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Random Number Generation and Testing 

Random sampling-simulation studies-Monte Carlo methods-have been in 
use for many years. Papers describing various aspects of these topics have ap­
peared in technical journals and textbooks available to a relatively small 
percentage of computer users. Meanwhile, applications requiring random 
numbers are becoming more important and more common in business and 
industry as well as purely scientific areas. Therefore, this manual has been 
prepared which gives the mathematical development of the power residue 
method, outlines computer techniques for implementing it, and also 
offers brief comments on other methods. An appendix provides programming 
illustrations for binary and decimal computers. 
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Preface 

There are two facts relating to random numbers which 
undoubtedly are not sufficiently recognized: 

1. Many commercial, as well as technical, computer 
applications require random numbers. 

2. Random numbers are harder to come by than one 
might suspect. 

The power residue method for obtaining random num­
bers is in many ways superior to other methods and also 
is entirely satisfactory if used properly. However, the 
method requires choosing certain parameters, and an 
understanding of the mathematical basis for the method 
is necessary in order to choose these optimally. 

This manual describes the mathematical development 
of the power residue method, outlines computer tech­
niques for implementing it, and also offers brief comments 
on other methods. An appendix provides programming 
illustrations for binary and decimal computers. 
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Introduction 

There are quite a few problems for which a probabilistic 
model can be formed, so that a solution may be found by 
a statistical sampling technique-a "Monte Carlo" 
method. Hence a need for random numbers. Examples 
include not only algebraic problems such as those in­
volving permutations and combinations of variables, and 
certainly many standard statistics problems, but also the 
evaluation of definite integrals, the solution of ordinary 
and partial differential equations, solution of integral 
equati(~ms, solution of linear algebraic equations, and 
matrix inversion. Information on these and other 
examples may be found in the references listed at the end 
of this paper. The method is most useful when only little 
accuracy is desired, since increased accuracy generally 
requires greatly increased sample size. 

To illustrate, a definite integral representing an un­
known volume V may be found approximately by 
enclosing V in a cube of volume C, splattering N points 
at random within the cube, and counting the number n 
of these that also lie in V; then V = (n/N)C, approxi­
mately. It may be observed in this case that the points 
need not be truly random, but may be only uniformly 
dense, since their order is immaterial. However, a 
random number generator has the merit of being ap­
plicable no matter how many points are used, and 
additional points may be added by the same subroutine 
if greater accuracy is desired. 

A much more important group of applications can be 
solved only by employing random numbers. These 
problems include mathematical "games of strategy," 
which involve incomplete information, and problems 
which involve variables that can only be described 
statistically-for example, simulation studies in business 
and industry, or science. To illustrate, an IBM 704 
program designed to simulate the operation of ajob shop 
may use about 5,000 random numbers in a 1S-minute 

* See References a t end of text. 

run, these numbers being used to develop statistical 
variables such as transit time from machine to machine. 
Again, computers are used to simulate automobile 
traffic flow for purpose of highway and signal system 
design. Statistics describe the overall flow, and random 
numbers place individual vehicles so as to study the flow 
in detail. One of the best known applications of the 
Monte Carlo method is to a simulation study in nuclear 
physics. 

Strictly speaking, a random number exists only as the 
result of a random process. It is often suggested, there­
fore, that a mechanical or electronic device-a perfect 
roulette wheel-be built to supply truly random numbers 
on demand. This is not done because (1) nature tends 
to be systematic, so that construction and maintenance 
of such a device-which must output millions of times in 
an unsystematic manner, and at millisecond or even 
microsecond speeds-is not at all cheap or easy; (2) fast 
arithmetic procedures do exist whose results, though of 
course not random, nevertheless do furnish a satisfactory 
substitute; (3) it is sometimes desirable to repeat a 
calculation exactly-for example, in checking machine 
operation. This is possible with arithmetic schemes, but 
of course not possible if a random device is involved. 

Another alternative to an arithmetic scheme would be 
to record random numbers on magnetic tape, say from 
the Rand table [1] *, and read in as required. This is not 
done because it is too slow, because using an internal 
subroutine is easier, and because large problems require 
more numbers than have been published. (You cannot 
double the size of a table by reading it twice, just as you 
cannot read only the first page over and over.) Also, one 
might object to reading the same "random" data for 
every problem; arithmetic schemes avoid this objection 
by allowing the user to specify starting values and/or 
other parameters. 
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The procedures to be described produce numbers Un 
that are (approximately) uniformly distributed over the 
unit interval. These numbers will be called random, even 
though they are not, rather than use a more awkward 
term like pseudo-random, quasi-random, etc. It is im­
portant to distinguish between random numbers (points 
on the unit interval) and random digits-or bits, in a 
binary machine. The procedures described obtain num­
bers since these are what is most generally desired. If 
random digits are needed, they should be taken from 
the high-order end of the numbers; the comments follow­
ing the description of the recommended methods will 
elaborate on this problem. It should also be noted that 
many of the statistical tests commonly used to examine 
the randomness of a sequence of numbers are really tests 
on the digits appearing in the numbers; in view of the 
comments above, tests will be emphasized that treat the 
numbers as points. 

