
~~//_<''''-''----'W-"'''''''~~~''l:-:=..,.,?,~-, ,,_,_, .. _'. ~~"<N_"··""'"'~""·""""'~'~" __ '''''''''M''·'''''_'v.,_~,«,_"<N,...,...,,..............,._.=_·,,",",,,_~,_,,,,,,,'~"'''''''''--'''''''''''~~'~''''''''-"A''''''-''''''''''*",'''-''''''''''-'''''--_.<:v.%

(I~Mc'I': . Data Processing Techniques ')
"~"", ."";,,,'.,"'; "'/

Random Number Generation and Testing

Random sampling-simulation studies-Monte Carlo methods-have been in
use for many years. Papers describing various aspects of these topics have ap­
peared in technical journals and textbooks available to a relatively small
percentage of computer users. Meanwhile, applications requiring random
numbers are becoming more important and more common in business and
industry as well as purely scientific areas. Therefore, this manual has been
prepared which gives the mathematical development of the power residue
method, outlines computer techniques for implementing it, and also
offers brief comments on other methods. An appendix provides programming
illustrations for binary and decimal computers.

Form C20-8011

Design

© 1959 by International Business ~Iachines Corporation

Copies of this and other IBM pUblications can be obtained through IBM Branch
Offices. Address comments concerning the contents of this publication to
IBM, Technieal Publications Department, 112 East Post Road, White Plains, N. Y. 10601

Preface

There are two facts relating to random numbers which
undoubtedly are not sufficiently recognized:

1. Many commercial, as well as technical, computer
applications require random numbers.

2. Random numbers are harder to come by than one
might suspect.

The power residue method for obtaining random num­
bers is in many ways superior to other methods and also
is entirely satisfactory if used properly. However, the
method requires choosing certain parameters, and an
understanding of the mathematical basis for the method
is necessary in order to choose these optimally.

This manual describes the mathematical development
of the power residue method, outlines computer tech­
niques for implementing it, and also offers brief comments
on other methods. An appendix provides programming
illustrations for binary and decimal computers.

Contents

Introduction .. Page 1

Number Theory Background for the Power Residue
Method .. Page 3

Statistical Considerations .. Page 7

Notes on Other Methods .. Page 9

Appendix: Programming the Power Residue Method Page 10

References """" "" "" """'. """" '" Page 12

Introduction

There are quite a few problems for which a probabilistic
model can be formed, so that a solution may be found by
a statistical sampling technique-a "Monte Carlo"
method. Hence a need for random numbers. Examples
include not only algebraic problems such as those in­
volving permutations and combinations of variables, and
certainly many standard statistics problems, but also the
evaluation of definite integrals, the solution of ordinary
and partial differential equations, solution of integral
equati(~ms, solution of linear algebraic equations, and
matrix inversion. Information on these and other
examples may be found in the references listed at the end
of this paper. The method is most useful when only little
accuracy is desired, since increased accuracy generally
requires greatly increased sample size.

To illustrate, a definite integral representing an un­
known volume V may be found approximately by
enclosing V in a cube of volume C, splattering N points
at random within the cube, and counting the number n
of these that also lie in V; then V = (n/N)C, approxi­
mately. It may be observed in this case that the points
need not be truly random, but may be only uniformly
dense, since their order is immaterial. However, a
random number generator has the merit of being ap­
plicable no matter how many points are used, and
additional points may be added by the same subroutine
if greater accuracy is desired.

A much more important group of applications can be
solved only by employing random numbers. These
problems include mathematical "games of strategy,"
which involve incomplete information, and problems
which involve variables that can only be described
statistically-for example, simulation studies in business
and industry, or science. To illustrate, an IBM 704
program designed to simulate the operation of ajob shop
may use about 5,000 random numbers in a 1S-minute

* See References a t end of text.

run, these numbers being used to develop statistical
variables such as transit time from machine to machine.
Again, computers are used to simulate automobile
traffic flow for purpose of highway and signal system
design. Statistics describe the overall flow, and random
numbers place individual vehicles so as to study the flow
in detail. One of the best known applications of the
Monte Carlo method is to a simulation study in nuclear
physics.

Strictly speaking, a random number exists only as the
result of a random process. It is often suggested, there­
fore, that a mechanical or electronic device-a perfect
roulette wheel-be built to supply truly random numbers
on demand. This is not done because (1) nature tends
to be systematic, so that construction and maintenance
of such a device-which must output millions of times in
an unsystematic manner, and at millisecond or even
microsecond speeds-is not at all cheap or easy; (2) fast
arithmetic procedures do exist whose results, though of
course not random, nevertheless do furnish a satisfactory
substitute; (3) it is sometimes desirable to repeat a
calculation exactly-for example, in checking machine
operation. This is possible with arithmetic schemes, but
of course not possible if a random device is involved.

