
Introduction to mM Data Processing Systems

llrn~ General Information Manual
®

Introduction to IBM Data Processing Systems

Preface

All IBM Data Processing Systems, regardless of size, type, or basic
use, have certain common fundamental concepts and operational
principles. This manual presents these concepts and principles
as an aid in developing a basic knowledge of computers. The
manual is designed for use in training programs where a basic
knowledge of computers is the end objective or is a prerequisite
to the detailed study of a particular IBM system.

Each section is organized to present a logical association of
related concepts and operational principles. The sections may
be used in a progressive sequence to develop a concept of the
computer system, or they may be used independently as refer­
ence material. The subject matter has been generalized and
refers to actual machines and systems as little as possible. Specific
systems are mentioned only to illustrate a general principle, not
to compare one system with another.

The appendix contains supplementary reference information
which, because of its format or its logical use, is not related
directly to any specific section of the manual.

@ 1960 by International Business Machines Corporation

Contents

INTRODUCTION TO IBM DATA PROCESSING SYSTEMS

The Data Processing System

DATA REPRESENTATION

Computer Data Representation .. .
Computer Codes
Data Recording Media

STORAGE DEVICES

Core Storage
Magnetic Drum Storage
Magnetic Disk Storage
Storage and Data Processing Methods.

CENTRAL PROCESSING UNIT (CPu)

Functional Units
Machine Cycles .. .
Serial and Parallel Operation
Fixed and Variable Word Length

INPUT-OUTPUT DEVICES

Card Readers .. .
Card Punches .. .

5
12

17
18
20
23

29
30
32
33
34

36
37
38
40
40

41
43
44

Magnetic Tape Units - Input and Output. 44
Paper Tape Reader.. 49
Paper Tape Punch .. 50
Prin ters .. 50
Cathode Ray Tube .. 52
Consoles ... 52
Data Buffering .. 52
Auxiliary Operation .. 54

STORED PROGRAM CONCEPTS

Instructions
Developing a Program
Reading Data
Calculating
Logical Operations
Comparing
Instruction Modification
Address Modification
Indexing
Indirect Address

PROGRAMMING SYSTEMS

Machine Coding
The Programming System

~:~~~~~~r~~1~~~ ~~~~~.~ .. ::: :::
Program Compilers
Program Package
Fortran
Sort Programs .. ; .. .
Utility Programs

PROCEDURE CONTROL

Systems Checks
Machine Checking

ApPENDIX

Business Practices

INDEX

56
56
57
64
64
65
68
68
69
70
7I

72
73
73
75
78
80
81
82
83
84

85
86
89

90
90

94

IBM 7070 Data Processing System

Introduction to IBM Data Processing Systems

TECHNOLOGICAL ADVANCE in data processing
is fast moving and far reaching. What is in the future?
No one really knows. The undiscovered ways in
which data processing systems can probably be used
seem almost boundless. \!\Tith each new application,
data processing systems have demonstrated sti ll newer
ways in which they can be used to help man enlarge
his capabilities and advance civilization a little farther.

In the opinion of some scholars, data processing is
not just one more new industry or innovation, but a
giant step forward in man's utilization of science and
knowledge as a means to progress. Ultimately, some
say, the changes that may come in the wake of these
developments will prove more momentous than those

Figure I. 113M 7090 Data Processing System

of the industrial revolution. Infinitely more is ahead
than is in" the past.

Data Processing

Data processing systems ordinarily consist of a com­
bination of units including input, storage, processing,
and output devices (Figure 1). They are designed to
handle business or scientific clata at electronic speeds
with self-checking accuracy. The key element of these
systems is the processing unit, a high-speed electronic
computer.

These electronic data processing systems are a post­
\IVorld War II innovation. 'Within two decades, they

Introduction 5

have progressed from experimental laboratory equip­
ment to machines whose capabilities are exceeded
only by the range of applications to which they can
be put (Figure 2) .

Machines are devised by men for a purpose. In the
case of data processing machines, the purpose can be
expressed simply: they offer man a means to increase
his productivity.

They do this in two ways. First, they enable man to
increase his output per hour and the quality of his
outpu t; this is true whether i t be in research, produc­
tion, problem solving, or the distribution of goods
and services. Second, these machines increase produc­
livity by encouraging careful and intelligent planning.

Data processing machines came into being primarily
to meet the increasing need for information under
increasingl y complex conditions. High-speed data
processing machines were not essential to the agri­
cultural economy of a century ago. If they were,
much greater effort would have gone into their devel­
opment at a much earlier date. For while electronic
techniques are new, the concept of automatic data
processing is not; others perceived it more than a
century ago.

As a manufacturing economy developed during the
19th century, it became clear that expa nded markets

would require mass production techniques. Machinery
was introduced to increase productivity. I t became
possible to turn out more and more goods with less
human effort. The work week shortened. "'Tages and
profits went up. Benefits spread throughout the whole
economy.

During the last quarter century, further cha nges
have taken place. In many respects, they are as sig­
nificant as the changeover from an agricultural to an
industrial nation. Science has moved into the fore­
front of human act ivity. R esearch has grown to a
multibillion dollar a year undertaking. New tech­
nology has provided a new impetus for corporate
growth. Service industries have multiplied. Pattern
of consumer spendi ng have changed.

As these changes ga ined force, they manifested
themselves in many ways. Informational needs greatly
increased. Data assumed new importance. Clerical
tasks multiplied. Paper-handling tasks appeared as if
they would overwhelm all productive activities.

Today, more people are engaged in the handling,
processing, and distribution of goods and services than
are engaged in their production. One dollar out of
every eight in wages and salaries in the United States
now goes to a clerical worker. ' '''hite-collar workers
in manufacturing industries have increased by more

Figure 2. In -manufaclure Test of Large-scale IBM Data Processing System

6 IBM Data P rocessing Systems

than 50 percent in the past 10 years, while employ­
ment in all manufacturing has increased by only six
percent.

Despite these fundamental changes in our economy,
clerical mechanization has not kept pace with pro­
duction line developments in the factory.

Great opportunities and challenges lie ahead. An
example of what can be done is the development of
magnetic character sensing for the banking industry.
The estimated 10 billion checks that circulate an­
nually in the United States present a staggering task
in data handling for banks. Each check drawn on a
bank must be handled at least six times before it is
cancelled and returned. Even when business machines
were introduced to handle part of this chore, opera­
tors were needed to transfer data from the checks to a
form in which the data could be used by the machines.

Magnetic character sensing, developed by computer
manufacturers in cooperation with the American

Bankers Association (ABA), permits data to be read
directly by both man and machine (Figure 3). By
agreement among computer manufacturers, check
printers, and the ABA, banking documents such as
checks, depos · slips, and debit and credit memos can
be printed i'n magnetic ink. Printed information about
the bank of origin, depositor's account number and
other essential data can be read directly by the ma­
chine. Only the specific amount of each check or
deposit slip need be recorded on the document in
magnetic print. And this need be done only once by
an operator to process the document through its whole
routine.

In addiotion to the growing need for mechanization
of clerical routines and management procedures, there
is the tremendously expanded need for data process­
ing to match the new rate of technological growth and
scientific research. The demands for information are
enormous. More and more, data processing systems

Figure 3. Magnetic Character Sensing - IBM 1210 Reader Saner with IBM HOI Data Processing System

Introduction 7

are depended on for information to run enterprises,
administer institutions, direct research, and plan
endeavors.

Regardless of the product or problem, the nature of
the enterprise or institution, wherever there is need
for information upon which human judgments can
be based, there may also exist a need for a data proc­
essing machine.

The Growth of IBM Data Processing

,Although data processing equipment IS a tool of
astonishing versatility, the automatic processing of
data is so recent that only 30 years are needed to trace
its biggest period of growth.

Punched cards were introduced during the census
of 1890, but the data processing industry, as recently
as 1930, amounted to little more than a fledgling,
although a lively one.

Three significant achievements appeared in the late
1920's and early 1930's. The first was a punched card
that provided 80 columns of information-almost
twice the capacity of the older 45-column cards. The
second was the automatic multiplier; previous ma­
chines had been able only to add or subtract. The
third was the alphabetic accounting machine. Modest
though these improvements might seem in the light of
current technology, they represented substantial ad­
vances in the speed, versatility, and usefulness of
business machine systems.

Most of the development in the middle 1930's came
in punched card equipment and in key driven account­
ing machine systems. In the postwar years, long after
electronics had profoundly changed the industry, these
electromechanical developments continued and new
devices appeared from year to year. Far from side­
tracking electromechanical developments, the new
computers gave fresh impetus to advances in this field.

For example, before the appearance of electronic
data processing machines, it was thought that 150
lines per minute was maximum for a printer. Today,
many electromechanical printers print 500 lines per
minute; some go as high as 1,000.

World War II caused a swift change of pace in data
processing developments. Much of the momentum
came from the urgent demands of science which was
suddenly put to work on an unprecedented scale de­
veloping new weapons. In aircraft design and ord­
nance development, new and prodigious requirements
for data were encountered. And as work got under­
way on the atomic bomb, scientists found themselves
faced with new dimensions in calculation.

8 IBM Data Processing Systems

Both here and abroad, the first two large scale
computers were developed in university laboratories.
The earliest, the ENIAC, came from the University of
Pennsylvania; Europe's first, the EDSAC, came from the
laboratories of Cambridge University in England.

In these machines, the switching and control func­
tions, once entrusted to relays, were handled by
vacuum tubes. Thus, the relatively slow movements
of switches in electromechanical computers were re­
placed by the swift motion of electrons. By this
changeover, it became possible to increase the speed of
calculation and perform computations 1,000 times as
fast as before.

Almost concurrently with the use of electronics
came another major development that was to widen
the capabilities of data processing systems and expand
their opportunities for application. This advance is
embodied in what is called a stored program com­
puter. At the start, machine instructions were pro­
grammed on interchangeable control panels, cards, or
paper tapes. Detailed instructions had to be wired in
or read into the machine as the work progressed. Data
put into the computer were processed according to
the instructions contained in these preset devices.
Only in a limited way could the computer depart
from the fixed sequence of its program.

It soon became apparent that these programming
techniques inhibited the performance of the com­
puter. To give the computer greater latitude in work­
ing problems without operator assistance, scientists
proposed that the computer store its program in a
high-speed internal memory or storage unit. Thus, it
would have immediate access to instructions as rapidly
as it called for them. With an internal storage sys­
tem, the computer could process a program in much
the same way that it processed data. It could even be
made to modify its own instructions as dictated by
developing stages of work.

The earliest computer to incorporate this feature
was completed in 1948. Subsequent computers ex­
tended the principle until it became possible for a
computer to generate a considerable part of its own
ins tructions.

Because the computer is capable of making simple
decisions, and because it is capable of modifying in­
structions, the user is relieved of a vast amount of
costly and repetitive programming.

The early 1950's saw the introduction of medium
and large scale data processing systems, specifically
designed to take over the burdensome clerical chores
that beset so many growing companies.

Though essentially similar to previous computers
in the way they processed data, these new business
systems differed substantially in various parts of their

make-up. In scientific research, most problems call for
relatively small numbers of items to be subjected to
intensive machine processing. In business operations,
the reverse is more often true. Here the need is for
machines that accommodate vast numbers of items
while the processing, by comparison, is ordinarily
quite simple.

Modifications in these new business systems were
addressed to the twin problems of input and output.

Early computers had used punched cards and paper
tapes for the input of information. Now a method
was perfected for storing information as magnetized
spots on magnetic tape. This new technique provided
input speed 50 to 75 times that of cards. It brought
improvement in input, output, and storage.

After the Korean War, man's need always seemed
to be one jump ahead of the computer's ability to
handle the logical and arithmetic labors of his reason­
ing. The demand quickened especially in such fields
as nuclear physics and space technology where work
on the H-bomb and ballistic missiles presented prob­
lems that put a severe strain on the capacities of
existing machines. Still more speed was needed.

A substitute for earlier storage devices appeared
in the early 1950's-the magnetic core. A magnetic
core is a small ring of ferromagnetic material. When
strung on a complex of fine wires (Figure 4), these

Figure 4. Magnetic Core Plane

cores can be made up into a high-speed internal stor­
age system. An array of cores-some magnetized in
one direction, some in the other-represents items of
information. Items in a core storage can be located
and made ready for processing in a few millionths of
a second.

Almost at the same time, other engineers perfected
magnetic drum storage. Access time on the drum
was substantially slower than that on the core system,
but storage capacity was substantially increased. And
while access time on the drum was slower than that
of the core, it was faster than that of magnetic tape.

Other conditions peculiar to business led to still .
more developments. A major one is a system that
overcomes a problem-batching-often encountered in
data processing. For example, when magnetic tapes
are used to store information in a computer, the user
must accumulate information in batches before put­
ting it on tape. Otherwise, the computer would be
prohibitively costly and time consuming. But when
this limitation is applied to business practice, it
means that each item of information can be only as
current as the batch in which it is bundled for delivery
to the computer. In ordinary operations, hours and
sometimes days may elapse between batches.

The limitation is compounded when the user calls
for the retrieval of a piece of information. The com­
puter is forced to search through a long reel of infor­
mation for the piece. Access is slow; time is lost.

Batching and searching requirements frequently
present serious drawbacks, even in scientific work. In
business, the difficulty becomes much more acute,
especially in accounting procedures. Here is a require­
ment that can be met only by in-line data processing.

In-line data processing came with the development
in the middle 1950's of random access systems, such
as the IBM RAMAC® 305. A stack of magnetic disks in
the RAMAC (Figure 5) stores up to 10 million digits
of information. The disks rotate at 1,200 RPM past
access arms that move quickly to any point of any
disk to deposit or retrieve data.

Meanwhile, continuing developments in pulse elec­
tronics and solid state physics led to still newer and
better components. There are practical limits to the
size and capacity of a machine operated on vacuum
tubes. Tubes are bulky; they demand considerable
power; they produce heat and create air conditioning
problems.

In some switching functions, the vacuum tube was
replaced by a smaller semi-conductor diode that has
the advantage of demanding less power. A further
advance came when tiny transistors were introduced
in place of the vacuum tubes in the computer. Not

Introduction 9

Figure 5. IBM RAMAC® 305

only can lhese transistors be packed into smaller units
(Figure 6), but they have greater reliability. The

change-over to transistors is now accomplished.
Research scientists have already advanced to still

further stages in design. Some are studying the use of
microwave phenomena as a medium for performing
computer logic. Others are studying the behavior of
materials and electrons at extremely low temperatures
(cryogenics) .

As always, the objective is to develop a better, more
versatile, more useful computer-one that will work
faster, store more information, demand fewer instruc­
tions, require less power, and occupy less space.

The Future

Future computers will inevitably introduce changes
in the way we work, in the way we learn, and even in
the way we provide for our armed defense. Research
even now points the way to some changes which may
be nearer at hand than we suspect.

For the moment, computer users are handicapped in
communicating with these machines. Instructions must
be coded laboriously into machine language. Instruc­
tions conveyed in a few spoken wor<i\;' to a human
being may require hundreds of logical movements in
a computer-and this is a problem because the com­
puter must be instructed in each movement.

10 IBM Data Processing Systems

The new science of automatic programming seeks to
make programming easier and more manageable. The
goal is to build and program computers so that they
accept instructions in everyday English. Ultimately,
computer scientists hope to develop machines that
read ordinary printed matter and respond to spoken
words.

Soon there will be a common national-or interna­
tional-machine language for computers. ·With a com­
mon "tongue," machines will be designed to operate by
the same instructional language. A program generated
for one machine can then be used by any other; the
difficult task of creating a program need be tackled
only once. Greater cooperation will be possible among
users, and progress will be speeded in the science of
computer use.

Already there is one significant step forward in the
case of machines that read. Magnetic character sens­
ing, as previously indicated, utilizes numbers and let­
ters printed in a way that can be read by machines
as well as man.

Another development points to further mechaniza­
tion in engineering design work. Computers will
eventually assume routine engineering tasks, freeing
engineers for more productive work. Not too far in
the future, engineers should be able to call on com­
puters for the design of highly complex systems. All
that will be required is a statement of the engineering

Figure 6. Computer Circuitry, Solid State and Vacuum Tube

problem in mathematical equations. The greatest dif­
ficulty in achieving this technique is that of stating
design criteria unequivocally and in a form that can
be programmed into a computer.

Computers, by 1980, will probably be quite different
from today's. Storage and processing units as powerful
as today's largest may be the size of a tele ision set,
perhaps smaller. Already there are systems where a
single computer serves a number of inquiry stations.
Such systems can be expanded to produce larger net­
works and in tegra te widely sca ttered business opera­
tions. Beyond that, it may be possible to query the
computer merely by talking into a microphone. Even­
tually, the computers may even be able to answer by
voice.

Among the problems that challenge systems engi­
neers is the paperwork that gluts so many administra­
tive channels. Information, they say, can be com­
municated and processed more accurately and cheaply
by network-integrated data processing systems. Some
even contemplate a time when paper bank checks will
disappear in many transactions.

Instead of handing an employee his paycheck, a
paymaster in 1985 may simply instruct a computer,

housed in a bank, to credit the employee's earnings to
his bank account.

At this point, a chain reaction begins. The com­
pany's account is debited by the amount of the pay­
check. This. w£ormation goes to the company's ac­
counting machines for processing and storage. Now,
assume that the employee wants to buy something that
costs more than he wishes to pay for in cash. The
salesclerk asks for identification, a card that identifies
the customer to the salesclerk and to the computer.
The clerk instructs the bank computer to debit the
customer's account by the amount of his purchases.
The same amount is credited automatically to the
store's account. Information on the sale goes to the
store 's computer for processing with sales, financial,
and inventory data. Periodically, the customer gets a
statement on his deposits and computer transactions.

Still other scientists have turned their talents to de­
veloping what they prophetically call information cen­
ters.

The science of information retrieval by machine is
under rigorous study. As our society grows, the in­
formation it generates will increase; the task of find­
ing what one is looking for will become increasingly
difficult and time consuming.

Information centers of the future would collect,
catalog, and retrieve information electronically by
machine. Queried about a subject, a: center could pro­
vide specific source references, cross-references, and
subdivisions of subject matter. Or, asked a question,
it could give a direct answer.

Such a development would mean immediate access
to more information than was ever before instantly
available. A man might never have the ability to
know all that he might want to know, but he would
have the means of finding it as he had need.

Everywhere the pace of technological advance has
quickened. During the next 25 years, man will journey
into space; he may reach the nearest planets. He will
look about him on earth. He will pose questions and
search for knowledge. He will make discoveries not yet
imagined.

In such a world and at such a time, man will have
greater and more pressing need for business machines
than ever before. These needs, in turn, will dictate ma­
chine advances.

What will these advances mean? They signify con­
tinuing and hopeful advances in human progress. And
because these machines have so many applications,
because they can be used in so many ways, they hold
out the promise of progress in the use we make of our
time, progress in the way we employ out talents, prog­
ress in the search we make for learning and knowl­
edge. Put all these things together, and it may not

I n trod uction 11

be too much to hope that these machines, in some
way, will help us to keep those very values that make
the human being so distinct and his life so worth­
while.

The Data Processing System

Data processing is a series of planned actions and
operations upon information to achieve a desired re­
sult. The procedures and devices used constitute a
data processing system (Figure 7). The devices may
vary: all operations may be done by machine, or the
devices may be only pencil and paper. The procedures,
however, remain basically the same.

There are many types of IBM data processing sys­
tems. These systems vary in size, complexity, speed,
cost, and application. But, regardless of the informa­
tion ':'0 be processed or the equipment used, all data
pro~essing involves at least three basic considerations:

1. The source data or input entering the system.

2. The orderly, planned processing within the sys­
tem.

3. The end result or output from the system.

Input may consist of any type of data: commercial,
scientific, statistical, engineering, and so on (Figure 8).

Processing is carried out in a pre-established se­
quence of instructions that are followed automatically
by the computer (Figure 9). The plan of processing
is always of human origin. By calculation, sorting,

Bookke",in

Accounting with Key-"'iven Machine. ~

~</1
Punched Card Accounting

Data Processing System

Figure 7. Data Processing Systems

12 IBM Data Processing Systems

r~ . ::

Hi 2
_Ji

Figure 8. Sources of Data

Input
Data

Process

Read
Sort

Classify
Calculate

Edit
Select

Figure 9. Data Processing by Computer

BRAIllE

Output
Results

analysis, or other operations, the computer arrives at a
result that may be used for further processing or re­
corded as reports or files of data.

Functional Units

All data processing systems can be divided into fOllr
types of functional units: input devices, Olltput de­
vices, storage, and central processing unit.

INPUT AND OUTPUT DEVICES

The data processing system requires, as a necessary
part of its information-handling ability, features that
can enter data into the system and record data from
the system. Tkese functions are performed by input­
output devices (Figure 10) linked directly to the sys­
tem.

Input devices read or sense coded data that are re­
corded on a prescribed medium and make this in-

IBM 962 Tape Punch IBM 729 IV Magnetic Tape Unit IBM 1403 Printer

IBM 382 Paper Tape Reader IBM 7500 Card Reader IBM 7550 C~rd Punch

Figure 10. Input-Output Devices

Introduction 13

formation available to the computer. Data [or input
are recorded in IBM cards and paper tape as punched
holes; on magnetic tape, as magnetized spots along
the length of the tape; and on paper documents as
characters printed in magnetic ink.

The method of recording data for machine use and
the characteristics of each medium are discussed in
later chapters.

Output devices record or write information from
the computer on IBM cards, paper tape, magnetic tape,
or as printed information on paper. The number and
type of input-output devices connected directly to the
computer depend on the design of the system and its
application.

Special data conversion operations are associated
with all computer systems to transcribe information
recorded on one medium to another. For example, in­
formation on punched cards can be transcribed auto­
matically to magnetic tape. This operation may take
place on-line, utilizing the computer, or off-line, utiliz­
ing input-output devices independently.

Figure II. IBM 738 Magnetic Core Storage

I4 IBM Data Processing Systems

STORAGE

Storage is somewhat like an electronic filing cabinet,
completely indexed and almost instantaneously acces­
sible to the computer (Figure 11).

All data must be placed in storage before they can
be processed by the computer. Information is read into
storage by an input unit and is then available for
in ternal processing. Each location, position, or sec­
tion of storage is numbered so that the stored data
can be readily located by the computer as needed.

The computer may rearrange data in storage by
sorting or combining different types of information
received from a number of input units. The com­
puter may also take the original data from storage,
calculate new information, and place the result back
in storage.

The size or capacity of storage determines the
amount of information that can be held within the
system at anyone time. In some computers, storage
capacity is measured in millions of digits or characters,

providing space to retain entire files of information.
In other systems, storage is smaller and data are held
only while being processed. Consequently, the capac­
ity and design of storage affect the method in which
data are handled by the system.

CENTRAL PROCESSING UNIT

The central processing unit (Figure 12) is the con­
trolling center of the entire data processing system. It
can be divided into two parts:

1. The arithmetic-logical unit.

2. The control section.

The arithmetic-logical unit performs such opera­
tions as addition, subtraction, multiplication, division,
shifting, transferring, comparing, and storing. It also
has logical ability-the ability to test various condi­
tions encountered during processing and to take action
called for by the result.

The control section directs and coordinates the
entire computer system as a single multipurpose ma­
chine. These functions involve controlling the input­
output units and the arithmetic-logical operation of
the central processing unit, and transferring data to
and from storage, within given design limits. This
section directs the system according to the procedure
originated by its human operators.

Stored Programs

Each data processing system is designed to perform
only a specific number and type of operations. It is
directed to perform each operation by an instruction.
The instruction defines a basic operation to be per­
formed and identifies the data, device, or mechanism
needed to carry out the operation. The entire series
of instructions required to complete a given procedure
is known as a program.

For example, the computer may have the operation
of multiplication built into its circuits in much the
same way that the ability to add is built into a simple
desk adding machine. There must be some means of
directing the computer to perform multiplication just
as the adding machine is directed by depressing keys.
There must also be a way to instruct the computer
where in storage it can find the factors to multiply.

Further, the comparatively simple operation of mul­
tiplication implies other activity that must precede
and follow the calculation. The multiplicand and
multiplier must be read into storage by an input de­
vice. This device must previously have had access to
the record or records from which these factors are to
be supplied. Once the calculation is performed, the
product must be returned to storage at a specified

Figure 12. IBM 7100 Central Processing Unit

location, from which it may be written out by an out­
put device.

Any calculation, therefore, involves reading, locat­
ing {actors in storage, perhaps adjusting the result,
returning the result to storage, and writing out
the completed result. Even the simplest portion of a
procedure involves a number of planned steps that
must be spelled out to the computer if the procedure
is to be accomplished.

An entire procedure is composed of these individual
steps grouped in a sequence that directs the computer
to produce a desired result. Thus, a complex problem
must first be reduced to a series of basic machine
operations before it can be solved. Each of these oper­
ations is coded as an instruction in a form that can be
interpreted by the computer and is placed in the main
storage unit as a stored program.

The possible variations of a stored program pro­
vides the data processing system with almost un­
limited flexibility. One computer can be applied to a
great number of different procedures by simply read­
ing in or loading the proper program into storage.
Any of the standard input devices can be used for
this purpose, because instructions can be coded into
machine language just as data can.

The stored program is accessible to the machine.
providing the computer with the ability to alter its
own program in response to conditions encountered
during an operation. Consequently, the machine ex-

Introduction 15

ercises a limited degree of judgment within the fram e­
work of the possible operations that can be performed.

Console

The console (Figure 13) provides external control
of the da ta processing ys tem . Keys turn power on or
off, start or stop operation, and control various devices
in the system. Data may be entered directly by manu-

ally depressing keys. Lights are provided so that data
in the sys tem may be visually displayed. The system
may also be opera ted from the console to trace or
check o ut a procedure one step at a time.

On some systems, a console typewriter provides lim­
ited output. The typewriter may print messages, sig­
naling the end of processing or an error condition. It
may also print totals or other information that enable
the operator to monitor and supervise operation.

.. - - - -
,... ... - .~ -. -
". - ""'

Figure 13. IBM 7153 Console

16 IBM Data Processing Systems

Symbols convey information; the symbol itself is not
the information but merely represents it. The printed
characters on this page are symbols and, when under­
stood, convey the writer's meaning.

The meaning of symbols is one of convention. A
symbol may convey one meaning to some persons, a
different meaning to others, and no meaning to those
who do not know its significance (Figure 14) .

Presenting data to the computer system is similar
in many ways to communicating with another person
by letter. The intelligence to be conveyed must be
reduced to a set of symbols. In the English language,
these are the familiar letters of the alphabet, numbers,
and punctuation. The symbols are recorded on paper
in a prescribed sequence and transported to another
person who reads and interprets them.

Similarly, communication with the computer sys­
tem requires that data be reduced to a set of symbols
that can be read and interpreted by data processing
machines. The symbols differ from those commonly
used by people, because the information to be repre­
sented must conform to the design and operation of
the machine. The choice of these symbols and their
meaning is a matter of convention on the part of the
designers. The important fact is that information can
be represented by symbols, which become a language
for the communication between people and machines.

Figure 14. Symbols for Communication

Data Representation

Information to be used with the computer systems
can be recorded on four media: IBM cards, paper tape,
magnetic tape, and magnetic ink characters (Figure
15). Data are represented on the IBM card by the pres-

ISM Card

Magnetic Tape

Paper Tape

Magnetic Ink Characters

Figure 15. Data Recording Media

Data Representation 17

ence or absence of small rectangular holes in specific
locations of the card. In a similar manner, small cir­
cular holes along a paper tape represent data. On
magnetic tape, the symbols are small magnetized areas,
called spots or bits, arranged in specific patterns. Mag­
netic ink characters - the arabic numerals 0 to 9 and
four special characters - are printed on paper. The
shape of the characters and the magnetic properties
of the ink permit the printed data to be read by both
man and machine.

Each medium requires a code or specific arrange­
ment of symbols to represent data. These codes are
described later in this section.