Often one needs numbers that have a specified sta­
tistical distribution other than a uniform distribution on 
the unit interval. It so happens that this more general 
problem is easily solved once a supply of uniformly dis­
tributed random numbers is obtained. For, suppose F(x) 
is the cumulative distribution function for the desired 
probability density function f(x), and let u be uniformly 
distributed on (0,1)*. Then the variable F-l(U) has f(x) 
for its probability density function, since 

P (F-l(U) :::; x) = p (u :::; F(x) ) = F(x). 

Example 1. Alternative decisions A,B,C are to be 
chosen with respective probabilities 1/6, 2/6, 3/6. Use 
a uniformly distributed (on (0,1) ) random variable u to 
determine the decision. 

Although this example has a simple, rather obvious 
solution, it will show that the above theory applies. Let 
the decisions (A,B, C) correspond to integers (0,1,2) 
as determined by the intervals (0 :::; x < 1, 1 :::; x < 2, 
2 ~ x < 3); then distribution functions for this problem 
can be defined as follows: 
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f(x) ° , F(x) = ° x<O 

f(x) 1/6, F(x) x/6 ° ~ x < 1 

f(x) 2/6, F(x) (2x - 1)/6, 1 ~ x < 2 

f(x) 3/6, F(x) (3x - 3)/6, 2 ~ x < 3 

f(x) ° , F(x) = 1 

Solving for F-l gives 

F-l(U) 6 u 

(6 u + 1)/2, 

(6 u + 3)/3, 

3 ~x 

° ~ u < 1/6 

1/6 :::; u < 3/6 

3/6 :::; u < 1 

Thus, if u is uniformly distributed over the unit in­
terval, then 

1/6 of the time we have ° ~ F-J(u) < 1 

2/6 of the time we have 1 ~ F-l(U) < 2 

3/6 of the time we have 2 ~ F-l(U) < 3 

Example 2. Use a variable u, uniformly distributed on 
(0,1), to obtain a variable N, normally distributed with 
mean m and standard deviation s. 

As in example 1, we could construct a table for a 
probability distribution f(x), integrate to obtain F(x), 
and solve for F-l(U). However, in special cases one often 
finds special procedures; hence a special method will be 
used to illustrate this example. 

The uniformly distributed variable u has mean 1/2 
and variance f~ (x - 1/2)2dx = 1/12, so the statistical 
"central limit theorem" states that if n values of u are 
added and the sum is divided by n to obtain u, then the 
variable x = (u - 1/2)Y12n is approximately normally 
distributed with mean ° and standard deviation 1 and 
approaches this normal distribution as n becomes infinite. 
Therefore, one may set N = m + s(u - 1/2) Y 12n 
and then choose a suitable value of n. If n = 12, vv"hich 
is probably large enough for most purposes, then 
N = m + S(~~2UI - 6) = (m - 6s) + S~~2Ul' 

* Definitions: The cumulative distribution function 
F(x) for a random variable r gives the probability that 
r :::; x; the probability density function f(x) = dF(x) /dx; 
F-l(U) is the ordinary inverse function to F(u). The vari­
able u is uniformly distributed on (0,1) if it has the cumu­
lative distribution function F(x) = x, ° ~ x < 1. 



Number Theory Background for the 
Power Residue Method 

Any sequence of numbers produced by a subroutine with 
finite input will eventually repeat, since the computer 
has only a finite number of "stable states." Thus, the 
first problem in determining a procedure to produce 
random numbers is to assure a long period for the repeat­
ing sequence. Number theory discloses ways of obtaining 
long periods with simple arithmetic procedures; of course, 
the results must still be studied statistically before they 
can be accepted as random. The two principal number 
theoretic ideas employed are congruences and power 
residues; the pertinent information is summarized here. 

Congruence, Modulus, Residue (algebraic symbols 
represent integers): 

The congruence x == y (mod m), read "x is con­
gruent to y modulo m" or "x is congruent to y mod 
m", means that (x-y) is divisible by m. Either x or y 
is a residue, and m is the modulus. Commonly, the 
residue is the remainder after division by m. 

Examples: 5591 == 7 == - 1 (mod 8); 2P- 1 - 1 
(mod p) if p is an odd prime. 

The special case x == y (mod 1) is interpreted to 
mean that x and y may not be integers but that their 
difference is an integer. 