Another alternative to an arithmetic scheme would be
to record random numbers on magnetic tape, say from
the Rand table [1] *, and read in as required. This is not
done because it is too slow, because using an internal
subroutine is easier, and because large problems require
more numbers than have been published. (You cannot
double the size of a table by reading it twice, just as you
cannot read only the first page over and over.) Also, one
might object to reading the same "random" data for
every problem; arithmetic schemes avoid this objection
by allowing the user to specify starting values and/or
other parameters.

1

The procedures to be described produce numbers Un
that are (approximately) uniformly distributed over the
unit interval. These numbers will be called random, even
though they are not, rather than use a more awkward
term like pseudo-random, quasi-random, etc. It is im­
portant to distinguish between random numbers (points
on the unit interval) and random digits-or bits, in a
binary machine. The procedures described obtain num­
bers since these are what is most generally desired. If
random digits are needed, they should be taken from
the high-order end of the numbers; the comments follow­
ing the description of the recommended methods will
elaborate on this problem. It should also be noted that
many of the statistical tests commonly used to examine
the randomness of a sequence of numbers are really tests
on the digits appearing in the numbers; in view of the
comments above, tests will be emphasized that treat the
numbers as points.

Often one needs numbers that have a specified sta­
tistical distribution other than a uniform distribution on
the unit interval. It so happens that this more general
problem is easily solved once a supply of uniformly dis­
tributed random numbers is obtained. For, suppose F(x)
is the cumulative distribution function for the desired
probability density function f(x), and let u be uniformly
distributed on (0,1)*. Then the variable F-l(U) has f(x)
for its probability density function, since

P (F-l(U) :::; x) = p (u :::; F(x)) = F(x).

Example 1. Alternative decisions A,B,C are to be
chosen with respective probabilities 1/6, 2/6, 3/6. Use
a uniformly distributed (on (0,1)) random variable u to
determine the decision.

Although this example has a simple, rather obvious
solution, it will show that the above theory applies. Let
the decisions (A,B, C) correspond to integers (0,1,2)
as determined by the intervals (0 :::; x < 1, 1 :::; x < 2,
2 ~ x < 3); then distribution functions for this problem
can be defined as follows:

2

f(x) ° , F(x) = ° x<O

f(x) 1/6, F(x) x/6 ° ~ x < 1

f(x) 2/6, F(x) (2x - 1)/6, 1 ~ x < 2

f(x) 3/6, F(x) (3x - 3)/6, 2 ~ x < 3

f(x) ° , F(x) = 1

Solving for F-l gives

F-l(U) 6 u

(6 u + 1)/2,

(6 u + 3)/3,

3 ~x

° ~ u < 1/6

1/6 :::; u < 3/6

3/6 :::; u < 1

Thus, if u is uniformly distributed over the unit in­
terval, then

1/6 of the time we have ° ~ F-J(u) < 1

2/6 of the time we have 1 ~ F-l(U) < 2

3/6 of the time we have 2 ~ F-l(U) < 3

Example 2. Use a variable u, uniformly distributed on
(0,1), to obtain a variable N, normally distributed with
mean m and standard deviation s.

As in example 1, we could construct a table for a
probability distribution f(x), integrate to obtain F(x),
and solve for F-l(U). However, in special cases one often
finds special procedures; hence a special method will be
used to illustrate this example.

The uniformly distributed variable u has mean 1/2
and variance f~ (x - 1/2)2dx = 1/12, so the statistical
"central limit theorem" states that if n values of u are
added and the sum is divided by n to obtain u, then the
variable x = (u - 1/2)Y12n is approximately normally
distributed with mean ° and standard deviation 1 and
approaches this normal distribution as n becomes infinite.
Therefore, one may set N = m + s(u - 1/2) Y 12n
and then choose a suitable value of n. If n = 12, vv"hich
is probably large enough for most purposes, then
N = m + S(~~2UI - 6) = (m - 6s) + S~~2Ul'

* Definitions: The cumulative distribution function
F(x) for a random variable r gives the probability that
r :::; x; the probability density function f(x) = dF(x) /dx;
F-l(U) is the ordinary inverse function to F(u). The vari­
able u is uniformly distributed on (0,1) if it has the cumu­
lative distribution function F(x) = x, ° ~ x < 1.

Number Theory Background for the
Power Residue Method

Any sequence of numbers produced by a subroutine with
finite input will eventually repeat, since the computer
has only a finite number of "stable states." Thus, the
first problem in determining a procedure to produce
random numbers is to assure a long period for the repeat­
ing sequence. Number theory discloses ways of obtaining
long periods with simple arithmetic procedures; of course,
the results must still be studied statistically before they
can be accepted as random. The two principal number
theoretic ideas employed are congruences and power
residues; the pertinent information is summarized here.

Congruence, Modulus, Residue (algebraic symbols
represent integers):

The congruence x == y (mod m), read "x is con­
gruent to y modulo m" or "x is congruent to y mod
m", means that (x-y) is divisible by m. Either x or y
is a residue, and m is the modulus. Commonly, the
residue is the remainder after division by m.

