by AT&T to refer
specifically to telegraph page printers.

Teletypewriter Exchange Service (TWX) . . . a semi-automatic
switching service provided by AT&T for interconnecting
public teletypewriter subscribers.

Telex . . . an automatic switching service provided by
Western Union for interconnecting teleprinter subscribers.

Telpak . . . a tariff offered by AT&T for leasing or broadband
channels.

terminal unit . . . equipment on a communication channel
that may be used for either input or output, or both.

t ex t . . . that part of a message which contains the informa­
tion to be conveyed; contrast with header.

tie-line . . . a leased communication channel or circuit.
time-share . . . to interleave the use of a device or system

for two or more purposes.
transmission . . . the electrical transfer of information from

one location to another.
transmission control unit . . . a unit to interface communi­

cation lines with a computer. Sometimes abbreviated as
TCU.

turnaround time . . . the interval of time between submission
of a job for computer processing and receipt of results;
the time interval required to reverse the direction of trans­
mission over a communication line.

TWX . . . abbreviation of Teletypewriter Exchange Service.

unattended operation . . . use of a terminal unit without an
attending operator.

USASCII. . . United States of America Standard Code for
Information Interchange.

voice grade line . . . a channel suitable for transmission of
speech.

VRC . . . abbreviation for vertical redundancy checking method,
in which parity is checked vertically across each character
in a record.

voice-band (a.) . . . denoting a communication channel
capable of a transmission state exceeding 300 bits per
second; a channel suitable for transmission of speech.

WATS . . . abbreviation for AT&T’s Wide Area Telephone
Service, providing a special line on which the subscriber
may make unlimited calls to certain zones on a direct
distance dialing basis for a flat monthly charge.

wide-band (a .) . . . denoting a communication channel
capable of a transmission rate greater than about 18,000
bits per second.

Word . . . in telegraphy, a word consists of six code combi­
nations.

Glossary 37

BIBLIO GRAPH Y

Systems Reference Library Manuals

IBM 1030 Data Collection System (A24-3018)
IBM 1050 Data Communication System (A24-3020)
IBM 1060 Data Communication System (A24-3034)
IBM 2260 Display Unit (A27-2700)
IBM 2701 Data Adapter Unit (A22-6864)
IBM 2702 Transmission Control Unit (A22-6846)
IBM 2703 Transmission Control Unit (A27-2703)
IBM 7770 Audio Response Unit (A22-6800)
IBM 7772 Audio Response Concepts and Vocabulary

(A22-6847)
IBM System/360 Disk Operating System BTAM (C30-5001)
IBM System/360 Disk Operating System, QTAM Message

Control Program (C30-5004)
IBM System/360 Disk Operating System, QTAM Message

Processing Program Services (C30-5003)
IBM System/360 Operating System, BTAM (C30-2004)
IBM System/360 Operating System, QTAM Message

Control Program (C30-2005)
IBM System/360 Operating System, QTAM Message

Processing Program Services (C30-2003)

Books

Desmonde, W. H.: Real-Time Data Processing Systems,
Prentice-Hall (1964).

Head, R. T.: Real-Time Business Systems, Holt-Reinhart-
Winston (1964).

Martin, J. T.: Design of Real-Time Computer Systems,
Prentice-Hall (1967).

Martin, J. T.: Programming Real-Time Computer Systems,
Prentice-Hall (1965).

------ : Data Communications in Business, American
Telephone & Telegraph Co., New York (1965).

Bibliography 39

Index

Addressing 11,21
Allocation and scheduling 23-25

considerations 23-24
QTAM 34

Applications, TP 9-14
ASCII code 17-18
Audio response 11-12
Automatic answering 15
Automatic calling 9,15

Bandwidth 15
Baud 15
Bit rate on communication line 15-16
BTAM functions 26,29-31
BTAM storage requirements 30
Buffer pools 24-25
Buffers 24-25

Call directing code 21
Chaining, buffer 25
Channel, communication 15
Character codes 16-19

Baudot 16-17
EBCDIC 17,19
shifted 16
translation 17,27
USASCII 17-18

Character rate on communication line 16
Checking, error 20
Checkpoint/restart 14
Code translation 17,27
Common carrier 10
Communication lines 15
Communication networks 15
Contention 10
Control mode 21
Conversational mode 11

Data collection application 9-10
Data entry application 9-10
Data formats, TP 13
Data Phone see Modem
Data set see Modem
Deposit accounting application 12
Duplex lines 15

