952 5497-2

ey

SOFTWARE DATA

SDRL # 45

Second Submission
(Final)

H.H. Bloem
R.E. E¢ckstrom
D. G Stark

&%Talmadge

NS 06-M22-024A

CRUBUIATING ECE? Department M22

PO TR
bUw’ Pty .! Ve

.

AF04(695)-904

. " T A e - - = 4 O
soninigT wo DAC-4-066-608

. 000/
OhL)
7/

ATE March 21, 1966 .

uh._

Coimmmn e e e

First Submission: Maxch 5,

RS . P . -

— - SRRt IN/Q
Ly ol LOFEDER-. 3YS
[ . SRR e
F hi (R [ogstee A QU W

i
I SRl —— 7 P
o / N OWEZS

=™ -

DIV
Ve e
S0S W IN




b s e e i o s 2 v o0 At e ok R e s e e e

[P U U VISR T ETIE S-S O OtV U VR

L

B SIS

1.0

.

[
L] -
NN VRN N e

2.7

2
S 2
2
2
2.

[N N

NIV NNNNN®

o~ UV b

'INTRODUCTION

General Considerations
Programming System
Implementation Plan

Application Programs

THE SPACEBORNE SYSTEM

Drogram Operation

.11 Program Structure
1.2 Segments '
.1.3 Repetition Rate
1.4 Flow Control
1.5  Links
'Executive Control.
2,1 - System Executive
.2.2 - Basic Executive -
ystem in Operation ’
.3.1 - Scheduling
3.2 Segment Flow
.3.3 Program Control Block
3.4 System Flow
3.5 Core Manzgement
3.6 Iaterrunt Supervision
3.7 Asyncironous Input/Out
.3.8 . Program Loading
.3.9 ° Core Storage Layou:

, Pron‘arfl Initiation
 System Initiation
' ‘System Overhead

2.6.1 = Executive Times

2.6.2° Core Storage Requirements

Flow Cnarts and Tables

put

(G2 WY SN QN Jar S

o~

V1 LW O O O DO O 00

[ WS W )

e
O U

NN
— O O

N
w

v
O

W W W v N
Ut 01— O 00 0 O

o




w N - -

W W W

Ui

" GROUND SUPPORT SYSTEM

General Requirements

- Existing Operating Systems

Program Preparation

2 3.3.1 0S/360 Language Processor Outpuu '

The Linkage Editor
The Preparation Language
Operation of the Preparation

W ww
w W w
»anw

; Processor

‘Language and Language Proces sors

T 3.4.1 Assembly System
" 3.4.2 The Compiler Systems

3.4.3 Segment Definition

Simulation and Test

3.5.1 The Sirmulation Supervisor

3.5.2 Program Test

Integration of the Ground Support System
IMPLEMENTATION PLAN

Task Sequence’
. Milestones =

1!

o
Rje]
€]

Ut ur O U1

O~ o~

IS
D

J3EN

W W O O

O~ O~ O™ ON Oy O U
o N e O O

>

7()
72

74

T4

84

" APPLICATION PROGRAMS = (Classified Attachment

IBM CD_3-260-8793;A)'




i mima Adds

TMNVNNNNNNNNNNNNNNNNNNNNNNNDNNNNNN N

W W

ENENEN

RN

.

(ii1)

LIST OF FIGURES

Paoe
.2 DCsSG Software - Hardware -.Vehicle
| ' Functional Interface : - 3
1.1  Program Structure ' : Cn 8
2.1 System Executive . ' : 11
2.2 Basic Executive o L 14
3.1  Scheduling Example: R E 18
3.9 Core Map ‘ : 27
6.1  Intersegment Execution Times" o 32
6.2  Typical Operating Overhead Tlmes “ .. .33
6.3 Core Requirements o : - 34
7.1  Program Scheduler - '_ : Y
7.2  Segment Flow Analyzer o ' 38
7.3 ° Overall System Flow L S 39
7.4  Core Manager o L R 40
7.5 I/O Interrupt Processor . : » 41
7.6 1I/O Request Processor S Lo .o 42
7.7 Program Loader. Parti. . B 43
7.8 . Program Loader. PartIl - 44
7.9 Segment Flow Table ’ 45
7.10 Program Request Queue 45
7.11 Program Execution List 46
7. 1.2.' Load Request Queue 46
7.13 TUnit Request Queue 406
7.14 I/O Interrupt Queue 46
7.15  Unit Control Block 47
7.16 Core Usage List 47
7.17 Program Index 47
7.18 Core Residence List 47
7.19 Program Control Block 48
3.2  Linkage Editing 35
4,2 PL/1 Subset 65
1 DCSG Checkout Sequence. Part I 86
2 DCSG Checkout Sequence. Part II 87
3 Program Development Implementation Pla 38
4 Program Validation Implementation Plan 39




e Ceake

b s L en el

" same reason, computers from the IBM 4 Pi line have been assumed for the AVE,

1.0. -~ INTRODUCTION

This paper is submitted in response to the software data requireraents recuested

in the Statement of Work for the Data Computation Subsystem Group (DAC-A-66~

608/WS), Items 2.2.3.3, 2.2.3.7 and 2.2.3.8. Although total systems require-

ments are not known, the programming system design recommended here satisfies
all requirements that can presently be foreseen. Furthermore, the design is-
flexible enough to accommodate a wide variation in these requirements without

substantive change;‘ '

1.1 General Considerations

For the purposes of this discussion it is assumed that the hardware configuration

of the DCSG Guidelines (Document Number 3-449-0296) is a basis for the sysiem,

‘that the two computers are identical, and that the software system applies to both.
‘These assumptions have been made only as a means of supplying detail, as the

'~ _system design is quite general and applies to any similar configuration. ZFXor the

‘with a compatible IBM System/360 computer for the AGE.

An{z'a,lysis of the ‘Gui‘deline‘:_s"has established‘.the._following reqﬁirements as being oi
3 ,ifundamehtal importance in the sysfems design: |

' .‘_l:.;.l; ll, k Each vof the computergbin the DCSG is capable of‘_indepen‘dent._a.ction and
| . ‘vgene-rally‘r ‘e'ach is inAv:olved 1n _sep_azb'ate‘imodclas of operation.‘ I—Ioweveé, both must’

be able to operate in any mode, or even in severzl modes simultaneously.

1.1.2 The action of both computers must be controlled externzlly, either by the

operator or from the ground. Since flexibility of external interaction is of greas




b had T U A et A SO e ik Rt i rrbed S s i el s o i b A

“- “vehicle subsystems. The hardware control units shown serve as interiac

" between the I/O channel and the attached devices. To control their operation as

.

importance, information must be supplied from within the system in order to
provide a basis for reasonable decisions.

1.1.3 A number of functions are common to all modes of computer operation.

Provision 'must be made to implement these overlapping functions, both system
and application, so as to optimize their utilization.

1.1.4 Program preparation (compilation, assembly, and checkout) should be
done én a ground based compﬁtef whiéh 1s ;;videly available %o the applicaticn
programmers. An extensive software system is necessary in érder to facilitate

program preparation.

~ Consideration of these requirements has led to the design of an integrated

programming system to support the operational programs.

1.2 The Programming System

- The programming system is divided into two main areas: The Spaceborne Systerm,

which is concerned with the execution of bperational programs on the DCSG, and

the Ground Support System, which is concerned with the preparation and testing

of programs on ground based computers.

- Figure 1.2 illustrates the general organization of the Spaceborne System and the

functional interface of software and hardware components or the DCSG with other

[¢]
Ui

¥

well as the operation of the system and application programs, ideatical executive

programs are resident in each computer. In order to minimize the complexity oI

‘the executive routines, and to reduce overhead required for control, programs




h
i
!
H
4

<» | applicati :

Executive Programs : { Applications Programs :

:

,E | ?;

} i :

P ) Laboratory ;

: ’ ;

i Programs ;

3 H w £
; {

R IQ E
' : ;
| | System e : 0 Mission Mode !
Executive s Programs '

7 :

i

< !

:

b X

Basic i | e Overlap
Executive | o Programs

1 1

Pass

Miultiplexor Channel

\

- C.U.

C.U. c.u. | C.U.

N

PRINTER

Laboratory Mode

Subsystems

25 S i3
: <|:7 <7

Display-
K'ybd~ Unit

DCSG Software - Hardware - Vehicle Functional Interface

Figure 1.2




e kb

cEale s

must submit to a certain amount of discipline in their structure and operation.
This discipline is fully described in Section 2.0 of this document, which covers

the Spaceborne System.

' Analysis of the Ground Support System requirements has shown that many of

these are met by the operating system for System/360. This operating system

(OS/360) is a comprehensive system embracing a variety of programraing lan-

guages and language processors as well as extensive library, editing anrd

" debugging facilities. Since 0S/360 is a standard product of IBM, it is widely

known and readily available to the applications programmer. Two functions must

be added to the Standard System. First, there must be a means of preparing the

‘final form of programs to be executed in the DCSG. Second, there must be a

method of simulating the'operation to these programs, in order to facilitate

checkout. These additions provide a complete Grournd Support System, which is

- discuésed in detail in Section 3. 0.

1.3 Implementation Plan

The development and production of validated programs for a system such as the

- DCSG requires a carefully d.eve'loped and controlled plan. The plan must include ‘

procedures to span the time from the state of requirements definition to the final

flight configuration, with rnilestones that provide a precise control over the

distinct areas of software development and testing. Section 4.0 discusses such

a plan in terms of the formal milestone documentation and the steps that should be
followed to assure orderly development of the flight programs anc the suppoxt

software.,




e hae s e L s be? i emn e e U AT

NG S S FS O S

PP S SISy S NIRRT

1.4 Application Programs

Application programs are those which are executed in the AVE to perform the

data processing required for both the Laboratory and Mission Modes. These

programs are executed under the supervision of the Spaceborne System executive

program, which interleaves their execution where necessary to meet real time

requirements.

Section 5.0, which is a classified attachment to this report, discusses computing

requirements for individual application programs. For Laboratory Mode pro-

‘grams the requirements were generated as the result of analyses based uson
two principle sources: the preliminary definition of the programs given ia the

DCSG Guidelines; and the Subcontractor Technical Directives for some of the

individual functions. Estimates of computer storage requirements and program

‘execution times are provided, as well as functional and math fiows. For Mission

Mode programs the requirements and estimates have been provided by General

Electric.




PPN

PPN

o h e A VA e AS Famm b

plexor channel may be necessary to meet peak I/O data rate reguirements. Such

o>

2.0 THE SPACEBORNE SYSTEM

In contrast to previous spaceborne applications,which have involved computers

with limited capability dedicated to a small number of functions, the DCSC

.application involves a complex environment with two computers supporting a

number and variety of functions. Successful operation in such an environraent
requires efficient overall utilization of the hardware, considerable operational
flexibility, and simplification of programming procedures. Experience has shown

that these can be best obtained by centralizing system control in an executive

program. 'Consequently, the Spaceborne System is based upon such an organiza-

tion.

Some of the specific benefits which are realized by acdopting executive control

are the following .

2.0.1 It provides for the insulation of application programs irom hardware

ove overall

¥

configuration changes. Thus, hardware may be incorporated tc imp

v

system performance without affecting the code involved in the ap»nlication programs.

For example, a computer system with a selector channel in addition to a multi-

an addition can be made without the necessity of reprogramming the applications.
2.0.2 It provides an internal environment in which functions cen be carried out

sirnultaneously, yet independently. Hence, Mission mode and Laboratory Venicle

programs can operate in the same computer when desired, and no specizl planning

in prograra construction is required in order to do so.




¢t 4] anid w2 L

Bt ek s S

SRS PR PR

N ot T 4 e e et e S oY ae

to.allow for efficient operation. In this application the most

itself is structured to operate in the multiplexing mode whenever possibl

2.0.3 The executive undertakes the loading and scheduling of programs for

execution. Only those programs required at any one time need be resident

in core storage. Hence, core storage requirements may be balanced against the

factors of weight and power independently of the total number of programs required !

in the system.

2.0.4 Centralization of control functions eliminates a considerable amount of
r.edundant code. In additionb, adjustments which may be required in control func-
tién‘s are ldcalized, and are not reflected in the application programs. Moreover,
such universal funétions as external communication, power off control, and inspect

and change, can be carried out in an orderly, uniform mannexr.

2.0.5 Reliability of the overall operation is improved, since the executive can

detect component failure, and, within limits, compensate for such failure.

2.1 Program Operation

- Program operation is concerned with two major areas: the acticn of the executive

in controlling operational programs; and the structure required of such programs

niZicant recuirementc

W

i

19} v
U

‘of operational programs is that they be executed at a predetermined rate, based

upon real-time constraints. This requirement:has a substantial eifect on the organi

zation of both the executive and the operational programs.

