AFS FUNDAMENTAL CONCEPT> AND SYSTEM LANGUAGE

THIRD EDATION

Marcuan 8, 1971

iBM CONFLIDENTIAL

P

This document coatains 1iniormation of a proprietary nature. Ail
information coutained herein saall be xept in confidence. None
of this information shall be divulyed to persons other than: I1BH
employees authorized by tae wuature of their duties to receive
such information, oOr indlividuals or organizations authorized by
the Systems Development Division 1o accordance with existing
policy regarding release of company iniormation.

Io¥ CONFADuNTIAL

/ “

AFS FUNDAMENTAL CUNCEPis AND SYsTEM LANGUAGE

TABLe OF CUNTENTS

Table Of ContentSessssvosvssossssveossonssonnssoncsnsns
PrefadCeeiassessscenssosssancossnsssnnsssssonscssseansessnsa

Gulde to Reading this RepOLlecessessssssessssssssscns
Part 1: introduction
Executive Summaty.................»...-.........

DeSigﬂ PrlncipieS...........................a..
Levels of Language DeSCLLytlONs cesessosssssss e

.

-l b
L]
w N e

*
.

Part Z: Basic concepts and Structures

UbjeCt BASCoesoss s essnnsessessonr orssssesscscsoves
Program Structure and Interpretatlofssessossesss
Environﬁeﬁt...lQI‘..O..".O 9 2 8 55 0 S DB IO LI SN S NS
Multiple CCRtrOl StLUCTULCSeeecsosascosnnnsosssnns
Resource Manaygeleille sses ess ssosvssssssscsssvsooes
Functlon SetOOQQ.‘O‘O'ODOO. S5 00 2 O 95 SO P DL e "R PSS

[SN VN CN Wi SN ¥}
e o &
O WU B e

Part 3: System Concepts and Facilities

SYStem DeSigﬂ CTlLerlAecsos ssoosssvosscnscsncssece
Environment MandyemenNtees oo sooossosssesssossssas
System Controlecescosssencesssosnsscsoscsssnessoses
System Functional Managemlenteesosssssscssssnsssses
Migration, Coexistence, LinterChanyCesessesnssass

L]

W ow W
.
(6 I~ PO R NFRpY

®

Part 4: The Man-Machine Lanterfdace in AFS

Summary Oof BasicC IafixX FOTMessssoenossssvssssssns
Examples Of SL ProOgralSsssecsssesscsscsscssvssoss

&£
®
[F2 V%)

L]

Part 5: 4 Logicai Implementation

BaSlC StruCturei...l.OOCC.l * P N B OO0 65 0O O B S 9S O S I N
' BaSlC HQChaniSmS. ® DO & 9 OO D PSS PP ISP SO VT OO O OO BP0
Key ProcCessiny ACtLAViLle©S.s ecessscsossvvossssssss

Scenarios....."0.."‘...‘. & 0 9 9D 6% OO 96 00 2 " D>

vy \n
.

.

[3
E W N e

Appendices

Giossdty‘...‘..l.'l..'...l..ﬁ..l.‘l...!'l'0'.'.'....'

IBH CONFIDuNTIAL

.

»

®

..'.....3

..'.....q

.'..0"05

.‘...'..7

* 9 90 2

L2]

2w

LR N 2 J

e 00

e &0

LI 2]

LI 2 2N

e e ¢

*® o0

o b e

o0 00

e o0

o0 09

*» 0 20

29 9 0

* e 0

® 6

.o 10
..21

v 025
L] 56
L] 75
LR 79

0092

00111
6011‘4
.o 121
s 138
«s 150

.o 161
.0 196

“200
+ 0 205
v 0 212
oo 223

ts

PREFAL

This 1s the third euitiown ot the AFS ilogical architecture by the
Poughkeepsie Advanced Systews Group, It 1s a retinement and
extension ot the second edition and 1s presented as a basis for
further work and as a vealcle tfor communication between the
severdl groups working on Als. Aithough the design effort has
concentrated ou the conceptuai level, 1t 1s beinyg supported by
concurrent i1mplementation studies tnat are discussed in the AFS
System Architecture Maanual. ’

ipM CONFIDENTIAL

GUIDE TV READING

packgyrounds wiil
this waterial in

ITHIS REPORT

find 1t expedient
ditferent ways. Th

to
is

guide suggests a reading sequeace fOor engineers, proyrammers, and

People with dizfereat
approacn the study of
system analysts.
1) All: read
2) All: read the rest
3) AlLl: study
) §) All: sxim the rest ot
(5) engineers: study
prograwmers: study
system analysts: stuay
6) Ali: study
7) All: study

1.1.1

or 1.1

e @
¢ ®
- N e

*

]
NN NN
. ®
B et ed ek o

[\

iB8 CONFAIDENTIAL

A One-Paye Summation
Executive Summary

Storaye
Processes
Objects

Access Macnines
Key Coacepts

A Loyical
Implementation

4 Summary of Basic
Infix Forn

System Concepts and
Facilities

Basic Concepts and
Structures

The rest

Part 1

INTRODUCTION

Since AFS 1s developiny a new dpprodacia to computer system design,
some background information is necessary to place the concepts in
perspective and to ease tne transition to novel lines of thought.
Chapter 1.1 presents aa overview of the new concepts, the
relationship Dbetween AFS aad otaer developments by 1IBM and
competitors, and the objectives and requirements that AFS 1is
trying to meet, Chapter 1.2 discusses underiying assumptions
that motivate and direct the design effort, Finally, chapter 1.3

presents the notation aad syntactic coaventions used throughout
the remaining parts of this manudi.

iBH CONFLIiDENTIAL

I

N

Chapter 1.1

LAECUTLVE SUMMARY

1.17.1 A gge—Pagé Summatioun

AF5, Advancea Future Systew, 1s proposed as an alternative to
compatible extension o0f Systew/37V. 1t 1s intended to meet FS
Market Requirements by Advanced Systeus Planningy and Bvaluation.
Basic elements ot AFS include self-describinyg data, reference to
data by symbolic names rather thau addresses, dyhamlc attribute

@xamination, a4automatic storaye nierarchy, network tfunctiomn
transparency, and a hign-levei machine languagye cailed SL, the
System Language. Such a functional pase will provide a

siganificant gain in sSystem usability. This docuiment presents a
new conceptual foundation, aud describes SL and the associated
system facilities. A companion document, the AFS Systen
Architecture Manual, discusses i1aplementation and presents
additional detaii.

The conceptual foundation {for AFS 135 a syathesis oI advances 1imn
Computer Science. It 13 moueled formally usiny the Vienna
definition methods. It provides a framework ror muitiprocessing,
data independence, data base structures, source/sink ana uetwork
communications, modular control system structure, uniform
resource management, and miyration <from System/300/370 including
coexlistence and dynamlc iaterchange,

The nuaber of AFS constiucts 1s minimized Dby explolting each
tully., For example, assignweat 15 the universal wmeans to put
something somewhere, whether assiyaning a value to a number,
senaing information to a printer, or £iling a new program under
some name, Simiilarly, an "object" has the same formal structure
whether it represents npumeric data, a4 data structure, a virtual
device, a program enviroament, a fuaction activation, an access
authorization, a communication port, Or any other system entity.

SL 1s a conmplete languaye, whose ruauctions 1include those
necessary to represent proyrams wWwritten 1in coantemporary high
level languages, as well as ail system control facilities. SL
Statements are constructed with tpnese functions just as
ArithmetiC expressions dre constructed with arithmetic operators.
A customer may use <(OBOL, PL/i, FORTRAN, APL, or kPG as 1if each
were the actual machine languaye. SL 1is extendible: new
functions and data structares are readaly accommodated.
Furthermore, tihe AFS design 15 such tnat faciiities beneath the
external interface may be redefined witan SL tunctions,

1M CONFLIUENTLIAL

3 INTHRODUCT LON

The conceptual foundation resuits from a4 fresh examination of
fundamental data and coatrol structures 1in light of the past

decade of progress in Ccomputer science, The approach differs
from earlier ones 1ia that provision is made from the outset for
essential s ingredieuts such as multiprocessiug, data

independence, data base structures, coexistence of multiple
architectures (such as System/37J), network commuhications,
applications subsystems, and uuifiled systew resourLce Rmanagemernt,

The 3L design also differs [rom edrlier 4approacmnes 1n basic

character: The couceptual rramework provides a Dasis for an
architecture walCh can gyrow yrdaceiuily, ~rather than one waich is
tightly circumscribed, BExtensions and moairications <can be

definea in SL itself in sSuCh a mabuer tuat sSysteuwm discipline and
inteygrity pervades all levels or redeiinition; user programs are
Wwritten as thouyh the extensions were an inteyral part ot the
system.

This type o1 desiyn is Ccdalled a Recursively Lxtensible
Archalitecture, it offers users tane apidity to extend or
specialize subsystems for their particular reguirements, systea
architects the abiility to develop the architecture . without
irapacting customer prograamkiiuy 1anvestments, and IS8 product
designers the opportunity to ouila nhardware to support either
general or specialized ruuctiounal extensiouns.

1e1.2.1 Historical Foundation

Design of the datda and cCoktroi Structures feguired ror a
complete, fuactioning Systesm nas historically Dbeen tne task ot
programmers., in the ©process oif bDpuilding increasingly compilex
systeams, a systematic Dbouay 0of proyramming Kaowiedye has
developed, C2atral to this body of Knowledyge 1s ah understanding
of fundamental structures and algorithms which occur throughout
all programming practice. WOCK iu programming languages over the
past ten years has to a largye exteat cousistea of develioping
notations with which one cam convenlentiy employ various subsets
of these basic elemeats. The 5L approacn has peen to survey the
fundamental structures, determiae a&a minimal set of basic
concepts, and design a totad external interrace based upon this
set., :

i CUNFIUDBNTLAL

Chapter 1.1 EXBCUTLVE 5UMHBARY 9
1.1.2.2 Related IBM Activities

There are a number of curreat activities that relate directly or
indirectly to AFS. 3System 4 ia HResearch is examining an external
interface similar to SL: Systewm A is designed to run on an NS
symmetric multiprocessor system, and programs at the external
interface level will either pe couwpiled i1nto systew/370 code or
be interpreted 1n an intermedidte languaye simiiar to SL. The
Endicott advanced osSystem Group hnas Wworked on a Siariarly
motivated desigyu etfort duriny tae past severdl years., Their
work through 1970 is summarized in a February 1, 1971, report
entitled HLS-Prototype Project report. Hore recently, Endicott
ASG representatives have worked both with tne SL designers and
with Ray Larner, who aas formulated a proposal ror a high level
interface called ML (Hacanine Lanyuage). Severadi 1aodividuals 1in
the San Jose Research Center wmave been actively participating in
AFS areas. The Palo Alto Scientific Center has microcoded a
Model 25, and now a Hodei 145, to interpret APL code directly.
They have also conducted reiated studies concerniny the
performaance of microcoded APL macChines Vs, conventional
iastructions and compilers., duck of the worx oa data base
oryanization 1s pertinent, especially the PROP/DB prototype in
Poughkeepsie. The New York Programminy <Center 1is studying the
signirficance of an AFS-iixe arcanitecture for the principal
programming languaygyes, and the broader classes of languayges and
languagye building toods which may become possible. Prototype
PL/I work daone 1in lHursley, ia conjunction with the functional
memory program, has shown several opportunities for siguificant
performance improvement. Worx to date om the ¥FPS project has
considered similar concepts, and it seewns that some commonality
with the eventual FPS direction is iikely.

1.1.2.3 Competition

Numerous university and iadustriai 1investigators are exploring

4F5-like directions. Some are exploring these directions with
the intent of developing more eiricient microcode for existing
nardware. Examples can be found in papers emanating rrom
universities. Some manufacturers are produciuy microcodable

‘hardware which lends itself to providing aigher level interfaces.
Examples are the ICi and Gemini machipnes. There 13 cousiderable
discussion of APL-lixke machines; CUDC ciaims taat the STAR systenm
directly performs APL-like ruuctions, WHcirariand®s paper in the
1970 FoCC describes TPL (The Progyramming Language), for which
direct hardvare support is discussed. Iliffe's Basic Machine and
Rice's MPL/IM™ machine are Ifucther exampies 0L machines waich
cffer direct support of higher ievel external interfaces, By far
the most experienced competitor to date 1s Burrougns: The B5000

ib# COKFIDENTIAL

1 INTRODUCTLION

in the early sixties and the waore receant B570v, Bo790U, and B7700
all support a higher level interrace directiliy. Their
architecture readily ofters support, such as virtual memories and
multiprocessing, which poses serious aifficudities for S or DOS,.
Their design has permitted coustruction of an operating system in
& higher level language, Furtner aevelopment iu AFS directicns
should be anticipated from Burrouyghs.

1.1.3 Obijectives and Rejuirementis

AFS 1s 1intended as an altermative to & compatible extension of
system/370 for the ¥5 time {raume, AFS must thererore meet
official FS Harket Reguirewents rather than Jenerate new ones,
In thne event that aany orf these reyuirements are not achievable,
AFS5 has the owpjective to egual or exceed the best FS proposal
with System/370 compatible hardware.

SL is the machine dianguaye Ot AFS and therefore inherits the
above reguirewmeants and aany otner A¥S reguirement that has a
language implication. At present, these reguiremnents are stated
in a memo, "AFS Reguirements and Ubjectives® Jan. 19, 1471, to C.
J., Conti and A. A, Magdali from kK., B, Beanett and W, D, Wilson, A
brief summary of the reyuirements from tae SL point of view is
given below:

SL must allow the wuser to 1i1mteract with AFsS i1n a high level
language and suffer neither the isovlation from tiae machine caused
by coupilers today nor tane inefricient execution caused Dby
interpreters. Tals 1S5 to be accomplisned 1n two ways: on the
one hand, the machine languaye itself will Dbe a high level
languagye exploiting current languaye technoloyy; on the other
nand, tae user will be aple o act as 1t the wmachine lauyuage
were any one of five favored langyuages--COBUL, FORTRAN, PL/I,
RPG, aund AaPL--and he must not suffer a serious periormance
penalty for igynoring macnihe lanyuayge,

To meet this requirement, Si wust faithrfully 1interpret the five
favored lanyuages: Under AF5, tne conversational user nust be
aple to interrupt execution, make Cchanygyes, resume execution,
execute incomplete or derective code as long as 1t makes sense to
do s0, apd yet the rull benerits orf a really good interpreter of
the laagudge without payiny the performance penaity normally
assoclated with interpretation.

SL must be an appropriate object language tor the interpreters
mentioned above and for cospilers from the current princigpal
high-level lanyuages, extensioas tihat will be made to them, and
new programming languages that may pecome popular in the FS tiame
frame.,

il CUNFIDENTIAL

Chapter 1.1 EXBCUTIVE SUHMARY 11

Security, privacy, and systew iuteyrity must be provided to
protect one user from another and to protect the system tfrom the
users.

An objective of SL 1s to fulfill tne above reguicrements by, amcng
other taings, desigalny 4 system with seli-describing data. To
this end, attribute examiniangy hardware should enhaance Dbcth
security and system iategrity aand ftuirfaiil the additional
requirement of makiny 1t possibie to restructure ddata without
invalidating programs,

The design of SL must allow wmore efiacient 1impiementation with
LSI than would be possibie 1t the nigh-level source language were
translated to a liow-level machine idnguaye impilemented with LSI,

SL @must be extendiple tu accommoddate new operators, new data
types, and new devices. It wust also entorce constraints that
encouragje more disciplined use.

5L must accommodate proyrams tnat explolit new wmarket areas:
particularly data Dbase systems, data communication systeanms,
transaction-based applications, anu interactive use. These new
areas must Dpe accommodated waithout losing ground in what wiil
continue to be 4 major market, batch computation in estaolished
applicatioans,

AFS wmust emulate System/37uv wita twice the cost/performance.
When the customer makes the transition to native mode AFS, there
mast be a four to ome gain in prace pertormance over System/370.
fhe customer must be able tuv wake the transitiou 1in a4 piecemeal
fashion. The part of an appiication that has been translated to
AF5 native mode must exhibit ArS5S properties; ror example,
transiated parts must exuslbit user security and system integrity
that 1s unachievable in Systew/37v.

Yo aid a customer®s transitioa, PL/L, FORTRAN, COBOL, RPG, and

APL as executed by AFS must meet standard specificatiouns rfor the
languages,

1.1.4 Design Principles

SI. has been coustructed with a number of speciric design
priaciples in ®mipnd., They are eacn discussed ia Section 1.2.5.
They are:

Minimum Number 0L BdasS1C Coacepts

Completeness oLl BasiC Louncepts
Rigorous Controi ana Access Disciplines

Il CUNFIDENTIAL

1< INTKUDUCLLON

Maximum Hardware Design Freedom
Network Fuactioun Iranspareacy
Bit Code Iudependence
Modifiability

Extensibilaty

1.1.5 8asic Concepts

Key élements of a high level 1nterface and o1 a m@machine that
directly supports the iaterface, aave been desciibed 1in several
eardiier reports, sucia as the HdcPherson task torce report and the
Endicott HLS Prototype reports, I1he macnine 1s partitioned into
functional units for processing, storaye wmanayement, and
source/sink and networx commuaications., The 1nterface includes
self-describiny data, geuaeric operators, Separation of storage
from coamunicatiouns I/0, and provision for coexistence and
interaction of data and prograi material produced ror dissimilar
architectures (such as Systea/370, Systewm/3, 799u, 14LU1, etc.).

Producing a design capable of 1iategrating these xey elenents
reguires more than simply detfining a particular extermnal
interface. A formai coaceptuai foundation must first be erected
in which it i1s possible to exnibit basic elements, structures,
mechanisms, and key processes with whicn one can readiize and
prove proper behavior not oniy for computational jprocesses, such
as arithmetic expression evaluation, but also for esseatial
system functions such as coexistence, wuitiprocessing, data base,
networks, and dynamic [eS0UCCe usdahaygement, To date, most of
these aspects have simply been left for the system programmer to
solve. [Experience has made it clear that system design cananot
continue to ignore such @matters. This 15 especiaily true for
systems such as AFS.

The coanceptual foundation for SL coinsists of three Dbasic
elements: Process, Storaye C(ell, and OUbject; three Dbasic
structures: Accessibility sraph, pavironment Tree, ana
Depeadency Graph; two classes o©f basic mechanlsms: 1inter-object
communications protocold and inter-onject request/respoanse
handling; and five Key processes: translation, expression

interpretation, symbol rTesolution, procedure activation, and
resource manhagement.

A process desiynates an algorithmic activity., It consists of a
motive force called am interpreter, a procedural description, and
a set of status 1niormation cailed tae PSR (Process Status
Record). A4 storage cell i1s the basic unit of storage. it is
identified by a unigue 1nternal identifer calied a Celli Name, and
it contains exactly one object., an object is an enitity used to
represent every logical and paysical resource of the system. It

Ip¥ CUNFLDENTIAL

Chapter 1.1 EXECUTLIVE SUHMARY 13

has an active subelement, a process called au Access Machine, aad
4 passive subelement, called an Uwned Resource, Every reference
to the owned resource 1s accoumpiished by activation of the access
machine. This model permits wunitorm representation and handling
of all system resources.,

The accessibility grapn defines tue paths by which objects may be
reached, It <contains a subyraph, a tree called the Ownership
Tree, which detfines ownership amony objects. The environment tree
defines the countext 1n whiCh symbols appearing in proyram modules
are resoived to particular objects. The dependency graph records
dynamlc dependencies among objects. It 1includes a subgraph
Ccalled the Activation free, aud it 1s used by resource
management.

The names of the basic a@mecnranlisms and Key processes dilrectly
suggest thelr respective roles.

By usingy the above constructs, a conceptual toundation of the

necessary type has been defined, The definition methods
developed by the Vienna Laboratory (VDL) were employed to ensure
formal compieteness, SL represents 4 particular interface

detinition witaln the conceptual framework.

1.1.6 System toncepts

Part 3 of this document aiscusses the wmanner in which the SL
conceptual foundatlion serves d4as the basis Ior a total operating
system that meets F5 market reguirements. Of particular concern
nas been consiceration of resource wanagement, user environment,
system controli, and functional capapiliities.

desouirce managyement encompasses adandiing of both nonunigue
rfesources such as storage ana udalijue resources such d4as particular
data elements. A resource managyehent policy 1s adopted which
will ensure completion of ali Jjuobs submitted to the system. The
system cau be so structured that it 18 possibie to prove that

resource confiicts never _ocCui 1n vital portions 0of the system,

Errors occurcring elsewhere dare prevented from propagating to
otaer parts oi the systen. Ifnaividual users are offered the
option of avoiding deadiocks altogetaer by stating @ resource
requirements in advance, or of dynamically reyguesting resources
at the «cost of possibiy mavinyg to Dback out of deadlock
situations.

The AFS system effects a mouular nandliny of user environments.
411 resources of the system, inciadinyg ports to the outside
World, are owned Dy the resource manayer. [he operating systeams,
detfined as subsystewms in 5L, through which 4 user may wish to

1M CONFIDENTLAL

€ —

WHAT
CAN

‘wunH

M&nlmuiz

14 ANTRODUCTIUN

avail himself of AFS faciiities are also owned by tne resource
Banager under the subsystem iaadiord. Each subsystem claims, and
is allocated if available, a packagye of resources which 1t may
control and allocate to the user via 1ts owh Subsysteam resource
Banager, Scme operatiny systems may pe yraanted a Ysemi-permanent®
{e.g. "IPLY to "shut-dowu") status 1n the system, existing for
long periods of time apd servicing many users; such dedicated
subsystems may have direct, 1mpiicit control over a set of ports.,
Thus, a user enteriny the system via any of these ports sees only
that operating system and feeis as though he were running on that
subsystem®s host arcnlitecture; this 1s tae logical eyuivalent of
virtual machines and permits users oL, e.g., U53/373, to run as
though they were on System/37v. Users entering the systen
through ‘ports not directly controiled by dedicated subsystems
first encounter the 1initial isnterpreter, tarough which they may
request the creatioa 0of a free subsystem ror thelr private or
shared use, The subsystems taus establiished are traunsient and
are granted access tO resource packadyes minimally 1inciuding the
active port and the user's files. Jace running under a subsystem
{SL 1itself 1s an example), the user may Ireyuest the dynamic
creation of additional subsystems Lor concurrent or consecutive,
interactive or batch, depeandent or 1ndependent, execution, A
user job, im the classical sense, 15 thus 1unltiated at port
sign-on times and terminated witn sign-off; dynamic subsysteas
created in the interim @may become jobs at the user’'s explicit
request.

The system coutroi structure 1s opased upon partitioning system
activity into fuactiomal and server configuration levels., Hork
flow on the functional level bandies inlitiation, coordimation,
and termination of communication, data entry, data retrieval, and
computation functions. Oun the server level, Wnicn 1s beneath the
5L level, control is concerned with orderly tftliow of work through
the system, including contifoi and synchroaization of botan logical
and physical resources.

Consideration of systen functionail capabiiities includes
particular concern regarding data Dbase, data communications, and
coexistence.,

SL objects and data structures provide convenlent representations
for the data aggregates aud 1indices reguired tor either
ring-structure or entity-set data organizations, Access machines
and the accessibility yrapn can Dbe used jointly to enforce
privacy aand security.

At the SL level the user daeuls with processes involiving data
communications by use of objects Kkuown as Ports. The access
machines of Ports provide the Dridge to deeper levels of
communication controi. The deeper control dievels inciude one
which performs device 1inaepenuent formatting, and another which
handles device function depeandent and inter-system protocols,

Il CONyivBNTIAL

Chapter 1.1 ELECUTLVE SUMMARY 15

Data tranmission protocols ror liue control ama network (path)
management are handled in the Communications unit beneath the SL
level.

The access machilne also provides a possible basis for coexistence
and interchaange of (virtual} devices and other systems written
under ditrerimny architectures. lne access macnine 18 a process
which is activated whenever a request 1s made uapon the object of
which it 1s a part. The interpreter and proceaural description
0f an access machine need not be of the sawme architecture as the
process makiny a reyguest upon the access machine., SL code can
therefore cail Systemy/370 code 1n a rigorously disciplined
manner, and vice versa., This mecnaunism also enables one software
subsystem to access wata iua another, evea 1if the subsystems have
different architectures,

1.1.7 The External Interface, SiL

Part 4 of this document descripves the basic infix form of the SL
ianguage, it 1s this fora whlch constitutes the primary
man-machine interrace ci the ArS systen. fach SL function is
described separateiy, along with examples ot 1ts wuse and
discussion of 1ts side-effects. (This level of description of SL
is only partially coampliete 1iun Bdition 3.) Exampies of
translation of high 1level lauaguaye coastructs to SL are also
presented,

1.1.8 A4 Logical Impiementatiou

Part 5 of the document presents a ioyical implementation of AFS,
The definition metnods developed by the Vienna Laboratory ({VDL)
were employed, 1in order to insure formal consistency and
completeness, This approacn turned out to Dbe particularly
erfective for tais lLevel or uesigyu work. The presentation 1ia
Part 5 is an £nglish transcription of the formal implementation
rather than one which utilizes the VDL notation. ’

The logical 1iwmplementation of AFS descripes the way the systenm
operates on as abstract machine which models the concepts SL
presents to aa AFS machime lidanguage progyrammer. Auy physical
implementation that produces the same observabie behavior 1is a
proper concrete representation oi AFS. System desiyners are free

to realize the AFS system in tane wost econowmical tfashion for each

particular marxet, Siavish copyiny of tioe loyical model would
probably result in an inferior paysical iamplemeantation. Such an
implementation, therefore, 1is 40t recommended,

I8M CONFIDENTLIAL

Chapter 1.2

DESIGH PRINCIPLES

1.2.1 Rationale of the AfS Systea

There is considerable evideuce that a4 Von Neumannh architecture is
inadequate for future IBH systems: sSuch an arcaitecture 1is a
poor target for compilers, the coding conventions are inefficient
in the information theoretic sense, and the units of #¥Ork encoded
are not optimal for either lary2 or small machines. Furthermore,
the property oif data iadependeuce, which 1s clearly reguired for
future systens, is 1impossible, or at best proaibitively
expensive, with an architecture in which attributes of data are
sprinkled throughout every instruction that references tae data.
There is also 4 serious question as to whetaer a system based
upon Von Neumann 1nstruCtions can guarantee tae security and
integrity that future systems must provide,

Ancther problen that wmust bDe corrected 1is that present
hardware/software systems rejuire the user +to understand much
more than he needs to kwow to do hls work., A solution to this
problem in a limited context has been provided Dby certain
conversational systeas Like JUsSS, CP5, and 4PL. In these
systems, the user is not reguired to learn unrelated languages
iike machiume language or JCL 1ia addition to the languaye in whica
he writes his program. Furthermore, he sas good couversational
access to what 1s going ou: 1if he does sometninyg wrong, he 1is
likely +to fima out forthwitun. With new architecture, these
advantages will extend to the fudli range of problems that
cComputers solve without aincurriny the performance penalty of a
software interpreter,

During the past decade, considerable practical and taeoretical

work on programming languages has been done. Aithough centered
around languaye, this work was analyzea structures that are
fundamental to all rorws OfL cCcompdtation: the structures are

coRrmon to many types of languayes aand appear throughout operating
systea design. The time 1s ripe, therefore, to focus upon these
pasic structures, to impiement them uirectly in nardware, and to
construct tae arcaitecture 0f an epntire systenm upon the
roundation they form.

IpM CONFIDBNTIAL

-

Chapter 1.2 DE34LGN PRiNCIPLES 17

1.2.2 Interface Levels

-

At present, five basic architecturai levels have been identified:
1) Physicai Components
2) Hardware Boxes
3) System Control
4) System Language, SL
5) General User

This document discusses tne iogical aspects of the 1nteriace
betwean levels 3 and 4. The AfS5 sSystem Arcaltecture, of course,
must derine the details of ali intertaces. Several observations
should be made on the interiace between SL and Systam Control.,

An AFS system, ldoygically, maxes avallaple to a user throuyh the
SL interface a set of system services 1n data communications,
data eatry/retrievai, aad data manipulation and computation.
Beneath the SL level, the control and synchronization of systen
Wwork flow 1is under the coatroli or a Systewm Control program. The
System Control program 1S arcaltected to coansist ot a number of
fuactional control modules, Terminai Controi, bata CJommunications
Control, Data Control, Monitor Control, and Commaud Control. The
Command Controi module has tae responsibility to coordinate work
flow activities on both the ioyicai and physical levels, On the
physical 1level System Coatroi functions are amapped onto a
physical structure which consists of three basic eangineering
subsystens, PP5 (Program Processingy Subsystem) , SKS (Storage
Management Subsystem), aad S33(SouLce/Siak Subsystem), E£ach of
these units reguires its own Jiogical control progyram, which will
be calied an ECP (Engimeeriny Control Program). The SL/Systen
Control interface is «commoa across aili AF5 1installations,
Within the System Control ievei, the SCP 1nteriacts wita the
intertace provided by the respective EUP's. This interiace will
pe called the I (Znyineerinyg interface).

1.2.3 Logicai and P2nysical Llateriaces

In early computer systems, lLogyicai and panysical 1nteriaces were
identical: programming @anuais included a rough sketch of
hardware organization, describiny registers, data paths, aad CPU

clock cycles. In System/30vu, IBH inctroduced a family of
computers with identical diojical interfaces, but totally
different physical orgaaizations and data fiow. Software

developments removed the proygrammer even further ifrom hardware:
with pseudo-devices 1in HASP ana virtuai wmachines i1n CP/67,
programming interfaces became purely loyical, with no direct
relationship to physical aevices.

iBH CONFLIDENTIAL

Mot S0 (.

18 ANTRODUCILON

A lesson from history shows tne i1mportance oi separating logical
and paysical interfaces: On the iIBf 7U4, alli I/0 went through
the MY register ain the CPU; a programmer could overlap I,/0 and
computation only by complex proygramming techuliques 1involving
delicate timiny considerations., The IBM 709 added channels to

allow 1I/0 traansfers to proceed Wwithout istertering with
computation, but eacn type of 1/0 device reguired a different set
cf wcontrol instructions. System/36U simpiified the logical

interface by aadiag ContrOl units tunat respoanded to the same type
cf command for an entire class oL devices, but the proliferation
of channels and coatrol units 1ucreased the number of hardware

devices and hence total system cost, To reduce cost, smadl
models like System 300 Hod 45 used <CPU loyic to perform the
functions of Channelis and costrol umrits, After a decade ot

progress, physical interraces on the Mod Zb were the same as on
the 704, but logical interfaces were totadly diifferent: because
of functional differences petwszen 1/0 and computation, COmpUter
architects had defined logical interrfaces that separated channels
and control units frow the CPU; on the dassumption that every
logical interface reguires 4 physical iuntertface, they had
designed different hardware devices for every functional unit; to
improve cost/perforaance, engiueers eventuaily Tfound ways of

doing all the functions on a single unit. The moral 1is that
loyical interifaces are progyramming alds, physical iaterfaces are
2npgineering approaches to Dbetter cost/performance, and aay

similarity between the two 15 purely coincidentad,

The AFS prcject involives a critical anmalyslis ana r2definition of
all interfaces 1in anp 1aiormation handling system: the
programimer?'s interiace saouid be a pureiy loygyical one with all
the aids that can simplify his task and with no housekeeping
details; the physical iaterifdace should Dbe designed for optimum
performance at a given cost with no unnecessary constraints from
the programminyg linterface,

1.2.4 Facilities Dbeneath the Logical interface

Before considering what features ruture systews should have, let
us contemplate the state i1nto which current systems have evolved.
For our hardware, assume a hypothetical Hodel 195 with relocation
features and a modified CP/o7 system to rum on 1it, Then imagine
a PL/L program using disk 1/0 ruunning uader US/360 running on the
modified CP/67 running on the haypothetical HModel 195, Storage
management on such a system 1s fantastic: fFirst, the PL/I
program must @manage transSiers between its owh storage and the
disk file. Beneath the PL/I 1interface, tae compiler 1inserts
storage management routines to subailocate storage faster than
0S/36J can with GETHAIN and FRupMALN. On the next level, 05/360
allocates space to the programw aad parccels 1t out 1n response to

IBl CONFADuNTIAL

s

Chapter 1,2 DESLIGN PRINCIPLES 19

GETMAIN's; it also allocates space on its virtual 2311 disk and
does housekeeping for I/0 reguests, 0On the next lower level,
CP/67 creates tiae 1llusion of storagye and disk ror 0S5/3bJd: it
busily allocates space 1a core, moves virtual pages to meet the
demand, and comjures up a 2311 out of space ia core, drum, aand
2314 disk. Meanwhile, hardware ailocates Dblocks of space in the
high-speed buffer and moves aata to anticipate future use; it
also allocates space 1u VdarLious registers invisible to the
progyramaers: instruction buifers, data buffers, and reservation
stations that effectively repiace the floating-point registers
with a set of virtuai regyisters. The point of this exampie 1is
that storage management OCCUurLs at every level of current systems:
allocations done at one levei are itreguently undone at the next;
most of the allocations are domne Dy software; and storage
allocation by &wardware 1s about two orders of magnitude faster
than allocation by sotftware.

As the precediny example smhowed, Storaye manayement by operating
systems 1is i1nefficient cowparea to nmanagement by hardware and is
inadeguate to eliminate furtaer management by problem proyrams,
Processor aliocation and task dispatching can also be performed
by hardware: super compudters like the {Hodel 1¥5 or HPS have
buiit sophisticated multiprojraaming algoritams 1nto hardware;
even a small machine like the Hodel 25 does hardware dispatching
every time the CPU coaverts 1itself 1into an 170 channel; and
multiplexor channels are amardwWare unlts designed to appear like
many channeis by 1ianternal multiprograwming., A control block 1s a
kind of descriptor that 1is processed 1nterpretively,; Burroughs
has been buildiung machines for the past decade tnat do much, but
not all, of descriptor processing by hardware, Compilers,
iinkage editors, JCL interpreters, 1inaexed seguentlial "access
methods, and thousands o©0f piLovlen progyrams atll do symbol
resoiution and 1inkinyg, and they couid ail do 1t wmucn more
efficiently with nardwWware assistauce. Establisning a new
environment is done by haraware at every <change of PSW and
whenever a CPU Dbecowmes a channel; Burroughs systeas also use
hardware to switch envirouments IOor procedure caiis, On modern
systems, these functions occur wore freguently than {floating
point multiplies and divides aul are more fundamental to overall
system operation. For optiwmum cost/periormance, these fuuctiouns
saould be reduced to a set of primitives that are as firmly
supported by hardware as floating point arithmetic.

1.2.5 Design principles

in order to design a system oL tne greatest possipble utiiity, a
number of design principles auave Deen adopted as objectives,
Ideally, the AFS system shouid exhipit properties derived
directly trom these principiles:

LM CONFIDENTLIAL

swlls,
vy it M
plfould B¢
e mgn?
of Il sFince
TP SoFFS .

20

1)

2)

3)

4)

0}

7)

3)

INLTBEUDUCTION

Mipimum number of basic concepts: Current systems suffer
severeiy from comnstructs that are seemingly puiled out of
the air with little regard for coasistency or uniformity.
Every efifort 1is beiny made to design SL with a winimum
number of basic concepts,

Completeness Of DasicC concepts: Althougyh few in unumber,
the pasic concepts must encompass all structures required
for the AFS5 Systeam. Separate operating system or command
constructs, such as the system structure built around the
APL lanyuaye, must ve obviated.

Rigorous control and access disciplines: Tane AFS design
must make 1t possible to prove that system disciplines
regquired for security and iategrity are enforceable.

Maximum hardware desigu ifireedom beneath SL: The design
should avoid constrainiang the manner in which hardware
interprets it siance diifiereuat AFS macnines may employ
quite distinct internal representations,

Network function Transparemncy: Tae architecture should

ensure functionai trausparency to user application
programs and most system facilities of the physical
network locatioa - virtual (co-existent), local, or
remote - of devices and other systeas. Further, it

should easily allow data amd fuactions to wpe logically
transpareat to users.

Bit «code independence: iae internai dit codes used to
represent SL shoudid aot Dbe dcfined as part oif the
architecture. A standard representation for <compller
output will be deripned, but all bit structures within the
system will be generated by execution of 5L operators.
Inverses of tnese operators are necessacy to dispiay
internal structures for analysis and debugging.

Modifiability: Tae architecture snouid contain provision
tor user redefinition ot system operators. The user
should be able to incorporate suitaply disciplined
procedures in place or those normally suppiied by the
system. Architecturaiiy, this reguires that systen
primitives are tanemseives redefinable in terms of the
system., Fully yenerailzed, this principie reguires the
architecture to be recursively extensiblie,

Extensibiiity: The user saouid be able to derinme new
operators that operate wituin his owi contexts and to
extend the defimition of oid oOperators to new cilasses of
data.

LiBH CONFIVENTIAL

Chapter 1.3

LEVELS OF LANGUAGE DESCEIPTIUN

1.3.17 Levels of Syntax

Three levels of SL are saignificvant to tae user. These are alil
symbolic in the sense that actual addresses and other machine
oriented quantities are not accessible to the user; they are
only represented in 5L by sywbois.

Strict 5L is a machine oriented level that 1s most convenient for
compilers to gyenerate, BdsSiC infix SL has the same operators as
strict SL, but it has a format that 15 more conyeniai for people
and can Dbe mapped almost oae-to-one 1nto strict syntax.
Following 1s an expression ih strict syntax:
stow(quotient {(sum (A;8) jsam{C; o)) ; £}

Ia basic infix, the example pecomnes
({(A#B)+(C+D))—>L

or
A+3+ (C+D) —>E

Extended 1inrix 1s the most fuily developed SL syntax. 1t
incorporates basic infix as a proper subset, Extended 1infix will
be supported by a sortware traunsiator tinat willi map 1t to strict
syntax. The purpose of extenaced infix 1S to provide & rLiexible
programming tool for those wno wish to work directly with AFS
data structures,

APL and LISP are expression orieinted languages: tae result of
every operation is a value tuat can be used as 1ipput to another
operator; comseqguently, experienced A4PL programmers often write
subroutiues consisting of a single expression wWith dozens of
functions and variables; 1ia LISP, an entire program 1s normally
ope long expression. The syntax of APL or LISP bhas both
advantagjes a4and disadvantages: 1ts advantayes i1aclude simple
syntactic rules with oniy one stateament type and iIreedom from
arbitrary conventions, a context free structure that allows aany
operand to be replaced by au expression that couwputes the same
value, and a consistency that makes proyrams a subsst of the list
structures adllowed for datd; 4 poSsible disaavantage of such
syntax 1s that 1t sometimes leads to lony statements that are
hard to read, Aithough 1iong statements may obscure the
programming style, they aris2 froa the great modularity of
ianguages that can compine sSmail expressioans 1in an endless

IBM CONFivENTIAL

22 LINTRUDUCELON

variety of ways. #Hdather tnan restricting the power of the
system, AFS will provide a ygenerai expression oriesnted language
together with programming a41ds that encourage a clear,
disciplined style.

As an example of the power of yeneralization aund the expression
oriented structure, consider a progyram to read records indexed by
the variable CURRENT frow files Jo£ aand SAM and thea write the
smaller of those two records oa tne file TOM indexed by CURRENT.
PL/I regquires the following four statements to perforia the task:

READ FPILE (JOE) INTO (IEMP1) KEY (CURRENT);

READ FILE {SAM) INTO (TEMPZ) K&Y (CURRENT);

TEMP1=MIN (TEMP1,TENPLZ) ;

WRITE FILE (TOM) FROM (T3#P1) KEYFROM (CUKRENT) ;
The first observation we wmigat make about these statements 1is
that although they perform actions very similar to the fetching
and storing of single elements or vectors, PL/I syntax obscures
the similarity. The secoad observationa 1is that PL/I chops
expressions 1nto statements that force the user to <create
uppecessary temporary variabies as targets of the READ's. In SL,
the similarity between 1andexea vectors and ladexed Segquential
ftiles 1is reflected 1n the Lauguagye, and the fact that every
axpression has a value allows ali four PL/I statements to be
condensed into one SL statement:

JOB{CURRENT] min SAM{ CUKRENY | —> TOM[CURRENT j;

1.3.2 Strict Syntax

Altnouyh bit encoding of the machine ldnguage 1S not a primary
topic of this report, a coacrete notation is necessary for giving
examples and stating definitions precisely. Therefore, all
definitions will be stated in a form called the AFS strict
syntax. This form 15 a direct mappiayg of the tree structure of
the abstract syntax and 1is 1S0omOorphic €0 the ciass orf bit
encodings that will be executed directly by hacdware., Following
are production rules for the strict syntax 1n the IBKM standard
metalanguage:

group ::= { sS-exXpr {,; S=CAPL] ess }
S-expr ::= symbol [argument-iist] | group § coustant
argument-1ist ::= { s-eXpiL [, S-€XPL] ess)
symbol ::= letter [letterjaiglc|underscore] ...
AD sS—eXpr 1S 4n expression ih the strict syntax. More general

expressions in the extended syntax are deiined by their mapping
into s-expr's. A group 15 a collective object whose elements are

il CONFIDENTIAL

Chapter 1.3 LEVELS OF LASGUAGL DESCRIPTION 23

complete expressions; 1t corresponds to BEGIN-END or DO-END
blocks in PL/I and to procedurz and function podies. The group
1S mOre Jgeneradi, however, because 1t returns a value and can be
used in place of an ordiuary variaple or constant; furthermore,
it has the structure of a list ana can be indexea or concatenated
with other groups. A complete expression formiuy oane element of
a group 1s called a statement; roliowiny is an example of a group
with two statements:
{stow {sum {s1n (X} ;exp(Cos(Y))}.s6);sun({difrerence (A;B) :C)}

The first statement saves the resuit orf the computation 1in 2, and
the teuwpordary value is discarded when execution moves on to the
next statement., The se€cond statesment computes (A-8+C), waich 1s
returned as the value of the gyroup. Pnis form of syntax has a
structure that 1s good for compiriers, but Dpad fior humans; the
extended syntax 1s an infix form that is good for humans and
directly mappable by compilers.

1.3.3 £Extended Syntax

Although the strict syntax presented above 1S wmathematically
elegant, 1t suifers from tne LISY unreadability syandrome: it
uses too many parentaeses, preiix notatiomn 1s harder to read than
infix, and arithmetic expressions dare not written ian familiar
forms. The sample expression given in sectioa 1,3,2 may . be
written in infix form as:

{sin X+*Cos Y-D>4i;A~B+(}

To 1mprove readability, extra Dbianks and pareantheses may be
inserted, familiar wmnemonics liike *exp' wmay be used instead of
single character operators, and comgents in Frenca yuotes may be
inserted anywanere blanks wdy appear:

{sin £ + exp cos Y —> 4L; {(A-B+({) <<value oL group>> }

The extended syntax will also inciude additiomal torms that are
familiar from other programming langjuages such as 1f expressions
and do-loops. Since a ygroup 1s a iist of expressions, an 1if
@xpression can be constructed by 1indexing. For example, all
three of the following expressions

it A=B then X+3->Y else Y-3->X end

{({-3->X;X+3-D>Y}{A=Bj
A=8 select {Y-3-0X;X+3->{;

can be converted to the strict syuntactic torm
select(ey(A;B); {stow{difference (Y ;3);X) ;stow{sum (4;3),;Y)1})

18K CONFIVDSNTIAL

24 INTRODUCTION

1.3.4 Character Set

The character set for a progyrauwminy languaye must be a reasonable
compromise amoaq many conilictiny constraints:

1) Ease Oof program eatry,

2) Readability,

3) Use of famiiiar conventions,

4) Avaiiability of existiung and future I/0 devices.,

Por good readapility and aa esthetically pleasinyg text, a large
character set 1s 1mportant: studies orf reading speed show that
average readers can read lower case text much raster than text
printed in upper case oniy, and mathematicians use a large
character set to reauce iong formulas to a size that can be more
easily encompassed by the eye. APL has had coasiderable suaccess
in introduciny a number of speciai characters for various
functions, but rigorous adaereace to the convention of single
character operators lieads to absurdities like "1 circle X" for
sin{X) and "I-beam 20" for time. A large <character set can
unfortunately iatrcduce probiems iu proygyram entry: the reversail
operator in APL requires 5 Key strokes--upshift, O, backspace,
upshift, MH-—-and takes more typiny erfort thdat a three-letter
word., i1/0 devices for d8-character Keypoards are common, and
even larger Keypoards wili Dpecome practical with CKI devices,
while limitea character devices like keypunches will be less
common in the FS time Irame, Nevertheless, character sets with

about BJ or YJ symbols wildl stiii be more2 accessible than those.

with upwards of 150 symbols. Thererore, 5L should assume that
the Dpasic form of input wiil be with 4 character set of 88
symbols, but it should mase provision for devices with a smaller
set and take advantage or fuature devices with larger character
sets.,

The proposal currentiy wpeing considered for the SL external
syntax 1s the set of coaventious adopted Dby PAL: all user
defined symbols are either siugle lower case letters or
alphanumeric sStrisgs Dbegiadiay €1th an upper case letter;
reserved words and system derined symbols are eitaer special
characters or strings oI two Or wmore lower case letters, This
convention iacludes the APL conveations as a special case, but it
also provides an ianfinite Dnumber of words Wwith m®mBnemonic
significance Like sin, C€O03, time, date, if, and then,
Furthermore, every specidai character would have a corresponding
syabol like *sum? for *+' so0 twnat devices witnout that character
couid still use the function; for devices without lower case
letters, an escape Character could pe used to indicate reserved
words.

IBM CONFIDSNTIAL

Part 2

BASLIC CUNCEPRIS AND STRUCTURES

This part of the manual uescripes the loyical structures that are
visible to system proyramwmers 4aild tO user programmers who chocse
to code 1n SL. Although SL 1s tne macnine language tor AFS, its
concepts reflect the structures of compilers and operating
systems much more than details or typical von Neumdann machines.
Three characteristics distinguish tane followiny presentation from
the principles of operation of other machines: the absence of
bit representations, a theoretical style of definitions and
theorems, aad the Dbasic assumption that traditional software
functions oif storage ailocation and process dispatching are
performed at the eangineering lieved.

Chapter 2.1 beylns with a discussioa of opjects: thelr residence
in storage celis and their adature as processes, All the objects
in the system make up the object base in which three directed
graphs embody all interrelationships: the accessibility graph,
whicn includes all possiple patis ror accessiny oune object from
another; the environmenant tree, wiaich defines patns ror symboil
resolution; and the dependency grapa, which inciudes alil
outstanding reyuests by objects ior services by other objects.
Further discussion sShows 40w these grapis lnteract with variocus
types of objects, program structure, aad resource management.
The findal chapter 1ia this part discusses tne puiit-in functions
provided with the systen.

I8 CONFIDENTIAL

|

v eTHUC

uwuu

EN (W3S

ﬁm&.#r
{Lag Lows

‘.

Chapter £.1

OBJelCT BasSE

2.1.1 3torage

A —

A fundamental coancept of A¥S5 1s that all storage ianternal to the
system i1s managed automatiCaliy: the programmer refers to data
and other objects Dy symooiiC names rather taan by paysical
addresses. Storagye management would extend over ievels from
high-speea registers aad monoiithic memories up through Comanche
tiles, optical storage aevices, and even cdataioged off-iige
storage such as tape libraries., 4Logicaliy, all such storage 1is
an integral part of the system, distinctions Dbetween levels are
invisible to the programmer, aad it 1s coasidered almost
unlimited in size.

