J

-

Lo g g

L J J LrJ 3 4

_J

L.

L J 4 L3 b _

Section 3: Requirements

The Simulation Supervisor (SS) shall be a set of computer programs, written

in assembly language for the IBM System 360 Model 44 (360/44) computer., |
SS shall provide the capabilities to test, debug, and integrate DCSG programs
within PSCS/LPSS, Facilities shall be incorporated to provide the necessary
interface between 44PS, SS, DCSG programs, and specialized user provided

routines. SS shall monitor DCSG program execution and output debugging

information in the form of traces and dumps.)

A TR LR S R

(S R NN R, SR

L LJ

[R A

AJ

L

(AR S N R S R S

by == L

3.1

CPCEI Characteristics

3.1.1

Functional Allocation of Simulation Supervisor

SS shall consist of:

A modified version of the 360/44 Programming System (44PS)

Specialized User Provided Routines

o)
o An Initialization Phase
o A Processing Phase
o)

3.1.1.1 Modified 44PS

44PS Modifications shall include:’

A set of routines that become active only when SS gains control,

These routines shall intercept SVC, Machine Check, External

Two communication areas shall be maintained: one for exclusive

use of SS, and the second for DCSG Executive Control System

o
and Program Interruptions.
o
(ECS) and SS use.
3,1,1.2 Initialization Phase

This phase shall be brought into core storage by the Iob' Control Processor

(JCP) after the recognition of the execute SS control statement. The functions

of this phase shall be to:

(@]

(o]

Read in the seven types of SS control statements

Build the queues and tables corresponding to the control
statements

Setup the- link between the constructed queues and the processing
phase

Bring the processing phase into core storage and give it

control

L J L J LU

L.J L v

gL

L

L J

L J

-d Lo L

-3

e

L

3.1,1,.3 Proceséinq Phase

This phase shall contain the routines necessary to interface and insure proper
DCSG execution,

The following is a list of the interface groupings of SS:

‘Program Interruption Handler

External Interruption Handler

o
o
o Machine Check Interruption Handler
o SVC Interruption Handler

o

Specialized User Provided Routines

3.1.1,3.1 Program Interruption Héndler

The Program Interruption Handler (PIFLIH) shall field all pi'ogram interruptions.

Program interruptions shall result from:

Operation Exceptions
Privileged Operations

Execute Exceptions

O O o o

Addressing Exceptions
Specification Exceptions
Data |

Fixed Point Overflow
Fixed Point Divide
Decimal Divide

Decimal Overflow
Exponent Overflow
Exponent Underflow

Significance

0O 0 o 0o o o o o o o

Floating Point Divide

L

[R G

L 4 v J

)

L J L

L J

L J 4 4 b4

L) L L3 L L

= B

3.,1.1.,3,2 External Interruption Handler

Since a timer interrupt shall be the only External Interruption that can be
caused by the DCSG Programs, the External Interruption Handler (EXTFLIH)

shall be enabled to process this particular interruption,

An external interruption shall be caused by the interval timer turning

negative (the elapsed time for a Program Segment has expired).

3.1.3,3.3 Machine Check Interruption Handler

A machine check interruption is caused by a machine malfunction and shall
be fielded by the Machine Check Interruption Handler, If the interruption

is caused by a DCSG program, SS shall allow the DCSG ECS Machine Check
Handler to attempt recovery. Otherwise, a message shall be output and the

simulation cancelled.

3,1.1.3.4 SVC Interruption Handler

SVCs shall be segregated into two groups; DCSG and SS (including 44PS)
SVCs, All DCSG SVCs shall have an inferruption code starting with 10010 .
SS SVCs shall have interruption codes below 10010.

There shall be two SVCs belonging to the DCSG that shall concern SS; the
SEGEND and PUEND SVC, Upon recognition of eifcher SVC, trace and
debugging options shall be acted upon before returning control to - the DCSG
ECS, A special SVC for the SS PDUMP routine shall also be made available
to the DCSG programs,

3,1.1.3.5 Specialized User Provided Routines

To allow for a flexible simulation environment, SS shall have the capability
of incorporating user provided routines that simulate data manipulation and
any other function peculiar to the on-orbit computer, By incorporating these

routines into SS, the actual DCSG programs shall not have to be modified

substantially to handle I/O or other specialized requests, As envisioned,

J

L

L J L J L J uv_J

L

S S SN [SN S SRS R

L) L Ly

L J cJ

 — = :]'#

there shall be a routine to handle each I/0 device being accessed by

DCSG programs. SS shall pass along all information needed in a communi-
cation region (COMREG) and the user routines shall be able to pass their output
parameters (PSW settings, etc.) for the DCSG ECS in this same communication

region.

SS shall call the following user provided routines (the mnemonics of which are

used for clarity only) for each of the following circumstances:

SSSIO - After encountering a SIO instruction
SSTIO - after encountering a TIO instruction
SSHIO -.after encountering a. HIO instruction
SSTCH - after encodntering a TCH instruction
SSCKIO - entered to generate an I/0 interruption
'SSAMUIN - to initialize the DCSG ECS

0O 0O 0 o o o o

SSPROP - after encountering other privileged instructions not
handled by SS

To add a more realistic aspect to I/O simulation, SSCKIO shall be entered
to generate an I/0 interruption. The interruption should be initiated for one

of the following conditions:

o -to pass information corresponding to a previous i/O operation
o to generate an 1/0 interruption corresponding to an entry in

the 1/0 Events Table.

After completing a requested I/0 operation for the DCSG programs, a "stack
table" should be constructed containing the simulated status for the operation.
This table should be interrogated by SSCKIO and if there are entries in it,

the first one should be used for generating the interruption. The I/O Events
Table should be interrogated each time SSCKIO is entered, If the time
corresponding to the first (next) event is greater than or equal to the Simu-

lation Time, an interruption should be generated using the CSW status

contained in the Events table, Again, COMREG shall be used to pass the

L

L

L J

S T U S G T L J L 4 L

(RS R U I A

£ L

= . J 3 4

—

required parameters.

Simulation of the AMU shall be an integral part of the routines provided by the
user of SS. It is suggested here that an intermediate step be taken to reformat
the output of PPP to look like a real AMU expected by the DCSG ECS. Through
control statements provided in SS, the simulated AMU may be equated to a 44
PS I/O device. SSAMUIN shall be entered at the start of the simulation only.
Its only function shall be to simulate an Initial Program Loading of the DCSG
ECS and pass control back to SS. If the' IPL procedure is unsuccessful, an

error flag shall be set before returning.

SSPROP shall be entered to process privileged operations peculiar to the 4PI
computer and those not handled by SS. -

A detailed description of inputs, restrictions, and outputs expected for those

user provided routines shall be found within paragraph 3.2,

User routines shall be expected to reside on the phase library under the name
of SSUSRTNS. The address of SSAMUIN should be specified as the main entry
to the phase during linkage editing. During setup in the processing phase,
SSUSRTNS shall be read into core storage. The code at the beginning of
SSUSRTNS must be as follows: |

START 32000

DC AL4(SIO Routine)
DC . AL4(TIO Routine)
DC AL4(HIO Routine)
DC- AL4(TCH Routine)

Lo

LoJ v

J

L

Lo

}

L

RS [N U I U S BN B U B SR

L

L) tJ v 4

=

DC AL4 (CHECK IO Routine)
DC ~AL4 (PRIV.OP Routine)
USING * BASEREG

By starting at 32000, user routines shall have approximately 33000 bytes of

available core storage.

DCSG routines shall have 64000 bytes {16000 words) of storage which

corresponds to the 4Pi computer being simulated.

3.1.1.3.5.1 External Inputs for I/O Processing

SS shall contain provisions to accept three types of control statements for I/0
processing. Two of fhese stater‘nents shall contain the information necessary
to equate DCSG devices to a PSCS/LPSS device for data input or output. The
third type shall be used to generate special I/O interruptions to the DCSG ECS.
These interruptions may be used to simulate Special conditions that occur
outside of and independent of normal DCSG operations. An exainple of this

would be an uplink command.

AlonQ with the Events Table which contains the interruption status, a file
should be maintained on tape containin‘g the data corresponding to the interrup-
tion. It is assumed that the ECS shall respond to this type of interruption by
issuing a SIO to collect or output the required data. This file may be formatted

one record for each interruption causing data input.

3.1.3 Simulation SupervisorvTiming and Sequencing

3.1.3.1 Simulation Supervisor Initialization Phase

The sequencing of operations among the computer program components of the

L J

GRS [S

L J

= t.J 3 3 4

Simulation Supervisor Initialization Phase (SSINIT) shall be dependent upon the order

in which the SS control statements are introduced in the input stream.

Once SSINIT is loaded into core storage by the JCP, the sequence of operations

among the main SSINIT computer program components is:

o] SSINIT Control Routine

o SSINIT Ge£ Control Card Routine

0 SSINIT Card Type Determination Routine

o SSINIT Check Card Routine .
o SSINIT Control Card Processing Réutine

For any pass through the SSINIT Card Type Determination Routine, depending upon
the current SS control statement being processed, one of the following SS card-

type processing routines shall be inv‘oked; -

o SSEQUIVI)
0 SSEQUIVO

0 SSIOEVNT

0 SSDEB

o SSQUE

The card type'processing routines shall call the following CPC's:

o SSBRKOUT
o CNVTDA

o CNVRT

o) CNVRTD

-

NS R SRS B S

=

When all of the SS control statements have been processed, the SSINIT

Control Routine shall invoke the SSINIT Load Simulation Supervisor Routine

(SSLDSS). This routine shall load the SS Processing Phase and relinquish

control to it.

3.1.3.2 Simulation Supervisor Processing Phase

Initially, the processing routines gain control from SSINIT. After SSINIT

concludes processing, it shall pass control to the SS Processing Phase Set

Up Routine (CLKINIT). CILKINIT shall bring in the user routines and pass

control to SSAMUIN to initialize the DCSG ECS. Once control is given to

the DCSG ECS, by generating an 1/0 interruption, control shall be regained

only through one of the following types of interruptions:

Svc
Machine Check

External (Interval Timer elapsing)

0O o O ©

Program

Depending upon which of the above types caused the ihterrupt, the first

level interrupt handler, which shall be resident in the modified 44PS Section,

shall give control to SSIRPT. SSIRPT shall then enter UPDTCLK to update the

DCSG running times and set the next interval timer value. SSIRPT shall then

determine the type of interruption and pass control to one of the following
interruption processors:

o SVCH

o EXTH i
o PIH

o MCKH

At the conclusion of interruption processing, SSRTN shall be entered to reset

status and return control to the DCSG.

If for any reason, the simulation is to be terminated, SSEXIT shall be entered by

issuing a SVC 98 to reset 44PS status and normal 44PS operations shall continue. .

Also, if a core dump is wanted by a DCSG program, an SVC may be issued with a SVC

|

L

J

L

Lo

(S

L J

L3 tJ

=3

interruption code of 99

3.1.4

10 (see 3.2.33 for parameter settings).

Simulation Supervisor Storage Allocation

The following diagram depicts the overall allocation of storage when SS gains

control.

18000
23000
32000

53000
65000

0

. Modified 44PS System and 44PS Transient Q Section I
| Area .
| 88 Table-and Queue Area 3 Section III
SS Processing Phase A %) Section 1V
. User Provided Routines .) SectionV
e ‘ : SS Initialization . j ,
i Phase \ > Section II
! e
L DCSG Programs L Z J
. . (J
C .
Co Section VI

The following is a description of each section pertaining to SS pictured

above.

3.1.4.1

.

Section I (approximately 18000 bytes)

Section I of core storage shall contain all existing programs of the 44PS
system (IBM Form #Y28-6812-0, IBM System/360 Model 44 Programming

System, Supervisor and Job Control). This section shall be modified to

include the following SS dependent routines and table areas.

(@]

(@)

SS Communication Region (CREGION) (3.1.5.7)

Communication Area for the DCSG ECS (ECSCOMRG) (3.1.5.9)
Address Constants for SS Initialization Phase. These constants
contain the addresses of SS firsf level interrupt handlers (STAT44)
(3.1.5.10)

Machine Check First Level Interrupt Handler (MCKFLIH) (3.2.18)

Program Interruption First Level Interrupt Handler (PIFLIH) (3.2.19)

o Input Equivalence Queue List (IQUEUE)

o Input Equivalence Table (ITBL)

o Output Equivalence Queue List (OQUEUE)
o Output Equivalence Table (OTBL)

o Debugging Aids Option Queue (DEBQUE)
o Debugging Aids Option List (DEBLST)

o) Queue Dump Queue List (QDQUE)

o Queue Dump Table (QDTBL)

o I/O Events Table (EVNTAB)

The queues shall be constructed from low to high core and the tables corresponding
to the queues shall go from high to low core (within allocated table space area).
These queues and tables shall vary in length from one simulation to another due

to differences in the number and type of control statements processed.

3.1.4.4 Section IV (approximately 9000 bytes)

This section shall contain all the SS processing routines and table COMREG.

The names and CPC numbers of the routines that shall be contained within this

O T S R T B S B

‘._

J

L

s I S

section are:

-

SS Set Up Routine (CLKINIT) (3.2.24)

o

o SS Interrupt Determination Routine (SSIRPT) (3.2.25)
o Update Interval Timer (UPDTCLK) (3.2.26)

o Program Interruption Handler (PIH) (3.2.27)

o SVC Interruption Handler (SVCH) (3.2.28)

o External Interruption Handler (EXTH) (3.2.29)

o Machine Check Interruption Handler (MCKH) (3.2.30)
o DCSG Return (SSRTN) (3.2.31)

o Set System Mask Handler (SSMH) (3.2.32)

o Load PSW Handler (LPSWH) (3.2.33)

o Debugging Aids Routine (SSDBUG) (3.2.34)

—

L. _J

Lt

U R N B

L

]

L

L

(I

t 4 J c_J

(o]

3.1.4.2

SVC First Level Interrupt Handler (SVCFLIH) (3.2.20)
External First Level Interrupt Handler (EXTFLIH) (3.2.21)
Exit Routine (SSEXIT) (3.2.22)

Save Status Routine (SSSAVER) (3.2.23)

Section II (approximately 8000 bytes)

SS shall use Section II for the SS Initialization Phase. This Phase shall be

resident here until its functions are completed. The area shall then be over-

layed by user routines and DCSG programs.- The SS Initialization routines

that shall occupy this section, along with their CPC numbers, follows:

o

O 0O O o O o o O

0O O O o o

O O O

'3.1.4.3

Control Routine (SSINIT) (3.2.1)

Read Control Card Routine (SSGETCC) (3.2.2) .
Control Card Type Determination Routine (SSTYPDET) (3.2.3)
Construct Input Equivalence Queue and Table (SSEQUIVI)(3.2.4)
Construct Output Equivalence Queue and Table (SSEQUIVO) (3.2.5)
Construct Trace and Debugging Queue and Table (SSDEB) (3.2.6)
Construct Queue Dump Queue and Table (SSQUE) (3.2.7)

Event Data Descriptor Réutine (EVNTDATA) (3.2.8)

Construct I/O Event Table (SSIOEVNT) (3.2.9)

Load SS Routine (SSLDSS) ‘(3 .2.10)

Error Check Control Card Routine (SSCHKCRD) (3.2.11)
Parameter Check and Move Routine (CHKMOVE) (3.2.12)
Continuation Card Processing Routine (SSCONTIN) (3.2.13)

. Parameter Break-Out Routine (SSBRKOUT) (3.2.14)

Convert from Hexadecimal EBCDIC to Binary (CNVRT) (3.2.15)
Convert to SYSUNI Index (CNVIDA) (3.2.16)
Convert from Decimal EBCDIC to Binary (CNVRTD) (3.2.17)

Section III (approximately 5000 bytes)

This section shall be constructed during the SS Initialization Phase: It

shall contain the following queues and tables:

L J

|
J

L J L J LJ L

S S S

L J L J L

L4 L

Lt J 4

o}

o

Input Equivalence Queue List (IQUEUE)
Input Equivalence Table (ITBL)

Output Equivalence Queue List (OQUEUE)
Output Equivalevnce Table (OTBL)
Debugging Aids Option Queue (DEBQUE)
Debugging Aids Option List (DEBLST)
Queue Dump Queue List (QDQUE)

Queue Dump Table (QDTBL)

I/O Events Table (EVNTAB)

The queues constructed shall be built from low to high core and the tables

shall go from high to low core (within allocated table space area). These

Queues and tables shall vary in length from one simulation to another due to

differences in the number and type of control statements processed.

3.1.4.4

Section IV (approximately 9000 bytes)

£33 3 L. C.]

This section shall contain all the SS processing routines and table COMREG.

The names and CPC numbers of the routines that shall be contained within

this section are:

© 0O 0O o o o o o o

O

SS Set Up Routine (CLKINIT) (3.2.24)

SS Interrupt Determination Routine (SSIRPT) (3.2.25)
Update Interval Timer (UPDTCLK) (3.2.26)

Program Interruption Handler (PIH) (3.2.27)

SVC Interruption Handler (SVCH) (3.2.28)

External Interruption Handler (EXTH) (3.2.29)
Machine Check Interruption Handler (MCKH) (3.2.30)"
DCSG Return (SSRTN) (3.2.31)

Set System Mask Handler (SSMH) (3.2.32)

Load PSW Handler (LPSWH) (3.2.33)

Debugging Aids Routine (SSDB‘UG) (3.2.34)

Lo

|

L 3 L

|

L

J L

J

J

L J L J Lt J L

Lt

J

L

L3t J

t—3 .