An input device of the computer system is a ma­
chine designed to sense or read information from one
of the recording media. In the reading process, re­
corded data are converted to or symbolized in elec­
tronic form; the data then can be used by the machine
to perform data processing operations. An output de­
vice is a machine that receives information from the
computer system and records the information on
either IBM cards, paper tape, magnetic tape, or printed
forms.

All input-output devices cannot be used directly
with all computer systems. However, data recorded

T elegraphi c
Checkable
Code Gen-

IBM 63 Card-Controlled

Figure 16. Machine-to-Machine Communication

18 IBM Data Processing Systems

on one medium can be transcribed to another medium
for use with a different system. For example, data on
IBM cards or paper tape can be transcribed onto mag­
netic tape. Conversely, data on magnetic tape can
be converted to cards, paper tape, or printed reports.

As there is communication between people and
machines, there is also communication from one ma­
chine to another (Figure 16). This intercommuni­
cation may be the direct exchange of data, in elec­
tronic form, over wires, cables, or radio waves; or,
recorded output of one machine or system may be used
as input to another machine or system.

Computer Data Representation

Not only must there be a method of representing data
on IBM cards, paper tape, magnetic tape, and in mag­
netic ink characters, but there must also be a method
of representing data within a machine.

In the computer, data are represented by many elec­
tronic components: vacuum tubes, transistors, mag­
netic cores, wires, and so on. The storage and flow of
data through these devices are represented as elec-

tronic signals or indications. The presence or absence
of these signals in specific circuitry is the method of
representing data, much as the presence or absence
of holes in an IBM card represents data.

Binary Mode

Computers function in what is called a binary mode.
This term simply means that the computer compo­
nents can indicate only two possible states or condi­
tions. For example, the ordinary light bulb operates
in a binary mode: it is either on, producing light;
or it is off, not producing light. The presence or ab­
sence of light indicates whether the bulb is on or off.
Likewise, within the computer, vacuum tubes or tran­
sistors are maintained either conducting or noncon­
ducting; magnetic materials are magnetized in one
direction or in an opposite direction; and specific volt­
age potentials are present or absent (Figure 17). The
binary modes of operation of the components are
signals to the computer, as the presence or absence
of light from an electric light bulb is to a person.

Representing data within the computer is accom­
plished by assigning or associating a specific value to
a binary indication or group of binary indications. For
example, a device to represent decimal values could be
designed with four electric light bulbs and switches
to turn each bulb on or off (Figure 18) .

"0" State "1" State

Figure 17. Binary Indicators

Off On Off On Off On Off On

© cg © cg

Figure 18. Representing Decimal Data

The bulbs are assigned arbitrary decimal values of
1, 2, 4, and 8. When a light is on, it represents the
decimal value associated with it. When a light is off,
the decimal value is not considered. With such an ar­
rangement, the single decimal value represented by
the four bulbs will be the numeric sum indicated
by the lighted bulbs.

Decimal values 0 through 15 can be represented.
The numeric value 0 is represented by all lights off;
the value 15, by all lights on; 9, by having the 8 and 1
lights on and the 4 and 2 lights off; 5, with the 1 and
4 lights on and the 8 and 2 lights off; and so on.

The value assigned to each bulb or indicator in the
example could have been something other than the
values used. This change would involve assigning new
values and determining a scheme of operation. In a
computer, the values assigned to a specific number
of binary indications become the code or language for
representing data.

Because binary indications represent data within a
computer, a binary method of notation is used to illus­
trate these indications. The binary system of notation
uses only two symbols, zero (0) or one (1), to repre­
sent all quantities. In anyone position of binary no­
tation, the 0 represents the absence of a related or as­
signed value and the 1 represents the presence of a
related or assigned value. For example, to illustrate
the indications of the light bulb in Figure 18, the fol­
lowing binary notation would be used: 0101.

The binary notations 0 and 1 are commonly called
bits. The 0 bit is described as no bit and the 1 bit is
described as a bit. Although 0 or 1 bits are necessary
to illustrate the condition of a binary indication or a
group of binary indications, the 1 bits are the bits
generally referred to. For example, the binary nota­
tion 0101 of Figure 18 would be described as having a

Data Representation 19

bit in the 1 and 4 bit positions. The assumption is
that there are no bits (0 bits) in the 2 and 8 bit posi­
tions.

Binary Number System

In some computers, the values associated with the
binary notation are related directly to the binary num­
ber system. This system is not used in all computers,
but the method of representing values using this num­
bering system is useful in learning the general concept
of data representation.

The common decimal number system uses ten sym­
bols or digits to represent all quantities, and the
place value of the digits signifies units, tens, hundreds,
thousands, and so on. The binary or base-two number
system uses only two symbols or digits: 0 and 1. The
position value of the bit symbols (0 or 1) is based
on the progression of powers of 2; the units position
of a binary number has the value of 1; the next posi­
tion, a value of 2; the next, 4; the next, 8; the next,
16; and so on (Figure 19).

Figure 19. Place Value of Binary Numbers

In pure binary notation, the binary digits or bits in­
dicate whether the corresponding power of 2 is absent
or present in each position of the number. The 1 bit
represents the presence of the value and the 0 bit rep­
resents the absence of the value. The place value of
the digits does not signify units, tens, hundreds, or
thousands, as in the decimal system; instead, the place
value signifies units, twos, fours, eights, sixteens, and
so on. Using this system the quantity 12, for example,
is expressed with the symbols 1100, meaning (1 X 23)

+ (1 X 22) + (0 X 21) + (0 X 2°), or (1 X 8) +
(1 X 4) + (0 X 2) + (0 X 1) .

Figure 20 shows the binary representation of the
decimal values 0 through 16. Note that the decimal
digits 0 through 9 are expressed by four binary digits.
The system of coding or expressing decimal digits in
an equivalent binary value is know as binary coded
decimal (Bcn). For example, the decimal value 265,498
would appear in binary coded decimal form as shown
in Figure 21.

20 IBM Data Processing Systems

1 ~ Place Value
.~ ~
o

Figure 20. Binary Representation of Decimal Values 0-16

Figure 21. Binary Coded Decimal

Computer Codes

The method or system used to represent (symbolize)
data is known as a code. In the computer, the code
relates data to a fixed number of binary indications
(symbols). For example, a code used to represent nu­

meric and alphabetic characters may use seven posi­
tions of binary indication. By the proper arrangement
of the binary indications (bit, no bit), all characters
can be represented by a different combination of bits.

Some computer codes in use are: seven-bit alpha­
meric code, two-out-of-five fixed count code, bi-quinary,
code, six-bit numeric code, and the binary system.

Code Checking

Most computer codes are self-checking; that is, they
are provided with a built-in method of checking the
validity of the coded information. This code checking
occurs automatically within the machine as the data
processing operations are carried out. The method of
validi ty checking is a part of the design of the code.

In some codes, each unit or character of data is rep­
resented by a specific number of bit positions which
must always contain an even number of 1 bits. Differ­
ent characters are made up of different combinations

of 1 bits, but the number of 1 bits in any valid char­
acter is always even. With this code system, a char­
acter with' an odd number of 1 bits is detected and
an error is indicated. Likewise, a code may be used in
which all characters must have an odd number of 1
bits; an error is indicated when characters with an
even number of 1 bits are detected.

This type of checking is known as a parity check.
Codes which use an even number of 1 bits are said
to have even parity. Codes which use an odd number
of bits are said to have odd parity.

In other codes, the number of 1 bits present in each
unit of data is fixed. For example, a code may use
five bit positions to code all digits but only two 1 bits
will be present in each digit. Digits having more or
fewer than two 1 bits cause an error indication. This
system of checking is known as a fixed count check.

Seven-Bit Alphameric Code (Binary Coded Decimal)

In this code, all characters - numeric, alphabetic, and
special-are represented (coded) using seven positions
of binary notation. These positions are divided into
three groups: one check position, two zone positions,
and four numeric positions (Figure 22).

The four numeric positions are assigned decimal
values of 8, 4, 2, and 1 and represent, in binary coded
decimal form, the numeric digits 0 through 9 (Figure
23). Note that 0 is represented as 1010, actually the
binary number for 10. The B and A zone bits are not
present (00) when the numeric digits 0 through 9 are
represen ted.

Figure 22. Bit Positions, Seven-Bit Alphameric Code

Figure 23. Numeric Bit Configurations, Decimal Digits 0-9, Seven­
Bit Alphameric Code

Combinations of zone and numeric bits represent
alphabetic and special characters. The B and A bits
provide for three possible bit combinations: 10, 01,
and 11. Figure 24 shows the zone and numeric bit
combinations used to represent numeric, alphabetic,
and special characters in the IBM 705 Data Processing
System. In other systems using this code, there may be
special characters not shown; however, these characters
follow the same scheme of bit arrangement.

The C position, known as the check bit, is used for
code checking only. Because the seven-bit alphameric
code is an even parity code, the number of bits used
to represent a character must have an even number of
bits or the character is considered invalid. The check
bit is present in a character when the sum of the zone
and numeric bits used to represent the character
is odd. If the number of bits in a character is even
without the C bit, the C bit is not used.

Two-Out-of-Five Fixed Count Code

This code uses five positions of binary notation with
the assigned values of 0, 1, 2, 3, and 6. In the basic
code, decimal values are represented by bits present in
only two of the five bit positions (Figure 25). The
total number of possible combinations is ten-one for
each decimal digit. The digits I through 9 are each
composed of two bits, the position value sum of which
equals the number to be represented. Zero is desig­
nated by the 1-2 bit combination.

Alphabetic and special characters are represented as
a two-digit number. For example, the letter A is equal

CHAR. C BA 8421 CHAR. C BA 8421 CHAR. C BA 8421
Storage Mark

I "' 1 110 cloldo ' III
and Drum Mark

& o 11 0000 - Blank 1 01 0000 0 o 00 0000

A 1 11 0001 J o 10 0001 /
CH. C 8A 8421

o 01 0001 T 1 00 0001

B 1 11 0010 K o 10 0010 S o 01 0010 2 1 00 0010

C o 11 0011 L 1 10 0011 T 1 01 0011 3 o 00 0011

~ D 111 0100 M o 10 0100 U o 01 0100 4 1 00 0100 I- -'
w <
<0

E o 11 0101 N 1 10 0101 1 01
u < V 0101 5 o 00 0101

:c <><
c... w

-' F o 11 0110 0 1 10 0110 W 1 01 0110 6 o 00 0110 ~
< :::>

G 1 11 0111 P o 10 0111 X o 01 0111 7 1 00 0111 Z

H 111 1000 Q o 10 1000 Y o 01 1000 8 1 00 1000

1 o 11 1001. R 1 10 1001 Z l' 01 1001 9 o 00 1001

Plus Zero Minus Zero Record Mark Numerical Zero
0 o 11 1010 0 1 10 1010 1 01 1010 0 o 00 1010

-' 1 11 1011 $ o 10 1011 o 01 1011 If 1 00 1011 <<><0 ,
-< lrl:c

* e;Uo o 11 1100 1 10 1100 % 101 1100 @ 0 00 1100

Group
011 1111

Tape Mark
Mark o 00 1111

Figure 24. IBM 705 Character Code Chart

Data Representation 21

to the coded decimal value of 61 and is composed of
the two coded decimal digits of 6 and 1 (Figure 26) .

Each digit that is moved in data processing opera­
tions is tested to assure that it has two bits, neither
more nor less. This is a fixed count check.

One Digit lOne Digit
, \ I' • \

10111213/6 :011/2/31 6[
•• IBlllljll\Uli •• lj1ll111l!i,11

Figure 26. Letter A in Two-Out­
of-Five Code

Figure 25. Two-Out-of-Five Code

Bi-quinary Code

The bi-quinary code consists of seven positions of
binary notation. Two positions, the binary positions,
have assigned values of 0 and 5. The remaining posi­
tions, the quinary positions, have flssigned values of
0, 1, 2, 3, and 4.

The digits 0 through 9 are coded by a combination
of one binary bit and one quinary bit. The sum of the
bit position values equals the number to be repre­
sented. Figure 27 illustrates the bit combinations
used to code the digits 0 through 9.

Alphabetic and special characters are represented
as two digits. For example, a letter A is equal to a
decimal value of 61 and is composed of the coded deci­
mal values, 6 and 1 (Figure 28) .

Figure 27. Bi-quinary Code
Figure 28. Letter A in Bi-qui­

nary Code

22 IBM Data Processing Systems

Each digit that is moved in the various processing
operations is tested to assure that it is composed of
one binary bit and one quinary bit only.

Six-Bit Numeric Code

In this code, six positions of binary notation are
used. The positions are divided into three groups:
one check bit, one flag bit, and four numeric bits with
the assigned values of 8, 4, 2, and 1 (Figure 29). The
decimal digits 0-9 are represented in binary coded
decimal form, using the four numeric bit positions
(Figure 30). Only bit combinations whose sum is 9
or less are used.

The F (flag) bit is used for special indications not
related to the actual coding of the digits. For example,
the presence or absence of a flag bit in the units digit
of a numeric data field determines the sign (+ or -)
of the field.

Figure 29. Bit Positions, Six-Bit
Numeric Code

Figure 30. Six-Bit Numeric Code

The C bit is used for parity checking. The six-bit
numeric code is an odd parity code, so each digit must
consist of an odd total number of bits, including C
and F bits. The C bit is present only when an even
total number of bits are in the numeric bit and F bit
positions.

Alphabetic and special characters are represented as
a special two-digit numeric value. For example, the
letter A is equal to a decimal value of 41, and is com­
posed of the coded decimal digits 4 and 1 (Figure 31) .

Figure 31. Letter A in Six-Bit Numeric Code

Binary System

Computers using this system of data representation
are typified by the IBM 704, 709, and 7090 Data Proc­
essing Systems.

For these systems, the basic unit of information is the
word. A word consists of 36 consecutive bit positions
of information which are interpreted as a unit, much
as a character or a digit in other systems (Figure 32) .

Figure 32. The Binary System

The bit positions within the word have a place sig­
nificance related to the binary number system. That is,
the place position of a bit in the word determines
the value of the bit. In the binary number system, the
decimal values of the places (from right to left) are
0, 1, 2,4, 8, 16, 32, 64, and so on (Figure 32).

Although the place values of the bits of a word are
always that of the binary number system, they can be
interpreted or processed in such a way as to represent
other than a binary number. For example, a 36-bit
word (Figure 32) can be interpreted as one 36-place
binary number, as a 9-digit decimal number, as six
alphameric characters, or as any predetermined repre­
sentation established by the programmer.

DIGITS LETTERS

,..--"----..

Data Recording Media

IBM Cards

The IBM punched card is one of the most successful
media for communication with machines. Informa­
tion is recorded as small rectangular holes punched in
specific locations in a standard size card (Figure 33) .
Information, represented (coded) by the presence or
absence of holes in specific locations, can be read or
sensed as the card is moved through a card reading
machine.

Reading or sensing the card is basically a process
of automatically converting data recorded as holes to
an electronic language and entering the data into the
machine. Cards are used both for entering data into a
machine and for recording or punching information
from a machine. Thus, the IBM card is not only a
means of transferring data from some original source
to a machine, but also is a common medium for the
exchange of information between machines.

IBM cards provide 80 vertical columns with twelve
punching positions in each column. The twelve punch­
ing positions form twelve horizontal rows across the
card. One or more punches in a single column repre­
sents a character. The number of columns used de­
pends on the amount of data to be represented.

The card is often called a unit record because the
data are restricted to the 80 columns and the card is
read or punched as a unit of information. The actual
data on the card, however, may consist of part of a
record, one record, or more than one record. If more

SPECIAL
CHARACTERS

PRINTED
BY THE 26 -01234567S9 AI:CIIEFGH I .JKLMNOPQF.:STUV~J:>{YZ 8,.- I BM DATA PROCESS I NG

PRINTED
~Q!J:-- BY THE 26

PRINTING

OM"""," II
~~:I~~~~~~~ - _ ~ 2

11

j
llil I IJ~N*I II II I II I I

"11 \I Q ~ • I III I
0000 0 ~OOOOOOOOOOOOOOIOOOOOOOIIOOOOOOIOIOII

~ 112 13 I"~ 6 9 ~. I P ~ ~ I ~ ~ 1 ~ 9 4243 44 45 4& 41 48 49 50 SI S2 S3 S4 liS S6 SI II S9 &0 6162 &3 &4 65 && 67 68 &9 70 11 n 73 7 15 11 11 7 1910

1111 111111111111111111111111111111111111111

DATE

222 22222 2 222222222222122222222222211222222 22 22 22

3333 I 333333 33 3 p 333333333333333331333331333333333 33 33 33

44444 4444444 444 441 444444444444414144444444444444444 44 44 44

DIGIT 555555 ~ 55555555 5555 5551 555555555555555555555555155515555 55 51 55 PUNCHES

6666666. 666666666 ~ 66666 6666 • 666666666666666666666616666 G 6 6 666 66 66 66

77777171 7171777777 777777 777771 7777777777777777 7 7 7 717 7 7 7 7 77 717 77 77 71 77

888888888 88888888888 8888888 888888 888888888888888888888888888888888 88 88 88

CARD COLUMN
DESIGNATION

999999999~' 999999999999 99999999 9999999 999999999991999999999199999199999999999
_ I 2 3 45 6 1 •• 10 11 1213 14 IS 1617 16 112021 22232H5262726263031 3233343S3&3731314041 424344454&4748495051 5253S4IiS56S111S9&1I 61 6263 &46S && 6168 &971171727374157 117879811 •

A
CARD

COLUMN

Figure 33. IBM Card - Standard Card Code

A
CARD
FIELD

PRINTING
CARD PUNCH

Data Representation 23

than 80 columns are needed to contain the data of a
record, two or more cards may be used. Continuity
between the cards of one record may be established by
punching identifying information in designated col­
umns of each card.

Information punched in cards is read or interpreted
by a machine called a card reader and is recorded
(punched) in a card by a machine called a card

punch. Data are transcribed from source documents
to punched cards by manually operated card punch
machines.

IBM CARD CODE

The standard IBM card code uses the twelve possible
punching positions of a vertical column on a card to
represent a numeric, alphabetic, or special character
(Figure 33). The twelve punching positions are di­
vided into two areas: numeric and zone. The first nine
punching positions from the bottom edge of the card
are the numeric punching positions and have an as­
signed value of 9, 8, 7, 6, 5, 4, 3, 2, and 1, respectively.
The remaining three positions 0, 11, and 12 are the
zone posItIons. (The 0 position is considered to be
both a numeric and zone position.)

The numeric characters 0 through 9 are represented
by a single punch in a vertical column. For example, 0
is represented by a single punch in the 0 zone position
of the column.

The alphabetic characters are represented by two
punches in a single vertical column: one numeric
punch and one zone punch. The alphabetic characters
A through I use the 12 zone punch and a numeric
punch 1 through 9, respectively. The alphabetic char­
acters J through R use the II zone punch and a nu-

meric punch I through 9, respectively. The alphabetic
characters S through Z use the 0 zone punch and a
numeric punch 2 through 9, respectively.

The standard special characters $ * % and so on,
are represented by one, two, or three punches in a
column of the card and consist of punch configura­
tions not used to represent numeric or alphabetic
characters.

Row BINARY DATA REPRESENTATION

Row binary describes one method of recording binary
information on cards. In this system, the information
is arranged serially across each row of the card (left
to right) starting at the 9-row, continuing to, and in­
cluding the I2-row (Figure 34). Each punched holeis
regarded as a binary 1. No punch indicates a binary O.

In the IBM 704, 709, and 7090 systems, 72 columns
of the card are used. Binary information is repre­
sented as follows: each of the 12 rows of the card is
split into two parts; the left half consists of columns
I through 36, and the right half consists of columns
37 through 72. One full word of binary information
(36 bits) can be punched in any half row; 24 words
may be contained on a card.

COLUMN BINARY DATA REPRESENTATION

Binary information may also be recorded in a col­
umnar binary fashion. With this method, data are
arranged in parallel with each column of the card
containing 12 information bits. Thus, one full 36-bit
word for the IBM 704, 709, or 7090 systems would re­
quire three card columns. The entire card could con­
tain twenty-six 36-bit words (Figure 35) .

I

I I Unused l
f-ooil--------leFt Haif-------,-!-*"! ------Right Haif------.... ,+~. -Coiumns-J

/

® @ 12-Row

® @ ll-Row

,a ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,o@,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,o@,o ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,0,0,0,0,0,0,0

11111111111111111@111111'11111111111
7374757677787980

11111111111111111@11111111111111111 11111111

2222222222222222 2@2 2 2 2 2 2222222222.2 2 2222222222222222 2@2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 22222222

3333333333333333 3@3 3 3 3 3 3 3 3 3 3 3 3 33333 3333333333333333 3@3 3 3 3 3 3 3 3 3 33333333 33333333

44444444444444444QD44444444444444444 44444444444444444~44444444444444444 44444444

55555555555555555055555555555555555 5555555555555555 5@5 5 5 5 5 5 5 5 5 5 5555555 55555555

6666.6666666666666 CD 6 6 666666666666666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ® 6 6 6 6 6 6 6 6 6 6 6 '6 6 6 6 6 6 66666666

77777777777777777077777777777777777 7777777777777777 707 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77777777

88888888888888888088888888888888888 88888888888888888088888888888888888 88888888

99999999999999999099999999999999999 999999999999999 9 9~9 9 9 9 9 9 9 9 9 9 9 9 9 9 999 99999999
1 23456789WUgaMmffinffiWm~n"MHHVH~~~n"".n 37383940414243444546474849505152535 55657595960616263646566676869707172 7374757677787980

Figure 34. IBM Card - Row Binary

24 IBM Data Processing Systems

Figure 35. IBM Card - Column Binary

Paper Tape

Punched paper tape serves much the same purpose as
punched cards. Developed for transmitting telegraph
messages over wires between two machines, paper tape
is now used for communication with other machines
as well. For long distance transmission of data, ma­
chines convert data from IBM cards to paper tape, send
the information over telephone or telegraph wires to
produce a duplicate paper tape at the other end of
the wire, and reconvert the information to punched
cards (Figure 16).

Data are recorded as a special arrangement of
punched holes, precisely arranged along the length
of a paper tape (Figures 36 and 37) . Paper tape is a
continuous recording medium, as compared to cards
which are fixed- in length. Thus, paper tape can be
used to record data in records of any length, limited
only by the capacity of the storage medium into which
the data are to be placed or from which data are re­
ceived.

Data punched in paper tape are read or interpreted
by a paper tape reader and recorded by a paper tape
punch. Data are transcribed from source documents

END OF LINE _
X-••••••••••••••••••• 0-..........

1411S1.1111S19
111111111

I I
212 2 212 2 2
I I

313 3 313 3 3
I I

414441444
f I

5 515 5 515 5 5
I I

616 6 616 6 6
I I

717771777
I I

818 8 818 8 8
I I

999

to paper tape by manually operated tape punching
devices.

EIGHT-CHANNEL CODE

Data are recorded (punched) and read as holes lo­
cated in eight parallel channels along the length of the
paper tape. One column of the eight possible punch­
ing positions (one for each channel) across the width
of the tape is used to code numeric, alphabetic, special,
and function characters. Figure 36 shows a section of
paper tape illustrating the eight channels and several
coded characters.

The lower four channels of the tape (excluding the
feed holes) are labeled 1, 2, 4, and 8 and are used
to record numeric characters. The numeric characters
o through 9 are represented as a punch or punches in
these four positions. The sum of the position values
indicates the numeric value of the character. For ex­
ample, a hole in channel 1 is used to represent a nu­
meric one; a combination of a 1 and a 2 punch repre­
sents a numeric 3.

The X and 0 channels are similar to the zone punches
in IBM cards. These channels are used in combination
with the numeric channels to record alphabetic and

CHECK-. ••• •••• •••••• ••••• ••••• •• •• • ••
8-. •• •• •• •• • ••••••••••••••••••••• . -................ .
4-. •••• •••• •••• •••• •••• •••••• • ••• 2-... 1-.·

Figure 36. Paper Tape - Eight-Channel Code

Data Representation 25

"" ~
.,..:0
WW
~w

w
l­
I-

~ABCDEFGH

W .u..
u~W
4:~Z

JKLMNOPQRSTUYWXYZ~j~

1- ••• ••••• • • • •••• ,
2- ••• • •••• ••• ••• .4
3- : •• : •• :.::.:.::.::.:.::.::.: •• ~
4-. ••••• •• ••• • •• • 4 5-.. · f

Figure 37. Paper Tape - Five-Channel Code

special characters. The coding for the alphabetic and
special characters is shown in Figure 36.

To check that each character is recorded correctly,
each column of the tape is punched with an odd num­
ber of holes. A check hole must be present in any
column whose basic code (X, 0, 8, 4, 2, I) consists of
an even number of holes.

A punch in the EL channel is a special function
character used to mark the end of a record on the
tape. The tape feed code consists of punches in the
X, 0, 8, 4, 2, and I channels and is used to indicate
blank character positions. The paper tape reader
automatically skips over areas of tape punched with
the tape feed code.

FIVE-CHANNEL CODE

Data are recorded (punched) and read as holes in five
parallel channels along the length of the paper tape.
One column of the five possible punching positions
(one for each channel) across the width of the tape is

used to code numeric, alphabetic, special, and func­
tion characters. Figure 37 shows a section of paper
tape illustrating the five channels and several coded
characters.

Because there are only 31 possible combinations of
punches, using the five punching positions, a shift
system is used to double the number of available
codes. When the letters (LTRS) code punch precedes
a section of tape, the characters that follow are in­
terpreted as alphabetic characters (Figure 37) . When
the figures (FIGS) code punch precedes a section of
tape, the coded punches are interpreted as numeric or
special characters.

Ten of the 31 codes are used for coding both the
alphabetic characters P, Q, W, E, R, T, Y, U, I, and 0
and the decimal digits 0 through 9, respectively. In­
terpretation depends on the shift code, LTRS or FIGS,

preceding these characters. Likewise, the code for
special characters is identical to that of other alpha­
betic characters. The actual alphabetic code that is
equivalent to a given special character code varies,
depending on customer requirements.

26 IBM Data Processing Systems

3 8 9014572

1- ••• ••• •• • • • •••• i 2-... ~
• • • • • • • • • • • • •• • • • • • • • • • • • • • • • • 1

3-,
4-. ••••• •• ••• • •• • 4 5-.. ,

The function characters - space, carriage return
(CR), and line feed (LF) - are the same in either LTRS

or FIGS shift. The space code is used to indicate the
absence of data on tape. The actual function of the
CR and LF characters depends on the machine with
which they are used.

Magnetic Tape

Magnetic tape is the most recently developed medium
for recording data for machine processing; it is the
principal input-output medium used by computer sys­
tems.

IBM magnetic tape is similar to the tape used in
home tape recorders. It is a plastic tape, one-half inch
wide, and coated on one side with a metallic oxide.
Data are recorded as magnetized spots or bits in the
metallic oxide (Figures 38 and 39). Information re­
corded on tape is permanent and can be retained for
an indefinite time. Previous recordings are destroyed
as new information is written. This means that tape
can be used repetitively with significant savings in
recording costs. Several types of magnetic tape are
available to meet varying requirements 6f strength,
durability, reliability and cost.

For handling and processing, tape is wound on
plastic reels containing up to 2400 feet of tape.
(Lengths as short as 50 feet may be used.) The mag­
netic tape unit, which functions both as an input and
output device, moves the magnetic tape and accom­
plishes the actual reading or writing of information
on the tape. Data are recorded in seven parallel chan­
nels or tracks along the tape. Seven bit positions
across the width of the tape (one in each channel)
provide one column of data. The spacing between
columns of bits is automatically established by the
magnetic tape unit used in writing.

Records of data on tape may range from one or two
characters to several thousand. The size of the record
is limited only by the length of tape or the capacity
of the storage units that data will be placed in or re­
moved from.