When independent formulatious of a problem give rise to similar
concepts, those concepts propbapliy contain an essential element of
the proplem that 1s 1nvariant under change of notation or frame
ot reference. Tae problem of distinguishing between objects and
the mechanisk for referenciny taem 1S a fundamental one that
every computer system, progyramminy language, and theory of
computation amust face: In von Neumana macaines, a special type

of data called an address 1is used to refer to other dataj

althouyn addresses have the usefui properties ot aumbers, they
are Dpound so tightly to physicai storage that their 1l1logygicai
properties are inextricabliy conifused with probleas or allocating
storage and devices. in the definition o0f CPL, Strachey
distinguished L-values and #K-values accordiny to whether the
value could appear on tne ilert or the right of an assigynment
statemeant; the taryet orf an assigyanment had to be a vaiue with
location-like properties. ALSOL 60 can be formally defined
without the coancept of storagye only because it nas a relatively
small number o©f Dpasic concepts; to deal with pointers and to
formalize concepts of assignment, ALGOL 08 introauced the coucept
of a retference, which 13 1llke an address pointing to a cell
capablie of holding a given type Of object., 1in his d4nalysis of
APL, Abrams distinguishes selection operators and couwputational
operators: the value of a selectiou operator 1is linked to the
storage of one o0 1ts operands and can transmit chaanges back to
it; the value 0f a computatiosal operator has no connection to
the storage of 1its operands and cannot transmit chanyes back to
them., One of the design principlies of AFS is to search for the
essential elements underiying all programming languayes and to
build a new system upon them; the concepts of ovject and storage

LM CONFIDuNTIAL

Chapter Z.1 UBJECY BASE 27

cell are fundamental and reyguire careful definition to support a
Jeneral treatment or assiynaents, synonyms, ownership, aad
argument passing to functions.,

For detining indices and poluters, storage aduresses are useful,
but the housekeeping they entail fdar outweiyhs tneir usefulness,
The storage celi in AFS 15 4 logical location capable of holding
any object or collection of objects, no matter how large: its
characteristics of a location simpiify the definition of indices
and poianters, put 1t involves wo nousekeepiny burden because the
storaje management system makes the cell appear as large as
necessary and automaticaliy moves it to any device that may need
to process its contents.,

Definition: A storage cell is a iogyical location idenmtified by a
unique ceil nanme. Bach storaje cell contains one and only
one object; there 15 no upper ilmit on the size of a storage
celi., The cell name 15 an internal identifier (abbreviated
1i1d) whose representation 1S invisible to the user.

This definition 1S5 non-constructive: 4Lt defines a storage cell
DYy axioms Or characteristics tumat are visible to tae programmer,
pot by an explicit coanstruction ifrom something more primitive,
The advantage of non-constructive derinitions 1s that the
i1mpiementer has maximuk freedom in his cholcCe 0oL representations
and hardware design. The disauvantage of such definitions 1s
that they don't prove that an efticient 1mplementation (or even
apy iaplementation) is possibie. To remedy taat situation, the
informal notes between definitions will illustrate the abstract
concepts with a sample implewentation; since the 1liustration
will not necessarily be the optiwmum engineering solution, the
implementers are free to use auay design that satisiies the
axioms,

Definition: 4 pufter is a temporary storage celi created for the
purpose ot holding an osject uatil it can be processed or
moved.,

Buffers are intimately vrelated to the @mechauism 1for passing
messages Dbetween objecCts suca as arguaments to functions and
results from functioans: Normailly, what 1s passed 1s the cell
name of some storage cell containiny the message; in computing
X{ L]}, for example, the seiect functiom returns the cell name for
the storage ceil containing X{ i}. However, when the sum function
computes (A+8), there 1is no permanentiy aillocated storage cell
containing the result; therefore, the 1interpreter that 1s
interpreting the function optains a tewmsporary storage cell,
called a butfer, to hold tame resuit. Buffers corcespond to 1/0
puffers in current systems as weil as to registers i1n the CPU or
on a pushdown stack.

A particular implementation of tae storaye cell concept 1is

ABR COWPiDBNTIAL

28 BASIC CUNCEPLS AND STRUCIURES

discussed 1in the Systen Architecture fManual. The Storage
Management Subsystem {3S#45) described there provides spaces
identified by unigue space anumbers; each space is linearly
addressable py an ofiset irom the Dbegianing of the space, A
collection oi storage cells cau ve i1mplemented as a space divided
into a number of fixed length Dblocks holding object images, also
known as DAPOVs (Descriptor And Pointer Or Value)., Tue cell name
corresponds to the space number and offset to tae object image;
the unigueness of space numbers guarantees the uniqueness of ceil
names, If an object imaye is very large, the block iuentified by
space number and ofrfset omnly nolds part of the image and contains
the space number of another space holding the overflow, Since
spaces can be chained togethaer 1if necessary, there is no fixed
bound on the size of objects.

2.1.2 Processes

The concept of process 15 rfundamental to aii ievels of an
information handliny system: C(CPU, chaunnels, operating systems,
and external devices. A ratiopmally designed system Rmust aave a
precise concept of process aund o0f tae possibie 1interactions
petween processes, 4in AFS, the deiinition of process 1is based on
the well developed foundation orf automata theory and 1is designed
to facilitate the implementation oOr aultiprocessing systems,

Defipnition: A process 1is an automaton with a set of states S and
a set of states W contaimed 1 S 1n which 1t waits for
input. Processes can pe Dest descriped Dy assuming they
nave three parts:

1) A process status recogd (abbreviated PS5R) contalning
tane current state, ainput, and contents of buffers
used for workiny storage. There 1s a one-to-cne
correspondence petweeu processes and PSRYs,

2) A procedurai description that encodes a finite set
of information derining the states and permlissible
transitions petween tnhose states. Some procedural
descriptions may be shared by many processes.,

3) An interpreter tnat perrtorms state transitions for a
process: it examihes the procedural description and
the PSR and sets the PSK to its next state. An
interpreter may be time shared among a number of
processes,

The process status record kKeeps track or all information that
defines the current state of a process., 1n automata taeory, a
PSR is analogous to the iustantaneous description of a Turing
machine., In a System/30U CPU, a PSR 1s analoyous to the progran
status word together with the contents of the fixed and floating
registers. In the CDC TouJ, the exchange jump package 1is the

lgh CUNFIDENTIAL

o,

Chapter 2.1 UBJULT BASE 29

equivaient of the PSR. In the Burrouyhs 700, the pushdown stack
togetner with control words tnat may be stored in it form the
equivalent of a PSK.

Above the SL level, 4 procedural Jdescription could be a read-only
program. Beneath that level, procedural descriptions may Dbe in
microcode or hard Wi1ZLlag. T he reason for separating the
procedural descriptiou from otner parts of a process is to allow
a number of re-entrant processes to use the same description
simultaneousliy. For priumitive objects, tihne nardware may take
shortcuts during high-speed execution and not separate the three
parts of a process; LOr erLor 410youts or responses to a
diagnostic programaer, however, the system must gyenerate a PSR
that effectively represeats tae curcent state of an object.

Tnhe laterpreter is the motive power that causes a process to move
from one state to the next; 1t 1s the logicali abstraction of
active servers like CPU's ana channels, but is more general since
1t includes software interpreters as well as special devices that
may be attached as RPy's. The AFS 1logyical architecture has
deliberately avoided the concept of a CPU; instead, the mcre
general concept of process aliows tihe engineer greater freedom to
puild distributed execution units, special purpose devices, aad
muitiple processing units to improve performance without changing
any iogical 1iaterfaces,

The derinition of process sets the stage tfor later discussion of
wait states, exceptions, Aaad suspensions: Whenh a process needs
input, it stdays in one of its wait states indefinitely; a waiting
process is coasldered asieep, and sending 1t 1nput corresponds to
a wake-up cail. Bxceptions are uhusual conditions 1like
arithmetic overfiow or violations ©OI a4access rights; when an
exception oOCCuUurs, tae process ih which 1t oCcurs yenerates a
message for another process calied a monitor and then yoes intc a
wait state until 1t receives 4 wmessaye from the monitor. A
suspension oOCcCurs when the motive force, the interpreter, 1s
removed from a process, 4nd the process naturally stops because
there 1s nothing to make 1t Jo; suspensions result from time
sharing the interpreter amony many plocesses 50 that only one can
be running at any ygiven time, but they can aliso occur when a
process has run out of money (using tooc much time or sSpace) or
when 1t 1s stopped because of some other event like an attention
signal from the proyrammer who started it. ‘

Processes occur at all levels of a system. When coacepts are not
clearly defined, wengineers and programmers working on different
levels may be unaware that tmney are facing simiiar probless and
duplicating functions pertormed on other levels. in System/370,
for example, there are processes executing in channels and 1/0
urpits, in microcode in the CPU, and at tne instruction level for
subroutines and tasks. The concepts, terminology, aand data
formats at the various levels completely obscure any simiiarity

i88 CONVIveNTLIAL

30 BASIC CONCEPIS AND STRUCTURES

between these processes: records oL processes in channels and I/0
units are maintained in channeli status words; the record of a
process at the microlevel 1is loggea out py the DIAGNOSE
instruction; the record of the arcanitecturally defined CPU status
is 1n the program sStatus woru and register conteats; and the
record of a process as viewed py US5/360 is in the task control
plock. Not only does System/3/U use awkward termimology for the
various processes, it aiso uses awkward means for switching
status: for subroutine calls, tae BAL instruction does oaly half
the job since it only modifies part of the PSW and it doesn't
save registers, To cail a proyram with different status, an SVC
instruction must be used witha coansiderable overhead from the
operating system. The rest of the status, the registers, are at
the mercy of the calied routine to save or destroy. If the
called routine is re-entraat, the simple BAL 1imnstruction, which
takes one microsecond on a Model b5, must be supported by two SVC
instructions to get and free temporary storage, at a cost of over
200 microseconds. In AFS5, PS&'s maintain the status and working
storage for all processes at ail levels. Although data rormats
beneath the SL level are CPU dependent structures and cannot
therefore be 1identical to formats above tnat level, the same
concepts and terminologyy are used to emphasize the relationship
between similar problems on different levels of the systean
design.

2.1.3 0Objects

In AFS, the object 1s a . yeneralization from two sources:
descriptor/value pairs and resource/process associations.
Descriptors are maintained witn data 1in data management systeans,
APL, BULER, and the dynamically varying parts of PL/I. The type
field in a descriptor caa be iaterpreted as the name of a machine
for accessing the value part. Although the few bits that
describe a floatiny point number dont't exhlbit many
characteristics o©of 4 procedure, the ygenerality of an access
machine or procedure 1S vaiuabie for coamplex arrays and
structures and 1s essential for the 1ntricate reiatioanships in a
large data base. The association Of 4 process with every
resource derives from Dijkstra's approach in T.H.E,
Multiprogramming System and from Ole-Johann Daul's approach to
objects in SIMULA ©67. DL1ljkstia assoclates a process wWith every
resource in his system; tae process 1s soleliy responsible for
allocating that resource and acts as a central clearinghouse for
all accesses to 1t. Chapter 2.5 shows that ail objects 1n AFS
nave the properties of wvijKkstra's resources and naturally fit
into a general scheme of Cresource mahagement. dlan Perlis
suggested that simulation iangjuages might provide a suitable
basis for an operating systems lauguaye since they have the best
developed concepts of event anu process; the AFS concept of

I8M CONFIDENTIAL

Chapter 2.1 OBJCT BASE 31

objects as processes 1S a4 geuneralization of the objects 1in the
simulation lamguage SIMULA o7.

Definition: An object is tine pasic entity in the system; 1t has
an active part caliled an access macnipe and a passive part
called an owpned resource. lts active part respoands to
rejuests by other objects aand @may in turn yenerate requests
of its own,

1) There 15 an input gucue of cell anames that specify
burfers containing reguests Lor tae object,

2) The access machine 1s a process that walts in one of
a set of states called ready states when 1t is ready
to respond to input requests. When a cell name for
a request appears oun 1ts 1nput (ueue, 1t assunes
ownership of the buiifer «containiny the request,
performs whatever action 1s appropriate, returns a
buffer containiny the answer, and returns to a ready
state.

3) The owned resource 1s data that ls accessed only by
tne object's access machine,; Lor objects iike clocks
Oor printers, howevar, the resource aay ianteract with
events outside of the systen.

Since this aefinition i5 gewneral egough to accommodate
source-sink I/0 devices as wa2lil as objects as powerful as a
Turing #Hachine, 1t can inciude any conceivable device within the
standard accessing and allocating metnod. For a fiocating point
number, the implementation could specify a rixed length Dbit
string as the resource and a few bits to identify a hardware unit
45 the access @machipe., For 1/0 devices, the object internal to
the system would be calied a port whose resource would be a
logical connection to the external device and whose access
machine could Dbe a hardware or microcoded coatrol unit. Since
the internal structure of an object 1s invisible to the caller,
an object implemented 1n hardware or microcode on one systen
could be iumpiemented in sortware on anotaer: as in SiBULA 67, a
software access machine 15 & procedure that defines a potentially
infinite class of activations; an opject corresponds to a process
executing in one such activation; a ready state 1s a point in the
procedure wanere the process waits for 1aput; and the owned
resource is a set orf automatic variables useua by the activation.
Logicaily, all objects are processes; even a floatiny point
variable 1s a process that 1s aormaily waiting, Dbut nust
occasionally aunswer requests to deliver a value or to stow cne
avay.

Definition: A primitive object 1s osne that cannot be coastructed
from other objects in the system: the PSR, intergreter, and
procedurali description that make up 1is access macaline are
not objects tformally defined in the ilogical architecture.

Somevwhere underneath all the iloyical data structures, there must

1M CONFIDNILAL

32 BASIC CUNCEPTS AND STRUCTURES

be primitive Dbuilding blocks rrom which everything else can be
constructed by software. Altanough the logical detinitions of
primitive objects are parallel to the constructions of other
objects, their substructure is visible only to the engineers and
diagnostic programmers.

Defimition: A reducible object is one tnat can be constructed
from other objects: tae PSR, interpreter, and procedural
description of 1ts access macaine are AFS objects that can
be manipuiated oy Si.

Praimitive objects are deiined axiomatically ain terms of their
etfects on other parts of tae systen. Sometimes, reducible
objects are derined axiomatically, but most reducible objects are
defined by an explicit coustruction 1imn terms of primitive
objects. All primitive objects are implementation defipned; many
reducible objects are 1implemeatation defined, and others can be
user defined, For efficiency, reducible implementation-defined
objects may Dbe buiit out of nardware or microcode even though
they can be comnstructed out of more primitive objects.
Logically, however, all reduciple objects have the same status
Whetner they are implementatioan defined or user defined,

Definition: Tne primitive object uil has an access machine with
only one state; for evary reguest, nil returns a copy of
itself. For operations on liists, nil has the properties of
4 zerc element 1list.

In APL/300, the empty vectors are similar to nil, but they have
additional type 1intformation: Lhe empty character vector has a
descriptor that iadicates tmat it 1s of type character, and it
expands anto blaunks; the eampty numeric vector 15 of type numeric,
and it expands into zeros; nii is of type any, and 1t expands
into a list or undefined objects.

Definition: The primitive opject dindef has an access machine

with only one 1internai state. For wevery reyuest except
destroy, undef raises am error exception,

Logical storage cells cau never oe¢ empty. Ii nothing elise has
been put 1in them, they coantain au undaeifined variable object. The
object nil i1s a general neucrrcal element; it responds without
eLTor exception to any reguest, althaougn some runctions such as +
or - may themselves raise error exceptions when given a il
operand, The object undef 15 a general undefined elemeat; it
always ralises error exceprions except when being copied or
destroyed.

Primitive objects dre SO DasS1C to the structure of the systen
that they canmot be constructed by software, Hardware devices
may mot be primitive in the same seunse because a disk urive, for
example, could pe simulated by a software routine that duplicates

I8 CONriIDuNTIAL

Chapter 2.1 OBJUCT BASE 33

its interface and uses tae storaye management system to perform
the same functions; but there is5 BO sequence of instructions that
could create a nmew d1sK drive in the cormer of the machine roonm
and paysically attach it to the computer. Theretore, certain
objects must be built in frork tne Degiumwning, ahd others may be
attached as the system expands or removed when they fail. As
long as the physical ilnterface provides circuitry that matches
voltage levels and makes tne aevice 1look like a procedure, the
loyical 1intertdce can make room for it im the object base and can
define synonyms and access wdchines that make 1t respond to any
protocol expected of 1it,

Definition: A port is an opject tnat communicates with the worla
outside the system: .1its access machine handles the
interface, and its owned resource is a logical conaection to
a physical device,

Since ports are objects, taey have the same 1interface as all
other objects: they have a well defined status with respect to
the accessibility graph, environmeat tree, and aependency gragph;
and they respond to reyuests i1 the same way as other objects,
Thererfore, it 1s always possibie to replace a port with a
software object that has taue same lntertface; proyraamers can
create logical printers, simulated 2314 disks, and even simulated
networks of machines, 1f a yraphic device has an unusual
imterface, the real port to tne wevice can be replaced by a
togical port that behaves like a printer, Dbut thkat contains a
program to massaye control information passed with a request and
send it to the graphic device in the appropriate format. To make
network communication more traansparent to the user, the system
will provide identical interfaces for a virtual System/370
emuiated inside the system and for a reai System/370 at the far
end of a telepunone line,

If communications with a systesm were 1nm the character format of
typewriters aud printers, tae internal representatiocn of an
object would bpe of no coucern to progyrammers and couid remain
totally invisible. But since data may be 1interchanged between
systems, either «coaversationally or by removable storage media,
there nmust be a standard representation of an opbject tamat can be
recorded on an external mediuw and recoastructea ou a different
system., This standard represeatation i1s called an object image;
every system is free to use its owa internal torms, but they must
all be directly mappable to tne standard form for am object
image.,

Definition: An object image 15 an external representation of an
object. The object image hdas tWo parts corcesponding to the
two parts of the ooject: a descripror that specifies the
access machine and a represeuntation oL the owned resource.

1) if the object 1s priwitive, the descriptor indilcates
that it 1s primitive, and the representation 1s a

I8 CONFLADENTIAL

34 BASIC CONCEPYLS AND STRUCTURES

bit string specityiuoy whiCh object it 1is.

2) In general, the descriptor specifies the conrplete
access machine by ladicating the PSR (which may
contaln 2zero bits of 1anformation 1o soke simple
cases), the object image of the procedural
description 0or the access machine, and the
interpreter of the access macaline,

3) If the owned resource contains storage cellis holding
other objects, tane representation includes the
object images Of aill those objects.,

4) 1f the object is a4 synonym containiagy the cell nanme
0f some storage cell, the object image must contain
a path name (see section 2.1.5) for reconstructing
the cell name by iadexing from some standard vertex
of the accessibiliity graph.

The object image 1is an extermal form of the DAPOV (Descriptor And
Pointer Or Vaiue) discussed ia the System Archbitecture Manual.
Although a DAPOV on a small system may be different from a DAPOV
on a large one, the object imagyes will be the same for all. The
object image may be considered as the DAPOV for amn abstract
implementation of AFS; 1t may turn out to be identical to the
internal DAPOVs of opne or more actual implemeantations, or it may
be a compressed encoding of tne internal DAPOVs,

Definition: The gobject pase i1s thne set of all objects 1in the
systen.

The term object base 15 more yeuneral than the term data base
since 1t also 1includes the logical 1iaterfaces to hardware
resources. because oi the generality, ail hardware devices have
descriptors and can have synonyms defined upon them, Whenever a
device breaks down, i1ts descriptor can pe changed to point to
another device or a software simulator that can repliace it, Ail
cf the advantages of late binding therefore appiy to devices as
Wwell as data: 1ianstead of doinyg a SYSGEN for every counfiguration,
implementers can proviae standard logical facilities, make
descriptors for non-existent faciiities point to substitutes, and
keep the logical appearance constant as descriptors are changed
one by one to reflect the current coatriguratiou.

The definition of object yiven above impiies tnat all objects are
serially reusabie resources. Non—-reusable objects can be
implemented by makiny the access machine destroy the object after
its first (or n'th) use; no reguests can Dypass this check since
the object canmnot be used excCept throuygia 1ts access machine,
Re-entrant procedures and time-saared devices correspond to a
potentially 1infinite class o1r serially reusabie objects: by
subdividing storage, a singylie re-eantrant procedure can provide
automatic variables for as many activations as requested; by
subdividing time, a time-siiciag routine can provide multiple
logical devices that all perform tane same functiom as a single

iBM CONFIDENTIAL

Chapter <Z.1 OBJuuT BASE 35

physical device. The AFS5 view 0r 0Objects as processes treats the
problem of resource mandgement as a problem of 1aterprocess
communication,.

Definition: A reqguest ow an object 1S a triple (T,P;D), where T
identifies the reguest type, ¢ 1s information proper to that
type, and D 1s the destiaation or object that 1s to receive
the answer. Normaily, the access machine or the object will
execute tuae request and returu a result to the object D. In
some cases, the access machine will cause an event called an
@xception; see section <Z.4.1 for a definition of exceptions
and tne ensuing events.

Definition: The dependency Jraph is a structure defined over the
object base: ir an object x hnas a reyuest on 1its input
gueue that specifies an object y as its destination, then y
1s said to depend on x, and (y,x) 1s an edge of the
dependency graph.

Later <Chaapters wiil bring ouat 1implications oif the dependency
graph 1in resource mdhagement, process dispatcaing, and deadlock
determination. Chains of subroutiue caiis form a subgraph of the
dgependency yraph knowmn as tae activation tree: if x 1s an
actavation of a progyram that cails a subroutiue y, then x is
dependent on an activatiow of y uutil it returns.

2.1.4 Access Hachines

5ince every object has an access wmachiue, 1t always has an active
element available to perform aecessary tfunctions, A typical
fuaction 1s that of monitoriny: buring debuy mode, the
programmer may wish tc m@monitor ail accesses to a particular
variable and then perforik a sSpeCillC action such as recording the
access, calling some proceducre, oL walting for ianstructions from
the terminal. For sensitive data, ail reqguests on an object may
cause 1its access machine to check tae ldentity ot the caller and
to mnotify a security officer oL an access attempt by an
dnauthorized user. For proprietary soitware on lease, the access
machine mlght aestroy the opject aifter a thousand uses. All
these applications rely on the 1nvisibaility orf an opject's
internail structure--when an oraiuary variable 1s replaced by one
that i1s being monitored, 1its normal interface remains unchanged.

pefinition: An access macniine has the followiny external
interface:

1) it must have a set of ready stdtes 1k wR1Ch 1t walts
for reguests Wit arguueents {(L,2;0) after
prccessing a regjuest, it must Treturn to a ready
state.

Lyl CONFIDENTIAL

3o

2)
3)

"

BASIC COUNCEPTLS and STRUCTURES

The argyument D specifies the destination for the
response to the reguest,

The argument P specifies further information proper
to the regquest type., B o N ,

The argument T specifies one o0f the following
request types:

Authorize: Request to obtain a synonym to the
storage celii coutaining the object {(see section
2-1.5)'

Copy: Reguest to obtain a copy of the object. If
the object wmay not be copied, the access
machine raise2s an eCror exception. if the
argyumeuat Y 1s nii, tmen the entire object 1is
copied, otaerwise, P must specify some subpart
to be copied.

Delete: Request to delete a storage cell of a
collectave ovject, The argument P must be the
index 0of tae cell to Dbe deleted (see section
2.1.0). The object contained 1ier the cell is
not destroyed, but i1s rTeturned as the response
to the request,

Destroy: keyuest to destroy an object. If the
object 1is noa-uestructible, 1ts access machine
raises an error exception. If it 18 a

collective object, 1t makes destroy reguests
upon ail of its elewmeats betore ifinally
destroying itseif.

Lvaluate: reyguest upon a simple data object +to
deliver a value or upon a more compiex object
to generate a vaiue. The argument P is nil for
ordinary data opjects, but must bz a 1list for
functions (see below).,

Identify: Reguest to obtain a description of the
access machline and structure of an object. II
the argument P 1s nll, the —response includes

all identityinyg intormation; otherwise, P
specifies the ainformation reguested {see
below) .

Insert: Request upon a4 Codilective object to insert
a newWw storage ceil i1nto 1ts owned resource (see
section 2.1.0) . P specifies the 1ndex to be
mapped onto tae new cell by select requests; if
P is mnil, tne new ceil wmas ano iandex.

Select: Reyuest upon 4 collective object to magp P

L8 CUNFIDENTILIAL

A

Chapter 2.1 OBJECT BASE 37

onto 1ts storaye cells: P nust be a set
(possibiy nii) or elements 1a the 1ndex set of
the object; the response 1s a set of celil names
selected by those lindices (see section Z.1.5
for further discussion of indexing).

Start: RBeyguest upon an activation of a function to
beygin interpretation of the procedurai
description associated with tae function. The
argument P 1s a4 ii1st of objects to be bound to
the formal parameters of the function.

%

tou: Request to stow the value P 1in the owned
resource or ah opject., The access machine wiil
either perrorm data conversions to make P
comply witn its coaventions OrC raise e€error
exceptions 1f P cannot be converted properly or
if the curreut value cannot pe modified.

5) Tuae access machine always reserves the right to tell
lies about 1itself and its resource; tals right is
essential to data independence pecause 1t must
aiways be possibie to replace an object with another
object that may be ditfferent 1n structure, but
appears the saane.

Definition: 1In order to speciry requests, a primitive reguest
of the request constaats are formed by adding *s' to the
corresponding reguest naume: authorizes, coples, deletes,

destroys, evaluates, ideatiries, inserts, selects, starts,

and sto¥s.

Simple data objects like fioatiny polnt numbers and character
strings very seldom make rejuests upon any other objects. ‘The
objects that normally make reyuests are functions: primitive
functions make requests upon aryuments passed to them in the
initial evaluate request, and reducible functions are user
defined programs whose very nature is to make reguests upon data
objects, upon primitive functions lixe sum, differeance, product,
or stow, and upon other user detrined functiouns., The foilowing
definition or function preseats the external interface of a
function: 1t describes the action orf a tunction as seea by the
caller or by the rest of the system, but does not describe the
internal processes and structures of the fuanction. Chapter 2.2
describes the internal interface of wuser defined functioas and
the methnod of coanstructing thea.

Definition: A function 1S aa oObject taat responds to evaluate
requests by creating an gactivationr and then making a start
regquest upon tae activation to compute the value to be
returned.

Il CONFIVENTIAL

38 BASIC CUNCEPTS AND STRUCTURES

1 If F is a reducible ruuction, the activations are
objects distinct irom F that reside in storage cells
with distinct cell names,

2) If P i1s a primizive fuaction, its activations are
not objects and camnot be manipulated by SL
expressions, #heu the distinction 1is relevant,
activations of primitive functions are called
quasi-activations. '

3) The aryument P 1in the evaluate reguest upon a
function F must pe a i1st of the number of arguuments
required by F. it F takes no arygyuments, P must be
nil, and F 1is callea miladic. If ¥ takes 1, 2, 3,
4, or =n arguments, 1t is called womadic, dyadic,
triadic, tetradic, ocr mn-adi¢ respectively.

The distinction between a function and 1ts activation 1is
essential: Since evaliuation or a function may take a long time,
1t would be wuundesirable to keep the ifunction tied wup and unable
to respond to amy other request during the entire time of
evaluation; many users oun a System may want simultaneous access
to a function such as a compiier, am editor, or a trigonometric
function. Even nmore fundamental are recursive functions whose
entire structure depends on tue ability for one activation of a
tunction to call another activation oOf the same functtion., On the
other hand, it would also be undesirable to nave many copies of
the function, since the code can be saared. Taeretore, a call
upon a function causes 1t o spin off an activation which
contains its own temporary storaye, but whicn uses the same
read-only code as all other activations of tae function: an
activation is a process waose PSK is unique to 1t, 1ts procedural
description 1s the read-oaly code which 1s shared, and 1its
interpreter is the deccding wecnanism that wmay be shared with
other activations oOif the Same LunCtion as weil as with other
functions written 1in SL. For coasistency, pramitive functions
are considered as activations of hardware or microcoded
procedural descriptions, but the activations are invisible to the
programmer since they are definzd at a level beneath his view, '

vefinition: The triaadaic fuaction reguest Bakes reguests upon
objects and returns tae value passed back by the access
machine oi the object; reguest(T;P;X) wmakes a reguest of
type T with argument P upon object X.

The request <function provides a general way of making regquests
upon objects. Certain reyguests, however, occur so freguently in
specific contexts that special tuuctions are provided to make
those requests.

Definition: The monadic function eyvaluate makes an evaluate
rejuest wupon its argument and returas the wvalue that it
delivers, For a4aany object X, evaluate(X) 1s eguivalent to
request {evaluates;nii;X).

188 CONFIDENTIAL

Chapter 2.1 OBJ ol T BASE 39

Definition: The dyadic tunction StoW maxkes an evaluate reguest
upon its left argument to obtain a value P, It then makes a
Sto# request upon its rigyat argument with P as the proper
argument for stow. The vaiue returned by tue function is P.
For any objects X and Y, stow(X;Y) 1s egquivalent to
rejuest (stows;evaluate (&) ;Y).

The stow tunction 1s one of t¥o types ol assiynment tunctions 1in
AFS. The other assignment 1S the replace function aiscussed 1in
section Z.1.6. The distainction between stow and replace 1s that
the stow function makes 4 rejuest upon 1ts targyet to stow awvay
tae value, whereas tne replace runction makes a reguest upon 1its
target to destroy itselif and tnen replaces it with a totaily new
object. The special character symvol for stow is a single arrow,
and for replace a double arrow; these symbols suggest the fact
that the stow function normally changes only the owned resource
of the target, but that the repiace function changes both the
access machine and the resource parts.

2.1.5 The Accessibility Grapa

Previous sections defined objects and reyjuests upon them; this
section defines the possible patns for reachinyg one object from
another, The structure that defines thnese paths 15 the
accessiblity graph, whicn 15 a union of two subyraphs: the
ownership tree that links colilective objects with their elements
and chains of synonyms that form iinks across the tree. Although
neithner the ownership tree uor tne chains ot synonyms allow
circuits, the accessiblity grapih can and must have circuaits to
support various types or list 4dud rigyg structures. As later
discussions show, the accessibility gygraph has the generality
necessary £foOr various structdares, but 1t alsoc has sufficient
restrictions to prevent infialte iooping 1in copyiny liists or
resolving references,

Definition: A symonym 1S an object that pehaves 1like a cell
name; 1f x 1s an object amd y is a synoanym to x, thenr y has
the following properties:

1) The resource of y contains a set called the rights
to x which defimes permissible reyuests on X.

2) The resource of y also coatains eitaer the cell name
or the storage cell containing X or the cell name of
an object from waiCh X is accessible together with a
path name from that object to x (see the definitions
Oor path name aad accessibility later 1in this
sectaion) .,

3) in respoanse to reyuests, tae access macaine of y
checks the reyuest " type; iif the type 1is 1n the set

iplfi CONFiUuLNTIAL

40 BASIC CUNCEPTS AND STRUCTURES

of rights to X, 1t passes the request to the object
X; otherwise, 1t processes the regquest itself.

Cell names are not objects and cannot be stored and manipulated
like objects. Synonyms are <cell names with an access machine
that can respond to reyguests and with an interrace that gives
them the same status as other objects. In a sease, Synonyms are
invisible objects because they don't answer reguests themseives,
put pass requests on to some otmher object. The rights detfine the
reyuests that «can get througa to the object that the synonym
points to. For some requests not in the set of rights, the
Synonym raisSes an error exception; for others, 1like destroy
requests, it may make the response 1tself, 1. e, Dy destroying
itself instead of the object it points to.

Definition: The dyadic fuaction authnorize ®makes an evaluate
request upon 1ts left argument to return a 1list of regqguest
types and then makes an authorize request upon 1its right
argument to obtdain a symonym with tne list of request types
as the rights of the synoayw. If X is an object and L 1is a
list of reyuest types, authorize(L;X) 1is eguivalent to
request{autnorizes;evaluate (L) ;X)

Definition: The wonadic function syn makes an authorize request
upon its argument X and returns a vaiue S that 1s a synonym
to the storage cell containiny X. The access rights of S do
not include rigats to maxe destroy and copy reguests upon X;
in response to sucn reyuests, S destroys or coplies 1itself,
The remaining rigats in 5 are the ones yranted by the access
machine of X il respounse to the authorize request. if a
rejuest on S 13 not 1n tne set of rights and 1s meither a
destroy nor 4 Ccopy request, the access machine of S railses
an exception. If X is any object aud L 1s a i1ist of alil
rejuest types except copies and destroys, then syn{X) 1is
equivalent to autuorize(lL;X; , which 1s equivalent to
request{authorizes ;evaluate (L) ; X} »

A data base may sometimes nave sSynonyms defined upon other
synonyms; because of taue implicit foilowing oI poihters 1in
synonyms, there 1s danger oI tue system getting into an infinite
loop 1t there is a circult 1n tue synomym graph. SincCe circuits
Or synoayms can only arise as a result of replace assignments,
the replace function (defined 1n sectiom Z.1.86) must have
built-in checks to insure tiaat the target of the assignment is
not aloang a chain of synonyms extendiny Lfrom the source of the
assignment. If the system is 1nitialily without carcuits of
synonyms, them SuCh Checks wiil guarantee that no circuits can
arise.

Theorem: If a request of type [is made on an object through a

chain of synonyms, tnea I must be in the intersection of the
rights of all synonyms in the chain,

ibh COWFIDSENTIAL

Chapter 2.1 O8JBECT BASE 41

This theorem guarantees that sategyuards placed on a synonym can
never be weakened Dby other synonyms with a more. permissive set of
rights: the rights are a «ind of filter that only permits
certain types of requests to pass through; another filter caa
reduce the number or types that pass through, but 1t can never
make any other filter more traasparent.

Definition: A4 metoaym 1S an oObject whose resource contains an
enclosed synonym (see section <.1.7). Since the synonym 1is
enclosed, the automatic zroilowing of the pointer 1is
inhibited, and a disclose operation must be made . to obtain
the synoanym.

Although synonyms are adeguate ror 1list processing and data base
applications, they can't be used for pointers in PL/I because
they are almost indistingyuishapie tfrom the objects they point to.
Metonyms are objects that are recoygynizably diiferent frow the
ones they point to and reguire a special operatiou to rz2ach then,
Suppose X 1s a floatinyg point number, S 1s a synonyms to X, and M
is a metonym to X; them (S+1) anmd (£+1) would produce the sanme
result, but (H+1) would raise an error exception. <The disclose
function must be wused to produce a synoanym from a metonym: the
result of (X+1) «could bpe obtained £from M by the expression
(disclose (M) +1) .

A synonym 1is an object that represents or aindirectly addresses
oune other object; the most compiliicated structures that can be
built out of synonyms are linear chaius. Trees represent the
next level of compiexity: a4 lList whose elements may also Dbe
lists forms a tree; a vector in APL 15 a tree whose leaves are
one level removed from the root, workspaces in APL are trees of
heterogeneous objects such as functions, scalars, vectors,
arrays, and groups; libraries, files, tables, and pools of
devices all represent collections of objects, which may in turn
include collections of other objects. In AFS, ali these concepts
are expressed by the general aotion of a collective object that
nas other objects as elements; together, the collective objects
form a tree, called the ownership tree, that includes everything
in the object base, :

Definition: A collective object is one wnose owned resource 1s a
set of storage <cells for containiny other objects; the
collective object 1is said to own the storage ceils 1m its
resource,

~Definition: If x 1s a «coliective object and y resides in a

storage cell owned by x, taen y is an glement of x.

Definition: An welementary object 1s one that owns no storage
cells: 1t 1s an eleuwent of a collective object, but it has
no elements of its own.

I8 CONFPIDENTIAL

42 BASIC CONCEBPIS AND STRUCTURES

Definition: The ownership relation between collective objects
and storage ceils has the toiLiowing properties:

1) No object owns tane storage cell it resides in.

2) The system oot # 1S a unigue object whose storage
cell is not owned by any object.

3) No storage cell 1s owned by more than one object.

4) if S 15 a set orf objects coantaining R and if S
incliudes all objects that are elements orf objects in
S, then 5 includes ali objects in the system.

Theorem: Every object except the system root is an element of
one and only one coliective object.

Theorem: The cwaership reiation defines a tree structure over
the object base: the system root is the root of the tree,
collective objects are at branching nodes, and elementary
objects are at leaves of the tree, Call this tree the

— s S > o s

The ownership tree provides a basiCc organization over the object
base that resemblies tae typical tree structure of catalogs, The
entire Library of Congress catalog is a tree structure: it is
divided 1into 26 categories, which are subdivided iato 26
categories, which are suapbdivided ianto 19 categories, which are
subdivided into 10 categories, etc. The table ot coantents of
every book 1is a tree structure; its index 1s a tree structure.
The Yellow Pages of any telephone book form a tree structure.
Unfortunately, tree structures are not adequate for ail needs:
almost every index, cataloy, and pnone booK has cross retferences;
and in complex cases, the nuaber of basic entries may be far
outnumbered by the cross reierences, A¥S provides poth types of
referencing mechanisms: the ownersaip tree includes all objects;
some of those objects may be synonyms that skip across the tree
to objects aiony other branches. Toe union of the ownership tree
and chains of synomyms rorms the accessibility graph; to the
programmer, a path tnat foilows synonyms can be used exactly like
a path that only indexes dowu the ownership tree,

Definition: The index set of an object x 1s a set of objects
mapped onto the elements of x Dy select requests on the
access machine of x. The i1ndex set of an elementary object
is empty.

Definition: A list L 15 a collective object with the following
properties:
1) It L has no elements, then L 1s 1dentical to the
object nil,
2) If L has N elems2nts, then its index set 1is the set
of 1integers U, 1, ¢.0, (N-1).

Lists are the most primitive collective objects: they are

diBid CONFIDENTIAL

Chapter 2.1 UBJsCT BASE 43

ordered sets of possibly heterogeneous objects, Although the
usuai formulations or sSet theory cousiaer unordered sets to be
more primitive than ordered se¢ts, iinedal orderiny ajppears to be
fundamental for a theory or computation: cCommon sStordye devices
{(inclading tne books 1n whica set taeory is formulated) force a
linear orderiny on all represeatatioas of sets, 1Ii a set 1is
defined 1in terwms of a predicdte P, thea one wiyat maintain that
"the set of ail x such that ¢ (x)" defines a set without defining
a representation; ian reply, we couid answer that only recursive
predicates are meaningiful 1n a theory of computation and that
nence tne set awust be recursively euumerabie.

Jsefinition: Ihe monadic ruaction ilist makes an identify reguest
apon an object to optain its 1andex set: a1iist(x) 1s a last
waose elements dare copies of objects in the 1naex set of X.

If £ is a vector in APL, (Ravu Xj 15 tane lenyth of X, anda (10TA
RHO X) 1s equali to ilist{L). in &rfs, however, tne index set of a
jeneralized collective oo ject may uot de computabie from a single
integjer. In JOSS, 10r exawmgie, tne programmer can define a
vector with vaiid indices 1, 2, 5, and 9Y; although KHU of such a
vector i1s undefined, the function ilist returns thwe tist 1, <4, 5,
9. Similarly, A¥S ailcows opjects iLndexed py cnaracter strings;
althouyn 10TA and RdO oiL sucn opjects are not defined, 1list
would produce the list or vailu character strings.

Detfinlition: The dyadic function seiect takes 4n object x for its
right operand and 4an element 1 of 111st{x) as 1its left
operand; select{i;x) makes dn evaiuate reyguest on 1 to
opbtain 1ts current value apd then BAKeS 4 seleCt reguest on
X Wwith the wvalue or 1 as the argument, The value returned
by select(i;x) 1is the celi name 0f the storage cell that the
iccess machine 0L X daSsociates witn 1.

Tne select fumction perlorms tae ordinary operdation of iadexing
DYy integers that 1s common 1h wany languages as well as tne more
jeneral i1andexiny Dy character strinys ana other objects, The
method for doiny the 1ndexing 1is left to the 1implementer:
rnteger indexing wiii probably be done by haraware or microcode;
indexing by character strings wmay be done with an associative
memory, a4 mhicrocoded seaiCa aigoriths, OL a& hashing algorithm;
indexing by more exotic objects would unaoubtedly be done Dby a
scftware access machine.

Derinition: An object x 1s directly accessiblie rrom y 1f either
X 1s an element of y, Oor X 13 an element of ah oObject z
Wwhick 1s directliy accessibie rrom y.

Definition: An object X i3 Lindirectiy accessible from y 1t
either y 1s a synonym Lor X, or there exists an object z
that is a synonym for £ dnd Z 1S 1ndirectiy accessiple from
Yo

1M CONFIDUNTIAL

44 BASLC CONCEPTS AND STRUCTURES

An object x 1s directly accessible from y if 1t is on a branch of
the ownership tree that nangs downa Lfrom y. Synoayms in AFS are
analogous to 1indirect addresses in conventional systenmns: X 1is
indirectly accessible from y if tnere 1s a chain of synonyms
leading from y to X.

Definition: A4n oObject X 15 accessible from y 1f X 1s either

directly accessibie frow y, indirectly accessible rfroa y, or
accessibie from some object 2 whiCh 15 accessibie LLOR Y.

Direct accessibility 15 a relationship isomorpaic to the
ownership tree. loalrect accessibility corresponds to chains of
synonyas and tae objects tney point to. Tae accessiolility graph
is a union of the yraphs for directr and indirect accessibility.
An object x 1s accessible rrow y 1f there 1s any path from y to
X, some parts gycing down the tree ana otners going across chains
of synoayas.

Definition: Tae accessibiiity 4rapin 1s a union of the owunership
tree and tae cnains of syuouyws: {X,y) 1S an edye of the
graph if elther x 1s a syaonyw for y, or y 1s aa element of
X

The accessibility grapa wiil have Circults whenever there are
ring structures or general cross references, Consider a
structure of coilective objects, wacn wWith four elements: the
first element 1s & synoaym that points forward to the next
object, the second element 15 a SyuOonym that points backward to
the previous object, and the rewmaiuing two elements are data ot
Some sort; tanen suppose that tae objects are ilinked in a ring so
that tne last object 15 considered tae preudecessor ot the first:

| ISR | | O p——— |

I8 CONFIDuNTLIAL

Chapter 2.1 OBJLCT BASE 45

Consider the folilowiug exaample:

s o -
e ///' ! \\'\
/ - N
e / e
- e \\\
7 U JoE
3
s
{ \ s -t e = - 1s
{Lﬁa&s SUGT K- — - - T T Searerd CaTa 6oy
‘\‘
\],
/
/
/ \
/ &2
Pl (‘«/\:‘ - ‘m\ !
\ / \ L AN By

\«u"”‘;‘\w
N
i
TN
£ ~.
e y
\&k’
I
SN
N
>
~
>
e

i . s ~i) &
//r" o ,/,- i . { . \ I/ \ ‘/:\\\‘ /‘f::\\ {’ -\) »\‘ / - .T ‘{ {A /ﬁ;’\\
k. ": ?{"‘ 1___'53 3 M o K< \1{‘. 7 " ;' 7 ,),
Vo N ™M e e e e e N - — [J 4 i/_ II
N e FTI ST I Il

Suppose a philoloyist named Joe has a data base consisting of
ancient Near Eastera texts, Each text could be a collective
object whose elements are lines; each 1line would be a collective
object whose elements are words. Aithough the division of a text
into lines and words 1s straighttorward, there are many ways of
grouping texts 1into larger collections: one way is to put all
Sumerian texts in one coliective object, all Babylomian texts in
another, and so on for Akkadian and Ugaritic; another grouping
would put all texts on myths and legends from all the languages
in one category, all hymns 1a another category, codes of law in a
third, and Dbusiness records im a fourth; many other bases for
grouping are egually possible--caronoloyical, geographical, etc.
By means of synonyss, the accessibility graph cap exhibit all the
relations simultaneousiy. The diayram above shows part of Joe's
data base: The node labeled JUOE 1s a coliective object with

IBY CONFIDENTIAL

46 BASLC CUNCLZ2E5 AND STRUCTURES

elements whose 1udices are '"LaANGUAGE?Y, *CATEGORYY, and 'SEARCH®'.
Under the collective object JOL.LANGUAGE are «collective objects
for eacn languaye Joe 1s workiay with; under eaca lanyguage are
the texts written 1in that lanyguaye. dut 1r Joe 1s doing a
comparative study of amayths 1 Sumeriaan and sabylonian, he may
tind it easier to use JUE.CATEGURY.MYTH, which 1s a collective
object containing sSynonyms to aiil tmne texts that relate myths 'in
any of the languages. 414 tnis example, WYTH.P 1s a symonym for
BABYLONLAN.F, LAW.S5 LS a synonyw Ior BABYLONLIAN.Z, and HYMN.U 1is
a4 syaonym for SUMNBERZLIAN.s, Thererore, the node B 1s directly
accessible from the nodes sSUMsxliAN, LANGUAGE, and JUOE, 1is
indirectly accessible frow tiae noue U, and 1s accessibie trom the
nodes HYHMN and CATEGOKY.

Tue relations expressed py synonyms do not have to be built into
the structure from the Dbeyibnihy: when Joe adus a new text to
his collection, he can insert 1t under the appropriate language;
4t any later time, ne can delfiue sSynonyws ror it in any existing
categories or even deiine pew categories, Some texts may beicng
to several cateyories: SUMERIAN.A can be acressed via Synonyms
MYTH.R or HYHN.V. and 1n ail cases, a runniny proyram does not
need to xnow 1i 1t 1s accessiny an object directliy or via
synonyms. FOr even yreater iiexibiliity, Joe caa hire a computer
s5cience student to write some user-defined access machines to
create specilal objects taat nave the same 1nterifdace das ordinary
coilective objects, but tanat execute elaborate searca procedures,
Por example, the object SLARCH may look exactly Llike an ordinary
coilective object; Dbut imtermally, it has synonyms to LANGUAGE
ana CATEZGORY and has an access macnine tihat Searches down those
trees. If Joe wants to find tae text of a myth about Gilgamesh,
he could reguest SEARCH.MYTH,s1LGAMESH.TEXT; thnen the a4access
machine would 100k through ail the texts accessibie from the ncde
MYTH to tind one about Giigauwesh.

if X 1s a colilective object, i1ts index set wust have enough
indices to select every element orf X. Ir y is an element of x
and n is the ladex that selects y, then n is calied a simple name
for accessing y from x. If y Dhappens to be a synohym LOr scme
other object z, then n 1is ais0 a simple name for accessing z from
X, because operations on y are automaticaliy passed on to z. In
the above example, 'A' 15 a simpie name for accessing A from
SUMERIAN, and *V' is a simple name Lor accessing A from HYMW. It
X 1S accessible rrom y Dy some CompieXx path, there must be a list
of simple names for eacih stage or the path. In the example, A 1is
accessible frcnm JOE by taree different path names:
LANGUAGL .SUMEKIAN.A, CATEGORY.u¥Td.H, and CATESO&Y.HYMN.V, This
example does not show auy <circuits 1n the accessibility gragh;
put wheu there are circuiis, there 4are an 1atinite number of
paths and hence path names I0r accessiinyg some objects., (Note:
this example used unique simpie names for every node to make the
discussion easlier to follow; i1n yeneral, edlements oI aifferent
collective opjects may nave taz Sawe Simpie names without causing

iIBM CONPLDENTIAL

Chapter 2.1 OBJuCy BASE 47

ambiguity.)

Theorem: If x 1s an elemest of §y or 1f x 15 1ndirectily
accessible from some objeCt Z waiCh 1s an element ot y, then
there exists aa element n 1n the 1ndex set of y such that
x=select(n;y). Call a a simpie name for accessing x from y.

Definition: A path from an opjact y to an object x 1s a list of
objects, the 1first of which 1s y and tne liast x, from an
object u in the 11st to the next object v, there must be a
simple pame ILor accessinyg Vv rrom 4. The 1l1list of simgle
names 1s called the pati wpame from y to x.

Theor=m: If x is accessivle 1rrom y, then there exists a path
nane from y to x.

The path names provide a way of i1undexing down the owuaership tree
and sklipping across the synoujyu Chdins. Before usinyg a pata name
for accessing an object x, tae system must find tne object y fronm
which x 1s accessible Dy tndt name. The enviroament tree
described in chapter 2.3 deilues a4 searcmn procedure for finding
the starting point from wnich the path name leads to the opject.
When a prograuw is executiny, tae interpreter resolves nawmes by
searching up the environment tree until 1t finus a node that
recognizes eitaner the entire path uame or at least tae first one
or more simple names i1n 1t,; taeh the lhterpreter can make select
reguests with the remalning simpie names uutil 1t reaches the
object X.

2.1,6 HManipulating Storage ceils

#ost operations on objects make reyuests on the access machine of
the ob ject. Certain operatioas performed on codidective objects
are intended tto modify tae sStoraye celi containing an element,
Althouyh such operations are 1lnteaded [or manlipudiating storage
cells, they «can have side efiects of destroyinyg ain object or
moving it to a4 new storage ceil.

