
C20-1638-1

IBM Data Processing Techniques

Data File Handbook Design

This manual is a basic primer that provides fundamental information
about the use, composition, organization, and design of data files
for all types of IBM equipment including System/360.· Reference
material is included on the characteristics of the various processors,
I/O devices, and laCS programs, since these factors affect the
design of data files.

Minor Revision (March 1966)

This edition, C20-1638-1, is a reprint of C20-1638-0 and incorporates changes

released in Technical Newsletter N20-0055. The original publication and
Newsletter are not obsoleted.

Minor clarifications and additional information have been incorporated into

the text. Changes are designated in three ways:

1. A vertical line appears at the left of affected text where only

part of a page is changed.

2. A dot (.) appears at the left or right of the page number where
a complete page should be reviewed.

3. A dot (e) appears at the left of the title of each figure that
has been changed.

The affected pages are: 4, 5, 8, 11, 12, 18, 25, 31, 33, 35, 39, 40,
51-62, 66, 67, 70, 71

Copies of this and other IBM publications can be obtained through IBM branch
offices. A form has been provided at the back of this publication for readers'
comments. If the form has been detached, comments may be directed to:

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

© International Business Machines Corporation, 1965

CONTENTS

INTRODUCTION. • .

SECTION 1: FUNDAMENTALS OF DATA
FILES.

Data Files •.•.
Definition
Types of Data Files and Their

Functions•....
Composition of a Data File • • •

Fields and Subfields: Definition •
Types of Fields and Their Functions. • .
Field Characteristics. • . •
Records: Definition ••..••.•..
Types of Records and Their Functions. .
Record Characteristics. .

File Organization .•••.....
Definition • . . •
Types of File Organization • .
Tape and Card
Direct Access Storage Device (DASD) •.

Processing of Data Files - Input/Output
Control System (lOCS)

Definition
Functional Concepts. . .
Programming Concepts.
Record Formats . . • .

SECTION 2: DESIGN OF DATA FILES.

Determination of Data • . . .
Determination of Field Size •

Determining Factors for Field Size
(and Subsequent Record Length)

Field Compaction Techniques
Determination of Data Sequence • • .

1

2

2
2

2
3
3
3
4
5
5
5
7
7
7
7
8

8
8

10
11
12

14

14
15

15
15
18

Determination of File Organization . .
Sequential vs Random Organization
File Organization Techniques ...

Determination of Record Format and
Blocking ..•••.•..•..

File Boundaries ••.•...
Core Storage Requirements
File Capacity. • . •
Program Support .

File Processing ..
File Control

Data Validation . . •
Operating Controls •
Error Analysis .
Audit Trail •....
Reconstruction • . •

SECTION 3: REFERENCE MATERIAL FOR
DATA FILES•...•.•

Storage Media and Recording
Characteristics

Cards •...•..•.••
Magnetic Tape • . • . • •
Magnetic Tape Device Characteristics. .
Magnetic Tape Timing and Capacity

Formulas - Use of Chart ..•.•••
Paper Tape .•.••.....••....
Direct Access Storage Devices (DASD) ••
DASD Device Characteristics
DASD Capacity Formulas •.

Extended Binary Coded Decimal
Interchange Code. • • • • • • • • . .•

Differences between Core and Media
Storage Requirements . . •

Processor Characteristics
Record Formats . . • .
File Label Formats
lOCS Characteristics . . .
System/360 Character Sets ...

18
18
19

24
24
24
24
26
26
26
26
27
27
27
27

29

29
29
29
32

34
36
36
37
37

40

42
44
45
51
66
70

INTRODUCTION

To broaden the scope of this manual and to facilitate
its use by individuals of divergent backgrounds and
experience, the material is presented under the
following three captions:

1. Fundamentals of Data Files
This section is designed primarily to acquaint the
reader with the definition, functions, composition,
and processing of data files. Those more experi­
enced with data processing may prefer merely to
scan this portion of the manual as refresher material
or to skip it entirely.

2. Design of Data Files
The purpose of this section is twofold: to provide
checkpoint type of information for the more experi­
enced and to furnish those new to data processing

with pointers on file design, beginning with the de­
termination of data, field size, and file organization
through record format and file capacity.

3. Reference Material for Data Files
The aim of this section is to draw together under one
cover quick, easy-to-use data file reference materi­
als that cross over computer and II 0 device lines so
that the user of this manual, no matter what his ex­
perience or needs may be, will not have to seek data
file information from a battery of separate sources.

Although it is assumed that the reader has a
general knowledge of the media involved, the refer­
ence material in section 3 may be read first to pro­
vide sufficient background.

1

SECTION 1: FUNDAMENTALS OF DATA FILES

DATA FILES

Definition

A data file (or data set) is a collection of related
records that provides specific information about a
fixed area of activity. Data files may be stored in
such media as paper, cards, magnetic tape, paper
tape, or direct access storage devices (DASD). (See
section 3 for reference information concerning
media storage and data recording.)

Types of Data Files and Their Functions

Master File

A master file contains the current status of a given
list of items. A relatively fixed number of items
are in the file over a long period of time, and the
number of insertions and the number of deletions
tend to be fairly well balanced despite temporary
seasonal or cyclic fluctuations. Each record is
subject to updating. The file is a major source of
information for facilitating decisions in a particular
area of operations, both internally with computer
programming and externally with management
review of printed reports of data contained in the file.

Example:

An inventory master file for a hardware concern
might contain one record for each item of stock.
Although about 20,000 different items can be repre­
sented on the file at any given time, some items,
such as lawn sprinklers, may be stocked only in the
summer and others, such as snow shovels, only in
the winte,r. The quantity on hand for a certain item
must be updated to reflect any change in stock
caused by such transactions as sales, returns,
receipts, etc. Based on a minimum balance on
hand, the computer, through programming, can
determine the time to reorder. Periodically, the
information on the file can be used to print out re­
ports indicating sales trend, slow moving items,
low-profit sellers, etc., which can be reviewed by
management.

Transaction File

The primary purpose of a transaction file is to con­
tain activity or inquiry records that will be used to
examine and/or update a master file. Each activity
record contains data about an occurrence that will
affect the master file in some way.

2

Example:

Activity, such as receipts, sales, returns, etc.,
could be contained in the transaction file that is
used to update a master inventory file.

History File

A history file can be an obsolete master file or a
compilation of transaction records that have affected
a master file within a particular period. It is main­
tained primarily to gather statistical data or to
capture sufficient detail of past processing to facili­
tate reconstruction of a master file.

Summary Files

A summary file represents data from another file
reduced to a more concise form. The information
from several records in the original file can be
shown in aggregate form on one record of the sum­
mary file by using a broader criteria for record
uniqueness. For example, employee earnings rec­
ords in a payroll master file may be summarized
into fewer records showing total earnings by depart­
ment. Depending upon its use, a summary file also
may be considered as a master rile, a transaction
file, or a history file.

Trailer File

A trailer file contains detail records associated with
particular records in another file. The latter often
are called prime records and constitute a prime
file. The records in the trailer file provide addi­
tional information to augment the data found in the
associated prime records. Trailer files may be
processed individually or together with their prime
file. The trailer files here are not to be confused
with trailer or overflow records, which are dis­
cussed later under "Types of Records and Their
Functions 11 •

Example: Inventory Parts File

1. For daily processing of inventory updating
only the prime file is used.

2. For preparation of cross reference part
number and name lists only the trailer file is
handled.

3. For periodic inventory status reports requir­
ing part name as well as part number and the asso­
ciated quantitive data, both the prime file and trailer
files are processed simultaneously.

PRIME FILE

Part No. A Unit Price Qty. Ext. Part No. B Unit Price Qty. Ext. Part No. C Unit Price Qty. Ext.

~------------~~--------~II~--------------~--------~I ~I ______________ ~ __________ ~'

"'" S S II I I

~ Part No. A Part Name and Description Part No. B Part Name and Description Part No. C Part Name \

TRAILER FILE

COMPOSITION OF A DAT A FILE

Fields and Subfields: Definition

Fields and subfields, the smallest elements of a
data file, are composed of adjacent positions or
characters that describe a unit of information. The
leftmost position of a field is known as the high­
order position; the rightmost is known as the low­
order or units position.

Example:

In the field labeled Date, which is six positions long,
position 1 is called the high-order position and
position 6, the low-order position.

1 Date 6

high-order positiont I J I I I .f1ow-order position

a field

Subfields are meaningful subdivisions of a field to
facilitate data identification and manipulation.

Example:

Date 6

1T"ldrn I
~ -----­subfields

a field

In the field called Date, the left two positions con­
tain the subfield month, the middle two positions the
subfield day, and the right two positions the subfield
year.

Types of Fields and Their Functions

The data recorded in a field may be classified by the
function it serves.

Control fields permit the proper identification and
handling of a given record or section of a record.

A record control field or key establishes the
uniqueness of the record within the file.

Example:

Each data record in an employee payroll master file
contains the employee number, which is the record
control field. Therefore, the employee number can
control the sequence of the file and the application
of transaction data to the correct employee.

A coding control field identifies the record or
section.

Example:

Each data record in a transaction file may contain a
single character field that controls th~ kind of infor­
mation contained in the record and that indicates
what effect this record will have on the master file.
A digit 1 in the position may indicate that a new
record is to be created in the master file with the
data in the record; a 2 that this record contains data
that will change data in a master file record; a 3
that the master file record is to be deleted, etc.

Indicative fields usually are nondynamic and
contain miscellaneous data pertinent to the record
identified by the record control field. Some of these
fields have a more specific nature:

A statistical field provides additional information
that normally is used for the gathering of statistical
information.

3

Example:

Each employee payroll master record may have a
field containing a code to indicate the sex of the
employee. An M may indicate male and an F, female.

A constant field contains fixed data that otherwise
might have to be developed each time the record is
processed.

Example:

;Each employee payroll master record in a data file
may' have a field containing the dollar amount of
federal tax exemption allowable for that employee
each week. The amount is stored in the record to
avoid recalculating it each time the payroll is proc­
essed.

A reference field provides data identifying the
transaction with the original source document from
which it was created. Reference fields are essential
in providing adequate audit trail.

Example:

In a sales application the transaction record contains
an invoice number. Should a question arise regard­
ing the transaction, the invoice number relates the
record to its source document.

Quantitative fields contain amounts and may con­
tain sign indication. Frequently, these amounts are
used in calculations, or they may be the results of
computations.

Example:

Each weekly employee payroll record has a field
containing hours worked. This amount field is used
in calculating gross weekly earnings, which also
becomes a quantitative field.

Field Characteristics

Length

Fields usually contain a fixed number of positions
designed to hold the maximum amount of data that
can occur.

Class

The data in a fielp is alphabetic, numeric, or alpha­
meric.

4

Significance

The significant digits of a numeric field are those
digits which are necessary to make the number
meaningful and which, when specified, include a
fixed number of decimal positions. Embedded blanks
(blanks in the midst of significant characters)
normally are unacceptable in numeric fields.

The significant characters of an alphabetic or
alphameric field include all positions from the left­
most through the rightmost nonblank character.
Embedded blanks are acceptable.

Right and Left Adjustment (or Justification)

The number of significant characters for a field can
vary. A right-adjusted field contains the rightmost
significant character in the low-order position of the
field; a left-adjusted field contains the leftmost
Significant character in the high-order position of the
field.

An alphabetic or alphameric field is normally
left-adjusted, with the nonsignificant portion of the
field filled with blanks. A numeric field usually is
right-adjusted, with the nonsignificant portion of the
field filled with leading zeros, although blanks may
be used. Zeros are preferred to blanks because
they are positive proof of the value required; blanks
may represent omissions. Since blanks normally
are considered of lesser numeric value than are
zeros, the use of blanks instead of zeros may affect
the sorting sequence. When a numeric field is·
left-adjusted, the 'nonsignificant portion of the field
usually is filled with blanks.

Examples:

significant
digits

1. 0 0 0'1 2 3 0 6
~

nonsignificant
zeros

significant
digits

2. ' 1 2 3 0 6' ,b b b
nonsignificant

blanks

significant characters

This is an 8-position
right-adjusted nu­
meric field with lead­
ing zeros.

This is an 8-posi­
tion left-adjusted
numeric field.

3. 'J 0 h n b Jon e s b b b b b This is a 15-posi-
embedd:d nonsignificant' tion left-adjusted

blank blanks alphabetic field.

Special Characteristics of Numeric Fields

Signs. When a numeric field may be, either positive
or negative, sign coding must be present.

Decimal Positions. Usually decimal points are
assumed; this means that no space is reserved in a
field for the decimal point. This conserves media
storage and permits arithmetic manipulation of the
field by equipment that normally does not recognize
the point of a number. (See "Field Compaction
Techniques" for a discussion of decimal scaling and
floating decimal-point numbers.)

Recording Mode. To facilitate computer functions
or to reduce storage data requirements, it may be
preferable to work with numeric data in some form
other than the normal decimal notation. Translation
to and from decimal format may be accomplished by
computer subroutines or by hardware capabilities of
the equipment; or the data may remain in the modi­
fied mode. (See "Field Compaction Techniques" for
a discussion of binary, hexadecimal, and packed
format.)

Records: Definition

A record is a collection of fields arranged in a de­
fined format and related to a common identifier.

Types of Records and Their Functions

Data records (which represent the bulk of the records
in any file) are those records which contain specific
information about a given data processing application.
Each individual data record is made up of coding and
record control fields, which establish the uniqueness
of each record, as well as fields containing pertinent
information about the particular record.

Checkpoint records are created at specific inter­
vals during the running of a lengthy program to
retain the contents of main storage and other data
required for restart from an intermediate point
rather than from the beginning, in the event the
program has to be interrupted for some reason, such
as'an uncorrectable error or a job with higher
priority, which takes precedence.

Label records are used for file identification and
for checking purposes. Normally, header labels
containing such information as file name, file
number, creation date, and retention cycle are
processed before any of the data records to verify
that the file is the proper file for use. A trailer
label indicates the end of a file (EOF), or the end of
a physical subdivision of a file (EOR or EOV) , such
as the end of a reel of tape, disk pack, etc. Trailer
labels also may contain a cumulative count of the

number of records and blocks (groups of records) in
the data file and, sometimes, one or more control
totals, each of which is the sum of the contents of a
particular field in the record~.

These internal label records are in addition to
the externa~ labels used for visual identification of
the file.

Trailer or overflow records contain additional
data, pertaining to a given record, which cannot be
recorded in the prime record for some reason.
Often, this is information that occurs only occasion­
ally, so instead of designing a long record with
wasted space, a subsidiary is created. Normally,
the prime record contains coding that can be used to
reference the trailer record, whereas the latter has
the same record control field to assure that the
proper trailer has been located.

Record Characteristics

Length

The length of a record is the sum of the lengths of
its fields. However, because of differences in
hardware characteristics, the length of a record in
medium storage may vary from its length in core
storage.

Examples:

Load mode operation (1400 series), compressed
tape reading (7070/7074), and alphameric and
numeric mode recording differences (tape and 1301/
1302 with 7070/7074). (See section 3, "Differences
between Core and Media Storage Requiremen'ts".)

Form

There are three basic sections in a record: the
fixed section, the variable section, and the control
section.

I The fixed section, which is normally present and
which is fixed in length, is composed of those fields
that provide the coding and record control fields, as
well as all required indicative and quantitative fields.
There is only one fixed section per record; it may be
the entire record or the first section of a multi­
section record.

The variable section is a collection of a variable
number of segments, which, in turn, are composed
of either an independent field or a group of inter­
dependent fields. An independent field is a single
field that requires no supporting field, whereas
interdependent fields are two or more related fields
treated as a whole. Thus, when any of the interde­
pendent fields contains significant data, the entire
segment must exist. Each segment is fixed in

5

length and is retained in the variable section only
when data exists.

Example:

fixed
section

variable section

A B
segment segment

~----------~" ,'---------------------~,

1 2

\ "
inde­

pendent
field

interdependent
fields

The control section is a section that mayor may
not be used when a record contains a variable
section. It provides information about the presence
or absence as well as length of the segments in the
variable section of the record and is used to facili­
tate the location and manipulation of the data.
Occasionally, in lieu of the control section, special
codes are used to signify omission of a segment.

Example:

Fixed Control Section Variable Section

Section A I B I C I D AI C I D

Segment B is missing in this record, but the
control field for B is present. Normally, the control
section follows the fixed section and is fixed in
length.

Fixed Variable Section

Section A I#J C

The # is a special code to indicate the absence of
segment B; no control section is used.

1 Physical 1 Physical
Record Record

A fixed-length record contains only a fixed sec­
tion; the length and relative location of each field
is constant. A variable-length record consists of a
fixed section, where length and location of the fields
are known, and a variable section, where the rela­
tive location and length of each field is determined
by programmed use of the control section or by
special codes included in each record for that pur­
pose.

Blocking

Blocked records are two or more records grouped
together and treated as a whole for reading, writing,
and storage purposes. This grouping is referred to
as a block of data records. Each record within the
block is processed individually by the program and
is known as a logical record. All of the records
read or written as a block of data are referred to
as a physical record, since the entire block is
transferred physically between the I/O device and
main storage. . Records that are read, written, and
stored individually are known as unblocked.records.

1 "" ,,- ~v\
The blocking factor is th~L n~~R.~;f?,,~~:t~.?~rds that

are contained within a blockA I'Blockingmay be
utilized to make more efficient use of medium
storage and to conserve input/output time. The
concept of blocking is applicable to all types of
medium storage. If the number of positions per
record is 40 or less, even card records can be
blocked for computer operations.

Example:

Tape records are separated by blank tape, which is
called an interrecord gap (IRG). IRG's, created
automatically during tape-write operations, signal
the end of a tape record when the tape is read.
Whenever data records are blocked, fewer IRG's are
created. This conserves tape storage and computer
time. (See section 3, "Magnetic Tape Device
Characteristics", for the length of IRG's and for
tape-processing speeds.)

1 Physical

Record
, ...
__ -----JA~--__ __

,
"

__ ----~A~ ______ _ __ -----JA~------~, ,

IRG
Logical

IRG
Logical

IRG
Logical

IRG
Record 1 Record 2 Record 3

Unblocked data record

1 Physical Record
A , .

IRG
Logical Logical Logical

IRG Record 1 Record 2 Record 3

Blocked data records

Figure 1. Examples of unblocked and blocked data records

6

FILE ORGANIZATION

Definition

File organization deals with the relationship of the
control fields of a file record to the physical location
of that record in the storage medium.

Types of File Organization

Although a file of records can be arra~ged in a
storage medium in many different ways, all of the
ways can be classified by either of two basic tech­
niques - sequential or random.

Sequential

Sequential order implies that there is a certain
numeric or alphameric sequence, either ascending
or descending, of the adjacent records in the file.
Particular fields, located in the same relative posi­
tions within the fixed section of all data records of
the file, are selected as sort control fields for a
specific file sequence.

Random (Non-sequential)

A random file organization contains records stored
without regard to the sequence of their record control
fields.

Sequential and random file organization should not
be confused with sequential and random processing.
The terms random and sequential, when used with
the term processing, usually refer to the order of
the input transaction records or to the order of
reference to records in the master file. Figure 2
shows the relationship between file organization and
data processing, as follows:

Case 1 Sequential processing of sequentially
organized data

Case 2

. Case 3

Case 4

Random processing of sequentially
organized data

Sequential processing of randomly
organized data

Random processing of randomly
organized data

t
~

Sequential

Processing

Random
Processing

Sequential ~ Random
Organization Organization

8 8

8 ---------------------------4 .. ~ 8
Figure 2. File organization and processing approaches

Tape and Card

Sequential

Records on tape and card files must be processed as
they are encountered because of the physical nature
of the storage medium. Therefore, tape and card
master files, and their associated transaction files
(regardless of the medium), tend to be sequential.

Random

A random file organization for tape master files is
impractical, since the desired record can fall any
where within the file limits, and each search for a
specific record must begin with the first record of
the file. A random organization of transaction data
is common when the master file is stored on a
direct access storage device (DASD), since such units
are capable of retrieving records randomly. In
those cases where it is desirable to maintain infor­
mation in the same sequence as the source documen­
tation, to facilitate control and validation procedures,
a transaction file may be created in the order of
occurrence, with sorting as an intermediate step,
before processing against a sequentially organized
file.

7

Direct Access Storage Device (DASD)

Sequential

In a sequentially organized DASD file, the records
are stored in record control number sequence, so
that records with successively higher control num­
bers have successively higher address numbers.
Normally, the record control number is not the
same as the address where it is stored; the only
requirement is that the control numbers be in
sequence and in sequential (not necessarily consecu­
tive) disk storage locations.

Additions and deletions to the file present the
greatest design challenge. Additions which cannot
be inserted in sequence in the original (prime) area
are known as overflow records. Overflow areas
are set aside on specific tracks of the same cylinder,
or, since it is difficult to predict the overflow
pattern, a single cylinder or group of cylinders may
hold ·all overflow records for the entire file. As the
number of overflow records increases, the proces­
Sing time also rises. Therefore, it is customary to
reorganize the file periodically, incorporating all
overflow records into the prime area.

Although DASD sequential files can be processed
strictly sequentially in the same fashion as tape,
such a method does not take full advantage of the
ability of the DASD to locate a specific record directly
and thereby eliminate tlie time required to read
inactive records. An index system is used frequent­
ly to narrow the search for a particular record.

Such a system may be likened to the index system
used in locating an item in a multiple-volume stand­
ard dictionary. The index on the cover gives the
last item in a volume. In a DASD the master index
performs this function. The thumb index is similar
to a cylinder index, while the upper-page index is
analagous to the track index. The specific item is
located by searching the page or track.

Each of these indices may be considered as a
level. The number of levels and the size of the
index is dependent upon the total number of items in
the file. The indices usually are contained in the
same or another DASD, and, if possible, the master
and cylinder indices are read once into core and re­
tained to minimize the retrieval time. The index
itself is a table normally composed of at least two el­
ements per entry: the record control key for the last
record entry contained in the specific logical group
(cylinder group, track group), and the DASD track
address. Figure 3 illustrates the general scheme
of an index system.

Because inactive records in a file may be skipped,
the term skip sequential is used frequently to refer
to the indexed sequential file organization methods.
Specific sequential file organization techniques and

8

their related overflow record and index systems are
discussed in section 2, under "Determination of File
Organization" •

Random

In a random file, records are stored at an address
that is obtained by applying a mathematical formula
to the record control field. No indices are required
to locate a specific record, since the storage address
can be found by using the same conversion routine.

Example:

Assume that three types of loans are to be stored on
DASD as follows:

Type of loan DASD address

A 000600-034099
B
C

034100-047999
048000-059999

Number of available
locations

33500
13900
12000

Apply the following formula to the loan account
number to obtain the DASD address.

1. Multiply account number by the number of
available locations. Assume Type C account num­
ber 99999.

99999 x 11999 = 1199888001

2. Add the lowest location of the allotted block to
the five high-order positions of the product obtained
in step 1.

11998 + 048000 = 059998

3. Use the result from step 2 as the DASD
address.

In the transformation of two different record
control numbers, it is possible to obtain the same
DASD address. Such duplicate addresses are called
synonyms. If only one record can be stored at a
given address, or if multiple records may be stored,
and all available areas are used, the synonyms
become overflow records. Address conversion
routines and overflow techniques for randomly
organized files are discussed in section 2 under
"File Organization Techniques".

PROCESSING OF DATA FILES - INPUT/OUTPUT
CONTROL SYSTEM (lOCS)

Definition

IOCS (or Data Management) is a set of pro­
grammed subroutines designed to relieve the
programmer of the necessity for writing input/
output routines by automatically handling the
preparation and checking of labels, the blocking and

1

2

3
4

5

6

7
8

9
10

Levell

(1 table, 10 entries)

Master Index

DASD Address

Record Key (cyl. group)

00124 00-19
2 00862 20-39
3 01739 40-59
4 04980 60-79

5 12651 80-99
6 28116 100-119

7 40575 120-l39

8 51347 140-159

9 59493 160-179
10 64208 180-199

Read sixth table in level 2 index

(cylinders 100-119)

Level 3

(200 tables, 10 entries each)

Track Index

DASD Address

Record Key (track)

16434 1

16562 2

16822 3

16995 4

17236 5

17387 6

17444 7

17500 8

17621 9

17640 10

Read second track of cylinder 104 and

search for record 16518.

