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Memorandum to: Recipients of Advanced Future System (AFS) Proposal 

Subje~t: Poughkeepsie AFS Proposal 

Enclosed is a copy of the present draft of our proposal for 
AFS architecture. Though a great deal of progress has been 
made, this is a report on progress and not a final report. 
In one sense the ideal approach would have been to let the 
two principal authors of the conceptual work, Steve Zilles 
and John Sowa, proceed to the production of a complete docu­
ment stating a cons istent set of fundamental concepts with 
absolute academic purity. Then others could propose and 
describe practical, implementations. 'Such an approach would 
have two overwhelming flaws: 

1. The resulting proposal would suffe r from a 
lack of contact with realities of what is 
required to implement a system, no n1.atter 
how elegant the document. 

2. No individual or pail' of individuals is fully 
equipped to deal with all of th@ dive'rse 
dlsciplines that are part 'of the desig~n ~ of a 

.full hardware-software' systen1. .. 
:' ~., 

Instead, our approach ~as geel!- to simultaneously develop 
pragmatic detail~: and abstra'ct" 'c'Jncepfual foundation. . This 
adn"littedly has resulted in false starts and frequent rethinking 
of basic, issues. The great, benefit has been in the testing ~f 
concepts and of implementation against the sternest measure of 
all - - an orthogonal point of view~ . This approach has resulted 
in a study which is technically' both broad and deep. 

The process of synthesis is not yet complete" It has resulted 
in much change in both points of view. Only when this change 
has stopped will we consider th~.proposal complete, consistent, 
and final." 

The two principal 'parts of our proposal are entitle'd,lIFundamental 
Concepts and System Language ll and IISyGtem 'Architecture". '1'h.ese 
will be referred to as the SL report and the SA ,report 01' ,as SL 
and SA. ,They were prepar.,ed ,.,simultaneQus1y, with. related but dir: .. 

ferent points of departure. 
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Recipients -2- March 1, 1971 

The purpose of the System Architecture study was to explore the 
feasibility of this appro~ch and to discover and solve problems 
arising during in'lplementation. 

Creating a simple, generalixed, logical foundation and finding a way 
to create a system language that can meet the objectives of AFS and - - , 
to serve as an adequate system control and task management language " 
and as an adequate target language for translators from high level 
languages was the purpose of the SystelTI Language study. The objective 

" of producing a simple, coherent, design with a minimal number of 
. concepts and conventions is prim . .ary. 

. . 

The goal of discovering how to create a high level language that is 
a suitable target for translators seems within our grasp. Much 
supporting evidence is contained in this report in the form of defini­
tions of functions which support fundamental language properties. Of 
particular importance are the functions and definitions that are aimed 
at supporting language facilities that have not yet been specified but 
will be important by the time this product reaches the market. More 
evidence is contained in ASP 051, "Arithmetic Operations in AFSIL". 

Representing our case for feasibility is the System Architecture report. 
There are two aspects. On one hand, we created a simulator that 
dealt with all the problems associated with the critical parts of PL/l. 
To do this w~ couldn't leave any unsolved problems hidden under vague 
phraseology since the simulator "runs. In the SA report are the solutions 
to problems that are glos sed oyer or ~ven ignored in the SL report. It 
may be less evident that the advanced -approach' in SL can be implemented 
with an extension of the san1.e apP:roach. However, close study of the 
two reports and discus sion with 'the -; contributors will I hope cOllvince you, 
in fact, what we propose can ac,tually: ,be done. ' 

't' <.". '=: '-...;' ... : -;" 
\'. ~-

The second major topic of SA is efficiency. We are gratified to find. 
that our intention of creating an efficient system appears to be quite 
reasonable in view of the pel-formance being predicted through simulator 
usage. 

Reading and understanding this 
To assist you, key contributors 
whatever is required. 

CJC:cpl . . . 
< 

.~ : 

report will be a 'sizable undertaking. 
can be made available to present 

C. J. Conti 

DO NOT REPRODUCE - FOR FUR THER COPIES, PLEASE CONTACT 
C. J. CONTI's OFFICE - EXTENSION 3-2531 
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AFS SYSTEM ARCHITECTURE MANUAL 

February 26, 1971 

This document contains information of a proprietary 
nature. All information contained herein shall be 
kept in confidence. None of this information shall 
be divulged to persons other than: IBM employees 
authorized by the nature of their duties to receive 
such information, or individuals or organizations 
authorized by the Systems Development Division in 
accordance with existing policy regarding release 
of company information. 
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FOREWORD 

This document has been prepared as a manual and 
thus order of presentation is given in reference form. 
For a reader who is being exposed to the system for the 
first time, it may be useful to read the document in a 
different order. The suggested procedure is to first 
read the Introduction (Chapter l}i then Section 2.1, the 
Overview of the Logical Machine; then Chapter 3, the 
Logical System; then Section 4.1, the Control Description 
of the Physical System. with this preparation, it is hoped 
that the reader will be able to use the document as intended. 

The authors have used several conventions to aid the 
reader. When a significant term or phrase is introduced for 
the first time it is underlined. Most terms which are capi­
talized can be found in the Glossary (Chapter 6). 

All readers are invited to submit their commentary 
on the system and this document. Please contact A. Peacock, 
Department Bll, snD Poughkeepsie. 
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CHAPTER l 

INTRODUCTION 

1.1 Purpose of the System Architecture Manual (SAM) 

SAM is one of a set of documents prepared by the Advanced 
Systems Group in Poughkeepsie in response to the AFS 
requirements and objectives which were issued jointly by 
Carl Conti (Manager of Advanced Systems, Poughkeepsie) and 
Al Magdall (Manager of Advanced Systems, Endicott) on 
January 19, 1971. Two other major documents in this set are 
the System IPnguage Manual and a subset implementation 
(described in ASP memos 015, 046, and 049)~ The relationship 
of these documents is simply illustrated: 

FUNDAMENTAL 
LOGICAL 

ARCHITECUTRE 
SYSTEM 

, 
~ -- -

CONCEPTS _._-_._---- , 
.... -------.,-... ---....... ,-.-! .. --.••. "-,-,~.-.-.-.-,. ~-.~ .. -.-.-.. 

• 

System Language 
Manual 

System Architecture Manual Models and 
Des·igm. Manuals 

A major purpose of SAM, then, is to provide a 
communication interface between the abstract, analytical, 
description of the system in the System Language Manual and 
one or more implementations. A second major purpose of SAM 
is as a convenient introduction to the system for skilled, 
but unfamiliar, readers. 

,It is inevitable, and even desirable, that the early 
versions of these three document sets are not completely 
compatible. Some differences, primarily in nomenclature, 
between the Systems Lanaguage Manual and SAM are discussed 
in a Glossary of terms (Chapter 6 of this Manual). More 
serious technical differences are, or will be, discussed in 
ASP memos. Ultimately, SAM will become, as these differences 
are resolved, an approved Reference Manual for the system. 

* Advanced System Proposa,l Department Bll 
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Section 1.2 INTRODUCTION 

1.2 Principal System Features 

The novel features of this system are designed to 
bring about a major improvement in programmer productivity; 
to make the system easier to use and maintain ; and to 
penetrate new market areas, particularly Data Base Operation. 

Central to the heart of the system is the concept 
of Data Independence. Specifically, the executable code 
references data objects by a logical name rather than 
physical location; the logical descriptions of data objects 
are maintained with the data values and not with the code, 
and the physical representations of data objects (both 
descriptions and values) are not known, implicitly or 
explicitly, to the executable code. Thus, the operators of 
the executable code are generic and may be applied to a class 
of data objects without regard to their current physical 
representation, or location. 

The system has been designed to make possible the 
faithful support of the major high level languages; in 
particular COBOL, PL/l, APL, RPG, and FORTRAN. Thus a user 
of such a language can be provided with a logical machine 
that appears to him to be directly executing statements in 
that language. The system will detect all the errors defined 
in the language and report back to him in terms of his source 
statements. In light of these errors, he may modify his 
source text and, where this is meaningful, continue execution 
from the point of error discovery. As a natural consequence 
of this mode of operation, the execution unit treats a 
statement (i.e. a list of operators and operands) as the 
unit of execution rather than an individual instruction. 

The system also features a new System Language which 
combines the semantic power of the best procedure oriented 
languages, with the operators necessary to support system 
programmers in their task of building and maintaining 
application programs, operating systems and language compilers. 
Since the necessary operators to build software support are 
directly supplied in the system language, the language 
controls and defines the whole system in the same manner 
that System/360 Principles of Operation controls the main­
frame hardware of System/360. 

A last important feature of the system is the clean 
separation of the logical (user-oriented) definition of the 
system from the physical (implementation-oriented) definition, 
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Section 1.2 INTRODUCTION 

with rigorously controlled interfaces between them. This 
makes possible a wide variety of implementations and 
extensions without jeopardizing the logical foundation. 

1.3 System Structure and Principal Components 

1.3.1 The Logical Machine 

Every user Job is processed in a separate Logical 
Machine (LM). A Job is a major unit of work in the system. 

• b 

All Jobs are scheduled and run independently; all communication 
and sychronization between Jobs is the responsibility of the 
system users, using explicit communication mechanisms pro­
vided by the system. 

An LM performs processing on behalf of the user by 
activating one or more Modules which are contained within 
the Logical Machine in a structure called The Program Tree. 
Both nested and parallel actiyation of .Hodules may occur 
within the LM, the current activation status being recorded 
dynamically in The Activation Tree. Connectivity to the 
current generations of variables used during processing is 
made by a set of Storage Anchors, one set being provided for 
each parallel activation. 

The active mechanism~ within a Logical Machine are 
called Interpreters. Every parallel activation is supported 
by a separate Interpreter; implicit communication (through 
common variables) is possible between Interpreters in the 
same Logical Machine. The work accomplished by a single 
Interpreter is called a Logical Task. Thus a Job consists 

1\\-!. ~& Ir I of one or more Logical Tasks, the number of Tasks existing 
S"t~l"~ at '7n~t~me being identical to the current number of parallel 

f\l.OCl:ti)~-O"(L,~~ act~v~ t~es. 

\)w &f' 31l~. Explici t communication -wi th th~ other logical 
components of the system (i.e. System Facilities, the 
Logical Machine Supervisor, and the Logical I/O System, is 
provided by a series of specialized communication modules 
accessible from the root (System Node) of the program Tree. 

Just below the System Node in the Program Tree 
is the External Node. The Module at this node is called 
the External Module and is activated (i.e. supplied with an 
Interpreter) when the Logical Machine starts a Job. This 
activation include$ passing a parameter to specify the 
source of initial commands for the machine. 

IBM CONFIDENTIAL 
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Section 1.3 ,INTRODUCTION 

1. 3.2 The System Facilities 

Every Logical Machine has access to a number of 
special system functions. These capabilities are called 
System Facilities and include the ability to catalogue data, 
obey system commands, edit catalogued data, introduce 
procedures, etc. All of the logical objects in the system 
(cataloged data structures, Modules, Logical Machines, 
Logical I/O devices, Logical Users, etc.) are themselves 
owned by another logical object. The set of nested 
ownership relations is reflected in the Ownership Tree 
which is maintained by the System Facilities. Access to 
objects is monitored by System Facilities (this monitoring 
is automatic since it is only achievable through the 
communication modules of the LM's) to ensure that the 
accessor is authorized to access the object and to provide 
the necessary interlocks required by the type of access 
(read-only, modify-exclusive, etc.). Many of the leaves and 
nodes of the ownership tree are themselves complex structures. 
This fine structure is not directly reflected in the 
Ownership Tree which resolves only to the detail necessary 
to provide unique ownership and access rights. 

Any object in the Ownership Tree can be created, 
copied or modified by an active Logical Machine that has the 
appropriate authorization by using its communication 
modules. Thus one LM can create, copy, modify or pass 
messages to another LM. An active Logical Machine can in 
fact be thought of as a logical object in the Ownership Tree 
that is in the modify-exclusive state. 

1.3.3 The Logical Machine Supervisor 

One specialized LM, called the Logical Machine 
Supervisor, is placed at the robt of the Ownership Tree and 
activated at System Generation time with its External Module 
connected to an operators console. Other specialized LM's 
are provided by the systems programmers (i.e., users with the 
appropriate authorization) to support the normal system 
functions of translating (i.e. creation of a Module from a 
Data Object), Loqical I/O , Data and Load Module editing, etc. 

The principal logical task of the supervisor is to 
activate Logical Machines (including parametising t4eir 
External Modules) and to monitor their activities in order 
to handle exceptional ccnditions such as job completion. 
Depending on the type of user activity this may involve 
providing the user with a new Logical Machine, connecting 
him to an existing LM or making a fresh copy for him of an 
existing LM. 

IBM CONFIDENTIAL 

7 



Section 1.3 INTRODUCTION 

The supervisor also has the important task of 
communicating with the physical control system to initiate 
Physical Tasks for either a Program Processing Unit or a 
Source-Sink Processing Unit. The comfuuhi"6atibn""'"Tfi'Eerface 
between the supervisor ana-the physical system consists 
primarily of a set of tables representing the current status 
of work in. the system. The supervisor maintains logical 
(user-oriented) tables representing the users'Jobs and their 
subdivision into Logical Tasks (parallel activations within 
a Logical Machine) which occur upon execution of attach 
operators in a LogIcal Machine. 

These Logical Tasks are analyzed and monitored by the 
supervisor which breaks them into one or more Physical 
Tasks and places them into queue tables for Processing Units 
to be scheduled by the Physical Control System. A Physical 
Task includes in its definition the kind of processor required, 
any physical resource requirements, the priority of execution, 
and the scheduling discipline (batch, time-shared, etc.). 

1.3.4 The Logical I/O System 

The Logical I/O System is responsible for all transfer 
of information to and from a Logical Machine. This includes 
communication with a user, another LM, the System Facilities, 
Source/Sink devices and other systems. Logical I/O is pro­
vided by a series of specializedModule~, which are placed at 
the System Node of each LM' s Program Tree. Thus any LM can 
obtain Logical I/O by a simple call or an Attach of one of 
these Modules. 

Logical I/O does not necessarily result in the creation 
of a Physical Task for a Source/Sink Processing Unit. Some 
requests can be satisfied by the temporary incorporation of 
an object in the Ownership Tree into a Logical Machine's 
environment. Others result in copying or creating such an 
object which can be done as a Physical Task by a Program 
Processing Unit. Source/Sink Processing units are, however, 
required for Source/Sink I/O, user communication, and 

communi·cation with other systems. 

1.3.5 The Physical System Control 

The Physical System, which supports all the structures 
and activities of the Logical System, consists of three major 
sUb-systems: The Storage Management Subsystem, The Program 
Processing Subsystem, and The Source/Sink Processing Sub-
system. The harmonious cooperation of these sUb-systems and 
their allocation to the Physical Tasks which represent the 
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Section 1.3 ,INTRODUCTION 

activities of the Logical Machines is ensured by a set of 
hardware and software capabilities known as Control. 

Control, at the lowest level, consists of a Storage 
Bus which enables the Processing Sub-systems to communicate 
with the storage Sub-system and hence, indirectly, with each 
other. A minimal direct signalling capability, called the 
Interrupt Bus~ is also provided at this level. At the next 
level, control consists of a number of task queues in 
storage (one per processor type) together with the basic 
operators to build, search, and·contro1 access to the queues. 
Thus processors have the basic ability to transfer tasks to 
other processors and search for tasks for themselves. At 
a higher level, control is a high priority Physical Task 
which is responsible for physical resource allocation and 
normal and abnormal task termination.. Finally, at the highest 
level, control is a set of· physical tasks which constitute 
the Logical Machine Supervisor. 

1.3.6 The Storage Management Sub-System 

The Storage Management Sub-system is an automatic, 
paging hierarchy of storage devices ranging from the highest 
speed electronic memory to lower speed electro-mechanical 
devices and out through operator controlled shelf-storage. 
It differs from conventional 'virtual. memories' in three 
important respects. 

Firstly, rather than one, the system provides a 
practical infinity of independent linear spaces, each of 
which can grow or shrink independently. Secondly, the system 
only manages real spaces (i.e. spaces that contain data) and 
only to the current physical length of the space. Finally, 
spaces are created and grow in the page buffers of the 
highest speed electronic memory so that 'Get Main' is a very 
fast operation. 

1.3.7 The Program Processing Sub-System 

This Sub-system consists of one or more Program 
Processing Units (pPU) which are similar in function to a 
conventional CPU, but which operate at a higher level, close 
to a Procedure Oriented Language. They process statements 
rather than instructions; provide a wide range of control 
operators, and use described data rather than simple bytes 
to represent data values. 
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Section 1.3 INTRODUCTION 

The PPU is essentially designed as a Prefix­
Polish Stack Machine, extended by a set of Storaqe Ancho~ 
Regis~ers w~ich.perform the function of base registers, 
and wlth bUllt ln vector and structure handling operations. 

1.3.8 The Source-Sink Processing Sub-System 

This Sub-system consists of one or more Source/Sink 
Processing Units (SSPU) together with the conventional 
source/sink devices and communication lines. The SSPU is 

) /0 • 

a complete processing unit containing most of the capabilities 
of a PPU rather than a simple data channel. Thus it is capable 
of handling the complete task of data-transmission to and from 
storage without interrupting a PPU for intermediate processing. 

The principle functions of the Source/Sink Processing 
Units are line control, network management, source/sink device 
management, control of the system clock and handling "wake-up" 
type interrupts to and from the PPU's. Both local and remote 
source/sink devices are handled by the SSPU, so that the dif­
ference is "transparent" to the casual user. 

1.4 Using the System 

The system is designed for a wide variety of users and 
uses, ranging from continuously running automatic jobs, through ~. 
conventional application programs, to the design, debugging and \, 
operation of complex operating systems and data bases. This 
large skill range is provided for in several ways. 

Firstly, a very powerful set of control operations is 
provided (obviously some of the more complex and infrequent of 
these are implemented in IBM supplied software or micro-code) . 
Secondly, however, to preserve system integrity and provide 
high performance, many of these tunctions (such as Storage Manage­
ment) have been built in( with rigorously controlled interfaces 
which do not allow for alternative a,pproaches. 

Superficially it would appear that naive users, provided 
with such rich capabilities, could overwhelm the entire system. 
A very wide degree of control is provided, however, by controlling 
the Node in the Ownership Tree to which a user is connected, the 
kind of Logical Machine that is placed at that Node, and the 
priority he is assigned. 

Some idea of the scope of possibilities is provided by 
some simple examples: 
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II 
Section 1.4 INTRODUCTION 

1.4.1 Sensor-Based Applications 

These applications are performed on continuously active 
Logical Machines which are simply waiting on I/O interrupts. They 
have modules of code in their External Nodes which interpret 
commands to change parameters but do not build or modify them­
selves, or other Logical Machines. 

1.4.2 Standard Batch Application Programs 

These programs differ only slightly from Sensor-Based ones, 
in that their Logical Machine is inactive between runs. Thus, 
to be started, they require a sign-on and the intervention of the 
Logical Machine Supervisor. The addition of the sign-on capability 
extends the potential users of any application; however, this can 
be restricted to the required degree by placing the Logical 
Machine in the appropriate node in the Ownership Tree. 

1.4.3 Problem-Solving and Debugging Simple Applications 

The user operating in this mode signs on to a Logical 
Machine which initially contains merely a System Node and an 
External Node. The System Node contains access to the complete 
range of System Facilities but his capability to use them depends 
on the interpretive range of the External Node. In general, this 
node can interpret the full command language of the system but the 
designer of the Logical Machine may choose to restrict this 
capability by supplying a specialized External Node (e.g., he may 
only wish to supply the command language of the APL/360 system). 
The user once signed on to such a Logical Machine will typically be 
able to improve and specialize its processing capabilities by 
Connecting Modules below the External Node. These modules may be 
already in the Ownership Tree or may be introduced by him in any 
of the languages supported by the system (i.e., any language for 
which a Logical Machine that translate source text to a module exists). 

Subsystem Builders 

The designer of a subsystem creates one or more Logical 
Machines which are to be placed into the Ownership Tree for the 
use of less sophisticated people. When the designer signs on for 
this purpose he is provided with a Logical Machine with a complete 
System Node and External Node. The commands which are particularly 
important to him are the ability to create a Logical Machine 
(specifying the Module to be placed in the External Node and the 
position in the Ownership Tree) and to call or attach one Logical 
Machine from another Logical Machine. Additionally, he needs to 
be aware of the physical system supporting a Logical Machine in 
order to achieve the appropriate cost performance. 
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CHAPTER 2 

THE LOGICAL MACHINE 

2.1 Overview 

A Logical Machine (LM) is that part of the system pro­
vided for processing each independent job. The LM's function 
is to execute code in the proper environment on behalf of the 
user. The LM, in addition to executing code, possesses the 
capability to communicate with the other logical components 
of the system ,(e.g. System Facilities, the Logical Machine 
Supervisor, and the Logical I/O System). 

Logical Machine Components 

In order to execute code in the proper environment, a 
Logical Machine must contain the mechanisms to access the 
proper operands at execution time, provide the necessary op­
erators, maintain program control, and accomplish the above 
while being "faithful" to the rules of the language used by 
the user. The mechanisms of the LM used to accomplish this 
are: a Program Tree to define the static connection of 
Modules, an Activation Tree which defines the dynamic linking 
of Modules, a Dynamic Storage Mechanism to provide the gener­
ation identification capability for data objects and Inter­
preters to execute the code. 

Interpreters are the mechanisms which perform all oper­
ations required, and the Program and Activation Trees, and 
the Dynamic Storage Mechanism provide them the necessary 
information to obtain the proper results. 