-3

o Core Dump Routine (SSPDUMP) (3.2.35)

o Print out Routine (SSDPUT) (3.2.36)

o Data Look up Routine (DATALOOK) (3.2.37)

o Determine Program Unit Name (DETPRUN (3.2.38)

o Convert Binary to Hexadecimal (BI2ZHEX (3.2.39)

o Determine Program Unit Pointers (GETPTRS) (3. 2. 40)\

o Address Check and Determination (ADDCK) (3.2.41)

o User and SS Communication Region (COMREG) (3.1.5.8)
3.1.4.5 S.ectionV

Section V shall contain all user provided routines. SS shall allow approximately

33000 bytes for these routines. ~

3.1.4.6 . Section VI

This section shall contain the DCSG programs. Approximately 64000 bytes of

core storage shall be available.

3.1.5 Simulation Supervisor Data Base Characteristics

SS shall construct and maintain tables and queues that comprise the data base
for simulation. A detailed definition of the contents of these is described in
the following paragraphs. The actual locations of each may vary from one
run to another depending upon the order SS control cards appear. However, it
should be noted that whenever a queue is contructed for accessing a table ,
the queues start in low core of the SS Table Section and proceed in an
ascending manner through core. The tables corresponding to the queues are
constructed in a high-to-low core manner within the SS Table Section. | The

addresses of the queues shall be kept in CREGION.

A list of the queues and tables that shall be incorporated in the Simulation

Supervisor is:

o IQUEUE - Input Equivalence Queue (3.1.5.1.1)
o ITBL - Input Equivalence Table (3.1.5.1.2)

L

L

C J L J t4J g 4 4

Lt J v J

4o 4 4

L

Lt J v J

Lt J

L J

o OQUELUE

- Output Equivalence Queue (3.1.5.2.1)
o OTBL - Output Equivalence Table (3.1.5.2.2)
o DEBQUE - Debugging Aids Option Queue (3.1.5.3.1)
o DEBLST - Debugging Aids Option List (3.1.5.3.2)
o QDQUE - Queue Dump Queue List (3.1.5.4.1)
o QDTBL - Queue Dump Table (3.1.5.4.2)
o EVNTAB - I/O Events Table (3.1.5.5)
o CREGION - SS Communication Region (3.1.5.7)
o COMREG - User Corr;munication Region (3.1.5.8)
o ECSCOMRG - DCSG ECS Communication Region (3.1.5.9)
o STAT44 - Saved status (PSW's) of 44PS (3.1.5.10)
3.1.5.1 Input Equivalence Queue and Table

The Input Equivalence Queue and Table shall be constructed from information

containe}d on the SS DDI Control Statements. The formats of the DDI cards

are:
o DDI statement when 'input is from a real (PSCS/LPSS) device:
ccl
*DDI prog,yyy(xxx,nnn){xxx,nnn) ---etc.
where:
*DDI identifies this control card as an SS Input
Device Equivalence Control Card
prog is the program unit name (upto 4 characters)
yVy is the 44PS real input tape address. The last
| three symbolic characters that would be used in
the allocation of this device on the 44PS ALLOC
or ACCESS control cards replace yyy.
XXX is the DCSG simulated input device address
(hex value)
nnn is the file number of the data

_

J

L

L

J

L

L4 Lo L Lo

J

Lt J

L J

e I S B

o} DDI card used when input is from core storage:

ccl 6
*DDI prog, CRE(xxx,1111)(xxx,1111),---etc.

where:

*DDI - identifies this control card as an SS Input
Device Equivalence Control Card

prog - is the program unit name (upto 4 characters)

CRE . - is the k'eywor_d which identifies the 44PS real
input device address as being core storage

XXX - is the DCSG simulated input device address
(hex value)

1111‘ - .is the symbol within the program unit where

the xxx daté is located. From one through

four character symbols are allowed

Figure 3.1.5-1 graphically portrays the relationship between the queue and
the table.

3.1.5.1.1 Input Equivalence Queue

The Input Equivalence and Data Definition Routine (SSEQUIVI), which interpret

DDI control cards, shall construct the Input Equivalence Queue.

The program unit name shall be extracted from the DDI statement and placed
in the queue. Following each program unit name there shall be a four-byte field.
When a DDI card is encountered for a particular program unit, a 4-byte address

shall point to the entry in the Input Equivalence Table.

3.1.5.1.2 Input Equivalence Table

The Input Equivalence Table shall consist of information used to equate real.

PSCS/LPSS I/0 devices to DCSG I/0O devices being simulated.

The following entries are included for input from PSCS/LPSS devices:

-

L 4 L 4 L

{

—

L

Lt J vt

]

L

SN

o One-byte DCSG simulated device address

o Two-byte SYSUNI index of corresponding PSCS/LPSS device
o One-byte file number at which data resides
o) Two-byte record position field

The following entries are included for input from core storage:

o One-byte DCSG simulated device address
o Two-byte field containing the characters 'CR' indicating data
is in core .
o Two-byte record position field
o} Four-byte label indicating location of data within program unit
3.1.5.2 Output Equivalence Queue and Table h

The Output Equivalence Queue and Table shall be constructed from information

contained on the SS DDO Control Statement.

ccl 6
*DDO prog, yyy (xxx, xxx, ---, XXXx)
where:

*DDO - identifies this control card as an SS Output
Device Equivalence Control Card

prog - is the program unit name (upto 4 characters)

yyy - is the 44PS real output device address.
The last three symbolic characters which
would be used in the allocation of this
device on the 44PS ALLOC or ACCESS control

" cards replace yyy.
KKK - is the DCSG simulated output device address

(hex value)

Pigure' 3.1.5-2 graphically portrays the relationship between the queue and the
table.

1
i

L

S

L 4 L3 L J

S T S

J

|
T

o S R R SR B

3.1.5.2.1 Output Equivalence Queue

The Qutput Equivalence and Data Definition Routine (SSEQUIVQ), which shall
interpret DDO control statements, shall cnstruct the Output Equivalence
Queue. As a DDO statement is processed, the program unit name shall be
extracted and placed into the queue. Following the four byte program unit
name, a pointer to the table entry shall be generated and placed into the next
four bytes of the queue. An end of queue flag shall be inserted after

processing the last DDO control statement.

3.1.5.2.2 Qutput Equivalence Table

The Output Equivalence Table shall contéin the address of the device being
simulated for the program unit followed by the PSCS/LPSS real device SYSUNI
index. The SYSUNI index shall be obtained by a table lookup using the yyy

value of the control statement. Each entry' of this table shall be one byte.

3.1.5.3 Debug Queue and Option List Table

The Debugging Aids Queue and dption List Table shall be constructed by
using the information contained on the SS DEB control card. The format of

the SS DEB control card, along with a description of each item on the card

is:
cel 6 r, N eeee eeeew
*DEB prog,yyy EUNC]L:PCBJLPV%'&’C,SSSS $$$$) G: ssss, $$$$\> ---etc
where:
*DEB - identifies this control card as an SS Debugging

. Aids Control Card
prog - is the program unit name (upto 4 characters)
or the keyword DCSG.
yyy - is the 44PS output device for debugging aids.
The last three symbolic characters that would

be used in the allocation of this device on the

M

7

L

L=

=

UNC

PCB

PVC

ssss

eeee

$$889

NOTE:

p—
.

44pPS ALLOC or ACCESS control cards replace
yyy.
Universal Common of the DCSG programs is to
be dumped (optional)
Program Control Block of the program unit is to
be dumped (optional)
Private Common of the program unit is to be
dumped (optional)
type of dump ~limits for the following pair:

S - for symbolic

H - for hexadecimal
starting address from which a core dump is
to be taken (symbolic or hexadecimal according
to t)
ending address of core dump (symbolic or
hexadecimal according to t)
core dump is to be taken to end of core

storage

UNC, PCB, and ?VC may appear on the card ibn any order
ssss and eeee must be either symbols or hexadecimal
displacements from the start of the program unit. Symbolé
and displacements can be mixed on a control card, but
not mixed within parentheses. A maximum of 4 pairs may

ke specified for a program unit.

Figure 3.1.5-3 graphically portrays the relationship of the queue and option

list table.

3.1.5.3.1 Debug Queue

The Dekugging Aids Queue shall be constructed for ease of indexing into the

Debugging Aids Option List Table. The size of the queue shall be dependent

-

L

|

J v 4

-

L

B

L

(-

-

L

5 SN (ol S U R GRS B SR

&

upon the number of SS DEB control cards included as 'input.

The Debug Queue contains the following items which shall be repeated for

each program unit specified on the coatrol statements.

o A four-byte field containing the program unit name.
o A one-byte field containing the SYSUNI index of the device on

which traces and dumps shall be output for this program unit.

o A flag byte to indicate which keywords have been specified.
o A one-byte field containing the number of dump limits specified.
o - A flag byte indicating whether dump limits are Specifiéd symbo-

lically or in hexadecimal.
e} A four-byte field containing the address of the corresponding
entry in the Debug Option List Table for this program unit (set

to zero if no dumps are specified.)

One entry in the queue, therefore, shall occupy twelve bytes. Following the

last entry in the queue shall be a four-byte end-of-queue flag.

3.1.5.3.2 Debug Option List Table

The Debug Option List Table cons‘ist's of a series of entries corresponding to
each program unit requesting a dump. The entries are the lower and upper
dump limits. When a dump limit is specified as a hexadecimal displacement,
it appears in the option list in a fixed length three-byte field. If the limit is
specified symbolically, the symbol itself shall appear in the list, preceded
by a one-byte field containing the length of the symbol.

3.1.5.4 Queue Dump Queue and Table

The Queue Dump Queue and Table shall be constructed by using the information
contained on the SS QUE control statement. It is constructed for the purpose

of allowing the ECS to dump selective queues after the completion of specific

_program units,

The format of the SS QUE control statement, along with a description of each

item on the card, is:

L

L

o

e R

ccl 6

*QUE prog,yyy(quel,que2,que3, ---)

where:

*QUE - identifies this control card as an SS Queue Dump
Control Card.

prog’ - is the program unit name (upto 4 characters)

yyy - 44PS output device address yyy is equivalent
to the last 3 characters of a symbolic device
address as wéuld be specified on the 44PS
ALLOC or ACCESS control card.

quel, - are the DCSG ECS Queue names (upto 4 charac-

quez,.... t'eré) scheduled for dumping at the execution-

completion of the program unit specified by

1" progll .

Figure 3.1.5-4 graphically portrays the relationship of the queue and the table,

3.1.5.4.1

Queue Dump Queue’

The Queue Dump Queue shall be constructed for ease of indexing into the

Queue Dump Table. The size of the Queue shall be dependent upon the

number of SS QUE control statements included. The following items are

Contained in the queue:

(e]

o

A four-byte field containing the program unit name
A one-byte field containing the SYSUNI index of the device on
which the queues shall be output for this program unit.

A three-byte field containing the address of the corresponding

_ entry in the Queue Dump Table for this program unit.

One entry in the queue, therefore, occupies eight bytes. A four-byte end- of

queue flag follows the last entry in the queue.

J

L

Lo

IS T B B

SR R U

3.1.5.4.2 Queue Dump Table

The Queue Dump Table contains the following items which shall be repeated

for each program unit specified on the control statements.

o A one-byte field containing the number of queue names

specified in the variable length queue name field

o A variable length queue name field - each queue name occupying
four bytes.
3.1.5.5 - 1/O Events Table

This table shall be constructed to permit various interruptions (events) to
occur after a spedific time in the simulation. This table shall be constructed
in an ascending order and shall be time ordered. The size of this table shall

be dependent upon the number of SS IOE control statements input. The table

shall contain a header consisting of:

o A one-byte field containing the file number of the event data

o A one-byte SYSUNI index field

o A two-byte field for record position

o A four-byte field to contain the address of the next event to be

acted upon

The following fields shall be repeated for each control statement:

o A four-byte field containing the event time

o] A one-byte field denoting whether input is expected with this
interruption .

o A one-byte field containing the simulafed device address

o A two-Dbyte field containing the simulated CSW status

A four-byte flag shall signify the end of the table.

(GRS R

]

L

!
i

L 4 L

J

L

.

L

LJo Jord

Figure 3.1.5-5 is a graphic description of the table.

3.1.5.5.1 1/0 Events Control Statements

The format of the control statements for constructing the I/O Events Table is:

e) Event data descriptor — This card should appear only once during

a simula‘tion. Its function is to describe the location of the

event data.
ccl
" *EDD yyy,ff
where:
*EDD . identifies this card as the event data descriptor
1%4%% 44PS input device address containingwthe event
data. yyy is equivalent to the last 3 charac-
ters of a symbolic device address as would be
specified on the 44PS ALLOC or ACCESS control
card.
ff 'is the file number on the yyy where the data is
located
o) Time dependent event data .
ccl
*IOE (zxk,tttt, ccce) (zxx, tttt, ccco). .. .etc.
where:
*JOE identifies this card as an I/O event data card
Z if non-zero, data corresponding to this interrupt
shall be found on the IOE file. If zero, no data
corresponding to this interrupt shall be found on
the IOE file. (one hex digit)
XX is the DCSG simulated device address that shall
be used to generate the interruption (hex value)
tttt

time in milliseconds at which interrupt shall be

J

S U N

L3 L

b

initiated. Up to 7 decimal digits may be
used.
cccee - is the CSW status to be used in generating

the interruption (hex value)

This card must appear immediately after the EDD card. If more interruptions
are desired than those contained on continuation cards, the ¥*IOE may be used

as many times as necessary (table space shall be the only limitation on the

~

number of entries).

3.1.5.6 Conventions for SS Job Control Statements

3.1.5.6,1 Identifier

SS job control statements are identified by an asterisk (*) in column 1 ..

3.1.5.6.2 . Type Field

The Type Field contains 3 characters which identify the type of control

statement being specified. The type field is always in columns 2,3, and 4

and is followed by one blank.

3.1.5.6.3 Operand Field

The operand field contains the statement parameters and begins in column 6
and may extend through column 71. The operand field is recognized as being
complete if column 72 is blank and the last character is either immediately

followed by a blank or is in column 71.

3.1.5.6.4 Comments Field

Comments may be included on SS control cards. When comments are included,
the comments field must be separated from the operand field by one or more

blanks and may extend through column 71.

3.1.5.6.5 Continuation Cards

An SS job control statement may not extend beyond column 71. If necessary,
up to three continuation cards may be used for each control statement. The

rules for continuation are:

L

L

L5

Lt g 4 U L

-

=3

3.1.5.7

All parémeters up to the first left parenthesis must appear on
the first card. Thereafter, the statement may be interrupted
immediately before any left parenthesis.

In addition, the QUE aﬁd DDO control statements may be
interrupted after any comma within parentheses.

An interrupted statement may be followed with one or more
blanks and comments, if desired, up to column 71.

A nonblank character must appear in column 72,

An asterisk must appear in column 1 of the next card image.
Columns 2 through 15 must be blank.

The continuation of the interrupted statement must begin in
column 16, | -

A comment alone may not be continued. However, a comment
may appear on a continuation card if there is at least one

operand present.

Table CREGION

CREGION shall be the communication région used by SS programs. Space

shall be allocated within the 44PS section to contain this table. The SS

Initialization Phase shall store queue addresses into the positions alloted

for them as the tables and queues are constructed. The following is the

format of CREGION:

Bytes
0-63
64-67
68-71
72-75
76-79
80-83
84-87
88-91

Description Mnemonic
The sixteen general registers saved from DCSG GRS
Interval Timer Value ITVAL
Address of SSIRPT : ADSSIRPT
Pointer to I/O Events Table AEVNTAB
Pointer to Input Equivalence Queué . PTIEQ
Pointer to Output Equivalence Queue ' PTOEQ
Pointer to Debugging Queue PTDQ
Pointer to Queue Dump Queue PTDQL

Lo

L3

(S B U

L

L

L3 v 4

N

L3 4

Bytes Description

92-95 Pointer to Saved 44PS Status

96-99 Pointer to List Containing SS Status

100-103 Address of DCSG ECS Communication Region
104-107 DCSG Total Running Time

108-111 Segment Running Time

112-115 Timer Value at Last Exit

116-123 Dummy PSW

124-131 Old PSW from Interruption

3.1.5.8 Table COMREG

Mnemonic
STAT44A
STATSSA.
ADECSCR
DCSGRUN
SEGRUN
DCCCHK
DUMPSW
INPSW

COMREG shall be maintained for communication between SS and user ‘provided

routines. The table shall be resident within the processing phase of SS. The

following is the format of COMREG.

Bytes Description

0-3 Name of Program Ux}it in Control
4-11 Old PSW of Inten:uption'

12-15 Channel Address Word

16-23 Channel Status Word

24-27 Starting Address of DCSG EXEC
28-31 Pointer to Input Equivalence Queue
32-35 Pointer to Output Equivalence Queue
36-39 Pointer to I/O Events Table

40-43 Instruction Causing Interruption
44-47 Total simulat.ion running time
48-51 Address of SSDBUG

52-55 Address of SSPDUMP

56-59 Address of SSRTN

60-63 Address of DATALOOK

M_zlé_m_cz_lz_i_c_
PUNAME
OPSW
CAWL
CSWL
STDCSG
IEQ
OEW
EVENTS
INSTR
SIMTIM
DBUGAR
PDMPAD
RTMAD
ADDATLK

L

L J

LoJ 3 4

Bytes Description Mnemonic
64 Return Address Flag | RETAD
RETAD seitings are: 0- return to point of interruption
88~ return to DCSG External
interruption handler
96- return to DCSG SVC interruption
handler '

104- return to DCSG Program
interruption handler

112- return to DCSG Machine Check
interruption handler

120- return to DCSG I/O interruption
‘ handler

3.1.5.9 DCSG ECS Communication Region

The DCSG ECS shall maintain a communication region within 44PS. SS shall

make use of the following items within this region. These items are:

SMCORE - Base of managed core

UVCOM - Lbcétion of Universal Common

SLPCB - Location of the PCB for the program unit
last selected.