I Assume 10 tracks per cylinder I

Figure 3. Generalized index system for DASD

<D
....... ------ Desire record 16518

®

Level 2

(10 tables, 20 entries each)

I ,
Cy linder Index

@
DASD Address

Record Key (cylinder)

12913 100

l3877 101

15126 102
16389 103

17640 104

18054 105
18216 106
18760 107
18933 108
19927 109
20173 110
21309 111
21984 112
22772 113
23559 114
24396 115
25743 116
26329 117
27945 118
28116 119

Read fifth table in level 3 index (cylinder 104)

To locate a record (example, 16518)

1. Scan through master index until the index record

key is equal to or higher than the desired item.

2

3
4
5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

2. Scan through the cylinder index indicated from the selected

master index entry until the index record key is equal to or
higher than the desired item.

3. Perform a similar scan through the track index indicated
by the cylinder index.

4. Read the indicated track, and search the track for the
desired item.

9

deblocking of data records, detection and error
recovery procedures, and the overlapping of proces­
sing with input and output functions. Through the
use of pretested, error-free I/O routines, the pro­
grammer has more time to concentrate on the data
manipulation requirements of his specific program.

Functional Concepts

The general flow of data records from a blocked data
file through a program controlled by lacs is illus­
trated in Figure 4.

Many modifications of this basic flow of data are
possible. In some cases records are processed in
the input area and transferred from there directly to
the output area. In other cases records are read and
written in the same area. Records also can be
processed in the output area.

Usually, a unique device-error recovery routine
exists for each class of I/O device. Upon detection
of an error, such as a misread. misseek, etc., the
appropriate error routine is entered, and an attempt
is made to recover from the error (for example,

Input Records

reread tape, reseek, etc.). If recovery is not pos­
sible, various choices may be provided, such as
bypass of the record or return of control to a user
error procedure.

I/O devices may be attached to channels instead of
directly to the central processing unit (CPU). Chan­
nels provide paths for data transfer between the CPU
and the I/O device. This allows I/O operations to be
overlapped with CPU operations so that instructions
can be executed simultaneously with data movement
in the channels. For example, one channel may be
reading data from an input file, another channel may
be writing data on an output file, while a record that
was read previously is being processed. This is
often called read/write/compute overlap.

The amount of overlapping actually achieved (ef­
fective overlap) is governed through the assignment
of I/O areas and work areas. An I/O area (or buffer)
is that area of main storage to which, or from which,
a block of data will be transferred physically. A
work area is an area used for processing an individ­
ual record from the block of data. Overlap is most
effective, usually, when at least two I/o areas are

,'----r----J/ '",-_...,.. __J/

Programmer writes routines for processing within

this area. IOCS handles the records outside this

I area.

~ '/~ ~ ,/ &r----------j ®

,r-....aR'-ec-. -R-I:e;"""'C: ! W~O,k Are~~ec.
2 3 I I 1

, I
I I

Core Input Area ore tput Area

"
I C Ou

L _______ --1 ~-~--

1. A data block is read into an input area in core storage.

2. Records are moved individually to a work area for
processing.

3. After processing is completed, the records go to an
output assembly area in core.

4. When the data block in the output assembly area

is complete, the output area is transferred to the
output medium.

5. When all records in the input area have been processed,

another block of records is read into the input area.

Output. Records

Figure 4. Flow of data records from a blocked data file through a program controlled by IOCS

10

assigned to each data file used by a program.
When a request is received by lacs for an I/O

operation, the requested operation is started, and
control passes back to the problem (or user's) pro­
gram, if the affected channel and device are not busy.
If the channel or device is busy, the request is placed
in a list of I/o requests (separate list or queue for
each channel), and the operation is performed as
soon as previous requests have been handled.

On some computers the channels have the ability
to interrupt processing at the completion of an I/O
operation. The interrupt transfers program control
to laCS, which examines the queue for the affected
channel. If the queue has no pending I/O request,
control is returned to the problem program at the
point of interruption. If, instead, a request is
pending, lacs starts the I/O operation and then re­
turns to the problem program. If lacs fails to have
an available area or record when one is required
by the problem program, a force situation results.
lacs is forced to suspend processing of the user's
program temporarily until it can service the I/O
demands. All operations are suspended, except
channel operations in progress, until the needed
channel interrupts the system, and laCS is able to
resolve the situation by servicing the data file.

Programming Concepts

laCS is specified by the programmer at the symbolic
programming level. It is inserted automatically into
the user's program at compilation time and becomes
an integral part of the user's program. In some
cases standardized lacs packages may be used to
avoid compilation time. For certain computer sys­
tems, some of the lacs routines may be located in
the operating system, which is supervising and
controlling the tasks that a computer is to perform.
When I/O operations are required, the problem
program turns control over to the operating system,
which performs the necessary I/O functions and
returns control to the problem program.

To enable specific coding to be generated to per­
form the lacs functions needed by a particular
program, the programmer issues two types of
statements (declarative and imperative) in his
source program.

Declarative Statements

These statements, known also as DTF (Define the
File) statements, or DD (Data Definitions), provide
information that:

• Describes the characteristics of the logical file,
such as blocking factor, record size, record format,
type of labels, file name, etc.

• Describes the physical device on which the file
resides, such as channel, type of device, etc.

• Identifies options to be taken under predefined
conditions, such as uncorrectable read errors.

• Contains addresses of user-written routines,
such as end-of-file routines.

Imperative Statements

Four basic verbs cause various laCS functions to
occur when specified in a user's program - OPEN,
GET, PUT,. and CLOSE.

OPEN does the following:

• Makes a data file available to a program.
• Checks header labels on input files.
• Performs control functions as specified (re­

wind, etc.).
• Writes header labels on output files.

GET causes a data record to be made available
to the program, either in the input area or in a
work area. Issuing a GET provides linkage to
routines that can perform various necessary func­
tions for input files, such as:

• Initiate read of data blocks into main storage
as they are needed.

• Deblock data input records.
• Count data blocks and records read into main

storage for comparison to equivalent count fields
in the trailer label.

• Recognize and handle errors originating as a
result of the I/O operation.

• Recognize an end of reel (EaR) condition; check
the trailer label and, for tape, rewind and unload;
read and check the header label on the next sequential
storage medium unit (tape, pack, etc.).

• Recognize an end of file (EOF).

PUT causes a data record to be moved to the out­
put area from the input area or from a work area, or
it may place the core limits of the record in a list
containing the addresses of all records ready for
output. Issuing a PUT provides linkage to routines
that can perform various necessary functions for
output files, such as:

• Block data output records.
• Initiate write of data blocks when they are as­

sembled.
• Count data records and blocks for placement in

count fields of the trailer label.

• Recognize the physical end of the storage
medium; write the trailer label and, for tape, rewind
or rewind and unload; write the header label on the
next storage medium unit.

11

• Recognize and handle errors originating as a
result of the I/O operation.

CLOSE does the following:
• Causes a data file to become unavailable to a

program.
• Writes any output records that may still be in

the output areas.
• Writes trailer labels.
• Performs control functions as required (write

tape marks, rewind, etc.).

Record Formats

In many files different record formats may have
identical lengths, while other record formats may
vary in length. However, when records of different
lengths are grouped together to create a data file,
only one format can be specified to laCS for the file.
Unless every record (excluding header, trailer, and
checkpoint records) in the file is of identical length,
the file is considered to be composed of variable­
length records. Unless all of the records in the file
are unblocked, the file is considered to be composed
of blocked records.

Various file formats can be specified to laCS
(see Figure 5):

• Unblocked fixed-length records.
• Blocked fixed-length records with a fixed

blocking factor. Padding may be used when insuf­
ficient data records are available to complete the
last block of a data file. A padding character, such
as 9, is inserted, usually in each position of any

12

I
unused records in the last block. (Some laCS
routines process a short block instead of using
padding.)

• Unblocked variable-length records. The length
of an individual record must fall within a specified
maximum record length established for each file.

• Blocked variable-length records with a fixed
blocking factor.

• Blocked variable-length records with a variable
blocking factor. Instead of using a fixed blocking
factor, the records are assembled within a block so
that their combined length does not exceed a speci­
fied block length. Records are not split between
blocks •

• Undefined records. This format permits
handling of records that do not conform to the other
formats.

Special fields may be required by laCS on some
data records to aid in the deblocking process:

• A special character, usually a record mark,
located in the last position of each record and con­
sidered as part of the record.

• A record length indicator, containing the word
or character count of the data record, located in the
same relative position within each data record.

• A block length indicator, showing the number of
words or characters in the block, used to ascertain
that the correct block length has been brought into
core.

Since variances exist in the laCS packages
developed for different computers, the specific
laCS must be checked to determine the exact record
formats available, any specialized field require­
ments, and the processing characteristics.

Unblocked Fixed-Length Records

Record 1
2S words

Blocking Factor = 1
Record Length = 25 words

Record 2

25 words
Record 3

2S words

Blocked Fixed-Length Records with a Fixed Blocking Factor

Record 1
25 words

Record 2

25 words

Blocking Factor = 4

Record Length = 25 words

Record 3

25 words

Unblocked Variable-Length Records

Record 1
25 words

Blocking Factor = 1
Maximum Record Length = 25 words

Record 3
20 words

Record 4
25 words

Blocked Variable-Length Records with a Fixed Blocking Factor

Re.cord 1
25 words

Record 2

15 words

Blocking Factor = 4

Record 3

20 words

Maximum Record Length = 25 words
Maximum Block Size = 100 words

Record 4
10 words

Blocked Variable-Length Records with a Variable Blocking Factor

Record 2

15 words

RL.

Record 3

20 words

RL

Blocking Factor = Variable
Maximum Record Size = 25 words
Maximum Block Size = 100 words

Record 4
10 words

Record 5
20 words

Block Length (BL) + /record length (RL) may be required dependent upon specific IOCS.

Figure 5. File formats that can be specified to IOCS

13

SECTION 2: DESIGN OF DATA FILES

Though the factors in determining the design of data
files are presented separately in this manual, no
one factor can be considered independently, since
all factors are interrelated and must be weighed
one against the other to select the best approach.
Consideration must be given to the demands of the
job, as well as to the hardware requirements.

DETERMINATION OF DATA

The first step in file design requires a study of all
procedures that utilize the file. On the basis of the
findings, record each necessary item on a worksheet
similar to the one illustrated in Figure 6. Indicate
type of information, frequency of occurrence, and
sequence in source document, if applicable. The
following should be done:

• Check that the necessary reference data is
included, if this is a source file.

• Weigh the effects of media storage costs vs
program execution time for constant-type data, such
as tax exempt dollars in payroll.

• Include fields obtained by processing, if the
results must be recaptured later.

• Examine all applications that utilize the file to
prevent omission of necessary data.

• Explore future requirements of the current
procedures. For example, it might be judicious to
include an additional deduction field in a payroll
application.

• Determine any additional information needed
for planned applications. It may be more practical
to include an extra field now than to reorganize the
files later.

• Study the feasibility of consolidating existing
data files into a single data file to eliminate
duplication of common information, if such a com­
bined record would not too adversely affect the
running time of the volume application.

• Ascertain that material needed in the new
application, for which the data file is to be designed,
is not available already in an existing data file •

• Verify that the data file, when set up, will
contain all the basic information to meet the

FILE DESIGN WORKSHEET Started
Date

Completed ___

File Name Designer

Process Cycle Record Characteristics File Dynamics File Media Requirements
DA MO Type: Character Size NO. REC. YRLY% YRLY% 5 YR% TOT NO. TYPE AMOUNT
WI< YR Fixed MIN MAX AV ADD DROP GROWTH REC

Var. A B C 0 E

5(B-C)=D. A+AD=E
Infonnation Required for Processing and Type of Infonnation Field Size Sequence
Reporting Required IN IN IN REMARKS

TRIAL TRIAL TRIAL FINAL SOURCE RECORD RELATED
DOC Fll.ES

Figure 6. File design worksheet

14

requirements of all persons who will be using the
end products resulting from the file processing.

• Add fields required for technical reasons,
such as IOCS requirements for variable-length
records •

• Consider file maintenance and audit control.

DETERMINATION OF FIELD SIZE

The number of positions required to record each
item of information should be determined and
entered on a form similar to that shown in Figure 6.

Determining Factors For Field Size (And Subsequent
Record Length)

Type of Field

Control and indicative data field size should equal
the total number of digits in the largest single item
to be recorded in the particular field. Occasionally,
to conserve storage, the high-order digits may be
disregarded for a field, such as order number.

Quantitative data field size may equal the total
number of digits in the largest amount to be record­
ed, or the number of digits that will occur with
reasonable frequency. Procedures can be developed
to handle the rare exceptions. See Omission of
High-Order Digit under "Field Compaction
Technique s" •

Recording Medium

Since some media, such as cards and disks, con­
tain a fixed number of positions per unit of storage
(disk sector or track, etc.), it is essential to
consider this overall limit to design efficient and
practical records.

Example:

Assume a DASD composed of 100-character disk
sectors that can be read consecutively in blocks
of 200. If a disk record plans to 82 positions,
it would be better to reduce the record to 80
positions, since five such records would fit
into four sectors with no unused positions. By
beginning the first record of the file in an address
divisible by four, no extra programming for
hardware capability is required.

Processor Characteristics

The length of a field must be communicated to the
equipment for proper handling of data.

Unit record or character machines, in which
every position of core storage is addressable,
impose few restrictions, since hardware charac­
teristics, such as word marks or next non-number
character, are utilized to control the movement of
data.

In fixed-word-Iength machines, in which only a
group of positions of core storage is addressable,
size becomes critical. It is common practice to
pack two or more fields into a single word, but if
the fields require different signing, special con­
sideration is necessary, since normally provision
is made for only one sign per word. Also, it may be
more costly in time to extract portions of words or
bridge words (one field to two words). Depending
upon the computer, alphabetic data may require
two core storage positions. Normally, alphabetic
and numeric data cannot be stored in the same
word unless both are treated alphabetically. The
tradeoffs between time, core storage, and media
storage must be kept in mind. Some computers
possess the characteristics of both character and
fixed-word-Iength machines, thereby making
possible complete flexibility of design.

File Size (Total Number of Records)

Since the field size affects the total record size,
all unnecessary positions should be eliminated to
decrease I/O time and storage media requirements.

Future Requirements

If the demands to be placed on the information indi­
cate that the need for another position is impending,
it would be easier to incorporate the additional
character in the design phase so as to avoid rewiring
or reprogramming and a patched-Up record layout.

Field Compaction Techniques

Because a reduction in the length of a record pro­
duces such positive results as an increase in DASD
packing and a decrease in time to read and/or write,
field compaction techniques should be investigated
and the cost of the technique evaluated as each file
is designed. Some methods to consider for reducing
the number of positions are:

• Decimal Scaling
Whole numbers, or decimal numbers with a fixed
number of decimal positions are called fixed-point
numbers. In dealing with very large whole numbers
or very small decimal numbers, it is necessary to
store a great many zeros solely for decimal posi..;,
tioning. In decimal scaling, only the significant
digits are retained; the fixed number of zeros
omitted from either the right or the left of the

15

significant digits is known as the decimal scaling
factor. This factor must be known and considered
for manipulation of the data. It is negative if the
new decimal point is moved to the right; it is
positive if the decimal point is shifted to the left.

Example:

Unscaled Scaled Scaling
Variable Number Number Factor

X .00123 .123 -2

Y 100.00 .100 3

Z .987 .987 0

All factors of X would have a -2 scaling factor.

All factors of Y would have a 3 scaling factor.

All factors of Z would have a 0 scaling factor.

If X and Y were multiplied, the product would have a
scaling factor of 1 (3-2).

• Floating-Point Numbers
The difference between decimal scaling and floating
point is that in the former the number of zeros
omitted is fixed for all numbers represented in a
given field. In floating point, each individual number
is transformed into two parts: the significant
digits, known as the mantissa, and the variable
number of zeros needed to position the significant
digits, known as the characteristic. Both mantissa
and characteristic are carried in the record. In
fixed-word-length machines, a constant is often
added to the characteristic so that it can be treated
as a positive value. This leaves the sign position
free for the mantissa. Either program subroutines
or floating-point hardware are capable of handling
such numbers.

Example:

Assume an 8-position mantissa and a 2-position
characteristic in a 10-position fixed word.

Actual No. of pos. + = Floating-point
number Mantissa dec. moved Constant Char. number

0000.0004583 .45830000 -3 50 47 +4745830000
-1396.430000 .13964300 4 50 54 -5413964300

0000.321659 .32165900 0 50 50 +5032165900

• Omission of High-Order Digit
In quantitative fields, when the maximum number of
digits rarely occurs, the field length can be
shortened. When significant digits do occur, an
overflow condition results. Computers will turn on
an overflow indicator, which can be tested, and an
alternate subroutine can be executed when applicable.

16

In media storage, the overflow digit can be repre­
sented by some type of zoning, such as x overpunch
in cards or AlB bits over the high-order position,
as in 1400-series computers. This is typical of the
flagging compaction technique, where the use of a
character replacement indicates a given following
condition within a field.

• Variable-Length Fields
Only significant digits are recorded, and fields are
separated by a special symbol, such as plus or
minus. The number of fields for a given record is
constant, and each field is identified by its position
within the sequence. A small routine in the computer
expands each field to the required size. Savings
are greatest when the total of the average number of
significant digits plus one for each field is less than
the sum of the maximum field sizes. This technique
is of greatest value for input preparation, where
transmission line cost and transcription time can
be reduced by its use. This is an example of the
marking cc;>mpaction technique, which uses a special
mark or symbol to indicate the beginning or the
end of a given condition.

• Bitting
Multiple items can be stored in a character or group
of characters by partitioning into bit notation, where
each bit has a specific value or control function.
Thus, bit 1 may represent active or inactive; bits 2
and 3, one of four credit ratings; and hits 4 and 5,
one of four age classifications. Care must be taken
not to develop combinations that are invalid to a
particular hardware system.

• Coding
Coding may be used to replace a larger field. During
processing, the codes can be interpreted or trans­
lated to the constants they represent. For example:
a one-position code may represent the unit of
measure of inventory items--a 1 for dozens; a 2 for
ounces; a 3 for pounds; etc.

• Heading
Heading takes advantage of redundant information.
Thus, one header containing information common
to a series of items can precede its respective de­
tail items. For example: spread input records,
such as might be used in a billing operation-­
date/order no. Icust. no. litem 1/item 2/----/item nl

• Substituting
Substituting makes use of the number of free bits
that appear in a given character set or, in the case
of EBCDIC, some of the less used combinations,
such as the lower case alpha representations. One
of these characters replaces more than one other
character, primarily numeric pairs. For example,
to reduce month from a two-digit numeric code,
the letters A and B can be substituted for November
(11) and December (12).

• Table Lookup
Use of table-lookup techniques--whereby such fac­
tors as rates, constants, or other types of informa­
tion are stored in core in table form--permits a
given field to be reduced to a code. This differs
from straight coding methods that substitute codes
permanently for given values, because it allows the
shortening of a data field without precluding retrieval
of the longer values that the codes represent. The
size of the table is limited only by the storage
capacity of the system involved.

Example:

Use of code for a management budget report.

Table

Search Argument Table Argument Function

(coded input field) (same coded data (expanded field

normally stored in information)

ascending or descend-

ing sequence)

101 (dept. code) 100 Accounting ,
",,~ 101 Accts. Receivable J

102 Accts. Payable

103 Internal Audit

Coupled with an error routine for unlocated search
arguments, table lookup also serves as an excellent
validating tool.

• Binary
The binary system uses only two symbols (0 and 1)
as opposed to ten symbols (0-9) for the decimal
system. Since the position value of these digits is
based on the powers of 2 rather than of 10, the units
position of a binary number has the value of 1; the
next po sit ion , a value of 2; the next, 4; the next, 8;
the next, 16; and so on.

8 7 6 5 4 3 2 0

2561 1281 641 321 161 81 41 21 11
Place value of binary numbers

4 3 2 0

10,0001 10001 1001 101 11
Place value of decimal numbers

The decimal number 20 expressed in binary would
be 10100 or (1 x 24) + (0 x 23) + (1 x 22) +
(0 x 21) + (0 x 20) or (1 x 16) + (0 x 8) + (1 x 4) +
(0 x 2) + (0 xl).

Since binary notation requires only two symbols,
one bit can be used to represent each place value of
a number. In standard decimal format (BCD or
EBCDIC), six or eight bits are required for each
place value of the number. (Refer to Figure 27.)
Thus, in binary the eight bits 11111111 represent
the decimal number 255. Relating this to media or
core storage capable of handling eight bits per unit
of storage (one column on tape, one byte in core,
etc.), only one unit is required for binary, whereas
three are needed for decimal. Binary notation is
a very effective compaction technique for numeric
data, providing the computer characteristics lend
themselves to efficient handling of such data.

• Hexadecimal
Hexadecimal uses a base 16 (as opposed to 2 and 10
for binary and decimal respectively) and 16 symbols
(0-9, A-F). It is used mainly as a compact notation
for binary to facilitate man-machine communication.
Any four digits of binary have a maximum value of
fifteen. Therefore, one hexadecimal digit can be
used to represent four binary digits. To illustrate:

2F 0010 1111 47

hex • binary decimal

• Packed Numeric Format
Numeric data represented in BCD or EBCDIC re­
quires only four bits (1, 2, 4, or 8) to represent its
value. In storage units capable of handling eight bits
per unit of storage, the packed numeric format takes
advantage of this characteristic by placing two
numeric characters into one unit of storage. To
illustrate:

Example of numeric
Packed representation in packed

8-bit code format format

C C 0 1 } check bit

0 8 1 0

1 4 0
numeric

0
numeric

2 2 0 value of 9 1 value of 3

3 1 1 1

4 8 0 0
I

5 4 1
numeric

1
numeric

6 2 1 value of 7 0 value of 5

7 1 1 1

Packed Format

17

To operate most efficiently in packed format, the
computer should contain in its instruction set codes
to pack and unpack, as well as to operate arith­
metically when in the packed mode.

Evaluation of Compaction Techniques

A given compaction technique must be evaluated for:
1. Amount of memory (core) required to hold

the endode-decode instructions
2. Encode-decode subroutine timing requirements
3. Compaction percentage acheived
4. Compatibility with programming systems
5. Retention of collating sequence
6. Retention of fixed field length
7. Effect on the overall system, including

related clerical functions
For a discussion in depth of compaction techniques,
see Record Compaction Techniques (E20-8252).

DETERMINATION OF DATA SEQUENCE

Data sequence is most critical for those files that
work with source documents. Card punching,
terminal operation, etc., being manual operations,
are subject to the greatest variation in rate of
production. Anything that simplifies these functions
tends to ensure a faster and more accurate operation.
The following are points to bear in mind:

• Recording of data in the same order as that in
which it is normally read. If the data sequence is
considerably different from that on the source
document, it may be necessary to redesign the
source document and retrain personnel. If the file
is to be used as input to a serial I/O unit, such as
tape to card, the sequence is dictated mainly by the
sequence desired on the output unit.

• Location of like fields in the same relative
record posItions in files that work together. This
assures that sorting and controlling can be accom­
plished if the file is contained in cards; it also
facilitates programming.

• Placement of sorting fields adjacent to one
another, with the minor code on the right and each
progressively higher code to the left. Although sort
programs can operate on multiple-control fields,
time is used to extract and combine fields into a
single key.

• Availability of results supplied by machine to
serial output unit.

• Compatibility with computer characteristics so
that data sequence does not affect processing speed.
For example, with the 1400 series, field sequence,
size, and grouping determine whether instruction
chaining can be used.

• Arrangement of alphabetic/alphameric data in
one area of the record. This facilitates handling

18

of data, particularly in fixed-word machines, and
permits minimum core and media requirements.

• Frequency of occurrence of each field. If it is
decided to use variable-length records because some
fields are not present in all records, the variably
occurring fields should be last in the record to keep
the fixed fields in the same relative location on each
record.