[
3
»
*
9
!
h
1

To insure that the required rates are met, the executive program provides

plexing procedure to allocate CPU time to the requested programs. The ex

cutive

(@]

@)

should be emphasized that the executive is responsible for this multiplexing, anc




S R )

e L M et Dotme s n e B

8.

the fact that several operational programs may be excecuting concurrently is of no

fe=g

concern to the programmer.

L2.1.1.1

2.1.1.2

_program which are location dependent and the

2.1.1 Program Structure

To simplify the multiplexing procedure and to reduce overhead while

figure 2. 1. 1.

PCB

Dictioaary —

maintaining flexibility, the operational programs are structured as shown in

COMMON

Program

—

Figure 2.1.1

The Program Control Block (PC3) is gencrated by the sys-

tem during program preparation and contains information required to

properly execute the program. .This information governs both

plexing procedure and the flow of control.

cated during execution. The dictionary is also g

during the preparation process.

N

.

2.1.1.3 ‘The Program COMMON area is the

to communicate between segments of an executin

and size of this area is defined during program preparation.

R

(21

G

icre

“~

RN
Lii

e

malti-

The Dictionary consists of pointers to words within the

must be adjusted

when the program is brought into core storags for execution, or relo-

ated by the system




e awiedas ko, St

T Nk

ke

9.
2.1.1.4 The Progrum consists of the actual instructions to perfcrm
the required computations. These instructions are the result of compila-

tion or assembly during the preparation process.

2.1.2 Segments:

In addition to this physical structure, the program is logically structured
so that the executive receives control at specified intervals. This logical siructure
involves division of the program into sections whose execution time does not exceed

the interval. Such a section of the program is called a segment.

2.1.3 Repetition.Rate

Each segment is also an entry point for the program to receive control
from the system. In order to meet processing reguirements, a2 certain number of
program entries must be made each second. This number is called the Program

Entry Repetition Rate. It is provided during the preparation phase¢ and is stored

in the PCB. The executive examines the repetition rates Zoxr all programs o be

run concurrently in order to interleave their execution. In addition to this infor-

mation, programs may request execution at particular time intervals, or speciiic

times.

 2. 1.4 Flow Contrbl

Flow oi control during execution is governed by means oI sequence con-
trol information contained in the Program Control Block. . This iniormation is pro-
vided in the form of Sequence Control Statements during program osreparation.

These statements direct the order in which segments are executed by providing




2o e ot e e ot n o T b ki i e ot

o bt st ot ra b e e AL et

e e o i 5 et et st

e Bea T n e e b bt

y—
(@]

The order can be dynamically zlicred during execution by means of triggers

set by the exeéuting segments and tested by the executive.

Use of the Sequence Control Statements permits a complicated prograrn
to be described in a straightforward manner, and allows a flexibility in program

modification not other\yise obtainable.

2.1.5 Links

The repetition rate requirement for executing programs .applies to all
segments of thé program which are.resident in core sto?age at the same time.
Those program.s Which are too iarge to be contained entirely in core storage may
be cylividéd'.m'tvo'links, each of wﬁich can have a different repetiticn rate. In opera-

tion, a single link for the program is active at a time. Communcation from link-

to-link is by means of the program COMMON areca. Repetition rates are not main-

tained across link boundaries, since a variable pericd of time is required to lozad

each link. -

2.2  Executive Control

()

Executive Controlis divided into two parts, called the System Zxecutive and th

Basic Executive.

2.2.1 The System Executive

The System Executive provides overall supervision of program cexecution

and the logical interface between the internal and external environments. Reguests

to initiate or terminate a program may come irom ground contrcl, Irom ine opera-

3!

tor, from the system timer, or from a currently active srogram. The System




System

Timer

Routine

Program

Control Blocks

FAN

[

Basic

N

. Executive , l A oo .

N

g

|

Program
Scheduler

System IExcculive

Iigurc 2.2.1

Program
Loader
N
- \'7 WY,
\ System .
: ">'\Cont1'ol N
: [lz & /]\)
W
Segment
Flow
Analyzer
N, .
Application
Programs

<7

Core
Manager

[

fo




PRSI

S S B SO U SHPU P SO SR

12,

[

Executive honors these requests oy itseli whenever possible. However, if they .

J

would lead to time or space conflicts with active programs external control is

asked to resolve the difficulty.

Figure 2.2.1 shows the overall structure of the System Executive. The

functions of the components are as follows.

2.2.1.1 Program Scheduler. The Program Scheduler determines
which of the active programs in the multiplexing loop is to be executed

~during the next time increment. It also determines if requests to add

programs can be honored.

2.2.1.2 - Segment Flow Analyzer. The Segment Flow Analyzer is
activated at the completion of execution of any program segment. It de-
termines, by analysis of the program Segment Flew Table, the next seg-

ment to be executed in that program, and updates the corresponding

Program Control Block with the address of the entry point.

2.2.1.3 System Timer. The System Timer monitors the list used ©o

(¢}
o
3
cl
4]
H

initiate those functions whose execution is based upon specified tim

vals.

programs to provide the required space.




P P U DT, SIS S S S

il Tk A o

e et b Ao kS et

R AL LS e st b ot b i b s s eV e e s bt e ot e e b n i ®

1/0.

[
(€N
.

2.2.1.5 Program Icader. The Program Loader services the

queue of load requests. It accesses the auxiliary storage, initializes
the Program Control Block, adjusts the location dependent quantitics
in the program ‘text to their resident location, and indicates to the Sys-

tem Executive that the program has been loaded.
- -

2.2.2 The Basic Executive

The Basic Executive provides all services which are associated with
access to physical devices and the synchronization of the system. Its major func-

tions include interrupt supervision, configuration control, and all asynchrorous

Figure 2.2.2 shows the overall structure of the Basic Executive. The

functions of the components are as follows.

2.2.2.1 Physical Input/Output. The Physical Input/Cutput routines

-

are responsible for transmission of information between devices and core
which is asynchronous with program execution. Included in this list are

the console, Data Adapter Units, and the auxiliary storage unit. Recuests

(8]

el
—
'
(¢}
o
ot
N
O
1]

L8]
H
O

1

for 1/0O, whether from the control systera or from the aj

k]

st-out basis for eich

¥

grams, are queued and serviced on a first-in-fi:

device, with provision for a single level of priority, It is zlso th

¢l

of the I/O section to set flags in the Prograra Control Block to indicat
that I/0O is in operation so that the Scheduler can bypass the program.
flags are resect at the conclusion of the 1/O operation and the entry address

for the program is supplied.




e T I P PP RS SO PRI USRS RPOUIDENE U PR SS SS

I . ’ g . System Ixecutive

-

24

\Y

Physical

£ [;\

\VJ

Unit
Control
Blocks

Input/Output
(%

o«

Interrupt
Supervisor

Auxiliary
! Storage

Pasic Iixccutive

TFigare 2.2.2

- Console -
Data

S Adapter 4
Units L

IS



e

e o G 4 P ol i o8 b e ek A e @ A1 2 i e e e o bk e # b & e e 4D e aFe s+ b P A e

RPN SRR

seoevisor.  The Interrupt Supervisor handles

all interrupts which the system is required to service. These include

input/output, external, program, machine checlk, and clock inter:upts.

2.2,2.3 Unit Control Blocks. The tables supply information connecting

physical and logical devices, device status, and synchronization control.

[SS)

.3 System in Operation

2.3.1 Scheduling

Every program in the system has associated with it one of four pcssible

states. These states are:

2.3.1.1 Active. The program is currently in the execution list,

and its segments receive control according to frequency reguirements.

o T omee &~ > L3 9 - ;
g 0T some speciiield event.

2.3.1.2 - Waiting. The program is waitin

It will not receive control again until the event occurs.

.

2.3.1.3 Dormant. The program is in core storage but is not in ihe
execution list. It may be overlaid when loading another program.
2.3.1.4. Inactive. The program is within the system but is not in

core storage. When its execution is required it must be loaded irom

auxiliary storage.

The Program Scheduler maintains a list of pointers to the PCB's of

active and waiting programs. This list is used in conjunction with a scheduling

Cheede e




e ra bt cmat s oo o e B e+ St i o i

e latamta e

PR SO P U

16.

i algorithm in order to dete wihich program shall next receive control. The

algorithm is designed to distribute CPU time to programs in the multiplexinz

loop in proportion to their repctition rates, and to intersperse the entries as

evenly as possible.

The selection process is based upon a distribution factor, Ai, calculated
for ecach program at loop initialization. If there are n programs, this factor is.

given by

Where r; is the Program Entry Repetition Rate of program P;. The nurﬁber R
is a normalizipg .factor which —C:Etl;l be chosen arbitrarily in order to simplify compu-
‘tations Witﬁ the Aj. In this discussion, it will be assumed that

R = T T -1y

" so that the A. are all integers.
i ;

Two counts are kept in the PCB of each program in the loop.

2.3.1.5 A selection count, c which is interrogated to determine

program sequence.

2.3.1.6 An entry count, k., which is used to verify that the program

has received at least r, entries in any one second.

-~

"The loop is initialized whenever a program is added or deleted. Initizli-
zation consists of recording the current clock time in each PCB, calculating Ao,

and setting

- for each program.




e A e At et i

bl il e e e e i i i et e ks e et a3 e 7 i A b i A e s 4 b 4 P e 2

(OISR I [N SN LTy

[P S MU VPP U, SR § D NP

V—
]

Then at cach stagce, the wugucence of program exccution is determincad

o v

by selecting the program P, whose c; is a minimurm. If there is more than one

-such program, the first one in the list is seclected. For that program, and that

program only, : . :
Ci by Al — C:l
If the program is active, it is given CPU time, If it is wailting, ancther

selection is made. The purpose of treating waiting programs this way is to ensure

[¢fe]

A that they {fit properly into the loop when they again become active.

If the program is given CPU time, the entry count k, is increased by one.
1
It is compared against r;, and if equal, it is reset to zero and a test made to con-
firm a correct repetition rate. It the current time rinus the time previously re-

-
cG

v

corded in the PCB is less than one second, the program received its regues’

Q]

B, and the selec-

@

number of executions. The new clock time is recorded in the P
tion process continues. This provides an active check on the overation, anc permiis

adjustment of the load to unusual conditions.

v ~ e

Figure 2. 3.1 exemplifies results obtained with the scheduling algorithm.
In this example, three programs, with repetition rates 4, 2, and 1 respectively,

are initialized into the loop at time zero. After one cycle of selection, and parc

" of another, a fourth program, with repetition rate 3, is added tc the loocp. The ex-

ample shows the pattern of selection, and the eifect of the reinitialization process

in smoothing this pattern.




[ee)

—q

- X - »
- “
- : ~
. ) L [y
.orxl.m et o s - b n gt L Sty S - < PR f..w. -
. i —}
e} ~m st B : -~ . ~
$a 2 > .
T | Pt ST e e 2 S e BETSS B BRMSS B RS B B e L TR 1 LIS . ~ A
mu dw _ - : - . I U
~1 '~
n, V3] | ~ ~ MW
N s U o1 —1 o
[RSERES—— : —— e A
| T — R . Id
- | Lt L . - A it —3 uuw
g O O A 1A O 0 n £
| e . Q MR O_
! ! — (] \.MW 14} 4-3
1 ’ o1 1 Coa- d
™ - ) P N ¢ . . . 3 . oL ~ i Yo vm wC~ N
A O O O O O 0O, 0 0O O O O 0O 0 0O 0 O O O O O O o o Y =
s : e ot e TR e ST St N R KR T A A Ak S 8o £ it B o CA g «
. ~ -q ( -l
< oy w89 i
o o <o Pe g, 0o
2 O O O A A 40 O 0O O O O O Q@ A & &2 4 O O O - ,@x @ 1
— : O — - (oY) o m Uy
—~ ’ - .D- S B
i s A B . B BTy
i 2o Arad MmO O o A0l O Ao N N 0 0 O O At e o i
i . ) an O "
H - 33 <
; w O :
| - — S
i < . . . = [@) Q3
{ A : ; " . et en a . ]
b ] - ) W@ W W W g g ~ < < ™ e W ®
] - ~ -l T ™ tw)) < O
! . : = o 9 o 4
o = o wog
I o . | | T S I
[ (W] G O @ W W W W W W WY Y g g gt gt G gt @ e Q3
i R ) o B D S B B B B S A S U S | 13 It} ..m_ m
“..l‘l. - : 2 S EX] a
1 ) . 4 . : W Q MR <t
j S , e oo T . 0 A Ha
) AU U U eo Y o B e BN IR A S S TR T B o B o S L S DU Uo S o S 0o 8 O O
: I B e B B S I S, R IR B B S RS S - S = TR o
. : . . . . .lm 13 vt M
i -l L 8 9ok
0 N w0 w00 O A Y O dd O o o0 o o) d 2 wig
A o —A o A ~H o~ M ™M ™M ™ 2.0 ot
— . _ gy N n””.\-. . . i . .. -
me /l\ ] . . . MH- ¢ - . . . e ° ° Y . '
-3 © A MmN 0N O o0 g NS o0 ol O eSS
[ . . . — 1 —i — 3 ~ — —1 ~{ —f N ‘_ ~r A~ MIIL e,
4 X N
T - ° . . *

-
-

B

he fou

Tt

ion fo:

~

Py
[%

of selec

~]

r
S ch'e.cluiiﬁlug Example.




et i e N v i i i bt Rt i e e T R

19.

