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SUMMARY 

The Machine Organization Concepts Study Group recommends that an effort be made 
to explore the possibilities of a Higher Level System (HLS) of the character 
described in this report. 

C\) We have come close to the 1 imi t of the ,.v.Qn Neumann ins tructi on-based mach hi ne as 
the vehicle to meet the expanding needs of electronlc data processing; t e more 
direct, powerful HLS approach may be needed to sustain IBM growth in the years 
ahead and extend the use of computers to more people. 

~) 
HLS raises the man-machine interface from the present instruction level to the 
level of pr~l languages, at which people communicate more naturally and 
more effectively. 

The system uses statements whose operators handle variables identified by name 
rather than address. Variables are not confined to single values; instead 
entire arrays and structures can be processed as units of information as well. 

@) HLS executes the statements interpretively, through the help of descriptors 
which dynamically define the data object - its type, size, precision and 
current location. 

LSI and its memory-like character are exploited in the systematic use of 
associative techniques for both statement scanning and orderly control of 
machine functions. 

The system design gives the user full access to storage. The convenience of 
a name-oriented single level store is maintained for a multi-level hierarchy. 

trl Syst~ control will be achieved more effhle~~command language which 
(11 is .simply a facet of the procedural machine language or-the s.Y~tem. Use of 

HLS will thus extend to the full range of problems and to background as well 
as foreground control. 

The user and IBM should both gain substantially from the easier coding and 
debugging of concise programs. We expect that the cost of programming, and 
size of complex programs will sharply reduce, as both program quality and 
programmer productivity are enhanced. This should have particular relevance 
to IBM.in the Systems Control Program and Program Product areas. Inter­
active computing will feature better turnaround and higher efficiency. 

~, \The Field Engineering cost for maintaining the system will be markedly reduced. 
J There naturally will be fewer chances for errors. Automatic meaning-dependent 

checks allow errors to be detected and localized sooner; simple errors will 
tend not to propagate. In the face of errors the system can redeploy its 
resources. Diagnostic programming will be simpler. The self-monitoring features 
of HLS apply equally to machine failures and programming errors, and further 
permit selective protection of user information. 

iii 
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With HLS, programmers will be able to exploit important techniques heretofore 
handicapped by inefficiency, and to exp1cH'e new techniques. The self-defining 
information enhances meaningful communication in a complex environment, and 
HLS further will be able to reconcile minor inhomogeneities in the program, thus 
taking a step towards the transferability and combinabi1ity of programming material. 

The new system will form a sound basis for growth, and should facilitate the 
implementation of data-base systems and large shared systems, both of which have 
the potential to expand the future pattern of computer usage. 

The following statement was unanimously endorsed by the Study Group on February 
25, 1970: 

liThe Machine Organization Concepts Study Group has 
studied the question of feasibility and advisability 
of a higher level system and concludes that such a 
change of direction is both feasible and necessary 
;:mrl \I~\"\1 ~d\l~n+~nAnllC' +n +h ... ('nmn,..,\lI .. 'lVI"\~ .... i" .. 
_ .• - --OJ _ ."" •• v""~_w"-" ... .. V' ",.1'- ,",""IIIt'''''"J ..:l \;;At'''''II~l\,l'', 

both to new fields of application and to larger 
numbers of users. It offers a way for consolidating 
the advances in the knowledge in use of machines in 
the past 25 years and forms a firm base for future 
deve 1 opment and wi 11 use to advan tage new techno 1 ogi es • II 
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1. Introduction: The Machine Organization Concept Study 

The objectives of the study group were to examine the feasibility and 
potential benefit in developing a computer with a higher level instruction 
set. It had been suggested that the high cost of programming might be 
reduced by exploiting the steady improvement in the performance/cost 
ratio of electronic technology. 

From our discussions, additional objectives emerged. Central questions 
were, whether we should rethink the basic concepts for a stored program 
computer, and how to introduce features which would enhance both communi­
cations between man and machine, and reusability of programs. 

A review of the various recent and current higher level machine efforts 
showed that it might be possible to consolidate 25 years of computer 
experience into a new architecture basis, through a re-examination of 
the size of the unit of machine procedure. The instruction, which specifies 
one operation at a time, appeared to be too small a unit; increasing numbers 
of people are writing concise procedural language programs using statements 
containing a number of operators, each of which may operate on an array of 
numbers. 

Several members of the study group have direct experience in the study 
of procedural-language machines. Further, we heard from all the groups 
that we could identify who had ideas in this area. In particular we were 
interested in five such current efforts: the interpretive machine approach in 
Large Advanced Systems, Poughkeepsie; the SO MAC proposal from RO, San Jose; 
the Intermediate Systems FS architecture effort in Endicott; Hursley's 
programming experiment of an incremental compiler for a PL/I subset; and 
the APL/25 machine at Palo Alto Scientific Center, OPO. 

All these efforts were found to have many common features. During our 
discussions a conviction developed that there exist intriguing possi­
bilities for a higher level machine complementing the S/360 - NS series, 
implemented from a fresh viewpoint without too great a departure from 
present computer organizations. 

In order to arrive at an answer to the basic questions of feasibility 
and potential benefit we outlined and discussed such a machine as a 
basis for evaluation, and described it in this report. 

1. 
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2. Current Instructions versus Future Needs 

The first systematic development of computer instructions was published 
. by Burks, Goldstine and von Neumann in 1946, 24 years ago. 

Since then hardware technology has seen three revolutions (transistor, 
SLT hybrid, and integrated circuits), and we are experiencing a fourth 
(large-scale integration). Machine organization also has shown great 
diversity since the von Neumann days. But it is a tribute to his .. 
genius that the basic instruction orientation has continued to this day, 
despite important additions (indexing, floating-point arithmetic, in­
terruption features) and numerous changes of details. The S/360 design, 
foY' example, features many different machine organizations sharing the 
same instruction set~ 

The original computing environment a quarter century ago can be con­
trasted with the present: 

Then 

a} Memory was expensive and small; 
circuitry was expensive, slow 
and space consuming. 

b) Activities outside the CPU were 
infrequent. 

c) Computing was mainly numerical. 

d) Machine time was the most 
precious item. 

e) Users were willing and able to 
conform to machine rigidity. 

f) Programming was mainly done in 
absolute binary (octal, hex). 

g) Machine handles one user at a 
time. 

Now 

Inexpensive and large; 
inexpensive, superfast and small. 

System activity is such that CPU 
is only 30% utilized. 

Numerical work is small part of 
computing; even "numerical" prob­
lems have large data-processing 
load. 

Cost of human effort most important. 

Few users are willing, able to 
perform this contortion. 

Use of procedure languages is 
widespread. 

Many users' jobs handled concur­
rently. 

Stripped to the barest essentials, an instruction in a current machine is a 
quantum of procedure specifying an operation code and one or more addresses. 
Each address locates a single operand, which is a string of bits of fixed 
length with no a priori meaning. The operation code alone provides the 
detailed action on the operands. 

Computing with instructions is characterized by unlimited freedom to use 
operands independent of context; indeed context has no meaning if an 
operand is not currently being referred to by an instruction. Thus it 
is possible to perform arithmetic on an operand, then use it immediately 
as a branch target. 

2. 
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Such context freedom had been necessary when the user had to make do 
with a small memory and very limited hardware; it was literally the only 
flexibility available to him. Instruction modification, for instance, 
once was the only good technique to specify a loop. 

In time, however, machines became powerful enough that the handling of 
things out of a prescribed context is no longer needed, and is being 
consciously avoided as a major potential source of programming error. 

The processing of featureless bits, while practicable for small, static 
programs of short duration of usefulness, ill-suits the dynamic communi­
cation needs in future computing. Procedural languages, such as FORTRAN, 
COBOL, PL/I and APL, are all based on associating meaning to information. 
Complex programs today commonly attach descriptors to information, as an 
interpretive software technique. With expected availability of powerful, 
low-cost electronic logic, this technique can be hardened into an archi­
tecture discipline in which descriptors are usually provided, queried and 
updated dynamically, and are omitted or ignored only when the.meaning is 
understood by the machine. 

Computation proceeds in many stages, program execution being just one of 
these. The most critical stages in the future are probably those connected 
with the human user, including the origination, editing, debugging and 
reuse of programs, also the documentation, filing, indexing and inquiry 
on information. 

The spectacular growth of programming systems software (language processors 
and system control programs), serving as a cushion between man and machine, 
is a major development since von Neumann. They are predicated on the 
assessment of values in the entire computing process, such that local effi­
ciencies may be traded for overall system economy involving hardware, 
software and the user. Despite new added instruction features, the required 
services demanded of programming systems have caused them to grow into 
entities of great size and high complexity. 

As computers assume an ever increasing portion of the complex data-handling 
needs of the human society, the value trade-offs will need to be reassessed. 
Machine usefulness will tend to be judged more and more on (a) the enhance­
ment of human convenience, and (b) built-in orderliness for reducing com­
plexity. It is submitted that current instruction sets may not be conducive 
.to future overa 11 sys tem economy. A cri ti que is found in Appendi x A. 

Essentially, current instructions, aside from having a "context freedom", 
appear to be too small a procedural unit for future needs. They mask the 
true cause-and-effect relationships, demand what has now become unrealistic 
details (addresses, register assignments). They entail the linear address 
restrictions, and require excessive user attention on memory, I/O require­
ments. An array is not treated as a unit of data, though human and hardware 
would both benefit by so doing. 