• Adherence to requirements of programming
systems. For example, the block-length field
specified for variable-length records normally must
be the first field in the block.

DETERMINATION OF FILE ORGANIZATION

For strictly card- and/or tape-oriented systems, file
organization normally is sequential. Therefore, the
following discussion is oriented mainly toward the
design of DASD data files.

Sequential vs Random Organization

Sequential Advantages

• Both sequential and random transactions can be
handled effectively in most cases.

• Reports arranged in data file sequence can be
obtained without sorting .

• Control over both the processing and the stored
file can be more positive.

• Less medium storage space is required.
-1 • Frequently the entire file need not be on line
simul taneously.

Sequential Disadvantages

• More core storage may be required because of
index handling routine s.

• Process time is greater for random input be­
cause of index file seeking and processing.

Random Advantages

• Less core storage is required normally.
• Process time is less for random input.

Random Disadvantages

• To maintain access requirements, frequent
reorganization may be necessary if the file is
dynamic.

• Extensive key analysis and development of
address conversion routines probably are required
for implementation.

File Organization Techniques

Sequential Techniques

• Control Sequential
Records are written initially on the DASD file in a
sequential manner in the primary file area. As new
records are inserted into the file, they are written
into available record space in a separate overflow
file area. Every record in a control sequential
file must have a sequence linkage field, which
contains (when required) the actual DASD address
of the next sequential record. This field is utilized
in a record in the primary area only when the next
sequential record is stored in the additions area.
All records in the additions area utilize the sequence
linkage field, which shows whether the location of
the next sequential record is in the additions or the
primary area. A dummy record is the first record
in the data file to permit additions with lower re­
cord keys. As the file is loaded, a distribution
index is created, which makes it possible to locate
records at random. The index is a single-level
index that contains the record control key and the
DASD address, from selected records located in
the file. The frequency of the entries can be
chosen to satisfy the control and retrieval needs of
the application. The first and the last entry in the
file are always given. The addition of overflow
records does not affect the index unless a record
higher than the last record in the file is to be
added. (See Figure 7.)

Control sequential files are reorganized periodi­
cally to reduce access time for all records in the
file. Reorganization results in the placement of all
records sequentially in the primary area, with
the entire additions area and all sequence linkage
fields cleared.

This method should be considered where pro­
cessing is primarily sequential, with some random
input where access time is not critical. It is
supported by IBM Programming Systems (load, add,
tag for deletion, delete, and unload programs) for
the 1401, 1440, and 1460 Data Processing Systems
with the IBM 1311 or 1301 Disk Storage Units
(except for the 1301 on the 1401). For further informa­
tion refer to 1401/1440/1460 File Organization
Specifications (C24-3185).

• File Organization System
The File Organization System (FOS) is supported by
the IBM 1410/7010 Operating System, which provides
programs to load and maintain files for the IBM
1301 and 1302 Disk Storage Units. This technique
uses a two-level index (cylinder and track), although
a third level (master) is generated if the cylinder
index grows too large. All overflow records cause

an entry into the track index. Therefore, no se­
quence 'link field is required to retrieve overflow
records. (See Figure 3.) For further details refer
to 1410/7010 File Organization System (C28-0405) .

Index Sequential -- 1. In this method, additions are
inserted in the data file in their correct sequential
location by moving the records with higher keys
down the track. This may result in the shifting of a
record from the end of the track into an additions
area. The most practical location for the additions
area is in a single overflow area, although it is pos­
sible to leave the tracks unpacked or to create an
additions area within each file cylinder, provided
that an even distribution of additions is antiCipated.

Normally, at least two levels of index files (cyl­
inder and track) are created, although with larger
files, a master cylinder index may be warranted al­
so. A new entry must be made into the track index
whenever a record is moved to the additions area.
This method is effective for the storage of sequenced

files of fixed-length unblocked records with the IBM
1301 or 2302-1 and 2 DASD units. The technique is
not program-supported. For an example of the use
of Index Sequential --1, see Figure 8.

Index Sequential -- 2. Records are stored in se­
quence by their record key, and their processing
and location are controlled by a two- or three-level
index.

1. Level 3, or master index, is not required but
reduces search time when a number of cylinder in­
dex tracks occur. Each entry consists of a specific
cylinder index track address and the highest key
present in that track.

2. Level 2, or cylinder index, must exist.
Maintained in record key sequence, each entry con­
tains the highest record present in each data file
cylinder, as well as the track address of that cy­
linder's level 1 (track) index.

3. Levell, or track index, must exist in each
cylinder used to store data file records. There are
two entries for each track in the primary area:

a. Normal entry, which contains the key of
the last record and the address of the first record
on the track.

b. Overflow entry, which contains the high­
est key of an overflow record from a prime data
track, along with the address of the overflow record
with the lowest key •
The index sequential -- 2 technique combines the
insertion technique of the index sequential -- 1
method with the concept of chaining for the records
that are shifted to the additions area. An addition
is inserted into the data file in its proper sequential
location (through replacement of some record), and
the remainder of the track is shifted to the right.

19

Distribution Index

Item # Record Ke DASD Address

First 1234 000200

9 1269 000208

19 1327 000218

29 1384 000228

Last 1389 000229

Note:

1. Distribution frequency = 10 in this example.

2. Underlined item used for index.
3. Items not maintained in sequence in overflow area.

To locate a record (example 1273)

CD Read distribution index, and select proper

entry point to primary file (000208).

@ Read record at entry point, and match

to search key.

G> U search key is high, match to next record
in chain. This may be next sequential

record (sequence link is blank) or a record in

the overflow area (10101).

@ U search key is low, record is not available.

Figure 7. Control sequential organization

This causes the last record on the track to be
moved to the additions area, along with a linkage
field. The overflow entry of the track index is up­
dated. Thus, the records in the primary area
tracks are in sequence with keys lower than any
that have overflowed that track. The overflow area

20

Pri m ary Are a

Item # DASD Record Sequence Link

Address Key Data DASD Address

2.
000199 Dummy X . . X
000200 1234 X. .X

2 000201 1235 X. · . X
3 000202 1:246 X. .X
4 000203 1248 X. .X
5 000204 1250 X. · . X
6 000205 1256 X. · . X
7 000206 1257 X .. .X
8 000207 1259 X. · . X

9 000208 1269 X. .X 010101

1\ 10 000209 1276 X. .X
11 000210 1277 X .•• X
12 000211 1279 X. · . X
13 000212 1290 X .. .X
14 000213 1297 X .. .X
15 000214 1301 X . . X
16 000215 1312 X . . X
17 000216 1314 X. · . X
18 000217 1324 X .. . X 010102

...!2.... 000218 1327 X. · . X
20 000219 1328 X. · . X
21 000220 1329 X . . X
22 000221 1356 X. · . X
23 000222 1358 X. .X
24 000223 1359 X . . X
25 000224 1365 X . . X
26 000225 1369 X. .X
27 000226 1377 X. .X
28 000227 1379 X .. .X

~ 000228 1384 X. .X
30 000229 1389 X. .X --

@

3
Overflow Area

Item # DASD Record Sequence Link

1

2

3

4

5

6

Address Key Data DASD Address
010100 _ 1326 X. .X 000218

010101 1273 X. .X 000209

010102 1325 X. .X 010100

010103

) 010104

010105

®

contains records in sequence by time of arrival but
retrieved in record key sequence for any given track
by use of the sequence linkage field and overflow
entry in the track index. (See Figure 9.)

Designed for use with the 2302-3 and 4, 2311,
2314 and 2321-1 DASD units, the index sequential

INSERT ITEIv1 KEY 0142

After

Track Index Track Index

Highest Key Track Highest Key Track
011 Track Address on Track Address

0117
0198

0309
0516
0596

Data Tracks *
Primary Area

Track Address
000241

000242

000243

000244

000245

000241
000242
000243
000244

000245

Record Key
0098

0102

0117
0132
0192

0198

0217

0256
0309
0396

0418
0516

0520
0573
0596

Data
. X. . X

X . . X
X. . X
X. .X
X. · . X
X. · . X
X. · . X
X .. .X
X. · . X
X .. . X
X. · . X
X .. .X
X. · . X
X. .X
X. · . X

* Three records per track unblocked.

To insert item 0142:

1.

2.

3.

Item 0142 inserted in sequence on the data track.

Item 0192 shifted down the track causing 0198 to

"drop off".
The displaced record 0198 is moved to an overflow

track.
The new highest record for track 0242 is changed to

0192 in the track index.
4. A new entry is inserted in the track index for item 0198.

Figure 8. Index sequential - 1 organization

0117

0192

0198

0309
0516
0596

-- 2 organization technique is compatible also with
the 2301 and 7320 Drum Storage unit. Fixed-length
records in either blocked or unblocked mode, as
well as variable-length records, are handled. No
track index entry repositioning is required to handle
an inserted record, nor is rearrangement of the

000241

000242
000810

000243
000244
000245

Data Tracks
Primary Area

Track Address
000241

000242

New highest item for track. ®
Entry for record move.d to ovfl. 0

Record Key Data
0098 X .. .X
0102 X .. .X
0117 X .. .X
0132 X .. . X
0142 X ..
0192 X ...

.X

.X
0142 inserted <D
0192 moved down

000243 0217 X •• . X

~
0256 X . . X
0309 X .. . X

000244 0396 X . . X
0418 X .. . X
0516 X .. .X

000245 0520 X .. . X
0573 X .. . X
0596 X .. .X

Overflow Area

000810

11.---0198 ---,-----I x ... ~ 1 ~

T"ck 000242 I." 'eco,d moved to ovedlow area. ~
Available for future insertions to same track (000242).

overflow area required. During processing, the
records can be flagged for deletion. Periodic file
reorganization is required.

• Direct Addressing
In direct addressing, the record key is equal numer­
ically to the DASD storage address of the storage

21

Before After 1st Insertions
Item Key: 0142; 0450

Track Index
Normal EnIIy Overflow EnIIy*

Track Index
Normal EnIIy Overflow Entry

High Key Low Track High Key Low High Key

in Track Address in Chain Address in Track

0117 000241 0117 000241 0117

0198 000242 0198 000242 0192

0309 000243 0309 000243 0309

0516 000244 0516 000244 0450
0596 000245 0596 000245 0596

* Overflow entries are same as normal entries until overflow occurs.

Suffix indicates location of record on track.

Low Track High Key
Address in Chain
000241 0117

000242 0198

000243 0309

000244 0516

000245 0596

Data Tracks - Primary Area** Data Tracks - Primary Area

Track Record Data Track Record
Address Key Address Key

0098 X ••• X 0098

000241 0102 X ••• X 000241 0102

0117 X ••• X 0117

0132 X ••• X 0132

000242 0192 X ••• X 000242 0142

0198 X ••• X 0192

0217 X ••• X 0217

000243 0256 X ••• X 000243 0256

0309 X ••• X 0309

0396 X ••• X 0396

000244 0418 X .•• X 000244 0418

0516 X ••• X 0450

0520 X ••• X 0520

000245 0573 X ••• X 000245 0573

0596 X ••• X 0596

** Records blocked 3 to a track.

Data Tracks - Overflow Area*** Data Tracks - Overflow Area

Track Link Key Data

*** All overflow records are unblocked.

Figure 9. Index sequential - 2 organization

location containing the record. This results in a
sequential file that requires no indices, no additions
area, and no special programming. The record keys
must fit into the range of addresses for the particular
DASD unit. To use this method, it may be practical,
on occasion, to consider assignment of a new set of
codes to the file. The entire range of addresses
covered by the record keys must be reserved for the
file. Any unused record key causes the correspond­
ing storage location to be empty. Consequently,
effective utilization of a storage unit may be affected.

Figure 10 illustrates the relationship between the
record control key and the DASD address.

Low
Address
000241
000810-1#

000243

000810-2

000245

Data

X ••• X
X ••• X
X ••• X
X ••• X
X ••• X
X ••• X
X ••• X
X ••• X
X ••• X
X ••• X

X ••• X

X~ •• X
X ••• X
X ••• X
X ••• X

Record Key

21320

21321

21323

21326

21327

etc.

Track Index
Normal EnIIy

High Key
in Track
0117
0192
0256
0450
0596

After 4th Insertion
Item Keys: 0196; 0199

Overflow EnIIy

Low Track High Key
Address in Chain
000241 0117
000242 0198
000243 0309
000244 0516
000245 0596

Low
Address
000241
000810-3
000811-1 .

000810-2
000245

Data Tracks - Primary Area

Track Record Data

Address Key
0098 X ••• X

000241 0102 X ••• X

0117 X ••• X
0132 X ••• X

000242 0142 X ••• X
0192 X .•• X

0199 X ••• X

000243 0217 X ••• X
0256 X ••• X

0396 X ••• X

000244 0418 X ••• X
0450 X ••• X
0520 X ••• X

000245 0573 X ••• X
0596 X ••• X

Data Tracks - Overflow Area

Track
000810

000811

Link Key Data

000242 0198 X ••• X
000244 0516 X ••• X
000810-1 0196 X ••• X
000243 0309 X ••• X

DASD Address

021320

021321

021322*

021323

021324*

021325*

021326

021327

etc.

.

Some manipulation of the record key is possible
to achieve compatibility between the storage medium
and the record keys, as:

1. Multiplication of the key by a factor to create
an effective storage address where the record length
does not equal the length of the addressable unit.

*Empty locations, since no records exist with
matching keys.

Figure 10. Example of direct addressing storage

22

Example: If 200 character records are to be stored
in a 100-character addressable unit, the key should
be doubled.

2. Omission of the units position of the key; this
results in the assignment of ten records to the given
storage address.

Random Techniques

Record Key Conversion. In a random file organiza­
tion the records are stored at an address that has
been derived from the record control field or key.
To select the proper address conversion routine, an
evaluation of the calculated addresses must be made
in terms of unique addresses, synonyms, packing
factor (percentage of the allocated file actually used
for records), and the time required to retrieve
records. Programs, such as AUTOPAC II (1401-
1. 4.172), are available to assist in the analysis and
evaluation of proposed address conversion routines.

Prime number division (divide/remainder) is a
flexible, simple record conversion method. The
following example illustrates its use:

Assume a data file that is to occupy 5000 storage
address locations, with record keys ranging from
11111 to 99999.

1. Select a divisor. This should be a prime
number (a number divisible only by itself and 1) or
a number ending in 1, 3, 7, or 9. A number slightly
less than the number of storage tracks or sectors
assigned to the given file is a common choice. If
the control number is greater than six digits, 999983
may be selected. Use 4999 for this example.

2. Divide the record control key by the selected
prime number, and use the remainder to generate
the track address.

Example:

If the record control key is 19800,

19800 ...;- 4999 = 3 with a remainder of 4803

DASD
Address

Record

Key

Adjust the remainder to bring it into the range of
selected DASD addresses. If the addresses range
from 012000 to 016999,

4803 + 12000 = 16803

Therefore, 16803 is the converted address for 19800.
By applying the same formula, the numbers 29798,
44795, and 94703 create duplicate addresses or
synonyms.

Overflow Organization Techniques. Because record
key conversion routines create duplicate addresses,
a method must be found to store and to retrieve the
synonym records. Chaining is the technique used
most often.

The first synonym is stored in the original
address (home record) developed by the record key
conversion routine. To reduce seek time, the
additional synonyms are stored in overflow locations
(unused home addresses) located near the original
home record. The DASD address of the first over­
flow record is placed in the home record; the
address of the second overflow record is stored in
the first overflow record; etc. A field for the
overflow address is reserved on every record but
is used only when a link must be added to the chain
of synonyms. This is illustrated in Figure 11.

To locate a record, the record address is created
by the record conversion routine. The home record
is read and its key compared to that of the record
being sought. If the keys are unequal, the next
record in the chain (as determined by the overflow
record address) is read, and the keys are com­
pared. These steps are repeated until the record is
located. Each link in the chain requires a read
and, in some cases, a seek. Therefore, the length
of time needed to find a given record depends upon
its location in the chain. Those records which are
most active should be stored first in the chain to

Data Chain
Address

168~ __ 2_9_79_8 _____ X_X_1_'st_'L_~_nk_' _'_x-2 16799

167:; 19800 ~ XX2~d· L:~ • XX ~ 16730

Initial Seek ~

16730 I 44795 I XX . • • . • XX I I

Figure 11. Example of chaining, unblocked records

'----.y---/

Unused until another synonym
for 16803 occurs

23

minimize retrieval time. To assist in determining
activity, a count that is updated by one for each
usage, may be maintained as part of each record
data. If records are blocked, each seek and read·
makes available a number of synonyms equal to the
blocking factor. Refer to Figure 12 for an example
of chaining where blocked records are used.

The handling of trailer records can also be ac­
complished by use of the chaining method. The
trailers are loaded into a separate area of DASD
storage. Their addresses are stored in the over­
flow address field of the corresponding master.

The random file organization routines for
1401/40/60, with 1311 or 1301 (except 1401), use
the chaining random file organization technique.
Included are routines to random load, to add
records, to tag for deletions, to delete tagged
records, and to unload. For further details refer
to IBM 1401/1440/1460 Disk File Organization
Routines --Specifications, (C24-318 5).

DETERMINATION OF RECORD FORMAT AND
BLOCKING

To select the record format and blocking, each of
the following factors must be considered:

File Boundaries

Paper and ,magnetic tape are continuous recording
media and, hence, present no file boundary prob­
lems. Cards are limited to 80 columns of punched
data, while each DASD has a specific maximum
number of positions that may be recorded on a given
track or sector. Comb access arms must be moved
between cylinders, and different read/write heads
may have to be selected between tracks. Although
these conditions can be handled, extra programming
steps, which cost both in processing time and in

DASD Address Record Key Data

Record 1
A ,

16803 I 29798 xx .. • XX T

core storage requirements, are necessary. When
designing a file, consider the following:

• For fixed-length records, select a record
length that, when blocked, fits well into a track.

• For variable-length records, limit the total
block to a track •

• If the DASD operates in sector mode, multiple
sectors may be read or may be written with one
command. This allows track-to-track operation
but not cylinder-to-cylinder. Therefore, for most
efficient operation (assuming blocked fixed-length
records which are to be stored in tracks which
bridge cylinders), the total number of sectors read
or written by a single operation code should be di­
visible evenly into the total number of cylinders for
the DASD. The starting address for the file plus
the number of sectors per read or write -1 must
the divisible by the same factor.

Co~e Storage Requirements

Since lacs handles physical records for input/output
operations, a core storage area large enough to
accommodate the physical record is required. In
addition, for efficient operation, multiple I/O areas
may be required for the I/O devices. A work area
the size of a logical record may be desirable.

File Capacity

The storage of records in an unblocked form nor­
mally lowers the gross data capacity of a given
storage medium. This results from the presence
of interrecord gaps, or unused storage positions,
in an addressable unit of storage on a DASD. How­
ever, unblocked records are the easiest to process
and require a minimum of core storage (no deblock/
block routines). For further details refer to the
discussion of magnetic tape timing and capacity
formulas and DASD capacities in section 3.

Record Key Data Chain Address

Record 2
A

19800 I xx. • XX 1 16799 Initial Seek

andR~

~~----------------~ 1st Link

16799 ~5 I XX • • • • • XX I I
~--~------~'====~v~=====7"~~v~'

Figure 12. Example of chaining, blocked records

24

Available for

next synonym
Unused until sufficient
synonyms to fill track

~
§
~
0

:!
.....

ClJ
ClJ p:::
...
ClJ
P.

{J
tl
CJ
ClJ

p:::

The tables in Figures 13 and 14 indicate the re­
lationship between blocking and file capacity or
access time. A 2400 model 3 tape drive with 800
density has been used for comparative purposes.

Effect of Blocking on File Capacity

115

110

100 CLAR/!ECORb

/
105 1/

100

95

J
/

90

85

80

75

70

65

60

55

50

45

40

35

30

25

J

/
/ / 200 CHAR/RECORD

il V
/

I " I
I / ./

300 CHAR/RECORD

I I /
/1 I .J' 400 CHAR/RECORD

1/ / J
V /

V

VI / ~ 500 d-IAR/RECORD

L

VI V
If
I(

20

15

l......- 1000 CHAR/RECORD

~ ~

V
10

5

2 3 4 5

Blocking Factor

• Figure 13. Relationship between blocking and file capacity

CJ

~
....

Note that the gains are in proportion to the size of
the logical records.

12

11.5

11

10.5

10

9.5

9

8.5

8

7.5

7

Effect of Blocking on Average Access Time

Per Logical Record

500 CHAR/RECORD

~

400 CHAR/RECORD ~\

300 CHAR/RECORD \
\ ~
\ \

200 CHAR/RECORD

\ \ ' ,

"" \ 1\ "~
100 CHAR/RECORD ,\ \

~ 6.5

r\.

\ \ '" "'-
\ \
\ r\ '" ~ 5

~
........

6

5.5

5

4.

4

r\ '" 5

~ '" 3

'",
5

'"

3.

2.

2

1. 5

1

0
2 4 5

Blocking Factor

• Figure 14. Relationship between blocking and average access time

25

Program Support

Just as certain file organizations are IBM program­
supported, certain record formats are supported.
These will vary with the IOCS, the computer sys­
tem, and the file organization. A chart of IOCS
characteristics appears in section 3.

Other IBM utility programs, such as sorts, must
be considered when establishing record formats,
since not all formats allowed by IOCS may be han­
dled by the other programs. Sometimes files are
prepared on one computer system for use on another.
Therefore, the characteristics of both systems must
be considered.

Sample record and label formats are given in
section 3.

FILE PROCESSING

Before the file design is finally determined, the run
time and associated costs should be calculated for
the entire system. The results must be evaluated to
determine whether the original design objectives
have been met. If the system is input/output limited
(I/O time exceeds process time), the following
approaches may be considered:

• Create a second master file splitting away from
the main master file those fields not required on the
primary runs. For example, name and address
records could be kept in a separate name and ad­
dress file. This new file would be used perhaps
only as output documents are printed.

• Extract fr.om the master file the active records
for processing. This method is useful for tape­
oriented systems, where the ratio of active master
records to total master records is very low. During
the extraction run, the updated active records of the
previous day are filed back into the master tape.
Usually a high blocking factor can be used for the
master, since the extract program is simple and
requires little core.

• Use a change-tape approach if the skew distri­
bution against the master is great (for example, if
85% of the activity occurs against 15% of the file).
Applicable to tape, this system is a variation of the
extract procedure, since it divides the master file
into active (change-tape) and inactive segments. As
activity occurs against a master record, it is moved
to the change-tape. Periodically, an extra run is
needed to return the updated records from the active
file to the inactive file, since the system loses its
effectiveness when the size of the change-tape equals
one-half of the inactive file.

• Split the master file into two or more sections,
and organize the transaction records in the same
fashion. (Use separate drives if necessary.) By
processing all sections of the file concurrently, por-

26

tions of the file may be searched for the next active
item while an active record is being processed. The
split-file technique is useful in tape approaches,
where the activity rate is low, but process time per
active record is high. The split-file technique re­
quires buffering and an increase in channels and tape
units to be effective.

• Increase the number of input buffers. If the
activity rate is low, and processing time per hit is
high, more process time can be overlapped if the
input is queued in additional buffers. If process time
requires 250 milliseconds, while an input area can
be filled in 50 milliseconds, there would be 200
milliseconds of unoverlapped process time per hit,
with two input areas. If the number of input areas
were increased to four, only 100 milliseconds would
not be overlapped.

FILE CONTROL

The design of a data file c~ot be divorced from the
environment in which the file must function. Some
of the considerations of file control and maintenance
are now discussed.

Data Validation

The entry of incorrect data into a file should be
prevented. The following techniques are suggested
methods that may be used to control the accuracy
of input data:

• Precoded forms, or standardized and simplified
forms, which reduce the possibility of error at the
point of origin of the data.

• Batch controls that establish totals for a given
group of records to detect the loss or distortion of
data during intermediate handling. A batch may
consist of a fixed number of items or the transactions
that occurred in a given period of time. Typical
batch totals are record counts, dollar or quantity
amounts, or "hash" totals of significant data, such
as wage rates. Frequently, batch totals are re­
corded in a trailer record to provide automatic zero­
balance checking.