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ &.a-$¥/,%I@

Check { C II II II I II I II I I II I I I II

{

B
Zone

A

111111111111111111 I1I111
111111111 I1111111 III III

II II II II II II IIII
IIII 1111 I11I 1I1I I I I I

I II II II II II II II II I I I I
Numerical I :

I 1 1 I I I I I I I 1 1 I 1 I I 1 1 I I I I

Figure 38. Magnetic Tape - Seven-Bit Alphameric Code

SEVEN-BIT ALPHAMERIC CODE

The seven recording tracks or channels on tape are
labeled C, B, A, 8, 4, 2, I and correspond to the seven
bit positions of the seven-bit alphameric code. A char­
acter is represented by the presence or absence of bits
in the seven channel positions of one column, across
the width of the tape. Figure 38 shows characters in
the seven-bit alphameric code as they appear on tape.

To verify tape reading and writing, each character
is checked for even parity. In addition to this ver­
tical parity check, a horizontal (longitudinal) parity
check is made on each record. At the time a record
is written, the bits in each horizontal row are counted.
At the end of the record, a check character is recorded.
This character has a bit corresponding to each chan­
nel row with an odd bit count. Thus, when the record
is read, each channel row of the complete record, in­
cluding the check character, should satisfy the even
parity condition. The check character serves this pur­
pose only, and is never included as part of the record
when data are transferred to the computer system.

Tape written in the seven-bit alphameric code can
be used by several data processing systems, providing
a means of intercommunication from one system to
another. There are instances, however, where special
characters, peculiar to only one system, are written on
tape. For this reason, consideration must be given
to the characters used when tape written on one sys­
tem may be used on another.

BINARY SYSTEM

Binary information recorded on tape is related pri­
marily to the IBM 704, 709, and 7090 Data Processing
Systems. With these systems the basic unit of informa­
tion is the word-36 consecutive bits-compared to the
character or digit of other systems.

To record a word of data on tape, the seven bit
positions of each column on tape are used; however,
the C bit position of the column is for parity check­
ing purposes only, and is not considered a part of

the word. Thus, six bits of information can be re­
corded in each column. A word of 36 bits is repre­
sented in six consecutive columns on tape (Figure 39).

To verify accuracy of tape reading and writing, each
column of bits must consist of an odd number of bits
and is tested to insure odd parity. As tape is written,
check bits are automatically added to the columns that
have an even number of bits. In addition to this ver­
tical parity check, a horizontal (longitudinal) parity
check is made on each record. At the time a record
is written, the bits of each horizontal row are counted.

Check Bits--t 1 0 1

fO
60 121 ISO 241

Dola bih - ~
0 1 0 0
1 1 0 1
1 0 1 0
1 1 1 1

51 110 170 231 290 351

Figure 39. Magnetic Tape - Binary System

At the end of the record, a check character is recorded.
This character has a bit corresponding to each row
with an odd bit count. When the record is read, each
row of the completed record, including the check char­
acter, should satisfy the odd parity condition.

Magnetic Ink Characters

Another method of representing data on paper media
for machine processing is with magnetic ink char­
acters-a language readable by both man and machine.
Magnetic ink characters are printed on paper as the

Data Representation 27

arabic numerals 0 to 9 and four special characters
(Figure 40). The shape of the characters permits
easy visual interpretation; the special magnetic ink
allows reading or interpretation by machine.

The printing (inscribing) of magnetic ink char­
acters on the paper documents is done by machine.
The paper documents, primarily bank checks and
deposit slips, may be random size paper or cards rang­
ing from 2% inches to 3% inches wide, from 6 inches
to 8% inches long, and from .003 inch to .007 inch
thick.

The IBM 1201 Proof Inscriber inscribes documents
in addition to performing the normal proving func­
tions related to banking procedures. The IBM 1202
Utility Inscriber, a specially designed electric type­
writer, is also used to inscribe documents. After docu­
ments are inscribed, the IBM 1210 Reader Sorter reads
the inscribed information from the documents and
converts this information to a machine language. At
this point, the information may be entered directly
into an IBM 650 Data Processing System or recorded
on magnetic tape as input to other systems.

1-987

.0 L. 2,·'0000005 b ?O,"

CHECK ABA
ROUTING TRANSIT
SYMBOL NUMBER

ACCOUNT
NUMBER

Figure 40. Magnetic Ink Inscribed Characters

28 IBM Data Processing Systems

PROCESS
CONTROL

AMOUNT

Three types of IBM storage devices are presently avail­
able: core, magnetic drum, and magnetic disk (Figure
41). All IBM data processing systems utilize at least
one of these types.

Information can be placed into, held in, or removed
from computer storage as needed. The information
can be:

1. Instructions to direct the central processing unit.

2. Data (input, in-process, or output) .

3. Reference data associated with processing (tables,
. code charts, constant factors, and so on).

Storage is classified as either main or auxiliary
(Figure 42) .

]\Jain or primary storage accepts data from an input
unit, exchanges data with and supplies instructions
to the central processing unit, and can furnish data
to an outpu t unit. All data to be processed by any
system must pass through main storage. This unit must
therefore have capacity to retain a usable amount of
data and the necessary instructions for processing.

An occasional application can require additional
storage. In this instance the capacity of main storage
is augmented by an auxiliary or secondary storage unit.
Auxiliary storage is not directly accessible to the cen-

IBM 738 Mag ne tic Co re Sto ra ge

Storage Devices

tral processing unit or inpu t or output devices; all
information to and from a uxiliary storage must be
routed through main storage.

Storage is arranged somewhat like a group of num·
bered mail boxes in a Post Office (Figure 43). Each
box is identified and located by its number. In the
same way, storage is divided into locations, each with
an assigo.ed address. Each location holds a specific
unit of data. Depending on the system, the unit of
data may be a character, a digit, a complete record, or
a word. To insert or remove data at a location, the
address must be known.

vVhen information enters a location, it replaces the
previoLls contents of that location. However, when
information is taken from a location, the contents
remain unaltered. Thus, once located in storage, the
same data may be used many times. In effect, a dupli­
cate of the information is made available for process·
ing.

The computer requires some time to locate and
transfer information to or from storage. This is called
access time. Storage units are available where access
time is so brief that it is measured in millionths of a
second. To appreciate such a minute interval of time,
consider a space-ship of the future traveling at 100,000

IBM 733 Magnetic Dru m Sto rage

IBM 355 Disk Sto rage

Figure 41. IBM Storage Devices

Storage Devices 29

II
Data
to be

Figure 42. Schematic, Main and Secondary Storage

Q) Q) "0 0 Q) Q)

C§) ~ ~ C§) ~ C§:>

c:::J c:::J c:::J r::::J c:::J r::::J

0 0 0 0 <D 0

::::> ~ C§:) ~ <I§"i) G:V G:>
c:::J c:::J c:::J c::J c:::J r::::J

0 <D <D 0 0 <D
Ci0 G) <3) <IV @.) ~

c:::J c::J r::::J r::::J c::J c:::J
Q) Q) 0 Q) <D 0

~ GV EV C§) @> CiV· C§:)

r::::J c:::J c:::J r::::J r::::J c:::J

Figure 43. Post Office Mail Boxes

11
Results

Central
Processing

Unit

C

'-

miles per hour. In one millionth of a second, the
space-ship would travel less than 1 % inches.

Because so many references must be made to storage
in all data processing operations, the speed of access
has a direct bearing on the efficiency and cost of the
en tire sys tern.

For example, core storage is the most expensive
storage device in terms of cost per storage location.
However, core storage also provides the fastest access
time and, thus, may be the most economical in terms
of cost per machine calculation. Drum storage offers
the advantages of lower direct cost to offset slower
speed. Most disk storage devices are slower than drum
storage but offer the advantage of capacity in millions
of digits.

30 IBM Data Processing Systems

Core Storage

A magnetic core is a tiny ring of ferromagnetic mate­
rial, a few hundredths of an inch in diameter. Each
core is pressed from a mixture of ferric oxide powder
and other materials and then baked in an oven.

Aside from its compact size - a decided advantage
in computer design - the important characteristic of
the core is that it can be easily magnetized in a few
millionths of a second. And, unless deliberately
changed, it retains its magnetism indefinitely.

If cores are placed on a wire like beads on a string
and a strong enough electrical current is sent through
the wire, the cores become magnetized (Figure 44).
The direction of current determines the polarity or
magnetic state of the core (Figure 45). Reversing the
direction of current changes the magnetic state (Fig­
ure 46). Consequently, the two states can be used to
represent 0 or 1, plus or minus, yes or no, or on or off
conditions. For machine purposes, this is the basis of
the binary system of storing information.

More than one million cores are used in a large
IBM core storage. Because any specified location of
storage must be instantly accessible, the cores are
arranged so that any combination of ones and zeros
representing a character can be written magnetically
or "read" back when needed.

To accomplish selection, two wires run through each
core at right angles to each other (Figure 47) . When

Figure 44. Polarity of Magnetic Cores

Current is applied Current is removed;
Core remains magnetized

Figure 45. Magnetizing a Core

Current is applied Core is magnetized Current is reversed;
the core reverses
its state

Figure 46. Reversing a Core

Figure 47. Selecting a Core

half the current needed to magnetize a core is sent
through each wire, only the core at the intersection of
the wires is magnetized. No other core in the string
is affected. Using this principle, a large number of
cores can be strung on a screen of wires; yet, any single
core in the screen can be selected for st<;>rage or read­
ing without affecting any other. Such an assembly of
wires is called a plane (Figure 48) .

To illustrate the use of a number of planes to store
a BCD character, assume that the letter A is to be
placed in storage. To conform to the BCD coding sys­
tem, seven planes are needed: one for the check posi­
tion of the character, two for the zone portion, and
four for the numeric portion. One core in each
plane is magnetized positively or negatively to repre­
sent the binary configuration for the letter A, I II 0001
(Figure 49) .

Note that the planes are stacked in an array, with
all cores representing A at the intersection of the
same two wires in each plane. If an imaginary line
were drawn vertically through the cores representing

A, the line would show the physical location of one
character position of storage.

In a typical storage unit (IBM 705) each plane is 50
cores wide by 80 cores long, making a total of 4,000
per plane. An array of 35 such planes provides ca­
pacity for 140,000 bits. An imaginary vertical line
drawn through this array shows five positions. (It
passes through 35 cores, seven cores per character,
consequently five positions, as shown in Figure 50.)
Thus, the capacity of this unit is 20,000 characters.

Once information is placed in core storage, some
means must be devised to make it accessible, that is,
to recall it when needed. It has been shown that a
definite magnetic polarity can be set up in a core by
the flow of current through a wire. In the machine,
the flow is not actually constant; it is sent through
the wire as an electrical pulse. This pulse is said to
flip the core to a positive or negative state, depending
on the direction of current flow.

If the magnetic state of the core is reversed by the
pulse, this abrupt change or flip induces current in a

1/2 Current

Figure 48. Magnetic Core Plane

LOCATION OF r LETTER "A"

Figure 49. BCD Character Location

Storage Devices 31

80 CORES

Vl
LU

Z «
...J
a..
l()

11
LOCATION OF

k-- 5 CHARACTERS

Figure 50. Schematic, 20,000 Position Storage

third wire running through the center of the core
(Figure 51). The signal through this sense wire can
be detected to determine if the core contained a 1.
Only one sense wire is needed for an entire core plane,
because only one core at a time in any plane is tested
for its magnetic state. The wire is therefore strung
through all the cores of the plane (Figure 52).

Note, however, that when information has been
read from storage, all cores storing that information
are set to o. Read-out is destructive; that is, the
process of reading a 1 resets the core to O. Therefore,
to retain data in storage, the computer must replace
l's in those cores that had previously contained l's.
But cores that contained O's must remain as O's.

To reproduce (regenerate) the O's and l's as they
should be, the computer tries to write back 1 's in all
the locations previously read (35 cores) ; at the same
time, an inhibit pulse suppresses writing in cores that
previously contained O's. The inhibit pulse is sent
through a fourth wire and, in effect, cancels out the

Figure 51. Core Sense Wires

32 IBM Data Processing Systems

writing pulse in one of the two wires used to mag­
netize the core. Like the sense wire, the inhibi t wire
(Figure 53) also runs through every core in a plane.

It is beyond the scope of this book to fully explain
core storage. However, a basic knowledge of how core
storage works is helpful in understanding the opera­
tion of all data processing systems using cores.

SENSE WIRE

Figure 52. Sense Wire in Core Plane

Figure 53. Core Inhibit Wire

Magnetic Drum Storage

A magnetic drum is a steel cylinder enclosed in a
copper sleeve. The copper surface is plated with a
cobalt and nickel alloy. This coating of the surface
of the drum is the actual storage medium.

If an area of this material is placed in a magnetic
field, it becomes magnetized. After the magnetizing
force is removed, the magnetism is retained inde­
finitely. The area affected can be quite small (on one
model, it is about .071 inches long) so that a large

number of magnetized spots or cells can be placed in
a small space. The effect of magnetizing a cell is the
same as if a tiny bar magnet were imbedded in the
surface of the drum.

As the drum rotates at a constant speed, informa­
tion is written by magnetizing cells as the surface
passes a read-write head. The head consists of read
and write coils of fine wire wound around a center
core. A plastic shim separates the ends of the core,
providing a magnetic gap. The head assembly is
positioned close to the drum so that magnetic lines of
force produced by the write head fringe around the
gap and flow through the alloy surface (Figure 54).

The cells are magnetized by sending pulses of cur­
rent through the write coil. The direction of current
flow determines the resulting polarity of a cell. Con­
sequently, cells can represent either 1 's or O's, the two
digits used for binary recording in all machines.
Because the drum is rotating while writing takes place,
write current must be extremely short to limit the
magnetized area. Thus, the size of the cell is almost
the same as if the drum were motionless.

Figure 54. Drum Recording

When a cell that has been magnetized passes under
the read-write head, its magnetic state can be sensed
by current induced in the read coil. In this way,
information written on the drum can be read back
when needed. Reading is not destructive because the
condition of a cell is not changed as it passes the head.
Unlike core storage, the drum needs no regeneration
process, and the information can be read again and
again without being erased. Drum storage is, there­
fore, permanent and data on its surface remain there
indefinitely even after the power to a system is turned
off. Information is replaced only when new informa­
tion is written.

Each drum has a specific number of storage loca­
tions, each of which is addressable by the computer.
The capacity of each location depends upon the de-

sign of the drum and the data representation used
(Figure 55).

Because reading or writing can occur only when a
specified location is passing the heads, access time may
vary, depending upon the distance to be traveled by
that location to the head.

Tracks

1 st Character

. 200 Characters

Figure 55. Schematic, Drum Storage of IBM 705 Data Processing
System

Magnetic Disk Storage

The magnetic disk is a thin metal disk about two feet
in diameter, coated on both sides with a ferrous oxide
recording material. Fifty disks are mounted on a ver­
tical shaft, each disk slightly separated from the ad­
jacent one (Figure 56). The shaft revolves, spinning
the disks at 1200 RPM.

Data are stored as magnetized spots located in con­
centric tracks on each face of the disk (Figure 57).
Each track is addressable.

At the side of the disk stack, one or more access
arms move under control of the computer to any
desired track on any disk. Magnetic recording heads
mounted on these access arms read or write as directed

Storage Devices 33

Figure 56. Magnetic Disk Storage

by the computer. The arm is forked so that, on entry
into the stack of disks, a recording head is carried to
each side of one disk. Thus, it is possible to read or
write on either side of a disk.

The magnetic disk can be used repetitively. Each
time new information is stored in a track it replaces
(erases) lhe information formerly stored there. Rec­
ords may be read from disks as often as desired until
they are written over or erased.

The amount of information that can be stored de­
pends on the number of disks, the number of disk
tracks on each face, and the method of coding the
stored information.

Access time is the total time required to locate the
proper disk and the specific track on the disk and for
the addressed location to pass under the recording
head. When more than one access arm is used, the
effective access time can be reduced; while one arm is
reading or writing, a second access arm can focate the
next storage position.

Storage and Data Processing Methods

IBM data processing systems use two methods of data
handling: sequential, or batch processin ~and in-line,
or random access processing. (See Figure 58.) The
organization and capacity of the main storage device
determine which method applies.

34 IBM Data Processing Systems

R d/ W·, H d eo An ~ eo s

JI

E222J
Figure 57. Magnetic Disk Storage Schematic

r-~ -' ---
l~~

Access
Arm

In either case, all data pertaining to a single appli­
cation are maintained in files.

In sequential processing, these files are stored out­
side the computer - usually on magnetic tape - and
they are arranged in a predetermined sequence. The
data may concern inventory, accounts receivable, ac­
counts payable, payroll, and the like. Each file is
made up of records, each containing information re­
quired to describe completely a single item. The
sequence may be by item number, name, account
number, or man number, but all files pertaining to a
single application must be in the same sequence.

In many cases, processing involves not only per­
forming calculation on some parts of each record to
arrive at balances, amounts, or earnings, but also in­
volves adding, changing, or deleting records as new
transactions occur. However, before transactions can
be applied against the main or master file, they must
also be arranged in the same sequence as the master
file. For this purpose, they are accumulated in con­
venient groups or batches.

The two files, master and transaction, now become
input to the data processing system. One record or a
small group of records is read into storage at a time.
These are processed and the result is written as out­
put. The next group of records is read in, and the
process is repeated. The series of repetitive opera­
tions continues under direction of program instruc­
tions, record by record, until the input files are ex­
hausted. The results form a revised master file, up­
dated according to the current transactions. The new
master file is in the same sequence as the original files.

Other output may also be produced as a by-product
of the processing. This output may be records of
delinquent accounts, bank orders, earnings statements,
payroll checks, and so on. In every case, however, the
sequence of all output remains the same as the se­
quence of the incoming data.

With sequential processing, the information in
storage is transient. Consequently, the storage unit

Current
Transactions

BATCH
PROCESSING

Changed Status Information

Changed Status Information

Figure 58. Batch and In-line Data Processing

needs only enough capacity for program instructions
plus the largest element of data to be processed.

When in-line processing is used, all information
concerning . application status is held in a large­
capacity storage unit, usually a magnetic disk file.
Storage of information is permanent and data can be
retained indefinitely.

Transactions affecting the contents· of the file are
fed to the computer at random, as they occur. In this
case, the computer locates the corresponding record
or data in storage and adjusts this master record
accordingly. Accounts or balances are constantly main­
tained and are available as output when needed.
Transactions are not batched and they need not be
sorted before processing.

Other output can also be obtained under control
of the stored program, or the entire contents of the
disk file can be written out as required.

IN-LINE DATA
PROCESSING

Results

Storage Devices 35

Central Processing Unit (CPU)

The central pmcessing unit controls and supervises
the entire computer system and performs the actual
arithmetic and logical operations on data. From a
functional viewpoint, the central processing unit con­
sists of two sections: control and arithmetic-logical
(Figure 59).

The control section directs and coordinates all op­
erations called for by instructions. This involves con­
trol of input-output devices, entry or removal of in­
formation from storage, and ro u ting of information
between storage and the arithmetic-logical section
(Figure 60). Through the action of the control sec­
tion, a utomatic, integrated operation of the en tire
computer system is ach ieved.

Storage
Unit

Input
u,it

I---~----
J.li Control C;0,.. U Arithmetic
,., Sec ti on \Jill Logical Section

1 ___ : ____ J
Output

U,it

Figure 59. Cemral Processing Unit in the Data Processing System

Control

Connect Arithmetic
Section to Storage

Connect Printer
for Writi ng

Connect Tape Unit
Backspace Tape
Route Data to

Storage
Reset Register
Step Instruction

Counter

Arithmetic

Add, Subtract
Multiply, Di vide

Log ical

Bra~~h if Equal
Stop an Error
Branch on Zero
Add if Plus
Sub if Minus

..

. .
Figure 60. Control and Arilhmetic-Logical Sections

36 IBM Dala Processing Systems

In many ways, the control section can be compared
to a telephone exchange. All possible data transfer
paths already exist, just as there are connecting lines
between all telephones serviced by a central exchange
(Figure 61).

Figure 61. Telephone Exchange System

The telephone exchange has a means of controlling
instruments that carry sound pulses from one phone
to another, ring the phones, connect and disconnect
circuits, and so on. The path of conversation between
one telephone and another is set up by appropriate
controls in the exchange itself. In the computer, ex­
ecution of an instruction involves opening and closing
many paths or gates for a given operation. The con­
trol section can start or stop an input-output unit,
turn a signal device on or off, rewind a tape reel, or
direct some process of calculation.

The arithmetic-logical section contains the circuitry
to perform arithmetic and logical operations. The
arithmetic portion calculates, shifts numbers, sets the
algebraic sign of results, rounds, compares, and so on.
The logical portion carries out the decision-making
operations to change the sequence of instruction ex­
ecution.

Functional Units

Register

A register is a device capable of receIVIng informa­
tion, holding it, and transferring it as directed by
control circuits. The electronic components used may
be magnetic cores, transistors, or vacuum tubes.

Registers are named according to their function: an
accumulator accumulates results; a multiplier-quotient
holds either multiplier or quotient; a storage register
contains information taken from or being sent to
storage; an address register holds the address of a
storage location or device; and an instruction register
contains the instruction being executed (Figure 62).

~
ADD 0002

~Sto,.ag,
~Reglster

ADD 0002

11/ ~~~t

Instruction
Register

Address
Register

Figure 62. Register Nomenclature and Function

Registers differ in size, capacity, and use. In some
cases, extra positions detect possible overflow condi­
tions during an arithmetic operation. For example,
if two ll-digit numbers are added, it is possible that
the result is a 12-digit answer (Figure 63). In this

Register A

Register B

Register Cil

• Overflow Position

Figure 63. Overflow Condition Resulting from Addition

figure, register A holds one factor and register B holds
the other factor. The two factors are combined and
the result is placed in register C, where an overflow
condition is indicated by the presence of data in the
overflow position. The contents of other registers can
be shifted right or left within the register and, in
some cases, even between registers. Figure 64 shows
shifting of register contents three positions to the
right. Positions vacated are filled with zeros and num­
bers shifted beyond register capacity are lost. Num­
bers can also be shifted out of one end of the register
and into the opposite end, as shown.

In other instances, a register holds data while asso­
ciated circuits analyze the data. For example, an in­
struction can be placed in a register, and associated
circuits can determine the operation to be performed
and locate the data to be used. Data within specific
registers may also be checked for validity.

The more important registers of a system, par­
ticularly those involved in normal data flow and
storage addressing, have small incandescent or neon
lights associated with them. These lights are located on
an operator console (Figure 65) for visual indication
of register contents and various program conditions.

Shifting in a single register

Shifting in double registers

Register A

Shifting without losing numbers

Figure 64. Types of Computer Register Shifting

Central Processing Unit 37

I - - - - I -------,
/{ = r

Figure 65. Operator Console Indicators

Counter

The counter is closely related to a register, and usually
performs the same functions. In addition, its con­
tents can be increased or decreased by some amount.
The action of a counter is related to its design and
use within the computer system. Like the register, it
may also have visual indicators on the operator
console.

Adder

The adder receives data from two or more sources,
performs addition, and sends the result to a receiving
register. Figure 66 shows two positions of an adder
circuit with input from registers A and B. The sum
is developed in the adder. A carry from any position
is sent to the next higher-order position. The final
sum goes to the corresponding positions of the receiv­
ing register.

Machine Cycles

All computer uperations take place in fixed intervals
of time. These intervals are measured by regular
pulses emitted from an electronic clock at frequencies
as high as a million or more per second. A fixed
number of pulses determines the time of each basic
machine cycle.

Within a machine cycle, the computer can perform
a specific machine operation. The number of opera­
tions required to execute a single instruction depends

38 IBM Data Processing Systems

on the instruction. Various machine operations are
thus combined to execute each instruction.

Instructions consist of at least two parts, an opera­
tion and an operand. The operation tells the machine
which function to perform: read, write, add, subtract,
and so on. The operand can be the address of either
data or an instruction or the address of an input ou t­
put unit or other device. It can also specify a control
function, such as shifting a quantity in a register, or
backspacing and rewinding a reel of tape.

To receive, interpret, and execute instructions, the
central processing unit must operate in a prescribed
sequence. The sequence is determined by the specific
instruction and is carried out during a fixed interval
of timed p ulses.

Instruction Cycle

The first machine cycle required to execute an in­
struction is called an instruction cycle. The time for
this cycle is instruction or I-time. During I-time:

1. The instruction is taken from a main storage
location and brought to the central processing unit.

2. The operation part is decoded in an instruction
register. This tells the machine what is to be done.

3. The operand is placed in an address register.
This tells the machine what it is to work with.

4. The location of the next instruction to be ex­
ecuted is determined.

At the beginning of a program, an instruction
counter is set to the address of the first program in­
struction. This instruction is brought from storage

Register A Register B

Position

Receiving Register

Figure 66. Adders in a Computer System

and, while it is being executed, the instruction counter
automatically advances (steps) to the location cor­
responding to the space occupied by the next stored
instruction. If each instruction occupies one word
position, the counter steps one; if an instruction
occupies five storage positions, the counter steps five.
By the time one instruction is executed, the counter
has located the next instruction in program sequence.
The stepping action of the counter is automatic. In
other words, when the computer is directed to a series
of instructions, it will execute these one after another
until instructed to do otherwise.

Assume that an instruction is given to add the con­
tents of storage location 2 to the contents of the
accumulator register. Figure 67 shows the main reg­
isters involved and the information flow lines.

I-time begins when the instruction counter trans­
fers the location of the instruction to the address
register. This instruction is selected from storage and
placed in a storage register. From the storage register,
the operation part is routed to the instruction reg­
ister and the operand to the address register. Opera­
tion decoders then condition proper circuit paths to
perform the instruction.

Execution of instructions does not necessarily have
to proceed sequentially. Certain instructions alter the
process of sequential execution unconditionally. In
this case, an instruction brought from storage indicates
that the next sequential instruction is not to be ex­
ecuted but that one located in another position is
next; the normal stepping of the instruction counter
is altered accordingly. For instance, the instruction
counter can be reset back to the beginning of the pro­
gram so that the entire program can be repeated for
another incoming group of data.

This branching (transfer) to alternative instruc­
tions may also be conditional. The computer can be
directed to examine some indicating device and then
branch if the indicator is on or off. Such an instruc­
tion says, in effect, "Look at the sign of the quantity

(operation part) ADD f----.....J...----il_. ... 0002 (address part)

~r~ss· R~.i$te

~
Instruction Counter

Figure 67. Computer I Cycle Flow Lines

in the accumulator; if this sign is minus, take the
next instruction from location 5000; if the sign is plus,
proceed to the next instruction in sequence." The in­
struction counter is set according to one of the two
possible storage locations (5000, or the location of
the next instruction in sequence). The logical path
followed by the computer (that is, the precise se­
quence of instructions executed) may be controlled
either by unconditional branching or by a series of
conditional tests applied at various points. However,
the arrangement of instructions in storage is not nor­
mall y altered.

Execution Cycle

I-time is usually followed by one or more machine
cycles which occur during execution or E-time. The
number of execution cycles required depends on the
instruction to be executed. Figure 68 shows the data
flow following I-time illustrated by Figure 67.

The E-cycle starts by removing from storage the in­
formation located at the address (0002) indicated by
the address register. This information is placed in
the storage register. In this case, one of the factors
to be added is placed in the adders together with the
number from the accumulator. The contents of the

(Get the number located at 0002)

Figure 68. Computer E Cycle Following an I Cycle

Central Processing Unit 39

storage register and accumulator are combined in the
adders, and the sum is returned to the accumulator.

The address register may contain information other
than the storage location of data. It can indicate the
address of an input-output device or a control func­
tion to be performed. The operation part of the in­
struction tells the computer how to interpret this in­
formation.

Serial and Parallel Operation

Computers are classified as either serial or parallel de­
pending on the method the computer uses to perform
arithmetic. Essentially, all arithmetic is performed
by addition.

In a serial computer, numbers to be added are con­
sidered one position at a time (the units position, tens
position, hundreds, and so on) in the same way that
addition is done with paper and pencil. Whenever a
carry is developed, it is retained temporarily and then
added to the sum of the next higher-order position.

