Principles of Operation Version 1.0
Tha EPSILON System 15 June 1976

Principles
Of Operation

The EPSILON System

Version 1.0
15 June 1976

R.B. Talmadge

Reprinted 15 October 1980

Principles of Operation
The EPSILON System

Is there anything whereof it may be said,
See this is new? It hath been already of
old time, which was before us.

Ecclesiastes 1:10

Reprinted i

Version 1.0
15 June 1976

15 October 1980

Principles of Operation
The EPSILON System

Preface

PREFACE

Principles of Operation, The EPSILON System, Version
1.0, was published on 15 June 1976 as an IBM Confiden-
tial document. It was declassified to non-confiden-
tial on 1 March 1978, with authorization to
distribute copies to any interested party inside or
out of IBM.

This document is a reprint of the original without
revision of content. Minor text changes have been
made, however, in order to take advantage of format
improvements possible with new text and printing fa-
cilities.

ii 15 October 1580

Version 1.0
15 June 1976

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

CONTENTS

1.0 INTRODUCTION tcciececccccscsscsncssnssensscssonsosssosnssssssscsssse 1
Nature of EPSILON Systems
Relation to System/360/370
References

2.0 BASIC CONCEPTS AND DEFINITIONS ..cccecccceocssascccscsssccsccasansae 4
Processes
Initiation and Termination
Process Classes
Storage
Data Protection
Instruction Sets
Input/0utput
Addressing Conventions
Instruction Execution
Exceptions

3.0 STORAGE AND SPACES ..ecieccccossccsscnsccsscoassssssscscssonssonse 13
M-space Allocation
B-space Allocation
Pointers
Space Retrieval
Domain Identifier
Changes of Custody
Instruction Descriptions
ALLOCATE SPACE
FREE SPACE
SAVE SPACE
LOAD SPACE
STORE POINTER
LOAD POINTER
TEST POINTER
ASSIGN DOMAIN IDENTIFIER
LOAD DOMAIN IDENTIFIER
SET PROTECTION VECTOR
INSERT PROTECTION VECTOR

6.0 PROCESS DISPATCHING .icceecescccscscnsccsssccsscsssossscssccsccssosnss 28
Computation Cycles
C-process Dispatching Overview
Dispatching Condition
Selection Routines
C-procaess Dispatching Example
R-process Dispatching
Computation Cycle Overrun

5.0 C-PROCESSES: GENERAL COMPUTATIONccceccecsccccscasosssscnssscse 37
Queues
Process Model Definition
Process Model Deletion

Table of Contents i 15 October 1980

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Initiation
State Vector
Process Entry
Linkage
Communication via Queues
Domain Identication
Shared Data
Deadlock Avoidance
Termination
Exception Handling
Forced Exceptions
Instruction Descriptions
DEFINE QUEUE
QUEUE INDEX
DEFINE C-PROCESS MODEL
STORE CMDB
DELETE QUEUE
INITIATE PROCESS
LOAD PROCESS INSTRUCTION COUNTER
IDLE
WAIT
CALL
RETURN
ENQUEUE
DEQUEUE
QUEUE SWITCH
QUEUE WAIT
CLOSE GATE
OPEN GATE
EXIT
TERMINATE PROCESS
DEFINE EXCEPTION MODULE
SET EXCEPTION MASK
SET BREAKPOINT MASK
FORCE PROCESS EXCEPTION

6.0 R-PROCESSES: EVENT RESPONSE .ctvecccvoccecccsasssscsacsvsansoncnas 71
Process Sources
Process Model Connection
Initiation
Process Communication
Deadlock Detection
Termination
Exception Handling
Instruction Descriptions
STORE SOURCE LIST
CONNECT R-PROCESS MODEL
~CONNECT R-PROCESS MODEL INDIRECT
STORE SOURCE STATUS
SIGNAL SOURCE

7.0 D-PROCESSES: INPUT/OUTPUT cevcveccscecsscossosssnsscoscccsoasansssa 85
I/0 devices i

Table of Contents iv 15 October 1980

Principles of Operation
The EPSILON System

Process Model Connection

I/0 Requests

D-Process Environment

Dispatching

I/0 Request Processing

Input/0Qutput Operations

I/0 Request Disposition

Use of Domain Identifier

Termination

Exception Handling

Attachment Interfaces

Instruction Descriptions
STORE DEVICE LIST

STORE DEVICE DESCRIPTION
CONNECT D~-PROCESS MODEL
CONNECT D-PROCESS MODEL INDIRECT

STORE DEVICE STATUS
REQUEST INPUT/OUTPUT
TEST INPUT/QUTPUT
NEXT REQUEST

START DEVICE

WAIT DEVICE

HALT DEVICE

SET DEVICE STATUS
END I/0 REQUEST
RESERVE DEVICE

END PROCESS

Version 1.0
15 June 1976

8.0 GENERAL INSTRUCTIONS .ceeceeccccecccocsccccosnnscsoccnscsncnsnnnne 116

Fixed-Point Arithmetic
ADD
ADD HALFWORD
ADD LOGICAL
COMPARE
COMPARE HALFWORD
COMPARE LOGICAL
DIVIDE
LOAD
LOAD AND TEST
LOAD COMPLEMENT
LOAD HALFWORD
LOAD MULTIPLE
LOAD NEGATIVE
LOAD POSITIVE
MULTIPLY
MULTIPLY HALFWORD
SHIFT LEFT DOUBLE

SHIFT LEFT DOUBLE LOGICAL

SHIFT LEFT SINGLE

SHIFT LEFT SINGLE LOGICAL

SHIFT RIGHT DOUBLE

SHIFT RIGHT DOUBLE LOGICAL

SHIFT RIGHT SINGLE

Table of Contents

15 October 1980

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

SHIFT RIGHT SINGLE LOGICAL

STORE

STORE HALFWORD

STORE MULTIPLE

SUBTRACT

SUBTRACT HALFWORD

SUBTRACT LOGICAL
Logical Operations

AND

COMPARE LOGICAL

COMPARE LOGICAL CHARACTERS UNDER MASK

EXCLUSIVE OR

INSERT CHARACTER

INSERT CHARACTERS UNDER MASK

MOVE

OR

STORE CHARACTER

STORE CHARACTERS UNDER MASK

TEST AND SET

TEST UNDER MASK

TRANSLATE

TRANSLATE AND TEST
Branching

BRANCH AND LINK

BRANCH ON CONDITION

BRANCH ON COUNT

BRANCH ON INDEX HIGH

EXECUTE

LOAD ADDRESS
Long Operands

COMPARE LOGICAL LONG

MOVE LONG

TRANSLATE

TRANSLATE AND TEST
Decimal Feature

ADD DECIMAL

COMPARE DECIMAL

CONVERT TO BINARY

CONVERT TO DECIMAL

DIVIDE DECIMAL

EDIT

EDIT AND MARK

MOVE NUMERICS

MOVE WITH OFFSET

MOVE ZONES

MULTIPLY DECIMAL

PACK

SHIFT AND ROUND DECIMAL

SUBTRACT DECIMAL

UNPACK

ZERO AND ADD
Floating-Point Features

ADD NORMALIZED

Table of Contents vi 15 October 1980

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

4 ‘ ADD UNNORMALIZED
COMPARE
DIVIDE
HALVE
LOAD .
LOAD AND TEST
LOAD COMPLEMENT
LOAD NEGATIVE
LOAD POSITIVE
LOAD ROUNDED
MULTIPLY
STORE
SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

9.0 SERVICE PROCESSES .evcesccscsscsscsssoscssnssossscsssnssosssssssssnes 128

The System Clock

Time Events

System Exceptions

System Overrun

Invalid Process Model

Forced Exception

Statistics Collection

Domain End

Instruction Descriptions
REQUEST TIME EVENT
STORE CLOCK
FORCE SYSTEM EXCEPTION

10.0 SYSTEM INQUIRY FACILITIES ...cicecoccsccscsscsoscscscssoscssnssoansssns 139
Configuration Data
Current State Data
Collection of Statistics
Assignment of Counters
Statistics Records
Domain Statistics
Software Statistics
Process Monitoring
Instruction Descriptions
STORE CONFIGURATION DATA
STORE PROCESS MODEL LIST
STORE DOMAIN LIST
STORE COMPUTATION CYCLE RECORD
COLLECT STATISTICS
SET COLLECTION MASK
DEFINE STATISTICAL COUNTER GROUP
ACQUIRE STATISTICAL COUNTER GROUP
SET MONITOR CONDITIONS
SET MONITOR MASKS

11.0 MALFUNCTION DETECTION AND RECOVERY .cececcercecccecnconnnncnonnas 173

- Hardware Malfunction
(Invalid System Data

Table of Contents vii 15 October 1980

Principles of Operation : Version 1.0
" The EPSILON System 15 June 1976

System Operation Error

Error Signal Mask

Error Signal Processes

Instruction Descriptions
SET ERROR MASK
DIAGNOSE

12.0 SYSTEM INITIALIZATICN .ceeversnccsessosassssssssnsscsnssasssnnaes 180
Overview
Initialization Data Table
System Parameters
Dispatching Structure
Space Definition
Service Process Models
Regular Process Models
System Checkpoint
Application Initialization
System Termination
Instruction Descriptions

CHECKPOINT

Table of Contents viii 15 Dctober 1980

Principles of Operation
The EPSILON System

1.0 INTRODUCTION

EPSILON is a computer system archi-
tecture which is an evolution of Sys-
tem/360 architecture into new
control and addressing capability,
leaving the basic computational
capability unchanged. The primary
objective is to provide a family of
computer systems consistent with the
installed 57360 base, that can be op-
erated efficiently over a large set
of configurations, hierarchically
distributed or not, and over a sub-
stantially wider range of applica-
tions than current systems.

1.1 Nature of EPSILON Systems

In EPSILON systems many of the func-
tions provided in other computer sys-
tems by supervisory control programs
have been included in the basic in-
struction set, not only as a means of
improving software performance but
also as a way of promoting more uni-
formity in programming and operating
systems. These supervisory func-
tions, together with the facilities
that support them, incorporate con-
cepts and views of the computing
environment which are sometimes ex-
hibited explicitly, and are always
inherent in the assumptions underly-
ing the semantics of the instruc-
tions. The character and appearance
of EPSILON systems is dominated by
these concepts.

o Multiprocessing is assumed to be
the rule rather than the excep-
tion, so that multiple concur-
rent processes are the expected
norm. In order to provide a sim-
ple and stable programming envi-
ronment in the face of the
multitude of possibilities for
processor interconnection and
signalling, EPSILON systems ex-
plicitly recognize processes as
the basic unit of organized in-
struction execution activity,

Chapter 1

Version 1.0
15 June 1976

and undertake to relieve soft-
ware of dependency on physical
processing mechanisms. Conse-
quently, system microcode man-
ages all activity connected with
assignment of processors to pro-
cesses, and the instruction exe-
cution behavior of an EPSILON
system is independent of the num-
bar of processing mechanisms it
contains.

Two kinds of time constraints are
subsumed as an integral part of
the computing environment:

- any event (signal) must be
acted upon within some maxi-
mum time following its oc-
currence

- any computation must be com-
pleted within a time inter-
val determined by when the
output of the computation is
to be used.

Because the time of occurrence of
an event is unpredictable, event
response constraints are in bas-
ic conflict with orderly compu-
tation, as they may require
pre-emption of allocated re-
sources. As an aid to the resol-
ution of this conflict,
processes in EPSILON systems are
separated into three classes,
each of which is provided facili-
ties designed to match a partic-
ular kind of activity. 0One class
is for general computation and
two are for event response, one
of those being for input/output.
The system resolves basic re-
source conflicts between indi-
vidual processes, and between
process classes, using informa-
tion supplied as part of on-going
process activity.

Introduction

Principles of Operation
The EPSILON System:

o The general division of function
between the system and individ-
ual processes is based on previ-
ous software experience, but the
specific activity undertaken by
the system is conditioned by a
system view of the process class
involved. Thus, process dis-
patching and storage allocation
are functions of the system be-
cause experience has shouwn that
they occur in nearly all general
purpose supervisory software.
However, dispatching of computa-
tional processes is time-driven,
based on viewing those processes
as data transformations, while
dispatching of response class
processes is event-driven.

Similarly, storage is addressed
only in segments (spaces) pro-
vided by the system in response
to allocation instructions. Tuwo
levels of storage exist, one for
data and instructions being pro-
cessed, the other for permanent
residence. Response class pro-
cesses have only limited access
to data in permanent storage, and
none to instructions. Computa-
tional processes, however, are
provided with automatic loading
facilities that allow them to
reference permanent storage di-
rectly in linkage instructions.

o The separation of process by
class of activity leads to a na-
tural separation of instructions
by execution validity with re-
spect to class, and to modal in-
terpretation of instructions.
An instruction may be executable
only within a process of a given
class, or may be common to two or
more classes. Instructions com-
mon to more than one class may
have the same interpretation for
each class, or may have an inter-
pretation which varies by class
in order to be consistent with
the presumed nature of the pro-

Chapter 1

Version 1.0
15 June 1976

cesses.

EPSILON systems therefore can be
thought of as having three separate
instruction sets, each of which pre-
sents programmers with a set of fa-
cilities designed to promote a
particular class of activity. The
instruction sets are independent in
the sense that every process in the
system consists of interpretation
and execution of instructions se-
lected from exactly one of the sets;
they are connected in the sense that
at least one instruction of each set
can cause initiation of a process for
some other set. The overall effect
is one of interdependence, not be-
cause the instructions have the same
formats (which 1is an accident of
choice), but because every applica-
tion is carried out by a mixture of
processes from all three classes.

1.2 Relation to Systems/360,370

EPSILON data types are the same as
those of System/370, have the same
formats, and are subject to the same
positioning rules with respect to
half-word, word, and double-word
boundaries. EPSILON instructions
have formats identical to those of
$/360 instructions, and where an in-
struction is common to EPSILON and
57360 the operation code is the same.

The EPSILON instruction 1list in-
cludes all non-privileged 5/360
instructions, and all non-privileged
instructions of 5/370 with the excep-
tion of a few whose function is per-
formed in some other way .
Instruction interpretation is de-
fined so that instructions executed
within a single space of an EPSILON
system, which refer only to data
within that space, behave as they
would when executed within a 360 or
370 system. Consequently, all 57360
and most 57370 programs which use on-
ly non-privileged instructions can
execute without change on EPSILON

Introduction

Principles of Operation
The EPSILON System

system models, and will obtain the
same results as on 57360 or S/370
models.

The privileged instructions, the
control registers, dynamic address
translation, and other visible con-
trol mechanisms of 57360 and 57370 do
not appear in EPSILON systems, as the
EPSILON architecture extends 57360
in a direction for which such mech-
anisms are inappropriate. Further-
more, the input/output system, while
similar to 57360 and S/370 at the de-
vice command interface, operates
within a disciplinary framework not
required on those systems.

A microcode feature 1is available
which will provide for interpreta-
tion of 5/360 privileged instruc-
tions. A similar feature is
separately available for $/370.
These features each provide a basic
mechanism by which any 57360 or S/7370
program can execute within a single
space of an EPSILON system, but it is
expacted that software will provide
the additional functions required
for correct interpretation of the
program within its programming sys-
tem environment.

Chapter 1

Version 1.0
15 June 1976

1.3 References

This document: is intended as a
self-contained principles of oper-
ation. However, to avoid duplication
of much that is well-known, the read-
er is assumed to have a basic know-
ledge of 5/360, and some material is
included by reference to 57360 and
57370 principles of operation:

o POP360 indicates a reference to
SRL document GA22-6281-8, IBM
System/360 Principles of Oper-
ation, ninth edition, November
1970

o POP370 indicates a reference to
SRL document GA22-7000-3, IBM
System/370 Principles of Oper-
ation, fourth edition, January
1973.

References are enclosed in square
brackets when they are ancillary to
the text, but are not enclosed when
they supply the text. External ref-
erences include a colon and page num-
ber, other references do not. Thus,
[POP360:41] refers to page 41 of the
57360 principles of operation, and
[Section 4.3] refers to Section 4.3
of this document.

Introduction

Principles of Operation
The EPSILON System

2.0 BASIC CONCEPTS AND DEFINITIONS

The following paragraphs describe
some of the basic system concepts and
introduce definitions which will be
used throughout the remainder of the
document. The defined terms, includ-
ing ordinary words used in a special
technical sense, appear in bold type
at their first appearance. If a term
can have values, the first appearance
of the name of a value is either
underlined or exhibited on a separate
display line.

2.1 Processas

All instruction execution in an
EPSILON system must occur as part of
an organized activity called a pro-
cess. A process consists of a suc-
cession of states, each of which is
described by the data contained in a
state vector. Transition from a given
state to its successor state is ac-
complished by action of some process-~
ing mechanism, which

o selects an instruction from the
sequence of instructions cur-
rently associated with the pro-
cass

o interprets the instruction in
the context of the state vector
data, and carries out the func-
tion of the interpreted instruc-
tion

o alters the state vector data (if
necessary) to reflect the result
of execution of the instruction.

The number of processes active in the
system at any time is arbitrary, lim-
ited only by availability of physical
resources. The number of processing
mechanisms in the system is. not a
factor which limits the number of
processes; in fact, the functional
(i.e. instruction execution) behav-
jor of the system is not affected by

Chapter 2

Version 1.0
15 June 1976

the number of processing mechanisms,
though the system throughput or re-
sponse to events may well be af-
fected.

2.2 Initiation and Termination

Process initiation is the activity of
bringing a process into being and
setting up its initial state. Initi-
ation can occur only as the result of
activating a process sgurcg, and is
carried out as a closed function of
the system. Some process sources are
specifiable as part of the system and
are factory or field installed, oth-
ers are generated as a result of in-
struction execution. The following
kinds of process sources occur or may
occur in any EPSILON system.

o Inputsoutput Devices. A source
is installed at the factory or in
the field for every 1I/0 device
port attached to a system. An
I/0 device source is activated
whenever an associated device
signals a device event (e.g.
attention). I/0 device sources
can also be activated by the RE-
QUEST INPUT/OUTPUT instruction.

o External Sional 1Interface. An
external signal interface can be
factory or field installed in any
EPSILON system. A source is
installed for each signal line,
and is activated when the appro-
priate signal appears on the
line.

o Queues. Queues can be specified
to act as process sources. The
source is activated whenever an
item is placed into the queue and
the queue was empty at the time.

Activation of a process source always

results in a request for process ini-
tiation. The request may not result

Basic Concepts

Principles of Operation
The EPSILON System

in the actual initiation of a pro-
cess, however, if a process already
exists which meets the request spec-
ifications.

Procass termination is the activity
of deleting a process from the sys-
tem; it is the inverse of process in-
itiation, and is also carried out as
a closed function of the system.
Termination can occur only as the re-
sult of execution of a termination
request instruction, eithar by the
process to be terminated or by a pro-
cess detecting a requirement for ter-
mination.

2.3 Process Classes

In order for process initiation to
operate as a closed function, it is
necessary to provide the system with
data which describes the structure
and content of the initial state vec-
tor. Such a collection of data is
called a process modal, and a process
derived from a given model is called
an instance of that model. All pro-
cesses are instances of some process
model.

There are three classes of process
model, each giving rise to a corre-
sponding class of process. The
classes are designated as the C-pro-
c2ss class, the R-process class, and
the D-process class. The capital
letters used to distinguish these
process classes will also be used to
distinguish items and character-
istics unique to the classes. Thus,
'D-process model' will be used to re-
fer spacifically to a process model
giving rise to a process of the
D-process class, while 'process mod-
el' will be used if the reference is
to apply to any process model.

Each of the three classes of process
is designed to provide facilities
which are matched to a particular
class of activity:

Chapter 2

Version 1.0
15 June 1976

o C-processes for general computa-
tion

o R-processes for response to ex-
ternal or internal event signals

o D-processes for I/0 device con-
trol and data transfer.

However, any process can carry out
any kind of activity as long as it
has access to the instructions and
data required for that activity.

The separation of process models and
processes into classes is achieved by
adoption of rules and procedures
which regulate the general character
of their behavior. Aspects regulated
include:

o Initiation. Process sources are
restricted to association with
specific classes. I/0 device
sources, for example, can cause
initiation of D-processes or
R-processes, but not C-pro-
cesses, while queues can only
cause initiation of C-processes.

o Instruction set. The classes
differ in the states allowed
their processes. Consequently,

- the structure and content of
the associated state vectors
is not the same from class to
class

- the instructions which can
be executed vary by class.

A given processing mechanism is
therefore not necessarily as-
signable to more than one class.

) Process management. The process
dispatching rules, the amount
and type of dispatching control,
and the communication and data
sharing mechanisms made avail-
able to processes, distinguish
the process management functions

Basic Concepts

Principles of Operation
The EPSILON System

of one class from those of anoth-
er. :

The rules and procedures governing
behavior of processes appear in Chap-
ters 5, 6, and 7, which discuss the
specific characteristics of each
process class.

2.4 Storaqe

Main storage in an EPSILON system
consists of two collections of data
bytes, called M-storaga and B-stor-
aga. M-storage has predictable ac-
cess time, and may be volatile;
B-storage has unpredictable access
time, and is non-volatile. Data and
instructions may occupy B-storage
for permanent residence, but must re-
side in M-storage before they can be
processed.

Initially, both types of storage con-
sist of a pool of 8-bit bytes which
are unrelated and not addressable.
The total number of bytes of storage
and the number of bytes in each pool
is installed at the factory, but ad-
ditional bytes may be field in-
stalled. Addressability is obtained
by executing an allocation instruc-
tion, which defines a unit of stor-
age, either an M-space or a B-space,
consisting of a specified number of
bytes withdrawn from the M-storage or
B-storage pool.

o Both M-spaces and B-spaces are
referenced by use of a 32-bit
identifier, called a pointer,
unique to the space. The pointer
for a space is assigned by the
system when the space is allo-
cated. Pointer values are not
predictable, except for the null
pointer which is always a zero
field.

o Bytes within a B-space are not
individually addressable, though
they are considerad to be se-
quenced contiguously, starting

Chapter 2

Version 1.0
15 June 1976

with sequence number 0.

o Bytes within an M-space are ad-
dressable, with address loca-
tions corresponding to sequence
numbers. A 24-bit address is ap-
plied relative to location 0 +to
reference any desired byte. Ad-
dressing therefore accommodates
M~-spaces up to 16,777,216 bytes
in extent.

A space remains in existence until a
FREE SPACE instruction referring to
it is successfully executed, at which
time it is deleted from the system
and the M-storage or B-storage pool
enlarged by the number of bytes in
the M-space or B-space. The total
number of spaces in existence at any
one time is constrained only by the
requirement that the sum of all
M-space extents not exceed the total
number of M-storage bytes installed
in the system, and the sum of all
B-space extents not exceed the total
number of B-storage bytes installed.

Information can be moved between
M-storage and B-storage by executing

o a LOAD SPACE instruction, which
copies the contents of a B-space
into an M-space in byte sequence
order

o a SAVE SPACE instruction, which
copies an M-space into a B-space.

However, there are no instructions
which will alter the division of
bytes between M-storage and B-stor-
age.

2.5 Data Protection

In order to provide a basic framework
for protection of data, every space
is assigned to the custody of some
process or garoup of processes, and
allocated read and write access. Cus-—
tody identifies the group of pro-
cesses that can delete the space or

Basic Concepts

Principles of Operation
The EPSILON System

change its access. There are three
types of custody.

o Private. The space can be deleted
or have its access type altered
only by one specific process.

o . Family. All processes which are
instances of a given process mod-
el are said to be members of that
process model family. Family
custody allows any member of the
family to delete the space or al-
ter its access type.

o Bound. The space is bound to some
process model, or to the system.
It cannot have its access type
altered, and can be deleted only
when the process model is de-
leted, or the system is initial-
ized.

Custody is transferred by the execu-
tion of certain instructions. For
example, when an ENQUEUE instruction
is completed, the space is removed
from its current custody and becomes
part of the queue. It is subsequent-
ly assigned to the custody of the
process which dequeues it.

The read access of a space identifies
the group of processes that can read
data from the space, and the write
access those that can store data into
it. In decreasing order of restric-
tion, the types of access are

o Private: access restricted to a
single process

o Family: access restricted to
members of a particular family

o Domain: access restricted to
processes acting on behalf of
some specified data domain
[Section 3.51]

o Public: access allowed to any
process.
Chapter 2

Version 1.0
15 June 1976

The protection vector of a space is
the triple of the values of custody,
read access, and wurite access.
M-spaces can have any legitimate pro-
tection vector value. B-spaces, how-
ever, cannot be assigned private
custody or private read access.
These restrictions are automatically
applied by the instructions which act
on B-spaces.

2.6 Instruction Sets

Processing mechanisms are either
internal to an EPSILON system or are
devices attached externally by means
of the 1I/0 attachment interfaces.
I/0 devices (or device adapters) exe-
cute instructions which are special-
ized to their particular control and
data transfer characteristics. They
execute such instructions as part of
a D-process, being assigned as the
associated processing mechanism on
execution of the START DEVICE in-
struction.

In contrast to these external device
instruction sets, all internal
EPSILON instructions conform to spe-
cific formats and prescribed inter-
pretation conventions. They are
classified by execution validity
with respect to process class, and by
mode of interpretation.

o Some instructions are executable
within a process of any process
class, some are common to two of
the process classes, some are
valid only within one of the
classes.

o The instructions valid within
R-processes are called the basic
instruction set, those wvalid
within C-processes are called
the computational instruction
sat, and those valid within
D-processes are called the
peripharal instruction sat. A
dacimal feature and a floating-
point feature may be independ-

Basic Concepts

Principles of Operation
The EPSILON System

ently added to the standard
computational instruction set.

o Instructions common to more than
one process class may have a
fixed interpretation, or may be
modal instructions whose inter-
pretation varies with class.
Modal instructions allow subrou-
tines to be written which auto-
matically conform to the
differing interpretation con-
ventions of the process class
within which they are executed.

Internal processing mechanisms are
of two types with respect to the in-
struction set classification.

o A central processing unit (CPU)
can execute the basic instruc-
tion set or the computational in-
struction set, or both.

0 A peripheral processing unit
(PPU) can execute the peripheral
instruction set.

There must be at least one CPU and
-one PPU in every EPSILON system. If
there is only one CPU it must have
both the basic instruction set and
the standard computational instruc-
tion set installed; if there is more
than one CPU, then the division be-
tween basic and computational
instruction capability is arbitrary,
as long as each capability is
installed. Some models, however, may
offer only limited combinations of
CPU capability. The =decimal and
floating-point features can be
installed only in a CPU in which the

computational 1instruction set has
been installed.

2.7 Input/gutput

An input/output operation transfers

data between an M-space and an I/0
device. The transfer mechanism is
provided by the peripheral process-
ing units of the system, each of

Chapter 2

Version 1.0
15 June 1976

which actually consists of two parts:

o an Is/0 attachment interface,
which supplies logical and elec-
trical connection between
M-storage and I/0 devices or de-
vice adapters

o a processing mechanism for in-
terpretation and execution of
the instructions by which D-pro-
cesses control transmission of
data between M-spaces and I/0 de-
vices.

The attachment interface of a PPU is
either a DC interlocked interface,
called a channel, or a serial,
clocked, bit-frame transmission
interface, called a loop. The pro-
cessing mechanism of a PPU interprets
instructions and data the same way in
either case, so that processes are
not affected by the form of attach-
ment chosen for any 1/0 device.

2.8 Addressina conventions

The EPSILON instructions have the
same structure and the five basic
formats of S/360 instructions: RR,
RX, RS, SI, and SS [POP360:12,131.
There are, houwever, significant dif-

ferences of interpretation of the
fields referenced in the instruc-
tions:

[¢] register references designate

special data private to a process

o storage addresses are generated
by rules which cause reference to
a location in some allocated
space.

The state vector of every process
contains sixteen 8-byte fields,
called genaral registers, which are
referenced by the R, X, and B fields
of any instruction executed within
the process. Thea state vector of ev-
ery C-process also contains four ad-
ditional 8-byte fields, called

Basic Concepts

Principles of Operation
The EPSILON System

fleating-point ragisters, which are
referenced by the R field of float-
ing-point instructions executed
within the process.

The eight bytes of a general register
are divided into two independent
4-byte fields. The first field,
called an arithmatic register,
always contains a binary number used
either for arithmetic calculation or
to compute locations relative to the
origin of some allocated space. The
second field, called a pointer regi-
ster, can contain only a pointer to
an M-space or B-space, or the null
pointer, and is used only for address
generation.

In the RR, RX, and RS instruction
formats, the R field may designate
the arithmetic register, the pointer
register, or the complete general
register. In the RX instruction for-
mat, the X field designates the
arithmetic register, treated as a
24-bit index. In the RX, SI, and SS
instruction formats, the B field des-
ignates the complete general regi-
ster, whose arithmetic and pointer
fields combine to form the base for
an operand address. Address gener-
ation is carried out as follows.

o The contents of the pointer regi-
ster designated by the B field
identifies = the space being

addressed. An access exception
[Section 2.10] will occur if the
register does not contain a
pointer to an allocated M-space
or B-space.

o The low order 2% bits of the con-
tents of the arithmetic register
designated by the B field are
treated as an unsigned binary in-
teger specifying the basa ad-
dress relative to the identified
space.

o) The low order 24 bits of the con-
tents of the arithmetic register

Chapter 2

Version 1.0
15 June 1976

designated by the X field (in RX
format instructions) are treated
as an unsigned binary integer
index relative to the base ad-
dress.

o The 12-bit number contained in
the D field of the instruction is
treated as an unsigned binary in-
teger displacemant relative to
the base address.

o The full address is calculated by
adding the base address, index,
and displacement as 24-bit bina-
ry numbers, ignoring overflouw,
to form a 24-bit location value.
This value designates the byte in
the identified space whose se-
quence number is equal to the lo-
cation value.

In forming addresses, a special in-
terpretation is given to zeros in the
X and B fields, and to the null
pointer. A zero in the X field indi-
cates the absence of indexing, and a
zero will be used for the index value
irrespective of the contents of
arithmetic register zero. A zero in
the B field is treated in the same
way if the address being generated is
actually a location relative to an
implied space, as in the LOAD
ADDRESS, EXECUTE, and branching in-
structions [Section 8.3]. No special
treatment is applied to a B field of
zero when the space must be explicit-
ly identified, as is the case with
most instructions.

The null pointer is interpreted as
referring to a special null space
which has public read and write ac-
cess, and is zero bytes in extent.
An address always lies outside the
null space, so that an addressing ex-
ception will occur if the address is
generated in connection with any
instruction which refers to a loca-
tion in the space.

Basic Concepts

Principles of Operation
The EPSILON System

2.9 Instruction Execution

When a processing mechanism is as-
signed to a process, it fetches
instructions from the M-space loca-
tion designated by the process in-
struction counter contained in the
state vector of the process. The in-
struction address is then increased
by the number of bytes in the in-
struction in order to address the
next instruction, except that in the
case of branching, linkage, and loop
control instructions, the next in-

struction address is calculated as
part of the instruction execution it-
self.

In concept, the processing mechanism
fetches and executes instructions
one at a time, with the results of
the execution of one instruction
available preceding the execution of
the next instruction. In practice,
instructions may be fetched out of
order or executed in a sequence phys-
ically different from the conceptual
one, in order to take advantage of
overlap of instruction fetch with op-
erand access. However, the results
génerated for any instruction are
those that would have been generated
if the conceptual sequence had been
followed, as a processing mechanism
Wwill not be switched from one process
to another without first having
brought physical and conceptual exe-
cution into agreement.

These actions also provide assurance
that data private to a process will
appear to behave exactly as expected

by the conceptual execution se—
quence. In the normal course of
events, however, there is no such im-

plicit assurance that data accessi-
ble to more than one process will
appear to behave with such integrity,
as all processes in an EPSILON system
can be advancing concurrently. This
occurs not only because there gener-
ally are multiple CPU and PPU, but
also because any particular process-

Chapter 2

10

Version 1.0
15 June 1976

ing mechanism may be switched from
one process to another between any
two instuctions. Consequently, the
instructions CLOSE GATE and GPEN GATE
provide controlled access to shared
data, for use when the logic of a
process requires that an instruction
sequence have exclusive use of the
data for some period of time [Section

5.101,

2.10 Excentions

When an instruction is completed, a
2-bit condition code field in the
state vector of the process may be
set to a value which indicates an at-
tribute of the result. For example,
the condition code is set to the val-
ue 1 for a fixed-point addition with
a negative result, and to a 2 for a
positive result. The condition code
is inspected by the BRANCH ON CONDI-
TION instruction, which then uses the
value of the code to select the next
instruction addrass.

If a condition is encountered during
instruction execution which pre-
cludes the expected result, it may be
indicated in the condition code, or a

process exception may be raised. In
general, the condition code is used
to indicate unusual conditions not

under control of the process within
which the instruction is being exe-
cuted (e.g. the 'storage not avail-
able' condition for ALLOCATE), while
an exception signals a condition for
which the process itself is responsi-
ble.

There are six exceptions which can
occur for improper specification or
use of an instruction, one which can
be forced, and two which arise from
fixed-point arithmetic. These
exceptions, and their significance,
are as follows.

o Operation: Either the operation

code of the instruction is not
assigned, the instruction is not

Basic Concepts

Principles of Operation
The EPSILON System

installed, or the instruction
cannot be executed within the
process because of process class
execution restrictions

o Execute: An EXECUTE instruction
is the subject of an EXECUTE in-
struction

o Access: Either a storage refer-
ence 1is invalid because the
pointer does not identify an al-
located space, or the space has
access for the instruction not
allowed to the process

o Addressing: A generated address
lies outside the extent of the

referenced space, or the space is
currently not available for ad-
dressing

o Specification: An operand of the
instruction does not meet some
requirement restricting its 1lo-
cation, reference identifier, or
length

) Data: An operand of the instruc-
tion does not meet some require-
ment on its structure or value

o Forced: Occurs as the result of
executing a FORCE PROCESS EXCEP-
TION instruction, or when a pro-
cess trace record is stored

o Fixed-point overflow: A high-or-
der carry has occurred or high-
order significant bits have been
lost as a result of executing a

fixed-point add, subtract,
shift, or sign-control instruc-
tion

0 Fixed-point divide: Either

fixed-point division by zero has
been attempted, the quotient ex-
ceeds the register size, or the
result of a CONVERT TO BINARY in-
struction exceeds 31 bits.

In addition, the

following excep-

Chapter 2

11

Version 1.0
15 June 1976

tions can occur when the decimal and
floating-point features are in-
stalled.

o Decimal overflow: The destina-
tion field of a decimal instruc-
tion is too small to contain the
result

o Decimal divide: The quotient of
a decimal instruction exceeds
the size of the specified data
field

o Exponent overflow: The result of
a floating-point add, subtract,
multiply, or divide instruction
has a non-zero fraction and a
characteristic greater than 127

o Exponent underflow: The result
of a floating-point add, sub-

tract, multiply, divide, or
halve instruction has a non-zero
fraction and a negative charac-
teristic

o Significance: The result of a
floating-point addition or sub-
traction has a zero fraction

o Floating-point divide: A float-
ing-point division by =zero has
been attempted.

An 8-bit field in the state vector,
called the excepticn mask field, de-
termines the treatment of the eight
arithmetic exceptions. Each bit of
the mask corresponds to one of the
exceptions; if the bit is 0, the ex-
ception will be ignored if raised, if
the bit is 1 the exception will be
signalled to the process. The other
exceptions cannot be masked, so are
always signalled to the process. The
methods of signalling exceptions
vary by process class, as do the fa-
cilities for acting in response to
them. Details of exception proce-
dures appear in Chapters 5, 6, and 7.
arise

Unusual conditions can also

Basic Concepts

Principles of Operation
The EPSILON System

which are not directly relatable to
execution of a particular instruc-
tion. Dispatching, for example, de-
tects a possible CPU overload as a
result of trying to meet the CPU re-
quirements of all processes [Section
4.7]. Conditions of this kind for
which remedial action 1is possible
raise a system exception, and cause

Chapter 2

12

Version 1.0
15 June 1976

an exception process to be initiated.
Exception process models are
built-in to the system, but are per-
sonalized to individual systems by
data supplied at system initializa-
tion. Details of system exceptions
and system exception procedures ap-
pear in Chapter 9.

Basic Concepts

N

Principles of Operation
The EPSILON System

3.0 STCRAGE AND SPACES

In any EPSILON system, storage is
withdrawn from the storage pools to
contain data and data structures used
for system management. Part of the
storage is withdrawn at system
initialization [Chapter 121, while
the remainder is withdrawn as the re-
sult of conditions which occur during
system operation (e.g. storage is re-
quired for state vector data for a
newly initiated process). Once with-
drawn, such storage is not returned
to the storage pools, but is retained
and managed separately by the system
microcode.

The amount of storage used by the
system thus grows with demand, but
the damand falls off sharply as the
data structures adjust in size to the
operational locad. After a relatively
short initial period, the demand for
additional system storage will occur
only during periods of extraordinary
use. These periods will themselves
occur with decreasing frequency, so
that eventually the division between
system storage and storage available
for space allocation remains con-
stant. The value of this
steady-state constant cannot be pre-
dicted with certainty, but it is pos-
sible to determine an approximate
value from system initialization da-
ta.

Once the steady state has been
reached, the execution time of all
instructions which involve direct or
indirect storage allocation falls
within the bounds prescribed in the
functional specifications of the in-
dividual EPSILON systems.

3.1 M-space Allocation

The ALLOCATE SPACE instruction
(ALLOC) provides for direct allo-
cation of two kinds of M-spaces:

Chapter 3

13

Version 1.0
15 June 1976

o ordinary M-spaces are assumed to
be intended to hold data but not
instructions to be executed;
such spaces cannot be the object
of a linkage instruction

o module M-spacas are assumed to be
intended to hold instructions to
be executed. A module space can
be addressed to store and fetch
data, but cannot be enqueued or

transferred outside the custody
of the original process family,
except to bound custody; it can

be made available to other pro-
cesses as the object of a linkage
instruction.

The attribute of being a module or
ordinary space is permanently re-
tained by an M-space, and is inher-

ited by any B-space or M-space
allocated as a descendant of the
space.

The amount of space to be allocated
is specified as an exact number of
bytes. The system may choose to al-
locate storage in multiple-bvte
units in order to simplify internal
mechanisms. The amount of space al-
located may therefore not be exactly
the same as that requested, and the
difference may vary from ona EPSILON
system to another. Houwever, in all
cases the amount actually allocated
Will not be less than that requested.

3.2 B-space Allocation

B-space allocation is always indi-
rect in the sense that it occurs only
in connection with saving data in an
M-space by means of the SAVE SPACE
instruction (SAVE). SAVE is a modal
instruction which can be executed
within a C-process or an R-process.
When executed within a C-process, it
is entirely synchronous uwith respect
to. process state advancement. When

Storage and Spaces

Principles of Operation
The EPSILON System

the instruction is completed:

o a B-space equal in size to the
referenced M-space has been al-
located

o the number of bytes in the space
and the space pointer have been
loaded into the arithmetic and
pointer register fields of the
specified general register

o the contents of the referenced
M-space have been stored into the
allocated B-space.

When executed within an R-process,
SAVE is not entirely synchronous. It
is completed as soon as the B-space
has been allocated and the general
register loaded; storage of the
M-space data into the allocated
B~space may not be complete, nor even
in-process. Until data storage is
complete, the newly allocated
B-space is not available, and an ad-
dressing exception will occur if it
is referenced prior to completion.
The LOAD POINTER instruction indi-
cates space availability, and so can
be used to avoid premature refer-
ences.

The B-space allocated by a SAVE in-
struction inherits the attribute of
being an ordinary or module space
from the saved M-space. It also in-
herits the protection vector, though
some values may be altered.

o The M-space may be in private or
family custody of the process ex-
ecuting the SAVE instruction;

~ the B-space is always put into
custody of the family of the pro-
cess

(<] if the read or write access of
the M-space is private, the cor-
responding B-space access is set
as family; other access values
are inherited unaltered.

Chapter 3

Version 1.0
15 June 1976

Although a B-space is assigned write
access, the access is significant on-
ly for M-space descendants of the
space, as there are no instructions
which copy data into an existing
B-space. A dascendant of a B-space
is an M-space allocated during execu-
tion of a LOAD or linkage instruction
referencing the B-space, or a B-space
allocated during execution of a SAVE
instruction referencing an M-space
descendant of the B-space, or any
space allocated during the execution
of a LOAD, linkage, or SAVE instruc-
tion referencing a descendant of the
B-space.

The LOAD SPACE instruction (LOAD) - is
a modal instruction matched to the
SAVE instruction. When executed
within a C-process, it behaves like a
SAVE instruction executed within a
C-process with the roles of the
B-space and M-space reversed. Thus,
when the instruction is completed:

o an M-space equal in size to the
referenced B-space has been al-
located

o the number of bytes in the space
and the space pointer have been
loaded into the arithmetic and
pointer register fields of the
specified general register

o the contents of the referenced
B-space have been copied into the
allocated M-space.

Similarly, when executed within an
R-process, it behaves like a SAVE in-
struction executed within an R-pro-
cess with the roles of the B-space
and M-space reversed. In either
case, the descendant M-space inher-
its without change both the pro-
tection vector of the B-space and its
atribute of being an ordinary or mod-
ule space.

A LOAD instruction can be applied to
any B-space, whether an ordinary or

Storaage and Spaces

e

Principles of Operation
The EPSILON System

module space, and a new descendant
M-space results from each applica-
tion. New B-spaces can then be allo-
cated by application of SAVE
instructions to the M-spaces, so that
descendant trees of any degree of
complexity can be formed by use of
the SAVE and LOAD instructions.

A linkage instruction, however, can
only be applied to a B-space with the
module attribute, and a new descend-
ant results only if one does not al-
ready exist; thus, only one M-space
copy of a module B-space need exist
at any one time. The linkage in-
structions are discussed in Chapter
5.

3.3 Pointers

Pointers are generated only when new
spaces are allocated by the instruc-
tions ALLOC, SAVE, and LOAD. A new
pointer is loaded into the pointer
register designated in the allocat-
ing instruction, where it is avail-
able for use by the process within
which the instruction was executed.
Two instructions exist to make point-
ers generally available.

o The STORE POINTER instruction
(S5P) stores the contents of the
designated pointer register into
a word located in an M-space,
where the pointer can be
retrieved by any process having
access to the space.

o The LOAD POINTER instruction
(LP) loads the contents of a word
located in an M-space, presumed
to be a pointer, into a desig-
nated pointer register.

Because a space cannot be referenced
except through a pointer in a pointer
register, the LP instruction is de-
signed to indicate space availabili-
ty, and to serve as the focal point
for validation of access. The status
of the space relative to the process

Chapter 3

15

Version 1.0
15 June 1976

is returned in the condition code set
by the instruction, so that processes

can avoid references which would
cause exceptions.
o Condition code zero indicates

the process has both read and
write access to the space

o Condition code 1 indicates the
process has access restricted to
read or write

o Condition code 2 indicates the
space exists but is temporarily
unavailable to the process

o Condition code 3 indicates the
space is not available to the
process, either because all
access is denied or the space
does not exist.

In order to allow optimization of in-
struction execution performance, the
status defined by an allocation
instruction or returned by an LP in-
struction is also retained by the
system as the status associated with
the use of the pointer register. The
retained status is not changed if the
relation between the process and the
space changes (e.g. the space becomes
available for addressing) until an-
other LP referencing the register is
executed. A process can therefore
gain access to a space if it was pre-
viously denied only by explicitly
locading a pointer to the space into
some pointer register.

If a process has loaded a pointer and
received an indication of space
availability, it is still possible
for access or addressing exceptions
to occur if the space is not of the
right type for the instruction. UWhen
there is doubt, the type may be de-
termined by the TEST POINTER instruc-
tion TPy, which returns data
indicating what type of space is
identified by the contents of a spec-
ified pointer register.

Storage and Spaces

Principles of Operafion
The EPSILON System

3.4 Snace Retrieval

A space is automatically deleted from

the system whenever its custodian is

deleted:

o a space in private custody 1is
deleted during termination of

the custodian process

o a space in family custody is de-
leted during deletion or modifi-
cation of the process model for
the family

o a space in bound custody is de-
leted with the process model to
which it is bound.

No explicit deletion request is re-
quired of any process for such de-
letion to occur. A space can also be
explicitly deleted by execution of a
FREE SPACE instruction (FREE) within
any custodian process of the space.

A legitimate deletion request,
whether indirect or explicit, will
always be accepted for any space.
However, if the space is not avail-
able for addressing because a previ-
ous instruction has not been
completed, or if the space contains a
closed access control gate [Section
5.10], deletion will be delayed until
the space becomes eligible to return
to normal status, without the return
actually being made.

Deletion will also be delayed until
" processes which have gained access to
the space no longer need to reference
it. For this purpose, reference re-
quirements are measured in terms of
pointer register usage. It is pre-
sumed that a process will expect to
continue to reference a space as long
as a pointer granting access to the
space resides in a pointer register
of the process. Consequently, a ref-
erenca2 count is recorded and main-
tained for each space.

Chapter 3

16

Version 1.0
15 June 1976

[The count is set to the value 1
when the space is allocated, re-
presenting’ the usage of the
pointer register loaded by the
allocation instruction. Allo-
cation also sets a custody flag
for the space. The space cannot
be deleted as long as the custody
flag is turned on.

o The count is incremented by 1
whenever a pointer granting ac-
cess to the space is loaded into

a pointer register of some pro-
cess; it is decremented by 1
whenever a pointer to the space
is deleted from a pointer regi-
ster in some process. An LP in-
struction completed with
condition codes zero or 1 will
therefore cause the count of the
space referred to by the pointer
just loaded to be incremented,
and the count of the space re-
ferred to by the pointer dis-
placed from the register, if any,
to be decremented.

o A FREE instruction substitutes a
null pointer for any pointer to
the referenced space in all
pointer registers of the process
executing the FREE, and the ref-
erence count is decremented by 1
for each substitution. The cus-
tody flag is also reset, indicat-
ing loss of custody.

o During process termination
counts are decremented by carry-
ing out the equivalent of loading
a null pointer into all pointer
registers of the process. Custo-
dy flags are reset by deletion
requests generated for spaces in
private custody of the process.

A space is not actually deleted from
the system until its custody flag is
turned off and its count
becomes zero. If a deletion request
is accepted and the count does not go
to zero at acceptance, references to

reference

Storage and Spaces

Principles of Operation
The EPSILON System-

the space not involving data transfer
are treated as if the space did not
exist:

o an LP instruction will return
condition code 3

o all instructions requiring a
process to have custody of the
space, such as LOAD and SAVE,
will cause exceptions or return a
condition code indicating inval-
id usage, as appropriate to the
instruction.

Deletion therefore always appears
synchronous to the request. When a
space is finally deleted, the storage
associated with the space is returned
to the M-storage or B-storage pool,
as appropriate.

Reference count protection is also
applied to other instructions which
result in transfer of custody, such
as ENQUEUE [Section 5.81 and REQUEST
INPUT/0UTPUT [Section 7.31].

3.5 Domain Identifier

A domain is an unordered, non-empty
collection of ordinary spaces. It
begins existence with a single space,
acquires new members through process
activity, loses members as they are
deleted from the system, and goes out
of existence if all of its member
spaces are deleted. The period of
existence of a domain is not fixed,
nor is there a limit to the number of
members, either in total or at any
given time.

The criteria for membership in a do-
main are not explicitly defined, so
there is no information about the
content of a space belonging to a
given domain which is made use of by
the system. Domains are simply re-
cognized as entities for which mem-
bership is propogated by rules
relating spaces and processes.

Chapter 3

17

Version 1.0
15 June 1976

Each domain has a domain name and
domain idantifier. The name is an
arbitrary 32-bit referent sup-
plied as data; the identifier is
a 32-bit referent assigned by the
system. The name is used only
when a domain is formed, and is
returned when the domain goes out
of existence. All other refer-
ences are by means of the identi-
fier.

A domain is formed by the ASSIGN
DOMAIN IDENTIFIER instruction
(ASSIGN), which generates a new
domain identifier and assigns it
to a specified space. The space
must be an ordinary space in cus-
tody of the process executing the
ASSIGN, and the name must be dis-
tinct from all other domain
names, or the assignment attempt
will be rejected.

As a matter of convenience, a
space which does not belong to a
named domain is considered to be-
long to an unspecified domain
called the common domain. The
value of the identifier (and also
the name) of the common domain is
zero; the value of other domain
identifiers is not predictable.

The activity of any process is
always considered to take place
on behalf of the domain whose
identifiar has been acquired by
the process. A process may ac-—
quire a permanent identifier or
may be assigned a succession of
identifiers. The specific rules
for acquisition of identifier,
which vary by process class, are
given in Chapters 5, 6, and 7.
In all cases, when a process with
a given domain identifier allo-
cates an ordinary space, the do-
main is propogated by assigning
that identifier to the allocated
space. A module space is always
assigned to the common domain.