3. 
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Prograrmners now seldom use instructions." They employ mostly p)"Qced!Jre 
languages and expect the machine to be a rocedure inter reter or a 
virtual machine; The programmer is frustrat whenever the system fails 
to behave as a proper emulator. Poor emulation is practically axiomatic 
with instructions, as context is deformed and information lost in the 
mapping into machine language. As a result, compiling cannot easily 
achieve source language debugging, even with a sizable processing over­
head (500 executions to provide one compiled instruction). Interpreters 
try to maintain the original context but are slow. The expected future 
trend towards interpretation mea.ns that machines should try to handle 
procedure code more directly, and should embody generalized interpretive 
mechanisms. 

4. 
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3. Architecture Highlights of HLS 

The basic theme in HLS (the Higher Level System) is information with 
personality. The aim is to: 

Bring the system to users' level, 
Enhance system performance, 
Exploit technology advantages, 
Establish man/program/machine system communicability, 
Form a new system basis for the 1970s and beyond. 

Highlights of HLS are as follows: 

(HLS) 

1. HLS operates on statements; 

2. HLS references procedures, 
data by name; 

3. Descriptors of attributes are 
held with information; 

4. Attributes are examined 
dynamically at execution time; 

5. Descriptors may be modified 
by operators; 

6. Operators are valid on arrays 
and structures; 

7. Automatic storage hierarchy 
management; 

8. Direct support for operation 
in PL/I, COBOL, APL, FORTRAN; 

9. Executes efficiently a new inter­
pretive language embodying best 
semantic features of the four 
above; 

10. Supports hierarchical control 
structure and asynchronous 
processes; 

11. Performs correct highspeed 
decimal arithmetic; 

5. 

(Contrasted with current systems) 

not instructions. 

not physical location (address). 

not featureless bits with no 
prescribed meaning. 

no proliferation of op codes, 
conversion routines, intractable 
errors. 

no code modification or extra 
data processing. 

no element-by-element looping. 

no static assignment, preplanned 
overlays, explicit hardware 
address. 

no hex dumps, delphic error 
messages. 

no proliferation of language 
interpreters. 

no unbounded freedom. 

no conversion errors, uncertainties. 
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3.1 Statement Orientation 

The unit of machine procedurE! is a multi-operator statement, e.g., 

A = B + C * D 

The statement is a unit of work specified by the user. The exact length 
is not a primary concern, though processing efficiency should be geared 
to commonly used lengths, with a few operators. 

Because of self-described data (Sectio~ 3.2), the detailed specifi­
cation of the action will be associated with the operands themselves; 
the arithmetic operators will be fewer in number, and more generalin 
scope (array operation is automatic, and "mixed-modes" can be accommodated). 
Consequently the statement will be concise and comprehensible to the reader. 

The statement delineates the cause-and-effect of the execution sequence 
clearly. The use of temporary registers for intermediate results is at 
the choice of the system, requiring no effort by the user (who does not 
want to do it at all) or the compiler-(for which optimum register assignment 
is a major unsolved problem). The system can dynamically optimize the 
assignment strategy much better (witness the common data bus on the M9l/l95). 

The omission of intermediate register assignments has other important 
consequences. During the generation of (B+C*D) the operands will not be 
destroyed; nor will A be if the temporary result (say T) is made distinct 
from A. The machine error created by arithmetic will be fully recoverable. 
Only the quantity T would be in error, and it can be voided; the whole 
computation can be retried. 

Usually, the computation needs to be validated only once per statement, and 
interruptions will tend to occur at statement boundaries, allowing meaning­
ful memory dumps and comprehensible error messages. 

The contrast with current processing is striking. The end of every instruc­
tion currently is a potential interruption point, requiring machine tests 
consuming time and/or circuitry. When the interruption does occur, the 
machine has no concept of the user's intentions. The contents of all 
registers (indeed all storage of the user) have to be treated as valid, 
causing elaborate saves and reloads. The interruption performed out of 
user's context often creates error messages unreadable by the user. 

Another important aspect of statement orientation is protection against 
unauthorized branch action. In standard machines every address is a potential 
branch target. A wrongly executed branch can be disastrous. 

In HLS only the beginning of a statement is a suitable branch target, reducing 
the branch error probabil i ty by an order of magni tude. Attempts to branch 
into mid-statement or data will lead to unexecutable situations, and will 
trigger an error signal. 

6. 
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3.2 Self-describing Information 

Information is referred to by names, or machine-assigned identifiers. 
Their use in lieu of addresses bypasses the "linear address" problem. 
Each name refers to a descriptor, the latter summarizes the properties 
of the information and either contains, or points to, the information 
itself. 

Self-description applies to programs, procedures, subprograms, hardware 
features, and branch targets. 

The size of descriptors varies, with a large upper limit. The encoding 
allows the most common types of information to have short descriptors. 
There is an "escape hatch" encoding of a short descriptor, which may point 
to an extension of itself. The design is expected roughly to correspond 
to Huffman encoding: 

best service for most frequently encountered requirements, 
lower quality service for rare occurrences, 
almost open-ended spectrum of service. 

Computation details are based on the descriptors of the operands. Typically 
a data descriptor contains specifications of: 

type (e.g., floating hex) 
structure (e.g., 3 x 15 matrix) 
constraints (e.g., read only), etc. 

Ina dyadic operation the descriptions of the two operands are examined 
for compatibility before the operands are processed. The result is given 
a descriptor appropriate for the computation. Security enforcement, error 
checking, even the monitoring of usage frequency, can be done during 
attribute examination. 

With data descriptors many different formats can coexist and be reconciled 
dynami ca 1 ly. 

Nonnumbers can be accommodated using descriptors, without expending storage 
otherwise. Important ones are, "null" and "undefined ll • 

The descriptors can be manipulated by qualified users (Section 3.3). 
And, although HLS normally handles information based on descriptors, opera­
tions outside the standard context could be an important supervisor function, 
and should be permitted with restrictions. 

Information transmittal includes the movement of descriptors, and is a meaning­
preserving operation. The implications on asynchronous processing are profound, 
and the attachment of meaning to data may be the only rational basis for a 
data-base system. 

The use of names and descriptors instead of direct addresses may seem to 
require an added level of indirection. This level is not needed if the 
information is short enough to fit into the descriptor. Also, this level 
need not be visited a second time in a "lookaside" machine if the information 
left over from the first visit remains valid. For array processing the one 
indirection cost enables the processing of many elements. 

7. 
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3.3 Descriptor Manipulation 

In HLS the manipulation of descriptors can take the following formS: 

a) During computation, the descriptor of the result operand may change 
automatically to reflect the new structure requirement (see Fig. 3.3-1). 

b) Users may inquire about part of the descriptor contents (e.g., what 
are the dimensions of the matrix DOG?). . 

c) Privileged users (e.g., the Supervisor) can read, alter, create, and 
destroy descriptors. 

d) A descriptor may point to another descriptor. Sometimes this is the 
"escape hatch" mechanism to obtain arbitrarily extensible descriptor 
sets; at other times it may be employed to achieve indirection, when 
the descriptor acts like a pointer in list processing. Also several 
descriptors may point to the same object, in principle, to achieve 
synonymy and cross-indexing. 

In structure processing and in data-base systems we tend to deal with 
descriptors for a long while before accessing the data object. Large 
systems in the past have often created internal descriptors to facilitate 
protessing when operands are inaccessible; this is systematized in P. 
Abrams· IIAPL Machine ll , which can postpone execution through descriptor 
manipulation, often reducing large computations to trivia. It is therefore 
expected that HLS will stimulate studies on the representations of objects, 
not just the objects themselves.es. 

8. 
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A Possible Execution of the HLS Statement 

A+B+C*D 

(descri ptors) (data) 

m I B 

I Dc I I C 

W I D 

rn I A Prior to execution DA,A 
mayor may not exist. 

Schematic HLS Action: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

(Note: 

Check DB' DC, DD for data consistency; 
- if inconsistent but comformable, go to fix up 

measure (return to Step 2). 
- if irreconcilable, go to error interruption. 

If consistent, B+C*D is performed,yielding T (say). 

Check. to see if there had been a computing error; 
- if intermittent error, re-try from Step 2. 
- if unfixable error, go to error interruption. 

If no error, create DA' invalidate previous DA,A; 
associate T to DA, T thus becomes A. 

Steps can be made concurrent, and can be omitted 
based on prior history) 

Fig. 3.3-1. HLS Descriptor Orientation 

9 . 
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3.4 Processing of Arrays and Structured Data 

Like the user, HLS views an aggregate (i.e., a data collection) as a unit 
of information, and automatically processes it according to their descriptors. 
The standard array element may be a bit, a character, or a number. Non­
standard elements could be other arrays, pointers, "null", or "undefined ll • 

Users should not have to specify detailed space requirement or dimensional 
information. The operation will be interpretive, based on descriptor 
contents. All else should be automatic, including the adjustment of the 
result descriptors, and creating space to house the result array. 

The success of APL attests to the power and convenience of descriptor-driven 
array processing. 

A minimum array capability may consist of (a) extending the use of standard 
arithmetic operators (defined for scalars) to variable size vectors and 
arrays, (b) concatenation, selective deletion and expansion of vectors, 
(c) conversion between vectors and arrays, (d) generation of named arrays, 
(e) extracting subsets of an array, and (f) obtaining properties of an array. 

A structure (as in PL/I) is an array of possibly dissimilar elements, each 
of which could also be a structure. A payroll file is a structure (character 
strings mixed with numeric data). The full lIexp1osion view" description of, 
say~ an automobile, down to the nuts and bolts would correspond to a large 
complex structure, with well-defined substructures (parts). 

The structure and substructures are processed through their descriptors. 
Typical structure operations involve the generation of structures,attach­
ment/detachment of SUbstructures, and the matching of forms and/or values. 

The dynamic reshuffling of structure forms~ important in engineering inter­
active graphic processing, is not present in PL/I, yet is easy to achieve 
via the HLS interpretive action. The act of replaCing an engine part, for 
example, would correspond to the detachment and re-grafting of substructures. 
The structural details are usually unaffected; the requirement is actually 
one of descriptor manipulation. 