The time required for serial operation depends on
the number of digits in the factors to be added. Serial
addition is shown in Figure 69.

In a parallel computer, addition is performed on
complete data words. The words are combined in one
operation, including carries. Any two data words, re­
gardless of the magnitude of the numbers contained
in the words, can be added in the same time. Figure
70 shows parallel addition.

1st Step 2nd Step

Addend 1234 1234
Augend 2459 2459
Carry 1 -1-

Sum 3 93

Figure 69. Serial Addition

Numbers bei ng added
Carry
Final Result

00564213
00000824
--1-

00565037

Figure 70. Parallel Addition

3rd'Step

1234
2459

693

40 IBM Data Processing Systems

4th Step

1234
2459

3693

Fixed and Variable Word Length

Fixed and variable word length describe the unit of
data that can be addressed and processed by a com­
puter system.

In fixed word length operation, information is
handled and addressed in units or words containing
a predetermined number of positions. The size of a
word is designed into the system and normally corre­
sponds to the smallest unit of information that can be
addressed for processing in the central processing unit.
Records, fields, characters, or factors are all manipu­
lated in parallel as words, and registers, counters, ac­
cumulators, and storage are designed to accommodate
a standard word.

In variable word length operations, data handling
circuitry is designed to process information serially
as single characters. Records, fields or factors may be
of any practical length within the capacity of the stor­
age unit. Information is available by character in­
stead of by word.

Operation within a given data processing system
may be entirely of a fixed word nature, entirely vari­
able, or a combination of both.

In the IBM 7090 Data Processing System, data are
stored and processed as 36-bit words; all data manipu­
lation operations, including arithmetic, are done in
parallel. However, provision is made to select, to shift,
and to perform logical operations on portions of
words. Consequently, the size of the unit of data
within a word can be adjusted.

In the IBM 705 or 7080 Data Processing System, data
are stored and processed as single characters. All arith­
metic and the majority of data-handling operations
are done serially, character by character, but some
operations such as moving records from one area of
storage to another are done in parallel as fixed words
of five characters. Instructions are also stored and in­
terpreted as five-character words.

In the IBM 7070 Data Processing System, data are
stored and processed as fixed words of 10 numerical
digits with sign. All arithmetic operations are per­
formed in serial fashion, while most data handling is
done in parallel by words. However, there is also
provision for making individual digits and portions of
words accessible.

An input-output device is a machine linked directly
to the data processing system. Each device operates
under control of the central processing unit as directed
by the stored program (Figure 71).

Input devices sense or read data from IBM cards,
magnetic tape, and paper tape, or from magnetic ink
characters inscribed on paper documents. The data
are made available to the main storage of the system.
Output devices record or write information from
main storage on IBM cards, magnetic tape, and paper
tape, or prepare printed copy. Some systems also dis­
play output on a cathode ray tube.

Figure 71. Input-Output Units in the Data Processing System

Reading and Writing

Reading takes place as the input medium physically
moves through an input device. Information is sensed
or read and is converted to a form compatible with the
computer system. The information is then transmitted
to main storage.

Writing involves converting data from primary
storage to a form or language compatible with an out­
put medium and recording the data using an output
device.

Most input-output devices are automatic; once
started, they continue to operate as directed by the
stored program. Instructions in the program select
the required device, direct it to read or write, and in­
dicate the storage location that data will be put into
or taken from.

A few input devices are manual, and no medium for
recording data is involved. Instead, data are entered
directly into storage using a keyboard or switches that
are usually a part of the operator console.

In some data processing systems, certain input-out­
put devices are connected to the system through a con­
trol unit that contains many of the circuits involved

Input-Output Devices

in data transfer, checking, coding, and decoding. The
control unit also coordinates the operations of the
input-output devices with the central processing unit.
In this manual, descriptions of input-output operations
are usually referred to as being accomplished entirely
by the input or output device.

Validity Checks

All data transferred between the input-output units
and storage are automatically checked for validity in
two ways. First, the data are checked before being sent
by the input device and are also checked when re­
ceived by the output device. Second, certain data
checks are also made within the central processing
unit as it receives or sends data. These checks do not
detect the use of wrong data. For example, if a 5 is
entered instead of a 4, this error cannot be detected by
the machine. However, if the indicated number or
character is represented or coded incorrectly on the
medium or within the machine, this is automatically
detected.

Indicators, Keys, and Switches

All input-output units have indicator lights and oper­
ating keys and switches (Figure 72). The indicator
lights show the status of a unit: on, off, ready, selected,
and so on. The operating keys and switches are
used primarily to start and stop operations manually.
The specific functions and use of the indicators, keys,
and switches are described in the IBM manuals for
particular machines and systems.

Control Panel

Many input-output devices are equipped with a con­
trol panel (Figure 73). The panel provides a means
of editing, rearranging, deleting, and selecting data
flowing through the device.

Basically, the control panel is similar to a tele­
phone exchange switchboard. An incoming call lights
a signal lamp that tells the operator which line the
call is coming in on. After the call is answered, the
operator plugs a cord into a hub that is internally
connected on the board to the desired extension. Actu­
ally, the operator has completed an electrical circuit
to give the correct result.

The control panel in a machine completes circuits
internally by means of wires placed in the panel. The
actual connections in the panel are made through

Input-Output Devices 41

T ope Address
Selector Switch

Low

Figure 72. Opera ling Keys and Lights, IBM 729 II Magnetic Tape Unit

' 0 000000

, 0

" o 0 0

.----,

fIR ST

o 0 0

CHEC K

"\ o 0 0

50 17\ U AD 00 0 0

V=-:- 0

o 0

'"

0000000 ..
o

" o 0 0 0 0
____ >0

o 0 0 ..
0000000000 00

Figure 73. IBM 714 Card Reader with Control Panel Schematic

42 IBM Data Processing Systems

• 0 0 0 0 0

,...tCYCU
~ 0 0 0 0 0

11 -ot~;;--')-----

ht CYCLE
0000000

' IMICVO(

IIoJ 0 0

"

o

"

" o 0 0

" "

000000 00

COlUMN 0.9
o 0

S PLI TS

holes called exit and entry hubs (Figures 74 and 75).
An exit hub is one that emits an impulse, an entry
hub is one that accepts an impulse. The exit and entry
hubs used depend on the functions to be accom­
plished. The panel is prewired by the operator for
a specific job before it is placed in the machine.

. IBM Card (Input)

~~------~ ------~~) V
To Storage

Figure 74. Card Reader Control Panel Function

y
From Storage

Field Field Field I~ Data

'--_1_---' __ 2_--'-__ 3 _-'--______ --l Register

---------,
Control I

I
--.J

IBM Card (Output)

Figure 75. Card Punch Control Panel Function

Input units with control panels can alter or change
data after the data are read by the unit but before
the data are sent to the main storage of the system
(Figure 74). Output units alter or change data after
the data are received from storage but before the data
are punched or printed (Figure 75).

Control panels are removable and can be readily
changed for different procedures, or a separate panel
may be used for each operation.

Card Readers

Card reading devices introduce IBM punched card
data into the computer system. The card reader moves
or feeds cards past a reading unit th~t converts the
data on the card into an electronic form. Two types
of reading units are used: reading brushes or photo­
electric cells.

In the brush type reader, cards are mechanically
moved from a card hopper, through the card feed unit,
and under reading brushes. The reading brushes elec­
trically sense the presence or absence of holes in each
column of the card (Figure 76). This electric sensing
converts the information of the card to electrical im­
pulses that can be utilized by the card reader cir­
cuitry and stored as data. After the cards are read they
are moved from the card feed unit and placed in the
card stacker in the same sequence in which they were
fed into the reader. Some card readers have two sets
of reading brushes; each card can be read twice as it
moves through the card feed unit as a check on the
validi ty of the reading process.

The photoelectric type of card reader performs the
same functions as the brush type; the difference is in

I
Read Hopper r
_ Firs' Read

~

J '--... __
Figure 76. Read Feed

Input-Output Devices 43

the method of sensing the holes. Photoelectric cells
are activated by the presence of light. As the punched
card is passed over a light source in the card reader,
light passing through the punched holes activates
photoelectric celis, one cell for each column of the
card.

Card reading speed varies from lOa to lOOO cards a
minute, depending on the type of card reader.

Card Punches

Output from the computer system is recorded in IBM

cards by a card punching device. The card punch
automatically moves blank cards, one at a time, from
the card hopper, under a ' punching mechanism that
punches da ta received from storage (Figure 77). After
the card is punched, it is moved to a checking station
where the data are read and checked with the in­
formation received at the punching station. The card
is then moved to the stacker.

Card punching speed varies from 100 to 250 cards
per minute depending on the type of card punch.

I
Punch Hopper

Punch Station

o -
Punch Brushes Stacker

Figure 77. Punch Feed

Magnetic Tape Units -Input and Output

The magnetic tape unit can function as both an input
and an output device; it transports the magnetic tape
and accomplishes the actual reading or writing of in­
formation (Figure 78).

The general appearance and operational use of the
various models of magnetic tape units are similar.
Functional differences are discussed as the operations
are explained.

Before the magnetic tape unit can read or write, it
must be prepared for operation. This pr~:xation in­
volves mounting (loading) two tape reels on the tape
unit and threading the tape through the tape moving
(feed) mechanism. Figure 79 shows the location of

44 IBM Data Processing Systems

I' igure 78. IBM 729 IV Magnelic Tape Unil

lhe tape reels and tape mounted on the unit. During
reading or writing, tape is transferred from the file
reel (left side) past the read-write head to the ma­
chine reel (right side). To allow high-speed starts
and stops without tape breakage, a loop of tape is
held in a vacuum column on either side of the read­
write head. This loop acts as a buffer for tape motion.
As tape is drawn from one column, it is replenished
from the reel above it. As tape is fed into the opposite
column, the associated reel takes up the slack.

Tape may be backspaced or rewound to the begin­
ning of the reel. When backspacing or rewinding oc­
curs, tape movement is from the machine reel to the
file reel.

The head assembly located between the vacuum
columns is built in two sections. The lower section
is stationary and the upper section moves up and
down. When the upper section is raised it allows the
operator to thread tape. When down, it causes the
read-write head to be in close contact with the tape
for reading and writing.

Drive
·Capstan

Vacuum U
Calumns

Figure 79. Tape Feed Unit

Writing and Reading Magnetic Tape

Drive
'Capstan

Data are recorded on tape as magnetized spots or bits
located in seven parallel channels or tracks along the
length of the tape (Figure 80).

Writing takes place as the tape is moved across the
magnetic gap of each of the seven recording (write)
heads-one for each recording track. Electrical current
flowing through each recording head coil at timed in­
tervals magnetizes small areas along a channel in the
oxide coating of the tape. These magnetized areas
can be detected or sensed as a a or I bit condition.
During writing, current is flowing in some of the
coils and not in others, establishing a coded pattern
of a and I bits in a column across the width of the
tape (Figure 80). These patterns symbolize the data
received from the computer system. Although the tape
is moving at high speed (75 inches per second or
112.5 inches per second), the electrical pulses to the
write heads are so fast that the size of the magnetized
areas is almost the same as if the tape were motion­
less.

Interpretation of the data represented by bits in one
column depends on the code used in writing. For
example, the bits of one column of tape written in

the seven-bit alphameric code represent one character;
the bits of one column written in the binary system
represent part of a binary word. The spacing between
columns of bits is automatically determined by the
magnetic tape unit used in writing.

Two types of reading and writing heads are used in
present magnetic tape units. One type, the one-gap
head, has only one magnetic gap for each of the seven
heads. Both reading and writing occur at this one
gap (Figure 81). The second type is the newer two-gap
head which has two magnetic gaps for each of the
seven heads (Figure 82). Writing occurs at one gap
and reading occurs at the other. The two-gap head

0123456789 ABCDEFGHIJKLMNOP

Cheek { C II II II I II I II

{

B
Zone

A

1111111111111111
111111111

Num"".1 [:

II II
1111 1111 1111

I II II II II II II
I 1 1 I I I 1 I I I I I I

Figure 80. Magnetic Spots on Tape

Gap
Plastic Base

Read-Write Coils

Figure 81. One-Gap Read-Write Head

Figure 82. Two-Gap Read-Write Head

_ Input-Output Devices 45

offers advantages that are discussed in the tape validity
checking sections. However, the general principle of
writing and reading are the same, regardless of the
head used.

Reading information from tape is accomplished as
the tape is moved past the read gap of the two-gap
head or the read-write gap of the one-gap head. As the
magnetized areas pass the gap, small currents are gen­
erated in the read coil of the head. These electrical
currents or pulses from the magnetized areas on 'tape
symbolize data in electronic form and are made avail­
able by tape unit circuitry to the computer system.

Writing on magnetic tape is destructive; that is,
previous information on the tape is lost as new in­
formation is written. Reading is nondestructive; the
same information can be read again and again.

Tape Records, Inter-record Gap, and End-of-FileGap

Records on tape are not restricted to any fixed length
of characters, fields, words, or blocks. Records may be
of any practical size within the limits of available
storage capacity.

Records or groups of data are separated on tape by
a record gap-a length of blank tape about % inch
long. During writing, the gap is automatically pro­
duced at the end of a record. During reading, the
record begins with the first character sensed after a
gap and continues without interruption until the next
gap is reached. The blank section also allows for
starting and stopping the tape between records. A
single unit or block of information is, therefore, de­
fined or marked by an inter-record gap before and
after the data (Figure 83).

An inter-record gap, followed by a special single­
character record, is used to mark the end of a file of
information. The character, a tape mark (Figure 84),

~---One Block ------i~

1-oE---- Four Records -------,~

Figure 83. Single and Multiple Record Blocks

46 IBM Data Processing Systems

is automatically generated and written on the tape
following the last record of the file. Some systems
recognize the end-of-file condition on tape as an elon­
gated gap, about 3% inches long, called an end-of­
file gap. A tape mark mayor may not appear in the
end-of-file gap, depending on the mode of operation
(Figure 85).

Tape Mark

Figure 84. Tape Mark at End of File

Figure 85. End-of-File Gap

Density and Character Rate

The major differences in IBM magnetic tape units are
the speed at which tape is moved through the tape
unit and the density of the recorded information on
tape.

The speed of a tape unit is stated as the length of
tape that is transported or moved over the read-write
head in a unit of time. Two speeds are currently
used: 75 inches per second and 112.5 inches per second.

Density is the greatest possible number of bits in a
track or the number of columns of data for a unit
length of tape. The present densities used are 200 or
556 columns of bits per inch of tape.

The faster the tape speed and the greater the
density of recording, the higher becomes the rate at
which information is recorded on or read from tape.
Information rate for a tape unit constitutes the num­
ber of columns of bits of data read or written in a
unit of time. By combining speed and density, a maxi­
mum character or word rate per second is determined
(Figure 86).

Because a record gap is placed between each record
or block of records on tape, the total time required to
read a record must include time to space over the
inter-record gap. The time required to space over the
gap is called access time to the data. Average access
time for tape moving at 75 inches a second is 1.0.8
milliseconds and for tape llloving at 112.5 inches per
second, 7.3 milliseconds. Access time must be consid-

ered when determining the actual or effective charac­
ter rate of a tape unit.

Figure 87 shows a time comparison between 100
records of different size written in both densities at 75
inches per second. Figure 88 shows the comparison for
the same 100 records written at 112.5 inches per sec­
ond. Figure 89 illustrates effective character rates ob­
tainable using files that contain 100 records of equal
length. The comparison shows that as the size of the
100 records increases, the effective character rate also
increases.

The results shown are determined as follows: The
number of characters per record is multiplied by 100.

Tape Speed Density Maximum Character Rate

75 inches/sec 200 char/inch 15,000 char/sec 67 usec/char
556 char/inch 41,667 char/sec 24 usec/ char

112.5 inches/sec 200 char/inch 22,500 char/sec 44 usec/ char
556 char/inch 62,500 char/sec 16 usec/char

Figure 86. Maximum Character Rate on Magnetic Tape

Characters Low Density High Density
Per Record Time in Seconds Time in Seconds

360 3.49 1.94
720 5:90 2.81

1800 13.14 5.40
3600 25.20 9.72

Figure 87. Time Comparison for 75 Inches per Second Tape

Chal:Octers Low Density High Density
Per Recor<l Time in Se.lOonds Time in Seconds

360 2.31 1.30
720 3.90 1.88

1800 8.65 3.61
3600 16.57 6.49

Figure 88. Time Comparison for 112.5 Inches per Second Tape

Tape Speed (75',/second)

Characters Low Density High Density
Per Record Characters/second Characters/second

360 10315 ·18556
720 12203 25623

1800 13699 33333
3600 14286 37037

Tape Speed (112.5" /second)

360 15584 27692
720 18461 38298

1800 20809 49861
3600 21726 55470

Figure 89. Effective Character Rates for 100 Records

This product is divided by the appropriate amount
from Figure 87 or Figure 88. The result is an effective
character rate. For example: Find the effective char­
acter rate for 100 records of 360 characters each re­
corded at 75 inches per second and at a density of 200
characters per inch. The number of characters per
record (360) is multiplied by 100 (36,000). The time
in seconds for one hundred 360-character records,
(3.49) is taken from Figure 87. Dividing 36,000 by
3.49 gives a result of 10,315 characters per second.

Checking BCD Tape

Information written on tape is automatically checked
for validity. As a record block is being written, an odd
or even indication is made of the number of bits (1
bits) written in each of the seven bit tracks. At the end
of every record block, a bit is written in all tracks hav­
ing an odd number of bits. The extra bits written
produce a check character that follows the last char­
acter of the record block. After the check character is
written, the number of bits, including the check char­
acter bits in any bit track, is even (Figure 90). The
check character is used for checking each time that the
record is read.

Checks on the validity of data are accomplished
when the information is read from tape. The validity
checking of data recorded with a one-gap head is ac­
complished by either backspacing the tape over the
record and reading it or by simply waiting until the
record is read as it is used in some other operation.

Tape units with two-gap heads check the accuracy
of writing in a read portion of the write operation.
As a record is written at the write gap it is almost im­
mediately read at the read gap and checked. The in­
formation is again checked as it is read for use in
other operations.

Information read from tape is checked two ways. A
character code check (vertical check) is made on each
column of information to insure that an even num-

C
B
A
8
4
2
1

\
I
l
(
)
~

<-

I I I I I I
I I I
I I I I

I
I I I I

I I I I

I I
I

I

(
I (

)
(

I \.
I)
I \

VERTICAL
CHECK
EACH

CHARACTER

HORIZONTAL
CHECK
EACH

CHANNEL

~BCb123456~

Y Check Character
Record

Figure 90. Magnetic Tape Check Character

Input-Output Devices 47

ber of bits exists for each character read. If an odd
number of bits is detected for any character or column
of bits, an error is indicated. A longitudinal record
check is made by developing an odd or even indica­
tion of the number of bits read in each of the seven
bit tracks of the record, including the bits of the check
character. If any bit track of the record block indi­
cates an odd number of bits after it is read, an error
is indicated.

The two-gap head provides an additional method
of checking called dual-level sensing (Figure 91). A
critical analysis is made of the signal strength of the
recorded information. On the basis of this analysis,
recorded information is accepted if it meets certain
standards. If it does not, corrective actions are taken
to improve it. If the corrective action fails to suffi­
cien tl y correct the signal level, an error is indicated.

Checking Binary Tape

A tape written in binary form is checked for accuracy
of writing using the same methods as those used with
BCD tapes. The difference is that each column of bits

Strong

LEVELS

Figure 91. Signal Strength

:Figure 92. Load Point Marker

48 IBM Data Processing Systems

across the tape and the check character must have an
odd number of bits (vertical check). Each bit track of
a written record, however, should have an even num­
ber of bits, including any bits of the check character
(horizontal check). If these conditions are not satis­
fied, an error is indica ted.

Photosensing Markers

Photosensing markers called reflective strips are placed
on the tape by the operator to enable the tape unit to
sense the beginning and the end of the usable portion
of tape. Photoelectric cells in the tape unit sense the
markers as either the load point marker (where read­
ing or writing is to begin) or as the end-ai-reel marker
(where writing is to stop).

The markers (Figures 92 and 93) are small pieces of
plastic, 1 inch by 'X 6 inch, coated with vaporized
aluminum · on one side and with adhesive on the
other. They are fastened to the base (uncoated) side
of the tape.

LOAD POINT MARKER

At least ten feet of tape must be allowed between the
beginning of the reel and the load point marker as a
leader for threading the tape on the tape unit. More
than ten feet may be allowed by placing the marker
at any desired distance from the beginning of the reel.
To indicate the load point, the I-inch dimension of
the marker must be parallel to, and not more than
Ys2 inch from, the channel I edge of the tape (the
edge nearest the operator when the reel is mounted).
See Figure 92.

Figure 93. End·of-Reel Marker

END-OF-REEL MARKER

About 18 feet of tape are usually reserved between
the end-of-reel marker and the end of the tape_ This
space includes at least ten feet of leader and enough
tape to hold a record after the end-of-reel marker is
sensed_ Any usable length over the ten feet may be
allowed to permit additional records to be written
after the marker is sensed. To indicate end of reel,
the marker must be placed parallel to, and no more
than Ya 2 inch from, the C track edge of the tape (the
edge nearest the tape unit when the reel is mounted).
See Figure 93.

Figure 94. File Protection Device

Figure 95. IBM 382 Paper Tape Reader

File Protection

Because writing automatically destroys any previous
information on the tape, a file protection device is
used to prevent accidental erasure of information.
This devie is used when tapes are to be saved for
further reference.

The file protection device is a plastic ring that fits
into a round groove molded in the tape reel (Figure
94). When the ring is in place, either reading or writ­
ing can occur. When the ring is removed, writing is
suppressed and only reading can take place; thus, the
file is protected from accidental erasure.

Paper Tape Reader

The paper tape reader reads data represented as
punched holes in a paper tape and, when used as an
input device, transmits the data to main storage. The
tape reader (Figure 95) moves or feeds the tape past
a reading unit. The presence or absence of holes in
the tape is sensed and converted to electronic im­
pulses that are used as data by the computer system.
Accuracy of reading is determined by making a parity
check on each character used (8 channel code only).
The speed of reading, 150 or 500 characters per sec­
ond, depends on the type of paper tape reader.

Input-Output Devices 49

Paper Tape Punch

Data from the computer system are recorded as
punched holes in paper tape by an automatic tape
punch (Figure 96). Data received from main storage
are converted to a tape code and punched in blank
tape as the tape is moved through a punching mechan­
ism. Accuracy of data recorded is verified by a parity
check for each character (8 channel code only). Tape
is punched at a density of ten characters to the inch
and at a rate of 15 characters per second.

Printers

IBM printing devices provide a permanent visual rec­
ord of data from the computer system. Speeds of print­
ing vary from 10 to 2,000 characters per second.

As an output unit, the printer receives data, sym­
bolized in electronic form, from the computer sys­
tem. These electronic symbols enter appropriate cir­
cuitry and cause printing elements to be actuated. All
printing devices have a paper transport that auto­
matically moves the paper as printing progresses.

The major printing devices consist of the print
wheel printer, wire matrix printer, chain printer, and
the typewriter.

The print wheel printer is equipped with 120
rotary print wheels (Figure 97). Each print wheel
has 48 characters of type including numerals, alpha­
betic symbols, and special characters. At the time of
printing, all of the 120 print wheels are correctly

Figure 96. IBM 962 Tape Punch

50 IBM Data Processing Systems

8 Z R

5

T Z B

Figure 97. Print Wheel

positioned to represent the data to be printed. Print­
ing occurs as a complete line of 120 characters. P rint·
ing speed is 150 lines per minute.

In the wire matrix printer, each character is printed
as a pattern of dots formed by the ends of small wires
arranged in a five-by-seven rectangle (Figure 98). By
extending selected wires, the patterns may be arranged
in the shape of 47 different characters, including all
letters of the alphabet, the digits 0 to 9, and eleven
special characters used for punctuation and report
printing (Figure 99). Selected wires are pressed against

Tope Tension
Arm Guide

an inked fabric ribbon to print the characters on
paper. Characters are printed 120 to the line and at a
rate of 500 or 1000 lines per minute, depending upon
the model of printer.

The chain printer is an electromechanical line
printer using engraved type. Alphabetic, numeric, and
special characters are assembled in a chain (Figure
100). As the chain travels horizontally, each char­
acter is printed as it is positioned opposite a mag­
netically actuated hammer that presses the paper

••••• ••••• ••••• ••••• ••••• ••••• •••••

000.0
00 • • 0
0.0.0
.00.0
• •••• 000.0
000.0

Figure 98. 5 x 7 Dot Pattern

·r
.1. .. .1
...
I I I.,.' .. : .. ! .. . :
I • ••
1
...
I". ...

••
• ••

.....
• ••

••
.....
".
•
• • •• • • • • ,

.....
! .,

......... ,
I 1. . .1

c:·
• • I·::
• • • • ,
• ••
j i ...
.." , :

• • . ..

. .. .: • I

. I··· ... I .,.: r··1 I I · I ,
··r· , J I ! i: i i ... , '.' I.,.,

1
.
... I

• ..

...
• a • ••
.....

.... ,
• ••• a..i-

•• • •

e

"~,:: .:::. ·1· til. I·d
..... -~.. • •• 1- ••• ;,

••• ••
! .. ~. ·i

Figure 99. Wire Printing Dot Patterns

• •
1··4 I ,

I:' : •
I • • '
••• • • • • •
~"I
•••

• • , ...•
_.

against one piece of type in the moving chain. Up to

132 positions may be printed on one line at a speed
of 600 lines per minute. The print chain can be easily
changed to provide a choice of print fonts .

The typewriter used as an output device (Figure
101) is simiY>ar to the ones used manually. The major
difference is that control of the typewriter and the
printing are accomplished automatically as directed
by the stored program. Printing speed is about 600
characters per minute; spacing and carriage return are
automatic.

Sections

Figure 100. Print Chain

Figure 101. T ypewriter on IBM 7150 Console

Input-Output Devices 51

Cathode Ray Tube

A cathode ray tube display unit provides visual dis­
play of processed data on some IBM computer systems.
Numbers are cohverted from digital data to analog
data in the form of voltages. These voltages are used
to position and control the writing of dots and lines
on the face of the cathode ray tube (Figure 102). For
example, the actual results obtained by executing a
wing stress formula could be used to display the cross­
section of a wing design (Figure 103).

A second cathode ray tube with a camera attached is
associated with the display unit. This second unit pro­
vides a permanent filmed recording of the displayed
data so that different designs can be compared and
evaluated.

Figure 102. IBM 780 CRT Display

Figure 103. Visual Display of Wing Design

52 IBM 'Data Processing Systems

Consoles

The console of a data processing system (Figure 104)
is used by the operator to control the system and moni­
tor its operation. Using keys, switches, audible tone
signals, and display lights on the console, the operator
can:

1. Start and stop the computer.

2. Manually enter and extract (or display) informa­
tion from internal storage.

3. Determine the status of internal electronic
switches.

4. Determine the contents of certain internal reg­
isters.

5. Alter the mode of operation so that, when un­
usual conditions occur, the computer will either
stop or indicate the condition and proceed.

6. Change the selection of input-output devices.

7. Reset the computer when error conditions cause
it to halt.

In some large data processing systems, the main
console is connected only to the central processing
unit and may be augmented by separate consoles that
are used for engineering functions and for additional
input-output control.

Data Buffering

All data processing procedures involve input, process­
ing, and output. Each phase of the procedure takes a
specific period of time. The usefulness of a computer
is often directly related to the speed at which it can
complete a given procedure. Any operation that does
not utilize the central processing unit to full capacity
prevents the entire system from operating at maximum
efficiency. Ideally, the configuration and speed of the
various input-output devices should be so arranged
that the CPU is always kept busy with useful work.

The efficiency of any system can be increased to the
degree in which input, output, and internal data
handling operations can be overlapped or allowed to
occur simultaneously.