If a == b (mod m) and x == y (mod m), then 
a ± x == b ± Y (mod m) and -ax == by (mod m); 
however, division involves special considerations. If 
(d,m) = 1, that is, d and m are relatively prime, so 
that the greatest common divisor (gcd) of d and m is 1, 
and if dx == dy (mod m), then x == y (mod m); but 
if the gcd of d and m is (d,m) = g, and dx == dy 
(mod m), then it can only be concluded that x == y 
(mod mig). Note also that if x == y (mod m) and d 
divides m, then x == y (mod d). 

Congruences are often used to permit working 
with smaller numbers. For example, time is measured 
in hours modulo 12 and in days modulo 7 or 365. 
Again, one can determine that N = 1 + 147 (2147) 
is exactly divisible by 31 without computing the 
47 digit value of N. Taking all congruences mod 31, -

25 == 1 (mod 31), 

so (25)29 = 2145 == 1 (mod 31) 

and 2147 = 2145 (4) == 4 (mod 31). 

Also, 147 == - 8 (mod 31) 

so N == 1 + (- 8) (4) = - 31 == ° (mod 31). 

The "casting out 9's" method of checking arith­
metic is based on the fact that 10n == 1 (mod 9) for 
all n. Some oft repeated algebra problems involve re­
mainders and are much more easily solved using 
congruence notation. We will use congruences both 
theoretically and in actually computing random 
numbers. 

Residue Class: A class of all integers which are mutu­
ally congruent for a given modulus. There are m 
distinct residue classes mod m, corresponding to the 
terms of a complete residue system mod m; collectively 
they comprise the class of all integers. 

Complete Residue System: For a given modulus m, a 
set of m numbers congruent in some order to the 
residues 0,1, ... , m - 1. 

Reduced Residue System: A subset of a complete residue 
system, containing all terms which are relatively prime 
to m. 
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Euler's phi-function ¢(m) denotes the number of 
positive integers less than m and prime to m, so a 
reduced residue system contains ¢(m) terms. If 
the prime factorization of m is m = 11 Ple l, then 
¢ (m) = 11 (PI - 1) Plel-t. 

Power Residues: The residues of the successive powers of 
a number: xD (mod m) for n = 1,2,3, .... 

Order of x mod m: When x and m are relatively prime, 
the least positive exponent h with Xh == 1 (mod m). 
Euler showed that x"'(m) == 1 (mod m), from which it 
follows that h is a divisor of ¢ (m). 

Primitive Root ofm: A number x whose order h = ¢ (m). 

The powers of a primitive root x generate a reduced 
system of residues mod m (the largest possible set), and 
all primitive roots occur in this set as those powers whose 
exponents are relatively prime to ¢(m). Therefore, 
if m has a primitive root, it has ¢(¢(m» primitive 
roots. However, only numbers of the form pD or 2pD, for p 
an odd prime, have primitive roots, with the singular ex­
ception m = 4. Unfortunately, there is no easy method 
of finding primitive roots for a large modulus m. Any 
number x can be tested individually, however, for a 
prime modulus p, as follows: let PI be the distinct prime 
factors of p - 1, and compute each of the quantities 
1'1 == X (P-l)/PI (mod p); if no rl == 1 (mod p) then x is 
a primitive root of p, otherwise not. If the modulus 
m = pn and x is a primitive root ofp, then x is a primitive 
root of m unless xP- 1 == 1 (mod p2) in which case x + p 
is a primitive root of m. 

The power residue method for generating random 
numbers, which is most widely used, computes power 
residues with appropriately selected x and m. Le~mer [2] 
originally suggested choosing m to be a large prime p 
and x a primitive root of p; however, it is easier, faster, 
and for most purposes just as good, to let m represent 
the word size of the computer and choose x ~o as to 
assure a long period for the repeating sequence xn 
(mod m). It turns out to be easy to assure a long period, 
and although the method must be checked statistically, 
intuition suggests it may prove to be quite good since 
successive multiplications mod m give points that hop 
about in a somewhat erratic manner. 
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Examples of power residue calculations 

1. m = 31, x = 5: the sequence is 5,25,1 and then 
repeat, showing that the order of 5 (mod 31) is 
only 3. 

2. m = 31, x = 3: the sequence is 3, 9, 27, 19,26, 16, 
17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 
14, 11, 2, 6, 18, 23, 7, 21, 1 and then repeat, show-

ing that 3 is a primitive root of the prime modulus 
31: all 30 positive integers less than 31 appear. 

3. m = 24, x = 2: the sequence is 2, 4, 8, 16, 8, 16, 
8, ... ; it does not return to the starting point be­
cause (x, m) ~ 1. 

Notes on power residues: 

1. If (x, m) = 1 then xn (mod m) repeats by returning 
to the starting point since xr == xB (mod m) implies 
xr- s == 1 (mod m); the division is possible because 
(x,m) = 1. 

