TD 01.01.002.005
September 23, 1960

GPD ‘ technical record

IBM CONFIDENTIAL

DIGITAL COMPUTERS — LOGICAL
PRINCIPLES AND OPERATION

by

George J. Saxenmeyer

B

General Products Division | Development Laboratory | Endicott, N. Y.

ABSTRACT

A brief survey of digital computation, beginning with the origins of early computing
devices — including the abacus, the suan-pan, soroban, choreb, and others — is followed
by a description of the theory and operation of Babbage's Differential Analytical Machine.
Typical contemporary computing system functions are reviewed, along with data flow charts,
binary number systems and adders, Boolean algebra, binary-coded-decimal and bi-quinary
arithmetic. Fixed-bit information codes and self-checking and self-correction codes are
discussed. A comparison of codes is made, along with various storage devices — including
static storage (triggers and latches) — and dynamic storage, including magnetic drum and
ferrite core storage. Switch cores and core logic are briefly surveyed.

IBM CONFIDENTIAL

This document contains information of a proprietary are authorized by the General Products Division Man-
nature, ALL INFORMATION CONTAINED HEREIN agement in accordance with existing policy regarding
SHALL BE KEPT IN CONFIDENCE, No information the release of Company information, This document
shall be divulged to persons other than IBM employees must not be photographed or otherwise reproduced in
authorized by the nature of their duties to receive whole or in part at any time,

such information or individuals or organizations who

GPD
Development Laboratory
Engineering Publications Department
Endicott, N. Y.

v

Vi
Vi
Vil
IX

Xl
Xl
X1

Xlv
XV
XVI
XVII

TABLE OF CONTENTS

EARLY COMPUTING DEVICES -- EVOLUTION OF THE ABACUS

A. HALVING AND DOUBLING (MULTIPLICATION)
BABBAGE'S DIFFERENTIAL ANALYTICAL ENGINE
A. BACKGROUND OF BABBAGE'S MACHINE

B. THE MATHEMATICS OF BABBAGE'S MACHINE
C. THEORY OF BABBAGE'S MACHINE

D. DATA PROCESSING SYSTEM REQUIREMENTS
TYPICAL DATA PROCESSING MACHINE FUNCTIONS
A. ITERATION

B. STORAGE DEVICES

C. CONTROL LOGIC -- STORED PROGRAMMING
D. CONTROL LOGIC -- WIRED PROGRAMMING
E. INPUT/OUTPUT DEVICES

FIRST-LEVEL DATA FLOW CHARTS

A. [BM 604 DATA FLOW

B. IBM 305 RAMAC DATA FLOW

C. IBM 650 DPS DATA FLOW

D. IBM 7070 DPS DATA FLOW

THE BINARY NUMBER SYSTEM

BOOLEAN ALGEBRA

THE LOGICAL BINARY ADDER

BINARY-CODED DECIMAL ARITHMETIC
BI-QUINARY ARITHMETIC

BI-QUINARY COMPLEMENTING AND VALIDITY CHECKING

FIXED-BIT INFORMATION CODES
SELF-CHECKING AND SELF-CORRECTION CODES
STATISTICAL ERROR PROBABILITIES

A. DEFINITIONS

B. COMPARATIVE CHECKING RELIABILITY OF THE 2 OUT OF 5

AND BCD CODES
CODE TRANSLATION
COMPARISCN OF CODES
STATIC STORAGE -- TRIGGERS AND LATCHES
MAGNETIC DRUM STORAGE

TD 01.01.002.005

page
|

VO N0 0 O N N ANy —

S o

38
40
43

49

TD 01.01.002.005

page
XVIII CAPACITOR STORAGE 54
XIX FERRITE CORE STORAGE 58
XX SWITCH CORES AND CORE LOGIC 62
XXl CARD READERS AND PUNCHES 66
A. IBM 533 READER PUNCH 67
B. IBM 537 COMPUTING PUNCH 67
C. IBM 7070 SYSTEM 67
D. BASIC IBM 650 SYSTEM 68
XXII' WHEEL AND WIRE PRINTING 72
A. IBM 407 WHEEL PRINTER 72
B. IBM WIRE PRINTERS 73
XXIII CHAIN, BAR-AND-HELIX, AND STICK PRINTING 82
A. IBM CHAIN PRINTER 82
B. IBM BAR-AND-HELIX PRINTER 83
C. IBM STICK PRINTER 83
XXIV TAPE DRIVE UNITS 87
XXV RANDOM ACCESS DISK FILE MEMORY 94
XXVl CONCLUSION 105
XXVIl BIBLIOGRAPHY 105
ILLUSTRATIONS
Fig. | Schematic Layout of the IBM 604 Electronic Calculator 14
Fig. 2 Data Flow Chart of the IBM 305 RAMAC 15
Fig. 3 Data Flow Chart of the IBM 650 Data Processing System 6
Fig. 4 Data Flow Chart of the 1BM 7070 Data Processing System 17
Fig. 5 Data Flow Chart of the CPU of the IBM 705 Data Processing System 18
Fig. 6 Basic Binary Arithmetic Operations 20
Fig. 7 Simple Truth Tables for the Half Adder 24
Fig. 8 Truth Tables for Sum and Carry for the Full Adder 24
Fig. 9 Symbolic Logic for Equations |) and 2), page 23 24
Fig. 10 Two Half Adders Cascaded to Form a Full Adder in Symbolic Logic Form 24
Fig. Il Symbolic Description of BCD Adder - ' 25

