
I
J

I
J

I
J

l

l
J

l
-.J

I
-.J

]

]

I
-.J

]

TI

J

Section 3: Requirements

The Simulation Supervisor (SS) shall be a set of computer programs, written

in assembly language for the IBM System 360 Model 44 (360/44) computer.

SS shall provide the capabilities to test, debug, and integrate DCSG programs

within PSCS/LPSS. Facilities shall be incorporated to provide the necessary

interface between 44PS, SS, DCSG programs, and specialized user provided

routines. SS shall monitor DCSG program execution and output debugging

information in the form of traces and dumps.

l
~

l
J

l
j

I
J

]

]

l
-.J

]

J
l

I

~

]

]

]

]

]

]

~

3.1 CPCEI Characteristics

3 .1.1 Functional Allocation of Simulation Supervisor

SS shall consist of:

o

o

o

o

3.1.1.1

A modified version of the 360/44 Programming System (44PS)

An Initialization Phase

A Processing Phase

Specialized User Provided Routines

Modified 44PS

44PS Modifications shall include: .

o

o

3,1.1.2

A set of routines that become active only when SS gains control,

These routines shall intercept SVC, Machine Check, External

and Program Interruptions.

Two communication areas shall be maintained: one for exclusive

use of SS, and the s~cond for DCSG Executive Control System

(ECS) and SS use.

Initialization Phase

This phase shall be brought into .core storage by the Job Control Processor

(JCP) after the recognition of the execute SS control statement. The functions

of this phase shall be to:

o Read in the seven types of SS control statements

o Build the q"ueues and tables corresponding to the control

statements

o

o

Setup the link between the constructed queues and the pr~cessing

phase

Bring the processing pha se into core storage and give it

control

1

I

-.J

I
,

.. J

]

]~.:
i

m
Jj

3.1.1.3 Processing Phase

This phase shall contain the routines necessary to interface and insure proper

DCSG execution.

The following is a list of the interface groupings of SS:

o Program Interruption Handler

o External Interruption Handler

o Machine Check Interruption Hanc!ler

o SVC Interruption Handler

o Specialized User Provided Routines

3.1.1 0 3.1 Program Interruption Handler

The Program Interruption Handler (PIFLIH) shall field all program interruptions.

Program interruptions shall result from:

0 Operation Exceptions

0 Privileged Operations,

0 Execute Exceptions

0 Addressing Exceptions

0 Specifica tion Exceptions

0 Data

0 Fixed Point Overflow

0 Fixed Point Divide

0 Decimal Divide

0 Decimal Overflow

0 Exponent Overflow

0 Exponent Underflow

0 Significance

0 Floating Point Divide

l
J

l
,

.-J

l
J

l
-1

"I
.J

]

]

]
I
J

]

J
rn

w

3,1.1.3,2 External Interruption Handler

Since a timer interrupt shall be the only External Interruption that can be

caused by the DCSG Programs, the External Interruption Handler (EXTFLIH)

shall be enabled to process thi~ particular interruption.

An external interruption shall be caused by the interval timer turning

negative (the elapsed time for a Program Segment has expired).

3.1.3.3.3 Machine Check Interruption Handler

A machine check interruption is caused by a machine malfunction and shall

be fielded by the Machine Check Interruption Handler. If the interruption

is caused by a DCSe; program, SS shall allow the DCSG ECS Machine-Check

Handler to attempt recovery. Otherwise, a message shall be output and the

simulation cancelled •

3.1.1.3.4 SVC Interruption Handler

SVCs shall be segregated into two groups; DCSG and SS (including 44PS)

SVCs. All DCSG SVCs shall have an interruption code starting with 100 10 ,

SS SVCs shall have interruption codes l;Jelow 100 10 ,

There shall be two SVCs belonging to the DCSG that shall concern SS; the

SEGEND and PUEND SVC. Upon recognition of either SVC, trace and

debugging options shall be acted upon before returning control to·· the DCSG

ECS. A special SVC for the SS PDUMP routine shall also be made available

to the DCSG programs.

.
3.1.1.3.5 Specialized User Provided Routines

To allow for a flexible simulation environment, SS shall have the capability

of incorporating user provided routines that simulate data manipulation and

any other function peculiar to the on-orbit computer 0 By incorporating these

routines into SS, the actual DCSG programs shall not have to be modified

substantially to handle I/O or other specialized requests. As envisioned,

_. __ .. _--_._---

l
J

"I

J

]
I

I

-.J

]

]

there shall be a routine to handle each I/O device being accessed by

DCSG programs. SS shall pass along all information needed in a communi­

cation region (COMREG) and the user routines shall be able to pass their output

parameters (P8W settings, etc.) for the DCSG ECS in this same communication

region.

SS shall call the following user provided routines (the mnemonics of which are

used for clarity only) for each of the following circumstances:

o SSSIO - After encountering a SIO instruction

o SSTIO - after encountering a TIO instruction

o

o

o

SSHIO - .after encountering a HIO instruction

SSTCH - after encountering a TCH instruction

SS~KIO - entered to generate an I/O interruption

o . SSAMUIN - to initialize the DCSG ECS

o SSPROP - after encountering other privileged instructions not

handled by SS

To add a more realistic aspect to I/O simulation, SSCKIO shall be entered

to generate an I/O interruption. The interruption should be initiated for one

of the following conditions:

o

o

. to pass information corresponding to a previous I/O operation

to generate an I/O interruption corresponding to an entry in

the I/O Events Table.

After completing a requested I/O operation for the DCSG programs, a "stack

table" should be constructed' containing the simulated status for the operation.

This table should be interrogated by SSCKIO and if there are entries in it,

the first one should be used for generating the interruption. The I/O Events

Table should be interrogated each time SSCKIO is entered. If the time

corresponding to the first (next) event is greater than or equal to the Simu­

lation Time, an interruption should be generated using the CSW status

contained in the Events table. Again, COMREG shall be used to pass the

I
--l

l
-.J

I
.J

]
I
~

]

J

required parameters.

Simulation of the A.MU shall be an integral part of the routines provided by the

user of SS. It is suggested here that an intermediate step be taken to reformat

the output of PPP to look like a real AMU expected by the DCSG ECS. Through

control statements provided in SS, the simulated AMU may be equated to a 44

PS I/O device. SSAMUIN shall be entered at the start of the simulation only.

Its only function shall be to simulate an Initial Program Loading of the DCSG

ECS and pass control back to SS. If the IPL procedure is unsuccessful, an

error flag shall be set before returning.

SSPROP shall be entered to process privileged operations peculiar to the 4PI

computer and those not handled by SS.

A detailed description of inputs, restrictions, and outputs expected for those

user provided routines shall be found wi thin paragraph 3.2.

User routines shall be expected to reside on the phase library under the name

of SSUSRTNS. The address of SSAMUIN. should be specified as the main entry

to the phase during linkage editing. During setup in the processing phase,

SSUSRTNS shall be read into core storage. The code at the beginning of

SSUSRTNS must be as follows:

START

DC

DC

DC

DC'

32000

AL4(SIO Routine)

AL4(TIO Routine)

AL4(HIO Routine)

AL4 (TCH Routine)

l
~

l
~

-I

-.J

l
.-J

]

]
l
.J

l
.J

l
-.J

l
-.J

I
J

--.~---.-.---------

DC

DC

USING

AL4° (CHECK 10 Routine)

"0 AL4 (PRIV. OP Routine)

* ,BASEREG

By starting at 32000, user routines shall have approximately 33000 bytes of

available core storage.

DCSG routines shall have 64000 bytes (16000 words) of storage which

corresponds to the 4Pi computer being simula.ted.

3.1.1.3.5.1 External Inputs for I/O Processing

SS shall contain provisions to accept three types of control statements for I/O

proces sing. Two of these statements shall contain the information neces sary

to equate DCSG devices to a PSCS/LPSS device for dClta input or output. The

third type shali be used to generate special I/O in terruptions to the DCSG ECS.

These interruptions may be used to simulate special conditions that occur

outside of and oindependent of normal DCSG operQtions. An example of this

would be an uplink command.

Along with the Events Table which contains the interruption status, a file

should be maintained on tape containing the data corresponding to the interrup­

tion. It is assumed nat the ECS shall respond to this type of interruption by

issuing a SIO to collect or output the required data. This file may be formatted

one record for 0 each interruption causing data input.

3.1. 3 Simulation Supervisor Timing and Sequencing

3.1.3.1 Simulation Supervisor Initialization Phase

The sequencing of operations among the computer program components of the

____ " ___ 0'._ ... ______ · ____ " __ ·

l
~

-1

]

l
.-J

I
-..!

I
J

]

]

.-----------

Simulation Supervisor Initialization Phase (SSINIT) shall be dependent upon the order

in which the SS control statements are introduced in the input stream.

Once SSINIT is loaded into core storage by the JCP, the sequence of operations

among the main SSINIT computer program components is:

o SSINIT Control Routine

o SSINIT Get Control Card Routine

o SSINIT Card Type Determination Routine

o SSINIT Check Card Routine

o SSINIT Control Card Processing Routine

For any pass through the SSINIT Card Type Determination Routine, depending upon

the current SS control statement being processed, one of the following SS card-

type processing routines shall be invoked: .

o SSE QUIVI

o SSE QUIVO

o SSIOEVNT

o SSDEB

o SSQUE

The card type processing routines shall call the following CPC's:

o SSBRKOUT

o CNVTDA

o

o

CNVRT

CNVRTD

------------_. ----

I,

.-J

]
-1

]

11 1]

When all of the SS control statements have been processed I the SSINIT

Control Routine shall invoke the SSINIT Load Simulation Supervisor. Routine

(SSLDSS). This routine shall load the SS Processing Phase and relinquish

control to it.

3.1.3.2 Simulation Supervisor Processing Phase

Initially I the processing routines gain control from SSINIT. After SSINIT

concludes processing I ·it shall pass control to the SS Processing Phase Set

Up Routine (CLKINIT). CLKINIT shall bring in the user routines and pass

control to SSAMUIN to initialize the DCSG ECS. Once control is given to

the DCSG ECS I by generating an, I/O interruption I control shall be regained . ,
only through one of the following types of interruptions:

o SVC

o Machine Check

o External (Interval Timer elapsing)

o Program

. Depending upon which of the above types caused the interrupt I the first

level interrupt handler I which shall be resident in the modified 44PS Section I

shall give control to SSIRPT. SSIRPT shall then enter UPDTCLKto update the

DCSG running times and set the next interval timer value. SSIRPT shall then

determine the type of interruption and pass control to one of the following

interruption proces sors:

o SVCH

o EXTH

o PIH

o MCKH

At the conclusion of interruption proces sing I SSRTN shall be entered to reset

status and return control to the DCSG.

If for any reason I the simulation is to be terminated I SSEXIT shall be entered by

issuing a SVC 98 to reset 44PS status and normal 44PS operations shall continue.

Also I if a core dump is wanted -by a DCSG program I an SVC may be issued with a SVC

~----~-------'-.-----.------

l
-.J

-1

..J

-.
I

]

interruption code of 99 10 (see 3.2.33 for parameter settings).

3.1.4 Simulation Supervisor Storage Allocation

The following diagram depicts the overall allocation of storage when SS gains

control.

18000

23000

32000

53000

65000

o i ----T)
Modified 44PS System and 44PS Transient it
Area ~/

. __ SS Table; ·and Queue Area

SS'Processing Phase

User Provided Routines

_____ ,____________ _ __ -' _____________ ! SS Initialization

DCSG Programs

I

; Phase
I

1-- __ --

\

\
. I

-- /

" J

Section I

Section III

Section IV

Section V

~. Se ction II
'. \

/

Section VI

The following is a description of each section pertaining to SS pictured

above.

3.1.4.1 Section I (approximately 18000 bytes)

Section I of core storage shall contain all existing programs of the 44PS

system (IBM Form #Y28-6812-0 I IBM System/360 Model 44 Programming

System I Supervisor and Job Control). This section shall be modified to

include the following SS dependent routines and table areas.

o

o

o

o

o

SS Communicatic:m Region (CREGION) (3.1.5.7)

Communication Area for the DCSG ECS (ECSCOMRG) (3.1.5.9)

Address Constants for SS Initialization Phase. These constants

contain the addresses of SS first level interrupt handlers (STAT44)

(3.1.5.10)

Ma chine Check First Level Interrupt Handler (MCKFLIH) (3.2. 18)

Program Interruption First Level Interrupt Handler (PIFLIH) (3.2.19)

-,
,

-'

-,
I

I
I

-.J

I
I

-.J

]
I

1 !
..lJ

o

o

Input Equivalence Que ue List (IQUEUE)

Input Equivalence Table (ITBL)

o Output Equivalence Queue List (OQUEUE)

o

o

o

o

o

o

Output Equivalence Table (OTBL)

Debugging Aids Option Queue (DEBQUE)

Debugging Aids. Option List (DEBLST)

Queue Dump Queue List (QDQUE)

Queue Dump Table (QDTBL)

I/O Events Table (EVNTAB)

The queues shall be constructed from low to high core and the tables corresponding

to the queues shall go from high to low core (within allocated table spa"ce area) .

These queues and tables shall vary in length from one simulation to another due

to differences in the number and type of control statements processed.

3.1.4.4 Section IV (approximately 9000 bytes)

This section shall contain all the ,SSyrocessing routines and table COMREG.

The names and CPC numbers of the routines that shall be contained within this

section are:

o

o

o

o

o

o

o

o

o

o

o

SS Set Up Routine (CLKINIT) (3.2.24)

SS Interrupt Determina tion Routine (SSIRPT) (3. 2. 25)

Update Interval Timer (UPDTCLK) (3.2.26)

Program Interruption Handler (PIH) (3.2.27)

SVC Interruption Handler (SVCH) (3.2.28)

External Interruption Handler (EXTH) (3.2.29)

Ma chine Check Interruption Handler (MCKH) (3.2.30)

DCSG Return (SSRTN) (3.2.31)

Set Sy stem Mask Handler (SSMH) (3.2.32)

Load PSW Handler (LPS'NH) (3.2.33)

Debugging Aids Routine (SSDBUG)(3 .2.34)

- --.--- ---.~~-

-,
I

-,
I

I
.-I

I
--l

l

l
-l

l
~

l
.iJ

o

o

o

o

3.1.4.2

SVC First Level Interrupt Handler (SVCFLIH) (3.2.20)

External First Level Interrupt Handler (EXTFLIH) (3.2.21)

Exit Routine (SSEXIT) (3.2.22)

Save Status Routine (SSSAVER) (3.2.23)

Section II (approximately 8000 bytes)

SS shall use Section II for the SS Initialization Phase, This Phase shall be

resident here until its functions are completed, The area shall then be over­

layed by user routines and DCSG programs,' The SS Initialization routines

that shall occupy this section, along with their CPC numbers, follows:

o Control Routine (SSINIT) (3.2,1)

o

o

o

Read Control Card Routine (SSGETCC) (3,2,2)

Control Card Type Determination Routine (SSTYPDET) (3,2,3)

Construct Input Equivalence Queue and Table (SSEQUIVI) (3,2,4)

o Construct Output Equivalence Queue and Table (SSEQUIVO) (3,2,5)

o

o

o

o

o

o

o

o

o

o

o

o

3.1.4.3

Construct Trace and Debugging Queue and Table (SSDEB) (3,2,6)

Construct Queue D~mp.Queue and Table (SSQUE) (3,2,7)

Event Data Descriptor Routine (EVNTDATA) (3,2,8)

Construct I/O Event Table (SSIOEVNT) (3,2,9)

Load SS Routine (SSLDSS) (3,2,10)

Error Check Control Card Routine (SSCHKCRD) (3.2.11)

Parameter Check and Move Routine (CHKMOVE) (3.2,12)

Continuation Card Processing Routine (SSCONTIN) (3.2.13)

Parameter Break-Out Routine (SSBRKOUT) (3,2,14)

Convert from Hexadecimal EBCDIC to Binary (CNVRT) (3.2.15)

Convert to SYSUNI Index (CNVTDA) (3.2.16)

Convert from Decimal EBCDIC to Binary (CNVRTD) (3.2.17)

Section III (approximately 5000 bytes)

This section shall be constructed during the SS Initialization Phase: It

shall contain the following queues and tables:

,

~

l
J

I

--.J

]

I
.J

'I
!

l
.J

]

J
]

o Input Equivalence Queue List (IQUEUE)

o Input Equivalence Table (ITBL)

o Output Equivalence Queue List (OQUEUE)

o

o

o

o

o

o

Output Equivalence Table (OTBL)

Debugging Aids Option Queue (DEBQUE)

Debugging Aid.s Option List (DEBLST)

Queue Dump Queue List (QDQUE)

Queue DUIl!P Table (QDTBL)

I/O Events Table (EVNTA.B)

The queues constructed shall be built from low to high core and the tables

shall go from high to, low core (~ithin allocated table space area). These
..,.

queues and tables shall vary in length from one simulation to another due to

differences in the number and type of control statements processed.

3.1.4.4 Section IV (approximately 9000 bytes)

This section shall contain all the SS processing routines and table COMREG.

The names and CPC numbers of the routines that shall be contained within

this section are:

o SS Set Up Routine (CLKINIT) (3.2.24)

o

o

o

o

o

o

o

o

o

o

SS Interrupt Determination Routine (SSlRPT) (3.2.25)

Update Interval Timer (UPDTCLK) (3.2.26)

Program Interruption Handler (PIH) (3. 2. 27)

SVC Interruption.Handler (SVCH) (3.2.28)

External InterruPtion Handler (EXTH) (3. 2.29)

Machine Check Interruption Handler (MCKH) (3.2.30)

DCSG Return (SSRTN) (3.2.31)

Set System Mask Handler (SSMH) (3.2.32)

Load PSW Handler (LPSWH) (3.2.33)

Debugging Aids Routine (SSDBUG) (3.2.34)

~I

I
I

.J

l
~

!
~

i
-.J

l

]

l

l
:-..J

]

]

o Core Dump Routine (SSPDUMP) (3. 2.35)

o

o

o

Print out Routine (SSDPUT) (3.2.36)

Data Look up Routine (DATALOOK) (3.2.37)

Determine Program Unit Name (DETPRUN (3.2.38)

o Convert Binary to Hexadecimal (BI2HEX (3. 2.39)

o

o

o

3.1.4.5

"­
Determine Progra.m Unit Pointers (GETPTRS) (3.2.40)

Address Check and Determination (ADDCK) (3.2.41)

User and 9S Communication Region (COMREG) (3.1.5.8)

Section V

Section V shall contain all user provided routines. SS shall allow approximately

33000 bytes for these routines.

