
IBM CONFIDENTIAL ,SDD POUGHKEEPSIE
March 1, 1971

Memorandum to: Recipients of Advanced Future System (AFS) Proposal

Subje~t: Poughkeepsie AFS Proposal

Enclosed is a copy of the present draft of our proposal for
AFS architecture. Though a great deal of progress has been
made, this is a report on progress and not a final report.
In one sense the ideal approach would have been to let the
two principal authors of the conceptual work, Steve Zilles
and John Sowa, proceed to the production of a complete docu­
ment stating a cons istent set of fundamental concepts with
absolute academic purity. Then others could propose and
describe practical, implementations. 'Such an approach would
have two overwhelming flaws:

1. The resulting proposal would suffe r from a
lack of contact with realities of what is
required to implement a system, no n1.atter
how elegant the document.

2. No individual or pail' of individuals is fully
equipped to deal with all of th@ dive'rse
dlsciplines that are part 'of the desig~n ~ of a

.full hardware-software' systen1. ..
:' ~.,

Instead, our approach ~as geel!- to simultaneously develop
pragmatic detail~: and abstra'ct" 'c'Jncepfual foundation. . This
adn"littedly has resulted in false starts and frequent rethinking
of basic, issues. The great, benefit has been in the testing ~f
concepts and of implementation against the sternest measure of
all - - an orthogonal point of view~ . This approach has resulted
in a study which is technically' both broad and deep.

The process of synthesis is not yet complete" It has resulted
in much change in both points of view. Only when this change
has stopped will we consider th~.proposal complete, consistent,
and final."

The two principal 'parts of our proposal are entitle'd,lIFundamental
Concepts and System Language ll and IISyGtem 'Architecture". '1'h.ese
will be referred to as the SL report and the SA ,report 01' ,as SL
and SA. ,They were prepar.,ed ,.,simultaneQus1y, with. related but dir: ..

ferent points of departure.
.

,
"

..

:

Recipients -2- March 1, 1971

The purpose of the System Architecture study was to explore the
feasibility of this appro~ch and to discover and solve problems
arising during in'lplementation.

Creating a simple, generalixed, logical foundation and finding a way
to create a system language that can meet the objectives of AFS and - - ,
to serve as an adequate system control and task management language "
and as an adequate target language for translators from high level
languages was the purpose of the SystelTI Language study. The objective

" of producing a simple, coherent, design with a minimal number of
. concepts and conventions is prim . .ary.

. .

The goal of discovering how to create a high level language that is
a suitable target for translators seems within our grasp. Much
supporting evidence is contained in this report in the form of defini­
tions of functions which support fundamental language properties. Of
particular importance are the functions and definitions that are aimed
at supporting language facilities that have not yet been specified but
will be important by the time this product reaches the market. More
evidence is contained in ASP 051, "Arithmetic Operations in AFSIL".

Representing our case for feasibility is the System Architecture report.
There are two aspects. On one hand, we created a simulator that
dealt with all the problems associated with the critical parts of PL/l.
To do this w~ couldn't leave any unsolved problems hidden under vague
phraseology since the simulator "runs. In the SA report are the solutions
to problems that are glos sed oyer or ~ven ignored in the SL report. It
may be less evident that the advanced -approach' in SL can be implemented
with an extension of the san1.e apP:roach. However, close study of the
two reports and discus sion with 'the -; contributors will I hope cOllvince you,
in fact, what we propose can ac,tually: ,be done. '

't' <.". '=: '-...;' ... : -;"
\'. ~-

The second major topic of SA is efficiency. We are gratified to find.
that our intention of creating an efficient system appears to be quite
reasonable in view of the pel-formance being predicted through simulator
usage.

Reading and understanding this
To assist you, key contributors
whatever is required.

CJC:cpl . . .
<

.~ :

report will be a 'sizable undertaking.
can be made available to present

C. J. Conti

DO NOT REPRODUCE - FOR FUR THER COPIES, PLEASE CONTACT
C. J. CONTI's OFFICE - EXTENSION 3-2531

• •

f

AFS SYSTEM ARCHITECTURE MANUAL

February 26, 1971

This document contains information of a proprietary
nature. All information contained herein shall be
kept in confidence. None of this information shall
be divulged to persons other than: IBM employees
authorized by the nature of their duties to receive
such information, or individuals or organizations
authorized by the Systems Development Division in
accordance with existing policy regarding release
of company information.

IBM CONFIDENTIAL

TABLE OF CONTENTS

Table of Contents 2

Foreword ••••• <iI~ •••••••••••• 4l •••••••••••••••••••••••••••• t 3

CHAPTER 1 INTRODUCTION........... . . . • • • • • . . • . . . • • • 4
1.1 Purpose of the System Architecture

Manual (SAM) ... 4
1.2 Principal System Features••......•..... 5
1.3 System Structure and Principal

Componen ts .. 6
1.4 Using the System ~......................... 10

CHAPTER 2 THE LOGICAL MACHINE••...•......•.....• 12
2.1 Overview ".. 12
2 .. 2 The Program Tree .. 16
2.3 The Activation Tree•...•...... 19
2.4 Dynamic Storage .. 22
2.5 Data Objects and Linking .•....•........•... 26
2.6 The Interpreter••...•...•...•..•..... 35
2.7 Building a Logical Machine•.•.•.......• 43

CHAPTER 3 THE LOGICAL SYSTEM ,............................ 45
3.1 The Logical Machine Supervisor•....•.... 45
3.2 System Facilities 47
3.3 The Logical Input/Output System•...... 53

CHAPTER 4 THE PHYSICAL SYSTEM•..........•.......... 56
4 .. 1 Con tro 1 58
4.2 The Storage Management Subsystem ...•......... 64
4.3 The Program Processing Subsystem ...•..•...... 79
4.4 The Source-Sink Subsystem •......•........... 93

CHAPTER 5 MODELING • • • 103
5.1 Description of Models•.....•..... 103
5.2 Model Usage Results•..•....... 105
5.3 An Instruction-Level Machine Compared with

a Higher-Level Language Machine 114
5 .. 4 Model Plans .. • . • • • • . • • • •• 116

CHAPTER 6 GLOSSARY 117

IBM CONFIDENTIAL

,

•

FOREWORD

This document has been prepared as a manual and
thus order of presentation is given in reference form.
For a reader who is being exposed to the system for the
first time, it may be useful to read the document in a
different order. The suggested procedure is to first
read the Introduction (Chapter l}i then Section 2.1, the
Overview of the Logical Machine; then Chapter 3, the
Logical System; then Section 4.1, the Control Description
of the Physical System. with this preparation, it is hoped
that the reader will be able to use the document as intended.

The authors have used several conventions to aid the
reader. When a significant term or phrase is introduced for
the first time it is underlined. Most terms which are capi­
talized can be found in the Glossary (Chapter 6).

All readers are invited to submit their commentary
on the system and this document. Please contact A. Peacock,
Department Bll, snD Poughkeepsie.

IBM CONFIDENTIAL

CHAPTER l

INTRODUCTION

1.1 Purpose of the System Architecture Manual (SAM)

SAM is one of a set of documents prepared by the Advanced
Systems Group in Poughkeepsie in response to the AFS
requirements and objectives which were issued jointly by
Carl Conti (Manager of Advanced Systems, Poughkeepsie) and
Al Magdall (Manager of Advanced Systems, Endicott) on
January 19, 1971. Two other major documents in this set are
the System IPnguage Manual and a subset implementation
(described in ASP memos 015, 046, and 049)~ The relationship
of these documents is simply illustrated:

FUNDAMENTAL
LOGICAL

ARCHITECUTRE
SYSTEM

,
~ -- -

CONCEPTS _._-_._---- ,
.... -------.,-... ---....... ,-.-! .. --.••. "-,-,~.-.-.-.-,. ~-.~ .. -.-.-..

•

System Language
Manual

System Architecture Manual Models and
Des·igm. Manuals

A major purpose of SAM, then, is to provide a
communication interface between the abstract, analytical,
description of the system in the System Language Manual and
one or more implementations. A second major purpose of SAM
is as a convenient introduction to the system for skilled,
but unfamiliar, readers.

,It is inevitable, and even desirable, that the early
versions of these three document sets are not completely
compatible. Some differences, primarily in nomenclature,
between the Systems Lanaguage Manual and SAM are discussed
in a Glossary of terms (Chapter 6 of this Manual). More
serious technical differences are, or will be, discussed in
ASP memos. Ultimately, SAM will become, as these differences
are resolved, an approved Reference Manual for the system.

* Advanced System Proposa,l Department Bll

IBM CONFIDENTIAL

c

Section 1.2 INTRODUCTION

1.2 Principal System Features

The novel features of this system are designed to
bring about a major improvement in programmer productivity;
to make the system easier to use and maintain ; and to
penetrate new market areas, particularly Data Base Operation.

Central to the heart of the system is the concept
of Data Independence. Specifically, the executable code
references data objects by a logical name rather than
physical location; the logical descriptions of data objects
are maintained with the data values and not with the code,
and the physical representations of data objects (both
descriptions and values) are not known, implicitly or
explicitly, to the executable code. Thus, the operators of
the executable code are generic and may be applied to a class
of data objects without regard to their current physical
representation, or location.

The system has been designed to make possible the
faithful support of the major high level languages; in
particular COBOL, PL/l, APL, RPG, and FORTRAN. Thus a user
of such a language can be provided with a logical machine
that appears to him to be directly executing statements in
that language. The system will detect all the errors defined
in the language and report back to him in terms of his source
statements. In light of these errors, he may modify his
source text and, where this is meaningful, continue execution
from the point of error discovery. As a natural consequence
of this mode of operation, the execution unit treats a
statement (i.e. a list of operators and operands) as the
unit of execution rather than an individual instruction.

The system also features a new System Language which
combines the semantic power of the best procedure oriented
languages, with the operators necessary to support system
programmers in their task of building and maintaining
application programs, operating systems and language compilers.
Since the necessary operators to build software support are
directly supplied in the system language, the language
controls and defines the whole system in the same manner
that System/360 Principles of Operation controls the main­
frame hardware of System/360.

A last important feature of the system is the clean
separation of the logical (user-oriented) definition of the
system from the physical (implementation-oriented) definition,

'IBM CONFIDENTIAL

Section 1.2 INTRODUCTION

with rigorously controlled interfaces between them. This
makes possible a wide variety of implementations and
extensions without jeopardizing the logical foundation.

1.3 System Structure and Principal Components

1.3.1 The Logical Machine

Every user Job is processed in a separate Logical
Machine (LM). A Job is a major unit of work in the system.

• b

All Jobs are scheduled and run independently; all communication
and sychronization between Jobs is the responsibility of the
system users, using explicit communication mechanisms pro­
vided by the system.

An LM performs processing on behalf of the user by
activating one or more Modules which are contained within
the Logical Machine in a structure called The Program Tree.
Both nested and parallel actiyation of .Hodules may occur
within the LM, the current activation status being recorded
dynamically in The Activation Tree. Connectivity to the
current generations of variables used during processing is
made by a set of Storage Anchors, one set being provided for
each parallel activation.

The active mechanism~ within a Logical Machine are
called Interpreters. Every parallel activation is supported
by a separate Interpreter; implicit communication (through
common variables) is possible between Interpreters in the
same Logical Machine. The work accomplished by a single
Interpreter is called a Logical Task. Thus a Job consists

1\\-!. ~& Ir I of one or more Logical Tasks, the number of Tasks existing
S"t~l"~ at '7n~t~me being identical to the current number of parallel

f\l.OCl:ti)~-O"(L,~~ act~v~ t~es.

\)w &f' 31l~. Explici t communication -wi th th~ other logical
components of the system (i.e. System Facilities, the
Logical Machine Supervisor, and the Logical I/O System, is
provided by a series of specialized communication modules
accessible from the root (System Node) of the program Tree.

Just below the System Node in the Program Tree
is the External Node. The Module at this node is called
the External Module and is activated (i.e. supplied with an
Interpreter) when the Logical Machine starts a Job. This
activation include$ passing a parameter to specify the
source of initial commands for the machine.

IBM CONFIDENTIAL

•

•

(-,
-~

Section 1.3 ,INTRODUCTION

1. 3.2 The System Facilities

Every Logical Machine has access to a number of
special system functions. These capabilities are called
System Facilities and include the ability to catalogue data,
obey system commands, edit catalogued data, introduce
procedures, etc. All of the logical objects in the system
(cataloged data structures, Modules, Logical Machines,
Logical I/O devices, Logical Users, etc.) are themselves
owned by another logical object. The set of nested
ownership relations is reflected in the Ownership Tree
which is maintained by the System Facilities. Access to
objects is monitored by System Facilities (this monitoring
is automatic since it is only achievable through the
communication modules of the LM's) to ensure that the
accessor is authorized to access the object and to provide
the necessary interlocks required by the type of access
(read-only, modify-exclusive, etc.). Many of the leaves and
nodes of the ownership tree are themselves complex structures.
This fine structure is not directly reflected in the
Ownership Tree which resolves only to the detail necessary
to provide unique ownership and access rights.

Any object in the Ownership Tree can be created,
copied or modified by an active Logical Machine that has the
appropriate authorization by using its communication
modules. Thus one LM can create, copy, modify or pass
messages to another LM. An active Logical Machine can in
fact be thought of as a logical object in the Ownership Tree
that is in the modify-exclusive state.

1.3.3 The Logical Machine Supervisor

One specialized LM, called the Logical Machine
Supervisor, is placed at the robt of the Ownership Tree and
activated at System Generation time with its External Module
connected to an operators console. Other specialized LM's
are provided by the systems programmers (i.e., users with the
appropriate authorization) to support the normal system
functions of translating (i.e. creation of a Module from a
Data Object), Loqical I/O , Data and Load Module editing, etc.

The principal logical task of the supervisor is to
activate Logical Machines (including parametising t4eir
External Modules) and to monitor their activities in order
to handle exceptional ccnditions such as job completion.
Depending on the type of user activity this may involve
providing the user with a new Logical Machine, connecting
him to an existing LM or making a fresh copy for him of an
existing LM.

IBM CONFIDENTIAL

7

Section 1.3 INTRODUCTION

The supervisor also has the important task of
communicating with the physical control system to initiate
Physical Tasks for either a Program Processing Unit or a
Source-Sink Processing Unit. The comfuuhi"6atibn""'"Tfi'Eerface
between the supervisor ana-the physical system consists
primarily of a set of tables representing the current status
of work in. the system. The supervisor maintains logical
(user-oriented) tables representing the users'Jobs and their
subdivision into Logical Tasks (parallel activations within
a Logical Machine) which occur upon execution of attach
operators in a LogIcal Machine.

These Logical Tasks are analyzed and monitored by the
supervisor which breaks them into one or more Physical
Tasks and places them into queue tables for Processing Units
to be scheduled by the Physical Control System. A Physical
Task includes in its definition the kind of processor required,
any physical resource requirements, the priority of execution,
and the scheduling discipline (batch, time-shared, etc.).

1.3.4 The Logical I/O System

The Logical I/O System is responsible for all transfer
of information to and from a Logical Machine. This includes
communication with a user, another LM, the System Facilities,
Source/Sink devices and other systems. Logical I/O is pro­
vided by a series of specializedModule~, which are placed at
the System Node of each LM' s Program Tree. Thus any LM can
obtain Logical I/O by a simple call or an Attach of one of
these Modules.

Logical I/O does not necessarily result in the creation
of a Physical Task for a Source/Sink Processing Unit. Some
requests can be satisfied by the temporary incorporation of
an object in the Ownership Tree into a Logical Machine's
environment. Others result in copying or creating such an
object which can be done as a Physical Task by a Program
Processing Unit. Source/Sink Processing units are, however,
required for Source/Sink I/O, user communication, and

communi·cation with other systems.

1.3.5 The Physical System Control

The Physical System, which supports all the structures
and activities of the Logical System, consists of three major
sUb-systems: The Storage Management Subsystem, The Program
Processing Subsystem, and The Source/Sink Processing Sub-
system. The harmonious cooperation of these sUb-systems and
their allocation to the Physical Tasks which represent the

tBM CONFIDENTIAL

If ..

Section 1.3 ,INTRODUCTION

activities of the Logical Machines is ensured by a set of
hardware and software capabilities known as Control.

Control, at the lowest level, consists of a Storage
Bus which enables the Processing Sub-systems to communicate
with the storage Sub-system and hence, indirectly, with each
other. A minimal direct signalling capability, called the
Interrupt Bus~ is also provided at this level. At the next
level, control consists of a number of task queues in
storage (one per processor type) together with the basic
operators to build, search, and·contro1 access to the queues.
Thus processors have the basic ability to transfer tasks to
other processors and search for tasks for themselves. At
a higher level, control is a high priority Physical Task
which is responsible for physical resource allocation and
normal and abnormal task termination.. Finally, at the highest
level, control is a set of· physical tasks which constitute
the Logical Machine Supervisor.

1.3.6 The Storage Management Sub-System

The Storage Management Sub-system is an automatic,
paging hierarchy of storage devices ranging from the highest
speed electronic memory to lower speed electro-mechanical
devices and out through operator controlled shelf-storage.
It differs from conventional 'virtual. memories' in three
important respects.

Firstly, rather than one, the system provides a
practical infinity of independent linear spaces, each of
which can grow or shrink independently. Secondly, the system
only manages real spaces (i.e. spaces that contain data) and
only to the current physical length of the space. Finally,
spaces are created and grow in the page buffers of the
highest speed electronic memory so that 'Get Main' is a very
fast operation.

1.3.7 The Program Processing Sub-System

This Sub-system consists of one or more Program
Processing Units (pPU) which are similar in function to a
conventional CPU, but which operate at a higher level, close
to a Procedure Oriented Language. They process statements
rather than instructions; provide a wide range of control
operators, and use described data rather than simple bytes
to represent data values.

'IBM CONFIDENTIAL

Section 1.3 INTRODUCTION

The PPU is essentially designed as a Prefix­
Polish Stack Machine, extended by a set of Storaqe Ancho~
Regis~ers w~ich.perform the function of base registers,
and wlth bUllt ln vector and structure handling operations.

1.3.8 The Source-Sink Processing Sub-System

This Sub-system consists of one or more Source/Sink
Processing Units (SSPU) together with the conventional
source/sink devices and communication lines. The SSPU is

) /0 •

a complete processing unit containing most of the capabilities
of a PPU rather than a simple data channel. Thus it is capable
of handling the complete task of data-transmission to and from
storage without interrupting a PPU for intermediate processing.

The principle functions of the Source/Sink Processing
Units are line control, network management, source/sink device
management, control of the system clock and handling "wake-up"
type interrupts to and from the PPU's. Both local and remote
source/sink devices are handled by the SSPU, so that the dif­
ference is "transparent" to the casual user.

1.4 Using the System

The system is designed for a wide variety of users and
uses, ranging from continuously running automatic jobs, through ~.
conventional application programs, to the design, debugging and \,
operation of complex operating systems and data bases. This
large skill range is provided for in several ways.

Firstly, a very powerful set of control operations is
provided (obviously some of the more complex and infrequent of
these are implemented in IBM supplied software or micro-code) .
Secondly, however, to preserve system integrity and provide
high performance, many of these tunctions (such as Storage Manage­
ment) have been built in(with rigorously controlled interfaces
which do not allow for alternative a,pproaches.

Superficially it would appear that naive users, provided
with such rich capabilities, could overwhelm the entire system.
A very wide degree of control is provided, however, by controlling
the Node in the Ownership Tree to which a user is connected, the
kind of Logical Machine that is placed at that Node, and the
priority he is assigned.

Some idea of the scope of possibilities is provided by
some simple examples:

IBM CONFIDENTIAL

,
.fi

II
Section 1.4 INTRODUCTION

1.4.1 Sensor-Based Applications

These applications are performed on continuously active
Logical Machines which are simply waiting on I/O interrupts. They
have modules of code in their External Nodes which interpret
commands to change parameters but do not build or modify them­
selves, or other Logical Machines.

1.4.2 Standard Batch Application Programs

These programs differ only slightly from Sensor-Based ones,
in that their Logical Machine is inactive between runs. Thus,
to be started, they require a sign-on and the intervention of the
Logical Machine Supervisor. The addition of the sign-on capability
extends the potential users of any application; however, this can
be restricted to the required degree by placing the Logical
Machine in the appropriate node in the Ownership Tree.

1.4.3 Problem-Solving and Debugging Simple Applications

The user operating in this mode signs on to a Logical
Machine which initially contains merely a System Node and an
External Node. The System Node contains access to the complete
range of System Facilities but his capability to use them depends
on the interpretive range of the External Node. In general, this
node can interpret the full command language of the system but the
designer of the Logical Machine may choose to restrict this
capability by supplying a specialized External Node (e.g., he may
only wish to supply the command language of the APL/360 system).
The user once signed on to such a Logical Machine will typically be
able to improve and specialize its processing capabilities by
Connecting Modules below the External Node. These modules may be
already in the Ownership Tree or may be introduced by him in any
of the languages supported by the system (i.e., any language for
which a Logical Machine that translate source text to a module exists).

Subsystem Builders

The designer of a subsystem creates one or more Logical
Machines which are to be placed into the Ownership Tree for the
use of less sophisticated people. When the designer signs on for
this purpose he is provided with a Logical Machine with a complete
System Node and External Node. The commands which are particularly
important to him are the ability to create a Logical Machine
(specifying the Module to be placed in the External Node and the
position in the Ownership Tree) and to call or attach one Logical
Machine from another Logical Machine. Additionally, he needs to
be aware of the physical system supporting a Logical Machine in
order to achieve the appropriate cost performance.

IBM CONFIDENTIAL

CHAPTER 2

THE LOGICAL MACHINE

2.1 Overview

A Logical Machine (LM) is that part of the system pro­
vided for processing each independent job. The LM's function
is to execute code in the proper environment on behalf of the
user. The LM, in addition to executing code, possesses the
capability to communicate with the other logical components
of the system ,(e.g. System Facilities, the Logical Machine
Supervisor, and the Logical I/O System).

Logical Machine Components

In order to execute code in the proper environment, a
Logical Machine must contain the mechanisms to access the
proper operands at execution time, provide the necessary op­
erators, maintain program control, and accomplish the above
while being "faithful" to the rules of the language used by
the user. The mechanisms of the LM used to accomplish this
are: a Program Tree to define the static connection of
Modules, an Activation Tree which defines the dynamic linking
of Modules, a Dynamic Storage Mechanism to provide the gener­
ation identification capability for data objects and Inter­
preters to execute the code.