N

LY te o rfiows v oo this Scheduler which illustrates the

[R8]

Figure

operation in some detail.

2.3.2 Segment Flow

The entry to a program is detcrmined by the Segment Flow Analyzer which
interrogates an internal form of the flow information supplied by tae programmer.
A set of 32 triggers,l unique to each program,indicates conditions which are¢ cur-
rently active in the program. These triggers are set by the program, ‘not the sys-
3

tem, as the result of calculations which may affect the flow. Their use is optional,

and is intended to supply a convenient means of directing alternate program activity.

An example of the use of these statements is given in Section 3. 3. 3.
Suppose for this example, that the segment ilow arnalyzer has received control fol-
lowing the execution of Segment S;. The internal flow text speciiies that it then

test trigger Ty to determine the next segment. Havin
=4 1 >

0Q

tion of the entry point of the chosen segraent in a ceil in the PC3. This cell alweays

contains the location of the program entry to be taken when the zrogram next gains

control.

Figure 2.7.2 is a flow chart outlining operation of the Sezyment Flow
Analyzer, while Figure 2.7.9 shows details of the flow text which appears n the

PCB.

2.3.3 Program Control Block

..

The Program Control Block contains the following information.




it <t e a4 e pemms

used by the System Executive to

2.3.3.2

The Segment Flow T

which includes the link priority

alll

inks in the program. The latter is

determine which link to

3

bt

0

able. This table is gencrated dur

no

preparation from information in

o

2.3.3.3

The Program Statu

the flow control statemerts.

2.3.3. 4

should proceed when the
Segment Flow Table which

current segment.

8
.
w
w
.
(&)

The Program Trig

Pointers which indicate:

specifies the flow after

¢
Bk

the location to whica control

program is next entered; and the entry in the

the corarle

crs.

More detail on the Program Control Block content will be found in

Figure 2.7.19.

2.3.4 System Flow

The flow of control within the syste

of execution of program segments. Kach

euher when its execution haS been comple

£

following description of the flow of contr

turned to the system irorn a program seg

Analyzer is entered to determine

ol assumes

ment (reier to ilow

segment re

ed or when waiting for

chart

If return is from segment completion, the Segment Flow

the next segment to execute for this

3

lozd and cxecute.

that control has just bean re-




A £ L e e e e B

e L A bt a i e et A 5 i e b A e B 4S8 ok ek 8 A bk st A S L At et ittt

A= e e e et < 25 e ke 4 e o o k2 .

e § A i e

e e £

USRI

21

program. If retusn i oo loorn segment end, the return location within

the segment has already been saved by the routine which processed the

event request.

~

2.3.4.2 The Interrupt Supervisor is entered to enable and sexrvice

any pending interrupts.

2.3.4.3 Control is given to the I/O routine to acknowledge and post

completion of previous I/O requests.

"2.3.4.4 The System Timer requests are entered intc the scheduling

queue.

2.3.4.5 Loading completions are recognized.

2.3.4.6 - Any program termination reguest is processed.

2.3.4.7 - Program initiation requests arcec nDrocessed.

2.3.4.8 The Program Scheduler determines the next program 0

be executed.

2.3.4.9 Control is given to the previously determined segment

of that program.

2.3.5 Core Management
The Core Manager is activated when there is a need to find space Zor a

program, or to free space when a program is completed.




SORR

22,
The current status ci core utilization is maintzined in the Core Usage
List (see Figure 2.7.16 for details). Core 'cleanup' occurs only when necessary,
at which time enough programs are relocated (moved toward low order cére) to
acquire the ﬁecessary space. Programs most uscd will then gravitate toward

low order core, minimizing the need for further relocation.

Action of the Core Manager is illustrated in the flow chart of Figure

2.7. 4.

2.3.6 Interrupt Supervision

Several different types of interrupts must be handled witain the system;

“input/output, external, program, machine check, and interval tirmer.

The I/0 interrupts are disabled during the processing of a segment.

When control is returned to the system at the end of any segment, the I/O in-

terrupts are enabled for one instruction time. All pending interrupts which oc-

curred during the previous segment are then serviced.

3

Unsolicited I/0O interrupts are included in the group of external inter-

S]
‘l
9]
ct
H
<

rupts. When such an interrupt occurs, it is acknowledged at once, and a
is made in the program queue according to the priority for the type of interrunt.

Control is then returned to the program segment which was being processed.  The

Program interrupts, with the exception of overflow, are transierred

- directly to the System Executive with an appropriate flag set. If the interrup:




e B ki A Skt Yt 4 s i rm L Reiaie 2 K A he b hme

O

N
()

indicated an error, external control is notified and can then elect to continue

processing, or can terminate processing in order to initiate equipment diagnostics.

Machine check interrupt indicates an equipment failure and control is

transferred to the System Executive with the proper flag sct.

The interval timer interrupt is serviced immediately, in order to update

all system clocks.

Interrupt processing details are to be found in the flow chart of Figure

2. 7‘ 5.

2.3.7 Asynchronous Input/Qutput

~ These requests are made within application programs. They are also

my.
laoe

made by the syétem in érder to load programs from the auxiliary storage.
’ » basic‘ macros provided for Input/Output are:.
" REaD
WRITE
WAIT
The operands of the READ and WRITE instructions provide for the speci-

fication of device, word count, and location of data. The WAIT macro is a syn-

chronization device, indicating to the system that the program is to be placed in

=
=
U
cl
&
v
5]
w
[ 33
oW
H
H
()
[oN

WAIT status until the I/O action is complete. In this case, contro

(RO,

to the segment as soon as the I/O request is queued.

to the System Executive. In the absence of a WAIT indication, control is returned



IR 22,
The I/O queue entry contains the following inforraation (see Figure
2.7.14): |
i 2.3.7.1 " The location and length of the I/O area;
| 2.3.17. 2 The locé.tion of the Program Control Block;
| A .
; 2.3.7.3 The pointer to the next queue entry (this chain extends
| | from the Unit Control Block for a device).
1 The procedure followed for the I/O request is shownin Figure2.7.6.
; Bfisically, the following acﬁons occur:
1‘ 2.3.7.4 ~S’cructure ﬂme queue eniry;
2.3.7.5 » Set flags i‘n the Program Conirol Block to indicate that I/0

is current, and that the storage area cannot be relocated;

2.3.7.6 If the device is not active and a data path is availak

initiate I/O. If WAIT is not specified in the request, return is made to

LU S S S

the program. Otherwise set flags in the Program Coxirol Block to in-

dicate that the program is waiting, set the return entry, and retarn to
. 5 S 7

~ the System Executive.

" The procedure followed between the processing of segments and upon th

occurrence of an I/0O interrupt is as follows (for details, refer to the Ilow chart,

e s n it A n P b it e e 8tk B B et B

Figure 2.7.5):

E . - . . 2.3.7.7 Remove .queue entry;

2. 3.7.8 | A‘Relmove.the appropriate: I/0O and wait flags from the Pro-
gram Control Bloék;

: 2.3.7.9 Return control to the System Executive.




i § s 4 e A e al R

b e et

a4 i A e it s S

[\
m

2.3.8 Program Loading

Program loading is accomplished by a group of routines which communi-
cate through a program request quecue. Some of these routines operate as system

subroutines, while others operate within the multiplexing loop. The steps used ic

effect program loading are as follows:

2.3.8.1 - Requests to load a program are placed into the load request

queue by means of a system subroutine.

2.3.8.2 . A subroutine examines the Program index (Figure 2.7.17)

and Core Residence List (Figure 2.7.18) to determine if the program is

VO

in core. If so, loading is complete, and the PCE location is returned to

the System Executive.

" 2.3.8.3 . If not, a set of multiplexed routines access the auxiliary

~storage,obtain core for the PCB, and briag it in. The PCB location is

given to the System Executive for anzlysis.

N ~
BN = -~ o

2.3.8.4 If the Scheduler determines that the nrogram can fit into

the multiplexing loop, the Core Manager is invoked tc acquire the neces-

sary space, and the program is brought into core.

2.3.8.5 . A multiplexed relocation routine makes the necessary ad-
‘dress adjustments and notifies the System Executive that the program is

~ready for execution.




e R i S et e L e b e e o s b e ot & ek e S e s i

ek e

bt e e L B R e e b e N - Al Bt d et et e

8N
O~

Flow charts illustrating details of the loader operation are to be found
in Figures 2.7.7 and 2.7.8. The first of these covers the initiation process,
which obtains the PCB for examination by the executive. The sccond covers

action which occurs to complete the loading process.

2.3.9 Core Storage Layout

Figure 2.3.9 indicates the overall layout of core storage during execu~

tion. Two areas not previously mentioned are used as follows.

2.3.9.1 ' ‘.Perma.nent Core Programs. In addition to the exccutive
.p.rogram, two types of programs reside permanently in core. First,
there are prégrams which because o.f their associated responée tirnes
inust always be immediately available for placement in the multiplexing

: vloop-. 4 Included in this category are some ‘application programs, and such

overlap functions as those associzted with external cormraunication.

Second, there are common subroutines, such as sine and cosine, whaich
H

are provided as system services in order to economize on overall core
requirements.
2.3.9.2 Universal COMMON. Program COMMON »provides or com-

munication between the segments and links of a given program. Jnivers

W
e

COMMON, on the other hand, provides for communcation between pro-
grams. - It also provides residence for data, such as attitude and ephe- .

meris information, which is updated periodically by resident prozrams

for utilization by any program.




27.

e s st 2 oy e e

System Programs
Permanent Core Programs

Universal COMMON

Program 1

ogram 2

-

P

Programn

et rev s 3 oy g o = e i A TR £ e

L

[

Free Core

Core ‘MaD

-

o
o
~N
[V}
3
3
]
=)
ny




[

PP S

3
i
;
i
H
H
H
!

e et

b
|

2

[en)

.

In contrast to prograrn COMMON the data structure of Universal
COMMON is determined by the requirements o.f the overall system.
Once this is spccified, items may be accessed by the program as from
any other aata area. The actual core location of Universal COMMON
and.program COMMON is. of ﬁo concern to the programmer, since the
systém 1oad‘s‘ these‘locations into pre-determined registers prior to

“

entry to any segment.

2.4 Program Initiation

Requests to‘initiaAte‘e.xec.ution of a progra.m may come from ground control, the
operator, thé Systém Timer, or from 'a;n.already actiyekprogram. The request
is proces sedblytl“che Syéterﬁ'.Exgcutive,b which calls upon the Program Loader to

determine the size of the program, its repetition rate, and its location.

.
. !

external control which specifies the type of conflict, and a list of active programs

including their size and their repetition rates. It.is expected that this in

~will be used either to discontinue some program or specify that the request be de-

layed. If no conflict exists, the loading process is carried out as previously des-

cribed.

2,5 System Initiation

The structure of information on the auxiliary storage device is dictated in paxt

L8

by the requirements of system initialization and in part by the structure oi

resident programs. Initial records contain not only the resident system, bur zlso

the Unit Control Blocks which are associated with the I/O devices, the initial

.




PO S N W DU VU S O SO S SN

etk — L

s e e s Lk

[ SOOI SRR

29.

locafcion of free core, the definition of Universal COMMON, the list of initial

_programs to be processed by the Scheduler, and the Program Index. The pro-

posed structure is as follows.

"Resident System.

Initialization Record.
Unit Control Blocks (see Figure 2.7.15).

Definitions of free core and Universal COMMON.,

List of initial programs to insert into the multiplexing looo.

Program Index, one entry per program, which contains the

position of the Program Control Block, and its size (see Figure

2.7.17).

Program Files. Each program file consists of the PCB, and

- the Relocation Dictionaries and texts of each link.

- System initiation, either as a cold start or to effect a restart, begins with an

iti og o} eguence activate he operaior oxr i YT Ooun nirol.
Initial Program Load Seq tivated by the opera by ground control

The Resident System is loaded from the auxiliary storace cevice together with
Y g g

: the initialization record and the Unit Control Blocks.