Each LM contains certain built in functions which are 
provided as special nodes in the Program Tree. 

Program Tree 

The Program Tree is the mechanism for name resolution. 
The nodes of the tree are modules which have been generated 
by Translators and grafted by the connector. Each node contains 
the list of its symbols in a Local Symbol Table (LST) , an ac­
companying Local Declare Table (LDT) describing the symbols, 
and a Local Link Table (LLT) for linking the symbols to their 
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Section 2.1 OVERVIEW 

values. Each node usually contains executable code. 

Activation Tree 

Each node in the Activation Tree corresponds to an act­
ivation of a node in the Program Tree. The Activation Tree 
is a mechanism for maintaining the required information 
during Tasking, as well as Calls and Returns. 

Dynamic Storage Mechanism 

The Dynamic Storage Mechanism provides a set of named 
Storage Anchors used as starting points for generations of 
variables. These point to the appropriate Reference Table 
for each variable. A System Storage Anchor is automatically 
supplied for each lexical level in the Program Tree. User 
Storage Anchors are supplied as required by user allocated 
variables. 

Interpreters 

Interpreters are the logical executors of code and are 
the source of all functions/operations in the logical machine. 

An interpreter executes on a statement basis, maintains 
the statement counter, and provides inter-statement control as 
determined by the code (e.g. IF, DO, GO TO) and intra statement 
control using the operand descriptor information provided (e.g. 
vector operations). 

Use of the Logical Machine 

Logical Machines are activated by the Logical Machine 
Supervisor. This will occur when a job is created; for in­
stance, when a user signs on the system. The LM then imple­
ments the functions required to process the user's program. 
A general flow of creating and executing a user's program is 
shown in Figure 2.1.1. 

Translate takes the user's source code (APL, PL/I, FORTRAN, 
COBOL, RPG, etc.) and transforms it into an internal form of 
the System Language. The translate process accepts source code 
one line at a time, checks for syntax, and builds a Module. A 
Module consists of executable code together with information 
tables. 

IBM CONFIDENTIAL 
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Section 2.1 OVERVIEW 

INTERPRET 

source text 

creates a Module 

generates results 

removes a node from the 
Activation Tree 

Figure 2.1.1 CREATING AND EXECUTING A PROGRAM 

Connect takes a Module and places it into the Program Tree 
which represents the static connectivity between the Modules 
of the program. 

Activation of a module is the process of creating a node 

\ 
for it in the Activation Tree. The activation tree represents 
the dynamic structure of the program. 
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section 2.1 OVERVIEW 

Names are resolved using the Program Tree. However, a 
name may have several generations of values associated with 
it. The process of determining the appropriate generation 
is resolved by the Dynamic Storage Mechanism which consists 
of a number of Storage Anchors from which the appropriate 
generations are chained. The result of activation is the 
initiation of an interpreter. 

The Interpreter executes the code which is in the ap­
propriate node of the Program Tree. Each parallel task has 
a separate interpreter. Interpretation is the process of 
executing the code in the appropriate module in the Program 
Tree. The result of the interpretation is the "answer" as 
defined in the user's code for that module. 

Deactivation removes the node from the Activation Tree 
and removes the generation of variables associated with the 
activation. 
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2.2 The Program Tree 

Each Logical Machine has a Program Tree. The purpose 
of the Program Tree is to contain the static connectivity 
between the Hodules of the Job executing in the Loqical 
Machine. (An example of a Program Tree is shown in Figure 
2.2.l) Each node of the Program Tree represents a Module 
and contains the executable code for that Module, together 
with the Local Symbol Table containing all the Symbolic 
Names referenced in the Module, and the associated Local 
Link and Declare Tables. Each node also contains the names 
of, and the connectivity to, the Modules which have been 
connected into the Program Tree directly below that node. 
The Program Tree is used by the Linker in the resolution 
of the Symbolic Names referenced in the executable code of 
the Module. Further nodes can be created in the Progtam 
Tree for a particular Logical Machine by the execution of a 
Connect command in that Logical Machine. 

There are two nodes in the Puogram Tree which have 
special properties and functions. The root node of the 
Program Tree is termed the System Node and contains the 
names of, and connectivity to, the system functions which 
are available to the Logical Machine. The System node also 
contains connectivity to the External Node. The External 
Node contains the Local Symbol, Link and Declare tables for 
all the external names of the program. The executable code 
of the Module represented by the External Node has the 
function of interpreting the command Language. Whenever 
a new Logical Machine is created, it will be initiated to 
be executing the Module, associated with the External Node. 
The source of the command to be interpreted must be specified 
as a parameter when the Logical Machine is initiated. For 
example, it might be an interactive terminal, or a 
catalogued data set. 

2.2.1 The Use of the ?rogram Tree for PL/I and APL 

For a PL/I program there is a node in the program 
Tree for each Procedure or Begin block. The Program Tree 
reflects directly the static block structure of the program. 

10 , 

The External Node contains the names of, and connectivity to, 
every external procedure and every external name of the program. 
The name resolution for the symbolic Names referenced in each 
Procedure or Begin block is done by a search of the Program Tree. 
The subsequent steps required to obtain a reference to the 
correct generation of the variables by means of a storage 
anchor are discussed under Dynamic Storage Control in 
Section 2.4. 

For an APL program there is a node in the Program 
Tree directly below the External node for every function. 
All the names referenced in the APL program appear in the 
External Node as user allocated external variables. 
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Hence, there will be a Storage Anchor name for each 
symbolic name in an APL program (see Section 2.4). 

2.2.2 An Example of the Program Tree 

The diagram in Figure 2.2.1 shows an example 
of the Program Tree for a Logical Machine which has had 
the PL/I program shown to the right of it connected into it. 

Note: The Program Tree shown has been simplified by 
the omission of the nodes corresponding to the "imaginary" 
blocks which are said to contain the external procedures 
of a PL/I program. The purpose of each imaginary block is 
to contain the external entry names of the external procedure 
so that they can be seen by any reference· statically contained 
within the procedure, but not by references statically 
contained within any other external procedure. The entry 
names, being external, will of course appear in the 
External Node, but the PL/l la.nguaqe r:ules. fio3,Y th'3,t they 
will only be found there by explicit declarations of the 
name as "external". These rules can be incorporated into 
the Program Tree by the inclusion of a node between the 
External Node and the node for each PL/I external procedure. 
These nodes correspond directly to the "imaginary" blocks. 
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Procedure 
Q 

System 
Node 

Y Ext Var 
S lnt 
TInt 

proceduV'­
U " LST LDT LLT 

Ext Var it-

Executable 
Code 

~----------.--~ 

Translate .. 
etc. 
External 

X Ext 
Y Ext ,\ '1'"',--

Ext Proc .'--t----...c \" -~ DAPOV f"Or--1 
Ext Proc'" i varia~le __ ~J 

" 
Executable " "", 

Code 

for 

P: PROC: 
DCL X EXT; 
DCL A. INT; 
R: PROC 

DCL ,C) lNT; 

END Ri 

END P; 

q: PROCi 
DCL X EXT; 
S =[PROCf 

END Si 

T: fPROC i 
DCL Y INTi 

U: f1'ROC i 

II I DCL Y EXT; 

l!:ND U i 

L I mm T; 
ENIT Qi 

DAPOV f~~-\ 
variable B 

_ -..w_ , __ " , "'~ ...... 

I --'--"] 'Dp.POV for 
Lvariable C ---.------

I DAPOV for 1 
I variable D Note: The connections shown 

between nodes and DA.POVs are 
achieved in practice by a 
combination of the Storage 
Anchor and the Relative lD. 

2.2.1 An Example of 
for a :PL/1 
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2.3 The Activation Tree 

Each Logical Machine has an Activation Tree. The 
purpose of the Activation Tree is to contain information about 
which Modules are currently active and the order in which they 
called or attached each other. Each node of the Activation Tree 
corresponds to an activation of the Module associated with one 

/9 

of the nodes of the Program Tree. The root node of the Activation 
Tree corresponds to the activation of the Module associated with 
the External Node of the Program Tree. This node is activated by 
the creation of the Logical Machine. When there is no multi­
tasking within the Logical Machine, the Activation Tree has only a 
single limb. 

The following examples represent Activation Trees which 
could exist during the execution of the PL/I program shown in 
the example of the Program Tree in Section 2.2.1. 

Non-Tasking Case Multi-Tasking Case 

Activation 8 2 E'''·' .,----,., .... __ ... '._._J-

of 8 --1f----'_."--'-' 
Task 3 
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2.3.1 Invocation by Call or Function Reference 

The invocation of a Module by the execution of an 
explicit call or of a function ref~rence, causes a new node 
to be added to the branch of the A~tivation Tree representing 
the task in which the invoking operation was executed. 
Information is stored in the node of the activation tree to 
pr'ovide a link to the node of the Program Tree corresponding 
to the Module activated, and to enable a return to be made to the 
point immediately following that from which the Module was invoked. 

Two types of Return are possible, these are usually 
termed "normal" and "abnormal" Return. Normal Return occurs 
when the current activation is terminated, and execution is 
resumed at the point remembered in the node of the Activation 
Tree. Abnormal ,Return occurs when a GO TO statement nominates 
a non-local label value as its operand. The current activation, 
and any intervening activations are terminated, and execution resumes 
at the label point specified in the GO TO statement. 

2.3.2 Invocation by Attach 

The invocation of a Module by the execution of an 
explicit Attach causes a new branch to be added to the Activation 
Tree. At this point the only element in this branch will repre­
sent an activation of the Module specified in the Attach. There 
is no return information associated with the first activation of 
a task. Once established, a new branch in the Activation Tree can 
grow and shrink in the same way as the main branch and can itself 
become the root of new branches. 

Two types of task termination are possible. Normal 
task termination occurs when a Return statement or the last 
statement of the Module attached has been executed. The Task 
will be abnormally terminated if the activation which initiated 
its first activation itself terminates. 

2.3.3 The Handling of Exceptional Conditions 

The handling of exceptional conditions falls into 
three parts: the establishment of the action to be taken 
if an exceptional condition arises, the search to determine 
the action to be taken when an exceptional condition arises, 
and the invocation of the Module which is to perform the 
specified action. 
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Each condition name will be associated by the 
Linker with a stacking mechanism of the type used for user al­
located variables (see Section 2.4). This stacking mechanism 
will be used to contain the entry value (Module, entry point, 
and environment) of the action which is to be taken if the 
condition arises. This action may have been defined by the user 
(e.g., a PL/I on-unit) or by the system (e.g., Standard System 
Action for a PL/I condition) . 

The action to be taken when the condition arises will 
be determined from the latest entry in the branch of the stack 
corresponding to the current task. The invocation of the Module 
giving this user or system provided action will follow exactly 
the protocol for the invocation of any other entry value (see 
Section 2.4.1). 
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2.4 Dynamic Storage 

The purpose of the Dynamic StorageM.echanism is to 
provide storage for the Data Objects and to provide execution 
time addressability to the appropriate generations of the 
Data Objects referenced by Symbolic Names in the Modules of 
the program. Each generation of a Data Object consists of a 
Value Descriptor and value (DAPOV) as defined in Section 2.5. 
These DAPOV's are allocated in a Reference Table and each one 
can be addressed within that Reference Table by its Relative 
ID. Each Reference Table can contain DAPOV's for one or more 
variables. Addressability to each Reference Table is provided 
by a Storage Anchor. The total set of Storage Anchors can be 
divided into two parts, the set of System Storage Anchors and 
the Set of User Storage Anchors. 

The System Storage Anchors are used to address the 
Reference Tables directly associated with the activations of 
the Modules represented by the nodes of the Program Tree. 
Each of these Reference Tables contains the DAPOV's for the 
variables which are allocated at the activation of the Module. 
Since only the names contained in one node at each level in the 
Program Tree can be referenced directly at any time, it is suf­
ficient to have one System Storage Anchor for each level in the 
Program Tree. The names of the Storage Anchors to be associ­
ated with the nodes of the Program Tree will be filled in by 
the Connector. All the Reference Tables which use the same 
Storage Anchor must be chained together so that the value of 
the Storage Anchor can be updated as the Reference Tables are 
freed. 

The User Storage Anchors are used to address the 
DAPOV's for those variables whose allocation and freeing is 
under the control of the user. The names of the Storage Anchors 
for these variables will be filled in by the Linker. 

There must be a set of Storage Anchors for each Task 
executing in the Logical Machine, since the Reference Tables 
containing the current generation of the variables may be dif­
ferent in each task. When a Task is attached, unless there is 
a change of environment as described in Section 2.4.1, the only 
Storage Anchor to be changed is the one corresponding to the 
Module being activated. The rest of the Storage Anchors must 
be copied to provide addressability from both the 'J,'asks to the 
Reference Tables associated with any Modules further up the 
Program Tree, and to any variables which have their own User 
Storage Anchors. 

The System Storage Anchors for the multi-tasking ex­
ample shown in Section 2.3 can be illustrated as follows: 
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Task 1 

RT 
for 
Static 

oiIjl 
or· 

.. r·! 

C/O 

DYNAMIC STORAGE 

Task 2 

RT 
for 
Static 

~RT 
for 
U 

o 

23 

Task 3 

Note: Although there is a Storage Anchor in each Task identi­
fying the "RT for Static", there is only a single Reference 
Table for static variables; it can be addressed from any Task. 
The same comment applies to "RT for PI" and the other Reference 
Tables which appear in the chains of a Storage Anchor in more 
than one Task. "RT for PI" represents the Reference Table for 
activation PI of P, whilst "RT for P2" represents the Reference 
Table for activation P 2 of P. 

2.4.1 The Use of Storage Anchors for the Support of Entry 
Values 

The environment which must be assigned with an entry 
value, together with the value of the entry point, can be seen 
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as the values of the Storage A.nchors associated with each of j 

the statically containing nodes. Again using the example of 
Section 2.2 and 2.3, the assignment of entry point R to a 
static external entry variable EV in activation PI involves 
making a copy of the System Storage Anchors containing the 
values "External" and "PI", and a note of to 'vhich Stora.ge 
Anchors (or lexical levels) each of these values belongs. 

At the call of the entry variable the values of the 
Storage Anchors which were copied at assignment time must be 
used to set the appropriate environment into the Storage 
Anchors, for the invocation of the entry variable. The cur­
rent values of the Storage Anchors changed must of course be 
restored on return. In our example, assuming that the call of 
EV is in activation Sl of S, the value of the Storage Anchors 
for Task 1 before and after the activation of R2 would be as 
follows: 

Before the call of R 
External 

After the call of R 
External 

Ql PI 
Sl R2 

2.4.2 The Use of Storage Anchors for Support of Label Values 

The implementation of label values with an environ­
ment component falls out as a simpler case of entry values. 
The difference, or simplification, is that for label values 
it is only necessary to switch the environment once and for 
all back to that which existed at the time of the assignment 
of the label value. All the activations which have come into 
existence between the time of this assignment and the branch 
to the label value will be wound up as part of the process of 
switching the environment. This approach can be used for the 
implementation of PL/I label variables. 

2.4.3 The Use of User-Storage Anchors for PL/I Controlled 
Variables 

The Linker must associate a User Storage Anchor with 
each PL/I variable having the controlled storage class. This 
Storage Anchor will be used as an anchor for the Reference 
Tables containing the DAPOV's for the generations of the var­
iable. The value of the Storage Anchor in each ~sk at any 
time will give direct addressability to the current gener­
ation of the variable in that ~sk. 
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As an example, suppose that there was a controlled 
variable in procedure Q of the example in Section 2.2 and 
2.3. At the point shown in the Activation Tree there might 
be two generations allocated in Task 1, two in-Task 2, but 
none in Task 3. The relationship between the bser Storage 
Anchor and the Reference Tables for the generations of the 
variable might be as shown below. (Note that the exact 
picture depends on the order of allocations and Task attaches.) 

RT 
for 
Genl 

Task 1 Task 2 

T 
or 
en2 

RT RT 
for for 
en21 enl 

Task 3 

T 
or 
en2 

T 
or 
en2 

Note: "RT for Genii" represents the Reference Table for the 
ith generation allocated in Task j. 

2.4.4 The Use of User Storage Anchors for PL/I Based Variables 

Since any remaining generations of PL/I based vari­
ables allocated in a Task must be freed at the termination 
of that Task, it will be useful to have a User Storage Anchor 
for all such generations. Thus the DAPOV's for all the gen­
erations of based variables allocated in a Task will be con­
tained in a Reference Table addressable from this User Storage 
Anchor. 
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2.5 Data Objects and Linking 

A Data Object has three components: a name, a des­
criptor, and a value. Included in the discussion in this 
section are the two forms of a name, i.e. the Symbolic Name 
and the Logical Name, as well as the two forms of a des­
criptor, i.e. the Value Descriptor and the Generic Des­
criptor. The Value Descriptor is always bound to the value, 
thus leading to the term DAPOV, meaning descriptor and, 
£ointer or ~alue, where the word pointer-denotes a system 
supplied means of reaching a value. 

2.5.1 Descriptors 

A descriptor is stored logically with each Data 
Object in the system. The word "descriptor" is used in 
several different contexts. 

- The Value Descriptor is stored with the 
value of a Data Object. It includes: 

- A description of the instantaneous 
physical representation of the 
Data Object, and 

- the authorization requirements for 
access. 

- The Generic Descriptor is associated with 
the name and exists in the Local Declare 
Table (described fully in Section 2.5.2.3). 
In general, the Generic Descriptor includes: 

- The set of logical declarations that 
are permitted for this name at varying 
points in time. 

- The initialization expression(s) that 
will be used. These may be user de­
clared. If not, defaults are supplied 
by the language translator and utilized 
if the name is not resolved at Link time 
to an already existing name. 

This information is then sufficient to return to the 
Interpreter at execution time a described value when the 
object is read, and to permit error checking on receipt of a 
described value at write. The reading of an object by the 
Interpreter utilizes the Value Descriptor, and the writing in­
to an object will first confirm that the described data to be 
stored is compatible with the Generic Descriptor. 
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Value Descriptors may be factored, such that like 
data elements may have a common descriptor. Access to a 
Data Object will be via a level in the factoring that will 
permit a reconstruction of the full descriptor to be re­
turned to the Interpreter. A specific example of factoring, 
for example, may occur in the executable code, in which only 
a short, partial descriptor distinguishes Logical Names 
from literals or operators. 

The appearance of a Data Object to the user of a 
Logical Machine is as if the externally presented represent­
ation (e.g. input or output to a terminal) is that contained 
within the machine. However, specific internal represent­
ations may be important to the skilled user, e.g. 

Structure or array stored as a vector of 
vectors. 

Descriptors factored 

Descriptors are not directly manipulatable by the 
user of a Logical Machine. They are indirectly manipulated 
by implied descriptor changing (or creating) statements: 
DECLARE, ASSIGN, ••.• 

2.5.1.1 Descriptors as Related to Access Machines 

Descriptors are a form of access machine (as defined 
in the Fundamental Concepts and System Language Manual). Ex­
amples of descriptors which act as built-in access machines 
are a floating point number, arrays, and structures. Logi­
cally, an array is treated as a vector of vectors, although 
physically, a more efficient implementation may be required. 
Access will be made via a descriptor and will yield a des­
cribed value from the representation. A descriptor also 
provides the capability of the "follow" mechanism of an 
access machine in that it may contain the value, "System 
Pointer", which implies that the pointer should be followed 
to the next DAPOV. 

2.5.2 Names 

All names have two forms, a Symbolic Name and a Log­
ical Name. The Symbolic Name is a character string, as 
written by the user, used for all communication with the user. 
A Logical Name is the internal encoding which replaces each 
Symbolic Name. In the executable code of each Module, each 
unique Symbolic Name is replaced by a unique non-negative 
integer, called the Logical Name. The system may be required 
to supply additional Logical Names in certain special in­
stances, for example, for unnamed BEGIN blocks or iteration 
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variables. A Logical Name m~y be used as an index to a 
unique position in the Local Symbol Table, the Local Link 
Table, or the Local Declare Table (each defined below) • 
Once program text is encoded, it is required that the· 
Local Symbol Table be available to reconstruct the original 
names. 

It will not be required that an application pro­
grammer be aware of the fact that his Symbolic Names have 
been encoded as Logical Names, but a system programmer may 
need to be aware of the existence of Local Symbol Tables 
and their role in name resolution in the Program Tree. 

The connectivity between the Logical Name in the 
executable code and the Symbolic Name, the Generic Des­
criptor, and the DAPOV are contained in a set of three 
tables in the Module. These are the Local Symbol Table 
(LST) , the Local Declare Table (LDT) , and the Local Link 
Table (LLT). 

LST LDT LLT 

Symbolic Name Declare Fields Lihk Fields 

Logical Name in the executable code is used 
as an index. 

Figure 2.5.1 

2.5.2.1 Local Symbol Table (LST) 

-v 

The Local Symbol Table contains one entry for each un­
ique (variable length) Symbolic Name, as written by the user, 
that is either declared or referenced within a single unit of 
translation. The Logical Name of any symbol can be determined 
by the Interpreter by searching the LST in sequence. Conversely, 
the Symbolic Name can be recovered by using the Logical Name 
as an index to the LST. (See Figure 2.5rl). 

2.5.2.2 Local Link Table (LLT) 

The Local Link Table contains one entry for each 
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Logical Name, in the same order as the LST. (See Figure 
2.5.1). Each entry contains two fields which are filled 
in by the Linker. The first field will contain the Storage 
Anchor Name to connect each Logical Name with the Reference 
Table containing its execution time DAPOV. A zero in this 
field implies that this entry has not been linked yet. The 
second field will usually contain the Relative ID of the 
DAPOV within the Reference Table. (The Relative ID is the 
logical location of the DAPOV within the Reference Table.) 
However, a User Storage Anchor Name is contained in this 
field, if the first field has maximum field value. 