Interpreters are the mechanisms which perform all oper­
ations required, and the Program and Activation Trees, and
the Dynamic Storage Mechanism provide them the necessary
information to obtain the proper results.

Each LM contains certain built in functions which are
provided as special nodes in the Program Tree.

Program Tree

The Program Tree is the mechanism for name resolution.
The nodes of the tree are modules which have been generated
by Translators and grafted by the connector. Each node contains
the list of its symbols in a Local Symbol Table (LST) , an ac­
companying Local Declare Table (LDT) describing the symbols,
and a Local Link Table (LLT) for linking the symbols to their

IBM CONFIDENTIAL

.. ~

1'\
~/

Section 2.1 OVERVIEW

values. Each node usually contains executable code.

Activation Tree

Each node in the Activation Tree corresponds to an act­
ivation of a node in the Program Tree. The Activation Tree
is a mechanism for maintaining the required information
during Tasking, as well as Calls and Returns.

Dynamic Storage Mechanism

The Dynamic Storage Mechanism provides a set of named
Storage Anchors used as starting points for generations of
variables. These point to the appropriate Reference Table
for each variable. A System Storage Anchor is automatically
supplied for each lexical level in the Program Tree. User
Storage Anchors are supplied as required by user allocated
variables.

Interpreters

Interpreters are the logical executors of code and are
the source of all functions/operations in the logical machine.

An interpreter executes on a statement basis, maintains
the statement counter, and provides inter-statement control as
determined by the code (e.g. IF, DO, GO TO) and intra statement
control using the operand descriptor information provided (e.g.
vector operations).

Use of the Logical Machine

Logical Machines are activated by the Logical Machine
Supervisor. This will occur when a job is created; for in­
stance, when a user signs on the system. The LM then imple­
ments the functions required to process the user's program.
A general flow of creating and executing a user's program is
shown in Figure 2.1.1.

Translate takes the user's source code (APL, PL/I, FORTRAN,
COBOL, RPG, etc.) and transforms it into an internal form of
the System Language. The translate process accepts source code
one line at a time, checks for syntax, and builds a Module. A
Module consists of executable code together with information
tables.

IBM CONFIDENTIAL

13

Section 2.1 OVERVIEW

INTERPRET

source text

creates a Module

generates results

removes a node from the
Activation Tree

Figure 2.1.1 CREATING AND EXECUTING A PROGRAM

Connect takes a Module and places it into the Program Tree
which represents the static connectivity between the Modules
of the program.

Activation of a module is the process of creating a node

\
for it in the Activation Tree. The activation tree represents
the dynamic structure of the program.

IBM CONFIDENTIAL

I I •

(

section 2.1 OVERVIEW

Names are resolved using the Program Tree. However, a
name may have several generations of values associated with
it. The process of determining the appropriate generation
is resolved by the Dynamic Storage Mechanism which consists
of a number of Storage Anchors from which the appropriate
generations are chained. The result of activation is the
initiation of an interpreter.

The Interpreter executes the code which is in the ap­
propriate node of the Program Tree. Each parallel task has
a separate interpreter. Interpretation is the process of
executing the code in the appropriate module in the Program
Tree. The result of the interpretation is the "answer" as
defined in the user's code for that module.

Deactivation removes the node from the Activation Tree
and removes the generation of variables associated with the
activation.

IBM CONFIDENTIAL

1$

Section 2.2

2.2 The Program Tree

Each Logical Machine has a Program Tree. The purpose
of the Program Tree is to contain the static connectivity
between the Hodules of the Job executing in the Loqical
Machine. (An example of a Program Tree is shown in Figure
2.2.l) Each node of the Program Tree represents a Module
and contains the executable code for that Module, together
with the Local Symbol Table containing all the Symbolic
Names referenced in the Module, and the associated Local
Link and Declare Tables. Each node also contains the names
of, and the connectivity to, the Modules which have been
connected into the Program Tree directly below that node.
The Program Tree is used by the Linker in the resolution
of the Symbolic Names referenced in the executable code of
the Module. Further nodes can be created in the Progtam
Tree for a particular Logical Machine by the execution of a
Connect command in that Logical Machine.

There are two nodes in the Puogram Tree which have
special properties and functions. The root node of the
Program Tree is termed the System Node and contains the
names of, and connectivity to, the system functions which
are available to the Logical Machine. The System node also
contains connectivity to the External Node. The External
Node contains the Local Symbol, Link and Declare tables for
all the external names of the program. The executable code
of the Module represented by the External Node has the
function of interpreting the command Language. Whenever
a new Logical Machine is created, it will be initiated to
be executing the Module, associated with the External Node.
The source of the command to be interpreted must be specified
as a parameter when the Logical Machine is initiated. For
example, it might be an interactive terminal, or a
catalogued data set.

2.2.1 The Use of the ?rogram Tree for PL/I and APL

For a PL/I program there is a node in the program
Tree for each Procedure or Begin block. The Program Tree
reflects directly the static block structure of the program.

10 ,

The External Node contains the names of, and connectivity to,
every external procedure and every external name of the program.
The name resolution for the symbolic Names referenced in each
Procedure or Begin block is done by a search of the Program Tree.
The subsequent steps required to obtain a reference to the
correct generation of the variables by means of a storage
anchor are discussed under Dynamic Storage Control in
Section 2.4.

For an APL program there is a node in the Program
Tree directly below the External node for every function.
All the names referenced in the APL program appear in the
External Node as user allocated external variables.

IBM CONFIDENTIAL

(

Section 2.2 THE PROGR&M TREE

Hence, there will be a Storage Anchor name for each
symbolic name in an APL program (see Section 2.4).

2.2.2 An Example of the Program Tree

The diagram in Figure 2.2.1 shows an example
of the Program Tree for a Logical Machine which has had
the PL/I program shown to the right of it connected into it.

Note: The Program Tree shown has been simplified by
the omission of the nodes corresponding to the "imaginary"
blocks which are said to contain the external procedures
of a PL/I program. The purpose of each imaginary block is
to contain the external entry names of the external procedure
so that they can be seen by any reference· statically contained
within the procedure, but not by references statically
contained within any other external procedure. The entry
names, being external, will of course appear in the
External Node, but the PL/l la.nguaqe r:ules. fio3,Y th'3,t they
will only be found there by explicit declarations of the
name as "external". These rules can be incorporated into
the Program Tree by the inclusion of a node between the
External Node and the node for each PL/I external procedure.
These nodes correspond directly to the "imaginary" blocks.

IBM CONFIDENTIAL

Section 2.2 THE PROGR2I,.M 'rREE

Procedure
Q

System
Node

Y Ext Var
S lnt
TInt

proceduV'­
U " LST LDT LLT

Ext Var it-

Executable
Code

~----------.--~

Translate ..
etc.
External

X Ext
Y Ext ,\ '1'"',--

Ext Proc .'--t----...c \" -~ DAPOV f"Or--1
Ext Proc'" i varia~le __ ~J

"
Executable " "",

Code

for

P: PROC:
DCL X EXT;
DCL A. INT;
R: PROC

DCL ,C) lNT;

END Ri

END P;

q: PROCi
DCL X EXT;
S =[PROCf

END Si

T: fPROC i
DCL Y INTi

U: f1'ROC i

II I DCL Y EXT;

l!:ND U i

L I mm T;
ENIT Qi

DAPOV f~~-\
variable B

_ -..w_ , __ " , "'~

I --'--"] 'Dp.POV for
Lvariable C ---.------

I DAPOV for 1
I variable D Note: The connections shown

between nodes and DA.POVs are
achieved in practice by a
combination of the Storage
Anchor and the Relative lD.

2.2.1 An Example of
for a :PL/1

IBM. CONFlDEN'I'Il\L

Program Tree

(/

Section 2.3 THE ACTIVATION TREE

2.3 The Activation Tree

Each Logical Machine has an Activation Tree. The
purpose of the Activation Tree is to contain information about
which Modules are currently active and the order in which they
called or attached each other. Each node of the Activation Tree
corresponds to an activation of the Module associated with one

/9

of the nodes of the Program Tree. The root node of the Activation
Tree corresponds to the activation of the Module associated with
the External Node of the Program Tree. This node is activated by
the creation of the Logical Machine. When there is no multi­
tasking within the Logical Machine, the Activation Tree has only a
single limb.

The following examples represent Activation Trees which
could exist during the execution of the PL/I program shown in
the example of the Program Tree in Section 2.2.1.

Non-Tasking Case Multi-Tasking Case

Activation 8 2 E'''·' .,----,., __ ... '._._J-

of 8 --1f----'_."--'-'
Task 3

IBM CONFIDENTIAL

Activation
of S

[Activa:ion T;1
of T L.I

~:--.-_-..:&;-=-----.
[Activation Ull

of U ---_· .. ·ft----_ .. ·

Task 2

z,o , .
Section 2.3 THE ACTIVATION TREE

2.3.1 Invocation by Call or Function Reference

The invocation of a Module by the execution of an
explicit call or of a function ref~rence, causes a new node
to be added to the branch of the A~tivation Tree representing
the task in which the invoking operation was executed.
Information is stored in the node of the activation tree to
pr'ovide a link to the node of the Program Tree corresponding
to the Module activated, and to enable a return to be made to the
point immediately following that from which the Module was invoked.

Two types of Return are possible, these are usually
termed "normal" and "abnormal" Return. Normal Return occurs
when the current activation is terminated, and execution is
resumed at the point remembered in the node of the Activation
Tree. Abnormal ,Return occurs when a GO TO statement nominates
a non-local label value as its operand. The current activation,
and any intervening activations are terminated, and execution resumes
at the label point specified in the GO TO statement.

2.3.2 Invocation by Attach

The invocation of a Module by the execution of an
explicit Attach causes a new branch to be added to the Activation
Tree. At this point the only element in this branch will repre­
sent an activation of the Module specified in the Attach. There
is no return information associated with the first activation of
a task. Once established, a new branch in the Activation Tree can
grow and shrink in the same way as the main branch and can itself
become the root of new branches.

Two types of task termination are possible. Normal
task termination occurs when a Return statement or the last
statement of the Module attached has been executed. The Task
will be abnormally terminated if the activation which initiated
its first activation itself terminates.

2.3.3 The Handling of Exceptional Conditions

The handling of exceptional conditions falls into
three parts: the establishment of the action to be taken
if an exceptional condition arises, the search to determine
the action to be taken when an exceptional condition arises,
and the invocation of the Module which is to perform the
specified action.

IBM CONFIDENTIAL

(/

Section 2.3 THE ACTIVATION TREE

Each condition name will be associated by the
Linker with a stacking mechanism of the type used for user al­
located variables (see Section 2.4). This stacking mechanism
will be used to contain the entry value (Module, entry point,
and environment) of the action which is to be taken if the
condition arises. This action may have been defined by the user
(e.g., a PL/I on-unit) or by the system (e.g., Standard System
Action for a PL/I condition) .

The action to be taken when the condition arises will
be determined from the latest entry in the branch of the stack
corresponding to the current task. The invocation of the Module
giving this user or system provided action will follow exactly
the protocol for the invocation of any other entry value (see
Section 2.4.1).

IBM CONFIDENTIAL

2.-/

Section 2.4 DYNAMIC STORAGE

2.4 Dynamic Storage

The purpose of the Dynamic StorageM.echanism is to
provide storage for the Data Objects and to provide execution
time addressability to the appropriate generations of the
Data Objects referenced by Symbolic Names in the Modules of
the program. Each generation of a Data Object consists of a
Value Descriptor and value (DAPOV) as defined in Section 2.5.
These DAPOV's are allocated in a Reference Table and each one
can be addressed within that Reference Table by its Relative
ID. Each Reference Table can contain DAPOV's for one or more
variables. Addressability to each Reference Table is provided
by a Storage Anchor. The total set of Storage Anchors can be
divided into two parts, the set of System Storage Anchors and
the Set of User Storage Anchors.

The System Storage Anchors are used to address the
Reference Tables directly associated with the activations of
the Modules represented by the nodes of the Program Tree.
Each of these Reference Tables contains the DAPOV's for the
variables which are allocated at the activation of the Module.
Since only the names contained in one node at each level in the
Program Tree can be referenced directly at any time, it is suf­
ficient to have one System Storage Anchor for each level in the
Program Tree. The names of the Storage Anchors to be associ­
ated with the nodes of the Program Tree will be filled in by
the Connector. All the Reference Tables which use the same
Storage Anchor must be chained together so that the value of
the Storage Anchor can be updated as the Reference Tables are
freed.

The User Storage Anchors are used to address the
DAPOV's for those variables whose allocation and freeing is
under the control of the user. The names of the Storage Anchors
for these variables will be filled in by the Linker.

There must be a set of Storage Anchors for each Task
executing in the Logical Machine, since the Reference Tables
containing the current generation of the variables may be dif­
ferent in each task. When a Task is attached, unless there is
a change of environment as described in Section 2.4.1, the only
Storage Anchor to be changed is the one corresponding to the
Module being activated. The rest of the Storage Anchors must
be copied to provide addressability from both the 'J,'asks to the
Reference Tables associated with any Modules further up the
Program Tree, and to any variables which have their own User
Storage Anchors.

The System Storage Anchors for the multi-tasking ex­
ample shown in Section 2.3 can be illustrated as follows:

I~M CONFIDENTIAL

Section 2.4

Task 1

RT
for
Static

oiIjl
or·

.. r·!

C/O

DYNAMIC STORAGE

Task 2

RT
for
Static

~RT
for
U

o

23

Task 3

Note: Although there is a Storage Anchor in each Task identi­
fying the "RT for Static", there is only a single Reference
Table for static variables; it can be addressed from any Task.
The same comment applies to "RT for PI" and the other Reference
Tables which appear in the chains of a Storage Anchor in more
than one Task. "RT for PI" represents the Reference Table for
activation PI of P, whilst "RT for P2" represents the Reference
Table for activation P 2 of P.

2.4.1 The Use of Storage Anchors for the Support of Entry
Values

The environment which must be assigned with an entry
value, together with the value of the entry point, can be seen

IBM CONFIDENTIAL

Section 2.4 DYNAMIC STORAGE

as the values of the Storage A.nchors associated with each of j

the statically containing nodes. Again using the example of
Section 2.2 and 2.3, the assignment of entry point R to a
static external entry variable EV in activation PI involves
making a copy of the System Storage Anchors containing the
values "External" and "PI", and a note of to 'vhich Stora.ge
Anchors (or lexical levels) each of these values belongs.

At the call of the entry variable the values of the
Storage Anchors which were copied at assignment time must be
used to set the appropriate environment into the Storage
Anchors, for the invocation of the entry variable. The cur­
rent values of the Storage Anchors changed must of course be
restored on return. In our example, assuming that the call of
EV is in activation Sl of S, the value of the Storage Anchors
for Task 1 before and after the activation of R2 would be as
follows:

Before the call of R
External

After the call of R
External

Ql PI
Sl R2

2.4.2 The Use of Storage Anchors for Support of Label Values

The implementation of label values with an environ­
ment component falls out as a simpler case of entry values.
The difference, or simplification, is that for label values
it is only necessary to switch the environment once and for
all back to that which existed at the time of the assignment
of the label value. All the activations which have come into
existence between the time of this assignment and the branch
to the label value will be wound up as part of the process of
switching the environment. This approach can be used for the
implementation of PL/I label variables.

2.4.3 The Use of User-Storage Anchors for PL/I Controlled
Variables

The Linker must associate a User Storage Anchor with
each PL/I variable having the controlled storage class. This
Storage Anchor will be used as an anchor for the Reference
Tables containing the DAPOV's for the generations of the var­
iable. The value of the Storage Anchor in each ~sk at any
time will give direct addressability to the current gener­
ation of the variable in that ~sk.

IBM CONFIDENTIAL

(

Section 2.4 DYNAMIC STORAGE

As an example, suppose that there was a controlled
variable in procedure Q of the example in Section 2.2 and
2.3. At the point shown in the Activation Tree there might
be two generations allocated in Task 1, two in-Task 2, but
none in Task 3. The relationship between the bser Storage
Anchor and the Reference Tables for the generations of the
variable might be as shown below. (Note that the exact
picture depends on the order of allocations and Task attaches.)

RT
for
Genl

Task 1 Task 2

T
or
en2

RT RT
for for
en21 enl

Task 3

T
or
en2

T
or
en2

Note: "RT for Genii" represents the Reference Table for the
ith generation allocated in Task j.

2.4.4 The Use of User Storage Anchors for PL/I Based Variables

Since any remaining generations of PL/I based vari­
ables allocated in a Task must be freed at the termination
of that Task, it will be useful to have a User Storage Anchor
for all such generations. Thus the DAPOV's for all the gen­
erations of based variables allocated in a Task will be con­
tained in a Reference Table addressable from this User Storage
Anchor.

IBM CONFIDENTIAL

Section 2.5 DATA OBJECTS AND LINKING

2.5 Data Objects and Linking

A Data Object has three components: a name, a des­
criptor, and a value. Included in the discussion in this
section are the two forms of a name, i.e. the Symbolic Name
and the Logical Name, as well as the two forms of a des­
criptor, i.e. the Value Descriptor and the Generic Des­
criptor. The Value Descriptor is always bound to the value,
thus leading to the term DAPOV, meaning descriptor and,
£ointer or ~alue, where the word pointer-denotes a system
supplied means of reaching a value.

2.5.1 Descriptors

A descriptor is stored logically with each Data
Object in the system. The word "descriptor" is used in
several different contexts.

- The Value Descriptor is stored with the
value of a Data Object. It includes:

- A description of the instantaneous
physical representation of the
Data Object, and

- the authorization requirements for
access.

- The Generic Descriptor is associated with
the name and exists in the Local Declare
Table (described fully in Section 2.5.2.3).
In general, the Generic Descriptor includes:

- The set of logical declarations that
are permitted for this name at varying
points in time.

- The initialization expression(s) that
will be used. These may be user de­
clared. If not, defaults are supplied
by the language translator and utilized
if the name is not resolved at Link time
to an already existing name.

This information is then sufficient to return to the
Interpreter at execution time a described value when the
object is read, and to permit error checking on receipt of a
described value at write. The reading of an object by the
Interpreter utilizes the Value Descriptor, and the writing in­
to an object will first confirm that the described data to be
stored is compatible with the Generic Descriptor.

IBM CONFIDENTIAL

u.

(

Section 2.5 DATA OBJECTS AND LINKING

Value Descriptors may be factored, such that like
data elements may have a common descriptor. Access to a
Data Object will be via a level in the factoring that will
permit a reconstruction of the full descriptor to be re­
turned to the Interpreter. A specific example of factoring,
for example, may occur in the executable code, in which only
a short, partial descriptor distinguishes Logical Names
from literals or operators.

The appearance of a Data Object to the user of a
Logical Machine is as if the externally presented represent­
ation (e.g. input or output to a terminal) is that contained
within the machine. However, specific internal represent­
ations may be important to the skilled user, e.g.

Structure or array stored as a vector of
vectors.

Descriptors factored

Descriptors are not directly manipulatable by the
user of a Logical Machine. They are indirectly manipulated
by implied descriptor changing (or creating) statements:
DECLARE, ASSIGN, ••.•

2.5.1.1 Descriptors as Related to Access Machines

Descriptors are a form of access machine (as defined
in the Fundamental Concepts and System Language Manual). Ex­
amples of descriptors which act as built-in access machines
are a floating point number, arrays, and structures. Logi­
cally, an array is treated as a vector of vectors, although
physically, a more efficient implementation may be required.
Access will be made via a descriptor and will yield a des­
cribed value from the representation. A descriptor also
provides the capability of the "follow" mechanism of an
access machine in that it may contain the value, "System
Pointer", which implies that the pointer should be followed
to the next DAPOV.

2.5.2 Names

All names have two forms, a Symbolic Name and a Log­
ical Name. The Symbolic Name is a character string, as
written by the user, used for all communication with the user.
A Logical Name is the internal encoding which replaces each
Symbolic Name. In the executable code of each Module, each
unique Symbolic Name is replaced by a unique non-negative
integer, called the Logical Name. The system may be required
to supply additional Logical Names in certain special in­
stances, for example, for unnamed BEGIN blocks or iteration

IBM CONFIDENTIAL

Section 2.5 DATA OBJECTS AND LINKING

variables. A Logical Name m~y be used as an index to a
unique position in the Local Symbol Table, the Local Link
Table, or the Local Declare Table (each defined below) •
Once program text is encoded, it is required that the·
Local Symbol Table be available to reconstruct the original
names.

It will not be required that an application pro­
grammer be aware of the fact that his Symbolic Names have
been encoded as Logical Names, but a system programmer may
need to be aware of the existence of Local Symbol Tables
and their role in name resolution in the Program Tree.

The connectivity between the Logical Name in the
executable code and the Symbolic Name, the Generic Des­
criptor, and the DAPOV are contained in a set of three
tables in the Module. These are the Local Symbol Table
(LST) , the Local Declare Table (LDT) , and the Local Link
Table (LLT).

LST LDT LLT

Symbolic Name Declare Fields Lihk Fields

Logical Name in the executable code is used
as an index.

Figure 2.5.1

2.5.2.1 Local Symbol Table (LST)

-v

The Local Symbol Table contains one entry for each un­
ique (variable length) Symbolic Name, as written by the user,
that is either declared or referenced within a single unit of
translation. The Logical Name of any symbol can be determined
by the Interpreter by searching the LST in sequence. Conversely,
the Symbolic Name can be recovered by using the Logical Name
as an index to the LST. (See Figure 2.5rl).

2.5.2.2 Local Link Table (LLT)

The Local Link Table contains one entry for each

IBM CONFIDENTIAL

"'-... /

;(.. ,

~j

(-

(

Section 2.5 DATA OBJECTS AND LINKING

Logical Name, in the same order as the LST. (See Figure
2.5.1). Each entry contains two fields which are filled
in by the Linker. The first field will contain the Storage
Anchor Name to connect each Logical Name with the Reference
Table containing its execution time DAPOV. A zero in this
field implies that this entry has not been linked yet. The
second field will usually contain the Relative ID of the
DAPOV within the Reference Table. (The Relative ID is the
logical location of the DAPOV within the Reference Table.)
However, a User Storage Anchor Name is contained in this
field, if the first field has maximum field value.