Input is divided into specific units or logical asso­
ciations of data that enter storage under control of the
program. Each unit is normally processed before the
next is read in. A number of output results may be
developed from a single input, or conversely, several
inputs can be combined to form one output result.

Figure 105A shows the basic time relationship be­
tween input, processing, and outpu t with no overlap

figure 104. IB~I il51 Console

Inpu t 1 A ,
<---/ -1

/ comp8tel A Input
Compute _

Input 2 ~

~:/>
Input 3 ~

...,./----v I
c7'Pute~

outPut~
Output 1 A

,....---'---~
Output 2 -'\1

L-'I __ ---,/j

B Inpu t /'
Compute __

outPut~

C Input ~
Compute __

outPut~

r--.-I n,-pu_t _l __ j Input 2

I coe

~I--,-np-,,-ut_l _ _ j Input 2

I
come

Figure 105. Data Buffering

j L.-_ln_p_ut_3_-,~ ~ I
come

I Output 1 A

t,--------''/I

co/pute 3)

I Output 2 -AI
L-'I --vi

cOB
I Output 3 A
'-----v>I

j Input 3 j Input 4

> I I
C7

pute
) come

I Output 1 AI Output 2 , .-/
I I

j Input5

I corns
do .. , .. 3

I
·TIME-----..

j Input 6

I
come

~ Output 4

I

j Input 7

I
c07ute~

J 0 .. ,""

I

Input-Output Devices 53

of operations. In this type of data flow, processing is
suspended during reading or writing operations. In­
efficiency is obvious, because much of the available
time of the central processing unit is wasted.

Figure 105B shows a possible time relation between
input-output and computing when a buffered system
is used. Data are first collected in an external unit
called a buffer. When summoned by the program, the
contents of the buffer are transferred to the main
storage unit. The transfer takes only a fraction of the
time that would be required to read the data directly
from an input device. Also, while data are being as­
sembled in the buffer, internal manipulation or com­
puting can occur in the computer. Likewise, com­
pleted data from main storage can be placed in the
buffer at high speed. The output device is then di­
rected to write out the contents of the buffer. While
writing occurs, the central processing unit is free to
continue with other work.

If several buffered devices are connected to the sys­
tem, reading, writing, and computing can occur simul­
taneously (Figure 105C).

Further development of the buffering concept has
led to the use of main storage as the primary buffer.
Data are collected from or sent to the input-output
devices in words or in fixed groups of characters.
Transmission of words is interspersed automatically
with computation, but the time required for the
transmission of single words is relatively insignificant.
The effect is that of overlapping internal processing
with both reading and writing. The principal ad­
vantage here is that the size or length of the data
handled is restricted only by the practical limits of
main storage. When external buffers are used, the
amount of data handled at any time is limited to the
capacity of the buffer.

Overlapping operations up to this point have dem­
onstrated a principle of synchronous operation; that is,
the action of the input-output devices is made to
occur at fixed points in the program and in a sequence
established by the programmer.

In some computers, design features allow for auto­
matic interruption of processing by the input-output
devices; synchronous operation is not required. The
input or output device itself signals the central process­
ing unit when it is ready to read or write. The central

54 IBM Data Processing Systems

processing unit then responds to these signals and
either accepts the data as input or transmits the re­
quired information as output.

The input and output devices are connected to the
CPU through a data channel, a completely separate
and independent information path. The data channel
and associated circuitry provide for data transmission
independently of computing.

The data channel also controls the quantity and
destination of all data transmitted between storage
and the input-output devices. It also performs limited
counting and testing operations. One or more data
channels can be occupied with reading from magnetic
tapes while others are writing on other tapes. Similarly,
cards may be read or punched and results printed. All
of these operations may occur simultaneously with
computing.

Auxiliary Operation

Input-output and data conversion operations of the
data processing system are relatively slow compared
with the speed of the central processing unit. Auxil­
iary, or off-line, operation provides a method by which
many operations can be performed by machines not
directly connected to the system. The advantage is to
free the computer of routine, time-consuming pro­
cedures, thereby providing more time for the prime
functions of computing and data manipulation within
the central processing unit.

The principal auxiliary operations are those of
converting data from cards to magnetic tape, magnetic
tape to cards, and magnetic tape to printed reports
(Figure 106). For example, all output data from a

system could be placed on magnetic tape, the fastest
method of recording data from a system. The tape
could then, in an auxiliary operation, be converted
to cards or printed as reports as the computer con­
tinues processing new data.

The importance of auxiliary operation has pro­
gressed to a point where it is now feasible, with some
large computers, to use a small data processing system
to perform the auxiliary operations.

•

'-BM 714 Card Reader IBM 759 Card Reader Control IBM 727 or IBM 729-1 Magnetic Tape Unit.

IBM 727 or 729-1 Magnetic Tape Unit. IBM 758 Card Punch Control IBM 722 Card Punch

IBM 727 or 729-1 Magnetic TapeU'nit . IBM 757 Printer Control IBM 717 Printer

IBM 727 or 729-1 Magnetic Tape Unit IBM 760 Control and Storage IBM 720 or IBM 730 Printer

Figure 106_ Auxiliary Operations

Input-Output Devices 55

Stored Program Concepts

After data are transcribed to an input medium, the
computer system can take over the complete process­
ing and the preparation of results. However, the pro­
cedural steps that are to take place within the com­
puter system must be defined precisely in terms of
operations that the system can perform. Each step
must be written as an instruction to the computer.

A series of instructions pertaining to an entire pro­
cedure is called a program. In modern data process­
ing systems the program is stored internally, and the
system has access to the instructions at electronic
speeds. Such programs are called stored programs.

Instructions

The computer is directed to perform each of its oper­
ations by an instruction-a unit of specific information
located in main storage. This information is inter­
preted by the central processing unit as an operation
to be performed.

If data are involved, the instruction directs the
computer to the data. If some device is to be con­
trolled - a magnetic tape unit for example - the in­
struction specifies the device and the required opera­
tions.

Instructions may change the condition of an indi­
cator; they may shift data from one location in stor­
age to another; they may cause a tape unit to rewind;
or they may change the contents of a counter. Some
instructions arbitrarily, or as a result of some machine
or data indication, can specify the storage location of
the next instruction. In this way, it is possible to alter
the sequence in which any instruction or block of
instructions is followed.

Each instruction (Figure 107) consists of at least
two parts:

1. An operation part that designates read, write,
add, subtract, compare, move data, and so on.

2. An operand that designates the address of the
information or device that is needed for the
specified operation.

During an instruction cycle, an instruction is re­
moved from storage and analyzed by the central proc­
essing unit. The operation part indicates the opera­
tion to be performed. This information is coded to
have a special meaning for the computer. For example,

56 IBM Data Processing Systems

in an IBM 705 Data Processing System, the letter G
is interpreted as ADD, the letter] as STOP, and the
numeral 4 as COMPARE. Other computers use different
coding and numbers of characters or positions in a
fixed word to define an operation.

The operand further defines or augments the func­
tion of the operation. For example, to perform arith­
metic, the storage location of one of the factors in­
volved is indicated. For input or output devices, the
unit to be used is specified. For reading or writing, the
area of storage for input or output records is indicated
or fixed by machine design.

Because all instructions use the same storage media
as data, they must be represented in the same form
of coding. The storage positions required by a single
instruction are usually constant for any given com­
puter model; or, stated another way, instructions are
usually fixed in length.

In general, there are no particular areas of storage
reserved for the instructions only. In most instances
they are grouped together and placed in ascending
sequential locations in the normal order in which they
are to be executed by the computer. However, the
order of execution may be varied by special instruc­
tion or recognition of a predetermined condition of
data or devices within the system.

The normal sequence of computer operation in a
complete program is as follows. The computer locates
the first instruction either by looking in a predeter­
mined location of storage assigned for this purpose
or by manual reset. This first instruction is executed.
The computer then locates the next instruction and
executes it. This process continues automatically, in­
struction by instruction, until the program is com­
pleted or until the computer is instructed to stop.

Operation Operand

Select· Tape Unit 200
Read One Record into Storage Positions 1000-1050
Clear & Add Quantity in Storage Location 1004

in Accumulator
Subtract Quantity in Storage Location 1005 from

Contents of Accumulator
Store Result in Storage Location 1051
Branch To Instruction in Storage Location 5004

Figure 107. Instructions

Two-Address Instructions

In some computers, instructions have two address
portions. Depending on the function of the instruc­
tion, the two addresses can, for example, indicate a
device to be used and the data to be operated on,
or two factors of data to be processed. An output unit
to be used could be indicated by one address and the
storage location from which information is to be writ­
ten could be indicated by the other address. In arith­
metic operations the two addresses could specify two
related factors of data such as a multiplier and multi­
plicand, a divisor and dividend, or an addend and
augend.

Fewer double address instructions than single ad­
dress instructions are required to perform a procedure.
This simplifies programming procedures and results
in a saving of space in computer storage.

Instructions and Data

The only distinction between instructions and data
in main storage is the time when they are brought
into the central processing unit. If information is
brought into the CPU during an instruction cycle, it
is· interpreted like an instruction. If brought into the
CPU during any another type of computer cycle, the in­
formation is considered to be data.

If information is placed in storage so that data are
available during an instruction cycle, the computer
attempts to treat the data like an instruction. Like­
wise, if an instruction is brought into the CPU during
any other type of cycle, this instruction is treated like
data. Consequently, the computer can readily operate
upon its own instructions, if those instructions are
supplied as data. Also, the computer can be pro­
grammed to alter its own instructions according to
conditions encountered during the handling of a pro­
cedure. It is this ability to process instructions that
provides the almost unlimited flexibility and the so­
called logical ability of the stored program system.

Developing a Program

To develop a program, the programmer must know:
first, the number of different operations available in
the system with which he has to work, and their func­
tions; second, and of equal importance, the procedure
itself, which must be translated, step by step, into com­
puter instructions; third, the requirements to be met
by the result of processing.

The first step in program preparation is a com­
plete analysis of the machine method and the pro-

cedure, either eXIstIng or proposed. This analysis is
normally accomplished by developing flow charts and
block diagrams, because most data processing applica­
tions involve a large number of alternatives, choices,
and exceptions.

It is difficult to state these possibilities verbally or
in written form. Thus, the systems analyst finds use
for many types of pictorial representations, including
form layouts, control panel diagrams, manpower load­
ing charts, and so on. The two representations to be
discussed here are the work-flow chart and the block
diagram.

A work-flow chart, or simply flow chart, is a graphic
representation of the data processing system in which
information from source documents is converted to
final documents. A flow chart provides a picture of
the data processing application from the standpoint
of what is to be accomplished. Such a picture gives
primary emphasis to the documents involved and sec­
ondary emphasis to the work stations through which
they pass.

A block diagram is a graphic representation of the
procedures by which data are processed within a sys­
tem. In this picture the emphasis is on the operations
and decisions necessary to complete the process.

To summarize: a flow chart shows what job is to be
done; a block diagram shows how a job is done.

To encourage standardized symbols and thus sim­
plify the problem of interchanging information be­
tween IBM and its customers, IBM has made avail­
able the Charting and Diagramming Template shown
in Figure 108. The cut-outs can be used to draw
symbols representing clerical functions, unit record
machines and functions, data processing systems and
functions, and types of documents.

Flow Charts

Flow charts are often composed solely of symbols rep­
resenting the form in which data appear at various
stages in a process. The actual operations that must
be performed are indicated only briefly or not at all.
In other instances, there can be an extension of the
data flow chart so that it shows the job steps involved
in the development of information as well as the docu­
men ts themselves.

The symbols in Figure 109 are used in flow chart­
ing to illustrate data processing system operations.
The rectangle labeled "central processing unit" is
used to represent the basic system, including main
storage, the arithmetic unit, and the basic controls.
To this symbol are connected additional symbols rep­
resenting other components and the documents that

. they process. For example, a reel of magnetic tape

Stored Program Concepts 57

Figure 108; Charting and Diagramming Template

D 0
Central

Auxiliary Processing
Unit Machine

(Off-Line)

8 0
Inquiry

Auxiliary Station
Disk Storage

[J df=J
Paper Tape
Reader or Punch Printer

Figure 109. Data Processing System Symbols

n
,np"tLp"~
Control

Card Reader or
Card Punch

Typewriter

indicates that a magnetic tape unit is connected; a
punched card with an arrow leading to the CPU indi­
cates a card reader; a punched card with an arrow
leading from the CPU, a card punch; and so on.

Figure 110 illustrates typical ways in which data
processing system operations are flow-charted. The
central processing unit symbol is sometimes labeled
with the type number to identify the system. When no
confusion about the system type can exist, the space
can be used to identify the processing step.

Figure III is a typical operational flow chart for an
application of a data processing system-in this case the
IBM 705. Note that the primary direction of flow of
the application is in a vertical line from the top of

58 IBM Data Processing Systems

CD
Auxiliary
Drum
Storage

o
Magnetic
Tape Unit

the page to the bottom. Secondary functions are shown
to one side.

The labeling of an operational flow chart for a
data processing system application is important when
it is to serve as a guide to programming and operating.

Block Diagrams

The symbols in Figure 112 are used in block diagram­
ming to illustrate the data processing procedures.

One of the most important uses of the block dia­
gram is to provide the programmer with a means of
visualizing, during the developmental stages of pro­
gramming, the sequence in which logical and arith-

A

B

D

Figure llO. Typical Data Processing System Configurations .

Stored Program Concepts 59

IBIt1 DIAGRAMMING AND CHARTING WORKSHEET
Form X24·6413-0
Printed ·U. S. A.

Application Consoljdgted E,;nctjons Ordjngqr Life Insurgnce Date _________ _ Page-L-of~

Procedure ____ LP~ouli~c~y~l~ss~u~e~--------------______________________ _ Drawn By_N~Ayp~ _____________ __

t ..,.,
0
0:
g-
o.

~
~

Figure Ill. Operational Flow Chart

60 IBM Data Processing Systems

New
Issue
Tape

Sort by
Plan, Age,
Policy No.,
Line No.

Sorted
New
Issue
Tape

Edit and Check f----c:>I Error list

Multiple
Policy
Record
Tape

Sorted Multiple
Poli cy Record
Tape

Policy Issue .---<..-..-, Error list

Master
Mat
Tape

Master
Mat

me tic operations should occur, and the relationship
of one portion of a program to another. A written
program does not offer this advantage.

The amount of detail included in a block diagram
depends on the use to be made of it. In early stages
of program development, the primary purpose of the
diagram is to experiment with and verify the accuracy
of different approaches to coding the application; in
this instance large segments of the program are rep­
resented by a single symbol.

The three most important uses of the block dia-
gram are:

1. As an aid to program development

2. As a guide to coding

3. As documentation of a program

In the program development stage, the block dia­
gram serves as a means of experimenting with various
approaches to the mechanization of the application.
At this point, logical program segments have been
established, at least tentatively, through flow charting.
Starting with blocks representing the major functions
of the proposed program, the programmer develops
the over-all logic by adding blocks to depict input and
output functions, steps for the identification and selec­
tion of records, and decision functions.

After the over-all logic of the program is tentatively
established, the large segments are extracted from the
general block diagram and analyzed in the same
fashion. In this way, the block diagram becomes more
detailed. The eventual goal is to produce a diagram
which clearly shows all decision points in the program
and which can be used to verify that the procedure
satisfies all possible conditions which can arise during
program execu tion.

Once the procedure is established, and proved
sound, the block diagram becomes a guide to coding.
Unless the person who developed the diagram is an
experienced programmer for the data processing sys­
tem to be used, it is almost certain that the peculi­
arities of the machine logic will necessitate changes
in the program logic. Thus, the diagram may need to
be redrawn and reverified at this stage.

On completion of the coding, testing, and installing
of the procedure, the program must be documented
to make future modifications easier. At this stage,
the block diagram can greatly simplify the problem
by serving as a map of the program listing of coding
sheets. To be useful in this respect, the block diagram
must be related, by labeling, to the instruction steps.

Final documentation of a program should include
both general and detailed block diagrams. The gen­
eral block diagram helps in understanding the more
detailed ones and also provides an easily understood

I> ~ I Direction of Flow

D 0 0
Console Connector or Step 650 Table
Operation Identi fi cation Lookup
or Halt

()
()
7070 Priority Routine Identification

0 CJ
Input-Output
Function

0 CJ
Program Modi fi cation
Function

<>
Decision <>
Function

D CJ
Processing Function

Figure 112. Block Diagramming Symbols

picture of the procedure for those who might be in­
terested in the concept only.

Figure 113 is a general block diagram of a con­
solidated life insurance file maintenance program.
This diagram is arranged on the worksheet so that it
shows clearly the logical relationship among the three
major segments of the program.

Figure 114 is part of the same procedure in more
detail. In this instance, an arrangement which best
utilizes the available space has been used. A diagram
such as this one is sufficiently complete to serve as a
guide in coding even though certain program func­
tions are still not represented (for example: read-write
error routines, end-of-file, and end-of-job routines).
A detailed diagram documenting a completed pro­
gram would include all such functions.

During program development, the open arrange­
ment of the diagram on the page, Figure 113, is pref­
erable to that of Figure 114 not only because it shows
more clearly the alternate program paths, but also be­
cause it leaves more room for inserting additional

Stored Program Concepts 6]

t
.."
o
;:;:
s

I
~.

IBl4 DIAGRAMMING AND CHARTING WORKSHEET

Application Ordinary Life Insurance Consolidated Functions

Procedure __ ~D~a~il~y~F~i~le~M~allinllt~elln~anllc~e~ __________________________ ___

No

Generate New
Master Record

Determine Type
of Trans. and
Process. Set

LOM

Program Switches

Figure 113. General Block Diagram

62 IBM Data Processing Systems

Form X24·6413-0
Printed U. S. A.

Date ____________________ _ Page __ 1_ of _1_

Drawn By....!..,N:!,.!A:::!!P"--____________ _

Auto.
Chg.

Yes

No

Determine Type
and Process.
Set Program
Switches.

No

versary Calcu­
lations, Set
Program Switches

Perform Billing
Calculations­
Set Program
Switches.

No

t

~.

IBJ4 DIAGRAMMING AND CHARTING WORKSHEET

Application Ordinary life Insurance Consolidated Functions

Procedure __ ~D~g~jJ~y~Eui~le~M~g~i~n~tean~awn~c~e~R~o~u~tiwn~e~ ____________________ _

2

3

4

5

6

7

Regular
Collection
Paid
Routine

Lapse
Collection
Paid
Routine

Advance
Premium
Payment
Routine

Advance
Premium
Withdrawal
Routine

Loan
Issue
Routine

Loan
Payment
Routine

Accounting
Adjustment
Routine

Master
8 Field

Change
Routine

Regular
J Collection

K

9

Unpaid
Routine

Policy
Status
Request

Figure 114. Detailed Block Diagram

Date __________________ __

Form X24·6413-0
Printed U. S. A.

Page _1 __ of _3 __

Drown By~N~A~P ____________________________ ___

Stored Program Concepts 63

steps. The arrangement used in Figure 114 is most
suitable for use in documenting the program because
it requires less space.

When the procedure has been accurately stated in
block form, actual machine instructions can be writ­
ten. These instructions express the diagrammed pro­
cedure flow in detail.

All instruction must be presented to the machine
in the language and coding form of the system in­
volved. Actual writing in such a form is difficult and
complex, because some machines use the binary sys­
tem exclusively, some use a modified binary form, and
others use combinations of both. It will be shown in
the next section that the program can be written in
a form that is more convenient for the programmer
and that this form can then be translated by the ma­
chine into its own particular language.

Reading Data

All data entering the computer system must first be
read by an input device and routed to main storage.
Each input device is assigned a number to serve as
its address in the same way that each storage position
is also assigned a location address.

A data processing procedure is normally concerned
with entire files of records which may be magnetic
tape, IBM cards, or paper tape. These files are placed
on the input device, where the computer has access to
them. To read a record from a file, one or more in­
structions in the program activate the input device
and place the record in storage.

At this point, it must be determined exactly where
in storage the incoming record is to be placed, and
an instruction must direct the machine to send it to
this predetermined location. Also, in the plan of man­
ipulation, it is necessary to know at all times where to
find information as needed in the successive stages of
processing.

These considerations involve the allocation of stor­
age space for specific purposes in a logical and con­
venient manner .. For example, particular fields or
quantities may be used for computation. The in­
structions to be used later must specify the location in
storage where this information from each record can
be found.

The reading operation performs these distinct func­
tions:

1. The input device is selected and made ready
before actual reading begins. The device chosen is
the one that has. access to the proper file of records as

64 IBM Data Processing Systems

determined by the programmer. This device is se­
lected by specifying its assigned code number or ad­
dress.

2. The read instruction causes the previously se­
lected unit to carry out the transfer of a record to the
storage of the computer. The record is placed in a
particular storage area reserved for this purpose and
is then available for further processing. A number
of input areas may be assigned to handle several re­
lated records at once (for example, a master record
and its corresponding transaction detail).

3. The order of read instructions in the program
determines the sequence in which the files are read.
Other instructions later compare records from sepa­
rate files to determine the relationship of detail to
master, detail to detail, and so on.

4. The number of records to be placed in storage
at one time depends on the construction of the files,
the type and length of records being handled, and the
available storage capacity.

Calculating

Once data have been read into the computer system
and placed in known locations of storage, calculation
can begin. Each computer is capable of performing
addition, subtraction, multiplication, and division,
either as built-in operations or under program con­
trol. For most commercial applications, these opera­
tions are adequate. Even in many of the more ad­
vanced scientific procedures, the most complex equa­
tions can be reduced to steps of elementary arithmetic.
However, many specialized operations can be per­
formed by some systems to make the solving of mathe­
matical problems easier.

In every operation of simple arithmetic, at least two
factors are involved: multiplier and multiplicand,
divisor and dividend, and so on. These factors are
operated on by the arithmetic unit of the machine to
produce a result such as a product or quotient. In
every calculation, therefore, at least two storage loca­
tions are needed. One quantity is usually in main
storage and the other in an accumulator or some in­
termediate storage unit.

A calculation can be started by placing one factor
in the accumulator and at the same time clearing
this unit of any previous factors or results which may
be contained there. The address part of the instruc­
tion specifies the storage location of the first factor;
the accumulator or other storage register is implied

by the operation. In some computers, more than one
register is available for calculation. In this case, the
address must also specify which register is to be used.

When one of the factors is properly placed in the
accumulator or other suitable register, the actual cal­
culation is executed by an instruction whose operation
part specifies the arithmetic to be performed and
whose operand is the location of the second factor.
The computer acts upon the two factors, one in the ac­
cumulator and the other in storage, and produces a
result in the accumulator.

The result is returned to main storage by another
instruction that stores the field in some location de­
signated for the placement of a result. A field is a
related arrangement of characters or digits to repre­
sent a quantity, amount, name, identity, and so on.

Any practical number of calculations can take place
on many factors in a single series of instructions. That
is, a factor may be placed in the accumulator and
multiplied, and several other factors may be added to
or subtracted from the product. Division can then be
executed, and other operations of adding and sub­
tracting can proceed using this quotient. Intermediate
results can be stored at any time.

For example, a field containing employee hours
worked can be placed in the accumulator and multi­
plied by hourly rate to produce earnings. Piece work
and bonus amounts may then be added to develop a
total regular earnings amount. This amount is stored
in the pay record. Total regular earnings may then
be divided by hours to produce an average hourly
rate. This rate is multiplied by 1.5 overtime hours to
produce overtime earnings. Total gross pay is then
calculated and stored. Taxes are computed using the
calculated gross pay, and other payroll data are
accumulated using the amounts as they are calculated.
Intermediate results of tax amounts and deductions,
and, finally, net pay are all stored in the pay record.

Operations of shifting and rounding the contents
of the accumulator are also provided to adjust,
lengthen, or shorten results. With these operations,
decimal values may be handled and directions for
placing of the decimal point may be given to the
computer.

All calculations must take into account the algebraic
sign of factors in storage or associated registers. Con­
sequently, the computer system is equipped with some
provision to store and recognize the sign of a factor.

If records are made up of fixed words of data, one
position of the word is designated as a sign position
and automatically accompanies the word. Accumu­
lators also include either a special sign position of
storage or a sign indicator which is available to the
programmer. In this way, the sign of results can be

determined, together with the effect following calcula­
tions. The computer follows the rules of algebra in
all basic arithmetic calculations.

The size of words, quantities, and values depends
upon the design of each particular system. The exact
rules governing the placement of factors, size of re­
sults, and so on vary somewhat from system to system.
In all cases where a result is expected to exceed the
capacity of the accumulator or storage register, the
programmer must arrange his data to produce partial
results and then combine these for totals. Other
operations of scaling may be executed so that very
large or small values and fractions may be handled
conveniently. Computers designed primarily for
mathematical applications generally include a series
of specialized arithmetic operations for this purpose.

Calculation is carried out in all computer systems
at much higher rates of speed than input or output,
because reading and writing require the use of me­
chanical devices and the movement of documents,
while calculation is performed electronically. In many
commercial applications, calculation is relatively
simple, and the over-all speed of the system is usually
governed by the speed of the input-output units. In
mathematical applications, the situation is reversed;
calculation is complex and involved and high cal­
culating speeds are essential. The design of any par­
ticular system must achieve a realistic balance be­
tween calculating and record-handling ability.

Logical Operations

The sequence in which a stored program computer
follows its instructions is determined in one of two
ways: either it finds the instructions in consecutive
storage locations, or the instruction operand also
designates the location of each following instruction.
If instructions could only be followed sequentially in
a fixed pattern, a program would only follow a single
path of operation without any possibility of dealing
with exceptions to the procedure and without any
ability to choose alternatives based on special condi­
tions encountered in processing data. Further, with­
out some way of resetting the computer to repeat a
given series of instructions, it would be neces'sary to
have a complete program for each record in a file.

Consider the program illustrated by the block
diagram in Figure 115. These instructions taken alone
compute T for only one record. But by returning to
the first instruction, any number of records may be
processed, repeating the same program as a loop. For
this purpose, another instruction is given to return to

Stored Program Concepts 65

the first instruction (Figure 116). Once this program
is initiated, it will continue to run until there are no
more records to process. Program loops are common
and they can be terminated in many ways.

For example, the computer may be instructed to
examine T each time it is computed and to stop when
the value of T becomes negative (Figure 117). In
this case, the instruction becomes a conditional trans­
fer. The program is repeated only if some predeter­
mined condition has been satisfied. The computer can
also be instructed to execute the program for ten rec­
ords and then stop (Figure 118). It is assumed that
the constants 10 and I are in the computer and that
1 is subtracted from 10 each time the loop is com­
pleted. After ten times around, a zero will be in the
location that contained 10. A transfer or branch then
terminates the loop.

The conditional transfer or branch operation may
be used to cause a special-purpose subroutine to be

Figure 115. Block Diagram, A + B = T

Figure 116. Program Loop

66 IBM Data Processing Systems

executed outside the normal or straight-line path of
the program. This subroutine is executed only when
a predetermined exception or condition is noted by
the machine.

One common example of the subroutine is checking
the accuracy of records as they are read from or writ­
ten on magnetic tape. As each record enters or leaves
the central processing unit, a read-write error indi­
cator is examined. If the indicator has been turned
on, the computer is instructed to enter a subroutine
of instructions that attempt to correct the error. The
program logic for such an operation-the reading only

No

Figure 117. Conditional Transfer

Figure 118. Record Count Conditional Transfer

Figure 119. Read Error Loop

-is shown in Figure 119. A similar loop might also
be included for writing.

When a reading error is detected, a transfer is
effected to the error subroutine. A counter is reset to
the quantity 3 to count the number of times are-read
will be attempted. The tape is backspaced over the
error, and a second read instruction is given. Another
check is made to determine if this operation is correct.
If it is, a transfer returns to the main program, where
computing continues.

If the error persists, 1 is subtracted from the counter
and the counter is tested for O. The error loop is
again entered and a second re-read and check are
executed. The machine can re-read three times. If
the error is not corrected, operation is halted. Further
instructions can also be programmed to indicate to
the operator the cause of the stop.