Examples: 5591 == 7 == - 1 (mod 8); 2P- 1 - 1
(mod p) if p is an odd prime.

The special case x == y (mod 1) is interpreted to
mean that x and y may not be integers but that their
difference is an integer.

If a == b (mod m) and x == y (mod m), then
a ± x == b ± Y (mod m) and -ax == by (mod m);
however, division involves special considerations. If
(d,m) = 1, that is, d and m are relatively prime, so
that the greatest common divisor (gcd) of d and m is 1,
and if dx == dy (mod m), then x == y (mod m); but
if the gcd of d and m is (d,m) = g, and dx == dy
(mod m), then it can only be concluded that x == y
(mod mig). Note also that if x == y (mod m) and d
divides m, then x == y (mod d).

Congruences are often used to permit working
with smaller numbers. For example, time is measured
in hours modulo 12 and in days modulo 7 or 365.
Again, one can determine that N = 1 + 147 (2147)
is exactly divisible by 31 without computing the
47 digit value of N. Taking all congruences mod 31, -

25 == 1 (mod 31),

so (25)29 = 2145 == 1 (mod 31)

and 2147 = 2145 (4) == 4 (mod 31).

Also, 147 == - 8 (mod 31)

so N == 1 + (- 8) (4) = - 31 == ° (mod 31).

The "casting out 9's" method of checking arith­
metic is based on the fact that 10n == 1 (mod 9) for
all n. Some oft repeated algebra problems involve re­
mainders and are much more easily solved using
congruence notation. We will use congruences both
theoretically and in actually computing random
numbers.

Residue Class: A class of all integers which are mutu­
ally congruent for a given modulus. There are m
distinct residue classes mod m, corresponding to the
terms of a complete residue system mod m; collectively
they comprise the class of all integers.

Complete Residue System: For a given modulus m, a
set of m numbers congruent in some order to the
residues 0,1, ... , m - 1.

Reduced Residue System: A subset of a complete residue
system, containing all terms which are relatively prime
to m.

3

Euler's phi-function ¢(m) denotes the number of
positive integers less than m and prime to m, so a
reduced residue system contains ¢(m) terms. If
the prime factorization of m is m = 11 Ple l, then
¢ (m) = 11 (PI - 1) Plel-t.

Power Residues: The residues of the successive powers of
a number: xD (mod m) for n = 1,2,3,

Order of x mod m: When x and m are relatively prime,
the least positive exponent h with Xh == 1 (mod m).
Euler showed that x"'(m) == 1 (mod m), from which it
follows that h is a divisor of ¢ (m).

Primitive Root ofm: A number x whose order h = ¢ (m).

The powers of a primitive root x generate a reduced
system of residues mod m (the largest possible set), and
all primitive roots occur in this set as those powers whose
exponents are relatively prime to ¢(m). Therefore,
if m has a primitive root, it has ¢(¢(m» primitive
roots. However, only numbers of the form pD or 2pD, for p
an odd prime, have primitive roots, with the singular ex­
ception m = 4. Unfortunately, there is no easy method
of finding primitive roots for a large modulus m. Any
number x can be tested individually, however, for a
prime modulus p, as follows: let PI be the distinct prime
factors of p - 1, and compute each of the quantities
1'1 == X (P-l)/PI (mod p); if no rl == 1 (mod p) then x is
a primitive root of p, otherwise not. If the modulus
m = pn and x is a primitive root ofp, then x is a primitive
root of m unless xP- 1 == 1 (mod p2) in which case x + p
is a primitive root of m.

The power residue method for generating random
numbers, which is most widely used, computes power
residues with appropriately selected x and m. Le~mer [2]
originally suggested choosing m to be a large prime p
and x a primitive root of p; however, it is easier, faster,
and for most purposes just as good, to let m represent
the word size of the computer and choose x ~o as to
assure a long period for the repeating sequence xn
(mod m). It turns out to be easy to assure a long period,
and although the method must be checked statistically,
intuition suggests it may prove to be quite good since
successive multiplications mod m give points that hop
about in a somewhat erratic manner.

4

Examples of power residue calculations

1. m = 31, x = 5: the sequence is 5,25,1 and then
repeat, showing that the order of 5 (mod 31) is
only 3.

2. m = 31, x = 3: the sequence is 3, 9, 27, 19,26, 16,
17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15,
14, 11, 2, 6, 18, 23, 7, 21, 1 and then repeat, show-

ing that 3 is a primitive root of the prime modulus
31: all 30 positive integers less than 31 appear.

3. m = 24, x = 2: the sequence is 2, 4, 8, 16, 8, 16,
8, ... ; it does not return to the starting point be­
cause (x, m) ~ 1.

Notes on power residues:

1. If (x, m) = 1 then xn (mod m) repeats by returning
to the starting point since xr == xB (mod m) implies
xr- s == 1 (mod m); the division is possible because
(x,m) = 1.