10. 
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3.5 Automatic Storage Hierarchy 

In the past few years it has been recognized that a clear conceptual 
distinction exists between storage and ultimate (source-sink) I/O. 
The latter deals with the world outside the system, and is subject 
to the users' explicit choices of format and the information-carrying 
medium. Storage, on the other hand, is like CPU memory, perhaps in a 
less accessible form. The need is to make large amounts of storage 
as accessible as CPU memory. 

The user prefers to access all backing stores in the same way as 
accessing CPU memory, without expending additional specifications 
which are not only a chore, but a major barrier to program portability. 
The need for uniformly accessible storage hierarchy is well-known, and 
partial success has already been achieved. Especially noteworthy is 
the "cache" buffering technique, exemplified by the M85 and M195. 

The storage hierarchy requirements in the HLS system are dis~inct from 
the others due to the name/descriptor approach. Access in HLS is 
through the names, and the descriptors give meaning to the information; 
this feature extends to the entire storage hierarchy. 

Within the HLS system, format, location and detailed access techniques 
may be changed from time to time. These are not the users' main concern, 
but are automatic system functions. The user treats the entire storage 
as one homogeneous CPU memory, accessed uniformly via names. 

This way meaning is preserved as information is displaced from one 
echelon to another. Bit configurations, on the other hand, need not 
stay fixed; they can be altered reversibly to reflect the detailed 
trade-off between information density and remapping cost. Automatic 
data compression for archives is definitely permitted, accompanied by 
an appropriate descriptor. As archival material moves toward the CPU, 
reversible decompressions can occur somewhere along the path without 
necessari 1y any performance penal ty. . 

Examples of data compression are: (a) recoding of decimal digits from 
8-bit characters to 4-bit characters, or to 10-bits for three characters; 
and (b) full textual data compression using Huffman encoding. 

Members of the storage hierarchy should have logical autonomY, which 
for larger systems may become true physical local autonomY; each echelon 
being served by a powerful, yet inexpensive, controller device. It now 
becomes possible to have a form of "vertical" division of labor: simple 
processing can be done by the local controller far from the CPU, avoiding 
staging penalties. An example might be the simple updating of a payroll 
file. 

Still another technique is to update the descriptor, but postpone 
detailed action, thus avoiding both staging and untimely processing. 

11. 
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3.6 A Programmable Machine Language 

The HLS machine language should allow the full control of pertinent machine 
facilities and be easily decoded and executed by the intended machine. It 
further must be a programming language in its own right, dealing with names, 
descriptors and multi-operator statements. 

Moreover, we expect the HLS language to contain key features of FORTRAN, 
COBOL, PL/I and APL. These four languages are extremely important in the 
computing community, and exhibit diversitl as well as commonality. A 
"semantic union" may be large, unmanageab e and possibly not self-consistent. 
The HLS language is required to be a concise language into which the above 
four can be mapped with little information loss, and (with the help of tables) 
with full recoverabi1ity (see Fig. 3.6-1). 

Other primary production programming languages, notably RPG, LISP and ALGOL, 
can be handled easily, using either interpreters or compilers written in 
the HLS. language. The latter thus behaves like a language funnel or a common 
language interface to the machine, capable of dealing with current languages 
as well as new languages yet undevised. Further, current machine languages 
(such as S/360) can be emulated. 

It would not be possible to define such a language but for the descriptors, 
which can tolerate format differences, and can form the basis for generalized 
int~rpretation. 

The common major languages do not satisfy the requirements of this kernel 
language; the descriptor concept tends to be underexp10ited, and system 
control functions are minimally provided. APL does have descriptors, is 
concise and decodab1e, and handles arrays admirably. However, system 
control is still largely unspecified, and certain well-regarded features 
of PL/I, COBOL and FORTRAN are absent. 

We hold the opinion that the correct HLS language can be formulated, and 
this ;s a subject of the highest urgency. 

HLS as a machine system is to be a faithful procedure interpreter of the 
four languages. The user who submits programs in those languages can expect 
debug messages, dump and error fixups in source language terms. Source 
language data formats will be honored; this is possible because of data 
descriptors. 

A simple consequence of the multilingual nature of HLS is that programs in 
different languages can be linked and executed together despite format and 
syntax inhomogeneities. 

12. 
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APPLICATION PROaL-EMS 
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3.7 Structured Control 

HLS uses the same language for both procedure and control. This 
has been successful in simple language systems, and should extend 
to this general context. Every (or nearly every) statement should 
be usable as part of a procedure specification or as a command. 

The language should include systematic handling of cumulating con­
dition indicators, editing statements to control source text, 
command features for interactive computing, and system control features 
such as suspending or restarting program execution, breakpoint control, 
storage hierarchy management, exception handling, supervisor functions, 
diagnostics, and communication aids. 

The language should specify clean interfaces for the initiation, 
monitoring, and termination of asynchronous functions. 

Hardware units behave like asynchronous functions, and should be handled 
on the same basis and be nameable. Their descriptors can furnish infor­
mation about the hardware tunction, and this way we can achieve self­
declaration for processing units, storage extension units (disks, tapes, 
etc.), I/O units (printer, etc.), and communication equipment. 

User-defined functions should have the same syntax and execution environ­
ments as built-in arithmetic operators. Special functions may demand a 
special environment, and language features should be found to permit this, 
leaving little trace of the host environment and yet retaining the 
capability to monitor the process. The system is expected to be a 
generalized interpreter apparatus providing orderly transition of asyn­
chronous decentralized control. 

It is expected that the HLS features cumulatively form a basis for a 
new pervasive system architecture, unifying the handling of hardware, 
software and user requirements. This is seen in the preservation of 
meaning (name orientation, self-defined information), choice of units 
(statements, arrays and structures), monitoring of paths (descriptor 
handling, interpretive action), deployment of resources (device inde­
pendence, asynchronous control) and the scope of the HLS language. 

The total operational degrees of freedom within this architecture will be 
significantly fewer than in the von Neumann machine. Yet each allowed 
channel of action tends to be more meaningful, more orderly, less error­
prone and will be backed by the total system resources. 
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3.8 Decimal Arithmetic 

In the pas~ quarter century we have tried to get people to use numbers to 
the base 2 , n = 1 for binary and 4 for hexadecimal. 

This attempt has not proved successful. Decimal notations, traditional for 
millenia, continue to predominate. Practically all procedural languages 
now use decimal input and output. Some languages (like COBOL) demand 
decimal arithmetic internally; most, however leave the internal radix 
unspecified, which most implementers have chosen to be a power of two. 

The conversion between two radices creates errors (1/5 is exact in decimal, 
but not in power-of-two radices), which become "apparent bugs" in the users' 
program. (The tolerance of these apparent bugs, on the other hand, may 
leave genuine bugs undiscovered.) 

The reason for choosing power-of-two radices was once efficiency, now it 
is mainly compatibility with the immediate past. 

Arithmetic units in most machines today are but a small fraction of the 
total system, and their performance is seldom the bottleneck to computation. 
The choice of radix is no longer a basic issue for system efficiency or 
economy. 

Indeed the implementation of decimal arithmetic on binary circuitry can be 
more efficient than 2n-radix and more LSI adapted, by going to a redundant 
number representation, exploiting the extra code points in each (4-bit 
encoded) digit. This is the subject of a working paper (Section 9.1). 
The best system now seems to be one with 12 states (0 to 11) per digit. 

The new representation allows computation on an independent digit-by-digit 
basis, without carry propagation chains or long carry-lookahead wiring. 
Highspeed arithmetic units can be highly modular, and add time will be 
independent of word length. Additions can proceed from left to right, 
obtaining early overflow indication, avoiding back-and-forth sweeping. 

The capacity loss in the decimal notation can be redressed by mapping 
reversibly into a base-1000 system for archival storage, coming to within 
2.5% of binary efficiency. The format change can be indicated in the 
descriptors. 

In HLS decimal arithmetic should be emphasized. Power-of-two radix 
arithmetic should also be available for compatibility. It must be stated 
that bit pattern manipulation is not a problem for arithmetic, but a logic 
function for arrays, and will become easier and more powerful in HLS. 
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4. Qualitative Advantages of HLS 

A 1 
..,. I 

It has been em'phasized that HLS seeks to retain the personality that 
informatipn nonnallypossesses when itis outside the machine, and avoids 
flattening it into featureless bits, as has generally been the case since 
von Neumann. " 

Important advantages should result; these cannot be properly quantified 
today, but would appear to lie in the following mainareas: 

a) machine efficiency 
b ) programmab i 1i ty 
c) protection of system and user 
d} system advantages 

It is essential that the realizability of these potential values be tied 
down as quickly as possible. 

M"''''h';''''o 1:'.,:'.(:';,.;0."",,,\1 'au""" ......... '-I' Iw Iw ....... J 

HLS requires special emphasis on associative hardware techniques for 
table management, variable field-length data handling and simultaneous 
testing of sets of data. The systematic LSI arrays have memory-like 
characteristics, and will be well-exploited here. 

) 

Some HLS features benefit machines of all sizes; these include the 
elimination of array processing decode overhead, reduction of interruption 
tests, better error control, freedom from linear address constraints, 
shorter codes, and sharp lowering of compiling cost and software overhead. 

In addition, HLS should offer particular efficiency advantages to "large" 
and "smal'" machines. A typical small machine today has a narrow data 
path (8 or 16 information bits), microcoded writable control store, small 
memory capacity and limited I/O. An example is the S/360 M25. 

A typical "large" machine is exemplified by the M195. It has CPU con­
currency, branch/storage antiCipation, word-length insensitive processing 
power, large memory and extensive I/O. 

