

GC20·2000·0

Inspections in
Application Development­
Introduction and
Implementation
Guidelines

Application development inspections is a disciplined technical
project review technique used at the end of various application
development phases to improve program quality and project
manageability and to increase productivity. This manual is
designed to provide enough information to the manager of the
data processing activity and his technical staff to answer the
question: "Should this activity use inspections?" The manual
also provides guidance in preparing for and performing
inspections. A case study is included.

This description of the inspections technique is made
available by IBM with the objective of providing information
that may assist others in improving their own application
development procedures. It does not require the use of IBM
products or services. However, IBM DP Services will, subject
to the local availability of appropriate resources, respond to
requests for assistance in implementing inspections.

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

Preface

ii

Application development inspections is a technical project review technique held
at the end of various application development phases.

This manual is designed to provide enough information to the manager of the data
processing activity and his technical staff to answer the question: "Should this
activity use inspections?" The manual also provides guidance for the moderator -
the person who schedules inspections, invites participants, and controls inspection
meetings and their follow-up - in preparing for and performing inspections.
Appendixes provide a case study and solution that can be used in moderator
training, offer sample materials that can be modified for use during inspections,
and describe two types of inspections, test plan and test case, that installations
may wish to adopt after gaining experience with the other types of inspections
described in the text.

Although the inspections technique was developed within IBM in a system control
programming environment one appendix reports on the use of inspections in an
application development project within IBM. Each installation must evaluate the
technique's usefulness for its own environment and, if adopted, tailor such
elements as exit and reinspection criteria, checklists, and time estimates to fit the
installation's characteristics.

The inspections technique is also discussed in Design and Code Inspections to
Reduce Errors in Program Development, an article by M. E. Fagan that appeared
in the IBM Systems Journal, Volume 15, Number 3,1976. A reprint of this
article is available from IBM under order number G321-5033.

First Edition (July 1977)

Requests for copies of IBM publica tions should be made to your IBM representative or to
the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM Corporation,
Technical Publications, Dept. 824,1133 Westchester Avenue, White Plains, N.Y. 10604.

© Copyright International Business Machines Corporation 1977

Contents

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

Chapter 1. Introduction • • • . .
The Need for Technical Reviews•..

1
1

Structured Walk-throughs and Inspections. .. 1
Structured Walk-throughs . . • • . . . • . • . •. 1
Inspections. . • • • • . • . • • • • • . • . .. 2
Key Differences Between Inspections and Structured Walk-throughs. 3

A Controlled Experiment. . . . • . 4
Implementing Inspections • . . • 5

Chapter 2. The Inspection Technique•..
Inspection Types .

7
7

Exit Criteria • • . . • . • . . • . . . • 7
Steps • • • . . . • 8
Participants .•.•......................................•. 8

Moderator • . . • • . . • . . • • • • 9
Inspectors • . . . • . . • . . . • . . • • . • • • 10

Inspections and the Project Plan. 10
Planning • . • . • • . • 11
Overview Meeting • • • • 11
Preparation for the Inspection Meeting. • • . • • . • 11
Inspection Meeting • • . . • . . . • • . . 12

Initial Design Inspection Meeting • • • . . 13
Detailed Design Inspection Meeting. • • . . • 13
Code Inspection Meeting. • • • .. 13

Rework•..•.......•.....•.........•.•..•. 13
Follow-up•...................

Chapter 3. Using the Inspections Data Base •.•.•...•....•.......
Inspections Data and Personnel Considerations••.........

Chapter 4. Moderator Training Hints ...•...

Appendix A: Case Study•..•...

14

16
17

19

20

Appendix B: Case Study Solution•....••...••....•. 34

Appendix C: Exit Criteria••....•.••.•....•...•.. 37
Initial Design Exit Criteria ..•...•.•....•...........•.....•.... 37
Detailed Design Exit Criteria. • • • 38
Code Inspection Exit Criteria • • • . . • • . • 38

Appendix D: Checklists•........................•.......•.. 39
Initial Design Inspection Checklists. • . 39
Detailed Design Inspection Checklists. . . . • . . • • . • • • • • 40
Code Inspection Checklists .•.•....•..••....•....•••...•••..•.. 41

COBOL Checklist •............•......•....•.•..•.•..•..• 41
PL/I Checklist • • . . . • 43
FORTRAN Checklist ...•.•............•.. , 46
Assembler Checklist. • • • . 47

Appendix E: Reporting Forms .•...•........•...... 49

Appendix F: Test Plan and Test Case Inspections. • • . . • • . • 55
Test Plan Inspections • . • . • • • . . . 55
Test Case Inspections. • . . . • • . • . • • . 56

Appendix G: A Report on the use of Inspections for an Applications Development
Project within IBM • • . . • 61

Project Description . . . • • . . • • 61
Implementation Approach. 61
Results.•........ 62
Conclusions . . . •
Additional Information ...•..•..

66
67

iii

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

List of Illustrations

iv

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16a.
Figure 16b.
Figure 17.
Figure 18a.
Figure 18b.

Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure Gl.

Figure G2.
Figure G3.

Figure G4.
Figure G5.

Figure G6.
Figure G7.
Figure G8.

Technical reviews versus project status reviews
The six steps of an inspection (summarized) ..
An IBM sample inspection study .
Inspection types • .
The six steps of an inspection
Reinspection points.
Inspection estimating table. •
Code inspections error analysis
A portion of a detailed design checklist •.
Code inspection module detail report. . .
Summary inspection report
A listing of most error-prone modules ..•
Distribution of error types for module X ..
Code inspections error analysis .•...
Cumulative error distribution by type .
Enrollment and completion card layout
Card field detailed specifications
Checker output
Checker program • .
Checker program structure chart corresponding to COBOL
procedure names cross-reference dictionary . . . • . . .
Checker program errol list • . •
Checker program code inspection module detail report.
Checker program summary inspection report . .
Initial design inspection module detail report ..
Detailed design inspection module detail report.
Code inspection module detail report.
Summary inspection report •........
Inspection types. •
Test plan inspection function detail report.
Test plan/test case summary inspection report.
Test case inspection detail report•.
Individual error rates during development for designers
and programmers •
Error rates and detection effort .•.......•.
Errors remaining after code inspections and found
during unit test•...............
Summarizing project X and PRS•....
Working rates experienced by PRS team during detailed
design and code inspections
Code inspection exit criteria
Detailed design inspection exit criteria
Sample error list•..........

1
3
5
7
8
9

10
11
12
14
15
16
17
18
18
20
21
22
23

33.3
34
35
36
50
51
52
54
55
57
58
60

63
64

64
65

66
67
67
68

Chapter 1. Introduction

Project reviews at the end of various application
development phases have long been recognized as a
vehicle for determining application development
project status and identifying areas that need special
attention. Such reviews are usually intended to
accomplish the following:

1. Communicate project status to higher-level
management and/or project personnel.

2. Establish that the project can be completed
within the time and costs allotted, or adjust such
schedules and costs.

3. Evaluate the technical accuracy of the project
and arrange for the correction of technical
errors uncovered as early as possible in the
development cycle.

In practice, however, project reviews tend to omit
this last function.

The Need lor Technical Reviews
Technical reviews during which technical accuracy is
evaluated and arrangements for necessary correc­
tions made are needed at various points within the
development cycle to help produce a product of
higher quality that is easier to maintain while reduc­
ing the cost of finding and correcting errors and to
help management to better control the development
process (see Figure 1).

Higher quality and improved maintainability are
central objectives of data processing management.
The number of completed programs in use has been
increasing; many of them still contain errors and
frequently are difficult to modify; as a result, the
number of personnel devoted to program mainte­
nance has also been steadily increasing. It has been
estimated that 40-60 percent of every

programmer / analyst staff dollar is devoted to the
maintenance of operational programs. As the size
and complexity of new programs continue to rise,
this is likely to increase further.

Achieving quality and maintainability goals while
reducing the cost of finding and correcting errors
dictates a strategy of early error detection. The cost
of finding and correcting errors increases substan­
tially as the development process continues. That is,
the cost of detection and correction of errors during
testing is dramatically higher then during design; the
expense is higher still after the program has been
placed into productive use.

Technical evaluation of product quality at the end
of development phases can help improve manage­
ment control by providing more realistic evaluations
of the developing product's quality, cost, and sched­
ule status, and can make possible timelier corrective
action.

Structured Walk-Throughs and
Inspections
Two types of technical reviews now in use are
structured walk-throughs and application develop­
ment inspections. The fundamental differences
between the two are discussed in this text; the major
concern, however, is inspections.

Structured Walk-Throughs
In a structured walk-through, a developer's work
(program design, code, documentation, etc.) is
reviewed by fellow project members invited by the
developer. Structured walk-throughs, in various
forms, are being used by many project development
groups. The forms vary in their objectives and

Type of Review Beneficiaries Function/Objectives

Project status review Management • Communicate project status

• Check and adjust cost and schedules

Technical reviews Management • Improve quality
Developers • Improve maintainability

• Technical evaluation

• Reduce costs

• Improve management control

Figure 1. Technical reviews versus project status reviews

1

procedures, but most have the following
characteristics:

1. They are arranged and scheduled by the devel­
oper of the work product being reviewed.

2. Management does not ordinarily attend the
walk-through.

3. The developer selects the list of reviewers, but
in most cases, management examines the list to
ensure that developers of related products are
invited. The walk-through is usually attended
by four to six reviewers. Participants can
include:
• Designers of the system, to ensure compatibil­

ity and continuity of design
• Individuals responsible for documenting the

function being reviewed
• Testers responsible for functional and system

testing
• Developers of other parts of the system
• Developers of other systems that interface

with the one being reviewed
4. The reviewers are given the materials· four to six

days before the walk-through and are expected
to review them and come to the session with a
list of questions.

5. A typical walk-through is scheduled to last for a
specified period, not longer than two hours. If
the materials have not been completely re­
viewed at the end of that period, or if a signifi­
cantly large list of issues have been created,
another walk-through is scheduled for the next
convenient time.

6. One person - usually the author whose work is
being examined, or perhaps a project team
leader - is appointed or elected to guide the
session. That person compiles an action list
consisting of all errors, discrepancies, exposures,
and inconsistencies uncovered during the walk­
through.

7. All issues are resolved after the session. The
walk-through provides problem detection, not
problem resolution.

Inspections
Inspections provide a more formal and rigorous
method of performing technical reviews at the end
of development phases. Application development
inspections, as used in IQM~velopment groups, can
be characterized as follows:

2

1. Inspections appear as separate scheduled
activities in the project development plan, and
the project schedule contains a time allowance
for rework of deficiencies identified in the
inspection process.

2. Each development phase, at the end of which
work products are to be inspected, is defined, as
are the exit criteria for each.

3. At the end of an inspection, formal approval is
required that deficiencies have been satisfactori­
ly reworked and exit criteria have been satisfied
before work can proceed to the next develop­
ment phase.

4. A specially trained moderator schedules and
conducts the inspections and chooses the partic­
ipants, who are usually selected on the basis of
special skills or knowledge. The moderator is
not the developer of the product being inspect­
ed nor a member of the development team; he
does not usually devote full time to this role, but
is a working analyst or programmer. A
moderator's work may be inspected in turn by
inspectors from other projects.

5. The inspection of a work product at the end of
a development phase consists of six well­
defined steps, as shown in Figure 2.

6. The inspections technique emphasizes the
accumulation and analysis of data about the
types of errors and their frequency of occur­
rence. As the data base of error patterns grows
larger and the moderators gain experience with
error detection, the moderators can better
analyze the results of inspections, can better
help designers and implementers avoid errors,
and can help inspection teams learn to do a
more thorough job of error detection. Check­
lists developed from the data base assist in this
by assuring that all reasonable questions have
been considered during an inspection. Also, by
comparing current inspection results against the
data base, both developers and management can
become aware of situations in which corrective
action must be taken to avoid schedule delays or
to reduce the liklihood of creating excessively
error-prone modules. Accumulation and analy­
sis of error patterns can also highlight for
management those development practices in
need of revision or suggest some that could be
initiated, thus leading to an improved develop­
ment process.
In an installation that requires several modera­
tors, management chooses one to serve as an
inspection coordinator to oversee the implemen­
tation of inspections for the installation. The
coordinator controls the establishment and
modification of the inspection procedures. He
normally serves as the first moderator; trains
subsequent moderators; standardizes record­
keeping procedures, checklists, and exit and

Step Inspection Team Participants

1. Planning Moderator

2. Overview Designer and other participants

3. Preparation Participants - individually

4. Inspection Entire group
meeting

5. Rework Author

6. Follow-up Moderator, author

Figure 2. The six steps of an inspection (summarized)

reinspection criteria; maintains the installation's
inspections data base; and, by analyzing this
information, provides such data as time esti­
mates for the various inspection steps, expected
error rates, and analyses of errors by type. The
coordinator's analyses of the data also assist the
moderators in maintaining a high level of effec­
tiveness and efficiency during inspections.

7. An application development process that
includes inspections can be compared to an
industrial continuous flow process in that each
provides the environment for better manage­
ment control of the process because manage­
ment (1) defines the operations in the process,
(2) defines the criteria for completion of each
operation, and (3) measures the process by
collecting data about the functioning of the
process.

Key Differences Between Inspections and Structured
Walk-Throughs
Key differences exist although there are variations of
both techniques. Because of the variations, one or
more of these differences may not be applicable in
some installations.

The differences may be characterized as follows:
• Typically, walk-throughs are characterized by
informality, with the developer (or chief program­
mer) requesting them. They may be performed
on completed activities or during development of
an activity. Although proper follow-up usually
ensues, no formal approval is generally required
before proceeding with further development work

Objectives

Scheduling/distributing'
materials

Education

Self-study

Finding errors

Correcting errors

Assuring correct rework,
improving development
and inspections

as is the case with inspections, although a second
walk-through is usually performed when a "large"
number of errors has been detected. In the .
inspections discipline, "exit criteria" for each
development phase must be satisfied, errors
corrected, and formal approval given before the
work can proceed to the next phase.

• The moderator of the inspection is not part of the
team that developed the work product. He is
trained in the skills required for the moderator's
role: planning the inspections, selecting partici­
pants, preparing for the inspection meeting,
maintaining an efficient pace during the inspec­
tion meeting, assuring that all reasonable error
possibilities have been considered, keeping inter­
personal friction to a constructive level, recording
and categorizing errors, following up on rework,
and analyzing inspection results. He carries the
experience he gains forward from project to
project, and becomes an expert in making the
most effective possible use of the participants'
time.

Procedural differences include the following:
1. The inspection procedure is divided into six

distinct steps, each of which has its own stated
objectives. In walk-throughs, these steps exist
but are blended together, with several objec­
tives being addressed simultaneously.

2. At a walk-through meeting, the developer of the
work product usually conducts the meeting and
"reads" the materials. In inspections, the
moderator conducts the meeting and designates
someone other than the developer to read the

3

materials so that the developer's interpretation
cannot inadvertently cover up an error.

3. Errors detected during the preparation period
and discussed with the developer are usually not
brought up at a walk-through meeting. During
inspection meetings, all errors are noted and
described to establish error patterns, improve
the skills of all the participants, and flag any
schedule slippage as early as possible.

4. Management does not usually participate in
meetings in either form of review. In the case
of structured walk-throughs, they do not attend
because their presence may interfere with the
free flow of discussion among the working
group. In the case of inspections, managers are
not discouraged from attending, but usually
cannot add valuable input to an essentially
technical discussion; they are therefore not
needed. Management is, however, informed of
the results of inspection meetings. In addition
to traditional quantitative data, such as lines of
code completed, management receives data
regarding program quality (error rates) and time
expected for rework and retesting.

5. Inspections emphasize uniformity and complete­
ness through the use of checklists.

6. Errors are categorized during an inspection
meeting and entered into a data base to improve
the developers' and management's understand­
ing of the types of errors that are occurring and
where they most often occur. This information
can be used to develop acceptable error rate
standards to determine whether a module
should be reinspected or rewritten. It can also
assist management, testers, and those who are
developing related modules to plan their work
better and maintain more accurate schedules.

Briefly stated, the walk-through procedure relies
heavily on technical team self -control and confines
the visibility of shortcomings to within the develop­
ment team itself. On the other hand, the inspection
process allows for such visibility to extend beyond
the development team and imposes technical con­
trols from sources (the moderator and management)
that are external to the team.

Note that the differences between structured

4

walk-throughs and inspections tend to diminish as
more of the formalities of inspections are included in
walk-throughs. For instance, walk-throughs are now
frequently scheduled into a project development
plan.

A Controlled Experiment
Inspections are designed to improve both program
quality and development productivity. This concept
was tested in an experiment conducted by an IBM

programming department. The inspection sample
was considered to be representative in terms of its
size and other characteristics. It was designed and
developed by three designers and 13 programmers,
was structured, and judged to be of moderate
complexity. In the experiment, inspections were
held, as shown in Figure 3, after detailed design and
coding. After each inspection, the necessary rework
was performed, and the work proceeded to the next
phase. After including the time to prepare for and
perform the inspections and do the rework, a net
saving resulted when compared to similar projects
using walk-throughs, the technique then in use. It
was estimated that 94 programmers hours were
saved per thousand lines of code as a result of the
detailed design inspection, and 51 hours by the code
inspection. This net saving translates into a 23
percent increase in coding productivity. (The unit
test inspection did not result in a saving of program­
mer hours and therefore was eliminated subsequent
to the experiment.

To determine that the productivity gain was not a
result of the participants' knowledge that they were
being studied and therefore producing at above
normal rates, a control sample inspection was
conducted later, after inspections had become
accepted as normal practice. Inspection results for
the control sample were essentially the same as those
for the original experiment.

The study also compared the quality of the pro­
grams produced during the inspection sample study
with a comparable component produced similarly,
but using walk-throughs instead of inspections.
Equivalent testing between post unit testing and
system test showed the inspection sample to contain
38 percent fewer errors than the walk-through sample.

Detailed h"~,ti°f Code ~I"~,ti°f Unit h'"~"i~/ design test

~ ~

Rework Rework Rework

Net Coding Productivity

• Sample showed 23 percent net increase

• Poststudy sample showed 22 percent net increase

Net Savings in Programmer Hours/lOOO LOC

• Design inspection: 94

• Code inspection: 51

• Unit test: -20

Program Quality

The inspection sample had 38 percent fewer errors/lOOO LOC.

Figure 3. An IBM sample inspection study

Implementing Inspections
The first step in implementing inspections is a
management decision that the following objectives
and methods of the inspections technique will be
appropriate for the installation.

The principal objectives of inspections are (1) to
improve application system quality while reducing
the cost of application development and mainte­
nance and (2) to improve management's ability to
control the development process. These objectives
are accomplished by (1) providing a uniform method
for inspecting development materials, (2) verifying
that development materials are complete (satisfy the
exit criteria for that development phase), (3) detect­
ing errors and ambiguities in design and code at the
earliest possible point in the development before
they become progressively more expensive to
rework, (4) verifying that all errors discovered
during an inspection have been corrected before the
work product (for example, a coded module) being
inspected moves to the next development phase,
(5) maintaining and analyzing records of errors
found and time spent in inspections to improve both
the development process and the inspections tech­
nique, and (6) providing early clues to the quality of
developing products.

Following a management decision to implement
inspections, full management support of the tech-

nique, as well as awareness by the development staff
of management's support, is necessary for successful
implementation.

The next step is to choose a pilot project. It is
recommended that the project be currently in
development and proceeding without any unusual
difficulty. For best results, it should not be under
any abnormal time constraints so that the technique
can be judged in as neutral an environment as
possible. It is advisable to choose a project for
which all three major types of inspections (initial
design, detailed design, and coding) can be used for
each module to be inspected. No more than three or
four months should elapse from the time that inspec­
tions are first used to the time that testing starts so
that the developers can evaluate the results within a
reasonable time period.

The moderator chosen for the pilot project, as for
any inspection, should not be a member of the team
whose work product is to be inspected because the
moderator needs to bring an objective, outside
viewpoint to the inspections. For the pilot project,
however, it is desirable for the moderator to report
to the same manager as that of the pilot project so
that both the costs and the benefits of the inspec­
tions process are under the same control. The
moderator will probably need to establish exit and
reinspection criteria based on installation require-

5

ments and standards. There may also be a need to
modify the reporting (orms-andcheclclists included
in this text.