2. If the terms xn (mod m) are multiplied by a con­
stant a that is relatively prime to m, then the result­
ing sequence has the same length and still repeats
by returning to the beginning. In fact, if x is a
primitive root of m then the sequence axn (mod m)
is the same sequence as xn (mod m) but with a
different starting point (a, instead of x). Therefore,
our procedures for computing random numbers
will obtain Un == axn (mod m), for suitable a,x,m;
and the choice of the starting value a - at least -
will be left to the user. It is important, however,
that a be chosen relatively prime to m, for otherwise
the common factor will be repeated in all terms,
and, worse, the period will he ~hortened because
the modulus has been effectively reduced by the
same factor.

Examples: Un == 7·3n (mod 100): 7, 21, 63, 89, 67, 1,
3, 9, 27, 81, 43, 29,
87, 61, 83, 49, 47,
41, 23, 69, 7 -
(repeats).

Un == 5·3D (mod 100): 5, 15, 45, 35, 5
- already repeat­
ing; shorter since
(5,100) ~ 1.

(Corresponds to 3D mod 20)

3. If x is a primitive root of m = pe, (p > 2), then
the second half of the sequence axn (mod m) is just
the negative of the first half. This is because ¢ (m)
is even so x'" == 1 implies (X"'/2 - 1) '(X"'/2 + 1) == 0;
now x"'/2 ¢ 1 since x is a primitive root of m, and
p cannot divide both factors since they differ by
only 2, so X"'/2 == - 1, which implies the preceding
statement.

Example: In the sequence 3n (mod 31) of example
2 above, the 15th term is 30 == - 1, the 16th is
28 == - 3, etc.

4. It is possible to back up and compute the terms

Un == axn (mod m) in reverse order, if desired, as
long as (x,m) = 1. For the equation xy == 1
(mod m) can be solved for y by trial or by stand­
ard techniques of number theory, and then
Un+1 == xUn (mod m) is equivalent to Un == YUn+1
(mod m).

5. If m = ab with (a,b) = 1, and the order of x
(mod a) is ha and the order of x (mod b) is hb' then
the order of x (mod m) is h = lem [ha,hb], the least
common multiple of ha and hb. This theorem is
used in the following note and will be needed again
in Paragraph II, following.

Proof: xn == 1 (mod m) implies both xn == 1
(mod a) and Xll == 1 (mod b), and the statement
"ha is the order of x (mod a)" implies that the
series Xll (mod a) repeats only after blocks of length
some multiple of ha; similarly hb; therefore Xll == 1
(mod m) implies n is a multiple of both ha and hb.
Next, Xll == 1 (mod a) and Xll == 1 (mod b),
m == ab and (a,b) = 1, together imply xn == 1
(mod m), so the order of x (mod m) is the least
common multiple (lem) of ha and h b •

6. Lehmer's method for the Eniac, "multiply an 8
digit number by 23, remove the top two digits
from the ten digit product and subtract them from
the bottom," is a power residue method with
modulus m = 108 + 1. This follows since
Un+1 = 23un - k (108 + 1). Now m = 108 + 1 =
17·5882353 is not prime, but the second factor is,
and 23 is a primitive root of this factor. Since
cf> (17) = 16 divides cf> (5882353) = 5882352, the
order of 23 mod m is 5882352, so this is the number
of terms in the repeating sequence. Of course, if
m ~ 108 + 1 then the number 23 may not be a
good multiplier.

Wi th this background, some specific procedures for
generating random numbers can now be developed.
The power residue method has been chosen because
considerable experience with it, as well as repeated
investigations of other methods, has shown it to be a
best choice for quality of results in addition to being
extremely simple and fast. Note that the calculation of
power residues must be done by fixed point integer
arithmetic, and division by m, retaining only the re­
mainder, is implied by the (mod m) reduction. An
additional division by m is required to convert the
number to an appropriate point on the unit interval.

I. For a binary machine. The modulus m = 2b, repre­
senting the word size of the machine, is chosen for two
reasons: first, reduction mod m involves merely keeping
the low b bits, and second, conversion to the unit in-

terval involves only assigning the binary point to the
left of the number; therefore both divisions are circum­
vented. The main problem is to determine x to assure
a long period.

The order h of any -number x (mod 2b
) is a divisor of

cf> (2b) = 2b-r, and so is of the form 2° for e ~ b - 1.
In fact, e < b - 1 for b > 2 since then m = 2b has no
primitive roots. Of course, x will have to be odd, and all
odd numbers are either of the form 8t ± 1 or 8t ± 3. We

observe that (8t ± 1)2b- 3 = 1 ± 2bt + ... == 1 (mod 2b)
so that the order of x = 8t ± 1 (mod 2b) is a divisor of
2b- 3• However, (8t ± 3)2b- 3 == 32b- 3 = (4 _ 1)2b- 3 ==
1 - 2b- 1 ¢ 1 (mod 2b), although (8t ± 3)2b-2 ==
(4 - 1)2b

-
2 == 1 (mod 2b

), so the order of x = 8t ± 3
(mod 2b) is h = 2b- 2 and this order is maximal. This
leads to the following procedure: choose any odd integer
a for the starting value, choose an integer x of the form
x = 8t ± 3 for a multiplier, and compute axll (mod 2b).