Fig. 12 Examples of Binary-Coded Decimal (BCD) Addition 26

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

I9
20
21

22
23
24
25
2
27
28
29
30
31

32
33
34
35
36
37
38
39
40
4l

42
43
44
45
46

TD 01.01.002. 005

Addition and Subtraction in the "Excess-Three" Code P“SZJ;
Logic diagram of the 650 arithmetic adder 29
True complement logic used in the IBM 650 32
Logical biquinary validity chech used in the |BM 650 32
Data flow of B/Q- to 2/5 and 2/5-to-B/Q translators in the IBM 650 42
Symbolic Logic of B/Q-to-2/5 and 2/5-to-B/Q translators in the 1BM
650 42
Trigger 47
Single Latch Trigger 47
Double Latch Trigger 47
Overbeck Ring 48
Inverter-coupled Ring 48
Latch Ring 48
IBM 650 Drum Sectors and Timing 52
Residual Flux Pattern for Several Spots on Adjacent 650 Tracks 53
Induced Voltage Waveform of Adjacent 650 Tracks 53
Capacitor Storage 56
Capacitor Storage Cells Combined into a Matrix 57
Ferrite hysteresis loop 6l
Ferrite memory plane 6l
Basic Core Shift Register Circuits 64
Circuit of One Bit in a 7070-Type Core Register 64
Core Register System 65
IBM 533 Card Reader and Punch 70
IBM 537 Computing Card Punch 70
IBM 7500 Card Reader 70
IBM 7550 Card Punch 7l
Card input data flow for IBM 650 7l
Card output data flow for IBM 650 7|
Printing Mechanism of the IBM 407 Accounting Machine 75
Mechanical timing chart for the |BM 407 Print Mechanism 76
IBM 407 Print Mechanism typewheel 76
Print Mechanism positioned for printing V 77
Print mechanism plate and mechanical drive 78
Code rod and tube for the IBM Wire Printer 79

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

47
48
49
50
5l

52
53
54
55
56
57
58

Rotational and Lateral Positions of the Code Rod
Mechanical Wedge Values

Available Character Set

Dot Patterns Produced by a Print Wire Matrix
Positioning of the Print Chain

Descriptive Drawing of the Print Mechanism
Data Flow of the Printed Information

IBM Bar-And-Helix Printer

Formation of the Figures "1" and "S"

Print Element Positioning in the IBM Stick Printer
Geometry of information flux patterns on tape

Hysteresis loop of tape coating

59a Schematic diagram of read/write head

595 Flux-pattern of typical information sample

59¢ Resulting flux pattern

60
6l

62
63
64
65
66
67
68
69
70
7

72

Front view of the IBM 727 Tape Drive Unit
Tape Drive Unit Control Keys and Indicator Lights
Sectional view of magnetic clutch

Drive motors and pulleys

Disk Array of the RAMAC Disk File

Exploded view of the RAMAC Access Arm
Positioning of the Access Arm and Disk Array
Construction details of the read/write head
Track detent

RAMAC Access Mechanism

Magnetic clutch assembly

Arm retraction mechanism

Access Control Circuit Logic

TD 01.01.002.005

page
80

80
80

SRRR=

85

90
90
90
90
90
9l
9l
92
93
96
65
98
99
100
iol
102
103

FOREWORD

This report is a compendium of course notes used in an Engineering Training
Program course presented at IBM Endicott during the latter part of 1959. The material
has been compiled for distribution within IBM to serve primarily as a convenient refer-
ence source. The author hopes that this document, brief in content but comprehensive
in scope, will serve the reader wishing to refresh his memory on some historical or contem-

porary aspect of digital computation.

TD 01.01.002.005

I EARLY COMPUTING DEVICES — EVOLUTION OF THE ABACUS

The oldest known device which satisfies the basic definition of a digital computer
is the abacus. Its historical origin has not yet been precisely established. In various forms
and by various names it has been used since as early as the 6th century B.C. In China
since the 12th century A.D. it has been called the suan-pan, with two binary and five
quinary beads per position and as many as two dozen digit positions. The Japanese
equivalent is the soroban dating back to the 16th century, with just one binary and
four quinary beads since the other two are basically redundant.

The Russian version of the abacus is known as the e'choty and contains ten beads per
position, the equivalent of two Japanese sorobans laid side-by-side as mirror-images.
Available sources do not describe its method of operation. In Turkey this device is called
the coulba; in Armenia, the choreb.

Devices similar in technique were the bamboo counting rods used in China until the
19th century, the counting pebbles used by the ancient Egyptians (Herodotus, 450 B.C.),
and the "line abacus" used throughout Europe as late as the 18th century. The line abacus
was generally a wax-covered table with ruled lines to represent the decimal denominations
in bi—quinary form and "X" symbols to take the place of the beads. Modified versions also
evolved for such systems as pounds, shillings, and pence.