SLRPL - Location of the start of the DCSG ECS

Resident Program List (RPL)
The total length of this region shall be 400 bytes.

In addition to this area, a Permanent Storage Assignment Area shall be main-
tained. This area shall contain the ECS status (PSW's, Timer location, etc.)
and be located in front of the ECS communication region. SS shall reserve

200 bytes for this area.

3.1.5.10 STAT44 Table

This table shall be constructed by the SSLDSS routine of the Initialization
Phase., It shall contain the contents of the new PSW's used by 44PS. Before

SS terminates a simulation, the contents of this table shall be placed into

the new PSWs for normal 44PS operations.

L

L J t.J L

=

0 3.1.5.11 Input Data Other Than Control Statements

To aid in the use of the DDI control statement the following procedures are
discussed. The following options are available for each program unit that

accesses a simulated input device:

o Pre-formatted tape input data

o) Core resident data

3.1.5.11.1 Pre-Formatted Tape Input Data

The following input techniques may be used for those users of SS who must
have large amounts of data for simulating their devices. Within a program unit
and for each device that input datAa is to be read, a file is generated that
contains a record for each time the device ié to be accessed. A two-byte area
shall be set aside within the I/O Equivalence Table for each device within a

program unit for the user to keep track of record positions.

3.1.5.11.1.1 IOE Events File

This file should be constructed so as to contain all the input records specified as
being present on the IOE control statement. The records should be present

corresponding to the order of the event's occuwrence.

3.1.5.11.2 Core Resident Data

SS shall allow data to be resident in core as well as on tape. The user may
assemble data into his particular program unit as a separate segment. In
order for SS to locate this data, a 'SYMBDICT' control statement must have
been input to the Program Preparation Processor (PPP) to allow PPP to place
the symbol into the program unit's symbol dictionary. As many sets of data

as desired may be generated in this manner.

3.1.5.12 Simulating DCSG Qutput Devices

The DDO queue and table are constructed for the purpose of equating a real (44PS)
device to a DCSG device. The SYSUNI index value should be used in

[B G

—

conjunction with the standard 44PS SVC WRITE service routine.

3.1.5.13 Relatiohship of Slimulation Supervisor Components to Data

Base

The relationship of the Simulation Supervisor components to the various
tables and items within the data base is discussed in the following sub-
paragraphs. Each subparagraph is identified by the Simulation Supervisor

component tag (symbolic code) and its component paragraph number,

The identity of each table that is consiructed or used by the component is
portrayed in each subparagraph. The specific items, within each table that
the component uses (U) or sets’ (S) , are also portrayed. Each table is identi-

fied by a tag (symbolic code) and its paragraph number.

SSINIT (3.2.1)

Computes the starting and ending addresses of the queue and table area
(3.1.4.3)

SSEQUIVI (3.2.4)

IQUEUE (3.1.5.1.1)
Program Unit Name (S)

Location of table entry (S)

ITBL (3.1.5.1.2)
Simulated Device Address (S)
SYSUNI index value (S)

data position (file or core) (8)

'CREGION (3.1.5.7)
Location of IQUEUE (S)

SSEQUIVO (3.2.5)

OQUEUE (3.1.5.2.1)

Program Unit Name (S)
Location of table entry (S)

L J

L J v J v J

-

L

L J L J L

Lt J v J g 4

Lt J L J b 4

[R R B L

QTBL (3.1.5.2.2)
Simulated Device Address (S)
SYSUNTI index value (S)

CREGION (3.1.5.7)
Location of OQUEUE (S)

SSDEB (3. 2. 6)
DEBQUE (3.1.5.3.1)

Program Unit Name (S)
SYSUNI index value (S)
Keyword flags (S)
Number of dumps (8) -
Dump limit designations (S)

Location of Option List entry (S)

DEBLST (3.1.5.3.2)

Starting location of dump (S)
Ending location of dump (S)

CREGION (3.1.5.7)
Location of DEBQUE (8)

SSQUE (3.2.7)

QDQUE (3.1.5.4.1)
Program Unit Name (S)
SYSUNI Index Value (S)

Location of Queue Dump Table entry (S)

"QDTBL (3.1.5.4.2)

" Number of entries for the Program Unit (S)

Queue names (S)

CREGION (3.1.5.7)
Location of QDQUE (8)

B

L4 L g LJoL-JoLu

L J

Lt J - . J v J v J v

SSIOEVNT (3.2.8)

EVNTAB (3.1.5.5)

File number of events (S)
SYSUNI index (S)
Address of next event (S)
Time of event (S)

DCSG device address (S)
CSW status (S)

CREGION (3.1.5.7)
Address of EVNTAB (S)

SSLDSS (3.2.9)
CREGION (3.1.5.7)
Location of SS PSW's (U)

Location to save 44PS PSW's (U)

SVCFLIH (3.2.20)
CREGION (3.1.5.7) |
Address of SSIRPT routine (U)
INPSW (S)

SSEXIT (3.2.22)
CREGION (3.1.5.7)
Address of saved 44PS PSW's (U)

SSSAVER (3.2.23)

CREGION (3.1.5.7)
DCSG general registers (S)

Interval Timer value (S)

CLKINIT (3.2.24)

=3 (J oJ o J uvJ 3oy

CREGION (3.1.5.7)
Address of SSIRPT routine (S)

Interval Timer Value (S)

t 1 L J v g Lt J vJ . J

Lt J vt J

L J L

4

L

L

B

3 3 LJ b

[,_.A,f'. !

Location of IQUEUE (U)

Location of OQUEUE (U)

Location of EVNTAB (U)

Location of DCSG ECS Communication Region (U)
Dummy PSW (S)

COMREG (3.1.5.8)

Location of IQUEUE (S)

Location of OQUEUE (S)
Location of EVNTAB (S)

Location of SSPDUMP routine (S)
Location of SSDBUG r’outine. (S)
Location of SSRTN routine (S)

Return address flag (S)

ECSCOMRG (3.1.5.9)

Sets all items by picking up first 150 words of DCSG ECS

SSIRPT (3.2.25)

CREGION (3.1.5.7)
Dummy PSW (U)

PSW from interruption (U)

COMREG (3.1.5.8)
PSW from interruption (S)

Program Unit Name (S)

UPDTCIK (3.2.26)

CREGION (3.1.5.7)

Segment running time (U), (S)
Total DCSG running time (U), (S)
Last set DCSG time (U), (S)

COMREG (3.1.5.8)

Total DCSG running time

J

J

J

L

J L4

J

L

=4 3 3 L

PIH (3.2.27)

SVCH (3.2,

COMREG (3.1.5.8)

PSW from interruption (U)
Program Unit Name (S)
Return Address flag (S)
Channél Address Word (S)

COMREG (3.1.5.8)

Total DCSG Running time (S)

ECSCOMRG (3.1.5.9)

Interval timer location (U), (S)

28)

CREGION (3.1.5.7)

DCSG general registers (U)

COMREG (3.1.5.8)

PSW from interruption (U), (S)
Return address flag ‘(S) ’

EXTH (3.2.29)

MCKH (3.2,

CREGION (3.1.5.7)

Interval timer value (S)

Segment running time (U), (S)
Total DCSG running time (U), (S)
Last set time (U), (S)

COMREG (3.1.5.8)

Return address flag (S)

ECSCOMRG (3.1.5.9)

Interval timer location (S)

30)

COMREG (3.1.5.8)

Return address flag

L

L

4

L

U R N N

NS T B R S

L 4

L J

-J CJ tJ 3 v

SSRTN (3.2.31)

CREGION (3.1.5.7)
PSW from interruption (U), (S)

Interval timer value (U)
Dummy PSW (S)
DCSG g}eneral registers (U)

COMREG (3.1.5.8)

Return address flag (U)
PSW from interruption (U)
Channel Status Word (U)

ECSCOMRG (3.1.5.9)

Interval time location (S)
0Ol1d PSW locations (S)
CSW location (S)

New PSW locations (U)

SSMH (3.2.32)

CREGION (3.1.5.7)
Dummys PSW (S)

COMREG (3.1.5.8)

PSW from interruption (U)
Program unit name (S)
Return address flag (S)

Instruction causing interruption (U)

ECSCOMRG (3.1.5.9)

Address of Program Control Block (U)

LPSWH (3.2.33)

CREGION (3.1.5.7)

Dummy PSW (S)

COMREG (3.1.5.8)

PSW from interruption (U)

7

i
!

L

L J

L

|
[

3y ¢t J viJ Lt

3

SSDBUG (3.

Program unit name (S)

Return address flag (S)

Instruction causing interruption (U)

ECSCOMRG (3.1.5.9)

Address of Program Control Block (U)

2.34)

CREGION (3.1.5.7)
GRS (U)

PTDQ (U)

PTDQL (U)
DCSGRUN (U)
SEGRUN (U)
ADESCSCR (U)

ECSCOMRG (3.1.5.9)
UVCOM (U)
SLPCB (U)

COMREG (3.1.5.8)
PU NAME (U)
OPSW (U)

DEBQUE (3.1.5.3.1)

Program Unit Names (U)
SYSUNI Index values (U)
Keyword flags (U)

Number of dumbs (U)

Dump limit des.ignations (U)

Pointer to entry in list (U)

DEBLST (3.1.5.3.2)

uses all items in this table

QDQUE (3.1.5.4.1)

Program Unit Names (U)

L

S

TN T S I B

Real Device address (U)

Pointer to dump table (U)

QDTBL (3.1.5.4.2)

uses all items in this table

SSPDUMP (3.2.35)
CREGION (3.1.5.7)

DCSG general registers (U)

DETPRUN (3.2.38)

COMREG (3.1.5.8)

Program Unit Name (S)
PSW from interruption (U)

ECSCOMRG (3.1.5.9)

Location of current PCB (U)
ECS ending address (U)

GETPTRS (3. 2.40)
CREGION (3.1.5.7)

Address of ECS Communication Region (U)

DCSG general registers (U)

COMREG (3.1.5.8)

Program Unit Name (U)

ECSCOMRG (3.1.5.9)

Location of current PCB (V)

Location of RPL. (U)
ADDCK (3.2.41)

CREGION (3.1.5.7)
DCSG registers (U)
COMREG (3.1.5.8)

Instruction causing interruption (U)

Start location of ECS (U)

Lt J v 4

L 5 LJ vz

T R _-

L J -

B

ko) Lo

3.2.1 SSINIT Control Routine

The Simulation Supervisor Initialization Phase shall be loaded into core

storage as a result of the Job Control Processor's (JCP) recognition of the

EXEC Simulation Supervisor control card.

The entry point to the SS Initialization Phase is defined as SSINIT within the

- SSINIT Control Routine. The functions performed are:

o Establish starting and ending addresses for the table and

queue area

o) Clear out pointers to tables and queues
o Control the processing flow within the SS Initialization
Phase ')
o Sort the entries in the IOE Table
o Trénsfer control to the SS Processing Phase at initialization
end
3.2.1.1 SSINIT Control Routine Description

At 44PS JCP completion the Simulation Supervisor Initialization Phase
(SSINIT) shall be loaded into core storage. SSINIT shall be entered to begin

the processing of the phase.

SSINIT shall control the processing flow throughout the Initialization Phase.
The only exit from this routine shall be at the completion of initialization.
Once the Processing Phacse routines are loaded into core storage, control

shall be passed to the SS start up routine (CLKINIT).

L 4

Lo J v

L

L J

3.2.1.3 SSINIT Control Routine Interfaces

The entry point to the Initialization Phase shall be defined as SSINIT. This
phase shall be loaded into core storage as a result of JCP recognition of

the EXEC Simulation Supervisor control card (//EXEC SIMSUP).

The subroutines called by the SSINIT routine shall be:

o SSGETCC - Get Control Card Routine (3.2.2)
o SSTYPDET - Card Type Determination Routine (3.2.3)
o SSLDSS - Load SS Processing Phase (3.2.10)

After all SS control cards are processed, and the appropriate SS interface

tables and queues are constructed, control shall be passed to SSLDSS (3.2.10)

3.2.1.4 ' SSINIT Control Routine Data Organization

The entire table and queue area of approximately 5300 bytes shall be
established at the end of the 44PS transient area. The table and queue area shall
then be used by the appropriate SS control card processing routines for

constructing their tables and queues for SS interface.

-

3.2.1.5 SSINIT Control Routine Limitations

There are no known or anticipated limitations of the SSINIT Control Routine.

S R GRS [N R

Lt J L J rJ v

J

L J L J L J L

L J

L J L J

) oL L)L

3.2.2 SSINIT Get Control Card Routine (SSGETCCQC)

This routine shall obtain SS Control Cards, one at a time, from the card

reader and shall determine the type of control statement.

3.2.2.1 SSGETCC Description

This subroutine shall be used by SSINIT to obtain a control card. It shall
also be used by the SS Continuation Card Routine (SSCONTIN) to obtain a

continuation card.

If the control card obtained is not an SS control card, the simulation
job shall be cancelled. If the card is an SS control card, control shall

return to the calling routine. ' -

L

_J

L

Lt J Lt J L J

|

L J . J g

B T

Lt J. b

L J

cC 33 L]

3.2.2.3 SSGETCC Interfaces

SSGETCC shall issue a SVC READ to obtain a control card. All input data

to SSGETCC shall come from the card reader and shall consist of SS control

cards. The format of the SS control cards is described below.

The card-type processing routine for the SS DDI control card is the SSINIT

Input Equivalence and Data Definition Routine (SSEQUIVI). The format of

the SS DDI card, for data input from tape, is:

ccl 6

*DDI prog,yyy(xxx,hnn)(xxx,nnn)——-—etc.’

where *DDI -

prog -

yyy -

nnn -

identifies this as an SS Input Device
Equivalence Control Card

is the program unit name (up to 4
characters)

is the 44PS real input tape address.

- The last three symbolic characters that

would be used in the allocation of this
device on the 44PS ACCESS or ALLOC
control cards replace yyy.

is the DCSG simulated input device
address (hex value)

is the file number of the data

The format of the SS DDI card, for data input from core storage, is:

ccl 6

*DDI prog, CRE(xxx,1111) (xxx,1111)--~etc.

where: *DDI -

prog -

identifies this as an SS Input Device
Equivalence Control Card
is the program unit name (up to 4

characters)

J

L L

J

L

J

L J L

|
_

L

L

Lt

is the keyword which identifies the 44PS

CRE -
real input device address as being core
storage

XXX - is the DCSG simulated input device
address (hex value)

1111 - is the symbol within the program unit where

the xxx data is located. From one through

four character symbols are allowed.

~

The card-type processing for the SS DDO control card is the SSINIT Output

Equivalence and Data Definition Routine (SSEQUIVO). This control card is

used to define output device equivalenc'e. The format of the SS DDO card is:

ccl 6

-*DDO prog, yyy(xxx,xxx ,XxxX, -—-)

where: *DD‘ION - . identifies this as an SS Output

Device Equivalence Control Card

prog - is the program unit name (up to 4 characters)

yyy - is the 44PS real output device address. The
last three symbolic characters that would be
uséd in the allocation of the device on the
44PS ACCESS or ALLOC control cards
replace yyy.

XXX - is the DCSG simulated output device address

(hex value)

The card-type processing réutine for the SS DEB control card is the SSINIT

Debugging Aids Routine. T}.le format of the SS DEB card is:

c3y 31 o3 v

.

ccl 6
eeece eeee
*DEB prog,yyy ,UNC ,PCB ,PVC (t,ssss,$$$$ (t,sss,$$SS
-—-ztc.
where: *DEB - identifies this as an SS Debugging Aids
Control Card
prog - is the program unit name (up to 4 characters)

L J

L

L

L

!

L

J

L

J

L

L4 L J LJ L. J L J

|
-

L

L J

=3 CJ .3 L J

yyy

UNC

PCB

PVC

SSSss

eeee

$899

NOTE:

or the keyword DCSG
is the 44PS output device for debugging
aids. The last three symbolic characters
that would be used in the allocation of this
device on the 44PS ACCESS or ALLOC
control cards replace yyy.
Universal Common of the DCSG programs
is to be dumped (optional).
Program Control Block of the specified
program unit is to be dumped (optional).
Private common of the specified program
unit is to be dumped (optional)
type of dump limits for the following pair:
S - for symbolic
H - for hexadecimal

starting address from which a core dump

"is to be taken (symbolic or hexadecimal

according to t)

ending address of core dump (symbolic or
hexadecimal according to t)

core dump is to be taken to end of core
storage

UNC, PCB and PVC may appear on the card

“in any order.

ssss and eeee must be (1) symbols or (2)
hexadecimal displacements from the start
of the program unit. Symbols and dis-
placements can be mixed on a control card,
but not mixed within parentheses. A
maximum of four pairs of dump limits may

be specified for a program unit.

J

L) L

L J Lt J

S T

L

J

The card-type procéssing routine for the SS QUE control card is the SSINIT

DCSG Executive Queue Dump R'outine.

The format of the SS QUE card is:

ccl 6
*QUE prog,yyyl(quel ,que2,que3,-—--—-)
where: *QUE - identifies this as an SS Queue Dump
Control Card
prog - 1is the program unit name (upto 4
characters)
yyy -~ 44PS output device address. yyy is
equivalent to the last three characters
of a symbolic device address as would
be specified on the 44PS ACCESS or
ALLOC control card.
quel ,que2, ..are the DCSG ECS Queue names (up to

4 characters) scheduled for dumping at the

execution-completion of the program

unit specified by "prog".