2. If the terms xn (mod m) are multiplied by a con­
stant a that is relatively prime to m, then the result­
ing sequence has the same length and still repeats 
by returning to the beginning. In fact, if x is a 
primitive root of m then the sequence axn (mod m) 
is the same sequence as xn (mod m) but with a 
different starting point (a, instead of x). Therefore, 
our procedures for computing random numbers 
will obtain Un == axn (mod m), for suitable a,x,m; 
and the choice of the starting value a - at least -
will be left to the user. It is important, however, 
that a be chosen relatively prime to m, for otherwise 
the common factor will be repeated in all terms, 
and, worse, the period will he ~hortened because 
the modulus has been effectively reduced by the 
same factor. 

Examples: Un == 7·3n (mod 100): 7, 21, 63, 89, 67, 1, 
3, 9, 27, 81, 43, 29, 
87, 61, 83, 49, 47, 
41, 23, 69, 7 -
(repeats). 

Un == 5·3D (mod 100): 5, 15, 45, 35, 5 
- already repeat­
ing; shorter since 
(5,100) ~ 1. 

(Corresponds to 3D mod 20) 

3. If x is a primitive root of m = pe, (p > 2), then 
the second half of the sequence axn (mod m) is just 
the negative of the first half. This is because ¢ (m) 
is even so x'" == 1 implies (X"'/2 - 1) '(X"'/2 + 1) == 0; 
now x"'/2 ¢ 1 since x is a primitive root of m, and 
p cannot divide both factors since they differ by 
only 2, so X"'/2 == - 1, which implies the preceding 
statement. 

Example: In the sequence 3n (mod 31) of example 
2 above, the 15th term is 30 == - 1, the 16th is 
28 == - 3, etc. 

4. It is possible to back up and compute the terms 



Un == axn (mod m) in reverse order, if desired, as 
long as (x,m) = 1. For the equation xy == 1 
(mod m) can be solved for y by trial or by stand­
ard techniques of number theory, and then 
Un+1 == xUn (mod m) is equivalent to Un == YUn+1 
(mod m). 

5. If m = ab with (a,b) = 1, and the order of x 
(mod a) is ha and the order of x (mod b) is hb' then 
the order of x (mod m) is h = lem [ha,hb], the least 
common multiple of ha and hb. This theorem is 
used in the following note and will be needed again 
in Paragraph II, following. 

Proof: xn == 1 (mod m) implies both xn == 1 
(mod a) and Xll == 1 (mod b), and the statement 
"ha is the order of x (mod a)" implies that the 
series Xll (mod a) repeats only after blocks of length 
some multiple of ha; similarly hb; therefore Xll == 1 
(mod m) implies n is a multiple of both ha and hb. 
Next, Xll == 1 (mod a) and Xll == 1 (mod b), 
m == ab and (a,b) = 1, together imply xn == 1 
(mod m), so the order of x (mod m) is the least 
common multiple (lem) of ha and h b • 

6. Lehmer's method for the Eniac, "multiply an 8 
digit number by 23, remove the top two digits 
from the ten digit product and subtract them from 
the bottom," is a power residue method with 
modulus m = 108 + 1. This follows since 
Un+1 = 23un - k (108 + 1). Now m = 108 + 1 = 
17·5882353 is not prime, but the second factor is, 
and 23 is a primitive root of this factor. Since 
cf> (17) = 16 divides cf> (5882353) = 5882352, the 
order of 23 mod m is 5882352, so this is the number 
of terms in the repeating sequence. Of course, if 
m ~ 108 + 1 then the number 23 may not be a 
good multiplier. 

Wi th this background, some specific procedures for 
generating random numbers can now be developed. 
The power residue method has been chosen because 
considerable experience with it, as well as repeated 
investigations of other methods, has shown it to be a 
best choice for quality of results in addition to being 
extremely simple and fast. Note that the calculation of 
power residues must be done by fixed point integer 
arithmetic, and division by m, retaining only the re­
mainder, is implied by the (mod m) reduction. An 
additional division by m is required to convert the 
number to an appropriate point on the unit interval. 

I. For a binary machine. The modulus m = 2b, repre­
senting the word size of the machine, is chosen for two 
reasons: first, reduction mod m involves merely keeping 
the low b bits, and second, conversion to the unit in-

terval involves only assigning the binary point to the 
left of the number; therefore both divisions are circum­
vented. The main problem is to determine x to assure 
a long period. 