The suan-pan and soroban are still widely used today in native shops in Asia and in
American Chinatowns. An interesting story concerns an American desk calculator manufacturer,
whose "queen-of-the-line" machine was decidely bested at a public exhibition in Tokyo
soon after World War |I. The event was intended to be a promotional stunt to publicize the
advantages of the desk calculator, compared to a soroban-equipped Japanese accountant.

In addition to the popularity of the suan-pan and the soroban mental arithmetic was a
highly-developed art during the preceding three or four centuries. There are dozens of out-
standing "arithmetic geniuses" recorded in mathematical history whose ability to "think with
numbers" is amazing even today. Most of them based their abilities on a fantastic memory
for odd numerical facts, such as a list of all prime numbers up to a million. It is interesting
to note that almost all of them were self-taught and that no common techniques evolved from
their experiences.

A. HALVING AND DOUBLING (MULTIPLICATION)

In another vein, a very interesting method of multiplication developed and is still
widely used by some of the more primitive tribes in Africa. This method employed the
system of "halving-and-doubling, " in which by successive binary division of the multiplier
and binary multiplication of the multiplicand produces a decimal product. The technique
is so simple that with a little practice almost anyone can do it "in his head."

-2- TD 01.01.002.005

The following is a simple example of the basic process:
Problem: 13x17=7

Solution: 2)13
2)6r. 1= 17— 17
2)3 34
2)T r.1—= 68— 68
Te——136— 136
221 (answer) .

Il BABBAGE'S DIFFERENTIAL ANALYTICAL ENGINE

Charles Babbage lived in England and did his most significant work during the first
half of the 19th century. Like Thomas Edison, James Watt, and other inventive geniuses
of that era, he was born long before his time. That is to say the dreams and goals of
these people could not satisfactorily be carried out within the bounds of their contemporary
technology .

To Babbage belongs the honor of originating the basic principles of calculating
equipment we know today as adding machines and desk calculators. But Babbage's most
significant-contribution of all to the art of digital computing devices was a system concept
which never reached fruition during his lifetime. In spite of never having achieved the
creative satisfaction of seeing his "brain-child" constructed, Babbage's definitions, organi-
zation, and specifications for his "analytical engine" are still today an excellent generic
description of what we call "stored-program digital computers." This is true in spite of,
rather than because of, the rapid evolutionary progress of mechanical, electrical, and elec-
tronic technology during the next century.

Probably the personage who understood Babbage best of all in his own time was a
lady mathematician of some reknown, the Countess of Lovelace. The Countess helped
Babbage's personal cause to the extent of explaining his work in terms which the other
mathemeticians and their patrons and government agencies with available capital to
finance it could understand. As a result of this help, Babbage was finally able to achieve
a working model of his "difference engine" during his later life. This model is still in oper-
ating condition and is on display in a museum. In view of the rudimentary level of technol-
ogy at that time, in which every part of an assembly had to be fitted by cut-and-try methods,
it was manufacturing accomplishment of the highest order.

The following is a brief description of this analytical*engine by a contemporary,
L. F. Menabrea, of Turin, Office of the Military Engineers:

"Those labours which belong to the various branches of the
mathematical sciences, although oh first consideration they
seem to be the exclusive province of intellect, may, never-
theless, be divided into two distinct sections;. one of which
may be called the mechanical, because it is subjected to
precise and invariable laws, that are capable of being ex-
pressed by means of the operations of matter; while the other,
demanding the intervention of reasoning, belongs more specially
to the domain of the understanding. This admitted, we may
propose to execute, by means of machinery, the mechanical

*Faster Than 'rhougl_n, E. V. Bowden, Pitman Publishing Corp. New York, N.Y., 1953,

-3- TD 01.01.002.005

branch of these labours, reserving for pure intellect that which
depends on the reasoning faculties. Thus the rigid exactness

of those laws which regulate numerical calculations must
frequently have suggested the employment of material instru-
ments, either for executing the whole of such calculations or
for abridging them; and thence have arisen several inventions
having this object in view, but which have in general but
partially attained it. For instance, the much-admired machine
of Pascal is now simply an object of curiosity, which, whilst it
displays the powerful intellect of its inventor, is yet of little
utility in itself. Its powers extended no further than the execution
of the four first operations of arithmetic, and indeed were in
reality confined to that of the two first, since multiplication
and division were the result of a series of additions and subtrac-
tions. The chief drawback hitherto on most of suchmachines is,
that they require the continual intervention of a human agent to
regulate their movements, and thence arises a source of errors;
so that, if their use has not become general for large numerical
calculations, it is because they have not in fact resolved the
double problem which the question presents, that of correctness
in the results, united with economy of time.

"Struck with similar reflections, Mr. Babbage has devoted some
years to the realization of a gigantic idea. He proposed to him-
self nothing less than the construction of a machine capable of
executing not merely arithmetical calculations, but even all those
of analysis, if their laws are known. The imagination is at first
astounded at the idea of such an undertaking; but the more calm
reflection we bestow on it, the less impossible does success
appear, and it is felt that it may depend on the discovery of
some principle so general, that if applied to machinery, the
latter may be capable of mechanically translating the opera-
tions which may be indicated to it by algebraical notation.