2.5.2.3 Local Declare Table (LOT) 

The Local Declare Table also contains one entry for 
each Logical Name, in the same order as the LST. (See 
Figure 2.5.1). Each entry contains seven fields which are 
filled in by the Translator. The name of each field, their 
possible values, and meanings follow: 

Field Value(s) 

Defined Flag Defined 

Undefined 
Search Node Internal 

External 
System 

Above 

External 

Storage Anchor Here 

Ext SA 

User 

External 

Mandated Yes 
Storage Anchor 

No 

+1 

+2 

Meaning 

A declaration for this Symbolic 
Name has been made in this module. 
No declaration made in this module. 
No search of Program Tree required 
for Linking 
Search External Node when Linking 
Search up to System Node (by­
passing External Node) 
Search one node above (see Section 
2.5.2.4). 
Search up to one node below 
External Node. 
Use this Module's System Storage 
Anchor for allocation. 
Use System Storage Anchor of Ex­
ternal Node for allocation 
Use User Storage Anchor for alloc­
ation. 
Use System Storage Anchor of node 
two below External Node. 
Declaration requires Storage Anchor 
field value to be used. 
Storage Anchor field contains de­
fault to be used only if search is 
unsuccessful. 
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Field 

Task FREE'd 

Template 
Indicator 

Generic 
Descriptor 

DATA OBJECTS AND LINKING 

Value(s) 

Yes 

No 
Real 

Based 

Meaning 

Will be FREE'd by task termin­
ation if not earlier FREE'd by 
user. 
Task FREEing not required. 
Symbol represents a value 

Symbol represents a descriptor 
only. 
(See following paragraph) 

, :,sO 

The last field in the LDT, termed the Generic Des­
criptor, itself contains ten subfields, some of which are 
variable in length. These subfields contain either the user 
declarations or the language defined defaults if at Link time 
a search is required and the name is not found in one of the 
containing blocks in the Program Tree. The names of these 
subfields, their possible values, and meanings follow: 

Subfield 

Data Type 

Shape 

Con-Var 

Precision 
Scale 
Array Bounds 

Initial 
Locator 

Qualifier 

Values 

Any, 
Character, 

{Fixed} {D~cimal} • 
Float B~nary 

Pointer, Offset, 
Label, Entry, 
Event, Task, or 
Statement 
Scalar, vector, 
Array, or structure 
Constant, or 
Variable 
Numeric value 
Numeric value 
Upper expression and 
lower expression 

Expression 
Expression 

Meaning (if not self-
explana tor~'" 

Two expressions for each 
dimension of an array to 
define the limits of the 
array. 
Initial value expression 
Used for pointer expression 
declared with based 
variable 
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Subfield 

Parameter 

Generic Desc. 
Pointer 

DATA OBJECTS AND LINKING 

Values 

Yes 

No 
Pointer 

Meaning 

Symbol unusable unless 
associated with an 
argument at entry. 
Symbol usable 
For undefined symbol, 
pointer to Generic 
Descriptor of defining 
occurrence of symbol. 
Filled in by Linker. 

2.5.2.4 Entry Names 

Procedure (or function) names and entry names are 
properly not considered to be declared within the Module 
that make up the statements of that procedure. Rather, they 
are considered as being declared as a name in the containing 
node of the Program Tree. Thus, to prevent the possibility 
of duplicate names in the LST, a second set of tables (LST, 
LLT, LDT) is created by the Translator which contains in­
formation relative to procedure or entry names. The search 
node field of the LDT contains the value "above" for these 
names. The Connector is responsible for merging the "above" 
tables of the procedure being connected with the tables of 
the procedure into which the connection is being made. 

2.5.2.5 Object Code in the LST, LLT, LDT 

The object code for each source language statement 
will be treated as a variable. The Symbolic Name is the 
statement number. The line directory will contain the Log­
ical Name of each statement number. The LLT fields will point 
to the start of the initialized object text for each. Fields 
in the LDT will be set to defined, interna.l,' ext SA ()::,f PLt,It 
or here (if APL) , and will contain an initializing expression 
which is the encoded object text created by the Translator. 

2.5.2.6 Treatment of APL Symbolic Names 

All APL Symbolic Names will be declared by the Trans­
lator as defined, external, user. Further, for each local 
APL symbol in a function, the Translator will insert a user 
allocation statement in the entry code to initialize the DAPOV 
to unassigned, and a user free statement in the exit code. As 
with a PL/I procedure, it is only necessary to Link a function 
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once. The inserted statements for local symbols will create 
the proper visibility of symbols as required by APL. 

One area requiring special mention is that a function 
name, when Connected, will be established as the oldest 
generation for that given Symbolic Name, even though there 
are other generations (of local variables) already 'in existence. 

2.5.3 Linking 

The function of the Linker is to resolve the static 
nesting of symbols so that at execution time a Logical Name 
will lead via the fields in the LLT to a DAPOV in a Reference 
Table. In this manner, the name of the Data Object is bound 
to the DAPOV of the Data Object. Linking is accomplished at 
first activation. In order to fill in the Relative ID, it is 
necessary to initialize and allocate variables while Linking. 

For a name containing a value in the search node field 
of the Generic Descriptor of internal, one of three actions 
will be taken depending on the value of the storage anchor 
field of the Generic Descriptor: 

1. Value of storage anchor field is Ext SA. The 
initial value is generated using the expression 
in the initial field of the Generic Descriptor, 
and the Reference Table associated with the 
External Node is extended to include the DAPOV. 
The Storage Anchor Name and Relative ID are filled 
into the LLT, thereby marking this name as linked. 
(This case is used for PL/I static internal.) 

2. Value of storage anchor field is here. Generate 
the initial value and extend the RT with the 
DAPOV. The RT is that identified by the System, 
Storage Anchor for this Module. The Interpreter 
will have already stored a newly created Space 
Name in this Storage Anchor. The name of this 
Module's System Storage Anchor and the Relative 
ID to the new DAPOV are filled into the LLT. 
(This case is used for PL/I automatic.) 

3. Value of storage anchor field is User. Obtain the 
next User Storage Anchor name, and insert as its 
value the next available Space Name. Then extend 
that Space with a pointer indicating the previous 
generation is non-existent and a DAPOV for an un­
assigned value. Finally, the fields of the LLT 
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are filled in. It may be noted that these 
variables are initialized to catch a reference 
prior to user allocation as an error. (This 
case is used for PL/I controlled internal.) 

For a name containing a value in the search node 
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field of either external, system, or external +1, the Linker 
will extract the symbolic Name from the LST using the Logical 
Name as an argument. The Symbolic Name is used as a search 
argument in the specified search node(s}. (In the case of 
system or external +1, the search will start at the node above 
this module's node.) If found, the fields of the LLT entry 
where found are copied into this Module's LLT. For a defined 
symbol, the corresponding LDT entries are checked for con­
sistency. For an undefined symbol, a pointer to the LDT 
entry of the symbol found is placed in the Generic Descriptor 
pointer field. If not found, one of three actions will be 
taken depending on the value of the storage anchor field: 

1. Value of storage anchor field is Ext SA. Pro­
ceed as in Case 1 above. Then extend and fill 
in the fields of the LST, LDT, and LLT of the 
External Node with a copy of the entry from 
this Module's tables. (This case is used for the 
first occurrence of a PL/I static external variable.) 

2. Value of storage anchor field is User. Proceed as in 
Case 3 above. Then extend the fields of the LST, LDT, 
and LLT of the External Node with a copy of the entry 
from this Module's tables. (This Case is used for 
the first occurrence of a PL/I external controlled 
variable or APL symbol.) 

3. Value of storage anchor field is External +2. Two 
subcases apply. 

a) If this Module is at a node below external +2, 
initialize and allocate the DAPOV by extending 
the RT of the System Storage Anchor of the node 
two below the Excernal Node. Fill in the LLT 
fields for the entry in this Module, and then 
copy the LST, LDT, and LLT into an extension 
of the tables in the external +2 node. Mark 
the storage anchor field in that LDT with the 
value, 'HereJ 

b} If this Module is at the external +2 node, pro­
ceed as in Case 3a, but do not extend the LST, 
LDT, LLT tables, since the entry already exists 
there. {These cases are used for an undefined 
variable. } 
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The Link process for names with a template value of 
based requires that a link be established to a Storage Anchor 
containing all .such names, so that the names may be freed by 
the system if the user fails to do so prior to task termination. 

After Linking all the entries in the LLT, the Linker 
will turn on the link bit for this Module. Subsequent act­
ivations will only require allocation and initialization of 
those Logical Names with a storage anchor field value of'Here! 
Procedure editing will turn the link bit for this Module off, 
as well as the link bit for any Logical Name affected by the 
editing. Additional detailing is required to state which 
Logical Names are affected, and the effect on Logical Names 
in other Modules. 
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2.6 The Interpreter 

The execution of code in each active Logical Task 
of a Logical Machine is performed by an Interpreter. Each 
such Interpreter is capable of executing a set of Built-in 
Operators, and is provided with a separate set of mechanisms 
consisting of: An Operator Stack, an Operand Stack and a 
Task Status Table. Each interpreter also makes use of the 
facilities of the Logical Machine in which it is active, i.e., 
The Program Tree, the Activation Tree, and the Dynamic Storage 
Mechanism. 

2.6.1 The Built-in Operators 

The Built-in Operators which can be executed by each 
Interpreter can be classified as those which handle computation, 
those which handle the flow of control between statements of the 
active Module and between different Module activations, and those 
which provide special system functions. 

The computational operators are generic with respect to 
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the data type and aggregation of their operands and provide a 
combination of the logical and arithmetic operations available in 
APL, PL/I, FORTRAN, COBOL, and RPG. The logical operators include: 
ASSIGN, SUBSCRIPT, CONCATENATE, COMPARE EQUAL/NOT EQUAL/LESS THAN/ 
and GREATER THAN, AND, OR, NOT, SUBSTRING and single character 
SEARCH' TRANSLATE, SIZE and SHAPE (like APL p). The arithmetic 
operators include: ADD, SUBSTRACT, MULTIPLY, DIVIDE, EXPONENTIATE, 
LOGARITHM, ABSOLUTE VALUE, COMPARE EQUAL/NOT EQUAL/LESS THAN/ and 
GREATER THAN, FLOOR, CEILING, MAXIMUM, MINIMUM, ROUND and ASSIGN. 
Discussion of the language requirements for these operators is 
contained in memos ASP-045 and ASP-051. There is also a require­
ment for a number of operators to handle editing and conversion 
between different types of data. 

The operators which handle the flow of control between 
statements of an active Module and between Module activations include: 
GO TO, IF-THEN-ELSE, DO, CALL, RETURN, ATTACH, and EXIT. 

The operators which provide the special systems functions 
include: LINK, CONNECT, CREATE LM, CALL LM, ATTACH LM, ENTER/ 
LEAVF. EDIT MODE and other Operators to support System Facilities 
and the Logical I/O System. 

2.6.2 The Interpreter Mechanisms 

In executing the code (which is in a prefix polish form) 
the Interpreter makes use of three mechanisms which are illustrated 
schematically below: 
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Task 
Status 
Table 

Task Module Statement Pointer to Pointer td 

Name Name 

Operator Operators for 
Stack ----~~hich operands 

are not yet 
available 

Number 

Operand 
Counts 

current node of 
token of Activation 
statement Tree 

Operand Operand 
Stack --~'~Values 

(DAPOVs) 

The Task Status Table contains five fields: , 

.1. The first field contains the name of the Logical 
Task being executed by the Interpreter. This 
provides access to the Logical Task Control Block 
(LTCB) and hence to the set of Storage Anchors 
for this task. 

2. The second field contains the name of the Module 
currently being executed and provides access to the 
various components of this Module which are contained 
in the node of the Program Tree (i.e., LST, LLT, 
LDT, executable code and line directory). 

3. The third field contains the number of the statement 
which is currently being executed, and will be 
updated as each statement is completed. 

4. The fourth field identifies within the statement 
code the token (i.e., operator, operand, or literal 
which was fetched most recently). 

5. The fifth field identifies the latest node in the 
branch of the Activation Tree for the task being 
executed, and will be used to store the information 
contained in the Task Status Table into the Activa­
tion Tree when the call of a new Module is executed. 

The Operator Stack contains a push down list of those 
operators which have been fetched, but for which all the operands 
are not yet available, together with counts of how many operands 
are still needed for each operator in the stack. 
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The Operand Stack contains the values, in DAPOV 
form, of all those operands and literals which have been 
fetched, or computed, but which cannot be used by their 
operator until its other operands have been fetched or 
computed. 

2.6.3 Statement Evaluation 
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The basic protocol for statement evaluation is pre­
sented in the Figure 2.6.1. The equivalent of an instruction 
fetch is the token fetch loop which starts at the block labeled 
A and continues through block B for an operator token, or blocks 
C and D for a literal, or blocks E and D for a logical name. 
The DAPOV fetch in block E is discussed in further detail in the 
next section. In block D the "appropriate" DAPOV in the case 
of an assignment argument is a pointer to the generic descriptor 
in the LDT rather than the fetched value descriptor and value. 

An execution cycle represented by blocks F, G and H is 
taken whenever the operand count of the operator on top of the operator 
stack is zero. Note that the evaluation of control and system 
operators will often result in leaving the basic evaluation loop. 
Simple cases of these operations are discussed in subsequent sections. 

After execution a check is made to see if the Operator 
Stack is empty. In prefix polish notation this should be the end 
of the statement. To protect against a badly translated Module, 
an End of Statement token is required in the code and the Operand 
Stack must also be empty. If these conditions are met the first 
token pointer of the next statement is fetched by blocks I and J. 
This requires using the statement counter as an index to the 
Line Directory in the Module. If no statement is found, the 
Interpreter takes an automatic RETURN. 

2.6.4 Protocol for Value Fetch from Variables 

Whenever a reference type of operand is encountered 
during statement execution its value (DAPOV) must be fetched 
into the operand stack from the appropriate Reference Table. 
The process involved is described below and illustrated in 
Figure 2.6. 2. 

The Logical Name appearing in the code is used as an 
index to the LLT (contained in the node of the Program Tree) 
to yield a Storage Anchor name and Relative ID for the required 
DAPOV. The Storage Anchor name and Task name (contained in 
the current status table) are used to obtain the value of the 
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Figure 2.6.1 STATEMENT EVALUATION 
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Storage Anchor relevant to the current task. This Storage 
Anchor value identifies the required Reference Table. The 
Relative ID, already obtained from the LLT, is now used to 
access the required DAPOV from this Reference Table. If the 
DAPOV obtained turns out to contain an indirect reference to 
same other DAPOV the chain of indirection will be followed 
automatically to its end. 

Module 

LST LLT Storage Anchors Reference Table 
r--

01 SAl'.t1 SAl 
.. 

02 PETE SA2 

.,. 

RrDl 

RID2 

SAl 
SA2 
SA3 

f--.---.. ----

RIDl DAPOV for SAM 

-.-. 

_. 
.. 

03 BILL SAl RID3 \ -.. 

Executable Code 

1=+02 03 _~~_ J 
Source Code 

E
'-'-'~~'''''~'-'''''-

AM=PETE+BILL 

... -.,- ..... --~-

Local Declare 
Table i 

\ 
I 
! 
l Line Directory I 

~________________l 

RID3 DAPOV for BILL 

\, 
'-"., eference Table 

RID2 DAPOV for PETE 

Figure 2.6.2 Access of DAPOVs 
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2.6.5 Protocol for Call 

The following set of actions must be perform~d by the 
Interpreter whenever a Call operator or function reference is 
encountered: 

2.6.6 

1. Evaluate any arguments and place the values or 
references on the operand stack. 

2. Update the statement number field, and save the 
information contained in the Task Status Table 
in the node of the Activation Tree identified by 
the fifth field of this table. 

3. If invocation involves a switch of environment, 
also save the values of Storage Anchors 
to be modified, and set these Storage Anchors 
from the environment information of the entry value. 

4. If the Module to be invoked has not previously 
been linked, invoke the Linker to link the Symbolic 
Names referenced or declared in the Module. 

5. Create a new Reference Table for this activation, 
set its chain field to the value of the appropriate 
Storage Anchor, and set this Storage Anchor to 
identify the Reference Table just created. 

6. Carry out initialization of variables allocated in 
this Reference Table. 

7. Set up addressability to any parameters using the 
argument values contained in the operand stack. 

8. Set the fields of the Task Status Table and start 
execution of the code of the invoked Module. 

Protocol for Return 

The following actions must be performed by the Interpreter 
when a Return operator is encountered: 

1. Evaluate any return value expression and place the 
result in the operand stack. 

2. Restore the appropriate Storage Anchor from the chain 
field of the Reference Table for the activation being 
terminated, and then free this Reference Table. 
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2.6.7 

2.6.8 

3. If the invocation had involved a switch 
of environment, restore the Storage Anchors 
switched from the values saved. 

4. Restore the Task Status Table from the informa­
tion which was saved in the Activation Tree, and 
remove the node of the Activation Tree associated 
with the activation being terminated. 

5. Continue execution according to the information now 
contained in the Task Status Table. 

Protocol for GO TO 

There are two cases: 

a) A GO TO within the scope of the current activation: 

1. Set the value of the statement number field 
of the Task status Table to the value given by 
the operand, and the value of the current 
element pointer in the current status table to 
the start of this statement. 

2. Carryon with execution of this Module. 

b) A GO TO with a destination in some suspended 
activation. 

1. Search the Activation Tree to ensure that the 
destination activation still exists. 

2. Terminate as many activations as necessary until 
the destination activation hecomes the current 
one, freeing the Reference Tables for these 
activations and taking the other actions described 
in the protocol for Return. 

3. Proceed with protocol for case a. 

Protocol for Attach 

The following actions must be performed when the 
Interpreter encounters an Attach operand: 

1. Evaluate any arguments and collect the values or 
references in a special table. 

2. Call upon the Logical Machine Supervisor to set 
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up and initiate a new Logical Task passing 
to the LMS the name of the attaching task 
(i.e., LTCB) , the name of the Module to be 
invoked as the first activation of the new 
task, the values of the Storage Anchors, 
and the table containing the arguments to be 
passed to this activation. (The Logical 
Machine Supervisor sets up a new Logical Task 
which will itself be executed by an Interpreter.) 

3. Activate the Module in the new task performing 
actions 4 through 8 of the protocol for Call. 
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2.7 Building a Logical Machine 

Skilled users of the system may wish to modify the 
Logical Machine to which they are connected or to create a new 
Logical Machine for subsequent use. Modifying a Logical 
Machine requires invoking the system functions of Connect and 
Disconnect which add or remove Modules from the Program Tree. 
A separate system function is used to create a new Logical 
Machine. 

The ability of a user to perform these functions 
depends upon the capability of the Logical Machine to which 
he is connected. The functions are always available at the 
System Node in the Program Tree; invoking these functions 
can only occur from some Module lower in the Program Tree; 
and recognizing commands from the user to cause this invoca­
tion is dependent on the interpretive power of the External 
Node in the Program Tree. 

2.7.1 The Connect Function 

The Module to be connected may either be in the 
Ownership Tree or supplied by the user as program statements 
entered through the Logical I/O System (e.g. from a keyboard) . 

If the user choses to enter statements from the 
keyboard, he must enter Edit mode. statements entered in 
Edit mode are translated and, when the user is finished 
eptering the statements, a .Module is built. The statements 
can be written as nested procedures. If this is done the 
procedures will be nested into the Program Tree in the same 
way they were written. 

Before connection into a Program Tree, a procedure 
exists as a Module. When the connection is initiated, infor­
mation from the Module is used to construct the LLT, LST, 
and LDT. None of the variables of the Module are linked at 
this time, entry names, however, are resolved to the node of 
the Program Tree under which the Module is being connected. 

If the Module (call it JOE) is to be nested below 
another Module (call it PETE), then the entry names for JOE 
may be found in the LST for PETE. 
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If they are found, PETE's corresponding LLT 
entries are set to identify an element of the Reference 
Table corresponding to JOE's entry names do not show up 
in PETE's LST, then thev are added to PETE-' s LST and LLT. 

The static nesting can be specified by the 
connect command. For example, the command sequence 

Connect A 
Connect B in A 
Connect C in A. B 

results in A being the outermost procedure with Band C 
nested below: 

2.7.2 The 'Create Logical Machine' Function 

The 'Create Logical Machine' function requires 
three parameters, a name for the Logical Machine, the 
position in the Ownership Tree at which the LM is to be 
created, and the name of a Module in the Ownership Tree 
which is to be placed at the External Node of the new LM. 

The name of the LM will be checked in the Owner­
ship Tree to insure uniqueness. Also, the receiving node in 
the Ownership Tree must authorize this kind of access. It 
is, of course, always possible to create a Logical Machine 
directly beneath the creating Logical Machine. 

The choice of Module for the External Node will 
also be checked for authority and indeed this is one of the 
prime mechanisms for defining the skill level of users. 
Clearly at least one Module will be defined to interpret the 
full SL Command Language. Who is allowed access to this 
Module, and where they are allowed to place a Logical Machine 
which they create, constitute basic control mechanisms on 
the users of the system. 
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CHAPTER 3 

THE LOGICAL SYSTEM 

3. 1 TheL'ogical Machine" Sup'er'visor 
: .. . • .. ,. i ( 

The Logical Machi,ne Supervisor is an active Logi,cal 
Machine at the root of the Ownership Tree with two primary 
functions. Firstly, it is, the interface between the 5y'stem 
users and ,their work, as it is processed by one or more 
Logical Machines. Secondly, it is the i.nterface with the 
Physical Control Sy'stem and loads this system with requests 
for physical processing as generated by the Logical Machines. 