Storage and Spaces

Principles of Operation
The EPSILON System

o The domain identifier assigned
to a space is retained until the
space is deleted, unless the
space is the object of an ASSIGN
instruction and becomes the ini-
tial space of a new domain. Any
B-space or M-space allocated as a

descendent of a space inherits
the identifier current at the
time of allocation. The identi-

fiers of descendents are not al-
tered by an ASSIGN applied to a
space. :

) The ma2mbership count of a domain
is set to the value 1 by a suc-
cessful ASSIGN, incremented by 1
for every space added to the do-
main, and decremented by 1 for
every space removed from the do-
main. If the count goes to zero,
the domain is deleted from the
system and a 'domain end' system
exception is raised. The excep-
tion process is supplied the
resource usage statistics logged
against the domain identifier
[Section 9.81.

As it is possible to allocate any 1/0
device so that I/0 requests will be
accepted only from processes with a
specified identifier [Section 7.9],
these facilities allow domain iden-
tification to be used as a basis for
the definition, control, and ac-
counting of work within an EPSILON
system. As additional support for
this function, the domain identifier
of a space may be obtained by use of
the LOAD DOMAIN IDENTIFIER instruc-
tion (LDID), which places the identi-
fier in the arithmetic register field
of a designated general register.

3.6 Chanaess of Custody

The ALLOC instruction also provides
options for the initial setting of
the protection vector. It is possi-
ble to request that the allocated
M-space be assigned either to private
custody of the process within which

Chapter 3

18

Version 1.0
15 June 1976

the allocation instruction was exe-
cuted, or to custody of the family of
that process. The same request can
also be made for the read and write
access, so that the initial pro-
tection protection vector of an
M-space can have any one of the eight
values from

(private,private,private)
to
(family, family, family).

The custodian process can then change
the custody or access of the space by
executing either a SET PROTECTION
VECTOR instruction (S5PV), or an EN-
QUEUE instruction.

The SPV instruction provides the
means for direct alteration of the
protection vector of an M-space or a
B-space. The new protection vector
of the space is the result of apply-
ing the maximum function between the
old protection vector and the pro-
posed vector. The maximum is taken
component by component, using numer-
ical values for custody and access

types of
0 = private
1 = family
2 = domain
3 = public.

SPV operation is therefore always to-
wards less restrictive protection
for the space. Thus, the initial ap-
plication of SPV to a space allous
the custody to be enlarged to that of
the family to which the custodian
process belongs, and the read or
write access to be set to any of the
values family, domain, or public, but
subsequent applications may have no
effect at all.

The ENQUEUE instruction provides the

means to transfer custody of an
M-space from one family to another,

Storage and Spaces

Principles of Operation
The EPSILON System

although the transfer is indirect in
the sense that the family associated
with the queue is not known to the
enqueuing process. Execution of an
ENQUEUE will cause transfer of custo-
dy to whatever process dequeues the
space, at which time the protection
vector will be set as if the space
had been neuwly allocated by direct
request of the dequeuing process.

Once an M-space has been placed into
family custody, any member of the
family has custodian status, and so
can execute an ENQUEUE or SPV without
causing an access exception. Since
the SPV does not provide any way to
change custody from family to pri-
vate, the space can return to private
custody only if transferred by means
of ENQUEUE.

Access, custody, and domain member-
ship are related in the following
way.

o A space with private access can
be referenced for data access of
that type (read or write) only by
the original custodian process.
If the space is transferred +to
family custody without enlarging
the access to family, the other
custodians cannot reference the
space for that type of access.
If the original custodian is de-
leted, no process can then have
that type of access unless custo-
dy is transferred to another fam-
ily.

o A space with family access can be
referenced for data access of
that type by any member of the
family.

o A space with domain access can be
referenced for data acces of that
type only by a process whose
domain identifier matches the
identifier of the space. A
custodian process has no special
status in this case.

Chapter 3

19

Version 1.0
15 June 1976

o A space with public access can be
referenced for data access of
that type by any process.

o A module space can be referenced
by a process for instruction exe-
cution only if the process has
read access to the space.

For purposes of access a space in
bound custody is treated as if it
were in custody of the family of the
process model to which it is bound,
though processes of the family are
not, in fact, custodians of the
space. Neither SPV nor ENQUEUE can
be used to place a space into bound
custody. A space becomes bound to a
process model when the model is de-
fined; once bound, it cannot be re-
turned to private or family custody.

3.7 Instruction Descriptions

The following are detailed descrip-
tions of the function and behavior of
the storage and space instructions.
These descriptions are in the same
format as the instruction descrip-
tions in POP360, except that the in-
struction picture and operation code
have been omitted, and a category has
been added specifying the process
classes within which the instruction
can be executed. To save repetition,
the following exception descriptions
common to all instructions have been
omitted from the text, and are not

specifically listed under the head-
ing 'Exceptions':
o) if an attempt is made to execute

an instruction by a process be-
longing to a process class which
is not allowed execution rights,
the instruction 1is suppressed
wWwith an operation exception

o if an attempt is made to refer-
ence a space through a pointer
register with an invalid access
status for the type of reference,

Storage and Spaces

Principles of Operation Version 1.0

The EPSILON System 15 June 1976
the instruction is suppressed tion is suppressed with a spec-
with an access exception ification exception.

o if a pointer register expected to Suppression of an instruction causes
designate an M-space (B-space) the exception to be taken before the
actually contains a pointer to a state vector is altered or data in
B-space (M-space), the instruc- storage has been modified.

ALLOCATE SPACE

ALLOC M1,R2 <RR>

The M-storage pool is examined for a contiguous block of storage of extent
not less than the number of bytes specified in arithmetic register R2. If the
request exceeds the total amount of available M-storage installed, the in-
struction is terminated with condition code 2. If the request could be met
but no block of sufficient size is currently available, the instruction is
terminated with condition code 1.

If a block is available an M-space is allocated to fulfill the request.:

The custody flag of the space is turned on, and the reference count is set to
the value 1. If the space is an ordinary space, it is assigned the domain
identifier of the process within which the instruction is being executed. If
the space is a module space, it is assigned to the common domain. The member-
ship count of the assigned domain is incremented by 1.

The four bits of the mask field Ml specify attributes of the allocated
space. If the high-order bit is 1 the space is designated as a module space,
otherwise it is an ordinary space. The three remaining bits indicate initial
assignments for protection vector values, corresponding in high to low order
respectively to custody, read access, and write access. If a bit is zero, the
corresponding position of the protection vector is set to private, referring
to the process within which the instruction is executed; if the bit is 1, the
corresponding position is set to family, referring to the family of that pro-
cess.

The actual extent of the allocated space, which is not less than that re-
quested, then replaces the contents of arithmetic register R2, a pointer to
the space is loaded into pointer register R2, and the instruction is completed
with condition code zero.

Process Class: C,R,D
Condition Code:
0 Space Allocated

1 M-storage not currently available
2 Request cannot be fulfilled
3

Exceptions: None

Chapter 3 20 Storage and Spaceaes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

FREE SPACE

FREE R2 <RR>

The space designated by pointer register R2 is deleted from the system and
the storage associated with the space returned to the storage pool correspond-
ing to the type of space deleted.

If the requesting process is not a custodian of the space the instruction
is suppressed with an access exception. It is suppressed with a data excep-
tion if the space is in I/0 request state [section 7.31].

If the instruction is not suppressed, the custody flag of the space is
turned off. A null pointer is loaded into pointer register R2 and into any
other pointer register of the process. which contains a pointer to the space,
and the instruction is completed by decrementing the reference count by 1 for
each null pointer loaded.

Deletion of the space will occur when both the reference count and the
gate count [Section 5.11]1 are zero, which may be prior to completion of the
instruction or at some later time. When the space is deleted, the mambership
count of the domain to which it belongs is decremented by 1. If the count be-
comes zero, the domain is deleted from the system and a domain end system ex-
ception is raised. In any event, an attempt by any process to load a pointer
to the space after the custody flag has been turned off will be rejected. Ref-
erences to data in the space by addresses generated through pointer registers
loaded before the flag was turned off will be valid until the space is actual-
ly deleted.

Process Class: C,R,D
Condition Code: Unchanged
- Exceptions:
Access

Data
Domain end (system)

SAVE SPACE

SAVE R1,R2 <RR>

The B-storage pool is examined for a contiguous block of storage of extent
not less than the number of bytes in the M-space designated by pointer regi-
ster R1. If the request exceeds the total amount of available B-storage
installed, the instruction is terminated with condition code 3. If the re-
quest could be met but no block of sufficient size is currently available, the
instruction is terminated with condition code 2. If the réquesting process is
not a custodian of the designated M-space, the instruction is suppressed with
and access exception.

If a block is available, a B-space is allocated to fulfill the request.
The newly allocated space inherits the protection vector, custodians, domain

Chapter 3 21 Storage and Spaces

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

identifier, and ordinary or module attribute from the referenced M-space. The
protection vector of the B-space is then examined, and any values of private
are changed to values of family. The extent of the space, which is at least
that of the referenced M-space, is placed into arithmetic register R2 and a
pointer to the space is placed into pointer register R2. The reference count
of the space is set to the value 1, its custody flag is turned on, and the mem-
bership count of the domain is incremented by 1.

If the instruction is executed within a C-process, the contents of the
M-space are then copied into the newly allocated B-space, and the instruction
is completed with condition code zero.

If the instruction is executed within an R-process, a request is made to
copy the contents of the M-space into the newly allocated B-space, and the in-
struction is completed with condition code 1. The B-space is not available
for addressing until data transfer from the M-space is complete, and an ad-
dressing exception will occur if it is prematurely referenced. The availabil-
ity status can be tested by loading the space pointer into a pointer register.
The contents of the B-space are not predictable if the M-space contents are
altered after completion of the instruction but prior to completion of the da-
ta transfer. :

Process Class: C,R
Modal

Condition Code:
0 Space saved
1 Space allocated
2 B-storage not available
3 Request cannot be fulfilled

Exceptions:
Access

LOAD SPACE

LOAD R1,R2 <RR>

The M-storage pool is examined for a contiguous block of storage of extent
not less than the number of bytes in the B-space designated by pointer regi-
ster R1. If the request exceeds the total amount of available M-storage
installed, the instruction is terminated with condition code 3. If the re-
quest could be met but no block of sufficient size is currently available, the
instruction is terminated with condition code 2. If the requesting process is
not a custodian of the designated B-space, the instruction is suppressed with
an access exception.

If a block is available, an M-space is allocated to fulfill the request.
The newly allocated space inherits the protection vector, custodians, domain
identifier, and ordinary or module attribute from the referenced B-space. The
extent of the space, which is at least that of the referenced B-space, is
placed into arithmetic register R2 and a pointer to the space is placed into
pointer register R2. The refarence count of the space is set to the value I,
its custody flag is turned on, and the membership count of the domain is in-

Chapter 3 22 Storage and Spaces

N

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

cremented by 1.

If the instruction is executed within a C-process, the contents of the
B-space are then copied into the newly allocated M-space, and the instruction
is completed with condition code zero.

If the instruction is executed within an R-process, a request is made to
copy the contents of the B-space into the neuly allocated M-space, and the in-
struction is completed with condition code 1. The M-space is not available
for addressing until data transfer from the B-space is complete, and an ad-
dressing exception will occur if it is referenced prematurely. The availabil-
ity status can be tested by loading the space pointer into a pointaer register.

Process Class: C,R
Modal

Condition Code:
0 Space saved
1 Space allocated
2 M-storage not available
3 Request cannot be fulfilled

Exceptions:
Access

STORE POINTER

SPR R1,R2 <RR>
SP R1,D2(X2,B2) <RX>

The contents of pointer registar Rl are stored into the word at the second
operand location.

In the RR form of the instruction, the second operand is arithmetic regi-
ster R2. Pointer register R2 is not disturbed.

Process Class: C,R,D

Condition Code: Unchanged

Exceptions: None

LOAD POINTER

LPR R1,R2 <RR>
LP R1,D2(X2,B2) <RX>

The instruction is suppressed with a specification exception if the format
of the second operand is not consistent with a pointer. It is terminated with
condition code 3 if the space is not available to the process because it does
not exist, is being deleted, or the process does not have access to it, and
with condition code 2 if the space is temporarily unavailable to the process.

Chapter 3 23 Storage and Spaces

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

If the space is available to the process, pointer register Rl is examined
and if it contains a pointer the reference count of the identified space is
decremented by 1. If decrementing causes the count to become =zero, if the
custody flag is off, and if the gate count is zero, deletion of the space will
occur as described for the FREE SPACE instruction.

The second operand is then loaded into Rl and the reference count of the
identified space is incremented by 1. In the RR form of the instruction, the
second operand is arithmetic register R2.

The instruction is completed with condition code zero if the process is
allowed both read and write access to the space, and with condition code 1 if
access is restricted to read or write only.

Process Class: C,R,D

Condition Code:

0 Full access granted
Restricted access granted
Space temporarily unavailable
Space not available

H N -

Exceptions:
Specification
Domain end (system)

TEST POINTER

TP R1,D2(X2,B2) <RX>

The instruction is terminated with condition code 3 if pointer register Rl
contains a pointer to a space temporarily unavailable to the process within
which the instruction is being executed, and with condition code 2 if the reg-
ister contains a null pointer.

If the instruction is not terminated, a byte of descriptive data is stored
at the location designated by the second operand. The instruction is then
completed with condition code zero if the space is an M-space, and with condi-
tion code 1 if the space is a B-space.

The byte of stored data describes the relation of the space to the pro-
cess. The high-order bit is zero if the space is an ordinary space, and 1l if
it is a module space. Bit 1 is zero if the process is not a custodian of the
space, and 1 if it is; bit 2 is zero if the process does not have read access
to the space, and 1 if it does; bit 3 is zero if the process does not have
write access, and 1 if it does. The remaining bits of the byte are set to ze-
ro.

Chapter 3 26 Storage and Spaces

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R,D

Condition Code:
0 M-space data stored
1 B-space data stored
2 Null space
3 Space temporarily unavailable

Exceptions: None

ASSIGN DOMAIN IDENTIFIER

ASSIGN R1,R2 <RR>

The instruction is suppressed with an access exception if the requesting
process is not a custodian of the space designated by pointer register R2, and
with a specification exception if the space is not an ordinary space.

If the instruction is not suppressed, the contents of arithmetic register
R1 are compared with the list of domain names. If there is a match, the in-
struction is terminated with condition code 1. If there is no match, an iden-
tifier is generated for a new domain with the specified name. The identifier
replaces the contents of arithmetic register R1.

The membership count of the new domain is set to the value 1. The new do-
main identifier replaces the domain identifier previously assigned to the
space, and the membership count of the old domain is decremented by 1. If dec-
rementing reduces the count to zero, the domain is deleted from the system and
a domain end system exception is raised. The instruction is then completed
with condition code zero.

Process Class: C,R

Condition Code:

0 Identifier assigned
1 Domain already exists
2 -

3 -
Exceptions:

Access

Specification

Domain end (system)

LOAD DOMAIN IDENTIFIER

LDID R1,R2 <RR>

The domain identifier of the space designated by pointer register R2 re-
places the contents of arithmetic register R1.

Chapter 3 25 Storage and Spaces

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R
Condition Code: Unchanged

Exceptions: HNone

SET PROTECTION VECTOR

SPV M1,R2 <RR>

If the requesting process is not a custodian of the space, the instruction
is suppressed with an access exception. Otherwise, the protection vector of
the space designated by pointer register R2 is modified according to the con-
tents of arithmetic register R2, under control of mask field M1.

The high-order bit of field Ml is ignored. The three remaining bits indi-
cate assignments for protection vector values, corresponding in high to low
order respectively to custody, read access, and write access. If a bit is ze-
ro, the corresponding position of the protection vector is to remain unal-
tered; if a bit is 1, the position is altered as determined by arithmetic
register R2.

The bytes of the register, numbered 0,1,2,3 from left to right, correspond
to the bits of field M1. Byte 0 is therefore ignored, and bytes 1, 2, and 3
contain values for custody, read access, and write access. The low-order bit
of byte 1 and the two low-order bits of bytes 2 and 3 specify the request as

private
family
domain
public

HN - O
H o n

For any position of the vector which is to be altered, the new value assigned
corresponds to the numerical maximum of the existing value and the requested
value.

Process Class: C,R

Condition Code: Unchanged

Exceptions:
Access

INSERT PROTECTICON VECTOR

IPY R2 <RR>

The protection vector of the space designated by pointer register R2 is
inserted into arithmetic register R2.

The high-order byte of the register is set to the value zero if the space
is an M-space, and to the value 1 if the space is a B-space. The three remain-

Chapter 3 26 Storage and Spaces

Principles of Operation Version 1.0
The EPSILON System . 15 June 1976

ing bytes correspond in high to low order respectively to custody, read ac-
cess, and write access. The protection vector components are inserted into
the two low-order bits of the corresponding bytes using the values

0 = private

1 = family

2 = domain (access) or bound (custody)
3 = public

The four high-order bits of each of the bytes are set to zero. The instruction
is completed with condtion code zero if the space is an M-space, and with con-
dition code 1 if it is a B-space.

Process Class: C,R

Condition Code:

0 M-space vector inserted
1 B-space vector inserted
2 -
3

Exceptions: None

Chapter 3 27 Storage and Spaces

Principles of Operation
The EPSILON System

4.0 PROCESS DISPATCHING

During its lifetime, a process is ei-
ther advancing from state to state
because a processing mechanism 1is
acting upon the instruction sequence
associated with the process, or else
it is suspended in some state waiting
for assignment of a processing mech-
anism. The activity involved in the
assignment of a processing mechanism
to processes is called process dis-
patching.

Apart from the option of defining
scheduling algorithms at system in-
itialization, dispatching is carried
out by the system as a closed func-
tion, using data supplied in process
models and data reflecting the cur-
rent status of the system. Dispatch-
ing discipline varies with process
class; for C-processes, dispatching
is essentially time-driven, while
for R-processes and D-processes it is
event-driven. This difference is
typical of the different kind of ac-

tivity visualized for the process
classes.
This chapter describes CPU assign-

ment, and the relation between C-pro-
cess dispatching and R-process
dispatching. D-process dispatching
is discussed in Chapter 7.

4.1 computation cycles

A C-process is viewed by the system
as an activity which transforms data
from a given input form to some spec-
ified output form. The process may
exist only for a single transforma-
tion, but in general its life will
extend over a series of transforma-
tions. A simple and natural way to
descrioe the CPU requirements of such
processes is in terms of time con-
straints for completion of a trans-
formation. For example, if the
function of a particular process is
to receive messages and distribute

Chapnter &

28

Version 1.0
15 June 1976

them to other processes on the basis
of decoding a field in the message,
and if ten messages a second can be
expected, then the process must be
assigned a CPU often enough to com-
plete an average of one transforma-
tion every 100 milliseconds.

Such a description is intrinsic to
the process and independent of other
processes, but provides no basis for
relating process requirements to one
another, as the transformation car-
ried out by a process is chosen arbi-
trarily. However, any period of time
shorter than an intrinsic time con-
straint will fulfill the same re-
quirement, and any such shorter time
can be chosen to be a multiple of
some fixed unit of time. These
observations form the basis for the
introduction of time into C-process
dispatching.

o The fixed unit of time is called
a basic cycle. The length of the
basic cycle is specified at sys-

tem initialization, and can be
changed only by
re-initialization. Its value

must be larger than the time tak-
en to execute the dispatching
function by that model of EPSILON
system, but is otherwise not re-
stricted.

o The time constraint of any pro-
cess is specified in terms of a
length of time called a computa-
tion cycla. The number of compu-
tation cycles and the length of
each cycle is also specified at
system initialization.

The computation time, T, alloted to
each computation cycle is a multiple
of the basic cvcle time, t. That is,

T = Nt.

Process Dispatching

Principles of Operation
The EPSILON System

The integer N, which can range be-
tween 1 and 16,777,215, is called the
period of the computation cycle.
Each cycle is also assigned a unique
8-bit identifier, so that a system
may have as many as 256 separate com-
putation cycles. The association of
a process with a computation cycle
then occurs as follows:
o’ every C-process model designates
a computation cycle by specifi-
cation of its identifier

0 all members of a process family
are assigned to the computation
cycle identifed by their process
model.

There are no instructions which will
change the assignment of a process,

once initiated, from one computation
cycle to another. Change can only
affect processes not yet initiated,

as the result of changing the process
model association through use of the
DEFINE C-PROCESS MODEL instruction.

4.2 C-process Disnatching Overview

The overall structure of C-process
dispatching is represented by the
schematic of figure 4.1.

The objective of this structure is to
furnish enough function to provide a
useful service, but not so much func-
tion as to preclude any algorithm for
apportionment of CPU time considered
equitable by managers of a system.

The basic concept behind the struc-
ture is to treat computation cycle
periods as time constraints for
selecting processes to be allocated a
CPU. Every process assigned to a
given computation cycle is to be se-
lected, or considered for selection,
once every period of the cycle. Fig-
ure 4.1 can therefore be visualized
as the flow of control through a con-
tinuing activity of the system gov-
erned by those time constraints, and

Chapter ¢

29

Version 1.0
15 June 1976

with the following general behavior.

o Dispatching activity is trig-
gered whenever a condition
arises which forces a process

switch (e.g. an I/0 wait), and at
the beginning of every basic cy-
cle. The basic cycle is there-
fore the maximum time that can
elapse between attempts to as-
sign a CPU to a C-process.

o The function of entry service is
to initiate a process to service
overrun of the computation cycle
time constraints, should it oc-
cur, and to serve as a control
point to idle if there is no pro-
cess to dispatch..

o If there has been any request for
initiation of a C-process since
the previous cycle of dispatch-
ing activity, initiation service
is invoked. Its function is to
generate initial state vector
data and to assign the resulting
process to the appropriate com-
putation cycle. As the process
model may not have been in recent
use, and the initial instruction
sequence is not required to be
pre-loaded into an M-space, ini-
tiation of a particular process
can require a complex sequence of
actions extending over many cy-
cles of dispatching activity
[Section 5.41].

o Selection of a process, which is
called scheduling, consists of
first selecting a computation
cycle, then a process within the
cycle. For this purpose, the
computation cycles are sequenced
in order of period, from smallest
to largest. Initially, the cycle
with the smallest period is cho-
sen and processes are selected
from it. Processes continue to
be selected from that cycle until
an indication is given by the
scheduling mechanism that the

Process Dispatching

Principles of Operation
The EPSILON System-

Version 1.0
15 June 1976

WAIT FOR TRIGGER |—> ENTRY SERVICE <—
(process switch
or end of basic
cycle)
? 8§
INITIATION
ASSIGN CPU SERVICE
T0 PROCESS
§
| §
SELECT PROCESS < COMPUTATION _—
CYCLE SELECT < —
Figure 4.1

Schematic of C-process
Dispatching Activity

list of processes assigned to the
cycle is exhausted. If time then
remains before expiration of the
period, the next cycle in se-
qgquence is chosen. If the period
expires before the process 1list
is exhausted, a computation cy-
cle overrun condition may exist;
in that event, selection remains
with the same cycle rather than
proceeding to the next.

Selection activity continues in
this way until all computation
cycles are exhausted, which
causes dispatching to idle, or
until expiration of a basic cy-

cle, which forces
re-consideration of the initial
computation cycle. In passing
from one cycle to the next, if

the new cycle has been previously
completed, it will not be
re-started again until expira-
tion of its current period. Fur-
thermore, a given cycle will not
be reached until all previous cy-

Chapter 4

30

cles have completed their cur-
rent periods. The overall effect
of this procedure is to multiplex
CPU allocation for all computa-
tion cycles preceding any given
cycle within each period of that
cycle.

Since an optimal selection pro-
cedure is quite dependent on ap-
plication mix, the algorithm
used to select a process within a
computation cycle is not fixed.
Each computation cycle has an as-
sociated microprogram routine,
called a selection routina,
which implements the scheduling
algorithm for that cycle. Se-
lection routines are specified
at system initialization, either
as one of three standard rou-
tines, or as a feature routine.

It is the selection routine of a

computation cycle which deter-
mines

Process Dispatching

Principles of Operation
The EPSILON System

- what process has been se-
lected, if any

- whether or not the process
list is exhausted.

As a routine is not restricted in
the algorithm by which it deter-
mines these conditions, the sig-
nificance of any computation
cycle period is actually defined
by the selection routine for the
cycle.

o Once a process has been selected,
a CPU is assigned to it. Assign-
ment consists of loading the
state vector of the process into
the local storage and registers
of the CPU, causing execution of
the currently associated in-
struction sequence to resume
from the point of previous sus-
pension. Dispatching activity
then idles until another entry
trigger occurs.

Execution of the instruction se-
quence of a selected process will
continue until a process switch is
required, or until a basic cycle ex-
pires. The average duration of pro-
cess activity therefore depends
primarily on the instruction se-
quence and CPU speed, so that ex-
pression of intrinsic time
constraints in terms of computation
cycle periods is normally a direct
conversion.

4.3 Dispatching condition

Although a selection routine may im-
plement any scheduling algorithm in
principle, in practice its behavior
is constrained by the dispatching
condition of the processes which are
candidates for selection. The condi-
tion of a C~process is:

o running, if a CPU is assigned to
it

Chapter 4

31

Version 1.0
15 June 1976

o Wwaiting, if some event must occur
before instruction execution can
proceed

o ready, if neither running nor
waiting.

The running and ready conditions
arise out of dispatching action, but
waiting conditions result from in-
struction execution. There are two
kinds of waiting condition. An
implicit wait occurs when instruc-
tion interpretation is delayed until
some condition is met, at which time
the instruction will be completed.
When that occurs, the process is said
to be suspendad. An explicit wait is
one which results from a condition
generated by completion of an in-

struction. Waiting conditions are
further subdivided into five
classes.

o I/0 Hait. The process is waiting
for completion of a LOAD, SAVE,
CALL or REQUEST INPUT/QUTPUT in-
struction.

) Gate Hait. The process is wait-
ing for completion of a CLOSE
GATE instruction, giving it ac-
cess to data under control of an
access control gate.

o Exception Wait. The process is
suspended until completion of an
exception process initiated by a
FORCE SYSTEM EXCEPTION instruc-
tion.

) Queue Wait. The process is wait-
ing for data to be entered into a
specified queue. The wait was
initiated by execution of a QUEUE
WAIT instruction, and will end
with arrival of the data.

) Genaral Kait. The process is
waiting for an unspecified
occurrence. The wait was initi-
ated by execution of a WAIT in-
struction; it will end whenever

Process Dispatching

Principles of Operation
The EPSILON System

an initiation request is re-
corded for the process.

Assignment of a CPU to a process only
makes sense, therefore, if the pro-
cess is in ready condition. So if
the basic operation of a scheduling
algorithm results in picking a pro-
cess that is running or waiting, the
selection routine should take action
to select another process, and should
continue selecting until a ready pro-
cess is found or the computation cy-
cle list is exhausted. All wuseful
scheduling algorithms obey this
constaint.

4.4 Selection Routines

Standard selection routines are sup-
plied with all EPSILON systems which
implement simple scheduling algo-
rithms of fairly wide applicability.

Finite Sequential

Processes in the computation cy-
cle are selected in a sequence
determined by a sequencing num-
ber supplied in the process mod-
el. The first process is
selected at the beginning of a
period, the second at next entry,
the third at next entry, and so
on. If a process is not ready at
selection, it is bypassed in fa-
vor of the next in sequence.
Once selected or bypassed, a pro-
cess Will not be considered again
until the next period, so the
routine returns a list exhausted
indication when the last process
in sequence has been examined.

This algorithm amounts to a
round-robin each period, with
slack time in the period filled
in by processes from computation
cycles of larger period.

Infinite Sequential

Process sequence 1is determined

Chapter ¢

32

Version 1.0
15 June 1976

as in the finite algorithm; how-
ever, selection starts at the
first in sequence at every entry,
the process chosen being the
first one encountered in ready
condition. A list exhausted con-
dition is never returned unless
there is no ready process in the
computation cycle.

This algorithm is the same as one
often called 'priority schedul-
ing'. It blocks access to compu-
tation cycles of larger period
unless the cycle is dormant, in
aeffect extending the selection
period indefinitely beyond the
nominal cycle time. The expected
usage is for the last computation
cycle, where 'background' pro-
cesses, i1f they exist, would
normally be placed.

Multiplexed

Processes are assigned a weight-
ing factor, supplied in the pro-
cess model, which specifies the
relative proportion of the com-
putation cycle to be assigned to
the process. The algorithm se-
lects a process as many times in
a cycle as the proportionality
factor indicates, spreading the
selections as evenly as possible
throughout the period. An indi-
cation to use the next cycle for
one selection is returned when-
ever a selected process is not
ready or when slack time occurs
in the period.

This algorithm is a weighted
round-robin, with slack time
spread throughout the period and
filled in by processes from com-

putation cycles of larger peri-
od.
All three selection routines treat

processes in a gate wait condition as
a special case, in order to apply a
promotion technique to empty the gate

Process Dispatching

Principles of Operation
The EPSILON System

queue as rapidly as possible. This
technique is discussed in Section
5.10.

4.5 C-process Dispatching Example

In a particular system there are
three computation cycles, one of pe-
riod 2, one of period 3, and one of
period 5. The finite sequential al-
gorithm is used for the first two cy-
cles, and the infinite sequential for
the last. Process 1 is assigned to
the first cycle, processes 2 and 3 to
the second, process 4 to the last.

Figure 4.2 illustrates one of the
possible flows of control if the sys-
tem has a single CPU. The bottom
line represents time divided into
basic cycles, with numbers marking
the end of each cycle. The three up-
par lines show allocation of the CPU
to processes in the respective compu-
tation cycles. Pointed right brack-
ets designate the beginning of a
computation cycle period, .and colons
within a period indicate computation
cycle selection.

In this example

o Process 1 was not assigned a CPU
during the fourth period of its
computation cycle because it re-
turned a WAIT during basic cycle
5 which was not resolved until
after basic cycle 8 had started.

o The CPU becomes idle during basic
cycle 6 when process 4 enters I1/0
wait, and stays idle until the
next computation cycle period
starts.

o Process 2 is time-sliced at the
end of basic cycle 1 and is not
assigned the CPU again until the
next period; process 3 is treated
the same way at the end of basic
cycle 7. Process 4, however,
having come out of I/0 wait dur-
ing basic cycle 7, is assigned

Chapter 4

33

Version 1.0
15 June 1976

the CPU during basic cycle &
becaue of the behavior of the in-
finite sequential algorithm.

Figure 4.3 illustrates a control flow
for the same case if the system has
two CPU. In this figure, two sets of
three lines are used to show allo-
cation of the CPU to processes in the
respective computation cycles. The
first set of lines shows allocation
of the first CPU, while the second
set corresponds to the second CPU.
The time-slicing behavior of the fi-
nite algorithm is more apparent here.

This simple example is designed +to
show the multiplexing effect of com-~
putation cycle dispatching on C-pro-
cess execution. It does not show the
possibility of computation cycle
overrun, nor the effect of R-process
dispatching.

4.6 R-process Dispatching

An R-process is viewed by the system
as an activity which reacts to the
occurrence of some recognized event.
The process is expected to exist only
as long as necessary for the initial
response, and to cause a C-process to

be invoked to carry out any addi-
tional activity which may be re-
quired. A natural way to describe

the CPU requirements of such pro-
cesses is in terms of response prior-
ities, where higher priority is
equated to greater urgency. Conse-
quently, every source of R-processes
is assigned a priority with respect
to the other sources. The assignment
is set up during system initializa-
tion, and cannot be changed by in-
struction execution.

It is also a consequence of this vieuw
that the initiation of an R-procass
coincides with the initial assign-
ment of a CPU, and that a CPU switch
will occur only if required to serv-
ice a higher priority event. In-
struction behavior within

Process Dispatching

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

>1 >11 >1

> 222:3 >2222 33
> 444 644
0....1....2....3....4...

Figure 4.2
C-process Dispatching
Single CPU Example

>1 > >1 >
>3 >2222 >
> 464:66464:4 >

> >11 > >
>2222 >33 >
> 4664456664
0....1....2....3....6....5....6

Figure 4.3

C~process Dispatching
Two CPU Example

R-processes is therefore defined so
that there are no explicit waiting
conditions; an R-process is either
running, or is ready to run as soon
as a CPU can be switched back to it.
The overall behavior of R-process
dispatching is then as follouws.

o In order for a process to be ini-
tiated as the result of occur-
rence of an event associated with
a process source, a process model
must be connected to the source
using the CONNECT R-PROCESS MOD-
EL instruction. If a process
model is not connected then any
occurrence of an event associ-
ated with the source is ignored.

Chapter 4

34

A source becomes pending if a
process model is connected and an
associated event occurs. It is
removed from pending status by
initiation of a process from the
connected process model. If an
associated event arises while a
source is pending only a single
pending status will result. A
source is said to be active if at
least one member of the family of
the connected process model is in
existence.)

An R-process model specifies
whether or not more than one mem-
ber of the family can exist at
the same time. If a
single~instance process model is

Process Dispatching

{ = i

Principles of Operation
The EPSILON System

connected to a source, a pending
condition for the source will not
become effective while the
source is active. A pending con-
dition for a source connected to
a multi-instance process model
is immediately effective if the
number of instances in existence
is less than the number of CPU in
the system; otherwise it becomes
effective as soon as one of the
processes is terminated.

o Initiation of a process for a
pending source occurs as soon as
the pending condition is effec-
tive and a2 CPU is available for
assignment to the process. A CPU
is available if it is idle. A
CPU is made available by suspen-
sion of a runnning process if the
running process is

- a C-process, or

- an R-process initiated by a
source of . lower priority
than the pending source.

Suspension occurs in the order
just described, and in reverse
priority order within the R-pro-
cess set. Multiple pending
sources are taken in priority or-
der.

o Suspended processes are dis-
patched as soon as a CPU is
available and there are no pend-
ing sources of higher priority.
Dispatching is normally in re-
verse order of suspension. How-
ever, if a process is holding an
access control gate, and if the
gate has been requested by a
higher priority process, a pro-
motion technique is used to clear
the gate. This technique is dis-
cussed in Section 5.10.

Execution of the instruction se-

quence of an R-process will continue,
Wwith or without periods of suspen-

Chapter 4

35

Version 1.0
15 June 1976

sion, until the process terminates.
Suspension is an internal condition
which does not affect the functional
behavior of a process. The only
observable effect is that the execu-
tion time of the instruction sequence
is longer than if suspension had not
occurred.

4.7 comnutation Cvcle Overrun

Because all R-processes take preced-
ence over all C-processes in assign-
ment of CPU, the execution time of
C-processes as obsarved by C-process
dispatching includes all time the
processes are suspended in favor of
R-processes. Computation cycle
scheduling therefore provides a
measure of the total CPU utilization
of the system, not just the part de-
voted to C-processes, so a computa-
tion cycle overrun indicates some
degree of system overload.

Whether or not the overlocad requires
remedial action depends on the pro-
cessing environment and application
mix. To service this dependence, a
system overrun exception will be
raised when an overrun condition is
established. Data for the process
model to be connected to the excep-
tion is specified at system initial-
ization. In addition, as part of the
specification of the computation cy-
cle structure, two parameters can be
adjusted to avoid unnecessary initi-
ation of an overrun process.

The first parameter is a set of 8-bit
integers, one for each computation
cycle, called the goverrun sequenca
counts. If a count is zero, an over-
run for the associated cycle will be
ignored. If a count is non-zero, it
specifies the number of successive
times an overrun for the associated
cycle must be recorded before an
overrun condition is established for
that cycle.

Sequence counts provide a simple way

Process Dispatching

Principles of Operation
The EPSILON System

of masking bursts of R-process activ-
ity which only temporarily overload
the system. Such burst will usually
occur in all systems because of the
stochastic distribution of events in
time, but unless the average value of
occurrences keeps activity high
enough, the system 1is not really
overloaded and the overrun indi-
cation will be damped out. Figure
4.4 illustrates this effect using the
example of figure 4.2, with the addi-
tion of comma symbols to designate
assignment of the CPU to some R-pro-
cess.

In this example, process 1 is not as-
signed the CPU during the second pe-
riod of computation cycle 1 and
process 3 gets no CPU time for the
first two periods of computation cy-
cle 2, but by the end of basic cycle
12 the control flow will have
returned to the basic pattern of fig-
ure 4.2. There is no need to invoke
an overrun process unless one of the

Version 1.0
15 June 1976

period multiples is an absolute time
constraint.

The second parameter is the overrun
cycle indicator. If this indicator
is set equal to the identifier of
some computation cycle, then an over-
run of any cycle beyond the indicated
cne will be ignored, whether or not
the overrun is established by se-
quence count. If the indicator is
not equal to some identifier, all es-
tablished overruns are effective.
The cycle indicator provides a direct
way of ignoring computation cycles
whose time constraints are only nomi-
nal.

A system overrun condition is consid-
ered to be established whenever an
overrun condition is established for
a computation cycle within the range
designated by the overrun cycle indi-
cator. The scope of activity of the
resultant overrun process is de-
scribed in Section 9.4.

>1 >
> 2101099200239 % 1000
>

>,111
2222>233,,,3 > 22

>

0....1....2....3....6....5....6....7....8....9....0

> >11,,,11 >

44 >

Figure 4.6
Single CPU Example
With R—processes Included

Chapter ¢

36

Process Dispatching

Principles of Operation
The EPSILON System

5.0 C-PROCESSES: GENERAL COMPUTATION

The behavior of a process is deter-
mined partly by the instructions
available for execution, and partly
by built-in functions of the system.
The behavior patterns favored by the
system functions and their associ-
ated conventions and protocols vary
by process class, and for each class
reflect a system view of the kind of
activity appropriate to the class.

The view of C-processaes as primarily

data transformation activities is
therefore carried beyond process
dispatching, into initiation,

structure, linkage, access to shared
data, and exception handling. More-
over, as a data transformation is of

little use without data, queuing fa- .

cilities provide for explicit flow of
data between processes, and as a
means for the arrival of data to ini-
tiate a process.

5.1 uaues

A quaue is an ordered collection of
M-spaces, which may be an empty col-
lection. M-spaces in a non-empty
collection are referred to as items
of the queue. Queues can be defined
as part of the definition of a C-pro-
cess model, or by the DEFINE QUEUE

instruction (QDEF), and are made
available in the following way.
o Each queue is assignhed an arbi-

trary 32-bit queue name as part
of its definition. Queue names
must be chosen so as to complete-
ly distinguish one queue from an-
other. However, reference to the
queue in all active queuing in-
structions is by means of a queue
index (qg.ix), which is a 32-bit
identifier assigned by the sys-
tem. The QUEUE INDEX instruction
(QIX) is used to determine the
q.ix from the name.

Chapter 5

37

Version 1.0
15 June 1976

o A queue defined by a DCPM in-
struction in association with a
process model of the C-process
class is called an input queue
for the model, and any process of
the process model family is
called an attendant process of
the queue. Items may be entered
into into an input queue by any
process irrespective of process
class, but may be extracted from
the queue only by an attendant
process.

o More than one queue can be asso-
ciated with a given process mod-
el, but a given input queue can
be associated with only one pro-
cess model. If a process model
has multiple associated input
queues, the queues are assigned a
precedence sequence with respect
to one anothear.

o An input queue serves as a pro-
cess source for the associated
process model: an item entered
into the queue when the queue is
empty automatically +triggers a
request for initiation of a pro-
cess of the family.

o A queue defined by a QDEF in-
struction becomes a public queue
, not associated with any process
model. Items may be entered into
a public queue by any process ir-
respective of class, and may be
extracted by any process of the
C-process class.

A queue, like a domain, is provided
with a name in order that it have a
permanent referent which can be as-
sembled as a constant in storage or
entered as input data. It is pro-
vided with a g.ix in order to opti-
mize instruction execution
performance. Except for the value
zero, which always designates the

C-Processes

Principles of Operation
The EPSILON System

null queue, queue indices are
model-dependent and not predictable.
Consequently, a q.ix cannot safely be
passed from one process to another.
In order to assure correct results,
any process not an attendant of a
queue must execute a QIX instruction
before referencing the queue. :

Given a name, the QDEF instruction
dafines a queue of that name and re-
turns its q.ix. If a queue with the
given name already exists it is not
redefined; the aq.ix is returned with
a condition code indicating prior ex-
istence. The QIX instruction, on the
other hand, returns the q.ix of an
existing queue corresponding to a
given name, or else an indication
that no such queue exists.

Sixteen bytes are withdrawn from the
M-storage pool for every queue de-
fined, to be used by the system for
queue control. Queue definition will
be rejected if M-storage for the con-
trol area is not available. The re-
jection is indicated by the condition
code set for the DCPM or QDEF
instruction attempting the defi-
nition.

5.2 Process Model Definitien

The information required by a DEFINE
C-PROCESS MODEL instruction (DCPM)
is specified by means of a C-process
Model Definition Block (CMDB). A
CMDB must begin on a word boundary
and have the format described in fig-
ure 5.1.

The DCPM instruction will define a
new process model, replace an exist-
ing one, or delete a model entirely,
depending on the content of the CMDB.

o] A new model is defined if there
is not already one with the name
specified in field CMNME. If a
model does exist and if deletion
is allowed, it will be replaced
or deleted; if deletion 1is not

Chapter 5

Version 1.0
15 June 1976

allowed, the definition attempt
Wwill be rejected. Replacement
occurs if field CMINS is
non-zero, deletion if the field
is zero. Replacement consists of
first deleting the existing mod-
el [Section 5.3]1, followed by de-
finition of the new model.
Deletion will not occur if the
definition attempt is rejected
for any reason.

o When definition is complete the
CMDB area is immediately avail-
able for new use, as the process
model control information is re-
tained by the system in an area
withdrawn from the B-storage
pool. Definition will be re-
jected if storage is not avail-
able, and the rejection
indicated by condition code re-
turn.

o The definition attempt will also
be rejected if field CMCID does
not identify a valid computation
cycle, if any of the proposed in-
put queue names duplicate the
name of an input queue for anoth-
er process model, if the proposed
entry context space is not in
custody of the defining process,
or if M-storage is not available
for queue control areas.

The remaining fields of the CMDB are
not examined by the DCPM instruction.
If they contain information which is
invalid (e.g. field CMMOD does not
contain a pointer), or later becomes
invalid, the error will be noted at
the time of attempted use, and an
'invalid process model"' system
exception will then be raised
[Section 9.51.

The CMDB of an existing process model
can be inspected at any time by exe-
cution of a STORE CMDB instruction
(SCMDB) within any C-process or
R-process. The data can be used to
check field validity, to replace or

C-Processes

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

CMMOD

CMFLG CMLOC

CMMSK CMINS CMCID CMQNC

CMNME

CMXMD

CMCTX

CMRSR

CMIQL

Field Offset Bytes

qﬁ\ CMMOD 0 4

CMFLG 4 1
Bi Value

0 0

1

1 0

1

2 0

1

3 0

1

Chapter 5

Figure 5.1

C-process Model Definition Block

Description and Use

A pointer to the module space which contains the ini-
tial instruction sequence to be executed by every
process of the process family.

Bits defining conditions of usage for the process
model and members of the family.

Significance

Collect process statistics under control of col-
lection instructions
Do not collect process statistics

The initial value of the domain identifier for pro-
cesses of the family is to be the identifier of the
entry context space

The initial value of the domain identifier is that of
the common domain if a queue acted as source for the
process, or the domain identifier of the source pro-
cess if initiation is caused by an INIT instruction

The domain identifier may vary during execution
The domain identifier is fixed during execution

The entry context space identified by field CMCTX is

to be bound to the process model
Do not change custody of the entry context space

39 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976
4-6 - Reserved

7 0 Place this process model in system custody if
custody is transferred

1 Place in public custody on a transfer of custody
Field QOffset Bytes Description _and Use
cMLOC 5 3 Base address within the module space identified by

field CMMOD of the first instruction of the initial
instruction sequence.

cMMSK 8 1 Value of the exception mask field for initial entry
to processes of the family.

CMINS 9 1 An integer specifying the maximum number of family
members in existence at the same time. If the value
is between 1 and 254, the maximum is the value; if the
value is 255, an unlimited number of instances is al-
lowed. A value of zero indicates a deletion request.

CMCID 10 1 The identifier of the computation cycle with which
the process model is to be associated.

CMGNO 11 1 An integer whose value specifies the number of input
queues associated with the process model.

CMNME 12 4 The name of the model. Process model names are 32-bit
permanent referents which must be unique within the
set of process models, but need not differ from names
in other name sets (e.g. queue names).

CMXMD 16 4 A pointer to the module space which contains the ini-
tial instruction sequence for handling process excep-
tions.

CMCTX 20 4 A pointer to an ordinary space which becomes the en-

try context for processes of the family.
CMRSR 24 G Reserved for use as selection routine input data.

CMIQL 28 Var Names of the input queues to be to be associated with
the process model, listed in order of the precedence
sequence for queue switching [Section 5.81; the num-
ber of entries in the list is equal to the value of

field CMQNOC.
delete the model, or simply to deter- 5.3 Process Model Daletion
mine the names of the input queues
associated with the model. C-process models and queues are as-

signed to the custody of some process

Chapter 5 40 C-Processes

~

Principles of Operation
The EPSILON System

family for protection against arbi-
trary deletion.

o A C-process model is assigned to
the custody of the family of the
defining process. It can be
deleted by a DCPM instruction,
operating in replacement or
deletion mode, if the instruc-
tion is executed within a custo-
dian process.

o An input queue is bound to the
custody of its associated pro-
cess model, and can be deleted
only as part of the deletion of
that model.

o A public queue is assigned to the
custody of the family of the de-
fining process. It can be de-
letad by a DELETE QUEUE
instruction (QDEL) executed
Wwithin a custodian process.

Unlike spaces, the continued exist-
ence of process models and queues is
not tied to the continued existence
of their custodian; they are trans-
ferred to alternative custody if
their initial custodian is itself de-
leted.

o If bit 7 of field CMFLG of its
CMDB is zero, a C-process model
and its associated input queues
are transferred to bound custody
of the system. No process can
then execute a valid DCPM in-
struction for the model, so it
cannot be deleted or replaced ex-
cept by re-initialization of the
system.

o If bit 7 of the field is 1, the
C-process model and its input
queues are transferred to public
custody. Any C-process or R-pro-
cess can then execute a valid
DCPM instruction for the model.
If the DCPM causes the model to
be replaced, the new model is
transferred to family custody of

Chapter 5

41

Version 1.0
15 June 1976

the defining process.

o A public queue is always trans-
ferred to public custody.

When any queue is deleted, spaces
resident in the queue are also de-
leted, the effect being as if a FREE
instruction had been issued for each
spacae. When a process model is de-
leted, spaces held in family custody
are deleted, as is the entry context
space if bit 3 of field CMFLG of the
CMDB caused the space to be bound to
the model. The input queues are then
deleted, followed by deletion of the
model. However, if deletion 1is an
intermediate step in replacement of
the model, objects bound to the model
are not deleted if they are to be
used for the new model.

o If field CMCTX of the new CMDB
identifies the entry context
space already bound to the model,
the space remains in existence.
If, at the same time, bit 3 of
field CMFLG of the new CMDB indi-
cates that the entry context
space is not to be bound to the
model, the space is placed into
family custody of the replaced
model.

o The queue list of the new CMDB is
compared against the input queue
list of the existing model and
queues which appear in both lists
are not deleted prior to replace-
mant of the model.

The QDEL and DCPM instructions are
synchronous to the process within
which they are executed, so that de-
letion is effective at instruction
completion. In -some models of
EPSILON systems, however, the
M-storage and B-storage areas used
for queue control and CMDB data may
be retained by the system on instruc-
tion completion, for use in future
queue and process model definition.

C-Processes

Principles of Operation
The EPSILON System

5.4 Initiation

A request for initiation of a C-pro-
cess is triggered when either

o an INITIATE PROCESS instruction
(INIT) is executed specifying a
defined process model, or

o an item is placed into an input
queue which was previously emp-
ty.

Items are entered into a queue by
means of the ENQUEUE instruction
(ENQ), whose operands denote the q.ix
and the M-space. The INIT instruc-
tion, however, denotes the name of
the process model, so that INIT is a
direct request for initiation of a
process of a particular family, while
ENQ carries an implicit request for
initiation of a process to serve a
particular queue irrespactive of as-
sociated process model family. Con-
sequently, ENQ is made available to
all processes, but INIT can be exe-
cuted only within a process of the
C-process class.

The sequence of action necessary to
convert an initiation request into a
C-process ready to be dispatched for
the first time is carried out by
microcode as a closed function of the
system. The general principle em-
bodied in the initiation microcode is
to minimize the length of the initi-
ation sequence without sacrificing
its transparency. Therefore, even
though no conditions are imposed on
the residence of the initial instruc-
tions or process model control data,
the initiation sequence chosen in any
particular case will make use of res-
idence conditions generated by pre-
vious activity in the system. The
general procedure is as follows.

o When the request is triggered, a
test is made to see if the pro-
cess model control data is resi-
dent in M-storage. The data will

Chapter 5

Version 1.0
15 June 1976

be resident if a process of the
family exists or is being termi-
nated; it may still be resident
if a process previously existed.

If the data is in M-storage the
membership status of the family
is examined. If there are al-
ready as many processes of the
family in existence as the maxi-
mum specified in field CMINS of
the CMDB, the request is consid-
ered to be satisfied and no fur-
ther action is taken. If the
maximum has not been attained,
the request becomes an active
one. In either case, the INIT or
ENQ instruction which triggered
the request is then completed
with condition code zero.