Beginning with the first inspection of the pilot
project, the moderator should conscientiously
maintain the records because the accumulation and
analysis of inspection and man-hours data provide
some of the major benefits of inspections. For
example, the analyses can help to answer such
questions as:

• How likely are we to meet our scheduled dates?
• How likely is this program or module to experi­

ence excessive maintenance?
• Are we spending too much or too little time on

inspections?
• When should we reinspect a module?
• When should we rewrite a module?
As with any new technique, inspections will not

experience immediate acceptance. Initially, there
will be misgivings among the participants, and a
certain amount of defensiveness can be expected
from those whose work is inspected first, but these
reactions should disappear as soon as the developers
realize that they are not being singled out for criti-

6

cism. The usual experience has been that the
developers overcome their initial hesitation, begin to
count on the constructive feedback they receive
from their peers, and gain new confidence in their
ability to predict project completion times. Once the
pilot project has proven itself, the participants
usually have a positive attitude toward inspections
and should, by informal contact with other develop­
ment personnel, help to generate interest in the
technique. They can also be trained as moderators
and can introduce additional groups or individuals to
inspections.

Experience indicates that success with inspection
pilot projects is usually associated with:

• Success of the inspections themselves (successful
inspections find a significant number of serious
errors)

• Conduct of the moderator (the moderator should
encourage a constructive environment and use the
participants' time effectively)

• Attitude of management (management must
recognize the potential benefits of the inspection
process, support the pilot effort, and use the
results to improve the development process)

Chapter 2. The Inspection Technique

Inspections are described here as they have been
used in a system control programming environment
in IBM, although some terminology changes have
been made to make the document more meaningful
to an application development environment.
Changes to the sample exit and reinspection criteria,
checklists, time estimates, and reporting forms will
be necessary to adapt the technique to each
installation's environment.

Inspection Types
Inspections have been most commonly introduced at
three "inspection points": immediately following
initial design, detailed design, and coding. They are
also used extensively within IBM following the
development of test plans and test cases (see
Figure 4).

Inspections can also be given an important role in
the review of publications and requirements. The
major part of this text discusses initial design,
detailed design, and code inspections. Test plan and
test case inspections are discussed in Appendix F.

Note that inspections can be used equally well in
conventional and top-down program development
environments. In the latter case, each module or
group of modules in an application passes through
the same development phases, although one module
may do so weeks or months ahead of another.

Exit Criteria
One of the most important checks made in an
inspection is to determine whether the work product
has met the exit criteria for that phase and is thus
eligible to proceed to the next development phase.
Clearly defined exit criteria are necessary for this
determination and for consistent error and man­
hours inspection data. Appendix C contains sample
exit criteria developed within IBM in a system control
programming environment for the initial design,
detailed design, and coding phases; some examples
from this Appendix follow:

• For the initial design phase, each design process
statement (HIPO statement, flowchart block,
pseudocode statement) should be at a level of
detail equivalent to 15-25 lines of executable
source code.

• For the detailed design phase, each design process
statement should be equivalent to 3-10 lines of
executable source code.

• For the coding phase, the first clean compilation
listing should be available.

Initial
design

Detailed
design

Code

Unit
test

Function
test

System
test

Figure 4. Inspection types

Test plan
preparation

Test case
preparation

7

Steps
An inspection consists of six steps (see Figure 5):

1. Planning, during which the moderator schedules
inspection activities and makes sure that inspec­
tion materials have been distributed

2. Overview, presented by the author of the
materials to those who are to participate in the
inspections

3. Preparation, during which the participants study
the materials

4. Inspection meeting itself, during which the
participants concentrate on finding errors in the
materials

5. Rework, wherein the author corrects the errors
found in the meeting and summarized and
reported by the moderator

6. Follow-up (this step usually involves only the
author, the moderator, and in larger installa­
tions, the inspection coordinator), during which
the moderator certifies the author's rework and
authorizes the next development phase, and
during which inspection data is analyzed

Each step of the process has its own objectives.
The moderator's objective in the planning step is to
schedule the overview and inspection meetings and
td ensure that all the materials are distributed to the
participants. The purpose of the overview is to
teach the participants the principles of the design or
code to be inspected. Participants use the prepara­
tion step to become thoroughly familiar with the
inspection materials. The moderator assures himself
that the participants are adequately prepared before
holding the inspection meeting. The only objective

Step Inspection Team Participants

1. Planning Moderator

2. Overview Designer and other participants

3. Preparation Participants - individually

4. Inspection Entire group
meeting

5. Rework Moderator, author

6. Follow-up Moderator, author

Figure S. The six steps of an inspection

8

of the inspection meeting is to find errors. No
education normally takes place at this session. In the
rework step the author corrects errors found in the
meeting and summarized and reported by the
moderator. The error summary also keeps manage­
ment informed about the quality of the developing
product. The follow-up step has two objectives: to
validate the correctness of the work done in the
rework step (the moderator may call on others for
assistance with this) and to make improvements in
the application development process and the inspec­
tion process, through the analysis of inspection data.
In larger installations, an inspection coordinator
helps to perform this analysis function.

The cycle may be partially repeated by requiring a
reinspection, as shown in Figure 6. At the end of
the inspection meeting, the moderator determines
whether the errors found were numerous enough to
warrant a reinspection after rework has been com­
pleted.

Participants
An inspection team is composed of a moderator, the
author or developer (designer, coder), and one or
more inspectors. The moderator chooses the inspec­
tors on the basis of special skills or knowledge they
can bring to the inspection. The team normally
consists of four persons. Large teams tend to
expend too much manpower, while small teams do
not generate the kind of human interaction that is
effective in detecting errors. Under certain circum­
stances, however, a large team may be warranted.
For example, if there are many linkages to other

Objectives

Scheduling! ~istributing
materials

Education

Self·study

Finding errors

Correcting errors (after their
summarization and reporting)

Assuring correct rework,
improving development

and inspections

Phase X

Figure 6. Reinspection points

modules, designers and/or coders of those other
modules can contribute to the effectiveness of the
inspection.

In many installations, project teams may consist of
one or two people. In such cases, the inspection
team may consist of the moderator, the author, and
one or two inspectors recruited from other projects.
The author may serve at some future time on an
inspection team that is reviewing the work done by
the inspectors of his work, and the current modera­
tor may, in the future, have his work inspected at a
meeting moderated by one of the inspectors from
other projects.

Moderator
The moderator controls the activities of the inspec­
tion process and acts as the manager of the inspec­
tion meeting. To achieve impartiality, the moderator
is usually not a member of the team that produced
the work product to be inspected. (If a separate
development assurance or development quality
control group exists, the moderator is often chosen
from that group.) Although the moderator must
manage the inspection process, technical personnel
(systems analysts or programmers) rather than
managerial personnel serve as moderators. In
system control programming development within
IBM, the moderator is usually a skilled programmer
because the same person is often called upon to
moderate all inspections for a given project.

Throughout the inspection process, the moderator
is responsible for efficient resource utilization and
maximum problem detection. During the inspection
meeting, the moderator must not allow the partici­
pants to engage in extended disagreements, solution
hunting, or trivial matters. Thus, it is usually neces­
sary for the moderator to be able to use personal
sensitivity, tact, and drive, in balanced measures, to
conduct successful inspections.

The moderator is responsible for the following:
• Scheduling each step of the inspection
• Selecting inspectors, with the assistance of the
author and the approval of management, and
assigning one of the inspectors to be the "reader"
of the materials during the inspection

• Ensuring that inspection materials have been
distributed to the inspection team by the develop­
ment group

• Distributing checklists and error analysis reports
to be used by the inspectors

• Training all inspectors in how to prepare for and
participate in inspection meetings

• Planning the sequence of events for the inspection
meeting; determining which parts of the materials
will be inspected at given points in the meeting
(the plan will be influenced by the kinds of
materials, the complexity of the design, and
whether changed design requires examination of
other modules)

• Recording all errors detected and all problems
raised

• Submitting reports after the inspection meeting
• Evaluating the error rate and determining whether
a reinspection is required

. • Estimating the amount of rework

9

Inspectors
Typically, the inspectors include the technical
persons responsible for the prior and succeeding
development phases. As a result, inspectors for a
detailed design inspection may include the creator of
the initial design, the coders of the design being
inspected, and the testers responsible for testing the
work product. For a code inspection, the general
and detailed designers and the testers may be the
inspectors. The development team leader or the
chief programmer may be an inspector (but may not
be the moderator). When the designer and the coder
are the same person, an inspector may be an individ­
ual chosen from a closely related area, for example,
the designer/coder of related components.

Inspections and the Project Plan
An important characteristic of the inspection process
is that its time and costs are planned for and includ­
ed in the overall project plan. Accordingly, when
the project manager develops the project plan, he
estimates the time and costs for each of the succeed­
ing inspection steps for each inspection for each
work product. While some projects may require
only a few inspections, the volume of design and
code materials involved in large projects may require
many inspections. Estimated time and costs for
rework are also included in the plan.

An inspection plan is usually prepared by the
project manager before each program development
project. It normally lists the names of the moderator
and the inspectors for each planned inspection, the
work product to be inspected, an estimate of the size
of the work product*, and an estimate of the time
required for each step of each inspection.

To develop time estimates, the estimator can use a
table based on installation experience and developed

, by the installation's inspection coordinator. For
example, the table of Figure 7 shows that the
coordinator who prepared the table expects that 150
lines of noncommentary source statements can be
inspected per hour during a code inspection, and that
a code inspection meeting for a module with a size
of 300 NCSS would take two hours. Note that only
one overview meeting - an initial design overview
meeting - may be necessary, especially for projects
for which the inspectors for all phases are available
at the time the meeting is held. For code inspec­
tions, the overview step is usually omitted, since the
moderator and the inspectors are usually already
familiar with the detailed design, as is the case when
the code inspection team members also constitute
the detailed design inspection team.

The estimates in the table of Figure 7 are based on
a system control programming environment. Appli­
cation programming environments have experienced
different and much higher inspection rates. There­
fore, each installation will need to develop its own
table based on its own experience.

Maximums seem to be applicable for some activi­
ties; for example, inspectors probably cannot devote
more than four hours per day to preparation activi­
ties, and inspection meetings seem to become much
less efficient when their duration is greater than two
hours. It has been found, however, that two inspec­
tions per day (separated by other activities) can be
successful.

*This estimate is expressed in lines of code (LOC) or
noncommentary source statements (NCSS), the sum of
executable code instructions and declaratives. Instructions
that invoke macros are counted only once, as are expanded
macroinstructions. Comments are not counted.

Inspection Step Inspection rates in' NCSS/hour

Initial Design Detailed Design Code
Inspection Inspection Inspection

Overview 500 500 -
Preparation for inspection 200 100 125
Inspection meeting 250 130 150
Rework - 20 hrs/K.NCSS 16 hrs/K.NCSS

Figure 7. Inspection estimating table

10

Planning
Included in this initial step are the following modera­
tor activities:

• Ensuring that the inspection materials are distrib­
uted to the inspection team by the development
group

• Scheduling the overview and inspection sessions
(scheduling of the meetings should permit the
inspectors sufficient study time and permit flexi­
bility in their schedules)

Overview Meeting
The purpose of the initial design overview meeting is
educational. The designer's presentation should
provide an understanding of the design's major
functions and functional relationships as well as a
detailed description of the materials. The designer
includes in his presentation the design logic, external
linkages, module relationships, data areas, etc. The
overview is attended by all initial design inspectors
and also by other project personnel who need a
reasonably detailed description of the project.

Preparation for the Inspection Meeting
This step of the inspection process is performed
individually by all inspectors and the moderator.
The objective is for them to become thoroughly
familiar with the inspection materials so that during
the inspection meeting they will be better able to
find errors. The inspection materials may include
those from an earlier development phase. For

Error Category
Error Type Missing Wrong

CC Code Comments 5 17
DA Data Area Usage 3 21
DE Design Error 31 32
EL External Linkages 7 9
LO Logic 33 49
MN Maintainability 5 7
OT Other
PE Performance 3 2
PR Prologue 25 24
PU Prog. Lang. Usage 4 9
RU Register Usage 4 2
SU Storage Usage 1 8
TB Test and Branch 2 5

123 185

Figure 8. Code inspections error analysis

example, in preparing for a detailed design inspec­
tion, the inspectors will need to refer to initial design
materials.

While examining the materials, they:
• Check that the materials for the work product

being inspected match materials from the previous
phase. For example, detailed design specifica­
tions should not deviate from the requirements of
the initial design specifications.

• Understand the required inputs and expected
outputs (external linkages to and from each
module).

• Understand the data area environment of each
module.

• Comprehend the control flow and logic.
• Check that the exit criteria have been met.
• Note discrepancies or errors found so that they

may be recorded during the inspection meeting.
No attempt is made during this step to find
solutions to any problems uncovered. That is the
function of the rework step.

Inspectors should also familiarize themselves with
the latest error analysis report for the type of inspec­
tion being conducted (see Figure 8). This type of
analysis, prepared from data gathered from previous
inspections, helps the inspectors focus on those
errors which occur most frequently. (In Figure 8
these are design errors, logic errors, and prologue
errors.) Such <,:~alyses also assist in the updating of
checklists (see Figure 9) which list examples of each
type of error. Inspectors should also use the appro-

-
Total

Extra Errors Error %

1 23 6.6
1 25 7.2

14 77 22.1
3 19 5.5

10 92 26.4
2 14 4.0

5 10 2.9
3 52 14.9
1 14 4.0

6 1.7
9 2.7
7 2.0

40 348 100.0

11

LOGIC

Missing

1. Are all constants defi ned?
2. Are all unique values explicitly tested on input parameters?
3. Are values stored after they are calculated?
4. Are all defaults checked explicitly. tested on input parameters?
5. If character strings are created, are they complete? Are all delimiters shown?
6. If a keyword has mar'/ unique values, are they all checked?
7. If a queue is being manipulated, can the execution be interrupted? If so, is queue protected by a

locking structure? Can the queue be destroyed over an interrupt?
8. Are registers being restored on exits?
9. Are all keywords tested in macro?

10. Are all keyword-related parameters tested in service routine?
11. Are queues being held in isolation so that subsequent interrupting requesters are receiving spurious

returns regarding the held queue?
12. Should any registers be saved on entry?
13. Are all increment counts properly initialized (0 or 1)?

Wrong

1. Are absolutes shown where there should be symbolics?
2. On comparison of two bytes, should all bits be compared?
3. On built data strings, should they be character or hex?
4. Are internal variables unique or confusing if concatenated?

Extra

1. Are all blocks shown in design necessary or are they extraneous?

Figure 9_ A portion of a detailed design checklist

priate checklist during the preparation step. Appen­
dix D contains sample checklists developed within
IB M in a system control programming environment.
Each installation will probably wish to develop its
own, based on its own environment and error
experience.

Inspection Meeting
The inspection team and the author of the work
product being inspected attend the inspection
meeting. In general, others are not encouraged to
attend, since the meeting is a working session with a
fixed objective - to find errors.

At the beginning of the meeting, the moderator
describes to the group the sequence in which the
materials are to be examined. The author's role in
the inspection is usually limited to answering techni-·
cal questions. The author does not conduct the
meeting - that is the responsibility of the moderator.
The moderator has, before the meeting, appointed
one of the inspectors (usually a "key" inspector) to
"read" aloud the inspection materials. The inspec­
tion is more effective if the reader paraphrases the

12

materials instead of reading them verbatim because
paraphrasing tends to keep the other participants
more alert and helps the author determine whether
the materials can be understood. As the reading
proceeds, each inspector looks for errors or ambigui­
ties and for adherence to the exit criteria. The
collective activity of group inspection tends to find
more errors than the sum of individual inspector
efforts.

As errors are recognized, the moderator records
them in a problem list, estimating the rework time
and classifying them by error type, error category,
and error severity:

• Error type - for example, logic error, disagree­
ment of code with design specifications, lack of
adherence to maintainability or performance
requirements.

• Error category - missing, incorrect, or extra
design or code.

• Error severity - major or minor. An error which
would cause malfunction or which precludes the
attainment of expected or previously specified
results is considered to be a major error.

The moderator might record the following to
indicate a logic error (LO), categorized as incorrect
code (W), of major severity (MAJ), with an estimated
rework time of 20 minutes:

At the conclusion of the inspection meeting, the
moderator seeks the team's agreement with the
correctness of the error list and decides whether a
reinspection is required after the errors have been
corrected. This decision is based on installation­
established standards. For example, an installation's
standards may specify that detailed design materials
may not exceed an error rate of five percent and that
code may not contain more than one major problem
per 25 lines of source code.

Initial Design Inspection Meeting
For an initial design inspection meeting, the modera­
tor usually chooses either the team leader or the
author of the detailed design as the inspector "to
read" the design. As the "reading" proceeds, each
inspector follows the logic looking for errors or
ambiguities, and questioning the design logic as
necessary.

Detailed Design Inspection Meeting
At a detailed design inspection meeting, the pro­
grammer often serves as the reader. Certain users of
inspections have the initial designer perform that
function, believing that the initial designer is in a
better .position to evaluate linkages to other parts of
the system that may have been overlooked by the
author of the detailed design. At the meeting, the
team checks the detailed design materials for consis­
tency with the initial design, covers every piece of
logic at least once, and checks each design statement
for ambiguities that could lead to coding errors. The.
emphasis in this inspection meeting is on detecting
omissions; user experience has shown that most
problems discovered during a detailed design inspec­
tion are design omissions. Inspectors also check for
incorrect design and areas of overdesign (extra,
unnecessary logic).

Code Inspection Meeting
At a code inspection meeting, the detailed designer
(unless the detailed designer is also the programmer)
usually serves as the reader. A statement-by­
statement comparison is usually made between the
current detailed design and the code. Every line of
code is read and every path is checked. Code
inspections emphasize the detection of wrong rather
than missing or extraneous code. Correctness of
structured code may be verified by either of the two
following methods, although the second method is
usually more successful:

1. The code is traced in sequential page order,
starting with the main line segment, followed by
the lower-level segments.

2. Main line logic is traced completely through
every subroutine until the main line logic has
been completely traced. Then all remaining
secondary paths are traced.

Rework
Within one day of the inspection meeting, the
moderator distributes to the participants the code
inspection module detail report (see Figure 10),
which summarizes, and to which is attached, the
problem list prepared by the moderator during the
inspection meeting. The author then proceeds to
correct the problems specified in the report and list.
The moderator also distributes to the team and
project management the summary inspection report
(see Figure 11), which may contain the results of
one inspection encompassing several modules -
modules forming a particular part of the system.
Note that in the summary report the moderator
records actual hours spent for the first three inspec­
tion steps - overview, preparation, and meeting -
and estimated rework and follow-up hours. Manage­
ment can compare these estimates, which are based
on errors actually found, to the estimates in the
project plan and determine whether the project is
still on schedule. Note that since estimates for
rework were included in the project plan, project
schedules and costs are much less likely to be
affected by any necessary rework.

Management, then, can use the summary report to
keep track of the project's quality and schedule. The
author, by comparing the detail report to the error
analysis report (see Figure 8) prepared by the
inspections coordinator, can determine in what areas
to strive for improvement.

Appendix E contains samples of the module detail
reports (one for each type of inspection) and the

summary report, along with explanations of the
various report fields.

13

CODE INSPECTION MODULE DETAIL REPORT

Date _______ _

Module: _________________ Component/Application ., _______ _

Problem Ty pe:

LO: Logic

TB: Test a nd Branch

EL: Extern al Linkages

RU: Regist er Usage

SU: Storag e Usage --

DA: Data A rea Usage

PU: Progra m Language Usage

PE: Perfor mance

MN: Mainta inability

.
DE: Design Error

PR: Prolog ue

CC: Code C omments

OT: Other

TOTAL

REINSPECTION REQUIRED?_

Figure 10. Code inspection module detail report

Follow-Up
After the errors and ambiguities have been correct·
ed, and if a reinspectionhas not already been
scheduled, the moderator verifies the completeness
and accuracy of the reworked materials and gives his
formal approval, thereby allowing the development
effort to move forward. If the moderator finds that
the amount of rework warrants a reinspection
("more than five percent of the materials have been
reworked" is a possible criterion), or if the modera-

14

M

MAJOR MINOR TOTAL

W E M W E

..

tor simply believes that the reworked materials
should be reviewed by others, a reinspection may be
scheduled at this time.

From the error count and inspection hours
information in the detail and summary reports, the
coordinator (or moderator, if the installation does
not have a coordinator) develops the data base used

_ to produce the error analysis report (Figure 8) and
other reports used to improve the application devel­
opment and inspection processes, as discussed in
Chapter 3.