2.5.2.3 Local Declare Table (LOT)

The Local Declare Table also contains one entry for
each Logical Name, in the same order as the LST. (See
Figure 2.5.1). Each entry contains seven fields which are
filled in by the Translator. The name of each field, their
possible values, and meanings follow:

Field Value(s)

Defined Flag Defined

Undefined
Search Node Internal

External
System

Above

External

Storage Anchor Here

Ext SA

User

External

Mandated Yes
Storage Anchor

No

+1

+2

Meaning

A declaration for this Symbolic
Name has been made in this module.
No declaration made in this module.
No search of Program Tree required
for Linking
Search External Node when Linking
Search up to System Node (by­
passing External Node)
Search one node above (see Section
2.5.2.4).
Search up to one node below
External Node.
Use this Module's System Storage
Anchor for allocation.
Use System Storage Anchor of Ex­
ternal Node for allocation
Use User Storage Anchor for alloc­
ation.
Use System Storage Anchor of node
two below External Node.
Declaration requires Storage Anchor
field value to be used.
Storage Anchor field contains de­
fault to be used only if search is
unsuccessful.

IBM CONFIDENTIAL

Section 2.5

Field

Task FREE'd

Template
Indicator

Generic
Descriptor

DATA OBJECTS AND LINKING

Value(s)

Yes

No
Real

Based

Meaning

Will be FREE'd by task termin­
ation if not earlier FREE'd by
user.
Task FREEing not required.
Symbol represents a value

Symbol represents a descriptor
only.
(See following paragraph)

, :,sO

The last field in the LDT, termed the Generic Des­
criptor, itself contains ten subfields, some of which are
variable in length. These subfields contain either the user
declarations or the language defined defaults if at Link time
a search is required and the name is not found in one of the
containing blocks in the Program Tree. The names of these
subfields, their possible values, and meanings follow:

Subfield

Data Type

Shape

Con-Var

Precision
Scale
Array Bounds

Initial
Locator

Qualifier

Values

Any,
Character,

{Fixed} {D~cimal} •
Float B~nary

Pointer, Offset,
Label, Entry,
Event, Task, or
Statement
Scalar, vector,
Array, or structure
Constant, or
Variable
Numeric value
Numeric value
Upper expression and
lower expression

Expression
Expression

Meaning (if not self-
explana tor~'"

Two expressions for each
dimension of an array to
define the limits of the
array.
Initial value expression
Used for pointer expression
declared with based
variable

IBM CONFIDENTIAL

" (-.

(

Section 2.5

Subfield

Parameter

Generic Desc.
Pointer

DATA OBJECTS AND LINKING

Values

Yes

No
Pointer

Meaning

Symbol unusable unless
associated with an
argument at entry.
Symbol usable
For undefined symbol,
pointer to Generic
Descriptor of defining
occurrence of symbol.
Filled in by Linker.

2.5.2.4 Entry Names

Procedure (or function) names and entry names are
properly not considered to be declared within the Module
that make up the statements of that procedure. Rather, they
are considered as being declared as a name in the containing
node of the Program Tree. Thus, to prevent the possibility
of duplicate names in the LST, a second set of tables (LST,
LLT, LDT) is created by the Translator which contains in­
formation relative to procedure or entry names. The search
node field of the LDT contains the value "above" for these
names. The Connector is responsible for merging the "above"
tables of the procedure being connected with the tables of
the procedure into which the connection is being made.

2.5.2.5 Object Code in the LST, LLT, LDT

The object code for each source language statement
will be treated as a variable. The Symbolic Name is the
statement number. The line directory will contain the Log­
ical Name of each statement number. The LLT fields will point
to the start of the initialized object text for each. Fields
in the LDT will be set to defined, interna.l,' ext SA ()::,f PLt,It
or here (if APL) , and will contain an initializing expression
which is the encoded object text created by the Translator.

2.5.2.6 Treatment of APL Symbolic Names

All APL Symbolic Names will be declared by the Trans­
lator as defined, external, user. Further, for each local
APL symbol in a function, the Translator will insert a user
allocation statement in the entry code to initialize the DAPOV
to unassigned, and a user free statement in the exit code. As
with a PL/I procedure, it is only necessary to Link a function

IBM CONFIDENTIAL

31

Section 2.5 DATA OBJECTS AND LINKING

once. The inserted statements for local symbols will create
the proper visibility of symbols as required by APL.

One area requiring special mention is that a function
name, when Connected, will be established as the oldest
generation for that given Symbolic Name, even though there
are other generations (of local variables) already 'in existence.

2.5.3 Linking

The function of the Linker is to resolve the static
nesting of symbols so that at execution time a Logical Name
will lead via the fields in the LLT to a DAPOV in a Reference
Table. In this manner, the name of the Data Object is bound
to the DAPOV of the Data Object. Linking is accomplished at
first activation. In order to fill in the Relative ID, it is
necessary to initialize and allocate variables while Linking.

For a name containing a value in the search node field
of the Generic Descriptor of internal, one of three actions
will be taken depending on the value of the storage anchor
field of the Generic Descriptor:

1. Value of storage anchor field is Ext SA. The
initial value is generated using the expression
in the initial field of the Generic Descriptor,
and the Reference Table associated with the
External Node is extended to include the DAPOV.
The Storage Anchor Name and Relative ID are filled
into the LLT, thereby marking this name as linked.
(This case is used for PL/I static internal.)

2. Value of storage anchor field is here. Generate
the initial value and extend the RT with the
DAPOV. The RT is that identified by the System,
Storage Anchor for this Module. The Interpreter
will have already stored a newly created Space
Name in this Storage Anchor. The name of this
Module's System Storage Anchor and the Relative
ID to the new DAPOV are filled into the LLT.
(This case is used for PL/I automatic.)

3. Value of storage anchor field is User. Obtain the
next User Storage Anchor name, and insert as its
value the next available Space Name. Then extend
that Space with a pointer indicating the previous
generation is non-existent and a DAPOV for an un­
assigned value. Finally, the fields of the LLT

IBM CONFIDENTIAL

(

(

Section 2.5 DATA OBJECTS AND LINKING

are filled in. It may be noted that these
variables are initialized to catch a reference
prior to user allocation as an error. (This
case is used for PL/I controlled internal.)

For a name containing a value in the search node

33

field of either external, system, or external +1, the Linker
will extract the symbolic Name from the LST using the Logical
Name as an argument. The Symbolic Name is used as a search
argument in the specified search node(s}. (In the case of
system or external +1, the search will start at the node above
this module's node.) If found, the fields of the LLT entry
where found are copied into this Module's LLT. For a defined
symbol, the corresponding LDT entries are checked for con­
sistency. For an undefined symbol, a pointer to the LDT
entry of the symbol found is placed in the Generic Descriptor
pointer field. If not found, one of three actions will be
taken depending on the value of the storage anchor field:

1. Value of storage anchor field is Ext SA. Pro­
ceed as in Case 1 above. Then extend and fill
in the fields of the LST, LDT, and LLT of the
External Node with a copy of the entry from
this Module's tables. (This case is used for the
first occurrence of a PL/I static external variable.)

2. Value of storage anchor field is User. Proceed as in
Case 3 above. Then extend the fields of the LST, LDT,
and LLT of the External Node with a copy of the entry
from this Module's tables. (This Case is used for
the first occurrence of a PL/I external controlled
variable or APL symbol.)

3. Value of storage anchor field is External +2. Two
subcases apply.

a) If this Module is at a node below external +2,
initialize and allocate the DAPOV by extending
the RT of the System Storage Anchor of the node
two below the Excernal Node. Fill in the LLT
fields for the entry in this Module, and then
copy the LST, LDT, and LLT into an extension
of the tables in the external +2 node. Mark
the storage anchor field in that LDT with the
value, 'HereJ

b} If this Module is at the external +2 node, pro­
ceed as in Case 3a, but do not extend the LST,
LDT, LLT tables, since the entry already exists
there. {These cases are used for an undefined
variable. }

IBM CONFIDENTIAL

Section 2.5 DATA OBJECTS AND LINKING

The Link process for names with a template value of
based requires that a link be established to a Storage Anchor
containing all .such names, so that the names may be freed by
the system if the user fails to do so prior to task termination.

After Linking all the entries in the LLT, the Linker
will turn on the link bit for this Module. Subsequent act­
ivations will only require allocation and initialization of
those Logical Names with a storage anchor field value of'Here!
Procedure editing will turn the link bit for this Module off,
as well as the link bit for any Logical Name affected by the
editing. Additional detailing is required to state which
Logical Names are affected, and the effect on Logical Names
in other Modules.

IBM CONFIDENTIAL

(

2.6 The Interpreter

The execution of code in each active Logical Task
of a Logical Machine is performed by an Interpreter. Each
such Interpreter is capable of executing a set of Built-in
Operators, and is provided with a separate set of mechanisms
consisting of: An Operator Stack, an Operand Stack and a
Task Status Table. Each interpreter also makes use of the
facilities of the Logical Machine in which it is active, i.e.,
The Program Tree, the Activation Tree, and the Dynamic Storage
Mechanism.

2.6.1 The Built-in Operators

The Built-in Operators which can be executed by each
Interpreter can be classified as those which handle computation,
those which handle the flow of control between statements of the
active Module and between different Module activations, and those
which provide special system functions.

The computational operators are generic with respect to

35

the data type and aggregation of their operands and provide a
combination of the logical and arithmetic operations available in
APL, PL/I, FORTRAN, COBOL, and RPG. The logical operators include:
ASSIGN, SUBSCRIPT, CONCATENATE, COMPARE EQUAL/NOT EQUAL/LESS THAN/
and GREATER THAN, AND, OR, NOT, SUBSTRING and single character
SEARCH' TRANSLATE, SIZE and SHAPE (like APL p). The arithmetic
operators include: ADD, SUBSTRACT, MULTIPLY, DIVIDE, EXPONENTIATE,
LOGARITHM, ABSOLUTE VALUE, COMPARE EQUAL/NOT EQUAL/LESS THAN/ and
GREATER THAN, FLOOR, CEILING, MAXIMUM, MINIMUM, ROUND and ASSIGN.
Discussion of the language requirements for these operators is
contained in memos ASP-045 and ASP-051. There is also a require­
ment for a number of operators to handle editing and conversion
between different types of data.

The operators which handle the flow of control between
statements of an active Module and between Module activations include:
GO TO, IF-THEN-ELSE, DO, CALL, RETURN, ATTACH, and EXIT.

The operators which provide the special systems functions
include: LINK, CONNECT, CREATE LM, CALL LM, ATTACH LM, ENTER/
LEAVF. EDIT MODE and other Operators to support System Facilities
and the Logical I/O System.

2.6.2 The Interpreter Mechanisms

In executing the code (which is in a prefix polish form)
the Interpreter makes use of three mechanisms which are illustrated
schematically below:

IBM CONFIDENTIAL

section 2.6 THE INTERPRETER

Task
Status
Table

Task Module Statement Pointer to Pointer td

Name Name

Operator Operators for
Stack ----~~hich operands

are not yet
available

Number

Operand
Counts

current node of
token of Activation
statement Tree

Operand Operand
Stack --~'~Values

(DAPOVs)

The Task Status Table contains five fields: ,

.1. The first field contains the name of the Logical
Task being executed by the Interpreter. This
provides access to the Logical Task Control Block
(LTCB) and hence to the set of Storage Anchors
for this task.

2. The second field contains the name of the Module
currently being executed and provides access to the
various components of this Module which are contained
in the node of the Program Tree (i.e., LST, LLT,
LDT, executable code and line directory).

3. The third field contains the number of the statement
which is currently being executed, and will be
updated as each statement is completed.

4. The fourth field identifies within the statement
code the token (i.e., operator, operand, or literal
which was fetched most recently).

5. The fifth field identifies the latest node in the
branch of the Activation Tree for the task being
executed, and will be used to store the information
contained in the Task Status Table into the Activa­
tion Tree when the call of a new Module is executed.

The Operator Stack contains a push down list of those
operators which have been fetched, but for which all the operands
are not yet available, together with counts of how many operands
are still needed for each operator in the stack.

IBM CONFIDENTIAL

r-

(
Section 2.6 THE INTERPRETER

The Operand Stack contains the values, in DAPOV
form, of all those operands and literals which have been
fetched, or computed, but which cannot be used by their
operator until its other operands have been fetched or
computed.

2.6.3 Statement Evaluation

37

The basic protocol for statement evaluation is pre­
sented in the Figure 2.6.1. The equivalent of an instruction
fetch is the token fetch loop which starts at the block labeled
A and continues through block B for an operator token, or blocks
C and D for a literal, or blocks E and D for a logical name.
The DAPOV fetch in block E is discussed in further detail in the
next section. In block D the "appropriate" DAPOV in the case
of an assignment argument is a pointer to the generic descriptor
in the LDT rather than the fetched value descriptor and value.

An execution cycle represented by blocks F, G and H is
taken whenever the operand count of the operator on top of the operator
stack is zero. Note that the evaluation of control and system
operators will often result in leaving the basic evaluation loop.
Simple cases of these operations are discussed in subsequent sections.

After execution a check is made to see if the Operator
Stack is empty. In prefix polish notation this should be the end
of the statement. To protect against a badly translated Module,
an End of Statement token is required in the code and the Operand
Stack must also be empty. If these conditions are met the first
token pointer of the next statement is fetched by blocks I and J.
This requires using the statement counter as an index to the
Line Directory in the Module. If no statement is found, the
Interpreter takes an automatic RETURN.

2.6.4 Protocol for Value Fetch from Variables

Whenever a reference type of operand is encountered
during statement execution its value (DAPOV) must be fetched
into the operand stack from the appropriate Reference Table.
The process involved is described below and illustrated in
Figure 2.6. 2.

The Logical Name appearing in the code is used as an
index to the LLT (contained in the node of the Program Tree)
to yield a Storage Anchor name and Relative ID for the required
DAPOV. The Storage Anchor name and Task name (contained in
the current status table) are used to obtain the value of the

IBM CONFIDENTIAL

Section 2.6 THE INTERPRETER

v PDA TE
STATEI'I.E/fT

CouNTeR

IISF/!
-_.-.. $~If;R

Pj..)f

NEXT ' ,L ,/ 1\]T1<$N E/tI() -, -of 571'ff ,
?
. N 7k/tMLATW?
"-- Ff(1<cR

EXIT,
y --......

, U5F1!
•• / FPRD~ :

EMf ./

Figure 2.6.1 STATEMENT EVALUATION

IBM CONFLDENTIAL

(.

Section 2.6 THE INTERPRETER

Storage Anchor relevant to the current task. This Storage
Anchor value identifies the required Reference Table. The
Relative ID, already obtained from the LLT, is now used to
access the required DAPOV from this Reference Table. If the
DAPOV obtained turns out to contain an indirect reference to
same other DAPOV the chain of indirection will be followed
automatically to its end.

Module

LST LLT Storage Anchors Reference Table
r--

01 SAl'.t1 SAl
..

02 PETE SA2

.,.

RrDl

RID2

SAl
SA2
SA3

f--.---.. ----

RIDl DAPOV for SAM

-.-.

_.
..

03 BILL SAl RID3 \ -..

Executable Code

1=+02 03 _~~_ J
Source Code

E
'-'-'~~'''''~'-'''''-

AM=PETE+BILL

... -.,- --~-

Local Declare
Table i

\
I
!
l Line Directory I

~________________l

RID3 DAPOV for BILL

\,
'-"., eference Table

RID2 DAPOV for PETE

Figure 2.6.2 Access of DAPOVs

IBM CONFIDENTIAL

..

I
I

Section 2.6 THE INTERPRETER

2.6.5 Protocol for Call

The following set of actions must be perform~d by the
Interpreter whenever a Call operator or function reference is
encountered:

2.6.6

1. Evaluate any arguments and place the values or
references on the operand stack.

2. Update the statement number field, and save the
information contained in the Task Status Table
in the node of the Activation Tree identified by
the fifth field of this table.

3. If invocation involves a switch of environment,
also save the values of Storage Anchors
to be modified, and set these Storage Anchors
from the environment information of the entry value.

4. If the Module to be invoked has not previously
been linked, invoke the Linker to link the Symbolic
Names referenced or declared in the Module.

5. Create a new Reference Table for this activation,
set its chain field to the value of the appropriate
Storage Anchor, and set this Storage Anchor to
identify the Reference Table just created.

6. Carry out initialization of variables allocated in
this Reference Table.

7. Set up addressability to any parameters using the
argument values contained in the operand stack.

8. Set the fields of the Task Status Table and start
execution of the code of the invoked Module.

Protocol for Return

The following actions must be performed by the Interpreter
when a Return operator is encountered:

1. Evaluate any return value expression and place the
result in the operand stack.

2. Restore the appropriate Storage Anchor from the chain
field of the Reference Table for the activation being
terminated, and then free this Reference Table.

IBM CONFIDENTIAL

(

(

(~/

section 2.6 THE INTERPRETER +1

2.6.7

2.6.8

3. If the invocation had involved a switch
of environment, restore the Storage Anchors
switched from the values saved.

4. Restore the Task Status Table from the informa­
tion which was saved in the Activation Tree, and
remove the node of the Activation Tree associated
with the activation being terminated.

5. Continue execution according to the information now
contained in the Task Status Table.

Protocol for GO TO

There are two cases:

a) A GO TO within the scope of the current activation:

1. Set the value of the statement number field
of the Task status Table to the value given by
the operand, and the value of the current
element pointer in the current status table to
the start of this statement.

2. Carryon with execution of this Module.

b) A GO TO with a destination in some suspended
activation.

1. Search the Activation Tree to ensure that the
destination activation still exists.

2. Terminate as many activations as necessary until
the destination activation hecomes the current
one, freeing the Reference Tables for these
activations and taking the other actions described
in the protocol for Return.

3. Proceed with protocol for case a.

Protocol for Attach

The following actions must be performed when the
Interpreter encounters an Attach operand:

1. Evaluate any arguments and collect the values or
references in a special table.

2. Call upon the Logical Machine Supervisor to set

IBM CONFIDENTIAL

Section 2.6 THE INTERPRETER

up and initiate a new Logical Task passing
to the LMS the name of the attaching task
(i.e., LTCB) , the name of the Module to be
invoked as the first activation of the new
task, the values of the Storage Anchors,
and the table containing the arguments to be
passed to this activation. (The Logical
Machine Supervisor sets up a new Logical Task
which will itself be executed by an Interpreter.)

3. Activate the Module in the new task performing
actions 4 through 8 of the protocol for Call.

IBM CONFIDENTIAL

/

(

section 2.7 BUILDING A LOGICAL MACHINE

2.7 Building a Logical Machine

Skilled users of the system may wish to modify the
Logical Machine to which they are connected or to create a new
Logical Machine for subsequent use. Modifying a Logical
Machine requires invoking the system functions of Connect and
Disconnect which add or remove Modules from the Program Tree.
A separate system function is used to create a new Logical
Machine.

The ability of a user to perform these functions
depends upon the capability of the Logical Machine to which
he is connected. The functions are always available at the
System Node in the Program Tree; invoking these functions
can only occur from some Module lower in the Program Tree;
and recognizing commands from the user to cause this invoca­
tion is dependent on the interpretive power of the External
Node in the Program Tree.

2.7.1 The Connect Function

The Module to be connected may either be in the
Ownership Tree or supplied by the user as program statements
entered through the Logical I/O System (e.g. from a keyboard) .

If the user choses to enter statements from the
keyboard, he must enter Edit mode. statements entered in
Edit mode are translated and, when the user is finished
eptering the statements, a .Module is built. The statements
can be written as nested procedures. If this is done the
procedures will be nested into the Program Tree in the same
way they were written.

Before connection into a Program Tree, a procedure
exists as a Module. When the connection is initiated, infor­
mation from the Module is used to construct the LLT, LST,
and LDT. None of the variables of the Module are linked at
this time, entry names, however, are resolved to the node of
the Program Tree under which the Module is being connected.

If the Module (call it JOE) is to be nested below
another Module (call it PETE), then the entry names for JOE
may be found in the LST for PETE.

IBM CONFIDENTIAL

Section 2.7 BUILDING A LOGICAL MACHINE

If they are found, PETE's corresponding LLT
entries are set to identify an element of the Reference
Table corresponding to JOE's entry names do not show up
in PETE's LST, then thev are added to PETE-' s LST and LLT.

The static nesting can be specified by the
connect command. For example, the command sequence

Connect A
Connect B in A
Connect C in A. B

results in A being the outermost procedure with Band C
nested below:

2.7.2 The 'Create Logical Machine' Function

The 'Create Logical Machine' function requires
three parameters, a name for the Logical Machine, the
position in the Ownership Tree at which the LM is to be
created, and the name of a Module in the Ownership Tree
which is to be placed at the External Node of the new LM.

The name of the LM will be checked in the Owner­
ship Tree to insure uniqueness. Also, the receiving node in
the Ownership Tree must authorize this kind of access. It
is, of course, always possible to create a Logical Machine
directly beneath the creating Logical Machine.

The choice of Module for the External Node will
also be checked for authority and indeed this is one of the
prime mechanisms for defining the skill level of users.
Clearly at least one Module will be defined to interpret the
full SL Command Language. Who is allowed access to this
Module, and where they are allowed to place a Logical Machine
which they create, constitute basic control mechanisms on
the users of the system.

IBM CONFIDENTIAL

(

(/

CHAPTER 3

THE LOGICAL SYSTEM

3. 1 TheL'ogical Machine" Sup'er'visor
: .. . • .. ,. i (

The Logical Machi,ne Supervisor is an active Logi,cal
Machine at the root of the Ownership Tree with two primary
functions. Firstly, it is, the interface between the 5y'stem
users and ,their work, as it is processed by one or more
Logical Machines. Secondly, it is the i.nterface with the
Physical Control Sy'stem and loads this system with requests
for physical processing as generated by the Logical Machines.

3.1.1 The User Session" JO~s" ~nd,' L?'~7~ :ra~k~.

The major unit of work in the system is a User Session,
In a simple interactive session the User Session is' the' j?rb~' ','
cessing performed between sign-on and sign-of;f. :r;t is possible
however, for a~skilled user to initiate more than one inde­
pendent activity and have these Jobs controlled by the super­
visor as batch activities. Clearly at any time in a session,
only one Job, can be running in interactive mode for each
active terminal. Each Job may result i.n one or more dependent
parallel activities called Logical Tasks. The ;first task in a
.;:rob is the Master Task; all subsequent tasks are subo;r;-dinate to
this Task (or to other Sub-Tasks). In any job the Master-Task
is connected to the Userts Console (interactive mode) or to a
Catalogued Data Set (batch mode). Every Job runs in a separate
Logical Machine controlled by the Logical Machine Superyisor,

3.1. 2 Session, Job, and Task Protocols
, ,

A Session commences when a User gains access to a
physical terminal and port and is recognized (e. g., key-board
unlock) by the Physical Source-Sink Sub""System. The
code activated by this process is in fact a p.hysical Task
running on a Source-Sink Processing Unit, nut is logically
a new Logical Task in the Logical Mach.ine Supervisor. This'
Logical Task creates a, Session Control Block (SCB) and accepts
the sign-on from the user. The sign.,.on code is searched in
the Ownership Tree provided by System Facilities to determine
that the user is authorized and selects an appropriate Logical
Machine for his Session. Accounting information, priority, etc.
is also determined at this time, and

IBM CONFIDENTIAL

Section 3.1 THE LOGICAL MACHINE SUPERVISOR

the whole entered in the Session Control Block.