The illustrious inventor having been kind enough to communicate
to me some of his views on this subject during a visit he made

at Turin, | have, with this approbation, thrown together the
impressions they have left on my mind. But the reader must not
expect to find a description of Mr. Babbage's engine; the com-
prehension of this would entail studies of much length; and |
shall endeavour merely to give an insight into the end proposed,
and to develop the principles on which its attainment depends.

"I must first premise that this engine is entirely different from that
of which there is a notice in the 'Treatise on the Economy of
Machinery, ' by the same author. But as the latter gave rise to
the idea of the engine in question, | consider it will be a useful
preliminary briefly to recall what were Mr. Babbage's first essays,
and also the circumstances in which they originated."

4= TD 01.01.002.005

A. BACKGROUND OF BABBAGE'S MACHINE

It is well known that in the early part of the nineteenth century the French govern-
ment, wishing to promote the extension of the decimal system, had ordered the construction
of logarithmical and trigonometrical tables of enormous extent. M. de Prony, who had been
entrusted with the direction of this undertaking, divided it into three sections, to each of
which were appointed a special class of persons. In the first section the formulae were so
combined as to render them subservient to the purposes of numerical calculation. In the se-
cond section these same formulae were calculated for values of the variable, selected at
certain successive distances. Under the third section, comprising about eighty individuals,
who were mostly only acquainted with the two first rules of arithmetic, values which were
intermediate to those calculated by the second section were interpolated by simple additions
and subtractions.

B. THE MATHEMATICS OF BABBAGE'S MACHINE

Since a similar undertaking was begun in England, Babbage decided that the opera-
tions performed under the third section might.be executed by a machine. This concept was
- realized by a mechanism which had been partially assembled and to which the name
"Difference Engine" was applicable because of the principle upon which its construction
is founded. To give some notion of this principle it will suffice to consider the series of
whole square numbers, 1, 4, 9, 16, 25, 36, 49, 64, etc. By subtracting each of these
from the succeeding one we obtain a new series, which can be termed the "Series of First
Differences, " consisting of the numbers 3, 5, 7, 9, 11, 15, etc. Subtracting from each
of these the preceding one we obtain the Second Differences which are all constant and

equal to 2. We may represent this succession of operations, and their results, in the following
table:

A B C
Column of First Second
Square Differ- Differ-
Numbers ences ences
1
3
4 2b
5
a 2 2d
7
c 16 2
? 2
25
1
36

Table 1 - Subtraction Chart of Whole Square Numbers

-5- TD 01.01.002.005

From the mode in which the two last columns B and C have been formed, it is
easy to see that if, for instance, we desire to pass from the number 5 to the succeeding
one 7, we must add to the former the constant difference 2. Similarly, if from the square
number 9 we would pass to the following one 16, we must add to the former the difference
7, which difference is in other words the preceding difference 5, plus the constant dif-
ference 2. Or again, which arrives at the same result to obtain 16 we have only to add
together the three numbers 2, 5, 9, placed obliquely in the direction ba. Similarly, we
obtain the number 25 by summing up the three numbers placed in the oblique direction dc.
Commencing by the addition 2 + 7, we have the first difference 9 consecutively to 7.
Adding 16 to the 9 we have the square 25.

We see then that the three numbers 2, 5, 9 being given, the whole series of
successive square numbers, and that of their first differences likewise, may be obtained
by means of simple additions.

Now, to conceive how these operations may be reproduced by a machine, suppose
the latter to have three dials, designated as A, B, C, on each of which are traced, say a
thousand divisions, by way of example, over which a needle shall pass. The two dials,
C, B, shall have in addition a registering hammer, which is to give a number of strokes
equal to that of the divisions indicated by the needle. For each stroke of the registering
hammer of the C, the needle B shall advance one division. Similarly, the needle A
shall advance one division for every stroke of the registering hammer of the dial B. Such
is the general disposition of the mechanism.

This being understood, let us at the beginning of the series of operations we wish
to execute, place the needle C on the division 2, the needle B on the division 5, and
the needle A on the division 9. Let us allow the hammer of the C to strike; it will strike
twice, and at the same time the needle B will pass over two divisions. The latter will
then indicate the number 7, which succeeds the number 5 in the column of first differences.
If we now permit the hammer of the dial B to strike in its turn, it will strike seven times,
during which the needle A will advance seven divisions; these added to the nine already
marked by it, will give the number 16, which is the square number consecutive to 9. If
we now recommence these operations, beginning with the needle C, which is always to be
left on the division 2, we shall perceive that by repeating them indefinitely, we may
successively reproduce the series of whole square numbers by means of a very simple
mechanism.

C. THEORY OF BABBAGE'S MACHINE

The theorem of the construction of the machine we have just been describing is
based on a particular case of the following more general theorem: That if in any poly-
nomial whatever, the highest power of whose variable is m, this same variable be increased
by equal degrees; the corresponding values of the polynomial then calculated, and the
first, second, third, etc., differences of these be taken (as for the preceding series of
squares); the mth differences will all be equal to each other. So that in order to reproduce
the series of values of the polynomial by means of machine analogous to the one previously
described it is sufficient that there be (m + 1) dials, having the mutual relations we have
indicated. As the differences may be either positive or negative, the machine will have a
contrivance for either advancing or retrograding each needle, according as the number to
be algebraically added may have the sign plus or minus.