The order h of any -number x (mod 2b
) is a divisor of 

cf> (2b) = 2b-r, and so is of the form 2° for e ~ b - 1. 
In fact, e < b - 1 for b > 2 since then m = 2b has no 
primitive roots. Of course, x will have to be odd, and all 
odd numbers are either of the form 8t ± 1 or 8t ± 3. We 

observe that (8t ± 1)2b- 3 = 1 ± 2bt + ... == 1 (mod 2b) 
so that the order of x = 8t ± 1 (mod 2b) is a divisor of 
2b- 3• However, (8t ± 3)2b- 3 == 32b- 3 = (4 _ 1)2b- 3 == 
1 - 2b- 1 ¢ 1 (mod 2b), although (8t ± 3)2b-2 == 
(4 - 1)2b

-
2 == 1 (mod 2b

), so the order of x = 8t ± 3 
(mod 2b) is h = 2b- 2 and this order is maximal. This 
leads to the following procedure: choose any odd integer 
a for the starting value, choose an integer x of the form 
x = 8t ± 3 for a multiplier, and compute axll (mod 2b). 

Now the desired output is a sequence of (random) 
numbers Un on the unit interval; however, the arith­
metic of the subroutine producing these numbers is 
necessarily integer arithmetic. Therefore, although the 
Un are interpreted as integers while they are being calcu­
lated, merely reassigning the fixed binary point or ap­
propriately converting to floating decimal form gives 
values a < Un < 1 for final results. 

Procedure: Choose any odd integer Uo for the starting 
value and choose an integer x of the form x = 8t ± 3 
for a multiplier. Compute Un+l == xUn (mod 2b

) using 
fixed point integer arithmetic, but interpret the result 
as a b-bit binary fraction. 

Notes. 

1. This procedure will produce 2b- 2 terms before 
repeating. 

2. Some values of x are better than others; see the 
section on statistical tests. (A good choice is 
x : -Vm.) However, any starting value Uo is as 
good as any other as long as (u o, m) = 1. 

3. Computing time can be shortened by choosing x 
to have few 1 's, and using shift and add commands 
instead of multiply. 

4. Un == XllU O (mod 2b
) implies Un == XllU O (mod 2e) 

for e ~ b, so we see that the low-order bits of Un 
are far from random. In fact, if b i is the low-order 
bit of Un, b2 the next to last, b3 the 3rd from last, 
etc., then 

b i = 1 for all Un 

b2 and b3 either do not change or else 
alternate as n changes 
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b4 has period 22 

br has period 2r - 2 

the high-order bit has period 2b
- 2 

This Jast note explains the comment in the introduc­
tion that if random bits are needed, they should be taken 
from the high-order end of the Un. 

II. For a decimal machine. We choose the modulus 
m = 10d

, representing the word size of the machine, 
again to simplify both arithmetic mod m and conversion 
to the unit interval. Now x must be relatively prime 
to 10, and the order h of x (mod 10d ) is at most km 
[2d

- 2, 4·5d
- 1] = 5·10d- 2 for d > 3. There are numbers x 

with this maximum order (mod 10d); they must be of 
the form x == ± 3 (mod 8) so as to have maximum order 
mod 2d

, and must simultaneously have order 5d - 1 or 
2·5d

- 1 or 4·5d
- 1 (mod 5d

). We find that all numbers x with 
maximum order mod 10d reside in 32 different residue 
classes mod 200, represented by x == ± (3, 11, 13, 19, 21, 
27, 29, 37, 53, 59, 61, 67, 69, 77, 83, 91) (mod 200). * 

Example: x = iOOi i is a suitable multiplier, since 
x == + 11 (mod 200). 

* Although the calculations are omitted here, it can 
be seen that all of these numbers are == ± 3 (mod 8), 
and their order mod 5d can be checked by applying the 
binomial theorem. Similarly, it can be verified that any 
number not included above has a smaller order mod 10d • 
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Procedure: Choose any integer Uo not divisible by 2 or 
5 as a starting value and choose an integer x from one 
of the above 32 residue classes (mod 200) as a multi­
plier. Compute Un+l == xUn (mod 10d) using fixed 
point integer arithmetic, but interpret the result as 
a d-digit decimal fraction. 

Notes. 

1. This procedure will produce 5·10d - 2 terms before 
repeating. 

2. See notes 2,3,4 following the procedure for a binary 
machine, above. 

Note on Shuffling. 

The problem of "shuffling" the numbers from 1 to k­
that is, generating a random permutation of k integers­
is rather similar to the problem of generating random 
numbers, and can be satisfactorily solved by the above 
techniques. Choose a prime p slightly greater than k, 
and find a primitive root x of pt; then the sequence axn 

(mod p) shuffles the numbers from 1 to p - 1, which 
include those from 1 to k. Alternatively, for a binary 
machine one can choose a power of two slightly greater 
than k, 2d > k, choose a multiplier x == 5 (mod 8), and 
compute axn (mod 2bH) for an odd starting value a. 
The sequence produces 2b terms before repeating, each 
of b + 2 bits. The low-order two bits will be the same 
in all numbers produced, so dropping them leaves the 
2b integers in shuffled order. 

t A table of smallest primitive roots, from which others 
can be generated as indicated following the above defini­
tion of primitive root, is published in NUMBER 
THEORY by I. M. Vinogradov (Dover Publications, 
Inc., 1954) for primes up to 4000. 