The card-type processing routine for the SS EDD control card is the SSINIT

Event Data Routine. The format of the'SS EDD card is:

L

C) L. . L

=

ccl 6
*EDD vyyy,ff
where: *EDD - identifies this card as the Event Data

Descriptor

Vyy - PSCS/LPSS input device containing the

’ event data. yyy is equivalent to the

last 3 characters of the symbolic unit
name as would be specified on a 44PS -
ALLOC or ACCESS control card.

ff - file number in which the data is

located on yyy

L

L 4 tJ

C.J 4 tJ

S

The card-type processing routine for the SS IOE control card is the SSINIT
I/O Events Routine. The format of the SS IOE card is:

ccl 6
*JOE (zxx, tttt, ccce) (zxx, tttt, cccc) . . . etc.
where: *I0OE - identifies this an an I/O Event Data
card

z - if non-zero, data corresponding to this
interrupt shall be found on the IOE file,
If zero, no data corresponding to this
interrupt shall be found on the IOE file.
(one hex digit)

XXX - is the DCSG simulated devicé address
that shall be used to generate the
interruption

tttt - time in milliseconds at which interrupt
shall be initiated. Up to 7 digits may

- be used.
ccce - CSW status to be stored when interrupt

+ is generated.

The last SS control card shall be used to denote the end of all SS control cards.

The format of the SS END card is:
ccl
*END |
Whe.re: *END - identifies to SSINIT the end of all SS

control cards.
A list of the subroutines called by the SSGETCC routine is:

o SSCHKCRD
o 44pPS SVC READ,WRITE and CANCEL services.

J

L

L !

R

L

[R S

!

Lot L

——

L

-3

SSINIT shall be the only routine to call SSGETCC.

3.2.2.4 SSGETCC Data Organization

SSGETCC shall be resident within the SS Initialization Phase area.

3.2.2.5 SSGETCC Limitations

The Simulation Job shall be canceled if SSGETCC obtains a card from the card
reader that is not an SS control card. The use of the *END control card

denotes the endof all SS control cards.

L

A R NN S U R N

L J

3.2.3 SSINIT Card Type Determination Subroutine (SSTYPDET)

This subroutine shall be used by SSINIT, The functions this subroutine performs

are:

o Recognize a specific type of SS control card, and upon
recognition, pass control to the appropriate card type
processing routine

o Ensure tﬁat all of a particular ~'cype of SS control card is
grouped together

3.2.3.1 SSTYPDET Description

The card type, determined by SSGETCC, shall be checked to determine which
control statement shall be processed. If it is found that the control card is
out of sequence, an error message shall be output and the statement ignored.

If the statement is in sequence, the ‘processing routine corresponding to the

statement shall be entered.

]

L J

5

s 0 L L

3.2.3.3

SSTYPDET Interfaces

This subroutine shall use as input the card type flag set in SSGETCC. Upon

recognition of *END, the end flag shall be set to halt further control card

processing.

A list of the subroutines called by the SSTYPDET routine is:

(o]

SSEQUIVI
SSEQUIVO .
SSDEB
SSQUE
SSIOEVNT
EVNTDATA

Supervisor Call Write services

The only computer program component that shqll call SSTYPDET is SSINIT.

(3.2.1).

3.2.3.4

SSTYPDET Data Organization

The SSINIT Card Type Determination Routine shall be resident within the SS

Initialization Phase area.

3.2.3.5

SSTYPDET Limitations

If a control statement is found to be out of sequence, SSTYPDET shall ignore it.

L

S

L 4

.

[R

3.2.4 SSINIT Input Equivalence and Data Definition Subroutine /SSEQUIVI)

This subroutine shall be called by SSTYPDET. The functions this routine

performs are:

o Completes the building of the Input Equivalence Queue
o Builds an Input Equivalence Table
3.2.4.1 SSEQUIVI Description

This subroutine shall receive control from SSTYPDET upon recognition of the

*DDI SS Control Card.

SSEQUIVI shall break out the parameters on the control card and construct

the queue and table .entries., The real input device specified on the control
card may specify core storage or a tape drive, If it is core storage, the sym-
bol shall be placed into the table without converting. Otherwise the symbolic
unit specified for the real device shall be converted to its SYSUNI index
value. The simulated device address shall be converted to its hexadecimal

value. These values shall then be placed into the table.

L

C oL

—

3.2.4.3 SSEQUIVI Interfaces

This subroutine shall be called by SSTYPDET to process the SS *DDI control

card.

The only source of input data to this routine shall be the current 8S *DDI

control card which is in the input card buffer created by SSCHKCRD.

The output of SSEQUIVI consists of the Input Equivalence Queue List (IQUEUE)
and the Input Equivalence Table (ITBL). The format and the interrelationships
of the Equivalence Queue and the Equivalence Table are shown in Table 3.2.4-1.

The destination of the output is to the table and queue area within core storage.

A list of the subroutines called by SSEQUIVI is:

o SSBRKOUT
o CNVTDA
o CNVRTD

o CNVRT

The only computer program component that shall call SEQUIVI is SSTYPDET
(3.2.3).)

3.2.4.4 SSEQUIVI Data Organization

SSEQUIVI shall be resident v_vithin the SS Initialization Phase area.

3.2.4.5 SSEQUIVI Limitations

There are no known or anticipated limitations.

L

L

J

L

L Lt J t J

-

3.2.5 SSINIT Output Equivalence and Data Definition Subroutine
(SSEQUIVO)

This subroutine shall be called by SSTYPDET to process a *DDO control card.

The functions performed are:

o Constructs the Output Equivalence Queue

o Constructs the Output Equivalence Table
3.2.5.1 SSEQUIVO Description

This subroutine shall receive control from SSTYPDET upon recognition of the
*¥DDO Control Card., SSEQUIVO shall break out the control card parameters
and construct the queue and table entrieé. The 44PS output device sg\ecified
may be any of the available devices associated with the system. The- real
and simulated devices shall be converted and placed in the table. The

program unit name and the address of the table entry shall be placed into

the queue.

L

-

L3

3.2.5.3 SSEQUIVO Interfaces

Input to this routine shall consist of the current SS *DDO control card contained

in the card buffer created by SSCHKCRD.

The output-of SSEQUIVO shall be the Output Equivalence Queue (OQUEUE)
and Table (OTBL). The format and the interrelationships of the Equivalence

Queue and the Equivalence Table are shown in Table 3.2.5-1,

The subroutines called by SSEQUIVO are:

o SSBRKOUT
o CNVTDA
o CNVRT b

SSTYPDET shall be the only routine that calls SSEQUIVO.

3.2.5.4 SSEQUIVO Data Organization

SSEQUIVO shall be resident within the SS Initialization Phase area.

3.2.5.5 SSEQUIVO Limitations

.

There are no known or anticipated limitations.

Loy

L 9

3

L.

3.2.6 SSINIT Debugging Aids Subroutine (SSDEB)

This subroutine shall be used by the SSINIT Card Type Determination
Routine to process the SS Debugging Aids control card (SS *DEB card).

SSDEB uses the parameters from the SS *DEB control card to build the tables
used by the Simulation Supervisor Debugging Aids Routines for producing
program traces and dumps. Traces and dumps are produced automatically if
certain execution errors or timer interruptions occur. However, to receive a
trace or dump at segment and program unit ends, the user must make a rejuest

through the SS *DEB control card - one card per program unit name.

The functions that SSDEB perfofmé are:

o the building of a Debug Queuev Table
o the building of a Debug Option List
3.2.6.1 SSDEB Description

SSDEB receives control from SSTYPDET upon recognition of the *DEB SS Control
Card. This routine shall break out the parameters, convert the device addresses

and construct the queue and table entries.

S R U T B

3.2.6.3 SSDEB Interfaces

This subroutine shall be called by SSTYPDET to process the SS *DEB control

card.

The only source of input data to the SSDEB routine shall be the current SS
*DEB control card which is in the input card buffer established by SSCHKCRD.
The format of the SS *DEB control card is shown in paragraph 3.2.2.3.

The output of the SSDEB routine consists of (1) the Debug Queue Table
(DEBQUE) and (2) the Debug Option List (DEBLST). The format and the inter-
relationships of the Queue Table and the Option List are shown in Table 3.2.6-1.

The destination of the output is to the table and queue area within core storage.

A list of subroutines called by the SSDEB routine is:

o SSBRKOUT
o CNVRT
o CNVTDA

The only computer program component that calls SSDEB is SSTYPDET (3.2.3).

.

3.2.6.4 SSDEB Data Organization

This subroutine shall be resident within the SS Initialization Phase area.

3.2.6.5 SSDEB Limitations

There are no known or anticipated limitations.

3.2.7 'SSINIT DCSG ECS Queue Dump Subroutine (SSQUE)

A special debugging aid shall be made available to the system programmers
during the development of the DCSG ECS. Specifically, this debugging
aid provides the capability to dump the contents of any queue in a contiguous

format at the execution-completion of a particular program unit.

In order for this capability to be provided, this routine shall perform the

following functions:

o Build a Queue Dump Table containing the names of the queues
to be dumped
o Set up the interface between the Queue Dump Table and the

SS Debugging Aids Routine by building a Queue Dump Queue
List

3.2.7.1 SSQUE Description

This subroutine shall be invoked b}_/ SSTYPDET. The only exit from this
subroutine shall be to the caller‘. The parameters of the *QUE control card
shall be stored in the Queue List along with the count of queues for a
program unit. The SYSUNI index and the output device address shall be

converted before being placed into the table.

L4 L

3.2.7.3 SSQUE Interfaces

This subroutine shall be called by SSTYPDET to process the SS *QUE control

card.

The only source of input data to SSQUE is the current SS *QUE control card
which is in the input buffer established by SSCHKCRD. The format of the
SS *QUE control card is shown in paragraph 3.2.2.3.

The output of the SSQUE routine consists of (1) the Queue Dump Queue List
(QDQUE) and (2) the Queue Dump Table (QDTBL). The format and the inter-
relationship of the Dump Queue and the Dump Table are shown in Table
3.2.7-1. The destination of the output is to the table and queue area within

core storage.
A list of the subroutines called by the SSQUE routine is:

o] SSBRKOUT
o] CNVTDA

The only computer program component that shall call SSQUE is SSTYPDET
(3.2.3). T

3.2.7.4 SSQUE Data Organization

This subroutine shall be resident within the SS Initialization Phase ares.

3.2.7.5 SSQUE Limitations

There are no known or anticipated limitations.

-

L

L J L

Lt J v J v 4

B

L

N N

LJ

Lt J v

L) L L L

3.2.8 SSINIT Event Data Descriptor Subroutine (EVNTDATA)

This subroutine shall be called by SSTYPDET to process the SS *EDD control

card.

3.2.8.1 EVNTDATA Description

This subroutine shall receive control from SSTYPDET upon recognition of the

 *EDD control card.

EVNTDATA shall break .out the parameters on'the *EDD card and construct

the header for the I/O Event Table. The file number shall be converted from
EBCDIC decimal to hexadecimal and stored in the first byte of the table. The
symbolic unit specified for the real device shall be converted to its SYSUNI
index value and stored in the second byte of the table. The two-byte record
poistion field shall be initialized to zero, ‘a'nd the four-byte pointer field

shall be made to point to the first entry in the table.

J

L

Lo L

-

L

L J v J v J

L L J v

-

L

L J

C) L L. LJ L. L

3.2.8.3 EVNTDATA Interfaces

This subroutine shall be called by SSTYPDET to process the SS *EDD control

card.

The input data to this subroutine shall consist of the *EDD control card

parameters which have been placed in the input buffer by SSCHKCRD.

The output of EVNTDATA shall consist of the header of the I/O Events Table
(EVNTAB). The format of the header is shown in Table 3.1.5-5.

The subroutines which shall be called by EVNTDATA are:

o SSBRKOUT -
o CNVTDA
o CNVRTD

The only computer program component that shall call EVNTDATA is SSTYPDET.

3.2.8.4 EVNTDATA Data Organization

EVNTDATA shall be resident within the SS Initialization Phase area.

-

3.2.8.5 EVNTDATA Limitations

There are no known or anticipated limitations.

-

_

L

L

J

L

gLt 4L

L

J

L

L L J v 4 v

—

L 4 L

3.2.9 SSINIT 1/O Events Subroutine (SSIOEVNT)

This subroutine shall be called by SSTYPDET to build the I/O Events Table
from the SS *IOE Control Card.

3.2.9.1 SSIOEVNT Description

This subroutine shail receive control from SSTYPDET upon recognition of the

*JOE control card.

SSIOEVNT shall break 6ut the parameters on the *IOE card and construct the
I/O Event Table éntries. For each I/0O event the time shall be converted

from EBCDIC decimal to hexadecimal and stored in a four-byte field; the
simulated device address shall be converted from EBCDIC hexadecimal to
hexadecimal and stored in a two-byte field; the CSW status shall be converted
from EBCDIC hexadecimal to hexadecimal and stored in a two-byte field.

A four-byte end-of-table flag shall be stored after the last entry. This flag

shall be overlayed if another *IOE card is read in.

U N U

¢t J v J 4 v 4

§

L

L

+t J L g v 4 v d

SN R BN [SR B G

L J L

3.2.9.3 SSIOEVNT Interfaces

This subroutine shall be called by SSTYPDET to process the SS *IOE control

card.

The input data to this subroutine shall consist of the *IOE control card

parameters which have been placed in the input buffer by SSCHKCRD.

The output of SSIOEVNT shall consist of the I/O Events Table (EVNTAB) shown
in 3.1.5-5.

The subroutines which shall be called by SSIOEVNT are:

o SSBRKOUT -
o CNVTDA

o CNVRTD

o] CNVRT

The only computer program component that shall call SSIOEVNT is SSTYPDET.

3.2.9.4 SSIOEVNT Data Organization

SSIOEVNT shall be resident within the SS Initialization Phase area.

3.2.9.5 SSIOEVNT Limitations

There are no known or anticipated limitations.

-

L

L J L J L 4 L L

L

S B I

(S D B

3.2.10 SSINIT Load Simulation Supervisor Routine (SSLDSS)

Control shall be passed to SSLDSS by the SSINIT Control Routine after all of
the Simulation Supervisor control cards are read, analyzed and appropriate

initialization action performed.
The functions that SSLDSS performs are:

o saving of the 44PS SVC, Machine Check, Program and External
new PSW first-level-handler addresses

o insertion of the Simulation Supervisor's SVC, Machine Check,
Program, and External new PSW first-level-handler addresses

o loading of the Simulation Supervisor Routines and passingx of

control to the SS set up routine

3.2.10.1 ' SSLDSS Description

This routine shall be invoked by the SSINIT Control Routine after the processing
of all the SS control cards has been completed for the Initialization Phase.

SSLDSS shall save the 44PS new‘PS'W’s .and replace them with those of SS.

The processing phase. shall then be loaded and control passed to CLKINIT.

.

L 4 L J L 4 U 3

L

L J

L4

|
—

L

L4t J v 4 vJ v

L4 L J

3.2.10.3 SSLDSS Interfaces

This routine shall receive control from the SSINIT Control Routine after all

of the SS control cards are read and processed.

The output of SSLDSS shall be the loading of the SS Processing Phase routines.

These routines shall be in the same format as they were when placed on the
Phase Library as output of the 44PS Linkage Editor. The destination of the

output is core storage starting at the end of the SS table and vqueue area.

3.2.10.4 SSLDSS Data Organization

This routine shall be resident within the SS Initialization Phase area.

3.2.8.5 SSLDSS Limitations

There are no known or anticipated limitations of the SSLDSS routine.

~J

L !

Lo

B

3.2.11 SSINIT Check Control Card Routine (SSCHKCRD)

This routine shall check the formats of all SS control cards and list each on
the printer, It shall be called by SSGETCC each time an SS control card is

read in.

3.2.111 SSCHKCRD Description

SSCHKCRD ‘shall scan control cards and check for

© illegal characters embedded in parameters

o parameters of improper length
[~illegal delimiters -
° characters in improper columns

If any of the above error conditions are found, the card in error and all of
its continuations shall be flushed from the input stream and an error message

shall be output, Control shall ‘be returned to SSGETCC with an error indication.

If a control card which has no errors ¢ontains a non-blank character in

column 72, a call shall be made to SSCONTIN to get the continuation card.
‘When control is returned to SSCHKCRD, the continuation card shall also be
checked for errors. This process shall continue until all continuation cards

havé been checked. Control shall than be returned to SSGETCC.

If more than the three allowable continuation cards are present, the parameters
on the extra cards shall be ignored and a warning message shall be output,

but processing shall continue.

Lo

_J

{
[

Loy L L

3.2.11.3 SSCHKCRD Interfaces

The only routine which shall call SSCHKCRD is SSGETCC.
SSCHKCRD shall call the following routines:

o CHKMOVE
o SSCONTIN

The following conventions shall be observed_for communication with other

routines:
o The type code set up by SSGETCC shall indicate the type
of control card cuwrently being processed. i
0=DDI
1=DDO
2=DEB
3=QUE
4=FEDD
5=I0E
6=END
o Before entry to CHKMOVE, the character code shall be set to
indicate the type of characters which are valid for the parameter
being checked.
0=a symbol which must begin with a letter
l1=a symbol which can begin with a letter or a
digit
2=3 hex digit
3=a decimal digit
o Before return from CHKMOVE, the character code shall be

set to indicate the type of delimiter encountered.

L J]

Lo

0=comma
1=left paren -
2=right paren
3=blank

3.2.114 SSCHKCRD Data Organization

SSCHKCRD shall be resident within the SS Initialization Phase area.