External control may be requested at this point to-enter any deviations from the

standard configuration due to equipment malfunction or other operationa

1

con-

straints. Such information is used to modify the Unit Control Blocks to reilect




b b e e S

cetrdia,

e et a2 i oD it 4 e a

30.

the current configuration. In addition, external conirol may supply restart
information. Next, the definitions of frce core and Universal COMMON and

¢ then

H

the list of initial programs to be entered into the multiplexing loop 2
loaded. The Program Index is examined to locate the required prograras.

cntered

o

Once located, they are loaded from the auxiliary storage device an
into the multiplexing loop. External control is then informed of the current
activity of the DCSG and is then free to enter requests to load and execute ad-

-~ ditional programs.

The termination procedure, including program requested power oif, is localized

.
within the Sysiem Executive. When a request for termination is recieved an
orderly shutdown procedure is initiated. In this procecure, infcrmation is

saved in order to effect a possible restart. Such information is retained within

the system if the configuration permits; otherwise, it is presented to external

"~ control to be entered at some future time.

2.6 System Overhead

Estimate.‘s.for the processing times and core storage requiremenis of various
system functions were obtained by analysis. of the flow charts and tables pres epted
in péragraph 2.7, together with triai programming of critical functions. Time
es,tima.tes‘ are c‘onfin’ed tq non—.multipleged functions, as only these are critical
with respect to overall operation. Space estimates, however, include the entire

‘resident system.




A A n v ks tem S a i N g s et

[ S,

[

nehiite R D ors mas et s e s i el Ebon

e e A ammmih dm a Lt b

overall flow. This intersegment execution time, as explained in paragraph

w
y—t

2.6.1 Execution Times

1

The most significant system time is that expended in controlling the
2.3.4, involves some routines which are always invoked,.and sorme which are
invoked only upon the occurrence of certain conditions. Furtherraore, execution
times vary with certain parameters, such as the number of entires in a2 queue,

or the number of programs in the multiplexing loop.

In order to obtain a clear picture of execution time, thern, the charts

are in two parts. The first part, Figure 2.6.1, shows the execution times for

all routines which may be required. These times are given in terms of the num-

ber of instructions executed. The second part, Figure 2.6.2, summaearizes the

total execution time per second for several operational conditions which might dbe

execution time of 5 mic'roseconds.




[ VP

g e i 4 btk

INTERSEGMENT EXECUTION TIMES

ROUTINE

Flow Control Driver

Program Scheduler
Basic

For each additional compaflson

Segment Flow Analyzer
Minimum

Each operation penormed in Segment

Flow Table

Interrupt and 1/0O Processing
Interrupt Action
Normal I/0 Action
Channel End-

Device End
Request End

System Timer
Update
Each program requested

N o

.
’

- Program Initiation

Normal ‘ _
If time is not available
If space is not available

Program Termination

Basic
Return Core
Return Time

Program Scheduler In1t1a117auon

Basic
Each program in Executlon List

igure’2.6.1

INSTRUCTIONS
ZXECUTIE

20

—r

oy N

D

S
Lo

[l S co BN AN S
> 0o O

[
O

-1
N W0
[CIRNSATNAN

o W o
O N O

[
o O




e e b a2

JOREU PPN

(G
(€8]

TYPICAL OPERATING OVERMEAD TIMZS

Example 1. Assumptions: Three programs exocuulng concurrently witn repetition
rates of 60, 30, and 10. One I/O reguest per program, per second.

The system components used, and the system time ior one second is:

Executed insirs. Time (rs)
System Executive Driver . 2000 10.0
Program Scheduler : o 2480 12.4
Segment Flow Analyzer - 2500 12.5
Interrupt and I/O Processor - 1400 7.0
| - 8380 1.9

Example 2, Assumptions: Three programs executing concurrently with "coct"ticn
rates of 60, 30, and 10. Three I/O requests per Drogram, per se ond.

The system time for one second is;

System Executive Driver 2000 10.0
Program Scheduler . : E 2840 4.2
Segment Flow Analyzer ' - 2500 12.5
Interrupt and I/O Processor 1980 $.9
9320 £5.6

©-Example 3. Assumptlons~ Five programs e xecuting concurrently with repetition

rates of 10, 20, 40, 20, 10. Four I/O requests per trograrm, oer second.

K

e system time for one second 1s-

Sys tem Execuuve Drlver o 2000 10.0
Program Scheduler © 3040 i5.Z

' Segmem Flow Analyzer _ ‘ - 2500 12.5
Interrupt and 1/2 Processor - 2520 12.8

' | 10060 50.3

Example 4. Assumptions: Five programs are run concurrently fcr five minutes,

with one program termination and one program-initiation during tais
interval. Pour I/0 requests per program, Der second..

"‘he system components used and the a.Ota.1 system c"’—“Cdtlon times are as Zolisws:

System Executive Driver 600000 3,360
Program Scheduler ' S 912000 4,380
Segment Flow Analyzer o 750000 3,730
Interrupt and I/O Processor o 756000 3,73C
Program Termination , 64000 A ' 328
Program Scheduler Initialization o 340000 4 v L,7G03
Program Initiation ‘ © 96000 <78

3,516,000 17,380

Average/second 11,720 38.6

Figure 2.6.2




R o et e e et e € e b e e .

Y

CORE REQUIREMENTS

Svstem Executive

Routines

Driver o
Program Scheduler
Segment Flow Analyzer
System Timer ’
Program Loader
Program Relocator
Queue Management -
Core Management

_ Operator Communication
Program Initiation

. - Tables

. Program Request Queue |
Program Execution List
Program Index )
Load Request Queue -
Sys tem Timer Queue
Program Control Blocks -
Core Residence List
Core Usage List -

Basic Executive -

Routines

I/O Request Processor
Interrupt Action. ‘
Interrupt Processor

I/0 Select Routines

Error ‘Recovery Routines
Supervisor Call Processor

Tables

Unit Control Blocks
I/0 Request Queue -
~Interrupt Queue

Interrupt Cells and Diagnose Area PR

Figure 2.6.3

NUMEZER OF

INSTRUCTIONS WORDS
20
120
82
28
270
4
4y
110
75
240
1032 1239
5
10
50
L
5
200
30
20
325
76
26
110
60.
75
20
367 147
175
200
35
50
252
TOTAL 2457

NUMEZR OF

W

[




(€8]
Ut

da

Examination of these charts shows that flow control overhead ave rages

about 5% of the a.vailab'ble CPU time.

‘

Other non-multiplexed times which affect program operation are those
for I/O requests and ‘Supervisor Calls for system services. The average nurn-

‘ber of executed instructions for these are:

v‘I/O'Reque.s.t 60

Supervisor Call ._10

2.6.2 Core Storage Requirements
Figure 2.6. 3 lists the core storage requirements for the executive rou-
-tines.. The word count has been generated by assuming a conversion factor of 1.2

words per instruction.

2.7 __ Flow Charts and Tab.le‘sl‘

Collected in this paragraph are a2 number of flow charts detailing operation of the

£ ) - At = =
f the more important tables

system, and descriptions of the information content o

utilized by the ‘system..v '

-i‘_Thé ‘flow‘ "c.:hh‘aiu_r;ts‘ are:

. 2 7 L " Program Sche_dule;i‘

| 2/ 7;. 2 Seg'r‘nept Floxgv"’Arila‘lyz‘:ér

2. '73 >:.:‘_ Overa.ll Sy'st‘e‘lv'n 'Flvo‘\;/': R
2 7 CI T»C'ore‘ 'Manag;er'.f |

2.7.5 1/0 Interru?t Processor




e o

2.

2.

2

[QO

7.6

L.

T

4:7'.

7.

7

8

9

10

.11

12

15
L6
17
18

19

1/O Request Processor
Program Loader. PartI.

Program Loader. Part II.

' : Table information is as follows:

Segment Flow Tables

Program Request Queue .

Program Exécution Liétl
‘I‘_bac.i» .Requeslt’ Queue.
Unitl‘ Requésf@ugue .
I/0 Interi‘uﬁ)f Quiu‘auev .
Uﬁit Conti‘ol ‘Bl'o'ck:
Core;Usa‘g‘e List o

Program Index’.

Core Residence List .

Program Control Block -

Lo




PR P P SN AL S-S

et h bd be 8 e

37.
Initialization Entry Normeal Entry
®__—(:‘~1
i ""l
i 1 — X ; . ¥
. Pl =L |

Fetch ith entry
from the -
Program Exec-
ution List

W .
Fetch repitition
rate from
PCB;
i PR L

V\_.’
Store current

clock time.
in PCBj3

v \--’JN e}

Kj + 1 ok

i+ Cj—>C;

Wi

!<
\\‘"/
{
Store Current ;
Time in ;
PCB:
\I'/' k<
- V/
i+1—> 4 (Prograrn j 1
Return | scheduled ic

Program Scheduler

Figure 2.7.1




b s e R

o

&

Fctch Appro-
priate SFT
Entry (Initially
from PCB)

b
Test
Operator Type
(Field 1)

Perfofrb.
HAnd" of
Fields 2 + 3

Periorm
Y"Inclusive or'.
of Fields 2 + 3

End. Set
"Tnactive!' Bit
in Appropriate

PCB
J

Segment Flow Analyzer

Figure 2. 7.2

V4

N
/IS ™~
RN
Condition ™~Yes

atisfied?

b
4, No




Initiate System

A4

Load System
Specify Free Core
and COMMON
Define UCB's

|

\V

Load Initial
Progrioms to
Be Exccuterd

!

©

T
i

4

Process

Requests for

Program
Termination

57

Byece. Tiist Plandler

Remaove Progr.

From Excc. List

T

4
Notify Core Manageer
Opcrator Update
That System Core Mup
Is Ready T

N
' - Vv
) — | |

( Prom. Scacd, Init. Process

Prouram Schedule Initialize Requests for
Determine Multiplexor Prougram Initiation i
Next Program K> if Any Programs T
To be Exccuted Added or Deleted . ’
\7
T Lowder List Hand'or ;
Pliace Reguest 1
v 1/0 ] In Loader ‘
Exccute a Wait 1/Q Processor Purt. | Reguest Queue \
Program - &40 Indtdalize I/O if l———j | B

Segnient Device Available
Place Program in

} . "WAIT=Sct Reentry
\5& 2. Completion) Point in the PCB

Scgment Flow @
Analvzer

Dcetermine next Seg-
ment to Execute, L
1
i
|

Storce Entry in PCB

H—
7 vz

Interrupt Processor Exec.
Process Interrupts Remove Program
Queue Program from Exec. lList

Initiation or
Termination

List Handler

Requests l

L <y

< Core Manager
1/O Processor Update
Initiate Queued I/0 Core Map

Requests — Set
Programs with
Completed I/O
Active

Figure 2.7.3
Overall System Flow




PR SR SN T

there a

I'rec Core
Entryzn

Program
Above First Free
Core Entry

No

Reclocatable

Mark Free Area
as Used

.i

<7

Place
Program in Wait
Statég

l

YA

Move
Program

T

N

Combine .
‘Adjacent
Free Areas,
. Update List

1}

N/

Adjust Location
Dependent Quantities

W
Remove Wait State
from Program

|

N
&

.
Any Relocatable ™

=

Core Entry?
e .

v N7
E Step to
i Next Highest i
‘ Free Core .
i Entry
i
o

Core Manager

1

i

{

v
Subitract
irom Free Core

Program Fit in Fr ce >




1/Olnterrupt

\‘7
Status Save

|

Add Pointer

to Unit

Control Block
to 1/0O Interrupt

Queue

Move Channel Status

Perform

Minimum

Return to

System

Ater
Appropriate Error

Recovery Routine

to Queuc Entry

Clear (Possibled
Appropriate WAIT-
Scet Sync Call

o
Restore
Status

Does Program

still have pending

~ /0

Ao

estore

Yes ~ ¢
4 Status

\

s Error
Suppression Flag
Sct?

INo
4

Remove Non-
relocable Flag
From Program
Arca

/41&‘5[01‘0

Take Sense Data

Status

¢ ¢ cue Enatry
Remove Queue Entry

Mark in UCB

Clear Channel End

° from UCB

Pending Request
on Subchannel?

Device Have Clear Sub-chaanel

Pending Req?

Activity Cell

-

Y4 7 7

©,

1/0O Interrupt Processor
Figure 2. 7.5




1/O Request Processor

Figure 2.7.6"

N
Locate Unit
Control
Block

\7

Get
Queue
Space

i
7

Build Queue
- Entry; add it
to Device
Chain
vl7
Mark \
Program Spacg

as Non-
elocataole '

Is

; =Y
Dormant” -

Uub-channel.
busy?

A

Activate
Device

Specified?

‘!7 Yes

Place
Program in
Wait State




Call Index
Routine to
Obtain
Information

Program
Description
Info, In Corc

nough
Lower Properties be
Suspended to Make

Time
Available to
Schedule

Pg;'n.

Status
Message
To
Opcerator

<7

Place Entry
In "Pending"
Queue .