• Turn around documents, such as prepunched
remittance forms, which require little or no extra
recording and a minimum of handling.

• Character checking, which determines whether
the data in given positions of the record contain
permissible characters. This type of check can be
used to ensure that the proper algebraic sign is
present for the type of transaction or that alphabetic
data is not included in numeric fields, and vice
versa, or that data is present where required (not
blank).

• Field checks that examine the contents of a field
for certain characteristics. These include:

1. Limit checks, which determine whether data
is within a prescribed range., Such checks can apply
to such fields as employee"s wage rate, amount of
gross pay, etc.

2. Historical checks, which use prior experience
as a basis of validation. The public utility industry
often compares, for reasonableness, prior consump­
tion for a year or more against the current usage.

3. Validity checks, which compare the contents
of a field against a list of existing "good" numbers.
This prevents posting to nonexistent account num­
bers. Matching by control key against a master file
indicates duplicate and missing numbers.

4. Logical relationships, which determine
whether the items of input data have a logical re­
lationship to one another or to the file they affect.
For example, if an employee adds a bond deduction,
a bond denomination is also required.

5. Self-checking numbers, which detect incorrect
identification numbers (such as account number,
employee number, etc.) by performing certain math­
ematical calculations on the base number and com­
paring the resulting digit against a check digit
appended to the base number.

Operating Controls

The following controls are common methods used to
detect errors caused by poor operator performance,
equipment failure, or malfunctioning programs:

• Label checking, which verifies that the proper
file is online before any processing can take place
by checking such data as file identification, creation
date and serial number, which are contained in the
label record of the file.

• Record counts, which check that the numbers
of records before and after processing are the same,
in order to guard against accidental loss of a record.

• File totals, which ensure that the file is in
balance in light of the transactions just processed.
For example, the previous file total for a given
field plus the net change represented in the trans­
actions should be equal to the sum of the individual
record fields after the transactions are processed.

• Intervention logging, which records through a
console typewriter any intervention by the operator.

• File restrictions, which, through programming
or hardware, prohibit access to records stored
within specified areas.

Error Analysis

The file control techniques suggested above indicate
the wide variety of methods available. Selection of
the specific control procedures depends on such
factors as the frequency of possible occurrence,
the results were the error allowed to enter the

system, and the chance that the error might remain
undetected even through later operations. All errors
should be logged indicating the nature and the cause.
A review of these error logs can serve as a guide
to management for the increase or decrease of error
control.

When errors are detected, any of the following
procedures can be used:

• Programmed halts, where the computer is
halted by detection of certain conditions, and the
operator follows prescribed steps dependent upon
the nature of the halt. The trend is away from
programmed halts to eliminate operator intervention.

• Bypass procedures, where the error condition
is recorded on some output medium, as tape or
printer, for later analysis, and the computer con­
tinues without stopping.

• Suspense accounts, where totals are posted for
invalid records to keep all items requiring analysis
in a single account.

Audit Trail

An audit trail may be defined as the means whereby
the source transaction and its corresponding sup­
porting documentation can be related to processed
data. Although the audit trail may be a by-product
of normal processing, it may sometimes be addi­
tional. The requirements of the auditor should be
discussed to provide the necessary historical in­
formation trail.

Reconstruction

If the information on a file is mutilated, the need
for reconstruction arises. The method selected
depends upon such factors as job priority, the time
and cost required to provide reconstruction data,
and the time and cost required to perform the re­
construction. Listed below are several approaches:

1. Tape
• If a dynamic file is maintained on tape, several

generations should be kept. Referred to as the
"grandfather, father, son" system, the retention of
the two previous files, coupled with access to the
transactions that have occurred since the last update,
provides a means of reconstruction should anything
happen to the current-generation tape.

• If a static file is maintained on tape, a copy
should be made. Should the need arise to use the
copy, a new copy should be made first. In lieu of a
tape copy, it may be practical to keep the information
in cards and to reconstruct the tape when required.

2. DASD
• Periodically, a dynamic DASD file should be

copied (dumped) on tape, on cards, or on another
DASD. Often, the copy can be made as a by-product

27

of a periodic run. All transactions since the last
dump must be retained to update the copy to current
status •

• To avoid reprocessing of all transactions since
the last dump, write the updated records on tape as
the transactions are processed against the file. In
sequential processing, only one tape record per
active disk record is written. In case of reconstruc­
tion, the record with the most recent status can be
used to replace the corresponding record on the
dumped file.

28

• If no output unit is available to record the up­
dated records, as suggested above, the master can
be flagged, and on a later run the flag can signal a
copy operation for a given record. This technique
requires a rewrite to the file for removal of the
flag.

• The contents of a static file should be available
either by copy to another DASD, or by dumping onto
tape or cards that may be used later to reload the
mutilated file.

SECTION 3: REFERENCE MATERIAL FOR DATA
FILES

STORAGE MEDIA AND RECORDING CHARACTER­
ISTICS

Cards

IBM cards provide 80 vertical columns with twelve
punching positions iIi each column. The twelve
punching positions form twelve horizontal rows
across the card. One or more punches in a single
column represent a character. Each card is read
or punched as a unit of information, but the actual
data on a card may consist of a part of a record,
one record, or more than one record. If more than
80 columns· are needed to contain the data of a re­
cord, two or more cards may be used. Continuity
in the cards of one record is obtained by punching
identifying data into each card.

The standard IBM card code divides the twelve
punching positions into two areas: the numeric,
which is made up of the first nine punching positions
from the bottom of the card and which represent the
values 9 through 1, respectively; and the zone,
which consists of the remaining positions known as
the 0, 11, and 12 positions. The 0 position doubles
as both a numeric and a zone code. Numbers 0
through 9 are represented by a single punch (0
through 9) in a vertical column. Alphabetic char­
acters use one of the zone punches with one of the
numeric punches. Special characters are combina­
tions of one, two, or three punches in a column and
consist of punch configurations not used for the
numbers or letters. (See Figure 15.) The standard
IBM card code is consistent with the binary coded
decimal interchange code (BCD or BCDIC).

Not all of the possible combinations of punches
are utilized by the standard IBM card code. The

DIGITS UTTIIS SPECIAL
ellAlACTUS

extended binary coded decimal interchange code
(EBCDIC) makes use of the free punches to provide
representation for more special characters and for
lower case letters. Figure 27 shows the punched
card codes used by EBCDIC.

To provide direct input or output without conver­
sion from decimal for those computers operating
in binary, two methods of recording binary informa­
tion are a vailab Ie.

In row binary, data are arranged serially across
each row of the card, from left to right, starting
at the 9 row and continuing through the 12 row. Each
of the twelve rows is divided into two parts; the left
half consists of columns 1-36, and the right half of
columns 37-72. One card can contain twenty-four
36-bit binary words. (See Figure 16.)

In column binary, information is placed in paral­
lel, with each column of the card containing 12
information bits. One 36-bit word requires three
columns, and the entire card can contain twenty-six
36-bit binary words. (See Figure 17.)

In both systems a punched hole indicates a binary
1. No punch represents a binary O. A computer
using the EBCDIC system does not require special
binary cards, since the code provides for punching
in one column all possible binary combinations for
eight bits. Thus, four columns of the card can
contain one 32-bit word. (See Figure 27.)

Magnetic Tape

IBM magnetic tape is a continuous recording medium
similar to the tape used in home recorders. Data
is recorded in magnetized spots or bits, is perma­
nent, . and can be retained for an indefinite period.

-'.,NTED
IYTHE26
PRINTING
CAID PUNCH

- 0123456 ?A9 ABCDEFGHIJKLMNOPQRSTUV~XVZ t-- I EM DATA PROCESS I riG ~ 1-.- PtlINTID
IV THE 26
PtlINTING
CARONNe"

CARD COLUMN
DESIGNATION

DIGIT
PUNCHIS

CAIDCOLUMN
DESIGNATION

_Jj I :)"'1 II II I II I I
DATI

II ~~ I III I
';:;()p;-~

11 .. 1 ~DDDD'IDDa"D"la""'III""" •• __ .11
11211"'" I UUM •• U ••• "UUM •• " ••• " ••••• " •• _nnn~ '''"WII. 11 1111 111111111111111111111111111111111 111111

222 22222 2 222222222222122222222222211222222 2222 22

3333 nun 33 3 333333333333333331333331333333333 3133 13

44444 4444444 444 44 444444444444414144444444444444444 444444

555555 55555555 5555 555 555555555555555555555555155515555 555155

1111111 111111111 11111 1111 111111111111111111111111111111. II 111111

--------71171111 1111111711 717111 71171 111117711111111111111111111111111 111111
II • 11 .. 11 • ••••••••••••••••••••••••••••••••
1111.11 ••• 111.911,1.,1 11191191 111.111 " •• ,1.,1.1111,11111'11111111,111111111

- " S till I 11111; Sllllllllllll.IIZ1Z1IUI." ••• IIZI ,4IU tl ••• ".U II.11 ••• II •• lIlInnN JlllnllJlIt

A
CAID

eOLUMN

~
A

CARD
filLD

Figure 15. IDM card - standard card code

29

I
ft r------.. I------ L Ir I Unused-r !-41-------L. Hal I Rign! Ha ------I~.I-Columnl

I
@ @ 12·Row

@ @ 11.Raw

aaDDDDDaaDDaDDDDD~aaaDDDDaaDDDDDDDa DaaDaaaaa.aaaaDDD~DaDD'D"DI"'D'la .. lIa ...
fI"""I7II".

11111111111111111@)11111111111111111 11111111111111111@)lllllllllllllllll 11111111

22222222222222222~22222222222222222 22222222222222222@)22222222222222222 22222222

33333333333333333@3 3 3 3 3 333333333333 3 i 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3@)3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33333333

44444444444444444GD44444444444444444 44444444444444444@44444444444444444 44444444

5555 5 5 5 5 5 5 5 5 5 5 5 5505 5 5 5 5555555555555 55555555555555555~55555555555555555 55555555

81 &6 & II 8& I II II II &0 &I &116& & 8 & & & & &III 888&1&&ISSI881ISlfjDIISIISSIIIIIIIIII 11111111

J J JJ J 71 J J J J J J J J J J(DJ 71 J J J JJ J J J J J J J 7 J J J J J J J JJ J J 71 11111(!)71 11 71 1 71 11 JJ JJ 11 71111111

.IIIIIIIIIIIIIIIIG)IIIIIIIIIIIIIIIII 111111111111111110111111111'111 ... 111 11111111

11111191191 BlIIII ~191111 911111191 II 99119Ii9999999999~11"991'111111111 11111111
Ila411111.IIIIDNd .. " 1111111111111111111111.111111111111 IIIIIIU~""«"U"UUM~II"I M"MHM~""M".v.""nl 111411""n".

Figure 16. ffiM card - row binary

Figure 17. ffiM card - column binary

I I

a "0 lila II
MI,,"nl""

1111111111
I I

212 2 212 2 2
I I

3 313 3 313 3 3
I I

414441444
I I

5 SI55 SIS S S
I I

811111111
I I

7717711777
I I

, 111111111

01230456789 ABCDEFGHIJl<lMNOPQRSTUVWXYZ &.c-S·/,%'@

I I I I I I I I I I 1 II I ~ , I 1 I I 1 II 1 I 1 II I I 1 1 I 1
I I I I I I I I I

t I I I I 1
I I 1 I I I I I I I I I 1

t I I I I 1 1 1 I I I I I I
\ I I I I I I I 1 I I I I I I

Figure 18. Magnetic tape - six,-bit alphameric code

As data is recorded, the previous information is
erased, thus permitting repetitive use of the tape.
However, the fluctuations in tape speed prohibit
data record overlays. Consequently, whenever a
data file that is recorded on magnetic tape is to be
updated, the entire file is rewritten onto a new tape.
The distance between characters recorded on the
tape is known as density and ranges from 200 to
3022 characters per inch, depending upon the tape
unit used and the method of recording.

The size of tape records may vary from a single
character to several thousand and is limited by the
length of the tape and the units that process the data.

30

I I

I

1 1 1 1 1 1 I I I ~
1 I II 1 I ~

I I I I I I I I I I I I I I ~
I I I I I I I I I 1 ~

I 1 I I I I I 1\
I I I I I I I I \

I I I I I I I I I ~

The end of the information recorded for a given file
is recognized by a single character record known
as a tape mark. The physical end of the tape is
determined by a piece of aluminum foil (reflective
spot) affixed to the edge of the tape near the end of
the tape. This spot is sensed by the tape unit when
data is recorded over the area and alerts the com­
puter so that the proper steps may be taken.

Each record is separated from the adjoining
record by a blank section of tape known as an inter­
record gap. The data records may be blocked or
unblocked. (See Figure 1.) The recording on tape
varies with the tape unit and the computer system.

Seven-Track Tape

The tape is divided into seven parallel rows along
the length of the tape. A combination of the seven
possible recording positions in one column across
the width of the tape is used to represent a single
digit or character. (See Figure 18.)

The four lower positions are assigned the values
of 1, 2, 4, and 8, respectively. Thus, to record a
given number, the positions are used whose sum
equals the value of the number to be recorded, for
example, a 1 and an 8 represent a 9. The A and B
positions serve the function of the zone punches in

I IBM cards. The A represents the 0 zone; the B
the 11 zone; both the A and B the 12 zone. Since the
addition or the loss of a recording position can
change the value a given column represents, an ad­
ditional channel, known as the check (C) channel, is
provided so that all characters are made up of either
an even or an odd number of bits. This type of check
is called a redundancy or parity check, and a given
device uses either even or odd parity. The sample
in Figure 18 shows even parity.

Tape written in six-bit alphameric code (BCD)
can be used by several data processing systems.
However, there are instances where special charac­
ters peculiar to one system are written on tape.
(Refer to "Differences Between Core and Media
Storage Requirements" in this section of the manual.)
Therefore, consideration must be given to the char­
acters used when tape written on one system may be
used on another.

To record binary information on seven-track
tape, the six recording positions (excluding the check
channel) represent six positions of a binary word.
If a computer uses a 24-bit binary word, four col­
umns on the tape are. required to record the entire
word. (See Figure 19.)

S 56 11 12 17 18 23

BCD Code
C

B SO 6
0 121 13

0

A 0 0 1 0
8 1 1 0

4 0 0 1
Data

2 0 1 1

1 51 11
0

17
0

23
1

Figure 19. Magnetic tape - seven-track binary system

Nine-Track Tape

The nine-track alphameric code is used to record
the extended binary decimal interchange code
(EBCDIC) representation.

As can be seen in Figure 20, the 4-7 recording
positions of nine-track tape parallel the function of
the 8,4,2,1 bit positions of seven-track tape. The
2 and 3 recording positions are the exact reverse
of the A and B bit positions of seven-track. Posi­
tions 0 and 1 are the two additional recording
channels that group the characters into one of four
classifications: . upper case alpha and numeric,
lower case alpha, special characters, and no
assigned character. Figure 21 shows the format
of seven- and nine-track tape. Note that the chan­
nels on nine-track tape do not run in 0-7 sequence.

Seven-track BCD

7
Nine-track EBCDIC

EBCDIC BCD

00 A-I 00 Numeric

01 J-R 10 J-R
10 s-z 01 s-z
11 Numeric 11 A-I

11 Upper case Alpha and Numeric
10 Lower case Alpha
01 Special character
00 No characters assigned

Figure 20. Comparison of seven-track and nine-track alphabetic code

01234~67'9 CMNOXVZ •• 'S··I'"" 1 2 3 C

p C (II II (

)
2. III

II II II II
:I l II II II II II I

1111111111 111I11111
3 ... III

1111111111 111111111 I II I II III
4 8

[
~ 4

I III I I II I I (III 1111

I I II I II II III II I

6 2 II II
1111111111 III III)

~ I I I I I I I I I I I I II
7 I I II I (

) 1111 (1111 11 I I I

Figure 21. Nine-track and seven-track tape data format

31

Binary data is recorded by placing eight bits of
a binary word in a column of the tape. Thus, a
24-bit binary word requires three columns. The
check channel establishes parity for each column
recorded.

Since numeric data requires only four channels
(1,2,4, and 8) to represent its value, it is possible,
when dealing with numeric data, to pack two numer­
ic characters into one column of a nine-track tape.
This method of recording is known as numeric
packed mode. (See Figure 23.)

S 67 14 15 23

8-Bit Code *
C)- Check

0 0 1
15

1
S 7

0 0

2 1 1

3 0 0 0

4 0 0

5 1

6 0

7 0
23

1
14

* Tracks are shown in sequence for visual purposes.
See Figure 21 for true location.

Figure 22. Magnetic tape - nine-track binary system

Packed 8-Bit Code Example of Numeric representation
Format in packed fonnat

C *C 0 1)- Check Bit
8 0

{' 31 f ~ Nume,;e Value
4 1

9 ~ 2 2
1 3 1.
8 4

71I 9{ ~ t Numede Value
4 5
2 6
1 7

* Tracks are shown in sequence for visual purposes. Refer to
Figure 21

Figure 23. Magnetic tape - nine-track packed format

32

Data

Magnetic Tape Device Characteristics

The following chart presents in tabular form some
of the characteristics of various IBM tape devices.
The following information is given to aid in use of
the table:

1. Recording Mode
The method by which characters are represented on
tape. (See the discussions of seven-track and nine­
track tape.)

2. Data Rate
The number of characters that can be read or writ­
ten per second. If the device has a variable density
rate, multiple data rates are given. Note that for
the nine-track tape of the 2400 unit, the figures are
in parentheses. Example: A nine-track 2400,
model 3, in unpacked mode (800 density), can oper­
ate at 90,000 characters per second. In packed
mode (1600 density), it can operate at 180, 000 nu­
meric digits per second. A seven-track 2400,
model 3, at 556 density, can operate at 62,500
characters per second.

3. Nominal Interrecord Gap (IRG)
The amount of space between physical records.

4. Average Access Time '
The amount of time required to pass over the inter­
record gap. This is added once for each block of
records in computing tape passing time for specific
records. (See the second chart below for magnetic
tape timing and capacity.)

5. Character Transfer Rate
The length of time required to transfer one charac­
ter to or from m~gnetic tape. This figure times
the number of characters in a physical record, plus
the nominal IRG time, completes the formula for
computing tape passing time. (See reference in
item 4.)

6 .. Rewind
The length of time required to rewind a full reel of
tape.

7. Rewind and Unload
The length of time required to rewind and unload a
full reel of tape.

8. Tape Length
The maximum length of tape on a reel. Two sizes
are available in most cases - the 2400-foot reel
and the 1200-foot reel.

MAGNETIC TAPE DEVICE CHARACTERISTICS

Magnetic Tape Unit 727 7330 729

Model 2 4 5 6

Systems on which available 650 1400
2

) 7072 1400 except 1440

705 70107040/44 7000 except 7072

7080

Recording Mode binary or binary or binary or BCD

BCD BCD

Density (char
4

) per inch) 200 200/556 200/556 200/556 200/556/800 200/556/800

Data Rate (thousands of char~)sec) 15 7.2/20 15/41. 7 22.5/62.5 15/41.7/60 22.5/62.5/90

Tape Speed (in/sec) 75 36 75 112.5 75 112.5

Nominal Interrecord Gap (inches) .75 .75 .75 .75 .75 .75

Average Access Time (ms) 10.8 20.8 10.8 7.3 10.8 7.3

Character Transfer Rate (ms) .067 .139/ .050 1)67/.024 .044/ .016 .067/ .024/ .0167 .044/ .016/ .011

Rewind (min) 1.4 36. in/sec. 1.4 1.0 1.4 1.0

Rewind and Unload (min) 1.5 2.2 1.5 1.1 1.5 1.1

Reference Manuals A22-6589 A22-6589 A22-6589

Magnetic Tape Unit 2401-4 6)

Model 1 2 3 4 5

Systems on which available 5/360 except 20

Recording Mode BCD or binary (7-track)
mCDIC-Zoned or packed format, binary (9-track)

Density (char
4

)per inch) 200/556/800 200/556/800 200/556/800

(9-track) (800)3) (800)3) (800)3) (800/1600)3)

4)
Data Rate (thousandsofchar /sec.) 7.5/20.9/30 15/41. 7/60 22.5/62.5/90

(9-track) (30) (60) (90) (30/60)

Tape Speed (in/sec) 37.5 75 112.5 37.5

Nominal Interrecord Gap (inches) .75 .75 .75

(9-track) (.6) (.6) (.6) (.6)

Average Access Time (ms) 20.0 10.0 6.6

(9-track) (16.0) (8.0) (5.3) (16.0)

Charater Transfer Rate (ms) .133/.041'/.033 .067/.024/.0167 .044/ .016,1.011

(9-track) (.033) (.0167) (.011) (.033/ .0167)

Rewind (min) 3. 1.4 1.0 3.
Rewind and Unload (min) 2.2 1.5 1.1 2.2

Reference Manuals A22-6866

For definitions and interpretation of this chart, refer to the immediately preceding discussion.

1) 10-track tape.
2) 7335 for 1440, A22-6789
3) Packing feature allows two numeric digits to be translated to one 8-bit character.
4) A character is considered the data recorded in one vertical column on the tape.
5) Includes reload.

6) No 2404 Model 4,5 or 6; 7-track read/write available only on Models 1,2 or 3;
see A22-6866 for compatibility requirements.

(800/1600)3)

(60/120)

75

(.6)

(8.0)

(.0167/ .008)

1.4
1.5

7340
1

)

1 2 3

70747080 1400 S/36O

7090/94 except
1440

BCD zoned or BCD zoned mCDIC zoned
packed, binary or packed or packed for-

mat,binary

15113) 15113) 1511/3022
3

)

170 34 170/340

112.5 22.5 112.5

.45 .45 .38

4.2 18.5 3.5

.00588 .029 .00588/ .00294

1.5 3.75 1.5

A24-1470 A22-6616 A22-6671 A22-6828

2415

6 1,2,3 4,5,6

5/360 except
Models 44 f, 67

same as 2491-4

200/566/800 200/556/800

(800/1600)3) (800)3) (800/1600)3)

3.75/10.4/15 3.75/10.4/15

(90/180) (15) (15/30)

112.5 18.75 18.75

.75 .75

(.6) (.6) (.6)

40.0 40.0

(5.3) (32.0) (32.0)

.266/ .095/ .066 .266,1.095/ .066

(.011/ .005) (.066) (.066/ .033

1.0 4.05) 4.05)

1.1 4.0 4.0

A22-6866 A22-6866

33

Magnetic Tape Timing and Capacity Formulas -
Use of Chart

Calculation of Tape Passing Time

1. Select the formula under the heading "Milli­
seconds per Record" for the desired tape unit and
density. For 2400 model 3, 7-track tape with 556
density, this would be 6.6 + .016N.

2. This formula is interpreted as follows:

6.6
.016
N

= average access time in milliseconds
character time in milliseconds
number of characters per physical
record, where a character is equivalent
to the recording in one vertical column
of the tape

3. The extension of this formula provides the
time to pass one record. If each logical record is
200 characters, and the records are blocked 5, then,
6.6 + . 016 (1000) = 22.6 milliseconds.

4. Total time to pass a file of 10,000 logical
records is:

total number of records
"';;b";;"l';;';;oc';;;;ld.~';;;;';n;;;;g;;;;;f':';;'a';;"'c;;;"to"";;r";;;"';;;"';:;"';;"";';::;''';;';;;;;''' x time per physical record,

10,000 x 22.6
5

34

or

45,200 ms = 45.2 seconds

Calculation of Records per Reel

1. Select the formula under the heading "Records
p~r Reel" for the desired tape unit and density.
For 2400, model 3, 7 -track tape with 556 density,
this would be:

28440 or 14040
.75+.0018N

2. This formula is interpreted as follows:

28440 = inches per 2400-foot reel minus 30 feet
of combined header and trailer leader

14040 = inches per 1200-foot reel minus 30 feet
of combined header and trailer leader

.75 = length of interrecord gap

.0018 = inches per character

N = number of characters per physical
record, where a character is equivalent
to the recording in one vertical column
of the tape

3. The extension of this formula provides the
number of blocks that can be written on one reel.
Using 200 character records, blocked 5, this is:

28440
.75 + .0018 (1000) = 11,152 blocks

Since the records are blocked by 5, this means
11,152 x 5, or 55,760 logical records.