3.1.4.6 . Section VI

This section shall contain the DCSG programs. Approximately 64000 bytes of

core storage shall be available.

3.1.5 Simulation Supervisor Data Base Characteristics

SS shall construct and maintain tables.and queues that comprise the data base

for simulation. A detailed definition of the contents of these is described in

the following paragraphs. The actual locations of each may vary from one

run to another depending upon the order SS control cards appear. However I it

should be noted that whenever a queue is contructed for acces sing a table I

the queues start in low core of the SS Table Section and proceed in an

ascending manner through core. The tables corresponding to the queues are

constructed in a high-to-low core manner within the SS Table Section. The

addresses of the queues shall be kept in CREGION.

A list of the queues and tables that shall be incorporated in the Simulation

Supervisor is:

o

o

IQUEUE

ITBL

Input Equivalence Queue (3.1.5.1.1)

Input Equivalence Table (3.1.5.1.2)

I
-.J

l
-.J

1
I,

......J

~
I

-.J

o

o

o

o

o

o

o

o

o

o

o

3.1.5.1

OQUEUE

OTBL

DEBQUE

DEBLST

QDQUE

QDTBL

EVNTAB

CREGION

COMREG

ECSCOMRG

STAT44

Output Equivalence Queue (3.1.5.2.1)

Output Equivalence Table (3.1.5.2.2)

Debugging Aids Option Queue (3.1.5.3.1)

Debugging Aids Option List (3.1.5.3.2)

Queue Dump Queue List (3.1.5.4.1)

Queue Dump Table (3.1.5.4.2)

I/O Events Table (3.1.5.5)

SS Communication Region (3.1.5.7)

User Communication Region (3.1.5.8)

DCSG ECS Communication Region (3.1.5.9)

Saved status (PSW's) of 44PS (3. 1.5.10)

Input Equivalence Queue and Table

The Input Equivalence Queue and Table shall be constructed from information

contained on the SS DDI Control Statements. The forma ts of the DDI cards

are:

o DDI statement when 'input ~s from a real (PSCS/LPSS) device:

cel 6

*DDI

where:

*DDI

prog

yyy

xxx

nnn

prog , yy y (xxx I nnn) (xxx, nnn) - -- e tc .

identifies this control card as an SS Input

Device Equivalence Control Card

is the program unit name (upto 4 characters)

is the 44PS real input tape address. The last

three symbolic characters that would be used in

the allocation of this device on the 44PS ALLOC

or ACCESS control cards replace yyy.

is the DCSG simulated input device address

(hex value)

is the file number of the data

----~~~-,-------" .. '.---

I
1

~

-,
I,

-,
I

l
-.J

I
~

J

o DDI card used when input is from core storage:

cc1

*DDI

where:

*DDI

prog

CRE

xxx

1111

6

prog, CRE(xxx, 1111) (xxx, 1111) ,---etc.

identifies this control card as an SS Input

Device Equivalence Control Card

is the program unit name (upto 4 characters)

is the keyword which identifies the 44PS real

input device address as being core storage

is the DCSG simulated input device address

(h~x value)

is the symbol within the program unit where

the xxx data is located. From one through

four character symbols are allowed

Figure 3.1.5-1 graphically portrays the relationship between the queue and

the table.

3.1.5.1.1 Input Equivalence Queue

The Input Equivalence and Data Definition Routine (SSEQUIVI), which interpret

DDI control cards, shall construct the Input Equivalence Queue.

The program unit name shall be extracted from the DDI statement and placed

in the queue. Following each program unit name there shall be a four-byte field.

When a DDI card is encountered for a particular program unit, a 4-byte address

shall point to the eritry in the Input Equivalence Table.

3.1.5.1.2 Input Equivalence Table

The Input Equivalence Table shall consist of information used to equate real.

PSCS/LPSS I/O devices to DCSG I/O devices. being simulated.

The following entries are included for input from PSCS/LPSS devices:

l

-1
I

-..J

J
,

--J

--,
I

l
-.J

o One-byte DCSG simulated device address

o Two-byte SYSUNI index of corresponding PSCS/LPSS device

o One-byte file number at which data resides

o Two-byte record position field

The following entries are included for input from core storage:

o

o

o

One-byte DCSG simulated device address

Two-byte field containing the characters I CR I indicating data

is in core'

Two-byte record position field

o Four-byte label indicating location of data within program unit

3.1.5.2 Output Equivalence Queue and Table

The Output Equivalence Queue and Table shall be constructed from information

contained on the SS DDO Control Statement.

ccl 6

*DDO prog, yyy(XX?C,xxx ,--- ,xxx)

where:

*DDO

prog

yyy

xxx

identifies this control card as an SS Output

Device Equivalence Control Card

. is the program unit name (upto 4 characters)

is the 44PS real output device address.

The last three symbolic characters which

would be used in the allocation of this

device on the 44PS ALLOC or ACCESS control

cards replace yyy.

is the DCSG sj.mulated output device address

(hex value)

Figure 3.1.5-2 graphically portrays the relafionship betv!een the queue and the

table.

-,
\

-]

-)

~I

-,

......J

l
---1

'I
j

I
J

m
I' LU

3.1.5.2.1 Output Equivalence Queue.

The Output Equivalence and Data Definition Routine (SSEQUIVO), which shall

interpret DDO control statements, shall CD nstruct the Output Equivalence

Queue. A.s a DDO statement is processed, the program unit name shall be

extracted and placed into the queue. Following the four byte program unit

name, a pointer to the table entry shall be generated and placed into the next

four bytes of the queue. An end of queue flag shaJ 1 be inserted after

processing the last DDO control statement. .

3..:... . .=..1..:... . .::..5..:.... =2..:.... -'--2 __:0:.....u:::..t~p:..:u::..::ct. Equivalence Table

The Output EquivaleI).ce Table shall contain the address of the device being
"-

simulated for the program unit followed by the PSCS/LPSS real device SYSUNI

index. The SYSUNI index shall be obtained by a table lookup using the yyy

value of the control statement. Each entry of this table shall be one byte.

3.1.5.3 Debug Queue and Option List Table

The Debugging A.ids Queue and Option List Table shall be constructed by

using the information contained on the SS DEB control card. The format of

the SS DEB control card, along with a description of each item on the card

is:

ccl

*DEB

where:

*DEB

prog

yyy

identifies this control card as an SS Debugging

Aids Control Card

is the program unit name (upto 4 characters)

or the keyword DCSG.

is the 44PS output device for debugging aids.

The last three symbolic characters that would

be used in the allocation of this device on the

j

-,
I

ill
W

NOTE:

UNC

PCB

PVC

t

ssss

eeee

$$$$

1.

2.

44PS ALLOC or ACCESS control cards replace

yyy.

Universal Common of the DCSG programs is to

be dumped (optional)

Program Control Block of the program unit is to

be dumped (optional)

Private Common of the program unit is to be

dumped (optional)

type of dump limits for the following pair:

S

H

for symbolic

for hexadecimal

starting address from which a core dump is

to be taken (symbolic or hexadecimal according

to t)

ending address of core dump (symbolic or

hexadecimal according to t)

c~)fe dump is to be taken to end of core

storage

UNC I PCB I and PVC may appear on the card in any order

ssss and eeee must be either symbols or hexadecimal

displacements from the start of the program unit. Symbols

and displacements can be mixed on a control card I but

not mixed within parentheses. A maximum of 4 pairs may

be specified for a program unit.

Figure 3.1.5-3 graphically portrays the relationship of the queue and option .
list table.

3.1.5.3.1 Debug Queue

The Del::ugging Aids Queue shall be constructed for ease of indexing in.to the

Debugging Aids Option List Table. The size of the queue shall be dependent

~I

--,

....J

l
..J

]

upon the number of SS DEB control cards included as input.

The Debug Queue contains the following items which shall be repeated for

each program unit specHied on the control statements.

o

o

o

o

o

o

A four-byte field containing the program unit name.

A one-byte field containing the SYSUNI index of the device on

which traces and dumps shall be output for this program unit.

A flag byte to indicate which keywords have been specHied.

A one-byte field containing the number of dump limits specified.

A flag byte 'indicating whether dump limits are specified symbo­

lically or in hexadecimal.

A four-byte field containing the address of the corresponding

entry in the Debug Option List Table for this program unit (set

to zero if no dumps are specified.)

One entry in the queue, therefore, shall occ;:upy twelve bytes. Following the

last entry in the queue shall be a four-byte end-of-queue flag.

3.1.5.3.2 Debug Option List Table

The Debug Option List Table consists of a series of entries corresponding to

each program unit requesting a dump. The entries are the lower and upper

dump limits. When a dump limit is specified as a hexadecimal displacement,

it appears in the option list in a fixed length three-byte field .. If the limit is

specified symbolically, the symbol itself shall appear in the list, preceded

by a one-byte field containing the length of the symbol.

3.1.5.4 Queue Dump Queue and Table

The Queue Dump Queue and Table shall be constructed by using the information

contained on the SS QUE control statement. It is constructed for the purpose

of allowing the ECS to dump selective queues after the completion of specific

.program units.

The format of the SS QUE control statement, along with a description of each

item on the card, is:

-)

-1

-,

I
--'

ccl 6

*QUE prog ,yyy(q ue I, que2, que3 ,-_._)

where:

*QUE

prog'

yyy

quel,

que2:

identifies this control card as an SS Queue Dump

Control Card.

is the program unit name (upto 4 characters)

44PS output device addre ss yyy is equivalent

to the last 3 characters of a symbolic device .
address as would be specified on the 44PS

ALLOC or ACCESS control card.

are the DCSG ECS Queue names (upto 4 charac­

ters) scheduled for dumping at the execution­

completion of the program unit specified by

"prog" .

Figure 3.1.5-4 graphically portrays the relationship of the queue and the table.

3.1.5.4.1 Queue Dump Queue'

The Queue Dump Queue shall be constructed for ease of indexing into the

Queue Dump Table. The size of the Queue shall be dependent upon the

number of SS QUE control statements included. The following items are

Contained in the queue:

o

o

o

A four-byte field containing the program unit name

A one-byte field containing the SYSUNI index of the device on

which the queues shall be output for this program unit.

A three-byte field containing the address of the corresponding

entry in the Queue Dump Table for this program unit.

One entry in the queue, therefore, occupies eight bytes. A four-byte end- of

queue flag follows the last entry in the queue.

l
.-J

'I
,. I
...:J

3.1.5.4.2 Queue Dump Table

The Queue Dump Table contains the following items which shall be repeated

for each program unit specified on the control statements.

o

o

3.1.5.5

A one-byte field containing the number of queue names

specified in the variable length queue name field

A. variable len"gth queue name field - each queue name occupying

four bytes.

I/O Events Table

This table shall be constructed to permit various interruptions (events) to

occur after a spedific time in the ·simulation. This table shall be co~~tructed

in an ascending order and shall be time ordered. The size of this table shall

be dependent upon the number of SS IOE control statements input. The table

shall contain a header consisting of:

o

o

o

o

A one-byte field containing the file number of the event data

A one-byte SYSUNI ind'ex f~eld

A two-byte field for record position

A four-byte field to contain the address of the next event to be

acted upon

The following fields shall be repeated for each control statement:

o

o

o

o

A four-byte field containing the event time

A. one-byte fiel~ denoting whether input is expected with this

interruption

A one-byte field containing the simulated device addres s

A two-byte field containing the simulated CSW status

A four-byte flag shall Signify the end of the table.

-,
I

-1

-,
I

-,

Figure 3.1.5-5 is a graphic description of the table.

3.1.5.5.1 I/o Events Control Statements

The format of the control statements for constructing the I/o Events Table is:.

o

o

Event data descriptor - This card should appear only once during

a simulation. _Its function is to describe the location of the

event data.

ccl

*EDD

where:

*EDD

yyy

ff

6

identifies th(s card as the event data descriptor

44PS input device address containing the event

data. yyy is equivalent to the last 3 charac­

ters of a symbolic device address as would be

specified on the 44PS ALLOC or ACCESS control

card.

'is the .file number on the yyy where the data is

located

Time dependent event data

ccl 6

*rOE

where:

*rOE

Z

xx

tttt

(zxx I tttt I cccc) (zxx I tttt I cccc) etc.

identifies this card as an I/O event data card

if non-zero I data corresponding to this interrupt

shall be found on the rOE file. If zero I no data

corresponding to this interrupt shall be found on

the rOE file. (one hex digit)

is the DCSG simulated device address that shall

be used to generate the interruption (hex value)

time in milliseconds at which interrupt shall be

--------_._. __ ._-_ .. -

-,

--1

cccc

initiated. Up to 7 decimal digits may be

used.

is the CSW status to be used in generating

the interruption (hex value)

This card must appear immediately after the EDD card. If more interruptions

are desired than those contained on continuation cards, the *IOE may be used

as many times as necessary (table space shall be the only limitation on the

number of entries) .

3.1.5.6 Conventions for SS Job Control Statements

3.1.5.6.1 Identifier

SS job control statements are identified by an asterisk (*) in column 1.

3.1.5.6.2 . Type Field

The Type Field contains 3 characters which identify the type of control

statement being specified. The type field is always in columns 2,3, and 4

and is followed by one blank.

3.1.5.6.3 Operand Field

.
The operand field contains the statement parameters and begins in column 6

and may extend throug h column 71. The operand field is recognized as being

complete if column 72 is blank and the last character is either immediately

followed by a blank or is in column 71.

3.1.5.6.4 Comments Field

Comments may be included or: SS control cards. When comments are included,

the comments field must be separated from the operand field by one or more

blanks and may extend through column 71.

3.1.5.6.5 Continuation Cards

An SS job control statement may not extend beyond column 71. If necessary,

up to three continuation cards may be used for each control statement. The

rules for continuation are:

]

"I
--l

]

]

1.

2.

3.

4.

5.

6.

7.

3.1.5.7

AU parameters up to the first left parenthesis must appear on

the first card. Thereafter, the statement may be interrupted

immediately before any left parentheSis.

In addition, the QUE and DDO control statements may be

interrupted after any comma within parentheses.

A.n interrupted statement may be followed with one or more

blanks and comments, if desired, up to column 71.

A nonblank character must appear in column 72.

An asterisk must appear in column 1 of the next card image.

Columns 2 through 15 must be blank.

The continuation of the interrupted statement must begin in

column 16.

A comment alone may not be continued. However, a comment

may appear on a continuation card if there is at least one

operand present.

Table CREGION

CREGION shall be the communication region used by SS programs. Space

shall be allocated within the 44PS section to contain this table. The SS

Initialization Phase shall store queue addresses into the positions alloted

for them as the tables and queues are constructed. The" following is the

format of CREGION:

Bytes Description Mnemonic

0-63 The sixteen general registers saved from DCSG GRS

64-67 InterVal Timer Value ITVAL

68-71 Addrcs s of SS'IRPT ADSSIRPT

72-75 Pointer to I/o Events Table AE VN TAB

76-79 Pointer to Input Equivalence Queue PTIEQ

80-83 Pointer to Output Equivalence Queue PTOEQ

84-87 Pointer to Debugging Queue PTDQ

88-91 Pointer to Queue Dump Queue PTDQL

-I

I
...J

--1

..J

l
-.J

1
j

]
l
.J

B~tes Description Mnemonic

92-95 Pointer to Saved 44PS Status STAT44A

96-99 Pointer to List Containing SS Status STATSSA

100-103 Address of DCSG ECS Communication Region ADECSCR

104-107 DCSG Total Running Time DCSGRUN

108-111 Segment Running Time SEGRUN

112-115 Timer Value at Last Exit DCCCHK

116-123 Dummy PSW DUMPSW

124-131 Old PSW from Interruption INPSW

3.1.5.8 Table COMREG

COMREG shall be maintained for communication between SS and user-provided

routines. The table shall be resident within the processing phase of SS. The

following is the format of COMREG.

Bytes Description Mnemonic

0-3 Name of Program Unit in Control PUNAME

4-11 Old PSW of Interruption OPSW

12-15 Channel Address Word CAWL

16-23 Channel Status Word CSWL

24-27 Starting Address of DCSG EXEC STDCSG

28-31 Pointer to Input Equivalence Queue lEQ

32-35 Pointer to Output Equivalence Queue OEW

36-39 Pointer to I/o Events Table EVENTS

40-43 Instr~c~ion Causing Interruption lNSTR

44-47 Total simulation running time SIMTIM .
48-51 Address of SSDBUG DBUGAR

52-55 Addres s of SSPDUMP PDMPAD

56-59 Address of SSRTN RTMAD

60-63 Address of DATALOOK ADDATLK

• ..J

l
.-J

-1
J

]
-,
..J

Bytes

64

3.1.5.9

Description

Return Address Flag

Mnemonic

RETAD

RETAD settings are: 0-

88-

return to point of interruption

return to DCSG External
interruption handler

96- return to DCSG sve interruption
handler

104- return to DCSG Program
interruption handler .

112- return to DCSG Machine Check
interruption handler

120- return to DCSG I/O interruption
handler

DCSG ECS Communication Region

The DCSG ECS shall maintain a communication region within 44PS. SS shall

make use of the following items within this region. These items are:

SMCORE

UVCOM

SLPCB

SLRPL

Base of managed core

Location of Universal Common

Location of the PCB for the program unit
last selected.

Location of the start of the DCSG ECS
Resident Program List (RPL)

The total length of this region shall be 400 bytes.

In addition to this area, a Permanent Storage Assignment Area shall be main­

tained. This area shall contain the ECS status (PSW's, Timer location, etc.)

and be located in front of the ECS communication region. SS shall reserve

200 bytes for this area.

3.1.5.10 STAT44 Table

This table shall be constructed by the SSLDSS routine of the Initialization

Phase. It shall contain the contents of the new PSW's used by 44PS. Before

SS terminates a simulation, the contents of this table shall be placed into

the new PSWs for normal 44PS operations.

l
~

I
I

-.J

3.1.5.11 Input Data Other Than Control Statements

To aid in the use of the DDI control statement the following procedures are

discussed. The following options are available for each program unit that

accesses a simulated input device:

o Pre-formatted tape input data

o Core resident data

3.1.5.11.1 Pre-FOl'matted Tape Input Data

The following input techniques may be used for those users of SS who must

have large amounts of data for simulating their devices. Within a program unit

and for each device lhat input data is to be read, a file is generated that

contains a record for each time the device is to be acce ssed. A two-byte area

shall be set aside within the I/o Equivalence Table for each device within a

program unit for the user to keep track of record positions.

3.1 .5 . 11 . 1 . 1 IOE Events File

This file should be constructed so as fo contain all the input records specified as

being present on the IOE control statement. The records should be present

corresponding to the order of the event's occurrence.