3.2.11.5 SSCHKCRD Limitations

If any error conditions are found on a card, SSCHKCRD shall branch to SSGETCC

to flush the card and its continuations from the input stream.

g

S I U R

B

L

R R

L

LJ g v J

L

L J tJ v

3.2.19 ~ 8SINIT Check and Move Routine (CHEMOVE)

This routine shall be called by SSCHKCRD to check and move one parameter

to CRDTRBL.

3.2.12.1 CHKMOVE Description

This routine shall receive, upon entry, a pointer to a parameter and a
character code which indicates the type of characters valid for the parameter.
The parameter shall be scanned until a delimiter is encountered, As each
character is checked for validity, it shall be moved to an area called CRDTBL.
When the entire parameter has been moved to CRDTBL, a comma shaf]. be
stored after the last character and the pointer to CRDTBL shall be updated to
the location immediately following the comma. The arrangement of parameters

in this manner shall facilitate thé picking up of parameters by the SSBRKOUT

routine.

Upon completion of the scan, the length‘ of the parameter shall be indicated and

- the character code shall be set to indicate the type of delimiter encountered.

If the parameter is found to have an invalid character, to be too long or to end with

an invalid delimiter, an error message shall be output and control returned to SSCHKCRD

with an error indication.

L J v a4 L

L J

J

L

J v

L

N

J

L

¢t J rJ vJ vJ vy o

3.2.12.3

CHKMOVE Interfaces

The only routine which shall call CHKMOVE is SSCHKCRD,

No routines shall be called by CHKMOVE,

The following conventions shall be observed for communication with -

SSGETCC: .
Before entry to CHKMOVE, the‘ character code shall be
set to indicate the type of characters which are valid
f£>r the pararﬁeter being checked. ‘
0 = a symbol which must begin with a letter
1 = a symbol which may begin with a letter or a
digit
2 = a hex digit
3 = a decimal digit
Before return from CHKMOVE, the character code shall
be set to indicate the type of delimiter encountered.,
0 = comma
1 = left paren
2 = right paren
3 = blank
3.2.19 .4 CHKMOVE Data Organization

The CHKMOVE routine shall be resident within the SS Initialization Phase area.

M

A

B

N

L

Lt J v 4

_J

N

L

N R R

J

L

L J

oL L LU

3.2.12.5 CHKMOVE Limitations

There are no known or anticipated limitationrs.

Lo

B I S

L

J

Lt 4 Lt J 4 b 1 L

A

L

]

L

t J 3 . J

3.2.13 SSINIT Continuation Card Routine (SSCONTIN)

The SSCONTIN routine shall be called by SSCHKCRD to get continuation

cards.

3.2.13.1 SSCONTIN Description

SSCONTIN shall branch and link to SSGETCQ to obtain a continuation card.,
Upon return, the card shall be printed and checked for the following errors:

© No asterisk in column one

© éolumns 2—i5 non-blank

° Column 16 blank
If no errors are detected, a pointer to column 16 shall be passed to SSCHKCRD

upon return, If errors are present, an error indication shall be passed.

Lt J t J L

—

Lt 4 U

L

|
—

Lo L L oL

3.2.13.3 SSCONTIN Interfaces

The only routine which shall call SSCONTIN is SSCHKCRD,

SSCONTIN shall call the SSGETCC routine.

Output from SSCONTIN shall consist of a pointer to column 16 of the

continuation card.

-

3.2.13.4 SSCONTIN Data Organization

SSCONTIN shall be resident within the SS Initialization Phase area.

3.2.13.5 SSCONTIN Limitations

If more than three continuation cards are éncountered, the extra cards shall

be read in, but not checked for validity. An indication of the extra cards

shall be passed to SSCHKCRD. -

J

Ly gL dt

L J

L

3.2.14 SSINIT Parameter Breakout Routine (SSBRKOUT)

The SSBRKOUT routine shall pass control card parameters to the SSEQUIVI,
SSEQUIVO, SSDEB, SSQUE, EVNTDATA, and SSIOEVNT routines.

3.2.14.1 SSBRKOUT Description

SSBRKOUT shall pick up the pointer to the next parameter in the CRDTBL
area. All characters up to the next comma shall be loaded into registers
0 and 1 left-justified and padded with blanks. The pointer to CRDTBL

shall be updated to the position immediately following the comma and

control returned to the caller.

If the SSBRKOUT rout-ine is entered and the character pointed to is a bfank,

an "end of parameters" indication is passed to the caller and the pointer

is restored to the beginning of CRDTBL.

L L J

L J t 4

1

L

3.2.14.3 SSBRKOUT Interfaces

The CRDTBL area used by SSBRKOUT shall be built by the SSCHKCRD and
CHKMOVE routines. The table shall consist of all parameters which
appeared on a control card and its continuations. The parameters shall

be separated by commas, and the last parameter shall be followed by a

comma and a blank.

Output from SSBRKOUT shall consist of a paramter passed tvo the calling

routine in registers 0 and 1.

The following routines shall call SSBRKOUT to break out parameters:

o SSEQUIVI
o SSEQUIVO
o SSDEB
o SSQUE
o SSIOEVNT
o EVNTDATA

No routines shall be called by the SSBRKCUT routine.

3.2.14.4 SSBRKOUT Data Organization

SSBRKOTUT shall be resident within the SS Initialization Phase area.

3.2.14.5 SSBRKOUT Limitations

There are no known or anticipated limitations,

=

J

N R R B

L

3.2.15 Convert from EBCDIC to Hexadecimal (CNVRT)

This routine shall convert a four character hexadecimal EBCDIC string to

a hexadecimal value.

3.2.15.1 CNVRT Deséription

Upon entry to this routine, register 0 shall contain the four character
EBCDIC string. The high order portion of the character shall be cleared,
shifted into position and added to construct the hexadecimal value. If the
character is an EBCDIC 10-15(A-F), the higiu order portion will be cleared
and a hexadecimal 10 shall be added to the low order portion of the charac-

ter before it is shifted and added to construct the hexadecimal value.

L

3.2.15.3 CNVRT Interfaces

Input to CNVRT:

o Register 0 shall contain 4 character EBCDIC value to be

converted to hexadecimal.

Output from CNVRT:

o} Register 0 shall contain the hexadecimal value.
CNVRT shall not call any other subroutine.

Routines calling CNVRT:

o SSEQUIﬁ
o SSEQUIVO
o SSDEB

o SSIOEVNT

3.2.15.4 CNVRT Data Organization

This routine shall be resident within the SS Initialization phase area.

3.2.15.5 CNVRT Limitations

There are no known or anticipated limitations.

L J L J bt J u L 4 L

-

L

3.2.16 Convert to SYSUNI Index Number (CNVTDA)

This routine shall convert a three character code to a SYSUNI index value

useable by 44PS I/0 service routines.

3.2.16.1 CNVTDA Description

This routine shall use a table to look up the SYSUNI index value. The

table shall contain a list of all possible 3 character codes as explained

in the SS control statement descriptions.

L4 |

J

L

L1 L

L J

L]

3.2.16.3 CNVTDA Interfaces

Input to CNVTDA:

e} Register 0 shall contain the three character code, right

justified,
Output from CNVTDA:
o Register 0 shall contain the SYSUNI index value.
CNVTDA shall not call.any subroutines.

Subroutines calling CNVTDA are:

o SSEQUIVI
o SSEQUIVO)
o SSDEB
o SSQUE
o SSIOEVNT
3.2.16.4 CNVTDA Data Organization

This routine shall reside within the SS Initialization Phase area. The table
used by CNVTDA shall contain the last three characters contained in Table 8,
"Symbolic Unit (SYSUNI) Index Values", under Symbolic Unit. This table is
found in IBM System/360 Model 44 Programming System - Guide to System
Use Form #C28-6812. '

3.2.16.5 CNVTDA Limitations

There are no known or anticipated limitations.

Lo L4 v o2

L

B I SR

L J

J

L

L J L J L gL ot—g L4

L L LU

3.2.17 Com)ert from EBCDIC Decimal to Hexadecimal (CNVRTD)

This routine shall convert a decimal EBCDIC string up to 7 characters

long to a hexadecimal value.

3.2.17.1 CNVRTD Description

Upon entry to this routine registers 0 and 1 shall contain the right-justified
EBCDIC string, and register 2 shall contain a count of the number of
characters to be converted. Each byte, starting with the low-order digit,
shall be picked up and ANDed with OF to clear out the zones. It shall then
be multiplied by the appropriate power of ten and added to the hexadecimal

value being constructed. The total shall be returned to the calling routine

in a register.

-

L

L J

L J L J v

L J 4 v

-

L

L J 3 L J

L J

LJ Lt J uvd

LJ J v

3.2.17.3 CNVRTD Interfaces

Input to CNVRTD:

o Registers 0 and 1 shall contain the right-justified EBCDIC string
which is to be converted. 4

o Register 2 shall contain a count of the number of characters in
the string.

QOutput from CNVRTD:

o The hexadecimal value shall be returned in a register.

Routines calling CNVRTD:

o SSEQUIVI
o EVNTDATA
o SSIOEVNT
3.2.17.4 CNVRTD Data Organization

This routine shall be resident within the SS Initialization phase area.

3.2.17.5 CNVRTD Limitations

There are no known or anticipated limitations.

M

L

L J L J L4

J

L

L. L J

-

L

_J

L

B

L

L J 3 3 g v

3.2.18 Machine Check First Level Handler (MCKFLIH)

MCKFLIH shall be added to the standard System 360/44 Programming System
(44PS). Its function shall be to interrogate all machine check interruptions

encountered during the simulation.

3.2.18.1 MCKFLIH Description

This routine .shall place the simulation in "time-out" mode. It then deter-
mines if SS or DCSG had control. If SS had control, a message shall be
output and control given to SSEXIT. If DCSG had control, program status

shall be saved. The interrupt flag, register 12, shall be set to 12 and register

1 shall be set to the machine check old PSW address. Next, control shall be
given to SVCFLIHZ.)

J

L4 L

2

L

Lt

L

J

L

L J

L J

L

B T D B

Lt J L

3.2.18.3

MCKFLIH Interfaces

MCKFLIH Inputs are:

o
(0]

o
Outputs are:

(o]

(@]

Interval Timer
Machine Check old PSW

The 16 general registers

Interrupt flag in register 12

O1ld machine check PSW address in register 1

Called routines are:

(o]

(o]

(o]

@)

SSAVER

SSEXIT

SVCFLIH?2

44PS SVC WRITE service routine

Calling routines are:

None. Control shall be received when a machine check interruption occurs.

Tables and constants referenced:

(o]

3.2,18 .4

Machine Check old PSW

MCKFLIH Data Organization

This routine shall reside within the 44PS area.

3.2.18.5

MCKFLIH Limitations

There are no known or anticipated limitations

4

L J L 4 vt

)
—J

Lt J . J . J t

3.2.19 Program Interruption First Level Handler (PIFLIH)

PIFLIH shall be added to stancdard 44PS. Its function shall be interrogation

of all program interruptions encountered during simulation.

3.2.19.1 PIFLIH Description

This routine shall place simulation in "time-out" mode. It then determines

iif interruption occurred during SS or DCSG processing. If SS was in control,

a message shall be output and control given to SSEXIT to terminate the simulation.
If DCSG was in control, status shall be saved. The interrupt flag, register 12,
shall be set to 0 and register 1 shall be set to the address bf the Program old
PSW. Next, control ghall be given to SVCFLIH2.

L

NS S U N G

-

t

§
—

B T U [S A SR

i
-

3.2.19 .3 PIFLIH Interfaces

PIFLIH Inputs are:

o Interval Timer
o Program Interruption old PSW
o The 16 general registers

Outputs are:

o Interrupt flag in register 12

o Old Program PSW address in register 1

Called routines are:

o SSCNTMCI ' | -
o SVCFLIH2
o SSSAVER

Calling routines are:

None. Contrél shall be recei.vebd when a program interruption occurrs.
Tables and constants used: |

o Program oldv PSW

3.2.19 .4 PIFLIH Data Organization

This routine shall reside within the 44PS area of core storage

3.2.19 .5 PIFLIH Limitations

There are no known or anticipated limitations.

3.2.20 SVC First Level Handler (SVCFLIH)

SVCFLIH shall be added to the standard 44PS. Its function shall be

interrogation of all SVC interruptions during simulation.

3.2.20.1 SVCFLIH Description

This routine shall place the simulation in "time-out" mode. It shall then

determine if the SVC was issued by SS or a DCSG program. If issued by

SS the SVC shall be testgd as a simulation terminator. SSEXIT shall be
entered when termination is requested. If the SVC was issued for a 44PS

service routine, the SVC handler of 44PS shall be entered.

If the SVC was issued.by a DCSG program status shall be saved. Register

12, the interrupt flag, shall be set to 4, and the address of the SVC old
PSW shall be placed into register 1.

SVCFLIHZ2 shall containue processing by saving the old PSW that cortesponds
to the interrupt type and giving control to SSIRPT.

L3

LoJ

L J u J

-

S I S R I R

e

3.2.20 SVC First Level Handler (SVCFLIH)

SVCFLIH shall be added to the standard 44PS. Its function shall be

interrogation of all SVC interruptions during simulation.

3.2.20.1 SVCFLIH Description

This routine shall place the simulation in "time-out" mode. It shall then
determine if the SVC was issued by SS or a DCSG program. If issued by
SS the SVC shall be tested as a simulation terminator. SSEXIT shall be

entered when termination is requested.

If the SVC was issued by a DCSG program status shall be saved. Register
12, the interrupt flag,_shall be set to 4, and the address of the SVC old
PSW shall be placed into register 1.)
SVCTLIH2 shall continue processing by saving the old PSW that corresponds
to the interrupt type and giving control to SSIRPT.

L

L 4

J

L J . J Lt J v

L

-

L

3.2.20.3

SVCFLIH Interfaces

SVCFLIH Inputs are:

o}

o

)

o

Outputs are:

o

o

Called routines are:

(¢]

o

(o]

Interval Timer
SVC old PSW
The 16 general registers

Location of the old PSW corresponding to the interruption type

Contents of an old PSW stored in CREGION (INPSW)

Interrupt flag in register 12

SSSAVER
SSIRPT
44PS SVC Handler

Calling routines are:

PIFLIH
EXTFLIH
MCKFLIH

SVC interruption occurrence

Tables and constants used:

(0]

3.2.20.4

CREGION - ADSSIRPT, INPSW

SVCFLIH Data Organization

This routine shall reside within the 44PS core storage area

3.2.20.5

SVCFLIH Limitations

General Register 10 shall be destroyed when any SS or User routine issues

an SVC referencing a 44PS SVC service routine.

‘1

-

L J L J t 4 u

L.J

L

3.2.21 External First Level Interrupt Handler (EXTHLIH)

EXTFLIH shall be added to the standard 44PS. Its function shall be

interrogation of all interval timer (external) interruptions.

3.2.21.1 EXTFLIH Description

An external interrupt occurs when the interval timer elapses. EXTFLIH
shall receive control at this point and the simulation shall be placed

in "time-out" mode. A check shall then be made to determine if SS or
DCSG was in control, If SS was in control ,. the interval timer shall

be reset to 0 and control returned to the point of interruption. Otherwise,
status shall be saved. The interrupt flag, register 12, shall be set to

8, register 1 shall be set to the address of the External Old PSW, and.
control given to SVCFLIH2. |

L J 4

J o J L4

L

|
)

L

J

L

L 4 Lt J L_J

L

LJodJ vJ o

3.2.21.,3 EXTTFLIH vInterfaces

EXTFLIH Inputs are:

o External old PSW
o The 16 general registers
o} Interval Timer

Outputs are:

o Resettind of the interval timer *
o Interrupt flag in register 12
o) Address of External old PSW in register 1

Called routines are:
o SVCFLIH2
Calling routines are:
None. Control shall be received by the occurrence of an external interruption. °
Tables and constants used:

o Interval Timer

o} External old PSW

3.2.21.4 EXTFLIH Data Organization

This routine shall reside within the 44PS core storage area

3.2.21.5 EXTFLIH Limitations

There are no known or anticipated limitations.

L

J

L

L J .

LJ Lt J 3 4

B

L J L

J

L

L J v J v 4

(AN R NN B BN B S

3.2.22 SS EXIT Routine (SSEXIT)

This routine shall reset the 44PS PSWs. The address pointing to the PSWs

shall be saved by the Initialization Phase.

3.2.22.1 SSEXIT Description

PSW addresses shall be picked up from CREGION. SSEXIT shall reset the
four new PSWs saved by the Initialization Phase and issue an SVC CANCEL

to terminate the simulation.

~

J

L 4 L

J

L

L4 L J

J

L J L

Lt J

tJ tJ rJ v

3.2.22.3 SSEXIT Interfaces

SSEXIT Inputs shall be:
e} The address of the saved PSW to be reset

QOutputs are:

o Resetting 44PS SVC new PSW

o Resetting 44158 External new PSW

o Resetting 44PS Program new PSW

o Res'e'tting.44PS Machine Check new PSW

An SVC 15 (CANCEL) shall be issued to terminate the simulation.

Tables and constants, used:

o CREGION - STAT44A
o STAT44 - All items

3.2.22.4 SSEXIT Data Organization

This routine shall reside within the modified 44PS section.

3.2.22.5 SSEXIT Limitations

There are no known or anticipated limitations.

L L J L

L

S S B

L 4 L

Lt J

L oL LU

3.2.23 Status Saving Routine (SSSAVER)

This routine shall save the contents of the 16 general registers and the

interval timer.