Definition: Let X be a collective object, aand let 1 be an object
Wwhich is not in the set i1list(x), but which 1s acceptible to
the access machine orf X £oOr addition to iiist(x). Then the
dyadic fuaction insert makes i1asert requests on a colliective
object to iasert a new storage cell and index: 1f x already
has 1 in 1its 1index set, insert(i;x) raises an error
@axception; otherwise, it aas tae side eftect of adding a new
storaye cell to the resource of x, pilacing a copy of undef
in the pew cell, adding i to i1iist{x), ana causinyg the
access machine Of X to Bdp 1 onto thne new cell. The value
returned by iansert(i;x) 1s 1dentical to tne value of

iBEH COnrlDBENTIAL

48 BASIC CUNCEPTS AND STRUCTURES

select{i;x).

Definition: The dyadic function delete makes a uelete request on
a collective object te remove a storaygye cell from 1its
resource and to remove the i1ndex to that celii from its index
set; delete(i;x) has tae side effect of removing the storage
cell containing x{ 1] from the resource of x and of removing
1 from 1list{x). Tne celil name of the old celi may not be
used to 1identify any other ceil ever to pe created in the
system. The value returaea by delete(1;x) is the object in
the storage ceil pefore tne cell was deleted.

Every function returas a value: tue value of insert 1is useful as
the target of an assignment for 1nitializiny the new object; the
object returned by delete 1s usezul to aliow a ceii to be deleted
and its contents moved somewhere else 1n 4 single statement, If
the expression delete(i;x) occurs alome 1n a statement, the cell
containing x{i] is deleted by tae ifunction delete, and the value
of x{i1] 1is destroyed when execution m@oves on to the mnext
Statement. .

Definition: Thne monddilC fuUNRCTLiOn Le@UVe Tremoves the contents of
a storage cell without deleting the ceil: remove({x) has the
side effect of placiny a copy oL undef 1n the cell
containing Xx,; the value Of remove(x) 1is tne oid value of x
uac hanged.,

bDefinition: The dyadic tunction repiace destroys the object
contained 1n 4 sStorage cell and repiaces 1t with a copy ot
another object: repilace{x;y) akes a Ccopy rLeguest on x to
maxe a copy of itseli, makes a destroy reguest on y to
destroy 1itseir, and places the Ccopy 0L x in the storaye cell
formerly occupied by y. 4if y retfuses to destroy itselt, it

Cemnains unchanged, and an error excepition occurs. it y 1s
indirectly accessible from x, then an error exception
OCCuUrs, and the target 1s n0Ot changed. The value of

replace(x;y) 1S a copy of X.

Theorem: No circuits OL sSyunonyms <daa arise Dby execution ot
replace; any attempt to form such a circuit raises an error
exception.

The replace runction 1S a type Of assiynment used primarily for
moviny oObjects and piaciny initial values 1into new storage cells;
its use in initialization 1s tne bdsis for executapie declaraticn
statements., For normal assiguBents, the stow Ifunction makes a
request wupon the access macnihe OL an object to perform the
action and make necessary CONVELSLONS.

Wwhen a storaye cell i1s deleted, synonymns and metonyms containiug

i1ts cell name are not destroyed, but any use 01 them raises an
error exception. Since cell adawes are never reused, there 1s no

LiBHA CUNFIUBNTIAL

Chapter 2.1 OBJucl pASE 49

danger that a new cell couid Dpe accessed via 1nvalid synonyms,
The fouar functions insert, Jdelete, remove, and replace have
important side effects on synonyus: Suppose x 1S a collective
object whose i1'tn element 1is y, taen the statewments
{1 delete x; 1 1nsert xj

Leave a copy of under whose direct accessibility 1s the same as
y's, but whose storaye ceil nas a new cell name that 1s different
from the cell name 1in previous synonyms to y, tne operations
remove{y) and replace(undef;y) cause the andefined opject to have
the Saile accessibility 4as y, even "for synoayas. It y i1s a
coliective object, any storaye ceils it owns are part of 1ts
resource and are moved with it; conseyuently, any syanonyams to
elements of 7y remaln porntiug to the same values even though a
synonym to y itself may point to a copy oL il in the old storage
cell.

Theorem: Let x be an object directly accessibie trom yii] and
indirectiy accessible rLronm Zs After the operation
delete(i;y) or remove(y) is executed, but before the object
yii1] 1s destroyed, x wiil stilili Dbe indirectly accessikble
from z.

These derfinitions can be iumpilemented efrficientiy: removiiag an
object involves moving a siaglie descriptor frowm a space and
replacing 1t with a descriptor for undet; tne rules for synonyms
to elements oi a colliective object follow immediately Irom the
fact tnat the space containing the elements 1s not Chanyed.

The function replace 1s aefined as making a copy of 1ts leift
argument; 1n a later section ou program execution, tae copy rules
are modified to eliminate uakecessary copies, 1n particular, no
copy 1s required when tne object 1s the result of certain
functions, wWhicCh 1include rewove and delete. Theretore, the
followiny expression does wuot aestroy the object 4.B.C, but
simpliy invalidates all 1its olid nawes and repames it R.F.G:
replace{delete (*C';A.B);1usert {('G'; .1})
Im infix form, the above expression mdy be written:
tCY delete A.B => ('G' 1nsert R.FE)

A major advantagye of the current desiyn 15 that 1t has the
flexibility o1 general Jdist processiuy Systems without tne
overhead of gyarbage collection or rererence couunts., Systems like
L15P and SNOBUL keep data avaiidvie as lony as there is a
reference to them; althcuygh suca a property is orten convenient,
1t seriously impalrs eiiflcieucy: In LisP, for example, the
standard method of yarbaye collection 1s to stop all computation,
start at the topmost noue oL tune systeam, and trace all data
2lements to see 1f any are unieferenceable,; only after all nodes
nave peen traced caa tne sSystem thRLOWw aiy ddta away, and only
then 13 there any space tO Cesuke execdtion, The method of
reference counts replaces wmassive garpaye coliectious at
infregquent intervals by increments and decrements to a count

il CONFIDuNTIAL

ST

>0 BASLC COUNCEPIL> AND STRUCTURES

field wheuever synonyms are c¢opled and erased. Although most
objects have a count fieid of one, all objects must maintain such
a field with provisions for letting such values grow arbitrarily
large. Un a storaye hierarcay system, reference counts can
pecome quite inefricient siace 4 local action of copying a
pointer can regquire the refereunce count of a distant object to be
modified., The AFS approaca 15 to destroy objects upon explicit
request and to aliow synonyms to destroyed objects to beccne
invalidated; for ordinary PUKTxAN and PL/I programs, this
approach 1s the most erfricient. If an application reguires
reference counts, they can aivways be added by causiny the access
machine of a colilective object to keep counts of references to
its elements, to issue special synoayms tnat report pack whenever
they are copieda or erased, and to delete the elements when their
reference counts Jgo to zero; thus, the power is available when
needed, put most objects doam't nave to pay for 1it.

Much of the lipbrary and catalogyiny facilities or curreut systems
can be nandied py the functions 1introduced so tar: The DD cards
in 05/300 are used to create syaonyas between external and
raternal devices,; ror example, 1ir S5YS50Uf 1s the name for a
collective object whose elemeuts are iogyical output devices and
1f A 1s the ipndex for selectiny Llogical printers, then the DD
card

//SYSPRINT DD SYSOUT=A
" 1s equivalent to the expressioan

syn SYSC0UT.A => SYSPHINT
In 0S/360, Db <cards also speciry physicad Characteristics of
devices and request a type of allocation sucn as shared use or
eXxclusive use for aodification; in A¥S, physical parameters are
totally unnecessary, and the system provides much tiner control
over dynamlcC resource ailocation (see chapter 2.9). In APL/360U,
system commands are outsiae oif the languaye and cannot appear in
functions; 1followiny are the AFS forms of some APL system
commands:

) LOAD 10 LOGIC LiBlu. LUGie => Current

) SAVE 10 LOGIC Current => LIB1U.LOGIC

) CLEAK Clearws =2 current

) ERASE JOE SAHl delete JOE; delete SAH

yCOPY 10 LOGIC WPP LIB1U.LOGLIC, WFF => (YWFPFY iansert Current)
yLI3 1iist dystuff -> SYSPRINT

The APL/360 system makes copieS Of WOLKSpaces Dbecause 1t has no
way of sharing read-only objects and no way or deflning synonyms
to objects 1in other workspaces, Under AFS, a subsystem would be
free to make copies or define sSynchyWs as it chose.

2.,1.,7 3Structure

The elements 0of a yeneral coliectave object have oanly one thing

18K CONFIDENTIAL

Chapter 2.1 | OBJECT BASE 51

in common: they reside 1n stordye Cells tnat ali have the same
owner., Special types of coilective oObjects mdy 1@mpose Nncre
conditions elither on the elements or on the admissibie index set,
Typical conditions restrict tue 1adex set to inteyers, pairs of
integers, or Character stilays; other conditions restrict the
elements to have the same acCess machines or representations.
Althougn conditions restraicc yeanerality, they may 1mprove
efriciency and simpiify enumeration of «ll elements, If all
elements hdave the same access mdachine, the descriptor ot the
entire collective object pneed sSpecitfy the access machine only
once for all elements; sSuCh sSaviuys are especially obvious for
pit vectors.,

2.1.7.1 Lists

We nave already defined a Llist in section <L.1.5, A list 1s a
memoer of a special class of coliective objects with particular
index sets. The indexiuy capabidity of SL provides a mapping
between a set called the iamdex set and a set which comprises the
objects iun tae storage celis of a collective object, The
elements of the 1ndex set are cdlied 1ndex objects, AS the use
of the word ‘Mset" implies, a0 structure 1is imputed to either
set Dy the 1ndexiny mecunanisw atself. The most primitively
structured coliective object 15 the iist. 4 list is a coliective
object whose 1ndex set 15 the set Oof 1inteyers iess tnat N for
some 1integer N, For exampie, a list of ten objects has for its
index set (9, 3, 5, 1, 7, 4, <, 8, J, 6). A iist 1a particular,
and 4ny 1indexed object im geaeral, acyulires 1its structure, if
any, from the inhereat structure Of the 1ndexing objects
themselves, This structure @aust cowe frowm sometnlny otaer than
indexing. In the case of tae integers, iaitial segwments of which
ire popular index sets, that structure i1s provided Dy the
arithmetic <tunctions which appiy to them. Tanese operations,
ultimateiy definable 1in terws of the Peano postulaites, are the
basis for most 1index sets. Accordingly, we may clarify the
definition of a list to say taat a list is a <collective object
whose index set 1s an iuitidal segwent of the lnteygers. We 1intend
to 1aply that the orderiny 0L tiae iutegers is a pagrt ot the
definition of a 1ist. For coavenience, we 1introduce the
tollowing

Definition: 4 primitive index SeLr 1S an initiai segment of the

s e e, s s s i

non-negative integers,

Usually the ternm "index set® Wwiil Dbe used in piace of
“primitive index set" wnen tn2 context permits. Lists form the
only special class or collective ODjects wilCh i1s primitive to
the system. There are no restrictions on tae elements of a list,
They may be scalars, closures, arpitrary collectiva objects, or
other iists.,

ioM CONrivsNILiAL

52 BASIC CONCEPTs AND STRUCTURES

2.1.7.2 Structures

since the elements of a collective object may themselves be
collectives, 1t 1s possible to bpuild tiered structures of
arbitrary compiexity and indexing depth. It is userul to have
some definitions to talk about tanese objects.

Definition: A gstructure is a couilective object some subset of
whose owned objects 1s composed of collective objects
together with ali objects accessible by 1terated indexing
from the yiven object.

bDefinition: An indexed stiucture 15 oue all of whose collective
objects are indexable.

pefinition: A liist structure 1is a structure alli of whose
collective objects are lists.

Definition: The shape of a il1st 1s the number of elements in it.

Suape 1s a general term wklch als50 applles tO arrays. When
referring to lists or to vectors the term Jlenygth wiil sometimes
be used. Une oI the 1mportant characteristics of a structure 1is
the number of tiers that nave peen derined., One can retrieve any
one of the elements of a list witn a4 sSinygde indexiny operation,
To specify an element of a4 iist or lLists, the 1ndexing operation
must be repeated.

Definition: The depth ©of a sStructure is the maximum number of
times the 1ladexing operation can be performea on the
structure before reacniny a scalar or an object already
reached.

A scalar has depth Zero. A siwpie list nas depta one, 0One can
simulate arrdys at tae proyrawiny level with list structures of
depth two, ie., with lists or iists,

One may wish to define a depta two structure of lists whgese
elements are 1indexable, Unforcunately, the deptas of these
elements willi be added to tmat or the structure and any attempt
to determine the deptn witn ocvdinary functions will yield the
wrony result. To handle sucn s1tuations tae encapsulate tunction
1s provided., It conceals any arcpitrary structure witaln a scalar
50 that 1t cau be placed 1n a structure without i1uncreasing its
depth. Tne original structure can be recovered by using the
ancover function.

For coanvenience i1a deifining tie locate function Lor lists we

introduce a related type of 1indexed object, It 1s not primitive
to SiL.

iBM CONFAIDENTLIAL

Chapter 2.1 ' OBJoiCl BASE 53

Definition: A pseudo-list 1s an oD ject whose 1ndex set consists

i s e s

of integers.,

2.1.7.3 Arrays

For a number of reasons 1t 1s desirable to provide indexing with
an arbitrary uumber of objects 1n a single level of indexing.
The facility 15 provided by most haiga levei languages 1n use
today., It provides mucn of tne rlexibility of a iist structure
without incurring tne 1unefficieucy of multiple calls on the
indexing operation to retrieve a single object. Furthermore, it
1s easiler to ~rearraungye objects witain the structure since it is
not =necessary to shift tnhnem from one coilective object to
another.

This desirable facility is provided in SL as in otner languages
by arrays. In Keeping witia the spirit of SL, 4arrdys are
basically defined i1a a general way. They diirter from other
indexable objects 1m that a riyid Lramework has been provided 'in
which thelir i1ndex objects reside. Tinls framework 1s defined with
the aid of a 1list structure cailied the base list or the base
list structure of the array. NoO restrictions are piaced ou the
index objects themselves, or on taue elements of the array.

Arrays are not primitive to Si. It is thus 4n 1mplewentation
decision whether the hardware wili construct vectors of vectors
to describe arrays or not,

Detinition: the Dbase 1list or pase 11ist structdre of an array,
A, is a list structure of uniform depth 4. Tue 1-th
sublist 1s called tne i-dimension index set of 4.

Derfianition: 4n array, 4, Of ranx £ 1S an object whose 1ndex
set consists oif lists or iength L. The 1-tk eleaent 1in
each index object 1list 15 chosen frow tne i-dimension index
set of A, The crfangk of A 15 the shape oI Lts base list,
An array of rank [1s Called an r-array. The shape oi an
array 1s a 1ist of the sizes of 1ts 1-dimensiou lndex sets
for all appiicable 1.

The monadic fusction ibase appilea to an array produces 1ts base
list., The composite function shape ipase produces 1ts raunk, for
any array, A, the following 1deuntity holds:

shape A = shape map idase A,
The elements of the 1index set of A are members of tne augment

outer product reduction of tae base Llist of 4. 1in standard
terminologyy, thls 1is the Cartesian product redaction,

ip¥ CONrlVvsNITiAL

54 BASIC COUNCEPILS AND STRUCTURES

Definition: A

<

ector is a l-array.

befinition: A matrix is a 2-array.

We shall refer to a vector with K elements aad i iist wita K

2lements as a - k-vector and a k=-list, respectively. In
particular the empty list and the empty vector are the Q-list
and the ({-vector, respectively, Note that a scalar can be

considered as an array oL ramk 2zero as well as a list structure
of depth zero.

For a general array there are no restrictions on tane elements of

the sublists of the pase ilist, in fact there 18 no restriction

on the liengths o©of the sublists. For example, the 1anteger
generator can produce a poteatiaiiy infinite llst, walcCh can be
indexed with any integer., This 1list 1s the oniy euntry 1ia the
base list for tne correspondinyg larinite lengtia vector.

An array may Dbe indexed by cadaracters, lists, other arrays, etc.
It ail the k-dimension l1adex sets are fiaite, then tane arrcay 1is
tfinite, If all the index sets cowprise only 1integers, then the
array 13 indexed by lists of iantegers. This 135 the most yeneral
type of array usually hanuled. A particulariy i1mportant subclass
of finite, integer indexed darrays is the foilowinug:

Definition: A primitive arrday 1s one in wnich the 1iudex set 1in

each dimension is a primitive index set,

In order to provide the kind or Lflexible restructuring tihrough
indexingy whicn 1s available iu, oL exampie, APL we permit the
substitution of certaln arrays witnla the 1list wniln constitutes
an indexiny object. These suostitutions aetfine amn 1nfianlte set
of structures whica the select function will accept r1or indexing
ArLrays.

Definition: The bpasis for tnez iudex s<et OL an array is the
Cartesian product reduction of the base list of the array.

This 1s what is usually calied tne index set of the array. The
function 1list on an array produces the basis of the index set,

Definition: The complete 1inaex set of an 4rray 1s derivea from
the basais for the iundex set. For any position or set of
consecutive positions in an index Llist may be substituted
any array. The elements of tne array must be ii1sts of the
Same length as the partiai iList tne array replaces. The
ceturned object willi be am array. The base list of the
returned array 1S tae catenation of the base 1i1sts o©0f the
participating arrays.

Since the phrase "basis ior tae index set' 1s usuaily snortened
t0 "index set", the word Wcompliete" must pbe expressed when

iB8 CONFIDLNTIAL

Chapter 2.1 OBJECT bASE 55

imported to prevent CORLUSLOIl. Tane pase list £or am array 4
defines its structure 1ia complete detaii even for arbitrarily :
indexed arrays. The 1nformation reguired to determine the index ‘
Structure for a primitive arrday i35 much less. 1t 1s simply the
length of the index set imn 24cu dimension. The shape tunction
applied to an array will retura tais information in the torm of a
list. The <fuaction igenerator applied toe a4 scalar returns the
index list for a list oI coirespondily lengtu. {he function
igenerator applied to tae shape of a priwltive array generates
the 1andex base 1or tnat array by tfunction distribution.

The relationsnips Detween the vVarious types of arrays and lists
can be described by the resuits ot applying tne various structure
deteraining functicns to them. The information 1S5 summarized in
the following table.

list scaiar u-vector vectot r—-array
k)
ilist { list u-list of v-list of l1ist of list of
i lists 1-iists 1-i1ists r-lists
}
index | scaiar U-list 1-i11s5t 1-list r-iist
object |
ibase { list u-list of i-iist of 1=-Llist or «r-1iist of
i lists lists lists iists
!
shape |} scaiarc U~-liist 1-list 1-iist r-iist
}
Shape ofj U-list U 1 1 r
3hape i
4.

For convenience 1n defining Lthe iocate tuhction for arrays we
make tne following definitiou.

Definition: The l1adex object -array ©f amn adrray A4 1s the
primitively indexed array with the same saape as A whose
elements are the respective 1inuex objects oL A.

Note that the relationship between a pseudo-iist and 1its list of
indices 1s analogous to that between aun array aad its 1index
cbject array.

Ik CundilvgnNTIAaL

Chapter 4.2

PROGRAM STRUCTURL AND INTERPRETATION

The access machine of every object 1s a process., Thlis process 1is
derived from a procedurad description by addiny some locai
storage and causinyg au 1aterpreter to beyin executing this
description. Tais chapter presents the form and execution of
programs, that 1is, procedural descriptions written in SL, The
chapter begins witn an oOverview of tne concepts which are
important to interpretation and proyram structure. After that
the form of a proyram 18 Jiven, Tais 1s given as a data
structure in SL. Then, tne coastraints taat tals fora implies on
the external syntax are given.

The remainder of the chapter is devotea to the interpretation of
the text of tue program. The interpretation of an expression 1s
developed in detail, The protocoils itor calling otner functicns
are presented in a form sulitable ror using functions writtem im a
foreign (nom SL} architecture, Then, <the interpretation of
functions with @multiple expressions (L.e., sStatements) are
described, Finally, various operdators tor varying the order of
interpretation are discussed,

This section introduces at au overview lievel tne Key concerpts
Wwhicn are reguired to replesent and execute an SL prograne.

2,2.1.1 The Form of the wanguage

In SL there are two fOLmMS 1h WRlCh proyramming may be done: an
external syntactic form and 4 wmachine-oriented data structure
form. TIhe reason for this dichotowmy 1s tnat there 1is no singie
form which 1s adequate for Dboth human dDeinys and machlines.
dumans expect clarity of expression and readability. They oiten
find it easier to manlipulate proyrams in textual units such as
strings., On the other hand, macnines Wwork better with fairly
rigia data structures, fnen, the machine can use the 1fixed
information to provide a Wmore CoWwpact program rLepresentation and
to optimlize execution.

There 1is, hnhowever, aasother reason for having two representations

for a program. This 1is exewplitied by LISP. in LISP, it 1is
possibple to iaput and display acyclic 1ist structures 1in an

ApM CONPIDENTIAL

Chapter 2Z..Z PROGRAY STRUCTUR L ANO INTEsPRETATION 57

external syntactic torm. dowever, 1t 1s also possible to write
LiSP programs to build and moditfy 1ist structures usinyg the LISP
functions., SincCe 4 pProgram in LiSP is 4 list structuare, tihls has
the 1mportant conseguaence thdt 1t 15 easy to write programs that
write or modify other progyrams.

Tne rClexibility to construct progyrams as data structures is very
important., it makes 1t possibie to write compilers with yreater
¢ase., It also helps when projram modification 1s reguired as 1in
4 SOrt yenerator. finally, it allows prograws to respond to
requests by coastructing anotaner program to do the work, This
type Oof behavior will become wore popular 45 data query systems
JLOW,

The externai syntactic tora 1is theretore desiyased to give the
best possible humaa interiace to the system. it provides
extensions of the strict mdachine form to petter support naive
users., The external form will be translated into the machiline
ftorm by an incrementai, statement-py-statement trauslator whose
2Xistence can be ignored by most users of tne external form., The
machine form 1s aefined iuh terws oOf data structures which can be
constructed and manlipulated ra SL. It 1s desiyned to malntain
the information needed to do faithful interpretation and to be
convenient to @anipulate,

Proyrams are expressed 1n groups of statements., Each statement
is a strinyg or symbois. A Symbol 1S onhe Or mOre characters which
1s <clearly delimited. The sympol strinys represent infix

expression iu4 the external forw. In the machinhe rorm, the symbol
s3trings represent the Polish prefix form of an expression, In
2ither case, a statement 1s aay legyal SL expressiou. Each group
ot statements 1s represented 1n the machine rorm by a module
Wwhich contains a list of the statements,

2.2.1,2 The Kxecution Of the Langudye

2rogram text, even a4 moaudie, is really oumnly a representation of
an algorithm description., It 1s oaniy Dby executing the text or
module that the intent of tne aiyorithm is carried out. In SL
there are a number Of steps in the process of 2xecuting an
algoritam or proceaural description. These steps rorm 4a phased
aistory of the life of a module,

Definition: A module goes taurouya a4 aumber or phases as it

entered, prepared for execution, executed and finally
discarded. These phases in order are:

Translate: Convertiny tae program into a moduie,
Load: Estaplishingy a new copy of the module with 1ts

assoclated 4ivau oriented (static) storage 1n

it CONFIUBNTIAL

BASIC CONCEPTS AND STRUCLURES

tae usei's cucrent context,

Activate: Creating am object which contains information
assoclatinyg parameter symbols witn arguments
and contaius a new generation of the

activation-oriented {automatic) storage.,

gxecute: viaterpreting the Dpbody oOr the text of @ the
module,

Deactivate: ©Possibiy teleasing the generdation of automatic
storage ir 1t Cdan no longer be accessed.

Unload: Releasing ali stordge assocldate directly with
the loaded module peing ubloaded.

At eacn phase the form of the mouuie changes. Up to the execute
phase @more and @Oore intormation 15 added. After that,
information is discaraed. It is guite possible to use a paase of
a module as the pasis for severai differeat i1nstances of the next
phase. For example, oniy a simgie iocad i1s required for many
different activations of a module., Similarly, a singyle copy of
the text of the module can be snarea py many loaas.

The load and unload phases aie develioped 1in detaild 1in Chapter
2.3, In this chnapter the empiasis will be on tne transition tfrom
the load phase to the activate phase, and Onto the execute phase
and, finally, through the deactivate phase,

Definition: The transition from thne ioad phase 1nto the activate
phase and onto the execute paase i1s called acrivatiang a
function. '

The process of function activation iucludes buiiding up a new

object from tne lodded moduie by adding sSome automatic storayge,

passinyg arguments aad causing Jne independent execution of the

new object. It begins when au evaiuwate request is made on a

loaded nmoduile. When the aCtivate pnase 1is entered, the

interpretation of the text 1s peyudn,.

Definition: Tae iapterpretation of a4 function 1s perrormed by
scanning the text of the ruunction module and makiny reyuests
on the objects associated with the symbois that are
encountered,

In the terms of tormal logic, @meaning 1s given to a purely
syntactic form by associating oObjects rrom a4 univarse with each
of the symbols in the fora. Thea, the form can Dbe evaluated
using the rules or combimatioa tor the objects associated with
the symbols in the rorm. In 5L, tae symbols are associated with
storage celils which nold tae oODjects that give ths symbols
meaning.,

L84 CONFLDENTIAL

A

Chapter 2.2 PRUOGRAN STgUCTUR s AND INTERPRuTATION 54

Definition: Symbol resolution 15 the mechanism which associates
with each symbol the ceil name of a storage cell 1in the
object pase.

As will be seen 1in Chapter Z.3, 1t Ls possible tu separate symbol
resolution 1into a number ot stayes. Each stage 1nserts
i1nformation which 1is fixed witn respect to alli succeedliny stages.
This factoring of symbol resolution can greatiy improve the
performance of the machine siuace potentiaily repetitive work 1s
done only once,

As the interpreter moves throudgjh tane mpodule text, it wili need to
Keep some status lnformation iu the PSR tor the activation which
1S being interpreted. One oL the wmajor pieces oi information
that wust be saved is the status oi evaluating tae operands oL d4an
operator. Because expressions cCcau be anested to an arpitoary
depth, an undetermined number or ovperators ®may be 1in the process
0of operand evaluation sSiwmultdnceousiy. iheretore, a speclal part
ot the PSK is distingulsnead to aodd operator evaluation
iutormation.

pefiuition: An evaluand 1s a coliective object wuich holds the

information about the status orf evaluation tor one operator
and 1its operands. = Tae evaluand 1s part of the PSR.

An additiomal portion of tae PS5y 15 used to retain Wwhicha
statement i1s currently being 1uterpreted. Tols corresponds to
the instruction counter on C€idassS1C wachines,

Definition: 1The statement iadex 45 a4 portion ot the PSR which
holds the index of the statement curteatiy beiny
interpreted., L1f theie 18 no such statement, then the value
or the statement index is undetf.

dhen tne execution 01 the mouu le text 1s coapleted, the
activation 1is destroyed, a2 storaye assocClated witn that
activation may or may uct be destroyed dependainy oh whether or
not references to syabols associated wita that stordge are stild
ilegal. In PL/I sucn references are 10t legal so tne storage may
be released. However, in LISP referesces are legal aad tae
storage may outliive the activation,

2.2.2 Llnternai Projram mepresentdtion

The basic unit of proyram ComnstLUCLLIOn 1S & stretch or text where
each symbol in that text nas only one wmeaning. 4internaily, this
1s represented by a aocduie.

Lo¥ CunliDEwTIAL

BASIC CONCEPIS AND STRUCTURES

Definition: A module is a primltive collective object consisting
of two components: the module text and the dictionary.
There 18 one entry in the dictionary for each symbol which
occurs in the module text. Tais dictionary entry also holds
the information for symbol resolution,

The fact that each sympold has only one association within the
module makes a module suitapie for the minimum unit of
translation into iatersmal form. The symbols can be tactored 1into

a separate dictionary, and their occurrences in the text can be -

replaced by offsets into that tabie, Then, symbols can be
resoived by associating storage cells with the entries 1in the
dictionary. This encodingy <teauces the size of the program text
and the complexity of decodiny 1t, Once program text 1s encoded,
however, it is meaunlngiess witnout the associated dictionary.
Therefore, whenever program text wita symbol associations can be
selected as a separate unait, the corresponding dictionary must be
available to define the meaping of offsets 1m the encoded text,

Definition: The dictiohary is composed o©Of three component
structures: the symbol tabie, the linkayce table, and the
attribute table. Tnere 15 a 1-1 correspondence between the
entries of each tabie., The symbol table nas the character
representation of the symbodl. Tne corresponiing entry in
the linkage taple nas the association (1t anyj for the
symbol, and the attribute table entry has information about
the symbol.

The dictionary is loglicadly iuwdexed by tue syavols. Hence, the
symboi table acts as tne index Llist of the dictionary. However,
witain the text of the wmodule, the sSymbols are represeunted by

symbol references. Syambol references are logical 1inadices into
the three parailel tables. Taneretore, tne symbol reierencCes are
alternate indices [OorC thae dictionary. Tne symbol references

correspond to the symbolicC pamdes used 1n the system architecture
manuai.

Definition: A symbol refereace 15 a loyicai 1index imto the
dictionary. Winen used, it selects the component
corresponding to the sympol it represents. it 1s vaiid only
within tae module in which it was created.

Definition: The tetradic function insert Sympol causes a new
syabol to Dpe added to the symbol tabie or the designated
dictionary and the corresponding entries in the linkage
taple and the attribute tabie to be filied 1in., J{he result
of insert symbol {(I;u;A;X) 1s the sympol reference of a new
entry in the dictionary £ wita tse value or i as the symbol
entry, the value of L as the linkage entry, and the value of
A as the attribute entry.

The 1unsert_symbol function is wmuch 1like the normal 1nsert

158 CORPIDENTLAL

Chapter 2.2 PROGRAMN STKUCTURL AnD INTEaPRETATLON 61

function. The major difrereuce 1s that two additional arguments,
the 1linkage 1information amd tae attribute information, are
provided., Also, the result 1s uot the «cell name of the aaded
cell, but is the symbol refereuce which wiil select the new
entry. Using a special operator to add to tne dictionary makes
it possible to discipline tne use of the dictionary.

The attribute component is arpitrary and may be used to stcre
information reguirea by tae languaye beiug translated. Hence, it
may serve as a compile~time dictioaary and 4as a place to hold
initializing information at fun time, The form or the linkage
information will be discussed in Chapter 2Z2.3. Basically, it
consists of an i1ndication as to waether the symbol is defined
within the module or that it is defined 1n some other module., 1In
the latter case, 1t coantaias the ianformation on how to find the
defining module. It also contains i1nformation on the storage
class, since this affects linkKdge.

Whenever the sSame SymboOi OCCULS 1L two difrerent modules, the
occurrences may Or may not be associated with the sawe storage
cell. One possible approacha 15 to detine the symbol-storage cell
associration to be the same for all tue modules im any collection
otf modules., Tuen, a ditfterent sympbol would be needed for every
distinct storaye cell to be rereceuced i1n the coliection. This
1s annoying for one user and ailmost i1mpossible to handle when two
OL MOLe uUsers are combliuing taelr programs. Therefore, it must
be possible to define a context 1n wWaicCia a particular
syamabol-storage cell association is to hold., It 1s then possible
to have more than one assoclation ia a set Of modules.,

Definition: A symboi 1s defined in a module ir the storage cell
associatea witia the sympol iaside the module 1is difterent
from the storagye cell associated with the symbold in the
surrounding context of tae module. The linkagye iniormation
correspondainy to the sympoul in the dictionary indicates when
the symbol 1is defined.

befinition: A local symbol 15 a syapol wuich 1s detfined within

the module 1n waich 1t occurs.

The local symbols of 5L correspond to the local symbols of APL
and the declared 1internal syabols of PL/l. They are also Known
as bound symbols in mataematics., Local symbols are important
because storaye cells are aiiocated for iocal sywpbols when the
module 1s used, All other syabols are just references to storage
cells allocated outside tae module.

Definition: A symbol which 1s not local to a module i1s a free
symbol or a parameter sympbol. The linkage information for
s3uch symboels 1ndicdates now to find the definition of the
symbol and the associated storage cell,

1M CONFIDENTILIAL

BASIC CONCEPTS AND STRUCTURES

The symbol-object association ror free symbpols 1s derived fron
the surrounding context o0Of the moduie, The method for
determining this association and tne surrounding context will be
aiscussed in Chapter 2.3. Tne free symbols correspond to those
symbols in PL/I procedures and APL tfunctions which are not
declared witnin the procedure or functiomn, Tane resolution of
parameter symbols is discussed Ln section <Z.2.4.

t compouznt oOf a wmodule 1is a 1list of

Definition: The text
h statement is a list ot symbol references.

statements, bac

The list of symboi references represents an expression (see the
next section) 1in Polish prelix iform. Treating statements as a
list makes 1t possible to select the statements Dy a simple
integer index. This makes editing tne text much simpler, It
also provides a cileaa derinition of local labeis.

pefinition: A local labei protorype i1s a symbol defined 1imn a
module and associated with the index of one of the
statements in the text.

The prototype is made 1nto a locadi diabei Dby adding to the
prototype information wihicCh indicates whicn generations of local
storage were active when the label was Created.

2.2.3 3yntactic Fora oOf Progrdw Text

This section sets dowh tne constralints on the extermal syntax
that are conceptually required. it 15 ot to be interpreted as a
specification of the syntax, but onily of the form of the syntax.
Many concrete syntaxes or exteinal representations are compatibile
with tnese properties; one such representation 1S tne external
form presented in Chapter 4.3, 1he external syntax 1s designed
to be suitable for human use, It 1s intended that am incremental
transiator will puild the program representations aescribed 1n
the previous section., w#here 1t 1s relevant, the machine fornm
will be discussed with tne Syntactic constralints,

2.2.3.1 Symbol Lists

Detfinition: Program text 1S 4 string of symbols.

This 1s an important difference between AFS and existing systenms,
Unlixe the bit encodings of System/37¢, Dbit encodings in AFS and
physical addresses of hardsdre devices are Known only to the
implementation, Bit encodinygs are never displayed to progyrammers
in hex duamps and can never ope amodified by them; 1nstead, ali
communication 1s in the form of character strings deiined in the

A
&M/

Chapter 2.2 PHOGRAM STRUCTUR S AND INToGPRELATLION 63

logical architecture,

Definition: A symbol consists of ouse or more characters treated
as a siagle unit; tue iluplementatrion must include
appropriate delimiters or character counts to 1iandicate the
axtent of a symbol.

Intuitavely, symbols cocrespould to the toxens of PL/I and APL,
They 1nclude denotations for constant, singie and wmultipile
Ccharacter operators, and identiilers. There will be rulies ror
determining the extent of sywbols so that the last character of a
symbol is obvious to a sywmbol parser (lexical anaiyzer).

There are two <classes ol sSywmbols: operdtor symbois that
represent operators reyuirinyg operahds to be evaluated, and
elementary sympois that represent objects that ao not reyuire
operands to be evaluated. These classes dare distingulshed so
that 1t 1is possible to syutacticaliy preprocess the text:
Operators must be syntactiCaiiy distiangulshed from elementary
symbols 1f syntax cneckiny OrL pdafsing 15 tO be done. in APL,
variables are syntacticdily irudistinguisnable from user-detined
operators; theretore, thue oniy way to teil 1f a symbol 1s an
operator or a4 variabie 1s to 1ind out what the symbol represents
at execute time,

pefinition: An elementary sywboi 1s a4 sywbol without any
syntactically-associated operands. Two subciasses are
distinguished: The first subclass, iiteral symbols,

consists of symbols waose form i1dentifies the objects they
represent, the second subclass, representative gsymbols,
consists of ali the remaininy elementary symbolis.

These two subClasses correspouad to tne classes orf constants ana
identitiers respectively, £Sxamples of liiteral symbols are 'XYZ,
3.4, 2+41, Examples oL representative symbois are X,
VARIABLE_ONE. The rules ror resoiviig representative symbols are
Jiven in Chapter <Z.J3. Howeveil, literal symbols can be resolved
at translate time to a speciai constant tavbie which 1s an
extension of the dictiomary. Bach literal can be replaced by a
special internal symbol rerfereuce to this table,

Definition: An Operator symbol 15 4 symbol wiaicn has operands
that are syntactically associdated.

There are at Jleast two ways to distinguish operator and
elementary sympois. Cne way is to enclose tane arguments of an
Operator sympoi 1R parentheses as is done witn PL//1 function
references. The second way is tO put a descriptiou of the number
and locatiocu o0f the operands berore or after the operator in the
piogram text.,

These definitions Cause niladic tunctions to be considered to be

IoM Conribenllau

BASIC CUONCEPTS AND STRUCTURES

elementary symbois because they have no operands., However, there
is no need to parse variables and niladic zfuanctions in a
different way.

Definition: A simpie expression is elther a single elementary
symbol or an operator symboi, toyether witna the correct
namber Oof operands. Each operand 1s a simple expression.

This defines ‘expressions recursively Dbeyginning with elementary
eXpressions such as constants, variables, and niiadic ifunctions,
These may be wused as operands ror operator symbois to build one
level expressions. Then, two lavel expressions may be built ftrom
these one level expressions or siuple expressions, This allows
arbitrarily deep nesting of operators.,

Definition: dnen an eipression aas the form of an operator
together with a set of operauds, the operator 1s calied to
top operator.

This definition reilects tue tact tnat the syutax of an
expression 1s realiy a ilnedar representation ot a4 tree, The
non-terminal nodes or this tree are the operators, the terminal
nodes are the elementary sywbois. Tne braaches 1in the tree
correspond to the operands oi the operator to whicCh they are
attached.

2.2.3.2 Special Operators

There are cases where it 1S necessary to use an operator symbol
as an operand of another operator, One example of such a use
occurs with tne lnner product operator in APL, It takes two
operators (e.g., + apnd *) aud two arrays and produces a result.
This 1is written A+.*¥B where + and * are npot operators with
operands, but are elementary sSywbols - used with tne dot operator.
Because of the syntactic ruies yiven above, it must De possibie
to syntactically distinguish tne two difrereat uses of + and *,

Definition: There is a prerix syabol quote wanich syntactically
converts the occurrence of the symbol following it into an
elementary occurrence.

dence, the APL 1l1nner product wouid be writtemn 1in the strict
syntax as inner (quote plus;quote xpnj;aA;B). in the extended
syntax, a simpler expression simliar to tne APL torm might be
adopted, but such a form Would Dbe a syuatactic macro whose
@xpansion in strict syntax would nsave to use elem, Note that the
APL form reguires a precedence relation in conjunction with the
dot operator to override the normai use of + and *,

If quote 1s used witn elementacy symbois, it uds no eifect since
it only indicates how tO parse tae program and not how the access

Ib¥ CUNFIDENTIAL

Chapter 2.2 PROGHAY STRUCTURE AND INTERPRETATION 65

to a symbol 1s to Dbe interpreted. This 1s covered below 1in
discussing the evaluation of operands of operators.

Another problem occurs winen iaingjuages like APL are translated to
SL. Lt is necessary to represent tae program text tor APL im a
partialiy parsed form. in those cases where 1t 1s 1mpossible to
tell syntacticaily naow tO parse tne symbol strimny, the delayed
parse operator 1s used.

pefinition: The dyadic deiayed parLse crunction takes two
operands. There are taree legali combinations of operands:
first operaand second operand
1) niladic object monadic tfunction
2) niladic object dyadic function
3) partiai dyaudac fcu niiadic object
Ali other combimnations are illegal. The result of

delayed_parse 1n each case 1s: .

1) a niladic object wnich 1s the result of applying the
monadic function to the niladic object.

2) a partial dyadic function whicn has as 1its first
argument the niladic object. perore the dyadic
function can be evaiuated, the secoud argument must
be obptained,

3) a niladic obpject wihicia 1S the resuit of evaluating
the partial dyadic fumction witm the nlilladic object
as the second arguaent,

This alliows the APL text to be represented and the parsinyg to be
completed at execute time, Tae APL expression 4 B C D E would
pbecome

dpar (dpac {dpar (dpar (£,D) ;<) B) ;4)
where dpar stands for delayed_paise,

2.2.3.3 Grouping Expressions

The simple expression 1S tOoo restrictive a rocrmat for ail
PLOGramming. it 1s necessary to Jroup expression wWhilch are
executed only ror their side efrects and not for the timnal
result, These correspond to sSets of lines 1n APL or a set ot
statements in PL/IL.

Definition: A4 group is a seyment of program text beginning with
an initial macker (e.4g., ieft brace), continuing Wwith
expressions separated py a4 wmarker (e.g.,, sewicolon), called
the statement marker, aad eudinyg with a final marker (e.g.,
right brace).

bDefinition: The 1nitiai and tTinal warkers are callied group
BALKeLsS.

A group represents a "module coustant", That 1S, the transiation

I8 COnribenwTIAL

dASIC CONCEPTS AND STRUCTURLES

of a group yields a module, ience, a groudp 1is very similar to a
literal symbol. This ract makes 1t reasonable to aiiow groups to
occur where an elementary symboi can occur. Thais leads to
syntactically embedding groups within groups. To accommodate
this possibility, a yroup was derfined oOver expressions rather
than simple expressions,.

Definition: An expression is elther a simpie expression OTr a
group or am operator symboi, together with the correct
number of operands. Each operand must be an expression.

Definition: An expression whiCh is one ©OI the coamponents of a
group is called a statement.

The syntactic rules yiven above aiiow a group to be syntactically
embedded within an expression and, hence, within another group.
This 1s purely a syntactic couvenience. Each yroup is translated
to a separate module which does not contain the embedded grougps,
Instead, 1t contains interwaiiy-defined syspols whicn are
associated with the @modules for tue embedded groups. This
process 1s analogous to the nansaling of literals. The procedure
for resolving and connectiny tae separate modules 1s discussed in
Chapter 2.3.

The foliowinyg detinitions are inserted to clariry which symbols
are in the dictionary of a particular module,

Definition: A Symbol which 15 part of the text enclosed by the
Jroup markers is c¢ontaiuaed 1n the ygroup defined by the
marxers.

befinition: A symbol which 1s coantalned an a group A but 1s not
only contained in g¢groups textually -contained in A4 1is
directiy contained in A.

Unly those sSymbols wnich are directly contained 1n a4 ¢roup are
put in the dictionary for the module generated by that group.

A typical group 1s the set of statements waich exciaange the
contents of two variables, A ana 3. This requires a temporary
location and three statements;

{Stow (A, TEMP) ;5L0W (B;A) ;5tow (TENP, B) }
2.2.3.4 Declarations

It ail programming were done in the macnlne form or SL, then
declarations would unnecessary. 4il declarations could be done
by executing the insert_symbol runction on the appropriate module
dictionary. However, 1t is aecessary to have a way oif indicating
in the externmal syntactic <form that Ccertaln sywbols are being
defined and that others are free or parameter symbols,

LpM CONFADUNTIAL

Chapter 2.2 PROGRAN STRUCTUnL AND LINVEKPRETATLIUN 67

Therefore, the external syntax must have Jdeclarations., A
declaration wili be treated as a notation for one or more uses of
insert_symbol on the dictionary or the module which results from
translatiny the group 1u whican the declaration occurs, See
Chapter 4.3 for the syntax oi declaratious.

2.2.3.5 Functioans

One or the most powertul aspects oif mathematicai notation is the
ability to abstract wupoun an existing expression to deiine a new
tunction., An n-adic function can be derinea from au expression
py designating n ot the symbois occurring in that expression as
being parameter symwols. waen the new function 1s applied tc a
set oI n values, these values are d4ssociated with the
correspondiny parameter symbols ia the expression. The result of
the function 1is the result of evaluating the expression 1in the
context of these parameter symool dassociations.

It is important to note that the wmoduie produCed by transiating
the group 1s a nidladic functiou. 4n evaluate regyuest 1s reguired
to cause an activatioa of the woaule to be created. The result of
such an activation 1S the result ot evaluatinyg tha text of the
module. Therefore, the Jgroup pbrackets act to delay the evaluation
of the text 1n the group uantii an evaluate request is made,
dence, the groufp represents the text, not the evaluation of the
text, It is, in ract, a @oduie or niladic function constant,

Since a moduie aiready represents a function, 1t 1s relatively
@easy to create an n-adic ruanctioa from 1t., All that 1s reyuired
is to modify tne linkage iniformation of the symbols to be treated
48 parameter symbols, Tiuis can be done wits 1nsert_syubol.
dowever, it 1s convenient to nave a syntactic form which ciearly
shows the functional abstraction.

pefinition: The dyadic operator iambpda taxes 45 1ts right
operand a module and as Lts left operand an ordered iist of
symbols waich are not local to that module. The result ot

the operation is a parameterized module. The symbois given
in the left operand are marked as parameter sympols. The

parameter symbols wilil pe resolved in the order 1in which
they occur in tne lert operand of laabda.

The parameter symbols must be resolved when a tunction 1s
activated (see section 2.Z.%) since the aryuments may dirfer from
use to use. However, the remaining symbols may have been
previously resolved., For the rest of tinis chapter, it 1s assuned
that all symbolis other than the paraweter symbols hnave aiready
peen resolved by ah unspeciflied algyoritnm. This restriction 1is
removed in Chapter 2.3,

A good example of the use or the lambda operator is to define a

i8d CUNFIDENTIAL

BASIC CONCEPTS AND STRUCTURLES

function which doubles 1ts argyument. Let X be a local variable.
The expressioa 2¢X yilelds a value which 1is twice the value of X.
Phis can be made 1into a function Dby making X a parameter symbol,
The expression
lambaa (£; {product{2;X)})

yields a function which gives twice 1its argument whenever it is
applied. It 1s assumed that the symbol ‘'product! 1is externally
defined to pe the multipliy operator. The 1literal symboi %2°
represents the object 2., Aithouyh the oanly local symbol in this
function is a parameter symbol, it 1s possible to have other
local symbols as well as free symbols im a runction module,

A function 15 used by making an evaluate reguest on 1t, The
evaluate request c¢ontains tae drgumeats to be used by the
function., The functioa may or may not do the worx to compute the
result itselt., If thne function 13 to be reentrant, it creates a
new object with new li1ocdl storage to compute the result., This
allows the tfunction to process otuer reyguests "simultaneously'.
If the tunction does aot CcIL=zate 4 new object to compute the
result, then the rfuuction autowdticaliy becomes serialliy reusable
because of tmne Treyquest Juede in the storage celi 1t resides 1in.
See Chapter 5.4 for further detaiis oan function activation,

Derfinition: An evaluate Legyuest ou a SL tunction performs the
followiny actions:

1) A new ad4ctivation or tae fuanction Dbeiny called 1is
created by the object receiving the evaluate
reguest, _

2) The argument iist Ls passed to this new object via a
start request, The start request causes the
interpreter ror the new actavation to begain.

3) The interpreter 1first assocldates tae parameter
Symbols 1in tne new activdation witn the storage cells
of the arguments 1in the argument list.

4) The text of the function 1s then interpreted,

Definition: Eaca evaiuate reguest creates an activation of the
function which 1is beaing iuterpreted.

The matching of arguaments tO parameter Symbois 1is left to the
interpreter in the access macaiiie as is the lnterpretation of the

body of the operator object. Tairs aliows flexibiliity in the
definition of the evaluatlion OL the operator. The operator may
be a SL fuanction, as defined above, However, 1t may alsc be a

primitive operator or a procedure 1n sowe oOther pProyramming
language. For primitive operators, the system will access the
argument list and the resuit of the operation 1s defined

LoM CONFIDENTIAL

Chapter 2.2 PROGRAM STRUCTURL aND INTERPRETATION 69

axiomatically. In the <case of procedures writteu 2n other
languages, the access machine contains the interpreter for thcse
procedures.

2.2.5 Expression Interpretation

Consider a singlie function Dbeiny applied to a set of numeric
values. For exawmple, the expression 4+3 1indicates the
application of +the sum function to the operands, 2 and 3, The
evaluation of this tunction 1S relativeliy simple., The values of
its arguments are ailready computed., Therefore, to evaiuate the
function, it suftices to associate the arguments, 2 and 3, with
the appropriate parameter symbois 1n tne code for the sum
function and to beyin interpreting that code,

This smalli example already sSnoWs several aspects of the
interpretation process. 4LEf Wwe assuae that the sum function 1s
not primitive, for exampie, 1t miyat be defined 1in terms of
operations usiay the Peano axiowms for arithmetic. Then, we see
that evaluating an operator may cause additionali expressions to
be interpreted. There are tnree steps in the 1nterpretation of
the sum operator 1n the above examplie. PFirst, the two operands
are coilectea 1into a list of operands., Then, the function
representing the operator is activated, The activation of the
function causes the parameter symwbols to be assocliated with the
storage cells hoidinyg the operanas. Finaily, thne expression
which forms tmne pody of tue fuaction Ior sum 1S 1interpreted. The
result ot tne operation i3 the vaiue computed by the
interpretation of the body.