Add Program
To the Execution
Queuc

L

[Renmove
Entry from
Request List

Is
Request
List Empty
)

No

| Yos
Y/
Remove Program
Yes Initiator and
Loader from
Execution List
No

Set Next -
Entry to
l.oad Routine

B

/ Return
to
System

Program Loader.

Delete
Programs and
Update Frec

Time Count

Status
Message
To

Operator

Index Routine

Access Auxiliary
Stow

Obtain Required

ree Device to

Seation

7

SN

Is

free Core

Avatlable
?

i\"cs
4

Move Entry
To Load
QUC\JC

Enough Lower

Priority Progs be

Suspended to Makg

Space

Delote
Programs and

Update Frec
Space

A

i
|
i
i

Move Entryv to Load

Qu L

7

Read Index Section
Into Corce

Set Next
Entry 1o
Load Routine

Return

Part I Initiation

Figure 2, 7.7

e




et et e 3 b 1o 5 s s b

Prooram

.LJlﬂ.‘\ )
/ gy ‘i
/’Load or Llnl\\ A

Proruam

Is

ore Man- Ye

ement Routine
Active?

&8s

J, No

Request
Required
Core

1
]

\7
Position
Auxiliary
Storage Devices
if Necessary

\lf'

71s
Core
Request

e

.«;Y cs

Load Link
(or Program)
\‘f
l.ocation \
Dependent
Quantities

!
Cr
\

Reset'Relocation
Flags & Remove

Entry From Load
Queue

!
<7

Add Program
to Execution
List

/

\ 1)\\,)\.,\, lL

k\,\SJW'\/

Place Licader in }
. L. |
Wait Status until |
i

\

|

i

I

: Completion of Core:

Managerment
Routine

o :
o IR

t plet
t /—« of Core Management
Completed Routine

Place Loader in Wait ‘ Xeturn
Status until completion | /:o
. 2 # - {\ Sys tem
i \=rxec.
.

} R cquesu Remov l%
i of Loader irom .
}E:» cution '
i List ;
¥
i

IS
IR

N




Piara 2 7 10

£5.
e - U O |
SEGMENT FLOW TABLE FORMEAT
FIELD 1 FIELD 2 FIEID 3 FIELD 4 :
GO TO S, FS, Blank Blank indicates |
R, * ‘unconditional !
, i T | GO TO
i .
AND Ry Ri { R, 2 wds/segment
{ — ; ! ’
i T. T i i ;
1 1 i ;
_‘_:E—‘.j % 1 v
! l 1 i M
! i 5 - ! 2
? : s | '
1
; OR R. R. i R i
; 1 ¢ 1 : 1 ¢
? : f!
P T3 T =
3 = = | |
! T 3 : ! :
| , ;
1 END Blank Blank i Blank |
§ 3 " : .‘
S, Entry Point to Segment n
FS Segment Flow able entry of flow description from
segment n
‘ Ry Internal boolean trigger i to be used by the segment
" flow analyzer
T ‘Program trigger i set by the application program
—’f'; 'NOT!' or complen'xe”lt of trigger 1.
Figure 2.7.9
i
PROGRAM REQUEST QUEUE
Program 1.D., Link No. }
T
I The Queue discipline is FIFO within priority, If Link No. i
: is not specified, the first link is assumed. ;
1 wd/entry




e e e et e e e s o

PRCOGRAM EXECUTION 1iIST

Loc of PCB

C~

The Program Execution List contains pointers to the Program

Control Blocks of all programs in ACTIVE or WAITING status.

f 1 or 2 words fentry.
Figure 2.7.11
LOAD REQUEST QUEUE ?
f ”Program I.D., Link No. , Loczation
Program Length (includes COMMON, PCB, Relocaticn . '
Dictionary, Text). : :
i 2 words/entry ,
i (

Figure 2.7. 12

UNIT REQUEST QUEUE

(Relative) Loc. of next request
Channel Command

Channel Status Save Area

Loc. of Program Control Block
(Relative) Loc. of synchronizing cell

'8 words/entry

Figure 2.7.13

I/O INTERRUPT QUEUE

Lioc. of interrupting unit's UCB

1 word/entry

Figure 2.7. 14




S S UGPSR SIS LR

e ad e s ot cmmth s S bt b

et et b beia e e al

INIT CONTROL ELCCXK

Device type, Device Address, (Relative) Loc. of first request
in Unit Request Queue

(Relative) Loc. of last request in Unit Request Queue,

(Relative) Loc. of subchannel activity cell

Subchannel unit chain, Device Status (Physical/Logical)

 Device Dependent (Positioning) Information

One/Device ' 4 words/Unit Control Block

Figure 2.7.15

o

CORE USAGE.LIST !

Used/free indicator :
Non-Relocatable indicator
Arealength |

" QOrigin of Area )
1 word/entrv i

- Figure 2.7.16

PROGRAM INDEX

Program 1.D., Location

Priority, Repetition Raie

Program length (includes C:OMMON, PCB, Reslocation
Dictionary, Text) C

2 words/entry

“The Program Index can be divided into n eguel sections only

{

one of which would reside in core at any time. .

25 entries always in core.

Figure 2.7.17

CORE RESIDENCE LIST

Program I.D. .Loc. 0f ?CB

e e e

30 entries, 1 word/entrv.

Figure 2.7.18

M




P ST S SRS S

ke e i o R i e

P

PROGRAM CONTROL BLOCX

Seg Entry Point (1), Segment Flow Table Entry (2)

Priority, Reoetluo*z Rate

Program Length (mcludes CO\/\AO\T P-CB, Relocation Dicticnary, Tex

Program Triggers
Status Indicators (3)
Clock Time

ength of Segment Flow Table
ength of Relocation Dictionary
ength of COMMON

7 words < Segment Flow Table -~ Relocation Dictionary

‘Notes:

1. Pointer to Segment currertl‘_ 7 being executed or 1o be
executed.

2. ' Pointer to Segment Flow Teble entry which speciiiizz

subsequent segments to be exscuted.

(&3]

Boolean triggers set by the systems

. o ACTIVE
e "WAITING
" DORMANT
I/O Current
Insuificient execution rate.

Figure 2.7.19




3.0 THE GROUND SURPPORT SYSTEM

3.1 General Requirements

.)
$

The purpose of the Ground Support System is to provide a w
whereby system and applications programs for the DCSG can bo

produced, tested, and mezinizined on standard ground cocmpuier

equipment. In order to develop such a systerny, and proccduras

for its use, which will result in the highest atieinable level of

coniidence in the operation of the DCSGEG, it is necessary to provide
a comprehensive, integrated set
grammer of clerical demands,

bility in the organization and &

required can be grouped into the

Tograrnriey e¥presses cornnuta-

i

3.1.1. Languages with which the p
—_—— T T :
tional algorithms, program structure, operaticznal

preparation control.

3.1.2 Language processors which transliate source statements into

z form suitable for execution.

- -, Ao o A0 P P ~ - —e
statements, which are available o

Hy
w
(0]
o
H
0O
(&)

yte

3.1.3 Libraries o

-

modification and translation; of object programs, which may >

G

combined in various ways; and of produciicn programs ready 0T

execution.




b gt e £

Ot
(@]

3.1.4 Editing routines which provide access to the libraries and

=

implement the functions of updating, modifying, combining, rcorder-

ing, and documenting the information. ¢

3.1.5 A simulation environment in which to execute the prcgrams

under conditions as nearly zs possible identical to their actual use.

3.1.6 Check-out facilities to test and debug programs.

3.1.7 An executive supervisor which exercises control over the

whole system, and provides the mechanism by which activity is

coordinated between the programmer, the services, and the operaior.

(@
!
w
O
[
i
1t
(¢}
[sH
v
e}
(o]
©
H
o
C
P)
o]
Q

Such an assemblage of software and hardwar
<o

in time and manpower which can effect a subsiantial saving in the

system.
3.2 Existing Operating Systems
- Operating systems of varying degrees of sophistication are available

for almost all standard ground equipment. Ior several reasons, itis
desirable to use as much of an existing standard system zs possible.

First, the existing software represents a2 considerable invesiment

overzall development schedule. Second, addifional important bene

result from the basic standardization cbiained




1
)
!
;

Since ground-based executive routines a:

‘simulation environment and the editing features necessary o conver:

system: easec of coordination between remotc geographical locations;
recovery of programs developed for other applications; and simplifi-

cation of user training.

However, no ground system can be usced exactly as it stands, becauss
in ali such systems the designers have ignored the fact that the
simulation énvir.onment (item 3.1. 5) may not be identical to the
environment of the ground operational system. Hence, the system

i for operation within the ¢round commputer,
rocessors produce code I I g g ,

with linkages designed for operation under its executive supervisor.

tg
ol
3
(e}
ct
U
6]
o
H
)
(&N
ot
O
12
9]
[
@
t
-
12
¥
)

stringent real-time demands of the zirborne environment, recovery of

an existing system dictates two possible courses of action: modiiy

acilities for rspacchborne use;

-

the executive and the data management

programs to the form required by a spaceborne system.

With - AVE equipment which is instruction set compatible with the AGE

]

‘equipment the first course is possible. It is, however, ncither

practical nor palatable. It is not practical because the environments
are so different that the resulting exccutive must be & comuromise

suitable to neither. It is not palatable because the resuliing system

(¢}
J
H
@]
O
¢

is non-standard and hence requires extraordinary maintenanc

dures of its own.




i et A L

'3.2.1 The AVE cquipment proposed

~embracing a variety of programming languages znd langua

3.2.3 .Except for the Program Control Bloc

- under OS/360. .

Ul

The sccond course of action is therefore proposcd as the method of
developing the Ground Support System. Itis particularly atiractive

here because:

e

s instruction set compeatible
with the IBM System/3%0 family of comnuters. Thus, the code
generated by existing language processors needs virtuzlly no

modification. -

3.2.2 Operating System/360 is a comprehensive operating system

as well as extensive library, editing, and debuggin

maintained by IBM as a standard product.

- )
!

K, the prograrn struciure
-

used in the Spaceborne System is identical to that obtained with the

standard facilities of OS/360. Hence, the additionzl ediiing capa-

bility required is minimal.

o 5

3.2.4 The structure chosen for the S

facilitates the development of the simulation environment oderating

o




3
s
H
i

(G2}
[SN]

to function as a job within OS/360. The remainder of this szction
discusses how this can be done: the use of the existing system; the
modifications required; the additionzl programs needed; and the

operation of the resulting system.

3.3 Program Preparation

and produces as output the desired pro

3.3.1 0S/360 Language Processor Oulput

A most important function in the Ground Support Systermn is the produc-

o)

tion of programs for execution in both the Spaceborne and simulatic

environments. To do this, it is necessary to introduce a processor

which accepts as input both the outsut of OS/360 language processors

and statements by the programmer specifying the

facilities guite extensively.

w

The output of all language processors in OS/360 i

£

table module consisting of three parts:

3.3.1.1. The object code (relocatable):

3.3.1. 2.

‘words in the ob

ect code containing addresses w

need modificaticn;



PR R DN

P T SN

m
W

3.3.1.3 An External Symbol Diciionary which gpecifies

.

those symbols not defined in the module itseli, and thos

(&)

.

symbols which are entry points to be utilized by other modules.

ha

he object ccde and Relocation Dictionary are the

I
o,
»

a

It should be noted t

same as those used in spaccborne programs. Also, since the output of &l

h

processors has this format, modules resulting from different source

@)
(8]
L}
¢}

languages can be edited into a single program without special efiort.
This permits the programmer to utilize rore than one languaze within

the same program, choosing the one most suitable for each functicn.

Traditionally, loaders have been responsible both for resolving symisol

definition between relocatable modules, and for binding the resuliing

z]

program to core locations. In OS/330 these functions have been separated,

: . ‘ ] ~ =] ~ . P TR . L oaTn o T Semds TN 3 a
irst function assigned as the responsibility of the Linkage Editor.

iy

and the
This editor will combine modules from a variety of sources into a single
module of the same form. Ift
Dictionary which contains only system symbols and entry points, it is

a (relocatable) load module, and can function indevendently in the sysiem.




Source _
Program A

Object

Object
Module
A

wf Language
Translator

Module

Object
Modulc
C

From Programmer Library

Obj cot

Modules
D
iD
T

From Input Stream,

= . bk
I'rom Subroutine

Library

/

Control t

‘Statements

B Y S D X e

ln nkage

\ Ioditor

Linkage loditing

Figure 3.3,

2

From PI;CV]'.OU.S Job Step

Load
Module
A D
B iDS
C in

o]

| .
" To Library

-—--=I» To Joxecution

(@3]

(S



(@21

The flexibility obtainable by this scheme is illustrated in
figure 3. 3.2, which shows the possible sources of Linkage Editor

input, all of which can be utilized at the same time to produce a

s
load module.
3.3.3. The Preparation Language
To produce a program in the Spaceborne format, the preparation

processor need only take a load module, or a set of such modules

if the program is to be composed of lirks, examine the External

contain only entry points and spacebornesystem symbols
Program COMMON, Universal COMMON, and file symbols. The
entry points are present for one of two reasons: they were used in

building the load modules from other modules; or they arce to serve

~as segment entry points.