A program can also be arranged so that the ma­
chine can recognize one or more types of records as
they are processed from a single file. The method of
computation can be varied according to the type of
record in storage. This procedure is common when a
number of types or classes of transactions are proc-

Figure 120. Branching By Code

Continue
Program

essed against a single master file (for example, in an
application of file maintenance).

Assume that a file of master stock status records
contains quantities that reflect the number of parts
available for manufacturing planning. The records
also have considerable other information pertaining
to the status of inventory, but for purposes of illus­
tration, this example is concerned only with those
fields used to show availability. These fields are:

Quantity in stock

Quantity on order

Quantity available

Transactions that affect the status of the parts avail­
ability originate daily. These transactions are punched
in cards with an identifying digit code for each type
of activity.

Codes are as follows:

Code I

Code 2

Code 3

Code 4

Code 5

Receipts

Orders

Withdrawals

Adjustments plus

Adjustments minus

As each transaction is placed in storage, it is
analyzed by code to determine in which class it be­
longs (Figure 120). A branch instruction then trans-

Stored Program Concepts 67

fers to the proper program subroutine to calculate
availability and to adjust the corresponding master
record. Reading and writing of the adjusted master
record is not shown in the flow chart.

Comparing

The ability of the computer to make limited decisions
based on programmed logic is substantially extended
by operations of comparing. Such operations enable
the computer to determine if two data fields in storage
match, or if one is lower or higher than the other. The
basis of comparison is set according to some predeter­
mined sequence built into the circuitry.

The sequence may be considered to be a normal
filing order of records of all types. For example, the
familiar ascending sequence of the digits 0-9 assumes
that the digit 9 is the highest digit of the series. In
the same manner, the letter Z is assumed to be the
highest letter of the alphabet. To the computer,
therefore, as in any file, the number 162 is higher in
sequence than 159, and the name Jones is lower than
the name Smith. Special characters, such as / @ * ,
or - , may also be included because these characters
must be manipulated as data for report printing and
other special purposes.

Comparing operations are used to program the se­
quence checking of files, sorting procedures, or the
rearrangement of records in some desired order. The
comparison of an identifying field in one record with
that of another enables the computer to handle a
number of associated files in one processing procedure
provided that all files are in sequence by this com­
mon field.

The two fields to be compared are always in main
storage. One field is then placed in an accumulator
or storage register, and a compare instruction is given
to compare this field against the second specified field
which remains in main storage. The results of com­
parison are registered as high, low, or equal, by indi­
cators or triggers which may then be interrogated to
determine their condition. If the indicator is on, a
branch instruction transfers the machine to a sub­
routine which will continue processing according to
the result of the comparison.

Figure 121 shows a typical program arrangement for
sequence checking a single file of records. All records
in the file are assumed to be in ascending sequence
by account number. An input area is set aside in
storage where records are received, one at a time, from
an input unit. A second area is also reserved in
storage to store the account number from the preced­
ing record. The purpose of this area is to allow com-

68 IBM- Data Processing Systems

parison of the account number of the incoming record
with the corresponding field of the previous record.

If the file is in ascending sequence, the incoming
record should always be higher than the record that
preceded it. When duplicate records are encountered,
the incoming record is equal to the preceding one. If
any incoming record is lower than the previous rec­
ord, it is recognized as an out-of-sequence condition.
An error is signaled by programming the computer
to stop. After each high comparison, the account
number field is placed in storage where it may be
compared with the next record.

Instruction Modification

Some of the preceding examples have shown how
branching or transfer instructions can cause the com­
puter to follow a varied path through the program.
The routine to be executed depends on the result of

I
Storage for I

1

-1-- Storage of Input Record --,,--I Previous
~ Account No.

/,.----.---, ~c-u:~-;: ---.----r--'-----r'Ill (' ~~:~;: I \

Figure 121. Sequence Checking

Place
Account
Number
in Accumulator

a previous comparison or a test of indicators which
have been set by a zero balance, an error condition,
and so on.

Another method of varying the program is by chang­
ing or modifying the operation part of the instructions
themselves. Instruction modification, for example,
can be used to set up a program switch which can
cause the machine to take one of two alternate paths.
The switch is turned on or off by instruction. The
use of the switch is shown in Figure 122.

Assume that two files are being read. The files are
in sequence by a common identifying field, such as
part number, account number, or employee number.
One file is a master file; the second is a transaction
file that represents adjustments to the master. Three
conditions may be encountered in applying the trans­
actions to the corresponding master files.

1. One or more transactions may match a single
master record.

2. There may be no transactions for a master
record.

3. There may be transactions that do not match a
master - these are errors.

It is necessary to process the two files in step; that
is, each transaction record must be compared against
a corresponding master record, if there is one. If sev­
eral transactions apply to the same master record, the
transaction file must continue reading without read­
ing a new master record. Conversely, if a master rec­
ord is read in without a corresponding transaction,
this record is written out unchanged and the follow­
ing master is read in. The reading and writing of
master records continue until a matching transaction
is found.

The flow chart shows that one master record is read
in first. A switch instruction is inserted between the
reading of the master and the transaction. As opera­
tions begin, this switch is turned off, allowing one
transaction to be read in. The identifying field of the
transaction is compared against the master. If it is
equal, the master is adjusted and a second transaction
is read in. If this transaction is not to be applied
against the master (which is still in storage), it should
be high when compared. The previously adjusted
master is then written out and the switch is turned on.
A new master is then placed in storage, but because
the switch is on, a transaction is not read; instead the
machine transfers directly to the instruction to com­
pare. The switch is turned off each time this happens.
Operation continues with comparison for each new
record placed in storage. If a transaction is low, it is
written out on a separate output unit, and a new
transaction is then read in.

Figure 122. Program Switch

The switch, when on, has an operation part specify­
ing an unconditional transfer. The address part is the
location of the compare instruction. To turn the
switch off, the operation part is changed to no opera­
tion. In this case, the machine ignores the instruc­
tion and proceeds to the following instruction: read a
transaction.

Address Modification

The address portion of instructions may also be
treated as data. An instruction address can be modi­
fied by arithmetic; it may be compared against other
addresses or factors or relocated in storage at will.
Address modification serves two purposes:

1. The total number of instructions in a program
may be reduced, conserving storage capacity for data
or other factors. One instruction, or a single series of
instructions, can serve to address variable locations in
storage.

2. A basic flow of work controlled by the program
can serve as a pattern of procedure that can change as

Stored Program Concepts 69

required by the entry data, the result of calculation,
various error conditions, end-of-file detection, and
so on.

For example, the address part of instructions that
select the various components of a system may be
modified by other instructions in the program. One
use of this type of modification is the selection of
alternate magnetic tape units when an end-of-file or
end-of-reel condition is signaled. A reading or writ­
ing operation may then continue without interruption
on an alternate unit while the first unit is rewinding
or standing by for reel change. When a tape file is
made up of more than one reel, reading or writing
may proceed from reel to reel with a minimum of
lost time.

Assume that the addresses of two tape units are
0201 and 0203. The sum of the units and tens posi­
tions of these addresses is stored as a constant factor
04. When an end-of-file condition is signaled by tape
unit 0201, a transfer is made to a subroutine. In the
subroutine, the units and tens position of the tape
unit being used (01) is placed in an accumulator. The
constant 04 is subtracted to obtain minus 03 as a
result. This result is then unloaded into the tape
unit address, converting it from 0201 to 0203. The
sign of the result is ignored.

The subroutine then transfers back to the main
routine and continues to use tape unit 0203. When
end-of-file is signaled from this unit, the constant 04
is subtracted from 03 to obtain the result minus 01.
Unloading this result changes the tape address from
0203 to 0201. The select address alternates between
0201 and 0203 each time an end-of-file is signaled.
Similar factors may be used to form other types of
program alternators.

Indexing

In many computers, the address portion of an instruc­
tion can be modified by adding or subtracting variable
quantities contained in one or more special-purpose
counters. The counter may be called an index reg­
ister when it is set aside specifically for this purpose
or it may be a predetermined location in core storage
called an index word. A computer may have several
index registers or a number of storage locations for
index words. Both the index register and the index
word perform identical functions; however, the word
is usually more accessible to the program and, con­
sequently, offers more flexibility in its use.

Computers with an indexing feature use an ex­
panded instruction format that allows a particular

70 IBM Data Processing Systems

register or word to be specified as a part of the in­
struction operand.

Assume that fifty quantities are placed in ascending
word positions of storage from locations 1001 to 1050
inclusive and that these quantities are to be added
to the contents of an accumulator. Without indexing
or address modification, it is necessary to repeat an
add instruction fifty times with the address of each
instruction incremented by 1, as ADD 1001, ADD 1002,
ADD 1003, and so on.

With indexing, the add instruction can be written
as ADD 1051 with the address decremented by an index
register containing the quantity 50. The address re­
mains 1051, but the computer calculates an effective
address of 1051 minus 50, or 1001. When the add
instruction is executed, the contents of the index reg­
ister are also decremented by 1, leaving a remainder
of 49. When the same add instruction is re-executed
and is again decremented by the contents of the same
index register, the effective address is 1051 minus 49,
or 1002. If a program loop is formed to repeat this
process, the effective address of the add instruction is
stepped up 1 each time it is executed (as the index
register is stepped down). When the index register
equals 0, all 50 quantities will have been added and
the loop is terminated. The computer has conse­
quently performed fifty operations using the same
ins tructions.

Figure 123 is a flow diagram of the index loop. The
first instruction places the quantity 50 in index reg­
ister 3. An add instruction, with an address 1051,
also specifies as part of its operand a designation that

Not Zero

Add 1051
(Modified
py IR 3)

Figure 123. Index Loop

the given address is to be modified by the quantity
contained in index register 3. The next instruction
is branch on index, which means: reduce the con­
tents of index register by 1; if the contents of the
register are greater than zero, branch to repeat the
add instruction; if the contents of the index register
equal zero, continue to the next instruction in the
program.

The indexing feature greatly simplifies program­
ming of repetitious calculations or other operations
and reduces the required number of instructions.

Indirect Addresses

All instruction addresses discussed in preceding illus­
trations are classified as direct, that is, they refer di­
rectly to the location of data or other instructions in
storage, they select a machine component, or they
specify the type of control to be exercised.

Addresses may also be indirect. Such an address
can refer only to a storage location. that contains an-

Input Tape

SEL 4069 =====::~2EI2EI~~~~

Subroutine

SEL 4069

Main Routine:

SEL .4069

Figure 124. Indirect Address

other address. The second address in turn refers to
the location of data, a machine component, or a con­
trol function.

Indirect addressing is particularly useful in per­
forming address modification. For example, in a pro­
gram it may be necessary to address a number of in­
structions to a single machine unit, such as a mag­
netic tape unit. The same unit may be selected for
reading, for error routines, in restart procedures, or
in various other branch routines. If this unit is to be
alternated with some other unit, the addresses of all
instructions involving that unit must be modified. If
only direct addressing were available, a number of
modification instructions would be needed.

However, if the select instructions involving a tape
unit are indirectly addressed to one storage location,
that location can contain a single address. Therefore,
to change or modify all select instruction addresses,
it is only necessary to modify the single effective ad­
dress to which the select instructions refer (Figure
124). Any number of indirect addresses throughout a
program may refer to a single effective address.

Effective Address

Stored Program Concepts 71

Programming Systems

If the present pace of computer development con­
tinues, the over-all performance of data processing
systems will soon be increased more than one hundred
times. New systems will not only be much faster, but
they will also be vastly improved in their ability to
overlap and carry out a number of operations and
procedures at the same time.

While the capability of computers is expanding at a
fantastic rate, the technology of utilization and con­
trol is advancing at an equal pace. These improve­
ments in techniques are as vitally important as the
design of the data processing system itself. To a large
extent, the future of computers depends not only on
increases in speed, logical ability, and storage capacity,
but also on the efficient utilization of these facilities
as they are made available.

IBM programming systems have been developed to
meet both present and future requirements of com­
puter application.

Program Preparation

A computer program represents much more than a
set of detailed instructions. It is the outcome of a
programmer's applied knowledge of the problem and
the operation of the computer system.

Problem definition, analysis, and block diagram­
ming (see preceding section) are the first steps in

Figure 125. Direct Conversion of Problem to Machine Program

72 IBM Data Processing Systems

program preparation. They are usually carried out
independently of the computer and the programming
system.

Some or all of the following must then be con­
sidered to prepare even the simplest program:

1. Allocation of storage locations to data, instruc­
tions, and related information.

2. Conversion of original data to an input medium.

3. Availability of reference data such as tables, files,
or constant factors.

4. Requirements for accuracy and methods of check­
ing and auditing.

5. Ability to restart the system in case of unsched­
uled interruptions or error conditions.

6. Automatic monitoring of the system to ascertain
that the required input and output devices are con­
nected and available for operation.

7. Housekeeping or set-up procedures that preset
accumulators, switches, and registers; type operator
messages; check file labels; and so on.

8. Format of output data with provisions, if re­
quired, for later conversion to cards or printed re­
ports.

9. Availability of program routines that have been
used and tested in other procedures and that may be
used to advantage in the current procedure.

Results

10. Conversion from the decimal number system to
binary and from binary to decimal.

11. Editing of data with provision to record ex­
ceptions which cannot be processed.

Machine Coding

Figure 125 shows the basic relationship between the
computer and programmer when the program is writ­
ten in actual machine coding. The problem is first
analyzed in terms of operations that the computer can
perform. The program is then written in machine
coding by the programmer who supplies tables, for­
mulas, codes, or other reference material necessary for
the specific application.

The problem then becomes input data, and the
computer-by calculation or other operations-pro­
duces useful output.

A number of difficulties arise when the program is
written in actual coding:

1. All instructions must be coded in machine lan­
guage. With some computers, such as the IBM 704,
709, or 7090, which use binary representation in fixed
words, this method of programming becomes im­
practical, if not impossible.

2. Instructions must be written in the exact se­
quence in which they are to be executed by the com-

puter. If one or more instructions are omitted by
error, all succeeding instructions must be relocated in
storage to make room for insertions. This clerical
accounting for all storage areas must be carried on
entirely by the programmer.

3. The full burden of logic and program organiza­
tion is placed directly on the programmer.

4. Previous experience-tested programs that might
be utilized in part of the procedure-is difficult to
work into the new program. Such programs must be
linked to the new program by additional handwritten
ins tructions.

5. The programmer must understand the computer
in detail. He must know the location of each indi­
cator or register, and he must program their func­
tions entirely.

The Programming System

Many of the difficulties and inconveniences of writing
programs directly in machine coding can be eliminated
or simplified by the more advanced systems of pro­
gram writing. Figure 126 shows the basic flow of
work between problem and solution when a program­
ming sys tem is used.

The programming system consists of two parts: a
language and a processor. The language is similar to

Program System
Library

Machine
Coded Object

Figure 126. Conversion of Problem to Machine Program Using Programming System

Programming Systems 73

the programmer's language and can be translated into
machine language by the processor. The data process­
ing procedure is first written in the programming
language; this is called the source program. Then, the
source program is translated into machine language,
or the object program, by the processor.

When a programming system is used, the computer
actually operates at two distinct levels:

1. As a translator or program assembly device.

2. As a data processing system.

At the first level, instructions in the programming
language are translated into machine coded instruc­
tions. Storage areas are automatically assigned, con­
stants or other reference factors are included, and
library routines for checking, input-output, restart,
housekeeping, and so on are assembled. Program
routines may be generated from specifications fur­
nished by the programmer. Normally, only one as­
sembly process is necessary. The program thus pro­
duced may be used again and again to control the
operation on data at the second level.

The programming system has several advantages.
It can:

1. Save program preparation time.

2. Reduce clerical errors.

3. Simplify communication with the computer.

4. Utilize proved program techniques.

5. Use pre-checked routines.

6. Save machine time normally expended in test­
ing programs.

7. Allow the user to realize useful production
earlier from the computer system.

8. Facilitate well defined logical approaches to a
procedure.

9. Place emphasis on the problem rather than on
the computer.

10. Provide a measure of compatibility attained
only in programs prepared by the processor.

The Programming Language

The purpose of the programming language is to state
a data processing procedure in a way that is con­
venient for the programmer but that transfers much
of the clerical work of program writing to the com­
puter. This language, like any other, has established
rules of grammar, punctuation, and expression.

The terms of expression must be precise in the way
that they describe any procedure to the computer.
These statements must convey to the computer exactly

74 IBM Data Processing Systems

what it is to do, even though the aim of the language
is to allow the programmer to state a procedure in a
language nearly like his own.

The programming language must then compromise
between the easiest way for the programmer to write,
the design and organization of the computer system,
and the requirements of the procedures to be ex­
pressed.

The language of the programming system may be
either procedure-oriented or machine-oriented. If
procedure-oriented, the language is independent of the
computer and more closely approximates the every­
day language of the user; it can be translated into sev­
eral different· machine languages using appropriate
processors. If machine-oriented, the language is gener­
ally related to a specific data processing system and,
therefore, lacks some of the compatibility inherent in
proced ure-orien ted languages.

The Processor

The processor is a program that translates the pro­
gramming language into machine coded instructions,
make storage assignments, and assembles the instruc­
tions into a completed object program. This object
program is then used by the computer to actually
work the procedure.

Under direction of the programmer, the processor
may draw on a library of information to assemble the
machine coded program. This library can contain
pretested routines for input-output, error checking,
housekeeping, report printing, and other operations.
In this way, the processor can include in the object
program a variety of information that has been placed
at its disposal as a result of previous experience.

The processor normally consists of a number of
parts:

1. An assembly program that controls the computer
to convert the source program data to a machine pro­
gram. The processor first assigns storage locations to
source instructions and data and then forms addresses
from the storage assignments.

2. Tables that contain all mnemonic abbreviations
for operations and the equivalent machine codes.

3. Instructions to interpret the operations - such
as define record areas, floating point numbers, and so
on - that are directed to the processor.

4. Counters to locate the source instructions and
data.

5. Instructions to form a table of instructions and
data locations as tags with their equivalent calculated
storage locations. (The tag is a descriptive word or

phrase that labels a group of related data or instruc­
tions for the processor.)

6. Provision to edit the program and to produce
messages to note errors. Editing functions include se­
quence checking of source instructions, all references
to tags, and other miscellaneous checks that vary ac­
cording to the design of the computer for which the
source program is intended.

7. Provision to assemble the program for the system
configuration of a specific computer.

Automatic Coding System

The following problem illustrates the basic program­
ming method using the 705 Autocoder processor.

1. Read sequentially a file of 80-character ware­
house inventory records punched in IBM cards. Each
record includes two numeric fields A and B represent­
ing quantities of receipts and withdrawals. Field A is
signed plus; field B, minus.

2. Add numeric fields A and B to produce a bal­
ance, c.

3. If C is plus, execute routine X; if C is minus,
execute routine Y. (Routines X and Yare not de­
scribed.)

4. After either routine X or Y is completed, write
out the records, including the new balance field C, in
blocks of five on magnetic tape.

Figure 127 is a flow diagram of the problem, show­
ing the essential steps in the procedure. Figure 128
shows the essential Autocoder statements describing
the instructions for an IBM 705.

The first entry on the program sheet is a descriptive
statement. This statement signifies to the processor,
during the preparation of the object program, that the
following statements describe a record and, conse­
quently, that they are not to be interpreted as instruc­
tions. A special mnemonic operation is written in the
operation column as ReD. The name of the record is
written as a tag in the tag column, in this case WHSE

INV, an abbreviation for warehouse inventory records.
The full name of the records or other descriptive in­
formation concerning the identification of the file may
be written in the comments column.

Each individual field of the record may now be
described by the programmer on following lines of the
program sheet. Fields that might be typical of an in­
ventory record are described as shown.

Figure 127. Problem to Illustrate Programming Methods

The complete description of the input record in
Figure 128 illustrates a number of rules of the Auto­
coder.

1. Records, fields, or characters are called by their
actual names or by tags. These tags may consist of any
characters acceptable to the computer using the Auto­
coder. The tags may be ten characters or less in
length.

2. Operations are wri tten mnemonically; these
operations used to control the processor are not neces­
sarily in the vocabulary of operations that the com­
puter performs on data.

3. The record is described in the exact format in
which it will appear in storage, but the programmer
need not be concerned with actual storage locations.
These will be assigned by the processor.

4. Additional information is supplied to the proc­
essor about record fields that will enable the processor
to check the accuracy of the program. For example, if
the programmer refers to an unsigned field in the ree-

Programming Systems 75

FORM X22·670S.3

IBM AUTOCODER PROGRAM SHEET
PRINTED IN U.S.A.

705 DATA PROCESSING SYSTEM
CODED BY EJf!. c .

CHECKED BY

PROGRAM .5 JJ !!!l P /.. E P~Oc;..£A.t!1. ..:5'L~r,e /vf IDENT. 1~ltjS 1E:11f!5 Inserts on bock _ DATE IbzL/rzo
"1 1

PG LINE TAG OPERAND COMMENTS
I 23 56

I OPERATION
15 116 20 ~,U~~i23 3839 7.

n.t.J 01 w.#-.(,.E. 1111/ /len o -+ , I , , , I I

---+-
02 PJl.O.--r. N.~.M 0," tI, i-+--+-
03 PlJi.-r .!tI.fJ.IIU'f. II,S 11.+,
04 L () c. n -r.Jn,j 0.4'«
05 ~.I.L.€. lo,,;W,
06 IP.A.C It. ht) 1#+
07 ilvF..I.t:..JI. ~ b4 'N',

-+-
08 1"S.0 () R c.E 0,1- 1/,-/
-t

09 iA/.IJ.N.Il.: 12,((R,-/-,

10 [R,e,f.,e,l.p.';',<; lo,~I+-,
11 W. /,..,-, II '" 11 " .. I 05"1+,
1 2 i13.1lJ. D,JJ.I'.~. 10.5 + -+-+---+--+--f-+-+-+-

1 3 tJRPER. .t:1.oA.A. o,tJ~

14 R,M 0,/ In,oJ.,
15

16

Figure 128. Sample Program 1

ord with an arithmetic instruction such as add or sub­
tract, the processor will produce a message to note
this error.

5. The sequence of all entries is maintained by a
page and line number preprinted on the program
sheet. Additional space for comment to clarify the
format of the record is provided as needed.

6. Other operations that describe the following
entries to the processor are also included in the Auto­
coder system. These include CON to define a constant
area, RPT to define a report area for printing, FPN for
floating point number, and so on.

When the data areas are property defined, the writ­
ing of instructions is the next step in programming.
Figure 129 shows Autocoder instructions for the main
program.

The operation part of each instruction is written as
a mnemonic abbreviation. The processor interprets
these standard abbreviations and substitutes the actual
machine code for each.

The operand part of the instruction may be writ­
ten in a number of forms. It may be the actual ad­
dress of some device. For example, on line one, the
operand 100 specifies a card reader. An operand may
also refer to the tag of either data or instructions as
shown on line 2. The operand is WHSE INV, and the
complete statement RD WHSE INV means that the se-

76 IBM Data Processing Systems

!AI tJ Il.lUJ. A lie:: If I N V€./I.,-,O .fl, Y.--+t;l~L~E't_I-,-.-+--+-+-+-+-t--t-t-+-
I 1 , I , I 1 I I I 1 II I I I 1 II ,

I' 1 I I I I I I 1 1

, I , , , I,

l.4.I . ." Co /Jilt'> A J /1/ .JI./J.IY1.,A.Ir.R.

C.A.N. .:~. r.'1'.'F!.. ."P ,P.II.~ .C.n.D.E

WJ)NlRf:~ n.'::, .O(J.715.N'~.

W,O.o.#,O.,> A.IV.lltJLA/.,-::

C.IJ.D.F. . . &," R. IPUIPl e !.It'. Sl ep
1°1&\ M,A,N 0, £1"3. C :"r. ,..1. P. ~ D.

W.I>."'1": JIJ; '6 P
1 I I I I 1 II I 1 I I ,

lS.1 ,e; , 1I.,r:: b, ,P.I.US.

b./ ~.AI.F.I'>. .0.1.11.<::.

k.lr-.AI.~/) .P.I.n.< ,D,/€. ,M I,All/.s 1----+---+--+--+--+

lected card reader is to read one record from the ware­
house inventory file into storage. The actual location
of any data does not have to be determined by the
programmer but will be assigned by the processor.

The operand can also refer to the tag of other in­
structions in the program. For example, line 3 trans­
fers to an error routine at location ERROR if either an
end-of-file or an error condition occurs while reading
a card. Also, lines 7 and 8 contain operands which are
tags of the first instructions in routines I and 2.

An operand can also be a "literal." That is, the
actual data to be operated upon may be written as
the operand of the instruction. In Autocoder, the lit­
eral is designated by special punctuation: a parenthesis
before and after the data as shown on line II. The
programmer adds the quantity one by surrounding a
+ I with parenthesis in the operand column. The sum
is placed in a specific storage register by designating
01 in the numeric column. Any of the 15 available
storage units in the IBM 705 may be designated by
writing its number in this column.

The resulting sum in the counter is compared
against a 5 by the instruction in line 12. The digit 5
becomes literal data by proper punctuation. The pur­
pose of the instructions on lines II and 12 is to count
the number of records placed in the output block and
to write these records on tape when five records have
been assembled. When the number reaches five, the

FORM X22·6705..J

IBM AUTOCODER PROGRAM SHEET
PRINTED IN U.S.A.

CODED BY Re.G
705 DATA PROCESSING SY~TEM

CHECKED BY

PROGRAM .sflMty.~ 2t:..CJ.G£t!lM .s4f...:sTE~ IDENT. 1~lelS'IElgl!:,1 Insertsonbeck_ DATE 11.27/(-.0 r-

PG LINE TAG OPERATION NUM. OPERAND COMMENTS
I 23 56 1516 20 21 2223 3839 74

0.J. 01 <.-rI}P-r. ;:: PI. //J/) ,.. OR.. f) i?En T)FP

02 Rb /A),}/,s,E I ,N, /I,

03 1,1l,,q., rn.,;,,,

04 R,JJ,/), R,E,C,l: /,p,r.-<; r 0 ,WI,P./}, r.1F,R.A,L.R,N, G ,Ii

05 5"U,A, /lJ17'lLh11LlJJl -+
06 .<;,-r: ~ At. A.J.I,t:E.

07 T.~,p, ~,() nor, .il/IF .1 P,J,.II $ AD1.1J N.cE
08 I.R R I'lIJ,r. J .N'E. ,?, MIUll6 H D / ,LJ JI. (,:, IE

09 M,f) II.E, .R. c,t;, /l.cv oOurpur, BI-K A t:.c..£NlaLF! 11 '''''P,r).-r. ~~ C o.R.b: B.LOe K.

10 -r,IA,1'. ,0 /AJ,/J e ,/ 1./.1/,

11 /t,P.}). 01 (,+') I,N.t:,~.c, #ltG ,/,:', jj,d,H:r,/!, /?,

12 G M.P. o 1 (.1)), rJ:'S-r, ,1=1'# t:(},J.L .IlL. O,G,k.,

13 rr,,e e: b I IAIgl -r:e
14 IA,A,HI V, 7 M,f), /I, E. /I. F'c, 1/111 elf.!!. ,",r, v.A!>/J I.~(~
15 ~,~ S/,a,g,..,. !-rn, JI.F./),/) ,AI.F,X,I, ,~.A,R.O,
16 WI<I-re ls ,E.L. 2,0,0, Irn PE. I)JIJ~

17 W,.('. O,Y,-r'''P,/J.-r. . .BL K.

1 8 'rr~t} e I!.R O./!.
19 T,,," IRe:~,E-r:
20
~ .

FORM x22.6705-3

PRINTED IN U.S.A.