Now the desired output is a sequence of (random)
numbers Un on the unit interval; however, the arith­
metic of the subroutine producing these numbers is
necessarily integer arithmetic. Therefore, although the
Un are interpreted as integers while they are being calcu­
lated, merely reassigning the fixed binary point or ap­
propriately converting to floating decimal form gives
values a < Un < 1 for final results.

Procedure: Choose any odd integer Uo for the starting
value and choose an integer x of the form x = 8t ± 3
for a multiplier. Compute Un+l == xUn (mod 2b

) using
fixed point integer arithmetic, but interpret the result
as a b-bit binary fraction.

Notes.

1. This procedure will produce 2b- 2 terms before
repeating.

2. Some values of x are better than others; see the
section on statistical tests. (A good choice is
x : -Vm.) However, any starting value Uo is as
good as any other as long as (u o, m) = 1.

3. Computing time can be shortened by choosing x
to have few 1 's, and using shift and add commands
instead of multiply.

4. Un == XllU O (mod 2b
) implies Un == XllU O (mod 2e)

for e ~ b, so we see that the low-order bits of Un
are far from random. In fact, if b i is the low-order
bit of Un, b2 the next to last, b3 the 3rd from last,
etc., then

b i = 1 for all Un

b2 and b3 either do not change or else
alternate as n changes

5

b4 has period 22

br has period 2r - 2

the high-order bit has period 2b
- 2

This Jast note explains the comment in the introduc­
tion that if random bits are needed, they should be taken
from the high-order end of the Un.

II. For a decimal machine. We choose the modulus
m = 10d

, representing the word size of the machine,
again to simplify both arithmetic mod m and conversion
to the unit interval. Now x must be relatively prime
to 10, and the order h of x (mod 10d) is at most km
[2d

- 2, 4·5d
- 1] = 5·10d- 2 for d > 3. There are numbers x

with this maximum order (mod 10d); they must be of
the form x == ± 3 (mod 8) so as to have maximum order
mod 2d

, and must simultaneously have order 5d - 1 or
2·5d

- 1 or 4·5d
- 1 (mod 5d

). We find that all numbers x with
maximum order mod 10d reside in 32 different residue
classes mod 200, represented by x == ± (3, 11, 13, 19, 21,
27, 29, 37, 53, 59, 61, 67, 69, 77, 83, 91) (mod 200). *

Example: x = iOOi i is a suitable multiplier, since
x == + 11 (mod 200).

* Although the calculations are omitted here, it can
be seen that all of these numbers are == ± 3 (mod 8),
and their order mod 5d can be checked by applying the
binomial theorem. Similarly, it can be verified that any
number not included above has a smaller order mod 10d •

6

Procedure: Choose any integer Uo not divisible by 2 or
5 as a starting value and choose an integer x from one
of the above 32 residue classes (mod 200) as a multi­
plier. Compute Un+l == xUn (mod 10d) using fixed
point integer arithmetic, but interpret the result as
a d-digit decimal fraction.

Notes.

1. This procedure will produce 5·10d - 2 terms before
repeating.

2. See notes 2,3,4 following the procedure for a binary
machine, above.

Note on Shuffling.

The problem of "shuffling" the numbers from 1 to k­
that is, generating a random permutation of k integers­
is rather similar to the problem of generating random
numbers, and can be satisfactorily solved by the above
techniques. Choose a prime p slightly greater than k,
and find a primitive root x of pt; then the sequence axn

(mod p) shuffles the numbers from 1 to p - 1, which
include those from 1 to k. Alternatively, for a binary
machine one can choose a power of two slightly greater
than k, 2d > k, choose a multiplier x == 5 (mod 8), and
compute axn (mod 2bH) for an odd starting value a.
The sequence produces 2b terms before repeating, each
of b + 2 bits. The low-order two bits will be the same
in all numbers produced, so dropping them leaves the
2b integers in shuffled order.

t A table of smallest primitive roots, from which others
can be generated as indicated following the above defini­
tion of primitive root, is published in NUMBER
THEORY by I. M. Vinogradov (Dover Publications,
Inc., 1954) for primes up to 4000.

Statistical Considerations

The sole objective of the entire preceding section was to
obtain a simple arithmetic process with a long period.
It is true that the power residue method was singled out
from many others because it is also good statistically,
but a discussion of this aspect of the problem has been
postponed un til now.

The statistical properties desired for the numbers Un
are exactly those that would result if the Un were obtained
by an idealized chance device which selected points from
the unit interval independently and with all points ° ::::; x < 1 equally likely. Clearly, the numbers produced
by a computer subroutine are not random in this sense,
since they are completely determined by the starting data
and since they have limited precision; therefore, various
specific properties implied by the above concept of ran­
domness are looked for and output of the subroutine is
tested, both theoretically and empirically, for these
properties.