Extension tables are available for common record
lengths. Refer to X22-6785 for 729 and 7330 tapes,
X22-6840 for 7340-S/360 tapes and X22-6837 for
2400 tapes.

Tape Unit

727
7330

729 IT

IV

V

VI
I

-4)
Modell - 7-track

2401-4

(9-track)

Model 2 - 7-track

(9-track)

Model 3 - 7-track

(9-track)
5)

Model 4 -

(9-track)

5)
MOdel 5 -

5)
(9-track)

Model 6 -
(9-track)

~4) all models - 7-track

Models I, - (9-track)
2 or 3
Models 4, - (9-track)

~4)
5 or 6
Modell

Model 2

Model 3

Use 1511 for Hypertape 7340.
Use 3022 for Hypertape 7340.

200

10,8 + ,067N 3)
20,8 + ,139N

10,8 + ,067N

7.3 + .044N

10,8 + ,067N

7,3 +.044N

20.0 + • 133N

10.0 + .067N

6.6 + .044N

40.0 + .266N

MAGNETIC TAPE TIMING AND CAPACITY

Milliseconds per Record Records per Reel

556 1) 800 2) 1600 200 556 1) 800 2) 1600

28440 or 14040
.75 + .005N

20,8 + ,050N 28440 or 14040 28440 or 14040
,75 + .005N .75 + ,OO18N

10.8 + ,024N 28440 or 14040 28440 or 14040
,75 + .005N ,75 + ,OO18N

7,3 + ,016N 28440 or 14040 28440 or 14040
,75 + .005N ,75 + .0018N

10,8 + ,024N 10,8 + ,017N 28440 or 14040 28440 or 14040 28440 or 14040
,75 + .005N ,75+.0018N .75 + .00125N

7.3 + .016N 7.3 + .011N 28440 or 14040 28440 or 14040 28440 or 14040
.75 + .005N .75 + ,OO18N .75 + .00125N

20.0+ .048N 20.0+ .033N 28440 or 14040 28440 or 14040 28440 or 14040
.75 + .005N .75 + .0018N .75 + .00125N

(16.0 + .033N) (28440 or 14040)
.6 + .00125N

10.0 + .024N 10.0+ ,017N 28440 or 14040 28440 or 14040 28440 or 14040
.75 + .005N .75 + .0018N .75 + .00125N

(8.0 + .017N) (28440 or 14040)
.6+ .00125N

6.6+ .016N 6.6+ .011N 28440 or 14040 28440 or 14040 28440 or 14040
.75 + .005N .75 + .0018N .75 + .00125N

(5.3 + .011N) (28440 or 14040)
,6 + .00125N

(16.0 + .033N) (16.0 + .017N) (28440 or 14040) 1/28440 or 14040)
.6'+ .00125N 1\.6 + .000625N

(8.0 + .017N) (8.0 + .008N) C8440 or 14040) e8440 or 14040)
.6+ .00125N .6 + .000625N

(5.3 + .0llN) (5.3 + .005N) e8440 or 14040) '/28440 or 14040)
.6 + .00125N 1\.6 + .000625N

40.0 + .095N 40.0 + .066N 28440 or 14040 28440 or 14040 28440 or 14040
.75 + .005N .75 + .0018N .75 + .00125N

(32.0 + .066N) e8440 or 14040)
.6 + .00125N

(32.0 + .066N) (32.0 + .033N) e8440 or 14040) e8440 or 14040)
.6+ .00125N ,6 + .000625N

4.2 + .00588N 21240
.45 + .00066N

18.5 + .029N 21240
.45 + .00066N

3.5 + .00588N 3.5 + .00294N 21240 21240
.38 + .00066N .38 + .00033N

1)
2)
3)
4)

N = number of characters per block. f. 1 PF) /1 PF)
If the packed mode is used, the basic formulas may be modified by suffixing,-1- behind each N. For 7340, modell, the formula 1>et9omes 4.2 + .00588N,+- •

PF = packing factor or the number of nonpacked characters in a record divided by the total number of characters in the record.
5) No 2404 Model 4, 5, or 6.

Paper Tape

Paper tape is a continuous recording medium. Thus,
paper tape can be used to record data in records
of any length, limited only by the capacity of the
equipment that processes the paper tape. Depending
upon the specific device, the recording on paper
tape may be either in eight-channel code or in five­
channel code.

Eight-Channel Code

Data is coded in a fashion similar to that described
for magnetic tape - six-bit alphameric code.
However, holes are punched into the paper tape.
(See Figures 18 and 24.) The 0 and X channels
serve the function of the A and B channels in mag­
netic tape.

Five-Channel Code

This system is similar to the eight-channel code,
except only five rows extend the length of the tape.
Since the possible combination of holes with only
five channels is not sufficient to provide for all of
the numbers and letters of the alphabet, certain
combinations serve the dual function of representing
both a letter and a number. To distinguish between
the two, letters are preceded by a special combina­
tion of punches known as letters shift, while the
number combinations are preceded by a figures
shift character. Since there are ten numbers and
26 letters, the other figures shift characters are
used to represent special characters and functions.

END OF LINE x-••••••••••••••••••• 0-..........
CHECK-. ..G

The five-channel code is suitable for transmission
over telegraph or telephone wires.

Direct Access Storage Devices (DASD)

Magnetic Disk

A disk device is composed of magnetically coated
disks, which are stacked on a rotating spindle. A
movable access arm, containing two read-write
heads, passes between the physical disks. One head
services the bottom surface of the disk directly
above it, while the other handles the upper surface
of the disk directly beneath it. The surface of each
disk is divided into concentric tracks. Depending
upon the particular DASD, the tracks may be sub­
divided into sectors. The tracks on each disk
surface are located physically one above the other
and may be thought of as forming concentric· cyl­
inders. (See Figure 26.)

The tracks or sectors (where present) are num­
bered sequentially and thus form the basis for the
addressing scheme of disk devices.

Although some disk devices employ a single-arm
access mechanism, which moves both horizontally
and ~ertically to access any track within the disk
file, the majority of the IBM disk devices are
equipped with a comb-type access mechanism in
which the arms are arranged like the teeth on a comb
and move horizontally between the disks. The heads
are aligned vertically, and all are moved together
so that for each position of the access mechanism
one entire cylinder surface is accessible to the read­
write heads.

8-. •• •• •• • • 4-. •••• •••• •••• •••• •••• •••••• • ••• 2-... 1-.. • . • •.. • •
Figure 24. Paper tape - eight-channel code

..:0
WW

~ ~w
~ w.~

~ ~~z
~ABCDEFGHIJKLMNOPQRSTUVWXYZ~~~

1- ••• ••••• • • • •••• ~ 2-...~
• ••••••••••••••••••••••••••••• 3-. • •••••••••••••• t

4-. ••••• •• ••• • •• • j 5-..• t

"
Figure 25. Paper tape - five-channel code

36

90145726

1- ••• ••• •• • •••••• 2-...
•••••••••••••••••••••••••••••• 3- •• •••••••••••••

4-. ••••• •• ••• • •• • 5-'-.. •• .~... • •••••

Track

Disk

Figure 26. Disk storage cylinder concept

Data Cell Drive

In the IBM 2321 Data Cell Drive, data is stored in
magnetically coated strips rather than in disks.

Cylinder

The strips are contained in a removable cell assem­
bly, and ten cell assemblies can be mounted on a
data cell drive. To access data on the strips, the
cell assemblies are rotated until the cell containing
the proper strip is under a strip-picking device that
pulls the desired strip from the data cell and wraps
it around a rotating drum. The read-write mecha­
nism can access 20 tracks on a strip without moving,
thereby forming a cylinder of data tracks.

DASD Device Characteristics

Unlike tape, DASD files can replace old data with
new data through record overlay. Thus, inactive
records do not require rewrite on a DASD unit. The
chart on the next page presents in tabular form
some of the characteristics of various IBM DASD
units. The following information is given to aid in
use of the table:

1. Recording Mode
The 6-bit mode refers to BCD; the 8-bit mode re­
fers to EBCDIC on devices attached to S/360; on
devices attached to computers in the 1400 series,
the 8-bit mode is used whenever data is recorded
in the load mode (the extra bits make possible the
storage of word marks, along with the character).
Refer to IBM Disk storage Drive, (A24-1472), for
a more detailed explanation of load mode; 8-bit also
may be used with packed numeric data.

2. Character Transfer Rate
The length of time required to transfer one charac­
ter to or from a DASD.

3. Rotational Period
The length of time required for a complete revolu­
tion of the DASD. The figure in parentheses gives
the average time usually used in timing a DASD.

4. Scan Time
The length of time required to search a cylinder for
a specific identifier. This may be an optional
feature.

5. Access Time
The length of time required to move the access arm
from one location to another.

DASD Capacity Formulas

The record storage capacity of a DASD is a function
of the length of the records to be stored, the ad­
dressing scheme of the DASD, and the maximum
character capacity of the recording track. The full
track mode provides maximum capacity but in­
creases the main storage requirements.

The symbols used in the formulas shown in the
chart on page 39 have the following significance:

DL = data length or total number of bytes
in data area

home address identifier (minimum of
two characters)

KL = key length or total number of bytes in
key area (KL = 0 if records are
stored without keys)

RA = length of record address field
(minimum of six characters)

For non-System/360 devices, the formulas per­
tain to the IBM 1410 and 7010.

37

DffiECT ACCESS STORAGE DEVICE CHARACTERISTICS

Direct Access Storage Device 1311 1301 1405 2302 2302 2311 2314 2321
Model - 1 2 1 2 1 2 3 4 - 1 1

Systems on which available 1400 1400 1401 1410 S/360 S/360 S/360- S/360
1600 7000 1410 7000 (except 7070)
7000

Type of storage media Disk Disk Disk Disk Disk Disk Disk Magnetic
Strip

Removable Media Yes No No No No Yes Yes Yes
No. of units l) per control 5 5 5 5 4 2 8 (see note 5) 8
No. of access mechanisms 1 1 2 Single arm 2 4 2 4 1 1 1

per unit mechanism
1 110)

No. of arrays2) per unit 1 1 2 1 1 1 2 1 2 1 (see note 5) 1
No. of cylinder per unit 100 250 500 no cylinder concept: 500 1000 500 1000 2003) 2003) 10,000

400 tracks/per disk
No. of tracks per cylinder 10 40 25 disks 50 disks 40 40 454) 10 18 20
No. of tracks per unit 1000 10,000 20,000 10,000 20,000 20,000 40,000 22,500 45,000 2,0006) 3600 200,0007)

-Maximum data capacity 6-bit mode 2980 28,000 56,000 10,000 20,000 117,000 234,000 - - -
per unit (thousands)ll) (8-bit mode) (2682) (21,650) (43,300) (8,800) (17,600) (90,660) (181,320) (112,140) (224,280) (7,250) 25,876 (400,0008)

Maximum data capacity 6-bit mode 29,800 112,000 - 234,000 - - -
per cylinderll) (8-bit mode) (26,820) (86,600) - (181,320) (224,280) (36,250) 129,384 (40,000)

Maximum data capacity 6-bit mode 2980 2800 1000 5850 - - -
per track ll) (8-bit mode) (2682) (2165) (880) (4533) (4984) (3625) (7,188) (2000)

Track Storage characteristics 20 hardware Changeable 5 hardware Same as 1301 Same as 2311 Hardware designed same as same as
addr. sectors record format addr. sectors so that each stored 2311 2311
of 100 chars. for all tracks of 200 chars. record defines its
each with full in cylinder each. own format, every
track, R/W plus full track record can be
special feature !VW as normal. different, no track
available. orientation.

Character transfer rate -6-bit mode 77KC 90.1KC 25KC 184KC - - -
(8-bit mode) (69KC) (70.1KC) (22KC) (143KC) (156KC) (156KC) (312KC) (55KC)

Rotational period (ms) 40 34 50 34 34 25 25 50
(average delay) (20)12) (17) (25) (17) (17) (12.5) (12.5) (25)

Scan time per cylinder9) (seconds) .4 1.33 - 1.33 1.5 .25 .25 .9
Access time (ms) Min. 100 55 50 100 50 50 25 25 175

Aver. 250 150 165 450 165 165 75 75 -
Max. 400 250 180 800 180 180 135 135 600

without with
direct direct
seek seek

1) 1 unit is the minimum orderable element. 7) Represents 10 removable and interchangeable data cells of 20,000 tracks each.
2) An array is a stack of disks except on 2321 where it is 10 data cells. 8) Represents 10 removable and interchangeable data cells of 40,000,000 bytes each.
3) 203 cylinders are addressable. 9) Refers to use of hardware scan feature.

4) 46 tracks are addressable.
5) Each 2314 includes 8 sin~le array units and necessary controls.
6) 2030 tracks are addressable.

10) Up to 3 arms available, 1 standard.
11) Capacities listed are for IBM 1410/7010 on all non-System/360 devices.
12) Does not include 2 ms. head select time.

DASD CAPACITY FORMULAS

Formula for No. of Records
DASD Max. Track Capacity in Usable Characters

1301 - 6-bit 2800 2840 - HA2
(8-bit) (2165) DL+ RA+ 32

(substitute 2205 for 2840)

1311 - 6-bit 2980 Sector mode --No special formula
(8-bit) (2682)

Twenty 100-character sectors
(Twenty 90-character sectors)

2302-1/2 - 5850 5902 - HA2
6-bit (4533) DL+ RA+ 44
(8-bit)

(substitute 4585 for 5902)

2301 20483 1 + 20483 - (53 - C + KL + DL)
186 - C + (KL + DL)

C ::: 0 when KL f. 0
C ::: 53 when KL =- 0

2302-3/4 4984 1 + 4984 - ~20 - C + KL + DL)
81 - C + 1. 049 (KL + DL)

C ::: 0 when KL I 0
C - 20 when KL ::: 0

2303 4892 1 + 4892 - (38 - C + KL + DL)

146 - C + (KL + DL)

C ::: 0 when KL ::: 0
C = 38 when KL = 0

2311 3625 1 + 3625 - (20 - C + KL + DL~
81 - C + 1.049 (KL+ DL)

C = 0 when KL I 0
C ::: 20 when KL = 0

2314 7188 1 + 7188 - (41 - C + KL + DL)
166 - C + 1. 043 (KL + DL)

C = 0 when KL f. 0
C = 41 when KL ::: 0

2321-1 2000 1 + 2000 - (16 - C + KL + DL)
100 - C + 1. 04~ (KL + DL)

C = 0 when KL f. 0
C ::: 16 when KL = 0

Capacity and Transmission Time--Reference cards available as follows:
2302--X20-1706; 2311--X20-1705; 2321--X20-1704; 2303--X20-1718;
2314--X20-1710; 2301--X20-1717.

Example of Computation of No. of Records
in Usable Characters

2840 - 2 2838 :::
:::

164 + 6 + 32 202

14 records, 10 unused positions, where HA2 ::: 2,
DL ::: 164, RA::: 6

- Track Mode

5902 - 2 5900
256 + 10 + 44 ::: 310 :::

19 records, 10 unused positions, where HA2 ::: 2,
DL ::: 256, RA::: 10

1 + 20483 - (53 - 0 + 10 + 150) = 186 - 0 + (10 + 150)

20270
34'6:::

59 records, with 202 unused byte positions, where
KL ::: 10, DL::: 150

4984 - (20 - 0 + 10 + 150)
1 + 81 - 0 + 1.049 (10 + 150)

:::

1+~:::
249

20 records, with 73 unused byte positions, where
KL ::: 10, DL::: 150

1 + 4892 - (38-0 + 10 + 150)

146 - 0 + (10 + 150)
4694

1 + 306:::

16 records, with 104 unused byte positions, where
KL ::: 10, DL::: 150

1 + 3625 - ~20 - 0 + 10 + 150)
81 - 0 + 1. 049 (10 + 150) =

1 + 3445 =
249

14 records, with 208 unused byte positions, where
KL = 10, DL = 150

1 + 7188 - (41 - 0 + 10 + 150) = 166 - 0 + 1. 043 (10 + 150)

1 + 6987 =:
333

21 records, with 327 unused byte positions, where
KL ::: 10, DL::: 150

2000 - (16 - 0 + 10 + 150)
1 + 100 - 0 + 1. 049 (10 + 150) =

1 + 1824 ==
268

7 records, with 216 unused byte positions, where
KL = 10, DL::: 150

39

EXTENDED BINARY CODED DECIMAL
INTERCHANGE CODE

Instructions for use of Figure 27*.

Conversion from graphic to punched-card code
1. Locate the graphic in one of the four charts.
2. Trace to the right for the digit punches.
3. Trace down for the zone punches.
4. All punche s indicated in 2 and 3 must be

punched in the same column.

Conversion from punched-card code to graphic
1. Locate the two charts that contain the zone

punches of the punched code to be deciphered.
2. Select from the two charts the one that con­

tains the digit punches for the character to be
decoded.

3. The graphic desired is at the intersection of
the line s traced up from the zone and left from the
digits chosen in steps 1 and 2.

Conversion from graphic to eight-bit code
1. Locate the graphic in one of the four charts.
2. Trace to the left for bit positions 4-7.
3. Trace up for bit positions 0-3.

Conversion from eight-bit code to graphic
1. Locate the two charts that contain the proper

pattern for bits 4-7.
2. Select from the two charts the one that con­

tains the zone bit pattern for the character to be
decoded.

* There are 15 exceptions to the punching equated to bit positions.

These exceptions are shown in the chart by circled numbers 1

through 15, and the substituted punching is shown below the

chart under "Exceptions".

40

3. The graphic desired is at the intersection of
the lines traced to the right from the 4-7 bits and
down from the 0-3 bits chosen in steps 1 and 2.

Conversion from eight-bit code to punched-card
code (to punch binary data in EBCDIC)

1. Locate the two charts that contain the proper
pattern for bits 4-7.

2. Select from the two charts the one that con­
tains the 0-3 bit pattern for the character to be
coded.

3. Trace to the extreme right from bits 4-7 for
the digit punches.

4. Trace to the bottom from bits 0-3 for the zone
punches.

Conversion from punched-card code to eight-bit
code (to decode binary data in EBCDIC)

1. Locate the two charts that contain the zone
punches of the punched code to be deciphered.

2. Select from the two charts the one that con­
tains the digit punches for the value to be decoded.

3. Trace to the extreme left from the digit
punch~s for bits 4-7.

4. Trace to the top from the zone punches for
bits 0-3.

Bit Positions
00 01 0, 1

10 11

00 11
Bit Positions

00 2,3 11

~ ~ ~ ~ S~ &<i, _CI, ~ -0000 <.?: Q9; c.u; 0(8; 0000 -
i /(8 0001 ,..--! 0001 a i A J

Qj
I

I

I 0010 ;':' --:: t-. 0010 b k s B K S 2

: 0011 ~
0100 PF RES BYP PN 4
0101 HT Nl IF RS ~
0110 lC BS EOB UC ~
0111 DEL Il PRE EDT 7l

., -0'
...c
u vi' c
:>

~. D-

'c, C

c :f
~
iD

i
0011 c I t C l T 3

0100 d m u D M U 4

0101 e n v E N V 5

0110 f 0 w F 0 W 6

0111 9 P x G P X 7
---;

1000 ~ 1000 h q y H Q Y 8

9 9 9 9 9 9 9 9 1001 i r z I R Z 9
12 12 12 12

11 11 11 11
0 0 0 0 12 12 12

11 11 11
0 0 0

It-ol~--- Zone Punches----I CIIIJ
Zone P unches I

00 01 Bit Positions
0, I

10 11

00/ 01 /10 /11 00 I 01 1 10 1 11
Bit Positions

2, 3 00 I 01 1
10

1
11 00 I 01 1

10 111

-,
~~ ~

1010 ¢ ! ~ : 8-2
t-- t-. 1010

1011 $, * ~ f
i 1100 < . % @ rH
I 1101 () - I 8-5 , r;=-=-

1110 + ; > = 8w 6

! ~
1111 I -, ? " ill

.. ~
...c

vi' g
..: ~.

'c, ~
c .~

-g
D-

iD

1011

1100

1101

1110

1111

9 9 9 ,9
12 BID 11 ' '11 ',,'. ,".

o I, ". 0

9 9 9 9
12 12 12 12 12 12

II lI. 11 lJ 11 11
0 ,0 ,0 0 0 0

Zone Punches I 1 Zone Punches

Exceptions:

CD 12-0-9-8-1 CD No Punches ® 12-0 @ 0-1

0 12-11-9-8-1 ® 12 @ 11-0 @ 11-0-9-1

0 11-0-9-8-1 (2) 11 @ 0-8-2 @ 12-11

CD 12-11-0-9-8-1 ® 12-11-0 @

Refer to instructions above for use of this chart.

Figure 27. Extended binary coded decimal interchange code (EBCDIC)

Bit Positions
0, 1

Bit Positions

-
.J3::l

1
-

2 -
3 -
4 -
5 -
~

-2
8 -

-.2.

2, 3

.,
..r:
u
c
:>

D-

Ol

C

Bit Positions
0, 1

Bit Positions

r-:7
8-2

r--

~

fJ!::!
·8'w5
t--

8-6
~

8-7 ---

2,3

..
..r:
u

~
'c,
c

41

DIFFERENCES BETWEEN CORE AND MEDIA STORAGE REQUIREMENTS

System/360

42

Structure

8-bit unpacked recording
mode (EBCDIC or zoned
format)

8-bit packed numeric
recording mode (packed
decimal)

8-bit recording mode
(binary)

6-bit recording mode
(BCD)

6-bit recording mode
(binary)

MedIa Storage

1 position for each alphameric or
numeric character; eaGh charac­
ter uses 8 data bits; sign should
be over units position of num~ric
data.

2 numeric digits are stored in
one position (0-3 and 4-7 data
bits); sign control requires 4-7
data bits of units positions.

4 positions contain the contents
of one binary word.

1 position for each alphameric or
numeric character; each charac­
ter uses 6 data bits - BCD
format (7-track tape).

6 positions contain the contents
of one 36-bit binary word
(7-track tape).

Core Storage

1 position contains a nonbinary data
character. For proper conversion to
packed decimal, numeric data must
contain sign in 0-3 data bits of units
position.

2 imlneric digits are stored in one
position {0-3 and 4-7 data bits); sign
control requkes 4-7 data bits of units
positions.

1 word contains 32 data bits.

With 7 -track feature and translator
on: each 6-bit character is trans­
lated to the EBCDIC 8-bit code and
vice versa; therefore, each position
on tape uses 1 position in core.
With 7-track feature and translator
off: each 6-bit character is placed
in 2-7 data bits of one position; the
0-1 bits are ignored (on write), or
zero-filled (on read).

With data conversion and 7-track
feature: each group of 24 bits from
tape (4 positions) is converted to
three 8 -bit byte s in core and vice
versa. See 2400 Principles of
Operation (A22-6866), for details
when data is fewer than 4 positions.

DIFFERENCES BETWEEN CORE AND MEDIA STORAGE REQUIREMENTS

Non-System/360

Structure

6-bit recording mode
BCD move mode (with­
out wordmark)

8-bit unpacked recording
mode BCD load mode
(with wordmarks)

8-bit packed numeric
recording mode

Binary recording mode

Special 7070/74

Compressed tape
recording mode

Delta (A) mode change

Theta (9) sign control
used' with 8 -bit packed
recording mode

Media Storage

1 position for each alphameric or
numeric character. Each
character uses 6 data bits.

DASD - each character uses 8
data bits, thus reducing the
number of storage positions
available as compared to 6-bit
mode. The wordmark requires
the extra space.

Tape - the wordmark becomes
a word separator character and
is stored 1 storage position
ahead of the associated charac­
ter, thus increasing the media
storage requirements.

2 numeric digits are stored in one
position.

6 positions' contain the contents
of one binary word.

Up to 5 leading zeros of each
numeric word are eliminated;
alpha words use 5 tape positions.

Requires 1 position between
alpha and numeric words.