SUMMARY INSPECTION REPORT INITIAL DESIGND DETAILED DESIGND CODE 0
Date

To: Design manager Development manager

Subject: Inspection report for Inspection date

Application

Component(s)

Work Performed By
Initial Detailed Inspection Person-Hours (XX)

Full Designer CJ Designer CJ ELOC/NCSS Actual Estimated
New or Detai!ed Programmer Added, Modified, Deleted Over-

Module or Part Designer CJ CJ Est. Pre. Est. Post. Rework view & Insp. Re- Follow-
Name Mod. Insp. Programmer 0 Tester 0 A M 0 A M 0 A M 0 Prep. Meetg. work up Component

Totals

Reinspection required? Length of. inspection (clock hours and tenths)

Reinspection by (date) Additional modules

OCR ID's written

Problem summary: Major Minor Total

Errors in changed code: Major ___ Minor Errors in base colie:·· . Major_, __ ' Minor -

Initial Designer Detailed Designer Programmer Team Leader Other Moderator's Signature

Figure 11. Summary inspection report

-Ul

Chapter 3. Using the Inspections Data Base

Comparing the application development process
again to industrial continuous flow processes, it can
be seen that two major concepts of industrial process
control- feedback and feedforward - can be applied
to the application development process. In feed­
back, a step in the process is measured with the
measurement used to make adjustments to that step
so that it will make a more significant contribution to
the whole process. In feedforward, the measurement
of a step is used to affect succeeding steps in the
process.

Examples of feedback and feedforward in the
application development process are:

• Data about a designer's or a programmer's work
product resulting from an inspection is fed back
to him so that he can see the types of errors he is
making, compared to others in the installation,
and so produce a better quality product in his
next assignment.

• Data developed about a product during an inspec­
tion can, when known to people involved in
succeeding development phases (feedforward),
help in improving the product. For instance, if a
design inspection reveals that certain types of
errors have been more common than usual, the
tester should be prepared to design test cases that
concentrate on that type of error.

A prerequisite for process control in an industrial
process or in application development is the
availability of data. The inspection process provides
a disciplined technique for the collection of data
about applications in development. When this data
is systematically collected and analyzed, steps can be
taken to improve those applications and the applica­
tion development process. Some specific uses of this
data follow.

Identification of "error-prone modules ". A listing
of initial design, detailed design, or code design data,
or some combination thereof, as in Figure 12, which
combines detailed design and code design inspection
data, highlights the modules for which the error
density was highest. A commonly used measure of
error density is errors per 1 000 lines of noncommen­
tary source statements, or "errors/K Ness. As can
be seen from Figure 12, this measurement is devel­
oped using the following formula:

Number of errors in the module X 1000
Number of lines of noncommentary
source statements in the module

If the error detection efficiency of inspections is
fairly constant, module and project quality can be
predicted fairly early - certainly before unit testing -

and steps can be taken to improve quality considered
to be below standard. For example, if error detec-

Error Density

Module Name No. Errors Lines of Code (Errors/K NCSS)

ECHO 4 128 31

ZULU 10 323 31

FOXTROT 3 71 28

ALPHA 7 264 27 Average error density

LIMA 2 106 19

DELTA 3 195 15

Figure 12. A listing of most error-prone modules

16

tion efficiency of a design inspection is 50 percent
and the inspection found ten errors in a module, it
can be estimated that there are ten errors remaining
in the module. If this is below standard, manage­
ment could decide to reinspect or redesign the
module before coding it. Another option might be
to plan an especially rigorous test for the module and
to concentrate the testing on those errors of the type
found in the inspection.

Early identification of high-incidence error types.
Comparing the distribution of error types in the first
modules inspected for a project to the installation's
normal or usual distribution of errors provides an
early warning of possible project problems and can
make it possible to take steps to remedy thc problem
for the remaining modules of the project. Figure 13,
for example, shows that module X contained almost
twice as many linkage errors as is usual. Provision
could be made to test module X and other early
modules to remove the unusually high incidence of
such errors. In addition, other developers may be
warned of the situation and of possible peculiarities
in this application, and so be better prepared to
perform their functions for this project.

Normal/Usual
No. Errors % Distribution %

Logic 23 35 44
Linkage 21 31 18
Data Areas 6 9 13

8 10
7 7
6 6
4 2

100% 100%

Figure 13. Distribution of error types for module X

Self-improvement. Developers can use a listing
such as that in Figure 14 to concentrate their efforts
on the areas of their own work that most need
improvement. They can see what types of errors
they made in the subject module and how frequently
they occurred compared to the normal or usual
distribution of errors in the installation.

Improvement of the development process. Cumula­
tive error distributions by error type for a particular
type of inspection, as in Figure 14, can show devel­
opment management which types of errors are most
prevalent and thus help focus attention toward
reducing their frequency. Such a report, may, for

example, show overall shortcomings in the training
given to development personnel and the need for
changes in development standards and procedures.
When compared to a cumulative error distribution of
a later period, as in Figure 15, management can
determine the progress made in reducing the fre­
quency with which certain errors occur.

Improvement of the inspection process. Analysis
of inspection results may show that inspections
conducted by a particular moderator yield signifi­
cantly fewer major and considerably more minor
errors per man-hour of effort when compared with
inspections conducted by other moderators. Such
analyses can help moderators redirect and discipline
their efforts.

Analysis of reports showing error distributions by
type can assist moderators in developing checklists
that will direct the attention of inspection teams to
those errors that occur most frequently.

The person hours required by inspections can be
continually compared to installation averages to
evaluate the inspection process. Inspections should
not only improve the quality of programs but should
reduce the net time required to develop them; the
total time required by all participants for all inspec­
tions, plus total development time, should be less
than the development time along without
inspections.

Inspections Data and Personnel
C onsidera tions
In extensive IBM use of inspections and some use by
non-IBM installations, employee dissatisfaction has
not been reported as a problem. Primarily this is
because developers find inspections to be of assist­
ance to them in assuring the quality of their work
and improving their ability to meet schedules. Also,
managers quickly learn that it is undesirable and
unrealistic to rely solely on inspections data to
evaluate an individual's work quality. Experience
has shown that management sees the necessity of
continuing to weigh all available facts when apprais­
ing an individual. Some of the reasons for this are:

1. Only the quality of the final product, and not of
intermediate stages, should be considered when
evaluating the developer. The same principle
applies to productivity: the overall time spent
by the developer is much more significant than
the time spent at anyone stage.

2. The number of errors uncovered depends
largely upon the thoroughness of the inspection;
the better the inspection, the greater the num­
ber of errors detected (all other factors being
equal).

17

Error Category
Error Type Missing Wrong

,

CC, Code Comments 5 17
DA Data Area Usage 3 21
DE Design Error 31 32
EL. External Linkages 7 9
LO, Logic 33 49
MN Maintainability 5 7

OT' Other
PE Performance 3 2
PR Prologue 25 24
PU: Prog. Lang. Usage, 4 9
RU Register Usage 4 2

SU: Storage Usage 1 8
TB' Test and Branch 2 5

i
123 185

Figure 14. Code inspections error analysis

PERCENT
ERROR TYPE Jan. 1 Aug. 1

Code Comments 2.4 .9
Data Area Usage 7.6 8.0
Design Error 35.0 22.9
External Linkage 7.0 11.8
Design Documents 3.0 3.0
Logic 30.7 34.5
Mai ntai nability .3 .2
Other .3 1.8
Performance .6 .2
Prologue/Prose 2.7 1.9
Program Language 3.3 4.4
Register Usage 3.0 3.7
Storage Usage .8 2.2
Test and Branch 3.3 4.5

100.0 100.0

Figure 15. Cumulative error distribution by type

18

Extra

1
1

14
3

10
2

5
3
1

40

Total
Errors Error %

23 6.6
25 7.2
77 22.1
19 5.5
92 26.4
14 4.0

10 2.9
52 14.9
14 4.0
6 1.7
9 2.7
7 2.0

348 100.0

3. The number of errors made by a developer is
affected by the complexity of the program, the
quality of prior development, the time available
for development, the time actually spent by the
developer before the inspection, and differences
in the modes of operation of individual develop­
ers (such as "very slow and error-free" or "very
fast and error-prone").

4. A tendency to minimize the number of errors
uncovered and their severity may occur if the
errors are used to appraise the quality of work
performed by an individual, since the members
of the inspection team will also have their
development work subjected to inspections.
Thus, the value of statistics gathered during
inspections may be largely destroyed.

s. If errors are "punished", inspections may be
delayed unduly by the developer who wants to
detect and to correct as many errors as possible
before the inspection to avoid having a "poor"
record entered into the data base.

Chapter 4. Moderator Training Hints

This chapter is designed to assist an installation's
first moderator in preparing for his role and in
training other moderators. Subsequent moderators
can also use this chapter when preparing to conduct
inspections.

The moderator-trainee should first study this text,
including Appendixes A-E. The case study presented
in Appendix A consists of a COBOL source listing,
together with supporting design documents. Al­
though it is written in COBOL, the case study has
been used with little difficulty by people with
programming, but no COBOL, experience.

Then, the inspection steps for the case study
inspection should be planned: the overview meeting,
the preparation step, the inspection meeting, rework,
and follow-up.

The participants in the case study inspection
should be selected from members of the project
selected by management to be the inspections pilot
project. As indicated in Chapter 1, under
"Implementing Inspections", it is desirable for the
moderator to report to the same manager as that of
the pilot project, although he should not be a mem­
ber of the pilot project team. In addition, a
moderator-trainee may be invited to act as an
inspector. The participants can prepare themselves
for their first inspection by reading Chapters 1 and 2
of this manual.

Since the author of the case study is not available,
the moderator should appoint one of the inspectors
to assume the role of author and present the over­
view of the case study during the overview meeting.

Sufficient time should be scheduled for the prepa­
ration step, and the case study materials, including
the COBOL checklist (Appendix D), should be
delivered to the participants early enough so that the
inspectors can adequately prepare for the inspection
meeting. The guidelines suggested in Figure 7 can
initially be used to schedule preparation time. When
delivering the materials to the inspectors, the moder­
ator should notify the inspector he has chosen to be
the "code reader" during the inspection meeting,
because this person will want to make special
preparations for that activity.

During the inspection meeting, the moderator
should write a short description of each error discov-

ered, or, if this is not possible, mark the errors on
the listing and write the descriptions after the
meeting.

After the program listing has been completely
inspected, the moderator should read to the partici­
pants his interpretation of each of the errors and
obtain agreement that it is accurate. Then the
moderator should make a decision as to whether a
reinspection is required and so inform the partici­
pants. (Since inspection standards unique to this
installation have not yet been developed, the deci­
sion can be based on whether there are more than
25 major errors per 1000 lines of noncommentary
source statements.) Finally, the participants should
discuss the error list in the case study solution
(Appendix B).

After the meeting, the moderator should prepare
the detail and summary inspection reports
(guidelines are given in Appendix E), compare the
reports against the samples shown in the case study
solution, and inform management of the results of
the case study inspection.

Plans should then be made for the pilot project's
first inspection. Before holding that inspection,
however, the moderator should, in conjunction with
management and the installation's standards group,
develop the exit criteria to be used for the pilot
project's inspections. The appropriate checklists in
Appendix D may also be tailored to the installation's
use, as may the reporting forms shown in
Appendix E.

Beginning with the pilot project's first inspection,
the error and inspections hours data from the
inspection detail and summary reports is entered into
the inspections data base. Only with a conscien­
tiously maintained data base can the benefits de­
scribed in Chapter 3 be achieved.

The second and subsequent moderators can learn
the moderator role in a similar manner. In addition,
it may be helpful for moderator-trainees to observe
an inspection of one of the installation's develop­
ment projects; afterward, they can benefit from a
critique of the session with the session moderator.

19

Appendix A: Case Study

This case study provides materials (Figures 16, 17,
and 18) for a code inspection of a COBOL program
that reads student enrollment cards, checks them for
errors, and prints out card images with errors flag­
ged. Although the application may be somewhat
trivial, it is of sufficient difficulty for a realistic code
inspection.

The materials to be used by the participants in the
inspection follow. They consist of design docu­
ments, a card layout form, a sample output listing,
and a program listing. The COBOL checklist in
Appendix D may be used during the preparation and
inspection steps to focus the inspectors' attention on
common errors. Appendix B is the "school solution"
of the case study. Chapter 4, "Moderator Training
Hints", should be reviewed before the case study
materials are reviewed.

Initial Design Requirements
The "CHECKER" program is to read cards containing
student enrollment and grade information, validity~
check the data on the cards, and print out the card
images with errors appropriately flagged. More
specifically:

NAME

L R
BLDG/ 0 E

SERIAL DEPT. IFLR c C

INIT LAST NAME NO. NO. I I T
I

D y
I

I v
p

I
E

1 2 3 16 17 22 23 25 26 293031323334

Figure 16a. Enrollment and completion card layout

20

• Two types of data cards are processed:
(1) completion cards, and (2) enrollment cards.
The two types must be grouped separately in the
input deck, with the completion cards followed by
the enrollment cards, separated by a card with a $
in column 1.

• Enrollment cards are distinguished from comple­
tion cards by a blank in the grade field
(column 65).

• Card images are printed sequentially, with enroll­
ment cards printed on a separate page.

• Card fields that fail validity checking (that are in
error) are flagged with an underscore and a
vertical bar under the field in error.

Detailed Design Specifications
Figure 16a shows the layout of the enrollment and
completion cards and Figure 16b shows the detailed
specifications for each card field. (Any time
"error" is indicated in these specifications, the error
flag should be set for the column(s) in error.) Figure
17 shows a sample report.

G PC A
COURSE CRSE DATE' TA ~ COURSE TITLE PROJ R M DATE C

NO. HRS LID D D CaMP. ~ BEGUN D

S

53 54 57 58 60 61 6465 66 6970717273747576 7980

Card Column Field Name and Description

1-2 INITIALS

2

3-16

3

17-22

17

18-22

23-25

26-29

30-31

32-33

If $, this is a control card indicating that all
following input cards should bear no grade
(col. 65 = blank); if not $ or a letter - error.

If not letter or blank - error.

LAST NAME

Last name must start in col. 3; if not, all leading
blanks are flagged as errors. If not letter, blank,
single quote, or hyphen in cols. 3-16 - error.

SERIAL NO.

If not W or numeric - error.

If not numeric - error.

DEPT. NO.

If col. 23-25 not letters or numbers - error.

BLDG/FLR

1. If Record Type (col. 32-33) = 10 (Graduate
Work Study)

a. Cols. 26-29 must contain a valid school
code. Valid school codes: 0293,0946,
1126,1361,6012.

b. If coIs. 26-29 not valid school code - error.

2. If Record Type not 10

a. If LaC = K, cols. 26-28 must contain a
valid Bldg. No. Valid Bldg. Nos.: 001,002,
003,004,005,021,022,023,024,033,
034,035,042,043,045,052,057,201,
202,210,211,212,959,960,964,965,
966, If Bldg. No. not valid - error.

b. If LaC = x, cols. 26-29 must contain a
valid country code. Valid codes: AUST,
BELG, CANA, ENGL, FRAN, GERM,
ITAL, JAPA, NETH, SCOT, SWED, SWIT.
If code not valid - error.

C. If LaC = Z, cols. 26-29 must contain valid
three-letter locations codes (col. 29 must be
blank). Valid codes: BOT, LGC, LSC, PAA,
RMD. If code not valid - error.

d. If LaC not, K, X, or Z, cols. 26-28 must be
a combination of blanks, numbers, or letters.
If not blanks, numbers or letters - error.

e. If LaC not X or Z and Floor (col. 29) not
blank, numbers, or letters - error.

LOC/DIV

1. If col. 30 not valid location code - error.
Valid LaC codes: A, B, C, D, E, F, G, H, J,
K,L,M,N,O,P,Q,R,S,T,V,W,X,Y,Z.

2. If col. 31 not valid division code - error.
Valid DIV codes: A, C, D, F, G, H, I, J, K, L,
N,O,P,Q,R,S,T,W,X,Y.

RECTYPE

If Record Type not valid - error (col. 32 and
col. 33). Valid Record Types: 10,35,40,46,47,
52,54.

34-53 COURSE TITLE

Title must start in col. 34. If not, all leading
blanks are flagged as errors.

Figure 16b. Card field detailed speciffciitions-

Card Column

54-57

58-60

61-64

65

66-69

70-71

72

73

74

75

76-79

80

Field Name and Description

COURSE NO.

. If col. 54 not numeric (0-9) or S, F, or D - error.
If cols. 55-57 not numeric - error.

PROJ

If col. 32 and col. 33 (Record Type) = 47, cols.
58-60 must be V30 or V31. If col. 32 and col.
33 = 46, cols. 58-60 must be V28 or V29. If
col. 32 and col. 33 = 10, cols. 58-60 must be
GWS. If col. 32 and col. 33 not 10,46, or 47,
cols. 58-60 must be V32 or V33. If any of the
above do not match - error.

COURSEHRS

If cols. 61-64 not numeric - error. If cols.
61-64 greater than 320 - error.

GRADE

1. If checking completion cards ($ in col. 1
card not yet encountered), col. 65 must have
valid grade code. Valid grade codes: A, B, C,
D, F, I, N, 0, S, T, U, W, Z. If valid grade
code not found - error.

2. If checking enrollment cards ($ card encount­
ered), col. 65 must be blank. If not blank -
error.

DATE CaMP

1. If cols. 66-69 not numeric - error.

2. If col. 66 and col. 67 (month) greater than
12 - error.

TA L/D

1. If col. 7 ° not K - error.

2. If col. 71 not L - error.

CRDS

1. If col. 32 and col. 33 = 1, col. 72 must be
numeric. If not - error.

2. If cols. 32-33 not 10, col. 72 must be blank
or numeric. If not - error.

FLAG

If col. 73 not blank, 1, or 2 - error.

PM

If col. 74 not 1-9 - error.

B or F

If col. 75 not blank, B, or F - error.

DATE BEGUN

1. If cols. 76-79 blank, bypass further checking
of these columns.

2. If cols. 76-79 not numeric - error.

3. If col. 76 and col. 77 (month) greater than
12 - error.

4. If col. 78 and col. 79 (year begun) greater
than col. 68 and col. 69 (year completed)
- error.

ACD

If col. 80 not blank, A, C, or D - error.

21

I NAME
I
I
I

NLBROWN

NLBROWN

REGREEN

I ID DPT L RTI TITLE
: l ~LDG I D: :
I I I I I I
40460363M6012KL10DIGITAL SIMULATION

40460363M6012KL10SYS ANALYSIS

506470Q116012KL10SYS ANALYSIS
I I I

C NO HRS G TA F B D
:- ~RJ: :COMP: ~ ~ ¥EG :
I I I I I I· I I I
6000GWS0030A06~KL225 0474C

II
6001GWS0030A06~KL225 0474C

II
6000GWB0030A06~KL225 0474C

III II
**

THE FOLLOWING ARE ENROLLMENTS--GRADES SHOULD BE BLANK

**

NAME

$

VSSM ITH

JBWHITE

ID DPT L RTI
BLDGIDI I
I I I I
I I I I

TITLE C NO HRS G TA F B D
1- PRJ I II COMP I C M BEG I
I I I I I I I I
I I I I I I I I I

III III II
2078142Q16012KL10STOCHASTIC MODELS OR6000GWS0030 06IiKL225 0474C

II I
41783466L6012KL10ADV COMPILER DES

II I

III II
6000GWS0030 0674KL225 0474C

III II

Figure 17. Checker output

22

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

PP 5740-CBl RELEASE 2.1 OCT 11, 1977 IBM OS/VS CCBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CHECKER'.
REMARKS. '!'HIS PROGRAM READS CARDS CONTAINING STUDENT

ENROLL~ENT AND GRADE INFORMATION, VALIDITY CHECKS
THE DATA ON THE CARDS, AND PRINTS OUT THE CARD
IMAGES WITH ERRORS FLAGGED APPROPRIATELY.

ENVIRONMENT DIVISICN.
CCNFIGURATION SECTION.
OBJECT-COMPUTER. IBM-370.
SCURCE-COMPUTER. IBM-370.
INPUT-CUTPUT SECT'ICN.
FILE-CCNTROL.

SELECT ENROLLMENTS ASSIGN TO UT-S-ENROLL.
SELECT LISTING ASSIGN TO UT-S-LISTING.

DATA DIVISION.
FILE SECTION.
FD ENRCLLME1~TS

LABEL RECORDS IS STANDARD
DATA RECCRD IS CARD-IN.

01 CARD-IN PIC X(80).

FD LISTING
LABEL RECORD IS STANDARD
DATA RECORD IS LINE-OUT.