1. The values of u should be uniformly distributed
over the unit interval regardless of the number of
values computed.

The power residue method has stood this test very
well, and seems insensitive to choice of both starting
value and multiplier. Many independent tests have
been made, dividing (0,1) into subintervals, tallying
the number of Un in each, and applying a chi-square
test to confirm the reasonableness of the results.

2. Successive values of u should be independent.

Interestingly, this apparently impossible objective is
in large part realized by the power residue method.
For suppose, for a binary machine, that x >
2k , and divide the unit interval into 2k equal parts:
then the knowledge that Un is in the i'th subinterval
gives no information at all as to which subinterval
will contain Un + 1, since multiplying by x expands
each subinterval to at least a full unit interval. If
xy == 1 (mod m) so that y is the multiplier that

obtains Un-l from Un, and if both x > 2kand y > 2\
then no information as to location of either Un+l or
Un-l results from the knowledge that Un is in a par­
ticular subinterval of length 2- k • Similar remarks
apply to decimal machines.

This observation suggests choosing the multiplier x
as large as possible while maintaining y 2: x, in
order to achieve maximum independence for the
Un. A good choice is x : vm (m = 2b or 10d)
because then the left half of each Un forms a se­
quence of points that are actually independent in
the above sense. Larger values of x exist, still with
y 2: x, but there does not seem to be an easy way
to find them-while still satisfying the preceding
number theoretic conditions.

3. Another measure of independence is furnished by
an auto-correlation coefficient for the Un, defined

1 N

by Ch = Nn~l Un Un+h' Statistical theory shows that

truly random samples give values of Ch that are
approximately normally distributed with mean
= 1/4 and standard deviation = .22/ vn, for
h > 0, and with mean = 1/3 and standard devia­
tion = .30/ vn for co. Some tests ofthis nature have
been made for the power residue method, all giving
satisfactory results. M. L. J uncosa [5] has made a
similar test, again satisfactory, by dividing (0,1)
into k parts and tallying in a k x k matrix: tally 1
in row i, column j, when Un in the i'th subinterval
is followed by Un+l in the j'th. The expected result
is equal numbers in all positions of the matrix, and
a chi-square test is used to confirm reasonableness
of actual results.

4. A study of runs up and down, which describes the
oscillatory nature of the magnitudes Un, appears to
be a good test: it shows, for example, that the
Fibonacci Series method (see Notes on Other
Methods, p. 9) of generating random numbers is

7

8

not a good one, and that some multipliers are better
than others with the power residue method. This
test evidently is not described in detail elsewhere,
so will be treated rather completely here.

For N points UI, ... , UN we write an N - 1 bit
binary sequence S whose n'th term is 0 if Un < Un+l
and is 1 if Un > Un+l. A subsequence of k zeroes,
bracketed by ones at each end, forms a run of
zeroes of length k; similarly for runs of ones; and
the test involves counting the number of occurrences
of runs of different lengths and comparing to ex­
pected results. The expected results, based on a
truly random sample, are: (2N - 1)/3. runs total,
(5N + 1)/12 runs of length 1, (llN - 14)/60
runs of length 2, and in general, 2 { (k2 + 3k + 1)
N - (k3 + 3k2 - k - 4)} / (k + 3) ! runs of length
k for k < N - 1; and finally 2/N 1 runs of length
N - 1. A common characteristic of non-random
sets Un is an excess of long runs. As in note (2) above,
one should not use too small a value ofx for a multi­
plier, and y, the reciprocal ofx (mod m) also should
not be too small, since using y instead of x would
give the same sequence but in reverse order­
which would show the same pattern of runs. Even
beyond this point, some values ofx seem to be better
than others, but there is no further theory to indi­
cate a good choice.

A convenient way to obtain the formulas for ex­
pected number of runs is to first observe that if the
Un (assumed random) are arranged in increasing
order, un! < un2 < ... < unN' then all N 1 permu-

tations of the subscripts are equally likely, since
P(u r < us) = P(ur > us) = 1/2. Therefore, an
equivalent problem is to consider the N! permu­
tations of the first N integers, form the N - 1 bit
binary sequence S as before for each permutation,
and count the number of occurrences of a run of
length k in the whole set of S's. The process is
lengthy but straightforward. For example, consider
k = 1: in this instance, four consecutive values of
Un are needed for an "inside" run of length 1, as in
Un < Un+l > Un+2 < Un+3 which gives· ·010· . for S,
but only three values of Un are needed for an "end"
run, as in UI < U2 > U3 which gives 01 ... for S
and the leading 0 makes the run. The total number
of "end" runs of length 1 is 2·2·2·(~) (N - 3) 1,
where the first 2 indicates two ends to choose, the
second 2 corresponds to choice of up or down, the
third 2 indicates two ways to make such a pattern
with three numbers (abc or cba), the (~) is the
number of ways to choose three numbers from N

to form the run, and (N - 3)! arranges the rest.
Similarly, there are 2·5·(~) (N - 4)! (N - 3)
"inside" runs, and so (5N + 1) N!/12 total.