-6- TD 01.01.002.005

A "human computer" working at a desk needs a calculating machine, reference books
of tables, pen and paper with which to record the intermediate results in his calculations,
and instructions as to how to proceed. But that is not all. Computing is something of an art,
and the human computer will be inefficient and may not get very far unless he has some
power of discrimination which enables him to interpret his instructions in the light of results
which his computations have produced, and if need be, to modify his procedure accordingly.
The power of discrimination of which a human operator is capable cannot be exercised
automatically by any of the machines which we have discussed so far. Their potentialities
are therefore limited.

Babbage clearly understood the restrictions imposed by the inability of a machine
to make decisions for itself. He was able to take the next step and to suggest how to endow
a machine with the minimum amount of "intelligence" which it needs. As he expressed it,
he made the machine "bite its own tail." It is entirely due to these ideas of his that the
modern computing machines to which we shall devote the rest of this report are so fast, so
flexible, and capable of such an astonishing variety of operations.

D. DATA PROCESSING SYSTEM REQUIREMENTS

If a data processing system is to perform the functions of a human computer, it must
possess:

1. An arithmetic unit, capable of performing the normal
operations of arithmetic. Babbage called this unit
the mill.

2. A memory; that is to say a mechanism which will re-
tain numbers needed in the calculation and also the
instructions which will be needed to define successive
stages in the computation. Babbage called this part the
store. He planned to store 1,000 numbers, each of 50
decimal digits.

3. A built-in power of judgment, which will enable the
machine to choose, according to prescribed criteria,
the course which the computation has to take.

4. An input-output mechanism which allows the operator to
feed numbers and "instructions" into the machine, and to
extract from it the results of a calculation.

As we have already stated, Babbage planned to use punched cards for input. He also
planned to use them for auxiliary storage; as tables of functions; further, Babbage also pro-
posed using punched cards as one form of output. But realizing as he did the risk of error
in copying tables by hand, he proposed making the machine set up its results in type where
necessary. Modern machines use both tape and card for input and output and print out their
results automatically as well. The sheets so prepared can then be reproduced without error
by photo-lithography .

-7= TD 01.01.002.005

From this account it is evident that Babbage had a thorough understanding of the
underlying scientific principles of modern electronic computers. He developed this under-
standing even though he was hampered by the primitive state of the mechanical devices and
power sources of his day, by the non-existance of electronics, and by the experimental
status of electromagnetism. This understanding is demonstrated by the operation of his
definitions of "store, " "mill, " and "conrrol" in virtually every modern data processing
system. Today these terms are known respectively as "memory, " "execution, " and "in-
struction” functions, no matter how such functions are implemented in any given system.

It will become increasingly more evident later in this report that Charles Babbage
deserves to be called the "father of digital computers."

Il TYPICAL DATA PROCESSING MACHINE FUNCTIONS

The typical modern digital electronic computer or data processing system generally
utilizes a number of generalized logical processing functions. Since one of the basic pur-
poses of the system is to perform arithmetic operations on input data and intermediate re-
sults some means must be provided to execute the basic arithmetic operations of addition
and subtraction, as well as multiplication and division in many applications. Since all
other arithmetic operations, such as square root extraction, trigonometric function genera-
tion, and the solution of simultaneous equations can be accomplished by a more or less
involved series of additions, subtractions, multiplications, and divisions, it is possible
within most systems to "build" these so-called "macro-operations" into the operating pro-
gram of the system.

A. ITERATION

For example, the extraction of the square root of any number can be accomplished
readily by what is known as "iteration." lteration is a repetitive which gradually "im-
proves" a random or estimated starting value for the solution to the actual true answer to
any specified degree of accuracy. Normally, an iterative calculation is terminated when-
ever the results of two successive iterations are equal, within the limits of the specified
accuracy of the result. The following example demonstrates a popular method for iterative
extraction of the square root:

General equation:

- N
A +1=1/2(A + (Ai+—'&-;)

-8- TD 01.01.002.005

Where:

A; = any given approximation (including
the starting value) .

N = the operand whose square root is to
be developed.

An intuitive analysis shows that the actual value of the square root must lie be-
tween the "first guess" (A), whatever value it happens to be, and the number of
times that it is contained within the operand _N__) . This truth holds for all of the

o
successive A i. It is evident that since the process is really one of averaging the im-
mediate approximation and its "ghost" (which is inevitably on the other side of the true
value of the square root) the next approximation will always be closer to the true value
than the last one was. So as the iterations continue, the successive approximations
gradually appraoch the exact square root. Finally, when the difference between suc-
cessive values becomes less than the allowable error of the result, the iterations stop
and the latest approximation is the answer.

Similar processes exist for all the commonly required functions. Generally
these functions are generated as required by the program, since stored tables require
expensive "parking space, " and searching a lengthy table may require as much time
as computing the desired value.