3.1.5.11.2 Core Resident Data

SS shall allow data to be resident in core as well as on tape. The user may

assemble data into his particular program unit as a separate segment. In

order for SS to locate this data, a 'SYMBDICT' control statement must have

been input to the Program Pr.eparation Processor (ppp) to allow PPP to place

the symbol into the program unit's symbol dictionary. As many sets of data

as desired may be generated in this manner.

3.1.5.12 Simulating DCSG Output Devices

The DDO queue and table ere constructed for the purpose of equating a real (44PS)

device to a DCSG device. The SYSUNI index value should be used in

-,
I

I

.J

J
-,

J

]

J
J
]

conj unction with the standard 44PS SVC WRITE service routine.

3.1.5.13 Relationship of Simulation Supervisor Components to Data

Base

The relationship of the Simulation Supervisor components to the various

tables and items within the data base is discussed in the following sub­

paragraphs. Each subparagraph is identified by the Simulation Supervisor

component tag (symbo~ic code) and its component paragraph number.

The identity of each table that is constructed or used by the component is

portrayed in each subparagrap h. The specific items I within each table that

the component uses ·(U) or sets' (8) I are also portrayed. Each table is identi­

fied by a tag (symbolic code) and its paragraph number.

SSINIT (3. 2. 1)

Computes the starting and ending addresses of the queue and table area

(3.1.4.3)

SSEQUIVI (3. 2.4)

IQUEUE (3.1.5.1.1)

Program Unit Name (S)

Location of table entry (S)

}TBL (3.1. 5 . 1. 2)

Simulated Device Address (S)

SYSUNI index value (S)

data position (f~le or core) (S)

CREGION (3.1. 5 .7)

Location of IQUEUE (S)

SSEQUIVO (3.2.5)

OQUEUE (3.1.5.2.1)

Program Unit Name (S)

Location of table entry (S)

._---------------------------

I
J

l
-.J

-,
,

l
-.J

l
-.J

]

l

]

]

]

J

QTBL (3.I.5. 2. 2)

Simulated Device A.ddress (8)

SY8UNI index value (8)

CREGION (3. 1 .5 .7)

Location of OQUEUE (8)

88DEB (3.2.6)

DEBQUE (3.1.5.3.1)

Program Unit Name (8)

8Y8UNI index value (8)

Keyword flag s (8)

Number .of dumps ($) .

Dump limit designations (S)

Location of Option List entry (8)

DEBL8T (3. 1. 5 . 3.2)

Starting location of dump (S)

Ending location of dump (8) . .

CREGION (3.1.5.7)

Location of DEBQUE (8)

8SQUE (3.2.7)

QDQUE (3.1. 5 .4.1)

Program Unit Name (8)

SYSUNI Index Value (8)

Location of Queue Dump Table entry (8)

QDTBL (3. 1. 5 . 4.2)

Number of entries for the Program Unit (S)

Queue names (8)

CREGION (3.1.5.7)

Location of QDQ UE (8)

I
-.J

l
.J

l
J

l
-.J

"I

J

l
-.J

]

]

]
l

l
-..J

J

88IOEVNT (3. 2. 8)

EVNTA.B (3.1. 5. 5)

File number of events (8)

8Y8UNI index (8)

Addres s of next event (8)

Time of event (8)

DC8G device address (8)

C8W status (8)

CREGION (3.1.5.7)

Addres s of EVNTA.B (8)

88LD88 (3.2.9)

CREGION (3. 1.5 .7)

Location of 88 P8W's (U)

Location to save 44P8 P8W's (U)

8VCFLIH (3.2.20)

CREGION (3. 1. 5 .7)' .

Addres s of 88IRPT routine (U)

INP8W (8)

88EXIT (3.2.22)

CREGION (3. 1.5 .7)

Address of saved 44P8 P8W's (U)

888AVER (3.2.23)

CREGION (3. 1. 5 .7)

DC8G general registers (8)

Interval Timer value (8)

CLKINIT (3. 2.242.

CREGION (3. 1.5 .7)

Addres s of 88IRPT routine (8)

Interval Timer Value (8)

!
.J

l
-.J

l
-.J

l
-.J

l
..J

]

o
~

Location of IQUEUE (U)

Location of OQUEUE (U)

Location of EVNTAB (U)

Location of DC8G EC8 Communication Region (U)

Dummy P8W (8)

COMREG (3.1.5.8)

Location of IQUEUE (8)

Location of OQUEUE (8)

Location of EVNTAB (8)

Location of 88PDUMP routine (8)

LocatioIl of 88DBUG routine (8)

Location of 88RTN routine (8)

Return address flag (8)

EC8COMRG (3.1.5.9)

8ets all items by picking up first 150 words of DC8G EC8

88IRPT (3.2.25)

CREGION (3. 1 . 5 .7)

Dummy P8W (U)

P8W from interruption (U)

COMREG (3.1. 5.8)

P8W from interruption (8)

Program Unit Name (8)

UPDTCLK (3.2.26)

CREGION (3.1.'5.7)

8egment running time (U) I (8)

Total DC8G running time (U) I (8)

Last set DC8G time (U) I (8)

COMREG (3.1.5.8)

Total DCSG running time

-1

l
.J

J
1
lJ

PIB (3. 2. 27)

COMREG (3.1. 5.8)

PSW from interruption (U)

Program Unit Name (S)

Return Address flag (S)

Channel Address Word (S)

COMREG (3.1. 5.8)

Total DCSG Running time (S)

ECSCOMRG (3.1.5.9)

Interval timer location (U) I (S)

SVCB (3.2.28)

CREGION (3. 1.5 .7)

DCSG general registers (U)

COMREG (3.1.5.8)

PSW from interruption (U) I (S)

Return address flag (S)

EXT B (3. 2 . 29)

CREGION (3. 1.5 .7)

Interval timer value (S)

8egment running time (U) I (8)

Total DC8G running time (U) I (8)

Last set time (U) I (8)

COMREG (3.1. 5.8)

Return addre s s tlag (8)

EC8COMRG (3.1.5.9)

Interval timer location (8)

MCKB (3.2.30)

COMREG (3.1.5.8)

Return addres s flag

I

.J

l
-.J

l
-.J

l
J

l
~

]

J

88RTN (3.2.31)

CREGION (3.1.5.7)

P8W from interruption (U) I (8)

Interval timer value (U)

Dummy P8W (8)

DC8G general registers (U)

COMREG (3.1. 5.8)

Return address flag (U)

pgW from interruption (U)

Channel 8tatus Word (U)

EC8COMRG (3.1.5'.9)

Interval time location (8)

Old P8W loca tions (8)

CSW loca tion (8)

New P8W locations (U)

88MH (3.2.32)
- ..

CREGION (3.1. 5 .7)

Dummys P8W (8)

COMREG (3. 1 .5.8)

P8W from interruption (U)

Program unit name (8)

Return addre s s flag (8)

Instruction causing interruption (U)

EC8COMRG (3 .l. 5.9)

Addres s of Program Control Block (U)

LP8WH (3.2.33)

CREGION (3. 1.5 .7)

Dummy P8W (8)

. . -
COMREG (3. 1.5 .8)

P8W from interruption (U)

·....J

-)

~.-, 1

-1

l

I
.J

Program unit name. (S)

Return addres s flag (S)

Ins tru ction ca us ing interr uption (U)

ECSCOMRG (3.1.5.9)

Address of Program Control Block (U)

SSDBUG (3.2.34)

CREGION (3. 1.5.7)

GRS (U) .

PTDQ (U)

PTDQL (U)

DCSGRVN (U)

SEGRUN (U)

ADESCSCR (U)

ECSCOMRG (3.1.5.9)

UVCOM (U)

SLPCB (U)

COMREG (3.1. 5.8)

PU NAME (U)

OPSW (U)

DEBQUE (3.1. 5.3. 1)

Program Unit Name s (U)

SYSUNI Index values (U)

Keyword flag s (U)

Number of dumps (U) .
Dump limit designations (U)

Pointer to entry in list (U)

DEBLST (3. 1. 5 . 3. 2)

uses all items in this table

QDQUE (3.1.5.4.1)

Program Unit Names (U)

.-J.

--1
I

.-J

"I
J

]

l
~

l
II

lJ

Real Device addres s (U)

Pointer to dump table (U)

QDTBL (3. 1. 5 .4 . 2)

use s all items in this table

SSPDUMP (3.2.35)

CREGION (3. 1.5 .7)

DCSG ge~eral registers (U)

DETPRUN (3.2.38)

COMREG (3. 1 .5 .8)

Program Unit Name (S) . .
PSW from interruption (U)

ECSCOMRG (3.1.5.9)

Location of current PCB (U)

ECS ending addres s (U)

GETPTRS (3.2.40)

CREGION (3.1. 5.7)

Address of ECS Communic!=ltion Region (U)

DCSG general registers (U)

COMREG (3. 1.5 .8)

Program Unit Name (U)

ECSCOMRG (3.1.5.9)

Locatio~ qf current PCB (U)

Location of RPL. (U)

ADDCK (3.2.41)

CREGION (3.1.5.7)

DCSG registers (U)

COMREG (3".1.5.8)

Instruction causing interruption (U)

Start location of ECS (U)

_.J

-1
I

-.l

l
J

l

3.2.1 SSINIT Control Routine

The Simulation Supervisor Initialization Phase shall be loaded into core

storage as a result of the Job Control Processor's <rCP) recognition of the

EXEC Simulation Supervisor control card.

The entry point to the SS Initialization Phase is defined as SSINIT within the

SSINIT Control Routine. The functions performed are:

o

o

o

o

o

3.2.1.1

Es tab1ish starting and ending addre s s es for the table and

queue area

Clear out pointers to tables and queues

Control the proces sing flow within the SS Initialization . '

Phase

Sort the entries in the IOE Table

Transfer control to the SS Processing Phase at initialization

end

SSINIT Control Routine Description

At 44PS JCP completion the Simulation Supervisor Initialization Phase

(SSINIT) shall be loaded into core storage. SSINIT shall be entered to begin

the processing of the phase.

SSINIT shall control the processing flow throughout the Initialization Phase.

The only exit from this routine shall be at the completion of initialization.

Once the Processing Phase routines are loaded into core storage I control

shall be pas sed to the SS start up routine (CLKINIT).

------_._----_.

--1

l
-.J

]

]

3.2.1.3 SSINIT Control Routine Interfaces

The entry pOint to the Initialization Phase shall be defined as SSINIT. This

phase shall be loaded into core storage as a result of JCP recognition of

the EXEC Simulation Supervisor control card V /EXEC SIMSUP) .

The subroutines called by the SSINIT routine shall be:

o

o

o

SSGETCC

SSTYPDET

SSLDSS

Get Control Card Routine (3.2. 2)

Card Type Determination "Routine (3.2.3)

Load SS Processing Phase (3.2.10)

After all SS control cards are processed, and the appropriate SS interf.?ce

tables and queues are constructed, control shall be passed to SSLDSS (3.2.10~

3.2.1.4 SSINIT Control Routine Data: Organization

The entire table and queue area of approximately 5 JOO bytes shall be

established at the end of the 44PS transient area. The table and queue area shall

then be used by the appropriate SS control card processing routines for

constructing their tables and queues for SS interface.

3.2.1.5 SSINIT Control Routine Limitations

There are no known or anticipated limitations of the SSINIT Control Routine.

I
j

1
J

l

l
.-J-

,
--J

l
.-J

l
~

l
~

]

J

3.2.2 SSINIT Get Control Card Routine (SSGETCC)

This routine shall obtain SS Control Cards, one at a time, from the card

reader and shall determine the type of control statement.

3.2.2.1 SSGETCC Description

This subroutine shall be used by SSINIT to obtain a control card. It shall

also be used by the SS Continuation Card Routine (SSCONTIN) to obtain a

continuation card .

If the control card obtained is not an SS control card, the simulation

job shall be cancelled. If the card is an SS control card, control shall

return to the calling routine.

"I
I

]

l
-.J

"1
I

-.J

]

3.2.2.3 SSGETCC Interfaces

SSGETCC shall issue a SVC READ to obtain a control card. A.ll input data

to SSGETCC shall come from the card reader and shall consist of SS control

cards. The format of the SS control cards is described below.

The card-type processing routine for the SS DDI control card is the SSINIT

Input Equivalence and pata Definition Routine (SSEQUIVI). The format of

the SS DDI card,. for data input from tape, is:

ccl

*DDI

where

6

prog, yyy(xxx, nnn){xxx, nnn)---etc.

*DDI identifies this as an SS Input Device

Equivalence Control Card

prog

yyy

xxx

nnn

is the program unit name (up to 4

characters)

is the 44PS real input tape address.

The last three symbolic characters that

would be used in the allocation of this

• device on the 44PS ACCESS or ALLOC

control cards replace yyy.

is the DCSG simulated input device

address (hex value)

is the file number of the data

The format of the SS DDI card, for data input from core storage, is:

ccl 6

*DDI prog, CRE(xxx,1111) (xxx,llll)---etc.

where: *DDI

prog

identifies this as an SS Input Device

Equivalence Control Card

is the program unit name (up to 4

characters)

I
-.J

l

'(
u

n
LJ

CRE

xxx

1111

is the keyword which identifies the 44PS

real input device address as being core

storage

is the DCSG simulated input device

address (hex value)

is the symbol within the program unit wher e

the xxx data is located. From one through

four character symbols are allowed.

The card-type pioces sing for the SS DDO control card is the SSINIT Output

Equivalence and Data Definition Routine (SSEQUIVO). This control card is

used to define outplJ.t device equivalence. The format of the SS DDO card is:

ccl 6

. *DDO prog, yyy(xxx,xxx ,xxx, ---)

where: *DDO -

prog

yyy

xxx

identifies this as an SS Output

Device Equivalence Control Card

. is the program unit name (up to 4 characters)

is the 44PS real output device address. The

last three symbolic characters that would be

used in the allocation of the device on the

44PS ACCESS or ALLOC control cards

replace yyy.

is the DCSG simulated output device address

(hex value)

The card-type processing routine for the SS DEB control card is the SSINIT .
Debugging Aids Routine. The format of the SS DEB card is:

ccl

*DEB

where:

6

prog, YYY ,UNC I PCB ,PVC
eeee

(t,ssss,$$$$
eeee

(t,sss,$$$$

*DEB

prog

identifies this as an SS Debugging Aids

Control Card

---ztc.

is the program unit name (up to 4 characters)

,

.....J

I
.J

]

]

J

yyy

UNC

PCB

PVC

t

ssss

eeee

$$$$

or the keyword DCSG

is the 44PS output device for debugging

aids. The last three symbolic characters

that would be used in the allocation of this

device on the 44PS ACCESS or ALLOC

control cards replace yyy .

Universal Common of the DCSG programs

is to be ?umped (optional) .

Program Control Block of the specified

program unit is to be dumped (optional).

Private common of the specified program

unit is to be dumped (optional)

type of dump limits for the following pair:

S for symbolic

H for hexadecimal

starting address from which a core dump

. is to be taken (symbolic or hexadecimal

according to t)

ending address of core dump (symbolic or

hexadecimal according to t)

core dump is to be taken to end of core

storage

NOTE: 1. UNC I PCB and PVC may appear on the card

. in any order.

2. ssss and eeee must be (1) symbols or (2)

hexadecimal displacements from the start

of the program unit. Symbols and dis­

placements can be mixed on a control card I

but not mixed within parentheses. A

maximum of four pairs of dump limits may

be specified for a program unit.

~

I

I
,

]

The card-type processing routine for the SS QUE control card is the SSINIT

DCSG Executive Queue Dump Routine. The format of the SS QUE card is:

ccl 6

*QUE prog,yyy(quel,que2,que3,-----}

where: *QUE

prog

yyy

identifies this as an SS Queue Dump

Control Card

is the program unit name (upto 4

character s)

44PS output device address. yyy is

equivalent to the last three characters

of a symbolic device addres s as would

be specified on the 44PS ACCESS or

ALLOC control card.

quel, queZ, .. are the DCSG ECS Queue names (up to

4 characters) scheduled for dumping at the

execution-completion of the program

unit specified by II prog" .

The card-type processing routine for the SS EDD control card is the SSINIT

Event Data Routine. The format of the' SS EDD card is:

ccl 6

*EDD yyy, ff

where: *EDD

yyy

ff

identifies this card as the Event Data

Descriptor

PSCS/LPSS input device containing the

event data. yyy is equivalent to the

last 3 characters of the symbolic unit

name as would be specified on a 44PS

ALLOC or ACCESS control card.

file number in which the data is

located on yyy

I
-.J

-1

l
~

]
m
W

The card-type processing routine for the SS IOE control card is the SSINIT

I/O Events Routine. The format of the SS IOE card is:

ccl 6

*IOE (zxx I tttt I cccc) (zxx I tttt I cccc) •.. etc.

where: *IOE

z

xxx

tttt

cccc

identifies this an an I/O Event Data

card

if non-zero I data corresponding to this

inte.rrupt shall be found on the IOE file.

If zero I no data corresponding to this

interrupt shall be found on the IOE file.

(one hex digit)
-,

is the DCSG simulated device address

that shall be used to generate the

interruption

time in milliseconds at which interrupt

shall be initiated. Up to 7 digits may

be used.

CSW status to be stored when interrupt

• is generated.

The last SS control card shall be used to denote the end of all SS control cards.

The format of the SS END card is:

ccl

*END

where: *END identifies to SSINIT the end of all SS

control cards.

A list of the subroutines called by the SSGETCC routine is:

o SSCHKCRD

o 44PS SVC READ I WRITE and CANCEL services.

-1

I
.-J

"""1

.-J

l
J

I
J

SSINIT shall be the only routine to call SSGETCC.

3.2.2.4 SSGETCC Data Organization

SSGETCC shall be resident within the SS Initialization Phase area.

3.2.2.5 SSGETCC Limitations

The Simulation Job shall be canceled if SSGETCC obtains a card from the card

reader that is not an SS control card. The use of the ~~END control card

denotes the endof all SS control cards.

3.2 .3 ssn1IT Card Type Determina tion Subroutine (SSTYPDET)

This subroutine shall be used by SSINIT. The functions this subroutine performs

are: -I

o Recognize a specific type of SS control card, and upon

recognition, pass control to the appropriate card type

proces sing routine

o Ensure that all of a particular type of SS control card is

grouped together

3.2 .. 3.1 SSTYPDET Description

The card type, determined by SSGETCC I shall be checked to determine which
-)

control statement shall be processed. If it is found that the control card is

out of sequence I an error message shall be output and the statement ignored.

If the statement is in sequence I the 'processing routine corresponding to the

sta tement shall be entered.