Statistical Considerations 

The sole objective of the entire preceding section was to 
obtain a simple arithmetic process with a long period. 
It is true that the power residue method was singled out 
from many others because it is also good statistically, 
but a discussion of this aspect of the problem has been 
postponed un til now. 

The statistical properties desired for the numbers Un 
are exactly those that would result if the Un were obtained 
by an idealized chance device which selected points from 
the unit interval independently and with all points ° ::::; x < 1 equally likely. Clearly, the numbers produced 
by a computer subroutine are not random in this sense, 
since they are completely determined by the starting data 
and since they have limited precision; therefore, various 
specific properties implied by the above concept of ran­
domness are looked for and output of the subroutine is 
tested, both theoretically and empirically, for these 
properties. 

1. The values of u should be uniformly distributed 
over the unit interval regardless of the number of 
values computed. 

The power residue method has stood this test very 
well, and seems insensitive to choice of both starting 
value and multiplier. Many independent tests have 
been made, dividing (0,1) into subintervals, tallying 
the number of Un in each, and applying a chi-square 
test to confirm the reasonableness of the results. 

2. Successive values of u should be independent. 

Interestingly, this apparently impossible objective is 
in large part realized by the power residue method. 
For suppose, for a binary machine, that x > 
2k , and divide the unit interval into 2k equal parts: 
then the knowledge that Un is in the i'th subinterval 
gives no information at all as to which subinterval 
will contain Un + 1, since multiplying by x expands 
each subinterval to at least a full unit interval. If 
xy == 1 (mod m) so that y is the multiplier that 

obtains Un-l from Un, and if both x > 2kand y > 2\ 
then no information as to location of either Un+l or 
Un-l results from the knowledge that Un is in a par­
ticular subinterval of length 2- k • Similar remarks 
apply to decimal machines. 

This observation suggests choosing the multiplier x 
as large as possible while maintaining y 2: x, in 
order to achieve maximum independence for the 
Un. A good choice is x : vm (m = 2b or 10d) 
because then the left half of each Un forms a se­
quence of points that are actually independent in 
the above sense. Larger values of x exist, still with 
y 2: x, but there does not seem to be an easy way 
to find them-while still satisfying the preceding 
number theoretic conditions. 

3. Another measure of independence is furnished by 
an auto-correlation coefficient for the Un, defined 

1 N 

by Ch = Nn~l Un Un+h' Statistical theory shows that 

truly random samples give values of Ch that are 
approximately normally distributed with mean 
= 1/4 and standard deviation = .22/ vn, for 
h > 0, and with mean = 1/3 and standard devia­
tion = .30/ vn for co. Some tests ofthis nature have 
been made for the power residue method, all giving 
satisfactory results. M. L. J uncosa [5] has made a 
similar test, again satisfactory, by dividing (0,1) 
into k parts and tallying in a k x k matrix: tally 1 
in row i, column j, when Un in the i'th subinterval 
is followed by Un+l in the j'th. The expected result 
is equal numbers in all positions of the matrix, and 
a chi-square test is used to confirm reasonableness 
of actual results. 

4. A study of runs up and down, which describes the 
oscillatory nature of the magnitudes Un, appears to 
be a good test: it shows, for example, that the 
Fibonacci Series method (see Notes on Other 
Methods, p. 9) of generating random numbers is 
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not a good one, and that some multipliers are better 
than others with the power residue method. This 
test evidently is not described in detail elsewhere, 
so will be treated rather completely here. 

For N points UI, ... , UN we write an N - 1 bit 
binary sequence S whose n'th term is 0 if Un < Un+l 
and is 1 if Un > Un+l. A subsequence of k zeroes, 
bracketed by ones at each end, forms a run of 
zeroes of length k; similarly for runs of ones; and 
the test involves counting the number of occurrences 
of runs of different lengths and comparing to ex­
pected results. The expected results, based on a 
truly random sample, are: (2N - 1)/3. runs total, 
(5N + 1)/12 runs of length 1, (llN - 14)/60 
runs of length 2, and in general, 2 { (k2 + 3k + 1) 
N - (k3 + 3k2 - k - 4)} / (k + 3) ! runs of length 
k for k < N - 1; and finally 2/N 1 runs of length 
N - 1. A common characteristic of non-random 
sets Un is an excess of long runs. As in note (2) above, 
one should not use too small a value ofx for a multi­
plier, and y, the reciprocal ofx (mod m) also should 
not be too small, since using y instead of x would 
give the same sequence but in reverse order­
which would show the same pattern of runs. Even 
beyond this point, some values ofx seem to be better 
than others, but there is no further theory to indi­
cate a good choice. 