3.1.1 The User Session" JO~s" ~nd,' L?'~7~ :ra~k~. 

The major unit of work in the system is a User Session, 
In a simple interactive session the User Session is' the' j?rb~' ',' 
cessing performed between sign-on and sign-of;f. :r;t is possible 
however, for a~skilled user to initiate more than one inde­
pendent activity and have these Jobs controlled by the super­
visor as batch activities. Clearly at any time in a session, 
only one Job, can be running in interactive mode for each 
active terminal. Each Job may result i.n one or more dependent 
parallel activities called Logical Tasks. The ;first task in a 
.;:rob is the Master Task; all subsequent tasks are subo;r;-dinate to 
this Task (or to other Sub-Tasks). In any job the Master-Task 
is connected to the Userts Console (interactive mode) or to a 
Catalogued Data Set (batch mode). Every Job runs in a separate 
Logical Machine controlled by the Logical Machine Superyisor, 

3.1. 2 Session, Job, and Task Protocols 
, , 

A Session commences when a User gains access to a 
physical terminal and port and is recognized (e. g., key-board 
unlock) by the Physical Source-Sink Sub""System. The 
code activated by this process is in fact a p.hysical Task 
running on a Source-Sink Processing Unit, nut is logically 
a new Logical Task in the Logical Mach.ine Supervisor. This' 
Logical Task creates a, Session Control Block (SCB) and accepts 
the sign-on from the user. The sign.,.on code is searched in 
the Ownership Tree provided by System Facilities to determine 
that the user is authorized and selects an appropriate Logical 
Machine for his Session. Accounting information, priority, etc. 
is also determined at this time, and 
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the whole entered in the Session Control Block. 

Once the Session Control Block is prepared, an 
initial Job Control Block (JCB) is set up and pointed to by 
the SCB. The JCB specifies which Logical Machine is activated 
by the session and whether it is interactive or batch. Now 
the supervisor activates the Logical Machine by parametising 
the External Node for batch or interactive communication and 
chaining a Logical Task Control Block (LTCB) from the JCB. 
This LTCB specifies the active node to be the External Node. 
Finally, the supervisor creates a Physical Task Control Block (PTCB) 
for a physical processor, chains this PTCB from the LTCB and 
enters the PTCB in the processing queue of the Physical Control 
System. . 

During the running of a Physical Task, the Processing 
unit may encounter operators such as Attach which result in 
the creation of further LTCB's and even commands from the user 
which create further Jobs. These activities and the normal, 
or abnormal, termination of Jobs and Tasks, result in the 
automatic intervention of the Logical Machine Supervisor via 
built in Modules in every Logical Machine. 
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3.2 System Facilities 

All of the Logical Objects in the system (Logical 
Machines, Data Sets, Modules, Logical Source-Sink Devices) 
are connected together in a single structure called the 
Ownership Tree. This tree, together with the ability to 
monitor communication between the Logical Objects, and to­
gether with operators to Create, Destroy and Modify Logical 
Objects, constitute the System Facilities. 

3.2.1 The Ownership Tree 

The objects in the Ownership Tree are connected in 
such a way as to define ownership and access capabilties. 
These concepts are best explained by examining this simple 
tree: 

Here A 
B 
D 

and C, 

owns A, B, C and D and through them E, F and G 
owns B, E, and F 
owns D and G 

E, F and G own only themselves. 

Any Object can access an Object it owns; additionally 
it can access any Object which is a predecessor in the 
Ownership Tree. 

Thus (for example) G can access itself, D and A but 
not B, C. E and F. The fact that an Object can access another 
does not necessarily authorize it to extract information from 
it or to modify it. These authorization rights are a property 
of the accessed Object and may be permanent bars against certain 
classes of access (e.g., Read Only), or complex functions 
controlling privacy and security, or temporary bars against 
access of one class while another is proceeding (e.g., Modify -
Exclusive State). Only an owner of an Object can change the 
authorization rights. 

When a system is first generated it contains a simple 
Ownership Tree composed of two Logical Hachines. 
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I I The 
Logical 

1 Machine 

I The " 
I System l 

~anguage ! 
Translator _~"_,~,_,,, ,,_,,_,_ . .1 

With this start and the operators of System Facilities, the 
rest of the complete operating system can be constructed. 

3.2.2 Monitoring Object to Object Communication 

Communication between a Logical Machine and other 
Objects is handled by special Modules in the Logical Machine 
called the Logical I/O System (Section 3.3). These Modules 
achieve communication by built-in operators which automatically 
check for access and authorization rights and constitute part / 
of the System Facilities. Communication between a Logical ~7' 
Machine and the Logical Machine Supervisor is direct since the 
access and authorization rights are built in. From the Owner-
ship definition it is apparent that any Logical Machine can do 
anything it wishes to itself and, therefore, the System 
Facilities do not monitor internal Logical Machine actions. 

3.2.3 Creating and Modifying Another Logical Object 

Any Logical Machine can create another Logical Object 
and becomes the Owner of it. Because of the complex structure of 
many objects and to avoid revealing their internal bit re­
resentations, System Facilities supplies a number of operators 
and functions to perform these tasks. 

3.2.3.1 Operations on Logical Machines 

These operations can be considered as system commands 
for 1anguages'which do not have these functions within their 
syntax. There are three series of functions - Logical Machine 
parameter setting, Information Commands, and Dynamic Commands. 

IBM CQNFIDENTIAL 



( 

(' 

Section 3.2 SYSTEM FACILITIES 

The Logical Machine parameter commands are used to 
give information required by the Logical Machine. Illus­
trative examples of this type of command are: 

- Name or rename current Logical t.fachine 

- Set limits on LM size 

- Set limits on compute time 

Set limits on number of bytes of data 
catalogued 

- Set defaults 

- language 
computational precision 

- origin 

- Set width of typed output 

- Set trace 

Information Commands are used to read information 
the user desire~ for knowing his status, debugging, etc. 
The list below is illustrative of this type of command. 

- Variables visible to suspended Module. 

- Modules in the LM 

- Name of catalogued objects 

- Names of active LM's 

- Read LM parameters 

Dynamic Commands are used to control the contents 
of a Logical Machine. Illustrative examples of dynamic 
commands are given below. 

- Deactivate an LM and Save 

- Save a copy of suspended LM 

- Catalog a Module 
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- Clear an LM 

- Sign off 

- Erase a Module 

- Connect a Module into LM 

- Drop a catalogued object 

- Send a message 

- to operator 
- to another LM 

3.2.3.2 Entry of Source Code and Text 

To enter a source code or text, the user enters 
EDIT mode. When the user enters EDIT mode, he indicates 
whether it is text or source code he is entering, and the 
name of the object to be entered (or edited). The Logical 

~o 

Machine has a default language. If the user specifies source / 
code entry and no language, the LM default language is 
assumed. 

The name of the object is checked to determine -

a) if the name is new, or 
b) if it has been previously defined. 

Once the editing has been initiated then the editor 
requests a line of input. The user then types in his next 
line. If this is source code entry, the Translator for the 
language then translates the line. If any syntax errors are 
detected, the Translator returns a code for the user to re­
enter the source. 

There are facilities for changing lines or inserting 
new lines. When the user is finished, he types a command 
signaling he is finished. The editor then causes a Module 
to be built (if this is procedure entry). The user can re­
quest that the Module be catalogued if he so wishes. 

The default is to connect the Module to the External 
Node of the Logical Machine in which it was entered. The user 
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may issue commands to connect it nested under some Module 
in the Program Tree if he wishes. 

3.2.3.3 Creating a Module 

A Module is built by the action of the Translator on 
a number of statements written in one of the accepted source 
languages (e.g., APL or PL/I). 

The unit of translation is a sequence of statements 
in which all uses of the same name refer to the same object. 
Translation of this unit becomes a Module. This unit corres­
ponds to a Procedure Block or BEGIN Block in PL/I or a 
Function in APL. Nested procedures are handled as separately 
translated units. A statement entered for direct execution 
will also be treated as a unit of translation. 

The Module resulting from a translation consists of a 
number of distinct components together with a table giving 
addressability to each of them •. The components of the Module 
are the source code, the line directory, the executable code, 
and two sets of Local Symbol, Link and Declare tables. 

The source code contains the unmodified form of the 
source statements as they were ~ecetved by the Translator. 
The line directory has an entry for each line of the source 
code and gives the relative starting location of the ex­
ecutable code produced for this line. The executable code 
consists of the sequence of operators, operands in the form 
of Logical Names, and numeric or character literals, which, 
when executed, will give the semantic actions defined for the 
source language statements. The form of the executable code 
is prefix Polish. The first set of LST, LLT, and LDT contains 
an entry for each Symbolic Name declared or referenced within 
the statements of the Module. The second set of LST, LLT and 
LDT contains an entry for each Symbolic Name which defines an 
entry point of the Module. The Connector is responsible for 
merging the items in this second set of tables into the 
corresponding tables of the Module represented by the node of 
the Program Tree into which this Module is connected. The 
LST, LLT and LDT are described in detail in Section 2.5. 
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3.2.3.4 Modifying a Module 

The process of changing Modules will 
with fewer restrictions on allowed changes. 
is to be made the execution must be stopped. 
Machine goes into a direct mode. 

be like APL but 
When a change 

The Logical 

A variable can be read by typing the name of the 
variable. This will return either the value of the variable or 
a message telling why the variable was not printed. One can 
also attempt to assign a new value to a variable. If the 
attempted assignment is invalid a message will be returned 
to the user. 

The source statements of a Module can be changed by 
entering EDIT mode. Lines can be added, deleted or changed. 
When finished the modified load module is in the Logical 
Machine only. 

After changing the Module, it must be fitted back 
into the Logical Machine environment with appropriate changes 
to the environment to reflect changes made to the Module. 
There will be restrictions on changes to Modules which exist 
other than as a single leaf of the Activation Tree. 
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3.3 The Logical Input/Output System 

3.3.1 Introduction 

Every Logical Machine is provided with a Logical 
Input/Output System comprised of a number of specialized 
I/O nodes. These nodes are placed under the System Node of 
the Program Tree for the Logical Machine. Information is 
transferred to and from the Logical Machine using the facilities 
provided by these nodes. These facilities provide the Logical 
Machine with the capability to communicate with: 

another Logical Machine, 
Catalogued Data, 
Catalogued Modules, 
the Logical Machine Supervisor, 
Logical Source-Sink units, 
and other systems on the network. 

Only Logical Source-Sink nodes and "other system" nodes have 
the property enabling communication via the Source-Sink Sub­
system. Input and Output buffering is used to provide the 
link between Logical I/O and physical Source-Sink (which is 
discussed in Section 4.4). 

3.3.2 Protocol 

The Logical Machine initiating communication via its 
appropriate I/O node is in control of that communication. The 
Logical Machine Supervisor, because of an explicit or implicit 
command, will activate the system utility procedure to cause 
a transfer of Data Objects or Modules. 

The operators which create the logical I/O task are 
contained in the executable code associated with the appropriate 
I/O node. A Logical Task will be created and the Logical Task 
Control Block (LTCB) will be placed in the job queue of the 
Logical Machine Supervisor. The Logical Machine Supervisor 
will observe that a Logical Task has been created and will 
initiate one or more tasks on the physical system. The Logical 
Machine Supervisor obtains addressability to a particular 
object via the Ownership Tree. 

Logical Machine to Logical Machine A LM may, when 
authorized, access the Data Objects or Modules contained in 
another LM either by obtaining a pointer or by making a copy. 
However, the controlling LM cannot alter the LM being accessed. 
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Logical Machine to Catalogued Data A U-1 may access 
and/or modify catalogued data. There are various levels of 
authority (e.g., . Read Only, Read and Copy Only, Read and Write). 
When a LM is in the process of modifying the Catalogued data, 
other potential users of the data are locked out. Authority 
may be allowed to a collection of Data Objects or only to 
individual Data Objects. 

Logical Machine to Catalogued Module Accessibility 
to Catalogued Modules is the same: as to catalogued Data~· Locking 
also takes place when the Catalogued Module is being modified. 

Logical Machine to Logical Machine Supervisor An active 
LM communicates with the LMS to initiate some system functions 
such "as initlation of a Logical Task. 

Logical Machine to Logical Source-Sink Device Output 
to a Logical Source-Sink Device may be spooled in one of three 
ways which are selected either by a default condition or speci­
fication in the application program. 

One way is to spool the data in its internal format ~ ~ 
for later manipulation by the physical Source-Sink Subsystem ~ ) 
when output actually takes place. This maintains the inde-
pendence of the application program from the physical Source-
Sink Device. 

A second method of spooling (specifically chosen by 
the user) is for the application program to specify the output 
format and ,hysical device at which the data is aimed. This 
will cause a Physical Task to be set up by the LMS to pre­
compute the appropriate format and data blocking which is then 
spooled for eventual physical output. 

The third method is to provide for the data to be 
edited and formatted at the sink. The data is spooled in 
the internal format. A tag signifying this condition is passed 
to the Source':"Slnk Processing Unit" (SSPU) with the data at the time 
physical output is to take place. 

When the spooled data is actually passed to the SSPU, 
the LMS I/O System also points to the appropriate code to be 
used by the SSPU to perform physical I/O. 

Logical Machine to Other Systems on the Network Like 
systems may be treated in-the same way as Logical Source-Sink 
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Devices. Unlike systems will be handled by emulation. The 
details of handling emulation have yet to be worked out. 

Broadcasting is used on output, when a Symbolic Name 
being sought is outside the system and thus is not known to 
the Ownership Tree. The LMS will set up a Physical Task for 
output via the Source-Sink Subsystem which will broadcast a 
message to the other systems in the network requesting them to 
reply with the location of the Symbolic Name if they are aware 
of it. The response to the requesting LM is either a "Symbolic 
Name N:ot ~nown" or an explicit address or list of explicit 
addresses where the name may be found. In the third case, the 
user must personally investigate which of the responding 
locations holds the Symbolic Name for which he is looking. 

The SSPU may act as a network node and perform a store 
and forward function. Store and forward is the action of passing 
data through to allow communication between two other systems. 
When there is not a direct line between two systems that 
desire to communicate, the sending system's SSPU obtains from 
the Ownership Tree the address of the next possible stop along 
the way. The Source-Sink Subsystem will make connection with 
one of them and ship the message with the desired termination 
address. The Source-Sink Subsystem at the store and forward 
node receiving this message will temporarily store it and 
establish connection in the same way, with the next node. 
This will continue until the desired termination system is 
reached. Answer back, if required, will work the same way. 
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CHAPTER 4 

THE PHYSICAL SYSTEM 

The Physical System 

The Physical ~stem consists of three major subsystems: 

The Storage Management Subsystem 
The Program Processing Subsystem 
The Source-Sink Subsyst,em 

The Storage Management Subsystem (SMS) provides 
storage facilities for all the processing and source-sink units. 
The Program Processing Subsyste~consists of one or more 
Program Processing Units (PPU). A PPU executes programs and 
provides overall control of the system. The Source-Sink 
Subsystem consists of one or more specialized Source-Sink 
Processing Units (SSPU) to provide input and output facilities, 
communication with user terminals,or communication with 
other systems of the same or different type. 

These subsystem units are interconnected by physical 
lines and control hardware, and their interaction requires 
common control software and tables. The control software is 
executed on any available PPU. 

The breakdown of the Physical system is described here 
in functional terms and does not necessarily correspond to 
the packaging of an actual implementation. The implementations 
of such a system may range all the way from a single physical 
unit, with SMS, PPU, and SSPU functions all rolled into one and 
sharing common hardware, to a very large system where each sub­
system unit is broken down into several more specialized subsystems. 
It may also be found desirable to package some SMS functions in 
a physical unit primarily devoted to processing functions. 
Specific implementations may make different trade-offs between 
hardware, firmware, and software execution of a particular function. 

Thus the physical description is an architectural one, 
to which all implementations adhere. An overall diagram of the 
physical system is shown in Figure 4.1. 
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Section 4.1 CONTROL 

4.1 Control 

4.1.1 Hierarchical Design 

The inherent complexity of a large system can be 
greatly reduced by adopting a hierarchical design where each 
level of the design supplies one or more basic functions for 
use at all higher levels. A function supplied at one level 
is not duplicated at higher levels. Each level is kept 
simple enough, with separate modules and carefully controlled 
interfaces, that exhaustive tests can be devised, and the level 
can be completely debugged. As each level , starting at the 
base (level 0), is completely tested, its functions can be 
used with complete confidence at the next higher level. 

As the design levels for AFS have not yet been defined, 
the levels used by E. W. Dijkstra, who first described the merits 
of such a hierarchical design (CACM, vol. 11, no. 5, May 1968, 
pp. 341-346), may serve as an example for a relatively simple 
system. 

Level 0: Real-time clock interrupts and processor allocation. 
Above this level the processor identity disappears ( ~ 
and all processes become sequential. \" ./ 

Levell: Storage paging mechanism. Above this level only the 
virtual memory is addressed. 

Level 2: Console operation to allow sharing of the console 
among different tasks at higher levels. 

Level 3: Input-Output device allocation and buffering. At 
higher levels the user addresses virtual devices. 

Level 4: Independent user programs. 

4.1.2 Interrupts 

There are two kinds of interrupts: external interrupts 
and priority task switchi~g interrupts. Both cause an interrupt 
signal to be sent by the hardware to an appropriate processing 
unit (pPU or SSPU) for action. 
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External interrupts are caused by asynchronous 
signals from external sources. Examples occur when a 
pre-set time interval has elapsed, a pre-set time of day 
has been passed, an attention button has been pressed, a 
telephone port has been dialed, or an input-output unit 
has been made ready. External interrupts are sent to an 
SSPU of the proper class to handle that interrupt. 

The selected SSPU switches from its current task 
to the interrupt processing task. The SSPU may complete 
the interrupt procedure or request PPU action by placing the 
interrupting task in the PPU physical task queue and raising 
the priority task switching line. The SSPU then returns 
to its former task. 

Priority Task Switchin[" (PTS) interrupts are used 
to activate an idle PU and to ensure that higher-priority 
tasks, when ready to go, are attended to before tasks with a 
lower priority. Normally a PU switches tasks only when its 

current task terminates or reaches a waiting point. The 
unit then searches a common physical task queue for the highest 
priority task in its job class that is ready to go next. Thus 
processors are normally queue driven and kept busy as long as 
there is work to do. This normal flow of work may be altered 
by a PTS interrupt using the common PTS lines. 

The PTS lines contain the task identifier, priority) 
and (optional) job class code of the interrupting task. The 
job class code identifies a specialized processor, such as an 
SSPU that is attached to the physical equipment needed or a 
PPU with high-speed arithmetic for a lengthy computing task. 
A PPU that is otherwise not specialized may be reserved for 
a certain class of job by assigning a job class code to it. 
The hardware compares job class and priority of the interrupt­
ing task with the job class and priority of its current task 
for each PU. The PU with the lowest priority within the job 
class is selected. ~t switches tasks and selects the 
the identified task from the physical task queue. If all 
processing units of the right class are busy executing tasks 
of equal or higher priority than the interrupting task, the 
interrupt signal is ignored. The new task will be picked 
up during a subsequent normal task switch. 
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The PU selected for i.nterruption will attempt to 
reach the end of the current statement before switching 
tasks. If the statement end is ,not reached before a ;f:t:xed 
shortr"esp"o"nse' 'time has elapsed, thePD isi.nterrupted in 
mid-stream by storing away all current hardwarere~ister 
contents. The response time desired for a task a~pears ' 
in the task control block 1 it is-either set by the us'er ~ or 
a system default value is inserted. 

When the interrupted task is later resumed by a PU 
of ~the same class, all registers are restored automat.tca1Iy. 
Such a mid-stream interruption is entirely sate~" but it 
usually takes more time, both to dump and reload the registe;r;s 
and because of additional storage activity. 

Exceptions occurring within a task, such as fixed­
point overflow, are sometimes called synchronous interrupts, 
but they are not classified here as interrupts. As a rule 
an exception condition causes an appropriate exception function 
to be calledJeither at the beginning of the current statement 
or at the end, and the task continues uni~terrupted. Some 
exceptions may cause abnormal termination'of the task. 

4.1. 3 Time-Outs 

Timer interrupts via an SSPU may be used to 
implement time slicing, which allows tasks of equal priority 
to gain equal access to the available processors. Timer 
interrupts reflect elapsed real time. 

To keep track of active processing time, each 
logical task has a run time value in its task control block. 
An internal timer in each processor is used to update that 
run time whenever the task is active. When the active 
processing time exceeds the pre-set task time limit, 
the task is switched out and de-activated; outside inter­
vention is then required to re-activate the task and let it 
continue. The purpose is to detect and break into possibly 
endless loops. The task time limit defaults to a system 
value unless set otherwise by the user. The task run time 
may be used to update, accounting records upon termination 
of a task. 
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4.1.4 Task Synchronization 

The control program requires facilities from 
the physical system to permit interlocking of control 
functions and to gain exclusive control over system re­
sources when necessary. (The Logical Machine functions 
for the equivalent of the wait-post and enqueue-dequeue 
facilities of OS/360 are as yet undefined, but they may use 
the same facilities described here.) 

Tasks are interlocked by two operations, ENTER 
and LEAVE (which correspond to E. W. Dijkstra's P and V 
operators). ENTER and LEAVE operate on a special 
semaphore type of integer variable and, apart from 
initialization, they are the only operators that can 
change a variable of type semaphore. 