As computer designs continue toevo1ve,the distinction between the two 
classes may disappear. An HLSfeasibility study may even accelerate this 
process. 
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4.1.1 Large Machines 

On large machines the direct use of HLS, or the interpreting of procedural 
languages on HLS, should be highly efficient. There is reason to believe 
that to these machines, instructions are an unnecessary understructure; 
their removal would eliminate bottlenecks. 

A very large machine often devotes part of itself to manage the resources 
at hand, to achieve self-optimization. This is difficult for the instruc­
tion-oriented machines, but is easier for HLS. 

There will be no intermediate result register fixations in the procedure, 
and the entire storage hierarchy, including registers, can be brought under 
system control. Full pipelining becomes a more common occurrence. Array 
processing allows the system to reserve equipment in advance to exploit 
repeti ti ons. 

For large arrays, memory requirements are not based on access, but bandwidth. 
It is reasonable to put most of the arrays on a slow but wide memory, which 
can deliver a "line" of many consecutive words at the same time, with ex­
cellent bandwidth when all or most of the words are needed. 

Descriptor handling can take place concurrently with arithmetic, without 
slowing down the latter. Lookahead/lookaside mechanisms permit bypassing 
the pointer mechanisms for often-used information or often-invoked procedures. 

The system can adhere to the human-oriented causality chain contained in 
statements, and thus remove bottlenecks arising from the previous need to 
examine every instruction for conditional branch or interruption. Inter­
ruptions will be fully recov.erable if the storing of the results is pre-
ceded by a tes t • . . 

There are new possibilities for HLS efficiency. It is possible to "crack 
tokens" in a procedural code at the rate of one token per CPU cycle or 
better, using memory chips and. associative techniques. Also there is a 
new way to do multiple adds at 4 words/CPU cycle or better, using array 
logic. Another item is "associative search for match". These actions, 
involving operands of unspecified length or multiple operands, are hard 
to specify using instructions. 

The user of HLS need no longer lay claim to large tracts of memory for 
possible data insertion; he. simply gets what he needs. The memory hierarchy 
is efficiently used, and multiprogramming on a large scale becomes more 
meaningful. 

For large machines self-autonomy of major units is the key to performance. 
With self-described information, the parcelling of workload to subprocessors 
becomes more well-defined, more efficient, and less risky. 
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4.1.2 Small Machines 

At the othe.rend' of the scale, a smaller machine views theSl360instructions 
.as an unneeded superstructure. Direct interpretation of p.ro-cedural language 
code in microcode "cuts out the middleman", so to speak, and enables a higher 
degree of effi ci ency • 

Small machines often have narrow data paths (8, 16 bits), which lend them­
selves naturally to character string processing. Thisi.s typical in 
procedure languages, especially with the assistance of new LsI hardware. 
"Token cracking" at one character per cycle is an instance • 

. Asan illustration of these points, work just completed in Palo Alto 
indicates that a 5/360 M25, interpreting APL qirectly in microcode, performs 
roughly at a par with the much costlier 5/360 M50 APL system using S/360 
instructions. The M25 is 25 times faster in syntax analysis (100 microseconds 
per token vs. 2500 in the M50) and its APL performance is 1 imited only by 
arithmetic speed. 

Micro~instructions depend heavily on hardware details, and do not form an 
adequate basis for architecture. However, the emulation of instructions 
by microcode requires, in effect, the normalizing to S/360boundary con­
ditions at the end of every S/360 instruQtion. The emulation of the HLS 
procedures would require normalization only at statement boundaries, sharply 
reducing red-tape action. 

In small machines the instruction decoding cost is often high. With 
array processing, one decode can serve many useful arithmetic operations. 

Memory is in critical supply for a small machine. We expect HLS codes 
in general to occupy less space than S/360 codes. It is pertinent that 
the users will n,ot be forced to overclaim territory; dynamic data handling 
suppl ies the users I needs. Storage hierarchy, at the very least,. should 
allow larger programs to be run, allowing multiprogramming on a modest 
scale. 

The small machine user of the past has had to be resigned to slow processing 
of one-shot jobs. Even with compile-and-go techniques, such jobs have been 
compile-bound. With HLS the compile cost will be revised sharply downward, 
and the quality of the computing service improves because of the interpretive 
nature of the system and debug facilities. 

A possible penalty is the data descriptor manipulation cost for scalar 
operands. It is hoped that this can be avoided by added hardware count, 
new hardware, and/or better microcode. In any case, this overhead should 
generally be lOwer than the S/360 emulation overhead for the small machine. 
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4.2 Programming 

The need for programmers is steadily increasing, while the average prior 
computer training per programmer declines. There is a critical need to relieve 
the programming problem, by making the machine more human-oriented and hence 

l more useful. The problem has two facets: (a) the problem solver and (b) 
the systems programmer. 

4.2.1 HLS and the User 

HLS is believed to be well-attuned to human needs, and is expected to 
greatly enhance programmer productivity and the quality of programming. 
This is not only because HLS handles procedure languages (many software 
systems also do this), but because it is expected to handle them faithfully 
and efficiently. This is possible only with hardware support. As a result 
standards programs should run faster, with fewer bugs and better debugging 
aids. Interactive computing turnaround will greatly improve. 

In addition, the HLS machine language is in itself a comprehensible procedure 
language, capable of generalized interpretation, control of machine features, 
also flexible array and structure processing; these should have a major 
favorable influence on the future scope and effectiveness of programming. 

The storage hierarchy allows name-oriented computation to proceed with 
little regard for program size. Computing techniques which have not 
been popular due to the space and time costs, can now be reconsidered. 
In particular, dynamic structure manipulation and descriptor processing, 
in conjunction with storage hierarchy, will lend impetus to the handling 
of representations of objects. Examples are list processing, graphic 
processing and information retrieval. A closely related field is simulation, 
which is further assisted by the generalized interpretation capabilities. 

The dynamic management of resources using descriptors allows the systematic 
debugging of programs, changing array sizes and format with each rerun, to 
selectively test different aspects of the program. 

Potentially of the highest importance for programming, but not as yet 
well understood, is the effect that HLS could have on program reusability. 

From the earliest days programmers have attempted to bring about a situation 
in which the borrowing of program material, rather than the oririnating of 
it, is paramount. These ideas have found expression in the bui ding up of 
libraries of program material, and in the idea of macro-processors. The 
limited success which these ideas have found (for most program material is 
still originated, not borrowed) is at least partly due to the ultrasensitivity 
of present-day systems to inhomogeneities which might exist in program-program, 
program-data, or program-machine interfaces. Almost any such abnormality is 
sufficient to prevent or invalidate execution, and in the borrowing mode 
such abnormalities are of course expected. 

One route out of the difficulty lies in the development of tolerant systems 
which can bridge differences in machine configurations, data types, formats 
and programming languages, and compensate for minor errors. Through its 
data-descriptors and interpretive mode of execution, HLS takes a forward 
step towards the combinability of programs. 
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4.2. 2, Systems Programming and Comp lex Programs . 

The' HLS hardware .machine already ts la;gely'a high leve.lsYstemo; , The 
requirements of system . software ,are expected to bemuche,asierto satisfy 
than in ,other maChines. Further, the powerful interpretive processing, 
formal iied asynchronous contrQ1, better protection, all contribute to 
simplifY the software programming using the HLS language directly. 

The language processor creation will concentrate on the detailed support 
of the four selected 1 anguages (FORTRAN. PL/ I, COBOL, APL), and fad 1 i ti es 
to map other languages into HLS. 

The system control program (SCP) will provide human interfaces, interactive 
command language handling, resource allocation and accounting, input/output, 
teleprocessing, also other facilities for multiprogramming and multiprocessing. 
Under the new structural discipline, the size of SCP for HLS is expected to 
be a fraction of OS/360 size, requiring far less programming effort. 

It is believed that not only the HLS systems software but large complex 
programs in general will benefit by HLS features. Examples of complex 
programs are: 

simulation programs 
transaction programs (e.g., SABRE) 
design automation programs 
art; fi ci ali ntell i gence programs 
information retrieval - data base programs. 

Some of the HLS advantages have already been given (Section 4.2.1). 

All large complex programs can gain from the unrestricted symbolic 
addressability afforded by the storage hierarchy. No overt filing/ 
swapping effort is needed. 

Systematic control of asynchronous processes is explicitly required in 
many of the complex programs. In HLS the ability to treat autonomous 
units as a subroutine will be a powerful technique for sep, transaction 
programs and simulation. 

Interpretive processing using descriptor-like objects is a natural 
technique to delineate orders, preserve tractability and facilitate inter­
change. For language processors the generalized descriptors are symbol 
table entries or dictionary entries, containing the names and attributes 
of language variables/structures. For system control programs the control 
blocks are the descriptors, describing the states and interrelations of 
system variables (logical and physical resources, units of control, etc.). 

HLS hardens these software schemes into a systematic architectural disci­
pline, and should result in better economies, protection and efficiency. 
Problems with much higher complexity can now be handled with greatly 
reduced risk. 
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Current complex systems:t especially programming systems, tend to have 
a high density of conditional branch occurrences. The HLS-supported 
procedural code will permit recasting entire networks of these con­
ditional requirements into memory-like actions, in effect permitting 
modelling in terms of finite-state machines. An opportunity thus presents 
itself to bring formal computer science techniques to bear:t imposing a 
systematic discipline from the outset, with prescribed global behavior. 
This can prevent "I didn't think of that combination" bugs. Finite state 
machines as formal models may also be a basis for rigorously proving 
required properties of system components. 
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4.3 Protection of System and User 

Th,ecritical avai labi li ty.of Field Engineering reSQurc;es, and the 
increasing complexity of computing tasks,demand high reliability, 
availability and serviceability in future systems •. The latter should 
be less prone to failures, should be resilient in the face of errors, 
and further should make errors more localized, less propagable, more 
tractable and easier to correct. 