If the data is not resident in
M-storage, a search of B-storage
is started. An ENQ instruction
is completed when the search be-
gins, as the existence of an in-
put queue guarantees the
existence of an associated pro-
cess model; for the opposite rea-
son, interpretation is suspended
for an INIT instruction during
the period of the search. The
search is carried out in incre-
mental steps at each entry to in-
itiation service by dispatching
[Section 4.2]. If the search is
terminated by loading the con-
trol data into M-storage, the re-
quest becomes an active one. If
there is no CMDB corresponding to
the request, interpretation of
the associated INIT instruction
will resume, and it will be com-
pleted with a condition code in-
dicating the request was
dropped.

Active requests are processed
incrementally by initiation
service [Section 4.2] until sat-
isfied. If there is a process of
the family which is in general
wait condition, the request will

C-Processes

N

Principles of Operation
The EPSILON System

be satisfied by placing the pro-
cess into ready condition; oth-
erwise, an initial state vector
will be prepared for a new pro-
cess of the family. The state
vector data resides in M-stor-
age, SO0 a new process may not be
brought into existence until
storage is available.

o When the state vector area is
available, the CMDB fields
CMMOD, CMLOC, CMXMD, and CMCTX
are examined for validity. CMMOD
must identify either the null
space, or a module space for
which field CMLOC designates an
instruction location which lies
within the space. CMXMD must
identify either the null space or
a module space. CMCTX must iden-
tify either the null space or an
ordinary space. Initiation is
suppressed with an 'invalid pro-
cess model’ system exception
[Section 9.51 if any of the
fields is discovered to be inval-
id.

o If field CMLOC identifies a mod-
ule B-space, the space is exam-
ined to see if an M-space
descendant generated by a link-
age instruction exists. If one
does not exist, it is formed by
executing the equivalent of a
CALL instruction.

o If field CMCTX identifies an or-
dinary B-space, and if there are
no other processes of the family
in existence, an M-space de-
scendant of the space is formed
by executing the equivalent of a
LOAD instruction. The descend-
ant, or the original space if
field CMCTX identifies an
M-space, becomes the entry con-
taxt space for the process. Pro-
cesses of the family can be
supplied values, pointers,
names, and other initial data by
means of the entry context. If

Chapter 5

43

Version 1.0
15 June 1976

they are allowed write access to
the space, it can also be used in
conjunction with an access con-
trol gate [Section 5.10] to pass
information between family mem-
bers or generations.

) The initial state vector is then
loaded with standard entry data
and the new process placed in
ready condition.

Because of the nature of the steps
taken to initiate a process, the
elapsed time between a request and
the existence of a corresponding
ready process cannot be predicted.
It is possible to determine an upper
bound to the time, but only for each
EPSILON system individually, as the
bound depends both on the model and
the application mix. Once a C-pro-
cess exists, however, its elapsed
time behavior is governed by its oun
instruction execution during time
apportioned within its computation
cycle.

5.5 state vector

The state vector of any process con-
sists of the general registers, a
Process Instruction Counter (PIC),
and internal control data, all of
which reside in M-storage. The
internal control data is accessible
only to the microcode, but the PIC
can be obtained by the LOAD PROCESS
INSTRUCTION COUNTER instruction
(LPIC). The PIC is a double-word
with the format described in figure
5.2.

The LPIC instruction loads the PIC of
the process within which it is exe-
cuted into a specified general regi-
ster of that process. Field PCUR is
loaded into the pointer register by
executing the equivalent of an LP in-
struction; fields PFLG and LCUR are
placed into the arithmetic register.
LPIC is a modal instruction which can
also be executed within an R-process

C-Processes

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

PCUR

PFLG

LCUR

Figure 5.2
Process Instruction Counter

Field Offset Bytes Description and Use
PCUR 0 4 Pointer to the M-space containing the next instruc-
tion to be executed
PFLG 4 1 Bits defining the condition and status of activity
for the process
Bit Value Significance
0 1] normal condition for C-process or R-process; indi-
cates D-process has no current space
1 process activity is being monitored (C-process); the
process has been unable to close an access control
gate (R-process); there is an I/0 request space cur-
rent for the process (D-process)
1 0 normal
1 the process has closed a data access gate
2 0 normal
1 a process exception is not vet cleared
3 0 normal
1 the process is being terminated
4,5 1-3 Length in halfuwords of the last instruction executed
6,7 0-3 Current condition code
Field O0Offset Bytes Description _and Use
LCUR 5 3 Base address within the space identifed by field PCUR
of the next instruction to be executed
or D-process. As shown in figure a D-process is described in Section
5.2, the PIC for processes of all 7.61.
classes has the same format; content
is also the same except for the in- E.6__Procass Entry
terpretation of bit 1 of field PFLG
[The function of the current space of When a C-process is dispatched for

Chapter 5

46 C-Processes

",

Principles of Operation
The EPSILON System

the first time its state vector is
loaded with the following initial da-
ta.

o The PIC contains the location of
the first instruction to be exe-
cuted, as generated during the
initiation sequence. Field LCUR
contains the value of field CMLOC
of the CMDB; field PCUR desig-
nates the space identified by
field CMMOD, if it is an M—-space,
or an M-space descendant, if it
is a B-space.

o Pointer register zero contains a
pointer to the entry context
space generated during the ini-
tiation sequence. The register
is set up as if it had been
loaded with an LP instruction.
Arithmetic register =zero con-
tains zero.

o Pointer register 1 contains the
null pointer. Arithmetic regi-
ster 1 contains the q.ix of the
input queue which triggered ini-
tiation, or zero if an INIT in-
struction was the trigger.

o All other general registers con-
tain zero in the arithmetic regi-
ster field and a null pointer in
the pointer register field.

o The exception mask and domain
identifier are set as specified
in the process model.

If field PCUR of the PIC identifies a
space to which the process does not
have read access, the process is ter-
minated immediately and an invalid
procass model system exception is
raised. If the space is the null
space, instruction execution is not
started. All spaces in the input
queue which triggered initiation, if
any, are deleted from the system, and
termination is reauested as if an EX-
IT instruction with an operand value
of zero had been executed I[Section

Chapter 5

Version 1.0
15 June 1976

5.121. If the space is not null, in-
struction execution begins with the
first instruction and continues un-
til a CPU switch occurs, at which
time interpretation of the instruc-
tion sequence is suspended. If the
switch was caused by expiration of a
basic cycle, the state vector will be
preserved intact, and when the pro-
cess is next dispatched instruction
execution will resume from the point
of suspension. CPU switching due to
computation cycle activity is there-
fore invisible to all processes.
There are, however, two instructions
by which a process can explicitly
return control of its assigned CPU to
dispatching.

o The IDLE instruction is used to
indicate that the process activ-
ity for this computation cycle is
finished. The process is suspen-
ded in ready condition at in-
struction completion. It will be
dispatched during the next com-
putation cycle with the state
vector preserved, except that
the process instruction counter
is set to the reentry location
specified by the operand of the
IDLE instruction.

o The WAIT instruction is used to
indicate that the process must
wait for some event or occur-
rence. The process is suspended
in general wait condition at in-
struction completion. It will
not be dispatched again until the
wait is removed by an initiation
request, or by expiration of the
maximum wait time specified by
the operand of the WAIT instruc-
tion. The state vector is pre-
served, so that when the process
is next dispatched the first in-
struction executed is the one
following the WAIT.

Control of the CPU will also be re-

turned by a termination request, but
the process will not then again be

C-Processes

Principles of Operation
The EPSILON System

dispatched.

5.7 Linkagae

Normal system procedure is to execute
instructions drawn sequentially from
the same module M-space. After an
instruction is fetched from the loca-
tion specified by the process in-
struction counter, the address in
field LCUR is incremented by the num-
ber of bytes of the instruction to
vield the location of the next in-
struction. If the address becomes
larger than the extent of the module
space, it is reduced by the extent,
so that instruction fetch wraps
around the space.

The normal procedure is changed by
branching and linkage instructions.
Branching instructions, such as
BRANCH ON CONDITION or BRANCH AND
LINK, change the fetch sequence while
leaving unchanged the space from
which they are fetched. The branch
address generated by the instruction
replaces the the address in field
LCUR of the PIC, but no action is
taken to change the space identified
by field PCUR. The linkage instruc-
tions provide for a change of space
as well, in order to allow instruc-
tions from more than one module space
to be executed within the same pro-
cess,

The CALL instruction, which is a
modal instruction executable within
all processes, links to a new space.
When executed within a C-process or
D-process:

] The operand can identify either a
module B-space or M-space for
which the process has read
access. If a B-space is identi-
fied it is examined to see if an
M-space descendant generated by
a previous CALL exists. If one
does not, it is formed by execut-
ing the equivalent of a LOAD in-
struction. The process is placed

Chapter 5

46

Version 1.0
15 June 1976

into I/0 wait dispatching condi-
tion until the loading is
pleted.

com-=

o When the M-space is available,
either as the original operand or
as the descendant of a B-space,
the PIC is saved in a linkage
control area of the state vector.
Field LCUR is then set to the
base address specified by the in-
struction operand, field PCUR is
set to identify the new M-space,
and the instruction is com-—
pleted.

When executed within an R-process the
operand of a CALL must identify an
M-space or else a specification ex-
ception will occur; the instruction
behavior is the same in all other re-
spects.

An M-space allocated by linkage as a
descendant of a B-space, either dur-
ing initiation or by a CALL instruc-
tion, is assigned to the .private
custody of the associated process,
but its custody flag is not turned
on. It will be deleted automatically
by the system when no longer in use,
or when the process 1is terminated.
However, as a consequence of the be-
havior of the linkage mechanism, the
space may becomae the source of in-
structions for other processes exe-
cuting concurrently. The reference
count of the space is therefore in-
cremented by the CALL instruction, so
that deletion will be delayed, if
necessary, until the space is not in
use by any process.

Similarly, the M-space from which in-
structions were fetched prior to a
CALL continues to exist, and will
continue to exist irrespective of
whether it is in use by other pro-
cesses, until released by action of
the process within which the CALL was
executed. Spaces are released either
by termination of the process or by
execution of a RETURN instruction.

C-Processes

AN

yy\,/ ’

Principles of Operation
The EPSILON System

RETURN reverses the CALL procedure,
releasing the current space as the
source of instructions for the pro-

cess and restoring the previous
space.
[¢] The reference count of the space

which was released 1is decre-
mented, so that if it is not in
use by any other process it will
be deleted from the system.

o The PIC is set to the value saved
from the last CALL instruction
exaecuted by the process, so that
normally the next instruction
fetched will be the one following
that CALL. If no previous CALL
was executed, the RETURN is
treated as an EXIT instruction
[Section 5.121.

o The operand of RETURN specifies
instruction length and condition
code bits in the format of field
PFLG of the PIC. After the PIC
is restored to its previous val-
ue, field LCUR is incremented hy
the number of half-words indi-
cated by the length code, and the
instruction is completed by set-
ting the condition code to the
value specified by the operand.

CALL and RETURN are paired in the
manner of stack operations, with CALL
corresponding to the push and RETURN
to the pop. The pairing is strictly
maintained, as there is no instruc-
tion which will do a return linkage
to a CALL prior to the latest one. A
process is not, however, redquired to
execute as many RETURN instructions
as CALL instructions.

5.8 communication Via Quauas

Apart from changing the PIC and the
condition code, the linkage instruc-
tions do not affect the process state
vector. Hence, data or data loca-
tions can be exchanged between dif-
ferent instruction sequences of a

Chapter 5

47

Version 1.0
15 June 1976

single process by means of the gener-
al registers. However, exchange of
information between different pro-
cesses requires another mechanism,
as the registers of a process are
private to that process.

Input queues are the principal means
of exchanging information between
C-processes. They are also the only
means by which R-processes and D-pro-
cesses can transmit data to be acted
upon by C-processes. The data to be
exchanged or transmitted is placed
into an ordinary M-space and an EN-
QUEUE instruction (ENQ) is executed
specifying the space and the qg.ix.
An attempt to enqueue a module
M-space or a B-space of any kind will
be rejected with a specification ex-
ception.

Because a queue is specified rather
than a process, communication is in-
direct; the enqueuing process, in
fact, cannot even determine the pro-
cess model family associated with the
queue. But since ENQ carries an im-
plicit request to initiate an attend-
ant of the gqueue [Section 5.41, a
permanent basis of communication can
be established by assignment of each
queue as the input mechanism for one
or more data transformation func-
tions.

The items in a queue are ordered by
their sequence of entry, with the
least recently entered item being the
top or head item, the most recently
entered the bottom or tail item.
Successful execution of an ENQ in-
struction enlarges the designated
queue so that the referenced M-space
is the new bottom item, with the pre-
vious bottom item becoming its prede-
cessor. An M-space entered into a
queue becomes part of the queue. It
loses addressability as a space, and
passes out of the custody of the
enqueuing process or process family
into bound custody of the queue,
where it cannot be deleted or reclas-

C-Processes

Principles of Operation
The EPSILON System

sified by any process. Any attempt
by a process to load a stored pointer
to the space into a pointer register
while the space is in the queue will
return a 'space not available' condi-
tion code.

In a manner similar to the action of
the FREE instruction, and for the
same reasons [Section 3.41, entry of
an M-space into a queue is delayed
until all processes which have gained
access to the space no longer need to
reference it. The ENQ instruction
substitutas a null pointer for any
pointer to the space in all pointer
registers of the process executing
the ENQ, and the reference count is
decremented for each substitution.
If the count is not then zero, the
space is held in abeyvance until the
count becomes zero, at which time its
custody flag is turned off and it
will be placed into the queue. The
ENQ instruction, however, always ap-
pears synchronous to a process.

Once an attendant process is initi-
ated, it may use the DEQUEUE instruc-
tion (DEQ) to receive the queued data
items. The position and provenance
of the item extracted from a queue by
DEQR can be specified by instruction
options to be that item

o nearest to the top of the queue,
or nearest to the bottom of the
queue, which

o has any domain identifier, or has
the domain identifier currently
assigned to the process within
which the instruction is being
executed.

A pointer to the extracted item is
placed into the pointer register des-
ignated by the DEQ instruction, and
the item returns to normal M-space
existence. Custody is transferred to
the dequeuing process or its family,
according to the value specified by
the custody option, with the custody

Chapter 5

48

Version 1.0
15 June 1976

flag turned on, and with the refar-
ence count set to the value 1. Ex-
cept for its content and domain
identifier, which remain unchanged,
the space then cannot be distin-
guished from one obtained by the pro-
cess using an ALLOC instruction.

If the queue is empty, the DEQR in-
struction returns a null pointer and
a condition code indication. The
process may ignore the empty condi-
tion, request termination, or switch
to another input queue, if there is
one. It may also suspend activity
with a QUEUE WAIT instruction
(QWAIT), which puts the process into
the queue wait dispatching condi-
tion. Unlike general wait, which is
cleared by any initiation trigger,
queue wait is cleared by entry of an
item into the specific queue desig-
nated by the instruction. The pro-
cess is dispatched again only wuhen
that occurs, with the instruction
following the QWAIT as the next in-
struction to be executed.

Although any input queue associated
with the family can be accessed by a
DEQ instruction, the system recog-
nizes one of the queues as the cur-
rent quaue of the process and will
dequeue from it unless the instruc-
tion specifies otherwise. The cur-
rent queue is set initially as the
one which triggered initiation of the
process, or as the null queue if an
INIT instruction was the trigger; its
q.ix is placed into arithmetic regi-
ster 1 at first entry to the process
[Section 5.61]. The QUEUE SWITCH
instruction (QSWCH) changes the set-
ting of the current queue

o to the queue which is higher in
the precedence sequence than all

other non-empty queues, or

o to the null queue if all queues
are empty.

The q.ix of the new current queue is

C~Processes

Principles of Operation
The EPSILON System

returned in the arithmetic register
designated by the instruction.

The null queue may be specified in
any instruction which takes a gq.ix as
an operand. It is treated as a queue
which does not exist or is always
empty, as appropriate .for the in-
struction:

o for ENQ the result is release of
the space as if a FREE had beazn
executed

o for QWAIT the wait condition is
not generated and the instruc-
tion becomes equivalent to an
IDLE

0 for DEQ the result is the "queue
empty' condition code return

The null queue is useful in writing a
module to execute without change
within processes intiated by INIT as
well as processes intiated by queuing
of data.

5.9 Dpomain Identification

The DEQ instruction is the only in-
struction which can cause a change of
domain identifier for a C-process.
This leads to the following simple
rules for assignment of domain iden-
tifier to C-processes.

o If bit 1 of field CMFLG of the
CMDB is zero, the initial domain
identifier is the domain identi-
fier of the entry context space.
An assignment can always be made,
as the null space belongs to the
common domain.

o] If bit 1 of field CMFLG is 1, and
if an input queue triggered ini-
tiation, the common domain iden-
tifier is assigned to the
process;“if an INIT instruction
triggered initiation, the ini-
tial identifier is the one which
the initiating process had when

Chapter 5

49

Version 1.0
15 June 19756

the INIT was executed.

o If bit 2 of field CMFLG is 1 the
intial identifier is retained by
the process throughout its life-
time. If bit 2 is zero, the do-
main identifier 1is changed by
execution of a DEQ instruction to
the domain identifier of the
space just dequeued; the new do-
main identifier remains current
until the next dequeue.

The current domain identifier of a
process becomes the domain identifi-
er of any ordinary space allocated by
the process using an ALLOC instruc-
tion [Section 3.51.

5.10 shared Data

Processes can alwavs exchange infor-
mation by simply addressing data di-
rectly at a common location. If the
data is constant or can be updated in
place by some instruction, any group
of processes can share the data as
long as they have access to the space
of residence. If data update re-
quires more than one instruction, di-
rect access will usually obtain
invalid data because processes in
EPSILON systems behave as if they all
are advancing concurrently. Some ad-
ditional mechanism is required,
then, if complex data is to be
shared.

The mechanism provided, called an
access control gate, or simply a
gate, achieves the desired result by
assuring that the advancement of a
group of processes will be mutually
exclusive in time. A gate is any
word, located on a word boundary in
some M-space, which becomes a special
resource because of reference by
CLOSE GATE (CLOSE) and OPEN GATE (O-
PEN) instructions. A gate belongs to
a process which executes a successful
CLOSE instruction; it is released by
a successful OPEN instruction. A
gate which belongs to some process is

C-Processes

Principles of Operation
The EPSILON System

said to be closed, otherwise it is
cran.

A CLOSE followed eventually by an
OPEN referencing the same gate and
executed by the same process delimits
the instruction sequence included
between the matched pair of gating
instructions as an exclusive se-
quence. A process is guaranteed that
an instruction sequence delimited by
a matching pair of gating instruc-
tions will be executed exclusively in
time relative to any instruction se-
quence of any other process of the
same process class which is delimited
by a pair of gating instructions ref-
erencing the same gate. Exclusivity
is limited to processes of the same
process class in order to be consist-
ent with normal dispatching activ-
ity, and is not extended to
D-processes.

To operate properly, a gate must be
initialized to a zero value and then
referenced only by CLOSE and OPEN in-
structions. To use a gate for shar-
ing data, a group of C-processes or a
group of R-processes need only asso-
ciate the gate with the data and act
as follows:

o the gate is assembled to have a
zero value or is cleared to zero
by one of the processes before
use of the first gating instruc-
tion

[¢] a CLOSE is executed by any pro-
cess prior to accessing the data

o an OPEN is executed by a process
as soon as it is through with the
data.

A gate need not be restricted in use
to one process class, though it is
good practice to do so. If a gate is
open, it can be closed by any C-pro-
cess or R-process. Once closed, the
gate and gating instructions refer-
ring to it behave modally, as the

Chapter 5

50

Version 1.0
15 June 1976

connection between gating and dis-
patching is established when a pro-
cass attempts to close a gate which
is already closed. If a gate belongs
to a C-process:

o An attempt to close the gate by
an R-process will be rejected
with a condition code indicating
incorrect process class.

o An attempt to close the gate by
another C-process will put that
process into gate wait dispatch-
ing condition, and an internal
gate queue will he formed. As
long as the gate is closed any
other process which attempts to
close it will be placed at the
end of the queue.

o If there is no gate queue, an
OPEN instruction simply returns
the gate to open status. If
there is a gate queue, then the
OPEN has the effect of completing
the CLOSE instruction for the
process which is at the head of
the queue. Thus, when the OPEN
is completed

- the gate belongs to the pro-
cess which was at the head of
the gate queue

- that process has been re-
moved from the queue and is
in ready condition.

The process within which the OPEN
was executed is no longer in-
volved with the gate.

The dispatching treatment accorded a
C-process in gate wait is determined
by action of the selection routine
which services the computation cycle
of the process. The three standard
selection routines assign the CPU
which would have been assigned to a
process in gate wait to the process
which owns the gate, thus giving that
process the CPU time of all processes

C-Processes

Principles of Operation
The EPSILON System

in the gate queue. This form of dis-
patching promotion has the effect of
unstacking a gate queue more rapidly
the longer it becomes.

If a gate belongs to an R-process:

o An attempt to close the gate by a
C-process will be rejected with a
condition code indicating incor-
rect process class.

o An attempt to close the gate by
another R-process will rasult in
invocation of dispatching to
suspend the process and switch to
another. At the same time, the
process to which the gate belongs
is temporarily promoted to a dis-
patching priority higher than
the process just suspended. As
long as the gate is closed, the
process to which it belongs con-
tinues to be promoted to a prior-
ity above that of any process
which attempts to close the gate.

o If a process has not been pro-
moted, an OPEN instruction sim-
ply returns the gate to open
status. If the process executing
the OPEN has been promoted, the
OPEN returns it to its original
priority and causes a process
switch. HNormal dispatching ac-
tivity will then assure that the
highest priority suspended pro-
cess is assigned a CPU, and the
CLOSE instruction which caused
the suspension is completed when
the process starts running.

Although dispatching promotion tech-
niques have a substantial effect on
the behavior of the system, individ-
ual processes need not take them into
account as they do not affect the
functional behavior of the CLOSE and
OPEN instructions.

5.11 Dneadlock Avoidance

The OPEN instruction acts like a pro-

Chapter 5

51

Version 1.0
15 June 1976

cess switch in forcing results of
previous instructions to be brought
into physical and conceptual agree-
ment [Section 2.91. Consequently,
gating is a general means of serial-
izing process execution, which can be
used for process synchronization as
well as for resolving resource usage
conflicts. However, as a process may
close more than one gate at a time,
it is possible to create a deadlock
condition where two or more processes
block each other's advancement. For
example, the following two processes
will very likely create a deadlock:

Processl Process2
CLOSE Gl CLOSE G2
CLOSE G2 CLOSE G1
OPEN G2 OPEN G1
OPEN Gl OPEN G2

Deadlocks can be forestalled by use
of known avoidance techniques. One
such technique is to assign a pre-
scribed sequence to a set of gates,
and to have any process which is to
close one of the gates first close
all gates preceding it in the se-
quence. Thus, the following pro-
cesses can never create a deadlock:

Processl Process2 Process3

CLOSE GI CLOSE G1 CLOSE G1
CLOSE G2 CLOSE G2
CLOSE G3 .

The system recognizes some potential
deadlock conditions and will take
avoidance action or will alert a pro-
cess so it may take action.

o An attempt by a process to close
a gate it has already closed or
to open a gate it has not previ-
ously closad will be rejected
with a condition code indicating
the rejection.

C-Processes

Principles of Operation
The EPSILON System

o An attempt to execute a CLOSE or
OPEN using a word whose content
is not consistent with the con-
tent of a gate will be rejected
with a condition code indicating
the inconsistency. As an aid in
the preservation of gates from
inadvertant destruction, CLOSE
and OPEN are treated as read in-
structions, even though they al-
ter the gate contents.
Consequently, a gate can be lo-
cated in a space to which the
processes which reference it
have only read access.

o A C-process will not be placed
into a gate queue if it is al-
ready holding a gate; the CLOSE
instruction is rejected with a
condition code indicating the
gate is not avilable to the pro-
cess. Recovery action is up to
the process, as the rejection on-
ly warns against a possibility
that may never occur.

o A gate count is maintained for
each M-space, which 1is incre-
mented when a CLOSE is executed
referring to a gate located in
the space and decremented when an

- OPEN is executed. Any request
for deletion of the space will be
held in abeyance until the count
becomes zero.

o Deletion of the state vector of a

'~ terminated process is delayed

until all gates which belong to

the process have been opened
[Section 5.121].

If a deadlock does occur for a group
of C-processes, processes not in-
volved in the deadlock will continue
to advance normally. The deadlocked
processes are usually not recovera-
ble. The deadlock may not even be
detected, except indirectly by sys-
tem behavior. An R-process deadlock,
however, affects all other pro-
cesses, s0 provision is made for de-

Chapter 5

52

Version 1.0
15 June 1976

tecting and breaking
deadlocks [Section 6.51].

R-process

5.12 Termination

A request for termination of a pro-
cess is triggered when either
o an EXIT instruction is executed
by the process, or

o a TERMINATE PROCESS
(TERM) is executed
the process model.

instruction
specifying

EXIT can be executed within any pro-
cess to request its own termination.
The request can signify normal com-
pletion, or recognition of an excep-
tion condition which precludes
continuation of the process. TERM
requests termination of all members
of a process model family currently
active. The request is accepted if
executed within any process which is
allowed to delete the process model,
otherwise it is rejected with a con-
dition code indication.

EXIT and TERM are synchronous to the
process within which they are exe-
cuted; termination is effective at
instruction completion in the sense
that the process to be terminated
wWwill not be dispatched again. Actual
deletion of the process requires
recovery of resources still held by
the process, and is carried out asyn-
chronously by microcode as a closed
function of the system. For C-pro-
cesses the steps necessary for de-
letion are processed incrementally
by C-process termination service.

o A termination request sets bit 3
of field PFLG of the PIC +to 1.
When this bit is on, dispatching
will not assign a CPU to the pro-
cess when it is selected, but
will substitute termination
service in its place.

o If the process has one or more

C-Processes

Principles of Operation
The EPSILON System

I/0 requests outstanding, termi-
nation service simply executes
the equivalent of an IDLE. Idl-
ing will continue each time the
process is selected until I/0 ac-
tivity for the process has
ceased.

o When there is no more I/0 activ-
ity, termination service deletes
the spaces which remain in pri-
vate custddy of the process. The
equivalent of one FREE 1is exe-
cuted at each entry to the pro-
cess until all spaces have been
released.

o When all spaces have been de-
leted, the linkage control area
of the state vector is tested for
uncompleted linkage sequences.
The equivalent of one RETURN is
executed at each entry to the
process until the linkage stack
vanishes.

o At its next entry, termination
service tests whether the pro-
cess is holding any access con-
trol gates, or is waiting in a
gate queue. If not, the state
vector is deleted from M-storage
and the process disappears from
the system.

(o] If the process is holding a gate
or is in a gate queue, it will be
removed from its computation

cycle but the state vector will
remain in M-storage. Each time
after that a CLOSE is executed
referencing a gate which belongs
to the process, an OPEN will be
inserted in front of it. Eventu-
ally all gates belonging to the
process will be opened; the state
vector will then be deleted from
M-storage.

For purposes of initiation, a termi-
nating process does not count against
the maximum number of processes al-
lowed the family. If the maximum has

Chapter 5

53

Version 1.0
15 June 1976

actually been attained, an initi-
ation request received while termi-
nation is in progress will be held in
abeyance; it will become active when
the process is removed from the com-
putation cycle.

When the process terminated is the
only one of its family in existence
and no initiation request has been
received, the input queues associ-
ated with the process model are
primed to trigger initiation re-
quests at first entry of a space
irrespective of whether or not they
are empty. A process is therefore
not required to empty its input
queues in order to assure continued
initiation of processes of the fami-
ly.

5.13 Exception Handling

The 15 process exceptions are as-
signed exception codes and divided
into four severity classes, as shoun
in figure 5.3. The treatment of a
process exception depends upon
whether or not a non-null exception
module is currently defined for the
process. An exception module speci-
fied by a CMDB becomes current for
all processes of the family as soon
as they are initiated. A DEFINE EX-
CEPTION MODULE instruction (DXM) can
then be executed within a C-process
to define a new current exception
module. DXM also returns a pointer
to the old exception module, as an
aid to those applications which may
wish to change exception handling
with linkage.

If a process exception which is not
maskable, or is not masked, occurs
within a C-process for which a
non-null exception module 1is cur-
rent, it is treated as follows.

o If the exception module pointer
designates a space no longer in
existence, the current exception
module for the process is changed

C-Processes

Principles of Operation
The EPSILON System

to the null module, and an inval-
id process model system excep-—
tion is raised [Section 9.5). If
the space exists, a linkage is
ganerated to it exactly as if a
CALL instruction had been in-
serted between the instruction
which caused the exception and
its successor.

o The PIC in effect at the time of
the exception is stored in an
exception receord to which the
process is given read access. An
exception record is 32 bytes in
extent and also holds the con-
tents of general registers zero

and 1, in the format described in
figure 5.4,

o The state vector at entry to the
exception handling sequence is
set so that

- the new PIC reflects the sim-
ulated CALL, with field PCUR

containing a pointer to the
exception module or an
M-space descendant of it,

with bit 2 of field PFLG set
to 1 and bit zero set to ze-
ro, and with field LCUR con-
taining zero as the entry
base address; the condition
code is not changed except in

the case of forced excep-
tions

- pointer register =zero con-
tains a null pointer

- arithmetic register zero

contains the exception code
in the form of a positive
fixed-point integer

contains
excep-

- general register 1
the location of the
tion record

General registers 2 through 15

remain as they were prior to the
exception, as does all other

Chapter 5

54

Version 1.0
15 June 1976

can be
process

state vector data which
directly altered by the
(e.g. the exception mask).

The exception handling routine can
take whatever action deemed desira-
ble to recover from the exception,
and then will conclude with a RETURN,
indicating recovery has occurred, or
a termination request, indicating
continuation of the process is use-
less. If a RETURN is executed, the
exception routine must set the state
vector to the values desired at
resumption of the normal instruction
sequence. For this purposa, the ex-
ception mask can be set by the SET
EXCEPTION MASK instruction (5XM),
and general registers zero and 1 can
be restored from the excaption re-
cord. The return should take into
account the time at which the state
vector data was stored.

0 An instruction which causes a
class 1 or class 2 exception is
suppressed before the process

state vector is altered or data
in storage is modified.

o Class 3 and class 4 exceptions
are raised after the instruction
is terminated or completed. For
these exceptions the PIC loca-
tion has been updated and regi-
sters or storage may be modified.

Consequently, if an exception rou-
tine wishes to bypass retry of an in-
struction which caused a class 1 or
class 2 exception, the corresponding
instruction length should be in-
serted into the operand field of the
RETURN instruction.

If a process exception occurs when a
null exception module is current,
system microcode will take the fol-
lowing standard recovery action:

o class 1 and class 2 exceptions

cause an EXIT instruction with
operand value zero

C-Processes

Principles of Operation

The EPSILON System

Yersion 1.0
15 June 1976

Class Exception Code
Operation 1
Execute 2
Access 3
Addressing 4
Specification 5
Data 6
Forced 7
Fixed—point overflow 3
Fixed—point divide 9
Decimal overflow 10
Decimal divide 11
Exponent overflow 12
Exponent underflow 13
Significance 16
Floating—point divide 15

Figure 5.3

Process Exceptions by Class

LPIC

PRO

PR1

ARO

AR1

FRCE

Field 0Offset Bytes

LPIC 0 8

Chapter 5

Figure 5.4
Exception Record

Description _and Use

Content of the PIC in use when the exception was
raised. The value is identical to that stored in the
linkage control area by the CALL simulated to enter
the exception routine.

55 C-Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

Content of pointer register zero when the exception

Content of pointer register 1 when the exception was

Content of arithmetic register zero when the excep-

Content of arithmetic register 1 when the exception

PRO 8 %
was raised.
PR1 12 4
raised.
ARO 16 4
tion was raised.
AR1 20 4
was raised.
FRCE 2% 8 Record extension

forced exception [Section 5.141.

pertinent to a
The field has no

containing data

significance for other exceptions.

° a class 3 exception is recorded
if process statistics are being
accumulated; the process then
resumes at the instruction fol-
lowing the one which caused the
exception.

o class % exceptions are ignored.

An exception routine can execute any
instruction available to a C-pro-
cess, including DXM. However, an ex-
ception which occurs while an
exception routine is the current ac-
tivity of a process (i.e. while bit 2
of field PFLG of the PIC is set on)
is treated as if a null exception
module were current.

5.14 Forcad Excoptions

A process exception can be forced
when a monitor trace record is stored
for a process. Tracing is one of the
process monitoring mechanisms of
EPSILOH systems which actively probe
process activity. The action of
these mechanisms in relation to a
process is governed by bit zero of
field PFLG of the PIC. A process
will be actively monitored only when
the bit is turned on; if the bit is
zero, process activity is not probed,
and no monitor exceptions will be
forced. The value of the monitor bit

Chapter 5

56

in the PIC is controlled by the SET
MONITOR MASKS instruction, which al-
so specifies what is to be monitored
or traced. This instruction is
described in Section 10.8, together
with a description of the process
monitoring mechanisms.

A process exception can also be
forced by execution of a FGRCE PRO-
CESS EXCEPTION instruction (FPXD
within any process. The FPX instruc-
tion is a passive monitoring mech-
anism whose action is not governed by
the monitor bit of the PIC, but by a
separate eight-bit field in the state
vector, called the breakpoint mask.
When an FPX is encountered, each bit
of the current breakpoint mask is
combined with the corresponding bit
of the mask field of the instruction
by a logical AND operation. If the
result is non-zero, an exception is
forced; if the result is zero, pro-
cess activity continues with the in-
struction following the FPX. The
breakpoint mask of a process is set
to zero at initial entry. It can be
changed by execution of a SET BREAK-
POINT MASK instruction (SBKM).

An exception record stored as the re-
sult of an FPX contains data in the
FRCE field [Figure 5.41 in the format
described in figure 5.5. A monitor

C-Processes

i

Principles of Operation Version 1.0

The EPSILON System 15 June 1976
trace record has the same format for exception module. If the condition
its FRCE field, but the internal code is =zero, the exception was
fields contain quite different data forced by an FPX instruction. If the
[Figure 10.14]. The records are dis- condition code is 1, the exception is
tinguished from one another by the due to process monitoring.

condition code set upon entry to the

FXPT

BKP FXBA

Figure 5.5
Extension of Exception Record
Stored by FPX Instruction

Field 0Offset Bvtes Description and Use
FXPT 0 4 Pointer portion of the location generated by the op-

erand of the FPX instruction.

BKP 4 1 Breakpoint conditions which caused the interrupt to
be forced.

FXBA 5 3 Base address portion of the location generated by the
operand of the FPX instruction.

5.15 Instruction Descriptions

DEFINE QUEUE

QDEF R1,D2(X2,B2) <RX>

The queue list is scanned for a queue whose name is the same as the con-
tents of the word located by the second operand. If such a queue is found, its
q.ix is placed into arithmetic register Rl and the instruction is completed
with condition code 1.

If no such queue exists, a queue is defined having the given name. The
queue is made a public queue assigned to the custody of the family of the pro-
cess wWwithin which the instruction is being executed. The q.ix of the new
queue is placed into arithmetic register Rl and the instruction completed with
condition code zero.

Chapter 5 57 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C

Condition Code:

0 Queue defined
1 Queue already exists
2 -
3

Exceptions: None

QUEUE INDEX

QIX R1,D2(X2,B2) <RX>

The queue list is scanned for a queue whose name is the same as the con-
tents of the word located by the second operand. If such a queue is found, its
q.ix is placed into arithmetic register Rl and the instruction is completed
with condition code zero. If no such queue exists, the register is cleared to
zaro and the instruction completed with condition code 1.

Process Class: ¢C

Condition Code:

] Queue exists
1 Queue does not exist
2 -
3

Exceptions: None

DEFINE C—-PROCESS MODEL

DCPM DI1(B1) <SI>

The instruction is suppressed with a specification exception if the oper-
and does not define a location on a word boundary. If the location is valid,
the process model list is scanned for a C-process model whose name matches the
name stored in field CMNME of the CMDB located by the operand. If no such mod-
el exists, the computation cycle identifier in field CMCID of the proposed
CMDB is tested for validity. If it is not valid the instruction is terminated
with condition code 1.

Field CMQNO is examined for input queue count. If non-zero, the proposed
names are compared against the the queue list, and if any name duplicates that
of an existing queue the instruction is terminated with condition code 1. 1If
the queue names are not duplicates, field CMCTX is examined for an entry con-
text space pointer. If the pointer is non-null and does not identify an ordi-
nary space in private or family custody of the process within which the
instruction is being executed, the instruction is terminated with condition
code 1. An attempt is then made to obtain B-storage for the CMDB data and

Chapter 5 58 C—Processes

-

Principles of Operation Version 1.0
The EPSILON System) 15 June 1976

M-storage for queue control areas. The instruction is terminated with condi-
tion code 3 if storage is not available.

If storage is available, the input queues are added to the queue list, the
CMDB information stored in the B-storage area, and the process model assigned
to the custody of the family of the process within which the instruction is
being executed. If field CMCTX is non-null, and if bit 3 of field CMFLG is 1,
the entry context space is removed from its current custody and bound to the
custody of the process model.. The instruction is then completed with condi-
tion code zero.

If a process model exists which matches the name in the proposed CMDB it
is tested for deletion status. Deletion is allowed if the model is in custody
of the family of the process within which the instruction is being executed or
if the model is in public custody. The instruction is terminated with condi-
tion code 2 if deletion is not allowed.

If field CMINS of the proposed CMDB is zero, the model and 1its input
queues are deleted from the system. The entry context space is deleted if in
bound custody of the modal. A queue is deleted by releasing any spaces in the
queue, followed by removing the control area from the queue list and returning
it to the M-storage pool. The model is deleted by terminating all existing
members of its family, followed by returning the CMDB control area to the
B-storage pool. The instruction is then completed with condition code zero.

If field CMINS of the proposed CMDB is non-zero, the list of proposed
queuas is compared against the the input queue list of the existing model.
Names that match are removed from the proposed list and saved separately. An
attempt is then made to obtain M-storage for queue control areas for the re-
maining queues, if any. The instruction is terminated with condition code 3
if storage is not available.

If storage is available, the existing model and the non-matching input
queues are deleted from the system. The proposed entry context space is com-
pared to the entry context space of the existing model. If the spaces are not
the same, and if the space of the existing model is bound to its custody, that
space is deleted from the system. The proposed space then becomes the entry
context space; whatever its previous custody, it is bound to the custody of
the model if bit 3 of field CMFLG is 1, and placed into family custody of the
model if bit 3 is zero.

The new input queues are added to the queue list, the CMDB information
stored in the B-storage area of the previous model, the previously existing
queues associated with the new model, and the new model is assigned to the
custody of the family of the process within which the instruction is being ex-
ecuted. The instruction is then completed with condition code zero.

Process Class: ¢C

Condition Code:
0 Model defined or deleted
1 Invalid CMDB format
2 Deletion not allowed
3 Storage not available

Exceptions:
Specification

Chapter 5 59 C-Processes

Principles of Operation Version 1.0
The EPSILON System 7 15 June 1976

STORE CMDB

SCMDB R1,D2(X2,B2) <RX>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. If the location is val-
id, the process model list is scannad for a C-process model whose name matches
the name contained in arithmetic register Rl1. If no such name can be found,
the instruction is terminated with condition code 2.

If a model exists with the specified name, its CMDB data is stored into
successive word locations starting at the location defined by the second oper-
and, up to the number of words required to store the complete CMDB. If storing
a word would require exceeding the space boundary, the instruction is termi-
nated at that point with condition code 1. It is completed with condition
code zero if the full CMDB is stored.

Process Class: C

Condition Code:

0 Full CMDB stored

1 Partial CMDB stored
2 Process model not found
3

Exceptions:
Specification

DELETE QUEUE

QDEL R1 <RR>

If the contents of arithmetic register Rl are not consistent with a q.ix
the instruction is suppressed with a specification exception. If the queue
identified by the gq.ix is not a public queue the instruction is terminated
with condition code 1. If the public queue is not in private or family custody
of the process within which the the instruction is being executed, or not in
public custody, the instruction is terminated with condition code 2. Other-
wise the queue is deleted from the system, arithmetic register 1 is cleared to
zero, and the instruction is completed with condition code zero.

Chapter 5 60 C-Processes

Principles of OCperation Version 1.0
The EPSILON Systqp 15 June 1976

Process Class: C

Condition Code:

0 Queue deleted

1 Queue not public
2 Deletion not allowed
3

Exceptions:
Specification

INITIATE PROCESS

INIT D1(B1) <SI>

The process model list is scanned for a C-process model whose name matches
the name stored in the word located by the operand. The instruction is termi-
nated with condition code 1 if no such model can be found. If a model exists
the request is accepted and the instruction completed with condition code ze-
ro. Initiation will be carried out by initiation service of dispatching
[Section 5.41.

Process Class: C

Condition Code:

0 Request accepted
1 Process model not found
2 -
3 -

Exceptions: None

LOAD PROCESS INSTRUCTION COUNTER

LPIC R2 <RR>

The PIC of the process within which the instruction is being executed is
loaded into general register R2. Field PCUR is loaded into the pointer regi-
ster with the same effect as if loaded with an LP instruction [gq.v. Section
3.7]1 except that the condition code is not set to reflect pointer availabili-
ty, and the combined content of fields PFLG and LCUR is placed into the arith-
metic register.

The instruction is then completed by setting the condition code to indi-
cate the type of PIC stored.

Chapter 5 61 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R,D

Modal
Condition Code:
0 C-process class
1 R-process class
2 D-process class
3 —

Exceptions: None

IDLE

IDLE Mi,R2 <RR>

The contents of arithmetic register R2 replace the base address in field
LCUR of the PIC, and the value of bits 2 and 3 of mask field Ml replace the
condition code in field PFLG. Control of the CPU assigned to the process is
then returned to dispatching. The process will begin execution at the new lo-
cation with the new condition code when next dispatched.

Process Class: C

Condition Code: Set by instruction operand

Exceptions: None

WAIT

WAIT R1,R2 <RR>

The contents of arithmetic register R2 replace the base address in field
LCUR of the PIC, the process is placed into general wait dispatching condi-
tion, and control of the CPU assigned to the process is returned to dispatch-
ing.

The contents of arithmetic register Rl are interpreted as a 32-bit posi-
tive integer specifying the maximum number of computation cycles the wait is
to be in effect. The count is decremented by 1 for each cycle following the
instruction, and the process will be placed into ready condition when the
count goes to zero if an initiation request has not occurred prior to that
time. When next dispatched, the process will begin execution at the new in-
struction location with register Rl containing the count current when the pro-
cess was placed into ready condition.

Process Class: C
Condition Code: Unchanged

Exceptions: HNone

Chapter 5 62 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

CALL

CALL M1,R2 <RR>

If the space identified by pointer register R2 is not a module space the
instruction is suppressed with a data exception. It is suppressed with an ac-
cess exception if the process does not have read access to the space. If the
space is a B-space and the instruction is being executed within an R-process,
the instruction is suppressed with a specification exception.

If the space is a B-space it is tested for an existing M-space descendant.
If none exists, the C-process is placed into I/0 wait dispatching condition
and the equivalent of a LOAD instruction is inserted in front of the CALL. The
I/0 wait is removed after the loading is complete and thae CALL interpretation
restored. The new M-space is placed in the private custody of the process
within which the instruction is being executed.

The process instruction counter is saved in the linkage control area of
the state vector. The contents of general register R2 then replace the in-
struction counter, bits 2 and 3 of mask field Ml replace the condition code,
and the instruction is completed by incrementing the reference count of the
space identified in the instruction counter by 1.

Instruction execution for the process resumes at the new location with the
new condition code.

Process Class: C,R,D

Condition Code: Set by instruction operand

Exceptions:
Access
Specification
Data

RETURN

RETURN M2 <RR>

The linkage control area is examined for a previous CALL executed within
the process. If none exists the instruction is interpreted as an EXIT in-
struction.

If a previous CALL was executed, and if the process has private custody of
the M-space from which the RETURN was fetched, the space is released from cus-
tody of the process. The reference count of the space is decremented by 1, and
if the count becomes zero a deletion request is made for the space.

The PIC saved from the last CALL executed is cleared from the linkage con-
trol area and becomes the new PIC of the process. Field LCUR of the PIC is
then incremented by the number of half-words specified by the value of the
field consisting of bits zero and 1 of the operand M2, bits 2 and 3 of the op-
erand replace the condition code, and the instruction is completed.

Chapter 5 63 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Instruction execution for the process resumes at the instruction speci-
fied by the updated PIC, with the new condition code.

Process Class: C,R,D

Condition Code: Set by instruction operand

Exceptions: None

ENQUEUE

ENQ R1,R2 <RR>

The instruction is suppressed with a specification exception if the con-
tents of arithmetic register Rl are not consistent with a q.ix. It is sup-
pressed with a data exception if pointer register R2 does not identify an
ordinary M-space or if the space is in I/0 request state, and with an access
exception if the space is not in private or family custody of the process
Within which the instruction is being executed.

A null pointer is loaded into pointer register R2 and into any other
pointer register of the process which contains a pointer to the space, and the
reference count is decremented by 1 for each pointer loaded. If the reference
count does not become zero, the space is placed in system custody, the enqueue
request is recorded, and the instruction is completed with condition code 1.
The enqueue will be carried out whenever the reference count subsequently be-
comes zero.

If the reference count is zero, the custody flag is turned off and the
M-space is placed at the bottom of the queue, bound to its custody. If the
queua is an input queue and was previously empty, an initiation request is
triggered designating the process model associated with the queue. If the
queue is the null queue, the space is released with the equivalent of a FREE
instruction. The instruction is then completed with condition code zero.

Process Class: C,R,D

Condition Code:

0 Space enqueued
1 Enqueuing delayed
2 -

3 —
Exceptions:

Access

Specification
Data

Chapter 5 64 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

DEQUEUE

DEQ M1,R2 <RR>

If the high order bit of the mask field M1 is zero, the indicated queue is
the current queue of the process, otherwise the gq.ix is to be found in arith-
metic register R2. In that case, the instruction is suppressed with a spec-
ification exception if the contents of the arithmetic register do not specify
the q.ix of a queue associated with the process.

If the queue is empty or if the indicated queue is the null queue, pointer
register R2 is set to the null pointer and the instruction is completed with
condition code 1. If the queue is not empty, bit 1 of mask field Ml is exam-
ined to determine the domain identifier of the item to be removed from the
queue. If the bit is zero, any domain identifier is acceptable; if the bit is
1, the item is to have a domain identifier which matches the identifier of the
process within which the instruction is being executed.

Bit 2 of mask field Ml determines the direction of search. If the bit is
zero, the item is to be extracted as near to the top of the queue as possible;
if the bit is 1, it is to be extracted as near to the bottom as possible.
Hence, if bit 1 is zero and bit 2 is also zero, the top item of the queue is
removed, while if bit 1 is zero and bit 2 is 1, the bottom item is removed.

If bit 1l is 1, a search of the queue is conducted, starting at the top if
bit 2 is zero and at the bottom if bit 2 is 1. The first item found with the
proper domain identifier is removed from the queue. If no such item can be
found the instruction is terminated with condition code 2.

The low order bit of mask field M1 is examined to determine the protection
vector to be assigned to the space removed from the queue. If the bit is zero
the space is placed in private custody of the process, with private read and
write access; if the bit is 1, the space is placed into family custody, with
family read and write access. The custody flag is then turned on, the refer-
ence count is set to 1, and a pointer to the space is loaded into pointer regi-
ster R2.

Bit 2 of field CMFLG of the CMDB for the process model family is examined
to determine treatment of the domain identifier of the process. If the bit is
zero, the identifier of the process is replaced by that of the space just de-
queued. If the bit is 1 the identifier is not replaced. The instruction is
then completed with condition code zero.

Process Class: C

Condition Code:
0 Space dequeued
1 Queue empty
2 Space not found
3

Exceptions:
Specification

Chapter 5 65 C-Processes

Principles of Cperation . Version 1.0
The EPSILON System 15 June 1976

QUEUE SWITCH

QSWCH R2 <RR>

The input queues of the process model for the process are examined to find
the queue of highest precedence which is non-empty. That queue becomes the
current queue of the process and its q.ix replaces the contents of arithmetic
register R2. If there are no input queues for the process or if all queues are
empty, the null queue becomes the current queue.

Process Class: C

Condition Code: Unchanged

Exceptions: None

QUEUE WAIT

QWAIT R2 <RR>

The instruction is suppressed with a specification exception if the con-
tents of arithmetic register R2 do not specify the qgq.ix of a queue associated
with the process.

If the queue is non-empty the instruction is immediately completed. If
the queue is the null queue, the instruction is interpreted as an IDLE in-
struction. If the queue is empty, the process is placed into queue wait dis-
patching condition and the CPU assigned to the process returned to
dispatching. The process will be placed into ready condition when an item is
entered into the specified queue.