EBCDIC code 17,19
Error detection and correction 20,21

Fixed-count coding 20

Half-duplex lines 15

IBM 1030 10
IBM 1050 9
IBM 1060 12
IBM 2260 12
IBM 2740 13
IBM 7770/7772 12
Information retrieval application 12
Inquiry application 11-12

Line, communication 15
Line control 21
Longitudinal redundancy checking (LRC) 20

Message
header 11
lengths 14
priority 26
text 11

Message control 26
Message processing 27
Message routing 27

QTAM 32-34
Message switching 11-12
Modem 16
Multipoint line 10
Multiprogramming 23

Narrowband line 15
Nonswitched line 15

Overlap, I/O 24

Parity checking 20
Polling 10

QTAM functions 29,31-34
QTAM message flow 32,33
QTAM organization 32-34
QTAM storage requirements 31
Queuing 11,25-26

priority 26
problems in 26
QTAM 34
techniques 25-26

Index 41

Read/Write routines 31
Remote computing application 13
Remote processing application 13

Shifted codes 16
Simplex line 15
Start-stop mode 20
Store-and-forward switching 11
Subset see Modem
Sub-voice-grade line 15
Switched line 15
Synchronous mode 20
System/360

communications features 7
telecommunications access methods 27

System response time 11

Teleprocessing
advantages 9
applications 9-14
data formats 13
developments in 5-6
programming techniques 23-27
system characteristics 13-14
system loads 14

Teleprocessing equipment
characteristics 15-21
connections 16,21
see a lso individual terminal types

Telegraph-grade line 15
Terminal control 21
Terminal lists 26
Text editing 13
Text mode 21
Translation, code 17,27
Translation tables 17,27
Transmission control units (TCU) 20-21
Transmission errors 20
Transmission mode 20
Transmission speed 15

Unattended operation 9
USASCII code 17-18

Vertical redundancy checking (VRC) 20
Voiceband line 15

Wideband line 15
Word (defined) 16

42

READER'S COMMENT FORM

IBM System/360—Introduction to Teleprocessing
SRL

GC30-2007-1

• How did you use this publication?

As a reference source
As a classroom tex t
As a self-study tex t

□
□
□

• Based on your own experience, rate this pub lication • •

As a reference source: Very Good Fair Poor
Good

Very
Poor

As a tex t: Very Good Fair
Good

Poor Very
Poor

• What is your occupation?

• We would apprecia te your other com m ents; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your nam e
and address.

Thank you for your cooperation. No postage necessary if m a iled in the U. S. A.

r

YOUR COMMENTS, PLEASE . . .

GC30-2007-1

Staple

This publication is one of a series that serves* as a reference source for systems
analysts, programmers, and operators of IBM systems. Your answers to the ques­
tions on the back of this form, together with your comments, help us produce
better publications for your use. Each reply is carefully reviewed by the persons
responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your
IBM system should be directed to your IBM representative or to the IBM sales
office serving your locality.

Fold Fold

FIRST CLASS
PERMIT NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

B U S I N E S S R E P L Y M A I L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation
P. O. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Programming Documentation, Dept. 844

9
CJ>

3U

Fold Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International] rsjuauiuicQ pm opippy

Printed in U.S.A.
GC30-2007-1

READER'S COMMENT FORM

IBM System/360—Introduction to Teleprocessing
SRL

GC30-2007-

. How did you use this publication?

As a reference source
As a classroom tex t
As a self-study te x t

□
□
□

• Based on your own experience, rate this pub lication . . .

As a reference source: Very Good Fair
Good

Poor Very
Poor

As a tex t: Very Good Fair
Good

Poor Very
Poor

• What is your occupation?

• We would apprecia te your other com m ents; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your nam e
and address. •

• Thank you for your cooperation. No postage necessary if m a iled in the U. S. A.

r

YOUR COMMENTS, PLEASE . .

GC30-2007-1

staple

This publication is one of a series that serves* as a reference source for systems
analysts, programmers, and operators of IBM systems. Your answers to the ques­
tions on the back of this form, together with your comments, help us produce
better publications for your use. Each reply is carefully reviewed by the persons
responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your
IBM system should be directed to your IBM representative or to the IBM sales
office serving your locality.

Fold Fold

FIRST CLASS
PERMIT NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

B U S I N E S S R E P L Y M A I L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . . 9U

IBM Corporation
P. O. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Programming Documentation, Dept. 844

Fold Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International] rs4uauiuio3 psuopippy

Printed in U.S.A.
GC30-2007-1

«

I

GC30-2007-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Printed in U
S.A

.
GC30-2007-1