In the examplie above, the op=2rands were elementary symbols. The
syntdax aliows the operands to pe expressions. Ii this case, the
arguments are not tae expressions tunemseives put are the values

represented by thacse expressions. Tnat 1s, tae function 1s
applied to an argument list waich 15 constructed from the results
ot evaluatinyg tae ex pressions., Thi s conmplicates the

interpretatioan of a functioa. Tae argument list cannot be
constructed wuntil eacih of the expressions tormlpny the set of
operands 1is evaluated, For exampie, 1n the expressicn,
sum{l;times{3;5)), the Subexpression times {3;5) must be
evaluated pefore the sum runction can be evaluated.

Definition: The occurrence of a J4iteral symboi in the program
text 1S —replaced by an association 0 a read only storage
cell which &nolds a copy o0f the object the literal
represents. bpvaluation or a literal symbol yields the cell

name for that cell.

Literal symbols 4are treated ds expressions to pe evaliuated at

1M CUNFIDLNTIAL

BASIC CONCEPIS AND STRUCLURES

“compile time", Tais is in fact what 1s done in wost programming
ilanguages. A good example o0i this 1s the handling of vector
constants in APL,

Definition: The evaluation of an elementary symbol results in
the cell name of the storage cell associated with that
symbol,

Since symbols are alvays associdated with storagye ceils, this is
the most Jeneral resuit whichk could pbe computed. It is clear
that the contents of a storaye celi can be obtained 1f the
internal identifier for that c¢21ll 1s known. However, it 1s not
possiple to determine tane cell name or the ceil which held an
object when only the object itselr 15 known.,

One problem with haviny the celili uame be the resulit or evaiuating
an elementary symbol 1S thdat 1t is often the contents of the cell
or even the rTesult of evaluating tne contents of the cell which
is desilired. Therefore, operators are providea in SL to tforce the
further evaluation of tae coate2nts of a cell by making calils on
the object stored 1n the ceil.

Definition: The interpretation OI an expression whliCh consists
solely of an elementary sy&bol 1S tne evaiuwation of that

symbol.
An operator symbol canpot pe 2vailuated without 1its arguments.
Hence, 1t is necessary to simultaneousiy aerine the
interpretation of au expression and an operdator symbol. The

interpretation 1s begun at the top o tue tree representiny the
expression, The maill reason Lor this 1s taat 1t allows a context
to be provided tfor the evaluation of the oOperands. This context
can be used to pertorm dragyaiony, as detined by P. Abrahms. It
can also be used for the type of optimization used in the Boulder
PL/I coapiler,

Derinition: The interpretation of 4an expression which consists
0of an operator, togyether with a set of operands, 1s done 1in
stages.

1) The object 14 tane storage cell associated wWith the
operator symool 15 accessed with an ldentity call to
obtain its sttrivutes, If 1t 1s a ifunction or
procedure and tne ireguired number of arguments
ayrees with the number oir operands given, then stage
2 1s begun. JUtherwWwlise, an e€rror exception 1is
raised.

2) Each expression in the operand set 15 interpreted,
The results are stored in a set of buffer cells
associated with the evaluation oif the operator,
When all the operdnds have been evaiuatea, the
arquuent 1ist, a vectur of storage cells containing
copies of the resuits, 1s constructed and stage 3 1is

ipd COWFIDLBENTLIAL

Chapter 2.2 PROGRAYN STRUCLTURLZ AND LNTERPRETATLON 71

. begun.

3) The operator 1is evaluated using the argument list,
The result of the expression 1s the result of the
interpretation of the operator.

The order of evaluation 1s derined to be left to rigat to be
consisteut with the actuali implementations of most programming
languages and to make 1t possipie tp predict the oruaer in which
side efrects will occur. 4t is not felt tmnat amy freedom for
parallel evaluation can Dpe efiectively exploited at thais level.
The advantage of predictability seems to outweigh any improvement
due to paralleliisnm.

The arguments are passed by reterence, This 1s required to
implement such primitive runctions as replace. Keplace must have
4ccess to the storaye ceil to be moditied 1f 1t 15 Lo operate
correctly. This 1s ouly possible 1f the cell name 1s the
argument to the function. Call py value can be 1mplemented by
having the called function <copy the contents of the cells
referenced i1n the argument list. cvall by name 1s sligatly mcre
difficult, but <can be 1mpiemented by passiny retfereaces to
niladic functions. Then, these functions would be evaluated at
each use of the call by nmame parameter symboi within the text of
the called function.

Definition: The evaluation oL an operator symbol and an argument
list 1is pertormed by @axing dan evaluate reguest on the
object contained 1in tae storage cell assocliated with the
operator symbol, The aryument 1ist 15 passed as the
argument of the evaiuate reyuest.,

The definition of interpretation shows that peginning
interpretation of an operator causes other operators to also be
interpreted. in particudar, each operand of an operator will be
interpreted. When the operator has a tunction body, then that
expression 1is also interpreteda. Taus, w@any operators may be in
some stage of the evaluatioa process.

Definition: Ine state o0f evaluation of each operator symbol
being evaluated is Kept 1im a collective object cailed an
evaluand. This collective object keeps track of the curreant
action being performed ana tae partial results which have
been compieted.

The evaluand nolds the results of evaluating the operamds prior
to constructing the argument list. &n evaluand serves much the
same function as the HMark stack cControl Wora used in the
Burroughs architecture. However, 1t controis the buirlding of the
argument 1lis, as well as the caii oOn tae operator, It 1s so0
named Decause 1t represents 4 part of the expression Dbeinyg
evaluated. it can be used to provide sStatus inrormation for
debugging regquests.,

IBM CONFLIDENTIAL

—

BASIC CONCEPTS AND STRUCTURES

secause evaluation ot expressions 13 strictly left to right, the
evaluands tor the set oiL operdtor symbols wnich have not yet
completed the evaluation of <their operands form a chain. This
chain of evaluands correspouads to the stack segments of the
Burrougas machines. This chain 1is anchored in tae PSR and ends
with the evaluand for the symboi beinyg cucrrently evaiuated by the
interpreter.

The evaluation of a fuanction Jeherates a new activation which has

1ts own PSR, The interpretation of this new activation may
create additional evaluaads attacued to the new PSik. These are
indirectly connectea to tne evaiuands in the PSR of the

activation making the evaluate reguest by the dependency ygragh.
The request causes the regquestor to Dpecome independent on the
respondent, These 1inks in the depeadency graph torm a chain
through a set of activatioans,

vefinition: A activation chall iS5 4 subyraph ot the dependency
graph. Bach edge (£,¥) or the activation <chaln has the
property that X is amn activation WalcCh has maae an evaluate
rejuest which causea ¥ to Dpecome the respondent to that
request.

The activation Chain contains the history ot function
i1nvocations. It can be used 1n coujupction with the evaluands i1t
links to provide the status 1niormation when 4 process 1is
suspended. The activatioa <chain 1s also used to 1dentify
jJenerations of activaticm orieated {automatic) storage.

2,2.0 Sequentidal and Paraliel pxecution

A module has a 1list of statemeats wulch can be interpreted in tvwo
different ways. Tne default evaluation of a module causes
statements to be 1nterpreted in strict left to riyst sequential
order. In the transition to the next statemeut, the previous
statement resuit is destroyed, The result of the group is defined
to be the result oi the last statement executed in tae group.

An alternative 1s to use the parailel runctaion. Tuis function
evaluates the stdatements 1in au arpltrary order., I'hls may mean
actually 1in parallel 1f more than one processor 1s available or
interleaved execution., The resuit i1n thils case is a list made up
of the results of each statement.

Definition: The monadic itunctioh parailel takes as its argument
-a module and yieids tae iist formed by concatenating the
results of interpreting each of the sStatements 1n the
module., Tne order whicn the sStatements are 1interperted is

1M CONFAIDENTLIAL

Chapter 2.2 PaOGeAY STrUCTURL AND INTERPHKETATION 73

undetined.

When deaiing with groups, two additiona components are needed to
define the current point of 1anterpretation. The cursor speciiles
which module is currently active, The statement 1index indicates
which statement withain that yroup 1s active. Since evaluation of
tne parallel tunction causes several statements or yroups may be
simultaneously active, taere can pe multiple activation chains.
These chains forw the activation tree.

Tne syntactic group markers (braces) have tae function of
stopping the pnormal evaluation aigorithm. Lhat 1s, they leave the

group unevaluated, if, aowever, the gJgroup OCCULS 1n a context
Wwhere a “value" 15 needed, the group wiii Dbe evaluated
sequentially. Such a context cai pe created vy the evaluate

function, or by other vaiue-oriented ifunctioas suca as stow or
sum. Tne delay function 1S usel to override a vaiue context,

2.2.7 TIhe Apply Fuaction

When expressions Or groups can be the result of a function, 1t 1is
not possible to use the 1mplicit invocation wmechanism. For
example. 1t might be necessary to select one oI two iuanctions to
apply depending on a truty value (IV). This might be written as
(It TV, then quote sin else quote COS) (.D) -} X
in the extended syntax, 7This bpecounes
TV select {guote cos,;quote sin} apply list .5 stow X
1n the dasic syntax. The sStrict syatax £or this expressioh 1s
stow {apply (select (IV, {yuote cos;yguote s51n}) ,4i15t {.5)) ;X)
Thererore, an e plicit appliy function 15 needed to assoclidate a
function witik 1ts operands. 4iif tuere are no opearands, apply
reduces to an evaluate function.
Definition: The dyadic function apply maxes an evaluate call on
1ts first argument witn 1ts expression L ({). second argument

as the argument list. apply(4;Y) wiil yield the same result
as the expression X(L}.,

iBH COWNFIDENTIAL

BASIC CONCEPYTS AND STRUCTURES

2.2.83 Selective and Repetitive Control

A powerful, yet disciplined system, reguires the abilities for
control to flow to one of several aiternatives and to provide for
repeated execution of a yroup. The former facilities is provided
by the select function, which extracts statements from a group.
The repetitive facility 1s provided by the repeat runction which
causes a group to be repeated uatil an iteration condition 1is
satisfied.

[t 1is possible to termlaate 4 yroup anywaers during the
seyuencing of the yroup., The exit function causes the current
group to be terminated and yields tane vadlue of 1ts arguwment as
the resuit. when 1t occurs within a group that 1is Dbeing
repeated, it causes tne termination oOf the current repetiticn,
dhen it occurs 1in tae predicate, it terminates further
Cepetitions.

There are times whea 1t is aesirabie to conaitionaliy exit from a
group with a value, This capability 1s provided by the
conditional function. it takes as operands a predicate and a
group. If the predicate yields U, then the group 1is not executea
and the result or the expression 1s nil. If the predicate yields
1, the effect 1s tye same as executing an exit tunction with the
group as 1ts argument,

Gotos are supported but ouly 1inairectiy., Tae goto <function
causes a Ssequence exception. The standard system action 1s to
reestablish the eanvironment of tne iabel which 1s tne argument of
Joto., Hdowever, the wuser may iielid the exception aund reject the
goto if he desires.

IB8 CORFADENTIAL

Chaprer <.3

ENVIRUNMENT

This cnapter discusses ahd presents tae rules for resolviny
symbols to storagye celis in tue object base. Tne various times
dt whiCh sSymbois @may De resolved are aescribed, I'ne metnod for
providing a context tor iree symbols 1s presented, <The structure
of a procedure is completed.

2.3.1 Phases of Proyraim EZxecuiidl

The concept of coue which 1s execudted at well defined times in
the 1life of an executlng proycduw 1s preseanted. These time
periods are called phases. Phnases define whea instances of
variables may be created., The pnases are:

translate

load

activate

execute

deactivate

unload

2e3.2 Local Sympol Resolutiou

|
|
I

at any point in time, each sympol 1s assoclated witn a4 storage
cell by a resolution map. Eacs module may have many activations
Ior every load. Because the cCouatexts oif these activations may
difrer, each activation must logyicaiiy Bave 1ts oOwh unigue
resolution map. Each separate resoiution map will Dpe calied an
environment.

Instead of redoinyg the whole resolution map, the part of 1t which
remains constant is factored i1into a coamon mappinyg schema. This
schemd dassoclates each locai sywbol with a phase ldentirier and
an ofrfset into the storaye for taat phase. The aapping of local
symbols 1s completed Dby andicating wiaich instance of eacan phase
corresponds to the desired envirosent, The wmappiny or free
symbols is discussed in the next section, Wihen a resolution map
1s restricted to the iocai syabols i1t 1S cailed a local
environment.

When each phase 1ls executed, stolaye 1s reserved by creating a

ipth CONrivnNTiAL

i
]

IR,

e e e

76 . BASIC CONCEPIES AND STRUCTURES

collective cbject for tmat phase. All aidlocations within that
phase pecome part of that collective object. Therefore, given
the offset and the identificatioun of the correct instance of the
phase, the mapping 15 weli determelned.

The storaye allocated during the loadiny Pphase corresponds to
PL/I STATIC storage. PL/L AUTUMATLC storaygye corresponds to the
storage allocated by the activate phase, I1f the deactivate phase
doces not explicitly destroy the coliective object owniny the
storage, it will remain. Thais permits coroutines and passing
functions up the activity chain. ’

2.3.3 Context tor Free Symbols

— i v

Local symbols are resolved to iustances ot storage cells
connected with scme phase of tane procedure in which they are
detfined. Free symbols are resoived to iocal sywbols 1an sone

other module. This section detines tne method for determining
which local occurrence 1s used.

A simple resolution rule 15 to use the first occurrenc2 01 the
symbol found by searching the locai environments of the modules
on the activity chain. This may gyive access Lo too many symbols,
so the stop tfunction can e used to hide a sywmbol from the
search. A symbol is yvilsibie to tne search 1f tume sStop function
¥as not applied to it 1in sowe wodule in whiCh it 1s visible,

This ©rule does not provide for uniguae local environumeuts,
however, SO tune conpect Iunction can oe used to defipne a
particular modudie 1in which to beyin the search., L1t connect is
2xecuted within an active moduie then the particular instance of
storage to be used 1s also defised. The enviroument of aodule
"A®", waiCh wuses coupect to bainu module %s3¥ i1s called the
predecessor environment or wodule Wg¥, if a sywboi 1S not found
in the predecessor envaironment taeu its predecessor 15 checked,
etc, The search terminates when Lo predecessor exists. The set
01 predecessors LOCmM a <¢hainu called the environment chaii., Since
many activations can exist, tanese chains torw a tree caiied the
environment tree., 1Tuis i1s a tiee defined on the ownership tree,

dhen an appropriate Jlocal sympbol occurrence 13 found, the
resolution map 1is extended oy 4 process called linking. A
reference to the storage celi which 15 associated with the found
symbol occurrence 1s placed 1in the resoiution map position which
corresponds to the free syabol,

2.3.4 Alternate ruies for free sywbol Resolution

Lol COdFAVLNTLAL

Chapter 2.3 ENVLIRONH&NT 77

The search ruies gilven above must be extended to handie PL/I
EXTERNAL scope. What is pneeded 1s a method for specifying where
in the enviroament oOr activity chain the searcn 1s to begin and
end. Tnis storage for a module 1n wnica the free symbol 1s to be
may be deflined 1a terms of relative baCk refereunces aiong either
the activity chaln or the environwent chain. It may also be
provided Dby a reference to au existing local ewuvironuwent.
Similar conditions could be used to termimate the seaigch,.

I

2.3.5 Modifying Attributes and Vadues

Haviny established how Sywbols are resoived to storage locations,
it 1s necessary to indicate how tae contents or these locatioans
are set., There are several tuanctions ror this puarpose.

The object countained im a4 Llocdation @may be cananged using the
replace function. If oniy the owned Tresource component 1s to be
modified then the stow runction is used, Eaca object may have
set up constraints oa the vaiues it will allow as own resources,
30 conversions may be caused py the stow operation.

The create fuuction 1s proviued to allow tne user to bulld new
objects, given a description oi the desired format and an
existing object from wulCh to optain the components of tne new
object. The description may be a data description or it may be a
user defined access procedure. If the existing object 1is
ilncompatible with the description, a conversion 1is regquired to
build the new object.

2.3.0 Review Of Program pata Structure

Given the rules of cnapters 2.< and 4.3, a proyrau module becomes
a complex object. It 1s a c¢odilection of text iists, each of
whlCh corresponds to a phase in the life of the program. There
18 also a table ot ali symbols dicactly countained in the module,
These are partitioned into locual, 1iLree, and parameter categories
with the restriction that parawmeter symbols occur oanly 1n the
execute phase modules. Labels orf statements are aiso 1in this
symbol table, aiony witih references to the pnase in which the
iabel occurs,

Bach module is basically an ordered structure, where some of the
component statements may be unindexed. Tne 1ndex set 1s the set
of 1line 1labels or statemeat labels. The elements of the
structure are ordered by dline label values, This allows
replacements aud chanyes to pbe wade easily.

Multiple entry points are ailowed. They are represented by

iBl CUNFIDENTIAL

78 BASIC CONCEPTS ARy S5TRUCTUKES

parameters to a common entry point. This entry establiisnes the
argument-parameter symbol correspondences and then praaches to
the appropriate starting point 1n the execute module.

IBM CONFIDENTIAL

Chapter J.4

MULTIPLE COdlKUL STRUCTURES

This Chapter treats the problems of exceptionai coaditions and
explicit creation Of processes, Both syunchronous interupts such
as overfiow, and asynchronous ihterrupts suca as I/0 are defined.
The mecnanisms for 1dentiiyiny and handling such 1nterrupts are
giveu,

Processes (tasks) may be explicitly created and thelr execution
may be monitored and temporarily suspended. It is through these
mechanisms that debuyying wilili ve lmplemented. The data structure
of tne control tree is desciibed to show hnow status intormation
may be obtained,

204,17 EXceprions 4nd SYyRChronous Lluterrupts

- ——— S~ e o - — —

When 4 primitive function 1s evaluated, conditious which are not
bullt into the lanyuaye interpreter may occur. These conditicns
are called exceptions. They cause interrupts which are
syacnronous with the evaluation of the function,. These
interrupts are processed by creatiny a function call which 1s
3tacked outo the activation c¢nain 1inciuding the function causing
the excaption. ‘

The function tor which tane exception occured 13 located 1in some
module "WAYW, Lthe procedure to handie the exception 1is Iround by
one of three possiple rules., Wwlithin each moaule 1t 1s possible
to define a set o©of procedures to wpe used waen particular
exceptlions OCCUr. The first ruie 1S to reguile the exception
handling procedure to be defided in module “a", It 1t 1s not then
the system action 1s used instead, The second possible rule is to
Search back up the activatioun chaiun in which tae wodulie resides
ftor a definition of the execption handler. This 1s what PL/I
does. I'he tanird rule 1s to sSeaigcn back up the eavironment chain
ftor the exception handler,

It must be possible to simuidate tae occurcence of 4any exception
ander program control to faciiitate depugging. There 1s an
signal function whicua causes tae exception given as its operand,
The exceptions will be values in the language S0 tney be used as
arguments to functions or combined into sets,

1M CONFIUVENTIAL

ineR AT i

89 BASIC CUNCBPIS AND STRUCTURES

2.4.2 Changing Seyuential Flow

———

In cnapter 2,2 the interpretation of a sequential group proceeded
in strict ieft to right order., MNost of the programping languages
to De supported aiiowed transrers in the fiow of contrcl,
Tnerefore a seguepce2 exception 1s defined to stop the normal
sequence or evaluation aud to provide an argument wnlch sSpecaifies
vhere the evdiudation 1s to contihue. This allows the user to
field this exception if discipiined programs are desired.

As a aid to the wuser there i1s a celi for each yroup which
remembers the point from which the last segueace exception
transrered control. This 15 an ai1d to debuyging programs wita
gotos.

The yuestion of transfers of control outside a module 15 more
complex. It 1s necessary to desiynate an environment to resume
as well as a statement to <continue tae executioun at. This means
that, ia general, a label has two components., It has a statement
index and an enviroament rererence,., Tae enviroament rererence
has 1n it the information on wanich aodule to resume,

In the above discussion tuere was no dependency on the
enpvironment to resume sStits peiny active, Tals permats

corodtines anad tae environ@ents oL tfuactions wkiCh were passed
uapwards to be "reactivatea®,. :

2.4.3 Processes and Monitors

IU;

IThe parallei function does wot provide suiiicently tflexible
multipQrygrawming facilities, fhe reason 1s that the number of
processes to be created must pe Kuownh wiaen the parallel fuuction
is executed. The create fuaction 1s provided to give Iiner
control over the creation oL Hnew processes. 4t causes a new
process in the suspended state to be created and attached as
subordinate to some process 14 the activation chain leading to
the process executing create. The resuit of <c¢create i1s a celi
name for the new process.

A supordinate process may be activated by applying the start
function to its celli ndme. It may be stopped temporarily with
the suspend function. The process which starts a suspended
process may continue to run in "parallel™ with the started
process. When a process has compieted, 1t may terainate 1itself
by the destroy function. 1t way also be terminated externally by

Il CONPiIDGNTiAL

Chapter 2.4 ' MULTIPLE CONIROUL SITRUCTUKES 81

destroy.

If process "AY knows the cell name for process "B" then process
"AM is a controling process Lor process “s", A controlling
process can monitor the actions orf 1ts suboralnate processes.
The mopitor function suspends the process executing 1t and starts
the process given as an operaind. The otner operana is a set of
events, called intercepts, wuaich cam occur in the moanitored
process. When an intercept occurs, the monitored process 1s
suspended ana tne moanitoriny process is restarted. The result of
mWONitor 1s the intercept desigumator ror the intercept which
caused the switch. Breakpoiuts may be handled by monitoring the
execution ot the statements with tne breakpoints on theam.

Monitoring may be undone witn tne ignore functioun. It causes the
monitoring process to Dbe reactivated wita a special iandication
that 1t is to ignore the process 1t was monitoring. The result
of the 1ignore fuanction is nil.

Once a process 1is suspended, 1t way be temporarily activated
using the inject ifunction. Tuls function is used to execute an
expression in the environment oi tne suspended process., It is
usea to chdany€ that envirosment, investigate the values of
variaples, etc.

There are cases where it 1s necessary for one piocess to be able
to suspend 4 second process ouaiy at weli defined points in the
second process., For example, it 1s desirable that attention
Signals interrupt the ruming Lunction on statement pboundaries,
This capability 1s proviued by tihe priority function which also
Can be used to give information to tue resource wanayger.

2.4.4 Asyunchrouous Interrupts

The above 1lnterrupts are ail syachronized witn the execution of

the procedures, There are other events such as L1/0 completion
and attentlon siynals walCh OoCCur asynchronousiy with respect to
the execution of the program text, These may aiso be handied by

4 monlitoriag process. dowever, 1n this case the event belng
monitored may uave already occured before the wonitoring action
1s attempted. Taerefore, 1t is necessary to save the event
Lriormation ia case 1t will pe monitored. Settiny up the 1nitial
value of an event variable 1is a problen.

There are two ways to treat multigie occurrences oL & Ronitored
event. These canr occur easily ih asyncaronous =2vents and 1in
processes which have paraiiel activation chaains, {he wonitor can
be treated as a serially reusaple resource and the occurreuces
beyond the first can be gueued. Aiternatively, o new copy oif tne

LM CunriuvadTIAL

82 BASIC CONCEPIS AND STRUCTURES

monitoring process can be made to nandle each new interupt., This
allows a potentiaily infinite uumber of coples ot the monitor to
pe «created., Currently restricting monitors to be serially
reusable seems to be more reasonabie,

2.4.5 The Data Structure of Contiol

The activation tree is a data structure waich contains the status
information that determines tne fiow of control. Each activation
in the activation tree contaias a cursor (group
identifier,statement index and 2xpression oIifset),the process id
for the chain in wnich 1t resides, and tae user 1i1iaentifier.
These may be accessed for debuyyluy 1ntormation like the APL SI
vector and to do validity cnecxinyg oa accesses to protected
objects., A particular activation may be 1dentitied by selection
operations on the activation tree. The brancnes are ordered by
their order of creation so numericC indices may be used. It 1s
unlikly that the information 1n the activation tree <can be
modified usingy the normal data structure operations because it
would undermine the system discipline,

18 CONFADENTLIAL

Chapter 2.5

RESOURCLE MANAGEMENT

2.5.1 Summary of the 2roplens

In an 1deal system, ali data would be accurate, and Qo error
coulid Dpe generated anywnere within tane systenm, In the reald
world, errors occur due to pruyrau bugs oL uwardware buys. Even
1f perfection could be acnieved, it wouidn't uaecessarily be
marketanle since such a4 systea wouid probably cost too much to
produce and ruu too slowiy to be salaple, In desiyning a system,
it 1s vital to specify tue tecaniyues to be used in handling the
Various type Oi errors thdat cau OCCUL,

One way to contaln the eiffect Oof an error 1s to partition the
3ystem into a set o0f levels sucih that an error 4t oue lievel
cannot propagate to tne next aigher level 1in tae system. The
mOsSt 0DV1OUS such partitioniag 1S that between user data and
system data. The following discusses error handling 1in each of
these two categories,

User data can be put into two general categories, private aata
and public data. A job whose data 1s ail private and which
suffers an unrecoverable error may simply be re-run. It the job
is run freguently and 1r <errois are commoa amd if 1t is
upeconomic to re-run the job 1u 1ts entirety, tanen the job should
pDe temporally segmented. Tanat 1s, the job shouid pe broken 1into
distinct time segments., L1h case Of an error during one segment,
the job is begun agyain at the end of the previous segmeut. This
1s siaply the familiar mechanism Oof checkpoiunt-restart.,

A job tnat only uses publiic data has a different set of probleams,
oif which the update-in-place provlem 1is the most obvious. The
update-in-place problem 1s soived Dby defining a mecnanism 1ol
gainlnyg exclusive controi of a portion of public data, but this
solution opens the door to the problem of deadlocks, ana it can
aiso cause large quantities of data to be made unavalilable to
other users while under the exclusive controi oi one user.
Furthermore, 1f an error occurs s0 that 1t 1s necessary to
terminate a4 jop that had excliusive control of an entire data set,
it 1s not clear which, 1f any, portiouns of tae data set were lett
in an 1nvalid state. A tecianijue that reduces the scope of data
potentially afrected by an error, as well as tenainy to reduce
the occurrence of deadlock, 15 to seyment the data into smalier
dnits such as records or fields. Une wigut call tals approach

188 CONFPLIUBNTIAL

R

84 BASIC CONCEPLS AND STRUCTURES

error control via physical segmentation as contrasted to temporal
segmentation. A job to pe perrormed on a public data set would
be be broken into a nuaber of swmali operations to be performed on
all or selected segments ofi the data set. In case an error
occurred, the segment beiny operated on at the time would be the
oply segment to contain a possipvie error, Thererore, tihe segment
could be flagged and the circuastances reyarding the error
incident could be reported to tae Data Base administrator who
would see to it that whatever steps were necessary were taken to
correct the error.

frrors 1in system data d4re another matter, while 1t may Dbe
possible for errors to occul in the system data pertaining to
individual users with 1o more regrettaple eiffect than the
termination of some subset Oof the users on the systea, it 1s not
tolerable for any errors to occur ia tae information the systen
has about 1its own structure. For examplie, 1t 1s not permissible
for a gqueue element to be lacorrectiy deleted from a gueue or for
the gueue to become 1lntertwined with another gueue. Brrors in
this class of data «can potentialiy ¢o undetectea for sone
considerable period of time, a period of time suiiricient for them
to propagate themselves throughout every nook and craany ot the
system. Such an error caa compound 1rtself so that 1t 1s not
possiblie to xnow wnat information in the systewm 1s valid and what
is invalid. Scme approaches to tne problem of guaranteeiuyg the
validity ot system data, as weil as of attempting to ensure but
not to guarantee the validity ot user data, are outlined in
Section 2.5.4 on Resource Management., '

" On batch systems, uUsers were Oiieled 1h effect two separate sets
of functions wWith which ©O luwpiement a sSolution to a problem:
those provided Dby tne complier at compile time and those provided
by the «control program at executlon time. Ou 1interactive
systems, users frequentiy intermix coapilation and executlion,
And on systems like APL/360 with excellent depuyginyg facilities,
the user may suspend execution at auy time to cunanye his proyrams
and then resume execution. SuCh sSystems, which allow fiuctuating
resource regquirements for edch user, raise probiems that cannot
be met by the batch-oriented aigorithms or US/3bU.

An ladividual writing a4 program can <ontrol the resources
avallabie to i@ in suchn a4 Iashion 4s to accomplisnh the assigned
function, The writers oOf a controi program, oua the other hauad,
are faced with the fact taat a0 one can predict adil the
combinations of functions tuat can pe requested by every
statistically gaberrant group ©OLfL users 1h any Jiven time pericd,
where each function reguested 1mpiies some resource usage that
the user has neither «knowledge orf or coatrol over. since the
user 1s not aware of the <resouices required to accompiish a
function he kas requested, he caannot assist the control progran
in aanticipatinyg resource usage, aud sO the control program must
constantly be prepared to handie ail worst case situations.

188 CONFIDENTIAL

Chapter 2.5 BBS0URCy MANA GEMENT 85

Holt, 1in his receut theslis on deadiock, nas distinguished usalble
resources f{rom consumadle resources. Consumable resources refer,
for all practaical purposes, to tane type of interaction between
processes typified by the WALT-P03T logic of 05/360. Processes
way interact through operations on consumable resources Jjust as
they may 1interact througa oparations on reusable resources, and
therefore, botn types orf 1nteractions can coatribute to the
occurrence o0f deadlioCks. Taere is an 1mportant ditference,
however. A user process may inhteract on a cousumable resource
with either a system process or dnother process within his cwn
job., His process would not .nteract on a consumable resource
with anotner process in a distinct job. Therefore, the user can
nurt oniy himself tarough the diuvalid or Dbadiy timed use OIL a
consumaple resource. The systew also nas the choice of waiting
on either a user process or 4 system process. The 1ormer case
should be strictly outlawed, since 1t jeopardizes systen
security. The liatter case is uormwal anu 1is to pe expected. The
point to be noted 15 that dependencies Dpetween sSystem processes
interacting on consumable resources are knowi at aesign time, and
therefore dedadlcck possibilities can pe nandled at design time,
Consumaple resources shcuid not pe a deadlockx considerdation for
3ystem processes.

The following diagraam describe:s a situation noted by K. Y. Smith.

It 1llustrates a potentiad iavaliid tirlng interaction between two
<cPU's which no amount of iocking will avoid. The exampie 1is

=Bz =BT

Figure <4.5.1-1

I8k CoNFivasdTiAL

R e

=

36 BAS1IC CONCEPTS AND STHUCTURES

specifically stated 1n terms oL CPU's, It 1illustrates the sort
of timing 1nteraction that must be considered in the design ot
any amultiprocessing control prograa such as AFS,

In diagram Z2.5.1-1, CPU 1 sets pit 2 to one and tmem tests bit 1,
while CPU 2 sets bit 1 to one and then tests bit 2, Both bit 1
and bit 2 are assumed to nave Dpeen initialized to zero., Bit 1 1is
physically close to CPU 4, #hiie Dit 2 1s physically close to CPU
2. If timing interactions are iynored, taat 1s, if it is assuned
that all operations are completed ianstantaneousiy, then 1t 1is
apparent that at least one and perhaps botn of the two CPU's will
2merge from tane test of bit L or pit 2 uaving found that the
tested bit was set to ocne. it 1s possible thouygh that each CPU
could send a signal to chaange the value of one of the bits and
then test the other bit beiore the siynal setting the other bit
to 1 had been received, S0 that tue two CPU's coulid find the bits
both set to zero. '

2.5.2 Classes of ResouLces

The most fundamental resourcCes in the system are space and time:
in the physical implementation, space means storage 1in the
Storage Management subsystewm (543) as defined in the System
Architecture #Manual, and time medns execation time on a Progran
Processing Unit (PPU). Since ail objects veside 1in storage
cells, they all reyuire some space 1n the S58S; and since all
objects are processes, they ali reyulre sSome executlion time on a
PPU 1n order to respond to 4 iLejuest., B8y derinition, the 3NS5
manages all internal stcorage, and the PPU's service the reguests
on the Jueues for various objects.

On conventional systems, Space ana time pave Dpean managed by
software control programs, witn tThe exception of some space
management by aardware on burrered machlines like the 370/165; on
AFS, such control functions wiil ©oe peritormed compietely bpeneath
the level of SL proyramminyg. secause o0f tnls increase 1in
nardware control fumctions, tae eunyineeriagy desiygn must solve a
number of problems normally facCed oaly Dy programmers: For
example, 1f off-line storagye i1s treated as a logical exteusion of
SMS, then the data pata for regyuestiny the operator to wmount
tapes must be dedicated to the LHMS; otherwise, a deadlock might
arise 1f the operator was usiny tue console for a non-SMS
function that caused paging 1a the 5435 that caused an overilow of
on-line storage that required the mounting of a new tape that
required a message to pe sent to the Console that was stilli busy
with the oriyinal rejuest. Utner possibilities for deadlock
could arise 1If dispatching 4 ©£PU reqguired space 1in SHS and
allocatiny space 1n SMS reygulired some processing by a PPU; even

Lol CONFIvENTIAL

Chapter 2.5 RESOURCE HaNaGEMENT 87

1f normal cases of deadloCKk were coumpletely eliminited, probleams
might arise if standard protocols Wwere relaxed when a hardaware
erLror occurred and recovery prouceaures maae the SMS dependent on
a PPU tor emergency measures. Ii treated systematically, these
problems are solvable by a series of levels llke thnose aiscussed

in section 2.5.1: the 5MS must De the most funuamental part of
the system and can aever pe ioyicaliy dependent on services by
anything outside of 1tselr. Loyical dependencies can be

eliminated even 1n emergencies by dedicating certain resoudrces,
such as a special Llog-out area 1n a PPU, tumnat couid allow a
physical PPU to become a logicai part of the 58S for a certain
period of time. On small macuihes, such proceaures could be used
to ailow a single PPU to periorm all functions: Just as the sane
hardware on a 360/45 can Dbpenave alternately 1like a <CPU, a
channei, and a control unit, a single PPU could switch hats and
act e2ither as a loyical 58S or as a loyicai PPU.

For the remainder of this chapter, We shall assume that space and
time are allocated Dby haraware: the 5M5 provides a practically
limitiess amount of storagye upon rejuest, and the PPU's are queue
driven boxes of hardware taat dispatcn themselves to service the
lcyical processes. These are piy assumptions that imply a lot of
englneeriny desiyn to make possibie and even @more to nmake
practical. See the System Architecture danual for more detail
about tmne nardvare desiyn anda various simudiation studies.

Some resources, sSuch as ports, correspond to physical devices
that have an independent existence. Other classes o0f resources
are constructed by subaillocating space and time: the 4ccess
machines Of objects reyuire tiae on 4 PPU to respond to reyuests,
data representations, iuterlad identifiers, procedural
descriptions, and PSh's take up storage spdce 1n the SHS.

vefinition: LEvery object is a Lesource tnat pelonygs to one of
the following classes:

1) Finite: tnere 15 a iimited number of objects with
an equlivalent status and ability to respond to
requests.

2) Unigue: there is oniy one object with a particular
status and ability Lo respond to rejuests,

3) Unbounded: the object oelongs to a potentially
infinite class of equivalent objects; upon demand, a
new object of the <class can be created by
subaillocating space and time 1f availabie,.

Finite objects are ones like printers, where tne total number is
fixed, but any one orf sSeveral may e egualiy <capable of
satisfying a request. Almost ali data objects are unigue; copiles
of read-only objects may be acceptaple 1n some cases, but tables
and records like airliine reservation or payroll files must have a
single updatable COPYs Unoousued resources correspond to
function activations where a unew one may Dbe created for every

IBM CUNriDENTIAL

33 BASIC CUNCEPYS Anp STHUCTURES

call upon the function,

One way to increase the apparent number of finlte resources 1s to
create function activations that have the same logyical properties
as the limited resource. For example, a multiprograwmlng systemn
with oaly one printer can provide many loyical priaters by
creating multiple activations of a4 spooliny program: each
activation may respond to requests exactly like a prianter; atter
receiving a complete document, tae activation wiil compete with
other activations for servicCe on tune physical printar.

A hierarchical structure for a system 1s essential to a good
design: sach level of the system can be desiyned and aebugged
independently. Brrors arising 1h one levei caunot propagate to
higyher levels. . And the yrowtn ian tae total number of possible
interactions betweea Objects 1s liuearly proportional to the
number of objects, not exponentidi asS 1h 4an unstructured design.

The AP>5 concept 0i subsystem 1.s the pasis for operating systeans,
user jobs, and networks of systems. A subsystem 1S a4 subset of a
system 1n which all interactions with objects outside of the
subsystem are channelied tarouya 4 single resource manager. From
the outside, a subsystem behaves like 4 single object,; from the
inside, the rest of the systeus is ouly visible through the top.

Definition: A subsystem 1S a4 subset OL tne object pase witu the
following properties:

1) Tanere 15 4 sihgle owject called the subpsystem root
from which ail other objects 1in tne subsystem are
directly a4accessivie (i.e. the sSubsystem rorms a
subtree oi the ownersnip tree with the subsysten
root as 1its root).

2) The suobsystem (oot aas an element <cadiied the
LeSOouUrce manager that i1s a collective object whose
elements are syaouyws to ail external objects used
Dy the subsystenm.

3) Tae subsystem diso forms a subtree of the
environuwent tree with the sSubsystem 1oot as its
root,

4) No object inside the subsystem 15 dependent oh any
finite resource <xcept the ones whose synonyms are
held by tne resource manayer,

Il CUNFIUBNTIAL

B

Chapter 2.5 RESOURCs MANAGEMENT 89

245.4 Resource Mapagement in afs

—— 3

Resource allocatiocn in AFs pasically tfollows Habermann's
algorithm (CACM, July 1lY509) extended to meet the needs of the AFS
system environment. Havermana®s algoritam reguires that each
user define at job 1nitiate time the @maximuw usage of each
resource reguired by ai1s job. ‘fThis mdaximuik usagye 1s called the
claims specitied by the job, wouriny the runniny of the job, the
user reguests resources as npeeued up to the limit of his claims,.
dpon recelving a reguest tor resources, the system tests to
determine (1) whether or not tue resources are availiable, and (2)
whether or not a sare sequenc2 exists. If the resources are
avallable and a safe seyuence exists, then the reguest 1s granted
i1kmediately., 1If omne or the other of the two conditions 1s not
true, then the reyuest is not gyranted until the two conditions
have pecome true., If tne rejuest exceeds tae claim, then the
request 1is refused.

Definition: A Seguence Ol jods, Jusl, JUBZ, +.., JOBN, 1is callea
a safe sequence provided that 1f every job 1in the next
instant reqguested ail tae resources it claimed a4t 1initiate
time, taen JOB1, using the resources 1t nowWw hoids plus those
currently iree, <c¢an rus to completion and SO rree up the
resources it now holds, ana taen JOBZ usiny the resources it
now holds pius those curreutly Ifree plus tunose neld by JOBl
can run to compietion, aad sSo then JuB3

it 1s uanreasonabie to rejuire the user at tne terminal to specify
at logon time ail the resources that he wight use 1in the coming
session., In order tu permit tue User to reguest resources which
he nhas not claimed previously, barry Goldstein nas sugyested aa
important modiification to umamermaan®s aligorithm. Golastein's
alyorithm allows the user to reyuest resources which he has not
previously claimed. In respoase to a reguest ror resources, the
system, as 1n Habermaun's aigoritam, tests to See whetuser Or not
the resources are available and whether Or not a safe seguence
exists, If Dboth conditions are true, the resources are yranted
immediately., If either coudlition 1s faise, tnen the user nas to
wait unless maxking nim wait would create a deadiock. Tae result
15 that a batch user who never exceeds his claims will never
encounter a deadlock and taerefore aneed naver prepare for
handlingy deadiocks. Ou the otner hand, a terminal user can
dynamicaily request resources taat had not praviously been
claimed at the cost of occasionaliy haviay to program his way cut
of the deadlocxk.

There are coantlicting demands made by tae two needs to avoid
deadlocks in allocataing resources and to allocate resources 1in a
network., avolaing deadlock regyuires that tnere exists 4 single
centraiized alilocator witn Coumpiete Knowledgye of ali the

188 COsPIDLNTIAL

30 BASIC COUNCEPTIS AND STRUCTURES

processes 1in the system and ali tae resources assiyned to those
processes. Ruuning a network, on the otmer hand, reguires that
each installatiou 1in the network enjoy a measure Oi lindependence
from the other instailatioms. if centralilized resource allocation
vere to Dbe performed 1n a uetwork, then every reyguest for
resources would have tO ope reierred pack to the single specific
node 1n the network that contained the resource alliocator. Since
this 1is unfeasible, a method must bpe found for allocating
cesources at each node in a Rmanaer that is as independent as
possible from the resource ailocation decisions made at other
nodes., This form of resource allocation can be accomplished
providing tnat additionai couastraints are placed on the sate
seguences maintained by the resource allocators in the network,

Let the system be coaposea of daisjoint sets oif resources and for
each set of resources define a resource allocator. Assume that
the resource allocators are ail at the same level, and on top of
them define a tree structure ot fresource allocator coordinators.
The particular tree structuie .1s arbitrary put i1s fixed ror any
given network.,

Local jobs are ones tnat oniy use resources 1in one of the
disjoint sets of resources, OJistriouted jobs are ones that use
resources from two or more ofi the sets of resources, 4 job can
enter the system at any node., a iocal job 1s transmitted to the
node at which 1t wiil execute (1f 1t wasn't submitted at that
node). A distrabutea Jjob may enter the network at any node but
will be passed up the tree oL rasource aliocator coordinators and
possibly back down some otaer woranca of tne tree until it arrives
at tne lowest Level resource aiiocator coordimator (or RAC) that
has jurisdiction over all the resoucces ciaimed by the
distributed job. The job is tuen proken up into subclaims tagged
with the following fieid:
CUUNTER .9 i, RACLD

whica specifies the position i1n tue safe seguence relative to
other distributed jobs that the current incomihy distributed job
is to occupy. Generally the idea 1s that distriputed Jjobs should
be processed 1in FIFVU order. 1Ine problem 1s to aeterminhe the
meaning of FIFU 1in an environmeut 1n which tiwme scales may not be
synchronized. A simple time sStaap does aot sSuiiice, siuce
difterent RAC's using differeat clocks couid stamp reguests for
different jobs to pe sent to tihae sdme safe sequence wita tne same
time. Consequently, JOBl ®migat precede JUBZ om one sarte
segquence, while J0OBZ2 preceded JOs1l on another satfe seyuence, To
avoid this and other timiny probiems, the claims sent down to the
resource allocators are tagged witn the value CUOUNTER.TLME.RACID.
TIME 1s the wvalue ©0f tne #AC's tiwme sStamp, KACID 15 the
identification of the RAC senuyiny tane request down, and CUOUNTER
1s the value of a counter maintained oy the higuest leveli RAC and
sent down to aill lower KAC's. Tanls counter value acts as an
artifical but wuniform tiwme scale ifor alli RAC's in the systen,
Since all distributed jobs maihtalin tae same relative ordering

il CONFIDENTIAL

Chapter 2.5 Ko3O0URCE MANAGEMENT 91

With respect to eacn other 1n alii sare seguences 1a tne systenm,
no deadlocks occur 1n the network. '

dolt has poianted out (CACM, January 1971i) the possibiiity or jobs
becominy effectively blocked 1in a safe seguence,: Such a
si1tuation could occur i1f a sequence of high priority jobs
continually occupied S0 much cure that 4 a low priority Jjob never
nad 1its reguest ror a larye amount of core satisfled,
consegyuently, the low priority job would pe blocked indefinitely
and could not pe guaranteed to complete in any Jgiven time., To
assure tupat every job willi eventually compiete, Hoit proposes
that jobs in the safe seyuence be tagyed with a time value that
indicates the iength of time taey have been walting in the Jueue,
Then construction of the sate segueiuce 1s bliased to favor those
jobs that have been waitiag ilougest.

shoshani {CACH, Novemper Llwyod) wuas described the problems of
permitting sSimuitan<Lous d4accCess to the elements or a4 list
structure. Whiie 1t 1s not clear that any of the specific
approaches that he recommenued sSaould Dbe adopted, AFS must
provide solutions that are at least ds efrective,

The THE System as described oDy Dijkstra (CACH, #ay 1969)
contained a very attractive approach to the problem of avoiding
deadlocks 1n the system. 1ine system was structured into six
levels, Level U consisted Of a <CloCcxK and dlspatcher,. Level 1
consisted of the paging controlier, Level 2 was the wessaye
nandler. Level 3 handled source-sink luput/output. Level 4 held
the proolem programs, and iLevel 5 was tae user, One 1nviolate
rule of the system was that uo process at a lower 1level could
walt ror a process at a hiygyeer lievel, thouyh processes at a
nigher leveli could wait for a process at a lower level.
Conseguently, deadi0Cks were avoided partiy throuyn the
enforcement of this simgle ruie, Some sSuch structurinyg should be
undertaxen for AFS5 not only to prevent deadiocks, but aiso to
reduce the level of complexity of the system to 4 mOre manayeable
degree, and thereby allow a wmore couaplete and accurate design to
De tormulated,

iUM CONFivnNTiAL

Chapter 2.0

FUNCIIuN SET

2.6,J Introduction

The operators of SL are tue basis of the system. The elaborate
structure ot dyadic objects and operators to work on them 1is
intended to aimplement an attribute exawining system, The
operators are the lowest ieveli active element which can Dbe
programed. In this respect tu2y are like 5/360 1ustructions.
The detailed tunction oL an ovperator depends in part on the
attributes of the operands at the moment of execution. in this
respect they are lise APL ruuctions. The operators are also
respoasive to the environmeat in which taey are executing as
determined Dy explicit program decliaration statements ana the
activation chain. This aspect oi operators is the contripution
of SL.

The operands oI an SL operatol are objects resiaainyg in the
storage cells associated Wit tae operand symbols 1im the
expression containing tae operator symboi. Tne operator symbol
itself 1s assoclated with 'a storaye ceil whican contains the
function obpject to be activated. Tais last relationsnip enables
easy operator redefianltion waen neCessary. Tne dyadic nature of
the operands «couplicates tne deriuition of the operator at the
object level as coumpdred to tnat of a simple system. The purpose
1s to simplify the description at tne proygram level., Ian analogy,
the description of floatiny poiat operations are more coumplicated
than tinose of the correspoading fixed polnt operations; the
existence Of taese oOperatioas, however, simplifies program
statement by eliminating the aeed for scaling,

2.6,2.1 Argumeants

Part of the definition of a function 1s the specification of the
number and type of 1ts arguments. For wmonadic and dayadic
functions written 1in 1infix notation, the arguments <an Dbe
recognized by having their symbols appear next to that fov the
function. This technigue 1s used py APL to distinguish between
monadic and dyadic functious. 1In tue prefix fLorm of notation the
function must contain sufficient i1nformation to speciiy the
number of aryuments, The spelleua out forms of the functions,
which are ditferent for mounadic ana dyadic forus, must,
accordingly, be used in tane prerlx notation. Fuactions which

iBH CONFIDENTIAL

Chapter 2.0 FUNCTLON SKET 93

require more than two arguments will be described as monadic,
with their operands taxing the shape of lists of three or more

member s, The symbols which are assigned to runctions may do
double duty 1n the seuse o0f belny used tfor poth a monadic and
dyadic function. These sympols can oniy Dbe used for 1infix

notation, where the distinctiou can be made syantactically.

Not all functions have siugyle Ccanardcter symbols assigned to thenm
yet. In some cases 1n whica this has not been done we have
indicated which pairs of oune wmoanadic and one ayadic fuanction
should share the same symbol, As a rirst principlie omne might try
to define the monadic form to be related to tne dyadic through
some sort of default, 1i1e., having tae monadic form equal the
dyadic with some special value roi the missinyg argument., The
troubie with this 18 that for most symmetric operators the
natural special value makes tae runction into a no-op. For
example, @monauic plus i1s a standard no-op. To g¢get maximum
mileage out of the basicaily iiwmited number oi single characters
the nmonadic function 1s not usuaily deiined in terms of the
dyadic for symmetric functions. Al attewpt to Dbe reasonable 1is
made, however, 1n mdny cases rfollowing the exampie or APL.