Process Class: C
Condition Code: Unchanged

Exceptions:
Specification

CLOSE GATE

CLOSE D1(Bl) <SI>

The gate located by the operand address is made to belong to the process
within which the instruction is being executed.

The instruction is suppressed with a specification exception if the gate
is not on a word boundary. The instruction is terminated with condition code
3 if the content of the word is not consistent with that of a gate, and with
condition code 1 if the gate already belongs to the process.

Chapter 5 66 C-Processes

N

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

If the gate is open, it is closed and assigned to the process. The gate
count in the space in which the gate is located is incremented by 1, and the
instruction is completed with condition code zero. If the gate is closed and
belongs to a process of a different process class than the requeusting pro-
cess, the instruction is terminated with condition code 2.

If the gate is closed and the requesting process is a C-process, the pro-
cess is placed at the end of the queue of processes waiting for the gate. The
PIC is reset to the CLOSE instruction, the process is placed into gate wait
dispatching condition, and the CPU assigned to the process is returned to dis-
patching. The gate wait will be removed by some subsequent OPEN instruction,
and the process will again request the gate when next dispatched.

If the gate is closed and the requesting process is an R-process, the pro-
cess to which the gate belongs is promoted to a dispatching priority frac-
tionally higher than that of the requesting process. The PIC of the
requesting process is reset to the CLOSE instruction, the process is suspen-
ded, and the CPU assigned to the process is returned to dispatching. The pro-
cess Will again request the gate when next dispatched.

Process Class: C,R
Modal

Condition Code:
0 Gate closed
1 Gate already owned
2 Gate not available
3 Invalid gate format

Exceptions:
Specification

OPEN GATE

OPEN D1(B1l) <SI>

The gate located by the operand address is released by the process.

The instruction is suppressed with a specification exception if the gate
is not on a word boundary. The instruction is terminated with conditiion code
3 if the content of the word is not consistent with that of a gate, with condi-
tion code 2 if the gate is open, and with condition code 1 if the gate does not
belong to the process.

The closed gate is opened and the gate count in the space in which it is
located is decremented by 1. If the process is a C-process and there is a gate
aqueue, the process at the head of the queue is removed from the queue and taken
out of gate wait. The instruction is then completed with condition code zero.

If the process is an R-process which has not been promoted, the instruc-
tion is completed with condition code zero. If the process has been promoted
it is reduced to its normal priority, suspended, and the CPU assigned to the
process is returned to dispatching. The instruction will be completed with
condition code zero when the process is next dispatched.

Chapter 5 67 C-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R
Modal

Condition Code:
0 Gate opened
1 Gate not ouwned
2 Gate already open
3 Invalid gate format

Exceptions:
Specification

EXIT

EXIT I <RR>

Termination is requested for the process within which the instruction is
being executed. Bit 3 of field PFLG of the PIC is set to 1, the byte of imme-
diate data in the I field of the instruction is saved in the state vector, and
the instruction is completed by returning the CPU assigned to the preocess to
dispatching.

Termination is completed at some later time by system microcode.

Process Class: C,R
Condition Code: Unchanged

Exceptions: None

TERMINATE PROCESS

TERM D1(Bl1),I2 <SI>

The process model list is scanned for a process model whose name matches
the name stored in the word located by the first operand. If no such model can
be found the instruction is terminated with condition code 1. If the process
model is not in custody of the family of the process within which the instruc-
tion is being executed, or is not in public custody, the instruction is termi-
nated with condition code 2.

Termination is requested for all processes of the family currently in ex-
istence. The equivalent of an EXIT instruction with operand field I2 is exe-
cuted for each process, and the instruction is completed with condition code
zero.

Termination is completed at some later time by system microcode.

Chapter 5 68 C-Processes

Principles of Operation- Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R

Condition Code:

0 Request accepted
1 Process model not found
2 Termination not allowed
3

Exceptions: None

DEFINE EXCEPTION MODULE

DXM R1,R2 <RR>

The instruction is suppressed with an access exception if pointer register
R2 does not identify a module space for which the process has read access.

If the instruction is not suppressed, a pointer to the current exception
module of the process is placed into arithmetic register Rl, and the instruc-
tion is completed by setting the current exception module to be the space
identified by pointer register R2.

Process Class: C
Condition Code: Unchanged

Exceptions:
Access

SET EXCEPTION MASK

SXM DI1(Bl),I2 <SI>

The current exception mask of the process within which the instruction is
being executed is stored at the location specified by the first operand. The
mask is then set equal to the byte of immediate data in the second operand
field.

Process Class: C,R

Condition Code: Unchanged

Exceptions: None

Chapter 5 69 C-Processes

Principles of Operation . Version 1.0
The EPSILON System 15 June 1976

SET BREAKPOINT MASK

SBKM D1(B1),I2 <SI>

The current breakpoint mask of the process within which the instruction is
being executed is stored at the location specified by the first operand. The
mask is then set equal to the byte of immediate data in the second operand
field.

Process Class: C,R,D

Condition Code: Unchanged

Exceptions: None

FORCE PROCESS EXCEPTION

FPX D1(B1),I2 <SI>

The breakpoint mask of the process within which the instruction is being
executed is combined with the byte of immediate data in the second operand I2
using a logical AND operation. If the result is zero, the instruction is ter-
minated without further action.

If the result is non-zero, a forced exception record is generated, with
the result of the logical and operation stored in the BKP field of the record
extension [Figure 5.5]. The pointer portion of the location generated by the
first operand is stored in field FXPT of the record extension, and the base
address portion of the location is stored in field FXBA. The instruction is
then completed by raising a forced exception.

Process Class: C,R,D
Condition Code: Unchanged

Exceptions: Forced by instruction execution

Chapter 5 70 C-Processes

Principles of Operation
The EPSILON System

6.0 R-PROCESSES: EVENT RESPONSE

Because R-processes are vieuwed as
primarily event response activities
and presumed to have a limited life-
time, they are not provided as much
arithmetic capability as C-pro-
cesses. Moreover, restrictions are
imposed for linkage, data access,
communication, and in the interpre-
tation of modal instructions that de-
ny to R-processes those functions,
such as waiting and dequeuing, which
imply unpredictable instruction exe-
cution time. The objective of these
restrictions is to assure that in-
struction execution within R-pro-
caesses will not itself be a source of
response delay.

6.1 Process Sources

For any EPSILON system there are
three kinds of sources for R-pro-
cesses:?

o system services

- time-of-day clock
- system exceptions

0 external signals
o I/0 devices.

Every source is assigned a dispatch-
ing priority [Section 4.6]1 and a
16-bit identifier as part of the
specification of a system, either at
the factory or during installation of
the source in the field. A source
identifier may have any value except

zero, wWhich is reserved as a null
designation; if the source is an I/0
device its source identifier must be

the same as its I/0 device identifier
[Section 7.1]. Apart from these re-
strictions, the assignment of prior-
ity and identifiers 1is arbitrary.
The assignment can be modified at
system initialization, but cannot be
modified by instruction execution.

Chapter 6

71

Version 1.0
15 June 1976

The event represented by each source
is also set up as part of system
specification. Except for the system
services, which are fixed sources,
any signal from the external signal
interface, or any combination of ex-
ternal and I/0 device signals which
meet the physicaf configuration con-
straints of a given EPSILON system
model can serve as a source. Pro-
cesses which are initiated as a re-
sult of signals from a source then
determine the meaning and signif-
icance of the events represented by
the source. '

The identifiers of all process
sources on a given system can be ob-
tained by executing the STORE SOURCE
LIST instruction (SSL), which stores
source identifiers in successive
half-word locations. The number of
half-words to be stored is specified
in the SSL instruction, and a count
of the number of identifiers not
stored is returned at instruction
completion. The identifiers are
stored in order of decreasing dis-
patching priority, starting with the
source of highest priority.

6.2 Process Model Connection

An event can cause process initiation
only if a process model is connected
to its associated process source.
System service sources are connected
to built-in process models; however,
each model requires some additional
information in order to be completa.
In some cases the information is sup-
plied using specific instructions
(e.g. timing event requests), in oth-
er cases it is supplied at system in-
itialization. All other sources are
connected by means of the CONNECT
R-PROCESS MODEL instruction (CRPM),
or the CONNECT R-PROCESS MODEL INDI-
RECT instruction (CRPMI).

R-Processes

Principles of Operation
The EPSILON System

The data for these instructions is
supplied by an R-process Model Defi-
nition Block (RMDB). An RMDB must
begin on a word boundary and have the
format described in figure 6.1. The
CRPM and CRPMI instructions can be
executed only within an R-process;
they will connect a new process mod-
el, replace an existing one, or de-
late a model entirely, depending on
the content of the RMDB. For the
CRPM instruction,

o A new model is connected if there
is not already one connected to
the specified source. If a model
is connected and if deletion is

allowed, it will be replaced or
deleted; if deletion is not al-
lowed, the connection attempt
will be rejected. Replacement

occurs if bit 6 of field RMFLG is
zero, deletion if the bit is 1.
Replacement consists of deleting
the existing model, followed by
connection of the new model. De-
letion will not occur if the con-
nection attempt is rejected for
any reason.

o When connection is complete the
RMDB area is immediately avail-
able for new use, as the process
model control information is re-
tained by the system in an area
withdrawn from the M-storage
pool. The area may be reserved
at system initialization; if it
is not reserved, connection will
be rejected if storage is not
available, and the rejection
indicated by condition code re-
turn.

o The connection attempt will also
be rejected if any of the fields
RMMOD, RMLOC, RMXMD, or RMCTX are
invalid. Field RMMOD must con-
tain either a null pointer or a
pointer to a module M-space for
which field RMLOC designates an
instruction location which lies
within the space. Field RMXMD

Chapter 6

Version 1.0
15 June 1976

must identify either the null
space or a module M-space. The
first four bytes of field RMCTX
must contain either a null point-
er or a pointer to an ordinary
M-space in private or family cus-
tody of the defining process.

o CRPM is synchronous to the pro-
cess within which it is executed,
so that connection or deletion is
effective at instruction com-
pletion.

An R-process model is assigned to the
custody of the family of the defining
process. If the custodian family is
deleted from the system the model is
transferred to bound custody of the
system, or to public custody, accord-
ing to the value of bit 7 of field
RMFLG of its RMDB. It can then be
deleted or replaced by execution of a

. CRPM or CRPMI instruction only if in

72

public custody.

When an R-process model is deleted,
spaces held in family custody are de-
leted with it, as is the entry con-
text space if it 1is bound to the
model. However, if deletion is an
intermediate step in replacement of
the model, and if the entry context
space for the new model is the same
as that of the old, the space remains
in existence. Its custody 1is then
determined by the value of bit 3 of
field RMFLG of the new RMDB. For any
deletion sequence, existing pro-—
cesses of the family are not deleted,
but will continue activity until ter-
minated by standard termination pro-
cedures. The M-storage area used for
process model control data will be
retained by the system for future
use, rather than be returned to the
M-storage pool.

CRPMI behaves in the
CRPM, except that

same Way as

o the RMDB data is
another process

obtained from
source rather

R-Processes

Principles of Operation } Version 1.0

The EPSILON System "~ 15 June 1976
RMMOD
RMFLG RMLOC
RMMSK RMENT
RMXMD
RMCTX
Figure 6.1

R-process Model Definition Block

Field 0Offset Bytes Description _and Use
RMMOD o} 4 A pointer to the module M-space containing the ini-

tial instruction sequence to be executed by every
process of the process family.

RMFLG % 1 Bits defining conditions of usage for the process
model and members of the family.

Bit Value Significance
0 0 Collect process statistics under control of col-
lection instructions
1 Do not collect process statistics
1 0 The value of the domain identifier for processes of

the family is to be the identifier of the entry con-
text space

1 The value of the domain identifier is to be derived
from the process which triggered initiation if it was
caused by process action, otherwise it is to be the
identifier of the entry context space

2 - Reserved
3 0 The entry context space identified within field RMCTX
is to be bound to the process model
1 Do not change custody of the entry context space
% - Reserved
5 0 This is a single-instance process model
1 This is a multi-instance process model
6 0 Normal
1 This process model is to be deleted (is indirectly
connected)

Chapter 6 73 R-Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

7 0 Place this process model in system custody if custody
is transferred
1 Place in public custody on a transfer of custody

Field 0Offset Bytes Description and Use

RMLOC 5 3 Base address within the module space identified by
field RMMOD of the first instruction of the initial
instruction sequeaence.

RMMSK 8 1 Value of the exception mask field for initial entry
to processes of the family.

RMENT 9 3 Commqnication data supplied to processes of the fami-
ly initiated by a source event.

RMXMD 12 4 A pointer to the module M-space containing the ini-
tial instruction sequence for handling process excep-
tions.

RMCTX 16 8 Entry context data for processes of the family.

than from a location 1in some
M-space

o if the instruction results in a
model being connected to the

source, only the fact of indirect
connection is maintained; the
RMDB resides with the referenced
source, or with the source which
was directly connected if there
is an indirect connection chain.

The CRPMI
one model

instruction is useful when
is to be connected to se-

veral sources, as a change to the
model of the directly connected
source is effective for all sources

indirectly connected to it; more-
over, the process requesting the con-
nection is not required to know the
content of the RMDB. However, when
specific process model conditions
are required for a source, a process
can execute the STORE SOURCE STATUS
instruction (SRCE) to find out if a
process model is connected to it. If
it is connected, the instruction will
supply the RMDB of the connected mod-
el; when the RMDB is stored, indirect

Chapter 6

74

connection is indicated by turning on
the deletion bit of field RMFLG. The
stored information can be used to
prepare changes to the process modal
data.

6.3 Initiation

If a process model is connected to a
source, a request for initiation of
an R-process is triggered when either
by

o an event represented the

sourcea occurs, or

o a SIGNAL SOURCE instruction
(5GS) is executed specifying the
source.

If there are no processes of the fam-
ily in existence, or if processes ex-—
ist but the source is not pending,
the request causes the source to be-
come pending, and initiation of a
member of the family of the connected
process model will take place as soon
as a CPU is available for it to be
dispatched [Section 4.61, provided
the M-space specified in field RMMOD

R-Processes

Principles of Operation
The EPSILON System

of the RMDB is still in existence.
If the M-space has been freed, initi-
ation will be suppressed and an in-
valid process model system exception
Wwill be raised. If the source is
pending, treatment of the request de-
pends on its provenance.

If the signal is from the source,
and if there already is a previ-
ous source signal waiting *to
become effective, the request is
considered to be satisfied and no
further action will be taken. If
there is no previous source
signal waiting, the request is
accepted.

If the signal is from 5G5S, and if
the operand pointer register
identifies the null space, the
signal is treated as if it had
come from the process source.

If the operand of an S5G6S identi-
fies an ordinary space in custody
of the requesting process, the
request is accepted no matter how
many other signals are waiting to
become effective. The space is
removed from custody of the
requesting process, and becomes
the communication space given to
the process initiated as a result
of the request.

When a request becomes effective, the
initial state vector is loaded with
the following standard entry data.

o

The PIC contains the location of
tbe first instruction to be exe-
cuted. Field LCUR contains the
value of field RMLOC of the RMDB,
and field PCUR contains a pointer
to the space identified by field
RMMOD.

The condition code is zero if the
process was initiated because of
a process source event, and 1 if
initiation was due to an 5G5S in-
struction.

Chapter 6

75

Version 1.0
15 June 1976

Pointer register zero contains
the entry context space pointer
obtained from the first four
bytes of field RMCTX; the regi-
ster is set up as if it had been
loaded with an LP instruction.
Arithmetic register =zero con-
tains entry context data ob-
tained from the last four bytes
of field RMCTX.

Arithmetic register 1 contains
the identifier of the process
source which triggered initi-
ation. Pointer register 1 con-
tains a null pointer.

General register 2 contains the
communication data. If the con-
dition code is zero, pointer reg-
ister 2 contains a null pointer,
and arithmetic register 2 con-
tains the information supplied
in field RMENT of the RMDB or
contained in the arithmetic reg-
ister of the operand of an 5GS.
If the condition code is 1, gen-
eral register 2 contains the full
communication space pointer and
data location submitted with the
SGS instruction, divided between
arithmetic and pointer registers
as if directly transmitted from
the general register referenced
in the instruction. The pointer
register is set up as if it had
been loaded by an LP instruction.
The space has been transferred to
private custody of the process,
with its reference count set to
1.

All other general registers con-
tain zero in the arithmetic regi-
ster field and a null pointer in

the pointer register field.

The exception mask and domain
identifier are set as specified
in the process model. If bit 1
of field RMFLG of the RMDB is 1,
and if the condition code on en-

R-Processes

Principles of Operation
The EPSILON System

try is also 1, the domain identi-
fiar of the process is that of
the communication space; in all
other cases, the identifier is
that of the entry context space.
The domain identifier of and
R-process remains constant
throughout the lifetime of the
process. '

If field PCUR of the PIC identifies a
space to which the process does not
have read access, the process is
immediately terminated and an inval-
id process model system exception is
raised. If the space is the null
space, execution is not started. The
communication space, if any, is de-
leted from the system, and termi-
nation is requested as if an EXIT
instruction with operand value =zero
had been executed. If the space is
not null, instruction execution be-
gins with the instruction located by
the PIC and continues until the pro-
cess completes activity.

6.4 Process Communication

An R-process need not conform to the
system view of R-processes as event
response activities of relatively
short duration, either as a condition
of existence or as a means to achieve
optimal performance. It may well be
better to complete all activity con-
nected with some class of events
within the process which is responsi-
ble for the initial response to those
events. R-processes are therefore
provided with many of the facilities
of C-processes, and with a substan-
tial amount of basic computational
capability.

In general, however, it is advanta-
geous to separate initial response
from subsequent computation, partic-
ularly when time-constraint criteria
are difficult to establish or subject
to change. In such a separation, the
response period is usually short com-
pared to the computation period, and

Chapter 6

76

Version 1.0
15 June 1976

is confined to activity on data imme-
diately available with the event.
Consequently, once an R-process is
assigned a CPU and starts running,
instruction interpretation continues
without time-slicing or explicit
waiting periods until terminated by
an EXIT or TERM instruction. The CPU
may be switched to a process of high-
er dispatching priority, but if so
the switch is a temporary expedient,
and a CPU will be re-assigned to the
process as soon as possible [Section
4.6]1. Moreover, a CPU switch of this
kind is invisible to the process; the
state vector is preserved intact, and
instruction execution will resume
without break from the point of sus-
pension.

The absence of time-slicing and ex-
plicit waiting capability leads to an
instruction execution environment
for R-processes which is quite dif-
ferent than that for C-processes.
This difference is reflected in the
way system functions behave with re-
spect to R-processes, and in the in-
terpretation of modal instructions
relating to these functions (e.g.
SAVE, LOAD, CALL). The effect is
perhaps most noticeable in the area
of process communication and syn-
chronization.

o An R-process can send a message
to another R-process by placing
the data to be transmitted into
some space and executing an S5GS
instruction specifying the
source of the receiving process.
The location of the message data
is specified by the communi-
cation data sent with the 5GS, or
is obtained through some pointer
chain anchored by the communi-
cation data.

o Because a process source is spec-
ified rather than a process, com-
munication is indirect; the
semantics imply that the sending
process invokes the function

R-Processes

—

Principles of Operation
The EPSILON System

associated with the source, and
that function may be carried out
by any process of the family. In
this respect, communication is
similar to the use of queues by
C-processes.

o In contrast to C-processes,
R-processes cannot expect to ex-
change a sequence of messages on
a continuing basis. SGS always
results in the eventual initi-
ation of a new process to receive
the data. Moreover, there is no
assurance the new process will be
initiated unless the sending
process terminates; for if it
does not, and if there are feuwer
CPU in the system than R-pro-
cesses sending messages, initi-
ation cannot occur for the
procaess source of lowest priori-
ty involved in the message ex-
change [Section 4.61.

o Exchange of data between R-pro-
cesses must therefore be
ranged to proceed as in a relay,
Wwith a new process taking up the
baton at each stage. 0One method
to assure continuity in such an
arrangement is for the processes
to use a control block interpre-
tation discipline, in which

ar=

- the sending process places
its source identifier and
re-entry point in a control
block associated with the
message, and terminates af-
ter executing the SGS

sends
source
control
after

- the receiving process
a return S5GS5 to the
identified in the
block, and terminates
completing its work

- the new process of the ori-
ginal source executes a CALL

to the re-entry location
specified in the control
block.

Chapter 6

77

Version 1.0
15 June 1976

While this method is generally
applicable, specialized relay
methods are equally effective,

and may well be better for a par-
ticular application.

An R-process will use the ENQ in-
struction to send data to a C-process
when computational activity for an
event is to begin. In principle, the
C-process could use SGS to invoke an
R-process for some of the computa-
tion, but such usage is dubious. It
is likely to fail in practice through
lack of data integrity, as an access
control gate cannot be used by more
than one process class at a time. A
C-process should use SGS primarily as
a means of simulating the occurrence
of some system event.

6.5 Deadlock Datection

All deadlock avoidance techniques
depend either on predicting the order
in which data will be accessed, or on
bounding the domain of access to a
point where redundant access control
is practical. In an event-driven en-
vironment, it is never possible to
predict the order in which events
will occur, nor is it always possible
to place limits on the scope of data
access. Consequently, R-process
deadlocks are certain to occur in
some EPSILON systems, and have a fair
probability of occurrence many
systems.

in

If a group of C-processes become in-
volved in a deadlock, those processes
cease to advance but other processes
in the system are unaffected. Howev-
er, if a group of R-processes become
deadlocked, and if the number of CPU
in the system is less than the number
of deadlocked processes, all pro-
cesses of dispatching priority lower
than the highest priority process
involved in the deadlock (in partic-
ular, all C-processes) will also
cease to advance. Dispatching will

R-Processes

Principles of Operation
The EPSILON System

not assign a CPU to those processes
because the deadlocked processes re-
main in running condition.

EPSILON systems therefore include a

mechanism for detecting R-process
deadlocks. The mechanism, which is
integrated with R-process dispatch-
ing, works in conjunction with the

promotion mechanism used to clear an
R-procass through a closed access
control gate [Section 5.101.

o The closure of a sequence of
gates by a process can be repres-
ented as a graph of directed line
saegments, where the end points of
each segment correspond to gates
closed in sequence, and the di-

rection of each segment indi-
cates the order of succession.
It is known that if a directed

graph of this kind is drawn for a
group of processes, then the ex-
istence of a circuit in the graph
is equivalent to the existence of
a deadlock among the processes.
Hence, the essential form of a
deadlock of two or more processes
is that each process tries to
close the same set of gates,
equal in number to the number of
processes, and each gate is first
closed by a different process.

o To visualize events that might
cause a deadlock, suppose there
are processes P1,P2,...,Pn, num-
bered in order from low to high
dispatching priority, and n
gates, numbered so that

Pl will close G1,G2,...,6n
P2 will close G2,G3,...,G1
P3 will close G3,6%,...,62

.

.

Pn will close Gn,Gl,...,Gn-1.

Pl is initiated first and closes
Gl. Before it can close G2, P2
is initated and closes it; before
P2 can close G3, P3 is intiated

Chapter 6

78

Version 1.0
15 June 1976

and closes it; before P3 can
close G4, P4 is initiated and
closes it; this sequence contin-
ues until eventually Pn is initi-
ated and closes Gn.

Since Pn is the highest priority
process, it continues to advance
until it attempts to close Gl.
At that point Pn is suspended,
process Pl is promoted in priori-
ty above it, and if not already
running will be assigned a CPU
and start running in place of Pn.
Pl then causes promotion of P2,

which causes promotion of P3,
which causes promotion of P4,
until eventually Pn is promoted
and starts running again. Pn was

suspended trying to close Gl, so
it immediately tries again to
close that gate; Pn is suspended
as a result of that effort and P1

promoted a second time. Pl then
causes promotion of P2, which
causes promotion of P3, until

eventually Pn 1is- promoted and
starts running again. This cycle
of promotion continues indefi-
nitely, as all processes are sus-
pended trying to close a gate
already closed.

indefinite
example,

o The occurrence of
promotion, as in the
characterizes all R-process
deadlocks, so it provides the
means by which they can be de-
tected. A system parameter,
called the promotion limit, is
defined at system initializa-
tion. If an R-process is pro-
moted beyond this limit, it is
considered to be party to a dead-
lock.

The promotion 1limit specifies the
number of times a process can be pro-
moted trying to close any one gate
before a deadlock is presumed to be
established. If there are N R-pro-
cess sources in a system with M CPU,
then from the R-process dispatching

R-Processes

Ne

Principles of Operation
The EPSILON System

rules [Section 4.6], at most NM pro-
cesses can be inveolved in a deadlock.
The number HNM+1, called the ncminal
limit, is therefore an upper bound to
the number of promotions which can
actually occur before the onset of a
deadlock. For any given system, it
may be possible to determine a small-
er upper bound, so the promotion lim-
it may be set at any value. If no
alternative is specified, the system
will assume the promotion limit to be
equal to the nominal limit.

When a process is promoted beyond the
promotion limit, action is initiated
to try to recover from the deadlock,
if possible.

o Bit 1 of field PFLG in the PIC of
the process is set to 1, and an
access exception is raised. The
exception occurs as soon as the
process starts running, so the
pending close is not executed.

o Bit 1 is turned off whenever a
process opens a gate. Hence, if
the exception module is able suc-
cessfully to back out of a gate,
some other process in the dead-
locked group will be able to
close it. If a deadlock still
persists, some process will
again exceed the promotion limit
and be given an opportunity to
open a gate. If all processes
which exceed the limit can open a
gate, the deadlock will be broken
with full recovery.

o If a process exceeds the promo-
tion limit with bit 1 on it is
terminated. So, if any of the
deadlocked processes have no ex-
ception module defined, or the
exception module does not open a
gate, the gates owned by that
process will be opended by termi-
nation service [Section 6.61. In
that case, the deadlock will be
broken, but the data protected by
the gates is likely to have been

Chapter 6

79

Version 1.0
15 June 1976

damaged beyond recovery.

If processes can avoid making irre-
versible changes in data before clos-
ing all access gates required, then
recovery from a deadlock is always
possible. If irreversible changes
cannot be avoided, the effact of the
loss of data integrity sustained in a
deadlock can only be determined in
the context of each application or
set of applications.

6.6 Termination

A request for termination of an
R-process is triggered by either an
EXIT or TERM instruction, both of
which behave externally the same as
when executed within a C-process
[Section 5.12]. The internal micro-
code which carries out actual de-
letion of the process does not have
the same behavior, as its activity
cannot be inserted into a computation
cycle.

o A termination request sets bit 3
of field PFLG of the PIC to 1.
When this bit is on, dispatching
will not assign a CPU to the pro-
cess if it has been suspended,
but will substitute termination
service in its place.

o If the termination request is
triggered when the process is
promoted, bit 3 is set and an
OPEN is executed referencing the
gate last closed by the process.
If termination service becomes
active with the process again
promoted, an OPEN is executed re-
ferring to the gate which caused
promotion. In either case, the
OPEN will cause the process to be
reduced to its normal dispatch-
ing priority and suspended.

o Eventually termination service
will become active for the pro-
cess at its normal dispatching
priority. If the process has no

R-Processes

Principles of Operation
The EPSILON System

I/0 requests outstanding at that
time, and if it is not holding
any access control gates, all
spaces in private custody of the
process are deleted, the linkage
control stack is depleted, the
state vector 1is deleted from
M~storage, and the process dis-
appears from the system.

o If it is holding one or more
gates, or has I/0 requests yet to
be completed, the state vector
remains in [M-storage, but the
process is removed from the ac-
tive list for its source. Each
time after that a CLOSE is exe-
cuted referencing a gate which
belongs to the process, an OPEN
will be inserted in front of it.
Each time an I/0 request is com-
pleted, the request space is de-
leted if returned to the process
[Section 7.81]. Eventually all
gates belonging to the process
will be opened and all I/0 re-
quests completed; the state vec-
tor will then be deleted from

6.8 Instruction Descriptions

STORE SOURCE LIST

SSL R1,D2(X2,B2) <RX>

Yersion 1.0
15 June 1976

M-storage.

Once an R-process is removed from the
active list of its source, it does
not count to delay a pending condi-
tion for the source from becoming ef-
fective.

6.7 Exception Handling

The treatment of R-process excep-
tions with codes 1 through 9 is es-
sentially the same as that for
C-processes [Sections 5.13, 5.141].
However, the exception module must be
an M-space, and as an R-process can-
not execute the DXM instruction, the
module must be specified with the
process model.

Decimal and floating-point instruc-
tions cannot be executed within
R-processes, so exception codes 10
through 15 cannot occur. Consequent-
ly, as SXM is not a modal instruc-
tion, the low-order six bits of the
exception mask are available for use
by software.

Source identifiers are stored in successive half-words starting at the
second operand location, up to the number of half-words specified by the value

contained in arithmetic register RI1.

is replaced by the difference between

sources on the system.
Identifiers are stored in

order

Subsequently the content of the register
its original value and the number of

of decreasing dispatching priority,
starting with the source of highest priority.
require exceeding the space boundary,
point with condition code 3, and without decrementing register R1.

If storing an identifier would

the instruction is terminated at that

If the in-

struction is completed, the condition code is set according to the value of

arithmetic register R1.

Chapter 6

R-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R

Condition Code:

0 Difference is zero

1 Difference is negative

2 Difference is positive

3 Insufficient space allowed

Exceptions: None

CONNECT R—PROCESS MODEL

CRPM RI1,D2(B2) <RS>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. It is suppressed with a
data exception if arithmetic register R1 does not contain the identifier of a
process source. The instruction is terminated with condition code 1l if field
RMMOD of the RMDB located by the second operand does not contain either a null
pointer or a pointer to a module M-space for which field RMLOC dasignates a
valid instruction location within the space, or if field RMXMD does not con-
tain either a null pointer or a pointer to a module M-space.

If a valid source identifier is contained in Rl, and if there is no pro-
cess model connected to the source, the instruction is terminated with condi-
tion code 1 if the first four bytes of field RMCTX do not contain a null
pointer or a pointer to an ordinary M-space in private or family custody of
the defining process. If the instruction is not terminated, an attempt is
made to obtain M-storage for RMDB data. The instruction is terminated with
condition code 3 if storage is not available. If storage is available, the
RMDB information is stored into it and the instruction completion sequence is
entered.

If a process model is already connected to the source, it is tested for
deletion status. Deletion is allowed if the model is in custody of the family
of the process within which the instruction is being executed, or if the model
is in public custody. If deletion is not allowed the instruction is termi-
nated with condition code 2. If deletion is allowed, and if bit 6§ of field
RMFLG of the proposed new RMDB is 1, the process model data is disconnected
from the source, the entry context space is deleted if bound to the model, and
the instruction is completed with condition code zero.

If bit 6 of field RMFLG is zero, the RMDB data for the existing model is
replaced by the new RMDB data, and the instruction completion sequence is en-
tered. Prior to replacement, the proposed entry context space is compared to
the entry context space of the existing model. If the spaces are not the same,
and if the space of the existing model is bound to its custody, that space is
deleted from the system.

The instruction completion sequence tests bit 3 of field RMFLG to deter-
mine the custody of any non-null entry context space. If the bit is zero, the
space is bound to the custody of the process model; if the bit is 1, the custo-
dy of the space is not altered. The instruction is then completed with condi-
tion code zero.

If the process model is deleted or replaced, any active members of its

Chapter 6 81 R-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

process model family continue to exist until their termination is specifically
requested.

Process Class: R

Condition Code:
0 Model connected or deleted
1 Invalid RMDB format
2 Deletion not allowed
3 Storage not available

Exceptions:
Specification
Data

CONNECT R—PROCESS MODEL INDIRECT

CRPMI R1,R2 <RR>

The instruction is terminated with condition code 3 if either arithmetic
register Rl or arithmetic register R2 do not contain process source identifi-
ers.

If both registers contain valid identifiers, the instruction is termi-
nated with condition code 1 if a process model is not connected to the source
identified by register R2. If a model is connected with an entry context
space which is not bound to it, the instruction is terminated with condition
code 1 if the space is not in custody of the process within which the instruc-
tion is being executed. If the instruction is not terminated, it is then pro-
cessed as if it were a CRPM referring to the source identified by the contents
of arithmetic register Rl, with an RMDB identical to that of the other source.

If the instruction is completed with condition code zero, a reference is
generated specifying that the RMDB data of the source identified by register
Rl resides with the source identified by register R2. The reference is pre-
served until execution of another instruction which connects a process model
to the source identified by register R1.

Process Class: R
Condition Code:
0 Model connected or deleted
1 Invalid RMDB format
2 Deletion not allowed
3

Source not present

Exceptions: None

Chapter 6 82 R-Processes

Principles of Operation Varsion 1.0
The EPSILON System 15 June 1976

STORE SOURCE STATUS

SRCE R1,D2(B2) <RS>

The instruction is suppressed with a spaecification exception if the second
operand does not define a location on a word boundary. It is terminated with
condition code 2 if arithmetic register Rl does not contain the identifier of
a process source, and with condition code 1 if there is no process model con-
nected to the source.

If the source has a process model connected, the RMDB data for the model
is stored into successive words starting at the second operand location. The
instruction is then completed with condition code zero.

Process Class: C,R

Condition Code:

0 RMDB stored
1 Process model not connected
2 Source not present
3

Exceptions:
Specification

SIGNAL SOURCE

SGS R1,R2 <RR>

The instruction is terminated with condition code 3 if arithmetic register
R1 does not contain the identifier of a process source, and with condition
code 2 if there is no process model connected to the source.

If a process model is connected, and if pointer register R2 contains a
null pointer, the conditions are raised which signal the event associated with
the process source. The contents of arithmetic register R2 are retained as
communication data to be passed to any process initiated as a result of the
signal. The instruction is then completed with condition code zero.

If pointer register R2 identifies a non-null space, the instruction is
suppressed with an access exception if the space is not in private or family
custody of the process within which the instruction is being executed. If the
instruction is not suppressed, a null pointer is loaded into pointer register
R2 and into any other pointer register of the process which contains a pointer
to the space; the reference count of the space is decremented by 1 for each
pointer loaded. The custody flag is turned off, the space is assigned to the
source, and the contents of arithmetic register R2 are retained as communi-
cation data to be given to the process initiated as a result of the SGS signal.

If the reference count becomes zero, the 5G5S signal is transmitted to the
source and the instruction is completed with condition code zero. If the ref-
erence count is not zero, the 5G5S signal is held in abeyance and the instruc-
tion is completed with condition code 1. The SGS signal will be transmitted

Chapter 6 83 R-Processes

Principles of Operation
The EPSILON System

whenever the reference count subsequently becomes zero.

Process Class: C,R,D

Condition Code:
0 Sighal accepted
1 Signal delayed
2 Process model not connected
3 Source not present

Exceptions:
Access

Chapter 6 86

Version 1.0
15 June 1976

R-Processes

Principles of Operation
The EPSILON System

7.0 D-PROCESSES: INPUT/OUTPUT

This chapter describes 1/0 oper-
ations as they appear to processes,
I/0 instructions, device control,
and D~process functions. The general
appearance of the attachment inter-
faces to I/0 devices is discussed,
but the publications dedicated to the
interfaces should be consulted for a
detailed description of interface
logical and electrical character-
istics.

7.1 I/0 Devices

A device is an 1I/0 device of an
EPSILON system if it is connected to
the system through an I/0 attachment
interface and conforms to the signal-
ling protocol of that interface.
When an I/0 device is installed on a
system, either at the factory or in
the field, it is assigned a unique
16-bit identifier by which it is des-
ignated whenever a specific refer-
ence to the device is required. A
device identifier may have any value
except =zero, which is reserved as a
null device designation. An EPSILGN
system therefore admits a maximum of
65,535 I/0 devices, but some models
may restrict configurations to a
total substantially less than this.

The actual number and specific iden-
tifiers of the I/0 devices on a given
system can be obtained by execution
of a STORE DEVICE LIST instruction
(STDL), which stores device identi-
fiers in successive half-word loca-
tions. The number of half-words to
be stored is specified in the STDL
instruction, and a count of the num-
ber of identifiers not stored is re-
turned at instruction completion.
The identifiers are stored in order
of increasing numerical value,
starting with the identifier of low-
est value.

An I/0 device is always a D-process

Chapter 7

85

Version 1.0
15 June 1976

source. It may also be an R-process
source if so designed and attached.
The conditions under which an I/0 de-
vice can become an R-process source,
and the events it can represent as
such a source, are peculiar to the
device, and are specified in the in-
dividual publications for the de-
If an I/0 device is both an
R-process and D-process source, each
source acts independently of the oth-
er. The dispatching priority as-
signed to the device as an R-process
source does not affect dispatching of
its D-processes, nor is there any

vice.

special relationship between the
processes initiated from the two
sources. However, as the I/0 device

identifier is required to serve for
identification of both sources, the
sources do have a built-in
realtionship which can assist their
processes to co-operate.

Any process can obtain information
about a device by executing a STORE
DEVICE DESCRIPTICN instruction
(STDDW), which supplies the Device
Description Word (DDW) of a specified
device. A DDW is a double-word with
the format described in figure 7.1. A
DDW is generated for each device when
it is installed. The device classi-
fication combination (CLASS and
TYPE) defines the device well enough
to distinguish it from all other de-
vices with similar characteristics
(e.g. 3330 vs 2314 disc). The DDEP
field information is supplied by the
device designer to supplement this
information; it wusually describes
specific features peculiar to the de-
The format of the DDEP field
is therefore dependent on the device
classification, and is described in
the individual device publications.

vice.

Figure 7.2 is a list of the classi-
fication combinations so far speci-
fied. The 1list is strictly for

D-Processes

Principles of Operation
The EPSILON System

Field Offset

Version 1.0
15 June 1976

CLASS

TYPE

CHAR

CLASS TYPE CHAR STAT
DREP
Figure 7.1
Device Description Word
Bvtes Description and Use
1 A code specifying the general class of the device.
1 A code specifying the type of device within the
class.
1 Bits describing characteristics of the device.
Value Significance
0 This I/0 device is not an R-process source
1 This device is an R-process source
0 There is a single I/70 path to the device
1 The device is connected to more than one I/0 attach-
ment interface
- Reserved
0 Normal
1 Additional device characteristics data available

Field Offset Bvtes

STAT

Chapter 7

Description _and Use

Bits describing the operational status current for
the device.

Significance

Normal
The device is inaccessible because all paths to it
are inoperative

Normal
The device has been suspended pending repair of dam-
age

Normal

Intervention required to clear a condition blocking
correct device operation

86 D-Processes

A

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

3 0 Normal

1 " I/0 operations being held pending a signal from the
device
4-5 - Reserved

6 0 Normal
1 I/0 request pending

7 0 Device not busy
1 Device busy

Field Offset Bvtes

Descrintion _and Use

DDEP 4 4

Defines specific characteristics within

class and type.

the device

classification, and does not corre-
spond to attachment capability.
Devices which appear in the list need
not be attachable to any EPSILON sys-
tem. Devices which can be attached
may not appear in the list because
classification numbers have not vyet
been selected.

Bit 7 of field CHAR is turned on to
indicate that the device can supply
more device dependent descriptive
data than will fit into field DDEP.
In that case, the device will respond
to some SENSE instruction with the
additional information. However, as
a SENSE instruction for a device can
only be executed within a D-process
of the family associated with the de-

vice, device designers should pro-
vide the most widely sought
information in the DDEP field of the
DDW.

7.2 Process Modal Conngction

Transmission of data between an
EPSILON sytstem and an attached I/0
device is always controlled by the
activity of a D-process associated
with the device. In order for such a
D-process to be initiated, a D-pro-
cess model must be connected to the
device by means of the CONNECT D-PRO-

Chapter 7

87

CESS MODEL instruction (CDPM), or the
CONNECT D-PROCESS MODEL INDIRECT
struction (CDPMI). If a model is not
connected, I/0 requests from pro-
cesses will be rejected, and requests
for attention from the device will be
ignored.

in-

The connection data for these in-
structions is supplied by a D-Process
Model Definition Block (DMDB). A
DMDB must begin on a word boundary
and have the format described in fig-
ure 7.3. The CDPM and CDPMI instruc-
tions, which can be executed within
any C-process or R-process, will con-
nect a new process model, replace an
existing one, or delete a model en-
tirely, depending on the content of
the DMDB. For CDPMI the DMDB data is
obtained from a model already con-
nected to some device, while for CDPM
it is obtained from a location in
some M-space.

o A new model is connected if there
is not already one connected to

the device. If a model is con-
nected and if deletion is al-
lowed, it will be replaced or
deleted; if deletion is not al-
lowed, the connection attempt
will be rejected. Replacement
occurs if bit 6 of field DMFLG is

D-Processes

Principles of Operation
The EPSILON System

Class Typa Device
0 Unspecified
1 Unit record
1 2540 card reader
2 2540 card punch
3 144272596 read punch
8 140371404 printer
16 2671 paper tape reader
29 1419 mag char reader
30 1275 optical reader
2 System console
2 3210 console keyboard
3 3215 console keyboard
3 Magnetic tape
1 2400 series tape
3 3400 series tape
4 DASD
1 2311 disc storage drive
2 2301 parallel drum
5 2321 data cell drive
8 2314 disc storage
9 3330 disc storage
5 Communications controller
2 2701 parallel adapter
10 3704 controller
11 3705 controller
16 3790 subsystem
6 Communications terminal
1 1050
3 2740
5 2741
7 Character display
3 2260 display station
9 3270 display system
8 Graphic interactive
2 2250 display unit

Figure 7.2

Device Classification Combinations

Chapter 7

838

Version 1.0
15 June 1976

D-Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

DMMOD

DMFLG DMLGOC

DMXMD

DMCTX

Figure 7.3

D-Process Model Definition Block

Field 0Offset Bvtes

DMMOD 0 4

DMFLG 4 1
Bi Value

0 0

1

1 0

1

2 0

1

3 0

1

4 0

1

5 0

1

Chapter 7

Description and Use

A pointer to the module M-space containing the ini-
tial instruction sequence to be executed by every
process of the process family.

Bits defining conditions of usage for the process
model and members of the family.

Significance

Collect process statistics under control of statis-
tical collection instructions
Do not collect process statistics

The initial value of the domain identifier for pro-
cesses of the family is to be the identifier of the
entry context space

The initial value of the domain identifier is to be
that of the domain for which the device is reserved,
or that of the common domain if the device is not re-
served

The domain identifier may vary during execution
The domain identifier is fixed during execution

The entry context space identified by field DMCTX is
to be bound to custody of the process model
Do not change custody of the entry context space

170 requests are to be accepted from any process

I/0 requests are to be accepted only from processes
whose domain identifier matches that of the domain
for which the device is reserved

This device can be reserved for a specified domain
This device cannot be reserved

39 D-Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

6 0 Normal
1 This process model is to be deleted (is indirectly
connected)
7 0 Place this process model in system custody if custody
is transferred
1 Place in public custody on a transfer of custody.
Field 0Offset Bytes Description_and Use
DMLOC 5 3 Base address within the module space identified by
field DMMOD of the initial instruction sequence to be
executed by members of the process model family.
DMXMD 8 4 A pointer to the module space containing the initial
instruction sequence for handling process exceptions.
DMCTX 12 4 A pointer to an ordinary M-space which becomes the

entry context space for processes of the family.

zero, deletion if the bit is 1.
Replacement consists of deleting
the existing model together with
any I/0 requests pending on the
device, followed by connection
of the new model. Deletion will
not occur if the connection at-
tempt is rejected for any reason.

o The connection attempt will be
rejected if any of the fields
DMMOD, DMLOC, DMXMD, or DMCTX are
invalid. Field DMMOD must con-
tain either a null pointer or a
pointer to a module M-space for
which field DMLOC designates an
instruction location which lies
within the space. Field DMXMD
must identify either the null
space or a module space. Field
DMCTX must contain either a null
pointer, or a pointer to an ordi-
nary M-space in private or family
custody of the defining process.

o When connection is complete the
DMDB area supplied for a CDPM in-
struction is immediately avail-
able for new use, as the process
model control information is re-
tained by the system in an area

Chapter 7

90

withdrawn from the M-storage
pool at system initialization.

o If CDPMI is used and connection
or deletion is successful, only
the fact of indirect connection
is maintained; the DMDB resides
with the referenced device, or

with the device directly con-
nected if there is an indirect
connection chain. Any indirect

connection reference is retained

until a direct connection is
made, irrespective of the con-
nection state of the referenced

device.

The STORE DEVICE STATUS instruction
(STDS) can be executed within any
process to determine if a process
model is connected to a devica. The
instruction will supply the DMDB of

- the connected model, or an indication

that no model is connected. If a
DMDB is stored, indirect connection
is indicated by turning on the de-
letion bit of field DMFLG. A con-
nected D-process model is assigned to
the custody of the family of the de-
fining process, and can be replaced
or deleted only by a custodian pro-

D-Processes

Principles of Operation
The EPSILON System

is
is

cess. If the custodian family
deleted, the D-process model
transferred to the alternative cus-
tody indicated by bit 7 of field
DMFLG of its DMDB.

When a D-process model is deleted,
spaces held in family custody are de-
leted with it, as is the entry con-
text space if bound to the model.
I/0 requests pending on the device
are then deleted, followed by de-
letion of the model. However, if
deletion is an intermediate step in
replacement of the model, and if the
entry context space for the new model
is the same as that of the old, the
space remains in existence. Its cus-
tody is then determined by the value
of bit 3 of field DMFLG of the new
DMDB.

7.3 I/0 Roquasts

Every 1/0 device installed on an
EPSILON system has a queue associated
with it, called the requast queue for
the device. A request queue is con-
sidered to be part of the device; it
is not distinguished by a separate
name or queue index, but is refer-
enced using the device identifier.
However, when a D-process model is
connected to a device, the request
queue becomes associated with the
model, and provides the basic func-
tionhs of an input queue. In partic-
ular, an item entered into the queue
when the queue is empty automatically
triggers a request for initiation of
a process of the associated family.

Items are entered into a request
queue either by action of the associ-
ated device, or by means of the RE-
QUEST INPUT/0UTPUT instruction
(RI0). An item is entered for the
device when it raises an attention
signal through an I/70 attachment
interface. System microcode re-
sponds to the signal by placing a
special message in the queue ahead of
all ordinary items, but behind any

Chapter 7

91

Version 1.0
15 June 1976

other attention message still resi-
dent in the queue. Attention signals
therefore take precedence over 1/0
requests by processes.

RIO is a modal instruction which can
be executed within any process. The
request will be rejected if the de-
vice does not exist or has been sus-
pended for any reason, if there is no
D-process model connected to the de-
vice, or if the request space is not
an ordinary M-space in custody of the
requesting process or process fami-
ly. If RIO is executed within a
D-process, the request will also be
rejected if the device is the one
associated with the process. In ad-
dition, domain identification can be
used to restrict the set of processes
that can make valid requests of a
given device [Section 7.91.

If the request is accepted, the
M-space specified in the instruction
becomes the new bottom item of the
queue. As in the case of an ENQ in-
struction, the new item loses
addressability as a space, passing
out of the custody of the enqueuing
process or process family into the
custody of the system. Similarly,
the reference count is decremented by
substitution of null pointers into
pointer registers referencing the
space, and entry into the queue is
delayed until the count becomes zero.
However, in contrast to an input
queue, a process can retain a con-
nection to an item in a request
queue.

request
special
request state,
unless the 'no request state"
option of the RIO instruction is
selected. Request state is as-
sumed to indicate that the activ-
ity of the requesting process is
in some way dependent on the I/0
operation, and that the process
intends to remain in existence

into a
into a

o A space entered
queue is placed
state, called

D-Processes

Principles of Operation
The EPSILON System

until there is some disposition
of the request.

o A space placed into request state
therefore causes the I/0 request
count of the process executing
the RIO to be incremented. The
process is also allowed to refer-
ence the space in order to test
progress of the request. For
that purpose, instead of loading
a null pointer into the pointer
register actually used to refer-
ence the space in the RIO
instruction, the retained status
of the register is simply changed
to indicate that the space is
temporarily unavailable. As
long as the space remains in
request state, the requesting
process will receive the 'tempo-
rarily unavailable’ condition
code return from an LP or LPR in-
struction [Section 3.31.

o A space remains in request state
when a D-process serving the re-
quest queue acquires custody of
it; it is taken out of request
state when that process disposes
of it with an END I/0 REQUEST in-
struction. Disposition of the
request causes the I/0 request
count of the original requesting
process to be decremented, and
usually returns the space to cus-
tody of that process [Section
7.81.

o Suppression of request state is
assumed to indicate that the re-
questing process is not depen-
dent on the I/0 operation, or
that communication with the
D-process serves some purpose
other than 1I/0. Consequently,
the action of the RI0O instruction
in that case is the same as the
action of an ENQ instruction: the
I/0 request count of the process
is not incremented, and all regi-

sters referencing the space,
including the register desig-
Chapter 7

92

Version 1.0
15 June 1976

nated in the instruction, are
loaded with null pointers.

The RIO instruction is synchronous to
all processes within which it is exe-
cuted, but if request state is not
suppressed the normal mode 1is to
place C-processes and D-processes
into I/0 wait state until the request
is completed. Processes can always
avoid the wait by exercising the 'do
not wait' option of the instruction.