Once the Session Control Block is prepared, an
initial Job Control Block (JCB) is set up and pointed to by
the SCB. The JCB specifies which Logical Machine is activated
by the session and whether it is interactive or batch. Now
the supervisor activates the Logical Machine by parametising
the External Node for batch or interactive communication and
chaining a Logical Task Control Block (LTCB) from the JCB.
This LTCB specifies the active node to be the External Node.
Finally, the supervisor creates a Physical Task Control Block (PTCB)
for a physical processor, chains this PTCB from the LTCB and
enters the PTCB in the processing queue of the Physical Control
System. .

During the running of a Physical Task, the Processing
unit may encounter operators such as Attach which result in
the creation of further LTCB's and even commands from the user
which create further Jobs. These activities and the normal,
or abnormal, termination of Jobs and Tasks, result in the
automatic intervention of the Logical Machine Supervisor via
built in Modules in every Logical Machine.

IBM CONFIDENTIAL

f

Section 3.2 SYSTEM FACILITIES

3.2 System Facilities

All of the Logical Objects in the system (Logical
Machines, Data Sets, Modules, Logical Source-Sink Devices)
are connected together in a single structure called the
Ownership Tree. This tree, together with the ability to
monitor communication between the Logical Objects, and to­
gether with operators to Create, Destroy and Modify Logical
Objects, constitute the System Facilities.

3.2.1 The Ownership Tree

The objects in the Ownership Tree are connected in
such a way as to define ownership and access capabilties.
These concepts are best explained by examining this simple
tree:

Here A
B
D

and C,

owns A, B, C and D and through them E, F and G
owns B, E, and F
owns D and G

E, F and G own only themselves.

Any Object can access an Object it owns; additionally
it can access any Object which is a predecessor in the
Ownership Tree.

Thus (for example) G can access itself, D and A but
not B, C. E and F. The fact that an Object can access another
does not necessarily authorize it to extract information from
it or to modify it. These authorization rights are a property
of the accessed Object and may be permanent bars against certain
classes of access (e.g., Read Only), or complex functions
controlling privacy and security, or temporary bars against
access of one class while another is proceeding (e.g., Modify -
Exclusive State). Only an owner of an Object can change the
authorization rights.

When a system is first generated it contains a simple
Ownership Tree composed of two Logical Hachines.

IBM CONFIDENTIAL

S~ction 3.2 SYSTEM FACILITIES

I I The
Logical

1 Machine

I The "
I System l

~anguage !
Translator _~"_,~,_,,, ,,_,,_,_ . .1

With this start and the operators of System Facilities, the
rest of the complete operating system can be constructed.

3.2.2 Monitoring Object to Object Communication

Communication between a Logical Machine and other
Objects is handled by special Modules in the Logical Machine
called the Logical I/O System (Section 3.3). These Modules
achieve communication by built-in operators which automatically
check for access and authorization rights and constitute part /
of the System Facilities. Communication between a Logical ~7'
Machine and the Logical Machine Supervisor is direct since the
access and authorization rights are built in. From the Owner-
ship definition it is apparent that any Logical Machine can do
anything it wishes to itself and, therefore, the System
Facilities do not monitor internal Logical Machine actions.

3.2.3 Creating and Modifying Another Logical Object

Any Logical Machine can create another Logical Object
and becomes the Owner of it. Because of the complex structure of
many objects and to avoid revealing their internal bit re­
resentations, System Facilities supplies a number of operators
and functions to perform these tasks.

3.2.3.1 Operations on Logical Machines

These operations can be considered as system commands
for 1anguages'which do not have these functions within their
syntax. There are three series of functions - Logical Machine
parameter setting, Information Commands, and Dynamic Commands.

IBM CQNFIDENTIAL

(

('

Section 3.2 SYSTEM FACILITIES

The Logical Machine parameter commands are used to
give information required by the Logical Machine. Illus­
trative examples of this type of command are:

- Name or rename current Logical t.fachine

- Set limits on LM size

- Set limits on compute time

Set limits on number of bytes of data
catalogued

- Set defaults

- language
computational precision

- origin

- Set width of typed output

- Set trace

Information Commands are used to read information
the user desire~ for knowing his status, debugging, etc.
The list below is illustrative of this type of command.

- Variables visible to suspended Module.

- Modules in the LM

- Name of catalogued objects

- Names of active LM's

- Read LM parameters

Dynamic Commands are used to control the contents
of a Logical Machine. Illustrative examples of dynamic
commands are given below.

- Deactivate an LM and Save

- Save a copy of suspended LM

- Catalog a Module

IBM CONFIDENTIAL

Section 3.2 SYSTEM FACILITIES

- Clear an LM

- Sign off

- Erase a Module

- Connect a Module into LM

- Drop a catalogued object

- Send a message

- to operator
- to another LM

3.2.3.2 Entry of Source Code and Text

To enter a source code or text, the user enters
EDIT mode. When the user enters EDIT mode, he indicates
whether it is text or source code he is entering, and the
name of the object to be entered (or edited). The Logical

~o

Machine has a default language. If the user specifies source /
code entry and no language, the LM default language is
assumed.

The name of the object is checked to determine -

a) if the name is new, or
b) if it has been previously defined.

Once the editing has been initiated then the editor
requests a line of input. The user then types in his next
line. If this is source code entry, the Translator for the
language then translates the line. If any syntax errors are
detected, the Translator returns a code for the user to re­
enter the source.

There are facilities for changing lines or inserting
new lines. When the user is finished, he types a command
signaling he is finished. The editor then causes a Module
to be built (if this is procedure entry). The user can re­
quest that the Module be catalogued if he so wishes.

The default is to connect the Module to the External
Node of the Logical Machine in which it was entered. The user

IBM CONFIDENTIAL

(~

(

Section 3.2 SYSTEM FACILITIES

may issue commands to connect it nested under some Module
in the Program Tree if he wishes.

3.2.3.3 Creating a Module

A Module is built by the action of the Translator on
a number of statements written in one of the accepted source
languages (e.g., APL or PL/I).

The unit of translation is a sequence of statements
in which all uses of the same name refer to the same object.
Translation of this unit becomes a Module. This unit corres­
ponds to a Procedure Block or BEGIN Block in PL/I or a
Function in APL. Nested procedures are handled as separately
translated units. A statement entered for direct execution
will also be treated as a unit of translation.

The Module resulting from a translation consists of a
number of distinct components together with a table giving
addressability to each of them •. The components of the Module
are the source code, the line directory, the executable code,
and two sets of Local Symbol, Link and Declare tables.

The source code contains the unmodified form of the
source statements as they were ~ecetved by the Translator.
The line directory has an entry for each line of the source
code and gives the relative starting location of the ex­
ecutable code produced for this line. The executable code
consists of the sequence of operators, operands in the form
of Logical Names, and numeric or character literals, which,
when executed, will give the semantic actions defined for the
source language statements. The form of the executable code
is prefix Polish. The first set of LST, LLT, and LDT contains
an entry for each Symbolic Name declared or referenced within
the statements of the Module. The second set of LST, LLT and
LDT contains an entry for each Symbolic Name which defines an
entry point of the Module. The Connector is responsible for
merging the items in this second set of tables into the
corresponding tables of the Module represented by the node of
the Program Tree into which this Module is connected. The
LST, LLT and LDT are described in detail in Section 2.5.

IBM CONFIDENTIAL

Section 3.2 SYSTEM FACILITIES

3.2.3.4 Modifying a Module

The process of changing Modules will
with fewer restrictions on allowed changes.
is to be made the execution must be stopped.
Machine goes into a direct mode.

be like APL but
When a change

The Logical

A variable can be read by typing the name of the
variable. This will return either the value of the variable or
a message telling why the variable was not printed. One can
also attempt to assign a new value to a variable. If the
attempted assignment is invalid a message will be returned
to the user.

The source statements of a Module can be changed by
entering EDIT mode. Lines can be added, deleted or changed.
When finished the modified load module is in the Logical
Machine only.

After changing the Module, it must be fitted back
into the Logical Machine environment with appropriate changes
to the environment to reflect changes made to the Module.
There will be restrictions on changes to Modules which exist
other than as a single leaf of the Activation Tree.

IBM CONFIDENTIAL

(

Section 3.3 THE LOGICAL INPUT/OUTPUT SYSTEM

3.3 The Logical Input/Output System

3.3.1 Introduction

Every Logical Machine is provided with a Logical
Input/Output System comprised of a number of specialized
I/O nodes. These nodes are placed under the System Node of
the Program Tree for the Logical Machine. Information is
transferred to and from the Logical Machine using the facilities
provided by these nodes. These facilities provide the Logical
Machine with the capability to communicate with:

another Logical Machine,
Catalogued Data,
Catalogued Modules,
the Logical Machine Supervisor,
Logical Source-Sink units,
and other systems on the network.

Only Logical Source-Sink nodes and "other system" nodes have
the property enabling communication via the Source-Sink Sub­
system. Input and Output buffering is used to provide the
link between Logical I/O and physical Source-Sink (which is
discussed in Section 4.4).

3.3.2 Protocol

The Logical Machine initiating communication via its
appropriate I/O node is in control of that communication. The
Logical Machine Supervisor, because of an explicit or implicit
command, will activate the system utility procedure to cause
a transfer of Data Objects or Modules.

The operators which create the logical I/O task are
contained in the executable code associated with the appropriate
I/O node. A Logical Task will be created and the Logical Task
Control Block (LTCB) will be placed in the job queue of the
Logical Machine Supervisor. The Logical Machine Supervisor
will observe that a Logical Task has been created and will
initiate one or more tasks on the physical system. The Logical
Machine Supervisor obtains addressability to a particular
object via the Ownership Tree.

Logical Machine to Logical Machine A LM may, when
authorized, access the Data Objects or Modules contained in
another LM either by obtaining a pointer or by making a copy.
However, the controlling LM cannot alter the LM being accessed.

IBM CONFIDENTIAL

Section 3.3 THE LOGICAL INPUT/OUTPUT SYSTEM

Logical Machine to Catalogued Data A U-1 may access
and/or modify catalogued data. There are various levels of
authority (e.g., . Read Only, Read and Copy Only, Read and Write).
When a LM is in the process of modifying the Catalogued data,
other potential users of the data are locked out. Authority
may be allowed to a collection of Data Objects or only to
individual Data Objects.

Logical Machine to Catalogued Module Accessibility
to Catalogued Modules is the same: as to catalogued Data~· Locking
also takes place when the Catalogued Module is being modified.

Logical Machine to Logical Machine Supervisor An active
LM communicates with the LMS to initiate some system functions
such "as initlation of a Logical Task.

Logical Machine to Logical Source-Sink Device Output
to a Logical Source-Sink Device may be spooled in one of three
ways which are selected either by a default condition or speci­
fication in the application program.

One way is to spool the data in its internal format ~ ~
for later manipulation by the physical Source-Sink Subsystem ~)
when output actually takes place. This maintains the inde-
pendence of the application program from the physical Source-
Sink Device.

A second method of spooling (specifically chosen by
the user) is for the application program to specify the output
format and ,hysical device at which the data is aimed. This
will cause a Physical Task to be set up by the LMS to pre­
compute the appropriate format and data blocking which is then
spooled for eventual physical output.

The third method is to provide for the data to be
edited and formatted at the sink. The data is spooled in
the internal format. A tag signifying this condition is passed
to the Source':"Slnk Processing Unit" (SSPU) with the data at the time
physical output is to take place.

When the spooled data is actually passed to the SSPU,
the LMS I/O System also points to the appropriate code to be
used by the SSPU to perform physical I/O.

Logical Machine to Other Systems on the Network Like
systems may be treated in-the same way as Logical Source-Sink

IBM CONFIDENTIAL

(

(

Section 3.3 THE LOGICAL INPUT/OUTPUT SYSTEM

Devices. Unlike systems will be handled by emulation. The
details of handling emulation have yet to be worked out.

Broadcasting is used on output, when a Symbolic Name
being sought is outside the system and thus is not known to
the Ownership Tree. The LMS will set up a Physical Task for
output via the Source-Sink Subsystem which will broadcast a
message to the other systems in the network requesting them to
reply with the location of the Symbolic Name if they are aware
of it. The response to the requesting LM is either a "Symbolic
Name N:ot ~nown" or an explicit address or list of explicit
addresses where the name may be found. In the third case, the
user must personally investigate which of the responding
locations holds the Symbolic Name for which he is looking.

The SSPU may act as a network node and perform a store
and forward function. Store and forward is the action of passing
data through to allow communication between two other systems.
When there is not a direct line between two systems that
desire to communicate, the sending system's SSPU obtains from
the Ownership Tree the address of the next possible stop along
the way. The Source-Sink Subsystem will make connection with
one of them and ship the message with the desired termination
address. The Source-Sink Subsystem at the store and forward
node receiving this message will temporarily store it and
establish connection in the same way, with the next node.
This will continue until the desired termination system is
reached. Answer back, if required, will work the same way.

IBM CONFIDENTIAL

4.

CHAPTER 4

THE PHYSICAL SYSTEM

The Physical System

The Physical ~stem consists of three major subsystems:

The Storage Management Subsystem
The Program Processing Subsystem
The Source-Sink Subsyst,em

The Storage Management Subsystem (SMS) provides
storage facilities for all the processing and source-sink units.
The Program Processing Subsyste~consists of one or more
Program Processing Units (PPU). A PPU executes programs and
provides overall control of the system. The Source-Sink
Subsystem consists of one or more specialized Source-Sink
Processing Units (SSPU) to provide input and output facilities,
communication with user terminals,or communication with
other systems of the same or different type.

These subsystem units are interconnected by physical
lines and control hardware, and their interaction requires
common control software and tables. The control software is
executed on any available PPU.

The breakdown of the Physical system is described here
in functional terms and does not necessarily correspond to
the packaging of an actual implementation. The implementations
of such a system may range all the way from a single physical
unit, with SMS, PPU, and SSPU functions all rolled into one and
sharing common hardware, to a very large system where each sub­
system unit is broken down into several more specialized subsystems.
It may also be found desirable to package some SMS functions in
a physical unit primarily devoted to processing functions.
Specific implementations may make different trade-offs between
hardware, firmware, and software execution of a particular function.

Thus the physical description is an architectural one,
to which all implementations adhere. An overall diagram of the
physical system is shown in Figure 4.1.

IBM CONFIDENTIAL

/' \

(
'~

(

Section 4

PPU

THE PHYSICAL SYSTEM

To Shelf Storage
h

Storage

t-1a nageme n t

Subsystem

Storage and Interrupt Buses

I PPU PPU SSPU SSPU SSPU

Source-Sink Devices,
Terminals, Consoles,
Communication Lines

Program Processing Source-Sink

Subsystem Subsystem

Fig. 4.1 PHYSICAL SYSTEM

IBM CONFIDENTIAL

l
I
I
\'

I
j

1
I

t
';

Section 4.1 CONTROL

4.1 Control

4.1.1 Hierarchical Design

The inherent complexity of a large system can be
greatly reduced by adopting a hierarchical design where each
level of the design supplies one or more basic functions for
use at all higher levels. A function supplied at one level
is not duplicated at higher levels. Each level is kept
simple enough, with separate modules and carefully controlled
interfaces, that exhaustive tests can be devised, and the level
can be completely debugged. As each level , starting at the
base (level 0), is completely tested, its functions can be
used with complete confidence at the next higher level.

As the design levels for AFS have not yet been defined,
the levels used by E. W. Dijkstra, who first described the merits
of such a hierarchical design (CACM, vol. 11, no. 5, May 1968,
pp. 341-346), may serve as an example for a relatively simple
system.

Level 0: Real-time clock interrupts and processor allocation.
Above this level the processor identity disappears (~
and all processes become sequential. \" ./

Levell: Storage paging mechanism. Above this level only the
virtual memory is addressed.

Level 2: Console operation to allow sharing of the console
among different tasks at higher levels.

Level 3: Input-Output device allocation and buffering. At
higher levels the user addresses virtual devices.

Level 4: Independent user programs.

4.1.2 Interrupts

There are two kinds of interrupts: external interrupts
and priority task switchi~g interrupts. Both cause an interrupt
signal to be sent by the hardware to an appropriate processing
unit (pPU or SSPU) for action.

IBM CONFIDENTIAL

(

(

Section 4.1 CONTROL

External interrupts are caused by asynchronous
signals from external sources. Examples occur when a
pre-set time interval has elapsed, a pre-set time of day
has been passed, an attention button has been pressed, a
telephone port has been dialed, or an input-output unit
has been made ready. External interrupts are sent to an
SSPU of the proper class to handle that interrupt.

The selected SSPU switches from its current task
to the interrupt processing task. The SSPU may complete
the interrupt procedure or request PPU action by placing the
interrupting task in the PPU physical task queue and raising
the priority task switching line. The SSPU then returns
to its former task.

Priority Task Switchin[" (PTS) interrupts are used
to activate an idle PU and to ensure that higher-priority
tasks, when ready to go, are attended to before tasks with a
lower priority. Normally a PU switches tasks only when its

current task terminates or reaches a waiting point. The
unit then searches a common physical task queue for the highest
priority task in its job class that is ready to go next. Thus
processors are normally queue driven and kept busy as long as
there is work to do. This normal flow of work may be altered
by a PTS interrupt using the common PTS lines.

The PTS lines contain the task identifier, priority)
and (optional) job class code of the interrupting task. The
job class code identifies a specialized processor, such as an
SSPU that is attached to the physical equipment needed or a
PPU with high-speed arithmetic for a lengthy computing task.
A PPU that is otherwise not specialized may be reserved for
a certain class of job by assigning a job class code to it.
The hardware compares job class and priority of the interrupt­
ing task with the job class and priority of its current task
for each PU. The PU with the lowest priority within the job
class is selected. ~t switches tasks and selects the
the identified task from the physical task queue. If all
processing units of the right class are busy executing tasks
of equal or higher priority than the interrupting task, the
interrupt signal is ignored. The new task will be picked
up during a subsequent normal task switch.

IBM CONFIDENTIAL

Section 4.1 CONTROL

The PU selected for i.nterruption will attempt to
reach the end of the current statement before switching
tasks. If the statement end is ,not reached before a ;f:t:xed
shortr"esp"o"nse' 'time has elapsed, thePD isi.nterrupted in
mid-stream by storing away all current hardwarere~ister
contents. The response time desired for a task a~pears '
in the task control block 1 it is-either set by the us'er ~ or
a system default value is inserted.

When the interrupted task is later resumed by a PU
of ~the same class, all registers are restored automat.tca1Iy.
Such a mid-stream interruption is entirely sate~" but it
usually takes more time, both to dump and reload the registe;r;s
and because of additional storage activity.

Exceptions occurring within a task, such as fixed­
point overflow, are sometimes called synchronous interrupts,
but they are not classified here as interrupts. As a rule
an exception condition causes an appropriate exception function
to be calledJeither at the beginning of the current statement
or at the end, and the task continues uni~terrupted. Some
exceptions may cause abnormal termination'of the task.

4.1. 3 Time-Outs

Timer interrupts via an SSPU may be used to
implement time slicing, which allows tasks of equal priority
to gain equal access to the available processors. Timer
interrupts reflect elapsed real time.

To keep track of active processing time, each
logical task has a run time value in its task control block.
An internal timer in each processor is used to update that
run time whenever the task is active. When the active
processing time exceeds the pre-set task time limit,
the task is switched out and de-activated; outside inter­
vention is then required to re-activate the task and let it
continue. The purpose is to detect and break into possibly
endless loops. The task time limit defaults to a system
value unless set otherwise by the user. The task run time
may be used to update, accounting records upon termination
of a task.

IBM CONFIDENTIAL

60

/

(

(

Section 4.1 CONTROL

4.1.4 Task Synchronization

The control program requires facilities from
the physical system to permit interlocking of control
functions and to gain exclusive control over system re­
sources when necessary. (The Logical Machine functions
for the equivalent of the wait-post and enqueue-dequeue
facilities of OS/360 are as yet undefined, but they may use
the same facilities described here.)

Tasks are interlocked by two operations, ENTER
and LEAVE (which correspond to E. W. Dijkstra's P and V
operators). ENTER and LEAVE operate on a special
semaphore type of integer variable and, apart from
initialization, they are the only operators that can
change a variable of type semaphore.

ENTER S, given by one task, locks the semaphore
S to gain exclusive control over that variable (see
the Storage Management Subsystem section on the details
of locking) and subtracts 1 from S. If S becomes or
remains nonnegative, it is unlocked and the task proceeds.
If S becomes or remains negative, the current task is
placed on a queue for Sand S is unlocked.

LEAVE S, given by another task, locks the
semaphore S and adds 1 to S. If the new value of S is
still negative or zero, a task waiting on the queue for S
is release-L In any case, S is unlocked and the current
task continues.

Suppose S is an interlock for a number of equi­
valent resources, specifically a set of N printers. Init­
ially S is set to N. Each task requesting a printer gives
ENTER S, thus reducing S by 1. When the N-th printer is
allocated, S = O. The next task requesting a printer
sets S to -1 and must wait. A subsequent requestor leaves
S =-2. When a task finishes printing, it gives LEAVE S,
adding 1 to S and releasing a waiting task as long as S
remains negative or zero. Thus at any time a positive S

IBM CONFIDENTIAL

bl

Section 4.1 CONTROL

represents the number of still unallocated resources
(no task waiting), a negative S gives the number of
tasks waiting (no available resources), and S = 0
indicates ev.erything busy and nothing waiting.

As another example, let S be an interlock for
an event. Suppose task A attaches a parallel task Band
sets S = O. Later A needs to synchronize with B. At the
point of synchronization in the two programs, A has ENTER S
(equivalent to Wait) and B has LEAVE S (equivalent to Post).
While running, if A gets there first and gives ENTER S,
it sets S = -1 and waits until B gives LEAVE S releasing A.
If B gets there first and gives LEAVE S, then. S = 1 at the
time A issues ENTER S, leaving S = 0, whereupon A proceeds
inunediate1y.