ENTER S, given by one task, locks the semaphore 
S to gain exclusive control over that variable (see 
the Storage Management Subsystem section on the details 
of locking) and subtracts 1 from S. If S becomes or 
remains nonnegative, it is unlocked and the task proceeds. 
If S becomes or remains negative, the current task is 
placed on a queue for Sand S is unlocked. 

LEAVE S, given by another task, locks the 
semaphore S and adds 1 to S. If the new value of S is 
still negative or zero, a task waiting on the queue for S 
is release-L In any case, S is unlocked and the current 
task continues. 

Suppose S is an interlock for a number of equi­
valent resources, specifically a set of N printers. Init­
ially S is set to N. Each task requesting a printer gives 
ENTER S, thus reducing S by 1. When the N-th printer is 
allocated, S = O. The next task requesting a printer 
sets S to -1 and must wait. A subsequent requestor leaves 
S =-2. When a task finishes printing, it gives LEAVE S, 
adding 1 to S and releasing a waiting task as long as S 
remains negative or zero. Thus at any time a positive S 
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represents the number of still unallocated resources 
(no task waiting), a negative S gives the number of 
tasks waiting (no available resources), and S = 0 
indicates ev.erything busy and nothing waiting. 

As another example, let S be an interlock for 
an event. Suppose task A attaches a parallel task Band 
sets S = O. Later A needs to synchronize with B. At the 
point of synchronization in the two programs, A has ENTER S 
(equivalent to Wait) and B has LEAVE S (equivalent to Post). 
While running, if A gets there first and gives ENTER S, 
it sets S = -1 and waits until B gives LEAVE S releasing A. 
If B gets there first and gives LEAVE S, then. S = 1 at the 
time A issues ENTER S, leaving S = 0, whereupon A proceeds 
inunediate1y. 

4.1.5 System Efficiency and Tuning 

Methods of observing system queues will be 
provided to measure the utilization of critical resources 
and identify bottlenecks. Neither over-long queues 
(bottlenecks) nor f'requent1y empty queues (excess 
capacity) represent an optimum cost-performance relation. 
Thus queues are important indicators where system tuning 
may be needed. 

Another example is observing high but unproductive 
activity. Too frequent page transfers between levels of 
the storage hierarchy may indicate a temporary overload, 
and performance may::.increase overall if the input load 
is temporarily reduced. It may also indicate the need 
for increasing the capacity of a level. Convers1y, too 
rare a use of a given storage level may indicate over­
capacity at the next lower level. 

Thus a completely automatic system does not mean 
an unsupervised system. A system should be tuned to suit 
a changing environment. 

4.1. 6 Hands-Off System Operation 

Normal system operation, including start-up and 
shut-down, should require a minimum of routine human 
intervention. To avoid a serious bottleneck and a common 
source of error, there is no central system console. Instead 
any terminal can be parameterized to perform a particular 
supervisory or operating function. Routine operator 
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functions will be restricted to simple physical tasks 
which do not justify full automation. Examples are 
loading paper for printers and handling storage media 
in shelf storage. Such actions are performed only upon 
instruction by the system and are monitored by the system. 

Complex decisions are reserved for exceptions 
requiring supervisory intervention via terminals with 
proper authorization. An operator would normally not have 
such authorization. 

4.1. 7 Error Correction and Recovery 

Facilities for error detection and, as far as 
practicable, automatic error correction will be designed 
into all parts of the system to assure a high level of 
reliability and availability. On-the-fly error correction 
is, of course, costly and cannot guarantee continued operation 
under all circumstances. For that reason, and because user 
errons require them anyway, journaling and restart from a 
checkpoint will be provided so that rapid recovery will be 
possible. 
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4.2 The Storage Management Subsystem 

The Storage Management Subsystem (SMS), some-
times called the "storage hierarchy'~ furnishes all 
addressable storage for the system. This section discusses 
the automatic storage management function provided by this 
subsystem to all processing units, the operations and operand. 
addresses by which processors communicate with the SMS, the 
responses given, and the internal structure and operation of 
the SMS. 

The SMS also provides interlocking and locking 
functions to allow many tasks to run concurrently in the 
same or different processors, yet provide for their syn­
chronization when necessary. Other functions designed 
to improve storage performance are briefly described. 

4.2.1 Storage Management Function 

The SMS function is purely one of storage management: 
to allocate storage spaces when requested by a processing 
unit (PPU or SSPU), to determine the physical location of the 
stored information, and to provide access to that information. 
Storage management is completely automatic and requires 
neither PU nor manual intervention. Several puts may be 
connected to the common storage hierarchy, which manages 
their separate storage requirements or permits them to 
share access to common information. 

The SMS appears to a PU as a single very large and 
fast storage device. It differs from earlier "virtual 
memories" in several important respects. The SMS manages 
all storage, including bulk storage previously classified as 
input-output,in a uniform fashion. It manages only space 
allocated to real data, not the unallocated storage t::"I.pacity 
(There is no list of free space I. New space can be created 
directly in the fast storage level at the processor without 
reference to slower levels, as long as pages are available. 
In fact, the allocation mechanism of a conventional memory 
is almost non-existent. 
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Storage is logically divided into spaces of 
varying sizes. Each space contains a varying number of 
bytes. The size, or extent, of a space and the number of 
spaces available are almost unlimited. Each space can 
grow or shrink independently of any other. The only 
limitation is the sum of the extents of all active spaces 
which cannot exceed the total capacity of the entire SMS. 
Even that limit is not rigid since, with operator assis­
tance, the available capacity can include off-line storage. 

Physically the on-line SMS consists of a number 
of levels, from the very fast, but relatively small, 
storage unit directly associated with a PU, through levels 
of increasing size and decreasing speed, to rotating disks 
and demountable tape strips. Storage areas are subaivided 
into blocks, or pages, which are passed from level to leveJ. ,to a 
PU as needed and drift back out when not used. The physical 
location remains hidden from the PU, which always addresses 
the SMU as if it were a single-level store. 

The 8M8 is concerned only with storage management, 
not with the form or contents of the information stored 
there. Data and task management are PU functions. The 
procedu:es needed,for this ar~ of course, stored in the 
SM8 as 1S everyth1ng else. . 

The 8M8 performs a storage function that is purely 
inter~~l to the system. Communication with the outside 
is a separate function performed by the source-sink 
sub'system. 

4.2.2 Addressing 

Each logical name appearing in the translated code is 
transformed by a PU into a pair of nonnegative binary 
integers, the space number and the offset, with which 
it addresses the 8MS. The 8MS uses the space-offset pair 
to search for the current physical address of the desired 
data object. 8pace numbers are inaccessible to the programmer. 
(Offsets ma have a l-to-l corres ondence with index values 
use y t e programmer. Physical addresses are even 
inaccessible to the PU, let alone the programmer. The 
inaccessibility of addresses provides a high degree of 
protection against erroneous or unauthorized accesses. 
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Space numbers are 52 bits long. When a new space is 
created by a PU, a unique number is assigned to that space 
and not re-used after this space is destroyed. Even an 
inactive space that has migrated to off-line shelf storaae 
retains its unique space number so that it can be restoren to 
the system at any later time without fear of conflict with 
other spaces. 

Offsets are 24 bits long and specify an 8-bit byte with­
in the space. Successive bytes are addressed by consecutive 
offset integers, starting with 0 for the first byte and end­
ing with X-I for a space containing X bytes. Offsets of X 
or greater are not allowed. 

I The PU can index through a space by doing address I 
arithmetic on the offset as long as the result remains with­
in the current extent. Arithmetic on space numbers has no 
meaning and is not permitted by the PU. 

Protection against invalid space or offset references 
is a function of the PU hardware. The SMS assumes that all 
addresses given by a PU are valid and does not, for example, 
keep track of a space extent. Invalid references that 
happen to fall in a valid page (i.e., references just beyond 
the last byte) are not detected by the SMS. References to a 
non-existent page would trigger off a long search through 
all levels of the SMS, so that the error response time of 
the SMS is too long to be a useful response to a programming 
error. Such an erroneous page reference would only be the 
result of a hardware error. 

4.2.3 Processor-Storage Operations 

The PU can request the SMS to perform these operations: 

CREATE 
ADD 
WRITE 
READ 
DELETE 
DESTROY 
BRING 

S,F,C 
S,F,C 
S,F,C 
S,F,C 
S 
S,F,C 

(F=X, Y=X+C) 
(F+C < X=y) 
(F+C < X=y) 
(F+C = X-I, Y=X-C) 

.where S is the space numbel;', 

F the offset for the first byte, 
C the count of bytes to be transferred, 
X the old extent, and Ythe new extent. 
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CREATE sets up a new space. The SMS sets up an empty 
page and assigns a new space name, which it returns to the 
PU. (The PU subsequently initializes the space with a space 
descriptor and extent usi~g an ADD operation.) Space names 
are assigned by the SMS from a single 52 nit space name 
counter that is incremented by I whenever any PU gives a 
CREATE. 

ADD stores C bytes at the end of space S, extending the 
space. F must equal X, the old extent, and the new extent 
is X+C. 

WRITE modifies (updates) C bytes in space S starting at 
offset F. 

READ fetches C bytes from space S starting at offset F. 

DELETE fetches C bytes from the end of space S, shrinking 
the space. F+C+I must equal X, the old extent, and the new 
extent Y is x-C. 

DESTROY removes space S from storage. All pages belong­
ing to S at any level are freed for other use. No further 
references to space number S is possible, and S will not be 
re-used. 

BRING causes the pages implied by S,P,C to be IIstaged" 
from a slow electromechanical storage level into a fast 
electronic level to facilitate subsequent access. BRING 
always continues as far as necessary through the SMS levels. 
If the SMS finds that an earlier BRING for the same page is 
already in progress, it ignores the second operation. 

CREATE/DESTROY, ADD/DELE'rE, and WRITE/READ are comple­
mentary operations. WRITE and READ both reference an exist­
ing portion of a space and do not change the extent. ADD 
and DELETE expand and shrink an existing space at the upper 
end of the space. CREATE and DESTROY deal with entire 
spaces and do not reference bytes stored within the space. 

WRITE and ADD differ in two important respects. WRITE 
assumes modification of an existing page and will cause a 
possibly time-consuming search for it until found; ADD 
creates a new page when necessary and bypasses the search. 
ADD implies a change in the extent whereas WRITE does not. 
All checking and changing of the extent field is done by the 
PU using appropriate READ and WRITE commands to access the 
field. 
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BRING can specify any part of a space or all of it 
(F=O, C=X). All other operations using the count field C 
are limited to a maximum count equal to the page size in level 
o of the smallest implementation (perhaps 64 bytes.) This 
means that a single operation can cross no more than one page 
boundary. At the start of an operation a check is made that 
one or two consecutive pages, as needed, are available before 
the operation proceeds. Once a reading or writing operation 
has started, it is allowed to complete without interruption. 

4.2.4 Storage Responses 

After requesting an operation the PU waits until data 
transfer starts or one of these responses is given: 

Completed 

Delayed 

Space Not 
Found 

Error 

Follows any data transfer and indicates suc­
cessful completion. 

Indicates that the search must proceed to a slow, 
electromechanical and possibly manual, level of 
the SMS. At the same time, the SMS issues an 
automatic BRING command for the desired page. 
{The PU may anticipate the need by issuing an 
explicit BRING beforehand.} 

When a BRING operation does not find the page 
previously requested, a dummy page (status Void) 
is inserted in the outer electronic level. When 
the PU later tries to refer to that page, this 
space-not-found response is given. 

An uncorrectable error has occurred while accessing 
the requested page. 

When the del~ye~ response is received, the PU may 
abandon the search or hold its task in a queue. The task may 
be reactivated after a set time interval elapses or when its 
turn comes again in the task queue. 

4.2.5 The Hierarchical Structure of Storage 

The SMS levels are numbered 0,1,2, ... Level 0 is the 
fastest storage device directly attached to the PU. For reasons 
of speed the level 0 unit may be designed as an integral part 
of its associated PU, with multiple puts interconnected via 
common buses between levels 0 and 1. To be specific, the descrip­
tion will assume multiple level 0 units and single units at 
higher levels, but other configurations may be implemented that 
are logically equivalent. 

IBM CONFIDENTIAL 



Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM '16 

Architecturally there is no limit on the number of 
levels. That number, and the choice of capacity and speed at 
each level, are based on cost and performance considerations 
for a particular implementation. For a large time-sharing 
system with data bank storage these factors clearly enter into 
the choice: 

1. The system must be open-ended. On-line data will 
slowly grow, and the system would suddenly corne to 
a halt unless inactive data can smoothly, but not 
irreversibly, migrate off line. Thus storage manage­
ment extends to shelf storage. 

2. The off-line storage medium must be low in cost to 
permit indefinite shelf storage. This virtually 
dictates a flexible, tape-strip medium. 

3. Inherently long access times at this level require 
that active spaces be written at one time to keep them 
physically together. 

4. A large capacity disk store is required, both as 
random-access buffer for the tape-strip level and as 
a medium for page overflow from faster levels. 
Scattering of pages for the same large space is un­
avoidable at this level. Removing disk packs, as 
in present systems, becomes impractical and undesirable. 

5. The disk level provides a necessary non-volatile back-up 
for volatile electronic levels. 

Each level communicates only with the next level above 
and below. Data are transferred as pages of fixed size at each 
level, but the page size need not be the same at every level. 
The ratio of page sizes between adjacent levels should be a 
non-negative integral power of 2, the actual size being an 
implementation choice. A page in the level below becomes a 
line of a page in the level above. All lines of a page belong 
to the same space. Normally each space occupies at least one 
page at any level, and the last page may not be full. 

This apparent waste of capacity greatly simplifies 
storage management. It makes practical the almost unlimited 
expansion of a single space by adding active pages as needed 
without disturbing other spaces. At the slowest levels, 
however, it may be possible to pack and unpack data to gain 
storage efficiency without substantial loss of performance. 
Such modifications do not affect the overall design and will 
not be discussed further. 
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Each level has, in addition to one or more storage 
devices, a separate directory storage. The directory 
contains one entry for each page location at that level. 
An entry consists of space number, page number, status, and 
activity count. 

The space and page numbers correspond to space number 
and offset at the PU level, For a page s.ize of 2n bytes the 
number of the page contain~ng a given byte is derived from its 
offset by dropping the low-order n bits. 

The page status, at the completion of an operation, may be: 

Unmodified -- this page has only been read, and a valid 
copy also exists at a higher level. 

Modified --

New --

Shared --

Void --

this page has been stored into; a copy 
exists at a higher level but is not 
up-to-date. 

this page has not been moved to the next 
level since it was created; thus no copy 
exists at any higher level. 

See section 4.2.7 

A dummy page indicating page not" found (see 
section 4.2.4); this page is not displaced 
to other levels. 

The activity count is incremented whenever a reference 
is made to that page. This count is used to determine the 
least-recently-used page when one must be displaced to the 
next higher level. 

The directory for a level is searched by space and 
page number to find whether and where a given page is located. 
A page can be at any location in a level. For greater speed 
the directory at the fastest levels may be implemented in an 
associative array. In slower levels a sequential search of a 
conventional storage array may be sufficient. 

Each level is equipped with the controls necessary to 
implement the various inter-level operations, and with any 
buffers and interlocks required to synchronize page transfers 
and to prevent interference from simultaneous requests by the 
other neighbor. The controls also take care of requirements 
peculiar to each level, such as error detection, correction, 
and recovery. 
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4.2.6 Internal SMS Operations 

The above listed commands from the PU and responses from 
the SMS apply at the interface between a PU and its level O. 
Operations between storage levels are basically the same, except 
that page and line numbers replace offsets, and only one page 
is moved at a time (count=l). 

When a directory search of one level reveals that the 
page desired is not in that level (level i), a search is initiated 
in the next higher level (level i+l). First a location is freed 
in level i to receive the page. The directory is searched for 
the least-recently-used (LRU) page according to the activity 
count. 

A DELETE or DESTROY operation sets this count to zero, 
so that deleted pages are used first. If no deleted page exists 
but the LRU page has a status of Unmodified or Void, that page 
location is used immediately since either a valid copy exists 
in a higher-numbered level or none is needed. Otherwise the 
LRU page must first be displaced by initiating a WRITE (if status 
is Modified) or ADD (if New) command to level i+l. Because the 
displacement operation may take time, the original request, coming 
from level i-I, is queued to permit other operations for level i 
to proceed. When the displacement to level i+l is completed, 
the original request is resumed by issuing a READ request to level 
i+l. This READ may trigger a similar chain of events in level 
i+l, so it may be queued again to await completion. Interlocks 
meanwhile block any subsequent requests from level i-I for this 
page, so that there will be no premqture use of the incomplete 
page and no additional search request for the same page. 

If the p~ge size in level i+l is greater than in level i 
by a factor of 2 , the page· number passed up from level i is 
converted to a page number for searching the level i+l directory 
(along with the space number) by dropping the low order k bits. 

When the page in level i+l is found, these k bits form the line 
number which determines the position of the level i page as a 
line within the level i+l page. 

The WRITE or ADD request resulting from a displacement 
in level i triggers off a search in the level i+l directory. 
If the operation is ADD and this is the first line of a page 
(the low-order k bits are all zero), a new page is started in 
level i+l at a location to be freed as before. If the ADD 
operation refers to other than the first line, the line must 
be stored into an existing page; likewise a WRITE implies 
changing an existing page. The existing page must then be 
found. If it is not in level i+l, the same cycle of events 
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described above is repeated to get the page from level i+2. 

Thus the most complex chain of events for level i, in 
response to READ, WRITE, or ADD request from level i-1, con­
sists of: 

1. Search directory i for page desired by i-1. 
If not found, queue up request from i-1. 

2. Search directo~y i for LRU page. Block the page. 

3. If not free, queue up READ request for i+1. 
Initiate displacement of LRU page by WRITE or 
ADD request to i+1. 

4. When displacement completes, send queued READ 
request to i+1. 

5. When READ completes, finish i-1 request by 
transferring the desired line. Unblock the page. 

One or more of the steps in this sequence may be 
skipped depending on conditions. 

A DELETE operation is similar to READ in that the 
desired page must first be located and the specified line trans­
ferred to the level below. If this is the first line of a page, 
however, the directory entry is marked as deleted and a DELETE 
request is passed to the next higher level. The chain of 
DELETE requests ends when the line number is not zero (the lines 
below being still valid} or when the page found has the status 
~--(there being no corresponding line at a higher level). 

DESTROY simply causes all page entries for the specified 
space to be deleted in every directory. (Other modes of 
DESTROY may be found desirable, such as a DESTRUCT command 
which also causes the storage pages to be overwritten for extra 
security. ) 

A CREATE command by the PU initializes a page marked 
New in level O. CREATE does not appear at higher levels. 
When a page so created must be displaced to levell, an ADD 
command is generated as with any other page marked New. 

It may be noted that ADD or WRITE commands to one level 
may trigger off a READ command for the same page to the next 
higher level but not another ADD or WRITE for that page. ADD 

/ "\ 

or WRITE commands are always the result of a displacement action 
for a different page. ADD or WRITE may be generated automatically 
by a level when it is not otherwise busy and (1) the supply of 
empty or inactive unmodified pages is low, so as to anticipate 
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future needs for free pages, or (2) to create backup 
copies of pages at higher levels for security. Such 
automatic displacement action leaves the displaced pages 
in Unmodified status at their old location. 

As mentioned before, a PU ordi.narily waits for its 
level a to complete any request. Thus no other interlocks 
are required between them. At higher levels, however, 
multiple PU'S may independently initiate requests for the 
same page. Also a PU request for a page may come just after 
a level has initiated an automatic displacement action for 
that page. Hence the need for interlocking multiple page 
requests at higher levels. 

4.2.7 Interconnections for Multiple Processors 

Each PU is connected directly to its own level a 
storage device and directory for transfer of operations, data, 
and responses. There is no direct connection between PU'S 
for storage operations. At the interface to the rest of the 

I) 

SMS all level a units and the common level I unit are inter­
connected via common directory and data buses and control lines. 

The PUiS operate simultaneously and independently of 
each other unless they make reference to the same page. At 
that point the hardware will provide temporary interlocks so 
that the PUiS in fact proceed sequentially. Logically the 
result is the same as if all PUiS were connected to a single 
storage unit. The interlocks are transparent to the user. 
(See also ASP Memo 067 for details.) 

The previously stated rules for searching the levels 
are modified somewhat for parallel PU operation. If a PU 
requests a READ for a page not in its level 0, a search for 
a copy of that page is initiated via the common bus in the 
level a units of all the other PUiS. If one is found, a copy 
is sent to this level a and both directory entries are marked 
in Shared status. Thus multiple copies can exist in different 
level 0 units for simultaneous reading without further 
interference. 

When a PU requests a WRITE or ADD operation for a 
Shared page in its level 0, a cancel request is broadcast to 
all other level a units to delete all Shared copies of the 
page before the page modification proceeds. A WRITE or ADD 
for a page not in this level 0 causes a search in all other 
level a units for a copy to be transferred, but all other 
copies are cancelled. If there is no copy in level 0, the 
request is directed to level 1. Thus for page modification 
a given PU takes sole control over that page. Subsequent 
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READ requests by another PU causes the modified page to 
be written into level 1 so as to make shared copies 
available to the level 0 requestors. 

Levelland higher levels are not affected by the 
sharing and do not need to "know" which PU, if any, has a 
copy of a page. Shared status appears only in level O. 
(The possibility of multiple units at higher levels for 
protection against failure is not being addressed here.) 

The net effect of these interlocks is that there is no 
restriction on simultaneous reading of the same page by 
several puts or on simultaneous operations on different pages 
of the sarne or different spaces. Simultaneous writing of the 
same page, when needed, suffers only the loss in time for 
transferring the page from one unit to another. At any 
instant a READ operation by any PU is always guaranteed to 
give the most up-to-date version of the information. 