In addition to the number of arguments which a function expects
one must specify the type of arguament,

Definition: A function may piace certdain restrictions on the
types of its arguments. Any argument meeting these
restrictions 1is callea pramitive to the runction. The
action of the ruanction on 4un. acgument of such a type 1s
determined entirely by tne aerinition oif the function and
not by function distribution.

For example, numbers are primitive O tue aritametic operations.
Zero and one are primitive to the 1ogical operatious. A mcre
subtle example 15 gselect. any object can be primitive as a lett
argument. Amy indexed object 1is priwmirtive oa the riyght. If,
however, the right argument or select has a restricted index set,
say it is a 1ist, then tane primitive objects on the left beccme
restricted, respectively, to i1uategers.

2.6.J.2 Function Distribution

It nas gradually been accepted 1n proygraminyg lanyguages that
distribution of fumctions over structures of operaunds should be
automatic as in APL rataer taan reguiriag explicit loops as 1in
earliy FUORTRAN., Slnce our sStructures are very general, cur
definition of function distribution @ust be so too.,

We shall discuss function distribution Lor dyadic fuanctions. The

situation for momadic functions 13, in fact, simpler and can be
deduced from the dyadic case. Suppose that a function appears

IsH CONFLDLNTIAL

94 BASIC CUNCpPTS AND STRUCTURES Part 2

between two objects neither of which 1s primitive. Ynune functiom
examinies the two objects to see 1t they adare two collective
objects with identical 1index sets. It not, an error has
occurred. If the condition 15 satislied, the fuanction 15 applied
iteratively to the elements ot the structures producing aan
identically iudexed collective object as the result. ir any pair
of objects is not a pair of primitives, the analysis 1s executed
recursively., If at any stage of the recursion oue operand 1s
primitive and the other not, tue primitive operand is imbedded by
replication im a coiiective oObject matching that or the other
operand and the functiosn 1s evaluated,

Note that functiom distribution applies oniy over 1indexed
structures, most usuaily, in practice, over lists and arrays.
Ubjects of type <c¢losure not primitive to tae function being
distributed are not uancovered for distribution. Stopping
distribution 1s one 0of tne functions of encapsulation.

Enclosure can also be used, in conjunction with function
definition, to modify, as weli as simply to control distribution,
Suppose, for example, that one wished to carcy out rationail

arithmetic with proper <Iractions Kept as 1integer pairs., One
would wish ror a functiom, ratsum, which 15 sSul for integers
and defines the aritametic sum for rationails. Gne derines

rational numbers as enclosed coilective objects consisting of two
integers and an identifyinyg fieid. Ubjects of type closure are
made primitive to LatsSum. When a closure 1s encountered, the
function itself analyses the owvject to decide wadt to do with 1it,

Function distribution cam ais0 pe explicitly controleda by certain
functionals, as discussed 1in 2.6.5.

2.6, 1 Proyram Structurinyg Operators

Thls section has some symbols which are not properly operators.
That is, they are not encountereu at execute time., However, they
are inciudea for completeness, The operators given here are used
in constructing a ruunable procedure from symbol strings,.

2.6. 1.1 Parsinyg operators

These operators are used to make 1t possible to break (the text
into anits and to build a parse tree,

guote (Cif <4.2.3.2)

delaved parse (Cf 2:2.3.2)

braces (cf 2.2.3.3)

Ioh COWFIDuNTIAL

NS

Chapter 2.6 FUNCLLIUON 3BT 95

2.0.1.2 Scope usuildinyg UOperatois

These operators dllow the user to wefine symboi occurreunces as
beinyg local, parameters, or rree dand to build the context in
which the free syabols will be resoived.

insect symbol (cf <Z.2.2)

iambda (cf 4.2.3.9)

stop {Cf <Z.3.3)

conmect (Ct 2.3.3)

load

2.6.1.3 Unique Name Creatioi

These oOperators allow tne user tO c¢reate unigyue names from
2xisting names. For exaampie, they can be used to create local
temporaries, These unigue nawes are not normaily printed when
the symbol table is dumped.

2.6.2 QOpject Composition

This section includes tne operators which are used to coastruct
objects from the primitive ojects of the systean.

2.0.2.1 Descriptor Detfining
I'nese operators are used to buiid up the components of an object

description from the buillit 1n access mechanisas or attributes.
The result of these operators is an access macanliae.

4.D.2.2 ODject Coanstructor

and an existing scalar or coilective object and produces an
object which 1is a copy of tae existing object converted to be
consistent with the giveu access machine,

2,6.,3 3Structure and Index OUperators

I'his section contains the oOperators which are used to build
complex data structures. it i1uacludes such categories as storage
managemant, index sets, structural coambination, and explicit

structure linking.

IoM COWFIDENTIAL

90 BASIC CUNCEPTS AND STRUCLURES Part 2

2.6.3.1 Index Set Operators

' These are the basic operators which maxe use of the 1indexing
facility and aiter and examin2 inaex sets,

select
The dyadic operator gelect takes for its second operand an
indexed collective ooject ana tor 1its first operand an index
object of its second operand. The result 1is the
corresponding eliement of tne collective object.

I
=
jer

The monadic function 1115t takes an 1ndexed collective
object for 1its operand. Tae result is a list of the index
set for tne coliective object. Since the index sets for
common oObjects mdy be yguite large, tnls operator wmust be
used with cautaion,

Structures of arbitrary complexity may be pbuilt ifrom collective
objects since their elements may thewselves pe collectives.
Because of the generality taer2 1S5 no way in tne strict syntax to
index 1nto subcbjects otner than vy repedted use or the i1ndexiny
operator. For exampie to rerfer to an element on a sublist of a
sublist of A one writes:

4 sei (1 sel (< sel a)).

ibase
The monadic function ipase tdkes an array or list for its
arguaent and returns 1ts Dbase 1list. This 1s a list
structure of deptnh Z or 1 respectively which describes
the structure of the argument.

sShape
#donadic ghape taxes am array or list as its argument and
returns the shape of tae argument. Thls 1s a iist structure
ot deptia 1 or 0. '

ator ,

he monadic function igeuaerator takes a4 scalar number for
its argument, Lt returns a i11st whose shape 1s glven by the
argument and whose elements are 1ts own index set.

For details on the precediny runctions, refer to the table in
section Z2.1.7., Note that shape 1s the rho operator or APL. For
primitive arrays, 1lyenerator snape yields 1ibase.

Additional operators are:

ipM CONFiDoNTIAL

Chapter 2.6 FUNCITLUN SET 97

Ihe dyadic function Dnau@e_value takes as 1its arguments a
value and an object that is to be tredated as the index for
that value in any collective object 1in which the result of
name_value occurs. It cdu be used to pass Keyword arguments
in an evaluate request.

2.0.3,2 Storage Management

These operators are used to aud ana deiete components of
colliective objects by 1nsertiny and deleting storage cells in the
collection own by the object.

insert

delete

2.043.3 Stuctural coabinacion

These operators are used to pleCe sSepaldte structures together to
form a single structure. There are severali operators because ot
the dirferent ways taat structures may be combined. The simplest
structuce 1s a list. There 1is an element of iudirection 1in a
list wnich must be careifuily controied. For example, iet

]

A {(¢d,0,C),
aad
8 = {s2,e,£) .

de must distingyuish between the lists

]

c (sa,0,Cpd,e2,1)
and

D

{(s4,8).

de introduce tour list coastructing operators wnich enabie us to
construct C and D from 4 and B, as well as to perforn
other operatioans,.

catenate
Catenate takes two operauds, <ach or wnich 1s a list, The
result 1s a list comprisiuy tne elements of the two lists,
daugme

nt
Augment is a dyadic operator. The left argyument wust be a
list. The right argument 1s added to the list.

List 1s 4 momnadic operator. It accepts any object as 1its
operand and forms a one element 1list with tne arguuwent as
the element,

i88 CONFIDENTLAL

58 BASIC CONCEPTS ANu STRUCTURES Part 2

e i e s sy

The monadic operator ravel tdxes as aryument an indexable
object (. It produces tue resuit

ilist @ sel y.

de now observe tmat the list « <can be tformed by A cat B. The
list D 1is formed by 1list A augment B, it 1s possible that
catenate may be redefined to perform limited type conversion SoO
that vectors and lists caa be <combined, In particuaiar, by using
the J-vector as a ieit argument for cat a vector can be created
from 1ts elements by first forming a list and then converting.

Tne next two operators permic the formation of general arrays
from lists and the reshapiag ol existing arcays.

Leshape
The dyadic operator resnape takes for its letft argument a
-shape, i1.e., one of the types of object in the snape row of
the table in 2.1.7. The ieft argument 1s raveled aad then
inserted i1in odometex order 1nto a structure described by the
lefrt argument. The right argument 1is truncated or
replicated as necessary.

This operator is the dyadic rao Of APL, The order of entry
of elements 1ntc the structuce 1s d4s 1n that language. We refer
to this order as the odcmeter order.

rebase
Rebase 1s a dyadic runction. Its left argument must be an
index base list. Tne rigat argyument is raveled and inserted
into the appropriate structure in odometer order.

2,b.3.4 Operators for Composiny and Decomposing Scalars
These operators are used to pulid an object which 1s to be

treated like a scalar from a set of components and to obtain the
compoaents of an existing scalar opject,

enclose
The monadic operator enclose credates a scaiar object whose
owned resource is the operand. The resulting object 1is a

scalar of type closure, Ah enclosed synonym 1s a metonyn,

disclose
. The monadic function disclose takes as aryument a scalar of
type closure. The resuit 1S the object which 1s the

resource of its operaund.

2.,6.,3.5 bBxplicitly Linked Structaring

i CONFIDENTIAL

Chapter Z.o FUNCLION SET 39

These operators are used to Dbuilld structures on components which
are not owned by the structure but are only reterenced by it,
These references mdy be expliicaitly foilowed or they may be
implicitly followed when that rererencinyg coumpouent 1s selected.

4Access

point

uitimate

sSynonym

2.6.,3.06 Implicitly Vetined Data Structures

These operators reaiiy aefine data structures oput wmay Dbe used
when the data structure is not rinite, They deraine a rule which
completely determines the vaiue of each component when the
operands of the operators are yivel. They act like encodings of
the data structure, This 1s similar to tane 1implicit definiton of
a set using a predicate the eliements or the set must satisfy.

igen

step

set notation

o i . st e s

This section descripes tne oOperdtors which are used to modify
elther the own-resource component of an opject or the contents of
4 storage celi.

Stow

op]
em

Ir st
|
o

ace
ve

lO'

2.0.5 control of

In addition to the enciose aud disclose operators, which
provide indirect coantrol of tae distribution of functions over
collective objects, a nanumoer of functionals provide direct
control., This explicit controi i1s only provided ror 1lists and
arrays, since those are tae only collective objects whose
structure 1is explicitiy defined.

reduction
The wmonadic function Eeduction taxes a list of three
elements for its argument, The first 1s a dyadic fuaction.
Ir the second argament 1S d4n arcay tne defilnition of
reduction 1s as in APL, with the third argument replacing

IgM CONFIDENTIAL

100 BASIC CONCwPls AND STRUCLURES Part 2

the APL subscript. If tne second argument 15 a list the
result is the same as toi a vector witn the sawme entries,
If the third argument 1s omitted tne default is as in APL.

inner product
This functional 15 defined as in APL for arrays. 41t the
arguments are i1ists the resualt is the same as for the
corresponding vectors.

outer-product
This functional 1s defined as in APL for acrays. L1f the
structures are lists, the resudlt 1s not a watrix but a list
of the expected elements in cdometer order.

JOne desirable feature or arrdays 15 tne abpility to treat them as
scalars in one oOr wore dimension S0 that they c¢an distribute in
those dimension a4as scalars do., HThis tfteature is provided in APL
by treating 1-vectors 4as 1identicdai to scaldars and similarly
treating a length of one in any dimension. This achieves cne
desiranle feature at the expeuse of anotuner, VviZ., Raintaioing
the distinction between scalars and otner arrays. We believe
that this distianction 1s worta maintaining and tinit arrays must
be of identical structure for ifunction distribution to occur, To
provide the flexible wmatcaningj, we 1ntroduce anotner xind of
object.

Definition: A partial array 15 like an array except that one or
more entries in 1ts base iList may be scalars.

A partial array 1s i1undefed exactiy like tne corresponding arcray
in which scalar entries 1in 1ts Dbase i11st have been replacea by
one element 1lists., The 1index set 1in scalar dimensions 1s the
entry in the base list tfor taat dimension, The runction ibase
applied to a partial array produces the lList structure oi milxed
deptn described above. The ruanction shape appiied to a partiail
array produces an error.

Bap
The dyadic functional w@map oCcurs petween a4 function and an
argument which 1s a coiiective object. It forces the
function to refuse to acc2pt the object as a primitive and
to distribute over 1its elieaents.

2.6,0 Llement and Pattern Searching

———

Two operators are used to proviue the reverse operation to
indexing.

ik CONFIDoNTIAL

A

Chapter 2.0 FUNCTIUN S5iT 101

The dyadic tunction index tdkes for its dieit operand an
array or list. The rigaut operand 1s any object. The result
1s the 1index ot the first occurrence of the object in the
array or 4iist if it exists

It is desirable to be able to search for a sub-colliection of
objects. By this we mean searcaniuy Lor onme array or iist imbedded
in another. For this impeddiny to be defined a way of combining
arrays of index objects must pe defined. Iun the typical case of
primitive arrays, arlithmetic pius, toyether with 1ts distribution
properties can be used.

Tnere are two cases oL liocate, dependiny oa whether the
operands are arrays or lists,

a) Let A and S be arrays witia 1 tne 1ndex object array
of S. Let the raunks ot & and 5 Dbe egual. Let ccmb
be a function defined on the 1ndex objects of A and S.
Then A loc S 1s B, an index object of A4, such that

B comb I sel & <-> =3
by Let A be a 118t anda 5 a pseudo-iist. For iists comb
1s arithmetic sum. In this case locate 1is deifined so that
the Coppola 1identity,

A loc 5 ¢+ 1list 5 sel 4 <=> S,

is satisfied.

2.6,7 Computational Operators

This section descrives the operators LOorf numerically oriented
ccmputation., fThey <create a new object usiny tanelr operands as
input to a rule or cowbinatiou. dence they always cause copying
to occur. The operands of an operator are objects; the result,
another object. The operanus, to enable 1mplementation of
standard langdayges, aust contaim several Kinds oI inrormation 1in
their descriptors. There must Dpe the 1information necessary to
interpret the string of Dpits or windtever 15 1n the mpacaine as a
number. In addition there must pe the information which the
programer associates wita the operand tarough hls declaration
statements. FOor our present puiposes a aumber or value 1s a
concept not indigenous to SL 1n terms oI which we aescribe the
functions of the operators., We assume tnat a vaiue 15 something
understandable to a user 50 taat aefininyg operations in teras of
values makes sense, We shall deflne tne value to be used 1n

IToM CUNFPIDENTIAL

O AR Ve B lion 7 0 v B R R N

102 BASIC CONCEPLS aAND STayClTUxks Part 2

operations in terms of a fixed radlix representation with radix
ten., We assume approximately the ygoals of PL/I but not the
achievement of any particular impiementation. we assume that the
user can designate range and precision or precision only (fixed
point and floating point, respasctively) of his stored operand.
Duringy expression evaluation the machine will Xeep at least the
declared precision and, usualily, 0o more than H§ digits, where
N depends on the machine. Ruunlnyg expressions on a machine with
larger N %1ll not yield less accurate results. N 1s currently
a ®machine aependent parameter. In the <case of SL 1t will
pcesumably be declarable as part of the program ambience,

The storage operands are neid to the precision specified by the
programer, During expression evaiuation yreater precision will
generaily be neld in temporary storage cells. This 1s analogous
to the extra guard byte or precision held for floatiay point
numbers during 5/360 instructions, Except for division the
precision retained will ope at least as great as that maintained
by PL/I. :

A further complication to operator specitication is launguayge
dependency. A classic examplie or this 1s the FORTRAN divide.
If the variables being divided are integers, the FORTRAN result
is the integer obtained by truncation of the correct aaswer,
regardiess of the result destination.

a + b {(PORTRAN) <K-=> (XT)x fioor aps T<—a + D

Naturally the scope of variawiiity in this area 15 huge, if
every programer <chose to derine differently the results of all
possible ordered pairs or 1input descriptors tae language
dependence is SL would be unmanageable. 0Uur goal is to provide
enough rflexibility to provide a reasonable set of alternatives
for future growth. Speciai giitches for today's apomalies will be
provided. 1t 1is hoped that tmey wiili wither away.

For tne nonce we will define the loyimetric operatocs over the
range of fixed and floatipng deciwai numbers with Dbase 10, PL/I
notation will be used to desiyuate the current descriptors, i.e.,
{p) or {psq) denotes precision, We assume that numbers are
kept in signed true rorm. ¥e aiso assuame thnat the prograwm has
gaven some specification oI tne ampience of execution. This 1s
usually derivable from the uata description tor the entire
expression.

When an operator executes 1t Kuows the roliowiny:

the values of 1ts operands, including the liocation of

iph CONFAIDEWNTIAL

Chapter 2.6 FUNCTLUN 3BT 103

signifticant digits

the declared or computeu precision or 1its operands

the value of "N, the maximum precision to be used in the
present environment

the precision reguired in tue present expression, aetermined
from the controling assiganment

the number, K, of operators in the preseat expression

The machine can use Trufn-tliae vaiues to help Wwith precision
problems, since it runs interpretively. Tne value or an operand
may contain more digits tnaun 1ts speciiied precision. This
nappens typically after a divide operation. A reasonavle value 1is
specified for the precision or tine result. Additionad digits up
to the precision available wmay be kKkept since they will iuncCrease
the accurdacy of the result, but thelr ioss wiil not cause an
exception,

The Wprecision requiread™ will derive Irow the declared
precision of destination Objects [or assigyhment operations, In
general a number of digits appropriate to the fiual assiganment 1ia
a statement will be Kkept, Tunis dassigynment will sometimes Dbe
called the controliny assignment,

2.6.,7.1 Operators with Iaentical vomain and Raunye

These operators are assocCiative and may pe used vhere
associativity is required to make yood use of the operator. The
reduction functional is du exaauaple where associativity is needed.

2.6.7.1.17 Numeric Operators

The primitive arguments for tie¢ numeric operators are numbers 1in
all cases.

pius and mapus
Th2 monadic functions pius aund mifuys rCeturn the same
value and signifiicance aad precision as the 1nput, with the
51gn changed 1in the case of minus.

5iynum returas a singdie digit with precision (1,0) and value
1, 0, or -1, accoraing as tne 1nput is positive, zZero, or
negative, respectively.

cecip (%)
Reciprocal returns a value equal to oune divided by the value
of the 1input, The resuit precision 1s (p,y), wherein p is
equal to the precision or tue 1input, aud 4 is5 chosen to
place the first significaast aiygit of tne result value at the

188 ConrIDENTIAL

104 BASIC CUNCEPLS AND STHRUCTURES Part (£

lett of the field. ilu addition, 1f the operation 1s
followed in the eipression by muliltiplication or
exponentiation, the value 1s Kept as a ratiounal number 1if
the absolute value of +the denominator 1s 250 or less,
Further, 1if the daivision 15 not exact 1iu the specified
field, aaditional digits up to N are Kept, Dbut not
considered crucial; i.e., their truncation will not cause an
exception.

ceiling and floor
If the precisioa of the lugut 15 (pPsqg) s with g 2 U, ceiling

and floor return tae appropriate 1iateger with precision
{P~g,9). If g < U a domaln eXCeptlion OCCULS.

There are additional monadic operators, to wit:
exp
ln

There are the dyadic torms Of taese operators:
sSum
dif ference
product
Juotient
max
min
bo¥er

Log

The guotieut <functiom «returas a single scaiar @ result, the
guotient of its arguments. Two aaditional dyadic operators aie
reiated to this one. Together taey proviae the functions
provided by two ditfierent derinitions of the function which has
bpeen called "mod" in some lanjuages., It seeuws desirable to get
away from the name Y"mod"® altoyether to avoid further confusion.
The names we have «chosen dare, uuniike Y"pod¥, consistent with
mathematical usagqge,

Juotient remainder
The dyadic function uotlient_remalnder returns a tWo element
l1ist, The first element 1s tne same vailue as that returned
by the guotient <function. The second element 1s the
remainder.

cesidue
Ihe dyadic function residue 1s detined as in APL.

magpitude
The monadic function magnitude yields tane absolute value of
1ts argument.

2.6.,7.,1.2 Logical operators

ilglh CONFIDENTIAL

Chapter 2.6 FUNCLILUN SET 105

These operators return domwmalh errors unless the input values are

within acceptable liwits of o or +1, 1f tue restriction 1is
met, the returu 1s tne dappropriate single diglit uumbar with value
+1 or 0. The result precision 1is (1,9). Note, for examgle,
that -~ may not be an identity operation,

not (~)

and

oL

nand

nor

2.6.7.2 Operators with non-uniifore Domain and/or Eanye
These operators are not associative at all times, 1In some cases
the range may be a subset of tuwe domain SO when the domain is
restricted to that subset the operator i1s associative,

2.6¢7.2.1 Range and Domain Difrer

These are primarily comparlison operators but the elementary
search operators are also includea 1n this class.

eq

ne
£Equal and not-equal take aumbers and strings as primitives.
With string primitives tueir definitions are the and and
or reductions, respectively, of tne resuit ror ordinary
lists.

Additional operatois are:
le
it
gt

ge
nember

2.06.7.2.2 Dyadic Operators with tHeterogen2ous vomaians
These are not exactly coumputationai operators since they really

build new structures from existing onres. However, they are
grouped here because their inputs are computational.

expand
compress
base-value
Lepresentation

1M CONFLUEBNTIAL

BASIC CONCEPTS 4AND STRUCTURES

2.6.8 Selection QOperdators

This section consists of the operators which
access pata to an object. They do not make
selected object nor do tney mouliy that object.

select

take

drop

cotate

———— e s S et el s e S o o .

This section descripes tahe operators 1or directiny the flow of
coatrol. It 1s divided 1ato two parts. The 1rirst part 1s
concerned witia a single controi path. Tne second part aas the
operators for multiple control patas.
2.6.9.1 Seguential Coutrol
These operators are used to start control flowing through a
program and to modify and control the sequencing of the text ot
that program.

evaluate (ct 2.1.4)

apply (cf 2.2.7)

exit (cf 2.2.0)

repeat (cf 2.2.9)

goto (ct 2.2.8)

delay (¢t 2.2.06)

conditional (Cf 2.2.9)

sigpnal (cf 2.4.1)

2.6,9,2 Multipie Control

These operators allow

paraliei execution Of expressions

Part 2

oniy define an
a copy of the

and are

used to create, control, and monlitoc 1ndependent processes.

paraliel (cf 2.2.0)
create (Cf 2.4.3)
destroy ({cf 2.4.3)
suspend (cf <.4.3)
start {(cf 2.4.3)
monitor (CE 2.4.3)
ignore {cf 2Z2.4.3)
inject (cr 2.4.3)
RLiority (Ccf Z.4.3)

1M CUNFLIDENTLIAL

Chapter 2.6 FUNC L1 ON 107

|77
5
L]

2.6.10 Resource Coordination

This section describes the operators used £for 1nput/output,
information flow between processes and for the allocation ot
resources, These operators aie a separate class because they
iateract heavily witn the arpitrator.

2+6,13.1 Information Flow

These operators are used opoth to syncaronize independent
processes and to provide the wmeans for 1information transfer
between two processes, There fuunctions are discussed 1n section
3.4.2,

send message

wvait message

send_answer

wait answer

introduce

2¢6.1J.2 Resource Allocation

These operators are used to hake preliminary ciaims and to
acquire resources Known to the context 1in which they are
executed. They also are usea to release the resources. See
chapter 2.5.

clain

—— i o

free

— ey s

acquire

2.6.11 Edit and Search

This section 1introduces tne operators for editing and searching.
The approach to be used 1s to euncoue tae transformation for a
finite state transducer which takes as input tune encodinyg, aad
the string to edit or searca and produces as the output the
result. The machine must be at ieast a yeneralized FSH but even
more power may be reqguired.

2.06.11.1 Dyadic Traanslate

The form 1is

I3l CUNFIDENTLAL

108 BASIC CONCEPTS AND STxUCTUKRES Part &

e o s

where

m 1S a transiate macuine
XK 1S the transliate subject.

The purpose or translate 1s to transiate the elements or the
translate saubject into aa output torm, supject to the
constraiuts, manipulations, and transformations specified by the
translate wmachine, The types oif tramslations which can be
specified range from the finmite stdte operations of the 300 EDIT,
EDMK, TR, and TRT tarough Fortran FORMAT and PL/L PICTURE
processiny to iusterpreting/compiling programming ianguagyes and
recoJnizing/transducinyg rormal lanyuages, :

The translate subject 158 a coilective object waich 1s yeuerally
of type list., The elements of tae list are the objects (e.d.
tokens, characters, symbols) apon winich the traansiate machine 1is
to operate,

The +transiate machine 18 4 colilective oObject which owas two
objects: the 1initialization fuuction aund the translate table. The
translate table 1s a coliective oObject orf matrix extraction, Its
index set 1s tue Cross product 9f the set of distinct elements I
in tne i1nput and a set of states 5, The elements of the translate
table are objects which respond to an execute regquest with a
value of nil, uandef, or anm eleawent of S. Hence, these elements
may be functions {(generaiiy triadac), lambda-expressions, Jroups,
variables, or constants, whose evaluation may entalil side-effects
{such as modifyimg a push-down stack or addinyg to an output
list), The 1initialization fuaction 1s$ basically similar to an
element o0f the transliate table. In response to an execute
request, it may periorm sowe houseKeeping (Oor pre-processing,
such as stack initialazation) duties as a side effect, and return
a value which is that element of 5 (together with the first
element of the +translate suoject); at which translation is to
commence.

Translate operates in the followinyg wanner: After initializing
the output (0) to undef aud the 1nput marker{i) to v (i.e., the
zeroth position ian the transiate subject), the 1nitialization
function 1s cailed. The resudltiny 1nitial state, aiong with the
current input, determine an element of tne translate tasle to be
executed., This, 1n turn, produces a hew state as 1ts value
which, together with the next traaslate subject element, can
dgain be used as au index 1nto the translate table object., This
procedure is applied 1teratively untii elther

a) the nevw state 1s nil
or

b) the new state is undef .

il CONFLDENTIAL

Chapter 2.0 FUNCLLION SuT 109

Case (a) occurring concurrently wita exhaustion of the translate
subject signifies 4 sucCessiual transiation, in «which case the
output (o) 1is returned as tae value. Any other termination
condition indicates that an erior has occurred, in which case an
exception is raised and tae vaiue to pe returned 1is a collective
object <coansisting of the ancompleted output(o), the 1nput
marker{i), the state(s) at toe time of the error, and the
complete translate subject,

The 1nput marker and output may be waulpulated by tne elements ot
the +translate taple, taus providing extendeda tftinite state
operations. By suitable speciiication, transldte has all the
power of a (simulated) Turinyg macaine. In addition, recursive
calls on transiate permit the siaulation of tree-like automata
and non-deterministic automata.

In SL-like terms, the function could be written as

(m,k) lambda
{dcl new (i,s,0) ;
andef->o0;
J=>1;
apply{sel(1,m); (0,1,K))->5;
repeat (s#nilA(s#rundef) ;
fapply(sel(
(sedl (a+1->1;Kk),5):
sel(<4,m));
(0s1,K))~>S});
sel (s#uil; {0; {(0,1,5,K)})

}

Wwahere sel stands for the seiect function., As an example of
translate, cousider the foiiowiny 5L progyram seyment: '
0->n;
(0,1, K) N{A}=>20{0;Aj;
repeat{ n+1->n<19;
{{o,1,k)A{0 cat {*'$',n)->0;
test{o;1;K) ,
By =>T_ n;a j;
{(Oel,k)N{0 cat list n->J;
test{o;1,K);
By =>T{n;BJj) ;
syn T [1;8]=>T[0;:8];
nil=>T[nil;B];
{(0,1,k)N{sel (shape(k) -2=1; {;0 cat list ',*->0});
sel {3 res (shape(K)—-»-1}=9; {;0 cat list ','->0})j=>test;
translate ((A,T) , 00102345678 %)->result;

ipf CUONFIUooNTIAL

110 BASLC CONCEPIs aNp STKUCTURES Part .2

»

where sel is the select fuactiou, res is the dyadic residue
function, and cat is the catenate runction.

The value of result woula be the ouject
$1,023,456.,78
2.6.11,2 Monadic Translate
The monadic form of transiate
translate (k)
takes as agrguament only the transiate subject «. It is assunmed
that K 1s a SL string in externai syntax zorm. The result of

translate 1s tume internai, runctiomai SL equivaient of the
external syntax.

iIBB CONFIvENTIAL

=

Part 3

SYSIEY CuNcepPis AND FACILITILILES

Part 2 described the fundamental structures at the basls of AFS.
These structures provide the eguivaient of a "pare macnine”" that
executes SL directiy. This part describes system facilities
built on top or taat basis to provide a rich set of user oriented
functions,

An l1mportant concept O0Of AFS 1s that tnere are no privileged
instructions, only privilieged resources. Since all operaticns
avalilapbie to the operating system are thererore avalilable to any
user, speclai purpose systeuws as well as IBH standard systems cal
be designed and run like ordianary 7jobs.

i CONFIDENTIAL

Cnapter 3.1

SYSTEM DESiLiGN CRITERIA

The systen design criteria are enumerated in terms ot
applications, operational environments, and service modes. These
are derived from FS market reyuirements, The object for the
exercise 1s to cilassify the reguilirements into three somewhat
mutually independent categories. Criteria from each category are
used as the basis to pegin one aspect of the system design
effort.

Topics to be descriped in tnis section of the report yive an
indication of the «current effort to satisfy the application and
certain of the operational eaviconment criteria,

3.1.1 Appiications

Criteria inciuded 1n this category are focused on the types of N
user applications waich are prevaiesnt during this time frane,
Important applications inciude:

® Data Entry/Data Retrieval,

e pata Manipulation and Computation, and

e pata Communications.

3.1.2 Qperational Enviroanments

Operational Eavironwments are concerned with the aspects of
physical demands aand <cCoasStrdalnts on 4 System relative to
performing user applications. Lbxamples are:

 Reliability, Serviceability, Avaiiabiiity

e S5ize of data pase

¢ Number of lines and terminals

e Geograpamical distribution of: \

Iod CONFIDLNTIAL

Chapter 3.1

SYSTEM DEsSLGN CRIPERLA 113

¢ Users

 Terminals

. Data Bases

s System nodes (ih 4 network)

- Traftic rate/message m1X
- Response Time

- Security/Privacy

3.1.3 Service HNHodes

Service modes are concerped wilta the manner 1in whica systen
3ervices a4are exercised by a user 1n order to satisty his

application
operational

reyuirements wheu subjected to the appropriate
environment coustraints. Service Modes include:

Transaction bdsed (Routine processing),
Interaction based (Nou-routine processing),
Event-triggered,

Bétch, ana

Message 3witchiay.

18K CONFIUDGNTLIAL

Chapter 3.2

ENVIBONMENL MANAGEWMENT

The principal tunctions perrormed Dy an operatiuny system are to
set up the environments required by procedures and to execute

them within those environments. current systems nave normally
assumed a "standard" environment, 1n which all user code 1s to
operate, This environment is usually different £from that

required by components or the Operdating system iltself. Software
tools fror the user, especiaily compliers, are desiguaed under the
assumption that the generated code 13 to operate in the

“standard" environmeat. Most tooulis, thereiore, are unusable 1n
other contexts, and the Y"standard" enviroanment 15 often unsuited
to more ambitious user subsystems. Wwaen faced Dby non-standard

circumstances, therefore, the user Or sSystems programmer 1S on
hlis own and usually resorts to tue worst kiands of trickery -- by
necessity, not by choice. 45 1s well known, U5/360 is full of
such ad hoc solutions.

Since environaent construction aand management primitives are
included directly ia SL, elther 1BH or user systems may set up
enviroaments which are weil suited to thelr needs. This 1implies
a newWw outlook on software toois, which no longer are allowed
assumptions about the environament in which generated code 1s to
operate, In addition, as seen in Part 2, steps are now required
to imbed a procedure withln 1ts operating context. Software
subsystems and virtual systeuws tollow as coroilaries or this
approach, The disciplines which insure integrity, privacy, and
security pervade the system, incliuding all subsysteas.

System control and the command iadujuaye is also0 eanbedded in SL:
user commands would translate to expressions in 5L, This view of
coutrolil is simalar to the appioacn taken in the July 1970 dratft
of the CCL report. In CCL tane control functions were progranmed
in CCL procedures., This approach gyives the user more tlexibility
in defining work flow tnan a static language iike JCL. Nesting
of control procedures 1s also allowed. Any iBM standerd command
language will be providea as part of tue system support as well
as the SL control functions.

3.2.1 General System Environgaeats

The root of the system ownership tree is the system Tresource

iBA CONFIDENTIAL

Chapter 3.2 ENVIKONMENT MANAGEMENT 115

manager, which has tae responsibility Lor fesource controli. One
such resource 1is the subsystem ilandiord,

3.2.1.1 Systeam Specification

The subsystem iandlord 1s a collective object tuat owns all the
highest level operatiug (sub)systems 1pitialliy accessible to the
user; these include systewns like Du5, (P, CHS, US, and 1SS, as
well as user~deiined operatinyg systems and 5L subsystems. insert
requests wmay be wmade on 1t to add new operatiny systems, or to
delete existing ones; Sultabie access raiyhts for this capavility
will be 1instailation-derinable and presumabiy secure. General
users may not make modifications to dedicated operating systeams
owned py the subsystem landlord,

Interaction amony operatiny systews, such as with ¢P/CilS, may be
achieved via accessors assigned by tne subsystem iaandliord.

3.2.1.2 ©Hesource Controi

The resource mapnager 1S a codilective object which controis the
ailocation of space, time, and external devices, and the shariuag
of library resources global to multipie operating systeas. It
may logically (i.e., via syaonyws) group elementiry resources
{such as ports, storage devices, Or lipraries) 1nto new generic
collective objects called resource packayes, and permit access to
them by other system objects via the accessor mechaaism. In this
manner, operating systems may be given controli over specific
groups of terminals, device «c¢lasses, channels, 1libraries, etc,
Addaitionally, judicious assigument of access rigats may permit
more detailed delineatiocn of resource availapiiity.

For resources whilCh 4re saared by OrL 4accessible to wore than cne
operating system, the resource mahayer wilil monitor the accesses
and guard agaiust lockups and aeadlocks,.

3.2.,1.3 1nitial Iaterpreter

All ports to the outside worid are controlled by the resource
manager., Some sSubsets or these ports way De combined within a
resource packaye and accessors to taat resource packayge given to
a dedicated subsystewm., Such ports dre called dedicated ports; a
user siyning on to one of those ports 15 lamediately confronted
by the subsystem to which 1t was dedicated (e.g., 'a port
dedicated to T3S would regyuire the user to enter the usual LOGON
message) . No other Kinds of jobs save tpose meaningful to the
controlling operating system may be entered trom that port,

Free ports, on the other hand, 4are imitially unassiyned DY the

Ip¥ CONPIDENTIAL

116 SYSTEM FACILITIES

system. These ports falil wunder tne control of the imitial
interpreter which is part of the resource manager., The initial
interpreter responds to user commands entered via a iree port,
and creates the corresponding subsysteam under the subsysten
landlord; such subsystems may iaciude, for exampie, user-tailored
versions of OS and DO5, or SL subsystems. Initial resource
ciaims for the new sSubsystem may ai50 be honored by the initial
interpreter pefore control is tranmsferred.

3.2,2 Qperatiany System Bnvironmeuts

Au operating system 1S a subsystem wnosSe access machine is a
process called the control program and waosSe resource consists ot
a set of jobs and a collection of liilbraries called the systenm
ipput. Operating sSystems way be eltner dedicated (bouud) or free.
Dedicated subsystems enjoy a semi-permanent sStatus within the
system; that 1s, the resource packages assigned to then (in
particular, groups of ports); way bpe aliocatea for extended
periods and the subsystems themselves would typically be
generated Dby the system operator or tae installiation. These
subsystems would include iBM-supplied operdating systems Such as
0S with TSO. Free subsystems dre c¢reated by user request and are
hence transient; they normaily will be destroyed wunen tne user
signs Oofrt. These subsysteus Wikl primariiy comprise
user-initiated and -taiiored U5 and other 1local operating
systeas, as weli as aill SL supsysteus,

3.2.2.1 HResource Controi

Each operating systew may be Jiven accessors to resource packages
via the resource manayer; <Chis may oOCCUL at the time the
operating system 15 added to the subsysteu landlord, or
dynamically when the operatiagj system 1s ibvoked. Ia the former
case, this permits an operatinyg system to be soie accessor of a
set of ports or lines; these resources are taus dedicated to that
operating system untii either the operating system 1s deleted or
the resource manager, which stili owns tne resources, rescinds
accessipiiity. In the «case or dynamic aliocation, ports and
lines are accessible to the operating system on a reguest pasis.,
In either case, Tresources such as disks, on-iine or virtual
printers and card-readers, aad system lipraries 1in Tresource
packages accessible to operatiuyg systems are not shared by other
systems, hence, @management of these resources becomes the
responsibility oif the operatiay system controi proyrams, via the
subsystem resource managders.

4 dedicated operating systewm mdy nave the only accessor (as
assigned by the system resourCe manager) to 1its system input; the

188 CUNF LDENTIAL

Chapter 3.2 ENVIROUNHENT MANAGEBAENT 117

libraries contained therein aay be accessed by other systems
provided the Subsystea resource @manager of the dedicated
operating system permits 4an accessor to be established.

3.2.2.2 Subsystem Resource iHaanayer

Each subsystem contains 1ts Oown CesSOUurce mandyer to control the
allocation of resources from tuae Tresource packaye. Keguests for
additional resource allocation oeyond that in the resource
package are made throuyh tne subsystem managers, which
communicate directly with the system resource manayger. It is the
responsibility of the sSubsystem wanagers to monitor resource
requests and pertorm locai deadlock prevention anda coatrol,

The capability in tae system 01 nesting subsystems entalis the
recursive application of sSubsystem resource management. Each
Subsystem may permit 4 subsystem nested within 1t accessors to
part or all of 1its resource pdacxaye (as would be the case when
running a free uaser-optioned US under a free user-optioned CP);
in tnat event, tne nested subsystem's resource manager would
control those resources directiy. dowever, tne bhilgner-level
Subsystem may elect to maintain control over the resources, 1in
Wwhich case lower-level subsystem resource mandyers would have to
route resource reguests throuyh 1t (such miyght be the case when
running an incremental PL/L compiier under a SL subsystenm).

3.2.2.3 <Control Program

The control program contalns the routlnes necessary to service
the system imput. This includes inserting ana deleting Jjobs,
scheduliing, priority assiguning, 1nterrupt hnaandling, managing
elements oL the resoarce package({s), providing for job
initiation/termination, and periforwing sSystem malntenance., in
terms of current operatiny systems, the control program rerers to
the job, task, and data managyement in 03/360; the task, data, and
program management in TSS/36U,; ana the virtual machline managyement
in CP/67.,

3.2,2.4 System Input

The operating system rCesource consists of the jobs which 1t is
running or gueueing, together with the appropriate libraries and
other resources contained in the resource packagye allocated by
the resource manager. The libraries contdin languaye processors,

maintenance and accounting files, languagJe-associated
subroatines, and any oOther sesmantic iarormation required to
detine a job context, The Jjob contaius controi information

required by the operatiag system, alony with proygram text or
modules; in the case of the 5L system, tihis inrormation 1is all

LM CONPLIDENTIAL

118 ' SYSTEM FACILITIES

part of the proyram itself. Job inteygrity and security is
provided via the alliocation of time and sSpace by the resource
manager upon request by the operating system,

3.2.3 Job Enviionmeant

A job 1in the 5L seas
landlord.

w

15 a subsystem Oownea Dy the subsysten

3.2.3.1 Jobs 1in the SL Enviroument

5L jobs may be created Dy tae initial 1aterpreter at the user's
request from a free port, or they iady be <Created dynamicaliy by
existing SL subsysteas. 1in tae foraer case, a user entering the
system through a free port inforws the initial intecpreter of his
desire to run 1in SL mode. This initiates the creation of a SL
subsystem by the initial interpreter via 1asert requests on the
subsystem . landlord. ©The resouice package for the subsysten
contains, minimally, an accessor to the free port plus accessors
to any of the user's (fiies; in reguesting a 3L subsystem, the
user may sSpecily additiomal resources to pe allocated, Hence,
the job 1s logically <c¢reated at sSiga-on time and, 1f no
subsystems with Autonomous COAtrol are Ccreated 1n the interia,
logyically destroyed with siyn-orr,

Jobs may also be initliateu rromw within 4 3L sSubsystem by insert
requests on the subsystem lasdiord. Thne Cesources Of the created
job must initialliy be a subset 0r the resource package granted to
the creator. If the twoe subsystems are then to run in parallel,
only one may have access to tae entry port, and resource control
(for shared resources) must pe a4arovitrated by tne system resource
manager., If they are to run nested, then either or Dpota may
retain access to the port,; however, resource reguests Dy the
nested job's subsystew resource manager must be reflected back to
the higher-level job., In Dpotn cCases, mother—-daughter jobs (as
well as other a4utonomous 5L subsystems) may communicate via
shared data rfiles or message transwission.

Each SL subsystem, once created, 1is free to wmake use of the
entire SL language racility: suptasks may be created for serial
or parallel executlion, elements or the resource package utilized,
etc, The SL user has tue wost freedom 1n employing the systen
for his problem solutiou, but does not have the capability of
impugning the system's inteyrity or security.

3¢62.3.,2 Jobs 1in Non-5L buviioaments

IBM CONF losNTIAL

Chapter 3.2 ENVIRONMENT MANAGEUENT 119

Jobs under the controi of foreiyn operatiny systems will maintailn
the 1dentities they would have as 1if they were ruuning under
those systems and witnln those systems' host architectures,

3.2.3.3 Resource Controi

a SL job may utilize any resource availabie 1in 1ts subsystenm's
resource package, or 1t may regquest the resource manager to
create aaaltional resources foc it through the subsystem resource
manager. However, reguests LOC 1ncreased or moaified resources
by nonconversational Jjobs (1.e., taose without a port 1in their
resource package) wiil result i1n message traansmission to the
monitoring sSubsystem {or canceliation oI the Jjob 1f no
nigher-level Job exists) 1f the request cannot be granted.
dence, SL libraries, Wworkspaces, riles, etc. falili directly under
the control of the resource wmanaysr; tals provides additional
checkiny faciiities for multiply-accessible rile usage, as an
example, The user's own libraries and worLKkspaces may Dbe made
accessible to the subsystem either at the time the subsystenm is
created, Oor as the user requires taem.

Resources for jobs under iforeiyn operatiny sSystewms are assighed
to tne operating systems 1n the wanner previously stated (section
3.2.2.1) ., Whereas the accessing mechanism @may be simiiar to that
above, wusers of other operdtiny systems <can V1ew Tresource
availaopility 1in the manner to wnich they have become accustomed.

3.2.3.4 Example of System Coniiguration

The rollowing a1llustration 1s a4 static, loygical representation of
a system with © ports: ports | aund 2 are dedicated to an 0S/370
subsystem runniuyg oae backgrouand and two interactive jobs; ports
3 and 4 are dedicated to a T35 supsystem running two interactive
jobs; port 5 wWwas rree, but has opeen assigned by the initial
interpreter (upon user siynh-on) to an SL subsystem; and port o
was free, but has Dpeen assigned to a CP supsystem, which has 1in
turn initiated a private 0S/37J supsystem with access to the sane
port. In addition, there is an SL subsystem which 1s apparently
running in the background aiter @maving been initiated by another
SL subsystem no longer active:

il CONFALDLNTIAL

120 SYSThY FACLLAITILIES

o,
sl
Kol

0]

~

)

=}

K

e}

---% access

‘SAS-Fg
FEysl
|
[4€2040¥%A] \ 4
| vod-uratre L | @ h
f OEDesr1ED
Sup- 55, .

-
S e e e - - -

IBN CONFIDENTLAL

Chapter 3.3

SYSTEX CUNIROL

3.3.0 INTRODUCTION

Systea Control 1s coucerned with that set of data structures,
processes and control mechanisas reguired to support and control
the work flow operations in tue system on two levels:

e Fuactional

® Server confiyuration

on the functional level, System coutrol 1s conceraned with the
initiation, coordination and termination of system functions in
respouse to external (€.4., on-iine user) stimulii in

e Data Communications
* Data BEntry and Data Retrieval
* Data Computation aand Hanipulation

On the server configuration leveli, System Control 1s concerned
Witn the coutrol aud symnchronization Oof sSystem work Liow 4ud the
allocation/deallocation of resources.

Fuuctionally speakinyg, System coutiol can be further partitioned
to consist of Systew Coammana Control and sSystew fHouirtor Control.
Systeama Commanda Control 1is concerned with the control and
management of anormal system operations involviny system fuuctions
and resources in response to external {e.yg.; User) stimulii,
System Commana Contiol operates in llne with sSystem Wwork flow,
On the other nand, System Mouitor <Controi is responsible for the
monitoring, detecting and maudliug orf exceptional conditions
occurring 1in the system, System Hdonitor Contioi operates 1n
paraliel witn both the system work ILlow stream aud System Command
Control. :

In the present report, emphas3ls 15 focused entirely oun Systen
Command Controi, whiie capabilities characterizing System Honiltor
Control willi be enumerated 1n a ldater section (3.4 Systen
Functional Management).

122 ' SYSITEMN CONCEPRPTS ANy FACLLITIES

Concepts fuundamental to System Comwand Control willi be presented
from the following perspectives:

e The Faculty Concept. - Here the system is viewed
from the eyes of the system 1tself. The various areas of
functional respoasiovilities are 1dentified and ygrouped 1nto
autonomous functionai partitions -- Faculties.

e The Work Filow concept. Here the system 1s viewed
from the point of view of a user dJdemand a4s tae demand travels
through the systemn. During this sSystem walk~-tarouyh, certain

system functions are pbrougnt 1nto focus as 4 matter of systen
overhead while others 4are iavokea explicitiy as a result oz
interpretation and execution by tne system ot the user's demand,

¢ Basic Control Structures and Mechanisms, Here tue
system 1s viewed aiso trom the vantage point of the systenm
itself. An eXxtensiom or tne Key coucepts (Parct 2) in Object
Base, ownership tree, and program structure resulted 1in the
formulation of the pasic structures and mechanisms tor Systen
Control.

3.3.1 A Functionai System Structure

The functional system structure (Figure 3.3.1-1) 1s described in
terms of 1ts twc major constituenut components:

e The five functional Faculties

¢ The Yueue mecanahisw for iuter-irfaculty interaction

3.3.1.1 Five Faculties

A partitioning oif the totdali system functions i1nto functiomnal
partitions opased on areas of responsipilities resulted 1in a
five-Faculty systean structure . A SUBBArLY description
highlighting the roles of each racuity is given below:
1. The Terminadi Faculty

A wide raange oif terwminal capapilities are
provided in a modular fashion, wunlch can pe configyured by the
user to provide him with a selective combination of termimpal
functions to meet his speciiic appdiication, operatiomal and
service mode reguirements.