5. Another type of run test-"above and below the
mean"-has often been used. From N values of Un
an N-bit binary sequence S is formed with the n'th
term 0 if Un < 1/2 or 1 if Un > 1/2. Again runs in
S are counted; the expected number of runs of
length k is (N - k + 3)2-k -t, and expected total
number of runs is (N + 1) /2. A chi-square test is
used to confirm reasonableness of actual results.
The power residue method has always passed this
test sa tisfactoril y.

6. Applications with k variables will likely assign every
k'th random number to the same variable, so it is
important to know that such a subset from a ran­
dom number generator will still be random. With
the power residue method, taking every k'th num­
ber using x as a multiplier is the same as taking
every number while using Xk as a multiplier. The
cycle length may still be maximum or may be re­
duced, depending on x,m, and k. Of course, it will
not be less than (l/k) times the maximum. The
statistical properties of the subset will also depend
x,m, and k; in particular, it should be checked that
Xk (mod m) is not too small or too large-cf. notes
2 and 4 above. However, the power residue method
usually gives good results when used in this manner;
good results can be assured by stud ying x,m, and k,
and at least it apparently gives results as good or
better than any other method.

7. Many tests have been applied to the digits of
"random" numbers. The frequency test is, usually,
a chi-square test applied to observed frequency of
occurrence of each digit or of various digit com­
binations. Sometimes the distribution of many such
counts is studied. The poker test is a special fre­
quency test for certain 5 digit (or n digit) combi­
nations. The gap test is a chi-square test applied
to observed frequency of distances separating two
like digits.

The power residue method has always passed these
tests satisfactorily. However, the tests on digits seem
to be less critical, for purpose of comparing meth­
ods, than some of the tests on successive numbers­
e.g., runs up and down-and anyway most appli­
cations call for numbers rather than digits. There­
fore, the earlier paragraphs of this section are
emphasized.

Notes on Other Methods

The center square method, one of the earliest, squares a
2n digit number and takes the middle 2n digits from the
4n digit product for the next number. There are several
variations, but the method has generally been discarded
because it does not give very long periods, and in fact,
the period is only found by trial for each starting number.
The sequence generally does not return to the starting
data to repeat. Also, it is relatively slow.

The Fibonacci Series method assumes two starting
numbers u o , Ul, and computes Un+l == Un + Un-l

(mod m); it is convenient to choose m = 2b or 10d • The
method is fast, easy, and the period is satisfactorily long
(3'2b- l for m = 2b, 3·10d - l or 15·10d - l for m = 10d ,

depending on starting values-which should not both
have a common factor with m), but the results are not so

good statistically: runs up and down, in particular, show
lack of randomness. The method is essentially a power
residue method with a multiplier x = (1 + "";5)/2,
which is too small.

A great improvement results by taking only every k'th
number, where k is chosen to make [(1 + v5)/2Jk
satisfactorily large. With this modification, the Fibonacci
Series method is as good as any other statistically, but
for most computers is not as fast or easy to use as the
power residue method.

Numerous other methods have been devised, some of
which will be found in references listed at the end of this
write-up. Most are slower and more cumbersome, but
none has been so extensively studied statistically and so
thoroughly tested as the power residue method.

9

Appendix: Programming the Power
Residue Method

This section is included for those persons unfamiliar with
the mathematical concepts employed in the previous dis­
cussion. It outlines the series of steps required in pro­
gramming the procedure for either a binary or a decimal
computer.

Procedure for a binary computer

In the following discussion the computer is assumed to
have a word size of b-bits. Furthermore, the arith­
metic assumes the binary point to be at the extreme right
of the word. Thus, all of the numbers involved are
integers-including the random numbers generated.
Once the result is available, however, the programmer
should consider the binary point to be at the extreme
left in order to obtain random numbers distributed over
the unit interval. The following procedure will produce
2b- 2 terms before repeating.

1. Choose for a starting value any odd integer Uo•

2. Choose as a constant multiplier an integer x of the
form x = 8t ± 3

where t is any integer. (A value of x close to 2b/2 is
a good choice.)

3. Compute xU o• This produces a product 2b-bits
long; the high-order b-bits are discarded and the
b low-order bits are the value UI.

4. Each successive random number Un+l is obtained
from the low-order bits of the product xun.

Example: For simplicity, assume that b = 4. The pro­
cedure will produce only 4 terms before repeating but
will illustrate the principle.

1. Choose Uo = 1001.

2. The choice t = 1 gives either 1011 or 0101 for x.

10

Since 2b/2 = 4, the value 0101 is selected for a
multiplier.

3. xU o = (0101) (1001)
UI = 1101.