J

J

.,
I

J
l

l
I

-i

l
J

J
]

]

3.2.3.3 SSTYPDET Interfaces

This subroutine shall use as input the card type flag set in SSGETCC. Upon

recognition of *END, the end flag shall be set to halt further control card

processing.

A list of the subroutines called by the SSTYPDET routine is:

0 SSEQUIVI

0 SSEQUIVO.

0 SSDEB

0 SSQUE

0 SSIOEVNT

0 EVNTDATA

0 Supervisor Call Write services

The only computer program component that shall call SSTYPDET is SSINIT.

(3.2.1).

3.2.3.4 SSTYPDET Data Org~nization

The SSINIT Card Type Determination Routine shall be resident within the SS

Initialization Phase area.

3.2.3.5 SSTYPDET Limitations

If a control statement is found to be out of sequence, SSTYPDET shall ignore it.

I
-J

,

--l

;

3.2.4 SSINIT Input Equivalence and Data Definition Subroutine {SSEQUNI)

This subroutine shall be called by SSTYPDET. The functions this routine

performs are:

o

o

3.2.4.1

Completes the building of the Input Equivalence Queue

Builds an Input Equivalence Table

SSEQUIVI Description

This subroutine shall .receive control from S~TYPDET upon recognition of the

*DDI SS Control Card.

SSEQUIVI shall break out the parameters on the control card and construct

the queue and table .entries. The real input device specified on the <??ntrol

card may specify core storage or a tape drive. If it is core storage I the sym­

bol shall be placed into the table without converting. Otherwise the symbolic

unit specified for the real device shall be converted to its SYSUNI index

value. The simulated device address shall be converted to its hexadecimal

value. These values shall then be placed into the table.

-1

3.2.4.3 SSEQUIVI Interfaces

This subroutine shall be called by SSTYPDET to process the SS *DDI control

card.

The only source of input data to this routine shall be the current SS *DDI

control card which is in the input card buffer created by SSCHKCRD.

The output of SSEQUIVI consists of the Input Equivalence Queue List (IQUEUE)

and the Input Equivalence Table (ITBL). The format and the interrelationships

of the Equivalence Queue and the Equivalence Table are shown in Table 3.2.4-1.

The destination of the output is to the table and queue area within core storage.

A list of the subroutines called by SSEQUIVI is:

o

o

o

o

SSBRKOUT

CNVTDA

CNVRTD

CNVRT

The only computer program component that shall call SEQUIVI is SSTYPDET

(3.2.3).

3.2.4.4 SSEQUIVI Data Organization

SSEQUIVI shall be resident within the SS Initialization Phase area.

3.2.4.5 SSEQUIVI Limitations

There are no known or anticipated limitations • .

,

....J

-1

]

J

3.2.5 SSINIT Output Equivalence and Data Definition Subroutine

(SSEQUIVO)

This subroutine shall be called by SSTYPDET to process a *DDO control card.

The functions performed are:

o

o

3.2.5.1

Constructs the Output Equivalence Queue

Constructs the Output Equivalence Table

SSEQUIVO Description

This subroutine shall receive control from SSTYPDET upon recognition of the

*DDO Control Card. SSEQUIVO shall break out the control card parameters

and construct the queue and table entrie s. The 44PS output device specified ...
may be any of the available devices associated with the system. The real

and simulated .devices shall be converted and placed in the table. The

program unit name and the address of the table entry shall be placed into

the queue.

~

-1

]

3.2.5.3 SSEQUIVO Interfaces

Input to this routine shall consist of the current SS *DDO control card contained

in the card buffer created by SSCHKCRD.

The output·of SSEQUIVO shall be the Output Equivalence Queue (OQUEUE)

and Table (OTBL). The format and the interrelationships of the Equivalence

Queue and the Equivalence Table are shown in Table 3.2.5-1.

The subroutines called" by SSEQUIVO are:

o

o

o

SSBRKOUT

CNVTDA

CNVRT

SSTYPDET shall be the only routine that calls SSEQUrvO.

3.2.5.4 SSEQUIVO Data Organization

SSEQUIVO shall be resident with~n the SS Initialization Phase area.

3.2.5.5 SSEQUIVO Limitations

There are no known or anticipated limitations.

"1

"l

'1
.-l

]
j

]

3.2.6 SSINIT Debugging A.ids Subroutine (SSDEB)

This subroutine shall be used by the SSINIT Card Type Determination

Routine to process the SS Debugging Aids control card (SS *DEB card).

SSDEB uses the parameters from the SS *DEB control card to build the tables

used by the Simula tion Supervisor Debugging A.ids Routines for producing

program traces and dumps. Traces and dumps are produced automatically if

certain execution errors or timer interruptio~s occur. However I to receive a

trace or dump at segment and program unit ends I the user must make a request

through the SS *DEB control card - one card per program unit name.

The functions that SSDEB performs are:

o

o

3.2.6.1

the building of a Debug Queue Table

the building of a Debug Option List

SSDEB Description

SSDEB receives control from SSTYPDET upon recognition of the *DEB SS Control

Card. This routine shall break out the parameters I convert the device addresses

and construct the queue and table entrJes.

----'-------

-I

-)

-I

J

3.2.6.3 SSDEB Interfaces

This subroutine shall be called by SSTYPDET to process the SS *DEB control

card.

The only source of input data to the SSDEB routine shall be the current SS

*DEB control card which is in the input card buffer established by SSCHKCRD.

The format of the SS * DEB control card is shown in paragraph 3.2.2.3.

The output of the SSDEB routine consists of (1) the Debug Queue Table

(DEBQUE) and (2) the Debug Option List (DEBLST). The format and the inter­

relationships of the Queue Table and the Option List are shown in Table 3.2.6-1.

The destination of the output is to" the table and queue area within core storage.

A list of subroutines called by the SSDEB routine is:

o SSBRKOUT

o CNVRT

o CNVTDA

The only computer program component that calls SSDEB is SSTYPDET (3.2.3).

3.2.6.4 SSDEB Data Organization

This subroutine shall be resident within the SS Initialization Phase area.

3.2.6.5 SSDEB Limitations

There are no known or anticipated limitations.

-,

-,

-'

-',
I

-.J

3.2.7 SSINIT DCSG ECS Queue Dump Subroutine (SSQUE)

A. special debugging aid shall be made available to the system programmers

during the development of the DCSG ECS. Specifically, this debugging

aid provides the capability to dump the contents of any queue in a contiguous

format at the execution-completion of a particular program unit.

In order for this capability to be provided, this routine shall perform the

following functions:

o Build a Queue Dump Table containing the names of the queues

to be dumped

o Set up the interface between the Queue Dump Table and tt;e

3.2.7.1

SS Debugging A.ids Routine by building a Queue Dump Queue

Li.st

SSQUE De scription

This subroutine shall be invoked by SSTYPDET. The only exit from this

subroutine shall be to the caller. The 'parameters of the *QUE control card

shall be stored in the Queue List along with the count of queues for a .
program unit. The SYSUNI index and the output device addres s shall be

converted before being placed into the table.

-1

-1

J

",

_J

_J

]

3.2.7.3 SSQUE Interfaces

This subroutine shall be called by SSTYPDET to process the SS *QUE control

card.

The only source of input data to SSQUE is the current SS *QUE control card

which is in the input buffer established by SSCHKCRD. The format of the

SS *QUE control card is shown in paragraph 3.2.2.3.

The output of the SSQUE routine consists of '(I) the Queue Dump Queue List

(QDQUE) and (2) the Queue Dump Table (QDTBL). The format and the inter­

relationship of the Dump Queue and the Dump Table are shown in Table

3.2.7-1. The destination of the output is to the table and queue are~. within

core storage.

A list of the subroutines called by the SSQUE routine is:

o

o

SSBRKOUT

CNVTDA.

The only computer program component that shall call SSQUE is SSTYPDET

(3.2.3).

?2.7.4 SSQUE Data Organization

This subroutine shall be resident within the SS Initialization Phase area.

3.2.7.5 SSQUE Limitations

There are no known or anticipated limitations.

-l

l
-.J

I
J

]

]

l
.-J

3.2.8 SSINIT Event Data Descriptor Subroutine (EVNTDATA)

This subroutine shall be called by SSTYPDET to process the SS *EDD control

card.

3.2.8.1 EVNTDATA De scription

This subroutine shall receive control from SSTyPDET upon recognition of the

*EDD control card.

EVNTDATA shall break out the parameters on"the *EDD card and construct

the header for the I/O Event Table. The file number shall be converted from

EBCDIC decimal to hexadecimal and stored in the first byte of the table. The

symbolic unit specified for the real device shall be converted to its S.):'BUNI

index value and stored in the second byte of the table. The two-byte record

poistion field -shall be initialized to zero I and the four-byte pointer field

shall be made to point to the first entry in the table.

l
~

l
~

I
I

.-J

]

I

.-J

l
~

l
-.J

]

]

]

3.2.8.3 EVNTDATA Interfaces

This subroutine shall be called by SSTYPDET to process the SS *EDD control

card.

The input data to this subroutine shall consist of the *EDD control card

parameters which have been placed in the input buffer by SSCHKCRD.

The output of EVNTDATA shall consist of the header of the I/O Events Table

(EVNTAB). The format "of the header is shown in Table 3.1.5-5.

The subroutines which shall be called by EVNTDATA are:

o

o

o

SSBRKOUT

CNVTDA

CNVRTD

The only computer program component that shall call EVNTDATA is SSTYPDET.

3.2.8.4 EVNTDATA Data Grg"anization

EVNTDATA shall be resident within the SS Initialization Phase area.

3.2.8.5 EVNTDATA Limitations

There are no known or anticipated limitations.

l

I

-'

3.2.9 SSINIT I/O Events Subroutine (SSIOEVNT)

This subroutine shall be called by SSTYPDET to build the I/O Events Table

from the SS *IOE Control Card.

3.2.9.1 SSIOEVNT De scription

This subroutine shall receive control from SSTYPDET upon recognition of the

*IOE control card.

SSIOEVNT shall break out the parameters on the * IOE card and construct the

I/O Event Table entries. For each I/O event the time shall be converted

from EBCDIC decimal to hexadecimal and stored in a four-byte field; the

simulated device address shall be converted from EBCDIC hexadecimal to

hexadecimal and stored in a two-byte field; the CSW status shall be converted

from EBCDIC hexadecimal to hexadecimal and stored in a two-byte field.

A four-byte end-of-table flag shall be stored after the last entry. This flag

shall be overlayed if another *IOE card is read in.

-,

l
-.J

l
-.l

l
-.l

]

l
.J

3.2.9.3 SSIOEVNT Interfaces

This subroutine shall be called by SSTYPDET to process the SS * IOE control

card.

The input data to this subroutine shall consist of the *IOE control card

parameters which have been placed in the input buffer by SSCHKCRD.

The output of SSIOEVNT shall consist of the I/O Events Table (EVNTAB) shown

in 3.1.5-5.

The subroutines which shall be called by SSIOEVNT are:

o SSBRKOUT

o CNYrDA

o CNVRTD

o CNVRT

The only computer program component that shall call SSIOEVNT is SSTYPDET.

3.2.9.4 SSIOEVNT Data Organization

SSIOEVNT shall be resident within the SS Initialization Phase area.

3.2.9.5 SSIOEVNT Limitations

There are no known or anticipated limitations.

_______________ . _____ 0_--"--

-1

l
.J

l
~

]
l
-.J

-- .----~ ._- _ __ ._---------

3.2.10 SSINIT Load Simulation Supervisor Routine (SSLDSS)

Control shall be passed to SSLDSS by the SSINIT Control Routine after all of

the Simulation Supervisor control cards are read, analyzed and appropriate

initialization action performed.

The functions that SSLDSS performs are:

o

o

o

3.2.10.1

saving of the 44PS SVC, Machine Check, Program and External

new PSW first-level-·handler addresses

insertion of the Simulation Supervisor's SVC, Machine Check,

Program, and External new PSW first-level-handler addresses

loading of the Simulation Supervisor Routines and passing of ..
control to the SS set up routine

SSLDSS Description

This routine shall be invoked by the SSINIT Control Routine after the processing

of all the SS control cards has been completed for the Initialization Phase.

SSLDSS shall save the 44PS new' PSWs . and .replace them with those of SS.

.The processing phase, shall then be loaded and control passed to CLKINIT.

"I

.J

I

~

I
.J

I

j

3.2.10.3 SSLDSS Interfaces

}:'his routine shall receive control from the SSINIT Control Routine after all

of the SS cont.rol cards are read and processed.

The output of SSLDSS shall be the loading of the SS Processing Phase routines.

These routines shall be in the same format as they were when placed on the

Phase Library as output of the 44PS Linkage Editor. The destination of the

output is core storage s~arting at the end of the SS table and queue area.

3.2.10.4 SSLDSS Data Organization

This routine shall be resident within the SS Initialization Phase area.

3.2.8.5 SSLDSS Limitations

There are no known or anticipated limitations of the SSLDSS routine.

...J

-1

....J

l
-.J

]

]

]

3.2.11 SSINIT Check Control Card Routirie (SSCHKCRD)

This routine shall check the formats of all SS control cards and list each on

the printer. It shall be called by SSGETCC each time an SS cO:ltrol card is

read in.

3.2.111 SSCHKCRD Description

SSCHKCRD 'shall scan control cards and check for

illegal characters embedded in parameters

o parameters of improper length

o illegal delimiters

o characters in improper columns

If any of the above error conditions are found, the card in error and all of

its continuations shall be flushed from the input stream and an error message

shall be output. Control shall be returned to SSGt:TCC with an error indiqBtion.

If a control card which has no errors contains a non-blank character in

column 72, a call shall be made to SSCONTIN to get the continuation card.

When control is returned to SSCHKCRD, the continuation card shall also be

checked for errors. This process shall continue until all continuation cards

have been checked. Control shall than be returned to SSGETCC.

If more than the three allowable continuation cards are present, the parameters

on the extra cards shall be ignored and a warning message shall be output,

but processing shall continue.

....,
,

_.1

-1

I
I

.-l

l
-.J

I ,
-.J

3.2.11.3 SSCHKCRD Interfaces

The only routine which shall call SSCHKCRD is SSGETCC.

SSCHKCRD shall call the following routines:

o

o

CHKMOVE

SSCONTIN

T.he following conventions shall be observed.for communication with other

routines:

o

o

o

The type code set up by SSGETCC shall indicate the type

of control card currently being processed.

O=DDI

l=DDO

2=DEB

3=QUE

4=EDD

5=IOE

6=END

Before entry to CHKMOVE I the character code shall be set to

indicate the type of characters which are valid for the parameter

being checked.

O=a symbol which must begin with a letter

l=a symbol which can begin with a letter or a

digit .
2=a hex digit

3=a decimal digit

Before return from CHKMOVE I the character code shall be

set to indicate the type of delimiter encountered.

-I

I
-.J

-,

-1

I
I

.-J

]

3.2.114

O=comma

l=left paren

2=right paren

3=blank

SSCHKCRD Data Organization

SSCHKCRD shall be resident within the SS Initialization Phase area.

3.2.11.5 SSCHKCRD Limitations

If any error conditions are found on a card, SSCHKCRD shall branch to SSGETCC

to flush the card and its continuations from the input stream.

3.2.12 SSINIT Check and Move Routine (CHKMOVE)

l
~

This routine shall be called by SSCI-IKCRD to check and move one parameter

to CRDTBL.

3.2.12 . 1 CHKMOVE Description

This routine shall receive, upon entry, a pointer to a parameter and a

character code which ·indicates the type of characters valid for the parameter.

The parameter shall be scanned until a delimiter is encountered. As each

character is checked for validity.' it shall be moved to an area called CRDTBL.

When the entire parameter has been moved to CRDTBL, a comma shall be

stored after the last character and the pointer to CRDTBL shall be updated to

the location immediately following the comma. The arrangement of parameters

in this manner shall facilitate the picking up of parameters by the SSBRKOUT

l
I routine.

l
Upon completion of the scan, the length of the parameter shall be .indicated and

~ the character code shall be set to indicate the type of delimiter encountered.

If the parameter is found to have an invalid character, to be too long or to end with

an invalid delimiter, an error message shall be output and control returned to SSCHKCRD

with an error indication.

l

l
-.J

._-_._-_._-----

I
I

I.

]

I
-.J

l
-.J

l
.-J

"I
I

------------------ ------------

3.2.12.3 CHKMOVE Interfaces

The only routine which shall call CHKMOVE is SSCHKCRD.

No routines shall be called by CHKMOVE.

The following conventions shall be observed for communication with

SSGETCC:

Before entry to CHKMOVE I the character code shall be

set to indicate the type of characters which are valid

for the parameter being checked.

o :::: a symbol which must begin with a letter

1 :::: a symbol which may begin with a letter or a

digit

2 :::: a hex digit

3 :::: a decimal digit

o Before return from CHKMOVE I the character code shall

be set to indicate the type of delimiter encountered.

o :::: comma

1 :::: left paren

2 :::: right paren

3 :::: blank

3.2.12.4 CHKMOVE Data Organization

The CHKMOVE routine shall be resident within the 55 Initialization Phase area.

]

l
-.i

]

l
-.J

3.2.12.5 CHKMOVE Limitations

There are no known or anticipated liinita tior..s.

-1

l
.J

l
.J

1

-:
,

-.J

"I

.-J

I
J

1
.J

I
j

3.2.13 SSINIT Continuation Card Routine (SSCONTIN)

The SSCONTIN routine shall be called by SSCHKCRD to get continuation

cards.

3.2.13.1 SSCONTIN Description

SSCONTIN shall branch and link to SSGETCC to obtain a continuation card.

Upon return, the card shall be printed and checked for the following errors:

o No asterisk in column one

o Columns 2-15 non-blank

I) Column 16 blank

If no errors are detected, a pointer to column 16 shall be passed to SSCHKCRD

upon return. If errors are present, an error indication shall be passed.

-1
-.J

l
-.l

J

3.2.1:1.3 SSCONTIN Interfaces

The only routine which shall call SOCONTIN is SSCHKCRD.

SS.cONTIN shall call the SSGETGC routine.

Output from SSCONTIN shall consist of a pointer to column 16 of the

continuation card.

3.2.]3.4 SSCONTIN Data Organization

SSCONTIN shall be resident within the SS Initialization Phase area.

3.2.13.5 SSCONTIN Limitations

If more than three continuation cards are encountered, the extra cards shall

be read in, but not checked for validity. An indication of the extra cards

shall be passed to SSCHKCRD. '

-1

-1
I

I
--'

l
~

l
--1

-,
I

--1.

3.2.14 SSINIT Parameter Breakout Routine (SSBRKOUT)

The SSBRKOUT routine shall pass control card parameters to the SSEQUIVI,

SSEQUIVO / SSDEB / SSQUE / EVNTDATA, and SSIOEVNT routines.