2, The pata Communlcatioas Faculty

ioM CONFIveNTIAL

:MV/

Chapter 3.3 SYshusl CONIROL 143

‘ The Data Communicatious Ffaculty i1s concerned
with the transportation or data into and out of the system. The
Data Commupnications functions are:

e Transmission dependent
» Terminhdl dependent
*» Messayge daependent
3, DThe monitor Controi Faculty
Tnis Faculty 1s responsiple ftor the detection
and handling or exceptiounal conditions occurring 1in the systen.
Also, it is responsible for system support ana adwministrative
support type of operatioas.
4, The Command Control raculdty
Tih1s Faculty is the central aup of control for
the system. It is responsibie ior the 1nitiation, coordination
and termination of system services 1a response to user demands.
Also, it 1s coynizant at aldi times Of system work fiow activities

and system resource availability status,

Through a auwmber ot tables whica Command
control maintains, it is coguizant ozL:

*» The glopal working contexts about a user,

* The particular working contexts about a
dser duriug a speciliic lustance of user/system 1nteraction,

¢ System WwOorLkK activity status
* System resource status
5. The Data Controi Faculty
_ The respomsibilities of tais raculty cover the
management ana control for all system resident data. Functions

include:

. e The accommodation of multiple logical
structures

Security controi tor private and shareable
data

» Exclusive coutrol for concurrent access of
shared data

ig¥ CONFIDENILLAL

124,

CSYSTEM CUNCEPTS AND PACILITIES

o Historical versions of data

1808 CONPIDENTIAL

Im L

TYIIRIAAT ANOD

|
:/‘

|
I

——— § —

USER/SYSTEM

INTERFACE

TERMINAL
FACULTY

FIGURE 3.3.1-1

-_—

RES?Dﬁﬂztﬂdéue-\\\

DATA
COMMUNICATIONS EOATA
FACOLTY NTROL
- ‘ FACULTY
L REQULEST

MONITOR
CONTROL
- FACULTY

QUEVE

A FUNCTIONAL SYSTEM STRUCTURE

£*¢ Ie3zdeyn

TONINOY WEISAC

G671

126 ‘ SYSTEM CONCEPLS AND FACILITIES

3.3.1.2 Queue Mechanism for inter-Faculity Interaction N

In response to an extermnal stimulus at the user/system 1interface
(Figure 3.3.1-1), one or more of tae Ffaculties must collaborate
to pertorm the necessary Wwork, iater-Faculty interactions are
accomplished via the system deyuest aad Kesponse queues,

A unified messaye structure for interaction 1s employed by all
Faculties, Pertinent 1information to be exchanged 1is assembled
1into 4 standard messaye structure., Tunis i1aformation consists of:
» Jdentifications -- Reyuester and Responder ID's,
e Interaction types -- Rejuest and Response types, aund
* Parameter data.
Furtherwore, on a conceptual level, once a Faculty 1s activated,

it will pertform the work as specified until a loyical conclusion
_point is reachaed,

3.3.2 Work Flow

———— —— o —

Once a functional system sStructure 1s postudiated, the next step e

in bringiny the role oif System <Control 1into <focus 1s to
scrutinize work fliow actavity tarouyan the system ana identify
which Faculties would come into piay at waich points in tne wark
flow process. This 15 accouwpiished by a technijue Known as
functional tareadiny. Thails techaigue iavolves the tracinyg of
external (user) demands tarouyh the seguences of sSystem Faculty
initiations, coordinations, and terminations, The object 1is to
deveiop functional sequences oL 1nteracting Facuities 1in response
to specific user stimudli. To be respoasive to market
reguirements, the scenario for user stimudii wust be develoged
based on user applications for the Fs time Irame.

An order hilerarcay is reguired to specify the meaningful
levels of control that must be established 1n tae system. These
levels of control shoula be derined ou the Work Session, Job, and
Faulty levels., System Control utilizes tnis controi hierarchy to
establish and maintain successlive levels of context for control
relative to the execution of a user work demand.

3.3.3 Basic Control Structure aud HMechanisus

Il CONFIDLNTIAL

Chapter 3.3 _ SYsTuil CUNTROL 127

The Faculty ana Work f{low perspectives address the roles ot
System control from 4a yross pouint of view and present a picture
of the system structure in terms of runctional aggregates, This
1s an "Outside-in" approacn—--in that tane sSystem 1s described
starting from the application ieveli and ending up 1nwards at a
functional partition lieveil.

An entirely ditfferent approach to describlng the roles of System
Control is an "iaside-Out" appioacu. Here the emphasis 1s placed
on a description of the structures and mechanisms which are basic
to System Controdl.

3.3.3.1 A Multi-Server Systew wnvironment

From the point or view o0f System <Control, work 1s pertormed by a
combination of active and passive system elements. 4n active
element 1s a system server (e.j., a progyram processing unit) that
is capable ot doing work. Ta2 passive element 1s the progranm
module {s) which contains alygoritiam(s) indaicating how the Wwork 1s
to be perrormed, This 1s aa 1terative definition 1n that a
combination of active and passive elements may dappear to be the
active element to a second passive element,=2tc.

Phe extermal proyram structure ror all programs (eitaer system
SUpervisor Oor user appiication proyrams) foilows the standard
PiL/I static mesting structure (figure 3.3.3-1). The external
prcgram structure for tne System SuUpervisory progyrams tor the
Facuity system structure concept (section 3.3.1.1) 1s shown in
Figure 3.3.3-2. Loygically, tane supervisor control program can be
thought of as a single procedure wiaich in turn consists or tive
tasic procedures.

Similarly, thne internal prograw structure also assumes a unitorm
structure. The properties of tnis structure are:

1. All progyrams are re-eatrant,
Z. One or more proyra® aodules make up a4 program,
3. A proygram module consists of two components:
® A proyram t2xt component
e A symbol dictionary component
The active system elements wWhican are capable or doiny WwWCLK
operate 1n a multi-processinyg <nvironament.

important councepts for System Controi in tuls area iaciude:

Igth CONFIDENTLIAL

123 , SYSTEM CONCEPIS AND FACILITIES

1. Multiprocessing 1s the normali mode of systen
operation. :

: 2. Server pooi concept-- System sServers arle organized

into pools of TrTesource by type. All server pools are

interconnected to one another through an interaction

network (Figqure 3.3.3-4).

3., The concept of <irloating supervisor control-- No
master/slave relationship exlsts amony server eiements 1n the
server pool, The supervisory control progyram which 1s executed
by every available server 1is counsidered to be the master.

4, All server elemeuts have 1ldentical processing
capabilities and are equaily juaiified ot periformingy work (either
supervisory control or user appiication WOLK). No server is

vested with any special processing roles.
5. A gueue-driven systei concept-- server!s interiace

for work assignment 1s via work Jueues, Heyuests for work are
always enygueued onto the appropriate Wwork yueues,

Iof CONFADENTLAL

Chapter 3.3 _ SYSTE4 CONIRUL 129

l

O
l

FIGURE 2.3.3-1 A PL/I PROGRAM STRUCTURE

188 CONPIDUNTIAL

130 Chapter 3.3 SYSTEM CONCEPTS AND FACILITIES
__ PROceDURE (FACULTY SYSTEM STRUCTURE)

__Procepure

TERMINAL FACULTY

e

— PROCEDURE

DATA COMMUNICATIONS FACULTY

S —

___ Proceopure

COMMAND CONTROL. FACULTY
— PROCEDURE

VATA CONTROL. FACULTY

. ProCEDURE

MONITOR (ONTROL. FACULTY

FIGURE 3.3.3-3-1 PROGRAM STRUCTURE FOR THE
'BM CONFIDENTIAL FACULTY SYSTEM STRUCTURE

Chapter 3.3 : 5YSTE COsTROL 131

SERVER SERVER SERVER SERVER | - - - | SERVER
ELEMENT ECEMENT ELEMENT ELEMENT ELEMENT

Ly Ty Ty T L1

INTERACTION NETWORK

1: ;. II

INPUT/ OUTPUT

FIGURE 2.3.3-4 . A MULTI-SERVER CONFIGURATON

1BM CUNFLDLNTIAL

132 - SYSTEM CONCEP&S AND FACLLLTIES

3.3.3.2 System Interactions

System Interactions d4re reyulred petween active elements to
accomplish coantrol and ®mdanagy2ment of sSystem functions and
resources to be respoasive to an externai stimulus., Systen
interactions take place due to:

1) Problen interaction: These relate to logical
dependencies witninh a program., Syachronization
between concurreatly executing instruction streams
15 reguired.

2) "Supervisory interaction: The supervisory
interaction 1s concetrned mainly with the allocation
Ol server resoulces and with tne job of dynamically
tuning the systea.

3) System iInteraction: Active system elements
interact with one another to verify the validity ot
system coantrol data, to dynmamically reconfigure the
system due to iloau palancing or malfunctions, etc.

0f these 1interactions, Systew Control's 1invoivement 1in the
supervisory function ocf taskx assignment aand - server element
selection will Dbe descriped in some detail to furnish scwme
1nsight into the problen.

The control aigoritnm oun task assigament and server element
selection is based oan tne coacept tnat all system resources are
executing the @most importdnt tasxs as determined by the
anvironmeunt, in the systea {tiyure 3,3.3-4), as a server
completes execution of tne work specified by a task {(a unit of
work specificatioun}, it executes the task assigynment algorithm of
the supervisory program d4and degueues a4 new task from an
appropriate work Jueue, Thus, tdasKks @must be assiyned to server
elements so that work can be perrormed, and server elements must
be selected from a pool of server elements to take on the tasks.
The role of 1interaction uetworx 1S to <faciiitate 1in this
assignment aand selection process 1a order that an optimum system
operational environment 135 establisned and maintained.

fasks inciude DoOth sSupervisory and usSer tasks, New tasks
are generated due to new Jjob iitroductions, task spiittings, or
I/0 1interrupts, All tasks are assigaed praority numbers,

Similarly, an "availability index"™ is associated with each server
eiement which 1s executiny a taskKk., The Mavailability index" 1s
derived directly <frow tae priority of the task which 1s being

executed by the server eleameat. The "availapoility index" 1is a
measure used to determine the relative deyree of a server
element's readiness to take on a new task. An 1die server

element has the lowest ™availapility index" (1i.e,;most ready to
take on a new task).

IBM CONFIDENTIAL

Chapter 3,3 : SYSTE4 CONIROL 133

Wwhen a new task 1s beiny iuntroduced 1into the system, it 1s
assigned a priority number ana 1s engueuded onto the appropriate
work gqueue., An idle server eleuent 1is selected to take on the
task. In the event no idle server elemeuats are availabie, an
active server element must be seiected to take on tiae task. To
make the selection, a comparison is made petween the priority of
the ready task and the availability 1adex of each and every
active server element. Juose wita iower availapility indices are
all available. The one sarver elemenat with the Llowest
availapnility 1andex, however, is decwmed to be most eligible and
will be selected to take on tae tdask. The lower priority active
task which wdas being executed prior to the selection will go inato
a dormant state and wiil be eajjueued onto the work queue, Should
there be more tham one eliijivle server element with identical
availabiiity i1ndices (l.e.; dail are executing tasks wlth equal
priority numbers), a tie-breaking alygorithm wiil have to be
executed.

Il CONFIDENTLAL

Chapter 3.4

SYSTENM FUNCIILUNAL HANAGEHERT

A description of the 1mportaut coancepts from some ©Of the Kkey
system functional areas 1s preseated 1n tals chapter to give an
indication of the directions being folilowed,

3.4.1 Data Base

Data pase management 1s conCerined wlith tiae accessiny Of data by
muitiple terminal users frow an on-lime centraiized data base. A
terminal user's access to the data base may be for the purpcse
of:

e Read-only data eutry and retrieval,aad
e Read/Write data entry and retrievai:

Data insertion
e Data modification
Data deletion

Accessing takes piace 1in a couacurrent and independent mauner in
eltuer the traansaction processiug mode (routinlized processingj or
interaction mode (mon-routinized processing).

Data base tfunctions to wve addressed for tane AFS logical
architecture must be respousive to these types of user
requirenents. Accordingly, topics to be addressed 1in this
section touch upon all of the roliowing:

Data independence

On-line availadility

Convenient data entry and retrievai

Multiple user data structures

Symbolic data access

Authorization to private and shared aqata
Exclusive control to concurcrentiy shareable data
- Dbata Base recovery

- Historical versions of data

- Tramsaction audit traii

e & & |

ipd CONFIDENTIAL

Chapter 3.4 SYSTEM FUNCTIONAL MANAGLMENT 135

3.4.1.1 Data Base Mapagement: Au uUverview

A logical representation of tue major data base components
and interfaces is given 1n Figure 3.4.1.1-1, User activities 1in

data entry/ retrieval, data manipulation and data base
maintenance are presented to tae system as application and system
programs. The procedurai speciticatious of the programs are

defined indepeandently o©of tae data descriptions. Functional
Capapilities in each area are made available to the users via the
Data Manipulation and the Data Description languayes., Definition
of multiple logical data structures on the -same system resident
data is allowed to accoamoaate the many views which independent
users may elect to see data. Tue entity recora set concept in
terms of entity attribute description of external things 1s used
as the vehicie for logical data structure represeatation. All
data accesses are subject to system data exciusive control which
1s responsible to act as a lidteriny functioa to resolve the
contention problem due to coacurrently snareable data requests.
Data base address space 1is a wultli- linear sympolic address
space, In addition, data recovery constitutes an inteyral part ot
the total data base management runction.

LBM COUNFibenTiAL

130

SYbin LQNLLEIb AND FALLLIllLb

Use& ACTIVITIES IN:
- DATA ENTRY
* DATA RETRIEVAL
+ DATA MANIPULATION

* DATA BASE MAINTENANCE

. ov— a———— —— avom—ts

——— N wmawm sy m—

PROGRAM
LIBRARY

* APPULICATION PROGRAMS

+ QYSTEM PROGRAMS

J vescripmon

DATA

PHYSKAL DATA SPACE

- DEVICE
MANAGEMENT

FIGURE 3.4./.1-13

1 CATALO G
i1
LOGICAL DATA STRUCTURES
- ENTITY RECCORD 5T
MANAGE MENT
—
v |
__VIRTUAL ADDRESS SPACE
F EXCLUSIVE CONTROL.
DATA
i BASE
o l e RECOVERY

A LOGICAL REPRESENTATION OF
DATA BASE COMPONENTS & INTERFACES

1M CONFID=sNTIAL

™

Chapter 3.4 SYSTEM FUNCLLUNAL MANAGEMENT | 137

3.4.1.2 Data Base Language Capabilities

The Data Description Language (DDL) 1s the language used to
define an Entity Record Set. An &Entity 1s a person, place, or
thing., The thinys may be real or abstract. An entity 1is that
about which a user wishes to record intormation 1ia tne data base.
An entity record set i1s a coliection of similar entities (Figure
3.4.1.2-1). To completeiy describe an entity record set, it is
necessary that:

The attributes which describe the entity are described.

The entity records makiuy up the entity record set are
described,

The data names and taelr synoayas are described.

In addition, tue DDL caa pe used to descripbpe the physical
characteristics of data in thke data Dbase. However, these
capabilities are availilapie oaly to the system 1installation
manaJer.

The Data Manipulation Ldauguage (DML) 15 the languayge which
enables the user to @anipuiate the logical data 1in his
application proyram, Data maunipulation implies data entry and
retrieval as well as computation aad processing. Both of these
capabilities will be supported in ISL as operators. SincCe a user
may wish to converse using any of the five ldnguages: PL/I,
FORTRAN, COBOL, KPG, and APL, udlL must rely on a host language to
provide the computationai capabiiities. ODML ,in tura, will
provide the language 1nterrace petween the progyram and the data
base. Therefore, all calls to and ifrom the data base to retrieve
data, to enter datd, to modify data, or to delete data are
invoked via DML operators.

3.4.1.3 The Entity Recogd Set

An entity record set 1s a. two dimensional array
representation of data structuies in terms of Entities and
Attributes (Figure3d.#,1.<-1). An entity 1s a person, place, or
thing. Attributes are the property classes which characterize an
entity. An entity record set i1s a coilection of similar
eatities, Also, associated with each eatity record set 1s an
attribute whose values have a one-to-one relationship with the
entities (i.e.; the unliyu= identifiers). Taus, an euntity record
1S that collection Of attribute values which describe am entity.

Attributes for an employee entity record set are:

iBM CONFIDENTIAL

138 SYSTEM CONCEPLS AND FACILITIES

1. Unigue Identifier

2., Employee name

3. Social security

4e Sex

5. Birthdate

6., Data of hire ‘
7. Department assignment
8, Daivislion assignment

9, Education record

10. Marital status as of date
11, Position as of date
12. Perf. svaluation as of date
13. Salary as of date

Attribute type 1 1is the unigdue 1dentirler attribute,
Attrioute types 2 througa 13 are facts about the employee entity.
A fact 1s a reldtion - a corcrespondence petween meubers from two
sets. Attribute types 2 througyh 6 establish a one-to-one
relationship between a member from the employee eantity set and
the respective attriputes. For instance, there can be only oue
"date of hire" attribute wvalue for an employee, On the other
nand, however, attribute types 7 through 13 establish more
complex relationships. #0 one-to-one relationships exist.
Furthermore, eaca of the relationships can be gualified by a time
parameter. Thus, an employee <can pe assigned to work 1in more
than one department as of a certain date.

The internal system organization oif the data for an entity record
set must be such that 1t 1s responsive to the many ways a user
may elect to view the data., One way to express an entity record
set 1s 1in terms ot a colliection of relation sets (Figure
J.441.3-1) . A& relation set is d4an entity record set wnich has oniy
a pair of dattributes - - owne Of these belny the 1dentity
attribute., Thus, ‘

data <reguireud for the empioyee entity record set can bpe
materialized trom the twelive rLelation sets, Note that tne
identity attribute has been repilcated tweive times to provide
the connectivity required to link togyether the pertiment relation
sets,

IB# COnFivsNTILIAL

Chapter 3.4 SYSTEM PUNCLLONAL MANAGEMENT

139
Enl| Av| Az| A3 A N A An
Q‘ Qun a\‘l al'b L T S S a‘n
€2
€3
€m| Gmi Gmr Gwy Amn

FIGURE 3-4.1 213 |LLUSTRATION OF AN

ENTITY RECORD SET

1M CUONFIDSNDLAL

140

SYSTEM CONCEYTS AND FACILITIES

FIGURE3.41.3-1% USER § SYSTEM UEWS OF AN ENTITY RewRD Ser

UNIQUE | EMPLIVEE SoCIAL / PERE. Vi
lioewnried Nave | sewrirys| SBX / Evawapon | SALAL
THE EMPLOYEE
ENTITY Record | —
- GET - —
 (USER'S VieW) \
RELATION SET H I RELATON SET # 2
UNIQUE EMPLOYEE UNITQUE SOCIAL
|DENTIFIER | NAME IDENTIFIER | SEcLORITY H
REWATION SET #3 RELATION SET # 4
THE EMPLOYEE
ENTITY RECOROD UNIQUE SEYX UNIRUE BIRTH
SET IDENTIFER » IDENTIFIER | DATE
(5YSTEM Unsw)
RELATION SET #5 RELATION Set #§
UNIGUE | DATE OF UNIQUE | PEPARTIMENT
IDENTIFIER | HIRE |DENTIFIER |[ASSIENMENT
Retanos SET & § RELATIOM SET # O
UNIQUE | MARITAL UNIQWE POSITION
IDENTIFIER | STATUS IDENTIFER
KELATION 5ET # 1) RELATION SET # 12
UNIQUE |PERFORMANCE UNIQUE oA
LAR
IDENTIFIER |EVAWATION | IDENTIFIER ¥

18M CONFIDENTIAL

Chapter 3.4 SYSTEM FUNCTLONAL MANAGEMENT 141

Data integrity 1s addressea based on tha way systen
exercises exclusive control to resolve <ccatention, modification
and update problems due to independent concurrent data accesses
on aata from a centralized on-line data base, Also, data
integrity is concerned wita the way aata recovery 1s handied to
Checkpoint pertinent data base i1arormation so that operations may
be restarted 1n case of a catastropnic data base tailure.

J.4.1.4.1 Exclusive Controi

All system resident data can pe classified as:

Read Only Praivate
Read/Hrite Shareable

All possible ways 1in which a4 user may choose to access data
on an entity record set are saown'in Figure 3.4.1.4-1, However,
when two or wmore independent users are making simultaneous data
access requests on the same eantlity record set, exclusive control
must pe exercised. Parameters whicik the system must consider 1in
performing the exclusive contiol tunction are determined by the
type of entity record set ainvolved (i.e.; Read/Write or
Read-oOnly), and by the type ot data access
requests (1.e. ;Read-only or R/W).

il CUNP IDENTIAL

— s O e e e A S D e o e e 5 b o o g T e 0 o o e S T S D D O U . S R e 0

.............................

POSSIBLE DATA ACcess RERUEST TYPES S .

A. ENTIRE ENTITY RECORD SET b, ONE OR MORE EWTITY QECCQDS\ |
UL | A A As |--- | An UL | A | Azl =-cc | Aw
e 2 BB, A
€3 Tojes ,

Eim v | ol B T

C. ONE OR MORE ATTRIBUTES d. ONE OR MORE ENTITY- ATTRIBOTE

VALUES

oz A.@ As |- LB UZ [A oo [Ana] An
e 7 L e | 7//;/

e ;/, B ;/, e 72 | A2

ZARZ
/ f
72 7
> A
= 7
/ T
o - L
Em Z /// : Cm% a

FIGURE 3.4)43 CONDIMONS SUBSECT To EXCLUSWE CONTROL
. 1 BM CONRIDIVT) AL '

Chapter 3.4 SYSTEM FUNCTIONAL HANAGSMENT 43

3.4.1. 4,2 Data Base Recovery

The second aspect of the ddtda lanteygrity probliem will be
addressed by focusiny atteation to the fuactional organization of
a specific mechanism ror data Dbase recovery - - a Journal
organization. System roles whica can be rfulfilied by a Journal
include:

1. Data Base Recovery-- Ail data access reyguests which
cause data modirications to take piace will cause the
modifications tu be reflected in both the on-line data
base and the Journal.

2., Historicad Versiouns oi data -- Data 1in tae Journal 1s
checkpointed periodicaily to give a snapshot in time
of the data base content,.

3, Transaction audit traid--All data modificiations
must pe captured in the Jourmal in the exact manner
as the modifications are made.

A Journal organization Wwaich rulfills these basic priaciples
is given 1in Figure 3.4,1.,4-2, Tnere are two types of Journal
Records: the Checkpoint Jouranal records (Journai Kecords 5 and
41); and, Transaction Journal racords (Journal Records 6, 14, 16,
18, and 36). Also, there are three types of Jouruwal threads: the
Daturn thread, the Transaction thread, and the Attribute
Transaction thread.

The Transaction Jouinal rtecord 1is created 1in the Journal
whenever a transaction takes place. The Cneckpoint Journal
record, on the other hand, 15 a4 system assembied Journal record
Whicn reflects the status or data as of the time the record 1is
created. ‘

The threads are the mecaanisa by Wwhich to connect together
all those Journal records walch are generated within pacticular
contexts.,

i CONFIVENTIAL

144 SYSTEHA CUNCE}.‘_TS AND FACILLITIES
~ DATUM LEVEL
(Nn-1)
€ Q. Qg Qas Q4
€ a<
E. as’ ali
_ ATTRIBUTE TRANSACTION
E A, THREAD
EI .Ou’ 03" \‘y
&
4'(\
'] (ye
E X'y .@‘\
[]
&
o
E. a” az’ Qs Q%4
PATUM LEVvE
TRANGACTION THREAD (Mh \ L

DATUM THREAD: |
FICUREJFI4E, SCHEMATIC OF A FUNCTIONAL JOURNAL

JOURNAL Recorp

h S

*S

* b

* 14

18

® 36

40

",

Chapter 3.4 SYSTEM FUNCTLUNAL MANAGEMENT 145
3.4.2 Data Communications

3.4,2.,1 Backyground

The data communications ared, 1n comparison to the other major
functional areas of a data processing system, 1is in an earlier
staye of evolution. As a resuit special attention 1s required to
architect a system structure that provides tals area with the
flexibility to properly evolve during the product life of AFS
without compromisiuygy the other areas of the system and the
overali system structure 1itselr.

The basic teuets OL AFS postuiates, with gyoou technical
justification, the avaidabiiity of >Storage Management Units
(SMUs) with the capability of providiny viable random access to
an essentially 1inflnlte iogyicali addressiny space opague to the
individual periorwance Jcapacity cnaracteristics of the various
storage devices in a S8U. fhey further postulates the
availability of Proyram Processor dnits (PPUs) with a functional
capability of proviaing a hign-level Systew Language (SL)
interface, described 1in Part 2 1in this document, and be opaque to
the number and individual performance characteristics of the
various program pProcessors 1in a PPU. In some sense, these could
be thought of as "ultimate" intertaces to these units - or at
least ones at a very advanced conceptual level. ’

A comparible level 15 not anticipated for the data communications
area at the time AFS 1s imtroducted, however, enough 1s Known to
allow an architectural structure to be developed which can be
evolved with low impact to the system and neglible impact to
application progygrammers.

W“hat then are the characteristics of the data communicatious area
that contrast its architecturai status to that of the SMU and the
PRPU? '

An {operating) sSystem essentiaily sSimuitaneousliy services many
users typicaily at a centralicged racility. On the other hand,
data communications must in generai deal with hardware devices
that interface with a set of individaal users at distributed
locations. ' The former aliows Lor highly functional interface
levels and short well- controiled interanai IBHM data paths. The
latter typically necessitates low costs 4t the aevice ana needs
to append functions of a systeas 1in 4 time-sharing manner in order
to provide the desired user intertace. In adaation the long
data paths, generally extermal to IBN products (telephone lines,
etc.), create significant additional problems in themselves.

Since the advent of LSI wili ailow for expanded aevice tunction,

the 1ncrease in the data commuynications aarket will bring about
dramatic changes 1in the tecanologyy and pricing oi communication

ip¥ CONPIDBNTIAL

146 SYSTEM CONCoPIS 4lD PACILITLIES

paths, and the requirement will yrow Ior more application program
independence o device characteristics, a system architectural
framework must be establishea which 1s both 1itlexible to such
changes yet provides guidelines to allow taew to properly evolve,

Further complicating this area are the market reguirements to
allow present systems and devices to co-exist 1in an enmnulated
{virtual) moae under AFS; to provide a weauns Ifor dynaumic
interchanye with those systews (as welli as ones 1n separate
installations) d4nd devices; and to aliow for most haruware
devices to transcend the 1iatroduction of AFs. Essential to
achieving a smoother transistion from botn an internal IBM
programming aad engineeriny viewpolnt as wWwell as an external
customer viewpolint will Dbe an <ariy common and coordinated
recognition ot FS goalds, aud tradeoifs within all present
products during the interim toward those goails., This is
discussed in more detail in Canapter 3.5

3.4.2.2 Basic Concepts

A set of basic «concepts have opeen 1dentilfied 1or establishing
long-range criteria ror data communication tradeofts:

- All pnysicai I/0 (externdai} to Ssource-sink devices and
other systems will be mnaandied by tame communication unit {(CU)
of the installation., This includes unit record and sensor
devices as well as typicad comldunications terminals.,

- Logical I1/0, i.e., as Seen L[LOB au appllcation progyram and
most of the AFS coutroi prograum, wiil have
virtual/local/remote transparency., Tals 1nciudes any dynamic
interchangye with other virtual systems., Physical I/0, 1.e.
as viewed froam tae source/sink (5/5) subsystem of the
control program, Wwili nave local/remote transparency.

- The SL 'and hence diLlL (digher-Level Languages) and other PP
intertaces to application progyrams will be DDy means of a
minimum set oL device Classes., The FbDL (Fileld Descriptor
Languages) for pre-forwmating data structures on complex
devices such as ¢rapaiCs wiil Dboth simplify application
programs and increase theil aeyree of device 1independence,

- Both the terminai user and tne application programmer have
functional 1nterfaces =~ independent of thear locations or
path connectiny tnem., lhe logic to accomplish these
functions from either end snould 100K like 1t 1s satisfied
either by the other or tae terminal device in between them.
By terminal here, i1s meant either a singie terminal on a
cluster or common terminals with a central controller
{(compound terminal). Cost tradeofts naave dictated, and are
expected to continue to dictate, that improved

igM CONFPL1DENTIAL

A

Chapter 3.4 SYSTEM FUNCIIUNAL GANAGZMENT ' 147

cost/performance can e achieved 1f some of this apparent
terminal device logic 15 1mplemented 1n the AFS control
program. This 1logic has two parts: one 1s the formating
field descriptors mentiosed earlier whiCch must be specified
by the custonmer, and tahe otner 1s simply g ood
hardware/soitware tradeoiffs. It 1s 1mportant to keep these
logicaliy separate from the path functions reguired to
counect the terminali witu the system. These pata functions
are to be performed 1un the CU and the other network
management units between the terminal ana thue systen.

- A general AFS control program yueuidy mechanism for
passing work to Dbe doue Dbetween processes will allow
resource gmdahagyewent to tune the system ror a range or
response requirements. Tne interface to the CU will be a
consistent extension oi tuis yueuiny weChanism.

3.4.,2,3 Types

Data communications with the sSystem need to be examined at the
logical I/0 i1nterface and of tae paysical I/0 1nterface., Because
of tne basic AFS5 concepts oi uistriputed (network) data and
programs as well as virtuai devices and systems, there 1s
Jeneraily not a i1:l1 relationsalp between these two 1nteriaces.

At both interfaces, however, i1atormation 1s considered to be
consuamaple, i1.e. once sent, it can not be obtained again, and
once received, 1t cannot be rejuested again.

3.4,2.3.1 Logacal 1/0

Logyical I/0 1s detined tO pe expllicit operations made by a
program to communicate outside tne loylcal closed entity or
environment containing 1ts Kuown authorized data, programs, and
3ystem services, SUCh CORMUNLCATIONnsS are cailed messages 1f they
represent original i1uformation beinyg sent or received and answers
if they are requesting a respoase tO 4 previously sent amessage.

Inter-AFS__Jobs - These messajes provide ror 1interchange
between normally 1indepenuent AFS eavironments that want to
establish local communication patas. Full supporting systen
services wili include dynamiC estaolisament and validation
of authority and abiiity ror controiled snaring of data and
Programs.

Source/sink - These messdagyes provide for interchange with
areas outside AFS. These areas are elther aevices or other
operating systeas {(networ<s)., B8y means of a well structured
data communications path, tioe 5L intertace to these areas
will be made almost completely Lree of device dependencies
and absolutely free of physical patn dependencies.

Il CONFIDoNTLIAL

148 SYSTE ¥ CONCEPTS AND FACILITIES

The general formats for logical i/U functions are as follows:

introduce {argl;; acjn) ---> name
- This provides a means for nalklny a source/sink port object
naving the characteristics deifined by the argumeat 1list., A
namse may represent a coliective object thus allowing for
broadcasting to all elements of that object.

send-message (name (arg, .. etc.); msy) ---> msyid

- This sends a data object, wusg, to the object called name
some of whose cnaracteristics may be temporarily modified by
the argument iist,

- The msgid 1is returned Dby the system to ailow for
subsequent reference to thils message 1f an answer 1s later
desired Or an error condition resuits,

Walit-message (name {ary, ..etc.)) ---> {msy,;msgid)

- This aliows the prograam to specitically wait for a message
trom the source object, name.

- Again the msgid returmned allows for a subsequent ansver to
be returaned.

send-answer (wsyid) ---> answer

- Requests an answer to tue mwessaye previousiy rdentified by
msgid.

wait-answer {(msgJid) ---> (answer;msgid)

- Only one of the msyid argumeats 15 to pe used, if the left
or input argument is noua-void, thne process plans to wait
until only that message 15 answered. If the lerft argument
1s void, ‘then the sSystea wili return the tirst ansver 1it
receives and 1dentify 1t witi the msygid specitied by the
System eaflier when the message was sent.

3.4.2.3.2 Physical 1/0

Physical I/0 1is defined to ope the data communication
interface Dpetween the system and the CU which in turn
interfaces with the reai uevices -or other operating systems
Kknown to the AFS system. Whatever the source of a message,
its format at this stage 1s 1n BDUs {Basic Device Units).
Each messagye (or answer) Ccan be represented py a set of
fixed 1length BDUs with embeaded seguenciug informatiou,
Functionally they coatain a aavice name, priority

Ik CONFAIDENTIAL

-

Chapter 3.4 SYSTEM FUNCTIONAL MANAGEMENT 149

information, and a stringy of Dbits which 1s logically opagque
to the <CU., Correspondingly the system 15 unaware of the 3
external location ot the daevice/system or the pata(s) to i
them. ‘

The BDUs reside on gqueues of port objects in the logicai
address space of the 51U, These represent a consistent
extension to the normai queulhy @echalnis® LOr passing :
information between objects 1or processinyg purposes.

3.4.2.4 Architectural Cousidecrations |

The purpose of data coammuaicatiouns 15 toO sena and receive
consummable messages Detween twWwo OL more devices, systens,
or application proygrams. These messages may ©»De expiicitly
ipitiated by a device/another sSystem or application program
Oor tmey mdy be implicitly initiated within the AFS control
program to provide networs tramhsparency.

Explicit messayes are essentially those between users either
at devices Or as a result or writiny application programs.
Another system can pe thaoudint Oof as just another type of
device. 1wo thinys can eflfect a4 message: its path and the
functions performed 1n between the sender and tue recelver.
It 1is tae respousipility otf AFS to make the path
virtaal/local/remnote transparent. The functions are
dependent on the characteristics of the senaer and receiver,
For example, 1if Bboth are jJust AFs application programs .
{(lnter~-ArsS job commuuications) tnen the functions 1n between

are essentiadly Zero, 1.e. just normal expression
processing, On the other nand 1f one of the end points 1is a
graphics device thaen thers are coansiderable functiocus

rejuired to transiate tae data to an appiication program
from the yrid or the tube and pernaps 1its iight pen., While
logically tnese fuactions dappear to pe done 1n the device,
cost/performance reasons may require that some of these
functions be done 1in the aFS control prograa.

In order to maxe tane pata o0 tne message transparent, the
system must handle vdrious situations depenaing upon whether
one end point relative to the other 1is 1n 4 uwative AFS job,
in a virtual device or operatingy system, or waether 1t 1s
locally or remotely attacsmed. The <r[irst two situations are
handled within the AFS conttol program. The last two are
physicai I/0 and are handlea transparently to the control
program by the (U, '

The following sub-sections translate these message function

and path aspects into.the services performed py the ma jor
dareas of AFS.

ig¥ CONFPLDENTIAL

150

SYSTEM CONCEPTS AND FACILITIES

Before proceediny 1t snould be stated that AFS must be

fiexible enough to dynamicaily add/de;ete gevices, and its
associated CU to correspondaingly be aplie to make on-line
changes in device types and the patas to then.,

J.4.2.4.17 SyStem

The standard system iduactioas for messages are those
provided 1or all expression evaluations. These are such
things as name resoliution, attripute examination, and
validation of authority.

In addition, a unigue systew messayge identiiier {(msgid) is
created for each new messaye., It 15 retaluned by the systen
only waiie 1t @aas responsibility for the message and
forgotten aifter deilvery of the messaye to elither an
applicatioun progralk or a poft object gueue which 1nterfaces
with the CU or a virtual device/systen.

Standard inter-AFS job communications witain the same system
are independent of the source/Sink (5/5) subsystem., In the
case where network processing 1s reyguired, the cooresponding
subsystem desiring tne iatormation interfaces with the S/S
subsysten is the Sdawe way {except for dirferent
authorization) as an application proyram.

Users or the S/5 subsystew are unaware of whether the device
or other systewm 1Ls cCco-existing in the same AFS systewm or
not, and if not, whether it 15 local or remote.

3.4.2.,4.,2 Source/Sink Subsysten

This subsysten proviaes a unliorm lnterrace to aill
communications outside 1its system., Its respoasibilities are
to process the data s0 taat 1t 1s i1n &4 suitable dlogical form
for the eventual receiver - device, operating system oOr
application proyram. In the case of a device, it may mean
special format processiny aaa/or intermally cost/performance
implementation of device <functions. in the case of an
operating system, 1t medns tne protocol for communications -
which by the way should be trivial 1f 1t 1s to another AFS
system, In any case, its internai system interface 1is 1in
the form of BDUs (Basic Device Units) which are the logical
interface to auny particuldar device in question,

At this point far dowa the processiny path, the S/S
subsysten finally resolives the question of virtual
attachment. JIts answer siumply determines the port object
Jueue tne BDUSs are to ¢go on or come from.

The BDUs tundamentaiiy ouly nave a device/systewm hame, a

18M CONFADENTIAL

Cnapter 3.4 SYSTEM FUNCTLUNAL MANAGEMENT 151

priority to aid algorithmic scheduling, and a string of bits
represent the data into.wation, In addition, they will
probably have a fixed wpliock format thus —requiring some
additionali imbedded seguence aumber., The bits of data
information willi be logicaily opagque to the CU.

The message queues for tiae port objects will be located 1n
the logical adaress space of the S#U, and the wechanism and
interlocks with the CU will pe essentialiy identical to that
between other objects 1in tne systen. Une difterence,
aowever, is that since tne inrormation is beiny moved out of
the SMU logical address space, the cell name for that will
no longer be a suitable means of identification and, 1f
going to another system, widi have to be replaced by a
prescribed network symbollc name,

3.4.2.4.3 Communication Unit

The CU 1s the interface ot the system to tne physical
communication network. Its respousibility 1s to yet BLUs to
and from aevices/otaer systems for 1ts Own System.

To do s0 it must Know whdt devices are couanected, tihe paths
{lines) to them, and tine protocol 1for tnose paths. In
addition, 1t muSt determine tae optimal transmission bpblock
size, termed BTU-Basic Transmission Jnit.

Opayue to the contents in tme BDUs, it may employ various
compactioin algyoritnms 1in conjunction with associatea
communication unlit facilities on the networx if 1t can
improve cost/performance.

Likxe the PPU, the CU may pe a multiprocessor. Furtaermore,
1t may be connected to morz tudn one system and conversely a
s3ystem may Dbe assocldated witn more taan one (U, In the
latter case, an additionas smdil amount of physical network
awareness may get back into tue system desiyn ia order that
it may have to decide wunat devicCe gyoes with what CU.

3.4.3 System Honitor Coatrol

System Monitor cControi 15 responsibile to monitor alli systen
operations and to cause recovery actions to beginh 1h the
event of system raidure(s). in addition, Administrative
Control (e.g.; statlstiCs colilection and custower billing,
etc,) and System Support Coatrol ({e.g.; dynamic system
reconfiguration control, etc.) constitute 1mportant systea
roles of System Monitor Control.

The following 1s an enumeration ot the #Honitor Control
categories:

bl CUNFlobNTIAL

152

SYSTEM CONCEPTS aND PACILIIILES

3.4.3.1 User Orientation

-Control of terminal user activities
-Assigument of termiumal user priorities
-Degree of user/system interaction
-System Operator aund vatd Base Adminlistrator support
-User Integrity
-System service supporlt
-Billing
-Perrormance analysis
-Verification 0L proper system operatious

-Assigning passwords

3.443.2 System Conriguration Control

-Startup and Shutdowa or systen
-Set Priorities
-Dynamicaliy change priorities

-Provide warning alares on exceptional operating

conditions

-Line or specific terminal load exceeds pre-assighned

-maximum load

-Terminal outaye

-Low priority messayges are not peiny processed
-Data access reyuests ate not beiny honored
-Unusual number or accesses to data base
-ECTOReOUsS passworda

~Systen monitoring support on specific system

components

-Server allocataion

ABM CONFIDENTLIAL

Chapter 3.4 SYSTEM FUNCTLONAL HAANAGEUENT 153

-Gather and output user statistics

-Terminal load by tiwme oi day

~Line load by time oi day

|
1

-frrors by line auu terminal
~Numpber of message by type by time Of day
-Response time by message type

-Respouse time Dy time of day

-Processiny time by uessade type

-Data access, dedetion and 1nsertion statistics on data
base
3.4.3.3 Checkpoint mestart

-Automatic checkpointing of the entire system based on
a pre-derined criteraia.

~Checkpoilnting 1n1tiated explicitly by, the Systen
Administrator.

-Requested selectlive checkpointinyg on specific Entity

gecord Sets initiateu explicicly vy the Systen
Administrator. All active and/or peuding processing
requests involving the Entity Kecord Sets shoula also be
checkpointed.,

-Restart capability {(warm start) waich involves the
rest to initial state the bEntity Becord Sets updated and the
reconstruction

-A Restart capability {(cold start) aifter a catastrophic
failure. ' .

3.4.3.4 Terminai Hetrwork

-Enabling a iine or terminad
-Disabling a line or teramianal
-Selective termination of message aandiing

-Selective termination of messdye processiiay programs

188 CONRFALDENTIAL

154

SYSTEM CONCEPYLS AXD FACILITIES

-Transmission controi

-Path Control

-Messaye Delivery Coutrol

-Alternation of intermediate station characteristics
~Aiteration of Port Proifile

-Shutdown of a termigadi

-Enabling ana disapiing of terminal{s) in exclusive
mode

-Security 1oCk aihd uniock of terminal(s).

-3.4.3.5 Data Base

-Physical attribute descriptor table definition

-Physical Jgroupings ©Of attribute values 1nto Entities
and Eatity Record Sets

-Phnysical data organizationu, access methods reguired
and storage media spanaed

~Physical index tables to be maintained,

~Dynamicaliy establishing new complex logical data
structures

-Selectively 1inhipitinyg the use of specific Entity
Record Sets :

-Batch-nmode of aata base mainta2nance and
re-organization

- {Control based on the data coantent
- Coatrol pased on data access operations on data

- Security classirication Of Eantity Recora Set types

- Security classification of Eatity-Attribute fields

- Security classiiication by level and by associaticn
- <Control over coucurrent data access

188 CONFIDENTIAL

Chapter 3.4 © SYSTEM FUNCLIIONAL MANAGEMENT 155

- Historical versious of data daccess

- Transaction audit traii on uaistoricali and/or current
versions of data. '

I8# ConFlunhTIAL

Chapter 3.5

MIGKATION, CO-EXISTENCE, INTERCHANGE

3.5.1 Background

P

This subject i1s probably the wost difficulit strategic issue: to
understand the relationsailip of a new, yet undetined, system to
that of present, and changing, systeis. Because 1ts 1mpact 1s so
broad - emgineering, proyramming, cdstomers - there is a tendency
to delay decisions whicn, like ecology problems, unconsiously
translate themselves 1into a default decision of incremental
improvements until eventualliy the panic o0f crisis forces a major
change.

The Company's goal is5 to make profit om a continuous basis, both
yearly and iony ranye. It predominantly makes that profit from
engineering products, hence tnls 15 the major migration factor -
and not programming. Obviously, programming 1S 1mportant to
making the engineering products attractive, and taus indirectly
affects profitability. sSiuce proyramwming 1is the primary user
interface, it 1s aiso importaat to separate it as logically as
possible from tne engineeriny to ailow for easy introauction of
new engineeriny products. -

The point beinyg stressed hére 1s thdt programminyg wmigration frcm
one operating system to another 15 a liesser, adlbeit, 1mportant
factor tham that of engineeriny product aigration. It 1is
essential to understand what tfeasibiy can Dbe done to aid
programming miyration, and wWhdt caanot., New system attempts in
the past have burdened thewselves wilith So many compatibility
constraints that they lost their <capability to introduce the new
concepts that Jjustitied haviny a uew sSystem 1a the first place.

There 1s another facet of these self-defeatiny myths, namely the
one that says that anything conCeptualily new 1s too far out (lL.e.
ad tech) because 1t 1S S0 dairftkicuit to eveu extend present
products - witness U5 and DUS, Wwhdat 1s generally zorgotten is
that 1t is not the new functions taat are conceptualiy ditfficult,
but it is the unsuitable systeam structure, present low tfunctional
engineering intertace ievels, aad the lack of programming
interface control that are the piraiwmary ianhibitainy factors.

A product ship "window" can be zoreseem around 4977 tfor an

gpportunity to make & majOr sSyStedw arcaltectural change with the
combination ot the endinyg ot 3/370 CPU/memory prouuct ilives and

Ik CONFIDENTIAL

Chapter 3.5 BiGRATION, CO-pXiSTueNCE, INThRCHANGE 157

the advent of LS51 couwponents. Ine subseguent portions of this
section attempt to define the major 1ssues 1nvolved 1in taking
advantage of that "window" to i1utroduce 4 system base which at
this time has the possibility or beiny an "ultimate" one - from
technical intuition, abiiity to adjust to both user functions and
introduction ot new engineeriay products, and from the eventual
"defined by eunertia eifect. These factors coupled with the
increasing obvious “aging" orf present operatiny systeas to
changes should give rise to sSerious management reflections 1r we
do not take advantage of the F5 "window",

3.5.2 1Issues

Pt

There are a number of issues that need to pe realistically
appraised to best understaud tane tradeofis over time that need to
be made to get AFS introduced 1nto the marketplace,

- First ofi ali, a thorouyn evaluation effort for AFS fronm
all facets of iBH 1s esseatidad toO gain the best system base
possible, In particuiar, a strong central systen
architecture group wiil be required to easure that a
consistent set of tradeofis is wmade to waintain for new
market requirements and technoiogy.

- A¥S will have a new program S5CPI (Systew Control Proyram
Interface), whicn widl be diifereunt from OS$ ana DUS. It
should be realized tuat even a new S5/370 - Dbased FsS
operating system would diso need a new SCPI. As a result,
program migration @must be as a result of at least
re-compiriation, I1Ii agreeaent on tiaé cCommon iatersection ot
the feasibly possible user interfaces (diLl, CCL, FDL, and
DDL) was obtained (in 197:2), then emphasis could be made to
direct wusers to that commwon set duriny the interim, A
corollary of this wanich needs to pe accepted 1s that many,
probably tue majority of programs, will not be easily moved
0oy re-coampilation. These 1un particular include the ma jor
system efrorts to take fuil dadavantage of 5/360.

- Because of the marketinyg ractor that FS PPUs must replace
3/370 CPUs, and because of the lievel of 1ncompatibility
between the two {(1n spite ot the above dLL, etc,
compatibility erforts), co-existence of present operating
systems 1s essentidl. Furthermore, a basiC co-exlistence
capability is reguired (witik a £:1 cost/performance) which
s3till allows for an attractive periormance lure to AFS. The
tradeoffs between these two are some 0f the most critical
needed to be made,

- Second generation IBA systeams (14xx, 7Uxx) should only

Ip¥ CONPIDENTIAL

158 SYSTEM CONCEPIS AND FACILITLiES

have to be simulated on 3/360 under 0S or DUS and hence have
no direct impact on either the SL or eagineering units of
AFS., ‘ -

- An unresolved issue 1s the ability/need to have
co-existence of GSD systeas.

- Another unresolved issue 1s the ability/need to have
co-existence of non-IBH systeus.

- The ability to dynamicalildy intercnange 1information
logicaliy Dbetween AFS5 aad other operating systems should
only be by means of a tforwal networking protocol, This wvwill
provide native (co-existeace), local, remote transpareancy to
users of these systems as well as 1limit the 1lmpact of
co-existence of the other systems on the structure of the
AFS control proyram.

- (Co-existing non-AFS data, along with prograws and
operating systems, mEust aiso be controiled by AFS.
Logically this data is owued Dy their own operating systems
and requested via the networxiung interface 1f used by a job
ruaning on the AFS contiol program. Physically, the data
may be stored in the -3MU or via a S/370 interface to
individual storage devices, Individual devices wild only be

used by mnative non-AFS systeus, They are or two classes:
those that cam also work£ in tine 54U and tanosz that cannot.
Non- AFS data can be woved 1imn an application user

transpareat manner oIl the possible S5HMJ devices into the SNU
after which thne devices can be added to the S#U. The older
storage devices lacludiny tapes, which are anot possible to
pe put 1n the 5hHU, can remain until thelr cost/performance
1s low enouyh at wnich time their data can also be moved
1nto the SMU and these devices removed from the systen,

- Source/sink equipment, witu the proper interim product
plan, should be able to directly conaect to AFS via a
27RN-like Communication Unit (CU). Present operatiug systems
s5hould evolve as @wuch as possible towards the data
communications architecture concepts outiined elsewhere 1n
this document. In particular, native sSystews should act as
if they had a CU attached to them - thus providing a clearer
interface to thae Source/Siuk (5/5) sSubsystem ot the AFS
control program. : ‘

3.5.3 course of Action

The general course oL action at tals time 1S to develop the broead
technical understanding of AFS architecture; realistically

IsM CONrFLIDENTIAL

Chapter 3.5 MIGRATION, CO-bXidbisNCE, INITERCHANGL 159

appreciate what can be done to aila migyration and th2ir tradeotfs;
and then seek to take advantaje of the 1nterim time to prepare
both our spectrum of engineeriny 4ana programming products and the
customer community to ease the tramsistion of introducing AFS
into the marketplace,

il CONFIDLNTIAL

rpart 4

THE MAN-MACHLINE INTERFACE LN AFS

This part of the report 1s to Dpecome a description of AFS in
terms of the basic infix form. The user who wants to 1learn to
use the system without probing into 1ts inner workings may do so
by reading only this part. 4t present, only two <chapters have
been started. Chapter 4.3 descripes the functions and syntactic
markers, and Chapter 4.5 presents examples of 3L progiams.

iBM CONFiDeNTIAL

£

Chapter 4.3

SUMMARY OF BAS1C INFLX FORH

4.3.1 Introduction

In this chapter, the runctions and syntacticC markers are
described as they are used in the basic infix form of SL. This
1s the form that people usualiy want to see and to think about.
Compilers will usually produce the strict form, so a few people
will be interested in seeliny strict forum. Tne tfollowing
expression 1is writtenm each way:

{a+b) + (c+d) stow e
stow (sum (Juotient (a;) ;sum(C;z))se)

The basic 1infix forw 15 described iu terms of tue strict form in
which the primary description vi SL has been givean. Eventually,
this chapter will become a projrammingy ®manual and wiil contain a
partial repetition of a description of the semantics of SL so
that a programmer who chooses not to delve below the basic infix
level will not have to do so. For tae present, however, only
enouyh semantics is given here to yuide tne reader wno has read
the previous chapters at least cursorily.