HLS goes a long way along these lines, by enforcing an integrated system 
architecture discipline, instead of relying on user self-restraint, soft­
ware techni quesand add-on hardware features. 

The descriptor-driven processing leads naturally to a hardware-implemented 
sel f-moni tori ng system. Mi sd.irected occurrences, usually uninterpretabl e, 
automatically triggers the supervisor control. This error monitoring . 
requires no overt testing action by the decoding control, and has no extra 
timing overhead. 

For instance, if A is a standard matrix of 3 rows and 4 columns, then 
A(l), A(5,2), A(1,2,3) elements do not exist. A(3,4) is a valid element, 
but A(4,3) is not. The operation (A+B) has no meaning unless B and A 
obey rigorous compatibility rules. Branching into A, like branching into 
mid-statement, makes no sense. The importance of these meaning-dependent 
checks are seen by their current availability as software features, despite 
the consequent sacrifice of both program conciseness and execution 
efficiency. HLS would just treat these cases as exceptions to normal 
processing, and alert the supervisor. The self-monitoring applies equally 
to hardware malfunction, software failure and programming bugs. 

Catastrophic propagation of mishappenings tends not to occur at all in 
a meaning-controlled environment. The supervisor (with software help) 
can usually identify the error cause, and notify the user in meaningful 
terms, and take appropriate countermeasures. 

The automatic storage management and systematic asynchronous control both 
lend resiliency to the HLS system. Faulty devices or memory areas of known 
error occurrences can be bypassed, and the entire collection of hardware 
boxes can be dynamically reconfigured. The workload will be equitably 

. shared by components of the new system. These features enhance asynchronous 
multiprocessing, which in itself is a major means to achieve RAS. 

The system, together with the control capabilities of the procedural machine 
language, can influence diagnostic programming towards self-diagnosis, self­
correction and interactive maintenance. 

Through the descriptors, each piece of named information can be independentl,y 
checked for accuracy and protected for security. Therefore selective emphasls 
can be applied on important programming material. A new opportunity arises 
to replicate important items and file away copies for safekeeping; the 
original descriptor can record the existence of duplicates. 

For the purposes of security, especially in a multiprogramming environment, 
descriptQrs can be selectively locked to ba.raccess (read, write) from users 

. wi thou t proper passwords. Thi s protecti on scheme can also be dynami ca lly 
altered. .' 
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4.4 System Advantages 

The advantages of HLS as a system are seen in the following aspects: 

Improved performance per user dollar, 
Influence on IBM costs, 
Communicability, 
Future processing. 

4.4.1 Improved Performance per User Dollar 

The total dollar outlay to sustain a typical current installation is divided 
into three roughly equal components: system rental, application programming 
cost, and installation operation cost. The CPU rental for a typical M65 
installation is about 20% of the systems rental, or less than 7% of the total 
cost. 

Therefore, if the projected LSI is used in the obvious way to reduce only 
CPU costs, the benefit to the user will be minor, and the value to IBM is 
uncertain. The more rational way to maintain IBM growth and to leapfrog 
the competition, is to adapt the new flexibility of hardware to enhance the 
overall economy of the user. 

By increasing programmer productivity, reducing operation overhead and 
exploiting non-CPU equipment more efficiently, the user's total outlay 
will decrease and a larger fraction of the user's dollar will be channeled 
into IBM revenue. 

For examp1e, the price of the CPU is equal to 1/5 that of programming. It 
would be worth doubling the CPU price if the user's programming cost is 
reduced by 25%. 

The programming improvement through HLS is expected to be very significant 
{Section 4.2.1-2}. The programmer can concentrate on problem solving, unencum­
bered by the previous lack of rapport between language and machine. Even 
for languages outside the five official ones, it will be far easier to 
construct efficient interpreters. The programmer shortage will be alleviated 
as programming output is enhanced in quality and quantity. 

The HLS software overhead will be very low; excellent turnaround and better 
throughput are expected. Currently the· CPU is only busy 30% of the time; 
the rest of the time is spent in "1/0" and "wait" states. With hardware­
assisted system control (Section 3.7) one expects much higher overlap and 
fewer artificial interlocks. Non-CPU equipment, currently costing 3.5 times 
the CPU, can expect to be much better utilized. 

The system is better self-checked and is easier to maintain, tending to 
create fewer machine-room disasters. Software maintenance and updating 
will be simpler and non-obtrusive. The activity known as SYSGEN, which 
establishes the correlation between the machine configuration and the 
software, formerly takes hours to compl ete; with HLS sel f,;.decl aration of 
asynchronous units this should be materially simplified. 

There will be transitional problems for the users of standard machines 
to change over to HLS. The path is made smoother in three ways. First, 
HLS is procedural language compatible, especially concerning FORTRAN, COBOL, 
PL/I and APL. Secondly, S/360data formats will be honored by HLS. Further­
more, the machine will be able to emulate S/360 or NS in detail. 
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4.4.2 IBM Costs 

HLS probably represents a si zabl e increase ofcircui t count. Thi s 
should not mean a proportionate increaseof,CPU cost,asotherfactors 
(packaging, power supply, software) need to be considered. 

With LSI the circuit count may not even be a measure of circuit cost. 
High density regular arrays with low interchip connections, typified 
by memory chips and associative logic, tend to cost less and be more 
efficiently packaged than "random10gic ll , with a much higher inter­
connection/circuit ratio. The flexibility in HLS requires IImemory-1ikell 
circuitry, and LSI advantages will be well-exploited. 

Software development and maintenance costs are an important part of the 
prorated system cost to IBM. With the HLS machine already at the 
procedural language level, the software costs will decrease (Section 4.2.2). 
The delivery time lag between hardware and software, heretofore a factor 
difficult to control, will be noticeably narrowed. 

The HlS system being inherently reliable (Section 4.3), Field Engineering 
maintenance cost will be lowered, reducing further IBWs cost for providing 

. the. sys tern to users. 

4.4.3 Communicability 

Computer systems are handling the needs of an increasing1y large segment 
of the human society. The latter, at the same time, is becoming 
increasingly complex due to a large measure to the ever-increasing need 

. to cOlTlllunicate, and to interact across boundaries. . 

In HLS information and its descriptor form a self-defined entity, and 
information transmittal is a meaning-preserving process. In this way 
communication is put on a formal, new basis. 

For man-to-man and man-to-program communication, HLS offers comprehensible 
code, self-documented data, and selective security enforced through des­
criptors. For program-to-prorram interaction, HLS offers the prospect of 
combinability, through an abi ity to reconcile minor differences without 
enforcing a unique language convention. For program-to-machine cOlTllluni­
cation, HLS offers faithful interpretive execution, easy reruns with 
altered formats and memory requirements, and program transferability 
despite configuration differences. HLS offers a generally higher quality 
man-machine interface, featuring the procedural machine language (Section 
4.2). For the machine-machine interface, HLS aims to enforce a system 
di sci pl ine across all hardWare/software 1 i nkages (Section 3.7). . 
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4.4.4 New Techniques and New Applications 

HLS will give new impetus to interacting computing, list processing, 
language processing, graphic display handling, and is a good vehicle for 
practicing multiprogramming and multiprocessing. 

IBM has identified the class of data-base applications as a promising 
class for growth; HLS offers direct hardware support for several important 
requirements, and should prove to be a natural vehicle. 

From the start, HLS aims at a simple, device-independent method of accessing 
information throughout the storage system, via names and descriptive material 
rather than ri gi d addresses. The use of descri ptors promotes automatic data 
compaction for low-usage archives, and leads naturally to the handling of 
representations of information. These features, plus the ability to handle 
structural or textual material interactively, are key to the data-base 
problems. 

Another possible new application area is the large shared system, which 
practices multiprogramming on a vast scale, overcomes geographic limita­
tion, and averages out peak usages of a multitude of users. The basic 
requirements are communication in a complex processing environment, and 
asynchronous multiprocessing. 

Bo,!:h the data-base system and the large shared system call for meaningful 
security of RAS, and a major common concern is the construction of adequate 
software to handle the complex environments. HLS has provided for these 
requi rements • 
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5. Feasibility and Practicability 

We have thus far given only stronr indications of the architecture advantages 
of HLS. The full definition of H S has not been made; and there is as yet 
no proof of feaSibi1itl nor detailed evaluation of practicability. All these 
are beyond the scope 0 the present short-range study, and.depend on 
follow-up efforts in the future. 

HLS has far-reaching implications on virtually all aspects of computing, 
including language specification, CPU organization, storage hierarchY and 
human interface. As a completely new coherent system, the combined 
merits of the HLS characteristics are believed to greatly exceed the sum of 
the individual points. By the same token, a local failure in handling one 
of the aspects may severely compromise the worth of the remainder. 

The study of HLS feasibility and practicability is handicapped by both the 
sheer magnitude of the problem and the paucity, to date, of detailed 
specifications. While we view the architecture to be feasible and advan­
tageous, one must settle the questions by actually trying to define the HLS 
language, construct prototype hardware/software and test under realistic 
environments. This calls for an exploratory program-ra5ting several years, 
engaging quality personnel. 

This exploratory program very probably will succeed; but it might also fail. 
It is not free of risks. 

) 

There have been numerous studies on higher level language machines, both 
within and outside IBM (Bibliography, Section 9). Many HLS features 

. already exist in current software. Actual microcode emulation of higher 
languages has been achieved, notably in Endicott ("Euler" on M30), 
Boeblingen (RPG on M20 submodel 5) and Palo Alto (APL on M25). All these 
efforts give encouraging indications of feasibility and potential worth, and 
at the same time point to the non-trivial nature of the HLS study. 