A process which is not in I/0 wait
state can follow the progress of a
requast by continuing to load the re-
tained pointer to the request space
until the condition code indicates
the disposition of the space. Howev-
er, a positive test is provided by
the TEST INPUT/0UTPUT instruction
(TIO). TIO is a modal instruction
which can be executed within any pro-
cess. When executed within an R-pro-
cess,

o if the specified space is not in
request state, condition code
zero indicates that the space has
been returned to the custody of
the requesting process. Condi~-
tion code 3 indicates that the
space is not in process or family
custody; its actual availability
can then be tested by an LP or
LPR instruction.

o If the space is in request state,
the process within which the TIO
is being executed must be the re-
questing process or an access ex-
ception will result. If it is
the requesting process, condi-
tion code 2 is returned if the
space is resident in a request
queue, and condition code 1 if it
is not, indicating the request
has been received by some D-pro-
caess.,

When TI0 is executed within a

C-process or D-process, the pro-
cess is placed into I/0 wait dis-

D-Processes

N

Principles of Operation
The EPSILON System

patching condition if the
request is not complete. The
process is removed from I/0 wait
whan the referenced space is dis-
posed of by the D-process servic-
ing the request, at which time
the TIO will be retried. Conse-
quently, only condition codes
zero or 3 can be returned to a
C-process or D-process.

7.4 D-Preocess Environment

There are no requirements placed
on the contents of an M-space en-
tered into a request queue, and
no restrictions on the use of the
space by the D-process family
sarving the queue. The
presumption is that the space
will contain a set of instruc-
tions for what is to be done on
the device. These instructions
are not defined by the architec-
ture, but are arbitrary codes,
perhaps privately agreed between
the requesting process and the
D-process family, perhaps stand-
ard to some programming system.
A requesting process may also
provide data to be used in con-
nection with the request itself;
for example, it could include a
code indicating how the D-pro-
cess is to dispose of the request
space.

Although this presumptive use of
the request space is not neces-—
sarily the actual use in any par-
ticular case, it does depict the
kind of activity a D-process may
neaed to undertake. The activity
can extend far beyond simple de-
vice control, as the interpreta-
tion of an 1I/0 request can
include complex data conversion
and computation. Consequently,
D-processes are provided with a
substantial amount of computa-
tional capability, though less
than that of C-processes or
R-processes, and are allowed the

Chapter 7

93

Version 1.0
15 June 1976

ALLOC, FREE, LP, SP, LPIC, CALL,
RETURN, ENQ, SGS, RIO, TIO, and
breakpoint instructions. Howev-
er, restrictions are imposed on
the D-process environment which
limit the scope of activity of’
any D-process, and constrain the
relation between a D-process and
a requesting process.

The state vector of a D-process
consists of the 16 general regi-
sters, a PIC, and internal con-
trol data. The general registers
have the same appearance as the
general registers of C-processes
and R-processes. Register ref-
erences, register usage, and
storage address generation con-
form to the standard rules
[Section 2.8]. However all ref-
erences to pointer registers 2
through 15 are interpreted as
references to pointer register
1. In effect, D-processes have
only two independent pointer
registers.

A D-process manages I/0 requests
specifically for the device with
which it is associated, and no
other. It is prevented from even
trying to manage another device,
as the system supplies the device
identifier when an identifier is
required as an operand of an in-
struction executable only within
D-processes. This method of en-
forced association also assures
that a process modael applicable
to one device of a class is auto-
matically applicable to all de-
vices of the class.

Because a D-process and the de-
vice with which it is associated
are so closely related, D-pro-
cess models are always
single-instance. Any member of
the family is expected to dispose
of all requests which are in the
request queue at the time of ini-
tiation, or which are put into

D-Processes

Principles of Operation
The EPSILON System

the queue prior to its termi-
nation. To reinforce this expec-
tation, all items remaining in
the request queue when process
termination is triggered are de-
leted during the termination
procedure [Section 7.101].

o In order to allow CPU and PPU to
operate inderpendently of one an-
other, transmission of data
between an M-space and an I/0 de-
vice is not subject to access
control gate protection, nor is a
D-process allowed to execute
CLOSE or OPEN instructions. A
D-process is expected to be able
to carry out its activity without
having to share data with other
processes, or to take special
action to assure the integrity of
data in a space not in its pri-
vate custody. Therefore, if a
pointer is stored in a request
space for use in data reference
by a D-process, or to define a
space for data transmission, the
requesting process must first
obtain the correct access condi-
tion for the space.

The D-process family associated with
a davice represents the device to all
other processes. For all practical
purposes, processes of the family are
the device, as their interpretation
of I/0 requests determines the ap-
pearance and capability the device
presents to requesting processes.
The restrictions on the D-process en-
vironment, and the limitations of the
peripheral instruction set, are in-
tended to discouragea D-processes
from being diverted arbitrarily to
general computation or event re-
sponse.

7.5 Dispatching

D-process dispatching is a fixed
function of the system in the sense
that neither selection routines nor
device priorities can be used to vary

Chapter 7

Version 1.0
15 June 1976

the selection algorithm. The algo-
rithm itself is elementary, with pri-
mary selection based on attachment of
the associated device.

o Every PPU in the system has an
internal queue associated with
it, called its dispatching
queue, consisting of D-processes
ready to be dispatched, or wait-
ing for a device to complete some
operation [Section 7.7]. A PPU
will be assigned only to D-pro-
cesses in its dispatching queue.

o A process will always be placed
in the dispatching queue of a PPU
whose attachment interface is
connected to the device with
which the process is associated.
If the davice is connected to
more than one attachment inter-
face, one of the PPU will be se-
lected; the selection is
arbitrary, except that a PPU will
not be selected if its attachment
interface is not operational, or
if its path to the device is
blocked for some reason.

o A process is placed at the tail
of a dispatching gqueue, unless
the entry is in conjunction with
a wait condition generated by an
uncompleted I/0 operation in-
struction [Section 7.7]. In that
case, the process is placed at
the head of the queue, or ahead
of all processes in the dqueue
which are not in the same waiting
condition.

o When a PPU becomes available, its
processing mechanism is normally
assigned to the process at the
head of the queue. However, if
the process is in a wait condi-
tion, it will be skipped over and
the next one in the queue se-
lected.

Thus, apart from conditions which
arise because of device delays, pro-

D-Processes

Principles of Operation
The EPSILON System

cesses are assigned a PPU in FIFO or-
der as they become ready. As I/0
requests are almost all generated by
C-processes and R-processes, this
algorithm is the simplest one which
will meet physical constraints and
preserve the priorities generated by
process source and computation cycle
activity.

7.6 _1/0 Requ2st Processing

A request for initiation of a D-pro-
cess is triggered whenever an item is
entered into a request dqueue which
was previously empty. If a process
of the family asscciated with the
device already exists, the request is

considered to be satisfied and no
further action will be taken. If a
process does not exist, an initial

state vector is generated and the neuw.

process is entered into the dispatch~
ing queue of the appropriate PPU.

When the process is dispatched for
the first time, its state vector is
set with the following initial data.

o The PIC contains the location of
the first instruction to be exe-
cuted. Field LCUR contains the
value of field DMLOC of the DMDB,
and field PCUR contains a pointer
to the space identified by field
DMMOD.

o Pointer register zero contains a
pointer to the entry context
space; the register is set up as
if it had been loaded with an LP

instruction. Arithmetic regi-
ster zero contains zero.
o Arithmetic register 1 con-

tains the identifier of the de-
vice with which the process is
associated. Pointer register 1
contains a null pointer.,

o All other general registers con-

tain zero in the arithmetic regi-
ster field and a null pointer in

Chapter 7

95

Version 1.0
15 June 1976

the pointer register field.

o The domain identifier of the pro-
cess is set to the value speci-
fied by the DMDB.

If field PCUR of the PIC identifies a
space to which the process does not
have read access, the process is ter-

minated immediately and an invalid
process model system exception 1is
raised. If the space is the null

space, execution is not started. All
spaces are removed from the request
queue; spaces In request request
state are taken out of that state,
and spaces not in request state are
deleted from the system. Termination
of the process is then requested. If
the space identified by field PCUR is
not null, instruction execution be-
gins with the first instruction and
continues until the .process termi-
nates or initiates an I/0 operation.

It is expected that the process will
obtain an I/0 request from the re-
quest queue, interpret the informa-
tion in the request space, initiate
one or more I/0 operations as a
result of the interpretation, dis-
pose of the request space, obtain
another I/0 request, and continue
this pattern of activity until the

request queue is exhausted.

A D-process is not required to con-
form to this expectation, but as oth-
er processes are usually waiting on
I/0 requests, the D-process is re-
quired to conform to the pattern to
the extent of providing positive dis-

position of every I/0 request. To
enforce this discipline, a request
space obtained by a D-process from

the request queue is assigned as the
current space of the process; it re-
mains current until it is taken out
of I/0 request state. A process can-
not obtain a new I/0 request as long
as it has a space current. If it at-
tempts to terminate with a space
still current, that space is returned
to the requesting process before ter-

D-Processes

Principles of Operation
The EPSILON System

mination occurs [Section 7.101.

The NEXT REQUEST instruction (NEXT)
is executed by a D-process to obtain
a new I/0 request. The instruction
is terminated with a condition code
indication if the queue is not empty
but the process has a request space
current. If the queue is empty the
instruction indicates either that
the process is to be terminated, or
that the instruction is to return a
condition code for the empty state.
If a condition code is generated in-
dicating a new request was not ob-
tained, the PPU assigned to the
process will be returned to dispatch-
ing for a new assignment. The pro-
cess Wwill be placed at the tail of
its dispatching queue with state vec-
tor preserved, so the instruction
will actually be completed when the
process is next dispatched.

If the request queue is not empty and
the process has no current space, the
item at the head of the request queue
is extracted. If the item was en-
tered by an RIO instruction, a point-
er to the request space is placed
into the pointer register specified
by the instruction. The space is as-
signed to the private custody of the
process, and becomes its current
space. If the item was entered into
the request queue because of device
attention, the 'space holding the
attention data is not assigned as the
current space. A D-process need not,
therefore, take any overt disposi-
tion action for an I/0 request origi-
nated by its own device.

7.7 Inputsoutpnut Oparations

There are three instructions which
are available to D-processes for the
control of I/0 operations:

o the START DEVICE instruction

(SDV) will initiate an operation
on a device

Chapter 7

96

Version 1.0
15 June 1676

o the HALT DEVICE instruction
(HDV) will stop any operation ac-
tually in progress

o the WAIT DEVICE instruction
(WDV) will cause the process to
wait for completion of a speci-
fied I/0 operation.

The operand of an SDV instruction is
a communication block called an I/0
Request Block (IORB), which contains
the I/0 command string which the de-
vice is to execute. A command string
consists of a device operation,
called a command, and a set of
M-space areas to be used for data
transmission. All of the areas must
be contained in the same M-space, but
their relative locations within the
space are not restricted. Each area
is defined by a double-word, which
contains the base address of the area
in the first word, and the extent of
the area in a 16-bit field of the
second word. The first double-word
of a command string contains the com-
mand, and each double-word of the
string except the last contains a 1
in the first bit of the second word.

In effect, a command string has the
format of an 5/360 CCW string with
data chaining [POP360:105]. The for-
mat is illustrated in figure 7.4, in
which the ADDR and EXT fields define
the base address and extent of the
areas. The command contained in
field CMND of a command string has
the structure of a 57360 command
[POP360:105], but with modifier bits
(M) and basic code (XX) as described
in figure 7.5,

When data is transmitted under con-
trol of a command string, the first
byte is associated with the base ad-
dress of the first area, and succes-—
sive bytes with addresses in
ascending order. When the first area
is exhausted, the next byte is asso-
ciated with the base address of the
second area, and successive bytes

D-Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

CMND ADDR1
177777777777 777 EXT1
/7777777 ADDR2
Y\ /7777772727777 77 EXT2
T
VPPV ADDRn
QV/ /7727277777777 EXTn

Figure 7.4

Command String Format

Command

WRITE

READ

CONTROL

Chapter 7

. MMMMMMXX

Figure 7.5
Command Codes

Description and Use

Data is to be transmitted from the areas defined by
the command string to the device.

Data is to be transmitted from the device to the areas
defined by the command string.

Control information is to be transmitted from the
areas defined by the command string to the device.
Control information specifies action not involving
data transmission. The action may be entirely speci-
fied in the modifier bits, or may require additional
data. Every device will treat a CONTROL command with
all modifier bits zero as a null operation; the de-
vice will respond by completing the I/0 operation but
will take no other action. Apart from the null oper-
ation, the format of the control information is pe-
culiar to the device, and is described in device
publications.

97 D-Processes

Principles of Operation

The EPSILGON System

Version 1.0
15 June 1976

Sense information is to be transmitted from the de-
vice to the areas defined by the command string.
Sense information can describe device character-
istics, status, or unusual conditions detected during
execution of the previous command string. The amount
of sense information supplied varies with the device,
as does the format, and details are supplied in de-
vice publications. All devices, however, are re-
quired to supply the following information in the
first byte of sense data transmitted in response to a
SENSE command with all modifier bits zero:

The previous command was rejected because it could

Intervention is required to clear a condition which
prevents the device from operating properly (e.g.

The device detected an error in data value during the
previous operation which it was unable to correct

The device detected an equipment malfunction during

The device detected an error in data format or re-
cording during the previous operation

A timing error occurred during the previous operation
which caused incorrect data transmission

SENSE 3
Bi Value Significance
0 0 Normal
1
not be executed by the device
1 0 Normal
1
printer out of paper)
2 0 Normal
1
3 0 Normal
1
the previous operation
4 0 Normal
1
5 0 Normal
1
6-7 - Reserved

with ascending addresses, and the as-
sociation continues from area to area
until all areas are exhausted. If
data transmission is terminated
without an exact match between areas
and transmitted bytes, the trans-
mission is said to be inexact. Inex-
act transmission occurs if

[an address is generated which

Chapter 7

98

lies outside the M-space; trans-
mission stops with the byte which
would have been associated with
the address

a device transmits fewer bytes on
input than the areas can contain,
or the device wants to transmit
additional bytes after the areas
are filled

D-Processes

Principles of Operation
The EPSILON System

o a device expects more bytes on
output than are contained in the
areas.

Inexact transmission is always noted
in the information returned at the
completion of an I/0 operation, but
is not treated as an error.

Part of the information in an IORB is
supplied by the process requesting
the I/0 operation, and the remainder
is supplied by the system at oper-
ation completion. An IORB must begin
on a word boundary and have the for-
mat described in figure 7.6.

When an SDV is executed within a
D-process, the instruction will be
rejected without attemptimg to

signal the device if the SPACE field
of the IORB does not identify an
M-space, or if the D-process does not
have the correct I/0 access to the
space. The I/0 access of a D-process
to an M-space is defined to be the
same as the addressing acces of the
D-process to the space, if the pro-

cess has access to it. If the pro-
cess does not have access, but has a
current reguaest space, then the I/0

access of the D-process is the same
as the addressing access to the space
of the requesting process associated
with the current space of the D-pro-
cess. Using these rules, a READ or
SENSE command will be rejected if the
process does not have I/0 write ac-
cess, and a WRITE or CONTROL command
will be rejected if it does not have
1/0 read access.

SDV will also be rejected if the de-
vice status indicates the operation
cannot proceed. Device status is set
by execution of a SET DEVICE STATUS
instruction (SDS) within a D-process

associated with the device, usually
when a device error 1is detected.
Four separate conditions are recog-
nized.

o Inaccessible: the device is in-
Chapter 7

99

Yersion 1.0
15 June 1976

accessible because all paths to
the device are inoperative.
o sucpendad: the device has sus-

tained major damage which must be
repaired before I/0 operations
can be resumed.

o Intervention Required: operator
action is required to clear a
condition which prevents the de-
vice from operating properly.

o Not Ready: the device cannot exe-
cute I/0 operations until some
unspecified temporary condition
is cleared.

The setting of these conditions is
reflected in the first four bits of
field STAT of the DDW [Figure 7.11].
Once set, the conditions can be
lifted only by execution of another
SDS by a D-process associated with
the device. The process usually exe-
cutes the SDS as a result of an at-
tention signal from the device, or at
completion of a SENSE command which
indicates a change of status.

If SDV is accepted, an attempt is
made to signal the device through the
I/0 interface. If either the inter-
face or the device is busy, the
D-process is placed into davice Wait
condition, inserted at the head of
its dispatching queue, and the PPU is
returned to dispatching. The process
is removed from device wait when the
busy condition is cleared, and the
SDV is retried when the process is
next dispatched. This procedure will
be repeated, if necessary, until the
IORB is accepted by the I/0 interface
mechanism.

When the IORB is accepted, the pro-
cess is inserted at the tail of its
dispatching queue, and the PPU is re-
turned to dispatching. The process
is normally also placed into device
wait, and so will not be dispatched
again until the operation is com-

D-Processes

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

10sT PROCS DVID

SENSE

SPACE

CMSTG

Field 0Offset Bytes

10sT 0 1
Bit Value

0 0

1

1 0

1

2 0

1

3 0

1

4 0

1

5-7 -

Field O0Offset Bytes

PROCS 1 1

DVID 2 2

Chapter 7

Figure 7.6
I/0 Request Block

Description and Use

Cleared to zero by the system at the start of the I/0
operation. At the end of the operation the system
turns on the first bit and sets the other bits to de-
scribe the completion status.

Significance

The operation is not yet complete
The operation has been completed

The operation was completed without a device or I/0
interface error

A device or I/0 interface error was detected

Sense information has been supplied in field SENSE to
describe the error

Sense information has not been supplied for the error

Normal
Inexact transmission occurred

Normal
Inexact transmission was due to addressing exception

Reserved

Description _and Use

Reserved for arbitrary use by the process. The field
is not examined or altered during the course of the
I/0 operation.

The identifier of the device on which the operation
occurred, The field is supplied by the system after
operation completion unless the SDV instruction spec-
ifies otherwise. In that case, the field is avail-
able for use by the process, as it will not be

100 D-Processes

N ’

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

examined or altered during the course of the oper-
ation.

SENSE 4 8 Contains sense information supplied by the system at
the completion of any operation for which bit 1 of
field I0OST is 1 and bit 2 is zero. The information is
the same as the first eight bytes of the information
which is supplied by the device in response to a SENSE
command with all modifier bits zero. If bit 1 of
field IOST is zero and bit 3 is 1, the first word of
the field contains the address generated when trans-
mission was terminated.

SPACE 12 4 A pointer to the M-space in which the areas defined by
the command string reside. The field is supplied by
the process.

CMSTG 16 Var Contains the command string supplied by the process
to request the I/0 operation.

pleted. However, the process can se- The WDV instruction will cause a

lect a "no wait' option with the SDV D-process to wait for completion of

instruciton. In that case, it will the I/0 operation contained in a

be dipatched again the next time it specified IORB. If bit zero of field

arrives at the top of its dispatching I0OST of the IORB is on, the instruc-

queue, irrespective of the state of tion will simply be completed as a

the I/0 operation. A process can se- null instruction. If the bit is off,

lect two other options with SDV. the instruction will be rejected if
the IORB was not the subject of a
o Sense information 1is normally previous SDV which initiated an oper-
supplied with operation com-— ation not vet complete. If WDV is
pletion if there is a device er- accepted, the process is placed into
ror [Figure 7.6], wunless the device wait, inserted at the tail of
information could not be ob- its dispatching queue, and the PPU is
tained for some reason. If the returned to dispatching. The process
process does not want the stand- will be removed from device wait at
ard sense data automatically the completion of the specified oper-
suppliad (it might preclude get- ation.
ting other sense data), the 'no
sense data' option can be se- The HDV instruction will attempt to
lected. stop any operation actually in
progress on the device, and will de-
[¢) If the process does not require lete all operations previously ini-
the device identifier to be asso- tiated which are not vet complete.
ciated with an operation, it can If the I/0 interface or device adapt-
select the 'no device ID' option. er are busy, so that the device can-
Field DVID of the IORB will then not be signalled, the process is
not be set on operation com- placed into device wait, inserted at
pletion, and is free for use by the head of its dispatching queue,

the process.

Chapter 7

and the PPU is returned to dispatch-
ing. The process is removed from de-

101 D-Processes

Principles of Operation
The EPSILON System

vice wait when the busy condition is
cleared, and the HDV is retried when
the process is next dispatched. This
procedure will be repeated, if neces-
sary, until the device can be sig-
nalled to halt the current operation.

When the device is halted, or if it
was not busy to start with, the in-
struction is completed by removing

from interface control any IORB for
the device which was the subject of a
previous SDV, and for which the oper-

ation has not vyet been actually
started.
7.3 _I/0 Reousst Disposition

When a D-process has completed the
interpretation of the information in
its current space, it must terminate
the I/0 request by disposing of that
space before another request can be
acquired. The normal termination of
an I/0 request is by means of an END

I/0 REQUEST instruction (EICR),
which can, in fact, be executed at
any time by a D-process. If EIOR is
executed when there is no current
space, it is treated as a null in-
struction. If there is a current
space,

o the space is removed from I/0 re-

quest state and the I/0 request
count of its associated process
is decremented by 1. If that
process is a C-process or D-pro-
cess waiting for completion of
the request, it is removed from
I/0 wait dispatching condition.

The process state vector is al-
tered so that there is no space
current for the D-process.

Normal action for EIOR is to return
the space to the custody of the re-
questing process or process family,
with the protection vector set to the
value in effect at the time the
request was made. However, if the
'no return' option of the instruction
is chosen, the space will remain in

Chapter 7

102

Version 1.0
15 June 1976

custody of the D-process. In
then be disposed of by a FREE, ENQ,
or S5GS instruction. Any attempt +to
reference the space by these instruc-

can

tions while it is still in I/0 re-
quest state will cause a data
exception.

A D-process can also dispose of its
current space by means of an RID in-
struction. In that case, the request
represented by the space has been
passed on to another device; the
space remains in request state, and

its relation to the requesting pro-
cess is the same as if that process
had made the request of the new de-
vice rather than the original one.

7.9 Use of Domain Identifier

In contrast to process models of oth-
er process classes, a D-process model
can be assigned a domain identifier.
The domain identifier of a model,
which can be different from the do-
main identifiers assigned to pro-
cesses of 1its family, provides a
means of reserving devices for spe-
cific use, if desired. A device is
said to be reserved if bit ¢ of field
DMFLG of the DMDB of the process mod-
el connected to the device is set to
1. If a device is reserved for any
domain except the common domain, I/0
requests are accepted only from those
processes whose domain identifier
matches the domain identifier of the
D-process model. A device reserved
for the common domain is treated as
if it were not reserved.

The initial reservation of a device
becomes effective as soon as a pro-
cess model is connected or replaced.

o If bit 4 of field DMFLG or the
DMDB is zero, the device is not
reserved. .

o If bit ¢ is 1, the device is re-

served for the domain to which
the entry context space belongs.

D-Processes

Principles of Operation
The EPSILON System

If bit 3 of field DMFLG of the DMDB
so indicates, the identifier can be
replaced by execution of a RESERVE
DEVICE instruction (RSRV). RSRY can
be executed within any process which
can replace or delete the process
model; it becomes effective as soon
as it is executed, whether or not a
D-process of the family exists.

The rules for acquisition of domain
identifier by a D-process are similar
to those for a C-process [Section
5.91].

o If bit 1 of field DMFLG of the
DMDB is zero, the initial domain
identifier of a D-process is the
domain identifier of its entry
context space.

o If the bit is 1, the initial do-
main identifer is that of the do-
main for which the associated
device is reserved, or that of
the common domain if the device
is not reserved.

0 If bit 2 of field DMFLG is 1, the
initial identifier 1is retained
by the process throughout its
lifetime. If bit 2 is zero, the
domain identifier is changed by
execution of a NEXT instruction
to the domain identifier of the

space obtained from the request
queue.
If a device reservation is altered

before all I/0 requests for a previ-
ous reservation have been completed,
resource usage statistics may be
logged under a different identifier
than the one which was used to admit
the requests. This situation is not
considered to be an error, as reser-
vation and resource utiliztion are
accounted for separately.

7.10 _Termination

A request for termination of a D-pro-
cess is triggered by an END PROCESS

Chapter 7

Version 1.0
15 June 1976

instruction (END). The request can
signify normal completion, or recog-
nition of a condition for the process
or device which precludes continua-
tion. END is similar to EXIT in that
it sets up an entry to a service
which will complete essential proce-
dures left uncompleted by the pro-
cess, and will recover resources
before actually deleting the process
from the system. Termination service
gets control first when the process
is next dispatched after completion
of the END.

o if the process has a current
space, termination service first
disposes of the space as if an
EIOR which returns the space to
its original custody had been in-
serted in the instruction stream
prior to the END.

o Requests which remain in the re-
quest queue are deleted as if
they, too, had been subjected to
EIOR. When all requests have
been deleted, the linkage con-
trol stack of the process is re-
moved by completing any open
return sequences.

o If the process has no I/0 re-
quests outstanding, all spaces
which remain in its private cus-
tody are deleted, and the process
is deleted from the system. If
there are outstanding requests,
the process is inserted at the
tail of its dispatching queue,
and the PPU assigned to the pro-
cess is returned to dispatching.

If process termination is not com-
pleted with the first entry, termi-
nation service will continue to
insert the process at the tail of its
dispatching queue until it gets con-
trol with all I/0 requests completed;
it will then complete termination of
the process. If an initiation re-
quest is triggered prior to com-
pletion of termination, the request

D-Processes

Principles of Operation
The EPSILON System

is left in the request queue, and a
new process is initiated at once to
replace the terminating process.

7.11 Exception Handling

D-process have a fixed exception mask
which is set to zero, so that all
class 4 exceptions are suppressed.
Tha treatment of D-process excep-
tions with codes 1 through 7 1is
essentially the same as that for
C-processas [Sections 5.13, 5.141,
except that as a D-process cannot ex-
ecute the DXM instruction, any excep-
tion module must be specified with
the process model.

If an invalid process model system
exception is raised because field
DMXMD of the DMDB identifies a space
no longer in existence, the process
1s terminated even for a class 3 ex-
ception.

7.12 Attachmant Interfaces

A device actually connected to an I/0
interface is usually an adapter which
converts the interface signals to the
signals and formats expected by its
devices. Adapters can be integral
with a single device or can them-
selves interface to a number of de-
vices. The purpose of an adapter may
be device control only, or it may al-
ter the appearance of the interface
to that expected by devices designad
for other interfaces (e.g. the S/370
channels). The only requirements on
adapters are that they conform to the
interface signals and protocol.

A channel 1I/0 interface contains
polling, selection, and control
lines, as well as a data bus. The

Chapter 7

104

VYersion 1.0
15 June 1976

interface electrical lines are
passed from device to device to es-
tablish a multi-drop connection. De-
vices monitor the state of these
lines by attaching them to receivers,
and raise signals on the lines by
connecting line drivers. An EPSILON
channel is therefore similar to an
S/370 channel, in that devices are
interlocked by DC signals which are
passed from one device to the next
for polling, selection, and control.

A loop I/0 interface, however, is not
interlocked by DC signals. Devices
connected to a loop receive a contin-
uous stream of signals representing
bits organized into groups called
framas. Frames contain both control
information and data, the content and
destination being determined by the
frame itself of by the content of
previous frames. Frame discipline
for EPSILON loops is designed to min-
imize the number of bits required to
convey information on a loop.

Every device on an EPSILON system is
assigned a selection address which
designates its attachment interface,
and uniquely distinguishes it from
all other devices connected to the
same interface. Selection addresses
are assigned as devices are connected
to a system, and can have any 16-bit
value. The relation between device
identifier and selection address is
available only to system microcode,
which uses this information both to
signal the correct device and to con-
form to the proper interface proto-
col. D-processes are therefore not
required to take into account the
kind of interface to which a device
is attached.

D-Processes

o'

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

7.13 Instructicon Doscriptions

STORE DEVICE LIST

STDL R1,D2(X2,B2) <RX>

Device identifiers are stored in successive half-words starting at the
second operand location, up to the number of half-words specified by the value
contained in arithmetic register Rl. Subsequently the content of the register
is replaced by the difference between its original value and the number of de-
vices connected to the system.

Identifiers are stored in order of increasing numerical value, starting

with the identifier of louest value. If storing an identifier would require
exceeding the space boundary, the instruction is terminated with condition
code 3, and without decrementing register R1. If the instruction is com-

pleted, the condition code is set according to the value of arithmetic regi-
ster RI1.

Process Class: C,R

Condition Code:

0 Di fference is zero

1 Difference is negative

2 Difference is positive

3 Insufficient space allowed

Exceptions: None

STORE DEVICE DESCRIPTION

STDDW R1,D2(B2) <RS>

The DDW of the device whose identifer is contained in arithmetic register
Rl is stored at the second operand location.

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. It is terminated with
conditon code 1 if register Rl does not contain the identifier of a device
connected to the system.

Process Class: C,R,D

Condition Code:

0 DDW stored
1 Device not present
2 -
3 -

Exceptions:
Specification

Chanter 7 105 D-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

CONNECT D-PROCESS MODEL

CDPM R1,D2(B2) <RS>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. It is suppressed with a
data exception if arithmetic register R1 does not contain the identifier of a
device connected to the system. The instruction is terminated with condition
coda 1 if field DMMOD of the DMDB located by the second operand does not con-
tain either a null pointer or a pointer to a module M-space for which field
PMLOC designates a valid instruction location within the space, or if field
DMXMD does not contain either a null pointer of a pointer to a module space.

If there is no process model connected to the device, the instruction is
terminated with condition code 1 if field DMCTX does not contain a null point-
er of a pointer to an ordinary M-space in private or family custody of the pro-
cess within which the instruction is being executed. If the instruction is
not terminated, the proposed model is connected to the device, and assigned to
the custody of the family of the process within which the instruction is being
executed. The instruction completion sequence is then entered.

If a process model is already connected to the device, it is tested for
deletion status. Deletion is allowed if the model is in custody of the family
of the process within which the instruction is being executed or if the model
is in public custody. The instruction is terminated with condition code 2 if
deletion is not allowed. If deletion is allowed, and if field DMMOD of the
proposed new DMDB contains a null pointer, the process model data is discon-
nected from the device, the entry context space is deleted if bound to the
model, and the instruction is completed with condition code zero.

If field DMMOD is non-null, the DMDB data for the existing model is re-
placed by the new DMDB data, and the instruction completion sequence is en-
tered. Prior to replacement, the proposed entry context space is compared to
the entry context space of the existing model. If the spaces are not the same,
and if the space of the existing model is bound to its custody, that space is
deleted from the system.

The instruction completion sequence tests bit 3 of field DMFLG to deter-
mine the custody of any non-null entry context space. If the bit is zero, the
space is bound to custody of the process model; if the bit is 1, the custody of
the space is not altered. The instruction is then completed with conditon
code zero.

If the process model is deleted or replaced when there is a process of the
family active, that process continues to exist until its termination is spe-
cifically requested.

Chapter 7 106 D-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R

Condition Code:

0 Model connected or deleted
1 Invalid DMDB format
2 Deletion not allowed
3

Exceptions:
Specification
Data

CONNECT D—PROCESS MODEL INDIRECT

CDPMI R1,R2 <RR>

The instruction is terminated with condition code 3 if either arithmetic
register Rl or arithmetic register R2 do not contain the identifier of a de-
vice connected to the system.

If both registers contain valid identifiers, the instruction is termi-
nated with condition code 1 if a process model is not is not connected to the
device identified by register R2. If a model is connected with an entry con-
text space which is not bound to it, the instruction is terminated with condi-
tion code 1 if the space is not in private or family custody of the process
Wwithin which the instruction is being executed. If the instruction is not
terminated, it is then processed as if it were a CDPM raeferring to the device
identified by the contents of register Rl, with a DMDB identical to that of
the other device.

If the instruction is completed with condition code zero, a reference is
generated specifying that the DMDB data of the device identified by register
Rl resides with the device identified by register R2. The reference is pre-
served until execution of another instruction which connects a process model
to the the device identified by register R1.

Process Class: C,R
Condition Code:
0 Model connected or deleted
1 Invalid DMDB format
2 Deletion not allowed
3

Device not present

Exceptions: MNone

Chapter 7 107 D-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

STORE DEVICE STATUS

STDS R1,D2(B2) <RS>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. It is terminated with
condition code 2 if arithmetic register Rl does not contain a device identifi-
er, and with condition code 1 if a process model is not connected to the de-
vice.

If the device has a process model connected, the DMDB data for the model
is stored into successive words, starting at the second operand location. The
instruction is then completed with condition code zero.

Process Class: C,R

Condition Code:

] EMDB stored
1 Process model not connected
2 Device not present
3

Exceptions:
Specification

REQUEST INPUT/OUTPUT

RI0O MI1,R2 <RR>

The instruction is suppressed with a data exception if pointer register R2
does not identify an ordinary M-space, and with an access exception if the
space is not in private or family custody of the process within which the
instruction is being executed. It is terminated with condition code 3 if
arithmetic register R2 does not contain the identifier of a device connected
to the system, with condition code 2 if the device is inaccessible or suspen-
ded, and with condition code 1 if there is no process model connected to the
device. If the instruction is being executed within a D-process, it will also
be terminated with condition code 3 if register Rl contains the identifier of
the device associated with the process.

If the instruction is not suppressed or terminated, the reference count of
the space is decremented by 1. The high order bit of mask field Ml is examined
to determine if the space is to be placed into request state. If the bit is
zero, the retained status of pointer register R2 is set to 'space not avail-
able', and the space is placed into request state by recording the protection
vector, the requesting process, and the device on which the request was made.
If the space was already in request state, the device is recorded without al-
tering the other recorded data. If the bit is 1, a null pointer is loaded into
pointer reagister R2, and request state data is not recorded.

A null pointer is then loaded into any other pointer register of the pro-
cess which contains a pointer to the space, and the reference count is decre-

Chapter 7 108 D-Processes

ar

Principles of Operation B Version 1.0
The EPSILON System 15 June 1976

mented by 1 for each pointer loaded. If the reference count coes not become
zero, the space is placed in system custody, the request is recorded, and the
instruction completion sequence is entered. The space will be placed into the
request queue for the device whenever the count subsequently becomes zero.

If the reference count is zero, the custody flag is turned off, and the
space is inserted at the bottom of the request queue for the device, bound to
its custody. If the request queue was empty at the time of insertion, an ini-
tiation request is triggered designating the process model connected to the
device. The completion sequence is then carried out.

If the instruction is being executed within an R-process, it is completed
by setting the condition code to zero. If the process is a C-process or D-pro-
cess, if the space was placed onto request state, and if bit 1 of mask field Ml
is zero, the process is placed into I/0 wait dispatching condition. The I/0
wait condition is not generated if bit 1 is 1, or if request state is sup-
pressed. The instruction is then completed with condition code zero.

If an I/0 wait condition is generated, the processing mechanism assigned
to the process is returned to dispatching. The wait conditicen will be removed
when the space is removed from request state. In the case of a D-process, com-
pletion also includes inserting the process at the tail of its dispatching
queue.

Process Class: C,R,D
Modal

Condition Code:
0 Request accepted
1 Process model not connected
2 Device not available
3 Device not present

Exceptions:
Access
Data

TEST INPUT/OUTPUT

TI0O R2 <RR>

The space identified by pointer register R2 is examined for request state.
If the space is not in request state and not in custody of the process or pro-
cess family within which the instruction is being executed, the instruction is
completed with condition code 3, otherwise it is completed with condition code
zero.

If the space is in request state, and if it is the current space of the
process associated with the device on which the request was made, condition
code 1 is set and the completion sequence is entered. If the space is not the
current space, condition coda 2 is set.

If the instruction is being executed within an R-process, it is completed
as soon as the condition code is set. If the process is a C-process or D-pro-
cess, the process is placed into I/0 wait dispatching condition, and the pro-
cessing mechanism assigned to the process is returned to dispatching. The

Chapter 7 109 D-Processes

Principles of Operation Yersion 1.0
The EPSILON System 15 June 1976

wait will be removed when the space identified by pointer register R2 is
removed from request state. In the case of a D-process, completion also in-
cludes inserting the process at the tail of its dispatching queue.

Process Class: C,R,D
Modal

Condition Code:
0 Request complete
1 Request in progress
2 Request enqueued
3 Request not found

Exceptions: None

NEXT REQUEST

NEXT M1,R2 <RR>

If the process within which the instruction is being executed has a cur-
rent space, the instruction is terminated with condition code 2. If the re-
quest queue for the device associated with the process is empty, and if the
high-order bit of mask field Ml is zero, process termination is requested. If
the bit is not zero, the instruction is terminated with condition code 1.

If the request queue is not empty, the item at the head of the queue is re-
moved, a pointer to it is loaded into pointer register R2, its custody flag is
turned on, and its reference count is set to 1. The space is placed into the
private custody of the process, and if it is in request state, it becomes the
current space of the process.

Bit 2 of field DMFLG of the DMDB for the process model of the family is ex-
amined to determine treatment of the domain identifier of the process. If the
bit is zero, the domain identifier of the process is replaced by the domain
identifier of the space just removed from the request queue. If the bit is 1,
the domain identifier of the process is not altered. The instruction is then
completed with condition code zero.

If the instruction is terminated, the process is inserted at the tail of
its dispatching queue, and the PPU is returned to dispatching. The condition
code return will become effective when the process is next dispatched.

Process Class: D
Condition Code:
0 Request obtained

1 Request queue empty
2 Space still current
3

Exceptions: None

Chapter 7 110 D—Processés

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

START DEVICE

SDV M1,D2(X2,B2) <RX>

The instruction is suppressed with a specification exception if the second
oparand does not locate a word boundary. It is terminated with condition code
3 if the device associated with the process is inacessible, suspended, not
ready, or requires intervention.

If the space identified by field SPACE of the IORB located by the second
operand is not an ordinary M-space, the instruction is terminated with condi-
tion code 2. If the space is not in custody of the process and is not in re-
quest state, the instruction is terminated with condition code 1. If +the
space is not in custody of the process but is in request state, the access to
the space of the requesting process is tested for validity. If the command in
field CMSTG of the IORB is a READ or SENSE, the process must have write access
to be valid. If the command is WRITE or CONTROL the process must have read ac-
cess to be valid. The instruction is terminated with condition code 1 if the
access is not valid.

If the access is valid, a signal is sent to the I/0 interface requesting
acceptance of the IORB for the device with which the process is associated.
If the interface or device is busy, the process is placed into device wait
condition, inserted at the head of its dispatching queue, and the PPU returned
to dispatching. The wait will be removed when the busy condition which caused
it is removed, and the instruction will be retried when tha process next gets
dispatched.

If the IORB is accepted, the process is inserted at the tail of its dis-
patching queue. If the high-order bit of mask field Ml is zero, the process is
also placed into device wait dispatching condition. Condition code zero is
then set and the instruction is completed by returning the PPU to dispatching.

The mask field is transmitted to the I/0 interface with the location of
the IORB, for use by the operation completion sequence. If bit 1 of the field
is zero and the operation is completed with device error, sense data will be
obtainad from the daevice and stored into field SENSE of the IORB. Up to eight
bytes of data will be stored, depending on the response of the device to a
SENSE command with modifier bits all zero. If bit 1 is not zero, sense data
will not be obtained. If bit 2 is zero, the identifier of the device will be
stored into field DVID of the IORB, otherwise it will not. The remaining bits
of the mask field are not examined.

Process Class: D

Condition Code:
0 Operation accepted
1 Invalid access
2 Invalid space
3 Device not available

Exceptions:
Specification

Chapter 7 111 D-Processes

Principles of Operation Version 1.0
The EPSILON System . 15 June 1976

WAIT DEVICE

WDV D2(X2,B2) <RX>

The instruction is suppressed with a specification exception if the second
operand does not locate a word boundary. It is terminated with condition code
3 if the device associated with the process is inaccessible, suspended, not
ready, or requires intervention.

The IORB located by the second operand is tested for acceptance by the I/0
interface. If acceptance is not recorded and bit zero of field I0ST is set to
1, the instruction is completed with condition code zero. If the bit it zero,
the instruciton is terminated with condition code 1.

If the IORB acceptance is still recorded, the process is placed into de-
vice wait dispatching condition and inserted at the tail of its dispatching
queue. Condition code zero is set, and the PPU is returned to dispatching.
The process will be removed from device wait when the operation contained in
the IORB located by the second operand is completed.

Process Class: D

Condition Code:
0 Operation complete
1 Cperation unknouwn
2 -
3 Device not available

Exceptions:
Specification

HALT DEVICE

HDV R2 <RR>

The instruction is terminated with condition code 3 if the device associ-
ated with the process is inaccessible, suspended, not ready, or requires
intervention.

If the device is available, a signal is sent to the I/0 interface request-
ing the device be halted. If the interface or device adapter are busy, the
process is placed in device wait dispatching conditon, inserted at the head of
its dispatching queue, and the PPU returned to dispatching. The wait will be
removed when the busy condition which caused it is removed, and the instruc-
tion will be retried when the process is next dispatched.

If the signal is accepted, the device is signalled to halt. If the device
was busy with an operation contained in an IORB, the location of the IORB is
placed in general register R2 and condiion code zero is set. If it was not en-
gaged in an operation contained in an IORB, general register R2 is not al-
tered, and condition code 1 is set.

The instruction is then completed by requesting cancellation by the I/0
interface of any IORB for the device still recorded as accepted. Bits zero

Chapter 7 ' 112 D-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

and 3 of field I0ST are set to 1 for cancelled IORB.
Process Class: D

Condition Code:
0 I0ORB location loaded
1 IORB location not loaded
2 -
3 Device not available

Exceptions: HNone

SET DEVICE STATUS

SDS M1,M2 <RR>

The status of the device associated with the process is set according to
the bits of the mask fields.

Mask field M2 indicates which conditions are to be altered. The bits cor-
respond in high-to-low order to the conditions inaccessible, suspended,
intervention required, and not ready. If a bit is zero the corresponding con-
dition is to remain as is; it a bit is 1 the condition is to be set to the val-
ue indicated by mask field M1.

The bits in mask field Ml correspond to the conditions in the same order.
A bit specifies the condition to be on (set) if its value is 1, and to be off
(reset) if its value is zero.

Process Class: D
Condition Code: Unchanged

Exceptions: None

END I/0 REQUEST

EIOR M1 <RR>

If the process has no space current, the instruction is terminated with
condition code 2. If there is a current space, it is removed from request
state and the I/0 request count of the associated process is decremented by 1.
If that process is a C-process or D-process in I/0 wait dispatching condition,
it is removed from the wait condition. '

If bit zero of mask field Ml is zero, the space is returned to the custody

of the requesting process or process family, with the protection vector set to

the value preserved when the space was placed into request state. The pointer
registers of the process within which the instruction is being executed are
examined. If a register contains a pointer to the space, it is loaded with the
null pointer. The reference count of the space is decremented by 1 for every
null pointer loaded. Condition code zero is set for completion.

Chapter 7 113 D-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

If bit zero of mask field Ml is not zero, the space is left in custody of
the process executing the instruction, and condition code 1 is set for com-
pletion.

The process is then placed in the condtion of having no space current, and
the instruction is completed with the condtion code previously set.

Process Class: D

Condition Code:

0 Space returned

1 Space retained
2 No space was current
3

Exceptions: None

RESERVE DEVICE

RSRV R1,R2 <RR>

The instruction is terminated with condition code 3 if arithmetic register
R1 does not identify a device connected to the system, or if a process model is
not connected to the device. It is suppressed with a data exception if arith-
metic register R2 does not contain a valid device identifier.

If a process model is connected, the instruction is terminated with condi-
tion code 2 if the model is not in public custody or in custody of the process
or process family within which the instruction is being executed. It is ter-
minated with condition code 1 if custody is acceptable but bit 5 of field
DMFLG of the DMDB indicates that the device cannot be reserved.

If the device can be reserved, the process model is assigned the domain
identifier contained in arithmetic register R2. The instruction is then com-
pleted with condition code zero.

Process Class: C,R

Condition Code:

0 Device reserved

1 Reservation not allowed

2 Invalid process model reference
3 Process model not connected

Exceptions:
Data

Chapter 7 114 D-Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

END PROCESS

END I <RR>

Termination is requested for the process within which the instruction is
being executed. The byte of immediate data is stored in the state vector, the
process is inserted at the tail of its dispatching queue, and the instruction
is completed by returning the PPU assigned to the process to dispatching.

Termination is completed at some later time by system microcode [Section
7.1017.

Process Class: D

Condition Code: Unchanged

Exceptions: None

Chapter 7 115 D-Processes

Principles of Operation
The EPSILON System

8.0 GENERAL INSTRUCTIONS

Most of the EPSILON system arithme-
tic, logical, and branching instruc-
tions have been adopted from the
5/360, and S/370 non-privileged
instruction sets, with only minor
changes of interpretation. There-
fore, the following conventions have
been employed as a means of minimiz-
ing the amount of material necessary
to describe these instructions.

o The instructions are organized
into groups related by class of
function or by some character-
istic of interpretation.

o Each group is introduced by a
general discussion of the oper-
and field interpretation for the
instruction formats which apply
to the group, and a description
of operand data formats. This
discussion is followed by a table
listing all instructions of the
group.

o If the column in the table headed
'description' contains an entry
which refers to POP360 or POP370,
the corresponding instruction
behaves exactly as described by
the reference, apart from any
changes of interpretation which
apply to the whole group. In
that case, no further descrip-
tion of the instruction appears
in this document. If the column
entry is the word 'new', the in-
struction is new, while if the
entry is blank the instruction
differs from the $/360 or S/370
instruction in some
non-superficial way. In either
case, a full description of the
instruction follows the table.

The table for each group also lists
the instruction mnemonic and process
class. The operation codes, which
are not listed, are the same as the

Chapter 8

Version 1.0
15 June 1976

codes for the corresponding S/360 or
S/7370 instruction, if there is one.
Operation codes for new instructions
have not yet been selected.

8.1 Fixed-Point Arithmetic

Fixed-point arithmetic is essential-
ly the same as S/360 and 5/370. HNum-
bers are represented as integers in
two's-complement form, either 16,
32, or 64 bits in extent. The first
bit of a number field is considered
to be a sign bit, except that for in-
structions with the word LOGICAL in
their name the entire field is
treated as an unsigned integer.

Fixed-point instructions use the RR,
RX, and RS formats. In these for-
mats, whose operand fields are re-
presented in symbolic assembler
notation as

R1,R2
R1,D2(X2,B2)
R1,R3,D2(B2)

the first and third operands always
designate an arithmetic register.
The second operand may specify a reg-
ister or a location, depending on the
format and instruction.

In the RR format, the second operand
field, R2, designates an arithmetic
register which contains the actual
operand data. In the RX format, the
B2 field designates a general regi-
ster whose contents, together with
the displacement D2 and the contents
of the arithmetic register desig-
nated by X2, are combined using the
rules of Section 2.8 +to form the
M-space address of the operand data.
In the RS format, the B2 field of the
instructions LOAD MULTIPLE and STORE
MULTIPLE designates a general regi-
ster which is used to form the second
operand address as in the RX format,

General Instructions

N

Principles of Cperation
The EPSILON System

except that indexing cannot occur.
In the shift instructions, the B2
field designates an arithmetic regi-
ster whose contents are added to the
D2 field to form a sum which speci-
fies the amount of the shift.

Instructions can designate the same
register in all operand fields with

Version 1.0
15 June 1976

results consistent with using dif-
ferent registers, as address compu-
tation = is completed before
instruction execution. Instruction
results replace the first (and third)
operands, except for the store
instructions for which the result re-
places the second operand.

Figure 8.1
Fixed-Point Arithmetic Instructions

Name

ADD

ADD

ADD HALFWORD

ADD LOGICAL

ADD LOGICAL

COMPARE

COMPARE

COMPARE HALFWORD

COMPARE LOGICAL

COMPARE LOGICAL

DIVIDE

DIVIDE

LOAD

LOAD

LOAD AND TEST

LOAD AND TEST

LOAD COMPLEMENT

LOAD HALFWORD

LOAD MULTIPLE

LOAD NEGATIVE

LOAD POSITIVE

MULTIPLY

MULTIPLY

MULTIPLY HALFWORD

SHIFT LEFT DOUBLE

SHIFT LEFT DOUBLE LOGICAL
SHIFT LEFT SIHNGLE

SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT DOUBLE

SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE

SHIFT RIGHT SINGLE LOGICAL
STORE

STORE HALFWORD

STORE MULTIPLE

SUBTRACT

Chapter 8

Svmbol Type Class Description
AR RR C,R,D POP370:122
A RX C,R POP370:122
AH RX C,R POP370:122
ALR RR C,R,D POP370:122
AL RX C,R POP370:122
CR RR C,R,D POP370:126
c RX C,R POP370:126
CH RX C,R POP370:128
CLR RR C,R,D POP370:128
CcL RX C,R POP370:128
DR RR C,R,D POP370:131
D RX C,R POP370:131
LR RR C,R,D POP370:134
L RX C,R,D POP370:134
LTR RR C,R,D POP370:134
LT RX C,R,D New
LCR RR C,R,D POP370:134
LH RX C,R POP370:135
LM RS C,R,D POP370:135
LNR RR C,R,D POP370:135
LPR RR C,R,D POP370:135
MR RR C,R,D POP370:139
M RX C,R POP370:139
MH RX C,R POP370:140
SLDA RS C,R,D POP370:141
SLDL RS C,R,D POP370:142
SLA RS C,R,D POP370:1642
SLL RS C,R,D POP370:143
SRDA RS C,R,D POP370:143
SRDL RS C,R,D POP370:143
SRA RS C,R,D POP370:14¢4
SRL RS C,R,D POP370:144
ST RX C,R,D POP370:144
STH RX C,R POP370:146
STM RS C,R,D POP370:146
SR RR C,R,D POP370:146

General Instructions

Principles of Operation
The EPSILON System

SUBTRACT

SUBTRACT HALFWGORD
SUBTRACT LOGICAL
SUBTRACT LOGICAL

LOAD AND TEST

LT R1,D2(X2,B2) <RX>

Version 1.0
15 June 1976

S RX C,R POP370:146
SH RX C,R POP370:147
SLR RR C,R,D POP370:147
SL RX C,R POP370:147

The second operand is placed unchanged into arithmetic register Rl, and
the sign and magnitude of the result determine the condition code.