3.2.14.1 SSBRKOUT De scription

SSBRKOUT shall pick up the pointer to the next parameter in the CRDTBL

area. All characters up to the next comma shall be loaded into registers

o and 1 left-justified and padded with blanks. The pointer to CRDTBL

shall be updated to the position immediately following the comma and

control returned to the caller.

-,

If the SSBRKO UT routine is entered and the character pointed to is a blank /

an "end of parameters" indication is passed to the caller and the pOinter

is restored to the beginning of CRDTBL.

····1

-)

J

]
I
J

3.2.14.3 SSBRKOUT Interfaces

The CRDTBL area used by SSBRKOUTshall be built by the SSCHKCRD and

CHKMOVE routines. The table shall consist of all parameters which

appeared on a control card and its continuations. The parameters shall

be separated by commas, and the last parameter shall be followed by a

comma and a blank.

Output from SSBRKOUT .shall consist of a paramter passed to the calling

routine in registers 0 and 1.

The following routines shall call SSBRKOUT to break out parameters:

o

o

o

o

o

o

SSEQUIVI

SSEQUIVO

SSDEB

SSQUE

SSIOEVNT

EVNTDATA

No routines shall be called by the SSBRKOUT routine.

3.2.14.4 SSBRKOUT Data Organization

SSBRKOUT shall be resident within the SS Initialization Phase area.

3.2.14.5 SSBRKOUT Limitations

There are no known or anticipated limitations.

-'-1

·'1

-,

-,

-I

--1

3.2.15 Convert from EBCDIC to Hexadecimal (CNVRT)

This routine shall convert a four chGracter hexadecimal EBCDIC string to

a hexadecimal value.

3.2.15.1 CNVRT Description

Upon entry to this routine I register 0 shall contain the four character

EBCDIC string. The high order portion of the character shall be cleared I

shifted into position a,nd added to construct the hexadecimal value. If the

character is an EBCDIC 10-15 (A-F) I the high order portion will be cleared

and a hexadecimal 10 shall be added to the low order portion of the charac­

ter before it is shifted and added to construct the hexadecimal value.

-1
..J

-1
I

]

3.2.15.3 CNVRT Interfaces

Input to CNVRT:

o Register a shall contain 4 character EBCDIC value to be

converted to hexadecimal.

Output from CNVRT:

o Register a shall contain the hexadecimal value.

CNVRT shall not call any other subroutine.

Routine s calling CNVRT:

o

o

o

o

SSEQUIVI

SSEQUIVO

SSDEB

SSIOEVNT

3.2.15.~4 ______ ~C_N_VR __ T __ D_a_t_a~O_r~g_a~n_i_za __ ti_o_n_

This routine shall be resident within the SS Initialization phase area.

3.2.15.5 CNVRT Lim ita tions

There are no known or anticipated limitations.

I ,

-..,
I

I
J

I

i

3.2.16. Convert to SYSUNI Index Number (CNVTDA)

This routine shall convert a three character code to a SYSUNI index value

useable by 44PS I/O service routines.

3.2.16.1 CNVTDA Description

This routine shall use a table to look up the SYSUNI index value. The

table shall contain a list of all possible 3 character codes as explained

in the SS control ,statement descriptions.

--,

--,
I

I
-.!

-,
I

3.2.16.3 CNVTDA Interfaces

Input to CNVTDA:

o Register 0 shall contain the three character code, right

justified.

Output from CNVTDA:

o Register 0 shall contain the SYSUNI index value.

CNVTDA shall not call any subroutines.

Subroutines calling CNVTDA are:

o

o

o

o

o

3.2.16.4

SSEQUIVI

SSEQUIVO

SSDEB

SSQUE

SSIOEVNT

CNVTDA Data Organization

This routine shall reside within the SS Initialization Phase area. The table

used by CNVTDA shall contain the lase three characters contained in Table 8,

"Symbolic Unit (SYSUNI) Index Values", under Symbolic Unit. This table is

found in IBM System/360 Model 44 Programming System - Guide to System

Use Form #C28-6812.

3.2.16.5 CNVTDA Limitations

There are no known or anticipated limitations.

l
-.J

-,

J

l
.-J

I
..J

I
..J

l
-.J

l

l
I

"I
..J

l
-.J

l
-.J

J

3.2.17 Convert from EBCDIC Decimal to Hexadecimal (CNVRTD)

This routine shall convert a decimaJ EBCDIC string up to 7 characters

long to a hexadecimal value.

3.2.17.1 CNVRTD Description

Upon entry to this routine registers 0 and 1 sh'3JI contain the right-justified

EBCDIC string, and register 2 shall contain a count of the number of

characters to be converted. Each byte, starting with the low-order digit,

shall be picked up and A.NDed with OT to clear out the zones. It shall then

be multiplied by the appropriate power of ten and added to the hexadecimal

value being construc~ed. The tc;>tal shall be returned to the calling routine
...

in a register.

---"---'

l
~

l
--'

]

l
.-l

3.2.17.3 CNVRTD Interfaces

Input to CNVRTD:

o Registers 0 and 1 shall contain the right-justified EBCDIC string

which is to be converted.

o Registe~ 2 shall contain a count of the number ·of characters in

the string.

Output from CNVRTD:

o The hexadecimal value shall be returned in a register.

Routines calling CNVRTD:

o SSEQUIVI

o EVNTDATA

o SSIOEVNT

3.2.17.4 CNVRTD Data Organization

This routine shall be resident wi~hi.n the SS Initialization phase area.

3.2.17.5 CNVRTD Limitations
.

There are no known or anticipated limitations.

---"-_._._------

l
..J

l
..J

]

]

l
..J

3.2.18 Machine Check First Level Handler (MCKFLIH)

MCKFLlli shall be added to the standard Sy stem 360/44 Programming Sy stem

(44PS). Its function sha.l.l be to interrogate all machine check interruptions

encountered during the simulation.

3.2.18.1 MCKFLIH Description

This routine .shall place the simulation in "time-out" mode. It then deter­

mines if SS or DC~G had control. If SS had control, a message shall be

output and control given to SSEXIT. If DCSG had control, program status

shall be saved. The interrupt flag, register 12, shall be set to 12 and register

1 shall be set to the machine check old PSW address. Next, control shall be . .
given to SVCFLIH2.

--1

l
~

----!

,

-.J

]

3.2.18 .3 MCKFLIH Interfaces

MCKFLIH Inputs are:

o

o

o

Outputs are:

o

Interval Timer

Machine Check old PSW

The 16 general registers

Interrupt. flag in register 12

o Old machine check PSW address in register 1

Called routines are:

o SSAVER

o SSEXIT

o SVCFLIH2

o 44PS SVC WRITE service routine

Calling routines are:

None. Control shall be re'ce1ved. when a machine check interruption occurs.

Tables and constants referenced:

o Machine Check old PSW

3.2.18 .4 MCKFLIH Data Organiz'3.tion

This routine shall res ide within the 44PS area.

3.2.18 .5 M CKFLIH L imita tion s

There are no known or anticipated limitations

-,
I

]

]

l
.J

3.2.19 Program Interruption First Level Handler (PIFLrn)

PIFLIH shall be added to standard 44PS. Its function shall be interrogation

of all program interruptions encountered during simulation.

3.2.19.1 PIFLIH Description

This routine shall place simulation in "time-out" mode. It then determine s

if interruption occurred during SS or DCSG processing. If SS was in control,

a message shall be output and control given t.o SSEXIT to. terminate the simulation.

If DCSG was in control, status shall be saved. The interrupt flag, register 12,

shall be set to 0 and register 1 shall be set to the address of the Program old

PSW. Next, control shall be given to SVCFLIH2. . .

------_._-_

l

-,

l
-.J

l
.J

l
-.J

3.2.19 .3 PIFLIH Interfaces

PIFLIH Inputs are:

o

o

o

Outputs are:

o

o

Interval Timer

Program Interruption old PSW

The 16 general registers

Interrupt -flag in register 12

Old Program PSW address in register 1

Called routines are:

o SSCNTMCI

o SVCFLIH2

o SSSAVER

Calling routine s are:

None. Control shall be received when a program interruption occurrs.
, '

Tables and constants used:

o Program old PSW

3.2.19 .4 PIFLIH Data Organization

This routine shall reside within the 44PS area of core storage

3.2.19 .5 PIFLIH Limitations

There are no known or anticipated limitations.

--1

-1
I

-.J

3.2.20 SVC First Level Handler (SVCFLIH)

SVCFLIH shall be added to the standard 44PS. Its function shall be

interrogation of all SVC interruptions during simulation.

3.2.20.1 SVCFLIH Description

This routine shall place the simulation in "time-out" mode. It shall then

determine if the SVC was is sued by SS or a DCSG program. If issued by

SS the SVC shall be tested as a simulation terminator. SSEXIT shall be

entered when termi"nation is requested. If the SVC was issued for a 44PS

service routine, the SVC handler of 44PS shall be entered.

If the SVC was issued.by a DCSG program status shall be saved. RegisJer

12, the interrupt flag, shall be set to 4, and the addres s of the SVC old

PSW shall be plc:lCed into register 1.

SVCFLIH2 shall containue processing by saving the old PSW that corresponds

to the interrupt type and giving control to SSIRPT.

------------------------- .--.,---.---.,--- .. ------------------~

-1

-.J

-'

]

J

3.2.20 SVC First Level Handler (SVCFLIH)

SVCFLIH shall be added to the standard 44PS. Its function shall be

interrogation of all SVC interruptions during simulation.

3.2.20.1 SVCFLIH Description

This routine shall place the simulation in "time-out" mode. It shall then

determine if the SVC was issued by SS or a DCSG program. If issued by

SS the SVC shall be tested as a simulation terminator. SSEXIT shall be

entered when termination is requested.

If the SVC was issued by a DCSG program. status shall be saved. Register

12, the interrupt flag I shall be ,set to 4 I and the address of the SVC old

PSW shall be placed into register 1.

SVCFLIH2 shall continue processing by saving the old PSW that corresponds

to the interrupt type and giving control to SSIRPT.

---'--~---.----'----

..J

-,

_ .. \

I
.-J

]

]

l
.J

!
I

-.J

3.2.20.3 SVCFLIH Interfaces

SVCFLIH Inputs are:

o

o

o

o

Outputs are:

o

o

Interval Timer

SVC old PSW

The 16 general registers

Location of the old PSW corresponding to the interruption type

Contents of an old PSW stored in CREGION (INPSW)

Interrupt flag in register 12

Called routines are:

o

o

o

SSSAVER

SSIRPT

44PS SVC Handler

Calling routines are:

o

o

o

o

PIFLIH

EXTFLIH

MCKFLIH

SVC interruption occurrence

Tables and constants used:

o CREGION - ADSSIRPT I INPSW

3.2.20.4 SVCFLIH Data Organization

This routine shall reside within the 44PS core storage area

·3.2.20~'5 SVCFLIH Limitations

General Register 10 shall be destroyed when any SS or User routine issues

an SVC referencing a 44PS SVC service routine.

-------_. ------_._--,-------

-'

-,
I

-,
,

-,
I

-,

-,
I

-'

l

]

l
--.i

"I
J
f

I
-.J

3.2.21 External First Level Interrupt Handler (EXTFLIH)

EXTFLIH shall be added to the standard 44PS. Its function shall be

interrogation of all interval timer (external) interruptions.

3.2.21.1 EXTFLIH Description

An external interrupt occurs when the interval timer elapses. EXTFLIH

shall receive control at this point and the simulation shall be placed

in IItime-out" mode. A check shall then be made to determine if SS or
. .

DCSG was in control. If SS was in control, the interval timer shall

be reset to a and control returned to the point of interruption. Otherwise,

status shall be saved. The interrupt flag, register 12, shall be set to

8, register 1 shall be set to the' addres s of the External Old PSW, and.

cont rol given to SVCFLIH2.

--------- ----"-----

l
.-J

I
I

~

l

I
I

--.J

]
l
~

l
-.J

l
-.J

3.2.21 .3 EXTFLlli Interfaces

EXTFLIH Inputs are:

o External old PSW

o The 16 general registers

o

Outputs are:

o

o

o

Interval Timer

Resetting of the interval timer'

Interrupt flag in register 12

Address of External old PSW in register 1

Called routines are:

o SVCFLIH2

Calling routines are:

None. Control shall be received by the occurrence of an external interruption.

Tables and constants used:

o Interval Timer

o External old PSW

3.2. 21 .4 EXTFLIH Data Organization

This routine shall reside within the 44PS core storage area

3.2.21 .5 EXTFLlli Limitations

There are no known or anticipated limita tions.

--------------_._---

I
.J

I
I

~

I

.J

l
.J

,

-J

l
-1

]

J
l
--1

3.2.22 SS EXIT Routine (SSEXIT)

This routine shall reset the 44PS PSWs. The address pointing to the PSWs

shall be saved by the Initialization Phase.

3.2.22.1 SSEXIT Description

PSW addresses shall be picked up from CREGION. SSEXIT shall reset the

four new PSWs saved by the Initialization Phase and issue an SVC CANCEL

to terminate the simulation.

----- -~---------

.,
I

I
-.J

l

l
-.J

]

]

3.2.22.3 SSEXIT Interface s

SSEXIT Inputs shall be:

o The address of the saved PSW to be reset

Outputs are:

o Resetting 44PS SVC new PSW

o Resetting 44PS External new PSW

o Re setting 44 PS Program new PSW

o Resetting 44PS Machine Check new PSW

An SVC 15 (CANCEL) shall be issued to terminate the simulation.

Tables and constants. used:

o CREGION - STAT44A

o STAT44 - All items

3.2.22.4 SSEXIT Data Organization

This routine shall reside within the modified 44PS section.

3.2.22.5 SSEX IT Limitations

There are no known or anticipated limitations.

- ---------------

-I

]

3.2.23 Status Saving Routine (SSSAVER)

This routine shall save the contents of the 16 general registers and the

interval timer.

3. 2. 23.1 SSSAVER Description

This routine shall store the contents of the registers directly I except

for register 1 whose contents shall be found in a temporary save area.

The value of the interval timer shall also be found in the temporary

save area I and if shall be picked up and placed in CREGION along with

the registers.

I
.J

I
,

l
-.J

l
.J

l
-J

J

3.2.23.3 SSSAVER Interfaces

SSSAVER Inputs are:

o

o

Outputs are:

The contents of the 16 general registers

The value of the interval timer

o The contents of the 16 general registers placed in CREGION

o The interyal timer value placed in CREGION

This routine shall not call any other routines.

This routine shall be called by:

o

o

o

SVCFLIH

MCKFLIH

tXT FL lli

o PIFLIH

Tables and constants referenced:

o

o

3.2. 23.4

CREGION - GRS, rrVAL

SSTEMPSV {contents of register 1 and the interval timer shall be
found here}

SSSAVER Data Organization

This routine shall reside within the 44PS core storage area.

3.2.23.5 SSSAVER Limitations

There are no known or anticipated limitations.

l
.-J

l

l
~

l
~

3.2.24 SS Set Up Routine (CLKINIT)

This routine shall be entered at the conclusion of SS Initialization Phase

proces sing. The functions it performs are:

o Initialize the interval timer.

o Load the user provided routines and give control to

SSAMUIN to initialize the DCSG ECS

o Give control to the DCSG ECS

3.2.24.1 CLKINIT Description

Upon entry, CLINIT shall set up addressibility for itself and the rest of SS.

The address of the interrupt processor (SSmPT)" shall be stored in the ..

communication region. The address of CREGION shall be entered to

initialize the DCSG ECS. An initial value shall then be set into the DCSG

ECS interval timer location, CREGION, and the interval timer. Next, control

shall be given to the DCSG ECS address specified in the ECS IPL PSW.

If the user routines are not found in the'phase library, the simulation job

shall be cancelled.

-,

l
~

--,
I

I
,

~

3.2.24.3 CLKINIT Interfaces

CLKINIT shall be invoked at the conclusion of the Initialization Phase.

The address of CREGION shall be obtained by issuing an EXTRACT SVC.

DCCHK and ADSSIRPT shall be set during CLKINIT processing.

Subroutine SSAMUIN srall be a user provided routine that performs Initial

Program Loading of the DCSG. SSAMUIN can use any of the routines

available to SS, since S'S base registers (3, 4", and 5) shall be set. After

bringing in the ECS, SSAMUIN shall return to CLKINIT with an indicator in

register O. This indicator shall be set to 0 if the IPL procedure was normal,

and non-zero if an error occurred.

Restrictions placed upon SSAMUIN are:

o The contents of registers 3, 4, and 5 may not be destroyed

o Return to CLKINIT shall be made by branching on register 14

o Base registers must be set upon entry to SSAMUIN

SSAMUIN Inputs consist of:

o Register 12 pointing to COJvlREG

o Starting addres s of where to load the ECS shall be contained

in COMREG

The outputs SS shall expect from SSAMUIN are:

o Loading of the DCSG ECS.

o Indicator in register 0

Routines called by eLKINIT are:

o SSAMUIN

o 44PS SVC service routines

o DCSG ECS

------_ ...

-,

• ..J

I
.J

-1
" I

.-J

---------~--"""--

Routine s calling eLKINIT are:

o SSLDSS

3.2.24.4 eLKINIT Data Organization

This routine shall reside within the SS Processing Phase area of core storage.

3.2.24.5 eLKINIT Lim ita tions

There are no known or anticipated limitations.

-1
I

--I

-,

1

---------- .--.-~.--

3.2.25 Interrupt Determination Routine (SSIRPT)

SSIRPT shall receive control from the first level interrupt handlers (PIFLIH,

EXTFLIH, MCKFLIH, SVCFLIH). It shall determine the type of interruption

and pass control to the proper processor.

3.2.25.1 SSIRPT Description

This routine shall create an old PSW in COMREG which is like the one the

DCSG programs expect. This is done so SS may monitor the itema in the

PSW and regulate the flow of events. After creating the PSW, SSIRPT

determines if an external interruption caused entry. If it did, EXTH

recieves control. If not, segment running time and DCSG total running

time are incremented with a call to UPDTCLK., After regaining control l

SSIRPT shall relinquish control to one of the specialized interrupt handlers

(PIH, SVCH, MCKH).

."

---------_. __ ._-

I
I

-'

-,
,

l
_.J

l
-J~

~-------------

3.2.25.3 SSIRPT Interfaces

SSIRPT Inputs shall be:

o Interrupt flag

Outputs are:

o Creation of DCSG PSW for SS interrogation

o Base register settings for the remainder of SS

Called routines are:

o

o

o

o

EXI'H

PIH

UPDTCLK

SVCH

o MCKH

Tables and constants used:

o CREGION - DUMPSW, INPSW

o COMREG - OPS\V

3.2 .25 ~4 SSIRPT Data Organization

This routine shall be resident within the SS processing phase area.