4. XUI = (0101) (1101)
U2 = 0001.

5. XU2 = (0101) (0001)
U3 = 0101.

00101101. Therefore,

01000001. Therefore,

00000101. Therefore,

6. XU3 = (0101) (0101) = 00011001. Therefore,
U4 = 1001 = Uo and the sequence repeats.

Procedure for a decimal computer

In the following discussion the computer is assumed to
have a word size of d-digits. Furthermore, the arith­
metic assumes the decimal point to be at the extreme
right of the word. Thus, all of the numbers involved are
integers-including the random numbers generated.
Once the result is obtained, however, the programmer
should consider the decimal point to be at the extreme
left in order to obtain random numbers distributed over
the unit interval. The following procedure will produce
5·10d

- 2 terms before repeating (for d greater than 3).

1. Choose for a starting value any integer Uo not
divisible by 2 or 5.

2. Choose as a constant multiplier an integer x of the
form x = 200t ± r

where t is any integer and r is any of the values
3, 11, 13, 19, 21, 27, 29, 37,53, 59, 61, 67, 69, 77,
83, 91. (A value close to 10d /2 is a good choice.)

3. Compute xU o• This produces a product 2d-digits
long; the high-order d-digits are discarded, and
the d low-order digits are the value UI.

4. Each successive random number Un+l is obtained
from the low-order digits of the product xun.

Example: For simplicity it will be assumed that d = 4.
The procedure will, therefore, produce 500 terms
before repeating.

1. Choose Uo = 2357.

2. Since 10d /2 = 100, a good choice of x would be
either x = (200) (0) + 91 = 91 or x = (200) (1) -
91 = 109. The value 109 will be chosen for this
illustration.

3. xU o = (0109) (2357)
UI = 6913.

4. XUI = (0109) (6913)
U2 = 3517.

5. XU2 = (0109) (3517)
Ua = 3353.

6. xUs = (0109) (3353)
U4 = 5477.

7. XU4 = (0109) (5477)
Us = 6993, etc.

00256913. Therefore,

00753517. Therefore,

00383353. Therefore,

00365477. Therefore,

00596993. Therefore,

Notes on the procedures

1. The number of terms which can be obtained before
the sequence repeats is extremely large. The 35-bit
word length of the 704, 709, and 7090 makes it possible
to generate a sequence of over 8.5 billion numbers. The
ten-digit word length of the 650 and 7070 allows for a
sequence of 500,000,000 terms.

2. In choosing the value for the constant multiplier,
x, the timing characteristics of the computer being used
should be considered. Multiplication time for the 709
and 7090 generally decreases as the number of l's in the
multiplier decreases. For the 650 and 7070, the sum of
the digits in the multiplier is a factor in timing. With
some values of x a speed advantage can be obtained by
using shift and add instructions instead of the multiply
instruction.

3. The low-order digits of the numbers referred to
here as random are far from random as evidenced by the
two numerical examples. Actually, the periodicity of the
digits in any particular digit position of the random
number sequence increases as the order of the digit posi­
tion increases. Therefore, if a random number smaller
than a full word is required, the high-order digits of Un
should be used. The actual computation of the Un, how­
ever, should be done using the full word length (or in
the case of a variable word length machine such as the
705, with a sufficiently large word).

11

References

12

1. A MILLION RANDOM DIGITS: The Rand Corporation.

2. PROCEEDINGS OF A SECOND SYMPOSIUM ON
LARGE SCALE DIGITAL CALCULATING MACHIN­
ERY: The Annals of the Computation Laboratory of Harvard
University, Volume XXVI, 1951.

3. MONTE CARLO METHOD: U. S. Department of Com­
merce, National Bureau of Standards, Applied Mathematics
Series. 12, 1951.

4. SYMPOSIUM ON MONTE CARLO METHODS: H. A.
Meyer, Editor, John Wiley & Sons, Inc., 1956.

5. RANDOM NUMBER GENERATION ON THE BRL
HIGH-SPEED COMPUTING MACHINES: M. L. Juncosa,
BRL Report No. 855, 1953.

6. DECISION UNIT MODELS AND SIMULATION OF THE
UNITED STATES ECONOMY; section on Random Number
Generation: Martin Greenberger, Massachusetts Institute of
Technology.

7. RANDOM DIGIT GENERATION; A. O. Arthur, Comput­
ing News, September, 1956.

8. MONTE CARLO METHODS: Chapter 12 of MODERN
MATHEMATICS FOR THE ENGINEER, University of
California, Engineering Extention Series, E. F. Beckenbach,
Editor, McGraw-Hill Book Company, Inc., 1956.

9. THE MONTE CARLO METHOD: W. F. Bauer, INDUS­
TRIAL AND APPLIED MATHEMATICS, Volume 6, Num­
ber 4, December, 1958.

10. INTRODUCTION TO MATHEMATICAL STATISTICS:
P. G. Hoel, John Wiley & Sons, Inc., 1956.

·11. ELEMENTARY NUMBER THEORY: Uspensky and
Heaslet, McGraw-Hill Book Company, Inc.

C20-8011

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I06ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