Process Class: C,R,D

Condition Code:
0 Result is zero
Result is less than zero

Exceptions:
Access

8.2 Logical Operations

Logical operations manipulate data
as uniform bit fields of fixed
length, or as a variable length
string of character bytes. Fixed
length data fields consist of a sin-
gle or double word, or a single char-
acter. As instruction operands, they
are resident in arithmetic regi-
sters, or an M-space, or are ex-
tracted from a field in the
instruction. Variable length data
fields always reside in an M-space,
and are acted upon by instructions
which relate them to some other vari-
able length field, not necessarily in
the same space.

The logical operation instructions
use all five instruction formats, RR,
X, RS, SI, and SS5. In the RR, RX,
and RS formats, the first operand
field always designates an arithme-
tic register, as does the second op-
erand field of the RR format. In the
RX and RS formats, the B2 field des-

Chapter 8

1
2 Result is greater than zero
3

ignates a general register whose
contnents, together with the dis-
placement D2 and the contents of the
arithmetic register designated by X2
(if present), are combined using the
rules of Section 2.8 to form the
M-space address of the second operand
data. In the RS format, the R3 field
is used as a mask to identify those
bytes of the first operand data actu-
ally acted upon by the instruction.

For the SI and SS formats, the oper-
and fields are represented in symbol-
ic assembler notation as

D1(B1),1I2
D1(L,B1),D2(B2)

The Bl field designates a general
register whose contents are combined
Wwith the displacement D1 to form the
M-space location of the first operand
data. In the S5 format, the L field
is a byte whose value specifies the

General Instructions

Principles of Operation
The EPSILON System

length of the operand data fields,
and the B2 field designates a general
register whose contents are combined
Wwith the displacaement D2 to form the
M-space location of the second oper-
and data. In the SI format, the I2
field is a byte which itself is the
sacond operand data.

Instructions can designate the same
register in all operand fields with
results consistent with using dif-

Name

AND

AND

AND CHARACTER

AND IMMEDIATE

COMPARE LOGICAL CHARACTER

COMPARE LOGICAL IMMEDIATE

COMPARE LOGICAL
CHARACTERS UNDER MASK

EXCLUSIVE GR

EXCLUSIVE OR

EXCLUSIVE OR CHARACTER

EXCLUSIVE OR IMMEDIATE

INSERT CHARACTER

INSERT CHARACTERS UNDER MASK

MOVE CHARACTER

MOVE IMMEDIATE

OR

OR

OR CHARACTER

OR IMMEDIATE

STORE CHARACTER

STORE CHARACTERS UNDER MASK

TEST AND SET

TEST UNDER MASK

TRANSLATE

TRANSLATE AND TEST

Version 1.0
15 June 1976

ferent registers, as address compu-
tation is completed before
instruction execution. In the 5SS
format instructions, the operand da-
ta fields can overlap, with results
consistent with handling one byte at
a time, starting at the address of
the first byte of the first operand.
Results replace the the first oper-
and, except for store instructions
for which the result replaces the
second operand.

Symbol JType Class Description

NR RR C,R,D POP370:123
N RX C,R POP370:123
NC SS C POP370:123
NI SI C,R,D POP370:123
cLC SS c POP370:128
CLI SI C,R,D POP370:128
cLM RS Cc,R POP370:129
AR RR C,R,D POP370:131
X RX C,R POP370:131
XC $S C POP370:131
XI SI C,R,D POP370:131
IC RX C,R,D POP370:133
ICM RS C,R POP370:133
MVC SS c POP370:136
MVI SI C,R,D POP370:136
OR RR C,R,D POP370:140
0 RX C,R POP370:140
ocC SS c POP370:140
0I SI C,R,D POP370:140
STC RX C,R,D POP370:145
STCM RS C,R POP370:145
TS SI C,R,D POP370:148
™ SI C,R,D POP370:149
TR 5SS C POP370:149
TRT SS c POP370:149

Figure 8.2
Logical Operation Instructions

8.3 peranching

Branching instructions alter the ex-
ecution sequence of a process by gen-
erating an address from which the
next instruction will be fetched if
the branch is successful. The branch
address is always computed relative

Chapter 8

to the M-space from which the branch
instruction itself was fetched, so
that branching cannot be used for
linkage to other modules I[Section
5.71. This local reference con-
vention is also applied to the EXE-

General Instructions

Principles of Operation
The EPSILON System

CUTE and LOAD ADDRESS instructions.

The instructions use the RR, RX, and
RS formats, in which the first oper-
and field, R1l, designates an arithme-
tic register, except in the
conditional branch instructions
where it is a mask field which speci-
fies branch conditions. In the RX
and RS formats, the B2 field desig-
nates an arithmetic register whose
contents are added to the displace-
ment D2 and the contants of the
arithmetic register designated by X2
(if present), to compute a location
value. This value is combined with
the identfier of the space from which
the instruction was fetched to form

Name

BRANCH AND LINK

BRANCH AND LINK

BRANCH ON CONDITION

BRANCH ON CONDITION

BRANCH ON COUNT

BRANCH ON COUNT

BRANCH ON INDEX HIGH

BRANCH ON INDEX LOW OR EQUAL
EXECUTE

LOAD ADDRESS

Version 1.0
15 June 1976

the address of the second operand da-
ta, or the new value of the process
instruction counter on a successful
branch. In the RS format, the R3
field designates a pair of arithmetic
registers which are used to determine
when branching is to occur.

An instruction can designate the same
register for address modification
and operand specification. The regi-
sters designated by an instruction
are used first for operand fetch
address computation, sacond for
arithmetic computation, and finally
for branch address computation. Re-
sults, if any, replace the first op-
erand.

Class

Symbol JTvpe Description

BALR RR C,R

BAL RX C,R,D

BCR RR C,R POP370:124
BC RX C,R,D POP370:124
BCTR RR C¢,R POP370:125
BCT RX C,R,D POP370:125
BXH RS C,R POP370:125
BXLE RS C,R POP370:125
EX RX C,R,D POP370:132
LA RX C,R,D POP370:134

Figure 8.3
Local Reference Instructions

BRANCH AND LINK

BALR R1,R2 <RR>
BAL R1,D2(X2,B2) <RX>

The second word of the current process instruction counter [Figure 5.21 is

loaded as link information into arithmetic register R1.

Subsequently, the

LCUR field of the counter is replaced by the branch address.
In the RX format, the second operand location is used as the branch ad-

dress.

In the RR format, the contents of bit positions 8-31 of arithmetic
register R2 are used as the branch address.

However, when the R2 field is ze-

ro, the branch address is set equal to the link address and no branching oc-

curs.

The branch address is always computed before the 1link

loaded.

Chapter 8

information is

General Instructions

Principles of Operation

The EPSILON System
Process Class: C,R,D
Condition Code: Unchanged
Exceptions: HNone

8.4 Long Operands

Long operands are character strings
ranging in length from zero bytes to
16,777,216 bytes. The instructions
which manipulate these strings use
the RR and RX formats, in which each
R-field designates both a general
register and a separate arithmetic
register as a means of specifying a
long operand. The general register,
which must have an even value as its
designation, is used by itself to
form the M-space address of the long
operand data field. The correspond-
ing arithmetic register has the next

Name

COMPARE LOGICAL LONG
MOVE LONG

TRANSLATE

TRANSLATE AND TEST

Version 1.0
15 June 1976

odd value as its implied designation;
its contents specify the length of
the operand data.

The operands need not reside in the
same M-space. However, if they do,
and if the fields overlap, the re-
sults are consistent with handling
the fields one byte at a time, start-
ing at the address of the first byte
of each field and proceeding in byte
sequence order. Result data fields,
if any, replace the first operand.

Symbol JType Class Description

cLCL RR C,R,D
MVCL RR C,R,D
TRL RX C,R,D New
TRTL RX C,R,D New

Figure 8.4
Long Operand Instructions

COMPARE LOGICAL LONG

CLCL R1,R2 <RR>

The first operand is compared with the second operand and the result is

indicated in the condition code.

The address of the first byte of the first operand is generated from the
contents of general register R1l, and the address of the first byte of the sec-
ond operand is generated from the contents of general register R2. The number
of bytes in each operand field is specified by the contents of bits 8-31 of the
arithmetic registers designated by the values 1+R1 and 1+R2, respectively.
The contents of bit positions 0-7 of these registars are ignored.

The comparison is performed with the operands considered as a string of
bytes representing unsigned binary integers. The comparison starts at the
first byte of each field and proceeds in byte sequential order. The instruc-
tion is completed as soon as inequality is detected or the end of the shortest
operand is reached. An operand of zero length compares equal with an operand

of any length.

Chapter 8

General Instructions

Principles of Operation Version 1.0
The EPSILON System : 15 June 1976

At completion, the length registers 1+R1 and 1+R2 are decremented by the
number of bytes compared, arithmetic registers R1 and R2 are incremented by
the same value, and the condition code is set to reflect the result of the com-
parison. Bit positions 8-7 of the arithmetic registers remain unchanged.

The instruction is suppressed with a specification exception if either op-
erand field does not contain an even value. It is terminated with an address-
ing exception if an address is generated during the course of comparison which
lies outside a space containing one of the operands.

Process Class: C,R,D

Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3

Exceptions:
Access
Addressing
Specification

MOVE LONG

MVCL R1,R2 <RR>

The second operand is placed into the first operand location, except that
overlapping of operand locations may affect the final contents of the first
operand location.

The address of the first byte of the first operand is generated from the
contents of general register R1l, and the address of the first byte of the sec-
ond operand is generated from the contents of general register R2. The number
of bytes in each operand field is specified by the contents of bits 8-31 of the
arithmetic registers designated by the values 1+R1 and 1+R2, respectively.
Bits 0-7 of these registers are ignored.

The movement starts at the first byte of each field and proceeds
byte-by-byte in byte sequential order. The instruction is completed when the
number of bytes corresponding to the shortest operand field have been trans-
ferrad. At completion, the length registers 1+R1 and 1+R2 are decremented by
the number of bytes moved, and arithmetic registers Rl and R2 are incremented
by the same value. Bit positions 0~7 of these registers remain unchanged.

The instruction is suppressed with a specification exception if either op-
erand field does not contain an even value. It is terminated with an address-
ing exception if an address is generated during the course of movement which
lies outside a space containing one of the operands.

Chapter 8 122 General Instructions

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

Process Class: C,R,D

Condition Code:

0 Fields of equal length
1 First operand shorter than second
2 First operand longer than second
3

Exceptions:
Access
Addressing
Specification

TRANSLATE

TRL R1,D2(X2,B2) <RX>

The bytes of the first operand are used as arguments to reference the list
located by the second operand address. Each function byte selected from the
list replaces the corresponding argument in the first operand.

The address of the first byte of the first operand is generated from the
contents of general register Rl, and the number of bytes in the field is spec-
ified by the contents of bits 8-31 of the arithmetic register designated by
1+R1. The bytes of the first operand are selected one by one for translation,
starting at the first byte and proceeding in byte sequential order. Each
argument byte is added to the initial second operand address using the rules
for address arithmetic, with the argument byte treated as an eight-bit un-
signed integer. The sum forms the address of the function byte, which then
replaces the original argument byte.

The instruction is completed when the first operand field has been com-
pletely replaced. At completion, bits 8-31 of the length register 1+R1l are
zero, and arithmetic register Rl is incremented by the length of the operand.
Bits 0-7 of these registers remain unchanged. The second operand is not al-
tered unless a field overlap occurs. In that case, the result is the same as
if each r4sult byte had been stored immediately after the corresponding func-
tion byte was fetched.

The instruction is suppressed with a specification exception if the Rl
field does not contain an even value. It is terminated with an addressing ex-—
ception if an address is generated during the course of translation which lies
outside a space containg one of the operands.

Process Class: C,R,D
Condition Code: Unchanged
Exceptions:

Access

Addressing
Specification

Chapter 8 123 General Instructions

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

TRANSLATE AND TEST

TRTL R1,D2(X2,B2) <RX>

The bytes of the first operand are used as arguments to reference the list

located by the second operand address. Each function byte selected from the
list is used to determine the continuation of the instruction. If the func-
tion byte is =zero, the instruction proceeds by fetching and translating the
next argument byte. If the function byte is non-zero, the instruction is com-
pleted. :
The address of the first byte of the first operand is generated from the
contents of general register Rl, and the number of bytes in the operand is
specified by the contents of bits 8-31 of the arithmetic register designated
by 14+R1. The bytes of the first operand are selected one by one for trans-
lation, starting at the first byte and proceeding in byte sequential order.
Each argument byte is added to the intial second operand address using the
rules for address arithmetic, with the argument byte treated as an unsigned
eight-bit integer. The sum is used as the address of the function byte.

When the instruction is completed, bits 8-31 of the length register 1+R1
are decremented by the number of bytes translated before a non-zaro function
byte was found, and arithmetic register Rl is incremented by the same value.
Bits 0-7 of register Rl are unchanged. If the instruction was completed as a
result of finding a non-zero function byte, that byte is inserted into bits
0-7 of register 1+R1l, otherwise those bits of the register are unchanged. The
condition code is set to reflect the cause of completion.

The instruction is suppressed with a specification exception if the R1
field does not contain an even value. It is terminated with an addressing ex-
ception if an address is generated during the course of translation which lies
outside a space containing one of the operands.

Process Class: C,R,D

Condition Code:

0 All function bytes zero
1 Non-zero function byte found
2 -

3 -
Exceptions:

Access

Addressing

Specification

8.5 Decimal Feature

A decimal feature instruction set can [POP360:35]1]. The instructions use
be installed on any EPSILON system. the 55 and RX formats. The operand
Decimal instructions provide arith- fields in these formats follow the
metic, shifting, and editing oper- rules described for the logical oper-
ations on data in the 5/360 packed ation instructions [Section 8.21].
and zoned decimal formats

Chapter 8 124 General Instructions

“

Principles of Operation
The EPSILON System

Except for the conversion instruc-
tions, CONVERT TO BINARY and CONVERT
TO0 DECIMAL, the decimal feature in-

Name

ADD DECIMAL
COMPARE DECIMAL
CONVERT TO BINARY
CONVERT TO DECIMAL
DIVIDE DECIMAL
EDIT

EDIT AND MARK
MOVE NUMERICS

MOVE WITH OFFSET
MOVE ZONES
MULTIPLY DECIMAL
PACK

SHIFT AND ROUND DECIMAL
SUBTRACT DECIMAL
UNPACK

ZERO AND ADD

Version 1.0
15 June 1976

structions can be executed only with-
in C-processes.

Symbol Type Class Description
AP SS C POP370:153
CcP SS c POP370:15¢4
CVB RX C,R POP370:130
CVD RX C,R POP370:131
DP SS c POP370:154
ED SS c POP370:155
EDMK SS C POP370:158
MVN SS C POP370:138
MVO SS c POP370:139
MvVZ SS c POP370:139
MP 5SS c POP370:158
PACK SS c POP370:141
SRP SS c POP370:158
SP SS c POP370:159
UNPK SS c POP370:150
ZAP SS c POP370:160

Figure 8.5
Decimal Instructions

8.6 Floating-Point Features

Two floating-point feature instruc-
tion sets can be installed on any
EPSILON system. The basic floating-
point instructions operate on data in
the 57360 short and long floating-
point number formats [POP360:46411].
The extendad floating-point instruc-
tions operate on data in the S/7370
extended floating-point number for-
mat [POP370:1621. The extended
floating-point feature can be in-
stalled only if the basic feature is
also installed.

Floating-point instructions can be
executed only within C-processes. If
the basic featuure is installed, the
state vector of all C-processes 1is
enlarged to include four 64-bit
floating-point registers, designated
by the numbers 0, 2, 4, and 6. These
registers are the referents of the

Chapter 8

first operand field of all floating-
point instructions, and also of the
second operand field of the RR format
instructions. A specification
exception will occur if values other
than 0, 2, 4, or 6 are used to desig-
nate the registers in the basic in-
structions, or if values other than 0
or 4 are used in the extended in-
structions. In the RX format, the B2
field designates a general register
whose contents, together with the
displacement D2 and the contents of
the arithmetic register designated
by X2, are combined using the rules
of Section 2.8 to form the M-space
location of the second operand data.

Number representation, guard digit,
an normalization follow the rules and
behavior patterns of $/7370
[POP370:163-1641.

General Instructions

Principles of Operation Version 1.0

The EPSILON System 15 June 1976
Name Symbol JType Class Description
ADD NORMALIZED AER RR c POP370:166
ADD NORMALIZED AE RX c POP370:166
ADD NORMALIZED) ADR RR C POP370:166
ADD NORMALIZED . AD RX C POP370:166
ADD UNNORMALIZED AUR RR Cc POP370:167
ADD UNNORMALIZED AU RX C POP370:167
ADD UNNORMALIZED AWR RR c POP370:167
ADD UNNCRMALIZED AW RX c POP370:167
COMPARE CER RR c POP370:167
COMPARE CE RX c POP370:167
COMPARE CDR RR c POP370:167
COMPARE CcD RX c POP370:167
DIVIDE DER RR C POP370:168
DIVIDE DE RX c POP370:168
DIVIDE DDR RR C POP370:168
DIVIDE DD RX C POP370:168
HALVE HER RR c POP370:169
HALVE HDR RR c POP370:169
LOAD LER RR c POP370:170
LOAD LE RX c POP370:170
LOAD LDR RR c POP370:17¢0
LOAD LD RX o POP370:170
LOAD AND TEST LTER RR C POP370:170
LOAD AND TEST LTDR RR c POP370:1780
LOAD COMPLEMENT LCER RR c POP370:170
LOAD COMPLEMENT LCDR RR c POP370:170
LOAD NEGATIVE LNER RR c POP370:171
LOAD NEGATIVE LNDR RR c POP370:171
LOAD POSITIVE LPER RR C POP370:171
LOAD POSITIVE LPDR RR C POP370:171
LOAD ROUNDED LRER RR C POP370:171
LOAD ROUNDED LRDR RR C POP370:171
MULTIPLY MER RR C POP370:172
MULTIPLY ME RX C PGP370:172
MULTIPLY MDR RR c POP370:172
MULTIPLY MD RX C POP370:172
STORE STE RX c POP370:173
STORE STD RX C POP370:173
SUBTRACT NORMALIZED SER RR c POP370:173
SUBTRACT NORMALIZED SE RX c POP370:173
SUBTRACT NORMALIZED SDR RR c POP370:173
SUBTRACT NORMALIZED SD RX C POP370:173
SUBTRACT UNNORMALOZED SUR RR c POP370:174
SUBTRACT UNNORMALIZED SuU RX c POP370:174
SUBTRACT UNNORMALIZED SDR RR C POP370:17¢4
SUBTRACT UMNORMALIZED SD RX C POP370:174
Figure 8.6

Floating-Point Instructions

Chapter 8 126 General Instructions

,/‘

2N

Principles of Operation Version 1.0

The EPSILON System 15 June 1976
Name Symbol JType Class Description
ADD NORMALIZED AXR RR c POP370:166
MULTIPLY MXDR RR C POP370:172
MULTIPLY MXD RX C POP370:172
MULTIPLY MXR RR C POP370:172
SUBTRACT NORMALIZED SXR RR C POP370:174
Figure 8.7

Extended Floating—-Point Instructions

Chapter 8 127 General Instructions

Principles of Operation
The EPSILON System

9.0 SERVICE PROCESSES

Service processes arise from process
modeals built-in to the system and

connected to process sources trig-
gered by certain specified system
events. They provide a means to re-

spond to these events with a range of
procedures, from simple to complex,
not practical to obtain by adjusting
parameters of closed functions.

2.1 The System Clock

A real-time clock is included as an
integral part of every EPSILON sys-
tem. The clock is a 64-bit binary
counter whose value is an unsigned
fixed-point binary number, with bi-
nary point located between bits 51
and 52. The zero value represents 1
January 1975, 0 hrs Greenwich Mean
Time, which is the epoch standard for
all EPSILON systems. Other values of
the clock represent microseconds and
fractions of a microsecond of time
elapsed since the epoch. The actual
resolution of the clock may be higher
or lower than one microsecond, de-
pending on the model of EPSILON sys-
tem, but in all models bit positions
are incremented at such a frequency
that the rate of advancement is the
same as if a 1 were added to bit po-
sition 51 every microsecond. The in-
crementing behavior and format of the
clock are therefore the same as a
System/370 time-of-day clock
[POP370:421].

The clock is set during system in-
itialization to a value which is com-
puted by subtracting the epoch from
the calendar date and time of in-
itialization. Once set, it runs con-
tinually until the system is powered
down or re-initialized. Other system
activities and events do not affect
it, and there are no instructions by
which a process can alter its value.
Consequently, clock values are con-
sistent for all processes in a sys-

Chapter 9

128

Version 1.0
15 June 1976

tem, and provide a consistent means
of recording transaction times or
speci fying when activities are to be
initiated. For this purpose, any
process can execute a STORE CLOCK in-
struction (STCK), which stores the
current value of the system clock in-
to a double-word located by the in-
struction operand.

Because of epoch standardization,
clock values are also basically con-
sistaent between EPSILON systems and
between initializations of any par-
ticular system. However, unless the
clock 1is tied to an external
time-synchronizing signal (e.g. WWY)
by the «clock synchronization fea-
ture, inaccuracies of a second or
more in setting its value to true ex-
ternal time are likely to occur be-
cause of operator reaction-time
delays. These could introduce some
inconsistencies between systems. In
any event, a clock is always consist-
ent within a single system, and as
long as it is running always records
elapsed time accurately to within the
incrementing resolution.

9.2 Time Events

The system clock is a source for a
family of service processes called
time event processes. The process
model connected to it for this pur-
pose is an R-process model whose RMDB
has fields filled with fixed data
supplied by the system, and empty
fields which must be filled before a
process of the family can be initi-
ated. The fixed data fields are
those which specify conditions of us-
age or circumscribe the behavior of
processes of the family.

o The bits of field RMFLG [Figure
6.1] are set so that

- process statistics are col-

Service Processes

Principles of Operation
The EPSILON System

lected

- the domain identifier of
processes of the family is
derived from the process
which caused initiation

- the process model is
single-instance

- the entry context space is

bound to the custody of the
model

the process model is in pub-
lic custody.

o A null exception module is speci-
fied by field RMXMD.
o The entry context space is speci-

fied at system initialization.

The process model is assigned to pub-
lic custody in order to allow the re-

maining fields of the RMDB to be
specified by instruction execution.
The assignment has no other conse-

quences, as the clock does not have
an explicit source identifier, and so
cannot be referenced by instructions
which apply to ordinary sources. In
particular, the process model cannot
be modified by CRPM or CRPMI, nor can
initiation of a process of the family
be requested by SGS. For time event
processes, both these functions are
combined into the REQUEST TIME EVENT
instruction (RTE).

The RTE instruction, which can be ex-
ecuted within any C-process or R-pro-
cess, is unlike other instructions in
that the action requested by the in-
struction is not carried out until
the system clock reaches a specified
value. The clock value is supplied
in a Time Event Request Block (TERB),
which also contains process model da-
ta. A TERB must begin on a word
boundary and have the format de-
scribed in figure 9.1.

Chapter 9

129

Version 1.0
15 June 1976

An RTE instruction will be rejected
if the TERB is not located within an
ordinary M-space which is in process
or family custody of the process
within which the instruction is being
executed. It will also be rejected
if the TIME field of the TERB con-
tains a clock value already attained,
if the TEMOD field does not identify
a module M-space to which the re-
questing process has read access, or
if the TELOC field does not designate

an instruction address within the
space. If the request is accepted,
the space containing the TERB is re-

moved from custody of the process ex-
ecuting the RTE and place into an
internal queue called the timing
quaua, Null pointers are loaded into
all pointer registers of the process
which contain a pointer to the space,
and the reference count of the space
is decremented by 1 for each null
pointer loaded. The RTE itself is
then complete.

Spaces in the timing queue are or-
dered by the clock value of their

TERB, with the smallest value at the
head of the queue. When the clock
attains the value of the item at the

the request asso-
item becomes effec-

head of the queue,
ciated with the

tive.

o The space is- removed from the
timing queue and 1its reference
count is examined. If the count
is not zero, the request is nul-

lified by deleting the space from
the system.

o] If the count is zero, the empty
fields of the RMDB, which corre-
spond to the instruction counter
fields RMMOD, RMMSK, and RMLOC,
are filled from fields TEMOD,
TEMSK, and TELOC respectively.

When the RMDB is completed, the
equivalent of an SGS instruction
[Section 6.3]1 is executed. The
communication space for the SGS

Service Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

TIME

TEMOD

TEMSK TELOC

Field 0Offset Bytes

TIME 0 8
TEMOD 8 4
TEMSK 12 1
TELOC 13 3

Figure 9.1
Time Event Request Block

Description_and Use

Clock value at which the time event process is to be
initiated.

A pointer to the module M-space containing the ini-
tial instruction sequence to be executed by the pro-
cess.

Value of the exception mask for initial entry to the
process.

Base address within the M-space identified by field
TEMOD of the first instruction of the initial in-
struction sequence.

is the space which
timing queue,

communication data
the process is the

the TERB in the space.

Action of the timing queue is inhib-

was in the and the processes should use as lit-
and the tle time for their activity as possi-
supplied to ble.

location of

9.3 system Exceptions

A system exception is raised during

ited while there is a time event pro-
cess in existence. This assures the
independence of individual time
event requests, but as a consequence
some requests may not become effec-—
tive precisely at the specified clock
time. Moreover, the actual time of
initiation of a time event process
after the request is effective de-
pends on the dispatching priority as-
signed to the clock at system
initialization. Therefore, if time
event processes are to be used to
trigger key events for a system or
application, the clock should be as-
signed a high dispatching priority,

Chapter S

execution of a closed function when
an unusual condition is encountered
which may be significant to applica-
tions, but does not indicate system
damage or malfunction. A special
class of system exceptions can also
be raised by execution of a FORCE
SYSTEM EXCEPTION instruction within
any process.

An exception or a class of exceptions
acts as a source for a family of
service processes. The associated
process models are defined and con-
nected at system initialization, and
as they have no referents cannot be

Service Processes

Principles of Operation
The EPSILON System

modified or deleted by ordinary con-
nection instructions, nor can initi-
ation requests be triggered by ordi-
nary request instructions. Because
an exception process is intended to
provide a means by which action can
be taken to note, modify, or remove
the .exception condition, the pro-
cesses are supplied with entry data
which defines the source and context
of the exception. .In addition, each
process model is granted some special
rights of custody and access in order
to allow processes of its family to
take effective action related to the
exception.

There are process models correspond-
ing to the exception sources:

- system overrun

- invalid process model
- forced exception

- statistics collection
- domain end.

The entry data and process model con-
ventions which apply to each excep-
tion source are described in the
remainder of this chapter.

9.4 Svstem Overrun

A system overrun exception is raised
when a computation cycle overrun con-
dition is established [Section 4.71.
The process model connected to the
exception is a C-process model whose
CMDB contains the following data.

o The bits of field CMFLG [Figure
5.1] are set so that

- process statistics are col-
lected

- the domain identifier is
fixed as the identifier of
the entry context space

- the entry context space is

bound to the custody of the
model

Chapter 9

Version 1.0
15 June 1976

- the process model is in sys—
tem custody.

o The module space identified by
field CMMOD is specified at sys-
tem initialization, as part of
the specification of the compu-
tation cycle structure. If the
space is the null space, system
overruns will be ignored. If the
space is non-null, it is bound to
the custody of the process model.
Fields CMMSK and CMLOC are set to

zero.
o The process modal is
single-instance. The process

model name is an internal system
name, and is model dependent.

o A null exception module is speci-
fied by field CMXMD.

o The entry context space is speci-
fied at system initialization.

o There 1is an associated input
queue whose name is the same as
the process model name.

When an overrun exception occurs, an
M-space is placed into the overrun
input queue which describes the con-
tent of the computation cycle list at
the time of overrun. If there had
not been a previous overrun, the
queue will be empty; if it is not
empty, either an overrun process ex-
ists or the queue was not emptied by
a previous overrun process. In the
latter case, the existing items are
deleted from the queue before the neuw
item is entered.

The overrun process model is assigned
to a special computation cycle which
is higher in precedence than all oth-
er computation cycles. Inasmuch as
an overrun condition is recognized by
dispatching at the expiration of a
basic cycle, the initiation request
will be honored at once, and initi-

Service Processes

Principles of Operation
The EPSILON System

ation will start before any other
C-process is assigned a CPU. If
field CMMOD of the CMDB identifies an
M~-space or a B-space with an existing
M-space descendent, the overrun pro-
cess itself will be dispatched before
other processes; otheruise, the
overrun process will be delayed until
an M-space containing its initial in-
struction sequence is available
[Section 5.41.

An overrun process is a reqular pro-
cess which can execute all instruc-
tions available to C-processes. In
particular, using the STORE CMDB in-
struction to obtain the names of in-
put queues, it can send messages to
any of the C-processes in the compu-
tation cycle list. Conventions can
therefore be established by which
C-processes will accept messages
from an overrun process to modify or
terminate their activity. If more
direct action is desired, the overrun
process can itself force termination
of other processes. The overrun pro-
cess model is treated as a system
custodian with respect to C-process
models, so an overrun process can ef-
fectively terminate any C-process by
use of the TERM instruction.

Each item placed into the overrun
queue consists of a header and a set
of computation cycle records, one for
each computation cycle. The format
of the header is described in figure
9.2; the format of an individual com-
putation cycle record is described in
figure 10.3 [Section 10.21.

9.5 Invalid Process Modeal

An invalid process model exception
can be raised either while attempting
to initiate a process or to handle a
process exception. The exception is
raised during process exception han-—
dling, for a process of any process
class, if the current exception mod-
ule [Section 5.13] has been deleted
from the system, or if the process

Chapter 9

132

Version 1.0
15 June 1976

does not have read access to the
space. The exception is raised dur-
ing initiation \

o for a C-process model if initial
or exception module data is not
valid: field CMMOD must identify
either the null space or a module
space for which field CMLOC des-
ignates instruction location
within the space, field CMXMD
must identify either the null
space or a module space, and
field CMCTX must identify either

the null space or an ordinary
spacea
o for an R-process model if the

M-space identified by field
RMMOD has been deleted from the
system

o for a D-process model if the
M-space identified by field

DMMOD has been deleted

o for a model of any class if pro-
cesses of the family do not have
read access to the space contain-
ing the initial instruction se-
quence.

The process model connected to the
exception is an R-process model whose

RMDB contains the following data.

o The bits of field RMFLG are set

so that

- process statistics are col-
lected

- the domain identifier for

processes of the family is
derived from the process
which caused initiation

- the process model is

multi~instance

- the entry context space is
bound to the custody of the
model

Service Processes

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

CCNO gvcyc

OvVID OVSEQ

Figure 9.2
Overrun Header Word

Field Offset Byvtes

Description _and Use

Number of computation cycles in the system.
Overrun cycle indicator [Section 4.71].

Identifier of the computation cycle for whiéh this

overrun was established.

CCNO 0 1
gveyce 1 1
ovVID 2 1
OVSEQ 3 1

Sequence nhumber of the overrun computation cycle.

- the process model is in sys-
tem custody.

o The module M-space identified by
field RMMOD is specified at sys-
tem initialization, and bound to
to the custody of the model.
Fields RMLOC and RMMSK are set to
zero.

o A null exception module is speci-
fied by field RMXMD.

o The entry context space is speci-
fied at system initialization.

When an invalid process model excep-
tion occurs, an M-space large enough
to contain the process model defi-
nition block is allocated, the defi-
nition data is copied into it, and
the equivalent of an S5GS instruction
is executed. The location of the
process model data becomes the commu-
nication data for the exception pro-
cess initiated as a result of the
signal. The source of the exception
is supplied in the initial state vec-
tor, replacing standard information
not applicable to an exception pro-
cess.

Chapter 9

o The condition code describes the
class of process which caused the
exception. It 1is zero for a
C-process, 1 for an R-process,
and 2 for a D-process.

o Arithmetic register 1 contains
the name of the process model, or
" the source identifier, or the
device identifier, as appropri-

ate for the process class.

An invalid process model exception
process is treated as a system custo-
dian with respect to process models
of all process classes. It can
therefore modify the data in the
entry context space and execute a
DCPM, CRPM, or CDPM instruction to
remove the defect in the process mod-
el, or to delete the model from the
system. If an exception process
takes no action with respect to the
offending process model, the effect
on system behavior depends on the
cause of the exception and the class
of the model.

o If the exception resulted from
deletion of an exception module,
the process which triggered the
exception remains in existence

Service Processes

Principles of Operation
The EPSILON System

and is treated as if it had no
exception module current. The
system exception continues to be
raised whenever a process excep-
tion occurs for a member of the
same family. Hence, in this case
the effect is simply an increase
in the total system activity gen-
erated by process exceptions.

If the exception 15 raised during
initiation, the initiation at-
tempt is abondoned and the initi-
ation request is deleted from the
system without initiating a pro-
cess. If the requast was trig-
gered by entry of a space into an
input queue of a C-process model,
the space remains in the queue,
but does not inhibit further ini-
tiation requests by the queue.
In such a case, the effect may be
indefinite accumulation of
spaces into the queue or queues
associated with the invalid pro-
cess model.

To forestall diversion of storage re-
source into spaces which cannot be
used, the system will force deletion
of any process model for which a
total of 256 invalid process model
exceptions are raised while attempt-
ing initiation.

9.6 Forced Exception

A system exception is forced by exe-
cution of a FORCE SYSTEM EXCEPTION
instruction (FSX) within a process of
any process class. The process model
connected to the exception is an
R-process model whose RMDB contains
the following data.

o The bits of field RMFLG are set
so that
- process statistics are col-
lected
- the domain identifier is de-

rived from the process which

Chapter 9

134

Version 1.0
15 June 1976

caused initiation

- the process model is
multi-instance
- the entry context space is

bound to the custody of the
model

the process model
tem custody.

is in sys-

o The module M-space identified by
field RMMOD is specified at sys-
tem initialization, and bound to
the custody of the model. Fields
RMLOC and RMMSK are set to zero.

o A null exception module is speci-
fied by field RMXMD.

o The entry context space is speci-
fied at system initialization.

FSX is similar to SGS in that it

transmits communication data to the

process initiated in response to the
signal. However, as the reason for
forcing an exception may well be a
condition which inhibits continua-
tion of a process and which the pro-
cess itself cannot rectify or bypass
(e.g. space for critical data cannot
be allocated), FS5X has a normal be-
havior which differs somewhat from
that of 5GS.

The communication context is ex-
pected to be a number, not a lo-
cation in some M-space. Unless
the 'space location' option is
selected, the context is gener-
ated by combining the null point-
er with the arithmetic register
designated by the instruction
operand.

If the *continue activity'
option is not selected, a return
is made to dispatching to suspend
the process within which the in-
struction is being executed and
switch the CPU to another. The

Service Processes

Principles of Operation
The EPSILON System

suspended process wWwill be re-
turned to ready dispatching con-
dition upon termination of the
exception process initiated in
response to the signal.

The dispatching priority of the
forced exception process model is as-
signed at system intitialization. If
an R-process whose dispatching pri-
ority is higher than the assigned
priority is suspended as a result of
executing FSX, the corresponding ex-
ception process is promoted to a pri-
ority higher than the suspended
process. A forced exception process
is therfore always of higher dis-
patching priority than any process
suspended in its favor.

9.7 Statistics collection

A statistics collection exception is
raised on overflow of a statistics
collection counter, or when a queue
or process model with active statis-
tics collection is deleted from the
system [Section 10.3]. The process
model connected to the exception is a
C-process model which is assigned to
a computation cyle selected at system
initialization. The CMDB for the
model contains the following data.

o The bits of field CMFLG are set
so that

- process statistics are col-
lected

- the domain identifier for
processes of the family is
fixed as the ientifier of the
entry context space

- the entry context space is
bound to the custody of the

model

- the process model is in sys-—
tem custody.

o The module space identified by

Chapter 9

Version 1.0
15 June 1976

field CMMOD is specified at sys-
tem initialization. If the space
is null, the statistical data
collected will be discarded. If
the space is not null, it is
bound to the custody of the mod-
el. Fields CMMSK and CMLOC are
set to zero.

o The process model is
single-instance. The process
model name is an internal system
name, and is model dependent.

o A null exception module is speci-
fied by field CMXMD.

o The entry context space is speci-
fied at system initialization.

o There 1is an associated input
queue whose name is the same as
the process model name.

When a statistics collection excep-
tion occurs an M-space containing a
record of accumulated data is placed
into the input queue associated with
the model. The format of the record
in the space is described in Section
10.5. Statistics collection excep-
tion processes are regular processes
which can use any of the instructions
available to C-processes to dispose
of the accumulated data.

9.8 Demain End

A domain end exception is raised when
a domain statistics counter over-
flows, or when a domain end occurs
because the membership count of a do-
main goes to zero [Section 3.51. The
process model connected to the excep-
tion is a C-process model which is
assigned to a computation cyle se-
lected at system initialization. The
CMDB for the model contains the fol-
lowing data.

o The bits of field CMFLG are set
so that

Service Processes

Principles of Operation
The EPSILON System

- process statistics are col-
lected

- the domain identifier for
processes of the family is
fixed as the ientifier of the
entry context space

- the entry context space is
bound to the custody of the
model

- the process model is in sys-
tem custody.

o The module space identified by
field CMMOD is specified at sys-
tem initialization. If the space
is null, domain end will be ig-
nored. If the space is not null,
it is bound to the custody of the
model. Fields CMMSK and CMLOC
are set to zero.

] The process model is

9.9 - Instruction Descriptions

REQUEST TIME EVENT

RTE DI1(Bl) <SI>

Version 1.0
15 June 1976

single-instance. The process
model name is an internal system
name, and is model dependent.

o A null exception module is speci-
fied by field CMXMD.

o The entry context space is speci-
fied at system initialization.

o There is an associated input
queue whose name is the same as
the process model name.

When a domain exception occurs an
M-space containing the resource us-
age statistics accumulated for the
domain is placed into the input
queue. The record in the space is a
special form of statistics record.
Its format is described in Section
10.6. Domain end exception processes
are regular procaesses which can exe-
cute all instructions available to
C-processes.

The instruction is terminated with condition code 2 if the operand does
not designate a location in an ordinary M-space which is in private or family
custody of the process within which the instruction is being executed. It is
suppressed with a specification exception if the location is not on a word

boundary.

The TERB located by the operand is examined for validity. If field TEMOD
does not identify a module M-space to which the requesting process has read
access, or if field TELOC does not designate an instruction address, the in-
struction is terminated with condition code 3. It is terminated with condi-
tion code 1 if the value contained in field TIME is smaller than the current

value of the system clock.

If the TERB is valid, the space identified by the operand is removed from
custody of the process executing the instruction and inserted into the timing
queue at a point corresponding to the clock value contained in field TIME.
The reference count of the space is decremented by 1. A null pointer is loaded
into pointer register Bl and into any other pointer register of the process

which contains a pointer to the space,

and the reference count is decremented

by 1 for each pointer loaded. The instruction is then completed with condi-

Chapter 9

Service Processes

N

Principles of Operation Version 1.0
The EPSILON System ' 15 June 1976

tion code zero.

If the reference count of the space is not zero when the time event pro-
cess corresponding to the TERB is initiated, the process is suppressed and the
space is deleted from the system.

Process Class: C,R

Condition Code:
] Request accepted
1 Time expired
2 Invalid TERB space
3 Invalid TERB data

Exceptions:
Specification

STORE CLOCK

STCK D2(B2) <RS>

The current value of the sytem clock is stored in the double-word located
by the second operand. Zeros are supplied in the low order bit positions be-
low the resolution of the clock installed on the system.

The instruction is suppressed with a specification exception if the oper-
and does not define a location on a word boundary.

Process Class: C,R,D
Condition Code: Unchanged

Exceptions:
Specification

FORCE SYSTEM EXCEPTION

FsSX M1,R2 <RR>

The conditions are raised which signal a forced system exception.

The contents of general register R2 and bit zero of mask field Ml deter-
mine the communication data to be provided to the process initiated as a re-
sult of signalling the exception. If bit zero of mask field Ml is zero, the
context consists of the null pointer combined with the contents of arithmetic
register R2. The contents of the register are not disturbed.

If the bit is 1, the context consists of the full general register. In
that case, the instruction is terminated with condition code 3 if pointer reg-
istaer R2 does not identify an ordinary M-space, if the space is in I/0 request
state, or if the space is not in private or family custody of the process with-
in which the instruction is being executed.

If the instruction is not terminated, a null pointer is loaded into point-

Chapter 9 137 Service Processes

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

er register R2 and into any other pointer register of the process which con-
tains a pointer to the space. The reference count is decremented by 1 for each
pointer loaded. The space is placed into system custody and retained as com-
munication space for the exception process. If the reference count of the
space is not zero at the time the exception process is initiated, that process
wWwill be suppressed and the space deleted from the system.

Completion of the instruction is determined by bit 1 of mask field M1. If
the bit is zero, the process executing the instruction is suspended and con-
trol of the CPU assigned to the process is returned to dispatching. The pro-
cess Will be returned to ready dispatching condition when the exception
process terminates. The instruction will then be completed with condition
code zero if the exception process terminates normally, and with condition
code 1 if the process was suppressed.

If bit 1 of mask field Ml is 1, the process executing the instruction con-
tinues activity, and the instruction is completed with condition code 2.

Process Class: C,R,D
Condition Code:
0 Exception process completed
l1Exception process suppressed
2 Signal accepted
3 Signal rejected

Exceptions: None

Chapter 9 138 Service Processes

Principles of Operation
The EPSILON System

10.0 SYSTEM INQUIRY FACILITIES

System Inquiry facilities provide
information describing the config-
uration, current internal state, and
operational history of an EPSILON
system. The descriptions are gener-
ated from internal tables and lists,
or from statistics collected by the
system control mechanisms. The basic
mechanisms are used just to collect
data about individual resources.
O0ther mechanisms record interactions
between resources and processes, and
so have uses beyond basic data col-
lection.

o) Process monitoring mechanisms
will record the resource usage of
any process, trace its behavior,
and raise a process exception if
certain specified conditions
arise.

o Domain identification mechanisms
will accumulate usage statistics
by domain identifier. This data,
together with the rules for
acquisition of domain identifier
by processes and spaces, pro-
vides a means by which group
identification can be used to de-
fine, control, and account for
units of work which are data-flow
analogues of 'jobs' or ‘'ses-
sions'.

Some statistics are always collected
when the collection facility is ac-
tive, while the collection of others
is controlled by instructions which
specify what is to be collected and

when. Statistics collection de-
grades sytem performance to an extent
which is model-dependent. However,

no degradation will occur on any mod-
el when the collection facilities are
not active.

10.1 confiquration Data

An R-process or C-process can obtain

Chapter 10

Version 1.0
15 June 1976

information about the configuration
of an EPSILON system using the STORE
CONFIGURATION DATA instruction

(SCON) . Options selected for
instruction execution determine
whether

o a Configurétion Description

Block (CDB) is stored

o) a computation cycle identifier
list is stored

o the information represents in-
stalled conditions or current
availability.

The format of a CDB is described in
figure 10.1. In this figure, if a
field or bit description varies ac-
cording to whether the block repres-
ents installed conditions or current
availability, the variable part of
the description consists of two
phrases enclosed in pointed brack-
ets, separated by a vertical line.
The first bracketed phrase applies to
installed conditions, the second to
current availability. If there are
no brackets, the field description is
invariant.

If the computation cycle identifier
option is selected, computation cy-
cle identifiers are stored in succes-
sive byte locations, beginning with
the computation cycle of smallest pe-
riod and proceeding in sequence
[Section 4.1]. The entire set of
identifiers is stored if the in-
stalled condition option is selected
along with the computation cyle
option, while only the identifiers of
cycles with an active process are
stored if the current availability
option is in effect.

Although the SCON instruction

options are independently select-
able, the location of the stored data

System Inquiry Facilities

Principles of Operation Version 1.0
The EPSILON System

Field 0ffset

SID

FEAT

Chapter 10

0

4

15 June 1976

SID
FEAT Res STAT ERSM
NPS NIOD
CLK
Msz
BSZ
CCNO 0CID CPU PPU
BCT

Bvtes

4

Figure 10.1
Configuration Description Block

Description _and lUse

A 32-bit system identifier, assigned at the factory,
which distinguishes the system from all other EPSILON
systems.

Bits defining the CDB content and system features

Significance

Installed conditions are described by this CDB
Current availability is described by this CDB

The floating—-point instruction set is not <installed>
| <currently available>

The floating—-point instruction set is <installed> |
<currently available>

The decimal instruction set is not <installed>
<currently available>

The decimal instruction set is <installed> | <cur-
rently available>

The clock <is not synchronized to an external timing
signal> | <value is valid>

<The clock is synchronized to an external signal> |
<clock damage reported but correction not vet ap-
plied>

Process monitoring not <installed> | <currently
available>

160 System Inquiry Facilities

Principles of Operation Version 1.0

The EPSILON System - . 15 June 1976
1 Process monitoring is <installed> | <currently avail-
able>
5 0 Software statistics not <installed> | <currently
available>
1 Software statistics is <installed> | <currently

available>

6 - Reserved
7 0 Normal
1 Suspension of system operation has been requested.
Field Offset Bytes Descriptién and Use
STAT 6 1 <Initial> | <current> value of the statistics col-~

laction mask. The bits of this mask determine the
conditions under which statistics are collected.

Bi Value Significance
0 0 Statistical collection facility <is to be> | <is> in-
active
1 Statistical collection facility <is to be> | <is> ac-
tive
1 0 Do not collect I/0 device statistics
1 I/0 device statistics are to be collected
2 0 Do not collect R-process source statistics
1 R-process source statistics are to be collected
3 0 Do not collect queue statistics
1 Queue statistics are to be collected
G 0 Do not collect process statistics
1 Process statistics are to be collected
5 0 Do not collect domain statistics
1 Domain statistics are to be collected
6 0 ’ Do not collect software statistics
1 Software statistics are to be collected
7 0 The value of this mask can be changed
1 The value of this mask cannot be changed
Field 0ffset Bvtes Description _and Use
ERSM 7 1 <initial> | <current> value of the error signal mask.

The bits of this mask, which determine the conditions
under which error signals are effective, are de-
scribed in Section 11.4.

Chapter 10 141 System Inquiry Facilities

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

Number of process sources <installed on the system> |
<with process models connected>.

Number of I/0 devices <installed on the system> |
<with process models connected>.

High~-order 32 bits of the clock value when <the sys-—
tem was last initialized> | <this CDB was stored>.

Number of bytes of M-storage <installed on the sys-—
tem> | <not currently allocated>.

Number of kilobytes of B-storage <installed on the
system> | <not currently allocated>.

Number of computation cycles <installed on the sys-
tem> | <with an active process>.

<0verrun cycle indicator [Section 4.71> | <identifier
of the computation cycle for which an overrun was

Number of CPU <installed on the system> | <currently

Number of PPU <installed on the system> | <currently

NPS 8
NIOD 10
CLK 12
MszZ 16
BSZ 20
CCNO 24
0CID 25
last established>.
CcPU 26
available>.
PPU 27
available>.
BCT 28

Basic cycle time in microseconds.

is affected by the
If both
computation cycle list
the list begins at the first location
following the CDB.
it begins

lected.

stored,

combination se-
CDB and a

If only a list is
at the location

in the system

are stored, o the STORE DOMAIN LIST instruc-
tion (SDOL), which stores the
names and identifiers of all do-
mains in the system

designated by the instruction oper-

and.

10.2 current state Data

o the STORE QUEUE STATUS instruc-
tion (SQS), which stores a block
describing a specified queue,
and

C-processes and R-processes have ac-
cess to process model data by means
of the SCMDB, SRCE, and STDS instruc-
tions. A C-process can obtain addi-
tional current internal state data by
use of

o the STORE PROCESS MODEL LIST in-

struction (SPML), which stores
the names of all C-process models

Chapter 10

o the STORE COMPUTATION CYCLE RE-
CORD instruction (SCCR), which
stores a block describing a spec-—
ified computation cycle.