4.1.5 System Efficiency and Tuning

Methods of observing system queues will be
provided to measure the utilization of critical resources
and identify bottlenecks. Neither over-long queues
(bottlenecks) nor f'requent1y empty queues (excess
capacity) represent an optimum cost-performance relation.
Thus queues are important indicators where system tuning
may be needed.

Another example is observing high but unproductive
activity. Too frequent page transfers between levels of
the storage hierarchy may indicate a temporary overload,
and performance may::.increase overall if the input load
is temporarily reduced. It may also indicate the need
for increasing the capacity of a level. Convers1y, too
rare a use of a given storage level may indicate over­
capacity at the next lower level.

Thus a completely automatic system does not mean
an unsupervised system. A system should be tuned to suit
a changing environment.

4.1. 6 Hands-Off System Operation

Normal system operation, including start-up and
shut-down, should require a minimum of routine human
intervention. To avoid a serious bottleneck and a common
source of error, there is no central system console. Instead
any terminal can be parameterized to perform a particular
supervisory or operating function. Routine operator

IBM CONFIDENTIAL

,/ "',

C'-'" .:' - I

(

Section 4.1 CONTROL

functions will be restricted to simple physical tasks
which do not justify full automation. Examples are
loading paper for printers and handling storage media
in shelf storage. Such actions are performed only upon
instruction by the system and are monitored by the system.

Complex decisions are reserved for exceptions
requiring supervisory intervention via terminals with
proper authorization. An operator would normally not have
such authorization.

4.1. 7 Error Correction and Recovery

Facilities for error detection and, as far as
practicable, automatic error correction will be designed
into all parts of the system to assure a high level of
reliability and availability. On-the-fly error correction
is, of course, costly and cannot guarantee continued operation
under all circumstances. For that reason, and because user
errons require them anyway, journaling and restart from a
checkpoint will be provided so that rapid recovery will be
possible.

IBM CONFIDENTIAL

• 10"

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

4.2 The Storage Management Subsystem

The Storage Management Subsystem (SMS), some-
times called the "storage hierarchy'~ furnishes all
addressable storage for the system. This section discusses
the automatic storage management function provided by this
subsystem to all processing units, the operations and operand.
addresses by which processors communicate with the SMS, the
responses given, and the internal structure and operation of
the SMS.

The SMS also provides interlocking and locking
functions to allow many tasks to run concurrently in the
same or different processors, yet provide for their syn­
chronization when necessary. Other functions designed
to improve storage performance are briefly described.

4.2.1 Storage Management Function

The SMS function is purely one of storage management:
to allocate storage spaces when requested by a processing
unit (PPU or SSPU), to determine the physical location of the
stored information, and to provide access to that information.
Storage management is completely automatic and requires
neither PU nor manual intervention. Several puts may be
connected to the common storage hierarchy, which manages
their separate storage requirements or permits them to
share access to common information.

The SMS appears to a PU as a single very large and
fast storage device. It differs from earlier "virtual
memories" in several important respects. The SMS manages
all storage, including bulk storage previously classified as
input-output,in a uniform fashion. It manages only space
allocated to real data, not the unallocated storage t::"I.pacity
(There is no list of free space I. New space can be created
directly in the fast storage level at the processor without
reference to slower levels, as long as pages are available.
In fact, the allocation mechanism of a conventional memory
is almost non-existent.

IBM CONFIDENTIAL
,{,

\~-)

(

(

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

Storage is logically divided into spaces of
varying sizes. Each space contains a varying number of
bytes. The size, or extent, of a space and the number of
spaces available are almost unlimited. Each space can
grow or shrink independently of any other. The only
limitation is the sum of the extents of all active spaces
which cannot exceed the total capacity of the entire SMS.
Even that limit is not rigid since, with operator assis­
tance, the available capacity can include off-line storage.

Physically the on-line SMS consists of a number
of levels, from the very fast, but relatively small,
storage unit directly associated with a PU, through levels
of increasing size and decreasing speed, to rotating disks
and demountable tape strips. Storage areas are subaivided
into blocks, or pages, which are passed from level to leveJ. ,to a
PU as needed and drift back out when not used. The physical
location remains hidden from the PU, which always addresses
the SMU as if it were a single-level store.

The 8M8 is concerned only with storage management,
not with the form or contents of the information stored
there. Data and task management are PU functions. The
procedu:es needed,for this ar~ of course, stored in the
SM8 as 1S everyth1ng else. .

The 8M8 performs a storage function that is purely
inter~~l to the system. Communication with the outside
is a separate function performed by the source-sink
sub'system.

4.2.2 Addressing

Each logical name appearing in the translated code is
transformed by a PU into a pair of nonnegative binary
integers, the space number and the offset, with which
it addresses the 8MS. The 8MS uses the space-offset pair
to search for the current physical address of the desired
data object. 8pace numbers are inaccessible to the programmer.
(Offsets ma have a l-to-l corres ondence with index values
use y t e programmer. Physical addresses are even
inaccessible to the PU, let alone the programmer. The
inaccessibility of addresses provides a high degree of
protection against erroneous or unauthorized accesses.

IBM CON~IDENTIAL

r--'--

DIR
0-0

Section '4.2

Directories

DIR 5

DIR 4

- . DIR 3

.

DIR 2

DIR 1

1\

t-- C t-- STOR 0-0
0-0 loel Mem

PU a

THE STORAGE MANAGEMENT SUBSYSTEM

Con­
trol

C 5

. I
>-rg~gr--I

Stores

Shelf Storage
~ '1'

Off-line ~II
II - - .-- -- ."_0. ---
II On-line

t
C 4 STOR 4 Tape Stri ps

C 3 STOR 3 Disks

C 2 STOR 2 large
Memory'

C 1 STOR 1
Main
Memory

~- --
\I ,---.1..-

Ii--
DIR 10- C

~
STOR 0-1 DIR

~
.C I- STOR 0-2

0-1 0-1 loel Mem 0-2 0-2 Loel t-1em

PU 1 PU 2

Fig. 4.2.1· STORAGE LEVELS

IBM CONFIDENTIAL

(

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

Space numbers are 52 bits long. When a new space is
created by a PU, a unique number is assigned to that space
and not re-used after this space is destroyed. Even an
inactive space that has migrated to off-line shelf storaae
retains its unique space number so that it can be restoren to
the system at any later time without fear of conflict with
other spaces.

Offsets are 24 bits long and specify an 8-bit byte with­
in the space. Successive bytes are addressed by consecutive
offset integers, starting with 0 for the first byte and end­
ing with X-I for a space containing X bytes. Offsets of X
or greater are not allowed.

I The PU can index through a space by doing address I
arithmetic on the offset as long as the result remains with­
in the current extent. Arithmetic on space numbers has no
meaning and is not permitted by the PU.

Protection against invalid space or offset references
is a function of the PU hardware. The SMS assumes that all
addresses given by a PU are valid and does not, for example,
keep track of a space extent. Invalid references that
happen to fall in a valid page (i.e., references just beyond
the last byte) are not detected by the SMS. References to a
non-existent page would trigger off a long search through
all levels of the SMS, so that the error response time of
the SMS is too long to be a useful response to a programming
error. Such an erroneous page reference would only be the
result of a hardware error.

4.2.3 Processor-Storage Operations

The PU can request the SMS to perform these operations:

CREATE
ADD
WRITE
READ
DELETE
DESTROY
BRING

S,F,C
S,F,C
S,F,C
S,F,C
S
S,F,C

(F=X, Y=X+C)
(F+C < X=y)
(F+C < X=y)
(F+C = X-I, Y=X-C)

.where S is the space numbel;',

F the offset for the first byte,
C the count of bytes to be transferred,
X the old extent, and Ythe new extent.

IBM CONFIDENTIAL

fa7

section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

CREATE sets up a new space. The SMS sets up an empty
page and assigns a new space name, which it returns to the
PU. (The PU subsequently initializes the space with a space
descriptor and extent usi~g an ADD operation.) Space names
are assigned by the SMS from a single 52 nit space name
counter that is incremented by I whenever any PU gives a
CREATE.

ADD stores C bytes at the end of space S, extending the
space. F must equal X, the old extent, and the new extent
is X+C.

WRITE modifies (updates) C bytes in space S starting at
offset F.

READ fetches C bytes from space S starting at offset F.

DELETE fetches C bytes from the end of space S, shrinking
the space. F+C+I must equal X, the old extent, and the new
extent Y is x-C.

DESTROY removes space S from storage. All pages belong­
ing to S at any level are freed for other use. No further
references to space number S is possible, and S will not be
re-used.

BRING causes the pages implied by S,P,C to be IIstaged"
from a slow electromechanical storage level into a fast
electronic level to facilitate subsequent access. BRING
always continues as far as necessary through the SMS levels.
If the SMS finds that an earlier BRING for the same page is
already in progress, it ignores the second operation.

CREATE/DESTROY, ADD/DELE'rE, and WRITE/READ are comple­
mentary operations. WRITE and READ both reference an exist­
ing portion of a space and do not change the extent. ADD
and DELETE expand and shrink an existing space at the upper
end of the space. CREATE and DESTROY deal with entire
spaces and do not reference bytes stored within the space.

WRITE and ADD differ in two important respects. WRITE
assumes modification of an existing page and will cause a
possibly time-consuming search for it until found; ADD
creates a new page when necessary and bypasses the search.
ADD implies a change in the extent whereas WRITE does not.
All checking and changing of the extent field is done by the
PU using appropriate READ and WRITE commands to access the
field.

IBM CONFIDENTIAL
c

(

section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

BRING can specify any part of a space or all of it
(F=O, C=X). All other operations using the count field C
are limited to a maximum count equal to the page size in level
o of the smallest implementation (perhaps 64 bytes.) This
means that a single operation can cross no more than one page
boundary. At the start of an operation a check is made that
one or two consecutive pages, as needed, are available before
the operation proceeds. Once a reading or writing operation
has started, it is allowed to complete without interruption.

4.2.4 Storage Responses

After requesting an operation the PU waits until data
transfer starts or one of these responses is given:

Completed

Delayed

Space Not
Found

Error

Follows any data transfer and indicates suc­
cessful completion.

Indicates that the search must proceed to a slow,
electromechanical and possibly manual, level of
the SMS. At the same time, the SMS issues an
automatic BRING command for the desired page.
{The PU may anticipate the need by issuing an
explicit BRING beforehand.}

When a BRING operation does not find the page
previously requested, a dummy page (status Void)
is inserted in the outer electronic level. When
the PU later tries to refer to that page, this
space-not-found response is given.

An uncorrectable error has occurred while accessing
the requested page.

When the del~ye~ response is received, the PU may
abandon the search or hold its task in a queue. The task may
be reactivated after a set time interval elapses or when its
turn comes again in the task queue.

4.2.5 The Hierarchical Structure of Storage

The SMS levels are numbered 0,1,2, ... Level 0 is the
fastest storage device directly attached to the PU. For reasons
of speed the level 0 unit may be designed as an integral part
of its associated PU, with multiple puts interconnected via
common buses between levels 0 and 1. To be specific, the descrip­
tion will assume multiple level 0 units and single units at
higher levels, but other configurations may be implemented that
are logically equivalent.

IBM CONFIDENTIAL

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM '16

Architecturally there is no limit on the number of
levels. That number, and the choice of capacity and speed at
each level, are based on cost and performance considerations
for a particular implementation. For a large time-sharing
system with data bank storage these factors clearly enter into
the choice:

1. The system must be open-ended. On-line data will
slowly grow, and the system would suddenly corne to
a halt unless inactive data can smoothly, but not
irreversibly, migrate off line. Thus storage manage­
ment extends to shelf storage.

2. The off-line storage medium must be low in cost to
permit indefinite shelf storage. This virtually
dictates a flexible, tape-strip medium.

3. Inherently long access times at this level require
that active spaces be written at one time to keep them
physically together.

4. A large capacity disk store is required, both as
random-access buffer for the tape-strip level and as
a medium for page overflow from faster levels.
Scattering of pages for the same large space is un­
avoidable at this level. Removing disk packs, as
in present systems, becomes impractical and undesirable.

5. The disk level provides a necessary non-volatile back-up
for volatile electronic levels.

Each level communicates only with the next level above
and below. Data are transferred as pages of fixed size at each
level, but the page size need not be the same at every level.
The ratio of page sizes between adjacent levels should be a
non-negative integral power of 2, the actual size being an
implementation choice. A page in the level below becomes a
line of a page in the level above. All lines of a page belong
to the same space. Normally each space occupies at least one
page at any level, and the last page may not be full.

This apparent waste of capacity greatly simplifies
storage management. It makes practical the almost unlimited
expansion of a single space by adding active pages as needed
without disturbing other spaces. At the slowest levels,
however, it may be possible to pack and unpack data to gain
storage efficiency without substantial loss of performance.
Such modifications do not affect the overall design and will
not be discussed further.

IBM CONFIDENTIAL

Section .4 .2 THE STORAGE MANAGEMENT SUBSYSTEM 71

Directories Stores

1----

- 4

-
So P,a 1St Nr Line 0 Line 1

'"

I
I

. -I
Leve 1 1

I 8 pages

4 lines per page

Sp

SP

I
Space

._" -
- r--0 -

._ - .. ----
Pa St Nr LneO Lnel Lne2 Lne3

" , / , , , ;'
/

/ , , / , ;' ,

Pa St Nr LC Ll

Page

Status
I

Transaction
Number

(Activity.Count)

Leve 1 0

4 pages

2 lines (bytes) per page

Fig. 4.2.2 STORAGE LEVEL LAYOUT

IBM CONFIDENTIAL

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

Each level has, in addition to one or more storage
devices, a separate directory storage. The directory
contains one entry for each page location at that level.
An entry consists of space number, page number, status, and
activity count.

The space and page numbers correspond to space number
and offset at the PU level, For a page s.ize of 2n bytes the
number of the page contain~ng a given byte is derived from its
offset by dropping the low-order n bits.

The page status, at the completion of an operation, may be:

Unmodified -- this page has only been read, and a valid
copy also exists at a higher level.

Modified --

New --

Shared --

Void --

this page has been stored into; a copy
exists at a higher level but is not
up-to-date.

this page has not been moved to the next
level since it was created; thus no copy
exists at any higher level.

See section 4.2.7

A dummy page indicating page not" found (see
section 4.2.4); this page is not displaced
to other levels.

The activity count is incremented whenever a reference
is made to that page. This count is used to determine the
least-recently-used page when one must be displaced to the
next higher level.

The directory for a level is searched by space and
page number to find whether and where a given page is located.
A page can be at any location in a level. For greater speed
the directory at the fastest levels may be implemented in an
associative array. In slower levels a sequential search of a
conventional storage array may be sufficient.

Each level is equipped with the controls necessary to
implement the various inter-level operations, and with any
buffers and interlocks required to synchronize page transfers
and to prevent interference from simultaneous requests by the
other neighbor. The controls also take care of requirements
peculiar to each level, such as error detection, correction,
and recovery.

IBM CONFIDENTIAL

~~'

',~/

(

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM 73

4.2.6 Internal SMS Operations

The above listed commands from the PU and responses from
the SMS apply at the interface between a PU and its level O.
Operations between storage levels are basically the same, except
that page and line numbers replace offsets, and only one page
is moved at a time (count=l).

When a directory search of one level reveals that the
page desired is not in that level (level i), a search is initiated
in the next higher level (level i+l). First a location is freed
in level i to receive the page. The directory is searched for
the least-recently-used (LRU) page according to the activity
count.

A DELETE or DESTROY operation sets this count to zero,
so that deleted pages are used first. If no deleted page exists
but the LRU page has a status of Unmodified or Void, that page
location is used immediately since either a valid copy exists
in a higher-numbered level or none is needed. Otherwise the
LRU page must first be displaced by initiating a WRITE (if status
is Modified) or ADD (if New) command to level i+l. Because the
displacement operation may take time, the original request, coming
from level i-I, is queued to permit other operations for level i
to proceed. When the displacement to level i+l is completed,
the original request is resumed by issuing a READ request to level
i+l. This READ may trigger a similar chain of events in level
i+l, so it may be queued again to await completion. Interlocks
meanwhile block any subsequent requests from level i-I for this
page, so that there will be no premqture use of the incomplete
page and no additional search request for the same page.

If the p~ge size in level i+l is greater than in level i
by a factor of 2 , the page· number passed up from level i is
converted to a page number for searching the level i+l directory
(along with the space number) by dropping the low order k bits.

When the page in level i+l is found, these k bits form the line
number which determines the position of the level i page as a
line within the level i+l page.

The WRITE or ADD request resulting from a displacement
in level i triggers off a search in the level i+l directory.
If the operation is ADD and this is the first line of a page
(the low-order k bits are all zero), a new page is started in
level i+l at a location to be freed as before. If the ADD
operation refers to other than the first line, the line must
be stored into an existing page; likewise a WRITE implies
changing an existing page. The existing page must then be
found. If it is not in level i+l, the same cycle of events

IBM CONFIDENTIAL

section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

described above is repeated to get the page from level i+2.

Thus the most complex chain of events for level i, in
response to READ, WRITE, or ADD request from level i-1, con­
sists of:

1. Search directory i for page desired by i-1.
If not found, queue up request from i-1.

2. Search directo~y i for LRU page. Block the page.

3. If not free, queue up READ request for i+1.
Initiate displacement of LRU page by WRITE or
ADD request to i+1.

4. When displacement completes, send queued READ
request to i+1.

5. When READ completes, finish i-1 request by
transferring the desired line. Unblock the page.

One or more of the steps in this sequence may be
skipped depending on conditions.

A DELETE operation is similar to READ in that the
desired page must first be located and the specified line trans­
ferred to the level below. If this is the first line of a page,
however, the directory entry is marked as deleted and a DELETE
request is passed to the next higher level. The chain of
DELETE requests ends when the line number is not zero (the lines
below being still valid} or when the page found has the status
~--(there being no corresponding line at a higher level).

DESTROY simply causes all page entries for the specified
space to be deleted in every directory. (Other modes of
DESTROY may be found desirable, such as a DESTRUCT command
which also causes the storage pages to be overwritten for extra
security.)

A CREATE command by the PU initializes a page marked
New in level O. CREATE does not appear at higher levels.
When a page so created must be displaced to levell, an ADD
command is generated as with any other page marked New.

It may be noted that ADD or WRITE commands to one level
may trigger off a READ command for the same page to the next
higher level but not another ADD or WRITE for that page. ADD

/ "\

or WRITE commands are always the result of a displacement action
for a different page. ADD or WRITE may be generated automatically
by a level when it is not otherwise busy and (1) the supply of
empty or inactive unmodified pages is low, so as to anticipate

IBM CONFIDENTIAL

(

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

future needs for free pages, or (2) to create backup
copies of pages at higher levels for security. Such
automatic displacement action leaves the displaced pages
in Unmodified status at their old location.

As mentioned before, a PU ordi.narily waits for its
level a to complete any request. Thus no other interlocks
are required between them. At higher levels, however,
multiple PU'S may independently initiate requests for the
same page. Also a PU request for a page may come just after
a level has initiated an automatic displacement action for
that page. Hence the need for interlocking multiple page
requests at higher levels.

4.2.7 Interconnections for Multiple Processors

Each PU is connected directly to its own level a
storage device and directory for transfer of operations, data,
and responses. There is no direct connection between PU'S
for storage operations. At the interface to the rest of the

I)

SMS all level a units and the common level I unit are inter­
connected via common directory and data buses and control lines.

The PUiS operate simultaneously and independently of
each other unless they make reference to the same page. At
that point the hardware will provide temporary interlocks so
that the PUiS in fact proceed sequentially. Logically the
result is the same as if all PUiS were connected to a single
storage unit. The interlocks are transparent to the user.
(See also ASP Memo 067 for details.)

The previously stated rules for searching the levels
are modified somewhat for parallel PU operation. If a PU
requests a READ for a page not in its level 0, a search for
a copy of that page is initiated via the common bus in the
level a units of all the other PUiS. If one is found, a copy
is sent to this level a and both directory entries are marked
in Shared status. Thus multiple copies can exist in different
level 0 units for simultaneous reading without further
interference.

When a PU requests a WRITE or ADD operation for a
Shared page in its level 0, a cancel request is broadcast to
all other level a units to delete all Shared copies of the
page before the page modification proceeds. A WRITE or ADD
for a page not in this level 0 causes a search in all other
level a units for a copy to be transferred, but all other
copies are cancelled. If there is no copy in level 0, the
request is directed to level 1. Thus for page modification
a given PU takes sole control over that page. Subsequent

IBM CONFIDENTIAL

Section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

READ requests by another PU causes the modified page to
be written into level 1 so as to make shared copies
available to the level 0 requestors.

Levelland higher levels are not affected by the
sharing and do not need to "know" which PU, if any, has a
copy of a page. Shared status appears only in level O.
(The possibility of multiple units at higher levels for
protection against failure is not being addressed here.)

The net effect of these interlocks is that there is no
restriction on simultaneous reading of the same page by
several puts or on simultaneous operations on different pages
of the sarne or different spaces. Simultaneous writing of the
same page, when needed, suffers only the loss in time for
transferring the page from one unit to another. At any
instant a READ operation by any PU is always guaranteed to
give the most up-to-date version of the information.

4.2.8 Page Locking

To synchronize different tasks in the same PU
(multiprogramming) or in different puts (Multiprocessing),
two further operations are provided in level 0 only:

LREAD S,F,C
UNLK

LREAD (Lock and Read) is similar to READ with the
following additional properties.

1. It seizes exclusive control of its page, as described
above for WRITE, by cancelling all other copies in
level 0 units.

2. It causes that page to be locked in its level 0 unit.

3. Interrupts for this PU are disabled while any page is
locked.

Locking a page means that no other PU can gain access
to that page and that the page cannot be displaced. The PU
that locked it continues to have free access to that page.
If another PU requests the locked page, it must wait; it can­
not get the page from level I or proceed to another operation.
The locked page is that containing the offset specified by
LREAD. If the operation crosses page boundaries, the second
page is not locked. Additional pages could be locked by
separate LREAD operations, however.

IBM CONFIDENTIAL

;(\ G}

(

Secti.on 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

UNLK (Unlock) releases all locks for its level 0,
enables interrupts for this PU, and allows other waiting

77

PUIS to proceed. UNLK has no operands. Only one UNLK is
required to release all locks left by previous LREAD
operations. To prevent permanent system locking due to a
failure, locks are released also after an automatic time-out.