We recommend that the HLS study be launched with adequate resources, as soon 
as possible. Either it will demonstrate the basic soundness of concept, 
quantify the application range and produce prototype machines; or conversely, 
(and in our view improbably) it may give an early proof of infeasibility. 

We have studied alternative schemes and partial measures, but take the 
position that HLS (if feasible) is superior to any of these, and NS can 
provide the needed time buffer for the HLS study. 

The program can cover aspects of both large and small machines. By a small 
machine is meant one with 8 or 16-bit data width, writable control store and 
"microcode". By a large machine we mean one with CPU concurrency, branch/ 
storage anticipation, and word-length insensitive processing. The M25 is 
thus a small machine, and the M195 a large machine. It is entirely possible 
that "large" and "small" properties may reside in the same future machine. 
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Reasons for considering these two classes of machines initially: 

a) There are a priori advantages to implement HLS for these machine 
classes (Sections 4.1.1-2). 

b) The "study cycle" on small machines is short enough that major 
redefinitions can be contained with low risk and minimum time loss. 
Indeed there can be two kinds of redefinitions: remicrocoding, and 
rebuilding the entire hardware. 

c) Small machines can probably find a ready, profitable market segment 
implementing a subset of HLS architecture. 

d) The importance, magnitude, and complexities of data-base system problems 
call for large HLS system study. The same is true for large shared 
systems and computer utility. 

e) LSI is expected to be particularly advantageous for "large" and "small" 
systems. 

In the exploratory program the most crucial aspects are: 

a) the consistent definition of the HLS language, including both data 
handling and control; and, 

b} implementation feasibil ity as a hardware/software system . 

. Both require. special emphasis in order to obtain early answers of feasibility. 

Next come the questions of a lower urgency, but which are needed to delineate 
the role of HLSin the market: 

c) range of applicability and projected economy (which markets? which type 
machi nes?); 

d) usefulness in new markets (e.g., data-base systems); competitive edge in 
the mid-1970·s. 

We feel that the system will be feasible and will make economical sense for 
a 1 arge segment of the future market; we actually expect HLS to prove 
competitive even in general purkose computation of the future, not just 
limited to interactive-type mar ets. 

It is ,expected that concurrent to the HLS study, related study projects in 
data-base systems, large shared systems and·storage hierarchy will take 
place regardless of HLS interests, furnishing valuable data to the HLS study. 

The study, if feasible, naturally may evolve, as a byproduct, entire low-cost 
machine systems or at least new microcodes for known systems. "Large" systems 
can benefit from the "small" system construction effort. In both cases the 
study cannot be considered complete until prototypes are available for measure­
ments. However, questions of feasibility will probably be answered long before 
this time. Measurements and projection for future worth must be based on 
entire systems, including system efficiency, progranmer productivity, user 
installation management, and RAS. 
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6. Conclusions 

The study has led to the belief that. it is indeed feasible to move the 
machine/user interface from the original machine instruction level up 
to the level of general purpose programming languages. 

Our views have been strongly influenced by reports from, and visits to, 
two pi lot study projects •. The Palo Alto Sci entific Center demonstrated 
APL/25, an APL machine microprogrammed on the M25. The Advanced Pro­
gramming Study Group at Hursley studied the construction of a PL/I 
incremental compiler using functional memory. 

During initial measurements for array processing, APL/25 ran at half 
the speed of the corresponding FORTRAN-compiled code, not counting the 
very severe compiling overhead in the latter. The microprogram is being 
improved, and should lead to an overall speed one-third that of assembly 
code, and 40 to 50% of compile code for programs conveniently expressible 
in FORTRAN. In the "unimproved ll state APL/25 is already comparable to 
the Yorktown APL/360 interpretive system, coded in S/360 assembly 
language, using the much faster M50 machine; the syntax analysis part 
turned out to be fully twenty-five times faster. 

Though not to be equated to the HLS language, APL embodies many basic HLS 
requirements (names, descriptors, dynamic arrays, interpretive handling). 
The Palo Alto study indicates that even with a machine not designed for 
the'task, the direct emulation of HLS can be very rewarding. The various 
reports on the programming efficiency using APL (completion time reduced 
by as much as 90%, comparing with assembly coding and often even with 
FORTRAN programming) also indirectly comments on the programmability of 
the more general HLS language. 

The Hursley study showed that judicious use of functional memory can have 
a ten-fold advantage over a conventional machine in syntax scanning 
and associative logic, reinforcing our belief that the HLS interpretive 
handling will exploit the memory-like character of inexpensive LSI. 

In any case, the HLS cost should be offset by the greater efficiency in 
treating arrays and structures, greater programmer productivity, and 
better protection of system and users even in complex environments. 

We believe the proposal systematizes the hardware/software of the computer 
system to a greater degree than has been achieved. The overall consistency 
will make the system much more tractable and will greatly reduce IBM system 
programming. The new interface can further allow the convenient handling 
of current and future programming languages. 

The ultimate result should be a computing system working directly with 
its users in a common language that is simpler, less costly, more efficient, 
more reliable and better adapted for continued growth. 
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7. Appendix A: A Critique of Current Instructions 

The following is a critique of current instructions in the light of 
current and projected future needs. 

a) Infonnation without a priori meaning. The concept of a "floating 
point number il , for instance, does not exist except as the operand 
of a floating-point arithmetical operation. The same quantity, if 
referred to as the target of a branch instruction, behaves like an 
instruction. The total freedom to treat the same quantity as 
entirely different things in different occasions was once a 
necessity when machines were otherwise inflexible and memory was 
small. The very same freedom has now been identified as a major 
source of programming bugs, and is conscientiously avoided by 
prograrrmers. 

A characteristic of most procedural languages if the attachment 
of meaning to data, yet machines still persist in attaching 
meaning to actTOnS. So to speak the machine favors the use of 
adverbs (modifiers of verbs) yet the procedure languages '(and 
human users) favor the use of adjectives (characterizers of data). 
This dichotomy runs deep, and is the main reason for the current 
difficulty in communication between man and machine. 

The adjectival technique is more proper because information has 
meaning even when unused. 

Data loses meaning whenever separated from the instructions using 
it~ This certainly happens when data is transmitted; but worse, 
it even occurs from one instruction to the next. As it stands, 
therefore, data cannot be shared and be understood without special 
artifice, and analysis of machine and/or program errors is extremely 
difficult. 

b) The machine maintains the fiction of an address despite repeated 
maaPings. The compiler maps the user1s symbolic names into 
ad resses, then the relocation loader, the dynamic storage allo­
cation mechanism, and (for large machines) the high speed memory 
buffer each map from one address to the other, treating the prior 
address as a~. The 1 as t mappi ng, by the memory buffer, is 
not even unique, yet is the most useful. IBM has unique know-how 
to exploit buffering techniques down to small machines, and thus 
true physical address assignments should be.st be left to real­
time hardware . 

c) The finite, linearly addressed memory. The total CPU memory is 
limited,and the addresses form a vector of sequential integers. 
Thus a unit of data is hemmed in by the left and right neighbors, 
and insertion (say to produce a longer vector) is virtually im-
possible. In practice users tend to claim "enough territory" to 
minimize insertions,at the cost of poor memory usage. The 
inflated clailT1s, in turn, make multiprograrrming unrewarding. 
Users also perfonn memory overlays, specifying several different 
uses of the same area. These require conscious programming effort 
and lead to debugging complications. "Paging" and "segmentationll 
are attempts to create a large "virtual memoryll mappable onto the 
CPU memory. 
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d) Unnatural register assignme.nts. The compiler management .of 
registers apparently is nota perfected art, much· less a'science. 
In S/360, the distinction among XR/BR/GPR is not clean, and the 
separation of GPR from FLR, on hindsight, is too drastic. Because 
of operand 1 engths , several XRs often are needed for the sa.me 
notion (say 7: 7 bytes, 7 half-words,. 7 words, 7 double words are 
four distinct things, each calling for an index register or equiva .. 
lent action). 

For GPR and FLR, Model 91 and 195 experience shows thatpipelined 
machines would prefer not having to specify intermediate registers 
(which adds more bottlenecks to the processing and increases in­
terruption restore burden), but rather to execute the procedural 
language statement directly. In smaller machines II registers ll are 
just standard memory, addressed differently; the specification 
of registers does not imply extra efficiency. Actually, registers 
are just one more form of storage whose management is most meaning­
ful when done by hardware during computing real-time. There is no 
need to limit the number of registers; seldom-used ones can be 
placed in slower memory. 

e) Loss of causality information. Traditional instructions form a 
distinct unit of machine processing. In compiling, the causal 

f) 

chain explicit in procedure language statements is broken up, with 
each piece capable of becoming a branch target. The follower of 
machine code may, with difficulty and some luck, divine the execution 
sequence starting from a certain instruction (say A); but he cannot 
decide, short of reading the entire program from top to bottolTl, the 
predecessor of A, even in the absence of machine error. 

Every instruction is a potential branch point or interruption point, 
until proven otherwise. Large machines often have to expend hardware 
for such eventualities. The M9l (M195 too) takes great pains to 
reconstruct causality, literally undoing the compiling process and 
reverting to the procedural code. 

Instructions do not enhance reliability or securit~. The adverbial 
orientation detaches meaning from data, and is ina equate to guard' 
against error or security breach. Errors may compound themselves 
into unmanageable and intractable situations; a single branch error 
may initiate a sequence of destructive random walk. 

g) Most instruction sets do not have array 0terations, yet an array 
is a well-defined unit of information to he user, and capable 
of being so in a machine. Pipelining in large machines needs array 
operations, and all machines can take advantage of the reduced 
decoding overhead. 