3.2.23.1 SSSAVER Description

This routine shall store thc? contents of the registers directly, except
for register 1 whose contents shall be found in a temporary save area.
The value of the interval timer shall also be found in the temporary

save area, and it shall be picked up and plaéed in CREGION along with

the registers.

Lo

L J L J

L J

L 4 L

-

Ly g L 2oL

J

L

Lt J v 4

NS B WS DR SRS B

3.2.23.3 SSSAVER Interfaces

SSSAVER Inputs are:

o The contents of the 16 general registers

o The value of the interval timer

Outputs are:

o) The contents of the 16 general registers placed in CREGION
o The interval timer value placed in CREGION

This routine shall not call any other routines.
This routine shall be called by:

o SVCFLIH ' . -

o) MCKFLIH
o EXTFLIH
o) PIFLIH

Tables and constants referenced:

o CREGION - GRS, ITVAL

o SSTEMPSV (contents of register 1 and the interval timer shall be
found here) .
3.2.23,4 SSSAVER Data Organization

This routine shall reside within the 44PS core storage area,

3.2.23.,5 SSSAVER Limitations

There are no known or anticipated limitations.

Lt

L J

L L 4t

J

L

L

gL

_J

L L u

L

3.2.24 SS Set Up Routine (CLKINIT)

This routine shall be entered at the conclusion of SS Initialization Phase

processing. The functions it performs are:

o Initialize the interval timer.

o) Load the user provided routines and give control to
SSAMUIN to initialize the DCSG ECS
o Give control to the DCSG ECS

3.2.24.1 CLKINIT Description

Upon entry, CLINIT shall set up addressibility for itself and the rest of SS.
The address of the in-terrupt proc;essor (SSIRPT) shall be stored in the
communication region. The address of CREGION shall be entered to
initialize the DCSG ECS. An initial value shall then be set into the DCSG
ECS interval timer location, CREGION, and the interval timer. Next, control

shall be given to the DCSG ECS address specified in the ECS IPL PSW,

If the user routines are not found in the phase library, the simulation job

shall be cancelled.

=

_J

L L 4 L

J

S N RS B SR

—

3.2.24.3 CLKINIT Interfaces

CLKINIT shall be invoked at the conclusion of the Initialization Phase.

The address of CREGION shall be obtained by issuing an EXTRACT SVC.
DCCHK and ADSSIRPT shall be set during CLKINIT processing.

Subroutine SSAMUIN shall be a user provided routine that performs Initial
Program Loading of the DCSG. SSAMUIN can use any of the routines
available to SS, since SS base registers (3, 4+, and 5) shall be set. After
bringing in the ECS, SSAMUIN shall return to CLKINIT with an indicator in
register 0. This indicator shall be set to 0 if the IPL procedure was normal,

and non-zero if an error occurred.

-

Restrictions placed upon SSAMUIN are:

o} The contents of registers 3, 4, and 5 may not be destroyed
o Return to CLKINIT shall be made by branching on register 14
o Base registers must be set upon entry to SSAMUIN

SSAMUIN Inputs consist of:

o Register 12 pointing to COMREG

o) Starting address of where to load the ECS shall be contained
in COMREG

The outputs SS shall expect from SSAMUIN are:

e} Loading of the DCSG ECS.

o Indicator in register 0
Routines called by CLKINIT are:

o SSAMUIN
o 44PS SVC service routines

o DCSG ECS

-

—/

L

C J

L 4

Routines calling CLKINIT are:

o SSLDSS

3.2.24.4 CLKINIT Data Organization

This routine shall reside within the SS Processing Phase area of core storage.

3.2.24.5 CLKINIT Limitations

There are no known or anticipated limitations.

3.2.25 Interrupt Determination Routine (SSIRPT)

SSIRPT shall receive control from the first level interrupt handlers (PIFLIH,
EXTFLIH, MCKFLIH, SVCFLIH). It shall determine the type of interruption

and pass control to the proper processor.

3.2.25.1 SSIRPT Description

This routine shall create an old PSW in COMREG which is like the one the.
DCSG programs expect, This is done so SS may monitor the items in the
PSW and regulate the flow of events. After creating the PSW, SSIRPT
determines if an external interruption caused entry. If it did, EXTH
recieves control. If not, segment running timé and DCSG total running
time are incremented with a call tb UPDTCLK. After regaining control,
SSIRPT shall reliné;uish control to one of the specialized interrupt handlers

(PIH, SVCH, MCKH),

J

L

L

-

L

Lo

Lo

t_J

Lt

GRS B S

3.2.25.3 SSIRPT Interfaces
SSIRPT Inputs shall be:

o Interrupt flag

Outputs are:

o Creation of DCSG PSW for SS interrogation

o Base register settings for the remainder of SS

Called routines are:

(e} EXTH

o PIH

o UPDTCLK
o SVCH

o MCKH

Tables and constants used:

CREGION - DUMPSW, INPSW
o COMREG - OPSW

3.2.25.4 SSIRPT Data Organization

This routine shall be resident within the SS processing phase area.

3.2.25.5 SSIRPT Limitations

There are no known or anticipated limitations.

|

L

Lo

L9 LJ L gL dJg oo d

(U A A [(N R GRS D S

L J

-

L

3.2.26 Update Interval Timer (UPDTCLK)

This routine shall increment the DCSG and Segment running times and reset

the DCSG ECS interval timer location,

3,2.26.1 UPDTCLK Description

UPDTCILK shall increment total DCSG and segment running times, This shall
be accomplished by subtracting the current interval timer value from the timer
value at which SS last had control, This time, in micro seconds, shall be
converted to milliseconds and added to the DCSG and segment running times.
Next, the DCSG timer location shall be examined. If the current value is
unchanged from the value at last SS control, the DCSG timer location is re-
duced by the At complilted from th'e interval timer, If the current value is
changed, the DCSG timer location is converted and stored in the interval

timer location. This conversion is effected by multiplying the DCSG timer

value by 77)(1103 micro seconds x _1_,‘_), Before exit from UPDTCIK the current
milliseconds 13
times are saved for the next entry.

3.2.26.3 UPDTCLK

This routine requires that register 13 point to CREGION,

Output from this routine shall consist of:

o Resetting the ECS interval timer location

) Updating DCCHK, ITVAL, and DCSGLAST

UPDTCLK shall not call any other routine.

SSIRPT shall be the only calling routine.

Tables and constants used are:

o CREGION - ITVAL, SEGRUN, DCCHK
o COMREG - SIMTIM

L J L

J

3.2.26.4 UPDTCLK Data Organization

This routine shall reside within the SS processing phase area.

3.2.26.5 UPDTCIK Limitations

This routine shall assume the use of a high resolution timer.

As DCSG timer values increase, SS timing error shall increase., This results

from the conversion factor between the 4Pi timer and the PSCS/LPSS timer.
The conversion factor could be carried at greéter accuracy but this would not

be commensurate with other timing considerations.

Timing accuracy may be effected if the DCSG timer location is changed more

than once between SS control points.

J

L

J

L

L4 v

A

Lo

3.2.27 Progr'am Interruption Handler (PIH)

This routine shall determine the cause of a Program interruption. There shall be

four groups of instructions determined:

o 1/0

o Status - switching

) Privileged, other than above

o Other exceptions (operatipn, addressing, etc).

3.2.27.1 PIH Description

PIH shall determine if an "other exception" (error) caused fhe interruption. If it.
did, SSDBUG shall be entered to output debugging information. If it was not

an exception, PIH shall determine if the interruption was caused by the ECS
executing one of the I/0 instructions. If this is found to be true, a user pro-
vided routine shall be enterd. If the instruction was found to be a LPSW or
SSM, routines LPSWH and SSMH shall be entered. If none of the above

operations caused the interruption SSPROP, a user provided routine, shall

be entered.

3.2.27,1.1 | R'e.quirements for user provided routines

.

3.2.27.1.1.1 SSSIO

This routine shall be called by PIH when a SIO instruction is encountered.

SSSIO shall simulate the required I/O operation,

]

L J L

.J

L

3.2.27.1.1.1.1 Inputs to SSSIO

The I/O Equivalence Queues and tables, along with table COMREG, shall
contain all inputs necessary to insure proper simulation. General register
12 shall contain the address of COMREG. The input items within COMREG
shall be:

o Program unit name initiating the I/O
o Old Program Interruption PSW

o Channel Address Word

o Starting address of DCSG ECS

o Pointer to I/O Equivalence Queues
o] Actual instruction causing interrupt
o Address of Datalook Subroutine

See 3.1. for a éomplete description of the table and items.

Register 13 shall point to the contents of the DCSG registers which may be used

in forming the DCSG device address.the registers are stored from 0-15.

3.2.27.1.1.1.2 Outputs expected from SSSIO

-

In addition to simulating the requested 1/O, 8S expects the following items

(if applicable during simulation) to be set in COMREG:

o A condition code setting, that may be tested by the DCSG ECS,
placed in OPSW

o) A CSW that may be interrogated by the DCSG program in CSWL

o A return address setting in RETAD (see 3.1.5.6)

3.2.27.1.1.1.3’ SSSIO“ R‘estri-cfio‘ns

The following restrictions and conventions must be adhered to:

o Registers 3 and 4 may be used if reset before calling or

returning to any SS routine.

o

L

S R SRR

J

L

o) SVC conventions as stated in IBM System/360 Model 44
Programming System Guide to System Use (Form C28-6812)

o A base register must be provided

o References to low core should not be made

o Exit from SSSIO shall be to the address specified in item RTNAD of
-COMREG '

o SS subroutine linkage

3.2.27.1.1.2 SSHIO | .

This routine shall be called by PIH when a HIO instruction is encountered.

The function of this routine shall be to simulate the HIO request.

3.2.27.1.1.2.1 Inputs to SSHIO

SS shall make available all inputs specifiedin 3.2.27.1.1.1.1.

3.2.27.1.1.2.2 Qutputs from SSHIO

The outputs from SSHIO should bethe same as 3.2.27.1.1.1.2.

3.2.27.1.1.2.3 SSHIO Restrictions

SS shall expect SSHIO to conform to the restrictions and conventions specified

in3.2.27.1.1.1.3.

L

L

(U

Lo

L

RS R U S R B G

.

t

3.2.27.1.1.3 SSTIO

This routine shall be called by PIH upon recognition of a TIO instruction.

SSTIO shall be expected to simulate the request.

3.2.27.1,1.3.1 Inputs to SSTIO

The inputs to SSTIO shall be the same as 3.2.27.1.1.1.1.

3.2.27.1.1.3.2 Outputs from SSTIO

-

The outputs from SSTIO should be the same as 3.2.27.1.1.1.2.

3.2.27.1,1.3.3 SSTIO Restrictions

S8S shall expect SSTIO to conform to the restrictions and conventions

specified in 3:2.27.1.1.1.3.

LJ v J

L

3.2.27.1.1.4 SSTCH

This routine shall be called by PIH upon recognition of a TCH instruction.

SSTCH shall be expected to simulate the request.

3.2.27.1.1.4.1 Inputs to SSTCH

. The inputs to SSTCH shall be the same as 3.2.21.1.1.1.1.

3.2.27.1.1.4.2 OutputsfromSSTCH

The outputs from SSTCH should be the same as 3.2.27.1.1.1.2

3.2.27.1.1.4.3 SSTCH Restrictions

SS shall expect SSTCH to conform to the restrictions and conventions specified

in3.2.27.1.1.1.3.

3.2.27.1.1.5 SSPROP

This routine shall be called by PIH upon encountering any privileged operation
not already mentioned in this section. S8 shall exioect SSPROP to recognize the

operation and take appropriate action.

3.2.27.1.1.5.1 Inputs to SSPROP

All items in COMREG shall be available. Register 12 shall contain the address
of COMREG. Register 13 shall point to the contents of the DCSG registers.

3.2.27.1.1.5.2 Outputs from SSPROP

The return flag must be set upon return to SS.

3.2.27.1.1.5.3 SSPROP Restrictions

~ SS shall expect SSPROP to conform to the restrictions and conventions specified

in3.2.27.1.1.1.3.

L

Lo

J

L

[I B

oL

3.2.27.1.1.6 Términating the Simulation

If, for any reason, the simulation is‘to be terminated, an SVC 9810 should

be issued. This shall reinstate 44PS status and cancel the remainder of the

job. An appropriate message may be output by using the SS Debugging Aids
Routines.

3.2.27.1.1.7 | 'SASRe'sidventRoutines

This section shall reference SS routines that may be of value to the user.

3.2.27.1.1.7.1 SSDBUG

This routine may be entered for the purpose of outputting trace information

of the program unit that had control at the time of interruption.)
(see 3.2.34)

3.2.27.1.1.7.2 SSPDUMP

This routine may be entered to output selective dumps of core. It may aiso
be used, if desired, to output DCSG outputs after encountering a SIO.

Section 3.2.35 contains the SSPDUMP description.

-

3.2.27.1.1.7.3 DATALOOK

L

This routine shall provide the core location of the inputs specified in the

equivalence tables for data located in core (see 3.2.37).

L J

=

et I

3.2.27.3 PIH Interfaces

PIH shall expect register 13 tc contain the address of CREGION. If the
operation was a SIO, the contents of DCSG register 0 must contain the Program
Index Value (PIX) for use by SS to index into the DCSG ECS Resident Program

List (RPL) to extract the program unit name that initated the request.

Outputs from PIH are:

o Return flag shall be set

o Register 12 shall be set to start of COMREG

Routines called:

SSPROP
SSSIO
SSTIO
SSHIO
SSTCH
LPSWH
SSMH
SSDBUG
SSRTN

SSIRPT shall be the only calling routine.
Tables and constant used:

o CREGION - INPSW, DCSGST, ADECSCR

o] COMREG - PUNAME, RETAD, INSTR, OPSW, CAWL
o ECSCOMRG - SLRPL

3.2.27.4 PIH ADéta Orgénizafion

This routine shall reside within the SS processing phase area.

3.3.27.5 PIH Limitations

There are no known or anticipated limitations.

L .J

—

|

3.2.28 SVC Interruption Handler (SVCH)

This routine shall determine if the SVC issued should cause SS intervention.

The SVCs that shall cause SS activitv are:

o PUEND
o SEGEND
o PDUMP

o 44PS service routines

3.2.28.1 SVCH Description

SS shall determine if an SVC is of the above-type. With PDUMP SVCs
register 1 shall be reset from CREGION and PDUMP shall be called. TUpon
return from PDUMP, the return flag shall be set to 0 and SSRTN shall be
entered. If an SVC is a SEGEND or PUEND type, SSDBUG shall be entered
to output trace and debugging information. SSRTN shall be called afte;r
returning from SSDBUS with the return flag set to 96. If an SVC is issued
for a 44PS service routine, all saved regisfefs shall be reset and the SVC
reissued. Upon return, the return flag shall be set to 9, and control shall
be given to SSRTN. If an SVC is ﬁot one of the abbve, a special user
provided routine, SSCKIO, shall 'be entered. If an 1/0 interrupt is to be
generated, SVCH shall reset the interruption location to point to the SVC
instruction. This allows the DCSG ECS to think the I/O interruption occurred
before the SVC was issued. The return flag shall then be set to 120 and
SSRTN shall be entered.

3.2.28.1.1 SSCKIO

This routine should be inserted to initiate an 1/0 interruption corresponding
to a previous SIO or to an 1I/O event, If inciuded, SSCKIO will create a

more realistic environment for the 1/0 simulation.

3.2.28.1.1.1 Inputs available to SSCKIO

SS shall make available all inputs specified in 3.2.27.1.1.1. including

the address of the 1I/O events table in COMREG.

=

J

A

L

J

L

J

L

(R SN U B SR tJ

-

-

3.2.28.1.1.2 Qutputs from SSCKIO

The following items in COMREG shall be expected to be set:

o A condition code setting in OPSW
o A CSW to be passed to DCSG programs
o A return address setting in RETAD of hexadecimal 'FF' if an 1/0

interruption is to be generated; a zero setting if an interrupt is not -

to be generated.

3.2.28.1.1.3 _ SSCKIO Restrictions

SS shall expect SSCKIO to conform to the restrictions and conventions specified

in3.2,27.1.1.1.3. Return from SSCKIO shall be made by branching on register
14.

3.2.28.3 SVCH Interfaces

SVCH shall expect register 13 to point to the start of CREGION.

SVCH shall output a return flag setting in RETAD.

Routines called are:

o SSRTN

o SSCKIO

o SSDBUG

o 44PS SVC service routines

Tables and constants used:

CREGION - GRS, SEGRUN
COMREG - RETAD, OPSW

3.2.28.4 SVCH Data Organization

This routine shall reside within the SS processing phase area.

3.2.28.5 SVCH Limitations .

There are no known or anticipated limitations

L

Lo

L

Lo

bt

3.2.29 External Interruption Handler (EXTH)

This routine shall process external interruptions and update DCSG total and

segment running times.

3.2.29.1 EXTH Description

The last value set into the DCSG ECS interval timer location DCSGLAST shall

be checked against the current value of the DCSG ECS interval timer location.

If they are not equal, DCSGLAST shall be added to segment and DCSG total
running times. The current value of the DCSG ECS interval timer location
shall be converted and set into DCCHK and ITVAL, the return flag shall be set
to 0, and SSRTN shall be called. If the values were the same, the running
times shall be incremented; a negative one set into the DCSG interval timer
location; a value large enough to allow the DCSG ECS to recover shall be

set into DCCHK and ITVAL; SSDBUG shall be entered to output debugging
information and SSRTN shall be called with the return flag, RETAD, set to 88.