IBM AUTOCODER PROGRAM SHEET ., .
ERe

705 OAT A PROCESSING SYSTEM
Co.DED BY

CHECKED BY

PROGRAMS tt. M. P I. ~ peOGR-fl.11A S 'i. S T1!fIIJ!/ IDENT. 13fj,s:I~£'51 Inserts on beck _ DATE 10'7-&.0

PG LINE TAG OPERATION NUM. OPERAND COMMENTS

I 23 56 1516 20 21 2223 3839 74

o.S 01 Ov-rPlJ.""" .f.lLK. R,(",n, e>
02 K,E.co ,Q./l .t. I~~+
03 RM, t 01 jJ~

04 Rt:rnLJD 2 0.1+
05 ~M. ,. 01 /)+

06 K'.E:C O.te..b 3. '8'9 +.
07 iRA1, 3 01 ,4,+

08 'R,,E C () R.. 0 .4 ft." +
09 (?,N1, ,4. ~,I /J.,-/-,

1 0 (J F-r",~" ,.&5'. Ck',q+.
11 RIYI . . ~ 01 ,tH ..

1 2 .g..M 0,/ /J,of.

13
1 A

Figure 129. Sample Program 2

Programming Systems 77

next instruction on line 13 transfers to the instruction
at location WRITE. If the number is less than 5, a
transfer is made back to the instruction at location
START. Note that tags for instructions are required
only for reference by other instructions.

To write instructions in any symbolic program sys­
tem, the programmer merely follows the rules of gram­
mer, punctuation, and expression established for that
system. He is thereby relieved of the complications of
coding associated with actual machine langauge, and
the clerical work of storage assignment is eliminated.
Also, the source program is more readable than a
machine program, an important factor is checking
and de-bugging (correcting) the program.

Program tags may also be keyed to a flow diagram
of the procedure, providing a convenient cross check
between the logic of the procedure and the written
program.

The completely written program is punched into
IBM cards and verified for accuracy of transcription.
Special card forms are provided for this purpose
(Figure 130). Each line of the program sheet is

punched exactly as written, including page and line
number, program identification, and comments. One
card is prepared for each line of the program sheet.
The cards are then sorted into sequence by page and
line number.

At this point, any insertions or omissions to the
program may be placed in proper sequence. The third
digit of line number serves as an insertion sequencing
digit. For example, page 01 and line 02 may be fol­
lowed by inserted statements by numbering these
statements: page 01; line 021, 022, 023, and so on.

I

I I
I

PAGEllllE TAG OPERATION NUM OPERAND

I I I I I OPERATION I ~ I PAGE a LINE I I TAG OPERAND

The system thus provides for the contingency of addi­
tions to the program without the necessity of re­
locating either instructions or data.

The source program cards become input to the
processor and are acted on as data to produce an ob­
ject program as output (Figure 131).

Macro-instructions

The preceding example illustrates one direct method
of overcoming the language barrier between the com­
puter and its user. As a result, the program is writ­
ten in terms more readily learned and understood by
the programmer. At the same time, much clerical
work of program preparation is accomplished by the
processor. Some auditing functions are also performed
by the processor, thereby reducing the occurrence of
many common errors and making easier the task of
testing and de-bugging the operation of the object
program.

However, when the preceding system is used, the
programmer writes all of the detailed computer steps.
And, even though there are many advantages with this
method, he must furnish all instruction on a one-for­
one basis. For one instruction written in the symbolic
language, the processor will produce only one instruc­
tion in machine coding.

Now note that, in the Autocoder example in Figure
129, there are actually two kinds of statements in the
source program. These are: first, the instructions to

1\ COMMENTS IDENTI FICATION

I l
I I COMMENTS

00 000 0000000000 00000 00 o 0 0 0 0 0 0 0 0 010 0 0 0 0 0 000000000000000000000000000000000000 000000
1 2 3 4 5 I 1 • 9 101112131415 1111111120 2122 nN~av~a.~~~~~.~a ~~~~u~~~~aG~M~"M~~~~9.~uaM~.VAnnnnn~ 151117111910

~ 11 111 1111111111 11111 11 1111111111:111111 111111111111111111111111111111111111 111111
I

~ 22 222 2222222222 22222 22 2222222222:222222 222·222222222222222222222222222222222 222222

j33
I

333 3333333333 33333 33 3 3 3 3 3 3 3 3 3 313 3 3 3 3 3 333333333333333333333333333333333333 333333
I

~44 444 4444444444 44444 44 4 4 4 4 4 4 4 4 4 4: 4 4 4 4 4 4 444444444444444444444444444444444444 444444 ..
~ 55

I
555 5555555555 55555 55 5 5 5 5 5 5 5 5 5 5:5 5 5 5 5 5 555555555555555555555555555555555555 555555

I

66 666 6666666666 66666 66 6 6 6 6 6 6 6 6 6 6: 6 6 6 6 6 6 666666666666666666666666666666666666 666666
I

71 717 7177177717 7177 7 71 77 7 7 7 77 7 77177 7 7 7 7 777 77 7 77 7 17 7 7 77 7 7 7 77 7 77 7 7 7 7 71 7 7 7 7 7 71 777171
I
I

88 888 8888888888 888 8 8 8.8 8 8 8 8 8 8 8 8 8 8: 88 888888
1 2 3 4 5 I • I 101112131415 1611111920 2122 n24 ~ 26V2I29 .313233 ~~ .31 a ~40·.''I243·#1548-4141G ~51"5253 M5551 ~5& .~ 6211311495 66 6 68 6810n 121314 151117111910

PAGE LINE TAG OPERATION NUM OPERAND COMMENTS IDENTIFICATION

.... 893094

Figure 130. Autocoder Instruction Card

78 IBM Data Processing Systems

Figure 131. Autocoder Processor

be converted to an object program (SEL, RD, ADD, and
so on); and, second, the instructions directed only to
the processor. The next step to increase the effective­
ness of the programming system involves enlarging the
functions of the processor.

Many phases of procedures are duplicated or are
repetitious. For example, all programs require rou­
tines to read and write records, to check for errors,
and to perform the standard calculations of arithmetic.
Many procedures can also use standard methods of
scaling values, performing floating point arithmetic,
and converting data from one form to another.

Many of these common routines can be included in
a table, file, or library that is available to the processor.
The programmer then instructs the processor to select
an appropriate routine from the library and to insert
this routine in his program as needed. The operation
part of library instructions is standard, but the address
must be modified to the location of data as defined by
the source program.

For example, in the IBM 705 and IBM 7080, two com­
puter operations are available which move data from
one location in storage to another. These operations
are called receive and transmit. The address of a re­
ceive instruction specifies the location where the data
are sent; the transmit address specifies the location
from where the data are taken. The amount of data
must also be specified, and the transmission can be
in single storage positions or five positions at a time.
The two machine operations to move data are thus
always the same, but the operand part of the instruc­
tion, produced by the processor, is variable.

To call for library routines or frequently ~sed sets
of instructions, the programmer writes a statement
called a macro-instruction in the source program. The
operation part is the mnemonic name assigned to the
corresponding set of instructions in the library, in this
case MOVE. The operand part of the macro-instruction
names the records or blocks of data to be moved.

The complete macro-instruction is written as fol­
lows:

MOVE WHSE INV tl RECORD I tl

This statement causes the processor to take two ma­
chine coded operations, receive and transmit, from
the library and to supply the correct addresses to form
the required instructions in the object program. The
special punctuation marks tl separate the names or
tags of the two record areas previously defined in the
source program.

With one macro-instruction, the programmer is able
to call out from the library a number of machine in­
structions that are automatically tailored by the proc­
essor to fit his particular program. The programmer
is only required to write his statement according to
the rules of grammer, punctuation, and expression
specified by the programming system.

A library may contain a number of routines or sets
of instructions. Each one is given a mnemonic name
suggesting its function. Each data processing system
developed by IBM is furnished with a library of such
routines and a description of their functions. Provision
is also made to add to or delete from the library mate­
rial as required by the user.

Programming Systems 79

The use of macro-instructions provides all types of
programming systems with a number of significant ad­
vantages.

1. The source program may be written on a one­
for-many basis. Single statements in the source pro­
gram produce many machine coded instructions in the
object program.

2. Macro-instructions relieve the programmer of
some clerical work and eliminate the need for rewrit­
ing repetitious routines each time they occur in a pro­
gram.

3. Program errors are reduced because, if the pro­
grammer writes the macro-instruction according to the
rules of the system, he is assured that the resulting
machine coded instructions are correct.

4. The programmer requires less knowledge of de­
tailed computer operation. Instead, he needs to know
the functions of the macro-instructions available to
him. He is not necessarily required to completely un­
derstand the resulting machine coding. This is an im­
portant aspect of training and educational require­
ments for the programmer.

Program Compilers

So far, the functions of the programming system have
been shown to involve mainly translation and assem­
bly. A processor may also perform additional func­
tions, specifically those of compiling the object pro­
gram in the most efficient manner.

In the example shown in Figure 127, the operation
is one of moving entire records from an input area
to a grouped output area. However, when individual
fields within a record area are to be moved, several
other considerations may arise. Two examples fol­
low:

1. A customer's bill for the consumption of product
must show the amount used. This information enters
the computer as a signed numeric field understood
to contain two decimal places. This usage amount is
to be printed in the customer's bill record with one
decimal place. Therefore, the quantity is to be rounded
to the nearest tenth of a unit. In this case, the data
must be moved from the incoming record storage area
to a register or accumulator where an arithmetic oper­
ation of rounding is done. The adjusted field is then
stored in the output area in such a way that a decimal
point appears between the units and tens position of
the amount field for printing.

The programmer describes the input area by pre­
ceding a series of statements to that effect by an RCD

80 IBM Data Processing Systems

entry in the same manner as in Figure 128. One of the
statements describes the usage amount with the tag
USE AMOUNT, and shows the length, sign, and under­
stood decimal position within the field as follows:

TAG

USE AMOUNT

NUM

6

OPERAND

+ XXXX.XX

The amount field of the output record is described
in similar fashion after an entry called RPT. This entry
signifies to the processor that following statements
are to appear in printed form with decimal points,
commas, and other special characters as indicated. The
output use field IS written in the source program as
follows:

TAG

BILL USE

NUM

7

OPERAND

XXXX.X

The length of seven positions refers to the total
number of spaces required on the bill to print the
usage amount. The position of the decimal point is
shown in the operand column.

To prepare the amount field for printing, the pro­
grammer writes the macro-instruction MOVE as:

OPER

MOVE

OPERAND

USE AMOUNT J:l BILL USE J:l

From the information given the processor, the fol­
lowing machine coded instructions are produced:

RAD USE AMOUNT
RND
SPR BILL USE

In the IBM 705 or 7080, these instructions reset and
add the signed use field into the accumulator, round
the amount one position, and place the amount in the
output area for printing with a decimal point char­
acter in the proper space. From the information sup­
plied the processor in the source program, the instruc­
tions that carry out the programmer's intent are com­
piled.

2. In producing a report of delinquent accounts, it
is required to print the total cash amount outstand­
ing. This amount has been computed and stored in
a master record pertaining to the account in question.
It is a seven-digit signed field representing a cash
amount in tens of thousands of dollars. The delin­
quency report is to be printed in dollars and cents
with a floating dollar sign. A comma should appear
if the amount exceeds $999.99. The field as it appears
in the master record is tagged TOTOUTSTND and is de­
fined as an RCD, as follows:

TAG

TOTOUTSTND

NUM

7

OPERAND

+XXXXX.XX

The output format is defined as an RPT with two
decimal places, a comma following the thousands po-

sitions, and a floating dollar sign symbol. It is tagged
DELAMT as follows:

TAG

DELAMT

OPER NUM OPERAND

RPT 11 $XX, XXX. XXn$n

To move the delinquent amount field from the
master record to the output report area, the program­
mer writes:

OPER

MOVE

OPERAND

TOTOUTSTND nDELAMT n

The processor generates the following 705 machine
coded instructions:

RAD TOTOUTSTND
RCVS DELAMT
TMTS #'#
SPR L, DELAMT
RCVS PRTST
TSL PRTST

In addition, certain constant factors are supplied
to place the dollar sign. Because the above instruc­
tions are peculiar to the 705, the detailed operation
involved is not explained. They are shown merely
as an example of the enlarged functions of a processor
in producing a series of complete, detailed machine
instructions from a single macro-instruction. In the
705, the object progam would:

a. Place a comma in the proper storage position for
printing.

b. Transfer the data from the master record to the
delinquency report, suppressing leading zeros
and deleting the comma if the amount is less
than $999.99.

c. Place the dollar sign adjacent to the first signifi­
cant digit of the report field.

Program Package

A number of other developments advance the concept
of placing additional functions of detailed program
writing with the system processor. One of these devel­
opments is the input-output package.

The package is a series of program routines avail­
able to the processor. When these routines are in­
cluded in the object program, they handle all opera­
tions of some type of input-output device. The pro­
grammer calls for these routines by writing descrip­
tive statements in the source program. The language
of these statements then becomes a portion of the
complete language of the programming system.

The use of a package eliminates much time and
effort formerly required for machine-oriented pro-

gramming (programming which must consider specific
machine operations in detail). Instead, the effective­
ness of the programming staff can be improved by
permitting it to utilize a greater portion of its time
and effort for installing programs which are oriented
to the over-all application of the computer - for ex­
ample, inventory control, billing operations, and the
like. The programmer can best devote the major part
of his effort to procedural rather than machine tech­
niques.

An input-output package designed for handling
magnetic tape units would place the following func­
tions under direction of the processor:

1. Input-Output Housekeeping. This function in­
cludes resetting and rewinding magnetic tape units
and determining if the proper units are attached to
the system at operating time.

2. Label Handling. Normally, magnetic tape files
have standard labels which precede the file data on
each reel of tape. Labels are checked during the
operating procedure to determine if files called for by
the program are on the assigned tape units. Labels
also include provision for dating the files, counting
the number of records, and other controls that estab­
lish efficiency in handling tape records.

3. Scheduling Data Flow. When multiple input
and output units are used, this function may overlap
the operations of reading and writing with computing.
The flow of data into and out of the system must be
scheduled for optimum efficiency.

4. Execution of Input-Output Operation. These
are the actual operations of reading and writing.

5. Error Detection and Correction. The package
includes standard routines for checking all possible
error conditions and correcting them, if possible.

6. End-of-file Procedures. These procedures provide
for rewinding tapes, typing messages to indicate the
completion of a job, reel changes, recording controls,
and other information.

7. Record the Contents of Main Storage and Re­
start. These functions include procedures that allow
the system to restart with a minimum of lost time if an
error or other unplanned condition arises. The pro­
cedure can also be checked at predetermined inter­
vals.

8. Blocking and Deblocking of Tape Records.
Many magnetic tape files are written with several rec­
ords grouped between inter-record gaps. Provision
may be included in the input-output package to
facilitate the handling of such grouped records and
to reassemble the records into some other specified
output grouping as required.

Programming Systems 81

The package can also include routines that control
input-output devices other than magnetic tape units.
The features of the package would be similar to the
example.

Use of these common routines encourages the estab­
lishment of programming and operating standards.
The advantages of standard methods are significant,
especially because they allow programmers to com­
municate more easily with each other. This is par­
ticularly important during testing phases of programs
when testing is carried out by persons other than those
who have written the source program. Standard meth­
ods enable the machine operator to become familiar
with conditions that mean the same in every program.

Other packages accomplish additional procedural
functions. These include report writing, file mainte­
nance, decision-making, and miscellaneous computing
routines.

The statements in the source program which call
for the packaged routines are written in the language
of the programming system. The action of the proc­
essor is broadened and enlarged to translate this lan­
guage. The processor now does much more than trans­
late. It determines the intent of the programmer and
assembles, compiles, and generates the necessary in­
structions to complete the object program.

The organization of the programming system with
packaged routines is shown in Figure 132. The inter­
pretation and adaptation of the packaged routines
normally takes place in a separate stage of the process­
ing run. The routines are first translated by the proc­
essor to one-for-one symbolic statements and are then

pn----i~---i~ Making
Statements

Input­
Output
Statements

Figure 132. Stages of Program Conversion with Packaged Routines

82 IBM Data Processing Systems

assembled to machine coded instructions. Other inter­
mediate stages of preparation may be carried out by
the processor; for example, the packaged routines may
include macro-instructions which in turn are made up
of detailed instructions either in machine coded or
symbolic form.

Fortran

Programming systems now in advanced stages of de­
velopment and operation almost completely remove
the programmer from any consideration of the actual
characteristics of the computer, except for a general
knowledge of machine operating principles and the
types of input and output that can be handled. One
outstanding system, produced through the combined
efforts of IBM and its customers, is Fortran (Mathe­
matical Formula Translation System).

Source programs in this system are written in the
Fortran language, which closely resembles the ordi­
nary language of mathematics. Processors have been
developed to produce object programs for the IBM 650,
704, 709, 705, 7080, and 7070 Data Processing Systems.

The Fortran language is intended to allow expres­
sion of any problem of numerical computation. In
particular, problems containing large sets of formulas
and many variables can be dealt with easily. The
language of Fortran may be expanded by the use of
subprograms in much the same manner as previously
explained for packaged routines. These subprograms
may also be written in Fortran language, and may be

Program
Assembly

called for by the other Fortran programs and subpro­
grams. Thus, the language may be expanded by this
use of subprograms to any desired depth.

Because Fortran is primarily intended for problems
which have a numeric meaning, the language is less
satisfactory for the commercial-type problem. Never­
theless, many logical operations which cannot be di­
rectly expressed in Fortran can be carried out by in­
corporating suitable library routines for this purpose.

Figure 133 is a flow diagram of a part of a typical
invoice preparation problem, including computation
of gross amount, net amount, and discount and the
writing of each item on a separate line. Figure 134
shows the same problem written as Fortran statements.

This system of language represents an import­
ant step in the development of universal languages
which may be easily understood by both man and
machine.

EXTEND EACH ITEM ON INVOICE; ACCUMULATE GROSS;
CALCULATE NET FOR TOTAL INVOICE; WRITE INVOICE

Read New
.------.....t Invoice Item

=I Compute Gross

Compute Item Replace Old Invoice
Cost.Accumulatel~---fNo. & Rate with New

Gross No. & Rate

Figure 133. Invoice Preparation

Sort Programs

In addition to the common functions that appear
within many different procedures, there are also cer­
tain complete procedures which must be carried out in
all data processing installations. These may be stand­
ardized by type of machine system and basic applica­
tion.

For example, the operation of sorting tape files oc­
cupies a large percentage of computer time in any

READ 1, INVNEW, DSTNEW, IQUANT,
IF (lNVPRE) 15, 30, 15
IF (lNVNEW-INVPRE) 20, 30, 20
CSTNEW = DSTPRE * GRSCST'
PRINT 2
PRINT 3, INVPRE, GRSCST, DSTPRE, CSTNEr
GRSCST=.O.

30 QUANT = IQUANT
GRSCST = GRSCST - QUANT * UNICST
INVPRE = INVNEW
DSTPRE = DST NEW
GO TO 10

1 FORMAT (18, F15.2, 18, F15.2)
2 FORMAT (45H b PREY. bINV.bbGROSSbCOSTbbPREV.bDSCbbNETbCOST)
3 FORMAT (18, F13.2, FIO.2, F13.2)

Figure 134. Fortran Statement

application where records are processed sequentially.
Incoming records must be arranged to conform to the
order of other existing files with which they are to be
merged or compared. Output data may be written in
one sequence to produce a required tabulation or re­
port, but must be sorted in another sequence for other
reports or for further processing .

Because the primary input and output of any com­
puter is magnetic tape, a number of generalized pro­
grams have been developed by IBM to sort tape records.
Such a program is generalized in that it is capable
of modifying itself according to the given specifica­
tions of the records to be sorted. The program can
thus perform a large variety of sort applications on
the system for which it is designed.

A typical sort program accepts either single or
blocked fixed-length records or single variable-length
records. The sorted output may also be either single
or blocked fixed-length records or single variable­
length records. The characteristics of records in the
file are usually specified by the operator on a punched
control card. These characteristics include length and
location of control data fields within the record, record
length, and input and output blocking. The card can
also specify characteristics of the sorting procedure
itself, such as input and output units to be used, pro­
vision for file labels, and internal storage available
to the sort.

Generalized sort programs also include provision for
check point, restart, and interruption procedures.
Hash totals, record counts, and sequence checks are
provided to verify the accuracy of processing.

These programs are designed to achieve maximum
system efficiency, using simultaneous reading and writ­
ing whenever possible and the best internal record
grouping according to the available capacity of stor­
age.

Programming Systems :83

Utility Programs

Utility programs involve certain functions common
to all data processing applications. These functions
include the program controlled operations that in­
volve loading programs into storage, tracing errors,
recording the contents of storage, and soon.

Standard loading programs, for example, have been
written for all types of computers. The program card
precedes the operating program and arranges the in­
structions in storage in the sequence specified by the
programmer. The load program is usually punched
in one or more cards at the beginning of the program
deck or it may precede the operating program on tape.
The load program is placed in specified areas of stor­
age by manual instructions from the console or by
depressing a load key. The machine is reset to the
first instruction and automatic operation begins. This
operation remains under control of the load program.

84 IBM Data Processing Systems

Instructions of the operating program are read and
placed in storage. Operation continues until the com­
plete operating program and constants or other data
are loaded.

When the operating program is completely loaded,
control of the machine is automatically transferred
from the load program, and reading of input data can
begin. Automatic operation continues until all data
are processed or operation is halted by instruction.

If the processing operation is interrupted it may be
necessary to record the contents of storage. A storage
print-out utility program can be used for this purpose.
This recording ability is particularly desirable in a
testing operation when the machine is halted by a pro­
gram error. Analysis of the printed contents of storage
is useful in determining the cause of error.

Other utility programs developed by IBM and its
customers are available as an aid to system operation.

A data processing procedure must include two main
areas of activity: accomplishment of the desired re­
sult and control of the procedure itself. Complete
controls are far broader than the checks designed to
supervise the quality of work produced by the com­
puter system. These controls must also consider the
entire application and its importance in a business or
scientific endeavor.

Methods must be devised to control the flow of
information into and out of the data processing sys­
tem and to assure that all information received is
correctly included in the required results. In addi­
tion, should omission or duplication occur, methods
must be devised to establish an audit trail without
completely retracing an entire procedure.

In general, the control procedures differ markedly
between business applications and engineering, statis­
tical, scientific, or mathematical applications. In the
latter applications, the principal control is exercised
on the accuracy and range of calculation only and,
while control of data must also be strict, the require­
ments of auditing are usually simple or nonexistent.

On the other hand, the records of a business are
the property of its stockholders and, as such, they
must be available for both external and internal audit­
ing. The records must also be protected from the
possibility of fraudulent practices and must legally
conform to tax structures, public service codes, and
other local and regional restrictions. In many busi­
nesses, the method of recordkeeping directly affects
relations with customers, and files must be accessible
for inquiries and account status, position of inven­
tory, availability of services, and so on. It is the area
of business practices with which the following discus­
sion is primarily concerned.

In any application, however, the purposes of the
over-all procedure control are to:

1. Assure that data entering the computer are
accurate.

2. Check clerical handling of data before they
reach the computer to assure that the data are
complete and not duplicated.

3. Arrange data in the form best suited for eco­
nomical use by the computer.

4. Provide a means of auditing the steps of the
complete procedure so that, in the event of
error or inconsistency, the trouble may be lo­
cated with minimum lost time.

Procedure Control

5. Assure that accounting for tax purposes or other
legal requirements is carried out according to
law.

6. Guard against fraudulent practices that may
affect the financial standing or reputation of the
business.

Control Groups

The data processing center is usually a service unit.
It receives information to be processed, perhaps in
the form of punched cards, from outside sources,
makes the necessary calculations, and produces the
necessary reports. The center, as a rule, originates no
information but is concerned only with data sent to it.
Under these circumstances, it is possible to establish
controls over the employees of the center and to pre­
vent fraudulent or inaccurate handling. These con­
trols are usually delegated to some group, either
organized within the center or closely associated with
it for this purpose.

CONTROL OF PAYROLL DATA

One large company computing its payroll with an
electronic installation established an office known as
the payroll bureau. All changes in payroll data - such
as rate changes, new employees hired, terminations,
"and changes in 25 types of pay deductions - are routed
through this bureau. The changes are indicated on
an authorization form, prepared in duplicate in the
originating department.

The original approved copy of this document is
forwarded to the payroll bureau. In the bureau, the
change authorization forms are grouped by type of
pay data affected. Adding machine totals of numeric
fields are accumulated, regardless of whether these
fields represent dollar information or identification;
in the case of new employees or terminations, the
number of employees affected is also included in these
control totals. Cards are then punched and key veri­
fied for input to the computer.

The totals of the changes are accumulated weekly
from the cards on a conventional punched card
accounting machine. These totals are checked with
the adding machine totals previously prepared. Dur­
ing one of the computer runs, normal pay and pay
deductions are calculated. This sum is sent to the
payroll bureau where the totals are compared with
those previously recorded. This control over payroll

Procedure Control 85

changes not only incidentally checks the operation of
the data processing system but also checks the clerical
handling and accumulation of information as it enters
the system.

CONTROL OF SALES DATA

Procedures can be controlled to assure the best rela­
tions with customers. One example of this control is
supervision of the company's price structure for the
commodities or services it sells. Here, a control group
might be established to compute amounts to be
charged to a customer.

In many organizations, for example, the sales de­
partment has discretion over the prices that ,customers
are charged. However, deviations from established
prices may occur because of allowances for defective
merchandise or because of special situations. The
function of the control group is to see that all excep­
tions from the official price list are investigated and
can be explained. The computer is used to report
these exceptions.

The identification code of merchandise shipped and
the code number of the cUstomers are entered into
the computer, along with: special notification if the
sales price differs from that shown in the master price
file. The computer prices all shipments, except those
for which it has special notification, at the master
price rate and follows special instructions for the
exceptions. When the output tape that will eve~tually
print the invoices is produced, a special listing is
made of all shipments· that have been calculated at
other than master file prices. The listing is foq.va;qed
to the control group for investigation. . . ,., : j

The control group may have other control func­
tions that relate to the contents of the master files.
An electronic system differs significantly from a man­
ual system in the method of referring to the author­
ized selling price information. Where invoices are
computed by billing clerks, it is reasonable to assume
that, while individual clerical errors may occur, orig­
inal price information is accurate. This is so because,
as a rule, the clerks use an identical, up-to-date price
list.

In the computer system, on the other hand, the
prices are inserted from a master price tape and refer­
ence is made to this tape by the machine in determin­
ing the billing price. Therefore, if an error is made
in the price of a particular product as recorded on the
master tape, this error is reflected in the billings for
all customers purchasing this item. Therefore, the
contents of this master file must be strictly controlled.

Changes to the file may be made during a special
run by the computer. Price changes are inserted and

86 IBM Data'Pmcessing Systems

a change register is produced. A copy of the change
register is forwarded to the control group where it
can be examined in detail. From time to time, the
master tape can be used to prepare a complete print­
out of portions or all of the product master files. It
may also be used, if descriptive information is present,
to prepare a price catalog.

Similar controls can be established to make certain
that shipment is made only to customers of acceptable
credit standing. This control can be established by a
customer master file that is used to extract the proper
shipping and billing addresses and to carry the ap­
proved credit limits. By proper control, it can be
determined that shipments are made only to cus­
tomers whose credit standing is approved by the
credit department. Companies doing business with
franchised dealers can use this procedure to detect
shipments to unauthorized dealers, because the
absence of a name in the customer master file im­
mediately prevents invoice preparation.

Systems Checks

Systems checks are designed to control the over-all
operation of a procedure within the computer system.
They insure that all required data are received for
processing and that all data leaving the system are
complete and accurate.

Systems checks may include controls to insure that
all input records are in file for a current .processing
period and that incorrect or unrelated records are
excluded. These checks may also verify the distribu­
tion of detail transactions to update records when
such distribution is made by coding. Systems checks
may be devised for factors developed during calcula­
tion to compare this logical or reasonable relationship
with other known factors. Crossfooting totals is a
commonly used systems check to prove calculation or
accumulation of quantities and values.