Theta character precedes and
follows the contents of each
negative word, thus requiring 2
extra positions. For use with
1301 DASD and hypertape (7340).

Core Storage

1 position contains a nonbinary data
character, except for the 7070/
7074, where each alpha character
require s 2 positions.

1 position contains a nonbinary data
character with or without wordmarks.

7070/7074 requires 2 positions for
each alpha character.

2 numeric digits are stored in one
position.

1 word contains 36 data bits in the
binary computers.

Complete 10-position words, numeric
and alpha.

The delta does not appear in core; it
is only in media storage and is used
to transfer and sign words between
core and media storage.

This special code doe s not appear in
core; it controls the negative sign
designation as words are transferred
between core and media storage.

43

:f: PROCESSOR CHARACTERISTICS

1400
Processor for 7010 7040/44 7070/74 705/7080 7090/94 S/360

Type Character - Word - 36 data bits & Word - 10-pos. Character - Word-36 data bits Character-1 to n bytes (8 bits-byte)
numeric/alphabetic 1 validity bit numeric numeric/alphabetic Halfword - 2 bytes

5-pos. Word - 4 bytes,
alphabetic Doubleword - 8 bytes

Core BCD-8 bits (6 binary; alpha in BCD 2 out of 51 BCD-7 bits (6 data binary; alpha in binary; EBCDIC or ASC II2
data, 1 check, 6-bit char., 6 char / and 1 check) BCD as 6-bit char. , (zoned); numeric data may be in
1 word mark) word; numeric may 6 char/word; packed format.

be in BCD numeric may be in
BCD

Instruction Two-address, Single address Single address, Single address Single address Single or two-address variable
Type variable 5 positions length, located on integral

boundary.

Field High-order word- Length specified in Zone bit to left of Length specified in instruction for
Definition mark instruction field char. oper.; implied on fixed-

length operations.

Signing Units position- First data bit 1 poSition/word - Units position First data bit High-order bit - binary; units
blank/+ = plus alpha, plus or minus position in packed format.

Remarks Chaining of data Subroutines required to Some operations Subroutines re- Fixed-length data must be located on
and instructions convert from binary to more efficient with quired to convert integral boundary; numeric data must

decimal and vice versa length of 5 or from binary to be in packed format for decimal
multiples thereof decimal and vice operations; instructions available for

versa packing, unpacking, conversion from
decimal to binary and vice versa.

1. 5 bits per position have values of 0, 1, 2, 3, 6. Use sum of 2 bits to represent a numeric value, for example, 0 + 3 = 3, 3 + 2 = 5, (1 + 2 used for 0).
Alpha requires 2 positions per letter, where the left position is a numeric representation of the zone, and the right position is the numeric portion of the
character, for example, 61 = A, 62 = B, 71 = J, 82 = S, etc.

2. ASC II - See appendix in S/360 Principles of Operation, (A22-6821). Choice of EBCDIC or ASC II under program control.

RECORD FORMATS - S/360

I Physical I
~ Record r-

logical •. '>; I J t I I I)1
R'

('0
Record R Record R Record R Record R Record R Record R Record R

1 G 2 G 3 G
I
IRG = Inter-Record Gap

II ,
......) Count

(G Area

'.~.' I•...

II
>

J Count
(Area G
\

Physical Record-J
J.. Logical Record--l

Key lUi
k::

Area G Data Area

lif .) 1 i

Physical Record-t
f. Logical Record -l

'(•.. ' ...

i~[Count)
Data Record

1
o Area .S
'}.

G = Gap, Area Separator

4 G 5 G 6 G

TAPE RECORDS

iJ Count Key
Area G Area l~ Data Area

2
Ii'

DASD RECORD - WITH KEY AREA

Data Record
2

.
Count i_

S Area?

~

7 G

Count
G Area

Data Record
3

DASD RECORD - WITHOUT KEY AREA

Fixed-Length Unblocked Record Format

,PhYSical Record 1- ,PhYSiCal Record 2-1 Physical Record 3

\ l<i

) I Logical Logical Logical Logical Losical Logical Logical Logical Logical

R Record Record Record Record Record Record Record Record Record

(G 1 2 3 r 4 5 6 7 8 9

IRG = Inter-Record Gap TAPE RECORDS

I
)

Record R Record
8 G

Key
G Area G

Count It~\';i G Area

~' .. '.

I Logical
Jt Record
G 10

9 I

Data Area
3

Data Record
4

LogiCal)
Record

11 (

r

G

/

I '"' 11-----------Physical Record 1----------.... ·1 1-o111-----------Physical Record 2-1
(\

i.
••••••

... ~ .. Count ,~ Key . .. Logical Record Logical Record Logical Record
••••••

Count Key Logical Record Logical Record

• ~ .. Area Area Data Area Data Area Dota Area ..~ Area Area Data Area Data Area ;
U

I 2 3 4 5
........ {

DASD RECORDS - WITH KEY AREAS

'"'11-1 -------Physical Record 1 --------~I I '"'11-1 ------- Physical Record 2 ---------.~I

\
) } Count

~
Logical Record Logical Record Log ica I Record Count Logical Record Logical Record log'''' Reoo,d I

I ~. Area ~ Data Area Data Area Data Area Area Data Area Data Area Data Area
1 2 3 4 5 6

I

G = Gap, Area Separator
DASD RECORDS - WITHOUT KEY AREAS

Fixed-Length Blocked Record Format

J

45

RECORD FORMATS - S/360

~ Physical Record ==::t
II-logical Record

Iii Bl Rl I
I· xxbb xxbb I

Data

I I· Bl Rl I
i xxbb xxbb I Record 1

Rl = 80
831 0 3j4 7

IBl = 104,

Data

Record 2

Rl = 100
TAPE RECORDS

-- Physical Record --
~ logical Record ~

G Count C Key G BL RL Data G
Area Area Record 1

xxbb xxbb I
I , 0 ~ 4 7 1

BL=84 RL=80

'X:::::
:!t::

I X:~b x:~bl
Data

Record 3

1031 0 314 7
,Bl =541 Rl = 50

Count G Key G BL RL
Area Area

xxbb xxbb I
1 1

1 0 3,4 7

BL= 104

DASD Records - Wi th Keys

I' Physical Record :::t
I--Logical Record

Data Data

Data G
Record 2 ~

~

RL= 100

Data

Bl BL Rl I
xxbb xxbb 1

Record 1
BL Rl I

xxbb xxbb I Record 2
RL I

xxbb xxbbl
Record 3

Rl = 80

831
1
1

o 314 7
iB = 1041

o 314 7
Rl = 100 Bl = 541

DASD Records - Without Keys

Bl = Block length } in binary half - word (16 bit) format, plus two blank bytes.
Rl = Record length

IRG = Inter-record Gap
G = Gap

Variable-Length Unblocked Record Format

r4~----------- Physical Record ------------+1
~l.ogical Record-

Data Data Data 1\:1
kl Bl Rl I
I xxbb xxbb

Rl I
xxbb

Rl I
Record 2 xxob Record 3 Record I

1 0 314 7

I Bl=234I
183p84 187 23~ 0 314 7

\

)

~
G

-

I.....

Rl = 80 RL=100 1 Rl=50 ,Bl = 1651
TAPE RECORDS

- Physical Record ...
"::--Logical Record~

Count G Key G BL RL Data RL Data RL Data
Area Area Record 1 Record 2 Record 3

xxbb xxbb I xxbb I xxbb I
IBL=2 34

1
R L=80

I
RL= 100 RL=50

DASD Records - With Keys

...... ------------ Physical Record--------------+-I
~ logical Record--l

Count
Area BL RL I

xxbb xxbb I

Data

Record 1
Rl I

xxbb

Data Data

Record 2
Rl I

xxbb I Record 3

Data

Record 4

Rl = 56

-

G

Rl = 50

I

Count
Area

o ~4 7
IB = 2341 Rl = 80

184 87
!

1831

1

184 187

RL = 50
2331 I 0 41

I IBl = 342\ Rl = 100
DASD Records - Without Keys

Bl = Block length }
Rl = Record 'length in binary half - word (16 bit) format, plus two blank bytes.

IRG = Inter-reccrd gap
G = Gap

Variable-Length Blocked Record Format

46

1
G)

I

S/360

I---Record Zero: RO --'+1.'---------- Record One: Rl --------

JGOP'---~_:_~:_e_r_'GopL._~_~_;_r:_s_s~GOP 'i~::' Gopj ~::: IGOP ~:~~~: Gop ~::;' GOpj ~;:o IGOPC===

--i '--1' ---
Record Two: R2 I' Record Three: R3, etc. ------

]

Address
Gop Marker

Count

Gop I ~;:o ~OP I IGOP

Address Count ~E Area DATA AREA Marker Gap Area Gap Area Gap Data Gap

Schematic Representation of DASD (with Key Area)

Index
Marker Gap

Flag
Byte

Harne Address

Cyl inder Head Check

BYT
C I C H I H

Schematic Representation of the Home Address

... I'I---------Count Area-------i. 1 ... I,I--------Oata Area ------~, 1

QJ

>.
co

OJ
0

u::

Identifier
~

"'C 0,
Cylinder Head 0 c

U QJ

C J C H I H
~ -l

>.
R QJ

~

Data Check
length Bytes

I I
Gap

This area is used for the
Capacity Record Option (OTFDA)
or the Cylinder Overflow
Control Record (DTFIS)

Schematic Representation of Record Zero

Check
Bytes

1------Count Area -----I r--Key Area----i 1+-----Data Area ----~

]

Gap L--A_ddres~s Gap

:'~'

Identifier

1 .. Cylinder Head
>-

a:>

C I C HIH

~
IJ)

R a
u:

Data

.J:
Length

IJ)
c ..

I
-'

~
:><:

Check
Bytes

Gap

I

Key
Area
(Variable
Length)

Check
Bytes

I
Gap

Schematic Representation of DASD Record with a Key Area

(Variable Length)

Check
Bytes

I

I ... ,o-------Count Area------+l. I I ... 'I---------Oata Area -------~

]

Address

Gap L....--Mar_ker--l Gap
GAP (Variable length)

Identifier
Data Check ~

QJ "'C 0, length Bytes >. Cylinder Head 0 c
co U QJ

~
-l

OJ

CIC HIH
>. I I

0 R QJ u:: ~

Schematic Representation of DASD Record without a Key Area

Check
Bytes

I

47

NON-SYSTEM/360 SAMPLE RECORD FORMATS

1311 Sector (Move Mode) * I Physical and Logical Record 11 I Physical and Logical Record 21

,
S Data Record 1 20 S Data Record 2 20

G G
A 80 Characters Unused A 80 Characters Unused

I
80-Character Record

I ... _------------Physical and Logical Record 1 ------------..-t·1
S Data Record 1 S Data Record 1 Contd. 25

G
A First 100 Characters G

A Last 75 Characters Unused

175-Character Record

G =: Gal' Fixed-Length Unblocked Record Format
SA ..; Sector Address

100 Character Sectors

20 Sectors Per Track

I Physical Record 11

I
Logical Data Data Record 10

S
2 Un-G Record 1

A
45 Characters used) 45 Characters

45-Character Record

I Physical Record 21

Data Record Data Record 10

G
S

Un-3 4
A

used 45 Characters 45 Characters

S
G

A

S
G

A

J

\ G
S

A

\

~1'_------------------------PhYSiCal Recordl-------------------------~.I

S Logical Data Record 1
G

A 75 Characters

I

75-Charactcr Record

G = Gap

SA = Sector Address

100 Character Sectors

20 Sectors Per Track

Data

Record

2

lst 25

Char.

Data Record 2 Data Record 3
S

G Last 50 1st 50
A

Characters Characters

Fixed-Length Blocked Record Format

* Reduce Number of Characters Per Sector from 100 to 90 for Load Mode.

48

Data

S
Record

Data Record 4
G

A
3

75 Characters
Last 25

Char.

I
~
I

NON-SYSTEM/360 SAMPLE RECORD FORMATS

1311 S<!ctor Mode (Move) *

Record

Character Record

Largest Block::: 300 Characters; Largest Record::: 296 Characters

G 0 Gap

SA -= Sector Address
BL .: Block Length

RL ~ Record Length

100 Character Sectors

20 Sectors Per Track

Variable-Length Blocked Record Format

* Reduce Number of Characters Per Sector from 100 to 90 for Load Mode.

1311 Track Mode (Move) **

Record

2980 Characters Per Track

G:: Gap

SA ::: Sector Address

Record

2

Record

3

Fixed-Length Blocked Record Format

* Reduce Number of Characters Per Track from 2980 to 2682 for Load Mode.

49

NON-SYSTEM/360 SAMPLE RECORD FORMATS

1301, 2302-1/2,

) G HAl G HA2 G RAl G Record G RA2 G Record G RA3 G Record G

1 2 3

Fixed-Len~th Unblocked Record Format

)G HAl G HA2 G RAl G Record Record Record Record G RA2 G
1 2 3 4

Fixed-Length Blocked Record Format

) G HAl G HA2 G RAl G BL Record Record Record G RA2 G

50

1 2 3

I I I I I I

'-- RL t.. RL L RL

Variable-Length Blocked Record Format

G = Gap Area Separator
HAl = Home Address of Actual Physical Address. It is Prerecorded and Cannot be Written by User.

HA2 = Home Address Identifier Written by the User.

RA = Record Address Usually Generated from a Key.

RL = Record Length

BL = Block Length

See DASD Capacity Chart for Track Length of Specific Device.

See S/360 Sample Record Formats for Sample Tape Formats.

\

BL

Etc. to

End of Track

Re~O'd)
Etc. to End

of Track

Re:O'd)

I I

Etc. to End

of Track

L RL

S/360 File Label Fonnats

Tape File with Standard Labels

load
Point

* * *
Volume
label

Standard
Header
label

File
A

Standard Standard
Trailer Header

(80 Char) label for label for
for File A
(80 Char)

TM

TM = Tape Mark

Tape File with Standard and User Labels

load
Point

Volume
label

Standard
Header
Label

*
User
Header
label

)

for File A for File A

TM = Tape Mark

File A

TM

TM

*one header and one trailer for Basic Operating System;
two headers and two trailers for Operating System

Standard Volume Label, Tape or DASD

Volume
Label

File
A

TM

File B

Field Number

Label
Identifier

Volume
Serial
Number

34

Volume
Security

Volume Label Format (80 bytes) for Tape or DASD

2.

3.

4.

NAME AND LENGTH

LABEL IDENTIFIER
3 bytes

VOLUME LABEL NUMBER
I byte

VOLUME SERIAL NUMBER
6 bytes

VOLUME SECURITY
I byte

Reserved Reserved

DESCRIPTION

Must contain VOL to indicate that
this is a Volume Label.

Indicates the relative position (1-8)
of a volume label within a group of
volume labels.

A unique identification code which is
assigned to a volume when it enters
on installation. This code may also
appear on the external surface of the
volume for visual identification. It
is normally a numeric field 000001 to
999999, however any or all of the 6
bytes may be alphameric.

Indicates security status of the volume:
0= no further identification for each

file of the volu'TIe is required.
1 = further identification for each file

of the volume is required before
processing.

TM

File
B

TM

Standard
Trailer
Label
for File A

*

Owner Nome
and Address Code

FIELD

5.

6.

7.

8.

9.

)

I

TM

User
Trailer
Label
for File A

*
Standard
Trailer
label for
File B

TM TM

I-J
I

TM TM

C-- J
).

Reserved For Future Expansion

NAME AND LENGTH

DATA FILE DIRECTORY
10 bytes

RESERVED
10 bytes

RESERVED
10 bytes

OWNER NAME AND
ADDRESS CODE
10 bytes

RESERVED
29 bytes

DESCRIPTION

For DASD only. The first 5 bytes con­
tain the starting address (CCHHR) of
the VTOC. The lost 5 bytes are blank.
For tope files, this field is not used and
should be recorded as blanks.

Reserved.

Reserved.

Indicates a specific customer, instal­
lation and lor system to which the
volume belongs. This field may be a
standardized code, nome, address, etc.

Reserved.

Note: All reserved fields should contain blanks to facilitate their use in the future.
Any information appearing in these fields at the present time will be ignored by the
Basic Operating System/360 programs as well as the the Operating System/360 programs.

51

S/360 Tape File Label #1

Fil.
Lab.1

Fi.ld Number

I l
a.-. I 2

File Identifier

3 4
File
Serial
Numb.r

5 6 g 7 a 9
Volume FII.

l~ Sequence Sequence Creation
Number Number C>Z Dote

_11M .. ",I III I I I II I I II I I IN ~I I I I I~ ~I I I;:; ::ll I I~ C!ll I I~ ~I~ ~I I III~
t,

Label
Identifier

.t Version
Number of
Generation

The stondard tape file lobel format and contents are C$ follows:

f!E.!:Q NAME AND LENGTH ~

I. LABEL IDENTIFIER identifies the type of lobel
3 bytes, EBCDIC HDR = Heoder -- beginning of a data

file
EOF = End of File -- end of a set of

data
EOV = End of Volume -- end of the

physical r.el

2. FILE LABEL NUMBER always a I
1 byte, EBCDIC

3. FILE IDENTIFIER uniquely identifies the entire file,
17 bytes, EBCDIC may contoin only printable characters.

4. FILE SERIAL NUMBER uniquely identifies a file/volume
6 byles, EBCDIC relalionshlp. This field Is Identical

to Ihe Volume Sorial Number in Ihe
volume label of the finl or only
volume of a multi-volume file or a
multi-file sel. This field will normally
be numeric (000001 10999999) bUI may
contain any six alphameric characters.

5. VOLUME SEQUENCE indicates the order of a volume in a
~4byles given file or multi .. file set. The first

must be numbered 0001 and subsequent
numbers must be in proper numeric
sequence.

6. FILE SEQUENCE NUMBER assigns numeric sequence to a file
4 bytes within a multi .. file set. The finl

must be numbered 000 I.

7. GENERATION NUMBER uniquely identifies the various editions
4 byles of Ihe file. May be from 0001 10 9999

in proper numeric sequence.

a. VERSION NUMBER OF indicates the version of a generation
~2byles of a file.

System/360 Tape File Label #2 (Operating System only)

Format

File
Position

FIELD

9.

10.

11.

12.

13.

14.

10 II 12

Expiration Block
Date Count

~II I I I~ ~~I II I I~
t

Fde
Security

NAME AND LENGTH

CREATION DATE
6 bytes

EXPIRATION DATE
6 byt.s

FILE SECURITY
I byte

BLOCK COUNT
6 bytes

SVSTEM CODE
13 byles

RESERVED
7 byt.s

13 14

System Code Reserved

:01 II I II I II II I~ ~II I I II~

DESCRIPTION

indicates the year and the day of the
year that the rile was created:

Position Code Meaning

I blonk none
2-3 00-99 Yeor
4-6 001-366 Day of Vear

(e.g., Januory 31,1965, would be
entered as 65031).

indicates the year and the doy of the
year when the file may become a
scratch tope. The formot of this field
is identical to Field 9. On a multi-
file reel, processed sequentially, all
files ore considered to expire on the
same day.

indicates security status of the file.
o = no security protection
1 = security protection. Additional

identification of the file is
required before it can be
processed.

indicates the number of data blocks
written on the file from the last
heoder lobello the first troiler label,
exclusive of tope marks. Count does
not include checkpoint records. This
field is used in trailer labels.

uniquely identifies the programming
system.

Reserved. Should be recorded as
blanks.

FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION

1. LABEL IDENTIFIER identifies lhe Iype of
3 byles, EBCDIC label

H DR - Header - be-
ginning of a
dala file

EOF - End of File -
end of a sel of dalo

EOV - End of Volume -
end of Ihe phY'ical
reel

2. FILE LABEL NUMBER always a 2
I byle, EBCDIC

3. RECORD FORMAT indicates the record type
I byle, EBCDIC F - Fixed

V - Variable
U - Undefined

4. BLOCK LENGTH lind icates the length of a block;
5 byl .. use maximum length for variable

or undefined records

52

5. BLOCKING FACTOR~ECORD LENGTH
5 byles

6. DENSITV
~

7. FILE POSITION
I byle

8. JO~!STEP 10
17 yt ..

9. FUTURE USE
46 byte.

indicates blocking factor for fixed
length records; maximum record length
for variable length records; zero for
undefined

indicates the recording density
0-200
1 - 556
2 - 800

- 1600 (not defined yet)

identifies the conditions that
caused creation of the
label
a - if HDR & OPEN; if

trailer & CLOSE
1 - if created because

of EOV

identifies the job or step

must be recorded as blanks

Field

9
Reserved

~I III I I~

Option
Codes

l
10 II 12 13

File
Type

M'l"<t co co :gcg r-;Ico co co
t t

Record
Length

I-

File Name

Key
Location

I
14 15 16 17 18

Secondary
Allocatior

<>;Ie co 0- -1~M 0- 0- C1:~1 II~

Record Block Ke~ lData Set
Format Length Length Indicators

19 20 First Extent
Last

QI 2122 23 24~5 Record (; Lower Upper
Pointer ~ Limit Limit

8:1 11 ffi ee "<t~ll') -0"
~~ ~ J 1= =1 1 1= ~

~J L~xtent
Extent Type Sequence

Number Indicator

Format I: This format)s common to all data files on Direct Access Storage Devices.

FIELD

I.

NAME AND LENGTH

FILE NAME
44 bytes, alphameric
EBCDIC

DESCRIPTION

This field serves as the key portion of
the fi Ie lobe I.

Each file must have a unique file name.
Duplication of file names will cause
retrieval errors. The file name can
consist of three sections:

I. File ID is an alphameric name
assigned by the user and identifies
the file. Can be 1-35 bytes if
generation and version numbers
are used, or 1-44 bytes if they
are not used.

2. Generation Number. If used, this
field is separated from File ID by a
period. It has the format Gnnnn, where
G identifies the field as the generation
number and nnnn (in dec imal) identi fies
the generation of the file.

3. Version Number of Generation.
If used, this section immediately follows
the generation number and has the format
Vnn, where V identifies the field as the
version of generation number and nn
(in decimal) identifies the version of
generation of the file.

I 2
File
Serial

Additional Extent

3 4

Sequence
Number

Additional Extent

2829

8

System Code

33

32 Pointer

1 1 1 1 1 IE~ 1 1 1 1 1 I~ ~I 1 I I~

NAME AND LENGTH DESCRIPTION

Note: Basic Operating System/360
compares the entire FILENAME
field against the file name
given in the DLAB card. The
generation and version numbers
are treated differently by
Operating System/360.

The remaining fields comprise the DATA portion of the file label:

2.

3.

4.

5.

FORMAT IDENTIFIER
I byte, EBCDIC numeric

FILE SERIAL NUMBER
6 bytes, alphameric EBCDIC

VOLUME SEQUENCE
NUMBER 2 bytes, binary

CREATION DATE
3 bytes, discontinuous binary

I = Format I

Uniquely identifies a file/volume
relationship. It is identical to the
Volume Serial Number of the first
or only volume of 0 multi-volume file.

Indicates the order of a volume relativ
to the first volume on which the data
file resides.

Indicates the year ond the day of the
year the file was created. It is of
the form YDD, where Y signifies the
year (0-99) and DD the day of the
year (1-366).

01 FIELD

*'"
6.

7A

7B*

7C

8

9*

10*

11.*

NAME AND LENGTH

EXPIRATION DATE
3 bytes, discontinuous binory

EXTENT COUNT
1 byte, binary

BYTES U SED I N LAST BLOCK
OF DIRECTORY
I byte, binory

SPARE
I byte

SYSTEM CODE
13 bytes

RESERVED
7 bytes

FILE TYPE
2 bytes

RECORD FORMAT
I byte

DESCRIPTION

Indicates the year and the day of the
year the fi Ie may be deleted. The form
of this field is identical to that of Field 5.

Contains a count of the number of extents
for this file on this "volume. If user labels
are used, the count does not include the
user label track. This field is maintained by
the Basic Operating System/360 programs.