4.2.8 Page Locking 

To synchronize different tasks in the same PU 
(multiprogramming) or in different puts (Multiprocessing), 
two further operations are provided in level 0 only: 

LREAD S,F,C 
UNLK 

LREAD (Lock and Read) is similar to READ with the 
following additional properties. 

1. It seizes exclusive control of its page, as described 
above for WRITE, by cancelling all other copies in 
level 0 units. 

2. It causes that page to be locked in its level 0 unit. 

3. Interrupts for this PU are disabled while any page is 
locked. 

Locking a page means that no other PU can gain access 
to that page and that the page cannot be displaced. The PU 
that locked it continues to have free access to that page. 
If another PU requests the locked page, it must wait; it can­
not get the page from level I or proceed to another operation. 
The locked page is that containing the offset specified by 
LREAD. If the operation crosses page boundaries, the second 
page is not locked. Additional pages could be locked by 
separate LREAD operations, however. 
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UNLK (Unlock) releases all locks for its level 0, 
enables interrupts for this PU, and allows other waiting 

77 

PUIS to proceed. UNLK has no operands. Only one UNLK is 
required to release all locks left by previous LREAD 
operations. To prevent permanent system locking due to a 
failure, locks are released also after an automatic time-out. 

LREAD followed by WRITE allows the inspection and 
setting of a task interlock bit or count (semaphore). If 
the task being synchroni.zed has to wait, it can be placed on 
a task queue before giving UNLK to allow other PUIS to test 
the same task interlock. The control program providing this 
synchronizing function must be carefully written to avoid 
deadlocks and to reduce the lock time to a minimum. The 
hardware merely enforces sequential operation and cannot 
itself create deadlock situations. (See also ASP Memo 067.) 

4.2 .9 Lookaside 

For extra speed a PPU may contain a logical-name array 
that permits look-aside to minimize storage accesses on re­
peated reference to the same information. This array contains, 
with each short-hand logical name, the physical address in 
level 0 where the corresponding byte is currently located. 
This physical address is then passed to level 0 instead of a 
space-offset pair for a directory search. 

Because it is closely tied to other PPU functions, this 
lookaside feature is described in more detail in the PPU section. 
Its function, however, is also tied closely to the level 0 
portion of the hierarchy. The physical address is provided 
by level 0 after the first search for the desired item, and 
level 0 must cancel an entry whenever the corresponding page 
is displaced. Thus there is no basic contradiction with the 
principle that physical addresses in a hierarchy level are 
"known" only to that level. 

4. 210 Other SMS Functions 

The SMS will be provided with thorough checking 
facilities and, where practical, with automatic on-the-fly 
error correction. Automatic restart after an uncorrectable 
hardware failure probably requires some form of automatic 
journaling device that records all changes since the last 
checkp9int. 
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To speed up purely sequential operation it may be (,/-"'\ 
desirable to have a "sequential" modifier on READ or ~R~TE '~ 
operations that would prompt the SMS to pre-fetch add1t10nal 
consecutive pages of the same space. 

At the outer levels additional operations may be 
needed to read and write complete spaces in a highly compressed 
format under supervisory program control. 
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4.3 The Program Processing Subsystem 

The Program Processing Subsystem consists of one 
or more Program Processing Units. These units communicate 
only by use of the interrupt bus and shared storage. 

The Program Processing Unit (PPU) of the AFS system 
is the physical counterpart of the logical interpreter of 
section 2.6. In this section, we discuss the structure of 
the PPU, its relation to other subsystems, and the framework 
of a large machine implementation. 

4.3.1 An Overview of the PPU 

The job of the PPU is the evaluation of a statement, 
or an ordered list of symbols. These symbols may be built-in 
operations, literals, or logical names. A built-in operator 
produces as its result, an architecturally-defined function of 
its arguments. A literal is a data unit which represents 
itself (e.g., 5.3) and cannot be assigned a value. A logical 
name may represent a value, or name a function. In order to 
distinguish these two possibilities, the current attributes and 
values of the referenced data element must be retrieved from 
storage. 

The PPU is also required to communicate with other sub­
systems by initiating and responding to "wake-up" signals or 
interrupts. 

4.3.2 Data Representation 

The fundamental concept of data representation of the 
system is that all data is self-defining. This implies that 
attributes are associated with the data in storage. Any 
reference to data implies an examination of the attribute set, 
in order to determine if the requested operation is applicable, 
whether implicit type conversion is required, whether the 
operand is scalar or an array or structure requiring special 
sequencing control. 

The PPU supports a number of data types which are 
detailed in Table 4.3.1. The principal separation is between 
problem data and program control data. The attributes of a data 
item define its value at any instant. On the other hand, any 
assignment of a new value to the item requires the use of the 
generic descriptor in the LDT (section 2.5). The generic 
descriptor specifies what the value descriptor can be. The value 
descriptor indicates what the value is. 

IBM CONFIDENTIAL 



Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM 

Applicable 
Attributes 

Problem 
Class 

Program 
Control 
Class 

Len<Jth. o~ 
·Sca.la.r;,.·· ",El.~e.nt,;t,n, .·.·.··.,Sca,le . '.' 

Type " ';; ?;:~~;r;.; .. ~;: " ~ ,''!3lY.~~g~, ;~'~,:,;:-,,'r~f!:~Zi'",' G Y~\~~:-. 

binary real X n 
decimal real X n 
binary complex X n 
decimal complex X n 
bit string X n 
character string X n 
unassigned X n 

semaphore n 
pointer X n 
offset X n 
label X n 
entry X n 
event X n 
task X n 
module n 
area n 
symbol table n 
reference table n 
system pointer n 
system offset n 
undescribed n 

Table 4." 3.1 Primary Value Descriptor 

An entry in a column indicates that the 
choice is applicable 
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If the data item is a scalar, its complete descriptor 
appears in a two-byte field. For more structured data, 
additional descriptive information is required including array/ 
structure, level within a structure, dimensionality and array 
bounds or index set specifications. The exact formats for the 
array and structure descriptors have not yet been determined. 

Any or all of the attributes of non-scalar data may be 
factored, or represented once for the entire data collection, 
instead of with each individual element. For example, a numeric 
array might be represented with all attributes but scale factor 
and value factored into a common descriptor for the array. 

Arithmetic data may be represented in any combination of 
binary/decimal, and real/complex choices. Each arithmetic 
item is associated with a precision, p, the number of digits 
which appear in the quantity, and a scale factor, q, which 
specifies the position of the radix point relative to the low­
order digit. A negative scale factor signifies that the radix 
point is to the left of the low-order (right most) digit, a 
positive scale factor to the right of an implied zero digit 
to the right of the low-order digit. 

String data is another variety of problem data. The 
two forms of string data are bit string and character string. 
Instead of precision, string data possesses a length attribute, 
the number of characters or bits in the item. 

Data of program control type is not directly used by the 
programmers, except for certain assignment statements. Table 4.3.1 
presents a list of the program control data types currently en­
visioned. We note that certain of these data types may appear 
in structure or arrays. 

The final aspect of the data descriptor is the value 
of the object. The value is represented in storage by a string 
of bytes of art appropriate length, but the interpretation of these 
bytes is possible only by means of the descriptor. In most 
instances, the complete Descriptor (including value) for a data 
item will be found in a Reference Table, as discussed in section 
2.5. If the item is too large to fit reasonably into the Refer­
ence Table or the number of bytes of storage required is expected 
to change, the item will be assigned by the system to a newly 
created space. The Reference Table entry will then be a System 
Pointer to the space containing the actual item. 

IBM CONFIDENTIAL 



Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM 

4.3.3 Space and the Ad4ressing Mechanism 

The virtual storage of the system is composed of spaces. 
Each space contains a known number of bytes, m, which are 
numbered from 0 through m-l. Each space, as a whole, carries 
its own length and descriptor information in its first four bytes. 
The first three bytes contain a binary integer specifying the 
number of bytes currently allocated to the space. The fourth 
byte is used to tell what the type of the space is. Currently, 
we recognize spaces for Link Tables, Declare Tables, Symbol 
Tables, Reference Tables, and Undescribed. A space is called 
undescribed whenever a system user logically knows a priori the 
type of space which he is using. In other words, an undescribed 
space means that" if you have to ask what type of space this is, 
you shouldn't be here." 

Space descriptors, like data descriptors, are trans­
parent to the user. They are tested and manipulated only by 
well-controlled system functions. 

Each object in storage has a unique IID or internal 
identifier, which consists of a 52 bit space number and a 24 
bit byte offset within the particular space. 

o 

Seen from the PU,storage is an access machine which ( 
responds to certain calls, including READ, WRITE, CREATE, 
DESTROY, ADD, and DELETE. The arguments for these calls consist 
of the IID mentioned above, and a value for WRITE. The hierarchy 
responds with a completion message, and perhaps a value, as in 
READ. 

The logical mechanism required to convert between the 
programmer's symbols and the IID representation has been discus­
sed in Section 2.3 and 2.6. That scheme requires a table ref­
erence to convert the LLT offset to a space-offset pair in a 
Reference Table, followed by fetching the specified object. 

If the actual data is located in the table, the search 
is over, but otherwise, a pointer chain must be followed until 
the data (or its space-offset identifier) is obtained. 

Any request to storage is expected to employ a valid 
space-offset pair, which means that the address mechanism must 
read the extent field of any space, compare the extent to the 
specified offset, and make the request only if the extent of 
the space is not violated. 
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4.3.4 System Addressability Considerations 

In this section we discuss the physical embodiment 
of the Activation Tree and Dynamic Storage control which 
were described in Sections 2.3 and 2.4. The goal of the 
discussion is to clarify the process of obtaining addressa­
bility to the various spaces which are referenced by a module. 

We have previously seen that the LTCB provides identifica­
tion for four spaces associated with the task: 

a) That branch of the Activation Tree associated 
with this task. 

b) The Interpreter currently assigned to this task. 

c) The set of System Storage Anchors 

d) The set of User Storage Anchors. 

In turn, the Interpreter identifies the task's Execution 
Stacks, the current Module (in the Program Tree), statement 
number, and token within the statement. 

4.3.4.1 The Call Stack 

The Call Stack corresponds to that portion of the 
Activation Tree associated with the given Logical Task. Thus, 
the flow of control in the task is represented by this stack, and 
the next unit of work for this task is indicated by the last 
entry in this stack. 

The essential information in the Call Stack consists 
of a pointer to the current node of the Program Tree and the 
offset in the calling block to which control is to be passed on 
exit. The connectivity to the Program Tree provides indirect 
access to the LLT, LST, LDT and Reference Table for the activation. 

The Call Stack operates logically as a pushdown stack 
or extensible space in storage. However, it is desirable to scan 
successive entries without deleting them, so that attempts to 
branch to no-longer-existing blocks can be effectively diagnosed. 

4.3.4.2 The Execution Stacks 

The Execution Stacks for a task consist of an Operator 
Stack and an Operand Stack, required for executing prefix Polish 
code. These stacks are spaces in storage, but are referenced so 
frequently that special hardware is warranted for their top levels. 
A further discussion of a proposed implementation will be found in 
Section 4.3.7. 
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4.3.4.3 The Storage Anchor Registers 

The discussion in Section 2.4 tre:ats the logical re­
quirements on the Storage Anchors in two phases, System 
Storage Anchors and User Storage Anchors. We recall that 
the System Storage Anchor contains the space number of a 
Reference Table, and a User Storage Anchor, the space number 
of a space containing one DAPOV. 

The physical implementation of System Storage Anchors 
consists of a set of 254 Storage Anchor Registers. We regard 
this number of levels as infinite. Each such register contains 
the space number and for checking purposes, current extent of 
the corresponding Reference Table. 

The User Storage Anchors are implemented by placing all 
such, for the given task, in a space, whose identification is 
placed in Storage Anchor Register 255. The Relative ID field of 
the LLT selects a particular Storage Anchor (System Space Pointer) 
from the designated space. 

The Space referenced by a User Storage Anchor is con­
strained to contain at most one user DAPOV. However, 
successive generations of a particular variable must be chained 
together, by a means transparent to the user. No explicit offset 
to the user DAPOV is provided. 

Clearly, we must have enough Storage Anchor Registers 
in high-speed hardware to permit high-speed operation. Several 
possible implementations include: 

a) Restricting the number of System Storage 
Anchors to 14 or so, instead of 254, and 
providing 14 actual registers. 

b) Using a block storage method, where certain 
sections of the complete table are automatically 
swapped into a small buffer. 

Option b is attractive, since references will probably 
cluster about the current level, appear at the external level, 
or invoke some User Storage Anchor with few references between. 

High-speed swapping between sets of Storage Anchors 
and the SAR's will likely be required at task switch time. 

Since the Call Stack points to a node of the Program 
Tree, which is associated with a System Storage Anchor, any 
·Call Stack manipulation also involves Storage Anchor Register 
modification. 

IBM CONFIDENTIAL 

c 



( 

( 

section 4.3 THE PROGRAM PROCESSING SUBSYSTEM 

4.3.5 Computational Facilities 

In this section, we discuss the computational require­
ments of the system, corresponding to E-box functions in 
present~day puts. These requirements are associated with the 
problem data types of Table 4.2.1. 

The first distinction is between arithmetic and string 
data types. Arithmetic data types admit standard numerical 
algorithms (e.g., add, multiply, exponentiation, arctan) as 
operators. String data permits such operators as concatenate, 
compare for equality, substring searches, and for bit string, 
bit-by-bit logical connectives. 

As indicated earlier in Section 4.3.2, storage is 
byte-oriented, and arithmetic data is not necessarily aligned on 
"word boundaries", and is of variable length. It is a system 
requirement that the PPU provide both decimal and binary (or 
hexadecimal) arithmetic, at equivalent speeds. We anticipate that 
decimal will be the preferred radix, but emulation of S/360-370 will 
require floating hexadecimal as well. 

In the native mode of the system, a fixed point operand, 
because of its scale factor, is truly that. In fact, the only 
distinction between fixed point and floating point quantities occurs 
in assignment, when the generic descriptor indicates whether the 
scale factor may be changed. In this interpretation, all numeric 
computation may be considered internally to be floating point. 

String operations appear to cause no new problems for 
a byte-wide VFL unit. If found desirable, many such operators 
could admit multiple-byte-wide processors. 

The system logical language is prefix Polish. In order 
to execute this code, the hardware requires an operator stack and 
an operand stack. As the code is scanned sequentially, each 
operator token is placed on the operator stack, together with a 
count field which specifies the number of arguments which the 
operator requires. When an operand (literal or variable) is 
encountered during the scan, the value of the operand is placed 
in the operand stack, and the argument count field of the top 
operator in the operator stack is decreased by 1. 

When this count is zero, the operator may be scheduled 
for execution. The scheduling means that the operator and 
its operands may be sent to an appropriate execution unit for the 
required processing, provided that the unit is available. At 
the completion of the operation, all operands participating are 
pushed off the top of the stack and lost. The result and its 
descriptor are placed in the operand stack and the operator stack 
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is popped up, exposing a new top operator. We then decrement,,~~ 
and test the argument count field for this operator. If at 
some stage, the decreased operator count is not zero, the code 
scan resumes. Otherwise, we return to the scheduling step. 

This description of the prefix Polish stack algorithm 
assumes that operators and operands are distinguishable. In 
order to achieve this property, the execution-time attributes 
of symbols must be examined. The logical architecture provides 
a code initialization function, capable of translating the 
logical language into appropriate execution time code. 

The physical hardware language, "under the covers", is not 
yet defined. The definition will be transparent to the user of 
the system. 

The rich operator set of the logical architecture makes 
the use of microprogramming attractive. In particular, the 
use of pageable microprograms, as presented by McGovern, Moore, 
Willoughby and Kurtz of Department BOS, IBM SDD Poughkeepsie, 
appears to provide a mechanism by which a small, fast control 
store may perform like a large, fast one. 

4.3.6 Lookaside 

In attempting to implement this architecture, the 
system designer is forced to consider the cost/performance 
implications of its features. 

The most important consideration is that of shortening 
the time between an operand request via the LLT and the return 
of the actual DAPOV. The proposed method is to provide an 
associative lookaside memory in parallel with the directory for 
the level 0 cache. Figure 4.3.1 sketches a cache, with the 
lookaside memory in the dashed block in the upper right corner. 

In this discussion we denote a collection of pointers to 
the current Module, its LLT, LDT and LST as System Bases. 
Physically, the System Bases are found in the System Base Registers, 
a portion of the Storage Anchor Register Array. 

Without lookaside, the typical Logical Name search 
begins with the LLT space number (from the System Bases portion 
of the array containing the SARls), and the LLT offset (i.e., 
Logical Name) from the program used as an index to the cache 
directory memory. If the search is successful, the physical 
address of the LLT entry in the cache is read out, and used, in 
the cache address register, to read out the LLT entry. This 
entry consists of a storage anchor name and relative offset. 
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This information, on the cache data out bus, is used to 
select a Storage Anchor Register and its appropriate offset. 
Another directory search is made, and, if successful, the 
physical address of a DAPOV is placed in the cache address 
register. The resulting cache read operation produces the long­
awaited DAPOV. If this DAPOV is itself a pointer, and a value 
is required, we may repeat the loop, except that the Storage 
Anchor lookup is bypassed. 

87 

The use of the lookaside memory permits us to eliminate 
at least one pass through the cache. In this mode of operation, 
the lookaside memory and cache directory memory are searched 
concurrently. If the lookaside memory finds the physical address 
of the DAPOV, that address is used immediately as the cache 
address. This produces the desired output in one cache cycle, 
not two. More than one cycle will be saved whenever a multi­
level pointer chain is referenced. 

When the lookaside search fails, the direct LLT readout 
is performed as described above. When the physical address 
of the desired DAPOV is generated, it is inserted into the lookaside 
memory and associated with the Logical Name from which it was 
derived. Subsequent references to this name will be found in the 
lookaside, until the entry is invalidated. 

In mapping ~ large index set into a small memory, a 
replacement algoritRm is required for determining the entry 
to be removed when we desire to place a new entry into a pre­
viously full memory. This problem occurs both in the cache and 
in the lookaside memory. The actual organizations and replacement 
algorithms in these two cases are implementer's choice. 

The two cache data busses present or accept left-aligned 
data. The Write and Read Data Aligners are used to convert 
between the wide, fixed width cache word and the variable width, 
variable initial byte usage of logical storage. 

Implementers may choose to combine the two cache data 
registers, data aligners, or data busses. 

4.3.7 A Possible PPU Implementation 

In this section we discuss a possible high-performance 
implementation of the PPU architecture. This is diagrammed in 
Figure 4.3.2. 
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4.3.7.1 Level 0 and the Data Bus 

In the Level 0 Unit box, we assume the structure shown 
in Figure 4.3.1, except that a single bi-directiona1 data bus 
is shown here. Communication with storage level 1 is achieved 
by the level 1 address/command bus and data bus. 

The Read-Write Control box coordinates all activities 
at level O. These include priority determination, block re­
placement management and level 1 communication. This box also 
controls the byte aligners, described in Section 4.3.6. It is 
further responsible for providing multi-level pointer-following 
lookups, such as occur when lookaside fails, or when data values 
are not found in a DAPOV of an RT. 

The bi-directiona1 data bus is eight bytes wide. Normal 
usage calls for level 0 to code buffer, value stack or storage 
data register transfers, and for storage data register, value 
stack, and new top bus to level O. There should be provision 
for bi-directiona1 block transfer between the operator, value 
stacks and level O. A path is also shown for placing a literal 
from the code buffer onto the bus, for transmission to the value 
stack. 

4.3.7.2 I-Box Function 

The customary I-box functions of fetching and examlnlng, ~ ;/ 
instructions is carried out using the code buffer, ICTR and 
token select and decode boxes. The ICTR provides the offset 
for code in the code buffer, and for fetching new segments. The 
token select and decode unit examines the byte pointed to in 
the buffer by the ICTR, and selects an appropriate action. If 
a value corresponding to a Logical Name is required, the Logical 
Name is sent to read control with the value stack as its 
destination address. An operator byte is placed in the operator 
stack. A literal field causes the entire literal to be placed 
on the data bus for immediate transmission to the value stack. 
A Logical Name whose value is not required, as in the target of 
an assignment, will be placed in the value stack, like a literal. 

4.3.7.3 Operator Execution 

The theory of Polish stack manipUlation was detailed in 
Section 4.3.5. When the topmost element in the operator stack 
has found all its operands in the value stack, the operator is 
sent to the op decoder for classification, and assignment to the 
appropriate executer. 
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Although the values placed in the value stack are 
inherently of variable length in bytes, these sizes will be 
rounded upward to the next mUltiple of eight bytes. This 
creates a minor problem in matching data descriptors with 
their variable length values for easy access in the value stack. 

This philosophy also presents a problem in eliminating 
"noise bytes" transmitted from level 0, before they actually 
participate in a computation. 

We may point out here that the value stack represents 
a portion of the Operand Stack of each task. 

~I 

A statement control op will change the ICTR, and probably 
cause a code buffer refill. 

A CALL/ATTACH/RETURN operation Y7ill not only affect the 
ICTR, but will cause the appropriate protocols from Section 2.6 
to be obeyed. These will in general involve the storage anchors and 
system base registers. These registers are shown in an array in 
Figure 4.3.1, and controlled by the box labeled storage anchor and 
system base register control, in Figure 4.3.2. 

Assignments will be performed using the Logical Name to 
reference the LDT entry for the destination, to validat~ the 
descriptor information or invoke a conversion. For certain types 
of assignments, some or all of the storage anchor registers will 
be copied into storage. 