3.2.29.3 EXTH Interfaces

EXTH shall expect.register 13 to be set to the start of CREGION.,
EXTH shall update running times and set RETAD,
Routines called by EXTH are:

o SSDBUG
o SSRTN

. Tables and constants used:

o CREGION - ITVAL, DCSGRUN, SEGRUN, ADECSCR

o) COMREG - RETAD, SIMTIM
o ECSCOMRG - DCSG ECS interval timer location

3. 2.29.4 EXTH Data Organization

This routine shall reside within the 8S processing phase area,

3.2.29.5 EXTH Limitations

There are no known or anticipated limitations.

L4 L _J

|

3.2.30 Machine Check Interruption Handler (MCKH)

This routine shall determine whether the DCSG PSW has its machine check

mask on.

3.2.30.1 M'CKAH'Description

Upon entry, MCKH shall set the dump flag to indicate a special dump. A
test shall then be made to determine if the DCSG machine check bit is on.
It it is, a message shall be output through SSDBUG and the return flag shall
be set to 112, If the machine check bit is off a message shall be output

and the run terminated.

L

J

L J L 4t

N

J

L

L4

L

L_; s

-

L

3.2.30.,3 MCKH Interfaces

Register 13 shall be set to CREGION before entry to this routine.

Outputs shall consist of special messages written through SSDBUG and

setting of the return flag.
Routines called by MCKH shall be:

o SSDBUG
o SSEXIT (through an SVC)

-

Tables and Constants to be used:

o CREGION - DUMPSW
o COMREG - RETAD .

3.2.30.4 MCKH Data Organization
This routine shall reside within the SS processing phase area.

3.2.30.5 MCKH Limitations

There are no known or anticipated limitations.

vt

|

T U T

L

L

-

-

pp—

t

3.2.31 DCSG Return Routine (SSRTN)

This routine shall reset status before issuing a LPSW to return to the DCSG
program. SSRTN shall determine where the return is to be made by interro-

gating the return flag (RETAD).

3.2.31.1 SSRTN Description

The DCSG interval timer location éhall be updated with a new value computed
in UPDTCIK or EXTH; A CSW value shall be placed in the DCSG CSW
location. RETAD shali then be checked to determine where the return point
shall be. The returh may be to the point of interruption, DCSG external
interruption handler, DCSG I/0 interruption handler, DCSG SVC interruption
handler, DCSG program interruptibn handler, or DCSG Machine Check interrup-
tion handler. If the return is to one of the interruption handlers, the dummy
PSW (DUMPSW) shall be reset from the DCSG ECS new PSW location
corresponding to the interruption and an old PSW containing the DCSG

status previously shall be set.

L J

r 4 v 4 v 3 _d

J

(-

L

=y L L

3.2.31.3 SSRTN Interfaces
Inputs to SSRTN:

o A flag setting in RETAD
o An updated old PSW in OPSW

Outputs from SSRTN shall consist of:
o Resetting a DCSG old PSW location corresponding
to the type of interruption to be generated
o) Resettir:lg DCSG general registers
SSRTN shall not call any routines.

Tables and constants used:

o CREGION - OPSW, GRS, ITVAL, INPSW, DUMPSW
o COMREG - OPSW, CSW, RETAD

3.2.31.4 SSRTN Data Organization

This routine shall reside within the SS processing phase

3.3.31.5 SSRTN Limitations

There are no known or anticipated limitations

J

L

L J

J

)

)

L

[

N S [R R B

b}

3.2.32 Set System Mask Handler (SSMH)

This routine shall process a SSM instruction issued by the DCSG ECS. If
an error is found while processing the instruction, a message shall be output

and the error indicated to the DCSG ECS.

3.3.32.1 SSMH Description

This routine shall call ADDCK to compute the address of the new system mask
and to determine if an addressing exception would result by the instruction. If
it would, debugging information shall be output and OPSW shall be reset to
reflect the error, RETAD shall then be set to 104 and control passed to SSRTN.
Otherwise, the system mask in DUMPSW is reset. Next, SSCKIO shall be
entered to determine if an I/O interruption may be forced on the ECS. ff it may,
RETAD is set to 120 and control is given to SSRTN. If no I/O interruption is

to be generated; control is given to SSRTN with RETAD set to 0.

L J L

J

Lt J L J L

L+ L

L J

R G

L

S

J

L

L

-

L

L

= v J L !

A

3.2.32.3 SSMH Interfaces

Inputs to SSMH consists of:

o Register 13 set to the start of CREGION .
o The SSM instruction in INSTR

| Outputs consist of:

o) resetting OPSW
o resetting DUMPSW
o setting RETAD

PTH shall be the only routine calling SSMEH.

Called routines are:

o SSRTN
o ADDCK
o SSCKIO

Tables and constants used:

o CREGION - DUMPSW
o COMREG - RETAD, OPSW

3.2.32.4 SSMH Data Organization

This routine shall reside within the SS processing phase area.

3.2.32.5 SSMH Limitations

»

There are no known or anticipated limitations.

L L

J

L

L

L J L

L4

e L) L 4 L. oL

t—d

3.2.33 Load PSW Handler (LPSWH)

This routine shall process a LPSW instruction issued by the DCSG ECS. If
the instruction is found to be in error, a message shall be output and the

error indicated to the DCSG ECS.

3.2.33.1 LPSWH Description

LPSWH shall call ADDCK to compute the address of the dbuble word specified
in the instruction and check if an addressing exception would occur. If an
addressing exception would occur, the interruption code in OPSW is set to
reflect this, RETAD is set to 104, and control given to SSRTN. If this condition
is not found a check is made to determine if a specification error would arise.
If it would the interruptiovn code in OPSW is set to reflect this, RETAD is set

to 104 and control given to SSRTN. Otherwise DUMPSW +OPSW shall be reset
from the computed address. Next SSCKIO shall be entered to determine if an
I/0O interruption may be forced upon the ECS. If it can, RETAD is set to 120
and control given to SSRTN. Otherwise, SSRTN is entered with RETAD set to 0.

J

5 T S

L

= L

e

3.2.33.3 LPSWH Interfaces

Inputs to LPSWH consists of:

o Register 13 set to the start of CREGION
o The LPSW instruction in INSTR

Outputs consist of:

o resetting OPSW
¢ resetting DUMPSW
(o} setting RETAD

PIH shall be the only routine calling SSMH.

Called routines are:

o SSRTN
o ADDCK
o SSCKIO

Tables and constants used:

o CREGION - DUMPSW
o COMREG - RETAD, OPSW

3.2.33.4 LPSWH Data Organization

This routine shall reside within the SS processing phase area.

3.2.33.5 LPSWH Limitations

There are no known or anticipated limitations.

J

L

L

|
J

L

L

s S GOSN B S

3.2.34 Debugging Aids Routine (SSDBUG)

SSDBUG shall provide the debugging support for SS.
The routine shall provide the following services:

o Traces at segment ends and program unit ends if requested
o Automatic traces if timer interrupts, program interrupts, or

special program errors occur

o) Dump of.program unit if program interrupts or timer interrupts
occur '
o) Snapshots and Dumps of Core with each trace for a program

unit, if requested = '

o Dumps of selected DCSG Queues at unit end for particular

program units if requested

3.2.34.1 Description

The entry point to the Debugging A‘ids Routine shall be SSDBUG. The calling
sequence for the routine shall b;a: Branch and link to SSDBUG using register
14 as the return register. Register 0 must have a hexadecimal value of 96,
72, 2D, CA, or D9 depending if the trace is a SEGEND, PUEND, Timer
Interrupt, Program Interrupt, or Special Trace. If it is a Special Trace and

a message is to be output with the trace, register 1 must point to the message
buffer, If there is no message, register 1 must contain zeros. The first

byte of the message must contain the message length.

Upon entry to SSDBUG, the registers shall be stored and the current program
unit name shall be picked up. If the trace originated in the DCSG ECS, DCSG

shall be used as the program unit name.

.

L

[R R

L J

E A U T S

LIS B

j

L_:

=

The first word of each entry in the Debug Queue shall be checked to see if it
matches the program unit name. If a match is found, the SYSUNI value
associated with the real output device shall be picked up from the entry in
the table and placed in the I/O Request Control Block (RCB). When no match
is found before the end of table mark is encountered and the trace type is a
timer, Program Interrupt or Special, the SYSUNI value associated with SYSLST
shall be placed in the I/d RCB and a trace shall be given.

Depending on the trace type, traces containing different items shall be

output by SSDBUG. However, many items shall be standard for all traces.

The program unit name, contents of DCSG general registers, trace type label,
the interrupt locatioh, and timer information shall be standard for all traces.
The current segment entry point shall be a trace item except when the trace

is a Special trace for the DCSG ECS.

The Interruption Code shall be a trace item for Program Interrupt traces; the
next segment entry point shall be given with a SEGEND trace; and program
unit entry points shall be given with PUEND traces. Messages, if provided,

shall be trace items with Special traces.

-

SSDBUG shall dump the program unit if the trace is a timer trace Or a program
interruption trace. If a program interruption occurs in the DCSG ECS, SSDBUG
shall dump the DCSG ECS.

SSDBUG shall determine if any dumps were requested for the particular program
unit. If dumps were requested, the keyword flags and dump limits shall be

used as dump parameters.

L4 v J .

—

t.,‘_,:
——

When the UNC flag is on, the starting and ending locations of the DCSG
universal common shall be set as dump limits for the SSPDUMP routine,
SSPDUMP shall be called to dump the area of main storage defined by these
dump limits. If the PVC flag is on, the address and size of the program

unit's private common shall be picked up from the PCB. The dump limits shall

be determined and SSPDUMP shall be called to give a snapshot of that core

area.

If the PCB flag is on, i;he PCB's size shall be found in the PCB and dump
limits shall be determined. These limits shall be set as dump parameters and

SSPDUMP shall be called again to give a snapshot of the area specified.

The last word of the Debug Queue entry shall be chec.ked. to see if it is
non-zero. If it is zero, no dump limits were specified for this program unit
so the trace type shall be inspected to determine what information is to be

output next. However when it is non-zero, it shall point to an entry in the

option list.

The pointer shall be loaded into a regiéter and the table entry checked to see
if the limits were given as hex displacements or symbols. When they are
given as symbols, the symbol lehgth and symbol shall be picked up from

the Option List. If they are specified as displacements., the displacements

shall be used to determine the effective dump addresses.

The address of the start of the program unit shall be picked up from the PCB.
The dump limits shall be picked up and added to the text address to form
the dump addresses. These addresses shall be set as parameters for SSPDUMP

which shall be called to dump this segment of core.

When the dump limits are determined to be symbols, the length of each
symbol shall be loaded and the symbols picked up. The symbol dictionary

-

Lo

-—

&

=

shall be searched to find the core address of each symbol. When both
addresses are determined, they shall be set as dump parameters for the

PDUMP routine. If either symbol remains unresolved, no dump shall be

given.

A check shall be made to see if any more dumps have been requested. If
not, a list shall be made to see if the trace is a PUEND trace. When this
test proves positive, a search shall be made of the Queue Dump Queue. If

the queue dumps have been requested for this program unit, they shall be

output at this time.

Switches that have been set shall be cléared and registers that have been

saved restored. Exit shall be made to the calling program.

3.2.34.3 " Interfaces

The Debugging Aids Routine SSDBUG shall have the following interfaces:

a. Input

Inputs to SSDBUG shall be a pointer to the external message

buffer when a special tracg is to be generated.

The Debug Queue and Option List shall contain information about which programA
units shall require debugging aids and which areas of core shall be dumped

with a program trace. Figure 3.1.5.6-1 shows the format and content of

Debug Queue and Option List.

The Queue Dump Queue and Queue Dump Table shall contain information about
which DCSG queues shall bé dumped at the end of which program units. Figure

3.1.5.7-1 shows the formét and content of the list and table.

b. Output
OQutputs from SSDBUG shall be trace information placed in the
PRNTLN buffer area for SSDPUT, the pointers to an external

message buffer for SSDPUT, and dump limits which shall be

parameters for SSPDUMP., Figure 3.2.34.3-1 is a comparison

of the different traces. Figures 3.2.34.3-2 - 3.2.34-6 are
schematic comparisons .of formats and contents of SEGEND,

PUEND, Timer Interrupt, Program Interrupt or Special Trace.

Subroutines called:

o SSDPUT (3.6.36)

o SSPDUMP (3. 2.35)
o DATALOOK (3. 2.37)
o BI2HEX (3. 2.39)

o GETPTRS (3.2. 40)

Subroutines Calling SSDBUG

The other Computer Program Components which shall call SSDBUG are:

o

(e]

(@)

O O oO

PTH (3. 2. 26)

SVCH (3.2.28)

EXTH (3.2.29)

MCKH (3.2.30) . - -
LPSWH (3.2.33) '

SSMH (3.2.32)

The external tables and buffers which shall be used by SSDBUG are:

o

O O o O

3.2.34.4

PRNTLN buffer
DEBUG Queue
DEBUG Option List
Queue Dump Queue
Queue Dump Table
CREGION

SSDBUG Data Organization

There shall be no unique tables for SSDBUG. The SSDBUG routine shall be

resident within the SS Processing Phase.

3.2.34.5

Limitations

Messages to be output with Special Traces shall be restricted to 131 bytes,

3,2.34., -1 Debugging Aids Comparison Chart

L. J

TRACE SEGEND PUEND TIMER PROGRAM SPECIAL
. ab
Program Unit Name X X
Trace Type Label X X
Location of interrupt X X
(OLD PSW)
b
Current Segment X X
Entry Point
Interruption Code
Next Segment Entry Point
Timer Information X X
Unit Entry Point X
Contents of Registers X X
Message X
DUMP
Dump of Program Unit
Optional Dumps of Core X Xb
Queue Dumps X
a DCSG is listed when interrupt occurred in the
DCSG ECS.
b These items are output with a special trace if
the trace originated in a program unit,

| —

-

b=

J

J L J

L

S T S

L 4 L

L

Figure 3.2,34-2.

~4

A Segment End trace consists.of the following:

o) the Program Unit Name
o) a label noting segment end
o the location of segment end
(PSW at interruption and interrupt point)
o} the current segr;nent entry point
o) the next segment entry point
o timer information
o the co.ntents of the general registers

o optional core dumps

J

L

-PSW at Interruption &
Program Unit Name Segment End Label —___Interrupt Point_______
Current Segment Next Segment . ,
Entry Point Entry Point Timer Information

General Registers 0-7

General Registers 8-15

L J o4 _J

o S

L

Optional Core Dumps

. [B U USSP
e e e e e e s = Nl e T T T . =

PR — — ~ —~ 7
e T e e e . — N~ - —~

L J

=

b

_ b=

L

J

L J bt 4 L

|

L J LU

L J

L

L

L

Figure 3.2.,34-3 .

A Unit End trace consists of the following:

o the Program Unit Name

o a label noting program unit end

o the location of program unit end °
(PSW at interruption of interrupt point)

o) the current segment entry point

o unit entry point

o timer information

o the contents of the general registers

o optional core dumps L

o cneve dumps -

. ; .
Program Unit Name | Unit End Label P ot Interruption |

Current Segme nt

_Entry Point | Unit Entry Point , Timer Information

General Registers 0-7

General Registers 8-15

O‘ptional‘Core Dumps

o

N e e e e T e e e N e e
.
Queue Dumps
R‘__ ~———— T T e e e
N e TN e e e e T \—S’"\\N.—y e e e e,

Lo

L

J

L

L J v J

J

(NS I U N SR B

B R N R

L

b—v b= = L L

Figure 3,2.34-4

A Timer Interrupt Trace consists of the following

o} the Program Unit Name
o) a label noting timer interrupt trace
o. the interrupt location

(PSW at-interruption & interrupt point)

e} the current segment entry point
o timer information
o the Ac.OntenT:_s of the general registers
o dump of program unit '
o optional core dumps
, PSW at Interruption -
Program Unit Name Timer Trace Label Interrupt Point

Current Segment Entry Point

Timer Information

General Registers 0-7

General Registers 8-15

-

Dump of Program Unit

.Optiohai Core Dumps

————

L/_,.——\/‘“—‘-v————-——-————‘_*___/‘_———-— \./’\—\;_7

—— T ———

L

L J

J

M_J

L

S R U

b—o

e b

=

Figure 3.2 34-5.

A Program Interrupt Trace consists of the following:

o the Program Unit Name
o a label noting program interruption

o the interrupt location

(PSW at interruption & interrupt point)

o) the current segment entry point
o the interruption code

o timer information

e} the contents of the general registers

o) dump of program unit

o) optional .core dumps

Program Unit Name Label Noting

PSW at Interruption

: Program_Interruption & Interrupt Point
The Current Segment Interruption
Entry Point Code Timer Information

General Registers 0-7

General Registers 815

Dump of Program Unit

Optional Core Dumps

L

E N

J

L4 L J L 4 L J L

Lo

[B G

— b= b

Figure 3.2, 34-~%

A Special Trace consists of the following:

o) the Program Unit Name *
o a label noting a special
o) interrupt location

(PSW at interrupt & interrupt point
o the current segment entry point **
o tlmer infcrmation |
o the contents of the general registérs
(o) message .

o optional core dumps **

=

' PSW at Interruption

Program Unit Name¥* Special Trace Label Interrupt Point’

Current Segment Entry Point ** Timer Information

General Registers 0-7

) General Registers 8-15

- Message Associated with Trace

Optional Core Dumps **

e : e e ——
[J\‘__ R —— T T N e —

*This item listed as DCSG when Trace originates in executive program.,

**These items given when interrupt is in a program unit.

L

L

-

L

Lo

L

L

J

L

Lo

et I S |

b=

b

3.2.35 Core Dump Routine (SSPDUMP)

This routine shall provide selective dumps of core storage.