Th~ information that must be supplied by the programmer is

the following: the names of the segment entry points; the Program
Entry Repetition Rate; the composition of a link; the segment Ilow

information.

(@)Y




U TS PRI D

[P N A SN

5 -

Preliminary studies indicate that the language in which this

information is supplied should be non-procedural, and reguires only

¢

a minimum number of statement types. These are:

3.3.3.1. A statement whose function is to identify the prograrna
by name and define the correspondence beiween modules and

links.

3.3.3.2. A statement whose function is to identify thz segmen:

entry points and to specify the revetition rate for a link.

5

ow flow control is t

+

3.3.3.3. A statement which svecifies
-proceed upon completion of a given segment. A set of such

statements describes the entire flow. For example, if the




where Sy are the segment entry point names, and T] represents

a condition associated with trigger one, the fiow information

[RUSTURN

content of the statements would be

‘ BEGIN 551
1 .
) -
| 51 52
S5 =S, (T} ON), S5 (T; OFF)
; S3 LEND

There is no requirement that these statements be in a2nvy par-
Y ¥

set as a

[

ticular order, because the ordering is implied in th

whole.

'3.3.3.4 A statement to signify to the preparation processor

the end of information.

. Default conventions are also established in order to simplify

e i e e et AL am

the programmer's usage of these statements.

e}
[eh
I
ct
22
'
w
0O
la)
3

mechanism for flow contirol is for the programmer's aid 2

rha e bk -

need to specify it. This, and similar procedures, can be arranged a3

e d ik u msaas o ale a

the default conventions assumed by the processor.

N
i
H
‘
4

o>

venience. Since a simple sequential flow is common, there should be no




g Rt b At

R S U SV S SV SO

VPR,

[ NP VS

‘Ground Support System then involves the following acti

part of the programmer and the systern.

3.3.4 Opecration of the Preparation Processor

ot
=
o]
8
(@]
LI
s
j®)
@

The operation of the preparation processor porti

da
on i

,,
@]
8
U
el

-t

3.3.4.1. The programmer writes, in one or more scurce

“languages; sets of statements which represent the computa-

tations desired in a program.

y—
skl
D
Q
¥l
I
iQ
©®

3.3.4.2 These sets are processed by systew

" processors to produce relocatable modules. Standard

0OS/360 procedures zllow both the source language state-

ments and the relocatable modules to be placed in a library

for later retrieval and usacge.

3.3.4.3. Having decid

ed upon the structure of a program,

the programmer calls upon the Linka

(0]

3
O
5
I

modules. The basic relocatable modules rmay com

--number of sources, for instance, the input strearm, module

X

libraries, subroutine libraries

" processors. The programmer's responsibility is to combine

the modules in such

[x)
g
s}
<
(5
53
o
ol

symbol references unknown to ¢

that at least one entry point name exists for every segment.

Ul
O




hms dea s b Aiamim st o e 2 e e Ch b & e 6o 8 2 ah 8 Ak £ e o A

e A e et e et e i e 2T T e a4 s 8 st e s E a2 2 e e

60.

w

.3.4.4 The Program Preparation Processor is then called.

It reads the preparation language statements, collects the
a,pprop'riate load modules, and produces the final form of the
program. Again, the load module Znput mey be from a resident

library or may have been just prepared._REurthermore,—the

preparation statements may themselves have come from z
source statement file in the system. The ouiput mayv be
retained in system files, and may alsoc be used imracdiately

in a simulation run.

Finally, it should be emphasized that because the Preparation

(¢}

Processor runs within OS/360, 2all these processes may be carried

out in a single machine run.

3.4 Languages and Language Processors

The previous discussion assumed that the relocatable :
produced by the language processors were suitable for use in the Space-
borne System without change, and that 2ll languages supporied in OS/360

=4 o o fags

re equ uita for Sy eborne a ication. In princiwvle this is
we qually suitable for Spaceborne applicatio In T cinl

true, but in practice difficulties arise from severzl sources.

First, the languages may lack means of expressing some function

required by the system. Second, the languages may be too rich,




allowing the expression of functions which require too much over-
head for the spaceborne system. Third, the processors may nroduce
modules which depend upon sysicm facilities not azvailable in the
spaceborne system, or upon communication and linkage conventicons

Id . ' : . ,. q - -
foreign to it. Fourth, the code produced by a processor raay not be

efficient en ougn for the applications.

5

Consideration of these problems has led o the selection of

PR - -
Nree

0S/360 Landua“e/’oroccsso* combinations as the basis for writing
rograms: the assembly system; FORTRAN IV; and PL/1. The:
g y
following paragraphs examine the suitability of these combinations

in terms of the previously mentioned sources of difficully.

3. 4.1'. The .Assernbly System

Because of the instruction set compatibility between the

AVE and 5/360, the macro-assembly systern of OS/380 is useable

almost as it stands. Three areas of conflict which exist are readily

handled .

3.4.1.1  The possibility of AVE instructions not in 5/340,

such as direct I/O, is implementable by adding to the rnacro-

3.4.1.2°  Machine instructions in S/350 no: in AVE, such as

the decimal set, are handled by crcating a spaceborne assermbly

O~

p—r




o~
o8

mode in which usage of the offending instruction: is flagged.

Since the assembler operates in several such modes zlready,

addition of a new mode is a simple task.

3.4.1.3 Macro-instructions exist in the library which are
strictly oriented to OS/360. Some, such as GETMAIN,

implement functions not available in the Spaceborne System.

0.

Others, such as . READ, expand according to linkage an
communication conventions which conflict with the Space-
borne System. Fortunately, the macro-instruction library
is independent of the assembler. Hence, switching to a

new library when in spaceborne assembly mode provides

an easy solution to the problem.

The programmer need not be aware that the spaceborne
assembly mode exists. If his interiace is entirely with the Ground
Support Supervisor (Section 3. &), the assembler will be calied throu

it, and the mode change and macro library switch will occur zutomatically.

H

3.4.2 The Compiler Systems

The OS/360 FORTRAN IV language encompasses ASA TORTRALN,
including its mathematical subroutine provisions. This is a well-knowsz,

widely used, thoroughly tested, high-level scientifiic programming




.tions. Clearly, then, what should be used is some ‘reasonable

o~
QN

language. Its use is very desirable because experience has shown

that compilers for this language can produce very eificient code,

because it requires minimum training for the procrammer, and

[==) o (=7

because of the existence of a large body of checked-cut programs.

FORTRAN is, however, not ;.decua“ce by itself for the
spacéborne applications. Iis deficiencics stem from its scilentific
orientation, which limits computation
point. Apart from integers, there arec no la

ain fixed point

3

fixed point data, or to ob

PL/1, which incorporates exiensive facilities

tion,.is suggested as a high-level lang

However, PL/1l in its entirety is an exiremely rich language,

encompassing the functional capability of TORTRAN, CO30L, arnd

ALGOL. Some of its storage allocation tecianiques, such as those

e . e _
C suliable I0Tr e spacedornie

for automatic variables, are simply noi
applications; some of its conventions conilict with TOR

subset of PL/1 rather than the

classes of statements available within PL/1, as defincd in the IBNV




Figure 3.4.2 specifies a subset wiich is deemed desiraklc

+
<

rhy
@]

~

=]

the application as presently defined: In-choosing this subset, only

i

those features of the language were retained which were f¢lt tc e

has been eliminated,.

As for the processors themselves, both the PL/1 and ¢

FORTRAN processors generally produce code which interfaces with

o\/‘
L
O
e
ot
-
=
@
n
w
-
&)
0
[¢]
o+

the system by means of calls upon librar
library routines are incorporated into the program only upon iis
final assembly by the Preparation Processor, substitution can be

accomplished by the system at that stage. Changes to the processor

are therefore quite minimal.

3.4.3 Segment Definition

o~

1S

The one feature of the spaceborne system not direcily transla-

table into source staterments in any of the languages, is the sezm
H

o
H
83

However, the segment is basically a struct

not a procedural one, and is handled as follows.

' _‘3. 4,3.1 All languages provide for an entry point deiinition,

and hence for a segment eniry (sece Section 3.3).

1 znd operational concent,




i
FEATURES INCLUDED | "FEATURES EXCLUDED

Assignment Statements

Optioz 1, Scalar Assignment
with Pscudo-variables
ONSOURCE
ONCHAR
SUBSTR I3
UNSPEC : PRICRITY

Option 3, Structure Assignment Cpticn 2, Array Assignraent
Option 4, Statement Label . Option 5, Pointer Assignment

Assignment

Control Statements

E .
CALL j CALL options
DO | TASK
GO TO - ! TVENT
Ir K | PRIORITY
RETURN i DELAY
STOP . BXIT
!
Error Control Statements ;
!
: - : P . A DS
ON . i The ON ontion SNAP

Input/Output Statements

GET Do ¢ PUT options
PUT i PACE
DISPLAY § SKIz
OPEN ? LINE

CLOSE
‘List-directed transmission
Edit-directed transmission
Data lists with repetitive

~ specification
Format

TS e e 2 A 2 [
rioure JS.%.2 Part L

s




(2

o~

Data Declaration Staterents

DECLARE

Attributes -
'BINARY/DECIMAL
FIXED/FLOAT
Precision
String with
BIT
CHARACTER
LABEL

Dimension with signed
decimal integer bounds

ENTRY

GENERIC
BUILTIN

RETURNS
INTERNAL/EXTERNAL
ALIGNED/PACKED
DEFINED

INITIAL'

FILE

STREAM

INPUT

OUTPUT

PRINT
ENVIRONMENT
STRUCTURE

Storage Allocation Staternents

Program Structure Statem

Attributes -
REAL/

String with
VARYING
PICTURE

Asterisk length specifications
TASK |
EVENT

.

Dirmension with bounds that arc

expressions or asterisks

SECONDARY
A B\*O*" MAL/NORMAL

/"1\"\,""\

...-......._

LIKE
REZCORD
TRy A T

BUFZ:
BACKXWARDS
EXCLUSIVE
KEYED
ARTA

1ents
. PROCEDURE PRCCEDURE option
EGIN RECURSIVE
END v BEGIN reifiecting storage :
ENTRY allocation ;
Lo i
1
Tigure 3.4.2 Parz i




[ep
)

3.4.3.2 All languages provide for a system return, with
options. Selection of one of these as scgment end involves

a

( L‘

no language changes. Also, its sigrificance is interpret

by the spaceborne exccutive, not the OS/360 executive, and

so involves no system change.

3.4.3.3 Trigger setting and resetting is done by subroutine

call or system return. All languages provide for these.

3.4.3.4 No language features exist for monitoring segment
execution time. However, such monitoring is operational

and is periormed by the simula

d

W

Thus no changes in the languages or processors are reguir

because of the segmenting conventions of the spaceborne programs.

3.5 Simulzition and Test

Another important function of the Ground Sunpor:t System is the
simulation of the spaceborne programs, both sysiem and application,
in order to ensure valid operation. For this purpose, it is essentizl

PN = A

to execute the spaceborne form of these programs in the AGE =zguipment
without substantive changes. Because of the insiruction set compati-

bility the programs can execute directly, but because of the environ-

mental differences it is necessary to introduce a set of routines




internally created spaceborne environment.

This set of routines, called the Simulation Processor,

under OS/360. It divides naturally into two groups of functions.

)

it exercises control over the set-up for simu

of the simulation environment, interpreiation of statem

specify data generation and debugging, and conversion of such inlorma-

tion into a form suitable for use during simulation.

the execution, acting to supply data, recquestis from

and the
ocperaies
First,

outside, and interrupts. It also collects the information about prograrn

execution specified by the debugging requests, or required

spaceborne environment,

3.5.1 The Simulation Supervisor
%

aQ

Even though the spaceborne pro

in the simulation environment, a Simulation Supervisor is always in

control. The key to this control lies in the scgment siruciure oI t

prog

The former is used to gain eniry icmonitor operational pro

collect debugging information, and effect interrupis.

1

rams, and the treatment of privilieged instructions in S/380.

used to obtain control from the Basic Executive of the Spaceborne

Systern in order to handle data insertion.




b JE N S .
AC SlTauLailCn cnvironracnt

Consider, first, programs running in t
under the spaceborne executive programs. Since the simulator is itsclf
a .. . . o e ) . —
an OS/360 prograrn, it operates in the problem program sizte. Hence,

when a program returns to the System Executive via a supervicor call,

the interrupt is actually handled first by the OS/3560 interrupt super-

visor. .This supervisor, recognizing the czll as’ a type belonging to

the Simulation Supervisor, transfers control to it. The Simulatiion
Supervisor thien
3.5.1.1 Clocks the execution time of the segment.
3.5.1.2 . Examines the list of requests for debugging. I

debugging information is desired at this point, it is collectec
and output through standard OS/360 routines.