LREAD followed by WRITE allows the inspection and
setting of a task interlock bit or count (semaphore). If
the task being synchroni.zed has to wait, it can be placed on
a task queue before giving UNLK to allow other PUIS to test
the same task interlock. The control program providing this
synchronizing function must be carefully written to avoid
deadlocks and to reduce the lock time to a minimum. The
hardware merely enforces sequential operation and cannot
itself create deadlock situations. (See also ASP Memo 067.)

4.2 .9 Lookaside

For extra speed a PPU may contain a logical-name array
that permits look-aside to minimize storage accesses on re­
peated reference to the same information. This array contains,
with each short-hand logical name, the physical address in
level 0 where the corresponding byte is currently located.
This physical address is then passed to level 0 instead of a
space-offset pair for a directory search.

Because it is closely tied to other PPU functions, this
lookaside feature is described in more detail in the PPU section.
Its function, however, is also tied closely to the level 0
portion of the hierarchy. The physical address is provided
by level 0 after the first search for the desired item, and
level 0 must cancel an entry whenever the corresponding page
is displaced. Thus there is no basic contradiction with the
principle that physical addresses in a hierarchy level are
"known" only to that level.

4. 210 Other SMS Functions

The SMS will be provided with thorough checking
facilities and, where practical, with automatic on-the-fly
error correction. Automatic restart after an uncorrectable
hardware failure probably requires some form of automatic
journaling device that records all changes since the last
checkp9int.

IBM CONFIDENTIAL

section 4.2 THE STORAGE MANAGEMENT SUBSYSTEM

To speed up purely sequential operation it may be (,/-"'\
desirable to have a "sequential" modifier on READ or ~R~TE '~
operations that would prompt the SMS to pre-fetch add1t10nal
consecutive pages of the same space.

At the outer levels additional operations may be
needed to read and write complete spaces in a highly compressed
format under supervisory program control.

IBM CONFIDENTIAL

/

(

(

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

4.3 The Program Processing Subsystem

The Program Processing Subsystem consists of one
or more Program Processing Units. These units communicate
only by use of the interrupt bus and shared storage.

The Program Processing Unit (PPU) of the AFS system
is the physical counterpart of the logical interpreter of
section 2.6. In this section, we discuss the structure of
the PPU, its relation to other subsystems, and the framework
of a large machine implementation.

4.3.1 An Overview of the PPU

The job of the PPU is the evaluation of a statement,
or an ordered list of symbols. These symbols may be built-in
operations, literals, or logical names. A built-in operator
produces as its result, an architecturally-defined function of
its arguments. A literal is a data unit which represents
itself (e.g., 5.3) and cannot be assigned a value. A logical
name may represent a value, or name a function. In order to
distinguish these two possibilities, the current attributes and
values of the referenced data element must be retrieved from
storage.

The PPU is also required to communicate with other sub­
systems by initiating and responding to "wake-up" signals or
interrupts.

4.3.2 Data Representation

The fundamental concept of data representation of the
system is that all data is self-defining. This implies that
attributes are associated with the data in storage. Any
reference to data implies an examination of the attribute set,
in order to determine if the requested operation is applicable,
whether implicit type conversion is required, whether the
operand is scalar or an array or structure requiring special
sequencing control.

The PPU supports a number of data types which are
detailed in Table 4.3.1. The principal separation is between
problem data and program control data. The attributes of a data
item define its value at any instant. On the other hand, any
assignment of a new value to the item requires the use of the
generic descriptor in the LDT (section 2.5). The generic
descriptor specifies what the value descriptor can be. The value
descriptor indicates what the value is.

IBM CONFIDENTIAL

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

Applicable
Attributes

Problem
Class

Program
Control
Class

Len<Jth. o~
·Sca.la.r;,.·· ",El.~e.nt,;t,n, .·.·.··.,Sca,le . '.'

Type " ';; ?;:~~;r;.; .. ~;: " ~ ,''!3lY.~~g~, ;~'~,:,;:-,,'r~f!:~Zi'",' G Y~\~~:-.

binary real X n
decimal real X n
binary complex X n
decimal complex X n
bit string X n
character string X n
unassigned X n

semaphore n
pointer X n
offset X n
label X n
entry X n
event X n
task X n
module n
area n
symbol table n
reference table n
system pointer n
system offset n
undescribed n

Table 4." 3.1 Primary Value Descriptor

An entry in a column indicates that the
choice is applicable

IBM CONFIDENTIAL

q v
q v
q v
q v

v
v
v

v
v
v
v
v
v
v
v
v
v
v
v
v
v

(

\ . ' . ./

(

(

c

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

If the data item is a scalar, its complete descriptor
appears in a two-byte field. For more structured data,
additional descriptive information is required including array/
structure, level within a structure, dimensionality and array
bounds or index set specifications. The exact formats for the
array and structure descriptors have not yet been determined.

Any or all of the attributes of non-scalar data may be
factored, or represented once for the entire data collection,
instead of with each individual element. For example, a numeric
array might be represented with all attributes but scale factor
and value factored into a common descriptor for the array.

Arithmetic data may be represented in any combination of
binary/decimal, and real/complex choices. Each arithmetic
item is associated with a precision, p, the number of digits
which appear in the quantity, and a scale factor, q, which
specifies the position of the radix point relative to the low­
order digit. A negative scale factor signifies that the radix
point is to the left of the low-order (right most) digit, a
positive scale factor to the right of an implied zero digit
to the right of the low-order digit.

String data is another variety of problem data. The
two forms of string data are bit string and character string.
Instead of precision, string data possesses a length attribute,
the number of characters or bits in the item.

Data of program control type is not directly used by the
programmers, except for certain assignment statements. Table 4.3.1
presents a list of the program control data types currently en­
visioned. We note that certain of these data types may appear
in structure or arrays.

The final aspect of the data descriptor is the value
of the object. The value is represented in storage by a string
of bytes of art appropriate length, but the interpretation of these
bytes is possible only by means of the descriptor. In most
instances, the complete Descriptor (including value) for a data
item will be found in a Reference Table, as discussed in section
2.5. If the item is too large to fit reasonably into the Refer­
ence Table or the number of bytes of storage required is expected
to change, the item will be assigned by the system to a newly
created space. The Reference Table entry will then be a System
Pointer to the space containing the actual item.

IBM CONFIDENTIAL

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

4.3.3 Space and the Ad4ressing Mechanism

The virtual storage of the system is composed of spaces.
Each space contains a known number of bytes, m, which are
numbered from 0 through m-l. Each space, as a whole, carries
its own length and descriptor information in its first four bytes.
The first three bytes contain a binary integer specifying the
number of bytes currently allocated to the space. The fourth
byte is used to tell what the type of the space is. Currently,
we recognize spaces for Link Tables, Declare Tables, Symbol
Tables, Reference Tables, and Undescribed. A space is called
undescribed whenever a system user logically knows a priori the
type of space which he is using. In other words, an undescribed
space means that" if you have to ask what type of space this is,
you shouldn't be here."

Space descriptors, like data descriptors, are trans­
parent to the user. They are tested and manipulated only by
well-controlled system functions.

Each object in storage has a unique IID or internal
identifier, which consists of a 52 bit space number and a 24
bit byte offset within the particular space.

o

Seen from the PU,storage is an access machine which (
responds to certain calls, including READ, WRITE, CREATE,
DESTROY, ADD, and DELETE. The arguments for these calls consist
of the IID mentioned above, and a value for WRITE. The hierarchy
responds with a completion message, and perhaps a value, as in
READ.

The logical mechanism required to convert between the
programmer's symbols and the IID representation has been discus­
sed in Section 2.3 and 2.6. That scheme requires a table ref­
erence to convert the LLT offset to a space-offset pair in a
Reference Table, followed by fetching the specified object.

If the actual data is located in the table, the search
is over, but otherwise, a pointer chain must be followed until
the data (or its space-offset identifier) is obtained.

Any request to storage is expected to employ a valid
space-offset pair, which means that the address mechanism must
read the extent field of any space, compare the extent to the
specified offset, and make the request only if the extent of
the space is not violated.

IBM CONFIDENTIAL

(

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

4.3.4 System Addressability Considerations

In this section we discuss the physical embodiment
of the Activation Tree and Dynamic Storage control which
were described in Sections 2.3 and 2.4. The goal of the
discussion is to clarify the process of obtaining addressa­
bility to the various spaces which are referenced by a module.

We have previously seen that the LTCB provides identifica­
tion for four spaces associated with the task:

a) That branch of the Activation Tree associated
with this task.

b) The Interpreter currently assigned to this task.

c) The set of System Storage Anchors

d) The set of User Storage Anchors.

In turn, the Interpreter identifies the task's Execution
Stacks, the current Module (in the Program Tree), statement
number, and token within the statement.

4.3.4.1 The Call Stack

The Call Stack corresponds to that portion of the
Activation Tree associated with the given Logical Task. Thus,
the flow of control in the task is represented by this stack, and
the next unit of work for this task is indicated by the last
entry in this stack.

The essential information in the Call Stack consists
of a pointer to the current node of the Program Tree and the
offset in the calling block to which control is to be passed on
exit. The connectivity to the Program Tree provides indirect
access to the LLT, LST, LDT and Reference Table for the activation.

The Call Stack operates logically as a pushdown stack
or extensible space in storage. However, it is desirable to scan
successive entries without deleting them, so that attempts to
branch to no-longer-existing blocks can be effectively diagnosed.

4.3.4.2 The Execution Stacks

The Execution Stacks for a task consist of an Operator
Stack and an Operand Stack, required for executing prefix Polish
code. These stacks are spaces in storage, but are referenced so
frequently that special hardware is warranted for their top levels.
A further discussion of a proposed implementation will be found in
Section 4.3.7.

IBM CONFIDENTIAL

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

4.3.4.3 The Storage Anchor Registers

The discussion in Section 2.4 tre:ats the logical re­
quirements on the Storage Anchors in two phases, System
Storage Anchors and User Storage Anchors. We recall that
the System Storage Anchor contains the space number of a
Reference Table, and a User Storage Anchor, the space number
of a space containing one DAPOV.

The physical implementation of System Storage Anchors
consists of a set of 254 Storage Anchor Registers. We regard
this number of levels as infinite. Each such register contains
the space number and for checking purposes, current extent of
the corresponding Reference Table.

The User Storage Anchors are implemented by placing all
such, for the given task, in a space, whose identification is
placed in Storage Anchor Register 255. The Relative ID field of
the LLT selects a particular Storage Anchor (System Space Pointer)
from the designated space.

The Space referenced by a User Storage Anchor is con­
strained to contain at most one user DAPOV. However,
successive generations of a particular variable must be chained
together, by a means transparent to the user. No explicit offset
to the user DAPOV is provided.

Clearly, we must have enough Storage Anchor Registers
in high-speed hardware to permit high-speed operation. Several
possible implementations include:

a) Restricting the number of System Storage
Anchors to 14 or so, instead of 254, and
providing 14 actual registers.

b) Using a block storage method, where certain
sections of the complete table are automatically
swapped into a small buffer.

Option b is attractive, since references will probably
cluster about the current level, appear at the external level,
or invoke some User Storage Anchor with few references between.

High-speed swapping between sets of Storage Anchors
and the SAR's will likely be required at task switch time.

Since the Call Stack points to a node of the Program
Tree, which is associated with a System Storage Anchor, any
·Call Stack manipulation also involves Storage Anchor Register
modification.

IBM CONFIDENTIAL

c

(

(

section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

4.3.5 Computational Facilities

In this section, we discuss the computational require­
ments of the system, corresponding to E-box functions in
present~day puts. These requirements are associated with the
problem data types of Table 4.2.1.

The first distinction is between arithmetic and string
data types. Arithmetic data types admit standard numerical
algorithms (e.g., add, multiply, exponentiation, arctan) as
operators. String data permits such operators as concatenate,
compare for equality, substring searches, and for bit string,
bit-by-bit logical connectives.

As indicated earlier in Section 4.3.2, storage is
byte-oriented, and arithmetic data is not necessarily aligned on
"word boundaries", and is of variable length. It is a system
requirement that the PPU provide both decimal and binary (or
hexadecimal) arithmetic, at equivalent speeds. We anticipate that
decimal will be the preferred radix, but emulation of S/360-370 will
require floating hexadecimal as well.

In the native mode of the system, a fixed point operand,
because of its scale factor, is truly that. In fact, the only
distinction between fixed point and floating point quantities occurs
in assignment, when the generic descriptor indicates whether the
scale factor may be changed. In this interpretation, all numeric
computation may be considered internally to be floating point.

String operations appear to cause no new problems for
a byte-wide VFL unit. If found desirable, many such operators
could admit multiple-byte-wide processors.

The system logical language is prefix Polish. In order
to execute this code, the hardware requires an operator stack and
an operand stack. As the code is scanned sequentially, each
operator token is placed on the operator stack, together with a
count field which specifies the number of arguments which the
operator requires. When an operand (literal or variable) is
encountered during the scan, the value of the operand is placed
in the operand stack, and the argument count field of the top
operator in the operator stack is decreased by 1.

When this count is zero, the operator may be scheduled
for execution. The scheduling means that the operator and
its operands may be sent to an appropriate execution unit for the
required processing, provided that the unit is available. At
the completion of the operation, all operands participating are
pushed off the top of the stack and lost. The result and its
descriptor are placed in the operand stack and the operator stack

IBM CONFIDENTIAL

Section 4.3 THE PROGRAMPROCESSIN:G SUBSYSTEM

is popped up, exposing a new top operator. We then decrement,,~~
and test the argument count field for this operator. If at
some stage, the decreased operator count is not zero, the code
scan resumes. Otherwise, we return to the scheduling step.

This description of the prefix Polish stack algorithm
assumes that operators and operands are distinguishable. In
order to achieve this property, the execution-time attributes
of symbols must be examined. The logical architecture provides
a code initialization function, capable of translating the
logical language into appropriate execution time code.

The physical hardware language, "under the covers", is not
yet defined. The definition will be transparent to the user of
the system.

The rich operator set of the logical architecture makes
the use of microprogramming attractive. In particular, the
use of pageable microprograms, as presented by McGovern, Moore,
Willoughby and Kurtz of Department BOS, IBM SDD Poughkeepsie,
appears to provide a mechanism by which a small, fast control
store may perform like a large, fast one.

4.3.6 Lookaside

In attempting to implement this architecture, the
system designer is forced to consider the cost/performance
implications of its features.

The most important consideration is that of shortening
the time between an operand request via the LLT and the return
of the actual DAPOV. The proposed method is to provide an
associative lookaside memory in parallel with the directory for
the level 0 cache. Figure 4.3.1 sketches a cache, with the
lookaside memory in the dashed block in the upper right corner.

In this discussion we denote a collection of pointers to
the current Module, its LLT, LDT and LST as System Bases.
Physically, the System Bases are found in the System Base Registers,
a portion of the Storage Anchor Register Array.

Without lookaside, the typical Logical Name search
begins with the LLT space number (from the System Bases portion
of the array containing the SARls), and the LLT offset (i.e.,
Logical Name) from the program used as an index to the cache
directory memory. If the search is successful, the physical
address of the LLT entry in the cache is read out, and used, in
the cache address register, to read out the LLT entry. This
entry consists of a storage anchor name and relative offset.

Im1 CONFIDENTIAL

Section 4.3 THE. PROGMM rEOCESSING SUBSYSTEM

This information, on the cache data out bus, is used to
select a Storage Anchor Register and its appropriate offset.
Another directory search is made, and, if successful, the
physical address of a DAPOV is placed in the cache address
register. The resulting cache read operation produces the long­
awaited DAPOV. If this DAPOV is itself a pointer, and a value
is required, we may repeat the loop, except that the Storage
Anchor lookup is bypassed.

87

The use of the lookaside memory permits us to eliminate
at least one pass through the cache. In this mode of operation,
the lookaside memory and cache directory memory are searched
concurrently. If the lookaside memory finds the physical address
of the DAPOV, that address is used immediately as the cache
address. This produces the desired output in one cache cycle,
not two. More than one cycle will be saved whenever a multi­
level pointer chain is referenced.

When the lookaside search fails, the direct LLT readout
is performed as described above. When the physical address
of the desired DAPOV is generated, it is inserted into the lookaside
memory and associated with the Logical Name from which it was
derived. Subsequent references to this name will be found in the
lookaside, until the entry is invalidated.

In mapping ~ large index set into a small memory, a
replacement algoritRm is required for determining the entry
to be removed when we desire to place a new entry into a pre­
viously full memory. This problem occurs both in the cache and
in the lookaside memory. The actual organizations and replacement
algorithms in these two cases are implementer's choice.

The two cache data busses present or accept left-aligned
data. The Write and Read Data Aligners are used to convert
between the wide, fixed width cache word and the variable width,
variable initial byte usage of logical storage.

Implementers may choose to combine the two cache data
registers, data aligners, or data busses.

4.3.7 A Possible PPU Implementation

In this section we discuss a possible high-performance
implementation of the PPU architecture. This is diagrammed in
Figure 4.3.2.

IBM CONFIDENTIAL

Section 4.3 THE PROGRAM PROCESSING !SUBSYSTEM
I

Cache Data In Bus

Write Data Aligner

Cache Data In Register

I

I
I
1
r

I

LogiCa~
Register

-! . ,"
! ~,..., --';";--..,

r~ookaside
Memo'ry

I
I ·1 _ ____ _ ____ :_f_

j ,

Cache
or

Level.O Storage

I,
Cache Data Out Register

I

~ ________ .t..-______ --t

Read Data Aligner/~elector

I
Cache Data Out Bus

~. torage

~,- .. -.. _\t~:~:::~.-~~~~~-t> R:~~~~~rs
Name I

~
. Svstem Base Renuest ~t-s----------'I

•••• tt-l. ••• - ' .-.:... •••• .c;::..l L ystem
Bases

L

Offset (if LLT, Log~cal Name)

I ,
I I

I !
I \

Cache
l\ddress
Register

I I
Yl I I

"4-Ar--_t i

Cache
Directory

Memory

!
I

I
!
(

!
I
:
I . .

Figure 4.3.1 Cache loqith Lookaside

IBM CONFIDENTIAL

"'-. /

(

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

LEVEl, 1 DATA BUS
IJEVEL 1 ADDRESS BUS

'--____ f. • •

~~ Storage
Data

\ Register

I' R~·.:ld····~
i Write n Control

I LfI.-f:\··jl~-~--A
I I I

I Code

I I
! ------:l"l, I '1\ I J

I t J,
'j

I
Buffer

I

I
1 ,

~!~ Li teral I
Select U

Decode l

I OD:~:~r II II ! i ___ ef-I_T_~}:_~~~-~
Logical Name

I :
I I

I ' . I , I

! I

Statement I
I Control J

j
l

PPU Data Rm;
/ I.

~,\.!
I I n Oper~tor DDI Value

I I Stack !
I
I

stack

Op l Decode

~'i I

I ~----r---I
j r--'~-----+--,.1

Op Rl R2
,~

I·
"

1 -----------+----1-- Array
J~

1· I
I

I
I

.! "-------', I Y 1

Call !---.J
Attach
Return

I ""' __ _ j

.E-Stack
Control

J
, ~

J
"

R3

ent l-------·-J
Scheduler

! _Assignm
i

~1 \ ~
A

Storaqe
Anchor. and
System nasE
Reg. Cntrl

I

--[.~ ..
E-Unit

Figure 4.3.2

Ii

1 . . .
~

PPU Implementation

IBM CONFIDENTIAL

" 4,

F-Unit n

1

I

I
I
I

I ,
I

'.

Section 4.3 THE PROGRAM PROCESSING SUBSYSTEM

4.3.7.1 Level 0 and the Data Bus

In the Level 0 Unit box, we assume the structure shown
in Figure 4.3.1, except that a single bi-directiona1 data bus
is shown here. Communication with storage level 1 is achieved
by the level 1 address/command bus and data bus.

The Read-Write Control box coordinates all activities
at level O. These include priority determination, block re­
placement management and level 1 communication. This box also
controls the byte aligners, described in Section 4.3.6. It is
further responsible for providing multi-level pointer-following
lookups, such as occur when lookaside fails, or when data values
are not found in a DAPOV of an RT.

The bi-directiona1 data bus is eight bytes wide. Normal
usage calls for level 0 to code buffer, value stack or storage
data register transfers, and for storage data register, value
stack, and new top bus to level O. There should be provision
for bi-directiona1 block transfer between the operator, value
stacks and level O. A path is also shown for placing a literal
from the code buffer onto the bus, for transmission to the value
stack.

4.3.7.2 I-Box Function

The customary I-box functions of fetching and examlnlng, ~ ;/
instructions is carried out using the code buffer, ICTR and
token select and decode boxes. The ICTR provides the offset
for code in the code buffer, and for fetching new segments. The
token select and decode unit examines the byte pointed to in
the buffer by the ICTR, and selects an appropriate action. If
a value corresponding to a Logical Name is required, the Logical
Name is sent to read control with the value stack as its
destination address. An operator byte is placed in the operator
stack. A literal field causes the entire literal to be placed
on the data bus for immediate transmission to the value stack.
A Logical Name whose value is not required, as in the target of
an assignment, will be placed in the value stack, like a literal.

4.3.7.3 Operator Execution

The theory of Polish stack manipUlation was detailed in
Section 4.3.5. When the topmost element in the operator stack
has found all its operands in the value stack, the operator is
sent to the op decoder for classification, and assignment to the
appropriate executer.

IBM CONFIDENTIAL

(

c

section 4.3 THE PROGRAM PROCESSING SUBSYSTE:M

Although the values placed in the value stack are
inherently of variable length in bytes, these sizes will be
rounded upward to the next mUltiple of eight bytes. This
creates a minor problem in matching data descriptors with
their variable length values for easy access in the value stack.

This philosophy also presents a problem in eliminating
"noise bytes" transmitted from level 0, before they actually
participate in a computation.

We may point out here that the value stack represents
a portion of the Operand Stack of each task.

~I

A statement control op will change the ICTR, and probably
cause a code buffer refill.

A CALL/ATTACH/RETURN operation Y7ill not only affect the
ICTR, but will cause the appropriate protocols from Section 2.6
to be obeyed. These will in general involve the storage anchors and
system base registers. These registers are shown in an array in
Figure 4.3.1, and controlled by the box labeled storage anchor and
system base register control, in Figure 4.3.2.