Used by Operating System/360 only for
partitioned (library Structure) data sets.
Not used by Basic Operating System/360,

Reserved,

Uniquely identifies the programming system,
The character codes that can be used in this
field are limited to 0-9, A-Z, or blanks,

Reserved,

The contents of this field uniquely identify
the type of data fi Ie:

Hex 4000 = Consecutive organization

Hex 2000 = Direct-access organization

Hex 8000 = Indexed-sequential organiza­
tion

Hex 0200 = Library organization

Hex 0000 = Organization not defined in
the file label.

The contents of this field indicate the type of
records contained in the file:

Bit
Position

o and I

2

3

Content

01 Variable length
records

10 Fixed length
records

11 Undefined format

o

o

No track over­
flow

File is organized
using track over­
flow (Operating
System/360 only)

Unblocked records

FIELD NAME AND LENGTH

12.* OPTION CODES
I byte

13. ** BLOCK LENGTH
2 bytes, binary

14.** RECORD LENGTH
2 bytes, binary

15.** KEY LENGTH
I byte, binary

16. ** KEY LOCATION
2 bytes, binary

17. DATA SET INDICATORS
I byte

Ul
DESCRIPTION

OJ
0\

Bit
0
Ul

Position Content Meaning §
0..

Blocked records e;
0..

4 0 No truncated 9-
records ~

Truncated
~
ro

records in file t"""
~ cr

5 and 6 01 Control character F
ASA code

'TJ
0

10 Control Character
>i

8
machine code ;;

.00 Control Character n-
not stated 0

~
7 0 Records have no g'

keys
ro
E:

Records are
written with
keys.

Bits within this field are used to in-
dicate various options used in build-
ing the file.

Bit

0= If on, indicates data file was
created using Write Validity
Check.

1-7 = unused

indicates the block length for fixed
lengt h records or maximum block size
for variable length blocks.

indicates the record length for fixed
length records or the maximum record
length for variable length records.

indicates the length of the key portion
of the data records in the file.

indicates the high order pastion of
the data record.

Bits within this field are used to
indicate the following:

BIT

0 If on, indicates that this is the
last volume on which this file
normally resides. This bit is used
by the Basic Operating System/360
DTFSR routine only. None of the
other bits in this byte ar~ used
by 80S.

C.n
c.n

FIELD

18.*

20.

NAME AND LENGTH

SECONDARY ALLOCATION
4 bytes, binary

LAST RECORD POINTER
5 bytes discontinuous binary

SPARE
2 bytes

BIT

I '

DESCRIPTION

If on, indicates that the data
set described by this file must
remain in the same absolute
location on the direct access
device.

If on, indicates that Block
Length must always be a
multiple of 8 bytes.

3 If on, indicates that this data
fi Ie is security protected; a
password must be provided in
order to occess it.

4-7 Spore. Reserved for future use.

indicates the amaunt of storage to be
requested for this data file at End of
Extent. This field is used by Operating
System/360 only. It is not used by
Basic Operating System/360 routines.
The first byte of this field is an
indication of the type of allocation
request. Hex code "C2" (EBCDIC "B"
indicates blocks (physical records),
hex code "E3" (EBCDIC "T") indicates
tracks, and hex code "C3" (EBCDIC
"C") indicates cylinders. The next
three bytes of this field is a binary
number indicating how many bytes,
tracks or cyl inders are requested.

points to the lost record written in a
sequential or partition-organization
data set. The format is TTRLL, where
TT is the relative address of the track
containing the last record, R is the ID
of the lost record, and LL is the number
of bytes remaining on the track following
the last record. If the entire field
contains binary zeros, the lost record
pointer does not apply.

Reserved.

* These fields are not supported by 8K/16K Basic Operating System/360

** 8K/16K BOS supports fields 13-16 for ISFMS only

FIELD

21.

22.

23.

24.

25-28.

29-32.

33.

NAME AND LENG TH

EXTENT TYPE INDICATOR
1 byte

EXTENT SEQUENCE NUMBER
1 byte, binary

LOWER LIMIT
4 bytes, discontinuous binary

UPPER LIMIT
4 bytes

ADDITIONAL EXTENT
10 bytes

ADDITIONAL EXTENT
10 bytes

POINTER TO NEXT FILE LABEL
WITHIN THIS LABEL SET
5 bytes, discontinuous binary

DESCRIPTION

indicates the type of extent with which
the following fields are associated:

HEX CODE

00 Next three fields do not indicate
any extent.

01 Prime area (Indexed Sequential);
or Cansecutive area, etc., (i.e.,
the extent containing the user's
data records.)

02 Overflow area of on Indexed
Sequential fi Ie.

04 Cylinder Index or master Index
area of on Indexed Sequential
file.

40 User label track area.

8n Shored cylinder indicator, where
n = I, 2, or 4.

indicates the extent sequence in a
multi-extent file.

the cylinder and the track address
specifying the starting point (lower
limit) of this extent component. This
field has the farmat CCHH.

the cylinder and the track address
specifying the ending point (upper
limit) of this extent component.
This field has the format CCHH.

These fields have the some format as
the fie Ids 21-24 above.

These fields have the some format os
the fie Ids 21-24 above.

the address (format CCHHR) of a
continuation label 'if needed to
further describe the file. If field 10
indicates Indexed Sequential
organization, this field will point to
a Format 2 file label within this
label set. Otherwise, it points to a
Format 3 file label, and then only
if the file contains more than thr~e
extent segments. This field contains
all binary zeros if no additional file
label is pointed to.

Field

l
K I Address of K2 Last 2nd K3

2nd Level Level Master
Master Index Entry
Index Address

K4 K5
Address of Last 3rd
3rd Level Level Master
Master Index Index Entry

Address

Spare

Highest "R" on_
High Level
Index Track

Last Data
Number of l Track in l
Index Levels Cylinder

_ Highest "R" on

Overflow Track Number Tracks

"R" f L for Highest Level
o ast Index

rData Record 1
On Shared Track

D6 17 D)S D DII DI2 DI3 DI4 D DI6 D
8 10 CIJ 15 Prime 17

o Record
Q.

Vl Colint

- NI I I I I 100 0-1 t 1 I~ :!llllll~ Nllll~ ~lllllllll I I I I I I I
K!y Identification

018
Address of
Cylinder
Index

Address of D 19
Lowest Level
Master
Index

D20
Address of
Highest Level
Index

Last Prime
[Jata Record
Address

D21 Last
Track

022

Fo!mat Number TracJs
ID for Cylinder

Overflow

Higtest "R" on
Prime Track

N}mber Bytes Statt
for Highest Indicator
Level Index

Non-First Overflow
High Level Index
Development
Indicator

Tag Deletion
Count

~ Reference Count (RORG3)

Last D24

Number of
Independent
Overflow Tracks

D25 D26
Last Independent
Overflow Record
Address

Cylinder
Overflow

030

Spare

Overflow Record Count

D31

Pointer

Format 2: This format is applicable only to Indexed Sequential data files. It is always pointed to by a Format I label.

FIELD

Kl

NAME AND LENGTH

KEY IDENTIFICATION
1 byte

ADDRESS OF 2ND LEVEL
MASTER INDEX
7 bytes, discontinuous binary

LAST 2ND LEVEL MASTER
INDEX ENTRY
5 bytes, discontinuous binary

ADDRESS OF 3RD LEVEL
MASTER INDEX
7 bytes, discontinuous binary

DESCRIPTION

This byte contains the Hex Code 02
in order to avoid conflict with a file
name.

This field contains the address of the
first track of the second level of the
master index, in the form MBBCCHH •

This field contains the address of the
last index entry in the second level
of the master index, in the form
CCHHR.

This field contains the address of the
first track of the third level of the
master index, in the form MBBCCHH •

01

02

NAME AND LENGTH

LAST 3RD LEVEL MASTER INDEX
ENTRY
5 bytes, discontinuous binary

SPARE
19 bytes

FORMAT IDENTIFIER
1 byte, EBCDIC numeric

NUMBER OF INDEX LEVELS
1 byte, binary

DESCRIPTION

This field contains the address of
the last entry in the third level of
the master index, in the form
CCHHR.

Reserved.

'2 = Format 2

The contents of this field indicate
how many levels of index are
present with an Indexed Sequential
file.

FIELD NAME AND LENGTH DESCRIPTION CIl
w

D3* HIGH LEVEL INDEX DEVEOP- This field contains the number of tracks DI1* SPARE 2 bytes Reserved.
0\
0

MENT INDICATOR determining development of Moster ~
1 byte, binary Index. D12 TAG DELETION COUNT This field contains the number of p

::l
2 bytes, binary records that have been togged for p,.

£:;
D4 FIRST DATA RECORD IN This field contains the address of the deletion. p,.

CYLINDER first data record on each cylinder in 9-
3 bytes the form HHR. D13 NON-FIRST OVERFLOW Th is field contains a count of the ~

REFERENCE COUNT number of random references to a nor ?2 D5 LAST DATA TRACK IN This field contains the address of the (RORG3) 3 bytes, binary first overflow record. ('.)

CYLINDERS 2 bytes last data track on each cylinder, in the t"""
p

form HH. D14 NUMBER OF BYTES FOR The contents of this field indicate how cr'

many bytes are needed to hold the
('.)

HIGHEST-LEVEL INDEX ~t;'
D6 NUMBER OF TRACKS FOR This field contains the number of tracks 2 bytes, binary highest-level index in main storage.

'Tl
CYLINDER OVERFLOW in cylinder overflow area.

D15*
0
'"1

1 byte, binary NUMBER OF TRACKS FOR This field contains a count of the 8
HIGHEST-LEVEL INDEX number of tracks occupied by the ~

D7 HIGHEST "R" ON HIGH-LEVEL This field contains the highest possible 1 byte, binary highest-level index. N

I NDEX TRACK 1 byte R on track containing high-level index 0-
0

entries. D16 PRIME RECORD COUNT This field contains a count of the la
4 bytes, binary number of records in the prime data :;"

D8 HIGHEST "R" ON PRIME TRACK This field contains the highest possible s::
area. t':>

1 byte R on prime data tracks for form F records. E:
D17 STATUS INDICATOR The eight bits of this byte are used

D9 HIGHEST "R" ON OVERFLOW This field contains the highest possible 1 byte for the following indications:
TRACK 1 byte R on overflow data tracks for form F

bit description records.
0 last block full

D10 "R" OF LAST DATA RECORD ON This field contains the R of the last 1 last track full
SHARED TRACK 1 byte data record on a shared track. 2-7 must remain off

Ul

CJ1 NAME AND LENGTH DESCRIPTION
FIELD ().J

00 0\
0

D18 ADDRESS OF CYLlt:::!DER INDEX This field contains the address of the D25 LAST INDEPENDENT OVERFLOW Th is fie Id contains the address of Ul

7 bytes first track of the cyl inder index, in RECORD ADDRESS 8 bytes the last record written in the §
the form MBBCCHH. current independent overflow 0..

~ area, in the form MBBCCHHR. 0..

D19 ADDRESS OF LOWEST-LEVEL This field contains the address of the
D26*

9
MASTER INDEX 7 bytes first track of the lowest-level index BYTES REMAINING ON This field contains the number of ~

of the high level indexes, in the form OVERFLOW TRACK bytes remaining on current
~ MBBCCHH. 2 bytes, binary independent overflow track. Cl>

t"'"
D20* ADDRESS OF HIGHEST-LEVEL This field contains the address of the D27 NUMBER OF INDEPENDENT This field contains the number of r;.

INDEX 7 bytes first track of the highest level master OVERFLOW TRACKS (RORG2) tracks remaining in independent '-~
index, in the form MBBCCHH. 2 bytes, binary overflow area.

'Tj

This field contains the address of the ~
Q

D21 LAST PRIME DATA RECORD D28 OVERFLOW RECORD COUNT This field contains a count of the ~
ADDRESS 8 bytes last data record in the prime data 2 bytes, binary number of records in the overflow ~

area, in the form MBBCCHHR. area both indep. and dep. N

0-
LAST TRACK INDEX ENTRY This field contains the address of the This field contains the number of

a
D22 D29 CYLINDER OVERFLOW AREA g.

ADDRESS 5 bytes last normal entry in the track index on COUNT (RORG 1) cylinder overflow areas full. g"
the lost cylinder in the form CCHHR. 2 bytes, binary Cl> .e:

D23 LAST CYLINDER INDEX ENTRY This field contains the address D30 SPARE Reserved.
ADDRESS 5 bytes of the lost index entry in the 3 bytes

cylinder index in the form CCHHR.

D31* POINTER TO FORMA T 3 This field contains the address (in
D24 LAST MASTER INDEX ENTRY This field contains the address of FILE LABEL 5 bytes the form CCHHR) of a Format 3

ADDRESS 5 bytes the last index entry in the master file label if more than 3 extent
index in the form CCHHR. segments exist for the data file

within this volume. Otherwise
it contains binary zeros.

* These fields are not supported by 8K/16K Basic Operating System/360.

Field

I
~1 Extent 1 Extent 2 Extent 3 Extent 4 Extent 5 Extent 6 Extent 7

Key 2 171819 30
ldent- Lower Upper
ification limit Limit

-I 1 l"<t I ttl -0 1 1 I~ =1 1 1:!:2 1 1 1 III~~ I 1 I I II~~ 1 I I 1 II~ 10>0 I 1 I III~~ I I I III~~ 1 I I I I j~ "<t"<t
t t

Extent Type
Indicator

Extent Sequence
Number

Extent 8

31

~ I II II I~~

Extent 9 Extent 10 Extent 11

I I I I I I~~ I I I III~~ I I I

t .. Format Identifier

Extent 12 Extent 13 55

54
Pointer

I I 1== I I I I II~~ II I II I~ ~I III~

Format 3: This format is used to describe extra extent segments on the volume if there are more than can be described in the Format I (and Format 2 if it exists) file label. This file label is
pointed to by a Format 1, Format 2, or another Format 3 file label.

FIELD

I.

2-17

18.

NAME AND LENGTH

KEY IDENTIFICATION
4 bytes

EXTENTS (in KEY)
40 bytes

FORMAT IDENTIFIER
I byte, EBCDIC numeric

DESCRIPTION

Each byte of this field contains the
Hex Code 03 in order to avoid conflict
with a data file name.

Four groups of fields identical in format
to fields 21-24 in the Format I label are
contained here.

3 = Format 3

FIELD

19-54

55.

NAME AND LENGTH

ADDITIONAL EXTENTS
90 bytes

POI NTER TO NEXT
FILE LABEL
5 bytes

DESCRIPTION

Nine groups of fields identical in format
to fields 21-24 in the Format 1 label are
contained here.

This field contains the address (in the form
CCHHR) of another Format 3 label if
additional extents must be described.
Otherwise, it is all binary zeros.

1 2 Device Constants 9

Key

Alternate Tracks

10 VTOC Extent 15

Reserved
11 14

Reserved

Format 4: This format is used to describe the Volume Table of Contents and is always the first file label in the VTOC. There must be one and only one of these Format 4 file labels per volume.

2.

3.

4.

5.

6.

7.

SA.

SB.

NAME AND LENGTH

KEY FIELD
44 bytes, binary

FORMATID
1 byte, EBCDIC numeric

LAST ACTIVE FORMAT 1
5 bytes

AVAILABLE FILE LABEL RECORDS
2 bytes, binary

HIGHEST ALTERNATE TRACK
4 bytes

NUMBER OF ALTERNATE TRACKS
2 bytes, binary

VTOC INDICATORS
1 byte

NUMBER OF EXTENTS
1 byte

RESERVED
2 bytes

DESCRIPTION

Each byte of this field contains the
Hex Code 04 in order to provide a unique
key.

4 = Format 4

Contains the address (in the form CCHHR) of
the last active Format 1 file label. It is used
to stop a search on a file name.

Contains a count of the number of unused
records in the VTOC.

Contains the highest address (in the form
CCHH) of a block of tracks set aside as
a I ternates for bad tracks.

Contains the number of alternate tracks
available.

Bit 0, if on, indicates no DADSM (format 5)
tabel, or DADSM lab~1 does not reflect
true status of volume.

Bit 1-7not used.

Contains the hexadecimal constant 01, to
indicate one extent in the VTOC.

Reserved.

FIELD

9.

NAME AND LENGTH

DEVICE CONSTANTS
14 bytes

DESCRIPTION

This field contains constants
describing the device on which
the volume was mounted when
the VTOC was created. The
following describes each of the
subfields.

Device Size (4 bytes) - The number of cylinders (CC) and tracks per cylinder (HH).

Track Length (2 bytes) - The number of available bytes on a track exclusive of home
address and record zero (record zero is assumed to be a non-keyed record with an
eight byte data field).

Record Overhead (3 bytes) - The number of bytes required for gaps, check bits, and
count field for each record. This value varies according to the record characteristics
and thus is broken down into three subfields.

I - Overhead required for a keyed record other than the last record on the track.
L - Overhead required for a keyed record that is the last record on the track.
K - Overhead bytes to be subtrac ted from I or L if the record does not have a key

field.

Flag (1 byte) - Further defines unique characteristics of the device.

bits
0-5
6

7

reserved
CC and HH must be used as I-byte values, as in the case of the
2321.
A tolerance factor must be applied to all but the last record on
the track.

C':l
I-'

NAME AND LENGTH DESCRIPTION

Toleronce (2 bytes) - A value that is to be used to determine the effective length of
the record on the track. The effective length of a record is calculated in the follow­
ing manner:

1. Add the key length to the data length of the record.

2. T est bit 7 in the flag byte:
a. if 0 go to 3
b. multiply value from 1 by the tolerance factor
c. shift result 9 bits to the right

3. Add overhead bytes to the result.

NOTE: Step 2 is not required if the calculation is for the last record on the track.

Labels/Track (1 byte) - A count of the number of labels that can be written on each
track in the VTOC. (Number of full records of 44-byte key and 96-byte data lengths
that can be contained on one track of this device).

Directory Blocks/Track (I byte) - A count of the number of directory blocks that can
be written on each track for an Operating System/360 partitioned data set. (Number
of full records of 8-byte key and 256-byte data lengths that can be contained on one
track of this device.)

The following illustrates the device constants field for the various direct access devices:

Track Labels/ Dir Blk/
Device CC HH Length L ~ Flag Tolerance Track Track

2311 203 10 3656 82 55 20 1 537 16 10
2321 2010 520 2027 101 47 16 3 537 8 5
2301 0 200 20616 186 186 53 0 512 63 45
2302 250 46 5070 82 55 20 1 537 22 14
7320 0 400 2129 111 43. 14 1 537 8 5

NOTE: CCHH for the 2321 above are separate 1 byte quantities.

10. RESERVED Reserved.
29 bytes

11-14. VTOC EXTENT These fie Ids describe the extent of the
10 bytes VTOC, and are identical in format to

fields 21-24 of the Format 1 file labd.
Extent type 01 (prime data area).

15. RESERVED Reserved.
25 bytes

· Field

t
Key
Identification

23

Available Extents in Key

Available Extents

Format 5: This format is used for Direct Access Device Space Management (DADSM) only.

FIELD

I.

2.

3-8

NAME AND LENGTH

KEY IDENTIFICATION
4 bytes

AVAILABLE EXTENT
5 bytes

AVAILABLE EXTENTS IN KEY
35 bytes

DESCRIPTION

Each of these four bytes is a hex 05.

This field indicates an extent of space
available for allocation to a data file.
The first two bytes are relative track
address. The next two are the number
of full cylinders included in the extent.
The lost byte is the number of tracks in
addition to the cylinders in the extent.

These fields are identical to field 2.
They are in relative track address
sequence.

89 10

t
Format
Identifier

FIELD

9.

10-27

28.

Available Extents

27 28
Pointer
to Next
Format·S

NAME AND LENGTH

FORMA T IDENTIFIER
1 byte EBCDIC numeric

AVAILABLE EXTENTS
90 bytes

POINTER TO NEXT FORMAT 5
5 bytes

DESCRIPTION

5 = Format 5

These fields are the same as
Field 2. There are 26 available
extent fields in the Format 5
label.

Contains the address (in the form
CCHHR) of the next Format 5
file label if one exists.

Label
Identifier

File Creation
Retention Dote

Period

T
M

File File
Identification Serial

Number

HEADER LABEL

Lead-In Label
Tape

Portion Identifier Serial
Number

, ,
I'H 0 R 'b x x x x x

11 I I 15 61 I I 110

TRAILER LABEl

Label Block
Identifier Count

Pack
Serial

Number

File
Serial

Number

x x x x x

File (Reserved
Sequence Fields)
Number

Reel File
Sequence Identification
Number
, ,

-:x x x:b x x x x x x x x X

Lower
Limit

Creation
Dote

Year, Day
XXXIXXX

111 I I 115 161 I I 120 211 1 1 I 1 1 1 1 130 311 1 1 p5

Record Count Hash Total

Upper
Limit

Retention
Cycle

, ,
-:xxx:b

361 1 I f4c

Blank or
User's

Information

(Reserved

Fields)

,
Blank or"
User's ~

Informatio

• :
4_11 J 1 '

,
~

T Tape

M End ~

0') en
~ 9-

(1)

EI
~.
n
0
en
~
::s
p.

~
p.
CO

"'" I n ::r
III
t-:t
III
n
~
...:]
III

(1)

t-'

~ e.

HEADER LABEL

Lead·ln Label
Portion Identifier

Data
TRAILER LABEL

Label
M Identifier

HEADER LABEL

~
.e
c Lobel

"CI Identifi.r

~

I I
llH o Rib

-I I I Iv>

Dato TRAILER LABEL
I

T
M

Tap. Fil. Reel Creation Retention
Serial Serial Sequence Date Period

Number Numb.r Numb.r

Block (~elerved
Count Field)

Retention Creation Fil. Fil. Reel
Period Oat. Identification Serial Serial

Number Number

I
Yr. I Day

"I I I~ ::1 I I I~ :!!I LI I I IJ I I~ ~I I I Ig ;:;1 I I I~

Lab.1 Fil.
Information Identification

Blank or
User's

Information

]]

]]
~1

:0 ~~
Reel ~ ~i c c Creating

Sequence "CI] i~
System ..

Number > ~~ .. ,.. "'U 00
<II: .~ ~J

.. ..
a. a.

0 o 0
0-0-

~I I I~ ~I I~ ... '" "CO 0.0 w;1 I I~ "" " .. " ...

] (
0

~
c

Record Blocking 1 (Reserved
Lenglh Faelor/Si ••] Fields)

"CI
0 U ..

<II: I
~;gl I I I~ ~I I I I~ ~ ~I I II

Dato

I
Blank ar II

User',
I Informalio •

A
~ §I I III iI~

"CI
c

M a.
::!

Data ,

T
M

&
::s
t

III

~
(1)

EI
OJ
0'1
0

Non-System 360

Label
Identifier

l***b/
10064

Tape and File Serial No.­
Sequence No.

Standard Header Label

., .,
Label ... OJ OJ

~ r:: ::: e: Identifier ::s "" ~ 8 ~ '<=
l***b/ ::s ::s]] 0 0
10064 U U

~J: ~ .~
+ on + "" +

~I I I Ion ~I I I I I~ ~I~ ~ ~ ~I I~

Standard Intermediate Header Label

Standard Trailer Label

Schematic of 7080 Tape Labels

., .,
e:
'<= ::s
0
u

]
+

~IO\ ~ ~

File
Identification

File
Identification

~I I I I I I I I I~

Creation Date -
Retention

Creation Date -
Ret~ntion

x x x x x - x x x

~I I I I I I I I~

Record Format

I
(I

r::
Record Format 0 Misc.