01 LINE-OUT PIC X(81).

WORRING-STORAGE SECTION.
77 EOF-IND
77 GRADE-CHECK-SWITCH
77 CCUNTER
77 THIS-YEAR
77 I
77 J
77 IT

PIC X.
PIC X.
PIC 99 USAGE
PIC X(2)'
PIC 99 USAGE
PIC 99 USAGE
PIC X.

COMPUTATIONAL.

COMPUTATICNAL.
COMPUTATIONAL.

77 SPLAT
01 HEADER

PIC X(20) VALUE IS ALL' I '.

'1 I
HRS G

01 HEADER2

NAME
TA F E

I I
'JI ICCMPI C M BEG

01 HEADER3

01

I
'I I
HEADER4

I
I I I I

PIC X(81) VALUE IS
ID DPT L RTI

D' •
PIC X(81) VALUE IS

I BLDGID I I
I ' .
PIC X(S1) VALUE IS

I I I I I
I ' .
PIC X(Sl) VALUE IS

TITLE

'0 **'.
01 HEADERS PIC X(Sl) VALUE IS

C-NC

PR

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051

'0 THE FOLLOWING ARE ENROLLMENTS--GRADES SHCULD BE BL
• ANK'.

Figure 18a. Checker program (I of 13)

23

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091

01 CARD.
05 INIT1 PIC X.
05 INIT2 PIC X.
05 NAME PIC X (14) •
05 NAME-CHARACTER REDEFINES NAME PIC X
05 SERIAL-NC PIC X (6).
05 SERIAL-NC-CHARACTER REDEFINES SERIAL-NC PIC
05 DEPT-CHARACTER PIC X OCCURS 3.
05 SCHCOL PIC X (4).
05 OTHER-LOCA~ICN REDEFINES SCHOOL PIC X(4).
05 FILLER REDEFINES OTHER-LOCATION.

10 BLDG PIC X (3).

10 FLOOR PIC X.
05 LOCATION PIC X.
05 DIV PIC X.
05 RECORD-T~PE PIC X (2).
05 TITLE PIC X (20).
05 COURSE-NC PIC X OCCURS 4.
05 PROJECT PIC X (3).
05 COURSE-HCUR-VALUE PIC X (4).
05 COURSE-HCUR-DIGIT REDEFINES COURSE-HOUR-VALUE

PIC X
05 GRADE PIC X.
05 DATE-CCMPLETED.

10 MONTH-COMPLETED PIC X (2).
10 YEAR-CCMPLETED PIC X (2).

05 DATE-COMPLETED-DIGIT REDEFINES DATE-COMPLETED
PIC X

05 TEACHING-LOCATION PIC X.
05 TEACHING-DIVISION PIC X.
05 CREDITS PIC X.
05 FLAG PIC X.
05 PRESENTATION-MODE PIC X.
05 BILL-OR-FREE PIC X.
05 DATE-BEGUN.

10 MONTH-EEGUN PIC X (2).
10 YEAR-BEGUN PIC X (2).

05 DATE-BEGUN-DIGIT REDEFINES DA~E-BEGUN PIC X
05 ACD PIC X.

Figure 18a. Checker program (2 of 13)

24

OCCURS 14.

X CCCURS 6.

OCCURS 4.

OCCURS 4.

OCCURS 4.

00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147

01

01

01

01

01

01

01

01

01

01

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

LOCATION-CODES VALUE 'KPFENMXZwTSLHGBYVQDACJOR'.
05 LOCATION-CCDE PIC X OCCURS 24 INDEXED I-LOC.

GRADE-CODES VALUE 'NSABCDFWI'ICUZ'.
05 GRADE-CODE PIC X CCCURS 13 INDEXED I-GRADE.

DIVISION-CODES VALUE 'LNCWPDRACFGHIJKQSTXY'.
05 DIVISION-CCDE PIC X OCCURS 20 INDEXED I-DIV.

RECORD-TYPE-CODES VALUE '47465410524035'.
as RECORD-TYPE-CODE PIC X(2) CCCURS 7 INDEXED I-RT.

SCHOOL-CODES VALUE '60121361094611260293'.
05 SCHCCL-CCDE PIC X(4) OCCURS 5 INDEXED I-SCHCOL.

X-LOCATICN-CCDES VALUE 'ENGLNETHGERMFRANCANASWEDSCCTJAFASWI
'TAUS'IBELGI'IAL' •

05 X-LOCATICN-CCDE PIC X(4) OCCURS 12 INDEXED I-XLCC.

Z-LOCATICN-CCDES VALUE 'RMD LSC BOT PAA LGC '.
05 Z-LOCATICN-CODE PIC X(4) CCCURS 5 INDEXED I-ZLOC.

KGN-BLDGS VALUE '20220100321121221000100200400502102
'20230240340350330420430450520579599
'60064965966'.

05 KGN-ELDG PIC X(3) OCCUrtS 27 INDEXED I-BLDG.

ERROR-LINE VALUE IS ALL SPACE.
05 ERR-CONTRCL PIC X.
05 ERROR-FIELDS.

10 FILLER PIC X(22).
10 ERR-DEFT PIC X (3) •
10 ERR-SCHCOL.

15 ERR-ELDG FIC X(3) •
15 ERR-FLCOR PIC X.

10 ERR-RECORD-TYPE PIC X(2).
10 ERR-LCCATICN PIC X.
10 ERR-DIVISICN PIC X.
10 ERR-'IITLE PIC X(20).
10 FILLER FIC X(4).
10 ERR-PRCJECT PIC x(3) •
10 ERR-CCURSE-HOURS PIC X(4).
10 FILLER PIC X.
10 ERR-~ONTH-COMPLETED PIC X(2).
10 ERR-YEAR-COMPLETED PIC X(2).
10 FILLER PIC X(6).
10 ERR-MONTH-BEGUN PIC X(2).
10 ERR-YEAR-BEGUN PIC X(2).
10 FILLER PIC X.

05 ERR REDEFINES ERROR-FIELDS PIC X OCCURS 80.

DATA-LINE.
05 CARRIAGE-CCNTROL PIC X VALUE IS SFACE.
05 DATA-FIELDS PIC X(SO).
05 LINE-CHARACTER REDEFINES DATA-FIELDS PIC X OCCURS 80.

Figure 18a. Checker program (3 of 13)

25

Page of GC20-2000-O
Revised August 15, 1978
By TNL GN20-3814

00149
00150
00151
00152
00153
00154
00155
00156
00151
00158
00159
00160
00161
00162
00163
00164
00165
00166
00161
00168
00169
00110
00111
00112
00113
00114
00115
00116
00111
00118
00119
00180
00181
00182
00183
00184
00185
00186
00181
00188
00189
00190
00191
00192
00193
00194
00195
00196
00191
00198
00199
00200
00201
00202
00203
00204
00205

PROCEDURE DIVISION.
MOVE CURRENT-DATE TO THIS-YEAR

* TWO DIGI~S RIGHT-JU~~IFIEC
OPEN INPUT ENROLLMENTS
OPEN OUTPUT LISTING
MOVE 'F' TO EOP-IND
MOVE 'F' TO GRADE-CHECR-SWITCH
READ ENROLLMENTS INTO CARD AT ENC

MOVE 'N' TO EOF-IND.
PERFORM 100-MAIN-PROCESS UNTIL EOF-IND = 'N'
CLOSE ENROLLMENTS
CLOSE LISTING
STOP RUN.

100-MAIN-PROCESS.
IF INITl = '$'

ELSE

MOVE 'N' TO GRADE-CHECK-SwITCH
WRITE LINE-OUT FROM HEADER4
WRITE LINE-OUT FROM HEADER5
WRITE LINE-OUT FROM HEADER4
MOVE 59 ~O COUNTER

IF INIT1 = SPACE OR INIT1 IS NCT ALPHAEETIC
MOVE SPLAT TO ERR (1).

IF INIT1 NOT = '$'
PERFORM 200-MAIN-PROCESS-CCNTD
PERFORM 201-MAIN-PROCESS-CCNTD
PERFORM 202-MAIN-PROCESS-CONTD
PERFORM 203-MAIN-PROCESS-CCNTD
PERFORM 204-MAIN-PROCESS-CCNTD.

IF COUNTER > 58
.* NEW-PAGE

MOVE 4 TC COUNTER
WRITE LINE-OUT FROM HEADER
WRITE LINE-OOT FROM HEADER2
WRITE LINE-OUT FROM HEADER3
WRITE LINE-OOT FROM HEADER3.

•• PRIN~

MOVE CARD TO DATA-FIELDS
WRITE LINE-OUT FROM DATA-LINE
ADD 1 TO COUNTER
IF ERROR-LINE NOT = SPACE

PERFORM 205-EUILD-UNDERSCORE-LINE VARYING I FRO~ 1 BY 1
UNTIL I > 80

** OVERPRINT
MOVE 1+' TO CARRIAGE-CONTROL
WRITE LINE-OUT FROM DATA-LINE
MOVE SPACE TO CARRIAGE-CON~ROL
WRITE LINE-OOT FROM ERRCR-LINE
ADD 1 TO CCUNTER.

READ ENROLLMENTS INTO CARD AT END
MOVE IN I TO EOF-IND.

205-EUILD-UNDERSCORE-LINE.
IF ERR (I) = SPACE

MOVE SPACE TO LINE-CHARACTER (I)
ELSE

MOVE III TO LINE-CHARACTER (I).

Figure Ilia. Checker program (4 of \3)

26

00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

200-MAIN-PROCESS-CON~D.
IF INIT2 IS NOT ALPHAEETIC

MOVE SPLAT TO ERR (2).
EXAMINE NAME TALLYING LEADING SPACES
IF TALLY NOT = ZERO

ADD 2 I GIVING J
PERFORM 300-POINTER-INSER~ VARYING I FROM 3 BY 1

UN~IL I > J.
FERFORM 301-NAME-CHECK VARYING I FRO~ 1 BY 1 UNTIL I > 13

•• FIRST-CHARAC~ER-CHECK

MOVE SERIAL-NO-CHARAC~ER (1) TO I~

IF IT IS NUMERIC OR IT = 'w'
NEX~ SENTENCE

ELSE
MOVE SPLAT TO ERR (17).

PERFORM 302-SERIAL-NO-CHECK VARYING I FROM 2 BY 1 UNTIL I > 6
•• CEPARTMENT-CHECK

PERFORM 303-CEPT-CHECK VARYING I FROM 1 BY 1 UNTIL I > 3.

300-POINTER-INSERT.
MOVE SPLAT TC ERR (1).

301-NAME-CHECK.
MOVE NAME-CHARAC~ER (I) TO I~
IF IT IS ALPHAEETIC OR IT = SPACE OR QUO~E OR '-' OR

NEXT SEN~ENCE
ELSE

ADD 2 I GIVING J
MOVE SPLAT TO ERR (J).

302-SERIAL-NO-CHECK.
IF SERIAL-NO-CHARACTER (I) IS NOT NUMERIC

COMPUTE J I + 17
MOVE SPLAT TO ERR (J).

303-CEPT-CHECK.
MOVE DEPT-CHARACTER (I) TO I~
IF IT IS NUMERIC OR IT IS ALPHAEETIC AND I~ IS NOT

NEXT SEN~ENCE
ELSE

ADD 22 I GIVING J
MOVE SPLAT TO ERR (J).

, ,

SPACE

Figure 18a. Checker program (5 of 13)

27

Page of Ge20-2000-0
Revised August 15, 1978
By TNL GN20-3814

00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285

201-MAIN-PROCESS-CONTD.
IF RECORD-TYPE = "10"

PERFORM 304-SCHOOL-CHFCK
ELSE

PERFORM 305-RECOR~-TYPE-CHECK
PERFORM 306-LOC-AND-BLDG-CHECK
IF FLOOR IS NUMERIC OR FLCOR IS ALPHABETIC

NEXT SENTENCE
ELSE

MOVE SPLAT TO ERR-FLCOR.

304-SCHOOL-CHECK.
SET I-SCHOOL TO 1
SEARCH SCHCOL-CO~E

AT END
MOVE SPLAT TO ERR-SCHOOL

WHEN SCHCOL = SCHOOL-CODE (I-SCHOOL)
NEXT SENTENCE.

305-RECORD-TYPE-CHECK.
SET I-RT TO 1
SEARCH RECORD-TYPE-CODE

AT END
MOVE SPLAT TO ERR-RECCRD-TYPE

WHEN RECCRD-TYPE = RECORD-TYPE-CODE (I-RT)
NEXT SENTENCE.

306-LOC-AND-BLDG-CHECK.
IF LOCATION = "K'

PERFORM 400-K-ELDG-CHECK
ELSE·IF LOCATION = "X"

PE~FORM 401-X-LOC-CHECK
ELSE IF LOCATICN = oZ'

PERFORM 402-Z-LOC-CHECK
ELSE

PERFORM 403-AN-BLDG-CHECK.

Figure 18a. Checker program (6 of 13)

28

00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315

400-R-ELDG-CHECR.
SEl I-BLDG TC 1
SEARCH KGN-BLDG

AT END
MOVE SPLA'I TO ERR-BLDG

wHEN BLDG = KGN-BLDG (I-BLDG)
NEXT SEN'IENCE.

401-X-LOC-CHECK.
SE'I I-XLCC ~C 1
SEARCH X-LOCA'IION-CODE

A'I END
MOVE SPLA'I TO ERR-SCHCCL

Page of GC20-2000-O
Revised August 15, 1978
By TNL GN20-3814

wHEN OTHER-LOCATION = X-LCCATION-CODE (I-XLOC)
NEXT SENlENCE.

402-Z-LOC-CHECK.
SE'I I-ZLCC TC 1
SEARCH Z-LOCA'IION-CODE

AT END
MOVE SPLA'I TO ERR-SCHCOL

WHEN OTHER-LCCATION = Z-LOCATION-CODE (I-ZLOC)
NEXT SEN'IENCE.

403-AN-BLDG-CHECR.
IF BLDG IS ALPHAEE'IIC OR BLDG IS NUMERIC

NE:XT SEN'IENCE
ELSE

MOVE SPLA'I TO ERR-BLDG.

Figure 18a. Checker program (7 of 13)

29

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369

202-MAIN-PROCESS-CCN~D.

SET I-LOC TO 1
SEARCH LOCATICN-CODE

AT END
MOVE SPLAT TO ERR-LOCATION

WHEN LOCATION = LOCATICN-CCDE (I-LOC)
NEXT SENTENCE.

SEARCH DIVISICN-CODE
AT END

MOVE SPLAT TO ERR-DIVISION
WH~N DIV = DIVISION-CCDE (I-DIV)

NEXT SEN~ENCE.
EXAMINE ~ITLE TALLYING LEADING SPACES
IF TALLY IS NO~ ZERO

COMPUTE J = TALLY + 34
PERFORM 300-POINTER-INSER~ VARYING I FRCM 1 EY 1

UNTIL I > J.
IF COURSE-NO (1) IS NUMERIC

NEXT SEN~ENCE
ELSE IF COURSE-NC (1) = 's' CR 'F' OR 'D'

NEXT SENTENCE
ELSE

MOVE SPLAT TC ERR (54).
PERFORM 301-COURSE-NO-CHECK VARYING I FRCM 2 EY 1

UNTIL I > 4.

307-COURSE-NC-CHECK.
IF COURSE-NO (I) IS NC~ NUMERIC

COMPUTE J = I + 53
MOVE SPLA~ TO ERR (J).

IF RECORD-TYPE = "47"

ELSE

IF PROJECT = 'V30' OR 'V31'
NEXT SEN~ENCE

ELSE
MOVE SPLAT TO ERR-PROJECT

IF RECORD-TYPE = '10'
IF PROJECT = 'GwS'

NEXT SENTENCE
ELSE

~OVE SPLAT TO ERR-PROJEC~
ELSE

IF PROJECT = 'V32' OR 'V33'
NEXT SENTENCE

ELSE
MOVE SPLAT TO ERR-PROJEC~.

PERFORM 404-COURSE-HOUR-CHECK VARYING I FRCM 1 BY 1
UNTIL I > 4.

404-COURSE-HCUR-CHECK.
IF COURSE-HOUR-DIGIT (I) IS NC~ NUMERIC

COMPUTE J = I + 60
MOVE SPLAT TC ERR (J).

Figure 18a. Checker program (8 of \3)

30

00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423

203-MAIN-PROCESS-CON~D.

** COURSE-HOUR-VALUE-CHECK
IF COURSE-HOUR-VALUE > 230

MOVE SPL~~ ~O ERR-COURSE-HOURS.
** GRADE-CHECK-SWI~CH

IF GRADE-CHECK-SwI~CH = 'F'
PERFORM 308-COMPLE~ION-GRADE-CHECK

ELSE
** ENROLLMENT-GRACE-CHECR

IF GRADE NOT = SPACE
MOVE SPLA~ TO ERR (65).

** DA'IE CHECK

Page of GC20-2000-O
Revised August 15, 1978
By TNL GN20-3814

PERFORM 309-DA~E-DIGIT-CHECK VARYING I FROM 1 BY 1
UNTIL I > 4 *. MONTH-CHECK

IF MONTH-COMPLETED> '12'
MOVE SPLA~ TO ERR-MONTH-COMPLETED.

IF TEACHING-LCCA~ION NOT = 'K'
MOVE SPLAT TO ERR (70).

IF TEACHING-lCCA~ION NOT = "L'
MOVE SPLAT TO ERR (71).

IF RECORD-TYPE = '10'

ELSE

IF CREDITS IS NOT NUMERIC
MOVE SPLA~ TO ERR (72)

ELSE
NEXT SEN'IENCE

IF CREDI~S IS NOT NUMERIC AND CREDITS NO'I = SPACE
MOVE SPLAT TO ERR (72).

IF FLAG IS = , , OR '1' OR • 2 '
NEXT SENTENCE

ELSE
MOVE SPLA~ TO ERR (73).

IF PRESENTATION-MODE IS NOT NUMERIC
OR PRESEN'IATION-~ODE = ZERO

MOVE SPLAT TO ERR (74).
IF BILL-OR-FREE IS = ' , OR 'B' OR 'F'

NEX~ SEN~ENCE

ELSE
MOVE SPLAT TO ERR (75).

308-COMPLETION-GRADE-CHECK.
SE~ I-GRADE ~O 1
SEARCH GRADE-CODE

AT END
MOVE SPLAT TO ERR (65)

WHEN GRADE = GRADE-CODE (I -GRADE)
NEXT SEN'IENCE.

309-DATE-DIGIT-CHECR.
IF DATE-COMPLETED-DIGIT (I) IS NOT NUMERIC

COMPUTE J = I + 65
MOVE SPLAT TO ERR (J).

Figure 18a. Checker program (9 of 13)

31

Page of GC20-2000-O
Revised August 15, 1978
By TNL GN20-3814

00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446

204-MAIN-PROCESS-CCNTD.
IF DATE-BEGUN = SPACE

NEXT SENTENCE
ELSE

PERFORM 310-DATE-EEGUN-CHECK.
IF ACD = " CR 'c' OR 'D' OR 'A'

NEXT SENTENCE
ELSE

MOVE SPLAT TC ERR (80).

310-DATE-BEGUN-CHECK.
PERFORM 405-DATE-BEGUN-DIGIT-CHECK VARYING I FROM 1 BY 1

UNTIL I > 4
IF MCNTH-BEGUN > '12'

MOVE SPLAT TC ERR-MONTH-BEGUN.
IF YEAR-BEGUN > YEAR-COMPLETED

MOVE SPLAT TC ERR-YEAR-BEGUN.

405-DATE-BEGUN-DIGtT-CHECK.
IF DATE-BEGUN-DIGIT (I) IS NOT NUMERIC

COMPUTE J = I + 75
MOVE SPLAT TC ERR (J).