B. STORAGE DEVICES

So far the arithmetic section of a system has been reviewed. Although the arithmetic
section is certainly the heart of the system, it is by no means the most essential . Data on
which it operates must be made available to the system from within. This requires what is
commonly called "storage, ' or sometimes "memory." Since all electronically-operated
information-storage devices with sufficiently high accuracy and reliability to incorporate
in a computing system are binary (two-valued) devices, and because the formal symbols
which humans are accustomed to (the decimal numbers, the English alphabet, and the
punctuation and mathematical operation symbols count up to four or five dozen discretely
different marks) it would be very inefficient to use a separate binary position for each
symbol. Instead, each character is "coded" in such a form that the entire character set
only requires a few binary symbols. The subject of codes will be covered in later sessions
on their structure, translation, error characteristics, etc.

Storage devices are usually supplied in the form of the remanent magnetic flux
which can be stored either on the surface of a rotating drum or in the toroidal flux-paths
of very small metallic coresofone of the manganese ferrites. The common desirable prop-
erties of magnetic storage are high operating speed, low driving power, and high "signal-to-
noise ratio." The common design factors are:

-9~ TD 01.01.002.005

1. Uniformity of magnetic properties.

2. Addressing (singling out a specific group of positions
from the whole memory).

3. An ever-increasing operating speed.
These factors will be reviewed later.

Memories have been built having many millions of positions of binary storage which
are in use in commercial-production systems today .

C. CONTROL LOGIC — STORED PROGRAMMING

The third basic functional element in a system is its control logic. Such logic
consists of equipment necessary to accomplish the acquisition and execution of data and
instructions. All large data processing systems, most intermediate-sized ones, and some
small ones, now utilize what is known as "stored programming." This is usually achieved
by coding instructions as if they were data, then storing them in memory with data. If
instructions are coded numerically, they can be modified during the progress of the pro~-
gram which utilizes them. Such a method of operation provides the program with "learning
or "self-optimization" ability, as well as greatly increased flexibility for operating on
ordered arrays of data or changing its own technique on a basis of intermediate results.
These features account for the current popularity of stored-program machines.

D. CONTROL LOGIC — WIRED PROGRAMMING

The only commonly-used alternative to stored programming is "wired" programming.
In such a system a "plugboard" or "control panel" is provided, containing sequentially-
progressive program "exits" which arewired manually to the function "entries" to call out
the desired succession of functional operations in sequential order. Usually limited means
are also provided for automatic alteration of the program on a basis of intermediate re-
sults. However the overall flexibility is inevitably quite elementary compared to stored
programming .

Summarizing, arithmetic functions, storage, and controls have been reviewed.
These are three essential elements of any digital computer, electronic or otherwise.
They date back in technological history to Babbage's "analytical engine, " which con-
tained all the logical concepts basic to any of our modern digital computing systems.

E. INPUT/OUTPUT DEVICES

However, there is a fourth essential element which was also admitted by Babbage.
This is, input/output — the "arms and legs" of the system by which it communicates bilaterally
with the external human world. This is a logical necessity since a computing system is a
"machine, " and machines are those combinations of functional devices which do useful
work. This quality of usefulness is also one of the patentability criteria. There would not
really be much point in building a digital computer unless it fulfilled a useful purpose,
except for the mental exercise and academic achievement involved. These in themselves
seldom justify expending our best engineering and design efforts.

-10- TD 01.01.002.005

Input/output commonly is provided in the form of punched card readers and punches
(since they are the usual vehicle for internal accounting and scientific records), magnetic
tape transports (which develop much higher operating speeds, in terms of processing record
volume), typewriters, punched paper tape equipment, push-buttons and switches (for manual
control-input), indicator lights and audible signals (for output to the operator), and many
other special~purpose devices. Most of these devices will be reviewed in detail later in
this report.

We have seen how — just as an automobile needs an engine, wheels, a frame,
some seats, a steering wheel, some sort of brakes, and a gas tank before it can be
called "complete" — a digital computer also has some very basic functional requirements
which are just as common to all of them as the essential devices are to the automobile.
In the next section we will see how this combination of functions can be symbolized
in logical form to permit demonstration of the features of individual systems and com-
parisons between them.

IV FIRST-LEVEL DATA FLOW CHARTS

A first-level data flow chart of a computing system is a logical schematic repre-
sentdtion of the various functional devices and units which give the system its inherent
operating characteristics. The chart includes connecting lines to show the paths by which
data and instructions are routed from unit to unit within the system during the execution
of the program. Generally, these connecting lines are single lines which symbolize the
several lines of a parallel-by-bit coded-information channel (which itself may be either
serial or parallel by character). The functional units themselves are usually shown as
boxes whose relative size may denote the comparative physical size of the circuitry and
"hardware" they each contain.

In a previous section of this report the various essential sections of a general-purpose
system were outlined and justified on a basis of the functional requirements of the system.
Now the application of these devices in actual systems in current 1BM production will be
reviewed.

A. IBM 604 DATA FLOW

Figure 1 is the schematic layout of data flow in the IBM 604 Electronic Calculator.
The basic machine contains 37 decimal digits of electronic (trigger) storage, plus a 13-
position electronic "counter" which has an "add-subtract" accumulating function similar
to the counters in an accounting machine. Factor Storage has the ability to read in from
the attached card-operated Type 521 Computing Punch, and to read in or out at high speed
under control of the control-panel wired program. Its 16 positions are subdivided into four
units, of 3, 5, 3, and 5 positions respectively. The coupling features expand the unit
capacities to a choice of 3, 5, 6, or 8'position combinations since either of the 3's may be
coupled to either of the 5's,and one of the 3's may be coupled to the other. General
Storage also contains 16 positions and is identical with Factor Storage except for the addi-
tional feature of the ability to read out to the 521 for punching of results into the card
from which the input data was read during the previous card cycle. The Electronic Counter
(13 positions) is similar to General Storage except for inability to read in from the 521.