S/360 has some "vector-like ll instructions, such as the VFL class, 
decimal arithmetic, and load- and store-multiple. In these cases 
the limited length of the vector has to be explicitly stated (not 
even indexable), a very confining requirement indeed. 
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h) Lack of device independence .. Input/output instructions employ 
different address i ng techni ques for di fferent devi ces, wi th 1 i ttl e 
or no interchangeability. Programs written and debugged for a 
given machine configuration are usually not transferable to another 
environment, due to small differences in configuration. This 
situation is somewhat alleviated by software, but I/O rigidity is 
partially responsible for the complexity of the job control language. 

It has been recognized that the classification of access techniques 
by device should be replaced by a classification by purpose, and 
ultimate I/O should be separately considered from memory extension. 
The latter should be addressed like memory, because a major reason 
for device independence is to allow programs to be insensitive to 
available CPU memory size. 

i) One-at-a-time condition philosophy. In most instruction sets (S/360 
included) there is only one representation of condition. Any condition­
setting operation (an add in S/360) will replace the previous condition 
by the new one. Condition handling being a major worry in large 
machines, it would be extremely desirable to be able to accumulate 
a sequence of condition occurrences, and then allow the program to be 
controlled by the total effect of this pattern. (This feature is 
already present in FORTRAN.) 

j} Lack of features. The absence of array instructions has been noted. 
There are other important operations, useful because of procedural 
language need. Many are rather easy to achieve by new hardware, 
but are absent in current sets. Their emulation in terms of current 
sets tend to be clumsy. These include multiple sum, associative 
search for match, and even exponential and logarithm. 

In sum, an instruction is too small a unit of procedure even for present 
machines. The complete freedom to perform modifications, while perfectly 
useful (and even necessar*) in bygone years, are inadequate in dealing 
with the complexities we ave today. There is a genuine fear that 
instruction-based programs beyond a certain size may become undebuggable. 

The procedure languages form a more adequate basis for coding complex 
applications problems. However, execution of procedural programs 
still require mapping into machine instructions. The mismatch between 
the adverb-oriented machine world on one hand, and the adjective-oriented 
human and procedural language world on the other, means inefficiency and 
misunderstanding will continue to exist, unless the adjectival world 
becomes the basis of machine architecture. It seems very likely that 
then, and only then, can we be prepared to tackle the next order of 
complexity, the large data-base system. 
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8. Appendix B: The Machine Organization Concepts Study Group 

In response to an inquiry from Mr. ,B. O.~varJs,theMachine Organi~ation 
concepts Study Group was conven.ed star,tit1g November-2S, 1969, meeting 
roughly on a bi-week1y basis. The 1atestrneetingoccurred February 25, 1970. 

The composition of the group was as follows: 

John C. McPherson (CHQ, Armonk), Chairman 

Tien Chi Chen (RO, San Jose) 
Carl J. Conti (SOD, Poughkeepsi~) 
Claud M. Davis (SOD, Poughkeepsie) 
Albin D. Kolwicz (SOD, Boulder) 
John C. Laffan (SOD, Poughkeepsie) 
Albert A. Magda11 (SOD, Endicott) 
Anthony Peacock (SOD, Poughkeepsie) 
Anthony Proudinan (SOD, Hurs1ey-Poughkeepsie) 
Nathaniel Rochester (FSO, Boston) 
David Sayre (RO, Yorktown) 
Ralph F. Schauer (CD, Poughkeepsie) 
William S. Worley, Jr., (SOD, Time-Life) 

8.1 What Has Been Accomplished 

a) The group has identified the need for HLS as a new architecture basis, 
and has become convinced of its basic feasibility and potential advan-
tage to IBM. ' 

b) We have agreed that a coherent HLS language and architecture can be 
developed. We have listed highlights of this language, and supplied 
much detai 1. Some important choices are left open, as deeper 
studies with simulation verification and exploratory development are 
clearly required. 

c) The group recomnends exploratory effort towards implementation, knowing 
that the full exploitation of this type of machine, which is the largest 
departure thus far from von Neumann principles, will not take place 
automatically. Research and development on a broad scale will ultimately 
be needed. Thought should be given as to how other IBM divisions can 
assist in this process. 

d) A presentation to Mr. B. O. Evans has been made on February 26, 1970. 

e) .With the issuance of the present document, the formal activities of the 
group are concluded. 

8.2 Resolution (Unanimously endorsed February 25, 1970) 

liThe Machine Organization Concepts Study Group has studied the question of 
feas i b 11 i ty and advi sabi 1 i ty of a hi gher 1 eve 1 sys tern and concludes that 
such a change of direction is both feasible and necessary and veryadvan­
tageous to the Company',s expensio,n, both to new fields of application and 
to larger numbers of users. It offers a way for consolidating the advances 
in the knowledge in use of machines in the past 25 years and forms a firm 
base for future development and will use to advantage new techno10gies. 1I 
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9. A Selected Bibliography 

The following were selected for their intrinsic pertinence to the problem 
of procedural-language oriented machines. 

The bibliography is divided into three parts. 

a) Working papers generated within the group. 
b) Documents by IBM authors. 
c) External publications. 

9.1 Working Papers Generated Within The Group 

Some of the working papers generated within the group are cited below. 

J. Philip Benkard and Carl J. Conti, "Measurement and Analysis", Memo to 
Mr. J. C. McPherson, January 15, 1970. 

Tien Chi Chen, liOn Higher Instruction Sets", Memo to Mr. J. ·C. McPherson, 
December 11, 1969. 

Tien Chi Chen, "Higher Instruction Set Machines", Flip chart reproduction, 
January 1970. 

Tien Chi Chen, liOn Decimal Arithmetic", Memo to Mr. J. C. McPherson, 
> January 22, .1970. 

Carl J .. Conti, "Large Advanced System", Flip chart reproduction, December 1969. 

Carl J. Conti, "Subgroup report and implementation thoughts", Flip chart 
reproduction, December 12, 1969. 

Carl J. Conti, "Qualitative advantages of a machine with a higher level 
instruction set", Two memos dated January 7 and January 12, 1970. 

Albin D. Kolwicz, "Sys tem/360 Input/Output Architecture", Memo to T. C. Chen, 
March 17, 1970. 

John C. Laffan, "System Q", Memo to Mr. D. H. Furth and Mr. P. Kolko, 
January 13, 1970. 

John C. Laffan, "System Organization", Memo dated January 23, 1970. 

Anthony Peacock, "An Addressing Proposal", Flip chart reproduction, 1970. 

Nathaniel Rochester, "Corrmand language for high level language machine", 
Manuscript dated January 7, 1970. 

David Sayre, "To1erant system", Flip chart reproduction, February 10, 1970. 

William S. Worley, Jr., "Preliminary requirements of FORTRAN, COBOL, PL/I 
in high-level machines", Flip chart reproductions, December 19, 1969. 
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9.2 Documents _ by IBM Authors 

Most documents in this category are IBM Confidenti al. Theexcepti ons 
are mai nlythose pub] i.shed in the open literature. 

The proceedings of two IBM symposia held last year are noteworthy 
because of their time.linessand technical content. 

The Seventies: A Challenge to Programming {IBM 1969 Progranrning 
Symposium Proceedings { 2 volumes issued just before the symposium 
in Boston, October, 1969. (IBM Confidential) (To be abbreviated as 
TSCP below). 

Proceedings of the IBM Symposium on New Directions in Computer 
Technology (held in Yorktown, April 1969). IBM Poughkeepsie 
Technical Report TROO.189S, July 1969. Two volumes (IBM Confidential) 
(To be abbrevi a ted as NDCT be low) • 

John W. Backus (RD, San Jose), "Comments on Programming Development 
Supporting StrategicPlan", Manuscript, October 18, 1968. 

Klaus Berkling (RD, Yorktown), "A Machine Architecture Based on Tree 
Structures", TSCP, pp. 237-255. 

Klaus Berkling, liThe Accomnodation of APL and ALGOL on the Lambda 
Calculus Machine", Manuscript 1970. 

Willard G. Bouricius (RD, Yorktown) and Keith A. Duke {SDD, Poughkeepsie), 
"Proposed Functional Descriptions of an Interpretive Data-Driven Array 
Processor", NDCT, pp. 125-130. (Proposal to implement APL-like language 
on 64-bi t word machi ne) .. 

Lawrence M. Breed (now non-IBM) and Richard H. Lathwell (DPD, Yorktown), 
liThe Implementation of APL/360", Interactive S stems for Ex erimental 
Applied Mathematics, Academic Press New York 1968 , pp. 390-399. 

Peter F. Carpenter (IBM Hurs 1 ey), "Functi ona 1 Memory Programrni ng Studi es -
PL/I Incremental Compiler/Interpreter", Memo dated January 16, 1970 (IBM 
Confidential), addendum dated February 11, 1970. (Hursley's study of 
PLII machi ne). 

Tien Chi Chen (RD, San Jose), "A Statement-Oriented Multiprogrammed 
Automatic Computer (SOMAC)", (Memo to Dr.J. H. Eaton), Apr.il 1968, 
(Proposal for superscale 10-instruction stream machine using APL-like 
language). . 

Tien Chi Chen, IIUnconventional Superspeed Computer Organizations", NDCT, 
pp. 149-160. (Reasons for embodiment of statement orientation, array 
processing and name orientation). 

TienChi Chen, "Highspeed LSI Arithmetic", Memo to Dr. 1. 1. Ho, December 
10, 1969, (highspeed evaluation of exp(x), log(x)). 
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Edgar F. Codd (RD, San Jose), "Derivability, Redundancy and Consistency 
of Relations Stored in Large Data Banks", TSCP, pp. 207-218; "A 
Relational Model of Data for Large Shared Data Banks", manuscript, 1970; 
"Notes on a Data Sub1anguage", Flip chart reproduction, 1970. (A systematic 
attack on data base problems). 