Assignments will be performed using the Logical Name to
reference the LDT entry for the destination, to validat~ the
descriptor information or invoke a conversion. For certain types
of assignments, some or all of the storage anchor registers will
be copied into storage.

For a scalar computational operation, the op and three
indices to the value stack will be placed in the E-stack. The
E-scheduler controls the issuing of E-stack groups to the ap­
propriate E-unit.

. Arrax computational operations, distinguished by the data
de~crlp~ors ln the valuestac~, are routed t9 an array control unit.
ThlS unlt converts array ops lnto an approprlate loop of scalar ops,
executed from the E-stack. Since arrays will not appear in
the value stack, array control must provide the ability to
reference storage.

4.3.7.4 Work to Be Done

Needless to say, much work must be done to provide a
good system design. We briefly mention some points of interest
here.

The data bus philosophy may be overloaded, and prove to
be a performance bottleneck. If the literal-to-value-stack
path is implemented by a private path, will performance be improved?

IBM CONFIDENTIAL

Section 4.3 THE ~EQ~~ ~ROCESSING SUBSYSTEM

There appears to be a possible usage conflict on the
busses between the value stack and the several E-units. Al­
though the implicit logical addressing of elements of the value
stack is clean, it requires more analysis to detect opportunities
for parallel execution.

It is likely that the cache
sensitive to pgge boundary crossovers.
consecutive references to the same page
employ the directory lookup mechanisms.

design can be made·
By this, we mean that
of level 0 will not

Any instance of a local copy of an item in storage
means that a mechanism must be provided to invalidate the
copy when the original is changed. There remains much room for
invention in this field.

The number and functions of the E-units have not been
established. A possible choice might be an adder, a multiplier­
divider, and a string processing unit.

4.3.8 Interrupts

In any system, there occur interrupts, which might be
pefined as occurrences which either are asynchronous (anticipated
but whose time of occurrence cannot be correlated with the
processor activity), or synchronous (an unanticipated but pre- (
pared-for event which can be associated with processor activity). ~

In the normal case, the PPU will handle asynchronous
interrupts in a manner transparent to the user. If a process
must be halted, the appropriate status information will be
dumped into storage, and, at the proper time, reloaded and
execution resumed.

An asynchronous interrupt request is passed to the PPU's
of a system on a bus which chains through all PPU's. The
information on this bus consists of a priority number and a
queue indicator. If the nth PPU in the chain is currently
working on a task of higher priority than that of the interrupt,
he passes the request to PPU n + 1. If the request is of higher
priority than the current task, this PPU accepts the request
and does not pass it on.

Each such request will be associated with a time interval,
by the end of which service must be begun. The PPU will attempt
to process to a statement boundary before the end of the specified
interval. If no boundary was reached, the PPU drops the current
task and takes the top unit of work on the indicated queue as
its next task.

IBM CONFIDENTIAL

(

Sectdon 4.4 THE SOURCE-SINK SUBSYSTEM

4.4.1 Introduction

In this section we discuss the structure of the
Source-Sink Subsystem (SSS), its relation to other sub­
systems, and its functions. The SSS provides the link for
communication between source-sink devices and storage. One
or more Source-Sink Processing Units (SSPU) are the heart of
the SSS. These processing units are similar to the PPU's in
the Program Processing Subsystem, except that the SSPU's do
not have floating point capability and they are specialized to
handle physical Input/Output.

A set of control lines exists between the SSS and the
PPS to allow for "wake up" type of signals to be passed either
way when an interrupt is called for. Data Objects and Modules
do not pass between the SSS and PPS.

Local and remote source-sink devices are both handled
by the SSPU in such a way that the local or remote character
of the device is transparent to the rest of the system. The
source-sink device classes include, card readers and punches,
printers, terminals, displays, other systems, special I/O
equipment, and tape units and disk drives that are not included
in the Storage Management Subsystem.

4.4.2 Source-Sink Subsystem Structure

The Source-Sink Subsystem structure allows communication
between a source~sink device and the logical source-sink Task.
The functions that must be accomplished in order to allow this
communication to take place may be separated as shown in Figures
4.4.1 and 4.4.2. Figure 4.4.1 depicts the functional layers
required for communication between a logical source-sink Task
and a source-sink device without its own processing unit.
Figure 4.4.2 depicts the functional layers required for com­
munication between a logical source-sink Task and an intelligent
source-sink device.

. The logical source-sink Task is assigned as a physical
task by the Logical Machine Supervisor. The Symbolic Name of
the source-sink device is known in the Ownership Tree and a table
of connectivity in the Task Control Block yields the named
destination to the SSPU.

The Function Manager allows the application program to
be independent of the source-sink device with which it is
communicating. It will map a particular function (such as print)
to a particular device (such as a display unit) .

IBf.1 CONFIDENTIAL

section 4.4 THE SOURCE-SINK SUBSYSTEM

The Source-Sink Device Manager defines information
that is unique to a particular device. The device conunands (-,\
and control characters are inserted in the data stream by the "'~J
Device Manager. The Device Manager separates local messages
from remote messages.

The Network Manager selects the conununication path and
controls the network interaction for the system.

The Line Control establishes the connection to a given
path, notifies the ~etwork Manager that the connection has
been made, brackets the formatted data with control characters
and transmits them over the line.

At the other end of the line, the Network Controller,
when it recognizes its own address, strips off the line control
characters and passes the message on to the source-sink device
under control of the device's control unit.

If the source-sink device is another system (as in
Figure 4.4.2), the message is passed to that system's SSPU and
processed. This function is described in Sections 4.4.3 and 4.4.4.

IBM CONFIDENTIAL

J

Sec·tion 4.4 THE SOURCE-SINK SUBSYSTEM

(~

Logical Source-Sink Task
"..---.-,--_ .. _ •.. __ " _ _._ -....... -....... -

Function (or Device Class) Management --Source-Sink Device Management ---Network Management

- L'ine Control -
-------------------------Line -------Network Control

._.---. _---
Control Unit & Source-Sink Device

Operator

Figure 4.4.1

Logical Source-Sink Task
~_..-' _.. ,."al!"_-., .. '~--...to..1;;.\ffI"-'-"'_ .. ~ ____ .4'

Function (or Device Class) Management

Source-Sink Device Management
.. 1~""""""I>J~~-....,,--.toI.

Network Management

-------------------------~

Line -
Line Control

-~-....,---~---
Network Management

- Another

-------------------~-Source-Sink Processing System

Figure 4.4.2

IBM CONFIDENTIAL

section 4.4 THE SOURCE-BINK SUBSYSTEM

4.4.3 SSS Interrupts

Interrupts to the SSS may come from two sources,
from the PPS or from source-sink devices. The subject of
this section is the various causes of these interrupts.

The only communication that takes place between the
PPS and SSS is in the form of "wake -up" signals which contain
priority class, PU class, and queue designation information.
These signals are passed to all PUiS (SSPU's and .P'PU's) of a
system on a line bundle which chains through all PH 's. '1'he
PPS will signal the SSS whenever an output Task has been
placed in the appropriate queue for the SSS.

Interrupts from source-sink devices to the SSS occur
for the following reasons:

Incoming message with priority class
"Attention" signal to interrupt execution

of current task
Sign-on/Sign-off
Disconnect
Error detection on input
Error detection on output

The action of the SSS in response to these interrupts
is discussed in Section 4.4.4 in conjunction with a possible
implementation of the SSS.

4.4.4 SSS Functions and Implementation

The SSPU's of the SSS function in a manner very similar
to the operation of the PUiS of the PPS. In particular, with
the exception of the floating point arithmetic capability, the
description of the~U in Section 4.3 along with Figures 4.3.1
and 4.3.2 apply as well to SSPU design and operation.

The functions of the SSPU in addition to program
execution required of all PUiS, include line and network control,
control of the "wake up" signals passing between the SSS and PPS,
appropriate response to source-sink device interrupts, and main­
tenance of the system clock. Reference to Figure 4.4.3 will help
the reader to visualize the operations taking place in the fol­
lowing discussion.

IBM CONFIDENTIAL

(C

(

Section 4.4 THE SOURCE -SINK STTBSYSTEM

Interrupt
Control
Unit (ICU)

Interrupt Control Bus

(Bundle of lines chained through
other SSPU's and PPU's)

Device Type
To level 1

storage

....
I

,
To Cache

(from I unit) f

PU
(similar to Figure

4.3.2)

~ervice
iRequest
iRegister

To
Cache

~
TCU

I

Prograr
Buffer able C(

I

-

From
Cache

ntrol

To I Unit

t
TCU

B PC

{

Special
Character
Generation

WCS

Special
Character
Recognition

WCS

Figure 4.4.3

SSPU

IBM CONFIDENTIAL

System
Clock

Data & Add
~ Lines

Local TCU

B PC

I
'"

ress

Section 4.4 THE SOURCE-SINK SUBSYSTEM

4.4.4.1 Line .and Network Control

The line control function is contained within a
special piece of hardware called the Transmission Control
Unit (TeU). Each TCU has its own buffer which is of sufficent
size to contain one block of transmitted data received from
each active source-sink device that it services. TheTCU's
may each be personalized by means of a prograitllnable control
for specific source-sink device classes. One or more TCU's
exist for local source-sink devices not requirin'g transmission
line control characters.

The TCU buffers incoming data; monitors the source­
sink devices for requests for service, "message received"
acknowledgements, and error responses; and makes connection to
target devices for output transmission. Output data is trans­
mitted directly through the TCU without buffering in the TCU
since the data is already buffered in the CACHE. The TCU
brackets outgoing message blocks with the appropriate line
control characters. On input, a source-sink device requesting
service simply puts its input message on the line, and the TCU
buffers the input message. In order for further input trans­
mission from that particular source-sink device to be allowed,
the input message must first be analyzed under control of the
Logical Machine for which the message isd'estined, and the /
appropriate response returned via the SSS. l"

Network control is the function of the SSPU.
Output addresses are appended to output message blocks by
the SSPU. The device's address is contained in the header of
both input and output message blocks. When one or more input
message blocks, buffered in the TCU, are waiting for service
from the SSPU,a signal is sent by the TCU to set the Service
Request register of the SSPU. When the SSPU completes an Output
Task, it will next check to see if the ServiCe Request register
is set. If it is, it will poll the TCU 1 s ,t·ake in the waiting
input messages by buffering them in its CACHE, lOOk in the appro­
priate Task queue in storage, and go to work o:n the Tasks to be
accomplished. If Service Request is not set, the SSPU will go
straight to the Task queue to look for work. lfthe storage
Task queue is empty, the SSPU will continuetornonitor the
Service Request register, and poll the TCU's whenever this
register is set, until the SSPU receives an interrupt from the
PPS indicating that a Task has been placed in the queue.
This scheme is consistent with the requirement to handle
priority output messages, since a priority interrupt from the
PPS can cause the SSPU to switch Tasks (e.g., to stop polling
and look in the storage queue).

4.4.4.2 The Interrupt Control Unit

The Interrupt Control Unit of the SSS is a special

IBM CONFIDENTIAL

(Section 4.4. THE SOURCE-SINK SUBS~STEM

piece of hardware that services all PUIS. It effectively
controls the line bundle (Interrupt Control Bus) chained
through all PUIS. A PU that has put a Task in a particular
queue puts on the ICB a signal containing the priority class
of the Task and the PU class for the type of PU required to
service the Task. The designation of the queue in which the
Task may be found is implied by the PU class. These signals will
chain themselves around the loop and cause the first PU in the
chain (of the appropriate class), which is executing a lower
priority Task (or is idle) to cleanly interrupt the lower priority
Task, put that incomplete lower priority Task in a Task queue,
issue an interrupt on the ICB, and switch to the higher priority
Task. If an interrupt is issued for a Task which has a priority
lower than any Task being executed, the interrupt will disappear
at the end of the chain (the signal propagates past all PUIS in
a loop up to, but not including, the PU that issued the interrupt).
Such a case implies that all PUIS of the appropriate class were
busy. When one of them completes its present Task, it will
automatically look in the appropriate Task queues.

4.4.4.3 Special Character Generation and Recognition

A writeable Control Store exists as part of the SSS
to provide a means of generating and recognizing special net­
work control characters. On output the appropriate characters
are added to an outgoing message under control of the executing
code. The input data bus which takes data from the TCU into
the CACHE is monitored by the character recognition WCS for
special characters such as "Attention", "Sign-on", "Sign-off",
"Device Termination", etc.

4.4.4.4 The System Clock

The S,stem Clock resides in the SSS. Its function
is to measure real time and provide the time to the rest of the
system when requested. In performance of this function, the
Clock may be considered as a highly specialized PU. It is
connected to the Interrupt Control Bus and to Level I of
storage. There are three kinds of Tasks the System Clock may
be asked to perform by a PU. These are to give the time of day,
to provide an interrupt after a specific time interval, or to
provide an interrupt at a particular time of day. To help
accomplish these Tasks, the System Clock has a pair of registers
and utilizes storage to enqueue the required times of interrupt.
When a PU needs service from the System Clock, the PU puts the
Task in the appropriate queue and sends a "wake-up" signal on
the Interrupt Control Bus consisting of Priority and PU Class
(in this case CLOCK). The System Clock, when it processes

IBM CONFIDENTIAL

· - ...

Section 4.4 THE SOURCE-SINK SUBSYSTEM

the Task will either put the time in the appropriate Task
queue for the requesting PU and signal on the ICB, or it
will calculate the time at which interrupt is desired by that
Task and place it in a storage queue. The pair of registers
will always contain the time of the next interrupt with its
associated Task. The Clock will continually monitor the
interrupt storage queue to ensure that a Clock register always
contains the next timed interrupt to be given to a PU. The
interrupt to the PU will be given when the time of day is co­
incident with the time placed in the register. The interrupt
is given by putting the time of day, along with the Task for
which the interrupt is intended, in the Task queue and sending
Priority and PU Class on the ICB. Any PU of that class that
is expecting an interrupt may look in the Task queue to deter­
mine if that interrupt applies to it.

4.4.4.5 Responses of the SSS to Interrupts from
Source-Sink Devices

j

Incoming message interrupts have been discussed
throughout the preceding paragraphs in the context of SSS
Functions and Implementation. Some special handling is required,
however, for certain interrupts such as Attention, Sign-onl
Sign-off, Disconnect, and Error Detection.

Attention - Attention is sent as an input message
from a source-sink device to abnormally terminate a Task being
executed. The Task to be terminated may be an output Task on
an SSPU or a problem Task on a PPU. The SSS will handle this
message as an ordinary input message, place the "Attention"
Task in a Task queue and place a "wake-up" signal on the Inter­
rupt Control Bus. The "Attention" message must have a Task
ID appended to it by the SSPU since it knows which source-sink
device is requesting the action. Thus, the PPU that takes on
the Task will know which PU to terminate. A Task is also
initiated by the LMS to unlock the input device.

Sign-on/Sign-off - These messages also are handled as
ordinary input messages as far as queuing and interrupt control
is concerned. However, since there may be more devices on
a TCU than input buffers, the TCU must decrement or increment
its available buffers for each device that signs on or off so
that it may refuse to sign on more than it can handle. Also,

IBM CONFIDENTIAL

Section 4.4 THE SOURCE-SINK SUBSYSTEM

an SSPU must process this Task to establish or drop con­
nectivity to this device through the TCB and the Ownership
Tree. Another physical Task established as a result of this
message is the sending of the appropriate sign-on or sign­
off output message to the device if one is required. A PPU
will be assigned the Task of accounting for the total pro­
cessing time and connected time used by the device.

Disconnect - A source-sink device that abnormally
disconnects must indicate this to the TCU by dropping its
line. The TCU automatically loads the appropriate buffer
with a disconnect message containing normal header informa­
tion (address of device). The SSS acts on this as with a
sign-off and an Attention (of course no output message is
sent), however the Logical Machine involved must be stored
lias is" for future activation.

Error Detection - An interrupt, received by the SSS
as the result of an error message from a source-sink device
because of an incorrect output received by the device, is
buffered in the usual way in the TCU. When passed to the
SSPU, the Output Error character is immediately detected by

10/

the Special Character Recognition WCS, and the TCU is notified.
Since the TCU receives an error message from a source-sink
device in place of the expected acknowledgment, it initiates
a retransmission of the erroneous last message block which has
been retained in the SSPU CACHE. Output message blocks are
retained in the CACHE for TCU transmission. The TCU clears
the message block from the CACHE when acknowledgement of receipt
is returned from the source-sink device to the TCU. A mechanism
is needed to stop retransmissions and provide notification to
the system operator, after a set number of retransmissions of
a particular message block to a particular device.

Input messages are checked for errors by the TCU in
two sections. The header containing the address is checked
independently from the message body. In this way, an input
error that is detected in the input message body will initiate
an automatic "resend" signal from the TCU to the source-sink
device that had sent that message. Obviously, an error in
the input header (address) cannot initiate any system re­
sponse as the sending device is unkown. Therefore unattended
devices of a certain class should be buffered and should auto­
matically resend after a suitable time out to allow for this
situation. Attended devices will require operator interven­
tion (e.g., Attention) should an input address error occur.

IBM CONFIDENTIAL

Section 4.4 THE SOURCE-SINK SUBSYSTEM

4.4.4.6 Other Hardware

Crosspoint switching of TCU's with SSPU's is required
to provide system availability should an SSPU go down. The
implementation of this feature will have an impact on per­
formance if the switching is to be dynamic (under system
control). If the TCU's (and possibly devices) are manually
switched when required, implementation complexity diminishes
considerably.

Disk drives and tape units that are part of the Storage
Management Subsystem are not source-sink devices. It may be
required at times (e.g., for use in emulation mode) to logic­
ally switch some of these devices out of the Storage Manage­
ment Subsystem into the Source-Sink Subsystem as source-sink
devices. This may only be done if the data on these devices
are moved to another physical location in the SMS under con­
trol of the Physical Control Program, thus freeing these
device for the SSS. Only devices may be switched in this way
from the SMS to the SSS; data may not. Data may be transferred
from the SMS to a source-sink device (or vice versa) only by
going through the SSS and the associated protocols.

4.4.4.7 The "Physical" SSS

In the above discussion, various elements, such as the
TCU, CLOCK, etc., were shown as independent boxes. While this
physical independence may be true in a large system, it is also
possible to treat these elements as logically separate but
physically contained within one PU as may be the case in a small
system. The ideas expressed throughout Section 4.4 should
therefore be construed as an architectural definition rather
than a truly physical one.

IBM CONFIDENTIAL

/

(

CHAPTER 5

MODELING

5.1 Description of Models

Two types of models are being used in the development
of AFS. The first type, termed a Logical Model, is designed
to simulate the logic of the system, with implementation con­
siderations being minimized to as great a degree as possible, whereas
the second type, termed a Timing Model, is designed to measure the
performance of a specific implementation. Both hardware and soft­
ware aspects of the architecture and design are being simulated.
Execution of the Logical Model may be thought of as actually
logically executing a program on a complete, but simple (sequen­
tially processed, non-multiprogramming, non-multiprocessing) AFS
machine with an infinitely large one-level storage. Output from
the Logical Model includes not only the calculated answers of the
source language program, but also a trace of the sequence of
operations performed by the executing program and the storage ad­
dresses referenced. This trace is used as input to the Timing
Model which measures the timing of a PPU and storage hierarchy
complex with specific emphasis on implementation considerations.
An introduction to these models is contained in ASP Memo 014.

5.1.1 The Logical Model

This section will describe the existing Logical Model
(version 1), which embodies a great number of the concepts detailed
in the earlier sections of this manual. A second version of the
model, which will extend the current capabilities, is discussed in
Section 5.4. The Logical Model, written in APL, currently accepts
source language programs within a PL/I subset entered interactively.
The subset selected for this initial implementation handles many
of the complex addressing problems, but only provides scalar
integers for computation purposes. The PL/I translator portion
of the model produces a Module for each procedure entered and
catalogs this Module in the system library. The Connector can then
establish this procedure in the user's Logical Machine by duplica­
ting those parts of the Module that are not read-only, and building
the forward and back pointers that specify the PL/I static nesting
structure. The Interpreter can then be called upon to interpre­
tively execute the code, using actual data values such that
branches and other operators behave as the programmer intended.
The Interpreter will call upon the Linker to resolve the
Symbolic Names within the existing environment. The Interpreter
handles expression evaluation, based on data descriptors, as well
as calls, returns and other scope changing operations. The In­
terpreter also utilizes the storage operations: READ, WRITE,
CREATE, DESTROY, ADD, and DELETE. Explicit details for the Model
are contained in ASP memos 046 and 047.

IBM CONFIDENTIAL

Section 5.1 DESCRIPTION OF MODELS

5.1.2 The Timing Model

The Timing Model is designed to measure the per­
form~nce expected for a specific implementation of the
architecture contained in this manual. Initially the
model has peen parameterized with timings comparable to the
Model 85. It is anticipated that other similar models will
be required for implementations satisfying other general
price/performance markets, especially in the portions of the
model which simulate the PU activity.

The Timing Model, written in APL, includes a storage
hierarchy model and a very simple representation of PPU
timing. The model is driven from ~race output of the Logical
Model. The N-level storage hierarchy portion of the model
simulates reading or writing data, adding Or deleting pages,
and creating or destroying spaces. The simulated directories
and storage devices operate asynchronously. The model includes
the logic of moving space and page numbers through the direc­
tories of the hierarchy, as well as measuring the time required
do it.

Information is transmitted as words or mUltiples of
words called pages. Word size is fixed throughout the system.
Page size increases by integral factors (normally powers of
2) from level to level. A page is divided into lines, a line
at one level peing equal in size to a page in the preceding
level. At level .. O. a line is a single word. Pages are moved
only between adjacent levels, local buffering being pro­
vided as necessary. Hierarchy traffic is not routed through
the PPU memory. Level 0 contains a Lookaside Memory an
associative search feature on Logical Names to bypass, if
possible, one or more intermediate look-ups on repeated ref­
erences to the same item.

IBM CONFIDENTIAL

to

c

(

Section 5.2 MODEL USAGE RESULTS

The PPU is represented simply by a table of
operation times comparable to the Model 85 for each
operation code. Multiple PPU's, each with its own trace
input, can be set up. Each PPU has its own level 0 memory.
All PPU's currently use the same operation times (although
this could easily be changed). Levels 1 on up are common
to all PPU's. No provision has been made for logical
interlocks required in mUltiprocessing. The model merely
ensures that each gets back its own requests.