A convenient way to obtain the formulas for ex­
pected number of runs is to first observe that if the 
Un (assumed random) are arranged in increasing 
order, un! < un2 < ... < unN' then all N 1 permu-

tations of the subscripts are equally likely, since 
P(u r < us) = P(ur > us) = 1/2. Therefore, an 
equivalent problem is to consider the N! permu­
tations of the first N integers, form the N - 1 bit 
binary sequence S as before for each permutation, 
and count the number of occurrences of a run of 
length k in the whole set of S's. The process is 
lengthy but straightforward. For example, consider 
k = 1: in this instance, four consecutive values of 
Un are needed for an "inside" run of length 1, as in 
Un < Un+l > Un+2 < Un+3 which gives· ·010· . for S, 
but only three values of Un are needed for an "end" 
run, as in UI < U2 > U3 which gives 01 ... for S 
and the leading 0 makes the run. The total number 
of "end" runs of length 1 is 2·2·2·(~) (N - 3) 1, 
where the first 2 indicates two ends to choose, the 
second 2 corresponds to choice of up or down, the 
third 2 indicates two ways to make such a pattern 
with three numbers (abc or cba), the (~) is the 
number of ways to choose three numbers from N 

to form the run, and (N - 3)! arranges the rest. 
Similarly, there are 2·5·(~) (N - 4)! (N - 3) 
"inside" runs, and so (5N + 1) N!/12 total. 

5. Another type of run test-"above and below the 
mean"-has often been used. From N values of Un 
an N-bit binary sequence S is formed with the n'th 
term 0 if Un < 1/2 or 1 if Un > 1/2. Again runs in 
S are counted; the expected number of runs of 
length k is (N - k + 3)2-k -t, and expected total 
number of runs is (N + 1) /2. A chi-square test is 
used to confirm reasonableness of actual results. 
The power residue method has always passed this 
test sa tisfactoril y. 

6. Applications with k variables will likely assign every 
k'th random number to the same variable, so it is 
important to know that such a subset from a ran­
dom number generator will still be random. With 
the power residue method, taking every k'th num­
ber using x as a multiplier is the same as taking 
every number while using Xk as a multiplier. The 
cycle length may still be maximum or may be re­
duced, depending on x,m, and k. Of course, it will 
not be less than (l/k) times the maximum. The 
statistical properties of the subset will also depend 
x,m, and k; in particular, it should be checked that 
Xk (mod m) is not too small or too large-cf. notes 
2 and 4 above. However, the power residue method 
usually gives good results when used in this manner; 
good results can be assured by stud ying x,m, and k, 
and at least it apparently gives results as good or 
better than any other method. 

7. Many tests have been applied to the digits of 
"random" numbers. The frequency test is, usually, 
a chi-square test applied to observed frequency of 
occurrence of each digit or of various digit com­
binations. Sometimes the distribution of many such 
counts is studied. The poker test is a special fre­
quency test for certain 5 digit (or n digit) combi­
nations. The gap test is a chi-square test applied 
to observed frequency of distances separating two 
like digits. 

The power residue method has always passed these 
tests satisfactorily. However, the tests on digits seem 
to be less critical, for purpose of comparing meth­
ods, than some of the tests on successive numbers­
e.g., runs up and down-and anyway most appli­
cations call for numbers rather than digits. There­
fore, the earlier paragraphs of this section are 
emphasized. 



Notes on Other Methods 

The center square method, one of the earliest, squares a 
2n digit number and takes the middle 2n digits from the 
4n digit product for the next number. There are several 
variations, but the method has generally been discarded 
because it does not give very long periods, and in fact, 
the period is only found by trial for each starting number. 
The sequence generally does not return to the starting 
data to repeat. Also, it is relatively slow. 

The Fibonacci Series method assumes two starting 
numbers u o , Ul, and computes Un+l == Un + Un-l 

(mod m); it is convenient to choose m = 2b or 10d • The 
method is fast, easy, and the period is satisfactorily long 
(3'2b- l for m = 2b, 3·10d - l or 15·10d - l for m = 10d , 

depending on starting values-which should not both 
have a common factor with m), but the results are not so 

good statistically: runs up and down, in particular, show 
lack of randomness. The method is essentially a power 
residue method with a multiplier x = (1 + "";5)/2, 
which is too small. 

A great improvement results by taking only every k'th 
number, where k is chosen to make [(1 + v5)/2Jk 
satisfactorily large. With this modification, the Fibonacci 
Series method is as good as any other statistically, but 
for most computers is not as fast or easy to use as the 
power residue method. 

Numerous other methods have been devised, some of 
which will be found in references listed at the end of this 
write-up. Most are slower and more cumbersome, but 
none has been so extensively studied statistically and so 
thoroughly tested as the power residue method. 
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Appendix: Programming the Power 
Residue Method 

This section is included for those persons unfamiliar with 
the mathematical concepts employed in the previous dis­
cussion. It outlines the series of steps required in pro­
gramming the procedure for either a binary or a decimal 
computer. 