3.2.25.5 SSIRPT Limitations

There are no known or anticipated limitations.

l

I
J

"I
j

I
I
I

.-J

l
.J

]

I
j

I
.J

3.2.26 Update Interval Timer (UPDTCLK)

This routine shall increment the DCSG and Segment running times and reset

the DCSG ECS interval timer location.

3,2,26,1 UPDTCLK Description

UPDTCLK shall increment total DCSG and segment running times. This shall

be accomplished by subtracting the current interval timer value from the time:

value at which SS last had control. This tim~, in micro seconds, shall be

converted to milliseconds and added to the DCSG and segment running times.

Next, the DCSG timer location shall be examined. If the current value is

unchanged from the value at last SS control, the DCSG timer location is re­

duced by the At computed from the interval timer. If the current value is

changed, the DCSG timer location is converted and stored in the interval

timer location •. This conversion is effected by multiplying the DCSG timer

value by 7~(103 micro seconds x .1l). Before exit from UPDTCLK the current
milliseconds -13

time s are sa ved for the next entry.

3,2.26,3 UPDTCLK

This routine requires that register 13 pOInt to CREGION.

Output from this routine shall consist of:

o Resetting the ECS interval timer location

o Updating DCCHK, ITVAL, and DCSGLAST

UPDTCLK shall not call any other routine.

SSIRPT shall be the only calling routine.

Tables and constants used are:

o CREGION - ITVAL, SEGR UN, DCCHK

o COMREG - SIMTIM

---- ---- ..

-J

-1

-J

--,
I

-l

-1

~

I

]

l
I

3.2.26.4 UPDTCLK Data Organization

This routine shall reside witMn the SS proces sing phase area.

3 2.26.5 UPDTCLK Limitations

This routine shall assume the use of a high resolution timer.

A.s DCSG timer values increase I SS timing error shall increase. This results

from the conversion factor between the 4Pi timer and the PSCS/LPSS timer .
.

The conversion factor could be carried at greater accuracy but this would not

be commensurate with other timing considerations.

Timing accuracy may ,be effected if the DCSG timer location is changeq more

than once between SS control points.