Rex L. Comerford and R. C. Huang (SOD, Endicott), "Status of RP2 Architecture", 
Architecture File Memo #1, Dept. 663, dated February 3, 1970. (A recent memo 
on the RP2 attribute-examining machine organization). 

Steven W. Dunwell (FED, Kingston), "Computer Systems in 1975: The Shape 
of the Future", Memo 1969. (Teleprocessing, multiprocessing, microprogramming, 
memory paging under one primary procedure language). 

Robert W. Engles, "A Tutorial on Data-Base Organization", IBM Poughkeepsie 
Technical Report TROO.2004, March 20, 1970, 108 pages. 

Adin D. Fa1koff and Kenneth E. Iverson (DPD, Yorktown); lithe APL/360 terminal 
system", Interactive S stems for Ex erimenta1 A lied Mathematics, Academic 
Press (New or ,pp. - . 

M. Flinders (IBM Hursley), "Functional Memory as a System Technology", NDCT, 
pp. 49-60. 

Irving T. Ho (CD, Fishkill) and Tien Chi Chen, "Multiple Addition with Modular 
Threshold Operator Approach", Array Logic Technical Note #34, January 30, 1970. 

Charles L. Gold (SRI, New York), "What to Expect of Future Programming 
Languages", Memo to Mr. J. C. McPherson, January 16, 1970. 

Anthony Hassitt, John W. Lageschu1te and Harry F. Smith (OPD, Palo Alto), 
"A Procedure-Oriented Machine Language, Part I", Report 320-3271, January 
1970, 38 pages. (APL microcoded on M25). 

Anthony Hassitt and Richard H. Lathwell (DPD, Yorktown), "APL System", file 
memo March 18, 1970. (APL microcoded on M25 vs. alternatives; implications). 

Robert A. Henle (CD, Fishkill) and W. Lee Shevel (CD, Poughkeepsie), Mono­
lithic Semiconductors - Basis for New Direction", NDCT, pp. 1-22. 

Robert A. Henle, Irving T. Ho, Gerold A. Maley and Ronald Waxman (CD, Fishkill), 
"Array Logic", NDCT, pp. 413-430. 

Hirondo Kuki (U. of Chicago, IBM consultant), "Advocating Arithmetic Orthodoxy 
in SOMAC Design", Manuscript, January 27, 1970. 

E. E. McDonnell (DPD, Yorktown), "A Formal Description of JCL", TSCP, 
pp. 219-236. (The job control language codified in APL). 

Alan J. Melbourne (WTC Hurs1ey) and John M. Pugmire (IBM France), "A Small 
Computer for the Direct Processing of FORTRAN Statements", Computer J.8 
24-27 (April 1965) (A pioneering proposal). -

John E. Meggitt (IBM, now self-employed), "A Character Computer for High 
Level Language Interpretation", IBM Syst. Journal 1, 68-78 (1964). 
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A. P. Mullery (RO, Yorktown), R. F. Schauer (CD, Poughkeepsie), and R. 
Rice (now at Fairchild), "AOAM - A Problem Oriented Symbol Processor", 
Proceedings SJCC 23 367-380 (1963), (A pioneering effort in both language 
and hardware). -. 

Alvin P. Mul1ery (RO, Yorktown), "A Procedure-Oriented Machine Language", 
IEEE Trans. Elec. Compo EC .. 13, 449-455 (August 1964). 

John Nichols (RO, Yorktown), "0bjectives ofCLF", Manuscript 1970. 
(Central language facility). 

Leo O'Leary (SOD, Endicott), "FS System Proposal II , Flip chart reproduction, 
1969. 

H. J. Ollmert (SOD, Boeb1ingen, Germany), "An RPG Machine", TSCP, pp. 162-178. 
(Microprogrammed from M20 Submode1 5). . . 

Anthony Peacock (SOD, Poughkeepsie) and Anthony Proudman (SOD, Hurs1ey­
Poughkeepsie), "Project Spade Progress Report #1, January 31, 1969. "WP 
#21: Interpretive Computing Systems and Large Scale Integration. WP #23: 
The APL Logical Machine. WP #31: The APL Model. (LSI is a good match 
with interpretive machines; an APL machine can be simulated in APL). 

Richard H. Lathwel1 (OPO, Yorktown), "Re1ative Frequency of APL/360 Primitive 
Execution", Memo to Mr. J. C. McPherson dated January 19, 1970. (Usage 
measured in three consecutive days shows "concatenation" to be the second 
most used dyadic operator, next to addition). 

David Sayre (RO, Yorktown), liOn Programming Strategy for the 70 I S", TSCP, 
pp. 1-6. 

Jean L Sammet (FSO, Boston), "Programming Languages, History and Fundamentals", 
Prentice-Hall Inc. (Englewood Cliffs, N. J., 1969), 785 pages. (A major 
refere nee vo 1 ume ) . 

K. W. Van Meche1en (FSO, Gaithersburg), "High Level Language Machine", file 
memo, October 4, 1968, 38 pages. (Attempt to handle PL/I subset with his 
own IBM 1 620) • 

Helmut Weber (SOD, Endicott), "A Microprogrammed Implementation of EULER on 
IBM System/360 Model 30", Comm. ACM 10, 549-558 (1967). Microcoded Model 
30 for Algol-like language, generalized, for precedence parsing methods). 

William S. Worley, Jr., (SOD, Time-Life), liThe Universal Language", Flip 
chart reproduction 1970. (Language funnelling). 
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9.3 External Publications 

Philip S. Abrams (Stanford U.), "An APL Machine", Ph.D. Thesis, Stanford 
University 1970, 204 pages. Available as SLAC report No. 114, February 
1970, Stanford Accelerator Center, Stanford University, Stanford, Calif. 

James P. Anderson (Burroughs; now independent consultant), "A Computer 
for Direct Execution of Algorithmic Languages", Proc. EJCC 20 184-193 
(1961). (A proposal for an ALGOL-60 machine). 

Theodore R. Bashkow, Azra Sasson and Arnold Kronfeld (E.E. Dept., Columbia 
University), "Sys tem Design of a FORTRAN Machine", IEEE Trans. Electronic 
Computers EC-16, 485-499, (August 1967). (A proposal aimed at 1620-level 
FORTRAN without subroutines). 

Edsger W. Dijkstra (Holland), liThe structure of the "THE" - Multiprogramming 
System ll , Comm. ACM 11, 341-346 (May 1968). (Hierarchical operating system 
with asynchronous control and proof of well-behavior). 

J. A. Gosden (MITRE Corp.), "Software Compatibility: What was Promised, 
What We have Done, and What We Need", Proceedings FJCC 1968 pp. 81-88. 
(We need both inter- and intra-software family compatibility). 

E. A. Hauck and B. A. Dent (Burroughs), "Burroughs' B6500/B7500 Stack 
Mechanism", Proceedings SJCC 1968 pp. 245-251. (Extension of B5500). 

J. K. I1iffe (ICL, England), "Basic Machine Principles", American Elsevier 
Publishing Co., (N. Y. 1968), 86 pages. (A descriptor-oriented system 
outgrown from the Rice University computer design). . 

J. K. I1iffe (ICL, England), "Elements of BLM", Computer J. 12, 251-258 
(September 1969.) (ICL experimental implementation of Iliffers machine). 

Edgar T. Irons (IDA, Pri nceton), II Experi ence Wi th an Extens i b 1 e Language", 
Comm. ACM ll, 31-40 (January 1970). 

William V. Kahan (U.C. Berkeley), "Default Rules for Rounding Fixed 
Precision Normalized Floating-Point Arithmetic Ignoring Over/Underflow", 
a one-sheet comment distributed September 25, 1969 at Lake Arrowhead IEEE 
Workshop. 

T. Kilburn, D. Morris, J. S. Rohl and F. H. Sumner, (U. of Manchester, 
England), "A System Design Proposal", IFIPS 1968 Proceedings D76-D80. 
(Names rather than addresses). 

William M. McKeeman (U.C., Santa Cruz), "Language-directed Computer Design", 
Proceedings FJCC 1967 pp. 413-417. ("Language that reflects what we want 
to do and how we do it (for instance, in parallel) and machine structures 
effective in handling that language".) 

Howard L. Morgan (Cornell U.), "Spelling Correction in Systems Programs", 
Comm. ACM 13, 90-94 (February 1970). (Computer systems efficiently correct 
spelling errors.) 

Saul Rosen, IIHardware Design Reflecting Software Requirements", Proc. FJCC 
1968, pp. 1443-1450. 
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Masakatsu Sugimoto (U. Tokyo, Japan), "PL/I Reducer and Direct Processor", 
Proc. 24th Nat. Conf. ACM, 1969, pp. 519-538. 

Kenneth J. Thurber and John W. Myrna (U. Montana), "System Design of a 
Cellular APL Computer", IEEE Trans. Computers C-19, 291-303 (April 1970). 

S. C. Wang (Hewlett-Packard), "On the Direct Implementation of Algorithmic 
Scientific Computer Languages", Ph.D. Thesis, U. of Minnesota, June 1968. 
(COFAC uses SAL, a procedural machine language with features of FORTRAN, 
ALGOL and PL/I). 

Nicklaus Wirth (U. of Zurich, Switzerland), liOn Multiprogramming, Machine 
Coding, and Computer Organization", Comm. ACM 12, 489-498, (September 
1969). -

E. C. Yowell (NCR), IIA Mechanized Approach to Automatic Coding", Automatic 
Coding, J. Franklin Inst. Monograph No.3 (April 1957) pp. 103-111. (NCR 
304 machine uses autocode, has merge, edit, and summarize instructions). 

(End of Report) 
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