Figure 18a. Checker program (10 of 13)

32

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

CRCSS- REFE!< ENCE DICTICNARY

DATA NAMES CEFN REFERENCE

AC!; 000091 000430
BILL-OR-FREE 000086 000407
BLCG 000064 000291 000312
CARr 000053 000156 000187 000199
CARr-IN 000022 000156 000199
CARRIAGE-CONTROL 000145 000194 000196
COUNTER 000032 000169 000179 000181 000189 000198
COURSE-HOUR-DIGIT 000073 000367
COURSE-HOUR-VALUE 000072 000373
COURSE-NO 000070 000334 000336 000344
CRUITS 000083 000393 000398
DATA-FIELDS 000146 000187
DATA-LINE 000144 000188 000195
DATE-BEGUN 000087 000426
DATE-BEGUN-DIGIT 000090 0004Q4
DATE-COMPLETED 000076
DATE-COMPLETED-DIGIT 000079 000421
DEPT-CHARACTER 000060 000243
DIV 000067 000326
DIVISION-CCDE 000100 000326
DIVISION-CCDES 000099
ENROLLMENTS 000014 000152 000156 000159 000199
EOF-INC 000030 000154 000157 000158 000200
ERR 000142 000172 000202 000209 000221 000227 000235 000240 000248 000339 000346

000369 000381 000389 000391 000394 000399 000403 000406 000410 000416
000423 000433 000446

ERR-ELDG 000126 000291 000315
ERR-CONTRCL 000121
ERR-COURSE-HCURS 000134 000374
ERR-CEPT 000124
ERR-rIVISICN 000130 000326
ERR-FLOOR 000127 000259
ERR-LOCATION 000129 000321
ERR-MONTH-BEGUN 000139 000439
ERR-MONTH-COMPLETEC 000136 000387
ERR-PROJECT' 000133 000351 000357 000362
ERR-RECORC-TYPE 000128 000273
ERR-SCHOCL 000125 000265 000299 000307
ERR-UTLE 000131
ERR-YEAR-BEGUN 000140 000441
ERR-YEAR-COMPLETED 000137
ERROR-FIELDS 000122
ERROR-LINE 000120 000190 000197
FLAG 000084 000400
FLOOR 000065 000256
GRAJ:E 000075 000380 000416
GRACE-CHECK-SWITCH 000031 000155 000165 000376
GRADE-CODE 000097 000416
GRACE-COCES 000096
HEACER 000038 000182
HEArER2 000041 000183
HEAJ:ER3 000044 000184 000185
HEACER4 000047 000IE6 000168
HEAJ:ER5 000049 000167
I 000034 000191 000202 000203 000205 000212 000213 000215 000222 000224 000230

000234 000238 000239 000243 000247 000332 000340 000344 000345 000363
000367 000368 000383 000421 000422 000436 000444 000445

I-BLDG 000118 000288 000291
I-J:IV 000100 000326
I-GRADE 000097 000413 000416
I-LOC 000094 000318 000321
I-RT 000103 000270 000273
I-SCHOOL 000106 000262 000265
I-XLCC 000110 000296 000299
I-ZLOO 000113 000304 000307
IN!T1 000054 000164 000171 000173

Figure 18a, Checker program (II of 13)

33

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

INI'1'2 000055 000208
IT 000036 000217 000218 000230 000231 000243 000244
J 000035 000212 000213 000234 000235 000239 000240 000247 000248 000331 000332

000345 000346 000368 000369 000422 000423 000445 000446
KGN-BLDG 000118 000291
KGN-BLDGS 000115
LINE-CHAAACTER 000147 000203 000205
LINE-OUT 000027 000166 000167 000168 000182 000183 000184 000185 000188 000195 000197
LISTING 000015 000153 000160 000166 000167 000168 000182 000183 000184 000185 000188

000195 000197
LOCATION 000066 000278 000280 000282 000321
LOCATION-CODE 000094 000321
LOCA'IION-CODES 000093
MONTH-BEGUN 000088 000438
MONT'H-COMPLETED 000077 000386
NAME 000056 000210
NAME-CHAAACTER 000057 000230
OTHER-LOCATION 000062 000299 000307
PRESENTATION-MODE 000085 000404
PROJECT 000071 000348 000354 000359
RECORD-TYPE 000068 000251 000273 000347 000353 000392
RECORD-TYPE-CODE 000103 000273
RECORD-TYPE-CODES 000102
SCHOOL 000061 000265
SCHOOL-com: 000106 000265
SCHOOL-CODES 000105
SERIAL-NO 000058
SERIAL-NO-CHARACTER 000059 000217 000238
SPLAT 000037 000172 000209 000221 000227 000235 000240 000248 000259 000265 000273

000291 000299 000307 000315 000321 000326 000339 000346 000351 000357
000362 000369 000374 000381 000387 000389 000391 000394 000399 000403
000406 000410 000416 000423 000433 000439 000441 000446

TEACHING-DIVISION 000082
TEACHING-LOCATION 000081 0003E8 000390
THIS-YEAR 000033 000150
TITLE 000069 000329
X-LOCATION-CODE 000110 000299
X-LOCATION-CODES 000108
YEAR-BEGUN 000089 000440
YEAR-COMPLETED 000078 000440
Z-LCCATICN-CODE 000113 000307
Z-LOCATION-CODES 000112

Figure 18a. Checker program (12 of 13)

33.1

PRCCEDURE NA~ES

100-~AIN-PROCESS
200-~AIN-PROCESS-CCN~D
201-~AIN-PROCESS-CCN~D

202-MAIN-PRCCESS-CCN~D

203-MAIN-PROCESS-CCN~D
204-~AIN-PROCESS-CCN~D

205-EUILD-UNDERSCCRE-LINE
300-POIN~ER-INSER~
301-NAME-CHECK
302-SERIAL-NC-CHECK
303-DEP~-CHECK
304-SCHCOL-CHECK
305-RECCRD-TYPE-CHECK
306-LOC-AND-BLDG-CHECK
307-COURSE-NC-CHECK
308-COMPLE~ICN-GRADE-CHECK

309-DATE-DIGIT-CHECK
310-DATE-BEGUN-CHECK
400-K-ELDG-CHECK
401-X-LOC-CHECK
402-Z-LOC-CHECK
403-AN-BLDG-CHECK
404-COURSE-HCUR-CHECK
405-DATE-BEGUN-DIGIT-CHECK

Figure 18a. Checker program (13 of 13)

CEFN

000163
000207
000250
000317
000371
000425
000201
000226
000229
000237
000242
000261
000269
000277
000343
000412
000420
000435
000287
000295
000303
000311
000366
000443

REFERENCE

000158
000174
000175
000176
000177
000178
000191
000213 000332
000215
000222
000224
000252
000254
000255
000340
000377
000383
000429
000279
000281
000283
000285
000363
000436

Page of GC20-2000-0
Added August 15,1978
By TNL GN20-3814

33.2

Page of GC2D-2000-O
Added August 15, 1978
By TNL GN20-3814

200-

MAIN·PRocess-
CONTO

J I
J I I

300- 301· 302-
POINTER- NAME· SERIAL-
INSERT CHECK NO-

CHeCK

I I
303- 304-
DEPT· SCHOOL·
CHECK CHECK

I

400-
K-BLDG-
CHECK

CHECKER

I

100-
MAIN-PROCESS

I

20t·
MAIN·PROCESS·
CONTD

I
305· 306-
RECORD· LOC·AND
TYPE- BLDG-
CHECK CHECK

I
I I

401· 402-
X-LOC- Z-LOC-
CHECK CHECK

202· 203- 204-
MAIN·PROCESS- MAIN·PROCESS· MAIN·PROCESS-
CONTO CONTD CONTD

I I
307- 308- 309- 310·
COURSE- COMPLETION DATE- DATE-
NO- GRADE- DIGIT- BEGUN
CHECK CHECK CHECK CHECK

I
I I

403· 404·
405-
DATE-

AN·BLDG· COURSE' BEGUN·
CHECK HOUR DIGIT-

CHECK
CHECK

Figure 18b. Checker program structure chart corresponding to COBOL procedure names cross-reference dictionary

33.3

I
20S·BUILD·
UNDERSCORE-
LINE

This page intentionally left blank

Page of GC20-2000-o
Revised August 15, 1978
By TNL GN20-3814

Appendix B: Case Study Solution

This appendix contains the error list (Figure 19) and
detail and summary inspection reports (Figure 20
and 21). Note that the error list (the average inspec­
tion team finds 13 or 14 of these errors) could be
expanded to include violations of installation
standards. For example, the following might be an
additional error that could be listed:

MN/W/MIN - ~3: SPLRT ~~
A.~~'

I. PRIM/MIN - ~3; oJ4~1:tk.."" .. J~,,~·~Xk- reEMII~KS
~~~. fT---~ 

2. OA/W/MAJ - ~ 129: ERR-RECORD-TVPE"i4Jtnd;. ot~· 

3.PU/W/MAJ- ~/51:~~~4-~~-~~~ 
AktL-),4U-~~~ Auc--~ ~ (~~). 

'I. LD/M/MAJ- ~/79: COUNTER~~~a:t.J.t..~4-~ 
~. ~);tk.~A;t~/79~~ 
~~k~ 

5. LO/M/MAJ- ~ 198: £12~OR.-LlNE~~~(/B(ft:.· 

{,.OA/W/MAJ- ~205:Jlt.~~~"k~~ 
AfMt..~-kv· 

1.LOjW/MAJ - 'i/.Au...212: W~~M.t..~~~~ 
~ N4"'E);cAt..-~~ (I)~,.u4Ml,k-~da.tL 'f~ 

8. LO/W/MAJ - ~2.15: NIiME-CJlECK~ PERfOR"'ED.;tntL~~.itJLMv 
~ . 

• 9. PU/E/MIN - ~23/:.hv NIlM£-CJ.l£CK,d.t.-~FSPM£~ 
~. 

10. OE/W/MAI- ~Z31:;tk.~~~rd.L~ 
4A.-~.AAU~~~· 

II. W/W/MA1- ~ 239:.t.v 5ERIAL-ND-CH£CK,;t./r.t.~~",w~~ 
~~~. 

12: LD/W/MIN- ~ 15": ~ J_;h~~;tuL. fw~·x .. ~
·Z': Jt.~J.;;tM-.

13:LO/W/MAJ- 'iv.u.. 312:';/le".~~~~;tk.. ".Ioh;/'·AA1"'-'A>.

~~pf~J~)~~
~-k~.

l't. LD/W/MIIJ' - ~ .332: J.I.- ~/fVI.L ~ ~, h"f.i. ~ ~
~AAL~-~.

If>-LO/M/MAI- ~353: ~~4~~~~.

lb. LO/W/fflAJ- ~3tJ7~8("4~~~3q.1.

/7. PU/wjMAI - k 313: :JL.-~4-:d..t-.~ 4 COBOL
~~~"a4'JtiL.~~. 

~~~~~k-k8.0~. 

34

Page of GC20-2000-0
Revised August 15, 1978
By TNL GN20-3814

CODE INSPECTION MODULE DETAIL REPORT

Date ________ _

Module: CJlEcKER.. Component/Application ________ _

MAJOR MINOR TOTAL

M W E M W E

La: Logic 9 I

TB: Test a nd Branch

EL: Extern al Linkages

RU: Regist er Usage

SU: Storag e Usage

DA: Data A rea Usage 2-

PU: Progra m Language Usage 2. I
PE: Perfor mance

MN: Mainta inability

DE: Design Error /
PR: Prolog ue I
CC: Code C omments

aT: Other

TOTAL
13 4

REINSPECTION REQUIRED?.L

Figure 20. Checker program code inspection module detail report

35

Page of GC20-2000-O
Revised August 15,1978
By TNL GN20-3814

SUMMARY INSPECTION REPORT INITIAL DESIGN 0 DETAILED DESIGN 0 CODE rJZf
{j/~oL-

To: Design manager J ~ j{) ~ ~ ~ Date ~ J

Development manager a,cp 7~
Subject: Inspection report for Cf/ECt'£l!! Inspection date I..L Lt..21.:-

Application

Component(s)

Work Performed By
Initial Detailed Inspection Person-Hours (XX)

Full Designer 0 Designer 0 ELOC/NCSS Actual Estimated
New or Detailed Programmer Added, Modified, Deleted Over-

Module or Part Designer D,.e 0 i;'" Est_ Pre. Est. Post. Rework view& Insp. Re- Follow-
Name Mod. Insp. Programmer ~ Tester (]2J'A M D A M D A M D Prep. Meetg. work up

fJlfs;tPc Ai JOAlE5 OJ/VIS. ~ ~ ~ C/o 13.3 J',o /.6

Totals

Reinspection required? '[£5 Length of inspection (clock hours and tenths) 2.2..

Reinspection by (date) / / /2~! r , Additional modules AlO

DCR ID's written C-2.
Problem summary: Major /3 Minor 4 Total /8

Errors in changed code: Major ___ Minor Errors in base code: Major Minor

L/I,eSO/IJ ..LONeS D,1,fL1..5 -CJ/~
I nitial Designer Detailed Oesigner Programmer Team Leader Other Moderator'sSi ;;'aW;:;-

Figure 21. Checker program summary inspection report

36

Component

Appendix C: Exit Criteria

Exit criteria are requirements to be met before a
phase is considered complete. One objective of
inspections is to determine whether these
installation-established requirements have, in fact,
been met. The initial design, detailed design, and
code inspection exit criteria that follow are samples
developed within IBM for a system control program­
ming environment. Each installation should develop
its own criteria to meet the needs of its specific
application development environment.

Initial Design Exit Criteria
Initial design specifications are divided into two
sections:

1. Specifications that describe the new functions as
it applies to all affected areas of a component
and system (Group I specifications)

2. Individual specifications for each module
affected by the new function (Group II
specifications)

The exit criteria for Group I and Group II specifi­
cations follow.

Group I Specifications
1. Completed external specifications, that is, those

that define a function from a user or outside
viewpoint.

2. Internal specifications containing the following
for all new or changed functions for each affect­
ed component.
a. Component Description

An overall description of the new function -
what is to be done.

b. Design Rationale
Statement of design requirements - why it is
to be done. Include performance and storage
requirements.

c. Control Flow
Diagram showing transfer of control between
divisions of the component.

d. Dependencies
• Internal

Dependencies on other components within
the system .

• External
Dependencies outside the system, such as
hardware.

e. Data Areas
Names of data areas that are required by this
function.

f. Internal Macros

Names of macros contained within the system
that are required by this function.

g. Linkages
• Intercomponent

List of linkages between components re­
quired by this function.

• Intracomponent
List of linkages between major divisions of a
component required by this function.

3. Internal specifications containing the following
for all new or changed functions for each affect­
ed major division of a component.
a. Major Division Description

An overall description of the function as it
affects each major division.

b. Module List
A list of all new or changed modules that are
affected by the new function.

c. Control Flow
A graphic representation of the control flow
(linkages) between the modules within the
division that are affected by the new
function.

d. Packaging Requirements
Any paging or link-editing required by the
new function must be defined and listed.

Group II Specifications
The Group II portion of the initial design specifica­
tions is a module description. Its purpose is to
provide a functional description design statement
that will be used as the source for detailed design.
The Group II specifications are not intended for use
as coding specifications. The following are required
for each module affected by a new function:

.1. Functional description statements must be to a
level of detail in the approximate range of
15-25 source language lines of code per design
statement. (A design statement can be ex­
pressed in any design language, for example,
HIPO, flowcharts, pseudo code, etc.)

2. If a specific sequence of processing or control
flow in a module is required, it must be stated.

3. All required data area changes/ additions must
be specified to the field description level (field
names and storage attributes will be defined
during detailed design).

4. All required linkage changes/additions must be
defined:
a. For macros internal to the component,

definition must be to the macro description

37

level. (Specific macro keywords and parame­
ters will be defined during detailed design.)

b. For control flow between modules, all linkage
information requirements must be defined.
(Specific return codes, parameter formats,
etc., are not required; they will be defined
during detailed design.)

5. All new/changed module attributes must be
specified:
a. Reenterable, reusable
b. Protection key
c. Fixed or pageable
d. Supervisor or problem state
e. Enabled or disabled state

6. All new/changed performance and storage
criteria must be specified. These include stor­
age size and path length requirements.

Detailed Design Exit Criteria
1. Completed specifications represent design to

the approximate range of three to ten source
language lines of code per design statement. (A
design statement can be expressed in any design
language, for example, HIPO, flowcharts, pseudo
code, etc.)

2. Design specifications must be structured (all
applicable structured programming rules are to
be followed).

3. For design specifications covering modified
modules, all new/changed statements should be
flagged with release identification.

4. References to data areas should be by field
name.

S. Macro invocation should specify all required
parameters and associated values. Those pa-

38

rameters that are not specified are assumed to
be default values.

6. Linkages to external routines/modules must be
defined. Parameter values passed and return
codes expected are specified.

7. Messages issued by modules must be defined.
Identification numbers and message texts are
specified. Entry and exit points from modules
must be defined.

8. All new/changed data areas must be document­
ed in respective design documentation.

9. Any design changes to initial design since initial
design exit must be included in the current
design specifications; that is, initial and detailed
design materials must match.

Code Inspection Exit Criteria
1. Complete and up-to-date module prologue.
2. Error-free compile (that is, no higher-level

messages than warning messages).
3. Program listing containing:

a. Compile phase output with cross-reference
listing

b. Assembler language (BAL) phase output with
cross-reference listing

c. Data area maps
d. New/changed lines of code flagged with

programmer identification code
4. Any design changes since detailed design exit

must be included in current design specifica­
tions; that is, design and code materials must
match.

Appendix D: Checklists

Checklists provide the inspection team with a set of
prompters to help uncover high-cost, high­
occurrence errors in the work product being inspect­
ed, and are based on an analysis of errors found
during prior inspections. The inspectors review the
appropriate checklists during the preparation period
and also use them during the inspection meeting to
help them focus on the error types listed.

The initial design, detailed design, and code
inspection checklists that follow in this appendix are
samples developed in a system control programming
environment. Each installation will develop its own
checklists to reflect its own error statistics and
requirements. Note that the errors specified in the
sample checklists are associated with a two-character
alphabetic error type code that corresponds to the
codes used on the inspection report forms (see
Appendix E).

Initial Design Inspection Checklists
The Group I and Group II checklists are used with
Group I and Group II initial design specifications,
respectively (see Appendix C).

Group I Checklist
1. Is the design consistent with the program

objectives or requirements? ES
2. Is the external specification for all new/ chariged

externals correct and in sufficient detail? ES
3. Does the external specification properly address

human factors considerations (for example,
eliminate redundant user options, create mean­
ingful and usable user macros, keywords,
etc.)? ST

4. Do the Group I specifications give an accurate
and complete: SC
a. Overall description of the new function?
b. Graphic description of the new function,

showing control flow between linking mod­
ules, both within and outside the function
(component and system)?

c. List of external dependencies?
d. List of packaging requirements (modules that

must be link-edited or paged together)?
e. List of control blocks and a description of

new functions for which they are used?
f. List of component macros required by new

function?

Group II Checklist
1. Do the Group II specifications give a complete

and accurate description of the overall function

of the module?
a. Is all new/changed design specified at the

functional description level? SC
b. Is the design understandable as stated? Can

detailed design be implemented from this
level of detail? SC

c. Does the functional description cover all
known possible cases (for example, no miss­
ing logic)? Watch in particular for exception
cases. LO

d. Does the functional description cover abnor­
mal conditions (for example, what would
happen if there is an ABEND)? ST

e. For design being implemented in more than
one system, does the new function fit correct­
ly into all systems (each system may present
unique situations)? LR

f. For changed functions, does the new logic
mesh with the old? LO

2. Are all required data definition changes and
additions specified and defined to the field
description level (field names and storage
attributes will be defined during detailed de­
sign)? DA
a. Is the field described correctly?
b. Have any field definitions been omitted?

3. Are all required external linkage
changes/ additions specified and defined cor­
rectly? LR
a. Should an external routine be used rather

than performing the function internally?
b. Does the processing module set up (for

output) and process (on input) all required
passed parameters? Correctly?

c. Is all new/changed information flow across
external linkages correctly described? Specif­
ic return codes, parameter formats, etc., are
not required; they will be documented in
detailed design.

4. Are new/changed module attributes
specified? MA
a. Reenterable, reusable?
b. Protection key?
c. Fixed or pageable?
d. Supervisor or problem?
e. Enabled or disabled?

5. Are new/changed performance and storage
criteria specified? PE
a. Path lengths?
b. Storage size?
c. Is the function designed optimally for perfor­

mance and storage?

39

d. Does the function use existing facilities (logic,
control blocks, etc.) where possible? Cre­
ation of new facilities should be avoided
where existing ones are available.

e. Will execution of the function as designed
cause minimum (optimal) paging?

Detailed Design Inspection Checklists

Logic (LO)
• Are all constants defined?
• Are all unique values explicitly tested on input
parameters?

• Are values stored after they are calculated?
• Are all defaults checked explicitly; for example,

blanks in an input stream?
• If character strings are created, are they com­

plete? Are all delimiters shown?
• If a keyword has many values, are they all

checked?
• Are all keywords tested in a macro?
• Are all keyword-related parameters tested in a
service routine?

• Are all increment counts properly initialized
(0 or 1)?