For a scalar computational operation, the op and three 
indices to the value stack will be placed in the E-stack. The 
E-scheduler controls the issuing of E-stack groups to the ap­
propriate E-unit. 

. Arrax computational operations, distinguished by the data 
de~crlp~ors ln the valuestac~, are routed t9 an array control unit. 
ThlS unlt converts array ops lnto an approprlate loop of scalar ops, 
executed from the E-stack. Since arrays will not appear in 
the value stack, array control must provide the ability to 
reference storage. 

4.3.7.4 Work to Be Done 

Needless to say, much work must be done to provide a 
good system design. We briefly mention some points of interest 
here. 

The data bus philosophy may be overloaded, and prove to 
be a performance bottleneck. If the literal-to-value-stack 
path is implemented by a private path, will performance be improved? 
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There appears to be a possible usage conflict on the 
busses between the value stack and the several E-units. Al­
though the implicit logical addressing of elements of the value 
stack is clean, it requires more analysis to detect opportunities 
for parallel execution. 

It is likely that the cache 
sensitive to pgge boundary crossovers. 
consecutive references to the same page 
employ the directory lookup mechanisms. 

design can be made· 
By this, we mean that 
of level 0 will not 

Any instance of a local copy of an item in storage 
means that a mechanism must be provided to invalidate the 
copy when the original is changed. There remains much room for 
invention in this field. 

The number and functions of the E-units have not been 
established. A possible choice might be an adder, a multiplier­
divider, and a string processing unit. 

4.3.8 Interrupts 

In any system, there occur interrupts, which might be 
pefined as occurrences which either are asynchronous (anticipated 
but whose time of occurrence cannot be correlated with the 
processor activity), or synchronous (an unanticipated but pre- ( 
pared-for event which can be associated with processor activity). ~ 

In the normal case, the PPU will handle asynchronous 
interrupts in a manner transparent to the user. If a process 
must be halted, the appropriate status information will be 
dumped into storage, and, at the proper time, reloaded and 
execution resumed. 

An asynchronous interrupt request is passed to the PPU's 
of a system on a bus which chains through all PPU's. The 
information on this bus consists of a priority number and a 
queue indicator. If the nth PPU in the chain is currently 
working on a task of higher priority than that of the interrupt, 
he passes the request to PPU n + 1. If the request is of higher 
priority than the current task, this PPU accepts the request 
and does not pass it on. 

Each such request will be associated with a time interval, 
by the end of which service must be begun. The PPU will attempt 
to process to a statement boundary before the end of the specified 
interval. If no boundary was reached, the PPU drops the current 
task and takes the top unit of work on the indicated queue as 
its next task. 
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4.4.1 Introduction 

In this section we discuss the structure of the 
Source-Sink Subsystem (SSS), its relation to other sub­
systems, and its functions. The SSS provides the link for 
communication between source-sink devices and storage. One 
or more Source-Sink Processing Units (SSPU) are the heart of 
the SSS. These processing units are similar to the PPU's in 
the Program Processing Subsystem, except that the SSPU's do 
not have floating point capability and they are specialized to 
handle physical Input/Output. 

A set of control lines exists between the SSS and the 
PPS to allow for "wake up" type of signals to be passed either 
way when an interrupt is called for. Data Objects and Modules 
do not pass between the SSS and PPS. 

Local and remote source-sink devices are both handled 
by the SSPU in such a way that the local or remote character 
of the device is transparent to the rest of the system. The 
source-sink device classes include, card readers and punches, 
printers, terminals, displays, other systems, special I/O 
equipment, and tape units and disk drives that are not included 
in the Storage Management Subsystem. 

4.4.2 Source-Sink Subsystem Structure 

The Source-Sink Subsystem structure allows communication 
between a source~sink device and the logical source-sink Task. 
The functions that must be accomplished in order to allow this 
communication to take place may be separated as shown in Figures 
4.4.1 and 4.4.2. Figure 4.4.1 depicts the functional layers 
required for communication between a logical source-sink Task 
and a source-sink device without its own processing unit. 
Figure 4.4.2 depicts the functional layers required for com­
munication between a logical source-sink Task and an intelligent 
source-sink device. 

. The logical source-sink Task is assigned as a physical 
task by the Logical Machine Supervisor. The Symbolic Name of 
the source-sink device is known in the Ownership Tree and a table 
of connectivity in the Task Control Block yields the named 
destination to the SSPU. 

The Function Manager allows the application program to 
be independent of the source-sink device with which it is 
communicating. It will map a particular function (such as print) 
to a particular device (such as a display unit) . 
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The Source-Sink Device Manager defines information 
that is unique to a particular device. The device conunands (-,\ 
and control characters are inserted in the data stream by the "'~J 
Device Manager. The Device Manager separates local messages 
from remote messages. 

The Network Manager selects the conununication path and 
controls the network interaction for the system. 

The Line Control establishes the connection to a given 
path, notifies the ~etwork Manager that the connection has 
been made, brackets the formatted data with control characters 
and transmits them over the line. 

At the other end of the line, the Network Controller, 
when it recognizes its own address, strips off the line control 
characters and passes the message on to the source-sink device 
under control of the device's control unit. 

If the source-sink device is another system (as in 
Figure 4.4.2), the message is passed to that system's SSPU and 
processed. This function is described in Sections 4.4.3 and 4.4.4. 
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4.4.3 SSS Interrupts 

Interrupts to the SSS may come from two sources, 
from the PPS or from source-sink devices. The subject of 
this section is the various causes of these interrupts. 

The only communication that takes place between the 
PPS and SSS is in the form of "wake -up" signals which contain 
priority class, PU class, and queue designation information. 
These signals are passed to all PUiS (SSPU's and .P'PU's) of a 
system on a line bundle which chains through all PH 's. '1'he 
PPS will signal the SSS whenever an output Task has been 
placed in the appropriate queue for the SSS. 

Interrupts from source-sink devices to the SSS occur 
for the following reasons: 

Incoming message with priority class 
"Attention" signal to interrupt execution 

of current task 
Sign-on/Sign-off 
Disconnect 
Error detection on input 
Error detection on output 

The action of the SSS in response to these interrupts 
is discussed in Section 4.4.4 in conjunction with a possible 
implementation of the SSS. 

4.4.4 SSS Functions and Implementation 

The SSPU's of the SSS function in a manner very similar 
to the operation of the PUiS of the PPS. In particular, with 
the exception of the floating point arithmetic capability, the 
description of the~U in Section 4.3 along with Figures 4.3.1 
and 4.3.2 apply as well to SSPU design and operation. 

The functions of the SSPU in addition to program 
execution required of all PUiS, include line and network control, 
control of the "wake up" signals passing between the SSS and PPS, 
appropriate response to source-sink device interrupts, and main­
tenance of the system clock. Reference to Figure 4.4.3 will help 
the reader to visualize the operations taking place in the fol­
lowing discussion. 
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4.4.4.1 Line .and Network Control 

The line control function is contained within a 
special piece of hardware called the Transmission Control 
Unit (TeU). Each TCU has its own buffer which is of sufficent 
size to contain one block of transmitted data received from 
each active source-sink device that it services. TheTCU's 
may each be personalized by means of a prograitllnable control 
for specific source-sink device classes. One or more TCU's 
exist for local source-sink devices not requirin'g transmission 
line control characters. 

The TCU buffers incoming data; monitors the source­
sink devices for requests for service, "message received" 
acknowledgements, and error responses; and makes connection to 
target devices for output transmission. Output data is trans­
mitted directly through the TCU without buffering in the TCU 
since the data is already buffered in the CACHE. The TCU 
brackets outgoing message blocks with the appropriate line 
control characters. On input, a source-sink device requesting 
service simply puts its input message on the line, and the TCU 
buffers the input message. In order for further input trans­
mission from that particular source-sink device to be allowed, 
the input message must first be analyzed under control of the 
Logical Machine for which the message isd'estined, and the / 
appropriate response returned via the SSS. l" 

Network control is the function of the SSPU. 
Output addresses are appended to output message blocks by 
the SSPU. The device's address is contained in the header of 
both input and output message blocks. When one or more input 
message blocks, buffered in the TCU, are waiting for service 
from the SSPU,a signal is sent by the TCU to set the Service 
Request register of the SSPU. When the SSPU completes an Output 
Task, it will next check to see if the ServiCe Request register 
is set. If it is, it will poll the TCU 1 s ,t·ake in the waiting 
input messages by buffering them in its CACHE, lOOk in the appro­
priate Task queue in storage, and go to work o:n the Tasks to be 
accomplished. If Service Request is not set, the SSPU will go 
straight to the Task queue to look for work. lfthe storage 
Task queue is empty, the SSPU will continuetornonitor the 
Service Request register, and poll the TCU's whenever this 
register is set, until the SSPU receives an interrupt from the 
PPS indicating that a Task has been placed in the queue. 
This scheme is consistent with the requirement to handle 
priority output messages, since a priority interrupt from the 
PPS can cause the SSPU to switch Tasks (e.g., to stop polling 
and look in the storage queue). 

4.4.4.2 The Interrupt Control Unit 

The Interrupt Control Unit of the SSS is a special 
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piece of hardware that services all PUIS. It effectively 
controls the line bundle (Interrupt Control Bus) chained 
through all PUIS. A PU that has put a Task in a particular 
queue puts on the ICB a signal containing the priority class 
of the Task and the PU class for the type of PU required to 
service the Task. The designation of the queue in which the 
Task may be found is implied by the PU class. These signals will 
chain themselves around the loop and cause the first PU in the 
chain (of the appropriate class), which is executing a lower 
priority Task (or is idle) to cleanly interrupt the lower priority 
Task, put that incomplete lower priority Task in a Task queue, 
issue an interrupt on the ICB, and switch to the higher priority 
Task. If an interrupt is issued for a Task which has a priority 
lower than any Task being executed, the interrupt will disappear 
at the end of the chain (the signal propagates past all PUIS in 
a loop up to, but not including, the PU that issued the interrupt). 
Such a case implies that all PUIS of the appropriate class were 
busy. When one of them completes its present Task, it will 
automatically look in the appropriate Task queues. 

4.4.4.3 Special Character Generation and Recognition 

A writeable Control Store exists as part of the SSS 
to provide a means of generating and recognizing special net­
work control characters. On output the appropriate characters 
are added to an outgoing message under control of the executing 
code. The input data bus which takes data from the TCU into 
the CACHE is monitored by the character recognition WCS for 
special characters such as "Attention", "Sign-on", "Sign-off", 
"Device Termination", etc. 

4.4.4.4 The System Clock 

The S,stem Clock resides in the SSS. Its function 
is to measure real time and provide the time to the rest of the 
system when requested. In performance of this function, the 
Clock may be considered as a highly specialized PU. It is 
connected to the Interrupt Control Bus and to Level I of 
storage. There are three kinds of Tasks the System Clock may 
be asked to perform by a PU. These are to give the time of day, 
to provide an interrupt after a specific time interval, or to 
provide an interrupt at a particular time of day. To help 
accomplish these Tasks, the System Clock has a pair of registers 
and utilizes storage to enqueue the required times of interrupt. 
When a PU needs service from the System Clock, the PU puts the 
Task in the appropriate queue and sends a "wake-up" signal on 
the Interrupt Control Bus consisting of Priority and PU Class 
(in this case CLOCK). The System Clock, when it processes 
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the Task will either put the time in the appropriate Task 
queue for the requesting PU and signal on the ICB, or it 
will calculate the time at which interrupt is desired by that 
Task and place it in a storage queue. The pair of registers 
will always contain the time of the next interrupt with its 
associated Task. The Clock will continually monitor the 
interrupt storage queue to ensure that a Clock register always 
contains the next timed interrupt to be given to a PU. The 
interrupt to the PU will be given when the time of day is co­
incident with the time placed in the register. The interrupt 
is given by putting the time of day, along with the Task for 
which the interrupt is intended, in the Task queue and sending 
Priority and PU Class on the ICB. Any PU of that class that 
is expecting an interrupt may look in the Task queue to deter­
mine if that interrupt applies to it. 

4.4.4.5 Responses of the SSS to Interrupts from 
Source-Sink Devices 

j 

Incoming message interrupts have been discussed 
throughout the preceding paragraphs in the context of SSS 
Functions and Implementation. Some special handling is required, 
however, for certain interrupts such as Attention, Sign-onl 
Sign-off, Disconnect, and Error Detection. 

Attention - Attention is sent as an input message 
from a source-sink device to abnormally terminate a Task being 
executed. The Task to be terminated may be an output Task on 
an SSPU or a problem Task on a PPU. The SSS will handle this 
message as an ordinary input message, place the "Attention" 
Task in a Task queue and place a "wake-up" signal on the Inter­
rupt Control Bus. The "Attention" message must have a Task 
ID appended to it by the SSPU since it knows which source-sink 
device is requesting the action. Thus, the PPU that takes on 
the Task will know which PU to terminate. A Task is also 
initiated by the LMS to unlock the input device. 

Sign-on/Sign-off - These messages also are handled as 
ordinary input messages as far as queuing and interrupt control 
is concerned. However, since there may be more devices on 
a TCU than input buffers, the TCU must decrement or increment 
its available buffers for each device that signs on or off so 
that it may refuse to sign on more than it can handle. Also, 
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an SSPU must process this Task to establish or drop con­
nectivity to this device through the TCB and the Ownership 
Tree. Another physical Task established as a result of this 
message is the sending of the appropriate sign-on or sign­
off output message to the device if one is required. A PPU 
will be assigned the Task of accounting for the total pro­
cessing time and connected time used by the device. 

Disconnect - A source-sink device that abnormally 
disconnects must indicate this to the TCU by dropping its 
line. The TCU automatically loads the appropriate buffer 
with a disconnect message containing normal header informa­
tion (address of device). The SSS acts on this as with a 
sign-off and an Attention (of course no output message is 
sent), however the Logical Machine involved must be stored 
lias is" for future activation. 

Error Detection - An interrupt, received by the SSS 
as the result of an error message from a source-sink device 
because of an incorrect output received by the device, is 
buffered in the usual way in the TCU. When passed to the 
SSPU, the Output Error character is immediately detected by 

10/ 

the Special Character Recognition WCS, and the TCU is notified. 
Since the TCU receives an error message from a source-sink 
device in place of the expected acknowledgment, it initiates 
a retransmission of the erroneous last message block which has 
been retained in the SSPU CACHE. Output message blocks are 
retained in the CACHE for TCU transmission. The TCU clears 
the message block from the CACHE when acknowledgement of receipt 
is returned from the source-sink device to the TCU. A mechanism 
is needed to stop retransmissions and provide notification to 
the system operator, after a set number of retransmissions of 
a particular message block to a particular device. 

Input messages are checked for errors by the TCU in 
two sections. The header containing the address is checked 
independently from the message body. In this way, an input 
error that is detected in the input message body will initiate 
an automatic "resend" signal from the TCU to the source-sink 
device that had sent that message. Obviously, an error in 
the input header (address) cannot initiate any system re­
sponse as the sending device is unkown. Therefore unattended 
devices of a certain class should be buffered and should auto­
matically resend after a suitable time out to allow for this 
situation. Attended devices will require operator interven­
tion (e.g., Attention) should an input address error occur. 
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4.4.4.6 Other Hardware 

Crosspoint switching of TCU's with SSPU's is required 
to provide system availability should an SSPU go down. The 
implementation of this feature will have an impact on per­
formance if the switching is to be dynamic (under system 
control). If the TCU's (and possibly devices) are manually 
switched when required, implementation complexity diminishes 
considerably. 

Disk drives and tape units that are part of the Storage 
Management Subsystem are not source-sink devices. It may be 
required at times (e.g., for use in emulation mode) to logic­
ally switch some of these devices out of the Storage Manage­
ment Subsystem into the Source-Sink Subsystem as source-sink 
devices. This may only be done if the data on these devices 
are moved to another physical location in the SMS under con­
trol of the Physical Control Program, thus freeing these 
device for the SSS. Only devices may be switched in this way 
from the SMS to the SSS; data may not. Data may be transferred 
from the SMS to a source-sink device (or vice versa) only by 
going through the SSS and the associated protocols. 

4.4.4.7 The "Physical" SSS 

In the above discussion, various elements, such as the 
TCU, CLOCK, etc., were shown as independent boxes. While this 
physical independence may be true in a large system, it is also 
possible to treat these elements as logically separate but 
physically contained within one PU as may be the case in a small 
system. The ideas expressed throughout Section 4.4 should 
therefore be construed as an architectural definition rather 
than a truly physical one. 
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CHAPTER 5 

MODELING 

5.1 Description of Models 

Two types of models are being used in the development 
of AFS. The first type, termed a Logical Model, is designed 
to simulate the logic of the system, with implementation con­
siderations being minimized to as great a degree as possible, whereas 
the second type, termed a Timing Model, is designed to measure the 
performance of a specific implementation. Both hardware and soft­
ware aspects of the architecture and design are being simulated. 
Execution of the Logical Model may be thought of as actually 
logically executing a program on a complete, but simple (sequen­
tially processed, non-multiprogramming, non-multiprocessing) AFS 
machine with an infinitely large one-level storage. Output from 
the Logical Model includes not only the calculated answers of the 
source language program, but also a trace of the sequence of 
operations performed by the executing program and the storage ad­
dresses referenced. This trace is used as input to the Timing 
Model which measures the timing of a PPU and storage hierarchy 
complex with specific emphasis on implementation considerations. 
An introduction to these models is contained in ASP Memo 014. 

5.1.1 The Logical Model 

This section will describe the existing Logical Model 
(version 1), which embodies a great number of the concepts detailed 
in the earlier sections of this manual. A second version of the 
model, which will extend the current capabilities, is discussed in 
Section 5.4. The Logical Model, written in APL, currently accepts 
source language programs within a PL/I subset entered interactively. 
The subset selected for this initial implementation handles many 
of the complex addressing problems, but only provides scalar 
integers for computation purposes. The PL/I translator portion 
of the model produces a Module for each procedure entered and 
catalogs this Module in the system library. The Connector can then 
establish this procedure in the user's Logical Machine by duplica­
ting those parts of the Module that are not read-only, and building 
the forward and back pointers that specify the PL/I static nesting 
structure. The Interpreter can then be called upon to interpre­
tively execute the code, using actual data values such that 
branches and other operators behave as the programmer intended. 
The Interpreter will call upon the Linker to resolve the 
Symbolic Names within the existing environment. The Interpreter 
handles expression evaluation, based on data descriptors, as well 
as calls, returns and other scope changing operations. The In­
terpreter also utilizes the storage operations: READ, WRITE, 
CREATE, DESTROY, ADD, and DELETE. Explicit details for the Model 
are contained in ASP memos 046 and 047. 
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5.1.2 The Timing Model 

The Timing Model is designed to measure the per­
form~nce expected for a specific implementation of the 
architecture contained in this manual. Initially the 
model has peen parameterized with timings comparable to the 
Model 85. It is anticipated that other similar models will 
be required for implementations satisfying other general 
price/performance markets, especially in the portions of the 
model which simulate the PU activity. 

The Timing Model, written in APL, includes a storage 
hierarchy model and a very simple representation of PPU 
timing. The model is driven from ~race output of the Logical 
Model. The N-level storage hierarchy portion of the model 
simulates reading or writing data, adding Or deleting pages, 
and creating or destroying spaces. The simulated directories 
and storage devices operate asynchronously. The model includes 
the logic of moving space and page numbers through the direc­
tories of the hierarchy, as well as measuring the time required 
do it. 

Information is transmitted as words or mUltiples of 
words called pages. Word size is fixed throughout the system. 
Page size increases by integral factors (normally powers of 
2) from level to level. A page is divided into lines, a line 
at one level peing equal in size to a page in the preceding 
level. At level .. O. a line is a single word. Pages are moved 
only between adjacent levels, local buffering being pro­
vided as necessary. Hierarchy traffic is not routed through 
the PPU memory. Level 0 contains a Lookaside Memory an 
associative search feature on Logical Names to bypass, if 
possible, one or more intermediate look-ups on repeated ref­
erences to the same item. 
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The PPU is represented simply by a table of 
operation times comparable to the Model 85 for each 
operation code. Multiple PPU's, each with its own trace 
input, can be set up. Each PPU has its own level 0 memory. 
All PPU's currently use the same operation times (although 
this could easily be changed). Levels 1 on up are common 
to all PPU's. No provision has been made for logical 
interlocks required in mUltiprocessing. The model merely 
ensures that each gets back its own requests. 

The Timing Model is documented in ASP 015 and 059 
and timing assumptions are in a memo to file by W. Buchholz 
dated 10/21/70, "OLYMPUS Model Timing and Assumptions". 

5.2 

5.2.1 

Model Usage Results 

Logical Cases 

This section contains several examples of programs 
that have been run on the Logical Model, and in one case, 
the OS 360 PL/I F equivalent. These cases have been 
included to demonstrate: 

- The mechanisms that have been defined are capable 
of accommodating complex addressing problems. 

- The advantage of the use of descriptors in 
catching errors. 

- The rudiments of diagnostics 

The Logical Model cases shown below begin with a 
"START 2" machine as it had been left at the conclusion of 

I()~ 

the previous run. The DISPLAY command prints the originally 
entered source text. Typing the name of a procedure causes 
execution of that procedure (connection into the user's 
workspace has been previously accomplished by a COpy command) . 
Output is obtained by assigning to a dummy variable~ O. 
The line of output contains a descriptor and a value, where 
a descriptor equal to 16 denotes an integer variable, and 
equal to 24 denotes an integer constant. 
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Case 1: Computation with Described Data 

Execution of this program with the Logical Model 
yields the expected results whereas the OS/360 PL/I F version 
of the program runs, but yields erroneous results, since PL/I 
dOes not have the advantage of descriptors. Later versions of 
PL/I may be better able to accommodate this problem. 