-11- TD 01.01.002.005

The counter also holds multiplication products, division dividends, and the results of add
and subtract operations by combining its original contents with program-selected data from
the storage units. There is also a five-position M=Q (multiplier-quotient) storage unit which
permits the use of a five-digit multiplier and the development of a five-digit quotient. The
total count of decimal storage positions is then 50.

Since the 604 operates serial-by-bit, parallel-by-digit, there is also an eight-
position column=shift unit which provides a parallel shift of the entire factor being trans-
ferred of 0~5 positions to the left. This feature permits decimal point scaling by pro-
gramming and also the successive shifts required during multiplication and division.

B. IBM 305 RAMAC DATA FLOW

Figure 2 is the data flow chart of the IBM 305 RAMAC (Random Access Memory
Accounting Calculator). The basic elements of the system are:

1. The processing drum.

2. The disk file.

3. The core buffer.

4. The peripheral equipment.

These elements will be discussed in that order.

Processing Drum — The processing drum contains 20 serial-by-bit tracks for instruc-
tion storage, tour for data storage, four for arithmetic operations, one to buffer the console
typewriter, two to buffer and check the card reader, and one for both the card punch and
line printer. These 32 tracks contain 100 characters each. One character position contains

eight bit-spaces for the seven bits of the character and an always-written space bit (which
separates adjacent characters).

Disk File — The disk file contains fifty disks, coated on both sides with a magnetic
iron oxide. There are 100 tracks on each disk-side, each divided into five 100-character
sectors. The entire file then has a capacity of 50 x 2 x 5 x 100 = 100 = 5,000, 000 characters,
addressable in blocks of 100, the same size as a track on the drum.

Core Buffer — The core buffer has a capacity of 100 characters and serves as
intermediate storage for both the drum and the file (whose time-bases are substantially
different and unsynchronized with each other) by synchronizing itself with which ever
one it is communicating at the moment. This buffer consists of an array of seven planes of
100 (10 x 10) cores each, a separate plane for each of the character bits. The cores
are small (.080" O.D.) "doughnuts" of a special manganese ferrite with a square hysteresis
loop and low coercivity (magnetic hardness). The core buffer is connected successively
to the single~character "From" and "To" block-addresses specified by the current instruction
in the stored program. This produces very efficient transfer operations on approximately

-12- TD 01.01.002.005

punched-card-size (100 character) blocks of information between the drum, the file, and
the peripheral equipment, resulting in a well-balanced card-processing system. Also shown
are some of the control panel "logic" functions, which will be reviewed later.

C. IBM 650 DPS DATA FLOW

Figure 3 is the data flow chart of the IBM 650 Data Processing System. Compared to
the previous charts this one is very simple even though the 650 is more complex than the
305. This comparison demonstrates the latitude of data flow charting. The general flow of
data is from the read feed of the IBM 533 Reader-Punch to read buffer storage on the drum.
From the drum data is block-transferred to General Storage (which is addressable by word)
and also on the drum. The stored program processes information from the drum a word at a
time, data words to the Distributor and instruction words to the Program Register. Results
are stored in General Storage where they are punched into blank cards with the punch feed
of the 533. The word size is fixed, at 10 decimal digits plus arithmetic sign.

General Storage contains 2,000 words, the read and punch buffers 10 each. The
instruction format consists of a two digit Operation Code, a four digit Data Address and
a four digit Instruction Address. The program advances by executing the Operation Code,
using the contents of the Data Address as the operand, and then going to the Instruction
Address for the next instruction. The accumulator has a capacity of two words, and con-
tains both products and dividends (a dividend being replaced during the division by the
quotient and remainder). Since the "working" storage units, the program register, dis-
tributor, and accumulator are dynamic storage devices which do not produce static outputs,
the Operation and Address Registers are used for a static analysis of operation codes and
addresses which are normally required for a substantial period of time during the execution
of a given instruction. Validity checks are used to constantly monitor the accuracy of
the information in the various dynamic registers to detect internal malfunctions as soon as they
occur.

D. IBM 7070 DPS DATA FLOW

The basic data flow of the IBM 7070 Data Processing System is shown in Figure 4.
Most of the data flow paths are parallel-by-bit, parallel-by-digit, handling the entire
word being transferred "broadside, " 53 bits wide. These parallel transfers take place in
either four or six microseconds per word of 10 digits plus sign. Paralleling permits a
virtual speed increase over serializing of about 10 to 1 for a given type of circuitry at
a cost ratio of less than 10 since the controls need be supplied only once. The heart of
the 7070 is its multiplexed 5,000-10,000 word core memory, which operates at a speed
of 6 microseconds per cycle. Instructions and input data are introduced into memory via
punched cards, magnetic tape, and typewriter under the control of a stored program.
The word format is similar to the 650 (10 digits plus sign). The instruction format is
-OP-IX-FC-DATA, two digits plus sign for the Operation Code, two digits which specify
the Index Register by which the Data address will be modified, two digits which specify
which segment of the operand word is to be used, and a four digit Data address normally
referring to core memory.