• After processing a table entry, should any value
be decremented or incremented?

• Is provision made for possible processing at
logical checkpoints in the program (end-of-file,
end-of-volume, etc.)?

• Is allIlO performed on opened files?
• Are routine error conditions adequately provided

for (INVALID KEY, ON SIZE ERROR, etc.)?
• Are literals shown where there should be constant
data names?

• On comparison of group items, should all fields be
compared?

.Is the value of a data item used before the item is
initialized?

• Are all data areas shown in design necessary or
are some extraneous?

Data Area Usage (DA)
• If design is dependent on building/ creating/
deleting various data areas, are all designated?

• Should~ called macro provide any INCLUDEs for
any data areas that the macro expanded code may
depend on?

• Does design show explicitly which area to use in a
data area, that is, if there are multiple save areas?

• If the program stores into a data area, does it
store into the correct field?

• If a value is fetched from a data area, is the
correct field fetched?

40

• Should the data area be boundary-aligned?
• Does a save area have multiple uses? Can con­
flicts arise?

Test and Branch (TB)
• Are all three conditions tested, that is, greater
than, equal to, and less than zero?

• After a linkage, should a return code be tested?
.Is a SORT or a MERGE operation tested for
successful completion?

• Are branch legs correct, that is, should YES be NO
and NO be YES?

Return Codes/Messages (RM)
• Are messages issued for all error conditions?
• On exits, should a return code be set or a message
issued?

• Does the message say what it means?
• Could more information be supplied in the

message?
• Do return codes in the design for particular

situations match the global definition of the
return code as documented?

Register Usage (RU)
• If a specific register is required, is it specified?
• Does any macro expansion use a register already

in use without saving the data?
• Is the integrity of all input registers maintained?

More Detail (MD)
• Does the design specify a process ambiguously, or

does the process require more than ten instruc­
tions?

External Linkages (EL)
• Should a standard linkage be used rather than
coding a subroutine inline?

• Is the designated linkage the right one for the
function to be performed?

.Is the data area mapped as the receiving module
expects it to be?

Standards (ST)
• Are any programming standards for the project in

jeopardy of compromise because of the design?

Initial Design Documentation (HL)
• Does the detailed design match the initial design?
If not, the initial design documentation could be
in error.

Performance (PE)
• Does the design impair the performance of this
module to any significant degree?

Code Inspection Checklists

COBOL Checklist

Identification Division
• Does the prose in the REMARKS paragraph

function as a complete prologue for the program?
PR

Environment Division
• Does each SELECT sentence explicitly define the
external (system-dependent) specifications for the
file? SU

Data Division - File Section
• Are the file definitions (FDs) in the same order as

their respective SELECT sentences in the environ­
ment division? DA

• Do the record and data item names conform to
their usage? DA

• Does each FD contain comments regarding: DA
File usage (recording mode), block size, record
length, imbedded keys, etc.)?
Amount of activity (updated how often, used
every time program is run, etc.)?
Interaction with other data items. (Do its
records contain objects of OCCURS ... DEPEND­

ING ON clauses? Is the length of its records
dependent on such an object elsewhere in the
program, etc.?)

• Is the file sorted or merged? EL
• Are statistics kept on file activity in a given run or

series of runs? EL
• Is the correct balance struck between specifying

complete file attributes in the program and speci­
fying some of them dynamically (such as block
size, maximum record length); that is, if a file is
designed to be flexible in the given program, is it
defihed as flexibly as needed? DA

Data Division - Working Storage and Linkage
Sections

• Do the data item names conform to their usage?
DA

• Does each data item (except for elementary items
of obvious usage - subscripts, etc.) contain
comments regarding: DA ,

Characteristics (fixed- or variable-length,
maximum allowable length, etc.)?
Interaction with other data items? (Does this
data item contain or depend on objects of
OCCURS ... DEPENDING ON, etc.?)
Area of use in program? (Is it used only in a
certain section, or during a range of paragraphs,
etc.?)

• Are all data items with any kind of unifying
quality placed together according to a particular
scheme? DA

Usage (arithmetic work areas, work areas for
file records, etc.)?
Commonality of purpose (everything used to
process a particular file, etc.)?
Attributes (message texts, constants, etc.)?

• Are all working storage items that are used as
constants designated as such? DA

• Are data items that are required to be in a partic­
ular order sequenced correctly? DA

.Is the use of REDEFINE/RENAME in a data
description justified and documented in terms of a
simplification of data references, rather than
reliance on the normal hierarchy of level num­
bers? SU

Procedure Division
• Are block comments included for major function­

al areas (for example, paragraph, section, seg­
ment)? CC

• Is the module commented on in sufficient detail?
CC

• Are comments accurate and meaningful? CC
• Does the code essentially correspond to the
outline of the module documented in the remarks
paragraph? LO

• Does each paragraph, section, or segment have a
homogeneous purpose which justifies and/or
necessitates placing all the code together under
such a grouping? MN

• Does each performed paragraph or section
document the function it accomplishes and the
part of the overall logic it represents? CC

• In a segmented program, is it clear why segmenta­
tion is necessary? MN

• Does each segment stand alone, or is there heavy
dependence on other segments? MN

Format
• Are IFTHENELSE and DO groups aligned proper-

ly? MN
• Are nested IFs indented properly? MN
• Are comments accurate and meaningful? MN
• Are meaningful labels used? MN
• Are the clauses of complex verbs (for example,

SORT/MERGE and OPEN/CLOSE) indented
properly and clearly under the verb? MN

• Does all use of GO TO conform to installation
standards? MN

External Linkages
• Are initial entry and final exit correct? EL
• Is each entry point defined correctly? EL

41

• Is each parameter referenced in an ENTRY state­
ment a 77 or. 01 item in the linkage section? EL

• Is the usage of STOP,RUN/GOBACK/EXIT
PROGRAM verbs correct? EL

• For each external call to another module: EL
Are all required parameters passed to each
called module?
Are the parameter values passed set correctly?
Upon final exit from this module, are all files
closed?

Logic
• Has all design been implemented? LO
• Does the code do what the design specified? LO
• Is the design correct and complete? LO
• Are the proper number of characters within a
field tested or set? LO

• Is each loop executed and the correct number of
times? LO

Program Language Usage
• Is the optimal verb or set of verbs used? PU
• Is the installation-defined restricted subset of

COBOL used throughout the module? PU
• Is attention given to normal "housekeeping"
requirements in COBOL (for example, setting the
length of a variable-length target field before a
MOVE to that field is executed)? PU

Storage Usage
• Is each field initialized properly before its first

use? SU
• Is the correct field specified? SU
.If a storage area is set and used recursively, is its

housekeeping performed properly? SU
• Is the field initialized statically (that is, by means
of the VALUE clause on its definition), when it
should be dynamically (by assignment), or vice
versa? SU

• Is the use of the REDEFINES clause in the data
item's definition compatible with all uses of the
data item in the code? SU

• If the CORRESPONDING option of the MOVE and
arithmetic verbs is used, is it absolutely clear from
the data definitions which target fields will be
affected (and, equally important, which
will not)? SU,MN

42

Test and Bran~h
• Is the correct condition tested (IF X=ON vs IF

X=OFF)? TB
.Is the correct variable used for the test (IFX=ON

vs IF Y=ON)? TB
• Is each condition name, used as a test of a data
item, defined as an 88-level under that data item?
TB

• Is each branch target of a simple GO TO or GO TO
... DEPENDING ON Statement, correct and ~xer­
cised at least once? TB

• Is the most frequently exercised test leg of an IF
statement the THEN clause? TB

Performance
• Is logic coded optimally (that is; in the fewest and

most efficient statements)? PE
• Has subscripting been used where indexing logic

would be more effective and appropriate, or vice
versa? PE

• Have ERROR DECLARATIVEs been coded for files
likely to have recoverable I/O errors? PE

• Are normal error/exception routines provided
for: PE

ON SIZE ERROR - for arithmetic statements?
INVALID KEY - for start/read/write/rewrite
statements?
AT END - for search/release/sequential READ?
ON OVERFLOW - for STRING/UNSTRING?

Maintainability
• Are listing controls utilized to enhance readability

(for example, EJECT, SKIPx)? MN
• Are paragraph and SECTION names consistent
with the logical significance of the code? MN

• Is each PERFORMed paragraph terminated with an
EXIT paragraph? MN

• Is the use of the ALTER statement completely
justified, as opposed to some sort of
switch/ conditional branch flow of control? MN

• Are null ELSEs included as appropriate? MN

Copy Facility Usage
• Is every data item definition and processing
paragraph, standardized for the installation,
generated in the module via the COpy facility?
OT

• Is there a sound reason why the REPLACE option
of the COpy statement is utilized to change any of
the names of data items in the COPY'd code? OT

PL/I Checklist

Code Documentation Prologue
• Are there discrepancies between the code and the

prologue? PR

Procedure Statemment (external procedure)
• Is the procedure name the same as the module

name? MN
• Are the options present consistent with module
design; that is, both the OPTIONS sub list
(reentrant, etc.) and the options for the PROC
statement (recursive, etc.)? OT

• Are any required options missing? OT

Initial DECLAREs and INCLUDEs, Storage
DECLAREs

• Do the names of the data items correspond to
their usage? MN

• Does each data item (except for items of obvious
usage - constants, subscripts, etc.) contain com­
ments regarding: CC

Characteristics (fixed- or variable-length,
maximum, allowable length, customary
(arithmetic) precision, etc.)?
Interaction with other data items? (Does this
data item determine the length of another data
item? Is this data item used to control a major
loop, etc.?)
Area of use in the program? (Is it used only in
a certain section, or during a particular internal
procedure, etc.?)

• Are all related data items placed together accord-
ing to a particular scheme?

Usage (arithmetic work areas, work areas for
file records, etc.)? MN
Commonality of purpose (everything used to
process a particular file, arguments passed to
the same subroutine, etc.)? MN
Attributes (message texts, constants, etc.)? MN

• Are all data items used as constants designated as
such? MN

• Are data items that are required to be in a partic­
ular order sequenced correctly? MN

• Do the INITIAL values conform to the
design? LO

• Are the correct data attributes used, that is, fixed,
character, bit, decimal, etc.? DA

• Is the correct storage attribute used (static,
automatic, etc.)? DA

• Are addresses defined correctly (use of BASED,
ADDR function, etc.)? DA

• Is the use of the DEFINED attribute in a data
description justified by the simplification of data
references? DA

File DECLAREs
• Do the names of the files, and the associated data
items, correspond with their usage? MN

• Does each file declaration contain comments
regarding: CC

File usage (record type, block size, record
length, imbedded keys, etc.), provided such
information is not clearly indicated elsewhere,
such as the ENVIRONMENT attribute?
Amount of activity (updated how often, updat­
ed every time program is run, etc.)?
Interaction with other data items? (Do its
records contain data items which determine the
length of other data items? Is the length of its
records determined by a data item elsewhere in
the program, etc.?)

• Are statistics kept on file activity in a given run or
series of runs? PE

• Are the correct file attributes used
(STREAM/RECORD, SEQUENTIAL/DIRECT /
TRANSIENT, etc.)? OT

• Is there a valid reason for placing file attributes
on an OPEN statement, rather than in the file
declaration itself? MN

• Is the correct balance struck between specifying
complete file attributes in the program, and
specifying some of them dynamically at execution
time (for instance, block size, maximum record
length, etc.)? MN

INCLUDEs
• Are all data areas required by the module

INCLUDEd correctly? DA
• Is the INCLUDE feature (macro or option) used to
define identical or nearly identical data areas
(such as work areas and file areas)? DA

• Is every data item definition and processing
procedure standardized for the installation gener­
ated in the module via the INCLUDE facility? OT

• Is there a sound reason why any of the labels or
names of the data items are changed in an
INCLUDEd portion of text? OT

Format
• Are block comments included for major function­
al areas, such as the internal procedure
section? CC

• Are the module's comments sufficiently
detailed? CC

• Are comments organized and formatted so that
they do not interfere with the readability of the
program? CC

• Are comments accurate and meaningful? CC

43

• Does the code essentially correspond to the
outline of the module documented in the pro­
logue? PR

• Does each internal procedure or subroutine have
a consistent purpose which justifies and/or
necessitates placing all the code together under
such a grouping? CC

• Does each such internal procedure or subroutine
document the function it accomplishes and the
part of the overall logic it represents? CC

• Are meaningful labels used? MN
• Are IFTHENElSE and do-groups aligned

properly? MN
• Are nested IF's and do-groups indented

properly? MN
• Are block comments and remarks effectively
positioned? MN

• Are the clauses of complex statements indented
properly under the verb? MN

Complex arithmetic and assignment?
File names and options on OPEN/CLOSE?
ALLOCATE/FREE?
CALL/ENTRY?
FROM/INTO/KEYFROM/KEYTO on I/O state­
ments?
Complex DO?
GET/PUT?

• Does all use of GO TO conform to installation
standards? MN

Entry and Exit Linkage (EL)
• Are initial entry and final exit correct?
.Is each parameter referenced in a PROCEDURE or

ENTRY statement defined with the proper attri­
bute (that is, compared to arguments in calling
proced ure)?

• Are subroutines (internal PROCEDUREs) entered
and exited properly?

• Are options on internal PROCEDURE statements
consistent with module design?

Logic (LO)
• Has all design been implemented?
• Does the code do what the design specified; that

is, is the design translated correctly?
.Is the design correct and complete?
• Are the appropriate number of characters within a

field tested or set?
• Is each loop executed the correct number of

times?

Program Language Usage (PU)
.Is the optimal verb or set of verbs used?
• Is the installation-defined restricted subset of PL/I

used throughout the module?

44

• Are PL/I built-ins and functions used appropriate­
ly in lieu of equivalent ordinary statements (for
example, lENGTH, MAX, MIN, etc.)?

• Is special attention paid to conversion rules?
• Is an arithmetic built-in used instead of arithmetic

assignment when difficult cases of precision arise
(such as multiply, divide, etc.)?

• Is attention given to normal "housekeeping"
requirements in PL/I (such as setting the length of
a variable-length target field before an assignment
is made to that field)?

• Are the proper scope rules of PL/I followed (for
example, defining the same variable in procedure
and in contained BEGIN block, etc.)?

.Is the use of the lABEL variable completely
justified, as opposed to some sort of
switch/ conditional branch flow of control?

Storage Usage (SU)
.Is each field to be initialized set correctly?
• Before the first use of any field, has it been

initialized properly?
.Is the correct field specified?
.If storage is set and used recursively, is it
"housekept" properly, depending on storage
attributes (controlled, static, automatic), on a
procedure basis, at least?

• Is the field initialized statically (that is, by means
of the INITIAL attribute in its DCl), when it
should be initialized dynamically (by assignment),
or vice versa?

.Is the use of the DEFINED attribute in the data
item's definition compatible with all uses of the
data item in the code?

• If a BY NAME assignment is done, is it absolutely
clear from the structure definitions which target
fields will be affected (and, equally important,
which will not)?

Test and Branch (TB)
.Is the correct condition tested (IF X=ON vs IF

X=OFF)?
.Is the correct variable used for the test (IF X=ON

vs IF Y=ON)?
• Are null THENs/ELSEs included as appropriate?
• Is each branch target correct and exercised at

least once?
• Is the most frequently exercised test leg of an IF

statement the THEN clause?

Performance (PE)
• Is logic coded optimally (that is, in the fewest and
most efficient statements)?

• Have ON statements been coded for files likely to

have recoverable I/O errors (TRANSMIT, UNDE­
FINEDFILE, KEY, etc,)?

• For array assignments, would a more efficient
assignment operation result from a subscripted
do-loop, or vice versa? Similarly for structures?

• Are normal error/exceptional conditions provided
for via ON (condition) statements?

ENDFILE/KEY /ERROR?
CONVERSION/OVERFLOW /SIZE?

Maintainability (MN)
• Are listing controls utilized to enhance read-

ability?
'Yt,PAGE, %SKIP in macros/preprocessor?
Control characters/blank cards in regular
source?

• Are labels and PROCEDURE names consistent
with the logical significance of the code?

• Are paired DO and END labels used?
• Is proper formatting (such as indenting) provided

either by the programmer or the compiler?

External Linkages (EL)
• For each linkage call to either a macro or another

module:
Are all required parameters passed to each
linkage?
Are the parameter values passed set correctly?
If the linkage is a macro:
Does the inline expansion contain all required
code?
Are there storage conflicts between macro and
calling module?

• If the linkage returns, are all returned parameters
processed correctly?

• Upon final exit from this module, are all files
closed and CONTROLLED storage FREEd?

Indirect Addressing (OT)
• Is each pointer notation that is used correct?
• If pointer/offset notation is used, is it required

(that is, can a more direct method of addressing
be used)? Similarly for the I-sub feature of
arrays?

45

FORTRAN Checklist

Comments
• Are comment lines used to group logically related

statements? MN

Data Declaration
• If COMMON contains many entries, check that
repetitions in other subroutines match in length
and order of listing. DA

• If EQUIVALENCE is used, check shared data
storage for problems of unintended use. DA

• Check that FORMAT statements match READ,
WRITE lists and that the intended conversion of
data is specified. DA

• Are FORMAT statements grouped at the beginning
of the program? MN

• Are meaningful names used? MN

Control
• Check nesting of DO loops. TB
• If extended range of DO is used, check

carefully. LO
• Check whether any DO variable is to be used

upon exit of the DO loop. LO
• Does any use of GO TO conform to installation
standards? LO

Computation
• Check all mixed mode expressions in assignment
statements. DA

• Examine all usage of complex numbers. LO

Data Handling
• Check that indexing out of the range of an array

does not inadvertently destroy constants or data
areas. SU

Format
• Are installation indention standards

followed? MN

Call Usage
• Watch for the use of call by value, call by

name. EL

46

• Match parameter list in caller-called program. PU

Subroutine Usage
• Check that any needed local variables have not

been destroyed by consecutive invocations. LO

Variable Types
• Check that the correct variable types (integer,
real, complex, logical) are declared. PU

Object Time Execution
• Check job control language. OT
• Check the use of associated variables in direct
access statements. LO

• Check for the destruction of constant values upon
return of a subroutine. EL
For example

CALL SUB(2.,x,y)

SUBROUTINE sUB(a,b,c)
A=4.
RETURN

in which 2. is destroyed.

FORTRAN Conventions
• Check the use of FORTRAN default conventions.

PU
Examples:

A. 1) X=Y**12
2) X=Y**12.
These produce different answers. In case 1,
multiplication is performed, while in case 2,
logical expression routines are used.

B. 1) X=X+2 1=1*2
2) X=X+2. 1=1*2.
In case 1, the constant 2 must be floated,
while in case 2, the number must be fixed.

Error Analysis
• Check that arithmetic expressions will be evaluat­

ed as intended (use of parentheses). PU
• Check whether the proper length of precision has
been selected for calculation and whether con­
stants match in type. PU

Assembler Checklist

Register Usage (RU)
• Check that base registers defined by USINGs are
all loaded at the appropriate time, that is, before
first attempted use.

• Check that all temporary base registers are
dropped when no longer needed.

• Check to ensure that base registers cannot be
destroyed during execution, particularly via calls
to subroutines or across CSECT boundaries.

• Check that all intended entry points are defined
by ENTRY statements. Use the External Symbol
Dictionary to verify their external status.

Program Language Usage(PU)
• Check for operation code misspellings that will

nevertheless be accepted by the assembler be­
cause the misspelling is another valid assembler
operation code for which the operands have the
same format as the intended instruction. Exam­
ples are:

Instruction
As Intended As Misspelled

a. SR SUBTRACT S SUBTRACT

REGISTER
b. ·LA LOAD ADDRESS L LOAD
c. STH STORE HALF- SH SUBTRACT

WORD HALFWORD
d. SRL SHIFT RIGHT SLR SUBTRACT

LOGICAL LOGICAL
REGISTER

a. Omitting the "R" in the instruction: SR 5,8
will yield the valid instruction: S 5,8

b. Omitting the "A" in the instruction: LA 5,8
will yield the valid instruction: L 5,8

c. Omitting the "T" in the instruction:
STH 5, XYZNUM will yield the valid instruc­
tion:
SH 5,XYZNUM

d. The error in this case can go either way, that
is, from SLR to SRL or from SRL to SLR. For
example, both instructions are equally plausi­
ble: SLR 5,8 and SRL 5,8.

• Check that Load Multiple (LM) picks up the
desired sequence of fullwords and that they are
placed into the expected registers.

• Ensure that CLI is not used when TM is really
required, that is, check that bit-switches are not
confused with byte-switches.