The SPML instruction stores the names
of C-process models currently in the
system, in successive word locations
starting at a given location. The

System Inquiry Facilities

Principles of Operation
The EPSILON System

number of words to be stored is spec-
ified in the instruction, and a count
of the number of names not stored is
returned at instruction completion.
The names are stored in arbitrary or-
der. The behavior of the SDOL
instruction is the same as that of
the SPML instruction, except that
word pairs are stored, the first word
containing the name of a domain and
the second word containing its iden-
tifier.

The SQS instruction stores a Queue
Status Record (QSR), in the format
described in figure 18.2, for the
queue whose q.ix is specified in the
instruction. The C-process within
which the instruction is executed
need not be a member of the family
having custody of the queue.

The SCCR instruction stores a Compu-
tation Cycle Status Record (CCSR), in
the format described in figure 10.3,
for the computation cvcle whose iden-
tifier is specified in the instruc-
tion. The selection routine code
contained in field SRT indicates the
source of the routine as well as its
specific type. Code values 0-127 are
reserved for selection routines sup-
plied with EPSILON systems or avail-
able as factory installed options.
The values for the standard routines
[Section 4.4] are:

0 = finite quential
1 = infinite sequential
2 = multiplexed.

Code values of 128-255 are used for
custom routines, and routines avail-
able only for field installation.

10.3 cCollection of Statistics

Statistics are collected in EPSILON
systems by incrementing arithmetic
counters when an event of statistical
significance occurs. A set of stand-
ard statistical counters is formed by
microcode during operation of all

Chapter 10

Version 1.0
15 June 1976

systems. The set varies in size and
content as demands for statistics
fluctuate. Some of these counters
are incremented automatically by
microcode; the others are incre-
mented by execution of the COLLECT
STATISTICS instruction (CSTAT). A
software statistics feature, which
can be installed on any model, pro-
vides the ability to define counters
by instruction execution, and to dis-
play the value of counters at any
time.

A counter is 8, 16, 32, or 64 bits in
length, depending on the kind of data
it accumulates. Counters are organ-
ized into groups which accumulate da-
ta associated . with some entity
recognized by the system. The type
of entity with which a group of
standard counters can be associated
is

- the system,

- an I/0 device,

- an R-process source,
- a queue,

- a process family, or
- a domain.

A software counter group accumulates
data collected by some set of pro-
cesses; the data may or may not be
related by other associations.

Counter groups consist of a set of
non~-addressable counters, which are
incremented by microcoda, and a set
of addressable counters, which are
incremented by the CSTAT instruc-
tion. There can be a maximum of fif-
teen addressable counters in any
group, wWwith no more than eight 8-bit
counters, four 16-bit counters, two
32-bit counters, and one 64-bit coun-
ter. The composition of a group is
determined by the type of entity with
which the group is associated. The
system activity group contains only
non-addressable counters, a software
group contains only adressable coun-
ters, while the groups associated

System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

Field Offset Bytes

QFLG 0 1
it Value
0 0

1
1 0
1
2 0
1
3 0
1
4-7 -

Field 0ffset Bvtes

QSEQ 1 1
QICT 2 2
QIX 4 4
QNME 8 4
QPM 12 [
Chapter 10

QFLG QSEQ QICT
QIX
QNME
QPM
Figure 10.2

Queue Status Record

Description _and Use

Bits defining the type and status of the queue.

Sianificance

This is an input queue
This is a public queue

Normal
This queue has been primed to trigger initiation (in-

put queue only)

Normal
A process is in queue wait for this queue

Normal
The value in field QICT is not a true value

Reserved

Description _and Use

Contains the precedence sequence number of an input
queue, and zero for a public queue. High precedence
corresponds to low number.

Count of the number of items in the queue, modulo
16,386, Bit 3 of field QFLG is set to 1 if the true
count exceeds 16,383.

Q.ix of the queue for which this record was stored.
Name of the queue for which this record was stored.
Contains the name of the associated C-process model

for an input queue, and the name of the custodian pro-
cess model for a public queue.

164 System Inquiry Facilities

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

CCID

CCPER

SRT 0scC

PMCT

PMLST

Figure 10.3
Computation Cycle Status Record

Description _and Use

Field O0Offset Bytes
CCID 0 1
the record.
CCPER 1 3
SRT 4 1
0sc 5 1
PMCT 6 2
cycle.
PMLST 8 Var

Identifier of the computation cycle corresponding to

Period of the cycle [Section 4.11].
Tvpe of selection rountine in use by the cycle.
Overrun sequence count for the cycle [Section 4.71.

Number of process models with a process active in the

Names of the process models, listed in arbitrary or-

der; the number of entries in the list is equal to the
value of field PMCT.

with other types contain both kinds
of counters.

The counter affected by a CSTAT in-
struction is addressed by first se-
lecting a group, and then designating
a particular counter within that
group. Group selection is accom-
plished by applying modal con-
ventions to reference a particular
group within a designated type of
group.

o Group type is designated by a
number between 0 and 7:

0 = system

1 = I/0 device

2 = R-process source
3= queue

4 = process

Chapter 10

145

5 = process family
6 = domain
7 = software.
o At any given time, a process can

address at most one group of any
designated type. Types 4, 5, 6,
and 7 are treated uniformly for
all processes. For type 4, the
group selected is the group asso-
ciated with the process itself.
For type 5, it is the group asso-
ciated with the family of the
process. For type 6, it is the
group associated with the domain
on whose behalf the process is
currently acting. For type 7, it
is the software group current for
the process [Section 10.517.

o Types 1, 2, and 3, which are as-

System Inquiry Facilities

Principles of Operation
The EPSILON System

sociated with process sources,
are treated modally. A D-process
which dasignates type 1 refers to
the group associated with its own
I/0 device. An R-process which
designates type 2 refers to the
group associated with its own
source. A C-process which desig-
nates type 3 refers to the group
associated with its
queue. Any other designation of

these types will select a null
group of counters.
o Designation of type =zero by a

process of any class results in
selection of a null counter
group.

A null group is also selected if the
group which normally would be se-
lected does not exist because counter
assignment has been suppressed
[Section 10.41.

The address of a particular counter
within the selected group is aluways
designated by a fixed number, irre-
spective of whether the counter is
actually contained in the group:

1-8 are 8-bit counters
9-12 are 16-bit counters
13-14 are 32-bit counters
15 is the 64-bit counter

while 0 is used to designate the en-
tire set of addressable counters of a
group. If the selected group is a
null group, or if the designated
counter is not contained in the
group, the address is taken to refer
to a null counter.

To apply these addressing con-
ventions, the RS format is used for
the CSTAT instruction. The R3 field
specifies the type of group, and the
Rl field the particular counter. The
R3 field also defines the action to
be performed on the counter.

0 If the R3 field contains a true

Chapter 10

current

146

Version 1.0
15 June 1976

type number, the counter is to be
incremented. If the field value
is a type number plus 8, the
counter is to be set to a given
value. For example, a 3 in the
R3 field specifies that a queue
counter is to be incremented,
whila an 11 in the field speci-
fies that a queue counter is to
be loaded with a value.

o The second operand locates the
value by which the counter is to
incremented or set. The operand
length is taken to be equal to
the length of the counter.

o If a null counter is selected,
the instruction is terminated
without taking any action except
to set a condition code. The
condition is not considered to be
an error, and no exception is
raised.

The setting of the statistics col-
lection mask, which is displaved in
field STAT when a CDB is stored [Fig-
ure 10.1], determines whether or not
a counter is actually modified when
addressed by a CSTAT instruction or
by microcode.

o Bit zero of the mask is the mas-
ter switch. If the bit is zero,
the statistical collection mech-
anisms are inactive. No counters
will be modified, either auto-
matically or by instruction exe-
cution, and no performance
degradation will occur. If the
bit is 1, the collection mech-
anisms are active, as specified
by the remaining bits of the
mask.

o Bits 1 through 4 are switches for

I/0 device, R-process source,
queue, and process family
groups, respectively. Bit 5 con-

trols collection of domain sta-
tistics, and bit 6 controls the
software counters, if the soft-

System Inquiry Facilities

N

Principles of Operation
The EPSILON System

ware feature is installed. If a
bit is zero, the counters of the
type of group it controls are not
active. If a bit is 1, counter
groups of that type are active,
and will be modified if ad-
dressed. The system activity
counters are not controlled by
the mask, as they are always ac-
tive.

Bit 7 determines whether or not
the value of the mask can be
changed. If the bit is zero, the
mask can be set to another value;
if the bit is 1, the mask value
cannot be changed.

The initial value of the statistics

collection mask is specified at sys-
tem initialization. If bit 7 is then
zero, the mask can be set to any oth-
er value by execution of the SET COL-
LECTION MASK instruction (SCM)
within any C-process or R-process.
SCM exchanges mask bytes in the man-
ner of SXM and SBKM, and will contin-
ue to do so as long as bit 7 of the
new mask remains zero.

10.4 Assiagnment of Counters

Storage for statistical counters is
withdrawn from the M-storage pool
when a counter group is to be formed;
the storage is returned to the pool
when the group is no longer needed.
An area of M-storage may be reserved
at system initialization exclusively
for use by counters. If storage is
not available in the reserved area
when a counter group is to be formed,
an attempt will be made to obtain
storage from the general M-storage
pool. If the attempt is successful,
the storage 1is allocated to the
group, but is not made a part of the
reserved area; it will be returned to
the general pool when the counter
group 1s deleted.

is not available uwhen
is to be formed,

If storage
counter group

a
as—

Chapter 10

Version 1.0
15 June 1976

signment of the group is suppressed,
and a null group is substituted in
its place. Suppression of counter
assignment is a means of limiting the
amount of M-storage absorbed by sta-

tistics collection. It is not con-
sidered to be an error condition. No
exception of any kind is raised, nor
is the functional behavior of pro-
cesses affected.

Counter assignment is also sup-
pressed whenever operating condi-

tions indicate that statistics for an
entity can never be collected. For
example, if bit 7 of the statistics
collection mask is 1 and bit 3 is ze-
ro, queue statistics cannot be col-
lected unless the systam is
re-initialized. Consequently, coun-
ter assignment 1is suppressed for
queues defined after the mask was
set. The rules for counter assign-

~ment all follow this principle.

147

The system counter group is a
unique group which is assigned at
system initialization. Assign-
ment is suppressed if at that
time bit 7 of the statistics col-
lection mask is 1 and bit zero is
zero.

An I/0 device is assigned coun-
ters at system initialization.
Counter assignment is suppressed
if bit 7 of the statistics col-
lection mask is 1 and either bit
zero or bit 1 is zero.

An R-process source is assigned
counters at system initializa-
tion. Countar assignment is sup-
pressaed if bit 7 of the
statistics collection mask is 1
and either bit zero or bit 2 is
zero.

A cueue is assigned counters when
it is defined. Counter assign-
ment is suppressed if bit 7 of
the statistics collection mask
is 1 and either bit zero or bit 3

System Inquiry Facilities

Principles of Operation
The EPSILON System

is zero. If the queue is an in-
put queue, counter assignment is
also suppressed if the C-process
model with which it is associated
has a CMDB for which bit zero of
field CMFLG is zero.

o A process is assigned counters
when it is initiated, a process
model when it is defined or con-
nected. Counter assignment is
suppressed in either case if bit
7 of the statistics collection
mask is 1 and either bit zero or
bit 4 is zero. Counter assign-
ment is also suppressed if bit
zero of the XMFLG field of the
XMDB for the model is zero (X be-
ing C, R, or D).

Domain counter assignment [Section
10.6] is suppressed by bit 5 of the
statistics collection mask, and
software counter assignment [Section
10.71 by bit 6.

10.5 statistics Records

The data collected in the statistical
counters is made available when a
statistics collection end event
occurs., Each such event raises a
statistics collection system excep-
tion, which causes a statistics col-
lection record (SCR) to be placed
into the statistics queue [Section
9.71 and modifies counter values or
usage.

o If incrementation would cause a

counter of any group to overflow,
an overflow SCR is enqueued be-
fore the counter 1is modified.
The entire counter group is then
reset to zero and normal incre-
menting proceeds from that
point.

o If a queue is deleted from the
system by QDEL or during replace-
ment of a C-process model, a
queue deletion SCR is enqueued.
The counters assigned to the

Chapter 10

Version 1.0
15 June 1976

queue are then deleted from the
set of standard counters.

o When a process of a family for
which statistics are to be col-
lected terminates, a process end
SCR is enqueued. The counters
assigned to the process are com-
bined into the appropriate coun-
ters assigned to the family, and
the process counters are then de-
leted from the set of standard
counters.

o When a process model for which
family statistics are to be col-
lected is deleted from the system
permanently, rather than as an
intermediate step during
replacement, a process model de-
letion SCR is enqueued. The
counters assigned to the model
when it was defined or connected
are then deleted from the set of
standard counters. When a C-pro-
cess model with input queues is
deleted, the SCR for the dqueues
are placed into the queue follow-
ing the SCR for the model.

I/0 device, R-process source, and
system SCR can be enqueued only on
counter overflow unless the software
statistics feature is installed on
the system. Domain statistics are
not available through the statistics
queue. They are placed into the do-
main queue [Section 9.8] when a do-
main system exception is raised.

The general form of an SCR is de-
scribed in figure 10.4. The counters
displavyed in the SDTA field of a sys~—
tem SCR are all incremented by micro-
code whenever an appropriate
statistics event occurs, provided
the master switch bit of the statis-
tics collection mask is not =zero.
The format of this SDTA field is de-
scribed in figure 10.5.

An I/0 device is assigned two non-ad-
dressable counters, two 16-bit ad-

System Inquiry Facilities

Principles of Operation
The EPSILON System

dressable counters, and eight &-bit
addressable counters at system in-
itialization, if counter assignment
is not suppressed at that time.
These counters are displayed in the
SDTA field of an I/0 device SCR, in
the format described in figure 10.6.
In that figure, the addressable coun-
ters have names of the form ACn,
where n is an integer whose value is
the same as the address value by
which the counter is designated.
This convention is emploved whenever
addressable counters are referenced.

An R-process source is assigned two
non-addressable counters, two 16-bit
addressable counters, and four 8-bit
addressable counters at system in-
itialization, if counter assignment
is not suppressed at that time.
These counters are displaved in the
SDTA field of an R-process SCR, in
the format described in figure 10.7.

A queue is assigned three non-ad-
dressable counters, two 1l6-bit ad-
dressable counters, and one 64-bit

addressable counter when it 1is de-
fined, if counter assignment is not
suppressed at that time. These coun-
ters are displayed in the SDTA field
of a queue SCR, in the format de-
scribed in figure 10.8.

A process is assigned eight non-ad-
dressable counters, one 32-bit ad-
dressable counter, two 16-bit
addressable counters, and three
8-bit addressable counters, if coun-
ter assignment is not suppressed when
the process is initiated. These
counters are displayed in the SDTA
field of a process SCR, in the format
described in figure 10.9.

A process model is assigned six non-
addressable counters, one 32-bit ad-
dressable counter, two 16-bit
addressable counters, and three
8-bit addressable counters, if coun-
ter assignment is not suppressad when
the model is defined or connected.

Chapter 10

Version 1.0
15 June 1976

These counters are displayed in the
SDTA field of a process family SCR,
in the format described in figure
10.10.

Counter assignments and format of a
domain statistics record are dis-
cussed in Section 10.6. Softuware
statistics formats are described in
Section 10.7.

10.6 Pomain Statistics

When a domain is formed, it is as-

signed five non-addressable coun-
ters, four 8-bit addressable
counters, tuwo 16-bit addressable

counters, and one 32-bit addressable
counter, provided counter assignment
is not suppressed at that time.
Counter assignment will be sup-
pressed if bit 7 of the statistics
collection mask is 1 and either bit
zero or bit 5 is zero. The counters
are displayed in the SDTA field of a
domain SCR, in the format described
in figure 10.11.

A domain statistics record is placed
into the domain system exception
queue if a counter overflows, or if a
domain is deleted because its member-

ship count has gone to =zero. The
purpose of treating domain statis-
tics separately from other statis-

tics is that domain end is noteworthy
in itself; it may indicate, for exam-
ple, a significant point in the data
flow of an application. Consequent-
ly, a domain end record (field SCDC
equal 4) is always generated when the
condition occurs, irrespective of
whether statistics for the domain
were collected. If there are no sta-
tistics, the record ends with field
CFRM, and field SLEN Figure 10.41]
will be set to reflect the shorter
record length.

10.7 sSoftuare Statistics

The software statistics feature com-
prises three instructions which pro-

System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

Field Offset Bvtes

STPE] 1
SCDC 1 1
SLEN 2 2
SCSQ 4 4
STME 8 8
SDTA 16 Var
Chapter 10

STPE SCDC SLEN
3CSQ
STME
SDTA
Figure 10.4%

Statistics Collection Record

Description and Use

An integer between 0 and 7 which designates the type
of counter group stored in field SDTA of the record.
Values 8-255 are reserved.

An integer which identifies the condition that caused
the record to be generated:

counter overflow
process termination
queue deletion

process model deletion
domain end

instruction execution
(software feature only)

U H U=
uoHouw ou uon

Values 6-255 are reserved.
Length of the record in words.

Sequence number of the record within the type desig-
nated by field STPE. Sequence numbers are set to zero
at system initialization, and are reset whenever the
corresponding type bit in the statistics collection
mask is set to zero.

System clock time when the record was generated.
Data accumulated in the counter group for which the

record was generated. The format of this field
varies with the type designated in field STPE.

150 System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

Field Offset Bvtes
SID 0 4
MALD 4 2
MALR 6 2
MSPC 8 2
BSPC 10 2
NGTS 12 2
MGND 14 1
DLK 15 1
CPRC 16 2
CCOo 18 1
HOL 19 1

Chapter 10

SID
MALD MALR
MSPC BSPC
NGTS MGND DLK
CPRC cco HOL
RPR » DPRC

TCPU

TPPU

Figure 10.5

System SCR Data

Description and Use

The system identifier assigned at the factory [Figure
10.11.

Number of system malfunctions detected during the pe-
riod covered by this SCR.

Number of system malfunctions reported during the pe-
riod.

Number of M-spaces allocated during the period.
Number of B-spaces allocated during the period.

Number of access control gates closed during the pe-
riod.

Maximum height of gate promotion during the period.

Number of R-process deadlocks detected during the pe-
riod.

Number of C-processes initiated during the period.

Number of computation cyle overruns established dur-
ing the period.

Identifier of the highest level computation cycle for
which an overrun was established during the period.

151 System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

RPRC 20 2 Number of R-processes initiated during the period.
DPRC 22 2 Number of D-processes initiated during the period.
TCPU 26 [Total time in microseconds for which a CPU was as-
signed to some C-process or R-process during the pe-
riod.
TPPU 28 4 Total time in microseconds for which a PPU was as-
signed to some D-process during the period.
DVID CLASS TYPE
REQ1 REQ2
AC9 AC10
ACl AC2 AC3 AC4
ACS AC6 AC7 AC8
Figure 10.6
I/0 Device SCR Data
Field O0Offset Bytes Description _and Use
DVID 0 2 Identifier of the device for which this SCR was gen-
erated.
CLASS 2 1 Class code of the device [Figure 7.11].
TYPE 3 1 Type code of the devicae.
REQ1L 4 2 Number of items placed into the request queue for the
device during the period covered by this SCR.
REQ2 6 2 Number of items in the queue during the period which
were put into I/0 request state.
AC9-10 8 2%x2 Contents of the 1l6-bit addressable counters assigned
to the device.
ACl1-8 12 8x1 Contents of the 8-bit addressable counters assigned
to the device.
Chapter 10 152 System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

SRID Reserved
TPR SPR
AC9 AC10

ACl AC2 AC3 ACG

Field O0Offset Bytes
SRID 0 2
TPR G 2
SPR 6 2
AC9-10 8 2x2
ACl-4 12 Gx1

Figure 10.7
R-process Source SCR Data

Description_and Use

Identifier of the process source for which this SCR
was generated.

Number of R-processes initiated by the source during
the period covered by this SCR.

Number of R-processes initiated in the period as a
result of an 5GS instruction.

Contents of the 1l6-bit addressable counters assigned
to the source.

Contents of the 8-bit addressable counters assigned
to the source.

Chapter 10

QNME
QIX
ICT IMX
TWTE
AC9 ACl0
A?IS
Figure 10.8

Queue SCR Data

153 System Inquiry Facilities

Principles of Operation

The EPSILON System

Field 0Offset Bytes
QNME 0 4
QIX 4 G
ICT 8 2
IMX 10 2
TWTE 12 8
AC9-10 20 2x2
AC15 24 8

Yersion 1.0
15 June 1976

Description _and Use

Name of the queue for which this SCR was generated.
Index of the queue.

Number of items placed into the dqueue during the pe-
riod covered by this SCR.

Maximum number of items in the queue during the peri-
od.

Maximum waiting time of an item in the queue during
the period. The format of the field is that of the
system clock.

Contents of the 1l6-bit addressable counters assigned
to the queue.

Contents of the 64-bit addressable counter assigned
to the queue.

Field 0Offset Bvtes

PCL

0

Chapter 10

PCL AC1 AC2 AC3

PMID

MSPC BSPC

NGTS NIOR

NX1 NX3
TPU

ACS9 ACl0
AC13

1

Figure 10.9
Process SCR Data

Description _and Use

Process class of the process for which this SCR was
generated. Field values are zero for a C-process, 1
for an R-process, and 2 for a D-process.

154 System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

AC1-3 1 Ixl Contents of the 8-bit addressable counters assigned
to the process.

PMID 4 4 Process model name if the process is a C-process. If
the process is an R-process or D-process, the field
contains the process source or device identifier in
the low-order bytes.

MSPC 8 2 Number of M-spaces allocated by the process during
the period covered by the SCR.

BSPC 10 2 Number of B-spaces allocated by the process during
the period.

MGTS 12 2 Number of access control gates closed by the process
during the period (zero for a D-process).

NIOR 14 2 Number of I/0 requests made by the process during the
period.

NX1 16 2 Number of class 1 and class 2 process exceptions
raised for the process during the period.

NX3 18 2 Number of class 3 and class & process exceptions
raised for the process during the period.

TPU 20 4 Time in microseconds a processing unit was assigned
to the process during the period.

AC9-10 2% 2x2 Contents of the 16-bit addressable counters assigned
to the process.

AC13 28 4 Contents of the 32-bit addressable counter assigned
to the process.

Chapter 10 155 System Inquiry Facilities

Principles of Operation

The EPSILON System

Field O0Offset
PCL 0
AC1-3 1
PMID 4
MSPC 8
BSPC 10
BSTG 12
NX1 16
NX3 18
TPU 20
Chapter 10

Version 1.0
15 June 1976

PCL AC1 AC2 AC3

PMID

MSPC © BSPC
BSTG

NX1 NX3
TPU

ACY ACL0
AC13

Bvytes

1

Ix1

Figure 10.10
Process Family SCR Data

Description _and Use

Class of the process model for which the SCR was gen-
erated [Figure 10.91].

Contents of the 8-bit addressable counters assigned
to the model.

Process model name for a C-process model. For an
R-process model or a D-process model, the field con-
tains the process source or device identifier in the
low-order bytes.

Number of M-spaces allocated by processes of the fam-
ily during the period covered by this SCR.

Number of B-spaces allocated by processes of the fam-
ily during the period.

Number of kilobytes of B-storage required for
B-spaces held in custody of the family during the pe-

riod.

Number of class 1 and class 2 process exceptions
raised for processes of the family during the period.

Number of class 3 and class % process exceptions
raised for processes of the family during the period.

Time in microseconds processing units were assigned
to processes of the family during the period.

156 System Inquiry Facilities

Principles of Operation i Version 1.0
The EPSILON System 15 June 1976

AC9-10

ACl13

24 2x2 Contents of the 16-bit addressable counters assigned
to the model.

28 4 Contents of the 32-bit addressable counter assigned
to the model.

Field

DNME

DID
CFRM

MSPC

MSTG

DNME

DID

CFRM

MSPC BSPC

MSTG

BSTG

ACPU

APPU

ACl AC2 AC3 AC4

ACY AC10

AC13

Figure 10.11
Domain SCR Data

Offset Bytes Description and Use

0 4 Name of the domain for which the SCR was generated.
The field is zero for the common domain.

4 % Identifier of the domain.

3 8 System clock time when the domain was formed.

16 2 Number of M-spaces admitted to the domain during the
period covered by this SCR.

18 2 Number of B-spaces admitted to the domain during the
period.

20 4 Number of bytes of M-storage used by members of the
domain during the period.

Chapter 10 157 System Inquiry Facilities

Principles of Operation

The EPSILON System

Version 1.0
15 June 1976

Number of kilobytes of B-storage used by members of
the domain during the period.
Time in microseconds a CPU was assigned to some pro-

cess acting on behalf of the domain during the peri-

Time in microseconds a PPU was assigned to some
D-process acting on behalf of the domain during the

Contents of the 8-bit addressable counters assigned

Contents of the l6-bit addressable counters assigned

BSTG 26 4
ACPU 28 4

od.
APPU 32 4

-period.
ACl-4 36 4x1

to the domain.
ACS-10 40 2x2

to the domain.
AC13 44 4

Contents of the 32-bit addressable counter assigned
to the domain.

vide processes the ability to define
groups of addressable statistical
counters, to share the counters with
other processes, and to display the
value of any group of counters at any
time.

o The DEFINE STATISTICAL COUNTER
GROUP instruction (DSCG), which
can be executed within any C-pro-
cess or R-process, will define a
group of addressable statistical
counters, provided M-storage is
available and counter assignment
is not suppressed. Assignment
will be suppressed if bit 7 of
the statistics collection mask
is 1 and either bit zero or bit 6
is zero.

o If a group is defined, it becomes
associated with the defining
process as its current software
group, and will be selected as
such by a CSTAT instruction exe-
cuted within the process
[Section 10.31. The DSCG in-
struction also returns a 16-bit
identifier for the group, which
can be retained by the process or
passed to other processes. If a

Chapter 10

process executes an ACQUIRE STA-
TISTICAL COUNTER GROUP instruc-
tion (ASCG) specifying the
identifier, the group becomes
current for that process also.
As in the case of other identifi-
ers, zero is reserved for the
identifier of a null group. An
ASCG executed with zero as oper-
and will return a process to the
condition of having no effective
software counter group current.

o The STORE STATISTICAL COUNTER
GROUP instruction (S5CG), which
can bhe executed within any pro-
cess, will store an SCR into a
specified location. The counter
group for the SCR is selected by
the rules wused for selecting
counter groups for the CSTAT in-
struction.

The operand of a DS5CG instruction is
a l6-bit field which defines which of
the possible types of addressable

. counters are to be contained in the

group. Bits 1 through 15 correspond
to the counters whose addresses with-
in the group are designated by the
address values 1 through 15 respec-

System Inquiry Facilities

Principles of Operation
The EPSILON System

tively. If a bit is zero, the corre-
sponding counter will not be included
in the group; if the bit is 1, a
counter of the appropriate length is
assigned to that address.

Bit zero of the operand determines
the custody and access of the counter
group defined by the instruction. If
the bit is zero, the group is private
to the process for both custody and
access. An ASCG specifying the group
executed within any other process
will be rejected, and the group is
deleted when the process terminates.
If the bit is 1, the group is placed
into family custody of the defining
process; it can then be the legiti-

Version 1.0
15 June 1976

mate subject of an ASCG instruction.
A group in family custody is deleted
when the process model is deleted.
However, successful execution of an
ASCG increments a reference count for
the group, just as an LP does for a
space. Group deletion will be de-
layed until the reference count be-
comes zero.

When the contents of software coun-
ters are made available on counter
overflow or by execution of an SSCG
instruction, the counter group 1is
displaved in the SDTA field of the
SCR in the format described in figure
10.12.

CID CMSK
ACl AC2 AC3 AC4
AC5 AC6 AC7 AC3
AC9S AC10
ACll ACl2
AC13
AClé4
ACl15

Figure 10.12
Software SCR Data

Field Offset Bytes

Description and Use

Identifier of the software counter group for this

Mask supplied to the instruction which defined the

group. The contents of any of the fields ACn in the
racord are meaningful only if the bit in this field
corresponding to the counter is set to 1.

CID 0 2

SCR.
CMSK 2 2
Chapter 10

System Inquiry Facilities

Principles of Operation
The EPSILON System

ACl1-8 4 8x1
to the group.
AC9-10 12 4%2 Contents of the
to the group.
ACl13-14 20 2x4% Contents of the
to the group.
"AC15 28 8 Contents of the

to the group

Version 1.0
15 June 1976

Contents of the 8-bit addressable counters assigned

16-bit addressable counters assigned

32-bit addressable counters assigned

64-bit addressable counter assigned

The SSCG instruction will generate an
SCR of any type, not just a software
SCR. The generated SCR can be stored
at a given location or placed into
the statistics or domain dqueues,
forcing a system exception of that
kind.

o The instruction uses the RX for-
mat in which the R1 field spaci-
fies the type of group. The
particular group within the
specified type is selected by the
modal conventions used for the
CSTAT instruction.

o If the Rl field contains a true
type number, the SCR is stored at
the location defined by the sec-
ond operand. If the field value
is a type number plus 8, the SCR
is placed into the statistics or
domain queue, as appropriate.

An SCR generated by an S$5CG instruc-
tion has format identical to one gen—
erated by a statistics event. For a
given counter group, the content will
also be the same except that field
SCDC is set to the value 5 [Figure
10.4]. However, counter values are
not altered in any way as a result of
generating an SCR by means of an S5CG
instruction.

10.8 Procass Monitoring

The process monitoring feature al-
lows any process to specify condi-

Chapter 10

tions for which the activity of the
process is to be monitored. If any
of the conditions arise, a monitor
trace record is generated, and the
process is alerted to the condition
by forcing a process exception with
the trace information stored in field
FRCE of the exception record [Figure
5.41. '

A C-process or R-process can be moni-
tored for the following conditions:

o] execution of a linkage instruc-
tion

o execution of a branch instruc-
tion for which branching occurs

o alteration of the contents of
designated general registers

o alteration of the contents of a
designated M-space

o excessive process time between
execution of two monitor control
instructions.

A D-process can be monitored for
linkage instructions, successful
branches, and excessive time, but not
for the other conditions. The par-
ticular conditions to be monitored
are set up by execution of a SET MON-
ITOR CONDITIONS instruction (SMC),
which is supplied the monitoring in-
formation in a Monitor Conditions
Description Block (MCDB). An MCDB

System Inquiry Facilities

Principles of Operation
The EPSILON System

must begin on a word boundary and
have the format described in figure
10.13.

When the process monitoring feature
is installed, the state vector of ev-
ery process is enlarged to retain
MCDB data, and to include a menitor
mask which controls whether tracing
for specified conditions is active or
not. The bits of the mask correspond
to the

- linkage,

- successful branch,

- pointer register,

- arithmetic register,
- M-space, and

- process time

conditions, respectively, proceeding
from high to low order bits. A bit
of the mask must be 1 in order for
tracing to be active for the condi-
tion to which it corresponds. Howev-
er, the action of the process
monitoring mechanism in relation to a
process is governed primarily by bit
zero of field PFLG of the PIC.

o If the monitor bit of the PIC is
. zero, process activity 1is not
monitored at all. No monitor
exceptions will be forced, nor
will instruction execution time

for the process be affected.

o If the monitor bit is 1, instruc-
tion execution within the pro-
cess is monitored for occurrence
of the conditions set up by the
last SMC instruction executed by
the process. Process activity is
monitored even if no SMC has yet
been executed, so that instruc-
tion execution time 1is always
lengthened when the monitor bit
is on.

o If the monitor bit is on and a
specified condition occurs, a
trace record is generated if the
monitor mask bit corresponding

Chapter 190

16

1

Version 1.0
15 June 1976

to the condition is 1. The re-
cord is not generated if the mask
bit is zero, nor is the process
exception forced.

The SMC instruction will also turn on
or off the monitor bit of the PIC,
and turn on or off all bits of the
monitor mask as a group. Consequent-
ly, if all conditions are to be
treated uniformly, it is possible to
set up monitoring conditions and mon-
itoring activity with a single in-
struction. If conditions are to be
treated selectively, individual mon-
itor bits can be altered with the SET
MONITOR MASKS instruction (SMM). SMM
exchanges both the monitor mask and
the monitor bit of the PIC for a mask
byte in the instruction.

As process monitoring is considered
to be a diagnostic aid which should
not interfere with normal process ac-
tivity, a process monitor exception
is suppressed in favor of any other
process exceptions raised by an in-
struction. Moreover, when a monitor
exception is forced the new PIC on
entry to the exception module is set
with monitor bit zero. The exception
module is free to turn the monitor
bit on, but if a monitor exception is
forced during this time it will ef-
fectively be ignored [Section 5.131].

The extension of the exception record
forced by a monitor exception, corre-
sponding to field FRCE in figure 5.4%,
has the format described in figure
10.14. The CDATn fields of the exten-
sion contain the feollowing informa-
tion.

() For a linkage exception, CDATI1
contains a pointer to the M-space
from which the CALL or RETURN was
was executed, and CDAT2 contains
the address of the instruction
within the space.

o For a branch exception, CDATL
contains a pointer to the M-space

System Inquiry Facilities

Principles of Operation - Version 1.0
The EPSILON System) i 15 June 1976

WDTM

PRM ARM

SPCE

Figure 10.13
Monitor Conditions Description Block

Field 0Offset Bytes Description _and Use

WDTM 0 4 Maximum process time in microseconds between succes-
sive executions of an SMC instruction by the process.
The time is measured only while a processing unit is
assigned to the process.

PRM - G 2 Defines the pointer registers which are to be moni-
tored for alteration. Bits 0 to 15 correspond to reg-
isters 0 to 15. A register is to be monitored if its
corresponding bit is 1.

ARM 6 2 Defines the arithmetic registers to be monitored for
alteration. Bit conventions are tha same as for
field PRM.

SPCE 8 4 A pointer to an M-space which is to be monitored for

alteration.

CDAT1

MMB CDAT2

Figure 10.14
Extension of Exception Record
Forced by Monitor Exception

Field 0Offset Bvtes Description and Usa
CDAT1 0 4 Contains data pertinent to the condition which caused

the exception to be forced.

MMS 4 1 Bits which indicate the condition that caused the ex-
ception to be forced. The first six bits correspond
to the bits of the monitor mask. The trigger condi-
tion is indicated by which one of these bits is set to

Chapter 10 162 System Inquiry Facilities

Principles of Operation Version 1.0

The EPSILON System 15 June 1976

1. The last two bits of the field are zero.

CDAT2 5 3 Contains data pertinent to the condition which caused
the exception to be forced.

within which the branch instruc- and CDAT2 contains the address
tion is located, and CDAT2 con- within the space of the data
tains the address of the instruc- which was accessed.
tion. If the branch was caused
by an EXECUTE instruction, the o Neithaer field has significance
fields locate that instruction. for an excessive time exception.
o For a pointer or arithmetic regi- As with any class 3 exception, a mon-
ster exception, CDAT1 contains itor trace record is stored after the
the value of the register prior state vector is updated on completion
to alteration. Field CDAT2 is or termination of the instruction.
not significant. In each case, therefore, the old and
new data values are available to the
o For an M-space exception, CDAT1 exception module.

contains a pointer to the space

10.9 Instruction Dascriptions

STORE CONFIGURATION DATA

SCONS M1,D2(X2,B2) <RX>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. If the instruction is
not suppressed, configuration data is stored at the specified location.

The first operand serves as a mask field which selects the options
specifiable with the instruction. If the high-order bit of the mask is zero,
a CDB is stored at the location; if the bit is 1, no CDB is stored. If a CDB is
stored, bit 1 determines its content. If the bit is zero, the CDB describes
installed onditions; if the bit is 1, the CDB describes current availability.

If bit 2 of the mask is zero, a computation cycle list is stored; if the
bit is 1, no list is stored. Computation cvcle identifiers are stored in
succesive byte locations, starting at the location immediately following the
CDB, or at the location specified by the second operand if no CDB is stored. A
complete list of identifiers is stored if the high-order bit of mask field M1
is zero. If the bit is 1, the list contains only the identifiers of those cy-
cles with an active process. In either case, the identifiers are stored in
order of decreasing response priority.

Chapter 10 163 System Inquiry Facilities

Principles of Operation Version 1.0
The EPSILON System 15 June 1976
Process Class: C,R
Condition Code: Unchanged

Exceptions:
Specification

STORE PROCESS MODEL LIST

SPML R1,D2(X2,B2) <RX>

C-process model names are stored in successive words starting at the sec-
ond operand location, up to the number of words specified by the value con-
tained in arithmetic register Rl. Subsequently the content of the register is
replaced by the difference between its original value and the number of C-pro-
cess models in the system.

Names are stored in arbitrary order. If storing a name would require ex-
ceeding the space boundary, the instruction is terminated at that point with
condition code 3, and without decrementing register R1. If the instruction is
completed, the condition code is set according to the final value of register
R1.

The instruction is suppressed with a specification exception if the second
operand does not defina a location on a word boundary.

Process Class: C

Condition Code:
0 Difference is zero
1 Differencee is negative
2 Difference is positive
3 Insufficient space allouwed

Exceptions:
Spaecification

STORE DOMAIN LIST

SDOL R1,D2(X2,B2) <RX>

Pairs of domain names and identifiers are stored in successive
double-words starting at the second operand location, up to the number of
double-words specified by the value contained in arithmetic register R1. Sub-
sequently the content of the register is replaced by the difference between
its original value and the number of domains in the system.

The name of the domain is stored in the first word of a pair, followed by
the identifier in the second word. The pair corresponding to the common do-
main is stored first; the remaining pairs are stored in arbitrary order. If
storing a pair would require exceeding the space boundary, the instruction is
terminated at that point with condition code 3, and without decrementing regi-

Chapter 10 164 System Inquiry Facilities

N

N

Principles of Operation Version 1.9
The EPSILON System 15 June 1976

ster R1. If the instruction is completed, the condition code is set according
to the final value of register R1l.

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary.

Process Class: C

Condition Code:
0 Difference is zero
1 Difference is negative
2 Difference is positive
3 Insufficient space allowed

Exceptions:
Specification

STORE QUEUE STATUS

5Q5 R1,D2(B2) <RS>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. It is terminated with
condition code 1 if arithmetic register Rl does not contain the q.ix of an ex-
isting queue. :

If the instruction is not suppressed or terminated, a queue status record
for the specified queue is stored at the second operand location. The in-
struction is then completed with condition code zero.

Process Class: C

Condition Code:

0 Status record stored
1 Invalid queue index
2 -
3 -

Exceptions:
Specificattion:

STORE COMPUTATION CYCLE RECORD

SCCR R1,D2(B2) <RS>

The instruction is suppressed with a specification exception if the second
operand does not define a location on a word boundary. It is terminated with
condition code 1 if arithmetic register Rl does not contain the identifier of
an existing computatiion cycle.

If the instruction 1s not suppressed or terminated, a computation cycle

Chapter 10 165 System Inquiry Facilities

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

status record for the specified cycle is stored at the second operand loca-
tion. The instruction is then completed with condition code zero.

Process Class: C

Condition Code:

0 Status record stored
1 Invalid cycle identifier
2 -
3 -

Exceptions:
Specification

COLLECT STATISTICS

CSTAT 1I1,I3,D2(B2) <RS>

The instruction is terminated immediately with condition code zero if bit
zero of the statistics collection mask is zero. If the bit is 1 the value in a
statistical collection counter is incremented or replaced by the value of the
integer found at the second operand location.

Immediate fields Il and I3 specify the counter to be modified and the mod-
jfication action. If the value of field I3 is between 0 and 7, the counter is
to be incremented, otherwise the counter value is to be replaced.

The counter group containing the counter to be modified is selected ac-
cording to the value of field I3 modulo 8. If the value is zero, a null coun-
ter group is selected. If the value is 1, and if bit 1 of the statistics
collection mask is zero, the instruction is terminated with condition code ze-
ro. If the bit is 1, and if the process executing the instruction is a D-pro-
cess, the counter group selected is the group assigned to the I/0 device with
which the process is associated. A null group is selected if counter assign-
ment was suppressed for the device, or if the instruction is being executed
within a C-process or R-process.

If the value of field I3 modulo 8 is 2, and if bit 2 of the statistics col-
lection mask is zero, the instruction is terminated with condition code zero.
If the bit is 1 and if the process executing the instruction is an R-process,
the counter group selected is the group assigned to the process source of the
process. A null group is selected if counter assignment was suppressed for
the source, or if the instruction is being executed within a C-process or
D-process.

If the value of field I3 modulo 8 is 3, and if bit 3 of the statistics col-
lection mask is zero, the instruction is terminated with condition code zero.
If the bit is 1 and if the process executing the instruction is a C-process,
the counter group selected is the group assigned to the current queue of the
process. A null group is selected if the process does not have a queue cur-
rent, if counter assignment was suppressed for the queue, or if the instruc-
tion is being executed within an R-process or D-process.

If the value of field I3 modulo 8 is ¢ or 5, and if bit 4 of the statistics
collection mask is zero, the instruction is terminated with condition code ze-
ro. If the bit is 1 and the value is 4, the group selected is the group as-

Chapter 10 166 System Inquiry Facilities

N

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

signed to the process within which the instruction is being executed. If the
value is 5 the group selected is the group assigned to the process model for
the process. A null group is selected if counter assignment was suppressed
for the process or process model.

If the value of field I3 modulo 8 is 6, and if bit 5 of the statistics col-
lection mask is zero, the instruction is terminated with condition code zero.
If the bit is 1, the group selected is the group assigned to the domain on
whose behalf the process executing the instruction is currently acting. A
null group is selected if counter assignment was suppressed for the domain.

If the value of field I3 modulo 8 is 7, and if the software statistics fea-
ture is not installed on the system or if bit 6 or the statistics collection
mask is zero, the instruction is terminated with condition code zero. If the
bit is 1, the counter group selected is the software group current for the
process within which the instruction is being executed. A null group is se-
lected if there is no such group current for the process.

If a null group is selected, the instruction is terminated with condition
code 2. If the group is not null, field Il is examined to determine the coun-
ter within the group which is to be modified. If the field value designates a
counter not contained in the selected group, the instruction is terminated
with condition code 2. If the designated counter is contained in the group,
it is modified by the contents of the field which begins at the second operand
location and extends through as many bytes as equal the length of the counter
to be modified.

The instruction is completed with condition code 1 if the counter is
loaded with a value, or if it can be incremented without overflow. If incre-
menting would cause overflow, the counter is set to its maximum value, a coun-
ter overflow SCR is generated, and a statistics collection system exception is.
raised by placing the SCR into the statistics collection queue. All counters
of the selected group are then reset to zero, and the instruction is completed
with condition code 3.

Process Class: C,R,D
Modal

Condition Code:
0 Statistics not being collected
1 Counter modified
2 Null counter selected
3 Counter overflow

Exceptions:
Statistics collection (system)

SET COLLECTION MASK

SCM D1(Bl1),I2 <SI>

The current value of the statistics collection mask is stored at the loca-
tion specified by the first operand. The instruction is then terminated with
condition code 1 if bit 7 of the mask is 1. If the bit is zero, the mask is set
equal to the byte of immediate data in the second operand field, and the in-

Chapter 10 167 System Inquiry Facilities

Principles of Operation ‘ Version 1.0
The EPSILON System 15 June 1976

struction is completed with condition code zero.
Process Class: C,R
Condition Code:
0 Mask value reset
1 Mask cannot be altered
2 -
3

Exceptions: HNone

DEFINE STATISTICAL COUNTER GROUP

DSCG R1,D2(X2,B2) <RX>

The instruction is suppressed with an operation exception if the software
statistics feature is not installed on the system. It is terminated with con-
dition code 1 if bit 7 of the statistics collection mask is 1 and either bit
zero or bit 6 is zaro. .

If the instruction is not suppressed or terminated, an attempt is made to
obtain M-storage for a complete set of addressable statistical counters. The
instruction is terminated with condition code 2 if storage is not available.
If storage is available, counter positions whose addresses correspond to bit
positions 1 through 15 of the 16-bit field located by the second operand are
marked active if the bit is 1 and inactive if the bit is zero.

If bit zero of the field located by the second operand is zero, the coun-
ter group is placed into custody of the process within which the instruction
is being executed and marked private. If the bit is 1, the group is placed in-
to custody of the process family.

An identifier for the group is generated and placed into arithmetic regi-
ster R1l, the group is assigned as the current software group of the process,
and the instruction is completed with condition code zero.

Process Class: C,R

Condition Code:

0 Counters assigned
1 Assignment suppressed
2 Storage not available
3

Exceptions:
Operation

Chapter 10 168 System Inquiry Facilities

N

Principles of Operation Version 1.0
The EPSILON System ‘15 June 1976

ACQUIRE STATISTICAL COUNTER GROUP

ASCG R1 <RR>

The instruction is suppressed with an operation exception if the software
statistics feature is not installed on the system. It is terminated with con-
dition code 2 if arithmetic register Rl does not contain the identifier of a
software statistical counter group. If the identifier is valid, the instruc-
tion is terminated with condition code 1 if the group is in private custody of
a process other than the process within which the instruction is being exe-
cuted.

If the instruction is not suppressed or terminated, and if the process has
a software counter group current, the referesnce count of that group is decre-
mented by 1. The group referenced by register Rl is then made the current
software group of the process, its reference count is incremented by 1, and
the instruction is completed with condition code zero.

Process Class: C,R,D

Condition Code:

0 Group acquired

1 Group not available
2 Invalid group identifier
3

Exceptions:
Operation

STORE STATISTICAL COUNTER GROUP

$SCG I1,D2(X2,B2) <RX>

The instruction is suppressed with an operation exception if the software
statistics feature is not installed on the system. It is suppressed with a
specification exception if the second operand does not define a location on a
word boundary.

If the instruction is not suppressed, immediate field Il specifies the
type of SCR to be generated and the store action for the SCR. If the value of
field Il is between 0 and 7, the SCR is to be stored at the second operand lo-
cation, otherwise the SCR is to be placed into the statistics or domain excep-
tion queue, as appropriate.

The counter group for the SCR is selected according to the value of field
I1 modulo 8. If the value is zero, the instruction is terminated with condi-
tion code 2. If the value is 1, and if the process executing the instruction
is a D-process, the group selected is the group assigned to the I/0 device
with which the process is associated. The instruction is terminated with con-
dition code 2 if the device has no counter group assigned, or if the instruc-
tion is being executed within a C-process or R-process.

If the value of field Il modulo 8 is 2, and if the instruction is being ex-

Chapter 10 169 System Inquiry Facilities

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

ecuted within an R-process, the counter group selected is the group assigned
to the process source for the process. The instruction is terminated with
condition code 2 if the source has no counter group assigned, or if the in-
struction is being executed within a C-process or D-process.

If the value of field Il modulo 8 is 3, and if the process is being exe-
cuted within a C-process, the counter group selected is the group assigned to
the current queue of the process. The instruction is terminated with condi-
tion code 2 if the process has no current queue, if the queue has no group as-
signed, or if the instruction is being executed within an R-process or
D-process.

If the value of field Il modulo 8 is 4, the counter group selected is the
group assigned to thae process executing the instruction. If the value is 5,
the group selected is the group assigned to the process model for the process.
If the value is 6, the group selected is the group assigned to the domain on
whosae behalf the process is currently acting. If any of these groups is a null
group, the instruction is terminated with condition code 2.

If the value of field Il modulo 8 is 7, the counter group selected is the
group assigned as the current software group of the process executing the in-
struction. The instruction is terminated with condition code 2 if the process
has no current software group.

An SCR is generated for the selected group. If the SCR is stored at the
second operand location, the instruction is completed with condition code ze-
ro. If the SCR is to be enqueued, it is placed into the domain exception queue
if the value of field Il modulo 8 is 6, otherwise it is placed into the statis-
tics exception queue. The instruction is then completed with condition code
1.

Process Class: C,R,D
Modal

Condition Code:

] SCR stored

1 SCR enqueued
2 Null group selected
3

Exceptions:
Operation
Spaecification
Statistics (system)
Domain (system)

SET MONITOR CONDITIONS

SMC M1,D2(X2,B2) <RX>

The instruction is suppressed with an operation exception if the process
monitoring feature is not installed on the system. It is suppressed with a
specification exception if the second operand does not define a location on a
word boundary.

If the istruction is not suppressed, the information in the MCDB located

Chapter 10 170 System Inquiry Facilities

A

N

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

by the second operand replaces the monitor conditions current for the process.
The entire block is used if the instruction is being executed within a C-pro-
cess or R-process. For a D-process, only the first word of the block is used.

Mask field M1l is examined for monitor mask action. If bit zero of field Ml
is zero, the monitor mask is not disturbed. If the bit is 1, all bits of the
monitor mask are set to the value of bit 1 of field M1. If the value of the
process time bit of the monitor mask is changed by this action, the process
time counter for the process is set to the value in field WDBTM of the MCDB lo-
cated by the second operand.

If bit 2 of field M1 is zero, the instruction is completed with condtition
code 2. If the bit is 1, the monitor bit of the PIC is set to the value of bit
3 of field Ml. If the new value of the monitor bit is zero, monitor probes for
the process are deactivated, and the instruction is completed with condition
code zero. If the monitor bit of the PIC is 1, monitor probes are activated,
and the instruction is completed with condition code 1.