";I

\ .!!
"3~

x-x.xxx-xxxx-x .s8

;1 I I II I I I I II Itri ~I Iii; 811 I I

65

(j')
(j') 10CS Characteristics

S/360 Basic Programming Support
Basic Operating System

~K Disk 16K Tapc/16K Disk 8K Disk/16K Disk
File Organization
Primary Macros

Record Formats
Fixed Unblocked
Fixed Blocked

Variable Unblocked
Variable Blocked
Undefined

I/O and Work Areas

DASD
Key Requirements

(External)

Indices

Additions and/or
overflows

Data Location

Devices Supported

Reference Manuals

Sequential
GET/PUT

DTFSR

X
X

X
X
X

1 I/O
1/0& work
I/O

2 I/O & work

1442 1403 1015 (inquiry)
2501 1404* 1052
2520 1443 2400
2540 1445 2671
1285
*Continuous form only

C24-3354
C24-3555

Tape File Labels - BPS & BOS

Standard
Required - 1 standard volume label per reel

1
1

Sequential
GET/PUT

DTFSR

X
X

X
X
X

I/O
I/O & work
I/O
I/O & work

Without keys

None

Rewrite the file

Sequential
GET/PUT,READ/WRITE
DTFCN, DTFCD, DTFPR, DTFMT,
DTFSD (Disk), DTFSR

With
GET/PuT

X
X

x
x

With
READ/WRlTE

x

x X
I/O
I/O & work 1 I/O

2 I/O
2 I/O & work

Without Keys

None

Rewrite the file

lor more sets of limits. Within each set records must be
adjacent; within 1 volume, the sets need not be adjacent and
more than one volume is permissible. (Except on work files).
Only one volume need be in line at one time.

1442 1403 2671 2260**
2501 1404* 2701/2/3 with ** 2400
2520 1443 1030 1060 2311 (8K/16K disk)
2540 1445 1050 2740 2321**
1285 1015 (inquiry)

1052

** 16K disk
C24-3361 (8K) C24-3430 (16K tape)
C24-3372 (8K) C24-3427 (16K disk)

- 1 standard file header & 1 standard file trailer per logical file
These labels are fixed in length & format & processed by IOCS

Additional - Up to 7 additional volume labels
- Up to 7 additional file headers and up to 7 additional file trailers

Direct (DAM)
READ/WRlTE

DTFDA

X
10CS handles as unblocked.
User must deblock and block.

X

1 I/O & no work

With or Without Keys

None. Uses track & record
references (key or physical
location).
Multi track search to end
of cylinder if using key.

With key reference - IOCS
can indicate no room & user
provides OF routine

With location reference -
entirely user responsibility;
traditional chaining is com­
mon method

Entire file on line; address
checked to see if it is within
extent limits only on 16K

The volume labels are fixed in length but not format. The file labels are fixed in length, identifier & format. All are bypassed by IOCS unless user
desires to provide physical IOCS routines.

- Up to 8 user header labels and up to 8 user trailer labels
These are fixed in length and identifier but not in format. IOCS reads and writes and passes to user processing routine.

Non-standard - Unrestricted in size, format or identifier
User supplies all routines (physical IOCS). If tape mark follows labels & no checking is required, IOCS can position to first data record. On output

OPEN puts tape mark after header label unless DTF specifies none. CLOSE puts tape mark after last data record before trailer & after trailer.

Unlabelled - Input: If no tape mark, first record is processed as data
Output: Assumes output tape is unlabelled and writes tape mark unless DTF specifies none
Unlabelled tapes can be read backwards only if written on 8/360, not in data conversion mode and have a tape mark as the first record

/ . .-,.k Labels - see System/360 Label Formats

.)~---

Index Sequential (ISFMS)
READ/WRITE (Random)
GET/PUT (Sequential)
DTFIS

X

x

1 I/O
1 I/O & work
Work required to load or
add records

Keys Required

Master - optional-immediately
precedes cylinder index

Cylinder - located anywhere
except cylinder on
which data is stored. If
more than one cylinder
is required, all must be
in same disk pack.

Track - begins on 1st track of
cylinder it indexes; may
require full track,
partial or more than
one track; data follows

Cylinder OF area, independent OF
area or both may be specified. If
no room in specified area, branch
to user's routine.

1 extent for prime area on 1 pack.
If area exceeds 1 pack the additional
extents must be adjacent and on line.
Volume table of contents (VTOC) can
interrupt prime data only on cylinder
zero.

S/360 DATA MANAGEMENT (lOCS) - OPERATING SYSTEM

Organization Sequential Partitioned Indexed Sequential Direct Telecommunications

Access Method QSAM BSAM BPAM QISAM BISAM BDAM QTAM BTAM

LOAD SCAN

Primary Macro GET,PUT READ READ,WRITE PUT SETL READ READ GET READ
Instructions PUTX WRITE FlND;STOW GET,PUTX WRITE WRITE PUT WRITE

Synchronization of Automatic CHECK CHECK Automatic Automatic WAIT WAIT Automatic WAIT
Program with Input-
Output Device

Record Format Logical F, V Block Block (part Logical Logical Logical Block Message segment Block U
Block U F,V,U of a member F,V F,V F,V F,V,U of Block, U

F, V, U)

Buffer Creation and BUILD BUILD BUILD BUILD BUILD BUILD BUILD BUFFER BUILD
Construction GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL

Automatic Automatic Automatic Automatic Automatic Automatic Automatic Automatic

Buffer Technique Automatic; GETBUF GETBUF Automatic: Automatic: GETBUF GETBUF Automatic: GETBUF
Simple FREEBUF FREEBUF Simple Simple FREEBUF FREEBUF Chained FREEBUF
Exchange Dynamic Dynamic Segment Dynamic

FREEDBUF FREEDBUF FREEDBUF

Transmittal Modes Move - - Move Move - - Move -
(work area/buffer) Locate Locate Locate

Substitute

1442 2301
2501 1403 2671 1015 2302 2321

Devices 2520 1404* 2701/2/3 with 1052 2303 2250
Supported 2540 1443 1030 1060 2400 2311 2260

*continuous form only 1285 1445 1050 2740 7340 2314 2280/1/2

Reference Manuals C28-6535 C28-6537 C28-6553

F = fixed V = variable U = undefined

Minimum Record Size
Maximum Record Size
Maximum Block Size

Fixed-Length Unblocked Records
Block Character Count

Record Mark Required
Fixed-Length Blocked Records

Record Mark Required
Padding Required

Variable-Length Unblocked Records
Record Mark Required

Record Length Indicator

Block Length Indicator

Block Factor

Variable-Length, Variable Block Factor,
Maximum Block Size

Record Mark Reauired
Record Length Indicator

Block Length Indicator

Block Factor

Variable-Length Records, Fixed Blocking
Factor

Maximum Record Size Specified
Record Mark Required

Variable-Length Sections, Variable-Length
Records, Fixed Block Factor

Maximum Section Length Specified
Record Mark Required

Recording Mode
6-bit (move)
8-bit unpacked (load)
8-bit packed

NON-SYSTEM/360
IOCS TAPE

7040/7044 7090/7094 7070/7074

3 words 3 words 3 words
2000 words 2000 words 9999 words
2000 words 2000 words 9999 words

Type 1 X

Type! X Form!

Option

T~_e 2 X

BCD Tape Only - in
first word in record

Type 2 X Form 3

BCD Tape Only - in X
first word in record

Form 2

X
Short Rec.

Form 4

X
Short Section

X X X
X X

Disk
Hypertape

7080

15
9995
39995

X

Option
X
X

X
X
Pos. 1-5
in record
Pos. 1-3
in block
Pos. 4-5
in block

X

X
Pos. 2-5
in rec.
Pos. 1-3
in block
Pos. 4-5
in block

X
X
Disk
Hypertape

1440/1311 1410/7010
1460/1301 1401 1460 1410 Operating System

5 13 13 13 13
999 999

9999

Form 1 Form 1 Form 1 Form 1 Form 1 Form 3
Pos. 1-4
in block

GET, PUT GET, PUT
Form 2 Form 2 Form 2 Form 2 Form 2
X X X X X
X X X X

Form 3 Form 3 Form 3 Form 3 Form 1 Form 3
GET,PUT Option GET,PU GET,PUT GET,PUT GET,PUT

Pos. 1-4
in block

Form 4 Form 4 Form 4 Form 4 Form 4

X X X X X
3 poSe in 3 pos. ~ pos. in 4 pos. in Pos. 1-4
rec. in rec. rec. rec. rec.
Pos. 1-4 Pos. 1-4 Pos. 1-4 Pos. 1-4 Pos. 1-4
in block in block in block in block in block

Move Move Move Move Move

1405

1410

Fixed-Length Unblocked Records Form 1
Record Mark Required GET,PUT

Fixed-Length Blocked Records Form 2
Record Mark Required X

Padding Required X
Block Length Indicator

Variable-Length Unblocked Records
Record Mark Required
Record Length Indicator

Block Factor

Variable-Length, Variable Block Factor Form 4
Record Mark Required X
Record Length Indicator 1 to 4 pOSe

in record
Block Length Indicator POSe 1-4

in block
Block Factor

Recording Modes Used
6-bit (move) Move
8-bit unpacked (load)
8-bit packed .

Available positions per track
6-bit 1000
8-bit unpacked 880
8-bit packed
Full track mode (special)

* 1410 form 3 record treated as a form 1 record.

7040/7044

Type 1

Type 1

Type 2

NON -SYSTEM/360
IOCS DISK

1301

7090/7094 7070/7074

X

X Form 1

X

In first word of
record

Type 2 X Form 3

In first word of X
record

X X X
X X

X

2796 2796 2780
2160 2160 2150

4300

1311

7080 1460 1410 1401,1440 1410

X Form 1 Form 1 Form 1 Form 1
Option Option GET,PUT

X Form 2. Form 2 Form 2 Form 2
X GET, X GET,PUT X

PUT
Option X X

POSe 1-4 in block

X Form 3* Form 3
X Option GET,PUT
POSe 1-5 4 pOSe in rec.
in rec.
POSe 4-5
in bIk.

X Form 4 Form 4 Form 4 Form 4
X X X X X
POSe 1-5 3 pOSe 4 pOSe 3 pOSe 1 to 4 pOSe
in rec. in rec. in rec. in rec. in rec.
POSe 1-3 POSe 1-4 POSe 1-4 POSe 1-4 POSe 1-4
in bIk. in bIk. in bIk. bIk. bIk.
POSe 4-5
in bIk.

X Move Move Move Move
X Load
X

2800 2800 2800 2000 2000
2165 2165 2165 1800 1800
4330

2980 2980

ilrn~ System/360
Character Sets

These charts present the character sets used by IDM System/360 programming
languages, chain and train printers, and typewriter-printers. They also include
the character sets used by some current-system equipment for cases in which such
equipment is used with, or as part of, a transition to System/360.

SYSTEM/360 PROGRAMMING LANGUAGE CHARACTER SETS
SYSTEM/360 PROGRAMMING LANGUAGE CHARACTER SETS

PROGRAM ACCEPTABLE SOURCE LANGUAGE CHARACTERS COMMENTS (1)
LANGUAGE I TUTAL ALPHA NUMERIC SPECIAL CHARACTERS

~ssembler(2) 51 A-Z 0-9 $ *@+-,=.'O'/& 15 Any EBCDIC character
Basic Assembler(2) 45 A-Z 0-9 + - , • '0' -Ii Any EBCDIC character
COBod3) 51 A-~~~ (4)

0-9 $ + - , = •• 0' / ><; 15 Any EBCDIC character
FORTRAN (E) 48 0-9 + - , =. ' 0 / : 15 Any EBCDIC character
FORTRAN (H) 49 A-Z, $ (4) 0-9 +-,=.'0'/& 15 Any EBCDIC character

~t~~ m:~~:~: l(5)
60 A-Z, $@ # 0-9 +-, =.' 0 '/&><; :%.., I_? 15 Any EBCDIC character
48 A-Z, $ 0-9 + - , = • ' 0 ' / 15 Any EBCDIC character

NOTES:
(1) Acceptable characters In comments are those In the SOurce language plus those In this column, provided the I/O device Is

capable of handling these characters;
(2) Character constants and character seU-deflnlng terms may be represented by any EBCDIC character.
(3) In a non-numeric literal In System/360 COBOL, any EBCDIC character except the quotation mark may be used.

(However, such characters may not be acceptable to other COBOL Compilers). The EBCDIC codes for@ $ and
may be used for alphabetic characters In foreign-language COBOL for overseas use.

(4) In both levels of System/360 FORTRAN, $ Is an optional alphabetic character.
(5) The following Character(s) and/or operator(s) avallable In the 60-character set of PL/I are replaced as follows

In the 48-character set:
PL/I (60-character set)- : ; % > > = < c < -, I & II
PL/I (48-character set)- •• ., // GT GE NE LE LT NOT OR AND CAT

CHARACTER SETS FOR IBM 29 CARD PUNCH AND IBM 59 VERIFIER
EXPANDED KEYBOARD MODELS

The IBM 29 Card Punch, Models AI2,A22,BI2 and B22, and the mM 59 Verifier, Model 2, have an expanded character set. Each character can be punched or verified
with one key depression. For printing versions of the IBM 29, each character Is printed as well as punched with the single key depression. These expanded keyboard
models have 64 characters consisting of 26 alphabetic (A-Z), 10 numeric (0-9),a space bar (no punches), and the following 27 special characters:

Card Code_ 12 12-8-3 12-8-4 11 11-8-3 11-8-4 0-8-3 ~ 0-1 !!::1 H 12-8-2 12-8-5 12-8-6 12-8-7 '11-8-2 11-8-5 11-8-6 11-8-7 0-8-2 0-8-5 0-8-6 0-8-7 8-2 8-5 8-6 8-7
Character - ""& --~ -:: -$- -,- -,- % T # @ --~ - --(- -+- -1- --I ---)- -;- --::::;- (blank -_- -->- --?- ---: .- --;- ..-

space)

The 64-character set of expanded keyboard models may be replaced by anyone of the 48-character sets A-K shown on reverse side. The keyboard Is
stm a 64-character keyboard, but only 48 characters have Identified key tops (and only 48 characters can be printed). When duplicating, all 64
cha~acters can be punched, and only these 64 characters should be duplicated to avoid damage to the code plate.

NUMERIC KEYBOARD MODELS,

The IBM 29 Card Punch, Models All, A21, B11 and B21, and the IBM 59 Verifier, Modell, have a numeric keyboard with 12 keys. The numerics 0-9 and
only those speCial characters with "12" or "11" punch coding can be punched (and printed on the printing version) or verified with a single keystroke. Other
characters require depression of the multipunch key. All 64- characters mentioned above can be punched when duplicating.

CHARACTER ARRANGEMENTS for System/360 Printers

NOMINAL SOURCE CHARACTERS APPLICABLE
ARRANGEMENT SPEED (LPM) TOTAL ALPHA NUMERIC SPECIAL CHARACTERS'(6) MACHINES

1403- 1403- CHAINS
Standard Chains/Trains 2,7 3,Nl 1403 Models 2,7;

1404-2 All S/360 Models
AN 600 1100 48 A-Z 0-9 / @ #0 -+ ' $ - % , &
HN 600 1100 48 A-Z 0-9 /'=)-+*$-(,& 1404 Model 2;

Universal Character Set (7) 1403- 1403- S/360 Models 30,

Chains/Trains 2 3 Nl 40 and 50 Only

PCS-AN 600 1100 48 A-Z 0-9 / @ #0 • + * $ - % , &
PCS-HN 600 1100 48 A-Z 0-9 /'=).+*$-(,&

TRAINS PN and QN (8) 500(8) 950 60 A-Z 0-9 /' =).';'*$-(,&"-:I>?#%@<;~
1403 Model 3; RN (8) 500(8) 950 52 A-Z 0-9 /'=).+'$-(,&0 #%@

SN (8) 392 770 84 A-Z 0-9 /').+'$-(,&"-:Io?!%@~; All S/360 Models

a-z except 20 and 67

TN 273 570 120 A-Z 0-9 /' =).+*$-(,&"-:IO?!%@~;~
1403 Model Nl; a-z -. , r JL 1 I [J • ~ s: > < f. # .) (+ - • ,

• 1 • !I •) •• ± + All S/360 Models

XN (Chain Only) 692 - 40 A-Z 0-9 * $
YN (Train Only) (8) - 1250 42 A-Z 0-9 # * $-

IBM 1443 Sets Model Nl 1443 Model Nl;
13-Char. Set 600 13 - 0-9 - All 5/360 Models
39-Char. Set 300 39 A-Z 0-9 • $, except 20 and 67
52-Char. Set (Std.) 240 ' 52 A-Z 0-9 /@#O.&*$-%,+()

'::;:><_I"""~ 63-Char. Set 200 63 A-Z 0-9 /~*~.&*$-%,+()
IBM 1445 Sets Model Nl 1445 Model Nl;
14-Char. Set 525 14 - 0-9 * $- S/360
42-Char. Set 240 42 A-Z 0-9 / * $- Model 30 Only
56-Char. Set (Std.) 190 56 A-Z 0-9 / *$- , ~ ~ 3 I, ., b ? all 0 ,:,,',' ..

IBM 2203-Al Sets 2203 Model AI;
13-Char. Set 750 13 - 0-9 * - S/360
39 - Char. Set 425 39 A-Z 0-9 . $ • Model 20 Only
52-Char. Set 350 52 A-Z 0-9 I@Ho.&*$-%,+()

':!;:><_I--'''~ 63-Char. Set 300 63 A-Z 0-9 /@*~.&*$-%,+()

Note: In this table 'Ii is not a character; rather it indicates a blank space

NOTES'
(6) The codes that cause these characters to print are the EBCDIC codes of System/360; each character has its own internal and card codes;

that Is, there are no dual characters. For example, In non-System/360 the dual characters % and (have the same card code (0-8-4) and
the same Internal code (A84); In System/360 % Is represented by card code 0-8-4 and by the Internal code HEX 6C, whereas (Is
represented by card code 12-8-5 and by the Internal code HEX 4D.

(7) The Universal Character Set (UCS) feature for the 1403 Models 2, 3, and Nl provides printing of any set of graphics up to a maximum
of 240. The 1403 must be attached to the IBM 2821 Control Unit (or a 2020 processing unit) to use this feature. The chain/train
arrangements shown above are the standard UCS chains and trains. In addition, the user can design chains or trains taUored to his
own needs.
The printing speeds attainable with the UCS feature are dependent on the chain/train deSign, format, spacing, etc. The speeds shown
above for the standard arrangements are nominal speeds for the various character sets, with continuous printing and single-line
spacing. The speeds are for full representation of the character sets. Speed for preferred arrangements (see Note 8) will be somewhat
higher. Also, the UCS feature uses an "End-of-Prlnt Line" concept that permits Intermediate carriage movement when a printed line
Is complete. Thus, printing speed Is variable and call be In excess of the nominal speeds given In the table. The SRL manual for the
2821 Control Unit (A24,-3312-1) provides more Information on the UCS feature.

(8) The QN Chain and Train (for use with PL/I) consists of 60 graphics with 45 preferred. I
The RN Chain and Train (for use with COBOL) consists of 52 graphics with 47 preferred. Printing speeds for preferred arrangements will approach those that would be possible If only the
The SN Chain and Train (for text printing) consists of 84 graphics with 78 preferred. preferred set were on the chain or train. For example, the speed for the RN Traln on the 1403
The YN Train (hIgh-speed alphameriC printing) consists of 42 graphics with 39 preferred. Models 3 and Nl will approach 1100 lpm, which Is the speed of the 48-character PCS-AN Traln.

70

CHARACTER ARRANGEMENTS for System/360 Typewriter-Printers (PTTC/EBCDIC)

ARRANGEMENT

PTTC/EBCDIC (g) for
1052 Models 1-6 and
1053, 2740/2741

Upshift
Downshift

PTTC/EBCDIC (10) for
1052 Model 7 only

Upshift
Downshift

NOTES:

TOTAL ALPHA NUMERIC

44
44

44
44

A-Z
a-z

A-Z
a-z

0-9

0-9

SOURCE CHARACTERS
SPECIAL

= %»< ("?~I !+-,
*i@,-$&.

(<) C +...., = ?: > ! % I * / & $ @

APPLICABLE
TYPEWRITER- PRINTERS

1052 Models 1-6
1053
2740/2741

1052 Model 7

(9fFor 1052 Models 1-6, 1053, 2740/2741 - Non-System/360 PTTC/BCD codes are compatible with System/360 PTTC/EBCDIC for BCD
assignments except for characters > < "I,

(10) This element provides 20 graphic changes from the Standard Dual Case Element used in a non-System/3GO typewriter. It is for the 1052
Printer-Keyboard, Model 7, only as a reading board console typewriter (Input/output) in a System/3GO Model 40, 50, or 65 --- or as a
stand-alone console typewriter (Input/output) in a System/360 Model 65 or 75. No 1051 is required for these attachments.

CHARACTER ARRANGEMENTS for Non-System/360 Typewriter-Printers (PTTC/BCD)

APPLICABLE
TYPEWRITER- PRINTERS

Dual Case Mono Case
SOURCE CHARACTERS 1052/1053 11052/1053

ARRANGEMENT TOTAL I ALPHA NUMERIC SPECIAL 2740/2741 1033 2740/2741

Std. Dual Case Element
Upshift 44 A-Z

~ % " ·) tl: (± ? C X
Downshift 44 0-9 * @, $ &

Std. Mono Case Element
Upshift 44 A-Z

i % " ·) tl (± ? C - X X
Downshift 44 A-Z 0-9 * @, $ &

Arrangement A
] [-iII-? ~ , Upshift 44 A-Z > ; % " tlii \ < X X

Downshift 44 (11) 0-9 * / @, $ &

Arrangement E
Upshift 44 A-Z % " · < : (± ? ~ - X
Downshift 44 0-9 * it >

Arrangement H
[-!It- ? Upshift 44 A-Z > ;) 1:> A, \ < X X X

Downshift 44 (11) 0-9 /

Typewriter Option

" Upshift 44 A-Z % & • @ $ ~ (? 1,; X X
Downshift 44 (11) 0-9 .. & •

Slashed Ze ro (12)
Upshift 44 A-Z % " · tl: (± ? ~ - X X
Downshift 44 (11) 1l-9 / @, & •

Note: In this table f> is not a character; rather It Indicates a blank space

NOTES:
--u-rrrhe downshift alpha characters depend upon the case of the element. For Mono case, downshift characters are capitals A- Z; for dual

case, downshift characters are lowercase a-~.
(12) This arrangement is identical to the standard arrangements except that zero (0) is replaced by slashed zero(~).

IBM EQUIPMENT (Non- System/360) CHARACTER SETS

The blank space (0-8-2) uses the multipunch key and re suits In a * character on the 1403 printer.

Note: Numerical chain for 1403, Models 1 and 2 only,
consists of the numerics 0-9 and the six special
characters tl . • $ - ,

Note: The 1403, Models 2 and 3, and 1404, Model 2,
may also be used with S/360, but with different
arrangements (shown on reverse side)

See X20-1719 for reference card with this information.

APPLICABLE .EOIllPMENT
24,26,29 (Expanded Keyboard Model)
56,59 (Expanded Keyboard Model)
370,380,381- Only arrangements A, B, andD.
407,408,409,716,7400
557
824,826 -OnlyarrangementsA,B, andD.
838,7900 - Only arrangements A, B, andD.
1058 - Has Its own PTTC/BCD code print plate.

A-Karrangements are available as sub­
stitutes for part of 1058 arrangement;
however, only55 characters (total) may
then be used. Also, cardcodes8-1,0-8-1,
12-11-2,12-11-3,12-11-4,12-11-5,
12-11-6,12-11-7, and 12-8-1 mustnotbe
used to avoid plate damage due to overdrive.

1403 Models 1,2,4,5&6
1404 Model 2
1403 Model 3 (1416) - Only arrangements A & H

71

READER'S COMMENT FORM

Data File Handbook C20-1638-1

• Your comments, ~lccompanied hy answers to the following questions, help liS produce better

puhlications for your lise. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. All comments will he handled on a non-confidential

basis.

• Does this puhlication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

Yes

o
o
o
o
o
o

No

D

D
o
o
o
o

.Wh~~~illocru~tioo? _________________________ _

• How do you use this publication?

As an introduction to the subject?

For advanced knowledge of the subject?

o
o

For information about operating procedures? 0

As an instructor in a class? 0
As a student in a class? D
As a reference manual? D

Other~ _______________________________ _

• Please give specific page and line references with your comments when appropriate.

COMMENTS:

• Thank you for your cooperation. Space is available on the other side of this
page for additional comments.

C20-1638-1

fold fold ...

Attention: Technical Publications

fold

TIrn~
II')

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N.Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N.Y.

fold

C20-1638-1

llrn~
®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	replyA
	replyB
	xBack