• Check that register 2 has not been unwittingly
destroyed by a TR (Translate) or TRT (Translate
and Test) instruction.

• Check that expressions representing lengths are
specified correctly:
For example,

MVC 0 (LABEL2-LABELI,R6),O (R3)

vs
MVC 0 (LABEL2-LABEL I + I ,R6), 0 (R3)
or
vs
MVC 0 (LABEL2-LABELI-I), R6), 0 (R3)

• Check that all possible cases of conditional
assembly parameters are generating the code
expected. An assembly should be produced for
all major cases and the logic of each compared
with a card image printout of the source state­
ments.

• Check that use of unconditional branches con­
forms to installation standards.

• Check that a save area exists, if required, and is
set up according to the prevailing operating
system conventions (for example,
forward/backward pointers, etc.). If available, a
system macro should be used to establish save
area linkages (for example, the OS S.;\ VE macro).

• Check that register usage conforms to the prevail­
ing standards applicable to the project, if any. If
no special standards are in use, operating system
standards should be applied (for example, for OS,
R 13 is the save area pointer; R 14, the return
address; R15, the entry point address; RI, the
parameter list pointer; RIO and R II, parameter
registers) .

• Check that EQUATEs are all meaningfully de­
fined; in particular, check that register EQUATEs
such as R5 EQU 5 are not redefined as a shortcut
method of introducing changes, as would be the
case if the foregoing example were changed to R5
EQU 6 to free up register 5, assigning its current
use to register 6.

• Check system macro calls to ensure that keyword
parameters are not specified as positional parame­
ters, and vice versa. For macros accepting mixed
format (both positional and keyword parameters),
a keyword parameter written in positional form
might be accepted as meaning something else than
intended.

Data Area Usage (DA)
• Check that DSECTs correspond in format to the
data which they represent.

• If modifications have been made to a data struc­
ture, for example, addition of fields within the
structure (control block), check that required
alignments are still preserved. Use particular care
in the case of control blocks iteratively generated
via conditional assembly logic. (Even if the first

47

block is right, subsequent blocks may not start on
the same type of boundary, causing program
failure only when operating on blocks other than
the first.) .

Maintainability (MN)
• Ensure that extended mnemonics are used when­
ever possible rather than hand-coded condition­
code masks.

48

Code Comments (CC)
• Check that instruction-level documentation adds

meaning to the code, for example, in the instruc­
tion SR R5,R5 ZERO R5, the comment ZERO R5
adds nothing to the content of the instruction,
while SR R5,R5 ASSUME NO REQUESTS PENDING
does add meaning.

Logic (LO)
• Is each loop executed the correct number of

times?

Appendix E: Reporting Forms

Module Detail Reports
The module detail report is completed for each
module in which valid errors are discovered during
an inspection. The following describes the use of
each field of the three reports - initial design inspec­
tion module detail report (Figure 22), detail design
inspection module detail report (Figure 23), and
code inspection module detail report (Figure 24):

1. MODULE: The module name.
2. COMPONENT/APPLICATION: The associated

component/ application name.
3. PROBLEM TYPE: Summarize the number of

problems by type (logic, etc.), by severity
(major/minor - a major error is one that would
cause the program to malfunction), and by
category (missing, wrong, extra). For modified
modules, problems in the changed portion and

in the base program can be shown as follows:
3(2), where 3 is the number of problems in the
changed portion, and 2 is the number of prob­
lems in the base.

4. REINSPECTION REQUIRED'!: Indicate whether
the module requires a reinspection. All valid
errors found in the inspection are listed and
attached to the report. A brief description of
each problem, its error type, and the estimated
rework time to correct it is included, as shown
below.

49

INITIAL DESIGN INSPECTION MODULE DETAIL REPORT

Date ________ _

Module: ____________ Component/Application _______ _

PROBLEM T YPE:

e Requirements

rea Usage

mance or Storage

e Attributes

al Specifications

LO: Logic

LR: Linkag

DA: Data A

PE: Perfor

MA: Modul

ES: Extern

SC: Specif

ST: Standa

OT: Other

ication Clarification

rds

TOTAL

M

REINSPECTION REQUIRED?_(Y or N)

MAJOR MINOR TOTAL

W E M W E

Figure 22. Initial design inspection module detail report

50

DETAILED DESIGN INSPECTION MODULE DETAIL REPORT

Date _____________ __

Module: ________________________ Component/ Appl ication _________ _

PROBLEM T YPE: MAJOR MINOR TOTAL

M W E M W E

LO: Logic

TB: Test a nd branch

DA: Data a rea usage

RM: Return codes/messages

RU: Regist er usage

EL: Extern al linkages

MD: More d etail

ST: Standa rds

PR: Prolog ue or prose

HL: Initial design documentation

US: User s pecifications

MN: Mainta inability

PE: Perfor mance

OT: Other

TOTAL

REINSPECTION REQUIRED? _ (Y or N)

Figure 23. Detailed design inspection module detail report

,
51

CODE INSPECTION MODULE DETAIL REPORT

Module: _________________ _

nd Branch

LO: Logic

TB: Test a

EL: Extern

RU: Regist

SU: Storag

DA: Data A

PU: Progra

PE: Perfor

MN: Maint

DE: Design

PR: Prolog

CC: Code

OT: Other

al Linkages

er Usage

e Usage

rea Usage

m Language Usage

mance

ainability

Error

ue

Comments

TOTAL

REINSPECTION REQUIRED? __ (Y or N)

Figure 24. Code inspection module detail report

52

Date ________ _

Component/ Appl ication

MAJOR MINOR TOTAL

M W E M W E

Summary Inspection Report
The summary inspection report (see Figure 25)
contains the results of the inspections of several
modules (usually those forming a component of an
application) and is distributed to design and develop­
ment management. The following describes how
each section of the report is used.

REPORT NAME: The box is checked correspond­
ing to the type of inspections summarized.
SUBJECT: The unit inspected is identified.
MODULE NAME: The name of each module as it
resides on the source library.
NEW OR MOD.: "N" if the module is new; "M" if
the module is "modified".
FULL OR PART INSP.: For a modified module, "F"
if the module was fully inspected; "P" if the
module was partially inspected.
WORK PERFORMED BY: The correct categories
are checked and the individuals' names specified.
EST. PRE. ELOC/NCSS: ELOC is the estimated
executable lines of source code made before a
design inspection by the designer. NCSS is a count
of the lines of non commentary source statements
made before a code inspection by the programmer.
EST. POST. ELOC/NCSS: The estimate or count
made after the inspection.
REWORK ELOC/NCSS: The estimated executable
lines of source code in rework as a result of the
inspection.

OVERVIEW AND PREP.: The number of person
hours (in tenths of hours) actually spent preparing
for the overview, in the overview meeting itself,
and preparing for the inspection meeting.
INSP. MEETG.: The number of person hours
actually spent on the inspection meeting.
REWORK: The estimated number of people hours
spent to correct the problems found during the
inspection.
FOLLOW-UP: The estimated number of people
hours spent by the moderator (and others, if
necessary) in verifying the correctness of changes
made by the author as a result of the inspection.
COMPONENT: The component of which the
module is a part.
REINSPECTION REQUIRED?: Yes or no.
LENGTH OF INSPECTION: Clock hours spent in
the inspection meeting.
REINSPECTION BY (DATE): Latest acceptable date
for reinspection.
ADDITIONAL MODULES?: For these components,
are additional modules yet to be inspected?
DCR's JD's WRITTEN: The identification of design
change requests written to cover problems in
rework.
PROBLEM SUMMARY: Totals taken from module

. detail form(s).
INITIAL DESIGNER DETAILED DESIGNER, etc.:
Identification of members of the inspection team.

53

SUMMARY INSPECTION REPORT INITIAL DESIGN 0 DETAILED DESIGN 0 CODE 0
Date

To: Design manager Development manager

Subject: Inspection report for I nspection date

Application

Component(s)

Work Performed By
Initial Detailed Inspection Person·Hours (X.X)

Full Designer 0 Designer 0 ELOC/NCSS Actual Estimated
New or Detailed Programmer Added, Modified, Deleted Over·

Module or Part Designer 0 0 Est. Pre. Est. Post. Rework view & Insp. Re· Follow·
Name Mod. Insp. Programmer 0 Tester 0 A M D A M D A M D Prep. Meetg. work up Component

Totals

Reinspection required? Length of inspection (clock hours and tenths)

Reinspection by (date) Additional modules

DCR ID's written

Problem summary: Major Minor Total

Errors in changed code: Major ___ Minor Errors in base code: Major ___ Minor

Initial Designer Detailed Designer Programmer Team Leader Other Moderator's Signature

Figure 25. Summary inspection report

54

Appendix F: Test Plan and Test Case Inspections

This appendix discusses two additional types of
inspections - test plan and test case - as shown in
Figure 26. Since the inspection process is basically
the same as for other inspections, this appendix
discusses in detail only those items that differ from
the other inspection types.

Test plan and test case inspections are designed to
inspect the plan made for testing new and/or
changed functions of a component and to inspect the
test cases developed from that plan with the objec­
tives of ensuring more complete and smoothly
functioning testing with fewer testing resources. An
indication of the productivity possibilities of test
plan and test case inspections was provided by an
IBM test in which four new functions approximating
20K lines of source code were subjected to these
inspection types in addition to the design and code
inspections. It was estimated that personnel hours
spent in testing and in test plan and test case inspec­
tions were 85 % less than the personnel hours that
would have been spent in function testing without
the test plan and test case inspections. (Note that
these test piall and test case inspection results
involved only one study. Since the results depend on
many factors, they cannot be considered representa­
tive of every situation.)

Test Plan Inspections

Objectives
The primary objectives of a test plan inspection are
to verify that function testing will provide assurance
that the function operates correctly within its intend­
ed environment and the previously tested related
functions still execute properly. A major part of a
test plan is the identification and description of each
test case.

Process and Participants
The test plan inspection process consists of the same
steps as other inspections: planning, preparation,
inspection meeting, rework, and follow-up.

In addition to the moderator, the participants
include:

• Functional tester - the author of the test plan.
• Functional designer - the designer of the function

to be tested. The designer is the key inspector
because it is assumed that a function's designer
has the most knowledge of the function being
tested and can verify that the function will be
comprehensively tested in an appropriate envi,ronment.

Initial
design

Detailed
design

Code

Unit
test

Function
test

System
test

Figure 26. Inspection types

Te~t plan
preparation

Test case
preparation

55

• Other inspectors - these inspectors, from design
and development groups, are usually responsible
for incorporating the function into a particular
program or application and can verify that the
significant coding changes made to their modules
(particularly linkages) will be tested. Even if one
test plan includes several functions, there may be
one inspection for each function. In such cases, it
is worthwhile for one of the participants to attend
all the inspections to provide continuity. Fre­
quently, test cases designed to test one function
can be slightly modified to test others.

Preparation
Each participant examines the test plan and the
initial design documents to verify that the function
will be properly tested. It is assumed that the test
plan, at a minimum, includes the following
information:

• A general test philosophy or strategy
• A description of the function to be tested
• A representation of functional coverage (that is,

matrix, cause and effect graph, family tree, etc.)
• A description of the conditions each test case will

test and how this will be accomplished
• Testing dependencies (hardware/simulator

needs, etc.)
• Entrance and exit criteria
Participants in the inspection meeting review the

planned testing activity as documented in the test
plan and compare the plan to the initial design
materials with the objective of trying to find errors
in the test plan. As with other inspection types, a
checklist can assist in focusing attention on possible
errors. The checklist below is a sample of the items
that could be included; it should be modified to meet
the needs and standards of each installation.

• Is the description of the function being tested, as
documented in the test plan, complete and
accurate?

• Are the mainline and alternate paths listed
sufficiently to provide confidence that the func­
tion being tested operates correctly?

• Is the testing approach feasible?
• Are all the new and/or changed user linkages

exercised?
• Is a sufficient number of defaults exercised?
• Are messages verified?
• Are error paths exercised?
• Are return codes generated?
• Are sufficient and proper tests identified to

reverify previously tested related functions
(regression test cases)?

56

• Are there simulator and hardware dependencies
that are not addressed?

• Are test plan entrance and exit criteria realistic?
• Are there any outstanding design changes to be

made that will invalidate the completeness of the
test plan?

Rework and Follow-up
The same considerations apply to test plan inspec­
tion steps as to the corresponding steps of other
inspection types.

Reporting Forms
Test plan inspection detail and summary report
forms as shown in Figures 27 and 28. It is expected
that installations will tailor them to their own needs.

Test Case Inspections

Objectives
The primary objectives of a test case inspection are
to review the test cases, now in executable form, to
verify that:

• The test cases cause those conditions specified in
the test plan to be executed.

• Each test case prologue provides a complete and
accurate description of its purpose and expected
results, and explicit instructions for its execution.

Process and Participants
The test case inspection process consists of the same
steps as other inspections: planning, preparation,
inspection meeting, rework, and follow-up.

In addition to the moderator, the participants
include:

• The person responsible for the test cases being
inspected.

• An inspector experienced in running test cases.
This inspector can determine whether the pro­
logue identifies test case dependencies and pro­
vides all the information needed by the operator.

• An inspector experienced in developing test cases
for this application.

Preparation
Each participant examines the test case data, com­
paring each test case with its description in the test
plan. The test case inspection materials include:

1. Test case data
2. Test case prologue containing the following

information:
• Description and purpose of the test case
• Setup requirements

TEST PLAN INSPECTION FUNCTION DETAIL REPORT

Date ______________________ ___

FUNCTION ______________________________ _

PROBLEM T YPE:

onal description FD: Functi

TP: Test p

TS: Test st

FM: Family

TO: Test ca

RT: Regres

BR: Build r

SH: Simula

OT: Other

rocedure

rategy

tree/matrix

se description

sion tests

equirements

tor/hardware

Subtotal:

TOTAL:

M = Missing, W = Wrong, E = Extra

MAJOR MINOR * TOTAL

M W E M W E

* Typos, editorial changes, etc.

Moderator ________ Tester ________ Designer ___________________ _

Inspectors ___ __

Reinspection required?

Person-hours expended:

Yes __ _ No __ __ Estimated rework hours ______ _

Planning ____ Preparation ___ _ Inspection meeting

Figure 27. Test plan inspection function detail report

57

TEST PLAN / TEST CASE INSPECTION SUMMARY REPORT

To: Date:

A inspection meeting was held on

System/application affected ___________________________ _

Function __________________________________ _

Results of the inspection are summarized below:

Inspection meeting length ___________________________ _

Number of problems found:

Major Minor _____ Total

Reinspection required? Yes No

Total estimated rework hours

Total estimated follow-up hours ___ _

Total test case data elements inspected

Person-hours expended:

Planning ___________ _

Preparation __________ _

Inspection meeting _______ _

Function or test case details are attached

Figure 28. Test plan/test case summary inspection report

58

(Signed)

• Operator instructions for running the test
case

• Normal and abnormal completion messages
• Dependencies required by this test case, such

as simulator, hardware, or test macros
• Name of owner of the test case

3. Sections of the test plan necessary to define this
test case

4. A copy of the initial design documents
Participants in the inspection meeting review the

test cases with the objective of finding errors in
them. As with other inspection types, a checklist
can assist in focusing attention on possible errors.
The checklist below is a sample of the items that
could be included; it should be modified to meet the
needs and standards of each installation.
Prologue:

• Is the description of the purpose of this test case
complete and accurate?

• Are the operator instructions explicit and clear to
ease test case execution?

• Are all dependencies identified?
• Are all normal and abnormal completion mes-
sages identified?

• Are setup requirements explicit and complete?
• Is the owner of the test case identified?
• Are there "progress" messages identified that will

notify the operator when significant parts of the
test case are being executed?

Test Data:
• Does the test data follow its description as stated

in the test plan?
• Are the appropriate conditions established to test

the intended variations?
• Is the test for successful completion correct?
• Are initial declares, respecify, and includes
complete and correct?

• Are entry and exit linkages correct?
• Are macros issued properly?
• Are appropriate return and feedback codes

properly verified?
• Are the messages identified in the prologue issued
during the test case?

Rework and Follow-up
The same considerations apply to test case inspec­
tion steps as to the corresponding steps of other
inspection types.

Reporting Forms
The test case inspection detail report form is shown
in Figure 29. The summary form is the same as that
used for test plan inspections (Figure 28). It is
expected that installations will tailor the forms to
their own needs.

59

TEST CASE INSPECTION DETAIL REPORT

Date ______ _

Test Case _______________ Function _____________ _

PROBLEM TYPE:

ption

tor Instructions

DR: Descri

01: Opera

MG: Messag

DP: Depen

LO: Logic

RU: Regist

MU: Macro

DA: Data 0

LK: Linkag

OT: Other

es

dencies

er Usage

Usage

efinitions

e

Subtotal:

TOTAL:

M = Missing, W = Wrong, E = Extra

MAJOR* MINOR TOTAL

M W E M W E

* Major = Problems that result in erroneous execution of test cases

Moderator ______ --_______ Tester _____________ _

Inspectors ________________________________ _

Reinspection required? Yes ___ No __ _ Estimated rework hours _______ _

Number of data elements in test case

Person-hours expended:

Planning ___ _ Preparation ____ Inspection meeting __________ _

Figure 29. Test case inspection detail report

60

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-38l4

Appendix G: A Report on the Use of Inspections for an Applications
Development Project within IBM

This report describes the use of inspections in an
applications development project in IBM'S Informa­
tion Services Ltd., England and was prepared by
individuals in close contact with the project. The
objectives of the pilot project were to check as to
whether inspections did increase productivity and
program quality. Quality was to be measured by the
APAR (reportable error rate), with an objective of
one valid APAR per thousand lines of code in the
first year of production. As a more immediate
indication of quality, the system test error rates
would be compared with a project that used struc­
tured walk-throughs. Since productivity increases
are much more difficult to measure because of the
lack of an accurate estimating method, this area was
to be treated more subjectively.

Another objective was to determine the accept­
ability of the process to the team members and the
project managers, with emphasis on the impact on
the workload and the schedule; and also to judge the
effect on the individual of the open examination of
an individual's work, with the consequent disclosure
of errors.

ProjectDescription
The inspections pilot project was the IBM World
Trade Parts Returns System (PRS), a system to track
and report on parts taken out or returned by CE'S.
PRS is IMs-based, primarily data base, but with one
data communications component. The original
estimate was 5000 lines of PL/I code in nine sepa­
rately identified programs. The fmal count was
6271 lines of code.

The team used most of the improved program­
ming technologies (structured programming, top­
down development, development support libraries,
Hierarchy plus Input-Process-Output (HlPO), and
chief programmer teams) during system develop­
ment. However, they used inspections rather than
walk -throughs, used top-down design starting with
the detailed design level, and documented the design
with a combination of HIPO charts and prose de­
scription. Although structured programming tech­
niques were used, strict structuring was not always
apparent. TSO 3270 Display Support and Structured
Programming Facility (TSO/SPF), program product
5740-XT8, was used for library management.

The team consisted of five people - a project
leader and four programmer/analysts, one of whom
was the chief programmer. The project leader
devoted the greater part of the time to project

control and took only an indirect part in the design
and coding of the system. However, the leader
made a point of attending almost all of the inspec­
tion meetings. The rest of the design/code responsi­
bilities were shared by the four programmer/
analysts. Average DP experience of team members
at the beginning of the project was about 41/2
years, with a minimum of 2 1/2 years and a maxi­
mumof61/2.

ImplementationApproach
To allay the fears that individual performance
would be judged on the basis of inspection error
lists, it was decided that all statistics would be kept
within the group for the first month, at which point
a meeting of all the interested parties would be held
to resolve issues, such as use of statistics, and to
review progress. It was agreed that at any sign of a
major adverse effect on team morale inspections
would be discontinued.

Before any inspections started, a presentation
describing the process and its objectives was given to
the team and its managers. Shortly afterward, lists
of exit criteria and error checklists for the detailed
design and code inspections were distributed to all
team members. It was decided to implement inspec­
tions at the current position without any backtrack­
ing. This meant that inspections for overviews of
system components were not held, nor were some
initial design inspections.

It was apparent early that a flexible approach
would have to be adopted, because the ground rules
laid down by Fagan· were derived from a systems
software environment, an environment that differs
markedly in some respects from the applications
environment. An example of the sort of adjustments
that had to be made was the transfer of test plan
inspections to code inspection time because it was
found that examining a series of test cases with
supporting data was more easily done in parallel
with the inspection of logic.