3.2.35.1 Description

The entry point to the SS PDUMP routine shall be SSPDUMP. The calling
sequence for PDUMP shall be: Branch and link on register 15. Register

one shall point to a parameter list. This list shall be 3 words long, aligned
on full-word boundaries. Word one shall co~ntain the starting address of the
dump. The first.byte of word two shall contain a flag indicating if the con-
tents of the DCSG general registers are wanted with the dump. The byte must
be non-zero if the registers are w_anted'. The rest of word two shall contain
the ending address of the dump: The first byte .of word three shall contain the
SYSUNI index value of the output device and the rest of word three shall point

to a message buffer or shall be zeros.

Upon entry to SSPDUMP, initialization for the dump shall be carried out. The
line count shall be zeroed for carriage control and the print buffers blanked
out. The first dump limit shall be picked up from the parameter list and
rounded to the next lower full word boundary unless it is already a full word
boundary. The second dump limit shafl be rounded to the next higher full

word boundary unless it is a full word boundary already.

The second limit shall be compared with the end address of core. If it is
larger than»the end address of core, the second limit shall be discarded and

the end address of core shall become the effective dump limit.

The SYSUNI index shall be picked up from the parameter list and put in the
I/0 request control block of SSDPUT routine. The last three byteé of the
parameter list shall be tested for zero. If they are zero, a blank header shall
be set up to cause a skip to a new page. If they are not zero, they shall
point to a header message. The address of this message shall be put in the

I/0O parameter list and SSDPUT shall be called upon to output the message
as the header to the dump.

-

A

L

Lo

o 4

L4 L

L

L

-

\
)

Before each word shall be converted from binary to hexadecimal and put into
the print line, a test shall be made to see if the end of the dump has been
reached. If it has, the line shall be completed with blanks. Otherwise the

cu:rent word shall be converted to hex, placed in the buffer, and the next

word picked up.

When a line is completed, it shall be compared with the previous line. If
it is equal, a flag shall be set on and a message prepared noting that identi-

cal lines have been foundd. The next line shall then be processed.

When a comparison proves unequal, a test shall be made to determine if the
equal flag has been turned on. -If it has, the message shall be output followed

by the dump line. However, if the flag is off, the dump line shall be output
directly. -

A count of the lines shall be maintained. A skip to a new page carriage control

command shall be issued each time a page has become full.

3.2.35.3 Interfaces

The following shall be the PDUMP interfaces:

a. Inputs
Inputs to PDUMP shall be the parameters in the three word parameter

list. Register one shall point to this list upon entry’to PDUMP. The
- list shall contain the first and second dump limits, the SYSUNI index
of the output device, ard a pointer to a header message or zeros

if no message is provided.

b. Outputs
The outputs from PDUMP shall be hexadecimal dumps of core. The
output shall go to the output device specified by the SYSUNI index

parameter,

Lo

| —

—

8

c. Subroutines called
o) SSDPUT (3.2.36)
o BI2HEX (3.2.39) .
d. Subroutines calling SSPDUMP

SSDBUG and user provided routines (if desired) shall be the only
subroutines calling SSPDUMP.

e. External Areas .
The -external tables or buffers used by PDUMP shall be PRNTLN and
PRNTLN2, output buffers of SSDPUT.

3.2.35.4 PDUMP Data Organization

PDUMP shall be resident within the SS Processing Phase.

3.2.35.5 Limitations

Dumps shall be given in hexadecimal format only.

=

L

N I R B

L J L

L4 L

Ly J

(GRS I S|

= L L

i

| nasseos BN SNS——

3.2.36 Output Service Routine (SSDPUT)

SSDPUT shall provide I/O services for SSDBUG and SSPDUMP,

3.2.36.1 SSDPUT Description

The entry point of the Output Service Routine shall be SSDPUT. Linkage shall

be effected by a branch and link instruction using register 2 as the return

register.

Upon entry to this routine, register one shall be loaded with the address of

a parameter list. A SVC5 (write) shall be given followed by a SVC6 (check).
Control shall be returned to the caller.

J

L

J

L

L J L J

L4 4 g L

e b— b—od Lo L L4 L

3.2.36.3

Interfaces

SSDPUT shall have the following interfaces:

Input_

Inputs to SSDPUT shall be the content of PRNTLN buffer if called
by SSDBUG, the contents of PRNTLN and PRNTLN2 if called by
SSPDUMP and pointers to message buffers. The contents of
PRNTLN and PRNTLNZ shall be changed dynamically depending

on the trace or dump being given.

PRNTLN and PRNTLNZ2 shall be 132 ch‘ara‘cter long buffers. The
message buffers shall be of variable length with the first byte

*

of each buffer giving its length.

Output
Output from SSDPUT shall be the traceinformation and dump

lines passed to it in PRNTLN and PRNTLNZ and the contents of

the external message buffers pointed to by the parameters passed

to SSDBUG and SSPDUMP.

The output for a program unit shall go to the device specified on

the *DEB card for the program unit.

Subroutines called

SSDPUT calls no other subroutines.

L

L J

L J 4

2

L

J

L

L o4 .4 v o L J 4o

L4

L J

' | [b L

d. Subroutines calling SSDPUT
o SSDBUG
o SSPDUMP

€. External Tables

The only external tables, buffers, constants, or control registers

used by SSDPUT shall be the external message buffers.

3.2.36.4 Data Ofganization

SSDPUT shall be resident within the SS Processing Phase. PRNTLN and
PRNTLN2 buffers shall be unique to SSDPUT although accessed by SSDBUG
and SSPDUMP ' ' - .

3.2.36.5 . Limitations

SSDPUT shall do no analysis of the supervisor return code in register 15. Any
data that does not transmit properly shall be lost. However, safeguards such

as incorrect length suppression shall be programmed into the I/O parameter

list. ,

Rl o)

l

Lo 4 e d

LoJ o oLJ L

L

R I U S N -

L

Lo

— b =

| ansupmness

3.2.37 Data Look Up Routine (DATALOOK)

DATALOOK shall provide a symbol dictionary look up for symbols that have

been included in a program unit's symbol dictionary.

3.2.37.1 Description

The entry point to the Data Look Up Routine shall be DATALOOK, The calling
sequence for the routine shall be: Branch and link to DATALOOK using register
14 as the return register. Register 1 must point to the symbol to be looked up.
The symbol area must be two words aligned on a full word boundary. The

symbol must be left justified followed by blank padding.

Upon entry to DATALOOK, regis;cers shall be stored and GETPTRS routine called

to set up the pointers to the program unit's symbol dictionary.

Upon return from GETPTRS, the dictionary shall be searched for the symbol. If
a match is not found, register zero shall be set to zeros and control returned
to the calling program. However, when a match is found, the address of the

symbol shall be placed in register zero before exit is made.

et]

3.2.37.3 Interfaces

DATALOOK shall have the following interfaces. Input to DATALOOK shall be
a pointer in register one to the symbol whose address is desired. Output
from DATALOOK shall be the address of the symbol in register zero, If the
symbol cannot be found, register zero shall contain zeros. DATALOOK shall
call GETPTRS (3.2.40). SSDBUG (3.2.34) and user supplied routine (if
desired) shall call DATALOOK. DATALOOX shall use no external areas.

3.2.37.4 Data.Organization

DATALOOK shall be resident within the SS Processing Phase.

3.2.37.5 Limitations

There are no known or anticipated limitations to the DATALOOK routine.

3.2.38 Determine Program Unit Name (DETPRUN)

This routine shall pick up the name of the DCSG program unit that had control
before the interruption occurred. If the ECS was in control, 'DCSG' shall be

used as the program unit name.

3.2.28.1 DETPRUN Description

The problem state mask in OPSW shall be checked to see if it is on. If it is,
the location of the PCB for the program'unit is obtained from SLPCB of
ECSCOMRG and the program unit name is extraced from the PCB and placed
into PU‘NAME. If the mask is off, the location of the interrupt is tested
against the end of the DCSG EQS areas. If the interrupt location is greater,
it shall be assumed the interruption was caused by a program unit. The
program unit name shall then he extraced ffom its PCB. if the DCSG ECS

was in control, 'DCSG' shall be placed into PUNAME.

3.2.38.3 DETPRUN Interfaces

Inputs shall consist of:

o OPSW in COMREG
o Address of current PCB
o Ending address of DCSG ECS

Outputs shall be the program unit name or 'DCSG" placed in PUNAME.
This routine shall be called by SSIRPT.
DETPRUN shall not call any subroutines.

Tables and consfanté used:

o COMREG - OPSW, PUNAME
0 ECSCOMRG - SLPCB, SMCORE
3.2.38.4 DETPRUN Data Organization

This routine shall be resident within the SS processing phase area.

| gl |

| I N I IO B SR

L

B

e b

ey) b

IR N (N A (N IR AU B SRR B SE R B

3.2.38.5 DETPRUN Limitations

Since program units are allowed to operate in the supervisor state, it may be
impossible to determine if the interruption occurred in the DCSG ECS or a

program unit.

3.2.39 Convert Binary to Hex (BI2ZHEX)

BI2HEX shall convert binary numbers to hexadecimal numbers.

3.2.39.1 Description

The entry point for this routine shall be BI2ZHEX. The calling sequence shall

be: Branch and link to BI2ZHEX with register 2 containing the return address.

Register usage for this routine shall be the following: Register 7 must contain
the data to be .converted, left adjusted. Register 8 must contain the count
of half-bytes to be converted. Register 5 must point to the area in core where

the converted data shall be stored.

Upon entry to the routine, the déta'shall be converted and Register 5, upon

exit shall point to the byte following the last byte converted.

3.2.39.3 Interfaces

Input to BI2ZHEX shall be the contents of registers 5,7, and 8. Qutput shall
be the hexadecimal eguivalent of the data at the location specified by register

5.

BI2ZHEX shall call no other subroutines.

The subroutines which shall call BIZHEX shall be:

o SSDBUG (3.2.34)
o SSPDUMP (3. 2. 35)

BI2ZHEX shall use no external areas.

-

L

_J

L

L4 =g v _J LoJ v

_J

L

[\ {
C 3

\
| iy

3.2.39.4 Data Organizatioh

BIZHEX shall be a SS resident routine.

3.2.39.5 Limitations

BI2HEX can convert a maximum of 8 half-bytes at a time.

3.2.40 Determine Program Unit Pointers (GETPTRS)

GETPIRS shall determine certain program unit pointers from the current program
unit's PCB,

3.2.40.1 Description

The entry point for this routine shall be GETPTRS. The calling sequence shall
be: Branch and link to GETPTRS with register 2 containing the return address.

Upon entry to GETPRTS, registers shall be stored and the program unit name
shall be checked to see if it is DCSG. When it is, exit shall be made to

the calling program. If it is not DCSG, it shall be checked against the first
word of the current PCB. If this matches, the program unit pointers shall be
determined. When the program unit names do not match, the DCSG RPL shall
be checked to determine if the proper ;;rogram unit can be located. If it
cannot, exit is made to the calling program. If it can, program unit pointers

shall be determined.

The address of the program unit shall be extraced from the PCB. Next, the
address of the program unit text, the text end address, and program unit

entry point shall be determined from information in the PCB,

A check shall be made to see if there is a symbol dictionary for this program
unit. If the is, the symbol dictionary address shall be determined. If no

dictionary exists, the address shall be set to zero.

et |

L=

(R L

_J

L

.

L.

Lo L

b L

s p—f o

Registers shall be restored and exit made to the calling program.

3.2.40.3 Interfaces

Input to GETPTRS shall be the pointer to the current PCB from SLPCB and the -
PCB of the current program unit. Output from GETPTRS shall be the pointers
extracted from the current PCB. GETPTRS shall call no other subroutines.
Other subroutines which shall call GETPTRS shall be

o SSDBUG (3.2.34)

o DATALOOKXK (3.2.37)

External areas used by GETPIRS are:

o COMREG

o CREGION

o ECSCOMRG

o Cuwrent PCB
3.2.40.4 Data drganization

GETPTRS shall be a SS resident Routine

3.2.40.5 Limitations

For interruptg caused by an SIO, DCSG register zero must contain a PIX value

to be used by GETPTRS to find the correct entry in the RPL.

| npmae |

— 4 L

L

J

=

7

J

L -]

 —

3.2.41 Address Determination and Check Routine (ADDCK)

This routine shall compute an absolute address using the contents of the
specified base register and displacement found in a LPSW or SSM instruction.
ADDCK shall also determine if the computed address shall cause an addressing

exception.

3.2.41.1 ADDCK Description

ADDC}% shall separéte the Base register and the displacement from the LPSW or
SSM instruction issued by a DCSG program. The contents of the base register
shall then be added to the displacement to form the address. Tests shail then
be made to determine if the address lies within the DCSG program area. If

it does not, an error exit is taken back to the calling routine.

e R -

t—A

4

,_! i

t

 C—

3.2.41.3 ADDCK Interfaces

Input to ADDCK:

o The LPSW or SSM instruction found in COMREG
o The 16 saved registers found in CREGION
o The starting address of the DCSG programs found in COMREG

Output from ADDCK:

IS

o) The absolute address shall be placed in register 5
Calling Sequence:

BAL, LNKI, ADDCK
B ERROR

Routines calling ADDCK:

le) LPSWH
o SSMH

ADDCK shall not call any routine

ADDCK Data organization

This routine shall reside within the processing phase of SS.

ADDCK Limitations

There are no known or anticipated limitations.

A

D

O oo C

L

e
R

/

\

0,

e

<

9

&
V
249 ¢

~HC

12
M
M
™

7

U

N

N

2Ll

&

TRV AL £

£

P

1

»

/ J|10 1| © oo

INPUT

3

1

-

-~
0
[

A7

i
g

U

-
/.4'
.

e s e e
.
2

_‘i./

3,1, 5~

FilGuzs

1./

D

D

as

M

Y

A

'P

¢

3.01.5~

FiGupe

e

Y

/:1/‘;

/
~
<

[

ER To

/

I

A4
®o--
o 5
-< -

-
<
-7

Fie wes 30,857

OULIP 10T DES _P,.ﬁ
. _

_ _) 3 n
— B s Lk Spiesey NN B U R | N 2 vu) . N
v Y N nu N b2 //
L g 2 - ol C . RS
\,._.\\ew;_h.\‘rh\m/ .W.\\\ m\ut\\ \,V R // < » m. m.'_ R
‘ ~ ‘ 2 g 7 g
| _ °) = m
“n
\y
(&Y

KeYwirkv |FLilG s

\-

v
O N
A
I wh
=9 wnen
L1ST

G
X=

y12)
) %
L
X ;\',_/)Jl
| | | t_—‘i . .
. in :’l i
* \(_';)
\Q\
(\,-)

UELLE.

=
(AN

~

n

<

P

1 \

_r~\
Y

e

<

™M

>

<<

5

x\

T

. m

(6a

W1z

.l' -~

>~

-~
DUME i
]O)
)

(7
P

-
'I.“ w \ /. ﬂu /
Y v \ Colyy
o \i? TN . i ’
4 ey Nl \ A nE,.
—~ =N 4 QUE .) o« I > >
[\ ~ << ~ L3 f./ : . ! \\\~\:\
J Qs N ' . i
- S 2 'S £ 1Q o
8 S K 210 _
. v \ N .
| - I\ I
<0 N T 10 IR 24,
M w ~h € ~ nV.v ﬁfw = \ /
-) =~ .
A A :
- _— ALKP .\
D |l ‘
LU P AL '

ne
t1re ;°
,
at

..
&

-

nesL

s b

U

SYrgs

L

L S;/P"fﬁ %

I;h\: t

hex

........

......

I

AT Y ’DL/U! +) [

Y oA Jt =
ORI Z; U

T — S

~A -
Il) I

Cf}/" | e

(| l“ I T |
Y e Lit? e ;%%fi";f;’? U £ 3’7 u & ClA
! . |

% -~ ﬁ < / . ~7
j - / Lt e v § Lo 4 A 3
gy R A P - - ~ ~hgn p S
r/ ot
:_/ //‘!,’
y .
) /i Y S
I P f(e A i

SR RA
gRS

~ -
-’ Sar’

,,,,,,,,,,,,

THBL 7w ZerS
7 S
! X
. :
- /
zL LA et]

/G

oF T/

FILE NI sy

ZF ONZXT

LVENT

NEcedy

I/

fesiricy)

3

DHT R
FLas

th)if71/ 7

s 1‘;,))_;';’7 ,(S

!
o C.’I.‘N iTiLy ST

NENTOAVENT

!

0 S

PSImuesTE

Swe srAaTu s

DATH

cronh
LG

lZNPuT

Shnutdie b

VEVILE

PR 4
(RN ERLY SRS

S TED

or

I -

DATE
FLis

. e

THNPUT | F1muthres

prryiced

AOPLELSE -

SINuLpTe D).
- ("') S’Tf)/ v/J

/’{\ _//, \
£14D ¢ R

e b oy e
RAVZEN SO Gtk SV AR R

' l COMNTL e T e L//Z/A FS .

NS 7areranrs

:
!

i

" —

:Q:
’ /3
xaht

f
1
)
i
1
i
i
i
i
i
i
)
74
a)
Yee Sirfsudy

SEEviIey
s ROLerine

ss
CONTR L

-_.N.
PSS
“n

o CRounitigs L .
’ 1
@
BT “Simaianet -
\OMTAYTS
——— . \:\ - e e
Ty

—
=
o]
7|

7
XTI 5%

SR TR

_useR
Peciin =D

)

Y _£5)

Sepvyes Rourines t

£CK

]
LA

MmacHINE
CH

'
i
!
'

()_7:3 5\/0) [)(ﬂ'"/‘x’N»)L ,

e DS g
- | ‘PRos RAMS