.
N

3.5.1.3 . Examines information which may have come in via

the S/360 operator which is intended to simulate some external
-process. Such information for exarmyple, may be a recuest for

the air, would have been rmade by the astironzut. I such
inforrati is waiting. it will exit to the Svsterm Executive
lnformation is waiting, it will exit toc tne System Lxecullve
as if an interrupt were peading. If not, it will return cont:

.. without such indication.




70.

Next, during the course of simulation execution, the Basic
Executive will‘iget control to handle I/O. Since the I/0O instruciions
are privileged, they will not be executed. Again, an ix}.terrupt to the
0S/360 interrui)t supervisor will occur, this time to indicate privileged
instruction execution. In order for the Sirnulation Supervisor to get

evel

-t

control at this point it is only necessary to supply a second
interrupt handler in OS/360 which enlarges the function of the standard

routine. No conflict with standard operation will arise from this.

In efféct, then, there exists a simwnle mechanism for supervis-
ing the spaceborne execution during simulation without the neces s‘ity
for altering instructions in the programs. Also, | since the Simulation
Supervisor oéerates under OS/360, it is zble to utilize the full capability

of the system:.

3.5.2 Program Test

In general, programming errors can be put into three categories:
syntax errors, which are mistakes in the grammar of the programming
v 2 = < S >
language being used; mechanization errorsy which are mistakes in
translating an algorithm oxr solution from its original statement into a
programming language; and logical errors, which are mistakes in the
generation of the algorithm or solution to a problem, or possibly in

the problem statement itself.




Errors,in syntax arc detected by lanzuz

hence there are no special requirements on the simulator for t

Certain kinds of mechanization crrors may zlso be detected by

language processors articularly those con
o o 2

(@]
[¢]
H
3
G\
[oN
&

naming conventions. Unreachable portions of a2 prog

undefined or ambiguously deiined symbols are cof this class. F

and

1

neee.

Here
- again there is no requirement upon the simulator for such diagnostic

information.

E‘or logic errors, however, and for errors waich
because of the dynamic environment, the
provision for the user to insert test informeation, an
information about program flow a

:Astagcle_‘s. The internal processes for
Section 3.5.1. Externally, vhowever, the Simul

be able to interpret statements from the

3.5.2.1 A debugging language by which the chy

nust
angias

~2

)

pertinent information about his program.  =C
items as areas to be displayed at the end of segment
the flow of control actually follocwed by the pro

trigger setiings at various itimes.




‘System in a2 somewhat independent way.

3.5.2.2 A dats gencration language by waich the vser can

-

o be ‘read! during the cours

(a3

conveniently describe the data

of program execution.

3.5.2.3 A simulation control language by which the user can
specify the interconnection beiween various programs tc be used

in a simulation, and ways in which programs aré to respond

dynamically, in closed loop fashicxn, to the execution.
ecificati f these languages requires furthe udy.
Specification of these languag quires further st

3.6 Integration of the Ground Support System

The previous discussions have covered the parts ol the CGround Supnor:

practice utilization of these parts will tend to be interdepencdent. Ons

will want, for example, to be able to prepare a2 spaccborne Program

cessary in order to do this, since each

()

No special support effcrt is n

activity could be treated as a job step within the CS/360 deiinition,
However, it is proposed that the entire Ground Support System be

w
K,
[
H
v
n

integrated under a single Ground Support Supervisor, which, a
0S/360 is concerned, is just another o

programmer point of view, this will enhance effi

-3
[\




i
i
i
'
|

i
{
i
i
I

necessity for fewer control cards. Irom an overall instzalla

point of view, ground support operation, and the standardi

£

of the maintenance and documentation oi

is greatly simplified.

(SN




The following is a block-by-block description of the charts.

4.0 IMPLEMENTATION PLAN

The development and production of lvalidated programs for the DCSG
requires a’carefvully developed and contrclled implementation plen.
The plan rn;ust include procedures to span the time from inception to
delivery of the operational programs, with milestones that provide &
precise control over the distinct areas of software bdevelop'ment. Such

a plan is presented here.-

4,1 Task Sequence

The sequence of tasks required for the implementation procedurs is
presented in the form of flow charts, figures 4.3 and 4.4, which cover

the areas of program development and program validation resp

I
O
ot
V1
<
®
y—t

<
L3

and carry through to complete integration of zll programs.

of reference, each block is identified in two ways. In the upper right-

hand corner is a number which correlates the block with & descrintive

paragraph. In the lower right-hand corner are abbreviations designating

T

~the general area of responsibility. These are as follows:

LV - Laboratory Vehicle
MM - Mission Module
. OV - Orbiting Vehicle

DCSG - Data Computation Subsystem Group




Wt

£.1.2
ninary opera

1 design of
paceborne programs.

Y

4.1.1 Decfine Computer Program Reguireraents (Blocks 1.0 and 2. 0)
Basically, three things must be done: ]
4.1.1.1 Analysis of problem requirements. Thatis, the
identification of functions to be pe?formed, and the allotment of
speciﬁc‘tasks to the DCSG.
"4,1.1.2 The developrment of system cquations. The ecuztions
required to .implemen., the DCSG assigned tasks are defired and
preliminary math/logic flows are determined.
4.1, 13 The definition of accuracy requirements and sclution
rates. '
Ground Support System Specifications (Block 4£.0)
The complete system of support software is designed and speciied.
the programs and generation o com-
ting instructions are
| (Trhe Ground

This includes _the interna
s

4‘ ll 4
dissemination of information. Careful exam
is made in or

plete external specifications.
published to zid in the development of
Support System is outlined in section 3.0 oI this
4.1.3 DCSG Spaceborne System Specificaticns (Block 4,1)
reliminary functional design of the Spaceborne System is com-
. Preliminary functional design of the Spaceborne Syst o
eted and documented. (The basic outline of this design is described
pleted and docu ted iy sic outline of this design is d d
in section 2.0 of this paper).
oordinate mputer Requirements and Supnort Prograrms {Block 3.
C dinate Computer R and S ort Prog R 0)
This activity is mainly a function of coordination, control, and
iration of the results of
* to assure DCSC and suzsort

1

blocks 1.0, 2.0, 4.0, and 4.



~
0N
.

system compatability, eliminate duplication of cifort, and identify

oty

specific subroutines. Support systermn write-ups are recleased to uscr

[l

groups, and approval of all activity must be

4.1.5 Definition of Prograrm Interfaces (Blocks 1.1 and 2.1)

The interfaces between computer routines and external si
are identified and clearly defined. Also identified are the formais to
be used, the methods of access to common data, and any resirictions

the interfaces impose upon the programs.

4.1.6 Math Flow Generation and Simulation (Blocks 1

v ~and regenerated until a
loop. sirﬁulation is éerformed on & general purpose computer to imsure
satisfactigri of systerﬁ requiz;ementsu From this point the effiort mae

proceed through blo.ck 1.7 as an inte

as several semi-independent effor:s.

4,1,7 Test Program Definition (Blocks 1.2.1 and 2.2.1)

This activity involve and
data to fully exercise the DCSG program during soit simulation. The

test programs also serve as inputs to the functiconal simulation described

in Blocks 1.6.1 and 2.6.1.

4,1,8 Math Flow Release (Blocks 1.

w
|
o3
[aN
v
[@3)

~

The math and logic flow is formally released and accented, and
becomes the basis for coding the operational programs,; ¢

test programs, and creating . Jinctionzal simulztion,




4.1.10 Detail Flow (Blocks 1.

,J

0
o
)
0N
0
0
w
w
.-
.
wd
v
p\
5
oy
o
.
¢

—

4.1.9 Generate Loon Closure Techni

This activity is an extension of the closed loop simulation done

in Blocks 1.2 and 2.2, It provides two ocutputs for use in later validation.
The first output, indicated by the letiers A and C on the chart, provides
enx}ironmenta;l information to the System Intcgration Laboratory (SIL)
checkout (Block 5.0) and the Hot Mock-Up (EMU) Checkout (Block 6. 0),
which allows a2 dynamic hardware checkout on an individual basis for
each routine. The second output, indicated on the chart by the ictiers

B and D, provides dynamic environmental information for use in the

soft checkout of the Laboratory Vehicle integrated programs and the

S
s8]
e
¥
o}
v
13
12N

-

The math and logic flow is adepted to the nature of the
programming artifices peculiar to the DCSG are introcduced. AI. coding
will be done irom this detzail flow.

4,1.11 DCSG Program Development (Blocks 1,5 and 2.5)
. - B j /
DCSG programs are coded and prepared by the Preparation

Processor (see 3.3). Specialized hand checks a

many errors as possible before beginning simulation.

~

4,1.12 Test Program Development (Blocks 1.5.1 and 2.5,1)

Test routines and data are developed irom the plans generated
in Blocks 1.2.1 and 2.2.1. Test programs arz designed to exercise the

operational routine as completely as possible.




~J
o

4.1.13 DCSG Program Simulation (Blocks 1.6 an

(o8
o
O~

Using the DCSG Spaccborne System and the test prog

operational program is exercised in all its 1

w
3
O
[oN
@
n
o+
O
o
(‘\
w
ct
i
@]
B4
(@]
O
ty
H
Q
O
L
'(’
o

formance. These tests are soft simulations, periorrned first on

loop basis and subsequently, where a

4,1.14 Functional Simu n (Blocks 1.6.1 and Z2.5.1)
In order to develop an independent ch of the transition irom

the released math and logic flow to the detailed flow, and tc verily the
programming artifices used in Blocks 1.5 and 2.5, the released math

and 1 OC‘IC +'1ow is functionally sn*qm,l;we on & general purnose corapuler

A

program simulation.
4.1.15 Comparison (Blocks 1.7 and 2.7)
he results of t : prograr simulations and the Iunctional
Tt sults of the DCSG prog ulations Jo ctional

simulations are compared to verifiy that results are within accentable

tolerances. This step completes the develop

4.1.16 Develop DCSG Ground Support Sofiware (Blocks 4,2

All Ground Support System programs arce develoned and check
out. These are then DTOV].de\.. to the computer program users Icr their

operational prograraming activities.

4. l 17  Spaceborne System Development and Checkout (Blocks £,2,2 & =, 3)
The Spaceborne System implementation is completed and checked

out on the DCSG simulator. The Spaceborne System is reguired during
open loop DCSG program simulation (Blocks 1.6 an

hardware viiidation of the programs.




79.

4.1.18 DCSG Systpm Checkeut Using Test and Checkout Prograrns

(Blocks 4. nd 4.5)

The DCSG system to be used during hard checkout of the opera-

tional routines is developed and validated with test programs, for usc

at point G in Figure 4.4. This is accomplished as described in figures

4.1 and 4.2, which outline the five basic levels of DCSG computer

. assembly and checkout and the main vurpose of testing at ecach level.

The abbreviation key for these figures is as follows:
CPU Central Processing Unit
MGE Maintenance Ground Eguipment
KDU Keyboard Dis play Unit
HCP - Hard Copy Printer
ASU Auxiliary Storage Unit
CSC Computer Subsystem Control

s
LVDAU  Laboratory Vehicie Data Adapier Unit

-1

4,1.18.1 At Level A, zll communications with the centra

4

processing unit are through the MGE which provides conircls

" DCSG Main Storage from the MGE by rmeans of card decks or

program tapes.

4.1.18.2 Level Bytesting extends to the inclusion into the sub-
system of a previously verified Auxiliary Sitora

stores the kernel of the DCSG executive routine, which allows

¢l
,,1

check programs to be transferred from ASU fo main stora




startup. The MGLE provides power, start-stop control, and

monitoring functions

4.1.18.3 Manual interfaces are introduced to the DCSG =t

Level C. At this point, the MCZ is reguired for primary veri-
fication of keyboard, display and vrinter cperations., IFolicwing
- - o

this verification, this portion of the subsystem (which is ccuiv-
alent to a normal EDPM installation) can be completely checked

out by use of the keyboard, display and printer. This checkout

e
)
rr
G

3

program is the first which will be available for inclusion

operational ASU,.

4.1.18.4 Level D testing brings in the computaiion subsystem

controller. MGE involvement is necessary to check the CSC-CP1

combined operations and to siraulate the commeand system inter-
face to CSC. The ASU checkout programs are essentizily the

same as at Level C,.