*M. E. Fagan, "Design and Code Inspections to Reduce Errors in
Program Development", IBM Systems Journal, Volume 15,
Number 3, 1976. Reprints are available from IBM under order
number G321-5033.

61

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

Later, it was decided to inspect test situations
(without the data) at detailed design inspection time
as well when the situations and the design specs
acted as a mutual check on the completeness of one
another. This approach proved successful and was
adopted for the rest of the system.

The selection of attendees at the inspections was
the responsibility ofthe team leader. The whole
team attended the first design inspection for each
program for education purposes: an initial design.
inspection where possible, or where this had been
missed, the detailed design inspection. Thereafter,
usually three people from the team attended -
typically, designer, coder, and team leader, with the
moderator bringing the number to four. However,
this arrangement was changed whenever necessary;
for instance, for the most important part of the
system, or where an interface involving more people
was being inspected. No problems with the size of
inspection meetings were encountered, although six
people should be an upper limit while four is an
ideal number, promoting maximum interaction with
minimum communication problems.

Scheduling of inspections was also done by
negotiation with the team leader, who was in the
best position to know when work would be ready.
When a program required several inspections, major
branches of the hierarchical structure were chosen as
material for each meeting, at first using the working
rates given as guides by Fagan and later drawing
upon experience. The moderator usually arranged
for the meeting room.

The conduct of the inspections quickly settled
down into a routine with all participants knowing
what was expected of them. The meeting would
start with the moderator recording the times spent
by individuals in preparation, and then the reader
would start paraphrasing the material to the rest of
the team, while they followed from the documenta­
tion. As errors came to light, the moderator record­
ed these briefly, while the rest of the team proceed­
ed. These brief notes were read back at the end of
the meeting for the agreement of the team, and were
expanded and classified on a formal error list
afterwards. It took several meetings for the mechan­
ics of the error discovery process to become familiar
to the team members; but once learned, the meetings
proceeded more quickly and smoothly, and it was
noticeable that the lessons learned from the error
discovery process were being applied as new materi­
al was submitted - in fact, a learning process by
feedback was taking place.

Sometimes team members would, in inspection
meetings; disagree with various aspects of the
project. The resulting discussion either clarified the

62

situation for everyone or showed that further inves­
tigation was necessary. However, not all such
discussions were as immediately productive, because
some time was wasted over differing interpretations
of standards. The project standards manual, while
perfectly adequate for the normal working environ­
ment, was still not as complete or as formally
defmed as necessary for development using the
inspections process.

The team in general accepted inspections quite
readily, although accepted work practices were
somewhat changed by it. What this meant in
practice was that peak project loading was moved
from the end of the development phase to the early
part.

On a personal level, the inspections environment
demands an attitude to one's work radically differ­
ent from that of the traditional programmer. Where­
as programmers have in the past been secretive
about their work and defensive of their style, inspec­
tions expose their work to the critical scrutiny of
their colleagues. Although one person on the
project reacted defensively to the identification of
errors in that person's work, not only did this team
member's work come successfully through the
inspection process but the individual became more
comfortable with the process.

This experience demonstrates that while not
everybody is necessarily ideally suited by tempera­
ment to the inspection process, this need not pre­
clude the use of the technique. Tact and patience is
required of the team, whoever's work is being
inspected, and it is probably true to say that in­
creased team spirit and cooperation was the result in
this group.

Results
The results of the pilot project will be discussed in
relation to the stated objectives: to verify the
benefits, and the acceptability of inspection.s to the
project personnel. In addition, some statistics will
be presented that quantify basic parameters of the
inspection process in the project environment, and
could be useful to anyone implementing inspections
for the first time. The benefits to be verified were
quality and productivity, and increased profession­
alism of team members. Quality was further subdi­
vided into reliability, modifiability, and predictabili­
ty (a measure of how the project meets its budget, its
schedule, and its expectations).

Professionalism
Within the inspections environment there is a
positive feedback mechanism for both authors and
inspectors. To demonstrate this, errors t:or each

designer and programmer, found during detailed
design and code inspections and normalized to error
rates per thousand lines of code (errors/KLOC), were
plotted against the calendar date of the relevant
meeting (see Figure GI). Then curves were drawn
through the plotted design and code points for each
individual. Unconnected points on Figure G I
represent the error rate for individuals who submit­
ted only one piece of design or code.

The curves shown represent a downward trend in
the error rate made in both design and coding
operations. Because a uniform postinspection
standard was achieved for all programs, this trend
represents an increase in technical competence of
the individual; an increased awareness of the errors
one is prone to make results in a positive improve­
ment in programming efficiency. No attempt is
made to quantify this increase because of the
varying complexities of programs and experience of
programmers, but the trend shown over a period of
six weeks during the coding phase is very encourag­
ing for such a short period, and suggests that inspec­
tions provide a powerful learning mechanism.

This effect is apparently not confined to authors,
because individuals who submitted only one piece of
work near the end of the coding phase (represented
by the unconnected points on the graph) had results
that followed the trend indicated by the curves,
which suggests that by acting as inspectors they
benefited vicariously from the inspection results of
those who had gone before.

When this subject was discussed with the team
members, they all felt they had benefited from the
learning mechanism, but the more experienced

ERRORS/
KLOC

30

20

10

-------~--------====--...

11 21

JANUARY

31 1 11 25

FEBRUARY

28 1

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

people less than the others. Some people also felt
that the discipline inherent in the inspections process
forced them to concentrate more on detail checking,
to the benefit of their work. All team members felt
that better communications throughout the team
were a very real benefit, with everyone conversant
with all parts of the system. This means that backup
and maintenance problems are eased.

On the more personal level of job satisfaction
derived from this method of working, it was appar­
ent that the involvement in other inspections meant
more variety of work.

Reliability
Reliability in software is a deceptively simple
quality that is not only a function of the number of
errors found in system tests, or in the field, but also
has connotations of trust and confidence. Thus any
discussion of reliability should not be confined to
error statistics, but should also include the more
personal or abstract considerations of those respon­
sible for the work. A measure ofreliability, there­
fore, results not only from the removal of errors, but
from a feeling of assurance that all errors have been
removed.

Figure G2 shows the error rates experienced, and
the hours of effort required to find them. It is
interesting to note that during the design phase the
majority of errors are of the "missing" category,
while the majority made during coding are in the
"wrong" category. It is encouraging that missing
function is detected at the design stage, because
missing function is traditionally the most difficult to
fix after coding is complete.

,---x CODE

-. DESIGN

•

11 21 31 1 11

MARCH APRIL

Figure G I. Individual error rates during development for designers and programmers

63

Page of GC20-2000-0
Added August 15,1978
By TNL GN20-3814

OPERATION ERRORS TIME

Major Minor Team

M W E M W E Prep. Insp. Prep.

I nitial design 0 2 0 5 11 0 9l1o 23 5~

Detailed design 2B 11 1 B2 53 15 62% B7 23%

Code 40 50 4 39 99 9 140% 96% 43%

Error CI_ification: M l:1li Missing

W=Wrong

E = Extra

Figure 02. Error rates and detection effort

The greater error rate at the code stage is probably
due to the differing characteristics of the design and
code targets. Design is read by a person, while code
is read by a compiler - the compiler has no imagina­
. tion while a person can guess intent. The human
ability to interpolate, combined with the expressive­
ness and flexibility of the English language, means
that detail and function are fairly easily omitted
from the design. On the other hand, the inflexibility
of a compiler and its rigid syntax rules mean that it
is much easier to make a mistake in expressing an
intent.

Consistency in reliability is an important factor,
on the principle that a chain is only as strong as its
weakest link. The inspections process aims for
uniformly high quality. To test the uniformity of

15

12

ERRORSI
KLOC 9

x

6

3

Mod

LOC. SUMMARY

Errors Time Error detection effort

Insp. Maj. Tot. Team Total Hrs./maj. arrs. Hrs./all errs.

5% 23B7 2 lB 32l1o 43l1o 21.75 2.4

20% 5630 40 190 149% 193% 4.B 1.0

25% 5711 94 241 236l1o 305 3.25 1.25

the quality, the number of errors found in each
program during unit/integration test was recorded
and plotted on a graph against time. The plot was of
an error rate, normalized to errors per thousand
lines of code (KLOC), against the calendar date of the
last code inspection for that program. The results
are shown in Figure G3, with a "least squares fit"
relation plotted. The slight downward trend of this
curve indicates that no more errors were detected
during the later stages of unit test than in the earlier
stages. The conclusion drawn from this is that,
similarly, no more errors remained at the end of the
inspection process for the later programs than the
earlier ones and that, at least, the process was
consistent in the quality of output, and possibly with
a slight increase in quality with time.

E=7.7·0.023T
(Line of least squares fit)

x

x

------------x-__ _
x

x
x

x

1
1~5------~2~O~----~25~----~--------~7------~12~----~1~7------~2~1-------=26~-----=31~1----~15~

FEBRUARY MARCH APRIL

Figure 03. Errors remaining after code inspection and found during unit test

64

The team felt a little doubtful that all parts of the
system would prove equally reliable, but believed
they knew where problems might arise. This was a
reaction based on their knowledge of the complexi­
ties of the programs.

Modifiability and Predictability
The ease with which program function can be
changed or added to is the quality of modifiability
and is largely a subjective matter (though if the
principles of structured design * are strictly followed,
it is possible to derive a quantitative measure). Very
few changes involving more than a line or two of
code were made at any time during development,
but where this had to be done the programmers
involved found that the affected areas were easily
isolated, and the changes could be quickly made.
Although this was not a direct consequence of the
inspection process, it was one of the aims of the
detailed design inspection meetings to achieve a
"good" design. Where this objective could be said
to have been missed was in the size of modules: in
several cases, modules of up to 200 statements were
recorded. The contrast between those and the more
usual one-page modules was very evident during
code inspection meetings and provided convincing
support for the "small module" argument.

Predictability, like modifiability, is largely subjec­
tive. The managers directly involved were worried
by the steadily rising overtime figures in the middle
of the development phase. However, during the
latter half of detailed design, the overtime figures
steadily declined to zero (instead of, as is usual,
rising to a peak at system test). The hump was due
to a transition from design to code (when both
activities were being carried out concurrently) and
the absence of the moderator for a week, which
tended to compress activities on either side. The
programs all met systems test start date, and were
fully unit/integration tested (except for one program
not on the critical path) in an unstressed atmo­
sphere, so the project can be said to have met its
schedule. The manual project tracking system used
by the team leader employed exits from inspections
as milestones.

Comparison with Another Project
A similar project was selected for the purpose of
comparing reliability by means of system test results.
The project (project X) used improved programming
technology techniques throughout, apart from the
chief programmer team concept. Except that project
X used walk-throughs instead of inspections, imple­
mentation was very similar to PRS. As can be seen
from Figure 04, which summarizes the two projects,

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

there is a significant improvement in the test error
rate for the project using inspections, while the
coding rate is similar. The coding rate is for the
total development process (design, code, and test),
and the PRS figure includes the moderator's time,
approximately 10%. It would appear that an error
frequency of only 20% of that of previous products
can be expected for no increase in manpower.
Project X is a highly regarded system, remarkable
for rigorous development and testing. The fact that
PRS was able to improve on its quality is an indica­
tion of the effectiveness of the inspections
technique.

PROJECT X

Improved Programming Yes
Technologies

Reviews Wal k-throughs

Number of statements 10,000

Total detail design,
code, and test personnel 64 person

months

Duration 14 months

System test errors 51

Pilot installation 26
errors

87

Coding rate (LOCI 155
person months)

Test error rate 8.7
(errors/K LOC)

Figure G4. Summarizing project X and PRS

Working Rates

PRS

Yes

Inspections

6,250

41 person
months

7 months

11

o (also 0 errors
in first 6 months
of operation)

11

153

1.76

Figure 05 shows the working rates achieved by the
PRS team for the two basic types of inspections:
detailed design and code inspections. As will be
seen, code inspections proceeded much more slowly
than design, especially in preparation. This possibly
reflects the relatively large size of some modules; it is
likely that rates would improve if module size were
restricted to a page of printout.

·W. P. Stevens, G. J. Myers, and L. C. Constantine, "Structured

Design", IBM Systems Journal, Volume 13, Number 2,1974.

65

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

Phase Lines of code/hour

Preparation Inspection

Design 275 275

Code 125 225

Figure GS. Working rates experienced by PRS team during
detailed design and code inspections

Productivity
Although the moderator represents an additional
overhead to the system development process,
probably in the order of 10% in a fully established
inspections environment, Fagan claims that there is
a net productivity gain, and this seems to be borne
out by the PRS project experience. However, it is
likely that the ultimate justification will be in the
reduced maintenance overhead from shipping a
higher quality product. In practical terms, this
means that making the effort earlier makes things
easier later.

The following is an estimate of the productivity
gain derived from the use of the inspections tech­
nique in the PRS project. It will be seen that much of
the gain resulted from errors being detected in an
earlier stage of development rather than during unit,
system, or field lest. The savings estimates are based
on the following assumptions:

66

1. PRS will be released to the field with one valid
APAR per 1000 lines of code (a total of 6 APARS

since program size is approximately 6000 lines
of code).

2. To compare the errors found in the various PRS

inspections with errors in a project in which
inspections were not used, assume that the
errors in the noninspections project would be
found in the unit, system, and field test in the
same proportion as they were found during the
PRS project. With this assumption, the error
figures break down to:

Implementation In- Vnit Sys Fld. Tot.
spec- test test test

Vsing
Inspections
Without
Inspections

tion

136 41 11 6

138 37* 19

194

194
*This figure agrees fairly well with what would be expected

from project X experience (see Figure G4). The project X

figures scaled to PRS size would lead one to expect in the

order of 32 system test errors.

3. Approximate average error correction times are:
• Inspection errors (I) - 1 hour
• V nit test errors (V) - 3 hours
• System test errors (S) - 7 hours
• Field test errors (F) - 20 hours

If the average time to fix errors at each stage are I,
V, S, F respectively, then the total saving due to
inspections is:

138V + 37S + 19F
41V + 11S + 6F + 1361
97V + 26S + 13F - 1361
97(3) + 26(7) + 13(20) - 136(1)

Thus, the total estimated saving is 597 person­
hours, or 17 person-weeks, assuming a 36-hour work
week. Since the project required 41 person-months
overall, this 17 person-weeks saving translates into a
net savings of 9% due to inspections.

Conclusions
The disciplined team approach to verifying quality
brought about by inspections has resulted in the
following benefits for the PRS team.

• A high standard of quality in the fmished prod~
uct that compares favorably with comparable
projects using improved programming technology
techniques including walk-throughs.

• A satisfying working environment for team
members.

• A net productivity rate comparable to similar
projects. The overhead (10% maximum) added
by the moderator is more than compensated for
either by increased productivity or by reduced
maintenance.

Page of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

Additionall nformation
Figures G6, G7, and G8 show code inspection and
design inspection criteria used by the project as well
as a sample inspection error list.

1. Module prologue must be complete and up to date.

2. Code must be structured, and formatted to reflect the structure.

3. Code must be sufficiently commented upon.

4. All project standards and conventions must be followed. The compile must be error-free,
with no messages with a severity level greater than "warning".

5. The listing should include cross-reference listing and aggregate list.

6. The code must reflect the current design specification.

Figure G6. Code inspection exit criteria

1. Completed specifications must represent design to the approximate range of 3 - 10 source
language lines of code per design process statement.

2. Design specifications must be structured (all applicable structured programming rules are
to be followed).

3. For design specifications covering modified modules, all new/changed statements should
be flagged with release identification.

4. References to data areas should be by field name. Specific values tested or set should be
specified.

5. Linkages to external routines/modules must be defined. Parameter values passed and
return codes are specified.

6. Messages issued by modules must be defined, with text and identification numbers.

7. Any design changes to high-level design since high-level design exit must be included in the
current design specifications (high-level and low-level design materials must match).

8. All design documents submitted for inspection should conform to local or project
standards.

Figure G 7. Detailed design inspection exit criteria

67

Page. of GC20-2000-0
Added August 15, 1978
By TNL GN20-3814

FUNCTION

Module

Type

PAXX DA

MN

DA

DA

MN

DA

lO

PAXX201 -

TP

PAXX302 DA

lO

PAXX202 lO

MN

DA

Figure G8. Sample error list

68

PAXX-12(#1)

Classification

MIW/E

W

W

W

W

W

W

W

-

W

W

W

W

W

W

DATE 5/4/77

Error

Min/Maj Description

Maj PCB address parameters in wrong sequence.

Min I/O areas should be declared before the structures
based on them.

Min HEADSH(5) should contain CEN02 to match
LINED; which should also refer to CEN02
instead of CEN01.

Min Security lines should have ASA char. of 'c'.

Min Blocks of DCl's should be separated by comments.

Maj Base PICCONV on CHARCONV.

Maj TRAI l(6) is written to the wrong file.

- Comments on 1st occurrences of CAll's.
Message in case A should read " ... will not ... ".

Min

Min Message does not refer to correct card type, when
C07 card is not present.

Maj A recycle # of 'OX' is treated incorrectly as valid.
Should be included in test plan.

Maj By-name assignment into KEYN will not always
work for PIC fields.

Min 'R03' should be qualified by FPAOB not A.

Min Positioning wrong when SUBSTRinging into
MSG (III)

Inspections in Application Development
Introduction and Implementation
Guidelines
Installation Management Manual

© IBM Corp. 1977, 1978

This Newsletter No.

Date

Base Publication No.

FileNo.

Previous Newsletters

GN20-3814

August 15, 1978

GC20-2000-0

None

This Technical Newsletter provides replacement pages for the subject manual to substitute a
structured program for the original one, and to add a report on the use of inspection in an application
development project within IBM. Pages to be inserted and/or removed are listed below.

Inside Front Cover, Preface
iii, iv
23 - 36 (33.1 - 33.3 added)
61 - 68
Reader's Comments Form (added)

A vertical rule in the left margin indicates a change. Absence of a vertical rule on a page bearing a
'revised' notice means only that existing copy has been moved or that a minor typographical error
has been corrected.

Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Technical Publications, Dept. 824, 1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A.

...; E c::
II) 0 E
c.. .~
:J ..c::
0' ...
11) n;
Cl II)

c:: en

~ 0 ...
0 II)

'" a.
t1:I

'!! ...
"C
II)

:J E !l E '!! :l

~
Cl
....

j II)

"
..c:: ...
0

J

(; ;:
>
!!

II)

.:::
ii;;;
5 c::
::> II)

i
en
II)

U
....

n :l
J '" en
D II)
J

c..
QJ
en

0 :l , QJ

i '" t1:I g QJ

) 0::

Inspections in Application Development Introduction and Implementation

Guidelines Installation Management Manual

GC20-2000-0

This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be
written in your own language; use of English is not required.

READER'S
COMMENT
FORM

IBM may use or distribute any of the information you supply in any way it believes appropriate with­
out incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? ___________________________ _

Number of latest Newsletter associated with this publication: ----------------
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

GC20-2000-0

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

,
I
I
I
I
I
()

S­
~

" o
0:

:!:
o
" <C

" C1l

I
I
I
I
I
I
I
I
I
I
I
I
I
I

.. 1

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 824
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

I
I
I
I
I
I
IG) :;-

I='~
Ig. m
_0

1_· :l _.

1m 0
VI :l

I VI

1:;- 5'
I~ »
1m -0
=-0

IS =
10' ~
l:l ~.

I~ g
1m 0
I~ m
ItO <:
1m m
13 0"
13 -0
I ~
IS: :l m
l:l -
Ie :l
I~ ~
I 8.
I~ c
1-· 0 :l
l;ti o·
I a. :l .. ···1-· m

Fold and tape

==-= =CR) - -------- -. ----- - - ---------
-~-.-

International Business Machines Corporation
Data Processing Division

Please Do Not Staple

1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9. North Tarrytown. N.Y .• U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601

Fold and tape
l:l :l
Ie a.
len 3'
»:2.. . m

G)~
('):l "' oS
r:.., o·
O:l
o o
6

GC20·2000·0

~ ~ ~~~~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

I BM World Trade Americas/F ar East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

:J
V> ...
III

III

g. ---.
:J

:::;:
III
:J
III

<.0
<ll

3
<ll
:J ...

:J
V>

-0
<ll
n
:::!".
o
:J
V>

:J

»
-0
"£
n
III
:::!".
o
:J

o
<ll
<
~
o
-0
3
<ll
:J ...

3
"£
<ll

3
<ll
:J ...
III
:::!".
o
:J

Cl
C
Cl.
<ll

:J
<ll
VI

Cl
(")
I\J
o
~
o o o
6