In particular, tne syntactic torm oL proyram text 1s dilscussed 1in
2.2+2., Some readers will flnu 12t anelptul. to review that section
before readiny the followiny descriptions of functions.

Some syantactic marxers have tuz2 forw oL tfunctions, SO they are
Lucluded in this exposition without further ado siance they have
syntactic properties like tuhose orf true functions. Iancluded also
for completeness are certala other syntactic warkers which are
quite diffterent: parentheses, braces, seaicolon. These are
listed in alphabetical order with tiae other syntactic markers and
with the functions. 1t may be neiptul to read tanese first.

The rfollowing examples expiain the rules usead to traanslate
n-adic function and syntactic warker definitions from strict
form to basic infix form:

f(x) becones £ x
f(x;y) becones Xty
t(x;y;2z) remains £({x;¥;2)

i8M CONY IUENTIAL

162 THE MAN-BACHLNz INIERFACE AN AFS

If the function namé is alphavetic, blanks must be used to

delimit it,

Blanks may be used (freeiy throughout SL 1in ®most reasonabie
places., They may be placed Dperore or after any non-alphanumeric
character that represeants a runction or syntactic marker, or they
may be omitted. At least one Dplank must Dbe used to separate
adjacent alphanumeric symbols. Waerever omne Dilank wmay appear,
any number of blanks may be used. Blanks must not appear 1in a
symbol, in a function represented py something produced with more
than one key stroke, Oor 1in a coustant that 1s not a character
string. '

At present, evaluationm 1is lerft to rigat, ana -taere 1S no
precedence except that semicolons, parentheses, braces, and
brackets are considered to deiimit expressions. Hore precedence
relations may be introduced 1 sSubseyguent editious.

There are two classes of symbols: function symbols that
represent functions regquiring arguments and elementary sywmbols
that represent objects that do not reguire arguments in order to
be evaluated. 1In thne strict iorm, the syntax oL thae expression
in walch tne sywmbol occurs indicates the class to whica the
symbol belongs, In the pasic i1niix form, the notation 1is more
conclse and the class of a symovoi 1s not indicated by the syntax
of its use, Instead, tane class 15 recorded in tne dictionary of
the moduie, and it is determineu Dy the aefinitiou or the symbol,
If it 1is defined »py a dawmbda expression with one or more
arguments, then 1t 15 a functiou symboi. If 1t 1s defined by a
functional that has function symbols as arguments, tien it is a
function sympol. Otherwise, it is an eiementary symboi. (Ref,
2e242)

iventually, many tunctions ana syntactlc markers will De
expressed by single characters. For this exposition, however,

most of them are represented by mhemonlc names or abbreviations,

In certain cases a familiar caaracter has been used (like + or

=)

4.3.2 <Common Abbreviations

The form used to describe a ruuaction or syantactic miarker includes
a "where" section that defines npotation, variabies, etc, <Certain
very common abbreviations are deiined here for ouce and for all,
and the definitions are omitted 1n the many operator definitions.
The toliowing are Syuntactic vdaiiabies that stand for instaunces of
classes of character strings. Two instances of an abbreviation
in a single expression do not necessarily stand for the same

ioh CUNFADoNTIAL

N

B

Chapter 4.3 SUNMARY OF BASIC INFIX FORH 163

string. If they do, a diyit wilii be appended (e.g., stmt3), and
the same digit will be appended 1in two 1ustances that refer to
identical strings.

abbreviation sStands tfor

—— - —— - - — - -

expr expression

staot v statement

4.3.3 Alphabetical Listing of rfunctions and Syntactic Markers

Eventually, thnis section will Dbecome a proyramming reference
manual with every tunction amu syntactic marker d=2scribed. At
pLesent, the functions listed in section #.3.4 are not described.
dowever, the reader who is familiar with APL can understand thea
Well enouygh from their names aand irom the introductory remarks in
4oe3.4.

section 4,3.5 iists functions that are deflnea elsewhere or aot
defined in this report. '

Section 4.,3.0 summarizes the situation,
Section 4.,3.7 gaives a preliminaty rough analysis ot the
complexity of 5L, judying it 1a terms of the numper or functions

and syntactic markers required.,

The functions and syntactic wmarKers are arrauged alphabetically
with the names 1n the bottom titlie,

The examples given at the top or each page are intended to be

exhaustive and to cover ali possible uses of the symbol being
detined, This goai has uot been acaieved in kdition 3.

iB¥ CONFIDENTIAL

104

examples:

where:

value:

side effects:

uses:

comment: -

References:

appliy

THE MAN-HACHLINS INTERFACE IN AFS

g apply a

a is an ordered list of symbols likes (X;y), or it
is a single sympoi.

g 15 an expLesslou whose value is an unevaluated
expressicn or uyaevaiuated group of statements,

The value of thae last expression evaluated,

None

in the examples: Tne dyadic apply applies g to a.

The 1mplicit 1invocation mechanism 1S occasionally
inhibited by built-in wmechanisas to prevent
ambiguity. Sometimes, the programmer
intentionaily i1nhipits the invocation mechanism so
as to be apie to manipulate an expression oOr grcup

rather tanan just 1ts value, When this 1s the
case, 1t is cCclear trom the definitions of the
operators invoived. The purpose oi apply 1is to

execute code waOsSe 1nvocation nas been inhibited.
The dyadic apply function also assocliates
parameters with the fuuction it invokes. The
monadiCc eval perioras this function without
assocliating parameters.,

Zo2s0, 2Z.b.9.,1 , eval

1M CONFIDENTIAL apgply

Chapter 4.3

example:

where:

value:

side effects:

uses

comments:

References:

authorize

SUMMALY OF BASLiC INFIX FORHM 165

r authorize «x
(evaluates & copies) authorize x
X is an oabject,

r 1s a rigyhts expression., The allowable rights
are tae preseuat tense taird persoa singular verb
forms of the names of the requests that may be
made on an object: authorizes, copies, deletes,
destroys, evaluates, identiiies, 1nserts, selects,
starts, and stows.e To autnorize ali rights
available in tae rignt argument, specify "all",

A synonym that provides authorization Lor access
to Xx.

The synonys, au object, 1s created,

A synonym 1s 1ike a pointer, but it hLas satfeguards
so that 1t canaot be used except by requests with
the proper autnorization. Unlike a poianter, a
synonym automatiCally passes ali authorized
reyuests to the object to which 1t points, whereas
4 PL/I pointer requires a turther operation on it
to produce a4 vaiue,

synonyms and @meLonyms are accessors. 1t 1s not
possibie to couvert any other data type 1nto an
accessor. This protects the system integrity trom
iacursions ot tae soct that can pe accomplished by
adding 1integers to PuL/i pointers in 05/360.

It is possible to convert a syaonym to a metonym

. by the enclose runction, and vice versa with a

disclose tunction.

. Ihe authorization conveyed Dy a synonym is the

authority to use functlions that use regquests
corresponding to the ~riyats ia the rights
expression. Notice that the names oif the rights
are tne rirst person singular verb forws ot the
corresponding rejuest names,

An authorize expression that attempts to convey
rights not possessed Dy tae object will raise an
erCror exceptioa.

Syunonyms and metonymsS are gpeeded DLy data base
appiicatioas,

2e1.5, 2.1.4, 2.0.3.5, syn

Ipd CONFIUENTLAL authorize

166

examples:

value:

si1de effects:

uses:

comments:

References:

praces

THE MAN-HACHINE INToRFACE IN AFS

{stnt;stmt;stucj
f{stmt;stat;stmt}
{expr}

The value of a group of statements delimited by
praces and semitolons is a collective object (a
list) whose elements are thae statements.

None

A pair of braces uelimits a portion of code and
inhibits the 1mplicit evaluation mechanisnm,

A specific dse o0f a palr of braces is to delimit a
group oI sStatements 1n order to use the group as
an argyument of a functioa.

Another specific use 1s to enclose an expression
s0 as to 1nnibit the action of the implicit
evaluation mechaulsm. '

A palr of praces may be used 1u SiL to perform the
function o0f BEGIN;eses;END; Or DO;eess ;END; in
PL/L. A new environment is created for a grcup
when 1t 15 invosed 1L and only 1i some function in
whose arguments tae group appears or sche
statement in tae group reyguires an allocation ot
storaye that is locai to tais invocation.

Braces can oundiy be understood i1f one understands
semicolons and parentheses., See L1rst the page on
delimiters and theu the pages on semicolons and
parentneses,

Braces are sSyntdctlC markers that 4o not appear in
tne code that tae wachine executes.

Ze242, delimiters, semicolon, parenthases

Io# CONFIDENTIAL ' braces

L

Chapter 4.3 SUMMAKY OF usAsic INFIX FORH 107

examples: p conditional expl

where: p is a predicate, an expression whose value is
true, 1, or talse, J.

value: When the value or the lert argyument is 1, the
value of the expression is the vaiue of the right
argument,. When the value Of the left argument in
U, the value of the expression 1s nili since it 1s
not executed.,

- si1de effects: If thne left argyumeant 1s 1, control returns from
the group. Tais 1s 4iike tne PL/L RETUkN-statement
walCh causes controi to return trom a block. If
the value of tae ietrt argument is U the expression
has no side effects.,

use: To terminate the evaluation of a group
conditionaily.

comments: The conditional provides the means to express
conditionai expressions., 1t will probably be
represented by a sinyle character. ia this case,
nested PL/L IF THuN BLSE statements, and LISP
conditional statemeuts will be handled concisely
and eleyantly.

References: 2.2.7, exit

conditional IbH CONFIDENTIAL conditional

1638
example:
where:
value:

side effects:

Suses

Reference:

create

THE MAN-MACHINE INITERFACE IN AFS

P create «x
p 1s a procedure description.
X 1is an object.

An internal identifier of the object it
constructs. - :

it constructs an object which has, in 1its access
machine, p as its procedurai description, and a
process status record and interpreter that are
appropriate to p. IThe resource of the object 1is
a copy of the resource of x, traansdated to fit
the new access amacualne,

To construct objects using Soitware procedure
descriptiouns,

2.002.2

i CUNP IDBNTLAL create

Chapter 4.3

examples:

wherc

©

value:

useas:

compuents:

declare

SUNMNMARY OF BASIC INFIX FORM 169

declare x y z stop static;
pouligue;

a b ¢ new automatic

{stot,;stmt;stut,stnt,stmt} -

declare d g
d 1s a4 list of scope and storagye class

g is a yroup of statements, Amony tnese may be
statements that airect access maciplpnes, in other
words, declarative statements, otner than those
that arfect scope and storayge cilass.,

The value of tae group, in other words, the value
of the last expression evaluated before control
exits from the Jgroup.

The variables ilisted 1in the space between the
declare marke: and the yroup have the attributes
mentioned.

To maxe scope and sioraye class declaratious.

The 1need to separate declarations of scope and
storaye class from other declarations 1s-a result
of the ract that SL 1s a wmachine languaye and the
basic infix torm 15 not rearranyed bDetore beilng
executed., In tine extended 1nfix form declarations
will probably be wmore like those in PL/I.

IBM CONFIDsNTIAL declare

170 . THE BAN-MACALNS INTERFACE IN AFS

-
examples: 1 deliete x "
wher=: X is a coilective ooject,
1 15 a member of tae index set of x.
value: The erstwhidle 1th wember of x
side effects: The storage cell correspoanding to i is removed
from its index set. ' ' '
uses. To delete storage cells from tae resource of a
' collective object. -
Reference: 2.1.06
pe
&«

delete Ish CONY LDENTIAL delete

Chapter 4.3 SUMMARY OF pasic INFIX FOM 171

examples: {stut;stat;stut} This is the external
representation of a collective
object, a 1list ot three

unevaluated statements.

f{stut;stat;stat)This triadic tunction ‘18
interpreted as a monadic
function that takes as 1its
argument a list of the values
0f the taree statements,

g {stat,;stut,stut} Tais 1s a monadic function
that takes, as its arygyuwment, a
list ot taree unevaluated

statemnents. j

a4 + (b+q) iTne denominator 1s the value of
the sum.
{expry The braces inhibit the 1implicit

1NVOCAt10R mMecCiuanlism,.

uses: A pair of pacentheses delimits a portion or ccde
and does not 1uhibit the i1mpiicit iunvocation
mechanism,

A pair oL braces aelilmits a portion or code and
inhibits the implicit invocation mechalilSm.

Semicolons deliamiting the constituents of a
portion oL coue, delimited Dy vraces or
pareatheses, i1udicate that the coanstituents are
the elements of a list.,

comment: These deldimiters dre shown togetaer on tnls page
to 1ilustrate tne symmetry. For detalls, see
references.,

feferences: braces, pareuatheses, semicolon

delimiters Lo CunklbonTIAL delimiters

172

examples:

where:

value:

use:

comments:

References:

disclose

THE MAN-MACHLINL INTERFACK IN AFS

disclose m

disclose n + 1

disclose x

m 1s a metonym for an object y.

n 1is a metonym fror a floating point number X
for wihiCch there 15 a synonym S,

Yy is a coliective owvject,
X 1s eiuclose jy.

a synoaya for y, if the argument i1s 4 metonyw. Yy
1f the argument 1s enclose y.

A metonym 1S a pointer and disciose is used to get
at the vaiue 1t poiuts to.

in the second exampie, n+1 would raise an error
exception, waereas s+1 would compute the sum
correctly. Note that {disclose n+il) = (m+l1), and

that (m+1) =(x+1; .
For aany object x, disciose enclose i = X.

2.1.95, 2.1.7, euclose

I8H CONFADENTIAL disclcse

Chapter 4.3

examples:
where:

value:

uses.

comments:

Reterences:

enclose

SUMAARY OF oAsiC INFLX FORA 173

enclose x

X 1S an object

if X 1is a collective obpject, the value 1s a
scalar object that contains the coliective object
X» :

If X 1s a symonym, the vailue 1S a metonyn.

in the rirst case, it 1s used to make 1t possible
to compare characters instead of pbit vectors or to

compare words iusteaa of charactor vectors.

In the second case, it 1s used to maxe metonyms
which are iike PL/L pointers.

For any object, x, disciose enclose X = X.

2.1.5, Z.1.7, disclose

IBM CONFIDENTIAL enclocse

174

exanpless:

where

value:
s1de effects:

uses:

comment:

References:

evaluate

THE MAN-MACHiINs INTERFACE IN AFS

evaluate y

g 1is an unevaluated yroup of statements or and
unevaluated expressiovn. :

The value of the last expression evaluated.
none

To execuate an expression oOr group waen the
impiicit invocation mechanism has Dbeen inhibited,

See the comment under apply.

apply

1M CUNFIDENTIAL @valuate

Chapter 4.3

examples:

value:

side effects:

dses

References:

SUMMARY OF sasiC INFIX FURH 175

exit expr

fne value of exit 1s the value oI the expression
that 1s its rigat argument,

1f the exit statement occurs in a4 yroup, control
returns from the ygroup. This 1s lixe the effect of
tne PL/I RETUdN-statement waicha causes control to
returu from a biock., :

To termindte tne evaluation of a group.

2.2

ex1it {(monadic-dyadic) 1M CUNFIDENTLIAL exit {monadic-dyadic)

|

176

exampile:

where:

value:

side 2ffects:

comment:

reference:

joto

LTHE MAN-MACHIND INTERFACE IN AFS

goto s

S 1s a symbol tnat nas been used as a label or an
expression tumat nas tae value of such a symbol,

The goto statement is not a normai expression and
does not have a vaiue,

S5ee comments p2low.

The gotc generates a seyuence exception which 1s
nandled by the wonitor. The next expression to be
executed 1s tae one whose lapel 1s the raight
argument or goto.

To perform the fuaction of goto or branch in

object code pruduced in traanslating from other
lanyuages.,

goto is not anecessary for proyrams written in SL.
Many users will preter to eliminate 1t <from the
repertoire of functions availaoile.

If it 1s feasibie to label expressions as well as
statements, aad ii 1t 1s tfeasible for a goto
statement to nave tae value of the last previously
evaluated expression, then the goto will provide a

particularliy powertul tooil. dowever, this
capability will not De added if 1t 1implies
signiticaat cost increase or pertormance
degyradation.

label

IBM CONFIDENTILIAL goto

Chapter 4.3

example:
dhere:

value:

side etfects:
use:
comments:

Reference;

ibase

SUMMARY OF BASLC LNFiX FOKi 177

ibase «x
X 1s an drray
The index pase of tne array X Wwhich is a list of

lists. fhe itia sublist 15 4 list of the values
that the ith element of a memover of the index

- set may take, and they are iisted 1ia order of

increasing value,

The 1ist of lists 1s created,

To yenerate the i1ndex base,

The abbreviatiou 1ipase stands for index base,

2:1.7.3

iBM CONFIDuNTLAL ibase

178

example:

where:

value:

side efrects:

uses:

igenerator

PHE MAN-WACHANE INTEKFACE IN AFS

igenerator s

igenerator (U;1,;2)

S 1s a iist of positive iategers,

A& list of lists of 1integers, Each sublist 1s a
primitive 1index set {i.e., U, 1, 1,,...,0), and
the number of elements oif tne kth sublist is the
Kth element of s,

The 1ist of iists 1s created,.

To generate the 1ndex base for a primitive array
from the snape of thae array.

IBM CONFIDENTLIAL : igenerator

Chapter 4.3

examples:
where:

value:

side erfects:

comments:

Reference:

ilist

SUNUARY OF BasSiC INFIX FORHM

1list

X

X 1s a colliective ob ject,

A list that 1s a copy of the 1index set of

Production of tae copy.,

If x

1s a vector, ilist

APL expression 10ta Trho

The abbreviation %"ijiist"

Z.1.b

1p¥ CONFADENTIAL

X LS the same
X

stands for Yindex

179

as the

listh,

1list

e

180

example:

where:

value:

side 2ffects:

use.

comment:

References:

insert

THE MAN-HACHLINGS INTERFACE LN AFS

i 1nsert x

3 replace (i 1asert Xx)

i is an object, not im the 1ndex set of x but
sSuitable to de added to 1it, or it may be the
ocbject nii.

X iS5 a collective object,

An implicitiy defined synonym of tme 1 component
of Xx.

(1) A new storagye celi 1s added to x.
() 1 1s added to the 1lnaex set or x.
(3) 1 1is mapped onto the new storage ceil.
{(4) A copy of andef 1is placed in thez cell.

An 1mportant use 1s the one illustrated in the

second exampie whica adds an object, a sStorage

cell to put 1t in, and a mewber of the index set
of access it with.

The new member 1s added to the end oi the index
set, 1f tne i1udex set 1s ordered, To move 1t
elsewhere, a supsequent appiication oi rotate will

do s0.,

It 1 1is aiready a wember of tae index set of x,
or if 1 1s not nii and not 1in tane admissible set
Oof 1ndices for x, d4u eLror exception 1s railsed.

2,107, 2464342

Il CONFIVDENTIAL insert

/’//\\

Chapter 4.3

example:
where:

value:

side effects:

dses

comments:

label

SUMAAKY OF BASLC INFiX FOR# 181

s:expr

S 1s a symbol.

The value of s:expr 1is tne value ot expr.
The symbol s wvecomes a label of expr.

To attaca dabels to expressions 50 tudt they may
be the taryet of a joto fuanctioan.

The colon 15 4 syutactic marker that indicates
that some sywmpol 1s a ldbei and indicates the
ex pression that it lapels,

4 lavel 15 a read only value initialized at
compile time.

Labels appear t©o be wusefal primarily <tfor object
code created Dy tiansiators trom other lanjuadges
and not for native mode SL proyramming.

Possibly, it wili be found that only statemeunts

can be labeled, anu that 1t 15 too costly to be
able to lapel expressions i1nside statements.

Il CONFIDoNTIAL label

182

examples:

where:

value:

side efiects:

uases

commpents:

rReferences:

lambda

THE MAN-MACHINE INTSRFACE IN AF>

a lambda g

" (X;y) lambda {stat;stmt;stmt}

a 1is an ogdered-1ist of symbpols,
g 1s a group
X and y are symbols.

An n-adic function where i 1s the number of
symbols 1n the ieit argument.

¢

None

4 lambda expression may be assiygned to a syabcl,
making it a function symbol., Alternatively, the
lambda expression may ©pe used 1n place of a
function symboli in an expression.

The lambda expression is the means, 1ia SL, to

extend tue functions availabple. SL may be
extended 1in data types by deflnlag new access
machines., To accommodate new data types, o¢ld
functions must be redefined by assijning to thenm
the value of an appropriate lambda expression.
The names or tuae arguments oi the function are
given 1n the symboi list in the order in which
they must appear in an expression that uses the
function.

24243, 2.0.1.2

1BM CONFADeNTIAL lambda

Chapter 4.3

examples:

where:

value:

side effects:

uses

References:

parallel

SUNMARY OF Baslic LNFIXK FORH 183

parallel g
paralliel {stmt;stumt;statj
g is a group.

4 vector whose elements are the values of the
statements Comprising the group.

None

To State that the statements cowpiising. the group

- may be executed in parallel or in any order the

machine selects,

2e203, 240¢9.2

iBM CONFIDUNTIAL paralilel

184

examples:

value:

commants:

Reterences:

parentheses

THE MAN-BACHLING INTERPFACLE IN AFS
f(stmt;stant;stmt)

a/ (b+c)

Parentheses do not i1inhibit tane implicit invocation
mechanism SO the value of a portion of code
delimited Dy parentheses 15 either the value of an
expression or a list of values of statements,

None

A pair of parentneses is used to delimit a portion
of code without 1nhipiting the impiicit iavocation
mechauisi,. ’

One speciiic use or parentaeses 1s to control the
order of execution of functions in an e€xpression.

Another speciiic use of parentheses 1s to delimit
the argument 1list of an n-adic function when n
is greater than <, and when, as 1is usually the
case, the arguments are to be evaluated belfore the
function 1s evaiuated., In SL, such a fumnction is
interpreted to Dbe a monadic function that takes
the argument i1st as 1ts argument.

To understand parentheses, 1t 1s necessary to
understand the semicolon and braces, kKead first
the page on delimiters and then the pages on
parentheses, braces, and sewmicolon.

delimiters, Woraces, semicolon

188 CONFIDsNTIAL parentheses

vf

Chapter 4.3 © SUMMAKY OF BASLC ANFIX FORH : 165

example: remove X
where: X 1s an object,
value: X

side etfects: A copy of under is placed 1n tae Storage cell so
that 1f x 1s evaluated again, an error exception
1s raised.

use: To remove the contents or a sStorage cell without
destroyingy the ceidl. :

Reference: 2.1.6

remove 1M CONFIDENTIAL remcgve

examples:

where:

side etfects:

value:

uses

References:

repeat

THE MAN-MACHLING AnTORFACE AN AFS

p rLepeat g

-t

stow 1;(i<10)repeat {i+1 stow i;stut;stmt;stmt}

is a predicate, an exPress;on that evaluates to
or U

et 4T

g 1is a group or statements
i 1is an 1ianteyer
None

The left argument is evaiuated, If 1ts value is
one, the argument on the right is evaluated, Then
the left aryument 1S reevaludated and the cycle 1is
repeated., If the value of the left argument is
Zero, execution ends. The value 1s the value ot
tae last expression executed in tne rigat
argument. LI the rigybt aryument 1S not evaluated
at all, the value i3 nil.

The second exampie 15 eguivalent to , 1in PL/I:
DU I=1 TOU lu;stat;stat;stmt;END;

The extended infix form willi probably have a
DO-statement of this sort.

IBM CONFiDBNTIAL ‘ repeat

Chapter 4.3

examples:
wvhere:
value:

side effects:

comments:

replace

SUMNAKY Or woASIC INFIXL FORHM 187

X replace y
X and y are objects
The value 1s a4 copy of X.

The object y is destroyed, unless y refuses to
destroy 1itself. In tuls case, y rewalins unchanged
and an exception occurs.

Usually replace 45 used whei one argument or the
other 1s an expression taat has the vaiue of an
opject. Taen it 15 possible to make an object
that 1s a copy of a component Of another object or
by using 1asert, to add a copy of an object as a
new elemeat of another object.

Notice tnat replace changes tae whole object,
poth 4ccess wachlle and rCesourcCe, Stow, on the
other hand cudnyes only the resource.

References: Z¢e 1017, 2.0, 4

L8 CUNCIVSNTLAL replace

188

.
LX)

-example:

Where:

value:

comment:

References:

select

THE MAN-MACHLING LNTERFACL IN AFS

i select x
i select X stow y
X 1s a collective opject.

i 1s a aember or a synonym for a member of the
index set of «x.

Yy 1s an object whose access machinhe 1s sultable,

An implicxtly aerined synonym for a member of the
right aryument whose index 1s the lieft argument,

Select does aot create a copy but merely
identifies some part or parts ot the collective
object that coustitutes the ~rigyht argument. To
create a copy, it 1is possible to use a stow
function as 1in the second exauwple. 4in this case,
the target y must have an access machine that is
suitable ftor the itn elemeat of X.

2.1'5, 2.60301

1588 CONFIDENTIAL select

Chapter 4.3

examples:

value:

31de effects:

comments:

Relerences:

semicolion

SUMMARY OF paS5iC LNFIX FORH 189

{stmt;stmt;stutj}
t(x35yY:2)
Semicolon does ndot have a value,

The sewmicolon 1s a deisimiter whose precedence is
lower thau any zrunction or ifunctiomnal. If two
expressions dare dadjacent, oneg @must be an operator
and the otaer must be one of its arguments,
Hovwever, 1f a semicolon 1nterveunes, they Dbeccne
two elements of a 1list, As such, they are called
statements,

The difference between a statement and an
eXxpression 1s tnat a statement 1s a member of a
group of statewments and taen, Whaen the gJroup 1is
evaluated, tae vaiue 0of a4 statemeant 1is discarded
after the executioa cursor passes the semicolon
and before evaluation ot the next statement
beygins,

The semicoion is used to deilmit the arguments of
an np-adic functioa when n>=3. Tue comma 1s not
used pecause it is reserved to be used as the name
of a function,.

To understaand the semicolon, 1t 15 necessary to
understand brdaces and parentheses. Kead first the
page on deiimiters dand then the pages on braces,
parentheses, and semircolon.

242.2, delimiters, braces, pareatheses

I8k CONPIDENTIAL semicolon

190

exaumple:
where:

value:

shape

THE MAN-BACHLINL INTSKFACE IN AFS

_shape a

a 1is an array

A list of integyers of length 'r© where r is the
rank of the array (the member of dimensions) and
the 1th elemeat in the list 1is the size of the
ith dimension Oof the array.

The iist 1is CIEdtéd.‘

IBM CONFIDLNTIAL shape

Chapter 4.3

examples:

where

value:

side effects:

uses:

commaents:

Reterences:

Stow

SUMMAKY OF BaSic INFLIX #OxH 191

X Stow y

X and y are objects or are expressions that have
the value of objects.

The value 1s an object that has tane access machine
Orf y and tae resource of tne value 0Of X.

The left argument 1s evaiuated, Tnen, the right
argument 1s evaluated. Finaily, the resource of
the value 01 the right argument replaces the
resoucrce of the vaiue of the left argument.

This 1s the nocmal assignment taat taxes place 1n
languages iike PL/L.

To produce the xina of assigjhwent that appears ia
APL see replace.

2.].“' 203.5' “Ob‘“

LADBM CONPLIDENTLAL stow

192

example:
where:

value:

si1de effects:

uses

comments:

Referances:

syn

THE MAN-MACHINS INDERFACE IN AFS

syn x

X is aun object,

A syanonym that provides authorization for access’

to X,
The synonywm, 4n object, 1s created.

A synonym is lixke a pointer, but it has safeguards
50 that 1t cannot be used except by requests with
the proper autuaorization. Unlike a pointer, a
synounym dutowaticaily passes aii autnhori zed
requests to the object to waich 1t points, whereas
a poihter demauds a rfurtaer operation on 1t to
produce a value.

It 4is not possible to coavert data of any other
kind to a syuonyw. Thnis protects the systen
integyrity ZIrom incursions, suca as can be
accompiished by adainy iategers to PL/I pointers,

~To yenerate a sSyunouym with fewer rights than one

already has 1t 1s necessary to use the authorize
function, '

synonyms are neeized for data base applications.

2.1.5, 2.6.3.5, 2.1.4, authorize

ik CUNFIDENTIAL syn

Chapter 4.3 SUMMARY OF wsASIC LNFLX FOKM 193

From the preceding discussion and a xnowledge of APL, the
approximate meaning oif the toiiowingy will be opvious, There are
a total of 59 functions in this category. Notice that some APL
ftunctions are defined elsewhere and are not listed here. The
nyphen indicates wheu a dyadic -‘and @monadiC fuaction are related.
When the SL name differs trom the APL name, it 1s saown in
pareantheses,

Monadic byadic
plus - plus (sua)
reciprocal - divide (Juotient)
negative (minus) - minus(diifference)
signum - - times (product)
ceiling - BA X1 MU®m
floor - WiLlRUN
exponential (exp)- power
nat 4109 (1in) - loy
maynitude - residue
sin . and
cos or
tan nand
arcsin nor
arccos : iess (4t)
arctan not greater (le)
sinh equal {=9)
Cosh not less{ye)
tanh greater (ye)
arcsinn not eygual (ue)
arccosh ’
arctann
not : take
membership darop

reshape
raveil - catendte
reverse - rotate
traaspose - trauspose
grade up ' compress
grade down expand
pi times outer product
reduction (reduce) inner product

someone might argue that the circudar rfunctions arfe just oue and
not 13 tunctions. From one point o0f view, they are 13 tfunctions
With hard-to-remember names.,

Ll COwWrFIDENTIAL

194 THE MAN-MACHINs INTESRFACE LN AFS

4.3.5 SL Fupctions Defined Elseshere

The following 38 functions are detfined or identitied elsewhere in
this rceport: aguire, auymeunt, base value, ciaim, connect, copy,
delay, delayed parse, destroy, free, 1identiiy, ignore, index,
. 1lnject, 1insert symbol, 1introduce, itist, 1load, locate, map,
member, monitor, name value, point, priority, quotient_remainder,
release, representation,send answer, send wmessage, signal, step,
suspend, translate({dyadic), transiate{monadic), wultimate, unidgue
name, wait answer, wait messaye.

4,3.6 Summary of Functions 5o Far Iandentified

Defined in 4.3 23
Identified by APL 59
Indentified elsewhere 38

125

4.3.7 A Measure of SL Complexity

.

The complexity of SL can be measured rougnly by comparinyg it to
APL wnich performs a much more constrained function but has large
areas otf simiiarity. To do tals Ifhe APL functions that remain
will be dientified.

There are 8 APL rfunctions thdt have Cclear conterparts amony the
SL functions mentioned: brancning {yoto), function
definition(lambaa), local variable identification(declare),
specification (replace), sice(snape), trace coatrol(monitor and
ignore), label (labei), indexiny(select), comma {(augmeat).

There are 50 more APL fuactions to do things tnat SL will do but

the reliationsinip 1s not airect either pecause the details have
not been worked out or pecause the WwOrK i1is done differently. In

some cases the work 1s actually done Dby functions already

ideatified, These are: editiung coutrol, editiny wark, display

controls, 1locked function, sStop controi, termimal input,

character input, 34 systewm commauds, 9 sSystem dependent{i-beam)

functions, In 5L all of these things wiil be done with the kind

of functions so far identafied. Taere will not be the diversity
seen in APL/360.

Finally there are 9 APL Lunctions that will probably be
programmed:

iph CONFIDuNTLIAL

Chapter 4.3 SUMMARY Or BASIC INFIX FOURE 195

encode decode
factorial binomial coetficient
roil deal

three square roots ot sums of syuaares

No declision has been made as to which of these marginal APL
tunctions belonyg in the pasic iniix level of 5L and which snould
be programmed. It may be, for exaample, that none of the circular
functions wiil be in the machiue ilanguage., However, ail oi thenm
will bpe in the extended iatix torm and ail or <them wili be
supported where they appedar inu the various favored hign level
languages. With this information, the languages can Dbe compared
as follows:

APL/360 functions with direct SL counterparts 67
APL/360 functions SL will cover v 50
117
APL functions to be progranmed 9
126
SL functions with clearly defined APL counterparts 67
Other i1dentitied SL tunctions 54
125

Clearly more runctions #ili be added to SL, However, 1t seemns
clear tnat SL wili be oniy a iittie more complicatel that APL/ 360
while providing much more capability.

I1o6M CONFLIDENTIAL

Chapter 4.5

EXAMPLES UF SL PROGRAWNS

This chapter demonstrates tine suitability of SL as a target
language for the translation ot programs from PL/I, CUBOL,
FORTRAN, APL, &PG ana L15P, For each of taese languages, typical
program coanstructs are allustrated (alony with contextual
information when appropriate) and followed Dby an eguivalent SL
construct, The SL examples yiven are written in the basic infix
notation (refer to Section 4,3).,

Programs writtea in 3L to accoapiisn these same purposes would be
much simpler since they woulia aot involve the complexities of the
various source lanyuages.

4.5.1 Icanslations rrom PL/I

Example of simple case of PL/I DU statement:
DO I = 1 TO 10, statement_list,; ENu,
The SL code for the above is:

I=->1; {I+1->Iz1ujrepeat {statement _list}

In a somewhat more complicated case «With various data tygpes
involved in the iteration caiculation, there can Dbe rounding
problems that prohibit tne simpie initialization used above,
Furthermore the wvalue of tuae 1teration limit can be caanged
duringy the iteration so there must be a temporary. Ia this
case:

DO 1=1 TO N;

statement_list
END;

gquivalent SL group:

{declare C unigque;
{0 stow C;
feval {C select {{1 stow I }s
{i sum 1 stow I 1e N stow (j
3

Lol CONFLDmENTIAL

Chapter 4.5 EXAMPLES OF 5L PROGEANS 197

}
} ra2peat {statement_list}
}
}

lhe general case of the PL/i DO statement 15 much more
complicated than the ordinary user realizes, or can utilize
often. A ftuli explanation or the linteraction of thne TO and BY
Clauses with the WHLiLE optiou, with more tnan one specification
present, may be found in the PL/I Laaguaye Specificdtions
manual (Y33-6uU03-1, pp 144-140) or the PL/L (F) Language
Reference Manual (C28-uvlU1-4, pp 3bl4-307). Tais general case
can pe prograwmmed 1in SL uasiny a sinygle skeleton (with the
possipility OL repeatiny one section as tae multigple
specifications regjuire), suostituting tfor tue names of the
variaples used in the LU statement. An example orf tais 1s shown
below:

DO I=J1 TO K1 BY L1 WHLiLE(&1),
J2 TO K< BY L2 WHiLE(EZ),
L N ;
statement_list
END;

Equivalent SL group:

{declare U Vv W C BUDY TuST unigue;
syn {statement_listjy stow BUY,
syn{signum V 1s U select{l ie U;I ye U}} stow W,
{0 stow C;
syn{eval W ana E1} stow TEST;
feval{C select {{K1 stow U,;L1 stow V;d1 stow L;TEST stow (C},
{I sum V stow 1;TEST }
3
}
} repeat BOUDY
b
{9 stow C;
syn{eval W and E<} stow Tusi,
{eval{C select ({K2 stow U;L. stow V;Jz stow I;TEST stow C};
{I sum V stow i;TEST }
}
}
} repeat BODY
}i

ipH CONFIDBNTIAL

198 THE MAN-MACHLINGZ INPERFACE LN AFS

}

Note that the first three lines are the setup code waich need be
preseat oniy once regaraless of the number or specifications
appearing in the original PL/I DU statement. These are foliowed
by a pattern group which 1is repeated once per specliication,
separated by semicolons as necCessdry, and tecrminating with the
final right brace.

This general skeleton can pe simplified supstantially by a
compiler if the original DU statement does not contain all of
the most gemeral options. For example, if the expressions 1n
either the TO or BY clauses are constants, tae corresponding
temporaries U and/or V can be eliminated., If the BY expression
1s a4 constant, then the entire expression "signum V 1s 0" can
be evaluated at compilie time, and the result can be used to
chose the expression to pe substituted for W, Sufficient
evaluation of constant expressions at compile time can result
in the reduction oif the general case to a4 much simpler program,
like the one shown for the simpie case of PL/L DO,

4,5,2 Translations from CUBOL

Example of EXAHINE,'LF and ALTsE statements:
EXAMINE INPUT-RECUHD TALLYIWs ALL ','.
IF TALLY IS EQUAL 10 ¢
THEN ALTER SWITCH IU PRUCESED TO EXIT.

SWITCd., GO TO,
Equivaient SL statements:
elen sum reduction (INPUTRLCORD member *,') stow TALLY;

eval ({; {8XIT} stow Xj{ TALLYL eq U]J).

goto X;

4.5.3 Iranslations from FURIRAN

Example of ARLTHMETIC IF stateament:

IF (E) 12,56,13

IB8HM CONFIDBNTILIAL

Chapter 4.5

Equivalent SL statement:

goto(siygnum E select {12;50;13});

4.5.6 Idranslations from LISP

Example of LiSP conditional statement:

COND ({P1 ET)
(P2 E2)

(Pn En))
Equivalent SL statement:

evai {P1 condltion‘g1;Pz condition ©2;

L]

iBM CONFPIDENTIAL

EXANPLES OF 5L PROGLRAAS

;Pn conaition En} ;

159

Part 5

A LOGLCAL IMPLEHENTATLON

A logical impiementation of the system 15 being aefined using the
Vienna Definition Method, dInitialiy the logicai implementation
will be presented in English., In iater versions of the document,
the formal notation will be introduced.

\]

il CONFLIDENTIAL

Chapter 2.1

BASIC STKUCTURE

An object construct i1s a storagje cell and its conteats.

A storage_cell 1is named by an 11d d4nd coitains guede(s), a gueue
manager and an object, Iid's are unhique, not reused. An iid is
the internal ~represeantation 01 a cell name. A storage cell is
known as a puffer when the ovwnership counventions are suspended,
e€.g. 4 request is always sent in a butfter because ownership of
the object construct 1s retained by the sender until the
recipient accepts it.

A gueue contains the ilid's oi buffers wniCh Trepresent messages
being sent between object coastructs. yYueues are organized in a
FIFO fashion. There are reguest gueues and respoanse gueues,

A reguest gJueue queues the 11d's of reguests intended for
processing by the access wachine associated witn the object ot
this object construct, Every storaye cell has at lieast one
request queue.

A response gueue queues tne i1lu's Of responses for processing by
the access machiune associated wita the object of this object
construct. A storagye cell may mave none, one, Or mOore response
jueues.,

A message whose 11d 1s placed oau a gueue 1s the communication
link to and from object constructs. There are rejuest messages
and response messages,

A gueue manager 1s assoclated witn the ueues of each storage
cell. It is the communication interface between other object
constructs and the object of this object construct. As soon as
an object coastruct is created, tae Jueue managyer can begin to
handle incominy reguests. 1The yueue managyer of each storage cell
can handle messages i1n paraiiel with the gueue managers of all
other storage <cells 1a tae sSystem. Hach gueue manager nandles
1ts amessages sequentialiy. The iogyic of queue managing 1is
written extralingually, e.4g. 1a micro-code.

An object contains an access machine and a resource,
An access machine is associateud witn the resource of eacn object.

It is the processing interiace petween the gueue manayer and the
resource of this object, As sooa as an object construct is

iBM CONKF LDuNTIAL

202 A LOwiCAL IMPLodSKRTATIUN

created, the access wmwachine cda begin to process 1ncoming
requests., The access machine oL eaca Object can process messages
in parallei witn the access macnines of all other owvjects in the
systenm. The a4access machine process 1S descrived by three
components. These are a procedural description, am interpreter of
the procedural description, aand a4 process status record (PSR).
The procedural description describes the processiny logic. The
interpreter proviaes the actual wotive force tfor thne process by
interpreting the procedurai description. The PSk is an area of
storage in which the interpreter records the curreant state of its
interpretation of the procedural description. The logyic of an
access machine 1s Wwritten either extralimgually or in SiL. If the
logic 1s written extraliagually, the object 1is said to be
primitive., If the logic "1s wratten in SL, the object 1is said to
be reducibple. ' :

A primitive object 1s an oObject waosSe access wachine 1s written
extralingually. All regquests sent to the gqueue mahager
associated with the storage ceil containing a primitive object
are passed by the Jueue manager €O the access machine of the
primitive object for processainy. iu fact, since the logic ot the
gqueue manager and of the aCcCess @macalne are potn written
extralingually, the functions or the Jueue mBanayer can be merged
into the functions of the access macaine for primitive obpjects.,
This is beiny aone in the loyical definition. Further, since the
procaedural description, the interpreter, and the PSR tor a
primitive object are all extralingual eutities, these components
are not separately denoted, but are jointly denoted by the object
type, €.g., a LIST-type object.

A reducible object 1s an object whose acCess machine 1s wrlitten
in SL. All requests sent to tae gueue mahagyer associated with the
storage cell contalning a reducible object are passed Dby this
Jueue manager to the interpreter of the 5L code which Dby being
interpreted willi process tine reguests. Since the procedural
description, the interpreter, amd tue PSK for a reducible object
are ali SL entities, these couponents are separately denoted by
their three 1id's.

A resource contains the undifferentiated data value owned by the
access machine,
When commuhicating wlitih foreign architectures, 1t 1is not

meaningful to transmit tae 11d Of 4 storaye <cell containing the
object of imterest. 1t 15 necessary to transalt. the object part
of a. storage cell as a piece of data. An object image 1is the
representation of the object part of a4 storage celil as data.

Parts of the logical detinition OLf SL require representing
certain hardware boxes., It 1s advantageous to represent them as
far as possible as object coastructs. Instead of belng located
via an 1iid, a 4quasl-object construct 1s located via its gid.

is¥ CONFIDENTIAL

C

Chapter 5.1 BaSic STKUCTURE 203

Q1d's are unique, not reused, dund dre distlngulshabie from 11d's,
In all other respects quasi-object constructs are treated like
object constructs., A guasi-object 1s 4 representation of an
entity requiring service vhen service 1s provided by multiplexing
a finite number of servers over a potentially infinite number of
such entities. For exaupie, the PSLINIT-type object (quasi-SL
interpreter) represeats tae rejyuirement for aardware multiplexing
of a finite set of I-poxes over all ready processes. The
QEVAL-type ob ject (quasi—-evaluant) also represeats the
requirement for hardware muitipiexinyg of a finite set of i-boxes
over all ready processes. Tae SUN-type object (quasi-sum)
represents the reqguirement for maraware wmultiplexainyg of a finite
set of adders over all ready processes.

[e
oY g St + S e AT e e xR TR Y TR R M 8 N e oy

— o — -
| oo o e mmam e e e e s st e e

t ObjecT)

\ Jrd e Q “:f %tf s Y

Cluexae
qua?er

v ‘:(>" " ‘ a
/ \ Ob-,’ecT i

SToraa& CE?Z

S Imm?e
| Buffer cell

IS $ vemm wqanmy wemeesn emens ek ORI

Ob7e cT Co*nsfru.,c-r /

s e —— r—- e "

Figure 5.1-1:53tructure of 4 Storage Cell aud 1ts Coantents

LBM COnNFIDLNTIAL

204 A LOGLCAL i8PuLiMENTATION

The user who writes a strict syntax SL prograam deals with
syntactic operators and syntactic simple operands. When his text
1s interpreted, the names he used Lor his syntactic operators and
simple operands will bDbe resolvea to some iid. 1nformally, both
operators and operands are represeinted by objects., To the user
an operator represents an oObpject which he wants to 1invoke, to
pass some arguments, to have 1t operate on the arguments, to send
back an answer, and to Juit. To tane user, an operand represents
an object which the user wants to pass as an arguaent to some
operator. '

The name, e.,y., sum, B8yu#, cieate, for a primitively detfined
syantactic operator resoives to an 11id of a storagye cell of an
object «construct whose object's object-type 1s PFUNCTION (for
primitive function) and whose resource part countains an
indication of the primitively defined operation to be pertformed,
2. 9. addition, synonym creation, object coustruction.

The name, e.y. traaslate, sin, for a reducibly defined syntactic
operator resolves to an 1id or 4 storage cell of an object
construct whose object's type is FUNCTION and whuse resource part
contains the i11d of the SL text, the iid of SL symbol table, the
iid of the SL 1link table, and the 11d of the outstanding
activation tabie. The 1interpretation of the SL text defines the
operation to Dbe perforamed, €.y, proyram translation, sine
computation, v

The name for a primitively daefined syatactic simple operand
resolves to an iid ot a storage cell of an object construct whcse
object's object type could be INTEGER, LIST, SYN, FUNCTION,
In the case of an INTEGE&-type object, the resource part is the
integer itseli,

The name for a reducibly derfined syntactic simple operand
resolves to an 1i1id of a storage celi of an object construct which
contains a reaucible object. T{me resource part of the reducible
object contains the 11d oI storaygye used by SL text as 1t is being
interpreted.

iB¥ CONFIDENTIAL

Chapter 5.2

BASIC HMBCHANLISHS

5.2.1 Introduction

Some Of the most i1mportant DAas1C MSCaallsBs are those permitting
message communication between object constructs and those
permitting messaye handling by an object coanstruct.

The Jueue wWanager associated with the yueues of an object
construct can invoke the messdage com@unication mechanisms. They
are: send request uwechanisuw, forwarua request mechanlsm, and send
Cesponse mechdanisu.

The Jueue manager caia daiso invoke the messaye nandling
mechanisms. They are: wait tor rejuest, read reyuest, wait for
response, read response.

The access machine assocliatea witn the resource of an object
performs the actual processing oL tne requests aud the responses.

Conventions for the format oL a message are iatroduced. The
credator of tuae messaye, tae queue manager or the access wachiliane,
uses these conventions. They are: reguest format convention and
response format coavention.

In describing the mechauisms in wsnjglisn, the logical steps are
iisted sequeantially. In <fact sowe o1 these steps will occur 1in
parallel, and will be 50 noted when we descripe the mecahanism in
VDL notation.

5.2.2 Hessage Lommunicatiou Hdechanlisus

5.,2.2.1 Send Request Hecnanisii

Jueue Manager

1. passes the foliowiny pardaeters Lo the send reguest
mechanism: the 11a o0f tae recipient of the regquest, the
recipient's reguest Jueue aumber, tne 1id Of the buirer

representing the reJuest message, the 11d o0f tne sender of the
request, the sender's response queue nNuUMbEL,.

Il CONFIDENTIAL

2006 A LOGICAL IMPLUNMENTATION

Send Reguest Mechanisnm

2., produces a unique msygid., /* A wsglid 15 a uniyue identitier
used to tag a reguest for the purpose of responding to it,*/

3. completes the request nmessage by adding the @msygid to the
request message., The 1id o0f the rejuest messade 1s the 1i1d of a
buffer containing a LIsi-type object. it replaces the first
subobject of this LIST- type object with a HMSGlu-type subobject
Wwhose resource part contains tae asgid produced for this regyuest
message,

4, adds an entry to the - Systewm Communication Tabie. Each entry
contains the following informatioun: the msgid, the iid of the
sender of the rejuest, tae sender's response Jueue number, the
11d of the recipient of the request, the reciplent's reguest
queue number, and the 1i1d of the reyuest message. /¥ the first
two pieces of 1pnformation are essential to messaye communication,
By keeping all these information pieces we depict the Dependency
Graph, thus aiding resource management, sSystem restoration, and
system verification */,

5, puts the 1id of the request message on the specified reguest
queue of the specified recipient,

. passes bacx to the queue manager the msygld, o

I | | | '
u%' w‘ iid T U T b‘i’t“ 11 C‘[nu’)’nb‘.’kl ');LCL
5 p of ' of of 1 ot
. (i © ’ SeﬂdﬁrsgregelveriPGCQIUﬁrﬁ ye?uggr
’W\Sjl c ‘ 587'1_(*8?" ‘rf_SiiﬁC’?’E‘iﬁ?‘ 015 t r_e‘(’;@sé;t
L E ¢ % E WE
{ rtf%ufsrl %uf:ue ve céues I 7w |
' a s
|
: ; 3 s |

|

Figure 5,<Z.4-1:5ystem Communication Table Butry Format

Il CONFIDENTLIAL

Chapter 5.2 BASIU HNECHANISHS 207

5.2.2.2 Forwara Request Mechuanism
Queue Manager

1. passes the zroilowiny parameters to tae <forward reguest
®#echanism: the 114 of the recipient of the request, the
recipieant's request gJueue numoer, and the 1id of the buifer
representing the request wessagje.