Process Class: C,R,D
Modal

Condition Code:

0 Monitoring deactivated
1 Monitoring activated
2 Monitoring not changed
3

Exceptions:
Operation
Specification

SET MONITOR MASKS

SMM D1(Bl),I2 <SI>

The instruction is suppressed with an operation exception if the process
monitoring feature is not installed on the system. If the instruction is not
suppressed, the value of the monitor bit of the PIC and the current monitor
mask of the process are stored in the byte located by the first operand. Bit
zero of the byte is set to the value of the monitor bit, bits 1 through 6 with
the value of the monitor mask, and bit 7 is set to zero.

The monitor bit of the PIC is then set equal to the value of bit zero of
immediate field I2, the bits of the monitor mask of the process are set equal
to bits 1 through 6 of field I2, and the instruction completion sequence is
entered.

The instruction completion sequence compares the value of bit 6 of the
byte stored at the second operand location with the value of the process time
bit of the new monitor mask. If the bit values are unequal, the process time
counter for the process is set to the value of field WDTM of the current MCDB
of the process. The counter is set to its maximum value if there is no MCDB
current. If the bit values are equal, the process time counter is not dis-
turbed.

If the new monitor bit of the PIC is 1, monitor probes for the process are

Chapter 10 171 System Inquiry Facilities

Principles of Operation - Version 1.0
The EPSILON System 15 June 1976

activated, and the instruction is completed with condition code 1. If the bit

is zero, the probes are deactivated, and the instruction is completed with
condition code zero.

Process Class: C,R,D

Condition Code:

0 Monitoring deactivated
1 Monitoring activated
2 -
3 -

Exceptions:
Operation

Chapter 10 172 System Inquiry Facilities

Principles of Operation
The EPSILON System

11.0 MALFUNCTION DETECTION AND RECOVERY

Mechanisms for the detection and cor-
raction of errors caused by malfunc-
tion of hardware or microcode vary in
form and capability from one model of
EPSILON system to another. Some mod-
els, for example, employ bit encoding
techniques for storage that permit
correction of all single-bit fail-
ures, while others are able to detect
but not correct such failures. All
models, however, follow the same bas-
ic procedure when an error condition
is detected.

o If the detection mechanism is ca-
pable of correcting the condi-
tion, a local correction is
applied. The detection mech-
anism may then log error cor-
rection data, but will take no
further action.

o If local correction is not possi-
ble, information describing the
error condition is transmitted

to an error recovery process.
For many errors, the recovery
process is an internal system

process responsible for analysis
and correction of a class or type
of error.

o If there is no internal recovery
process, or if that process can-
not effect recovery, a system
error signal is raised. The er-
ror signal is a process source
for a family of service processes
which respond to error condi-
tions the system cannot handle.
An error signal process may dis-
pose of an error report in any
manner, and may trigger orderly
system termination if the condi-
tion precludes useful continued
operation.

A system error signal is raised only

for an actual system malfunction, not
for programming errors. If an inval-

Chapter 11

Version 1.0
15 June 1976

id data format or incorrect use of an
instruction is datected, the error is
reported by signalling a process ex-
ception. Conditions which might lead
to a deviation from normal for pro-
cess behavior in general, are re-
ported by signalling a system
exception. Errors detected by soft-
ware are reported by forcing either a
process or system exception. This
chapter describes the kinds of system
malfunction detected, the internal
recovery attempted, and the facili-
ties available to error signal pro-
cesses.

11.1 Harduware Malfunction

Behavioral malfunctions of harduware
are detected by encoding redundant
bits in storage, or employing redun-
dant circuitry in active components.
All replaceable units (RU) of EPSILON
systems include enough redundancy to
determine whether or not a malfunc-
tion detected within the unit is the
fault of the unit itself. The set of
RU for a system is model-dependent,
but the CPU, PPU, and Basic Storage
Modules (BSM) are always RU.

If an RU detects an error condition
it cannot correct, it is said to have
sustained damage; if the error is
corrected the RU has effected recov-
ery. An RU which effects recovery may
generate a racovery report error
signal as a means of noting the cor-
rection if not itself capable of such
action. An RU which sustains damage
is removed from the active configura-
tion of the system, and some type of
error signal is raised.

[} If the RU is replicated, and if
it is not the sole remaining ac-
tive member of its set, a dzogra-

dation report is generated.

(<] If the RU is not replicated, or

Malfunction Detection

Principles of Operation
The EPSILON System

if its peers have all been previ-
ously damaged, a damaga report is
generated. If system operation
cannot reasonably continue with-
out the damaged RU (e.g. the last
CPU failed), primary damage is
reported, otherwise the damage
is sacondary.

An environmental or operational mal-
function, such as low voltage, loss
of cooling, or power failure, which
causes or may cause behavioral er-
rors, is reported by means of a Warn-
ing report. Warning reports are
generated by any RU which detects the
condition.

11.2 Invalid System Data

Internal data required for system op-
eration resides in M-storage in the
form of control blocks and control
block lists. Data values are checked
for validity by microcode to the ex-
tent practical for a given model.
Critical data items in the

computation cycle list,
space allocation list,
process state vectors,
process model definitions,
queue control list,

gate control list, and
device descriptions

are checked on all models. Some form
of error signal is raised uwhenever
system data is found to be inconsist-
ent or invalid.

o If the data can be reconstructed,
the error is signalled by a re-
covery report. Reconstruction
is possible only on models which
preserve redundant system data.

o If a substitute value can be used
without affecting the immediate
behavior of any process, the er-
ror is signalled by a warning re-
port. For example, if queue
header data is found to be inval-

Chapter 11

Version 1.0
15 June 1976

id, the queue can be treated as a
null queue without inducing be-
havioral defects in the attend-
ant or enqueuing processes.
However, as in the case of hard-
ware, warning reports signal the
certaintly of future damage.

o If reconstruction or substi-

tution is not possible, the error.

is signalled by a damage report.
Primary damage is reported if the
invalid data prevents normal op-
eration of the system (e.g. in-
valid gate data prevents
R-process dispatching). Second-
ary damage is reported if the er-
ror is limited to a particular
process or set of processes.

Reconstruction, substitution, or by-
passing of invalid data allows pro-
cess activity to continue when a
recovery report, warning report, or
secondary damage report is sig-
nalled. However, if primary damage
is reported, all process activity is
suspended except for any error signal
process intiated by the report.

11.3 system Operation Error

Although the microinstruction set is
model-dependent, the equivalent of a
microprocess exception can occur on
all models. If an exception micro-
routine attributes such an exception
to invalid data in the registers or
local storage of a CPU or PPU, the
exception is treated as a malfunction
of that RU [Section 11.1]1. RU mal-
function 1is also signalled if a
microinstruction sequence private to
the CPU or PPU is judged to be at
fault.

If a faulty microinstruction se-
quence is shared by the processing
units of a system, a damage report is
generated.

o Primary damage is reported if the
fault impairs the interpretation

Malfunction Detectibn

Principles of Operation
The EPSILON System

of any instruction standard to
the basic, computational, or pe-
ripheral instruction sets.

o Secondary damage is reported if
the fault impairs the interpre-
tation of an instruction in some
feature set, and the feature set
is made unavailable. Any process
can determine feature availabil-
ity by storing a configuration
description block [Figure 10.11].

Error signals are also raised for un-
recoverable internal I/0 errors on
data transfer between M-storage and
B-storage. These will be reported as
hardware malfunction if the error is
attributed to some RU, and as system
operation damage if the microin-
struction sequence is judged to be at
fault. If the error occurs for an
instruction for which a 'space not
available' condition code return is
possible (e.g. LOAD, SAVE, DCPM),
that code is returned to the process
executing the instruction. If the
error occurs for a CALL instruction
executed within a C-process, an ac-
cess exception is raised when the
process is removed from I/0 wait dis-
patching condition.

11.4 Error Sianal Mask

The setting of the error signal mask,
which is displayed in field ERSM when
a configuration description block is
stored [Figure 10.11, determines
whether or not an error signal actu-
ally triggers the error signal pro-
cess source.

o Bit zero of the mask is the mas-
ter switch. If the bit is zero,
all system error signals are
ignored. Error reports are dis-
carded, and no error signal pro-
cesses wWill be initiated. If the
bit is 1, error signals are ef-
fective, subject to the remain-
ing bits of the mask.

Chapter 11

Version 1.0
15 June 1976

o Bits 1 through 5 are switches for
primary damage, secondary dam-
age, degradation, warning, and
recovery report error signals,
respectively. If a bit is zero,
signals of the type it controls
are ignored. If a bit is 1,
signals of that type are effec-
tive, and will trigger the error
signal process source.

o Bit 6 is the checkpoint control
switch., If the bit is =zero, a
checkpoint request is honored
only within an error signal pro-
cess. If the bit is 1, any
R-process can trigger a system
checkpoint [Section 12.81].

o Bit 7 determines whether or not
the value of the mask can be
changed. If the bit is zero, the
mask can be set to another value;
if the bit is 1, the mask value
cannot be changed.

The initial value of the error signal
mask is specified at system initial-
ization. If bit 7 is then zero, the
mask can be set to another value by
execution of the SET ERROR MASK in-
struction (SRM) within any C-process
or D-process.

If an error signal is raised when the
master switch bit is off, or when the
master switch bit is on but the bit
which controls the type of error re-
ported is off, system activity con-
tinues if at all possible. However,
the system termination procedure is
invoked if system damage is so severe
that activity cannot continue. Sys-
tem termination will signal an ex-
ternal alarm, attempt to checkpoint
system data, and stop all CPU, PPU,
and I/0 activity [Chapter 121].

11.5 Error Siagnal Processes

The process model connected to the
error signal process source is an
R-process model whose RMDB contains

Malfunction Detection

Principles of Operation

The EPSILON System

Field 0Offset

ESCE 0

Field 0Offset

SDFN 1

Chapter 11

Version 1.0
15 June 1976

ESCE SDFN MDEP

Bytes

Bvtes

1

Figure 11.1
Error Report

Description and Use

Bits which define the type and source of the error re-
port

Significance

Normal
This is a primary damage report

Normal
This is a secondary damage report

Normal
This is a degradation report

Normal
This is a warning report

Normal
This is a recovery report

Normal
This report was generated because of a hardware mal-
function

Normal
This report was generated because of invalid system
data

Normal
This report was generated because of a system oper-

ation error.

Description_and Use

Bits which define the source which caused the report
to be generated. The significance of each bit varies
with the type of source. In the following descrip-
tion, numbers in parentheses indicate the source type
to which a statement is applicable: (1) indicates
hardware malfunction, (2) indicates invalid system
data, and (3) indicates system operation error. If a
statement has no source type nhumbers attached, it ap-
plies to all source types.

176 Malfunction Detection

Principles of Operation
The EPSILON System

Bit Value

0 0
1
1 0
1
2 0
1
3 0
1
4 0
1
5 0
1
6 0
1
7 0
1

Field 0Offset Bytes

Significance

Normal

Reported by a CPU (1)
Computation cycle list (2)
Power abnormality (3)

Normal

Reported by a PPU (1)

Space data or space allocation(2)
Power failure (3)

Normal

BSM affected (1)

Process state vector (2)
Cooling system failure (3)

Normal

System clock affected (1)

Process model definition block (2)
Reserved (3)

Normal
Queue header or queue control (2)
Reserved (1,3)

Normal
Gate or gate control list (2)
Reserved (1, 3)

Normal
Device description (2)

Reserved (1,3)

Normal

A source other than one specifically

the other bits

Description _and Use

Version 1.0
15 June 1976

identified by

MDEP 2 2 Data which depends on source and model. The field is
described in the functional specifications of each
EPSILON system model.
the following data. - the domain identifier for
processes of the family is
o The bits of field RMFLG are set the identifier of the entry
so that context space
- process statistics are not - the process model is
collected
Chapter 11 177 Malfunction Detection

Principles of Operation
The EPSILON System

single~-instance, and 1is in
system custody.

o The module M-space identified by
field RMMOD is specified at sys-
tem initialization, and bound to
the custody of the model; fields
RMLOC and RMMSK are set to zero.
A null exception module is speci-
fied by field RMXMD.

o The entry context space is speci-
fied at system initialization.
The error signal process source 1is
assigned a dispatching ©priority
higher than any other R-process
source, so that an attempt is made to
initiate an error signal process as
soon as an error signal becomes ef-
fective. The system termination pro-

cedure will be invoked if system
damage is so severe that a process
cannot be initiated. System termi-

nation will also be invoked if an er-
ror signal process is itself
terminated by any means other than
execution of an EXIT instruction.

If a process is initiated, the error
report becomes the communication da-
ta placed into arithmetic register 1
at entry to the process. The format
of an error report is described in
figure 11.1. An error signal process
may respond to the error report with
any kind of activity allowed to an
R-process. If the process terminates
with an EXIT instruction, the impli-
cation is that damage is not exten-
sive enough to warrant shutdown of

11.6 Instruction Descriptions

SET ERROR MASK

SRM D1(B1),I2 <SI>

Version 1.0
15 June 1976

the system. If system operation is
to be shutdown, the error signal pro-
cess can output system restart data
with a CHECKPOINT instruction and ap-
plication or installation restart
data using normal I/0 operations.
The process can also trigger logout
of data to be analyzed to determine
the cause of failure.

Some diagnostic data is generated for
every error signal. If a CPU, PPU,
or BSM sustains damage, error logout
data is placed into a reserved area
of M-storage before the RU is removed
from the active configuration of the
system. Data may also be placed into
the logout area by microcode prior to
generation of a damage report, and by
execution of a DIAGNOSE instruction.

DIAGNOSE is a special instruction
which can be executed only within an
error signal process. It will logout
diagnostic data and then invoke sys-
tem termination. No operand is spec-
ified, as the type of data to be
placed into the logout area is deter-
mined by the error report which ini-
tiated the process within which the
instruction is executed. The specif-
ic data logged for a given type of
error report is model-dependent, and
each model has its own diagnostic
microroutine to analyze data stored
in the logout area. These routines,
which can be executed only when the
system is in diagnhostic mode, are de-
scribed in the functional character-
istics document for each model.

The current value of the error signal mask is stored into the byte located

by the first operand.

Chapter 11

The instruction

is then terminated with condition code

Malfunction Detection

Principles of Operation v Version 1.0
The EPSILON System 15 June 1976

1 if bit 7 of the mask is 1. If the bit is zero, the mask is set equal to the
byte of immediate data in the second operand field, and the instruction is
completed with condition code zero.

Process Class: C,R

Condition Code:

0 Mask value reset
1 Mask value cannot be reset
2 -
3

Exceptions: None

DIAGNOSE

DIAGNOSE - <RR>

The instruction is suppressed with an operation exception if the process
within which it is being executed is not an error signal process.

If the instruction is not suppressed, error logout data corresponding to
the error report being serviced by the process is placed into the diagnostic
logout area, and the instruction is completed by invoking the system termi-
nation procedure.

Process Class: R
Condition Code: Unchanged

Exceptions:
Operation

Chapter 11 179 Malfunction Detection

Principles of Operation
The EPSILON System

12.0 SYSTEM INITIALIZATION

System initialization is the activ-
ity of bringing a system into produc-
tive operating condition after pouwer
is turned on, or after system oper-
ation has been terminated for any
reason. The particular operating
condition achieved is determined by
the content of the Initialization Da-
ta Table (IDT) supplied as input to
the initialization procedure.

An IDT contains all the configuration
data, initial space data, process
model definition blocks, and system
parameter values necessary to speci-
fy an operational state correspond-
ing to the desired operating
condition. The initialization pro-
cedure is a sequence of steps which
carries the system from its initial
operational state to the state
defined by the IDT. Because IDT can
be prepared at any time, system in-
itialization is equally capable of
producing states which correspond to
initial startup following delivery
or to a restart from some checkpoint.

12.1 overvieu

System initialization is invoked
from the operator console by desig-
nating an input device with the
device-identifier switches and then
depressing the initialization Kkey.
On some models it is possible to at-
tach an I/0 device so that it can
transmit a signal which duplicates
that of the initialization key. In
either case, the initialization
signal is effective only if the sys-
tem has been reset to initial opera-
tional state.

Initial state is entered at the end
of a power-on sequence, as the final
step of system termination, or uwhen
the system is reset as a result of
depressing the system reset key on
the operator console. In the initial

Chapter 12

Version 1.0
15 June 1976

state, process models are not con-
nacted to any process asource, the
system data areas are clear, instruc-
tion interpretation by CPU and PPU is
suspended, and I/0 reset has been
signalled to all devices attached to
the system. Consequently, there is
no process activity, and none can be
initiated until the initialization
procedure has been completed.

When an initialization signal be-
comes effective, the IDT is loaded
into M-storage from the initializa-
tion device. If the console switches
are set to the null device (identifi-
er zero), the IDT is obtained from an
area in B-storage set aside for in-
itialization data. The area is sup-
plied at the factory with a basic
startup IDT, and is replaced during
each operational period with an IDT
which provides continuity of oper-
ation from one operational period to
the next. If the console switches
are set to a real device, the IDT is
loaded by a special microprogram se-
quence executed by a PPU through
which the device is attached to the
system. If the device is passive
(e.g. tape unit or disc), it is as-
sumed to be properly positioned for
input; if the device is active (e.g.
another computer system), it is ex-
pected to be able to transmit IDT re-
cords on request. A primary damage
error signal is raised if the IDT
cannot be loaded without error; the
signal will force system termination
as an error signal process model is
not connected.

Once an IDT has been successfully
loaded, initialization progresses
through a sequence of phases which
correspond to the organization of da-
ta within the IDT. An IDT consists
of a maximum of nine sections of da-
ta, preceeded by a header, and for
each section there is an initializa-

System Initialization

A

Principles of Operation
The EPSILON System

tion phase whose responsibility is to
convert the data in the section into
system data and activity appropriate
to the desired operational state.
The sections and phases, which for
convenience are referred to by the
same names, are processed in the fol-
lowing sequence.

o system parameters. This section
contains configuration descrip-
tion block values [Figure 10.11,
M-storage area reservation
sizas, and general system data.
The initialization phase for the
section simply sets parameters
to the given values.

o Dispatching structure. This
section contains R-process
source dispatching priority val-
ues, and the characteristics of
each computation cycle in a de-
scriptive form similar to a com-
putation cycle status record
[Figure 10.3], arranged in order
of computation cycle precedence.
The initialization phase for the
section builds the dispatching
structure corresponding to this
data in the system data area.

o Space Definition. This section
contains entries which specify
the length and content of module
and data spaces which are re-
quired to define process models,
or which must be present in the
system prior to initiation of the
first regular process. Each en-
try has a name by which it can ba
referenced from other sections
of the IDT, and may also have an
associated domain name. For each
entry, the initialization phase
for the section allocates a space
of the given size, stores the da-
ta into 1t, and assigns the space
to the given domain, newly formed
if necessary.

[e] service process models. This
section contains the data to com-

Chapter 12

181

Version 1.0
15 June 1976

plete those process models. Ref-
erences to spaces are either in
terms of a name for an entry in
the space definition section of
the IDT, or in terms of pointers
to B-spaces which previously
existed in the system. The in-
itialization phase for the
section is then able to define
and connect the process models to
their process sources.

R-process models, D-process
medels, C-process models. These
sections contain entries which
ara process model definition
blocks of the given class. As in
the case of the service process
models section, space references
are either in terms of a name for
an entry in the space definition
section or are B-space pointers.
The initialization phases for
these sections define or connect
the process models corresponding
to the entries.

system checkpoint. This section,
which is present only if the IDT
was generated by a CHECKPOINT in-
struction [Section 12.8], con-
tains internal system data saved
by the checkpoint; it is the only
section of an IDT whose data for-—
mat s model-dependent. The
initialization phase for the
section restores the information
to the system data area. It may
also allocate M-spaces by LOAD
instructions applied to B-spaces
containing data saved during the
checkpoint, and set up state vec-
tors for processes whose activ-
ity is to restart from the point
of suspension.

Application initialization. This
section contains data whose
structure and content is not
knouwn to initialization. The da-
ta may have been created at any
time, and in any manner, and at-
tached to the IDT when it was

System Initializafion

Principles of Operation
The EPSILON System

stored on the initialization de-
vice. The section also contains
the name of an input queue asso-
ciated with some C-process mod-
el. The initialization phase for
the section completes the in-
itialization procedure, and as
the final step allocates an
M-space, places the section data
into it, enqueues the space on
the given queue, and releases the
system to normal operation. If
the process initiated as a result
of the enqueue is dispatched in
the first computation cycle, it
will be able to use the data to
set up starting conditions for an
application or operating system.

The header of an IDT is the only part
which is required to be present. If
a data’ section is missing, the
initialization phase for the section
will substitute default values for
data which is essential to system op-
eration, and will omit all activity
related to non-essential data. The
default values, which are the same
for all systems, need not be the val-
uas in the IDT installed in the
B-storage initialization area. If an
error or inconsistency is noted in
the data of any section, initializa-
tion will proceed as if the section
were missing. A warning report will
then be generated when the initial-
ization procedure is completed.

12.2 Initialization Data Tahle

In order to simplify the task of con-
structing an IDT, data sections are
treated as independent, self-con-
tained units, and may appear in any
order. The first byte of each
section is an identifier whose value
specifies the section content as:

= system parameters

= dispatching structure
space definition

= service process models
= R-process models

DWW - o
1"

Chapter 12

_Version 1.0
15 June 1976

= D-process models
= C-process models
system checkpoint
application initialization

00~ O W

If a section is of variable length,
the three bytes which follow the
identifier byte specify the length.
Using the identifier and length val-
ues, initialization will search the
table, if necessary, to locate a
section required for a given phase.
The structural ordering of an IDT is
not entirely arbitrary, however, as
the first item must be a header in
the format described in figure 12.1.
The SID and CLOK fields of the header
are provided as information by the
system checkpoint function. A valid
IDT may be constructed with arbitrary
values for these fields, as they are
not examined or used in any way by
initialization.

After a system has once been put into
productive operation, subsequent in-
itializations may be carried out on
the data base preserved in the system
from a previous period of operation.

o If field DBI of the header is ze-
ro, previous data is to be ig-
nored, and the space allocation
list is set up as initially emp-
ty. Consequently, space refer-
ences in the IDT must all be in
terms of entries in the space de-
finition section, as there are no
pointers initially valid.

o If field DBI is non-zero, the
B-spaces, B-space pointers, and
B-space allocation list present
in the system from the previous
period of operation form the data
base for initialization. The al-
location list is set up by fetch-
ing the B-space list resident in
B-storage and setting the
M-space list empty, as M-spaces
cannot be preserved. Space ref-
erences in the IDT may be entries
in the space definition section

System Initialization

=

Principles of QOperation
The EPSILON System

Version 1.0
15 June 1976

DBI IDTL

SID

CLOK

Field Offset Bvtes

DBI 0 1
IDTL 1 3
SID 4 4
CLOK 8 8

Figure 12.1
Initialization Data Table Header

Description_and Use

Describes the initial data base. If the field is ze-
ro, any data resident in the system is to be ignored.
If the field is non-zero, resident B-space data is to
be accepted as current. :

Combined length in bytes of the header and all data
sections in the IDT.

Identifier of the systen.

Time in system clock form when the IDT was con-
structed or generated.

Field Offset Bvtes

SECT 0 1
STAT 2 1
ERSM 3 1

Chapter 12

SECT Res STAT ERSM
RPA DPA
CPA QHA
CTRA PROL
Figure 12.2

Initialization Data Table
System Parameters Section

Description and Use

Contains the value zero, indicating this is the sys-
tem parameters section of the IDT.

Initial value for the statistics collection mask.

Initial value for the error signal mask.

183 System Initialization

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

RPA 4 2 Count of the number of R-process sources for which
process model and state vector space should be re-
served in M-storage.

DPA 6 2 Count of the number of I/0 devices for which process
model and state vector space should be reserved in
M-storage.

CPA 8 2 Number of bytes of M-storage to be reserved for
C-process models.

QHA 10 2 Number of bytes of M-storage to be reserved for queue
header data and C-process model state vectors.

CTRA 12 2 Number of bytes of M-storage to be reserved for sta-
tistical counters.

PROL 12 2 Value to be used for the promotion limit for gates
held by R-processes [Section 6.5]. The nominal limit
will be used if the field is zero.

SECT SLEN

CCNO 0CID PSCT s

BCT
CCENT
PSENT
Figure 12.3
Initialization Data Table
Dispatching Structure Section

Field O0Offset Bytes Description and Use

SECT 0 1 Contains the value 1, indicating this is the computa-
tion cycle structure section of the IDT.

SLEN 1 3 Total length of the section in bytes.

CCNO 4 1 Number of computation cycles to be installed on the
system.

0CID 5 1 Overrun cycle indicator.

\{/ ™~
N

Chapter 12

184 System Initialization

-,

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

PSCT 6 2 Number of process source identifiers contained in
field PSENT.

BCT 8 8 Time in system clock format which is to be used for
the basic cycle.

CCENT 16 Var Entries specifying the computation cycle character-
istics, arranged in order of cycle precedence. The
number of entries is equal to the value of field CCNO.

PSENT Var Var Process source identifiers, ordered by relative dis-
patching priority.

or B-space pointers which iden- dent. If the section is not present
tify an existing space. in the IDT, the phase substitutes
zeros for all field values.
Although an IDT with data base indi-

cator field non-zero is the simplest 12.4 Dispatching Structure
way of providing continuity from one
period of operation to the next, a The dispatching structure section of
zero-indicator field IDT can also be an IDT is of variable length, with
used if the space definition section the format describe in figure 12.3.
contains entries for all spaces to be
preserved. Such an IDT is required, The dispatching structure initial-
in fact, if the system is to be re— ization phase forms the initial dis-
stored to an operational state not patching tables in the system data
consistent with the state at termi- area. If field PSCT is zero, or if
nation of the previous period, as is the section is not present in the
the case for a full checkpoint IDT, the phase assigns factory-
[Section 12.81. installed values as the dispatching
priorities of the R-process sources.
12.3 Systam Paramaters If the field is not zero, new dis-
patching priorities are assigned to
The system parameters data section of all sources, starting with the
an IDT is fixed in length, with the sources whose identifiers are con-
format described in figure 12.2. tained in field PSENT. The relative
priorities are assigned in the order
In addition to setup of the parameter the sources appear, with the first
values from fields STAT, ERSM, and source receiving the highest priori-
PROL, the system parameters initial- ty. Priorities are then assigned to
ization phase structures the system the sources not specified by select-
data area to reflect the space ing them in the order of their fac-
requests, if feasible. If the space tory-installed priorities.
requests are judged excessive for the
amount of M-storage installed on the Each entry in the computation cycle
system, they are reduced proportion- portion of the section, field CCENT,
ately to satisfactory values; the is a double-word with the format de-
amount of reduction is model-depen- scribed in figure 12.4%.

Chapter 12 185 System Initialization

Principles of Operation
The EPSILON System

Version 1.0
15 June 1976

CCID

CCPER

SRT osc

SRD

Figure 12.4
Initialization Data Table
Computation Cycle Entry

Field Offset Bytes

Description and Use

CCID 0 1
the entry.
CCPER 1 3
SRT ' % 1
0scC 5 1
SRD 6 2

Identifier of the computation cycle corresponding to

Period of the computation cycle.
Type number of the selection routine for the cycle.
Overrun sequence count for the cycle.

Reserved for use as selection routine input data.

In addition to formation of the
specified computation cyecle struc-
ture in the system data area, the
initialization phase constructs a
special time event request block for
the basic cycle. This TERB will be
inserted into the time event queue in
the final phase of initialization,
and will remain in the queue effec-
tively at all times, as the microcode
process invoked by the event will re-
quest reinsertion of the updated
TERB.

If the section is not present in the
IDT, the phase will assume the system
is to operate with a single computa-
tion cycle of indefinite period gov-
erned by the infinite sequential
selection routine [Section 4.41. The
identifier of the cycle is set to ze-
ro. The overrun cycle indicator and
overrun sequence count are also set
to zero, but their values have no
effect on system operation as an
overrun cannot occur. The basic cy-
cle time is set to 1.048576 seconds,

Chapter 12

obtained by inserting a 1 into bit
position 31 of the 64-bit clock
field.

12.5 space Definition

The space definition section of an
IDT is variable length, with the for-
mat described in figure 12.5. The
space definition entries in field
SDENT of the section are themselves
variable in length, with the format
described in figure 12.6.

The space definition initialization
phase constructs a table of
name-pointer pairs, one pair for each
entry in the section, which is ac-
cessed by the remaining initializa-
tion phases whenever a pointer is
required for a space referred to by
name. An empty table is constructed
if the section is not present in the
IDT. When the section is present,
space definition is carried out in
the following way.

System Initialization

N

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

SECT SLEN

SDENT

Figure 12.5
Initialization Data Table
Space Definition Section

Field Offset Bytes Description_and Use

SECT 0 1 Contains the value 2, indicating this is the space
definition section of the IDT.

SLEN 1 3 Total length of the section in bytes.
SDENT 4 Var Entries specifying the spaces which are to be de-
fined.
DISP SPSZ
SPNME
DOMMNM
Res DTSZ
DTA
Figure 12.6

Initialization Data Table
Space Definition Entry

Field O0Offset Bvtes Description and Use
DISP 0 1 Bits which describe the initial disposition of the
space.
Bit Yalue Significance
0 0 The space is to be an ordinary space
1 The space is to be a module space
1 0 The space is to remain an M-space
1 The space is to be converted to a B-space

Chapter 12 187 System Initialization

Principles of Operation

The EPSILON System

Field
SPsZ

SPNME

DOMNM

DTSZ

DTA

Offset

1

13

16

Bvtes

3

4

Var

Version 1.0
15 June 1976

Assign the space to the common domain
Assign the space to the domain whose name is in field
DOMNM

Space custody may be transferred
The space is to be bound to system custody

Read access is to be family
Read access is to be domain or public

Write access is to be family
Write access is to be domain or public

Normal
The space pointer is required to be a pointer from a
previous operational period

Reserved

Description and Use

Number of bytes to be allocated for the space.

Name by which the space can be referenced within any
initialization phase.

Name of a domain to which the space is to be assigned.
The significance of this field is controlled by bit 2
of field DISP.

Number of bytes of data in field DTA.

Data to be stored into the space.

o An M-space is allocated equal in
size to the value of field SPSZ

of the entry, and the data from

already exists, the space is sim-
ply assigned to it, and the mem-
bership count increased by 1. If

field DTA is placed into it. The bit 2 of field DISP is zero, the
tyvpe of space allocated is con- space remains in the common do-
trolled by bit zero of field main.
DISP. The space is in system
custody, with family (i.e. sys- o If an access bit of field DISP is
tem) read and write access. 1, and if the space was assigned
to a domain other than the common
0 If bit 2 of field DISP is 1, the domain, the corresponding access
equivalent of an ASSIGN instruc- type is set to domain; if the
tion referencing the name in space was assigned to the common
field DOMNM is applied to the domain, the access type is set to
space, causing a domain of that public.

name to be formed if one did not

previously exist.

Chapter 12

If the domain o If bit 1 of field DISP is 1, a

188 System Initialization

“‘“&\J,/

Principles of Operation
The EPSILON System

B-space 1is allocated by the
equivalent of a SAVE instruction
applied to the space. The ori-
ginal space is deleted from the
system when the save is success-
fully completed, and the B-space
pointer replaces the M-space
pointer in the name-pointer ta-
ble.

o The space is either bound to sys-
tem custody or left unbound, as
determined by the value of bit 3
of field DISP. If it is not
bound, it may be bound to custody
of some process model during a
subsequent phase of initializa-
tion. If so, any access type of
family refers to the new custo-
dian.

If the IDT was generated by a check-
point, the reference name in field
SPNME of an entry 1is actually the
pointer assigned to the space at that
time, and bit 6 of field DISP is set
to 1 for all M-space entries, and for
all B-space entries whose pointers
must be restored to their previous
values. For those entries, the space
definition phase supplies the space
allocator with the entry name, and if
it is consistent with a pointer for
the type of space requested, the
allocator will assign the name as the
pointer. A pointer substitution flag
set by the phase will cause an allo-
cation list consistency check to be
carried out in the system checkpoint
phase [Section 12.81].

12.6 Service Process Maodels

The service process models data
section of an IDT is fixed length,
with the format described in figure
12.7. The service process models in-
itialization phase defines or con-
nects the process models whose data
is contained in the section. The
R-process source dispatching priori-
ties are set to their final values by
assigning the specified priorities

Chapter 12

Version 1.0
15 June 1976

to the sources of the section, with
the error signal source always having
the highest priority. The other
sources in the system are reduced in
priority to accommodate insertion of
the section source priorities if nec-
essary. If the section is not pre-
sent in the IDT

o the null space is used for all
instruction module and entry
context spaces

o the statistics collection and
domain exception process models
are assigned to the computation
cycle of lowest precedence

o) the clock is assigned dispatch-
ing priority just below that of
the error signal process source

o the other R-process sources of
the section are assigned the low-
est dispatching priorities, in
the order they appear in the
section.

Space identifiers in the section must
always be references to entries in
the space definition section when
field DBI of the header is zero [Fig-

ure 12.11. If the IDT was generated
internally, references to existing
B-spaces, rather than space defi-

nition section references may be sup-
plied, and field SINT provides the
means for the phase to determine the
type of reference supplied.

In either case, if a B-space is the
raeferent for an entry context space
or instruction module of an R-process
model, the initialization phase ob-
tains a descendent M-space for use in
connecting the model by the equiv-
alent of a LOAD instruction. The or-
iginal B-space is then deleted from
the system if its control bit in
field SDIS is set to l. If a B-space
which appears in the name-pointer
pair table is deleted, the B-space
pointer in the table is replaced by

System Initialization

Principles of Operation
The EPSILON System

Field O0Offset

Version 1.0
15 June 1976

SECT SCcCC pace SDIS

PRCLK PRIPM

PRFSX SINT

TECTX

OVSPR

SCSPR

DOSPR

IVSPR

FXSPR

ERSPR

SECT

SCCC

pacc

SDIS

Chapter

o
t

(%] N - (=] |

12

Figure 12.7
Initialization Data Table
Service Process Models Section

Description and Use

Contains the value 3, indicating this is the service
process models section of the IDT.

Identifier of the computation cycle for the statis-
tics collection process model.

Identifier of the computation cycle for the domain
exception process model.

Bits which control the disposition of B-spaces used
as antecedents of instruction module or entry context
spaces for R-process models. A B-space is deleted
from the system if its disposition control bit is set
to 1:

Controls
Not used
Entry contekt space of the time event process model
Instruction module space of invalid process model ex-

ception process model
Entry context space for that model

190 System Initialization

Principles of Operation . Version 1.0

The EPSILON System 15 June 1976
4 Instruction module space of forced system exception
process model
5 Entry context space for that model
6 Instruction module space for error signal process
model
7 Entry context space for that model
Field O0Offset Bytes Description and Use
PRCLK 9 2 Dispatching priority of the system clock as an R-pro-

cess source.

PRIPM 6 2 Dispatching priority of the invalid process model ex-
ception process source.

PRFSX 8 2 Dispatching priority of the forced system exception
process source.

SINT 10 2 Significant only if the IDT was generated by a check-
point, in which case the first thirteen bits of the
field define the interpretation of the space identi-
fiers in the remaining thirteen fields of the
section. Correspondence between bit and field is ob~
tained by taking the bits from left to right and the
space fields from top to bottom; the rightmost three
bits are not used. If a bit is zero, the correspond-
ing space identifier is the name of an entry in the
space definition section of the IDT. If a bit is 1,
the space identifier is a B-space pointer.

TECTX 12 4 Identifer of the entry context space for the time
event process model.

OVSPR 16 8 Identifiers of the pair of spaces required to define
the overrun process model. The first four bytes
identify the instruction module space, the last four
the entry context space.

SCSPR 20 8 Identifiers of the pair of spaces required to define
the statistics collection process model.

DOSPR 32 3 Identifiers of the pair of spaces required to define
the domain exception process model.

IVSPR 40 8 Identifiers of the pair of spaces required to connect
the invalid process model exception process model.

FXSPR 48 8 Identifiers of the pair of spaces required to connect
the forced system exception process model.

ERSPR 56 8 Identifiers of the pair of spaces required to connect
the error signal process model.

Chapter 12 191 System Initialization

Principles of Operation Version 1.0
The EPSILON System

15 June 1976

Field Offset Bvtes

SECT SLEN

PMENT

SECT 0
SLEN 1
PMENT 4

1

Var

Figure 12.8
Initialization Data Table
Regular Process Models Sections

Description and Use

Contains the value of the identifier which indicates
the section type.

Total length of the section in bytes.

Entries which specify process models to be defined or
connected.

Field 0Offset Bytes

SDIS SINT IDR

PMDB

SDIS 0
Bit
0
1
2
3-7

Chapter 12

1

Figure 12.9
Initialization Data Table
Regular Process Model Entry

Description and Use

Bits which control the disposition of B-spaces used
as antecedents of M-spaces required for field PMDB of
the entry. A B-space is deleted from the system if
its disposition control bit is set to 1:

Controls
Instruction module space
Exception module space

Entry context space
Not used

192 ’ System Initialization

‘\K—_,,;/’

Principles of Operation
The EPSILON System

Field Offset Bytes

Varsion 1.0
15 June 1976

Description and Use

if the IDT was generated by a check-

point, in uwhich case the bits define the interpreta-

identifiers in field PMDB of the entry.

If a bit is zero, the corresponding space identifier
is the name of an entry in the space definition
section of the IDT; if a bit is 1, the space identifi-
er is a B-space pointer. Bit and identifier corre-
spondence is the same as that of field SDIS.

Identifier of an R-process source or I1/0 device to

which the process model is to be connected. The field
has no significance for a C-process model.

or CMDB which is to be connected or

SINT 1 1 Significant only
tion of space

IDR 2 2

PMDB 4 Var The RMDB, DMDB,
defined.

the M-space pointer to its

descendent.

12.7 Regular Process Models

The R-process models, D-process mod-
els, and C-process models sections of
an IDT are variable in length, with
the section format described in fig-
ure 12.8. PMENT field entries in
each of the three sections have the
same basic format, as described in
figure 12.9.

If a section is not present in the
IDT, the corresponding process mod-
els initialization phase proceeds
directly to the next phase of in-
itialization. When a section is pre-
sent the phase connects or defines
all process models whose definition
blocks are contained in the xection.
Space identfiers in a block must al-
ways be references to entries in the
space definition section when field
DBI of the header is zero. If field
DBI is non-zero, field SINT provides
the means for the phase to determine
whether the reference is to a space
definition entry or is a pointer to
an existing B-space. Field SDIS of
each entry determines the disposi-
tion of any such B-space, in the same

Chapter 12

way as does its namesake field in the
service process models section.

12.8 system checkpoint

A system checkpoint generates an IDT
whose content allows system oper-
ation to restart with conditions re-
stored to those in effect at the time
of the checkpoint. As this requires
system operation to be suspended dur-
ing generation of the IDT, and may
require substantial output, the ef-
fectiveness of the CHECKPOINT
instruction (CHECK) is controlled by
bit 6 of the error signal mask
[Section 11.4]. If the bit is zero,
the instruction is effective only
when executed within an error signal
process; nothing happens if it is ex-
ecuted within an R-process of any
other family except to return a con-
dition code indicating that check-
point is inhibited. If the bit is 1,
CHECK is effective within any R-pro-
cess.

When CHECK is effective, a signal is
transmitted to all CPU and PPU re-
questing suspension of operation.
The signal will inhibit pending con-
ditions for process sources from be-
coming effective, and will cause

System Initialization

Principles of Operation
The EPSILON System

those CPU not interpreting the CHECK
instruction to cease activity at the
completion of the next microinstruc-
tion sequence which preserves integ-
rity of the local data. PPU
instruction interpretation activity
will also cease at the first opportu-

nity, but microcode activity will
continue, if necessary, until com-
pletion of all I/0 operation

sequences started prior to the recep-
tion of the signal. Consequently,
all internal activity will eventual-
ly stop, leaving the system in some
consistent operational state. The
CPU interpreting the CHECK instruc-
tion will then generate an IDT corre-
sponding either to a full checkpoint
or a partial checkpoint, depending on

the option selected for the instruc-
tion.
o A full checkpoint dumps all

M-space and B-space data in the
system into the space definition
section, with the entries set to
restore pointers [Section 12.51].

A partial checkpoint dumps only
the B-space data; the entries can
be set either to restore pointers
or not, as specified by a second
option of the instruction.

The identifier of the output device
for the checkpoint IDT is specified
by an operand of the CHECK instruc-
tion. If the device is a real de-
vice, the space definition section of
the IDT will contain the appropriate
data, and field DBI of the header is
set to zero. If the device is the
null device, the instruction will be
rejected unless a partial checkpoint
is specified. In that case, an IDT
without a space definition section,
but with a non-zero DBI field, will
be placed into the initialization
area of B-storage.

Apart frem the space definition

section and the header, the compos-
ition of a checkpoint IDT is model-

Chapter 12

194

Version 1.0
15 June 1976

For some EPSILON systems,
the complete system data area is
copied into the system checkpoint
section, eliminating any requirement
for for the system parameters, dis-
patching structure, service process
models, and regular process models
data sections. Other systems reduce
the amount of data in the system
checkpoint section by output of the
other sections. In all cases, howev-
er, the system checkpoint section
contains the state vectors of all
processes in the system, and "the
space allocation list in effect at
the time of the checkpoint.

dependent.

The system checkpoint initialization
phase replaces data in the system da-
ta area by any corresponding data in
the system checkpoint section. Con-
sistency checks to assure that no
conflict arises from the substi-
tution are applied at each stage, and
failure at any stage will force sys-
tem termination.

The space allocation list in the
section is compared with the ex-
isting space allocation list. If
any pointers from previous peri-
ods were used in the space defi-
nition phase [Section 12.51 the
section list must be an exact
subset of the existing list; if
not, a consistency failure has
occurred. If previous pointers
were not used, or if there is no
inconsistency, the custody, ac-
cess, and domain data for each
spce in the name-pointer pair
list is transferred from the
section allocation list to the
existing list. Spaces and do-
mains in existence at the time of
the checkpoint are therefore re-
stored to their original state.

o If the section contains system
parameter, dispatching struc-
ture, R-process model, or D-pro-
cess model data, the section data
replaces its counterpart in the

System Initialization

Principles of Operation
The EPSILON System

system data area.

Version 1.0
15 June 1976

ing C-process model list is
transferred to that list, and to

o The state vector data in the the system data area where appro-
section is then matched against priate.
the dispatching data in the sys-
tem data area. A consistency After completion of the system check-
failure occurs if there is a pro- point phase, the internal state of
cess state vector corresponding the system is either the same as it
to a process model not assigned was at the time of the checkpoint, or
to a computation cycle or con- contains the checkpoint state as a
nected to a source, or if the proper subset. However, neither ap-
state vector data conflicts with plication data, data on I/0 devices
the family data. If there is no with removable media, nor devices for
failure, the state vector data is which positioning is significant,
transferred to the system data need be in the state they were at
area. checkpoint. If the system must be
restored to full checkpoint condi-
o If the section contains C-pro- tion, the final steps can only be ac-
cess model data, it must match complished by application
the existing C-process model da- initialization.
ta wherever the process model
names are the same; a consisten- 12.9 Apnlication Initialization
cy failure is recorded if there
is a mismatch for some model. If The application initialization data
there is no failure, the data for section of an IDT is variable length,
those process models of the with the format described in figure
section not already in the exist- 12.10.
SECT SLEN
SQUE
SDAT
Figure 12.10
Initialization Data Table
Application Initialization Section
Field O0Offset Bytes Description and Use
SECT 0 1 Contains the value 8, indicating this is the applica~-
tion initialization section of the IDT.
SLEN 1 3 Total length of the section in bytes.
SQUE 4 4 Name of an input queue which is to receive the section
data.
Chapter 12 195 System Initialization

Principles of Operation
The EPSILON System

SDAT 8 Var

Version 1.0
15 June 1976

Data to be supplied to the queue for initialization

of an application or operating system.

Whether the section is present in the
IDT or not, the application initial-
ization phase always completes the
initialization procedure.

o If there was no system checkpoint
section in the IDT, an IDT with
non—-zero DBI field in the header
is generated and placed into the
B-storage initialization area.
This IDT, which is the same as
would be generated by a partial
checkpoint, provides a means for
restarting the next operational
period with operating condition
identical to the period just be-
ing started.

o If an application initialization
section is present, the equiv-
alent of a QIX instruction
applied to the SQUE field is exe-
cuted. If a queue index is re-
turned, an M-space is allocated
to hold the data in field SDAT,
and the space is placed into the
queue. A warning report will be
generated if there is no queue
with the specifiaed name.

o Statistical counters are as-
signed for system data, R-pro-
cess sources, and I/0 devices if
counter assignment is not sup-
pressed [Section 10.41].

o The system clock is synchronized
with external real time by set-
ting its value to the difference
between current time and the
standard epoch. The time of day
is supplied either by the system
operator or by an external timing
signal. A basic cycle TERB is
generated and inserted into the

Chapter 12

timing queue.

o The time of initialization is re-
corded, sequence numbers are re-
set, and process source
inhibition removed. The system
is then free to operate normally.

o A warning report is generated if
any inconsistency or error was
noted during initialization
which was not cause for system
termination.

An application initialization data
section can be output as part of a
checkpoint IDT by selecting that
option of the CHECK instruction. The
data for the SQUE and SDAT fields
must have been previously generated
and placed into an M-space, in the
order required for the section. The
fields are located by the second op-
erand of the instruction, and the
SDAT field is assumed to extend from
its first byte to the last byte of
the M-sapace.

12.10 system Termination

System termination is invoked by a
DIAGNOSE instruction, or from the op-
erator console by depressing the ter-
mination key. Termination +triggers
the signal which causes the system
12.8]. When activity has ceased, the
cPU processing the termination
signal will update the space allo-
cation list in B-storage. This will
assure that the IDT in the B-storage
initialization area will be consist-
ent with a restart from the point of
termination. The system will then be
reset to the initial operational
state.

System Initialization

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

12.11 Instruction Descriptions

CHECKPOINT

CHECK R1,M3,D2(B2) <RS>

The instruction is terminated with condition code 3 if arithmetic register
R1 does not contain the identifier of an I/0 device, or the identifier of the
null device. It is terminated with condition code 2 if the process executing
the instruction is not an error signal process and bit 6 of the error signal
mask is zero. If arithmetic register Rl contains the identifier of the null
device, bit zero of mask field M3 must be 1 (partial checkpoint), bit 1 of the
field must be zero (pointers to be restored), and bit 2 must be zero (no appli-
cation initialization section). The instruction is terminated with condition
code 3 if any of these bit conditions is not met. If bit 2 of field M3 is 1,
the instruction is suppressed with a specification exception if the second op-
erand does not define a location on a word boundary.

If the instruction is not terminated or suppressed, a signal is broadcast
to all CPU and PPU requesting cessation of activity. The CPU interpreting the
instruction then idles until all cessation bits are recorded in the system da-
ta area, or until a basic cycie has expired. If a basic cvcle expires before
cessation of activity has been completed the signal is broadcast again. If
the signal is trnasmitted 256 times in succession without activity having
ceased or a delay request having been received from a PPU, the cessation re-
quest is cancelled and the instruction is terminated with condition code 1. A
delay request by a PPU will cause the signal trnasmission sequence count to be
reset to 1.

When cessation of activity has been completed, the total length required
for the IDT is computed. The length computation takes into account the type
of IDT to be generated and the conventions emploved for output of system
checkpoint data by the model of EPSILON system within which the instruction is
being executed. A full checkpoint (bit zero of field M3 set to zero) gener-
ates a space definition section containing data for all M-spaces and B-spaces
in the system. A partial checkpoint on a non-null device generates a space
definition section containing data for all B-spaces in the system. If bit 2
of field M3 is 1, an application initialization section is to be output. The
section content, which is located by the second operand, extends to the end of
the space in which it is located. A request is made for an M-space to contain
the header and the system checkpoint data section. The instruction is termi-
nated with condition code 1 if space is not available.

The header and system checkpoint data section are assembled and placed in-
to the space allocated, for output as a single record. If the output device is
null, the record is placed into the initialization area of B-storage. If the
device is non-null, an I/0 request is placed into its request queue, and a PPU
through which the device is attached to the system is signalled to become ac-
tive. Execution of the instruction is suspended until completion of the 1/0
request. 'tf The remaining data sections of the IDT are assembled, if assembly
is reaquired, and output in sequence, each section consisting of one or more
physical records. When all sections have been output, a signal is broadcast
to all CPU and PPU requesting resumption of activity. The instruction is then
terminated with condition code 1 if any error occurred during output of the

Chapter 12 197 System Initialization

Principles of Operation Version 1.0
The EPSILON System 15 June 1976

IDT, and with condtion code zero if no error was detected.
Process Class: R

Condition Code:
0 IDT output successful
1 IDT could not be output
2 Checkpoint inhibited
3 Device not available

Exceptions:
Specification

Chapter 12 198 System Initialization