~

I

-,
I

-,
I

~~~~~~-~-~-~ -----------

3.2.2 V Program Interruption Handler (PIH) 

This routine shall determine the ca use of a Program interruption. There shall be 

four groups of instructions determined: 

o 

o 

o 

o 

3.2. 27 . 1 

I/O 

Status - switching 

Privileged I other than above 

Other exceptions (operation I addres sing I etc). 

PIH Des cription 

PIH shall determine if an "other exception" (error) caused the interruption. If it 

did I SSDBUG shall be entered to output debugging information. If it was not 

an exception I PIH shall determine if the interruption was caused by the ECS 

executing one of the I/O instructions. If this is found to be true I a user pro­

vided routine shall be enterd. If the instruction was found to be a LPSW or 

SSM, routines LP8WH and S8MH shall be entered. If none of the above 

operations caused the interruption S8PROP, a user provided routine, shall 

be entered. 

3.2.2'1.1.1 Requirements for user provided routines 

3.2.27 0 1.1.18S8IO 

This routine shall be called by PIB when a SIO instruction is encountered. 

SSSIO shall simulate the required I/O operation. 



-] 

-, 
I 

----------- ~~--~- ---

3.2.27.1.1.1.1 Inputs to SSSIO 

The I/o Equivalence Queues and tables I along with table COMREG I shall 

contain all inputs necessary to insure proper simulation. General register 

12 shall contain the address of COMREG. The input items within COMREG 

shall be: 

o 

o 

o 

o 

o 

o 

Program unit name initiating the I/o 

Old Program Interruption PSW 

Channel Address Word 

Starting address of DCSG ECS 

Pointer to I/O Equivalence Queues 

Actual instruction causing interrupt 

o Addres s of Datalook Subroutine 

See 3.1. for a complete description of the table and items. 

Register 13 shall point to the contents of the DCSG registers which may be used 

in forming the DCSG device addre,ss. the registers are stored from 0-15. 

3.2.27.1.1.1.2 Outputs expected from SSSIO 

In addition to simulating the requested I/o I SS expects the following items 

(if applicable during simulation) to be set in COMREG: 

o 

o 

o 

A condition code setting I that may be tested by the DCSG ECS I 

placed in OPSW 

A CSW that may be interrogated by the DCSG program in CSWL 

A ret~rn adclres s setting in RETAD (see 3.1.5.6) 

3.2.27.1.1.1.3 SSSIO Restrictions 

The following restrictions and conventions must be adhered to: 

o Registers 3 and 4 may be used if r~set before calling or 

returning to any SS routine. 



-, 
I 

I 
-' 

l 

l 
-.l 

o SVC conventions as stated in IBM System/360 Model 44 

Programming System Guid8 to System Use (Form C28-6812) 

o A. base register must be provided 

o References to low core should not be made 

o Exit from SSSIO shall be to the addres s specified in item RTNAD of 

COMREG 

o SS subroutine linkage 

3.2.27.1.1.2 SSBIO 

This routine shall be called by PIB when a BIO instruction is encountered. 

The function of this routine shall be to simulate the BIO request. 

3.2.27.1.1.2.1 Inputs to SSBIO 

SS shall make available all inputs specified in 3.2.27.1.1.1.1. 

3.2.27.1.1.2.2 Outputs from SSBIO 

The outputs from SSHIO should be' the same as 3.2.27.1.1.1.2. 

3.2.27 .1. 1. 2.3 SSBIO Restrictions 

SS shall expect SSBIO to conform to the restrictions and conventions specified 

in 3.2.27 .1 . 1. 1 .3 . 



-; 
, 

1 
I 

-.J 

-) 

I 
I 

-.J 

3.2.27.1.1.3 88T10 -----------------
This routine shall be called by PIB upon recognition of a TIO instructio:1. 

88T10 shall be expected to simulate the request. 

The inputs to S8TIO shall be the same as 3.2.27.1.1.1.1. 

3.2.27.1.1.3.2 Outputs from 88T10 
---~--~ 

The outputs from 88T10 should be the same as 3.2.27 .1.1.1. 2. 

3.2.27.1.1.3.3 88T10 Re strictions 

88 shall expect 88T10 to conform to the restrictio:ls and conventions 

specified in 3 ; 2 .27 .1.1.1.3 . 



-, 
I 

I 
-1 

3.2.27 . 1 . 1. 4 88TGB 

This routine shall be called by PIB upon recognition of a TGB instruction. 

88TGB shall be expected to simulate the request. 

3.2.27.1.1.4.1 Inputs to 88TGB 

The inputs to 88TGB shall be the same as 3.2.21. 1. 1.1.1. 

3.2.27 . 1. 1. 4.2 Outputs from 88TGB 

. 
The outputs from 88TGB should be the same as 3.2.27.1.1.1.2 

3.2.27.1.1.4.3 88TGB Restrictions 

88 shall expect 88TGB to conform to the restrictions and conventions specified 

in 3.2. 27 . 1. 1. 1 .3. 

3.2.27.1.1.5 SSPROP 

This routine shall be called by PIB upon encountering any privileged operation 

not already mentioned in this sect,ion. S8 shall expect 8SPROP to recognize the 

operation and take appropriate action. 

3.2.27.1.1.5.1 Inputs to SSPROP 

All items in GOMREG shall be available. Register 12 shall contain the addre ss 

of GOMREG. Register 13 shall point to the contents of the DG8G registers. 

3.2.27.1.1.5.2 Outputs from SSPROP 

The return flag must be set upon return to SS. 

3.2.27.1.1.5.3 SSPROP Restrictions 

88 shall expect 88PROP to conform to the restrictions and conventions specified 

in 3. 2 . 27 . 1 . 1 . 1 .3 . 

----------_ .. ------



-, 

_J 

I 

..J 

-) 

-, 

-1 

-, 

l 
.J 

,] 
i I 
~. 

3.2.27 .1 . 1. 6 Terminating the SimulaUon 

If, for any reason, the simulation is to be terminated, an SVC 98 10 should 

be issued. This shall reinstate 44PS status and cancel the remainder of the 

job. An appropriate message may be output by using the SS Debugging Aids 

Routines. 

3.2.27.1.1.7 SS Resident Routines 

This section shall reference SS routines that.may be of value to the user. 

3.2.27.1.1.7.1 SSDBUG 

This routine may be entered for the purpose of outputting trace information 

of the program unit that had control at the time of :interruption. 

(see 3.2.34) 

3.2.27 .1 . 1. 7 . 2 SSPDUMP 

This routine may be entered to output selective dumps of core. It may also 

be used, if desired, to output DCSG outputs after encountering a SIO. 

Section 3.2.35 contains the SSPDUMP description. 

3.2.27 .1. 1. 7 . 3 DATALOOK 

This routine shall provide the core location of the inputs specified in the 

equivalence tables for data located in core (see 3.2.37). 

--_._--"--" 



-, 

-1 

l 
J 

l 
I 

-1 

1 
.L 

---------- -----------

3.2.27.3 PIB Interfa ces 

PIB shall expect register 13 to contain the address of CREGION. If the 

operation was a SIO I the contents of DCSG register a must contain the Program 

Index Value (PIX) for use by SS to index into the DCSG ECS Resident Program 

List (RPL) to extract the program unit name that initated the request. 

Outputs from PIR are: 

o Return flag shall be set 

o Register 12 shall be set to start of COMREG 

Routines called: 

SSPROP 

SSSIO 

SSTIO 

SSRIO 

SSTCR 

LPSWH 

SSMR 

SSDBUG 

SSRTN 

SSIRPT shall be the only calling routine. 

Tables and constant used: 

o CREGION - INPSW I DCSGST, ADECSCR 

o COMREG - PUNAME I RETAD, INSTR, OPSW, CAWL 

o ECSCOMRG - SLRPL 

3.2.27 .4 PIR Data Organization 

This routine shall reside within the SS processing phase area. 

3.3.27.5 PIR Lim ita tions 

There are no known or anticipated limitations. 



....J 

....J 

This routine shall determine if the SVC issued should cause SS intervention. 

The SVCs that shall cause SS activity are: 

o PUEND 

o SEGEND 

o PDUMP 

o 44PS service routines 

3.2.28.1 SVCH Description 

SS shall determine if an SVC is of the above -type. With PDUMP SVCs 

register 1 shall be reset from CREGION and PDUMP shall be called. Upon 

return from PDUMP I the return flag shall be set to 0 and SSRTN shall be 

entered. If an SVC is a SEGEND Ot PUEND type I SSDBUG shall be entered 

to output trace and debugging information. SSRTN shall be called after 

returning from .SSDBUG with the return flag set to 96. If an SVC is issued 

for a 44PS service routine I all saved registers shall be reset and the SVC 

reissued. Upon return, the return flag shall be set to 0, and control shall 

be given to SSRTN. If an SVC is not one of the above, a special user 

provided routine, SSCKIO, shall 'be' ent.ered. If an I/O interrupt is to be 

generated, SVCH shall reset the interruption location to point to the SVC 

instructio:1. This allows the DCSG EGS to thlnk the I/O interruption occurred 

before the SVC was issued. The return flag shall then be set to 120 and 

SSRTN shall be entered . 

3.2.28.1.1 SSCKIO ---
This routine should be inserted to initiate qn I/O interruption corresponding 

to a previous SIO or to an I/O event. If included I SSCKIO will crea te a 

more realistic environment for the I/O simulation. 

3.2.28.1.1.1 Inputs available to SSCKIO 

. 
SS shall make available all inputs specified in 3.2.2; .1.1.1. including 

the addres s of the I/O events table in COMREG. 

------_ ... ---



-------------- --- ----

-I 

--, , 

l 
.-J 

l 
, 

-.J 

3.2.28.1 . 1. 2 Outputs from SSCKIO 

The following items in COMREG shall be expected to be set: 

o 

o 

o 

A condition code setting in OPSW 

A CSW to be passed to DCSG programs 

A return address setting in RETAD of hexadecimal 'FF' if an I/O 

interruption is to be generated; a zero setting if an interrupt is not 

to be generated. 

3.2.28. 1 . 1. 3 . SSCKIO Restrictions 

SS shall expect SSCKIO to conform to the restrictions and conventions specified 

in 3.2.27 .1.1.1.3. Return from SSCKIO shall be made by branching on register . . 
14. 



"'I 
I 

"I 
I 

3.2.28.3 SVCH Interface s 

SVCH shall expect register 13 to point to the start of CREGION. 

SVCH shall output a return flag setting in RETAD. 

Routines called are: 

o 

o 

o 

o 

SSRTN 

SSCKIO 

SSDBUG 

44PS SVC service routines 

Tables and constants used: 

CREGION - GRS I SEGR UN 

COMREG - RETAD I OPSW 

3.2.28.4 SVCH Data Organization 

This routine shall reside within the SS pr"ocessing phase area. 

3.2.28.5 SVCH Limitations 

There are no known or anticipated limitations 

-------------_._------ -



~ 

··Tl 
I 

...:.J 

i1 
JJ 

3.2.29 External Interruption Handler (EXTH) 

This routine shall process external interruptions and update DCSG total and 

segment running times. 

3.2.29.1 EXTH De scription 

The last value set into the DCSG ECS interval timer location DCSGLAST shall 

be checked against the current value of the DCSG ECS interval timer location. 

If they are not equal , DCSGIAST shall be added to segment and DCSG total 

running times. The current value of the DCSG ECS interval timer location 

shall be converted and set into DCCHK and ITVAL I the return flag shall be set 

to 0 I and SSRTN shall be called. If the values were the same I the running 

times shall be incremented; a negative one set into the DCSG interval ,timer 

location; a value large enough to allow the DCSG ECS to recover shall be 

set into DCCHK and ITVAL; SSDBUG shall be entered to output debugging 

information and SSRTN shall be called with the return flag I RETAD I set to 88. 



-, 

--, 
I 

-, 

l 

-' 

3. 2 .2~. 3 EXTH Interfaces 

EXTH shall expect.register 13 to be set to the start of CREGION. 

EXTH shall update running times and set RETAD. 

Routines called by EXTH are: 

o 

o 

SSDBUG 

SSRTN 

, Tables and constants used: 

o 

o 

o 

CREGION - ITVAL, DCSGRUN, SEGRUN, ADECSCR 

COMREG - RETAD, SIMTIM 

ECSCOMRG - DCSG ECS interval timer location 

3. 2.29.4 EXTH Data Organization 

This routine shall reside within the s's pr~cessing phase area. 

3.2.2.9.5 EXTH Limitations 

There are no known or anticipated limitations. 



-, 

-, 
I 

I 
-.J 

--, 

I 

-.J 

I 
i 

-, 

J 

3.2.30 Machine Check Interruption Handler (MCKH) 

This routine shall determine whether the DCSG PSW has its machine check 

mask on. 

3.2.30.1 MCKH De scription 

Upon entry I MCKH shall set the dump flag to indicate a special dump. A. 

test shall then be made to determine if the DCSG machine check bit is on. 

It it is I a message shall be output through S.SDBUG and the return flag shall 

be set to 112. If the machine check bit is off a message shall be output 

and the run terminated. 

.. -"'---,_.-



l 
i 

--' 

l 
I 

-l 

I 

-' 

l 
~ 

\ 
I 

.-J 

II i 
JJ 

3.2.30.3 MCKH Interfaces 

Register 13 shall be set to CREGION before entry to this routine. 

Outputs shall consist of special messages written through SSDBUG and 

setting of the return flag. 

Routines called by MCKH shall be: 

o SSDBUG 

o SSEXIT (through an SVC) 

Tables and Constants to be used: 

o CREGION - DUMPSW 

o COMREG - RETAD' 

3.2.30.4 MCKH Data Organization 

This routine shall reside within the SS processing phase area. 

3.2.30.5 MCKH Limitations 

There are no known or anticipated limitations. 

-----_ ............ _-----_ .......... _--



-, 
I 

-, 
I 

-, 

~ 

, 

I, 

3.2.31 DCSG Return Routine (SSRTN) 

This routine shall reset status before issuing a LPSW to return to the DCSG 

program. SSRTN shall determine where the return is to be made by interro­

gating the return flag (RETAD). 

3.2.31.1 SSRTN Description 

The DCSG interval timer location shall be updated with a new value computed 

in UPDTCLK or ElITH. A CSW value shall be placed in the DCSG CSW 

location. RETAD shall then be checked to d'etermine where the return point 

shall be. The return may be to the point of interruption, DCSG external 

interruption handler, DCSG I/O interruption handler, DCSG SVC interruption 

handler, DCSG program interruption handler, or DCSG Machine Checls. interrup­

tion handler. If the return is to one of the interruption handlers, the dummy 

PSW (DUMPSW) shall be reset from the DCSG ECS new PSW location 

corresponding to the interruption and an old PSW containing the DCSG 

status previously shall be set. 

-'---,. 



- .. --------

] 

l 

l 
.J 

I 
J 

11 , I 

.J 

11 1 

3.2.31.3 SSRTN Interfaces 

Inputs to SSRTN: 

A flag setting in RETAD 

o An updated old PSW in OPSW 

Outputs from SSRTN shall consist of: 

o 

o 

Resetting a DCSG old PSW location corresponding 

to the type of interruption to be generated 

Resetti~g DCSG ge.neral registers 

SSRTN shall not call any rou tines. 

Tables and constants used: 

o 

o 

CREGION - OPSW, 'GRS, ~VAL, INPSW, DUMPSW 

COMREG - OPSW, CSW, RETAD 

3.2.31.4 SSRTN Data Organization 

This routine shall reside within the SS processing phase 

3.3.31. 5 SSRTN Limitations 

There are no known or anticipated limitations 

-----__ •. ,.1. ___ -



l 
..J 

-, 
I 

l 
I 

-.J. 

] 
l 
-.J 

il 
jJ 

] 

3.2.32 Set System Mask Handler (8SMH) 

This routine shall proces s a 8SM instruction is sued by the DGSG EGS. If 

an error is found while processing the instruction, a message shall be output 

and the error indicated to the DGSG EGS. 

3.3.32.1 88MH Description 

This routine shall call ADDGK to compute the address of the new system mask 

and to determine if an addressing exception w.ould result by the instruction. If 

it would, debugging information shall be output and OPSW shall be reset to 

reflect the error. RETAD shall then be set to 104 and control pas sed to SSRTN. 

Otherwise, the system mask in DUMPSW is reset. Next, SSGKIO shall be . . . 
entered to determine if an I/O interruption may be forced on the EGS. If it may, 

RETAD is set to 120 and control is given to SSRTN. If no I/O interruption is 

to be generated, control is given to SSRTN with RETAD set to O. 

--_ .. ------ --_ ......... _ ....... .. 



I 
-.J 

l 

I 
j 

I 
.J 

] 

] 

3.2.32.3 88MB Interfaces 

Inputs to 88MB consists of: 

o Register 13 set to the start of CREGION . 

o The 88M instruction in IN8TR 

Outputs consist of: 

o 

o 

o 

resetting OP8W 

resetting DUMP8W 

setting RETAD 

PIH shall be the only routine cal.Iing 88MB. 

Called routines are: 

o 88RTN 

o ADDCK 

o 88CKIO 

Tables and constants used: 

o 

o 

3.2.32.4 

CREGION - DUMP8W 

COMREG - RETAD I OP8W 

88MB Data Organization 

This routine shall res ide within the 88 proces sing phase area. 

3.2.32.5 88MB Limitations 

There are no known or anticipated lim ita tions. 



-, 

-, 
I 

-l 

l 
J 

l 
.-l 

J 
] 

] 

. .. 
3.2.33 Load PSW Handler (LPSWH) 

This routine shall proces s a LPSW instruction iss ued by the .DCSG ECS. If 

the instruction is found to be in error, a message shall be output and the 

error indicated to the DCSG ECS. 

3.2.33.1 LPSWH Description 

LPSWH shall call A.DDCK to compute the address of the double word specified 

in the instruction and dieck if an addres sing exception would occur. If an 

addressing exception would occur, the interruption code in OPSW is set to 

reflect this, RETAD is set to 104, and control given to SSRTN. If this condition 

is not found a check is made to determine if a specification error would. arise. 

If it would the interruption code in OPSW is set to reflect this, RETAD is set 

to 104 and contr.ol given to SSRTN. Otherwise DUMPSW +OPSW shall be reset 

from the computed address. Next SSCKIO shall be entered to determine if an 

I/O interruption may be forced upon the t:CS. If it can, RETAD is set to 120 

and control given to SSRTN. Otherwise, SSRTN is entered with RETAD set to O. 



-I 

"I 

J 

-, 

l 

11 
l.J 

] 

---~~----~-~ ~~~--

3.2.33.3 LPSWH Interfaces 

Inputs to LPSWH consists of: 

o 

o 

Register 13 set to the start of CREGION 

The LPSW instruction in INSTR 

Outputs consist of: 

o 

o 

o 

resetting OPSW 

resetting DUMPSW 

setting RETAD 

PIB shall be the only routine calling 55MB. 

Called routines are: 

o 

o 

o 

SSRTN 

ADDCK 

SSCKIO 

Tables and constants used: 

o CREGION - DUMPSW 

o COMREG - RETAD I OPSW 

3.2.33 .4 LPSWB Data Organization 

This routine shall reside within the SS proces sing phase area. 

3.2.33.5 LPSWB Limitations 

There are no known or anticir:ated limitations. 

---~ - .~-."-'--



11 
1 ' 

jJ 

------ --------------- ---------

3.2.34 Debugging Aids Routine (SSDBUG) 

SSDBUG shall provide the debugging support for SS. 

The routine shall provide the following services: 

o 

o 

o 

Traces at segment ends and program unit ends if requested 

Automatic traces if timer interrupts, program interrupts, or 

special program errors occur 

Dump of program unit if program interrupts or timer interrupts 

occur 

o Snapshots and Dumps of Core with each trace for a program 

unit, if. reques ted -

o 

3.2.34.1 

Dumps of selected DCSG Queues at unit end for particular 

program units if reques ted 

Description 

The entry point to the Debugging Aids Routine shall be SSDBUG. The calling 

sequence for the routine shall be: Branch and link to SSDBUG using register 

14 as the return register. Register 0 must have a hexadecimal value of 96, . 
72, 2D, CA, or D9 depending if the trace is a SEGEND, PUEND, Timer 

Interrupt, Program Interrupt, or Special Trace. If it is a Special Trace and 

a message is to be output with the trace, register 1 must point to the message 

buffer. If there is no message, register 1 must contain zeros. The first 

byte of the mes sage must contain the message length. 

Upon entry to SSDBUG, the- registers shall be stored and the current program 

unit name shall be picked up. If the trace originated in the DCSG EOS, DCSG 

shall be used as the program unit name. 

-------------- -----



-, 
I 

-' 

l 

l 
..J 

11 
jJ 

11 I 
jJ 

The first word of each entry in the Debug Queue shall be checked to see if it 

matches the program unit name. If a match is found, the SYSUNI value 

associated with the real output device shall be picked up from the entry in 

the table and placed in the I/O Reque st Control Block (RCB). When no match 

is found before the end of table mark is encountered and the trace type is a 

timer, Program Interrupt or Special, the SYSUNI value associa.ted with SYSLST 

shall be placed in the I/O RCB and a trace shall be given. 

Depending on th~ trace type, traces containing different items shall be 

output by SSDBUG. However, many items shall be standard for all traces. 

The program unit name, contents of DCSG general registers, trace type label, 

the interrupt location, and timer information shall be standard for all traces. 

The current segment entry point shall be a trace item except when the trace 

is a Special t.race for the DCSG ECS. 

The Interruption Code shall be a trace item for Program Interrupt traces; the 

next segment entry point shall b~ ~iven with a SEGEND trace; and program 

unit entry points shall be given with PUEND traces. Messages, if provided, 

shall be trace items with Special traces. 

SSDBUG shall dump the program unit if the trace is a timer trace or a program 

interruption trace. If a program interruption occurs in the DCSG ECS, SSDBUG 

shall dump the DCSG ECS. 

SSDBUG shall determine if any dumps were requested for the particular program 

unit. If dumps were requested, the keyword flags and dump limits shall be 

used as dump parameters. 



-, 

I 

....J 

l 
-l 

I 
I 

....J 

l 
.-J 

] 

When the UNC flag is on I the starting and ending locations of the DCSG 

universal common shall be set as dump limits for the SSPDUMP routine. 

SSPDUMP shall be called to dump the area of ma.in storage defined by these 

dump limits. If the PVC flag is on I the addres s and size of the program 

unit's private common shall be picked up from the PCB. The dump limits shall 

be determined and SSPDUMP shall be called to give a snapshot of that core 

area. 

If the PCB flag is on I the PCB's size shall be found in the PCB and dump 

limits shall be determined. These limits shall be set as dump parameters and 

SSPDUMP shall be called again to give a snapshot of the area specified. 

The last word of the Debug Queue entry shall be checked to see if it is 

non-zero. If it is zero I no dump limits were specified for this program unit 

so the trace type shall be inspected to determine what information is to be 

output next. However when it is non-zero I it" shall point to an entry in the 

option list. 

The pointer shall be loaded into a register and the table entry checked to see 

if the limits were given as hex displac~ments or symbols. When they are 

given as symbols I the symbol length and symbol shall be picked up from 

the Option List. If they are specified as displacements I the displacements 

shall be used to determine the effective dump addresses . 

The address of the start of the program unit shall be picked up from the PCB. 

The dump limits shall l;le picked up and added to the text address to form 

the dump addresses. These ,addresses shall be set as parameters for SSPDUMP 

which shall be called to dump this segment of core. 

When the dump limits are determined to be symbols I the length of each 

symbol shall be loaded and the symbols picked up. The symbol dictionary 



--, 

-, 
I 

.-J 

l 

"I 
, 

I 
! 

1 

] 

-------------------:--------- ----

shall be searched to find the core address of each symbol. When both 

addresses are determined, they sha!l be set as dump parameters for the 

PDUMP routine. If either symbol remains unresolved, no dump shall be 

given. 

A check shall be made to see if any more dumps have been requested. If 

not, a list shall be made to see if the trace is a PUEND trace. When this 

test proves positive, a search shall be made of the Queue Dump Queue. If 

the queue dumps have been requested for this program unit, they shall be 

output at this time. 

Switches that have been set sh~ll be cleared and registers that have been 

saved restored. Exit shall be made to the calling program . 

3.2.34.3 . Interfaces 

The Debugging Aids Routine SSDBUG shall have the following interfaces: 

a. Input 

Inputs to SSDBUG shall be a pointer to the external mes sage 

buffer when a special trac~ is to be generated. 

The Debug Queue and Option List shall contain information about which program 

units shall require debugging aids and which areas of core shall be dumped 

with a program trace. Figure 3.1.5.6-1 shows the format and content of 

Debug Queue and Option List. 

The Queue Dump Queue and Queue Dump Table shall contain information about 

which DCSG queues shall be dumped at the end of which program units. Figure 

3.1.5.7-1 shows the format and content of the list and table. 

b. Output 

Outputs from SSDBUG shall be trace information placed in the 

PRNTLN buffer area for SSDPUT, the pointers to an external 

message buffer for SSDPUT, and dump limits which shall be 

parameters for SSPDUMP Figure 3 2 34 3 1 . . 
• •• • - IS a companson 



1 
I 

-.! 

-~ 

-~ 

-~ 

I 

, 
--' 

I 

..J 

I' 
iJ 