Forward Reguest Mechanism

2. the i1iid of the reguest message 1s the 1id of a butfer
containing a LISIf-type object. Usinyg the msygid 1n the resource -
part of the MSGiD-type subobject of this LIST-type object, 1t
locates the appropriate eantry ia tae System Communication Table.

3. updates the 1id of the recipient of the request and the
recipient's reguest yueue numwber with the specitied new recipient
and new reguest gqueue numoer.

4. puts the 11d of the reguest message Oon the specliled reyuest
Jueue of the specitied recipient.

5. returns to tane queue mahager

5.2.2.3 5end Besponse Mecnaalsa

Jueu= Manager

1. passes tae foilowiny parawmeter €O the send response
mechanism: the 1i1d of the obuffer representiny tLwe Tresponse
message,

Send Response Mechanism

2, the 11d of the response message in tane 11d o0orf a4 Dburter
containing a LIST-type object., Using the wmsygid 1n the resource
part of the MDGID-type subopject of this LiST-type object, it
locates the appropriate euntry in tae System Cowmmunication Table,
The entry in the S5SCT speciiies the 11d of the recipient of tae
response and the reciplient's response qJueue numbder., /¥ the
response yoes pack with the sawme wsyid used to tay tae rejuest to
wnich it is a responsex/,

3. puts the 11d of the Trespouse message on the specified
response gueue of the specified recipient.

I CUNF IDENTLAL

208 A LObaCAL IMPLEMERNTATION
4, deletes the entry from tae 5ystem Communication fable

5., returns to the queue manager

5.2.3 Hessage Handling Mechanisns

—_—

5.2.,3.1 Wait Hechanisn

Queue Manager

1. passes tane foliowinyg parameters to the wait mechanism: the
Jueue number to walit on or 4 list of gueue numbers to wait on
where the list determines <he priority oruder ot message
retrieval.

Wait Mechanisnm

2, waits for an ii1d to appedar oa the speciiled gueue., /¥ Ncote
that the one wait mechanism aliows waltiny on a rejuest queue or
Ol a response queue/%,

3. when an 1id appears, it passes Dack to the gueue manager the
queue number on whicn the 11d appears.

5.2.3.2 Read Reguest ilechanisa

QYueue Manager

1. passes the following parase2ter to the read reyuest mechauwism:
the gueue number containing tme 1i1d of the buifer representiny
the request message,

Read Reguest Mechanlsn

2. Tremdves the 1irst 1id from tne specified yueue,

3., deletes the 11d from the sSpeciiied yJueue,

4. verities that 1ndeed the purfer represents a reyuest message.
he 1id of a request message is the 11d of a buftfer containing a
LIST-type object. 1t checks that tne second subobject of the

LIST-type object 1s a4 REYUESY-type object,

5., 1if yes, 1t passes back to tne Jueue manayger the 1iid of the
buffer representing the reyuest message,

iB¥ CONFIDSNIIAL

Chapter 5.2 BASIC ABCHANILISHS 209

5.2.3.3 Head Response Hechanism

Jueue Manager

1. passes the tollowing parama2ter to the read response
mechanism: the gueue nuamber containingy the 1ia of the buffer
representing the response messaye.

Bead Response Mechanism

2. removes the first iia from the speciried yueue

3, dJdeletes the 11ad rrom the specifired queue

4. verifies that 1ndeed the opufier represents a response

message. The 11d of a response message 1s the 11d of a buffer
containing a LiST-type object. it canecks that the seccnd

subobject of thne LIST-type object is not a REQUEST-type object.

5. 1f yes, it passes DbaCK tO the jueue manager the 1id of the
butfer representing the response message.,

5.2.4 Messaye Processing

Queue Manager

1. passes the following parameter to the access wmacnline: the 1id
0t tne bufifer representing the reguest or respoase message.

Access Machine

1. /* the request processinyg i04ic provided Dy an access machline
involves '1f ...then' logic: 1t reguest so and so, then pertorn
such and such, wnere sucn and such varies oy object type. For
example, what a FUNCTION-type object does to process an execute
request 1s far different trom wnat a FLOAT-type ovject does to
process an execute request. The details of what actions each
object type does as a fuunction or receiving any possible reyuest,
has yet to be defined in this model*/

igM CUNFIDuNTIAL

210 A LUGLCAL LiWMPLEAENTATIUN

5.2.5.1 Request Format Coaventionu
Yueue Manager or Access Hachine

1. 1f the send regquest mechanism 15 subseguently going to be
invoked , tae creator of tae Ieguest messagye constructs in a
puffer a LIsT-type object. Tne first subobject must be an
UNDEF-type object., The second subobject nmust pe a uniEQUEST-type
Object whose resource parlt contalins the name of tne reyguest, The
remaining subobjects must be object types appropriate to each ot
the parameters of the regjuest. A regquest need not have
parameters but 1f 1t does then, <for example, 1f 4 parameter 1is
the 11d of some storaygye celi, tae subobject would bpe an ACC-type
object, If a paraweter 1s soume lnteyger, the subobject would be
an INTEGER-type object. /* 4 Dbulter acguired wanen some reguest
was sent to the yueue manager could be used as tne buffer in
which to construct tae reguest */.

(LiIsT

e,

» 8

Figure 5.Z.5-1:rFormat of a Reguest

IBM CONFIDENTIAL

Chapter 5.2 BASIC HuCHANLSNS 211

-5,2.5.2 Response fFormat conveutiou
Queue Mdanager or Access Macaine

1. If the send respoase uwecnanlsia 1S subseguentiy going to be
invoked, tihe creator c¢f the respoase message coastructs in a
buffer a LiST-type object. The tirst subobject wust be a
MSGID-type object whose resouice part contains the msgid that
came over with the request messaye to which this 1s a response.
The remaining subobjects must ove object types appropriate to each
of tne «components ot the response, /* Tne bufrer representing
the request to whicn thnils respoase message is a response should
be used as the buffer in whican to counstruct the response, The
correct msgid 1is already therex/,

o

]

Figurea 5.4.5-Z:Format of a Besponse

IL8M CUONFIDENTLAL

Chapter 5,3

KEY PROCESSING ACTIVITIES

5.3.1 Introduction
The definition oi the basic mechanisws OfL the Jueue manager and
the definitions of the request and response processing activities
of each access machine type 1s essentialiy a logical definition
of SL., Certaln access macpine processing activities are
especially important., Some oif them are traanslation, expression
evaluation and symbol resolution, The definition Or expression
evaluation 1s described 1s described bediow.

5,3, 2 Expression Evaiuation

Bach reducible object willi cause one QSLINT-type guasi-object to
be spun off Lor the 1nterpretation of ail the statements or the
syntactic group associated with the reducible object, Each

JPARALLEL-type quasi-object wili cause one QSLINT-type
gjuasi-object to be spun o0ff ror the interpretation of each
statement or the syntactic group associated with the

QPAKALLEL-type quasi-object. 4 USLINT-type quasi-objeCt 1is Kknown
as an interpreter. '

Bach QSLINT successively spins oiff one QEVAL-type yuasi-ob ject
for each statement 1n the statement group 1t 1s processihg. A
QEVAL-type quasi-object 1is known as an evaluant,

Each QEVAL, not handling a simpie operand, spins ofr a QEVAL-type
juasi-object for each operand 1un the expression it is processing.

Access Machine of the YSLINT-type Juasi-object {the 1nterpreter)

1. /% Assume that the foilowiny parameters were passed to QSLINT
if it were called by a reducibie object:

{nH the 1i1d of an object coustruct whlcCh has a
FUNCTION-type object /% tnis 1ia 1s 1n the acccess machine
of the reducible object */., Located in the resource part of
the FUNCTION-type object 1s tihe 11d of an object construct
which has a LiSi-type ob ject., This LiSP-type object
represents the statement yroup, wocated i1n the resource part
of this LIST-type object are the 1id's of object constructs
which represent sStatements. A statement may either be a

Il CUNCLIDSNTIAL

Chapter 5.3 KeY PROCuSSING ACTIVITLIES 213

simple operand (SYHNBOLIEFEKENCE-type object) or a complex
operand (LiST-type opject). A complex operand is a
LIST-type object represeating an operator and its operands.
Located 1n tae resource part of a LisT-type opject,
representiny such a complex operand, is tne 113 of an object
construct which has a OSYNBULREFERENCE-type object. The
resource part of this SYMSOLREFEIENCE-type Oobject contalins a
syabol number. This SYasULRSFERENCE-type object represents
the operator. Also located in the resource part of a
LIST-type object, crepresenting a complex operand, adare the
i1id*s of object constructs representingy the arguments to the
function. These object constructs can have a
SYMBOLKEFERENCE~type object or 4 LiSI-type object.

{2) the 11d of aa object construct wanich has an UNDEF-type
object /* this 1id 1s imn the access machine of the reducible
object *x/ This UNDEF-type ob ject represenuts the
Lnterpreter workarea (IWA) wniCh 1s part of the P5K,

(3) the 1id of tue object coastruct representiang the
storage used by the 5L program belilny 1interpreted /% this iid
is 1n the resource pait oL tne reducible object */,

(4) the 11d of the object construct representing the actual
argyuments intended for the function,

Assume that the followiny parameters were passed to YSLINT it it
Were called by a QPARALLEL-type quasi-object:

(1) the 1id of an object construct which has a LISI-type
object representinyg a nested statement group

(2) the 11d of an opject counstruct wanlch aas an UNDgF-type
object /% this 1iid 1s 1a the resource part orf a LISI-type
object representing the 1uterpreter Wworkarea ot the
predecessor interpreter ®/ This UNDEF-type object
represents a4 nested interpreter workarea (iwWa).

(3) the 1i1d of tae object coastruct representing the
storage used by the 5L progras peiny 1nterpreted.

(4) the 1id of the object construct representing the actual
parameters ianteunded ror tae f[unction. */

Lo CONF LVaNTLIAL

214 A LUOGICAL LNPLEMENTATION

i
]

[stew (oon (23, 2); sumcab)f

!
|

1 <C0'ri}'>l’ff r:la?wi,. v x({

N - . K

| i [oyReF g
! Asm)
% e ————
\ LA

“a._g_" -) 1 C()) i
: H ‘ g simpl? oise_mmi
; o — w A / '

1 14 g }{\ T \)i‘"—sj‘;i" ment IR "'*’f‘lﬁ xeperen -_L_)

Figure 5.3.2-1:5tructure of a Samplie Function

IsM CONFIDoNTIAL

Chapter 5.3 KEY PROCESSING ACTIVITILIES 215

Funct.e

i

N |
I 7&(‘.(o |
g b vfﬂ)< / & |
| |
| e ;af&w
|
i
|) ‘
i L)i ‘:\uﬂwpwtr coerkeaye e |
l//. i;y
/ |
o fus T,,/\ O <3
i . \ Lty L“"‘\ P "t:’;-(f# e ‘“"f o i .T %
S’:'} r(‘ftf ey & ‘15’1 £ ig)-.'fe« v ;

v, —

N’N

3,

i
i {
!
?
.S‘:’zu(“m,nr\ wm)wrt:\ gL
-

e .
B,
v,

e P D 4 e

e

Figure 5.3.2-2:Structure ot a sample ¥SK

Lol CONFIDENTIAL

216 A LOGICAL iMPLoSMENTATION

2. replaces the UNDEF-type object representiay an 1WA with a
LIST-type object., Tnls LIST-type object represents the (nested)
interpreter workarea., _
3. augments this LIST-type object, thus creatiny an UNDEF-type
object,

4. replaces the UNDEF-type object with a LIST-type object., This
LIST-type oObject represents the seguenciny workarea.

5, auyments this LIST-type object twice, thus creating two
UNDEF-type objects.

6. replaces eacnh UNuuF-type object with an INTEGER-type object.
The first INTEGER-type represents the statement counter. The
second INTEGEE-type object represeants the statement count.

7. 1f it were passed the 11d o0f 4an object construct which has a
FUNCTION-type object, it retrieves the LIST-type object
represeating a statement group; eise it was passed the 1id of a
LIsT-type object representiny a (nested) statement group.

8. uses the reyuest format convention and tue send reguest
mechanism to send an 1dentifiy rejuest to the LISI-type object
representing the statement group. L1t needs to «now the number of
statements it 1s to interpret.

9, wuses the walit mechanism Lo wait for tae responsa,

Access Machine of the LIST-type object representinyg the statement
group

10, uses the read reguest meCaanism to read the 1dentiry reyuest

11. /% Details of how a LIST-type object processes the 1identify
request are not described nows/

12. wuses the response format convention and the send response
mechanism to pass back a respouse to the YSLINT-type guasi-object
The response iudicates the number of statemnents to be interpreted
by the interpreter,

13. uses the wait mechanism to walt for the uext reguest.,

Access Machine of the QSLiNi-type yuasi-obDject (the interpreter)
14, uses the read response mecCnanisw to read the response.,

15. stores tne number oL statemeats 1n the resource part ot the
INTEGER-type ob ject representing tue statement count.

16. stores zero in the resourc part or the INTEGER-type object

1M CONFPIVDENTIAL

Chapter 5.3 KEY PdOCESs51ING ACTIVAIIES 217

representing the statement couater,

17. if it were passed the 1ad of an object construct which has a
FUNCTION-type object, 1t binds tune parameters and handles the
prologue if any.

18. creates a yguasi-object construct with a WbBVAL-type
Juasi-object,

19. augments the (nestea) IWa, thus creatinyg an UNDEF type
object. This object will represent the evailuand.

20. uses the request format couvention and tne send request
mechanism to send a start rejuest to the YBVAL-type gquasi-object
just created. The parameters to start are the 11d of an object
construct whicia has a Lisf-type object representing 4 (hested)
statement, the i1i1d of an object construct which has a LIST-type
object represeunting the symbol taple, the 1id of tne {nested) IWA
just created, and the 1iid of the object construct representing
storage,

21, uses the walt mechanism to wait for a response,
AccCess Machine of the YEVAL-rtype quasi-object {(the esvaluaat)
22. use the read reyuest mecadnism to read the start regquest.

23, 1f it were passed an SYMBOLREFERENCE-type object
representing a simpie operand refereance, Lt performs steps 2s4-33.
If 1t were passed a LISi-type object represeating a complex
operand, it perforas steps 34-o0bd,

If the evaluaut were passed an SYMBULAEFERENCE-type object
representingy a simplie operand, then it -

24, uses the symboi resolution mechanisam to ivcate the 1i1d of
the storage cell of the object coustruct represented by the
simple operaad, The sywbol number 1in the resource part of the
SYMBOLREFERENCE-type object 1indicates the symbol table entry
which corresponds to the simple operand.

25, uses the reyguest format coavention and the send request
mechanism to sSend an autaorize reguest to the object construct
just located, It wvants a pointer to the object construct

represented by tane simple operand.

26, uses the wait mechanism to walit fOor a response,

Access Machlne of the object coastruct just located

27. uses the read request mechanism to read the authorizé

request.,

Io# CONFADENTIAL

218 A LOGLCAL LHPLZMENTATLION

28. /* Details of how the sSiuple operand processes ah authorize
request are not described now x/

29. uses the response format convention and the send response
mechanism to pass back a respoase to the QuVAL-type quasi-object.
The response indicates the i1id of an object construct which has
an METONYM-type ob ject.

30, wuses the walt meChanisSm tO Wallt LOr d4 request.
Access tlachiue of the QEVAL-type quasi-object {tne evaluant)
31, wuses the read response mechanism to read the respounse,

32, uses the send response mechanism to pass back a response to
the interpreter (USLINT) or evaluant ({(QEVAL) that iuvoked 1it,

33. destroys itself,.

If the evaluant was passed 4 LIST-type object representing a
cowplex operand, them it -

34, replaces the UNDEF-type Objec representing the evaluand
with a LIST-type object. This LiIST-type object represents the
evaluand.

35, augments this LIST-type object twice, tuaus creating two
UNDEF~-type objects.

3b. Freplaces the second UNveF-type oObject with a KEQUEST-type
object whose resource part contaius tine name evaluate,

37. uses the symbol resolution mechanlsm to locate the 11d of the
storage cell of tine object construct represented by the operator.
The symbol numper in the resource part or the
SYMBOLREFEEENCE~type object 1ndicates the symboi ttable entry
whicn corresponds to the operator,

33. uses the request tormat coavention and the sena reyuest
mechanism to send an i1dentlfy regyuest to the obpject coustruct
just located., it amust Know iLf the object construct just located
represents a function a4ud 1i S0, 1f the number ot operands
syntactically supplied 1is equai to the gumber of actuai
parameters semantically reqguired by the function,

39. uses the wait mechanism TO walt IfOr a response,
Access Machine of the object comstruct just located
40. uses the Tread reguest mechanism to read the aidentify

request.,

i CONFIDENTIAL

Chapter 5.3 KEY PrOCEsSiNe ACTLVIIIES 219

41, /*Details of how tuhne oObject processes the identify reqguest
are not described now */

42. uses the response formwat coaventioan and tiae sSend response
mechanism to pass back a respoase to the QEAUL-type juasi-object.
The response iandlicates waether or not an evaluate request will be
processed and the number of semautically required parameters.

43, uses the wait mechanism to wait for a reguest.
Access Machine of the QEVAL-type quasi-object (the evaiuaut)
44, uses the read response mechanism to read tae response,

45, uses the request rLormat convention and send request
mechanism to send an ideatity reyguest to the LIST~-type object,
representing the complex operdand, sent to ‘it as a parameter., It
wants to know the number oif actual parameters syntactically
supplied.

46, uses the wait wmechanisa to wait for a response,
Access Machine of the LISi-type object

47. uses tne read Iejuest mecnanism to read the 1dentity
request.,

48. /* Details or how the object processes the identiiy request
are not described nowx/

49. uses the response rormat coavention and the sSend respoanse
mechanism to pass bdCk a response to the YsVAL-type quasi-object.
The response 1indicates the number o0t subobjects augmented Iron
this LI5T-type cbject.

50, uses the wait mechanism to wait for a reyuest.
Access Machine of the QEVAL-type quasi-object (the evaluant)
51. uses the read respouse wechainlsim to redad the response,

52, subtracts one frowm tae nuisber sent back in this response and
verifies that the number ot syntactically suppiied parameters
equals the number of semantlcaily reguired parameters,

53. tor eacn parameter i1t cCredtes a guasi-object construct with
a QiLVAL-type quasl-object,; 1t augyments tne (nested) 1WA, thus
creating an UNDEF-type object representiug an evaluana; and 1t
uses the request format convention and the send regquest mechanism
to send a start reguest to the QEVAL-type quasi-object just
created, The parameters to starlft Lpdicate the expressioan to be

18d CoariDunNTiAL

220 , A LOGLICAL IaPLEMENTATION

interpreted, the symbol table, the (nested) 1WA just created, and
the storagye. For eacn parameter 1t auyments the LIST-type
object, representing 1ts evaluand, thus creating UNDEF-type
objects; and it replaces these UNDEF-type opjects with BSGID-type
objects whose resource part contains the msgids of the various
start requests. /% The order oi the HSGID-type objects 1in the
evaluand reflect the order in wulch parameters willi be passed to
the function*/

54, uses the walt mechanism to walit f£Oor 4 response.
Access Machine of QEVAL-type juasi-object
55, wuses the read response mecnanism to read the response,

56. uses the @msgid of the response to locate the appropriate
MSGID-type object in its evaiuand,

57. replaces the HSucID-type object with tae object whose 1iid was
passed back in the response,

58, deletes ifrom the LisT-type object representing 1ts IWA, the
LIST-type object represeating the evaluand of tine evaluant which
just returned the Lresponse.

59, determines if 1its evaluaad contaias any outstanding
messages., If it does, 1t uses the walt mechanism to wait for a
response, and repeats steps 55-59 as necessary

/% 1f individual operand evaluation shouid be done 1n seguence
rather than 1n parallel, the evaluant performs ail the steps
53-59 for each operand */

0., uses the send request mecadbisa to seund tne evaluate reguest
to the object construct represented by the operator located via
the symbol resoiution mecananisw in step 37. /% The regyuest format
convention was adhered to in tue comstruction or this request,
since the evaiuant built up the reguest in the evaluand, */

61, uses the wait mechanism to wait foL a respoase,

62. /* Details of now a <fuanctioun processes its parameters are
not described here -- see scenarios 1 and 2 */

63. uses the read response mechanisa to read the response.

b4, uses the send respouse mechanism to pass Dpack tae response
to the interpretercr (YSLINY) or evaiuaant (QEVAL) that invoked 1t,.

65, destroys itselts

Access Machine of a JSLINT-type guasl-object

188 CUNFAIDENTLIAL

Chapter 5.3 KEY PaOCESSING acTIVITIES 221

bb. uses the read response mechanism to read the response.

07, deletes from the LIST-type object representing his IWA, the
LIST-type object representinyg tne evaiuand of the evaluant that
just returned the response,

o8. determines if there are wore sStatements in the group to be
processed by comparing the statement count with the statement
counter, If there are, it adds one to the statement counter, and
gJoes back to step 18.

69, uses tne send response Wecuanismd to pass back a respoanse
e¢lther to the reducible opnject or the YPARALLEL-type quasli-object
that cailed 1it.

70. destrojs nis 1WA

18# CONFIDENTLAL

222 A LOGICAL 1MPLoMENTATLION

i “ee) St°°ﬁ(si7t(x),61)5 .“} [ﬂfjé}% ;:.mm%;/

H 3 N i ‘
{E_sz S

Figure b5,3.,2-3:QuVAL spiuori for Subexpressions y:

Il CUNPIiDBNTIAL

Chapter 5.4

SCBNAKIUS

S.4.,1 Introduction

The scenarios are examples chosen to tie together iaeas presented
under Basic Structure, Basic #Hechanisms, and Key Processing
Activities.

5.4.2 Using a

-_—

Praimitive sSyntdactic Uperator

{oeeessum(a,b);ees}
Expression Evaiuation
1. /% Assume that the expression evaluation mechanisam has
reached the point where 1t 1s ready to invoke the sum functica,
passing 1t the evaiuated siample operands a and b as actual
paramaters */
2., uses the send rejuest mechanism to send tae evaluate reguest
to the object construct nameua sum waich was located via the
symbol resolution mechanism., The parameters to evaiuate are the
11d's of the object constructs named a and Db.
3., uses the walt mechanism to wait for a response,
Access Machine of tne PFUNCILLUN-type oObject (the sum function)

4, wuses the read rejuest mechanism to read the evaluate reguest.

5. creates a 4quasi-object construct Wit 4 wSUM-type
jquas.i-ob ject.,

0. uses the request format conveution and the rorward rejuest
mechanism, /* no new msgid */, to rorward a stagt reyguest to the
QSUM-type quasi-object just created. The parameters to start are
the 11d's of the object constructs named a and o.

7. uses the wait wmechanism to wait for the next request. /* The
PFUNCTION-type object 1s completely severed frouw tae Q50U type
Juasi-ob ject*/

Access Macnline of the QSUN type guasi-opject

8., uses tne redd reguest mecnanlsik to read tae start request.

i COsrIDaNTILIAL

224 A& LOGICAL IMPLEMENTATION

9. /* Detalils of precisely how u5UM does the addition uf d aud b -
are not described now */

10. uses the respouse format <coavention and the send response
mechanism to pass bdack a response to the expression evaluation,
The response <consists of the 11d of the object construct which
represents the result of addiny a and b.

11. destroys itself

gxpression Evaiuation

14. uses the read response mechanism to read tine response.

13, /* Refer to the expression evaluation mechanism for detaiils
of response handling */

Figure 5.4.,2-1:Primitive Operator Flow

I8 CONFAIDsNILAL

Chapter 5.4 SCENAxiIUS 225

>.4.3 - Using a Reducible Symtactic Operator

{ooesSAiN(X)eas}
Expression Evaluation

1. /¥ Assume that the expression evaluation mechanism has
reached the point where it i35 ready to invoke the tunction sin,
passing it the evaluated simple operand x as an actual parameter
* / :

2. uses the send rejuest mecnanism to send the evaiuate reguest
to the object construct named siln which was located via the
symbol resolution mechanism. Lfae parameter to evaluate 1s the 1iid
of the object construct named X.

3. uses the wait mechanism to wait for a respoanse,

Access Machine orf the FUNCTIUN-type object (the sin function)
4., uses the read rejuest mechanism to read the evaluate request.
5. «creates an object construct witi an UNDEF-type object.

6., replaces the UNDEF-type object withkh an object whose access
machine contains three 11d's: tae iid of the object construct
named sin which has a FUNCIION-type object /* tne SL interpreter
will need access to the SL text and symbol table */; the 1id of
the object construct named siint whica has a PFUNCTION-type
object /* this PFUNCTiON-type object will spin off an SL
interpreter */;, and the 1id of an object construct whicn has an
UNDEF-type object /* this 1s the P5R and will be used by the SL
interpreter for its workspace */, Such an object 1s a reducible
object,

7. uses the reyguest forwmat convention and the sena reyuest
mechanism to send a start reguest to the reducible object just
created, Tane parameter to start 1s tae 11d of the object

construct named x.

3. adds an entry to 1ts Qutstanhdinyg Activation Tabie. The entry
contains the msgid of the evaiuate rejuest just processed, the
msgid of the start reguest just sent to the reducible object, and
the 11d of the reducible ovject. /* Bacu FUNCTION-type object
must keep a record or ali spun-off r=ducible objects still active
30 tnat it can block chanye rejuests (a reguest to caange thae SL
text) until alil spun-off reducible objects nave terminated or
suspended */.

9. uses the wait mechanism to wait for the next reguest or
response. /* The FUNUCT{ON-type object is efifectively severed from

I8 CONFLIDENTLIAL

226 A LOGICAL iMPLEMENTATION

the reducible object since the FUNCTION-type object may now
process new reguests or replies, */

Queue Manager of the Reducible Object
10, uses the read rejyuest mecaanlsm to read the start regquest,

1. uses the request format «coavention and the send request
mechanism to send an evaiuate reguest to the object coastruct
named slint which was located via the 1id i1in tae access machine
of the reducibie object., The parameters to evaluate are the 1id
of the object construct npamed sin which has a FUNCTION-type
object/* this iid 1s in the access machine of the reducible
object*/; the iid of an object coanstruct which has an UNDEF-type
object /* thls ii1d 1s in the access wmachine of thne reducible
object */; the iid of the obpject counstruct usea for storaye by
‘the interpreted SL program /* thils ild 1S in the resource part of
the reducible object */; and tue 11d of the request sent to it by
the FUNCTION-type object (tne sin functioa) /* this reguest
contains a start request type and the 1id of the object comnstruct
named x */, /* The Jueue manager associated with a reducible
object always packages up the requests sent to it and sends then
on without examination for their interpretation by SL text */

12, wuses the walt mechanism to wait for a response.

Access Machine of the PFUNCTLUN-type object (the SLINT tunction)

13. uses the read request mechanism to read the evaluate
request.,
14, creates a qudasi-object construct witha a YSLINT~type

quasi-object.

15. uses the request format convention and the forwdrd request
mechanism to send a start request to the QSLINT-typ2 guasi-object
just created. The parameters to start are aidentical to the
parameters orf the evaluate rejuest discussed 1in step 11,

16. uses the wait mechanism to walt for the next regquest. /* The
PFUNCTION-type object is completeiy severed from the QSLINT type
quasi-object */,

Access Machine of the QSLiNI-type Juasi-object

17. uses the read reqguest mechanlsm to read the stact reguest,
i8. since the object representiny the process status record
{PSR) 1is an UNDEF-type object (ir.e. 1t 1s initialized), the
JSLINT-type quasi-object Knows that 1t 15 not resuming a

suspended interpretation, but 1S Dpeginning 4 new interpretation,
Therefore, 1t binds the parameters 1intended for processing by Si

iBM CONFIDENTIAL

Chapter 5.4 SCLNARIUS ‘ 227

code, and it augments the stocrage named in the resource part of
the reducible object. It binds tae parameter, the 1ii1a ot the
object <construct named x, as follows: 1t locates the symbol
number of the <formal parameter in the SL symbol table. The
property of being a formal parameter has been assocliated with the
. symbol number., 1t then locates the SL ilink table entry using the
symbol number as oiffiset, and inserts the 1id of the object
construct named x into the iid slot of the entry.

19. /* Details of interpreting SL text representangy the sin
operation are not described now, Refer to the expression
evaluation mechanism for details on interpreting SL text */,

20, uses the response format conventioan and the send response
mechanism to pass back a response to tne reduciple object. . The
response consists of the 11d of the object construct computed by
the interpretation of the SL text representinyg the sin function.

21, destroys itself

Queue Manager of the reducible object

22, uses the read respdnse mechanism to read the respoanse.

23, uses the send response mechanism to pass bpack the response
to the FUNCIION-type object (the sin function). The response
consists of the 11d of the object comstruct computed by the

interpretation of the SL text representing the sin function.

24, since the PSK indicates that an SL return function had been
interpreted, it destroys itseli,

Access Machine of the FUNCITION-type object (the sin function)
25, uses the read response mechanism to read the response,

26, uses the msgid in thae first subobject of the LIST-type
object representing the response to search the Outstanaing
Activation Table for the appropriate entry, retrieves the msgid
of the original evaluate reguest for use in step 27 and deletes
the entry.

27. uses the send response mechaulsm to pass back the response
to expression evaluation. The response consists of the 1id of
the object construct computed by the interpretation of the SL
text represented by the sin operator.

28. uses tne wait mechanisa to walt for the next reguest or
response.

BExpression Evaluation

1M CONFiIDENTIAL

sk

e T i, R

228 A LOGALCAL LMPLEMENTATION

29. uses the read response mechanism to read tne response.

30, /* Refer to the expresalon evaluation mecnaulbm for details
of response handllng /.

Figure 5.,4.4-2:Reducible Operator Flow

I8M CONFIDENTLIAL

Appendaix 1

GLOSSARY

The following words and pnrases include terms formaiiy defined 1in
the logyical architecture together with lmportant terms in the
informal discussions, Words beyinning Wwith lower case letters
are built-in objects, eitner constants or functions. Numbers in
parentheses indicate the section in which the term 1is defined,
The letters (GT) indicate teras from yraph taeory.

Access wmachine (2.1.3) The active part'oi an opject that responds
to requests upon the object,

Accessibility graph (2.1.5) A graph of all patas £for accessing
objects, It has two major subgraphs: tne ownership tree
and the chains of syaonyas.

Accessible (2.1.5) An object x 15 accessible frowm y it there is a
path in the accessibility yraph from y to X.

Activation tree (2.2.5) A tree linking activations of functions
to the activatiomns of tunctions taey cailed., It 1is a
subgraph of the dependency grapn.

Admissible 1index set (4.1.,9) 4 set of objects admissible as
indices to the access machihe of a collective object.

Argument (<.2.5) The result of evaluating an operand for a
function,

Assignment (2.1.4) An informal term for referriny to the stow and
replace functious.

authorize (2.1.5) A dyadic function that makes an authorize
request upon an object in order to obtain a synonym to the
object with a given set of rigats,

guffer (2.7.1) A temporary stordaje cell used for nolding an
object or shipping it somewhere else.

Cell name (2.1.1) An identifier that uniguely specifies a storage
cell.

Chain (GT) A graph whose edges derine a strict linear ordering of
the vertices. it 1s both a tree and a rooted tree.

iB8M CONFIDENTIAL

230 APPENDICES g Appendix 1

Circuit (GT) A path whose first and last vertices are identical,

Collective object (2.1.5) An object that owns storage cells
containing other objects. '

Connected graph (GT) A graph in which for any two vertices x and
Y, there exists an undirected path from x to y.

create (2.1.4) A dyadic function that creates a new object by
activating an access machine and providing a1t with initial
values for its owned resourcce,

beadlock (2.5.1) A state of the system in which a set of gqueued
requests can never bDbe resodved. it results from a circuit
in the dependency graph.

delete (2.1.6) A4 dyadic fumction tnat deletes storage cells from
-the owned resource of a collective object.

Dependency graph (2.1.3) & graph of outstanding requests upon
objects: 1f x 1is waliting for a request on y, then (X,y) is
an edge of the dependency graph.

Descriptor (2.1.3) An implementation defined represantation of an
access machine: it contains a PSR and specifies the
interpreter and procedurai description. '

Dictionary (2.24.2) For each moduie, the dictionary maintains
information about ail sSywpols: <character representaticna,
linkage, and initial attributes,

Diréctly accessible {(2.1.5) An object x is directly accessible
from y 1f there is a patna in tne ownership tree from y to Xx.

Bdge (GT) An ordered pair of vertices 1n 4 graph.

Element (2.1.5) An object residingy 1ih a storaye ceil owned Dy a
collective object.

S&lementary symbol (2.2.3) A symboi 1in program text without any
syntactically associatea operaands.

Elementary object (2.1.5) Anmn object that does not own any storage
cells; ail elementary objects are scalars. '

Environment tree (2.3.3) A rootad tree that defines search paths
‘for symbol resoiution,

evaluate ({2.1.4) A monadic fuanction that makes an evaluate
rejuest on its argument to deliver or yenerate a value,

IsH COMrIDENTLIAL

Appendix 1 GLUSSAKY 231
gxception (Z2.4.1) A respouse Dy dan acCCess machine inaicating that
the normal response cannot be mdaae,

Exteuded syntax (1.3.3) a4n 1urix notation that ilnciudes @macro
facilities to be mapped iuto strict syntax.

forest (GT) A yrdpan consisting Of one OrL wmore unconnected trees,

Function (2.1.4) An object tnat <responas to evaluate regyuests by
creating an dactivation taat computes an object as result,

Generator (2.1.7) A coilective Oobpject whose elements are computed
apon demand instead of beiny stored in the SusS.

srapn (GT) A set of points caiied vertices and or ordered pairs
ot vertices cailed euges, OUnly directed yraphs are used 1in
the discussion,

sroup (2.2.3) A 1list of statewents eanciosed 1n braces. A4 yroup
is the external form of a mouulie.

rdentiry (2.1.4) A wonadic ifunction tanat asxs an opject to
1dent1fy its access wmachiuae,

1list (2.1.5) 4 momadic runction taat returns tae index set of a
collective object.

Incominy edge (GT) An edye (Xx,y) 1s an incoming edge with respect
to the vertex y.

Index set (2.1.5) Tne set of objects mapped by sziect reyuests
onto storage cells of a collective object.

indiractly accessible (ce1.0) An object x 1s 1andirectly
accessible from y if taere 1s a chain of synonyas from y to
X

insert (2.7.0) A dyadic fumctidn that 1aserts new storayge cells
in the owned resource of a4 coliective object.

Interpreter (Z.1.2) The motive rorce pehind a process: it
examines the P5R, aecodes the procedural description, and
puts the PSR in its uaext state,

iambda (4.2.3) a4 function tadt Cleates a uew function by binding
formal parameters to a moudule,

List (4.1.5) The most primitive type 0f collective object., 1Its
elements are iandexea Dy consecutive inteygers startiag at 0
and may be of different types.

detonym (2.1.5) An encdapsuiated synonym. It 1s used ror pointers

iBM CUNFLDsNTIAL

232 APPENDICcES : © Appendix 1

in PL/L to contorm to restrictions 1iu the language
definition. :

Module (2.2.2) The machine rorw oL a group: 1t contains the text
for the group toyether with a dictiomary of aii symbols in
the group. :

ni1l (2.1.3) A primitive object taat has the properties of a zero
element list.

Object (2.1.3) Basic entity in the sSystem,; 1t has an active part
called an access machine and 4 passive part called an owned
resource.

Object base (<.1.3) Set of ail objects 1in the system.

Ubject image (Z2.1.3) An 1anternal represeantation oi an object: it
contains the descriptor of 1ts d4CCcess machine a4and a
representation of the owhed Lesource.

Orfset (2.1.1) A displacement Irom the peginuing of a table,
This term is not a formal part of tune definition.

Operand (2.<.3) Ah expression 1n proyram text that evaluates to
an argument for a runction.

Operator symbol {<2.2.3) A symboi that resolves to a tfuaction and
that has syntactically associated operands.

Outgoing edge (GT) An edge (X,y7) 1s an outgoiny edge with respect
to the vertex Xx.

Owned resource (Z2.1.3) Passive part of an object taat 1s managed
by the access macaine.

Ownership tree (2.1.5) A tree deripmed over the object base by the
ownershlp relation Dbetween coilective objects and storage
cells.,

parallel (2.2.5) A monadic functiou that causes the statements of
a module to be executed 1a parallel,

Parameter (Z4.2.3) A symbol iocai to a module thnat 1s resolved to
an argument every time tne wodule 1s activated.

Path (GT) A seyuence of vertices 0L a graph G such that if x and
y are adjacent vertices, (x,y) 1S an edge oi G.

Port (2.1.3) An object whose acCcess machine and resource connect

to a data pati through the Source-5ink Subsystem (see the
System Architecture Manuali).

I8M CONFIoENTIAL

Appendix 1 GLUSSARY 233

Primitive object (2.1.3) Au object that cannot be constructed
from other objects defined in the loygical architecture,

Procedural description ({<.1.2) gncoded information that detines
the states of a process and permissible state transitions,

Process (2.1.2) An automdaton tanat has three parts: a process
status recoru (PSK), a4 procedural description, and an
interpreter.,

Process status record (2. 1.2) Tne record of the current state of
a process, 1ts input, and 1ts working storayge,

Program text (<.2.3) A string of syabols,
PSR (2.1.2) Abbreviation rfor process status record,

jJuote (2.4.3) A syntactic marker tnat sSuppresses automatic
evaluation of a function,

xeady state (2.1.3) State of am access machine when it 1is ready
to respgond to a reguest.

reducible object {2.1.3) An object that can be coustructed from
more primitive objects in the logical architecture,

remove (2.1.6) A monadic tunction that removes an object from a
storaye celi without deleting the cell.

replace (2.1.86) A dyadic fuanction used for assigaments that
replace the taryet compietely.

Request (2.1.3) A pair of parameters passed to an object to
regjuest some service,

Reserved word (1.3.4) A string of twOo Or more lower case letters
used to desiynate systew aefined objects and variouas
constructions in the exteadea syntax.

Resource managyer (2.5.3) Thne object in a Subsystem that obtains
Ci1ghts to objects outsiue oI tune subsystem and allocates the
rights to other objects within 1t.

Rights (2.1.5) A set of requests that a synonym passes on to the
object it points tc.

koot (GT) The distinguished vertex of either a tree or a rooted
tree.,

Rooted tree (GT) A connected yraph ia which there 1is a

distinguished vertex wita no outgoiny edges and all other
vertices have exactliy one outyoing edye.

IBH CONFIDBNTIAL

234 ArPENDICES Appendix 1

Seed (GT) A tree wita one vertex and no edyes.,

select (2.1.5) A dyadic function that makes select requests on a
coilective object to map indices onto storaye celis,

Seguential synonym (2.1.8) 4 synonym that «can be sequenced
through successive elemeunts of a collective object.

SMS (2.1.1) Abbreviation for the Storage Management Subsystenm
(see the System Arcaitecture Manual).

5pace number (<.1.1) A number identifying a logical space in the
SM5. This term refers to tune implementation rather than to
the tormai definitiou.

Statement (2.2.3) A complete expression used as one element of a
module.

Storage cell (<.1.1) A logicai docation large ehough to contain
any object.

stow (2. 1.4) A dyadic function that makes a sStow regyuest on the
target to perrorm assigaments. It makes a less drastic
cnange than the replace function.

Strict syntax (1.3.2) A prefix notatlion tnat 1s wmapped one—-to-one
into the internal machine Code.

Strongly connected grapa (6T) A graph ian which for any two
vertices x and y, there exists a path from x to y.

Structure (2.1.7) A subtree oi the ownership tree toyether with
all objects accessible trom objects 1n the tree.

Subsystem {2.5.3) A subset 0of tne object base mnaving only one
point of connection with the yraphs iinkinyg the rest of the
systen.

Symboli (2.2.3) A striny of oug or wore characters.

Symbol resoiution (2.2.1) The act 0oi resolving symbois to cell
names of storage cells coutaininy objects.

syn (2.1.5) A monadic function thdat makes dan authorize request to
obtain a synonyim that responds to copy and destroy requests
itself.

Synonym (2.1.5) An o©bject that automaticaily passes reyguests to
the object whose storage celi 1t names.

System root (2.1.5) The object at the root of tae ownershlp tree;

ipl CONPIDENTIAL

Appeandix 1 GLUsSARY 235
all objects in the systew aite directly dcecessible rrow the
system root.

Tree (GT) A connected yrapn 1n which there 1s a distinyulshed
vertex with no 1incominy edges, and all otuer vertices have
exactly one 1incoming edge.

ander (2.1.3) A primitive uaderined object,

Undirected pati (GT) A seguence Orf vertices oI a graph G such
that 1f x and y are adjaceant vertices, then eitner (Xx,y) or
{y.x) is an edge of G.

Vertex (GT) A point on a yrapia.

Ip¥d CONFLDENTIAL

SDD - Poughkeepsie
D/Bl1, B/706-2
Extension 3-2589

March 15, 1971

Memorandum to: Recipients of Advanced Future System Proposal

Subject: Index to SL Report

Enclosed is an index to the "Fundamental Concepts and System
Language" Report. Page numbers correspond to the third edition,
dated March 8, 1971.

Tk F S

John F. Sowa
JFS:dc

Enclosure

oA

INDTY

access machine
accessibility granh
accessible

acauire function
activate phase
activating a function
activation
activation chain
activation tree
admissable index set
and function

answer .

aoplyvy function
argument

argument list

array

augment function
authorize function

“authorize request

base list

base value function
basis

braces

buffer

catenate function
ceiling function
cell name

claim function
collective object
complete index set
compress function
conditional function
connect function
consumable
contained

control program
controlling process
copy function

copy request
create function
cursor

data base
data communication

31,291,229
4t ,229
44,229

107

57

58

37,68

72

73,229

229

105

147
73,106,164
229

70

53

97
40,165,229
36 '

53
105
54

65,73,94,166

27,201,229

97
1004

27,229

107

41,239

514

105
74,106,167
76,95
85,147

66

115

81

0

36

77,80,95,196,168,230

73

134
145

IRM COMNFIDFMNTTAL

e

G . S, A

A

B

INDFX

deactivate phase 57
deadlock ' 85,229
declare 169
dedicated norts 115
dedicated subsystem 116
defined ' 61
delay function 73,106
delaved narse function ‘ 65,94
delete function 48,97,170,230
delete request 36
delimiter 171
denend 35
denendency graprh 35,230
denth 52
destrovy function 80,106
destrov request 36
dictionarv 6N,23N0
difference function 10
directlv accessible 43,230
directly contained : 66
disclose function 98,172
dron function 16
element 41,230
elementary object 41,23n
elementary svmbol 63,23N0
enclose function 98,173
environment 75
environment tree ' 76,230
environmental chain 76

eq function ' 105
evaluand 59,71
evaluate function 38,1n6,174,230
evaluate request 36,68
evaluation 69,70,71,202
excention 79,231
execute nhase 57

exit function 74,106,175
exp function 1nn
exrand function 105
exnression 66
extended syntax 23,231
finite resource 87
floor function 104
free function 107
free vorts ‘ 115
free subsystem 1148
free syvmbhol : 61
function 37
functional level 121,122

IBM COMFIDEMTIAL

5

-

ge function
generator
goto function
group

group markers
gt function

i-dimension index
ibase function
identifyv function
identify request
igenerator function
ignore function

iid

ilist function

index function

index object arrav
index set

indexed structure
indirectly accessible
initial interpreter
inject function

inner nroduct function
insert function
insert request

insert symbol function
inter-AFS job
intercent
internretation
internreter

introduce function

job

k-list
k~-vector

label

lambda function

le function
linking

list

list function

list structure
literal svmbol

1n function

load function

load nhase

local environment
local label prototyne
local svmbhol
locate function

INDFX

105

99,231
74,106,176
65,231

65

105

53

96,177
231

36
96,99,178
81,106

27
43,96,179,231
101

55 .
42,231

52

43,231
116
81,1nA
100
47,97,180,231
36

60,95

147

81

58,70
28,231
107,148

118

54
54

181
67,95,182,231
105
76
42,231
97
52
63
100
95
57
75
62
61
101

IBM CONFIDFENTTAL

d

INDEX

log function
1t function

maagnitude

function

map function

matrix

max function
membher function

message
metonym
migration

min function
minus function

module

monitor function

name value function
nand function
ne function

nil

nor function
not function

object

ohject base
object construct
object image

offset
operand
operating

system

operator symbol
or function
outer product function

own

owned resource

ownershin

tree

narallel function

narameter

symbol

narentheses

nath
nath name
nhases

prlus function
noint function

nort

power function :
nredecessor environment

nrimitive
primitive
primitive
primitive

argument
array
index set
object

14
105

1mnu
100

- 54

104

105
147,201
41,231
156

104

103
6n,232
81,106

97

195
105
32,232
105
105

31,201,232
34,232

201
33,202,232
232

64,232

116

63,232

105

100

41
31,202,232
42,232

72,106,183,232

61,67,232
180

47,232

17

57

103

99

33,232

100

74

93

54

51
31,202,233

IBM CONFIDFMTTAL

s s

£

priority function
nrocedural description
process

nrocess status record (PSR)
nroduct fucntion

program text

pseudo list

qeval

aslint

asum 203
quasi-activation
quasi-object
queue

queue manager

aid

quote

quotient remainder function
quotient” function

r-array

rank

ravel function
ready states

rebase function
recinrocal function
reducible object
reduction function
release function
remove function
reneat function
renlace function
renresentation
renresentation function
representative svmbol
request

request constant
reaquest function
request queue
reshane function
residue function
resolution man
resource manaqger
resource nackages
resnonse queue
reverse fucntion
rights

rotate function

safe sequence

select function
select request

IBM

INDEX

81,106
28,233
28,233
28,233
62,233 ' o
53 | |

203 ' ' o
2n3

38 :
203 | y
201 |
201,205 !
202 |
64,904,233

104

104

53

53

98

31,233

98

103
32,202,233
99

107
48,99,185,233
74,106,186
48,77,99,187,233
33

105

63

35,233

37

38

201

o8

104

75
88,114,233
115

201

106

39,233

106

89
43,96,106,188,230
36

CONFINDENTIAL

A

INDIX

semicolon :
send answer function
send message function
sequence exception
sequential synonym
server configuration
shape function
signal function
signum function
simple expression
simple name

SMS

space number
source/sink

start function

start request
statement

statement index

sten function

stop

storage cell

stow function

stow request

strict syntax

"structure

subsystem
subsvstem landlord
subsystem resource managers
subhsyvstem root

sum function
suspend function
symbol :
symbol referenc
symbol resolution .
syn function
synonym

system input
svstem root

take function

text

ton onerator
translate function
translate machine
translate nhase
translate subiject
transnose function

ultimate function
unbounded resource
undef

unique name function

189
107,148,207
107,148,205
80

234

121,127
52,53,96,190
79,106

193

6l

47

234

234

147

81,196

37

66,230

59

97

76,95
27,201,230
39,77,99,191,230
37

22,230
52,230
88,234

115

116

88

101

80,106
63,2134

60

59,234
4n,09,192,234
39,234

116

42,234

106

62

6u
108,110
18

57

18

0

99
87
32,235
95

IRM COMPTIDTNTTAL

uninque resource
unload nhase

vector
visible

wait answer function
wait message function
where

work flow

IBM

TINDEX

87
57

54
76

107,148,208
107,148,218
77

126

COMFTDEMNTIAL

A