4,1,18.5 Level E introduces checkout of the LVDAU, and hence

for this level are more complex than those which will be used oz
on-orbit testing, and are of & somewhat different nature, The on-

L. -
i

orbit test programs will be checked at this level as a2 series of
subtests. The MGE also simulates telemetiry and command inier-

| faces, in so far as is necessary to simulate auxiliary ground check-

out of the orbiting DCSG. Checkout programs at this level are




environment will be provided through the g

i
Py

directly analogous to those required for the all-system tz

equiément group (ASTEG) at DAC.

+

H
[
[o N
o
O
(@]
<
[©)
o
wn
H
[

e
fod
pr
H
(0]
I}
ot
(0]
3
8]
s
(@)
i

Each of the software items identifi
Milestones 1 through 8. (On-orbit check programs are a2lso recuired for

Milestone 8).

4.1.19 SIL Individual Program Checkout (Block 5.0)

Individual programs which have completed the soit siraulation

avxd checkout are bxe*ms d in the SIL environmentandverified inthe DCSEG.

~Verification takes place on the actual DCSG computer with as complete

a closure as possible through actual physical interfaces. Simulated

o]

&
I

H
I
bt
'

L‘
0
(@]
w

o
O
e
3
e}
by
( i
I
[
t (
(D
[o N

into the SIL complex, using programs generated in Block 1.3.1.

4,1.,20 SIL Test Programs (Block 5.1)

Programs are developed for the general purpcse SIL computer o
provide stimuli to the individual DCSG pr vs during SIil checkout.

.4. 1.21 Interface Simulator {Block 5.2}

In the SIL complex, many of the interfaces to extern:a

- must be simulated, requiring hardware simulators and compuier prograrms

for the SIL general purpose computer. Simulators must insure ziecirical

and physical compatability between the DCSG, the device being simulated,
and the environmental data generation.
4.1.22 "Mission Module Hot Mock-Up {Block 6. 0)

The eifort invelved in this arca is similar to the SIL program

checkout tioolz (5.0). It consio.: of individ, = o




[¢2]
N

programs on a DCSG hardware setup.

4.1.23 HMU Test Programs {Block 6.2)
Again, this activity is similar to the SIL test program (Block 3. 1).

It provides the same type of input to the ot Mock-up complex &5 is pro-

vided to the SIL complex.

3
su
8]
(o7
w
0
Fh
i
O

4.1.24 LV Program Inteoratio

9]
ot
(0]
[oP)
g,
o
&
@
TR
O
8)
O
c
[
[
LY
@
83
[N

- At this point 211 LV programs are integr

with the Spaceborne System. A complete closed-loop soit simulation

is performed to insure compatability and proper operation. Loop closurc

This activity involves the same operation for Mission Module
programs as was accomplished for Lalorato

4 Block 5.4.

C4.1.26 LV Program Integration and SIL Checkout (Biock 5,3)

This activity is the hardware chec
It involves integrating all LV programs into the SIL checkour facility with.
the Spaceborne System, and verifying proper operation on a cloged loop

hardware basis.

4,1,27 MM Progrem Integration and DIMU Checkout

This is the counterpart of Block 5.3 for the Mission Mcdu

programs. Complete hardwarce checkout is on the Hot Mockup facility.




o2
[N

4,1.28 Computer Program LV and MM Intecoration {Block 7.0)

All LV and MM programs and the Spaceborne System are inte

into a complete mission program

ackage to forrm ¢t

g

~package for a particular mission. Strict control is maintained to insure

the integrity of the package in t

4.1.29 Overall Soft Checkout of Inteeorated System (Dlock 7.1)

Final digital simulation of the complete package is pericrmed
at this point. Primary concern is to assurce compaiability of the LV, MM,
and Spaceborde System in the operational configuration, independent of
the hé.rdwére. Thisbis a closed loop simulation which clesely dunlicates

" the operational environment.

4.1.30 Overall SIL Checkout of Integrated System {Slock 7.2)

This activity provides a compleie checkout of the integrated

02
O
3
ot
[op
¢
o
N
H
2,
&
N

]
@
3
(¢
w
i
[}

i}

bl
>

W
ot
O
i
Y
[¢]
wn
]
i
o)

L
i
O
(@]
1) "
N
.
-

program packa

are executed. Special emp

G
H
5]
[
'y
«i
w
(62
<
)
fl
)
18]
e
(@]
H
(]
b
O
(@]
f\\
o
N
O
‘E)
43
v
I3

real time conditions (such as random inte

device dependent I/O timings) and

duplicates the actual spaceborne con

"4,1.31 Release and Implementation of Complcte Mission Pac

tion is considered to be complete and the program package ready 10T 1igas,

so that all program material and documentatiod is released to the launch site.




4,2 Milestones

Milestones have been placed at strategic points, so that a clear picture

of program progress may be obtained. ZIight milestones are delincd for
the Implementation Plan., These are as follows (again refer to IMigurcs

4.3 and 4. 4):

A

4.2.1 Milestone 1 - Computer Program Reguireiments

All requirements for the DCSG System, the Ground Support
System, and the Spaceborne System have been defined. Documents

are generated detailing these requiremen

4,2.2 Milestone 2 - Computer Prograrm Concent and Test Plan

mentation and test. It is based upon Milestoze 1 and serves as &

foundation for all future effort. -

4,2.3 Milestone 3 - Comy

Thxs docn ment defines the hardware and software interiaces

the functions of the computer subsystem.

4,2.4 Milestone 4 - Computer Procram Design and Accepiance Snecifications
This document provides a detailed definition of the compuier program
- Lol
math flow, and specifies details of implementation, SCSG preogram develon-

4.2.5 Milestone 5 - Computer Program Coding Comnpletion

have been developed, and the system is ready Jor open loop simulation,

<




-

4,2.6" Milestone 6 - Compuicr Prograr and

,_
g
w
w
O
O
.
o
o
(@]
0,
w
.
e}
o]
.

Individually checked-out and documented computer nrocrarms are

delivered. At this point, program development is complet

are presented for subsystems validation.

4.2.7 Milestone 7 - Subsystems Checkount Complet

[

All programs and hardware have been integrated and validated

through the subsystem level. The computer pro

MM integration.

W
)
.
o0
4
NPy
o
[c]
)]
o
5]
0]
w
i
o]
(6
ft
W
o
0
[
o
]
(e N
x;«
b
8]
ge
—t
(6}
+
3
w
I
i
o
b
N
e}
]
O
Fh
O
O
B
O
y 1
[
<«
[
t
h
ko
0}
w
Vr
e]
3
i
o
(@]
o
o

program integration and testing. At this point

set of programs is ready for flight.




O
)

e,
e o ma s
-~

e~ e
S O G

PR
Ll

O

5]

o

O

!

3]

Ny

o 9

L_ vy

At ©

O ’ ..‘m
Y

! Cu «

0, vy

SRFTRY)

et O

O~

A2

1%

4

Q)

)

A

MGE

CPU

Main

Storage

93]
A“
) -
I AR
O @)
LT Y a4
IS I
o
Ny
1)
[aN

~
N

Lol o
G

w

~

[P
oy

124
g

Q)

ot

.
X

,63
. T
£ Hoen
@] NEGERE
. 41|“ A. .wU
H
M,v
.. ‘] N
D vt oo
B | K
O S 2
0
—
)

)

Lev

s A B o an - |A|_w
th
M . ) Ma
s ] S
D o)
D -

3]




37.

, . : 6] ’
§ 0 } >
1o ¥ T
tsh] M‘n 0 ﬂM,. [ «u w) Mm F"
(ST SR Y . [T .- I
oo 59 H - oon & o
M - o 9 AT " N ‘

o B g AR
SR N . . .« ¢
SO g O g oA ) o P
SRS ORI | P W e
Bou e Qd n vod Q0 e '
SIS Y oo 2 o i 0wy
nu f,uv L u N “ w’“ m/ —._W Nn “V 4 “pu MJ — ﬁb
a4 0 0 4 t O a0 ORI -

. : . Soo A . ty 1 i '
HOG 58 b o4 wHaas
i : ny “ '®) .u_ a A I G G ’
3O (4 2o 3 @) (=] - Qe (Y 1
n W DO O o ) & .
OO ;Pu. ARSI am O Mp. . O OO0
A 0003 n = O 7Ty
a )
) D @
0 0 D] (] [CTPRE S
A ol . N DA
o P 5] O i
o G ) i i
e @ < B T '
o p $) o R

OO w4
. R R e e
g.._/
oo
e .,L,c)_“dc&q'm\!..\
,,,,,, 1 I

e rarzEs s LTS

| ‘ 1 l RS

]
€3] ) - 05 L @8
-2 > o H ¥ . AV N > . H [
2o o L. gy a ol 3 JloE o e
> : )
0 | et e s

T TN : N N B
H q O 1 L\
S 0
5 S 3 i <
@) o . G 0, | ~ ~ Y
o . $) SIS
o o , A
. L\Pillm-ﬁ).!.!uf [
22 N J
. U . N .6@ U
g
Q < Mw m - W F <
Mo 0 S S don | |
v - vb . .V~ _nw N!V -t ¥
i . ) n 1
W - - .
. 5 . - . e B . .
d . | Som LT .
. .
- 30 5 , - 3
: ] W




’ * .
{
[ 8
v
1.0 11 1.2 3 1.4 1.5 1.6
Efm;'," PROG. A A DEF INE A MATH FLOW MATH FLOV A{ DETAIL DCSG PROG. A DCSG PROG. A
REQ'T ] r INTERFACES T GENERAT 10N €& RELEASE FLOW | DEVELOPHERT [} STMULATION '—l
W W STKULATION = | Ly w e w | le LV o
COMPARISON *@
DEF INE 2.0 | 1.3.1 1 L
{ . .3. 6.7 3
COMP. PROG. . Jeenerate | b oruncrional 3 i
REQ'T : | : LOOP CLOSURE 1| SiHULATIC |
M TECHUIQUES |, Ly
T.2.1 - 1.5.1
|| TEST PROGRAF: J TEST PROG. LV INDIVIDUAL ]
DEF INITION DEV. - PROGRAIT DEVELOPHELY
' LV o Lv :
H—= — — — — — — — — . 4 - — - — — ]
i Eg(}[ﬁﬂ}ltééTE 3.0 | 2.1 2.2 2.3 2.4 2.5 ‘,)[ 2.6 l
| Lo ¢ lolperin o MATH Loy | el et FLOW _ | pETAIL _l DCSG PrOGRAN | T1DCSG PROGRATS
SUPPORT pro” IHTERT AcES | GENERAT 0N € IRELEASE ] oFLod 181 DEVELORISERT ISTROLATICH l
ov p STHULATION 4oy T MY 1 i pi : =]
’ T
’ L CONPARISCI | Q)
| 1o
2.2.1 r 2.3.1 - 2,51 “?" 2.6.1 -
JTEST PROGRA Jgenerare LoD HO) L rest eroseii [ runer o ]
DEFINITION cLOsuRE || DEVELOPHENT i SIBJLATION
ot Tecnies @ : ey | o .
M - : S1IDIVIDUAL
r PROGI
DEVELQViZH
2
DEVELOP, DCSG
1 ASSTH. €O
PILER EDITOR
DCsh
Jercaen L. 6.2.1
SULPONT | veveror.ncse
SYSTEN SPICS.  SIFULATOR
0CsG uCsG
DCSG L1 J DCsG he2.2 [ i3
Spacebaorne HSpaceborne _:If)]lrl('l'l)')x'.‘n' < e i
Syt ) : : Svstein !
Spocs. | DCSG Ansic
] 4.5
TEST ¢ CHECKOUY DCSh SYSTLH !
PROGS . 4 CHECKUYT —————@
DCSG I neen Fiaure £.3




s Prog.
MM
Integr:

Compuler

LV and

ttion

ov

5.1
Y
SIL — >4
& L.V Prog.
Test Prog. .
LV ———3{ Integration
Pl and Soft Check-
E n 1 out
‘Ir v
5.0 _t LV
g SIL
Individual
t Prog. Checkout
LV v
> & 6.4
—{ MM Prog.
» .
\ 5 2 Vi Integration and
vt Soft Checkout
Interface &
Simulator [-
7 —_— MM
JU—— 5.3
@ /] 0N LV Prog.
1
& : Integration and
6.0 T i SIL Checkout
 I— —
Y MM
@ ot Mockup — LV
—i
MM
6.2 _ : 6.3
MM O,
HMU  Test —! | MM Prog
. Integration and
Prog. : I HMU Checkout
Mt o
—|
———-.'j MM

Indicate Inier

@ thru @ -
to

in

/\ - Milestones

Progria D

picrnentatye o

cirections
Jopment
PFlan

PROGRAM

7.1
Ovcerall Soft
Checkout  of
Integrated

System

oV

7.2

Overall S1L
Checkout  of
Integrated
System

ov

VALIDATION IMPLEMENTATION PLAN

Figure

4.

4

%4,

8.0
Release and
JImplementation
of comblete
Pkg

Mission

oV