--- ... -_.-.-- ...... ----

c. 

of the different traces. Figures 3.2.34.3-2 - 3.2.34-6 are 

schematic comparisons of formats and contents of SEGEND I 

PUEND I Timer Interrupti Program Interrupt or Special Trace. 

Subroutine s called: 

0 SSDPUT (3.6.36) 

0 SSPDUMP (3.2.35) 

0 DATALOOK (3.2.37) 

0 BI2HEX (3.2.39) 

0 GETPTRS (3.2.40) 

Subroutines Calling, SSDBUG 

The other Computer Program Components which shall call SSDBUG are: 

0 Pili (3.2. 26) 

0 SVCB (3.2.28) 
-

0 EXT H (3. 2 . 29) 

0 MCKH (3.2.30) 

0 LPSWH (3.2.33) 

0 55MB {3.2.32} 

The external tables and buffers which shall be used by SSDBUG are: 

o 

o 

PRNTLN buffer 

DEBUG Queue 

o DEBUG Option List 

o 

o 

o 

3.2.34.4 

Queue Dump Queue 

Queue Dump T~ble 

CREGION 

SSDBUG Data Organization 

There shall be no unique tables for SSDBUG. The SSDBUG routine shall be 

resident within the SS Processing Phase. 

3.2.34.5 Lim ita tions 

Messages to be output with .Special Traces shall be restricted to 131 bytes. 



-' 

-, 
, 

-', 

-, 
, 

-' 

_., 

-, 

-' 

-, 
i 
I 

-' 

l 
--l 

~l 

, , 
lJ 

._-- .--~--.. --.--

3. 2 . .-3.4. -1 Dei;Jugging Aids Comparison Chart 

TRACE 

Program Unit Name 

Trace Type Label 

Location of interrupt 
(OLD PSW) 

Current Segment 
Entry Point 

Interruption Code 

Next Segment Entry Point 

Timer Information 

Unit Entry Point 

Contents of Registers 

Message 

DUMP 

Dump of Program Unit 

Optional Dump s of Core 

Queue Dumps 

SEGEND PUEND TIMER PROGRAM 

x x 

x x 

x x 

x x 

x 

x x 

x 

x x 

x x 

x 

x 

x 

X 

X 

X 

X 

X 

X 

x 

x 

X 

X 

X 

X 

X 

X 

x 

SPECIAL 

x 

X 

X 

x 
X 

a DCSG is listed when interrupt occurred in the 

DCSG ECS. 

b These items are output with a special trace if 

the trace originated jn a program unito 

_ ... - -_._ ...... _--_ .. _._--



l 
J 

I 
.J 

1 

] 

l 
~ 

] 

l 
-.J 

I 
I 

l 
J 

l 
.J 

] 

] 

Figure ?.!;~!!.~tJ;:~-. ._ 

A Segment End trace consists.of the following: 

o 

o 

o 

o 

o 

o 

o 

o 

the P,rogram Unit Name 

a label noting segment end 

the location of segment end 

(PSW at interruption and interrupt point) 

the current segment entry point 

the next segment entry point 

timer information 

the contents of the general registers 

optional core dumps 

r-=- ~ _ PSW at Interruption & ·1 

Program Unit Name Segment End Lab~L ________ Int.err.upLE_oin.L ____ _ 

Current Segment Next Segment . . 
r-__ ..uE~n ..... tryy--En.in.L Eotry poin: --TImer InformatIOn _I 

General Registers 0-7 

General Registers 8-15 

Optional Core Dumps 

----.--- --.----- ......... _--....,. .---.. ----...--........---------.............. --=::.--=-.~-=----- ----OJ [ ...... - -------·------0-----...---_··-----_·_-_.-------_··- -----.. - -.. ----- _ 

-------._--



l 
.J 

"I 
I 

"I 

.J 

] 
-, 

I 
-' 

l 
-.J 

] 
l 

l 
.-J 

l 

J 
] 

] 

] 

Figure ::l.2!....~:!:-3_...!. 

A Unit End trace consists of the following: 

o the Program Unit l-flme 

o 

o 

o 

o 

a label noting program unit end 

the location of program unit end 

(PSW at {nterruption of interrupt point) 

the current segment entry point 

unit entry pc;>int 

o timer information 

o 

o 

o 

the contents of the general registers 

optional core dumps 

q'lE:Ue dump3 

PSW at Interruption 
Program Unit .. N __ a_m_e __ . __ U_n_i_t __ E_n_d_L_a_b_e_l ___ -+_..::.I=nte::.;:r:.=.r-=-cupt Poin t . __ ~ 

Current Segment 
1--__ .wF.n'tr.y-P.ointt-___ '--_U_n_l_·t_E_n_tr~y_p_O_in_t __ __L._T_im_e_r_I_n_f_o_rm_a_t_ion _....;. 

General Registers 0-7 . _______ +1 

I-----G-e-neral Regi-s-te-r-s-S-_-l-S--:----r---------'-- .. -----1 

•.. 

Optional· Core Dumps 

-------------------------------------~---------------------------------'-.----.----~- ----1 

Queue Dumps 

-.........-------------.---------:::::::::::::::::=----~----------------
r~-~·---------·-------·· -~--------------.. -.-------~-....:-.. . __ . __ J 

--- ........ --



1 

I 
I 

-.J 

I 
I 

l 

J 

] 

] 

Figure 3.~2. 34-4 
~--'----

A Timer Interrupt Trace consists of the following 

o 

o 

o 

the Program Unit Name 

a label noting timer interrupt trace 

the interrupt location 

(PSW a t, interruption & interrupt point) 

o the current segment entry point 

o timer informa tion 

o the contents of the general registers 

o dump of program unit 

o optional cor~ dumps 

Program Unit Name Timer Trace Label 
PSW at Interruption' 
Interrupt Point 

Current Segment Entry Point Timer Information 

General Registers 0-7 

Ceneral Registers 8-15 

Dump of Program Unit 

r----

I 
~--------------------------------

Optional Core Dumps 

I 

-----__ ----------.--______ -~ __ J 
------------~--~-~-.-. ~--I 



J 

I 

.-J 

"I 

..J 

l 
, 

...J 

-, 
I 
I 

.-J 

l 

:l i 
jJ 

] 

] 

------~--------------

Figure 3. 2 .'34~5_ 

A. Program Interrupt Trace consists of the following: 

o the Program Unit Name 

o 

o 

o 

o 

o 

o 

o 

o 

a label noting program interruption 

the interrupt location 

(PSW at interruption & interrupt point) 

the current segment entry point 

the interruption code 

timer information 

the contents of the general registers 

dump of program unit 

optional cote dumps 

-' .. 

--~ --------

Program Unit Name Label Noting I PSW at Interruption or 
+~ ___________ -t-PJ..J.rDI_granLInterLuptioIL-,-_-&JnterrllpLEoinL-__ -r 

The Current Segment Interruption I 
~ __ Entry_'£oint,---___ -,--___ -,C~.-, ode Timer ]nfocmatio<->.n"---_--t 

General Registers 0-7 
-'--------------~-----'-------------------

General Registers 8-] 5 

Dump of Program Unit 

-------------------- ------------------------------------------------------ -------l 

Optional Core Dumps 



-1 
I 

.-J 

_.1 

-, 
I 

l 

I 
..J 

] 

Figure 3.2. 3cl;-o 

A Special Trace consists of the following: 

o the Program Unit Name * 

o a label noting a special 

o interrllpt loca tion 

(PSW at i~terrupt & interrupt point 

o the current segment entry point ** 

o 

o the contents of the general registers 

o message 

o optional core dumps ** 

[

---- --t 

. PSW at Interruption ' f 
Program Unit Name* Special Trace Label Interrupt 'Point ' I 

.Current Segmen_t Entry Point ** I Timer Information -,--:---1 

General Registers 8-15 

. --r 

,~----=--[ 
General Registers 0-7 

'---

[_._~e .. ssage Associated with Trace 

Optional Core Dumps ** 

---------------' ---------=---.-----.-----,-.------.---,----~-- -,----.--~--~ -------~--

l~---- ----- ,- "-'-- .,------,-.--.- r 

*This item listed as DCSG when Trace originates in executive program. 

**These items given when interrupt is in a program unit. 

.......... _--_ .. _ ............. ---



i 

.J 

~1 

J 

-, 

J 

I 
.J 

] 

] 

· .. -.--.--~.~~~~~~~~~~~~~-- ~~~- ----

3.2.35 Core Dump Routine (SSPDUMP) 

This routine shall provide selective dumps of core storage. 

3.2.35.1 Description 

The entry point to the SS PDUMP routine shall be SSPDUMP. The calling 

sequence for PDUMP shall be: Branch and link on register 15. Register 

one shall point to a parameter list. This list shall be 3 words long I aligned 

on full-word boundarie.s. Word one shall contain the starting address of the 

dump. The first .byte of word two shall contain a flag indicating if the con­

tents of the DCSG general registers are wanted with the dump.· The byte must 

be non-zero if the registers are wanted. The rest of word two shall contain 

the ending address of the dump. The first byte of word three shall co·ntain the 

SYSUNI index value of the output device and the rest of word three shall paint 

to a message buffer or shall be zeros • 

Upon entry to SSPDUMP I initialization for the dump shall be carried out., The 

line count shall be zeroed for ca:ri~ge control and the print buffers blanked 

out. The first dump limit shall be picked up from the parameter list and 

rounded to the next lower full word boundary unless it is already a full word . 
boundary. The second dump limit shall be rounded to the next higher full 

word boundary unless it is a full word boundary already. 

The second limit shall be compared with the end address of core. If it is 

larger than the end address of core I the second limit shall be discarded and 

the end address of core shall become the effective dump limit. 

The SYSUNI index shall be picked up from the parameter list and put in the 

I/O request control block of SSDPUT routine. The last three bytes of the 

parameter list shall be tested for zero. If they are zero I a blank header shall 

be set up to cause a skip to a new page. If they are not zero I they shall 

point to a header mes sage. The addres s of this mes sage shall be put in the 

I/o parameter list and SSDPUT shall be called upon to output the message 

as the header to the dump. 

.. _-_ ..... _-----_ .. _ ...... _,---



-, 
I 

...J 

, 1 

., 
, 

I 

J 

-I 

] 

II 
'JJ 

] 

] 

·---.~-.--------------------~ 

Before each word shall be converted from binary to hexadecimal and put into 

the print line, a test shall be made to see if the end of the dump has been 

reached. If it has, the line shall be completed with blanks. Otherwise the 

current word shall be converted to hex, placed in the buffer, and the next 

word picked up. 

When a line is completed, it shall be compared with the previous line. If 

it is equal, a flag shall be set on and a message prepared noting that identi-
. . . 

cal lines have been foundd. The next line shall then be processed . 

When a comparison proves unequal, a test shall be made to determine if the 

equal flag has been turned on. ,If it has, the message shall be output followed 

by the dump line. However, if the flag is off, the dump line shall be output 

directly. 

A count of the lines shall be maintained. A skip to a new page carriage control 

command shall be issued each time a page has become full. 

3.2.35.3 Interfaces 

The following shall be the PDUMPinterface s: 

a. 

b. 

Inputs 

Inputs to PDUMP shall be the parameters in the three word parameter 

list. Register one shall point to this list upon entry to PDUMP. The 

list shall contain the first and second dump limits, the SYSUNI index 

of the output device, arrl a pointer to a header message or zeros 

if no mes sage is provided. 

Outputs 

The outputs from PDUMP shall be hexadecimal dumps of core. The 

output shall go to the output device specified by the SYSUNI index 

parameter. 

--- . __ ... _ ....• _-----_ .. --_._._-_ .... 



, 

-.I 

-, 
, 

-, 

1 
I 
, 

~ 

,I 
, I 

_i 

I' , I 

: I 

--.J 

c. Subroutines called 

d. 

e. 

3.2.35.4 

o SSDPUT (3.2.36) 

o BI2HEX (3. 2.39) -

Subroutines calling SSPDUMP 

SSDBUG and user provided routines (if desired) shall be the only 

subroutines calling SSPDUMP . 

.External Areas 

The -external tables or buffers used by PDUMP shall be PRNTLN and 

PRNTLN2, output buffers of SSDPUT. 

PDUMP Data Organization 

PDUMP shall be resident within the SS Processing Phase. 

3.2.35.5 Limitations 

Dumps shall be given in hexadecimal format only. 



-, 
i, 

I 
J.J 

l 
.-J 

1 
J 

] 
1 
.-J 

I 
...J 

, 
-' 

l 
.-J 

] 

J 
l 
J 

l 
.J 

l 
.-J 

1 
J 

J 
] 

] 

] 

3.2.36 Output Service Routine (SSDPUT) 

SSDPUT shall provide I/O services for SSDBUG and SSPDUMP. 

3.2.36.1 SSDPUT Description 

The entry point of the Output Service Routine shall be SSDPUT. Linkage shall 

be effected by a branch and link instruction using register 2 as the return 

register. 

Upon entry to this routine I register one shall be loaded with the address of 

a parameter list. A. SVCS (write) shall be given followed by a SVC6 (check). 

Control shall be returned to the caller. 



I 
.cJ 

"I 

..J 

I 
..J 

] 
-, 

I 

..J 

l 
...J 

J 
I 
J 
l 

I 
I 

.-J 

l 
J 

]-
l 
J 

J 
] 

] 

3.2.36.3 Inte'rfa ce s 

SSDPUT shall have the following interfaces: 

a. 

b. 

c. 

Input 

Inputs to SSDPUT shall be the content of PRNTLN buffer if called 

by SSDBUG I the contents of PRNTLN and PRNTLN 2 if called by 

SSPDUMP and pointers to message buffers. The contents of 

PRNTLN and PRNTLN2 shall be changed dynamically depending 

on the trace or dump being given. 

PRNTLN and PRNTLN2 shall be 132 character long buffers. The 

message buffers shall be of variable length with the first byte . . 
of each bu~fer giving its length . 

Output 

Output from SSDPUT shall be the trace·· information and dump 

lines passed to it in PRNTLN and PRNTLN2 and the contents of 

the external messag~ buffers pointed to by the parameters passed 

to SSDBUG and SSPDUMP. 

The output for a program unit shall go to the device specified on 

the *DEB card for the program unit. 

Subroutines called 

SSDPUT calls no other subroutines. 

---'----_ ...... _ .•. __ ._ .... . 
.. . ._-----



-
I 

-1 

I 

.-J 

"I 

J 
I 

.-J 

"I 

.-J 

-l 

~ 

I 
.-J 

---, 

.J 

I 

J 

I 

.-J 

I 

.-J 

l 
--1 

I 

J 

I 
.-J 

I 
-.J 

l 
J 

11 
lJ 

] 

] 

·----.-~--

d. Subroutines calling SSDPUT 

o SSDBUG 

o SSPDUMP 

e. External Tables 

3.2.36.4 

The only external tables I buffers I constants I or control registers 

used by SSDPUT shall be the external me ssage buffers. 

Data Organization 

SSDPUT shall be resident within the SS Processing Phase. PRNTLN and 

PRNTLN2 buffers shall be unique to SSDPUT although accessed by SSDBUG 

and SSPDUMP 

3.2.36.5 . Limitations 

SSDPUT shall do no analysis of the supervisor return code in register 15. Any 

data that does not transmit properly shall be lost. However I safeguards such 

as incorrect length suppression shall be programmed into the I/o parameter 

list. 



-, 

I 
j 

] 

] 
l 
.-l 

"I 
I 

J 

l. 
I 

-l 

'1 
j 

] 

] 

, . . 

3.2.37 Data Look Up Rout ine (DATALOOK) 

DATALOOK shall provide a symbol dictionary look up for symbols that have 

been included in a program unit's symbol dictionary. 

3.2.37.1 De~cription 

The entry point to the Data Look Up Routine shall be DATALOOK. The calling 

sequence for the routine shall be: Branch and link to DATALOOK using register 

14 as the return register. Register 1 must point to the symool to be looked up. 

The symbol area must be two words aligned on a full word boundary. The 

symoo1 must be left justified followed by blank padding. 

Upon entry to DATALOOK, registers shall be stored and GETPTRS routine called 

to set up the pointers to the program unit's symbol dictionary. 

Upon return from GETPTRS, the dictionary shall be searched for the symbol. If 

a match is not found, register zero shall be set to zeros and control returned 

to the calling program. Howeve~, ~hen a match is found, the address of the 

symbol shall be placed in register zero' before exit is made. 



.... .., 

", 

-, 
I 
, 

. ...J 

"7"1 
,I 

J 

l 
.J 

-, 
j! 

.:) 

] 

---------- ._-_._--------------- .----

3.2.37.3 Interfaces 

DATALOOK shall have the following interfaces. Input to DATALOOK shall be 

a pointer in register one to the symbol whose address is desired. Output 

from DATALOOK shall be the address of the symbol in register zero. If the 

symbol cannot be found, register zero shall contain zeros. DATALOOK shall 

call GETPTRS (3.2.40). SSDBUG (3.2.34) and user supplied routine (if 

desired) shall call DATALOOK. DATALOOK shall use no external areas. 

3.2.37.4 Data.Organization 

DATALOOK shall be resident within the SS Processing Phase. 

3.2.37.5 Limitations 

There are no known or anticipated limitations to the DATALOOK routine • 

..... _-_._-_ .......... _----



TI 

1 
-, 

--, 
, 

I 

~ 

-, 

-, 

, .-J 

~I 

3.2.38 Determine Program Unit Name (DETPRUN) 

This routine shall pick up the name of the DCSG program unit that had control 

before the interruption occurred. If the ECS was in control, I DCSG I shall be 

used as the program unit name. 

3.2.28.1 DETPRUN Description 

The problem state mask in OPSW shall be checked to see if it is on. If it is, 

the location of the PCB for the program unit is obtained from SLPCB of 

ECSCOMRG and the program unit name is extraced from the PCB and placed 

into PUNAME. If the mask is off, the location of the interrupt is tested 

against the end of the DCSG ECS areas. If the interrupt location is greater, 

it shall be as sumed the interruption was caused by a program unit. The 

program unit name shall then be extraced from its PCB. If the DCSG ECS 

was in control, 'DCSG' shall be placed into PUNA.ME. 

3.2.38.3 DETPRUN Interfaces 

Inputs shall consist of: 

o OPSW in COMREG 

o Address of current PCB 

o Ending address of DCSG ECS 

Outputs shall be the program unit name or 'DCSG ' placed in PUNA.ME. 

This routine shall be called by SSIRPT. 

DETPRUN shall not call any subroutines. 

Tables and constants used: 

o 

o 

3.2.38.4 

COMREG 

ECSCOMRG 

OPSW, PUNA.ME 

SLPCB, SMCORE 

DETPRUN Data Organization 

This routine shall be resident within the SS processing phase area. 



--- ------------

l 
J 

J 
] 
l 
J 

l 
.-l 

l 

I 

J 

l 
j 

l 
J 

l 
J 

l 
I 

.-l 

J 
11 
lJ 

] 

] 

~ 

3.2.38.5 DETPRUN Limitations 

Since program units are allowed to operate in the supervisor state I it may be 

impossible to determine if the interruption occurred in the DCSG ECS or a 

program unit. 

3.2.39 Convert Binary to Hex (BI2HEX) 

BI2HEX shall convert binary numbers to hexadecimal numbers. 

3.2.39.1 Description 

The entry point for this routine shall be BI2HEX. The calling sequence shall 

be: Branch and link to BI2HEX with register 2 containing the return addre s s. 

Register usage for this routine shall be the following: Register 7 must contain 

the data to be ·converted I left adjusted. Register 8 must contain the count 

of half-bytes to be converted. Register 5 must point to the area in core where 

the converted data shall be stored. 

Upon entry to the routine I the data sha.ll be converted and Register 5 I upon 

exit shall pOint to the byte following the last byte converted. 

3.2.39.3 Interfaces 

Input to BI2HEX shall be the contents of registers 5 17 I and 8. Output shall 

be the hexadecimal equivalent of the data at the location specified by register 

5. 

BI2HEX shall call no· other subroutines. 

The subroutines which shall call BI2HEX shall be: 

o SSDBUG (3.2.34) 

o SSPDUMP (3.2.35) 

BI2HEX shall use no external areas. 



T1 
1 
l 
J 

l 
J 

-, 
I 

-.J 

l 
I 

~ 

I 
.J 

J 

l 
.-J 

] 

] 

] 

--- ----_.-- ---.... -.---- --_ .. -._-----------

3.2.39.4 Data Organization 

BI21-lEX shall be a SS resident routine. 

3.2.39.5 Limitations 

BI2HEX can convert a maximum of 8 half-bytes at a time. 

3.2.40 Determine Program Unit Pointers (GETPTRS) 

GETPTRS shall determine certain program uni~ pointers from the current program 

unit's PCB. 

3.2.40.1 Description 

The entry point for this routine shall be GETPTRS. The calling sequence shall 

be: Branch and link to GETPTRS with register 2 containing the return address. 

Upon entry to GETPRTS, registers shall be stored and the program unit name 

shall be checked to see if it is DCSG. When it is, exit shall be made to 

the calling program. If it is not .DCSG, it shall be checked against the first 

word of the current PCB. If this matches, the program unit pointers shall be 

determined. When the program unit names do not match, the DCSG RPL shall 

be checked to determine if the proper program unit can be located. If it 

cannot, exit is made to the calling program. If it can, program unit pointe~s 

shall be determined. 

The address of the program unit shall be extraced from the PCB. Next, the 

address of the program unit text, the text end address, and program unit 

entry point shall be determined from information in the PCB . 

A check shall be made to see if there is a symbol dictionary for this program 

unit. If the is, the symbol dictionary address shall be determined. If no 

dictionary exists, the address shall be set to zero. 

---_ .... -.--- ----



l ., 
, 

-' 

J 
l 

] 

l 
J 

l 
-.l 

] 

] 

] 

... __ .-----------------

Registers shall be restored and exit made to the calling program. 

3.2.40.3 Interfaces 

Input to GETPTRS shall be the pOinter to the current PCB from SLPCB and the 

PCB of the current program unit. Output from GETPTRS shall be the pOinters 

extracted from the current .PCB. GETPTRS shall call no other subroutines. 

Other subroutines which shall call GETPTRS shall be 

o SSDBUG (3.2.34) 

o DATALOOK (3.2.37) 

External areas used by GETPTRS are: 

o COMREG 

o CREGION 

o ECSCOMRG 

o Current PCB 

3.2.40.4 Data Organization 

GETPTRS shall be a SS resident Routine 

3.2.40.5 Limitations 

For interrupts caused by an SIO, DCSG register zero must contain a PIX value 

to be used by GETPTRS to find the correct entry in the RPL. 



Tl 
I 

...J 

"I 

_.1 

-, 

I 
, 

--, 
I 
I 

l 
J 

] 

] 

] 

3.2.41 Address Determination and Check Routine (ADDCR} 

This routine shall compute an absolute address using the contents of the 

specified ba se register and displacement found in a LPSW or SSM instruction. 

ADDCK shall also determine if the computed address shall cause an addressing 

exception. 

3.2.41.1 ADDCK Description 

ADDCK shall separate the Base register and the displacement from the LPSW or 

SSM instruction issued by a DCSG program. The contents of the base register 
, 

shall then be added to the displacement to form the address. Tests shall then 

be made to determine if the address lies within the DCSG program area. If 

it does not I an error exit is taken back to the calling routine. 

--_._ .. _-- ----.---



] 

I 

-' 

-', 

""l 
i 
II 

-'"-' 

il 
I 

...:..J 

] 

] 

I 

3.2.41.3 ADDCK Interfaces 

Input to ADDCK: 

o 

o 

The LPSW or SSM instruction found in COMREG 

The 16 saved registers found in CREGION 

o The starting address of the DCSG programs found in COMREG 

Output from ADDCK: 

o The absolute address shall be placed in register 5 

Calling Sequence: 

BAL I LNKI I ADDCK 

B ERROR 

Routines calling ADDCK: 

o LPSWH 

o SSMH 

ADDCK shall not call any routine 

ADDCK Data organization 

This routine shall reside within the proces sing phase of SS. 

ADDCK Limitations 

. 
There are no known or anticipated limitations. 

~~--~- --~ .. ~-----~-.~~ ----_._ .. _-_._. ---------~ 



O LJ 
. I [ -_._------_._-----_._-----_._----- .--.. ----------... ---.-----~---

-P N' \Vl j !q ]) j) :1 
----- ~-----~- -~----------~~-~------

1 . 

-p 

-D 
r 

J) ]) 

J) 

}) 

/ f ~ (t~ ~ I l!i <"'! <, ,,':", ,<:::);;::- J. / ,;,' J-...; v-. , ;- It ~ -..: ;:" ~ ~ "'>.... -a. 0 ~ --") "\,\"., t,.-'"'<.J ,"- " 

/ ~'~ L\ J",/ /5 to:::;:':':'!"-:' t) ~ ;V"; 'v; ~ ~ S) ::' ~.~~) \ J..... ;: ,,'-, 'V ~.~' .:f ~ ... ":,~ ~ 
.' ... ::,--'!;- '", -;: ." 1<: :!-,c::::'~' -... _ ~?: ,::; l-<J C, '" -~' "-:: ,,\;;::- ,"'-', i<, "'1 A ,,"<:.I -'.,.J .... Z. ,,\.; . ..;:':! ._~.~i 

. Y.......r C'\ -....J ........... l .... .. I (J;...... -..,. '" ". \j "~ I.~ .... ..1. '.J 0. '-.l ..... / .• ~ "<.l ..... .J " • ~ -.. -, '..: \l t :;-' -.. 
/'~:: '7 '-" --, ',t ~ I,'" ;:-':? ... --;/ '-' - <) ~ I"~ :y:;:- ..... ~'->-""'i::; '- ,'Q.'<; \.) <:2 c,;)' -::- "- ." Q -: _, IY 'I ,*,ti '? .~ ,--
;'., ., ."- 1 ;,' .( 'Z' ry ... " "I I., ; .. ') lI... - -: ~/v t,-: r:Jj >-- . .q .:: <: '" '-J 1">-: .::;- ~'~ .0 <: \J~J;, ...... \ "'~ 

1;'-:" -F !"-' ~ ~ '0 /i;}!!; ~ / ~~ \j )2.:.;,'~.q' ~~-.::;/ ~,:;- ,~~:;; 3;} I ,"t ~ ~ ~ I~'''::: "~1'-.. J--, v'-,-< "')'..:..! / 

~~ __ ~_~~-~~~_~_~,!IO jo ~3' _Z[~_ -1:~JO_~ Ocf)_ !1~_ ~ __ =y I 
A ~~ 

~ ~,! 
/ , ~ 

~ "" lJ' ~- ~ 
!\~ ::; -_/ 

--.. _-.1 ____________________________ . _____________ . ____ _ ___ .... ____ . _________ .. __ . __ . __ .. _ .. ________ J 

. fl 

"8 

3 , I, s-- _.- } 



III j I • 

" ~ I " 



, 

J 

, 

----=-.'Jl..;:::- {d (-:! 6~ ____ _____ . ___ Q~~.J&=\J~ __ .. :--~------

7)UI'1f' :"Jr~:T 

[Qjio 0 x ,:\ xi J . tt~/" p,;r ;!.I""~ j-'''"'-'Y 
, j;-c\ p ... ;.,.. 

. ;.t~;1 ~.;..~""" 
I . 

X= t. t..:r·::n :;iil;t:; ttr~ ~\:r£'~~!r~~ 
lC=!) :.un.:" (I",::S ';"i'~ ~:. ;1e;: 

, ]) EO£{ (~ , J/; l ToT ~~.?'{ _~LJ.L. ___ · __ 

--~----------~---

----'?L' e tr 
~~'----------------------

~--------------~--------------------- -----------------')1 L 
"\ 

. ' 

/ 
I 

/ 



. ...// 

/ . 



1 . ~ " 

o 

S' 

It" 



---( 

._- .... -.. --... --.----. - -_. __ .. _' _ .. 
.. j 

------L 

-~----- _. ----- - -. _._"- -- ._-------- _.---

~--.--------.- ---.. -.---- - -_.-

) 

l 
_I 