Logical Model 

START 2 
<TYPF, COMMAND> 
]DISPLAY TEST 
<O>TF.ST:PROC 
<.1 >[J= 8 
<2>CAJ,L 8(8) 
<3>ENlJ 
<TYPT: COMMA liD > 
. ]DISPLAY B 
<O>8:PROC(X) 
<l>DCL Y INTEGER AUTOMATIC 
<2>Y=X 
<3>0=Y 
<4>END 
<TYFF. COMMAND> 
TEST 
24 8 
16 8 
<TYPE COMMAND> 
]OFF 
<OFF> 

OS/360 PL/I F 

TEST:PROC CFTIChS(MAI~); 
CALL B ( e); 

e:PROC(X) ; 
eeL (X.Y) FIXED Eth'~Y (31.0); 
'(=X; 
PUT SKIP DATA(Y); 
~ETL~"; 

END A; 
E"C TEsr; 

Y= -194547~lJ6; 

Case 1 

Case 2: GO TO Label Variable 

This program, M, calls itself recursively to create six 
activations. In the second activation, line 7 causes a label 
variable to be established in the then current environment and the 
current automatic variable, A, to be set to 9. Line 8 causes 
multiple recursions until the sixth activation. Then line 9 results 
in a GO TO to the environment existing at the time the label variable 
was established, with multiple RETURN's implied. The routine con­
cludes by printing the value of the automatic variable, A, that in 
any other activation would have been equal to 1. 
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START 2 
<TYPE COMMAND> 
]DISPLAI M 
<O>f:!:PROC 
<l>DCL S STATIC INTERNAL INIT(O) 
<2>DCL A INTEGER INIT(l) 
<3>[1CL LRL LABEL STATIC INTERNAL 
< l~ >[j=A 
<5>8=8+1 
<6>[]=S 
<7>IF 0=2 THEN CO TO SF.TLBL 
<8>IF SS5 THEN COTO RECURS 
<9>COTO LBL 
<10>SETLBL:O=555 
<ll>LBL=LO 
<12>A=9 
<13 >CO~l'O RECURS 
< 14 >RRClfR8: 0= 666 
<15>CALL f.f 
<16>HETURN 
<17>I,O:rJ=00 
<18>[J=A 
<19>[1=8 
< 20 >RETURII 
<21>END 
<TIPF. COMMAllD> 
M 
16 1 

S- 16 1 
2l~ 666 
16 1 

S- 16 /l 
24 555 
24 666 
16 1 

S- 16 3 
24 666 
16 1 

S- 16 4 
24 666 
16 1 

S- 16 5 
24 666 
16 1 

S- 16 6 
24 0 

A- lG 9 
S- lG 6 

<T.YPE COMMAND> 
]OPF 
<OFF> 

Case 2 
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Case 3: GO TO Label Variable - Erroneous Case 

In this case, an erroneous GO TO is caught by the 
Logical Model, with a diagnostic. The activation chain as 
execution proceeds is shown below (the numbers denote the 
sequence of calls and returns). The first activation of SUB 
sets a label variable to a label constant in the then current 
environment. After returning to MAIN, a second activation of 
SUB attempts to branch to that label variable, but the environ­
ment, consisting of the first activation of MAIN and the first 
activation of SUB, no longer exists, resulting in a user 
diagnostic. Diagnostics in the Logical Model currently utilize 
a syntactic APL error to stop execution. Although not printed 
for the user in this version of the model, complete information 
exists which can advise the user of the current line number, 
environment, etc. 

MAIN 

I v i 2 3-k, 

Set LBL = LO SUB S GO TO LBL 
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START 2 
<TYPF. C(WI1AlfJ» 
]DISPJ,AY MAIN 
< 0 >MAIll: PROC 
<1>0=1111 
< 2 >CA['L SUB 
<3>0=1112 
<4>CAJ,L sun 
<5>0=1113 
<6>F:ND 
<T'ypr; COMtfAlJD> 
]DISPLAY SUB 
<O>SUH:PROC 

MODEL USAGE RESULTS 

<1 >DC[' A IllTIWF.R AUTOUATIC INTERNAL INI'i'( 1) 
< 2 >DC[, S INTEGIW STATIC II1TF:RNAI, n:IT( 0) 
<3>DCJ, L8I, LABEL VARIABLR STATIC II/TERl/AL 
< I~ >[J= 2111 
<5>[J=S 
<6>8=S+1 
<7>IF 8=1 THEN GOTO SETLEL 
<8>0=2112 
<9>GOTO LBL 
<10>SETLBL:0=2113 
<11 >J,BL=LO 
<12>A=9 
<13>RETURN 
<14>[,0:0=2114 
<15>[]=S' 
<lG>n=A 
<17>RF:TURll 
<18>F.ND 
<TIFT: COMMAND> 
NAIN 
24 1111 
24 2111 
16 0 

SUB<lO> - 24 2113 
24 1112 
24 2111 
16 1 

SUB <8> - 24 2112 
SYNTAX ERROR 
EXEC[ 111] <INVALID BRANCll TO LABEL VARIABLE ATT'EMPTRD> 

" Case 3 
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Case 4: Entry Variable 

This case portrays the Logical Model properly executing 
a program using an entry variable defined in the PL/I language 
specifications. The PL/I F compiler does not currently support 
this capability. The three procedures A, B, and E are displayed 
separately. The static n~sting, developed by COpy commands, is 
shown below, along with the activation chain as execution proceeds 
(the numbers denote the sequence of calls and returns). 

Activation Chain 
A --_ ........ -----" 

A 

1 2 3 

S.et EV=E B B Call EV 

4 

E 

The first call of B s.ets the entry variable, EV, to R, 
in the current environment. Then B re.turns, and is called again 
by A, at which time B calls EV. In this case, the environment 
that existed when EV was set (the first activation of A is still 
active and the first activation of B is irrelevant since E is at 
the same lexical level as E) still exists, and the program runs 
properly to completion. 
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B<8> 
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" 

-

-
-

START 2 
<,TYPE COMMAND> 
]DISPLAY A 
<O>A:PROC 
<l>DCL X AUTO INIT(l) 
<2>DCL 5 STATIC IlIIT( 0) 
<3>DCL EV ENTRY VARIABLE STATIC 
<4>0=1111 
<5>CALL B 
<G>D=1112 
<7>CALL B 
<8>0=1113 
<9>r:ND 
<TYPP; COMMAND> 
JDI5PLAY R 
<O>li:PROC 
<1>0=2111 
<2>5=S+1 
<3>IF S=2 THEN GOTO CALLEV 
<4>0=2112 
<5>X=9 
<6>F:V=F: 
<7>RF:TURli 
<8>CALLr.V:O=2113 
<9>CADL EV 
<10>0=2114 
<11>lWD 
<TYPF. COl1MAND> 
JDISPLAY E 
<O>E:PROC 
<1>0=3111 
<2>0=S 
< 3 >[l=X 
<4>END 
<TYPE COMMAND> 
JCOPY E IN A 
<COpy COMPLETED> 
<TYPE COMMAND> 
Ii 
24 1111 
24 2111 
24 2112 
24 1112 
2 !I 2111 
24 2113 
2 !. 3111 
lC 2 
16 9 
24 2114 
24 1113 
<TYPE COMMAND> 
JOFF 
<OFF> 

Case 4 
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Case 5: Entry Variable - Erroneous Case Caught 

This case is identical to Case 4, except that the 
static nesting is changed to that shown below. 

A 
B 

E 

In this case, the environment that exists when EV is set, as 
far as E is concerned, consists of the first activation of A 
and the first activation of B. However, the first activation 
of B is destroyed immediately after B sets EV. Thus, when B 
calls EV in B's second activation, the original environment 
corresponding to that set in EV no longer exists, resulting 
in an error. 

<TYPE COMMAND> 
It 
24 1111 
24 2111 

B 4 - 24 2112 
24 1112 
24 2111 

~ 8 - 24 2113 
S.YNTIIX ImROU 
EXEC[40] <!t:N'l'R.Y VAllIlIllLE F.NVIRONMENT NO LONGP.ll EXIt:TS> 

1\ 

Case 5 
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5.2.2 Performance Cases 

Comparative runs have been made on the Timing Model 
and in PL/I on the Model 85 using two methods of computing 
factorial 4. Only the execution portion of the programs 
were measured. Translation, Connection, and Linking Times 
were excluded. Level 0 of the storage hierarchy was made 
large enough to hold all the pages required which corresponds 
to the program being contained entirely in the Model 85 
buffer memory. 

Case 1: Loop Method 

The following loop was executed (in PL/I notation, with 
compiled 360 ops): 

LOOP: x = X * J; \ 
I = I + l' 
IF M), = I' THEN GO TO LOOP; 

L, L, M, SLDA, ST 
L, A, ST 
L, L, C, BC 

For the Timing Model the loop was traversed 3 times. 
For the Model 85 the loop was traversed several hundred thousand 
times to get a measurable interval, but the result was normalized 
to 3 times. (The variable, J, was needed to permit a large 
number of repetitions on the Model 85. It was initialized to one.) 

Two means of comparison are possible. First, we may 
consider the storage references made by each machine. Since the 
Timing Model fOr this AFS machine provides for the Lookaside 
Memory which reduces the number of storage references due to 
accessing data indirectly, three figures are shown. 

Model 85 
AFS Machine 

Instructions 

12 
7 

Data 

10 
( 24 

If 
no 

Lookaside 

(In Words/Loop) 

~ 19 /"'f 12 
(1st Loop (Other loop~ 

with with 
Lookaside Lookaside 

Thus, based on storage references, the Model 85 requires 22 
references per loop, and the AFS machine requires 19 (to 26 
maximum) references per loop. The ratio is approximately 1:1. 

Second, we may consider the times measured for each machine. 
The Model 85, normalized to 3 iterations through the loop, took 
9.5 microseconds and the AFS machine took 6.1 microseconds. The 
fact that this time ratio is 9:6, rather than 1:1, is due to the 
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current level of detail in the Timing Model, especially 
with regard to storage reference and PPU times. 

Case 2: Recursive Method 

The recursive factorial function, FACR, shown below, 
was called 4 times. On the Model 85 this was repeated several 
hundred times. 

-,,-

<O>FACR:PROC(N.X) 
<l>X=l 
<2>IF N>l THEN GQTO RECURS 
<3>RETURN 
<4>RECURS:CALL FACR(N-l.X) 
<5>X=N*X 
<6>RETURN 
<7>END 

The times measured for this case, normalized to one set 
of 4 calls, are: 

Model 85 
AFS Machine 

215 microseconds 
20.8 microseconds 

The ratio of 10:1 for this case should be strongly tempered by 
the current level of detail in the Timing Model. But this is 
illustrative of the type of advantage that results from managing 
storing with commands such as CREATE, rather than GETMAIN as in 
System/360. 

5.3 An Instruction-Level Machine Compared with a Higher­
Level Language Machine 

Concurrent with the Logical and Timing Model development, 
another pair of models have been implemented which yield supportive 
evidence to the performance potential of a higher level language 
machine. These models, developed in Palo Alto, have been used 
as a means of understanding techniques in the APL Machine, APLM, 
described by Phillip Abrams in his recent thesis* and of obtaining 
some crude estimates of the machine's performance vis-a-vis a 
present day von-Neuman machine. The APLM incorporates two funda­
mental new processes which Abrams has termed "drag-along" and 
"beating", where drag-along is defined as the process of deferring 
evaluation of operands .and operators as long as possible, and 
beating is defined as the machine equivalent of calculating 
standard forms of selection expressions. 

*Abrams, P.S. (1970) An APL Machine SLAC Report No. 114 
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The von-Neuman machine used for comparison is based 
on the MIX computer designed by Knuth and rather widely used 
in computer science courses at Stanford and elsewhere. It is 
intrinsically a simple, basic machine with an A-register, Q­
register, and six index registers working with a word-oriented 
memory. The instruction repertoire somewhat resembles that of 
the IBM 7094. The APLM uses an instruction buffer for subscript 
offset calculations. 

The CPU capabilities of the MIX machine have been augu­
mented to have an instruction power comparable to that of the 
APLM. Thus, the performance of MIX versus APLM becomes a measure 
of the number of storage accesses made into the various types of 
storage media plus an estimate of the number of cycle required 
for each instruction over and above storage cycles. 

Example 6 in Abrams thesis has been coded and run on 
both the APLM and MIX models. The APL statement is: 

The statement has been hand coded for the MIX machine in two 
ways. It has been coded in a highly optimized manner, including 
unrolling of the loops, even though a compiler with such an 
ability does not exist. It has also been coded in the manner of a 
very good optimizing compiler. The number of references measured 
for this example are: 

Instructions Data Instruc. Buffer 

APLM 131 33 66 
MIX (Highly 87 60 

optimized) 
(Good 140 74 
optimizing) 

Since the APLM is reasonably complete in accounting for 
CPU actions, and since the first set of values for the MIX 
machine represent extremely efficient coding, the ratio of 2:3 
between MIX and APLM may be taken as an indication of a worst 
case bound. The ratio of 1:1 between the second set of values 
for MIX and APLM are in keeping with the results determined 
by the Timing Model. 
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5.4 Model Plans 

Second versions of the Logical and Timing Models are 
being planned which will extend the current set of capabilities. 
Enhancements inclUde: 

A more faithful representation of the PU, 
including tracing and timing of the stack 
manipulations required for the call and 
return mechanism and for expression evaluation. 

Byte addressing (rather than the current word 
addressing) 

A translator for an APL subset 

An edit/change/continue capability 

Implementation of the LDT as defined in this manual 

Implementation of vectors and fixed and floating 
point data types 
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GLOSSARY 

Numbers refer to sections of this document. Cross references to 
AFS Fundamental Concepts and System Language (SLM) are parenthesized. 

Activation Tree 
(2.3) 

ADD 
(4.2) 

Allocation 
(2 ) 

Attach 
(2.3) 

BRING 

Connect 
(2.2) 

CREATE 
(4.2) 

Descriptor and 
pointer or value 
(DAPOV) (2.5.1) 

Data Object 
(2,5) 

DELETE 
(4.2) 

Descriptor 
(2.5.1) 

DESTROY 
(4.2) 

A structure in a Logical Machine 
containing information about which 
Hodules of that Logical Machine are 
currently active, and the order in 
which they called or attached each 
other. (Activation Tree in SLM) 

A storage operation defined in the text. 

The process of creating a Reference 
Table together with its contained 
list of DAPOVs. (Insert and Delete 
in SLM) 

The invocation of a Module to be 
executed as a separate Logical Task. 
(Create and Parallel in SLM) 

A storage operation defined in the text. 

A command used to introduce a Module into 
a Logical Machine by the creation of a 
new node in the Program Tree. 

A storage operation defined in the text. 

A Descriptor together with its 
associated data or a system pointer 
which provides access to the data. 

The set of a name, its descriptors, 
and value. (Object in SLM) 

A storage operation defined in the text. 

Information specifying the type, 
aggregation, and/or representation of 
data. 

A storage operation defined in the text. 
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Dynamic Storage 
Mechansim (2.4) 

External Node 
(2.2) 

Generic Descriptor 
(2.5.1) 

Interpreter 
(2.6) 

Job 
(3.1 ) 

Link 
(2.5) 

Local Declare Table 
(LDT) ( 2 . 5 . 2 . 3 ) 

Local Link Table 
(LLT) (2.5. 2. 1) 

Local Symbol Table 
(LST) (2.5.2.1) 

Logical Input/Output 
System (3.3) 

Logical Machine 
(2.1 ) 

GLOSSARY 

The collection of Storage Anchors 
and Reference Tables used to provide 
storage and execution time address­
ability for Data Objects. 

A special node in the Program Tree 
which contains the Local Symbol, 
Link and Declare Tables for all the 
external names of the program. 

A descriptor associated with a name 
in a Local Declare Table. 

The logical executor of code. 

Work performed during the time 
between activation and deactivation of 
a Logical Machine. 

The process of resolving Symbolic Names 
by searching the Local Symbol Tables 
contained in the nodes of the Program 
Tree. 

A table containing all the information 
that is knol~m a,bout ea,chSvmholic Na,me 
declared or referenced in· 'the r-rodule. 
The Generic Descriptor is part of this 
information. 

A table containing execution time 
connectivity to the DAPOV for each 
Symbolic Name declared or referenced 
in the .Module. 

A table containing all the Symbolic 
Names declared or referenced in the 
Module. 

The facilities for the transfer of 
information to and from the Logical 
Machine. 

That part o~ the system prov;t:ded ;fox 
the processing of each ;t:nde?endent 
unit of work. 
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Section 6.0 

Logical Machine Supervisor 
(3.1) 

Logical Name 
(2.5.2) 

Lookaside Memory 
(4.2 & 4.3.6) 

LREAD 

Module 
(3.2) 

Offset 
(4.2) 

Ownership Tree 
(3.2) 

Pointer 

System Pointer 

Processing Unit 
(PU) (4. 3 & 4. 4 ) 

GLOSSAR~ 

A Logical Machine which is in 
control of all other Logical Machines 
in the system, and provides an inter­
face to the physical processors on 
behalf of these Logical Machines. 

The internal form of a Symbolic Name. 

A local name associative array that 
permits look-aside to minimize storage 
accesses on repeated references to the 
same information. 

A storage operation defined in the text. 

The combination of the source code, 
executable code, line directory, LST, 
LLT, and LDT for a sequence of source 
statements in which all uses of the 
same Symbolic Name refer to the same 
object. 

An index to a particular byte of a space. 

A structure defining the ownership 
relationship between all objects of 
the system, and containing information 
about the access rights of each object. 

A generic term for a type of data whose 
value is the logical address of another 
data object, and for a System pointer. 
A System Pointer is a type of system 
data whose value is the physical addresR 
of another space or of a byte within a 
space. 

A generic term for, a Program Processing 
Unit or a Source-Sink Processing Unit. 
Also used to represent the common func­
tional part of thest two units. 
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Section6~O GLOSSARY 

Program Processing Subsystem 
(PPS) (4.3) 

Program Processing Unit 
(PPU) (4.3) 

Program Tree 
(2.2) 

READ 
(4.2) 

Reference Table 
(2.5) 

Relative ID 
(2.5.3) 

Semaphore 
(4.1.4) 

Source-Sink Processing Unit 
~SSPU) (4.4.4) 

Source-Sink Subsystem 
(SSS) (4.4.1) 

Space 
(4.2) 

Storage Anchor 
(SA) (2.4) 

A physical subsystem (comprised 
of one or more Program Processing Units) 
which' processes all Physical Tasks not 
requiring Source-Sink I/O. 

A physical unit in the Program Processing 
Subsystem. 

A tree structure in a Logical Machine 
which defines the static nesting of 
Modules in the LM and is used to deter­
mine the static scope of name resolution. 
(Static Environment Tree in SLM) 

A storage operation defined in the text. 

Storage for a list of one or more DAPOVs 
together with a back pointer to previous 
generations of this Reference Table. 

The second field in a Local Link Table 
which identifies the appropriate DAPOV i", 
in a Reference Table. ~/ 

A special integer variable used by 
Control to synchronise tasks and provide 
access to serially re-usable resources. 

A physical unit in the Source-Sink 
Subsystem. 

A physical subsystem (comprised of one or 
more Source-Sink Processing Units) which 
processes all physical I/O Tasks. 

An independent portion of the storage 
capable of linear extension and contract­
ion. Referenced in the Logical System 
by Space Name and the Physical System 
Space Number. , 

Storage Anchors are a component of the 
Dynamic Storage Mechanism. System 
Storage Anchors address the Reference 
Tables directly associated with the 
Program Tree. User Storage Anchors ~ , 
address the DAPOVs for variables under ~ 
user control. Storage Anchor Name and .... , 
Storage Anchor Register are the logical 
and physical entities, respectively. 
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Section 6.0 GLOSSARY 

Storage Management Subsystem 
(SMS) (4.2) 

Symbolic Name 
(2.5.2) 

System Language 
(SL) (1.1) 

System Node 
(2.2) 

Task 
(3.1) 

Task Control Block 
(3.1) 

Translator 
(3.2) 

That portion of the physical system 
that contains addressable storage and 
the controls to allocate storage spaces, 
determine the physical location of 
stored information, and provide access 
to that information. The SMS communi­
cates with the PPS and the SSS. 

The external, character string, form 
of the identifier of a Data Object 
or Logical Object. (Symbol in SLM) 

The logical description of the system 
contained in the SLM. also, loosely, 
the logical form of the execution 
Language in the Logical System. 

The root node of the program Tree which 
contains the names of, and connectivity 
to the system functions whtca are 
available to· the LoC).ical Machine. 

Each independent parallel activity 
within a logical machine is a logical 
task. The first task started is the 
master task. The others are subtasks. 
A physical task is the unit of work 
dispatched to a PPU by the Logical 
Machine Sypervisor through the Physical 
Control System. (Process in SLM) 

A Logical Task Control Block contains 
the information which binds an Inter­
preter to the other mechanisms in the 
Logical Machine in which it is active. 
A Physical Task Control Block defines 
the status of t~e physical task as it 
is processed by a Processing Unit or is 
queued in Control. 

Takes user written code and builds a 
Module. 
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UNLK 
(4.2) 

Value Descriptor 
(2.5.1) 

WRITE 
(4.2) 

GLOSSARY 

A storage operation defined in the text. 

The descriptor associated with the 
current value of a Data Object. 

A storage operation defined in the text. 
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