The Timing Model is documented in ASP 015 and 059
and timing assumptions are in a memo to file by W. Buchholz
dated 10/21/70, "OLYMPUS Model Timing and Assumptions".

5.2

5.2.1

Model Usage Results

Logical Cases

This section contains several examples of programs
that have been run on the Logical Model, and in one case,
the OS 360 PL/I F equivalent. These cases have been
included to demonstrate:

- The mechanisms that have been defined are capable
of accommodating complex addressing problems.

- The advantage of the use of descriptors in
catching errors.

- The rudiments of diagnostics

The Logical Model cases shown below begin with a
"START 2" machine as it had been left at the conclusion of

I()~

the previous run. The DISPLAY command prints the originally
entered source text. Typing the name of a procedure causes
execution of that procedure (connection into the user's
workspace has been previously accomplished by a COpy command) .
Output is obtained by assigning to a dummy variable~ O.
The line of output contains a descriptor and a value, where
a descriptor equal to 16 denotes an integer variable, and
equal to 24 denotes an integer constant.

IBM CONFIDENTIAL

Section 5.2 MODEL USAGE RESULTS

Case 1: Computation with Described Data

Execution of this program with the Logical Model
yields the expected results whereas the OS/360 PL/I F version
of the program runs, but yields erroneous results, since PL/I
dOes not have the advantage of descriptors. Later versions of
PL/I may be better able to accommodate this problem.

Logical Model

START 2
<TYPF, COMMAND>
]DISPLAY TEST
<O>TF.ST:PROC
<.1 >[J= 8
<2>CAJ,L 8(8)
<3>ENlJ
<TYPT: COMMA liD >
.]DISPLAY B
<O>8:PROC(X)
<l>DCL Y INTEGER AUTOMATIC
<2>Y=X
<3>0=Y
<4>END
<TYFF. COMMAND>
TEST
24 8
16 8
<TYPE COMMAND>
]OFF
<OFF>

OS/360 PL/I F

TEST:PROC CFTIChS(MAI~);
CALL B (e);

e:PROC(X) ;
eeL (X.Y) FIXED Eth'~Y (31.0);
'(=X;
PUT SKIP DATA(Y);
~ETL~";

END A;
E"C TEsr;

Y= -194547~lJ6;

Case 1

Case 2: GO TO Label Variable

This program, M, calls itself recursively to create six
activations. In the second activation, line 7 causes a label
variable to be established in the then current environment and the
current automatic variable, A, to be set to 9. Line 8 causes
multiple recursions until the sixth activation. Then line 9 results
in a GO TO to the environment existing at the time the label variable
was established, with multiple RETURN's implied. The routine con­
cludes by printing the value of the automatic variable, A, that in
any other activation would have been equal to 1.

IBM CONFIDENTIAL

(

("-.\

/

Section 5.2 MODEL USAGE RESULTS

START 2
<TYPE COMMAND>
]DISPLAI M
<O>f:!:PROC
<l>DCL S STATIC INTERNAL INIT(O)
<2>DCL A INTEGER INIT(l)
<3>[1CL LRL LABEL STATIC INTERNAL
< l~ >[j=A
<5>8=8+1
<6>[]=S
<7>IF 0=2 THEN CO TO SF.TLBL
<8>IF SS5 THEN COTO RECURS
<9>COTO LBL
<10>SETLBL:O=555
<ll>LBL=LO
<12>A=9
<13 >CO~l'O RECURS
< 14 >RRClfR8: 0= 666
<15>CALL f.f
<16>HETURN
<17>I,O:rJ=00
<18>[J=A
<19>[1=8
< 20 >RETURII
<21>END
<TIPF. COMMAllD>
M
16 1

S- 16 1
2l~ 666
16 1

S- 16 /l
24 555
24 666
16 1

S- 16 3
24 666
16 1

S- 16 4
24 666
16 1

S- 16 5
24 666
16 1

S- 16 6
24 0

A- lG 9
S- lG 6

<T.YPE COMMAND>
]OPF
<OFF>

Case 2

IBM CONFIDENTIAL

I

Activation
Chain

M

J
M

I

M

I
M

I
M

I
M

Iv7

SETLBL, i.e.
LBL=LO

A=9

GO TO LBL

Section 5.2 MODEL USAGE RESULTS

Case 3: GO TO Label Variable - Erroneous Case

In this case, an erroneous GO TO is caught by the
Logical Model, with a diagnostic. The activation chain as
execution proceeds is shown below (the numbers denote the
sequence of calls and returns). The first activation of SUB
sets a label variable to a label constant in the then current
environment. After returning to MAIN, a second activation of
SUB attempts to branch to that label variable, but the environ­
ment, consisting of the first activation of MAIN and the first
activation of SUB, no longer exists, resulting in a user
diagnostic. Diagnostics in the Logical Model currently utilize
a syntactic APL error to stop execution. Although not printed
for the user in this version of the model, complete information
exists which can advise the user of the current line number,
environment, etc.

MAIN

I v i 2 3-k,

Set LBL = LO SUB S GO TO LBL

IBM CONFIDENTIAL

(

(

Section 5.2

START 2
<TYPF. C(WI1AlfJ»
]DISPJ,AY MAIN
< 0 >MAIll: PROC
<1>0=1111
< 2 >CA['L SUB
<3>0=1112
<4>CAJ,L sun
<5>0=1113
<6>F:ND
<T'ypr; COMtfAlJD>
]DISPLAY SUB
<O>SUH:PROC

MODEL USAGE RESULTS

<1 >DC[' A IllTIWF.R AUTOUATIC INTERNAL INI'i'(1)
< 2 >DC[, S INTEGIW STATIC II1TF:RNAI, n:IT(0)
<3>DCJ, L8I, LABEL VARIABLR STATIC II/TERl/AL
< I~ >[J= 2111
<5>[J=S
<6>8=S+1
<7>IF 8=1 THEN GOTO SETLEL
<8>0=2112
<9>GOTO LBL
<10>SETLBL:0=2113
<11 >J,BL=LO
<12>A=9
<13>RETURN
<14>[,0:0=2114
<15>[]=S'
<lG>n=A
<17>RF:TURll
<18>F.ND
<TIFT: COMMAND>
NAIN
24 1111
24 2111
16 0

SUB<lO> - 24 2113
24 1112
24 2111
16 1

SUB <8> - 24 2112
SYNTAX ERROR
EXEC[111] <INVALID BRANCll TO LABEL VARIABLE ATT'EMPTRD>

" Case 3

IBM CONFIDENTIAL

I()~

Section 5.2 MODEL USAGE RESULTS /10

Case 4: Entry Variable

This case portrays the Logical Model properly executing
a program using an entry variable defined in the PL/I language
specifications. The PL/I F compiler does not currently support
this capability. The three procedures A, B, and E are displayed
separately. The static n~sting, developed by COpy commands, is
shown below, along with the activation chain as execution proceeds
(the numbers denote the sequence of calls and returns).

Activation Chain
A --_ -----"

A

1 2 3

S.et EV=E B B Call EV

4

E

The first call of B s.ets the entry variable, EV, to R,
in the current environment. Then B re.turns, and is called again
by A, at which time B calls EV. In this case, the environment
that existed when EV was set (the first activation of A is still
active and the first activation of B is irrelevant since E is at
the same lexical level as E) still exists, and the program runs
properly to completion.

IBM CONFIDENTIAL

/' , , .

(

B<4>

B<8>
E<l>

("

Section 5.2 MODEL USAGE RESULTS

"

-

-
-

START 2
<,TYPE COMMAND>
]DISPLAY A
<O>A:PROC
<l>DCL X AUTO INIT(l)
<2>DCL 5 STATIC IlIIT(0)
<3>DCL EV ENTRY VARIABLE STATIC
<4>0=1111
<5>CALL B
<G>D=1112
<7>CALL B
<8>0=1113
<9>r:ND
<TYPP; COMMAND>
JDI5PLAY R
<O>li:PROC
<1>0=2111
<2>5=S+1
<3>IF S=2 THEN GOTO CALLEV
<4>0=2112
<5>X=9
<6>F:V=F:
<7>RF:TURli
<8>CALLr.V:O=2113
<9>CADL EV
<10>0=2114
<11>lWD
<TYPF. COl1MAND>
JDISPLAY E
<O>E:PROC
<1>0=3111
<2>0=S
< 3 >[l=X
<4>END
<TYPE COMMAND>
JCOPY E IN A
<COpy COMPLETED>
<TYPE COMMAND>
Ii
24 1111
24 2111
24 2112
24 1112
2 !I 2111
24 2113
2 !. 3111
lC 2
16 9
24 2114
24 1113
<TYPE COMMAND>
JOFF
<OFF>

Case 4

IBM CONFIDENTIAL

I I J

" ,

Section 5.2 MODEL USAGE RESULTS

Case 5: Entry Variable - Erroneous Case Caught

This case is identical to Case 4, except that the
static nesting is changed to that shown below.

A
B

E

In this case, the environment that exists when EV is set, as
far as E is concerned, consists of the first activation of A
and the first activation of B. However, the first activation
of B is destroyed immediately after B sets EV. Thus, when B
calls EV in B's second activation, the original environment
corresponding to that set in EV no longer exists, resulting
in an error.

<TYPE COMMAND>
It
24 1111
24 2111

B 4 - 24 2112
24 1112
24 2111

~ 8 - 24 2113
S.YNTIIX ImROU
EXEC[40] <!t:N'l'R.Y VAllIlIllLE F.NVIRONMENT NO LONGP.ll EXIt:TS>

1\

Case 5

IBM CONFIDENTIAL

/ /2-

(

Section 5.2 MODEL USAGE RESULTS

5.2.2 Performance Cases

Comparative runs have been made on the Timing Model
and in PL/I on the Model 85 using two methods of computing
factorial 4. Only the execution portion of the programs
were measured. Translation, Connection, and Linking Times
were excluded. Level 0 of the storage hierarchy was made
large enough to hold all the pages required which corresponds
to the program being contained entirely in the Model 85
buffer memory.

Case 1: Loop Method

The following loop was executed (in PL/I notation, with
compiled 360 ops):

LOOP: x = X * J; \
I = I + l'
IF M), = I' THEN GO TO LOOP;

L, L, M, SLDA, ST
L, A, ST
L, L, C, BC

For the Timing Model the loop was traversed 3 times.
For the Model 85 the loop was traversed several hundred thousand
times to get a measurable interval, but the result was normalized
to 3 times. (The variable, J, was needed to permit a large
number of repetitions on the Model 85. It was initialized to one.)

Two means of comparison are possible. First, we may
consider the storage references made by each machine. Since the
Timing Model fOr this AFS machine provides for the Lookaside
Memory which reduces the number of storage references due to
accessing data indirectly, three figures are shown.

Model 85
AFS Machine

Instructions

12
7

Data

10
(24

If
no

Lookaside

(In Words/Loop)

~ 19 /"'f 12
(1st Loop (Other loop~

with with
Lookaside Lookaside

Thus, based on storage references, the Model 85 requires 22
references per loop, and the AFS machine requires 19 (to 26
maximum) references per loop. The ratio is approximately 1:1.

Second, we may consider the times measured for each machine.
The Model 85, normalized to 3 iterations through the loop, took
9.5 microseconds and the AFS machine took 6.1 microseconds. The
fact that this time ratio is 9:6, rather than 1:1, is due to the

IBM CONFIDENTIAL

Section 5.2 MODEL USAGE RESULTS

current level of detail in the Timing Model, especially
with regard to storage reference and PPU times.

Case 2: Recursive Method

The recursive factorial function, FACR, shown below,
was called 4 times. On the Model 85 this was repeated several
hundred times.

-,,-

<O>FACR:PROC(N.X)
<l>X=l
<2>IF N>l THEN GQTO RECURS
<3>RETURN
<4>RECURS:CALL FACR(N-l.X)
<5>X=N*X
<6>RETURN
<7>END

The times measured for this case, normalized to one set
of 4 calls, are:

Model 85
AFS Machine

215 microseconds
20.8 microseconds

The ratio of 10:1 for this case should be strongly tempered by
the current level of detail in the Timing Model. But this is
illustrative of the type of advantage that results from managing
storing with commands such as CREATE, rather than GETMAIN as in
System/360.

5.3 An Instruction-Level Machine Compared with a Higher­
Level Language Machine

Concurrent with the Logical and Timing Model development,
another pair of models have been implemented which yield supportive
evidence to the performance potential of a higher level language
machine. These models, developed in Palo Alto, have been used
as a means of understanding techniques in the APL Machine, APLM,
described by Phillip Abrams in his recent thesis* and of obtaining
some crude estimates of the machine's performance vis-a-vis a
present day von-Neuman machine. The APLM incorporates two funda­
mental new processes which Abrams has termed "drag-along" and
"beating", where drag-along is defined as the process of deferring
evaluation of operands .and operators as long as possible, and
beating is defined as the machine equivalent of calculating
standard forms of selection expressions.

*Abrams, P.S. (1970) An APL Machine SLAC Report No. 114

IBM CONFIDENTIAL

Section 5.3 AN INSTRUCTION LEVEL MACHINE ••• II~

The von-Neuman machine used for comparison is based
on the MIX computer designed by Knuth and rather widely used
in computer science courses at Stanford and elsewhere. It is
intrinsically a simple, basic machine with an A-register, Q­
register, and six index registers working with a word-oriented
memory. The instruction repertoire somewhat resembles that of
the IBM 7094. The APLM uses an instruction buffer for subscript
offset calculations.

The CPU capabilities of the MIX machine have been augu­
mented to have an instruction power comparable to that of the
APLM. Thus, the performance of MIX versus APLM becomes a measure
of the number of storage accesses made into the various types of
storage media plus an estimate of the number of cycle required
for each instruction over and above storage cycles.

Example 6 in Abrams thesis has been coded and run on
both the APLM and MIX models. The APL statement is:

The statement has been hand coded for the MIX machine in two
ways. It has been coded in a highly optimized manner, including
unrolling of the loops, even though a compiler with such an
ability does not exist. It has also been coded in the manner of a
very good optimizing compiler. The number of references measured
for this example are:

Instructions Data Instruc. Buffer

APLM 131 33 66
MIX (Highly 87 60

optimized)
(Good 140 74
optimizing)

Since the APLM is reasonably complete in accounting for
CPU actions, and since the first set of values for the MIX
machine represent extremely efficient coding, the ratio of 2:3
between MIX and APLM may be taken as an indication of a worst
case bound. The ratio of 1:1 between the second set of values
for MIX and APLM are in keeping with the results determined
by the Timing Model.

IBM CONFIDENTIAL

Total

230
147

214

"lie:- .
Section 5.4 MODEL PLANS

5.4 Model Plans

Second versions of the Logical and Timing Models are
being planned which will extend the current set of capabilities.
Enhancements inclUde:

A more faithful representation of the PU,
including tracing and timing of the stack
manipulations required for the call and
return mechanism and for expression evaluation.

Byte addressing (rather than the current word
addressing)

A translator for an APL subset

An edit/change/continue capability

Implementation of the LDT as defined in this manual

Implementation of vectors and fixed and floating
point data types

IBM CONFIDENTIAL

\
"'-_/

(
~/

Chapter 6 IIi

GLOSSARY

Numbers refer to sections of this document. Cross references to
AFS Fundamental Concepts and System Language (SLM) are parenthesized.

Activation Tree
(2.3)

ADD
(4.2)

Allocation
(2)

Attach
(2.3)

BRING

Connect
(2.2)

CREATE
(4.2)

Descriptor and
pointer or value
(DAPOV) (2.5.1)

Data Object
(2,5)

DELETE
(4.2)

Descriptor
(2.5.1)

DESTROY
(4.2)

A structure in a Logical Machine
containing information about which
Hodules of that Logical Machine are
currently active, and the order in
which they called or attached each
other. (Activation Tree in SLM)

A storage operation defined in the text.

The process of creating a Reference
Table together with its contained
list of DAPOVs. (Insert and Delete
in SLM)

The invocation of a Module to be
executed as a separate Logical Task.
(Create and Parallel in SLM)

A storage operation defined in the text.

A command used to introduce a Module into
a Logical Machine by the creation of a
new node in the Program Tree.

A storage operation defined in the text.

A Descriptor together with its
associated data or a system pointer
which provides access to the data.

The set of a name, its descriptors,
and value. (Object in SLM)

A storage operation defined in the text.

Information specifying the type,
aggregation, and/or representation of
data.

A storage operation defined in the text.

IBM CONFIDENTIAL

Section 6.0

Dynamic Storage
Mechansim (2.4)

External Node
(2.2)

Generic Descriptor
(2.5.1)

Interpreter
(2.6)

Job
(3.1)

Link
(2.5)

Local Declare Table
(LDT) (2 . 5 . 2 . 3)

Local Link Table
(LLT) (2.5. 2. 1)

Local Symbol Table
(LST) (2.5.2.1)

Logical Input/Output
System (3.3)

Logical Machine
(2.1)

GLOSSARY

The collection of Storage Anchors
and Reference Tables used to provide
storage and execution time address­
ability for Data Objects.

A special node in the Program Tree
which contains the Local Symbol,
Link and Declare Tables for all the
external names of the program.

A descriptor associated with a name
in a Local Declare Table.

The logical executor of code.

Work performed during the time
between activation and deactivation of
a Logical Machine.

The process of resolving Symbolic Names
by searching the Local Symbol Tables
contained in the nodes of the Program
Tree.

A table containing all the information
that is knol~m a,bout ea,chSvmholic Na,me
declared or referenced in· 'the r-rodule.
The Generic Descriptor is part of this
information.

A table containing execution time
connectivity to the DAPOV for each
Symbolic Name declared or referenced
in the .Module.

A table containing all the Symbolic
Names declared or referenced in the
Module.

The facilities for the transfer of
information to and from the Logical
Machine.

That part o~ the system prov;t:ded ;fox
the processing of each ;t:nde?endent
unit of work.

IBM CONFIDENTIAL

I

~ /

t <-

(/

c

Section 6.0

Logical Machine Supervisor
(3.1)

Logical Name
(2.5.2)

Lookaside Memory
(4.2 & 4.3.6)

LREAD

Module
(3.2)

Offset
(4.2)

Ownership Tree
(3.2)

Pointer

System Pointer

Processing Unit
(PU) (4. 3 & 4. 4)

GLOSSAR~

A Logical Machine which is in
control of all other Logical Machines
in the system, and provides an inter­
face to the physical processors on
behalf of these Logical Machines.

The internal form of a Symbolic Name.

A local name associative array that
permits look-aside to minimize storage
accesses on repeated references to the
same information.

A storage operation defined in the text.

The combination of the source code,
executable code, line directory, LST,
LLT, and LDT for a sequence of source
statements in which all uses of the
same Symbolic Name refer to the same
object.

An index to a particular byte of a space.

A structure defining the ownership
relationship between all objects of
the system, and containing information
about the access rights of each object.

A generic term for a type of data whose
value is the logical address of another
data object, and for a System pointer.
A System Pointer is a type of system
data whose value is the physical addresR
of another space or of a byte within a
space.

A generic term for, a Program Processing
Unit or a Source-Sink Processing Unit.
Also used to represent the common func­
tional part of thest two units.

IBM CONFIDENTIAL

jz,o
Section6~O GLOSSARY

Program Processing Subsystem
(PPS) (4.3)

Program Processing Unit
(PPU) (4.3)

Program Tree
(2.2)

READ
(4.2)

Reference Table
(2.5)

Relative ID
(2.5.3)

Semaphore
(4.1.4)

Source-Sink Processing Unit
~SSPU) (4.4.4)

Source-Sink Subsystem
(SSS) (4.4.1)

Space
(4.2)

Storage Anchor
(SA) (2.4)

A physical subsystem (comprised
of one or more Program Processing Units)
which' processes all Physical Tasks not
requiring Source-Sink I/O.

A physical unit in the Program Processing
Subsystem.

A tree structure in a Logical Machine
which defines the static nesting of
Modules in the LM and is used to deter­
mine the static scope of name resolution.
(Static Environment Tree in SLM)

A storage operation defined in the text.

Storage for a list of one or more DAPOVs
together with a back pointer to previous
generations of this Reference Table.

The second field in a Local Link Table
which identifies the appropriate DAPOV i",
in a Reference Table. ~/

A special integer variable used by
Control to synchronise tasks and provide
access to serially re-usable resources.

A physical unit in the Source-Sink
Subsystem.

A physical subsystem (comprised of one or
more Source-Sink Processing Units) which
processes all physical I/O Tasks.

An independent portion of the storage
capable of linear extension and contract­
ion. Referenced in the Logical System
by Space Name and the Physical System
Space Number. ,

Storage Anchors are a component of the
Dynamic Storage Mechanism. System
Storage Anchors address the Reference
Tables directly associated with the
Program Tree. User Storage Anchors ~ ,
address the DAPOVs for variables under ~
user control. Storage Anchor Name and ,
Storage Anchor Register are the logical
and physical entities, respectively.

IBM CONFIDENTIAL

(-

J 2. J

Section 6.0 GLOSSARY

Storage Management Subsystem
(SMS) (4.2)

Symbolic Name
(2.5.2)

System Language
(SL) (1.1)

System Node
(2.2)

Task
(3.1)

Task Control Block
(3.1)

Translator
(3.2)

That portion of the physical system
that contains addressable storage and
the controls to allocate storage spaces,
determine the physical location of
stored information, and provide access
to that information. The SMS communi­
cates with the PPS and the SSS.

The external, character string, form
of the identifier of a Data Object
or Logical Object. (Symbol in SLM)

The logical description of the system
contained in the SLM. also, loosely,
the logical form of the execution
Language in the Logical System.

The root node of the program Tree which
contains the names of, and connectivity
to the system functions whtca are
available to· the LoC).ical Machine.

Each independent parallel activity
within a logical machine is a logical
task. The first task started is the
master task. The others are subtasks.
A physical task is the unit of work
dispatched to a PPU by the Logical
Machine Sypervisor through the Physical
Control System. (Process in SLM)

A Logical Task Control Block contains
the information which binds an Inter­
preter to the other mechanisms in the
Logical Machine in which it is active.
A Physical Task Control Block defines
the status of t~e physical task as it
is processed by a Processing Unit or is
queued in Control.

Takes user written code and builds a
Module.

IBM CONFIDENTIAL

Section 6.0

UNLK
(4.2)

Value Descriptor
(2.5.1)

WRITE
(4.2)

GLOSSARY

A storage operation defined in the text.

The descriptor associated with the
current value of a Data Object.

A storage operation defined in the text.

IBM CONFIDENTIAL

\'--.---"

.11