Procedure for a binary computer 

In the following discussion the computer is assumed to 
have a word size of b-bits. Furthermore, the arith­
metic assumes the binary point to be at the extreme right 
of the word. Thus, all of the numbers involved are 
integers-including the random numbers generated. 
Once the result is available, however, the programmer 
should consider the binary point to be at the extreme 
left in order to obtain random numbers distributed over 
the unit interval. The following procedure will produce 
2b- 2 terms before repeating. 

1. Choose for a starting value any odd integer Uo• 

2. Choose as a constant multiplier an integer x of the 
form x = 8t ± 3 

where t is any integer. (A value of x close to 2b/2 is 
a good choice.) 

3. Compute xU o• This produces a product 2b-bits 
long; the high-order b-bits are discarded and the 
b low-order bits are the value UI. 

4. Each successive random number Un+l is obtained 
from the low-order bits of the product xun. 

Example: For simplicity, assume that b = 4. The pro­
cedure will produce only 4 terms before repeating but 
will illustrate the principle. 

1. Choose Uo = 1001. 

2. The choice t = 1 gives either 1011 or 0101 for x. 
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Since 2b/2 = 4, the value 0101 is selected for a 
multiplier. 

3. xU o = (0101) (1001) 
UI = 1101. 

4. XUI = (0101) (1101) 
U2 = 0001. 

5. XU2 = (0101) (0001) 
U3 = 0101. 

00101101. Therefore, 

01000001. Therefore, 

00000101. Therefore, 

6. XU3 = (0101) (0101) = 00011001. Therefore, 
U4 = 1001 = Uo and the sequence repeats. 

Procedure for a decimal computer 

In the following discussion the computer is assumed to 
have a word size of d-digits. Furthermore, the arith­
metic assumes the decimal point to be at the extreme 
right of the word. Thus, all of the numbers involved are 
integers-including the random numbers generated. 
Once the result is obtained, however, the programmer 
should consider the decimal point to be at the extreme 
left in order to obtain random numbers distributed over 
the unit interval. The following procedure will produce 
5·10d

- 2 terms before repeating (for d greater than 3). 

1. Choose for a starting value any integer Uo not 
divisible by 2 or 5. 

2. Choose as a constant multiplier an integer x of the 
form x = 200t ± r 

where t is any integer and r is any of the values 
3, 11, 13, 19, 21, 27, 29, 37,53, 59, 61, 67, 69, 77, 
83, 91. (A value close to 10d /2 is a good choice.) 

3. Compute xU o• This produces a product 2d-digits 
long; the high-order d-digits are discarded, and 
the d low-order digits are the value UI. 

4. Each successive random number Un+l is obtained 
from the low-order digits of the product xun. 



Example: For simplicity it will be assumed that d = 4. 
The procedure will, therefore, produce 500 terms 
before repeating. 

1. Choose Uo = 2357. 

2. Since 10d /2 = 100, a good choice of x would be 
either x = (200) (0) + 91 = 91 or x = (200) (1) -
91 = 109. The value 109 will be chosen for this 
illustration. 

3. xU o = (0109) (2357) 
UI = 6913. 

4. XUI = (0109) (6913) 
U2 = 3517. 

5. XU2 = (0109) (3517) 
Ua = 3353. 

6. xUs = (0109) (3353) 
U4 = 5477. 

7. XU4 = (0109) (5477) 
Us = 6993, etc. 

00256913. Therefore, 

00753517. Therefore, 

00383353. Therefore, 

00365477. Therefore, 

00596993. Therefore, 

Notes on the procedures 

1. The number of terms which can be obtained before 
the sequence repeats is extremely large. The 35-bit 
word length of the 704, 709, and 7090 makes it possible 
to generate a sequence of over 8.5 billion numbers. The 
ten-digit word length of the 650 and 7070 allows for a 
sequence of 500,000,000 terms. 

2. In choosing the value for the constant multiplier, 
x, the timing characteristics of the computer being used 
should be considered. Multiplication time for the 709 
and 7090 generally decreases as the number of l's in the 
multiplier decreases. For the 650 and 7070, the sum of 
the digits in the multiplier is a factor in timing. With 
some values of x a speed advantage can be obtained by 
using shift and add instructions instead of the multiply 
instruction. 

3. The low-order digits of the numbers referred to 
here as random are far from random as evidenced by the 
two numerical examples. Actually, the periodicity of the 
digits in any particular digit position of the random 
number sequence increases as the order of the digit posi­
tion increases. Therefore, if a random number smaller 
than a full word is required, the high-order digits of Un 
should be used. The actual computation of the Un, how­
ever, should be done using the full word length (or in 
the case of a variable word length machine such as the 
705, with a sufficiently large word). 
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