The types of of systems checks vary with each
application of the computer and with the kind of
equipment used. Particular attention should be paid
to including systems checks during the early stages of
application planning, because such controls can be
most effectively fitted into the program at that time.
It is sometimes advisable to modify the procedure to
include the most efficient controls; this is usually far
less costly than designing a procedure without re­
quired controls.

Many commercial procedures require strict account­
ing control with provision for audit trails. This re­
quired control means that the program must be de­
signed to take full advantage of the high reliability

built into the data processing system. To meet the
requirements of efficient operation of the entire sys­
tem, this control also means that the trouble can be
localized quickly in case of error, without retracing
the entire procedure or reprocessing all records.

In some machines, built-in checking features make
detailed systems checks unnecessary. In others, data
manipulation in the central processing unit is less
stringently checked, particularly where elaborate
checking circuitry would materially increase the cost
of the system without a proportionate increase in
accuracy.

Checking is a form of quality control. It follows
that, when some percentage of error can be tolerated,
checks may be used more sparingly. Some typical
systems checks follow.

Record Count

A record count is a tally of the number of records in
a file. The count is normally established when the
file is assembled. In the case of magnetic tape, this
count would be established when the file is written.

The total number of records is carried as a control
total at the end of the file or reel and is adjusted
whenever records are added or deleted. Each time the
file is processed, the records are re-counted, and the
quantity is balanced against the original or adjusted
total. If the re-count agrees with the control total, it
is accepted as proof that all records have been run.

Record counts may also be established by batches.
This is desirable when source data are to be put into
the procedure for the first time.

Although the record count is useful as a proof of·
processing, it is difficult to determine the cause of
error if the controls are out of balance. A failure to
balance does not help to locate a missing record nor
does it indicate which record has been processed more
than once. Therefore, some provision must be made
to check the file against the source records, a dupli­
cate file, or a listing known to contain the proper
number of records.

An incorrect record count usually indicates a ma­
chine failure when tape records are being processed
because, once written on the tape correctly, records
cannot be misplaced or lost. In this case, the doubt­
ful portion of the file should be rerun for correction.

Control Total

The control total may be made up from amount or
quantity fields in a group of records. It is accumu­
lated manually or by machine when the file is
originated or when a quantity is first calculated. The

control total can be either a grand total or more con­
venient intermediate or minor totals.

When the file or group of records is processed, the
fields are again accumulated and balanced against the
control total. If the total is in balance, it serves as
proof of processing all records correctly.

The control total is an efficient systems check when
it can be used to predetermine the results of calcula­
tion or the updating of some record. For example,
when preparing to process a payroll, the total number
of hours worked by all employees is pre-established
from clock or job-card records. This figure then be­
comes the control total for payroll hours for all sub­
sequent reports. Totals may be broken down by
group or department. The sum of all totals must
balance back to the complete original total.

Control totals are normally established for batches
of convenient size, such as department, location, ac­
count, or division. By this method, each group of
records may be balanced as it is processed. Corrective
action, if needed, is limited to small, easily checked
groups rather than to one grand total.

Proof Figures

Proof figures may be used to check an important mul­
tiplication in a procedure. As such a check, the proof
figure becomes both a systems check and a check on
the operation of the computer. The proof figure is
usually additional information carried in the record.

An example of the proof figure is the multiplication
of quantity by unit cost. The check is based on the
relationship between actual unit cost and a so-called
proof cost. An arbitrary fixed figure (Z) larger than
any normal cost is set up. (If a cost range for all prod­
ucts in a given file is from $.50 to $10.95, Z might
equal $11.00.) Proof cost is the remainder when cost
is subtracted from Z, or proof cost may be expressed
by the formula:

Cost + Proof Cost = Z

Proof cost is carried as an extra factor in each rec­
ord. Z is a constant which can be placed in storage
for use when the proof figure is calculated.

Whenever quantity is multiplied by cost, it is also
multiplied by proof cost. Normally, the factors ac­
cumulated during processing are quantity, quantity
X cost, and quantity X proof cost. At any point, it is
possible to check the sums (l) of all factors accumu­
lated up to this point as follows:

l (Qty X Cost) + l (Qty X Proof Cost)
l (Qty X Z)

The left side of the equation can be calculated by
a single addition of the two progressive totals that

Procedure Control 87

have been accumulated during the procedure. The
right side of the equation can be calculated by a
multiplication of the accumulated quantity and the
constant factor Z. This check insures that each par­
ticular multiplication was performed correctly.

This type of proof figure can be applied to other
applications by using the same general approach.

Limit Check

A limit check is a test of record fields or programmed
totals to establish whether certain predetermined
limits have been exceeded. For example, if trans­
action codes for certain records are known to cover
only the digits 0 through 5, a check can be pro­
grammed to see that no code exceeds the limit 5.

A second type of limit check assures that calculated
totals are reasonable. Some quantities or values in a
procedure never vary more than a given percentage
between processing periods.

Payroll procedures often contain many limiting fac­
tors that can be checked by the program. The upper
limit of gross pay is usually determined by the type
of payroll: hourly, salary, piece rate, incentive, and
so on. Hourly rates must fall within established wage
scales. The total number of hours worked per em­
ployee is also subject to certain limits.

Limit checks may also be used in table look-up
procedures. If an item is known to be in a given table
in storage, the modified table address may be checked
against the address of the upper table limit to verify
correctness of the search. If the search begins to ex­
ceed the limits of the table, an error has occurred and
corrective action is required.

In many mathematical problems, the range of the
final calculation can generally be estimated. If a result
falls outside this reasonable range, it may be assumed
that some error condition is present, either in the
data, in the program, or in the calculation. Departures
from normal trends may also indicate faulty pro­
cedures. The simple application of a limit check in
such problems may save much detailed checking, with
consequent simplification of the program.

Crossfooting Checks

Crossfooting checks may be used to check known con­
trol totals, or they may serve as proof totals originated
during a procedure. For example, during the process­
ing of employee records in a payroll, calculations de­
velop amounts of gross pay, taxes, deductions, and net
pay. Normally these amounts are accumulated by
department or other convenient batch controls. The

88 IBM Data PTocessing Systems

totals of gross pay at any point should be equal to the
totals of net pay, deductions, and taxes.

Tape Label

File identification recorded at the beginning of a reel
of magnetic tape is called a tape label. The label
may specify the job total and/or number, date of last
processing, number of the reel, and so on. A label
may also be placed at the end of the file or reel.

The labels are read into storage at the beginning
and end of the program as an added control that the
proper records have been processed. The label may
also insure a true end-of-file or end-of-job and may
also include a record count.

Housekeeping Checks

The first instructions of nearly every program are in­
tended to perform functions of housekeeping in prep­
aration for processing. These instructions may set pro­
gram switches, clear accumulators or registers, set up
print areas, move constants, and so on. In addition,
housekeeping instructions may perform systems checks
by testing to determine if all input-output units re­
quired by the main program are attached to the sys­
tem and ready for operation. File labels may be
checked and up-dated, constant factors may be cal­
culated, and other information pertinent to the proper
operation of the system may be called to the operator's
attention by programmed instructions.

Check Point and Restart

A check point procedure is a programmed checking
routine performed at specific processing intervals or
check points. Its purpose is to determine that process­
ing has been performed correctly up to some desig­
nated point. If processing is correct, the status of the
machine is recorded, usually by writing this informa­
tion on a tape. The normal procedure is then con­
tinued until the next check point is reached.

Check point procedures have the effect of breaking
up a long job into a series of small ones. Each portion
of the work is run as a separate and independent part
and each part is checked after it is completed. If the
check is correct, enough information is written out to
make it possible to return to this last point automati­
cally. If not, the portion of work just completed in­
correctly is discarded and the system restarts from the
last point at which the work is known to be correct.
A restart procedure:

1. Backs up the entire computer system to the
specified point in the procedure, usually to a check

point. Tape files are backspaced or rewound; card
units and printers must be adjusted manually.

2. Restores the storage of the computer to its status
at the preceding check point. This may include the
adjustment of accumulated totals, reloading the pro­
gram itself, re-establishing switches and counters, re­
storing constant factors and so on.

The proper use of check point and restart proce­
dures in a program contributes to over-all operating
efficiency of a computer system. In the event of power
failure or serious machine malfunction, they provide
a means of rerunning only a small part of a job
without having to rework an entire job. This may
mean a saving of many hours of machine time.

Restart procedures also allow interruption of a
given job for the scheduling of other jobs that need
immediate or emergency attention. Thus, any pro­
cedure may be interrupted intentionally by the opera­
tor and replaced with another job when necessary.
Provision for restart is also convenient at the end of
a shift or other work period when the operation of a
job must be terminated without loss of production
time. Restart procedures also provide interruption of
machine operation for emergency repairs or unsched­
uled maintenance.

Machine Checking

Procedures perform two functions. First, they accom­
plish useful work; second, they control quality and
accuracy of the work.

In the data processing procedure, useful work con­
sists of operations such as sorting, calculating, collat­
ing, reading, and printing. Control operations are
necessary to establish and maintain accounting con­
trols, calculation checks, and machine checks. The

programmer can use these checking devices at his own
discretion. Basically, two types of checks may be writ­
ten:

1. Checks on the validity of data handled by the
input-output units.

2. Checks on the handling of data within the com­
puter, including checking for legitimate instruction
code, arithmetic overflow, valid signs of numeric quan­
tities, and other check indicators.

In many cases, it is not necessary to interrupt ma­
chine operation (to halt the computer) when an error
condition is detected. The programmer may insert
special transfer or branch instructions designed to
handle certain types of errors as exceptions. An error
in reading a record from tape, for example, may be
programmed to backspace the tape and reread the
record. If a correct reading is obtained the second
time, normal operation continues. If the error persists,
operation can be interrupted or the incorrect record
can be noted and operation continued.

In some systems, the error indicator initiates a special
routine that places the computer under control of a
repair subroutine, accomplishes the program repair,
and then proceeds back to the main program for con­
tinued processing. This operation is completely auto­
matic.

In other systems, appropriate testing instructions ac­
complish the same end result. In all systems, however,
the interrogation or interruption is under the pro­
grammer's control and discretion.

Some machine check indicators, however, stop all
processing immediately. This type of indicator in­
cludes such conditions as: a blown fuse in the com­
puter, air or humidity conditions exceeding prescribed
limits, broken magnetic tape, or a card jam in card
equipment. All of these cases must be brought to the
operator's attention immediately and, therefore, they
cause the computer to halt.

Procedure Control 89

Appendix

Business Practices

Business needs a tremendous amount and variety of
information to operate effectively. The business with
the best communications system has a distinct advan­
tage over its competitors. As the pace of business
quickens, it is imperative that time lags between an
event and its appearance in a useful report be mini­
mized. In addition to reporting speed, the arrange­
ment of information must permit rapid pinpointing of
areas requiring attention.

Reporting past events, however, is not enough. New
techniques, which permit data to be used more and
more as a management tool for policy planning, are
gaining importance as business competition intensifies.

This section outlines areas of business where data
processing systems have been profitably used.

Within each category of business (Figure A), it is
difficult to find two organizations doing business
exactly the same way. Because a business is an organi­
zation of people, perfect coincidence of methods of
operation between two companies is improbable.

Types of Business
Utilities

Those companies concerned with providing widespread,
essential products and services direct to a large-scale con­
sumer market-electric, gas, and water utilities; telephone
companies.

Institutions
Non-profit organizations of a public nature such as educa­
tion, medical, and religious.

Financial Organizations
Banks
Brokerage Houses
Investment Funds

Insurance
Life
Fire and Casualty
Medical
Auto
General

Manufacturing

Construction

Figure A. Types of Business

90 IBM Data Processing Systems

Each business has terms of the trade which mean
nothing to another. For example, a procedure descrip­
tion in the textile industry reads: "The daily warp
status report is prepared on the accounting machine
showing the number of looms mounted, warps drawn,
warps drawing, warp not drawn (spread by top and
bottom beams) and number of warps slashing."

Examples of this kind of jargon are found in any
of the 15 business categories listed. But, while the dif­
ferences are endless, the similarities are also numerous
- and much more meaningful. Some of the common
ones that may be profitably adapted to modern data
processing methods are outlined in the applications
that follow.

General Application Areas

SALES

Sales are of vital importance to any business. Prompt,
concise, useful reports are essential. Some of these
reports are:

1. Comparative Sales Volume by product, by cus­
tomer, by area, by salesman, or by any other desired

Transportation
Rail
Air
Automotive and Motor Freight
Ship

Distribution
Organizations concerned with high volume distribution of
goods received in bulk.

Textile and Clothing Industries

Local, State, and Federal Governments

Agriculture

Entertainment
Radio
Television
Movies
Sports
Resorts

Publications

Advertising

Retail

breakdown. Figures have meaning when immediate
comparison is given for sales this month to this month
last year, for example.

2. Commission Statements detail sales force earn­
ings and are part of the total sales expense report.

3. Returns by Product pinpoints defective products
so that corrective action may be taken.

4. Cost of Sales reveals the profit margin of a prod­
uct. Some of the required records in sales accounting
are:

a. Cumulative sales for a period - year-to-date sales
by product, customer, salesman, district, and so
on.

h. Commission records.
c. Other sales expenses - advertising, meetings,

travel, and so on.
d. Current transaction information - orders, ad­

justments, returns, and so on.
5. Sales Forecasts affect production scheduling,

financial requirements, and so on.

BILLING

A bill describes goods or services, prices, commodity
numbers, customer information, and amounts; it is
the source of many entries throughout the accounting
structure of the business. The items on the bill appear
in subsequent sales reports; the amount of the bill is
added to accounts receivable; the items are deducted
from inventory; and tax records are affected by tax cal­
culations shown.

Pressure to produce bills on time is constant in any
business because payment usually depends on receipt
of a bill. Billing records include:

1. Customer identification and credit rating.

2. Tax information.

3. Item descriptions, codes, prices, discounts.

4. Type of service, rate structures, expiration dates.

5. Other data: method of shipment, terms of pay­
ment.

ACCOUNTS RECEIVABLE

Accounts receivable are the money due a company for
goods and services rendered to its customers. The ac­
counts receivable application records indebtedness and
payments; a goal is fast collections so that the money
may be more rapidly put to work.

The initiating records are the bills or invoices and
sales adjustment data. Required records are:

1. Customer statistics and credit ratings.

2. Accounts accumulated to show past due or aged
breakdowns.

3. Cash receipts records.

4. Credit memoranda.

5. Accounts receivable registers or ledgers.

Either of two basic types of accounting are prac­
ticed:

Balance Forward. Individual amounts are period­
ically summarized and added to previously summar­
ized figures to give a balance forward lump sum.

Open Item. Each entry to the receivables file is
maintained separately so that a statement to a cus­
tomer will show each item rather than a single sum
for all items prior to a certain date.

INVENTORY AND MATERIAL CONTROL

The accounting for quantity and dollar value of raw
material and finished goods is an essential factor in
cost control and good business operation.

Balance information on material or items is main­
tained by several categories: on hand, on order, req­
uisitioned, returned, allocated. The effect of each
transaction on the balances is reflected in the stock
status report.

Through analysis of the reports, obsolete or slow
moving items are eliminated from stock; material is
ordered with enough lead time to prevent production
slowdown caused by shortages; economical ordering
quantities are considered when ordering stock replen­
ishments to take advantage of price breaks; and the
most efficient use of stock facilities is assured. Records
req uired are:

1. Balances as of a certain date.

2. Code listings of each item by item number, type,
class, and so on, depending on the extent of the
analyses required.

3. Transactions affecting balances.

4. Stock status reports as balances change.

ACCOUNTS PAYABLE

Accounts payable are money owed by a company to its
vendors. The objective of accounts payable records is
to keep account of debts incurred, to discharge those
debts in time to take advantage of term discounts, and
to keep account of expenditures in each area of the
company.

A company's credit rating is established mainly by
the speed with which it pays its bills. A properly func­
tioning accounts payable procedure assures rapid pay­
ment and also highlights expenditures which may
need review. Records required are:

Appendix 91

1. Vendor information: name, address, purchases
from this vendor by item and amount.

2. A file of items due for payment.

3. The payables distributions summary breakdown
for ease of coding at the source.

4. Disbursement vouchers, expense vouchers, and
so on.

5. Incoming invoice registers.

PAYROLL AND LABOR

These accounts cover compensation to employees for
services rendered and distribution of labor costs. Rec­
ords required are:

1. Year-to-date tax and earnings figures.

2. Master employee files.

3. Rate files, if incentive type payroll.

4. Time cards or sheets.

5. Payroll registers.

6. Statements and checks.

7. Payroll distribution reports.

8. Efficiency reports.

MANUFACTURING CONTROL

This title is continually being broadened to cover new
applications. Manufacturing control generally covers
forecasting of machine and labor loads, scheduling
products through a process or scheduling machines to
do the processing, and complete planning for most
efficient production.

Inventory control is tied in because total part and
material requirements resulting from bill of material
breakdowns must be submitted (if 8 flanges are needed
for one frame and 10,000 frames are forecast, 80,000
flanges are needed). Payroll is tied in because labor
requirements are forecast. Accounts payable, sales
forecasts and performance, and plant and equipment
accounting may also tie in to a manufacturing con­
trol application.

Some of the records required are:

1. Bill of materials: a breakdown of a product into
its component parts.

2. Machine capacity figures.

3. Stock status figures.

4. Labor strength.

5. Market forecasts by product.

92 IBM Data Processing Systems

6. Progress reports of each production phase.

7. Shop orders.

The Total Systems Concept

When a system is analyzed for conversion to auto­
mated data processing, illogical boundaries between
applications are sometimes assumed. An area, such as
payroll, is analyzed and systematized without due con­
sideration for the effects that transactions in this area
have on other phases of the business. As other appli­
cations are converted, it becomes difficult to associate
data from each in the most efficient and meaningful
manner for a total presentation of the status of the
business.

If a data processing system is to be most effective,
long range goals and aspirations should be established
in the beginning. A thorough shakedown of current
procedures inevitably reveals weak points, duplica­
tion of effort, or excessive effort with too little return.
Planning starts on firm ground when all the facts are
in. When long range goals are known, application con­
versions may be undertaken with a future tie-in in
mind. Equipment selection at this point may proceed
with a more intelligent appreciation of present capac­
ities and future needs.

Historical Records and the Audit Trail

Record keeping on a "don't throw anything away, we
may need it later" basis is expensive and wastes space.
Historical records, when properly kept, become part
of an audit trail to allow re-creation, on paper, of the
business at a point in time.

Because everything is relative, the present business
picture is further illustrated by comparison with past
records. "Sales this month" means little unless related
to last month, or this month last year, and so on.

An audit trail is used by management more often
than by the auditor. Any time management requests
proof of a report, the audit trail is referenced. A prop­
erly designed data processing system will also satisfy
the auditor's needs.

In its simplest form the audit trail consists of sum­
mary information as of a certain post accounting date
plus all transactions affecting that information up
until the date of the audit. The auditor should be
able to request detail information supporting any ac­
counting entry in question. A formal audit of a com­
pany's books is usually arranged on a cyclical basis.
Because it is physically impossible to examine every­
thing, spot checks are made in each area being audited.
Because the firm being audited does not know the
specific area the auditor will question, it can be as-

sumed that the books are in order if those areas cov­
ered are satisfactory.

The nature of a modern data processing system is
such that information required by an auditor is pre­
sented logically and clearly. The auditor's require­
ments parallel those of a well designed system.

A Modern Management Approach

MANAGEMENT By EXCEPTION

Managers are busy people. They have little time for
routine. The knowledge and judgment justifying the
title of manager are ill used for reviewing normal daily
activity. Characteristic of most management personnel
is an ability to strike through detail to the core of a
problem. A data processing system can assist manage­
ment by selecting only items requiring review. Much
of the detail is eliminated so that judgment is applied
where it is needed with no wasted time.

For management by exception to be effectively em­
ployed, the boundaries marking normal and abnormal
data must be set up when the data processing system
is planned. For example: In a billing and receivables
application, each customer is given a credit limit by
the credit manager. Purchases are charged up to that
limit. Whenever the limit is exceeded, a notice is pro­
duced by the system for the credit manager's attention.
Management by exception thus conserves management
prerogatives. Automatic refusal to approve purchases
beyond the limit could be programmed in the system,
but the consequences of such an inflexible policy
could be ruinous.

MANAGEMENT BY PROJECTION

Shortly after large scale data processing equipment
appeared on the market, (and in a few cases before),
uses beyond the conventional became apparent. Per­
haps the best known of these are simulation tech­
niques.

To simulate something on a computer requires that
the thing to be feigned be well defined. I ts desired
and known characteristics are set down in as much
detail as possible. The variables are then introduced

and altered as often as required to produce a result
closely approximating or exactly matching a pre­
determined objective. This is trial and error at high
speed. A good example is simulation of an airplane
in flight and the effect of design on performance char­
acteristics. The ability to try thousands of design
variations before the plane is even off the ground has
obvious advantages.

Engineering design problems are well . sui ted for
simulation methods because definitions of factors and
variables is fairly precise. When general business prob­
lems are applied, however, the necessity for clear def­
initions and proper weighting of factors requires the
application of management science principles. Here is
where the businessman-mathematician fits.

A company considering the opening of a new
branch in another geographic area may, by simulation,
test many different locations to pick the most advan­
tageous one. Or, internally, a company considering a
new product or a procedure change may test the effect
of the change at each production stage before com­
mitting itself. The potential for application of man­
agement science techniques is growing.

Changes taking place in the data processing field
have far-reaching implications. For one, the trend
toward decentralization may be reversed. With man­
agement science and equipment to match its require­
ments, a centralization of operations and its logical
economies is again practical. Much of the decentrali­
zation of large organizations in recent years occurred
as a result of a negative philosophy imposed by com­
munications breakdowns. It was difficult for manage­
ment to manage because information was hard to ob­
tain due to sheer organizational size. If operations re­
search and management science teams can enlarge
upon the ingenuity they have already demonstrated,
a wealth of useful data will be available. Managerial
responsibilities may then tend to return to the top
level, well informed executive as middle (branch or
divisional) management relinquishes some of its
powers. It is reasonable to assume a broad impact in
business structures as new data processing and infor­
mation handling techniques develop.

Appendix 93

Index

Page Page
Access Arm ... 33 End-of-File Gap .. 46
Access Time .. 29, 34, 46 End-of-Reel Marker .. 49
Accumulator Register 37 Entry Hub .. 43
Adder .. 38 Execution Cycle 39
Address, Instruction 56 Execution Time 39
Address Modification 69 Exit Hub .. 43
Address Register .. 37
Arithmetic-Logical Section, CPU .. 15, 37 File l •• 34, 64, 69
Array, Core Storage .. 31 File Protection Device 49
Assembly Program .. 74 File Reel.... 44
Autocoder ... 75
Automatic Coding System , 75

Five-Channel Code, Paper Tape 26
Fixed Count Check .. 21

Auxiliary Operation 54
Auxiliary Storage .. 29

Fixed Word Length .. 40
Flag Bit .. 22

Batch Processing .. 9, 34
Binary Card 24

Flow Chart 57
Fortran .. 82

Binary Coded Decimal 20
Binary Mode 19
Binary Notation .. 19

Horizontal Check, Magnetic Tape .. 27, 48
Housekeeping Checks 88

Binary Number System .. 20, 23
Binary Tape, Magnetic .. 27
Bi-quinary Code .. 22
Bit .. 19, 20
Bit Density , 46
Block Diagram .. 57, 58
Branch Operation .. 39, 66
Buffer, Data .. 54

Indexing 70
Indicator .. 19
Indirect Address 71
Inhibit Wire .. 32
In-line Processing .. 9, 34
Input .. 12, 13
Input Devices .. 13, 18. 41
Inscribing 28

Calculating 64
Card Code .. 24

Instructions .. 12. 38, 56, 57
Instruction Counter .. 38

Card (IBM) .. 17, 23
Card Punch .. , 44

Instruction Cycle 38
Instruction Modification 68

Card Reader , 43 Instruction Time .. 39
Carry .. 38 Inter-record Gap .. 46
Cathode Ray Tube 52
Central Processing Unit .. 15, 36 Library Program .. 74, 79
Chain Printer 51 Limit Check 88
Character Code Check .. 21, 22, 48 Literal Operand ~... 76
Character Rate, Magnetic Tape .. 46 Load Point Marker ... " 48
Check Bit .. 21, 22 Logical Operations 65
Check Character , .. 27, 47 Longitudinal Check. Magnetic Tape , 48
Check Point and Restart , 88
Code .. 20 Machine Checking 89
Code Check .. , , ... 20 Machine Coding 73
Column Binary, Card .. 24 Machine Cycle .. , 38
Compare Operation .. ,. 68 Machine Language 73
Compiler .. , '" 80 Machine Operations .. 15
Computer Codes .. , ... 20 Machine Reel .. 44
Console .. 16, 52 Macro-instructions .. 78
Control Panel.. 41 Magnetic Core 30
Control Section, CPU .. 15, 36 Magnetic Disk .. 33
Control Total .. 87 Magnetic Drum .. 32
Core Plane .. 31 Magnetic Ink .. 27
Core Storage 30 Magnetic Label 88
Counter .. 38 Magnetic Tape .. 26
Crossfoot Checks 88 Magnetic Tape Unit .. 44

Main Storage , 29
Data Buffering .. 52 Memory (See Storage)
Data Channel .. 54 Mnemonic Code 75
Data Conversion .. 18, 54
Data Processing .. 5, 12, 15 Numeric Bit .. 21, 22
Data Representation .. 17, 18
Density .. 46 Object Program .. 74, 79
Disk Storage 33 Off-Line .. 14, 54
Display Lights .. 16 On-Line .. 14
Drum Storage 32 One-Gap Head .. 45

Operand .. 38. 56, 76
Eight Channel Code, Paper Tape 25 Operating Keys and Lights .. 16, 41
End-of-File .. 46 Operation (See Instruction)

94 IBM Data Processing Systems

Page Page
Output .. 12, 13 Sense Wire .. 32
Output Devices .. 41 Serial' Operation .. 4{)

Overflow .. 37 Seven-Bit Alphameric Code .. 21, 27
Overlap Operation 52 Shifting Operation 37

Paper Tape 25
Signal .. 18, 19
Six-Bit Numeric Code .. 22

Paper Tape Punch , 50
Paper Tape Reader 49
Parallel Operation 40
Parity .. 20
Parity Check 21
Permanent Storage 35
Photoelectric Sensing .. 43, 48

Solid State Components 9
Sort Programs .. 83
Source Program .. 74
Storage .. 14, 29, 34
Storage Register .. 37
Stored Program 15, 56
Sub-routine 66, 70

Photo-sensing Markers .. 48
Print Wheel .. 50
Printers .. 50

Symbolic Language .. 78, 82
System Checks .. 86

Procedure Control .. 85
Processor .. 74, 78
Program .. 15, 56
Program Assembly .. 75
Program Compilers .. 80
Program Development .. 57
Program Language , 74
Program Loop 65
Program Package .. 81
Program Preparation , 72
Program Routine .. 81

Tag .. 74, 75, 78
Tape Label..................................... 88
Tape Mark 46
Tape Records 46
Track .. : 27, 33
Transfer Operation .. 39, 66
Transient Storage .. 35
Two-gap Head .. 45, 47
Two-Out-of-Five Fixed Count Code .. 21
Typewriter 16, 51

Program Switch .. 69
Program Systems .. 73
Proof Figures .. 87

Utility Programs .. 84

Random Access 34 Vacuum Columns .. 44
Reading Data 64
Read-Write Head .. 44

Validity Checks .. 41, 47
Variable Word Length .. 40

Record .. 35, 46, 66 Vertical Check, Tape .. 47
Record Block .. 47
Record Count 87
Reflective Spots 48
Register 37

Wire Matrix Printer 50
Word .. 23

Row Binary, Card .. 24
Zone .. 21, 24, 25

Secondary Storage 29 Zone Bit .. 21

Index 95

6/60: 12M-ME

I.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97