-13- TD 01.01.002.005

For a typical "add" operation, the augend will already be in one of the three
accumulators (specified within the operation code). The addend is in memory at the data
address from where it is transferred in six microseconds to the Arithmetic Register. Simulta-
neously the augend is transferred from the accumulator to the Auxiliary Register. Then
the arithmetic and auxiliary registers read out serially to the adder, in synchronism with
each other, with the sum going back into the arithmetic register, replacing the addend
digits one at a time as they are used up. A parallel transfer of the sum from the arithmetic
register to the active accumulator completes the operation. "Add-to-memory" is quite
similar except that the sum goes back to the operand location in memory instead of to
the accumulator. The instruction path from memory to the Program Register (which is
immediately to the left of the auxiliary register in the figure) has been omitted from the
chart.

Figure 5 is the data flow chart of the CPU (Central Processing Unit) for the IBM
705 Data Processing System. The box labelled "Acc & Aux Storage" in the lower left
corner corresponds to the accumulators of the 7070 and consists of a 256-digit accumulator,
and fourteen 16-digit and one 32-digit storage registers. Data flow is serial-by-character
using a 51-character seven bit code which will be discussed later. CR1 and CR2 are
one character registers which re-time the information for the adders. There are separate
adders for the coded equivalents of the Hollerith (punched card) code. Multiplication
(and division) are performed by using the Multiple Generator, which develops X1, X2,
X4a, X4b and X5 multiples simultaneously. The proper multiples are selected by analyzing
the immediate multiplier digit, resulting in the development of the product the entire
multiplicand times one multiplier digit at a time. The two T/C boxes are true-complement
control circuits which develop the complement of one of the input characters or the other
when required. The remaining boxes are required for system "housekeeping" functions
which will become apparent later in this report.

These five systems which have been reviewed were chosen as representative
primarily to demonstrate the purpose of data flow charts.

Additional information is available from the Engineering Library and Stationery
Stores for anyone who desires more detailed information regarding any particular system.
The information presented so far will provide sufficient background knowledge for a good
understanding of the succeeding topics and is required for a broad understanding of the
underlying principles of any digital computer system.

COMMON CHANNEL (8 POSITIONS) ENTRY

COL.. SHIFY
UNIT

0|99 s N s r
ol ¢| - |assa. 0| ¢| -|lassa s 7|o|5|4|3|a||
])
— ERYE ERYE - X
TTTTT TITTTTTZT
? ? ? ? I ADD-SUBTRACT CIRCUIT
\’ 13 |2lu 101915 71515 ala|z2]:
R.l. R.1. v v vVVYyVvY VY
\TEHS GATES
4 44440
POS. POS. POS. POS POS. - - —————
BPrs. See 25s 5cs Sma I3COUTER | stuer '3p2in o|o[s|7|e
3 ' 5 ' 3 5 5 ' \ ~ -~ Poand bt

l T T IS I

R.O. \ \ RO.
GATES %) GATES
ql
PUNCH I—v_l PUNCH
\ EStIT EXIT s|7|e|sla|3|2|
r FS GS (s aliacll
091N sSs. 00N\ 23c X
ol %] - o ¥ -
UNITS | EXIT
COMMON CHANNEL (8 POSITIONS) EXIT ppd Al
r 1 |
READ-OUT
GATES
"5~ FOR “I~ FOR DIGIT
2 ADJ. | |ZERO v | [EMITTER

Fig. 1 - Schematic Layout of the IBM 604 Electronic Calculator

§00°zo0°10°10 AL

P 1

f

COoPY

START | omPLETED

RECORD
ADVANCE
COMPLETE

1

DECISION ELEMENTS - OUT

ADDRESS CHARACTER ~15- TD 01.01.002.005
REGISTER CORE BUFFER
: - mn o
| J
— 05 = : 1 °‘b|; a2 b2 K
RANDOM ACCESS | el
MEMORY ! e s
1 / Q
:) T2 N
' o, v
& I / "
w L
v 1]
ARITHMETIC 323 PUNCH
CIRCUITS
N
\ Read
CHARACTER Instruction Storege Arithmetic \
SELECTOR Tracks Trocks LMeAccum. | Type o) 0l
(0-9,8,A-]) (W-2) V-Multiplicand| write |
N-Multiplier | .‘;3‘2.
!
PROCESS DRUM NG
A P Check
P ISX RN
r~ "~~~ .-~~~ ~—----~--
! Ir Formot Control
| i
|
| I
|)
| X INSTRUCTION REGISTER =
] P T KEYBOARD TYPEWRITER
| i | From To Number
! ! | of Progrom Control
} : | Address L::sg::' Address L::‘iz::' Positions Exir
H 081
; ; : o) by T, ay by mn P Q
! I |
|) |
| | |
|] |
| | |
1 ! Il
Hundreds Tens Units CcOPY DECISION ELEMENTS - IN FUNCTIONS
PROGRAM COUNTER from - Accumulator Signs
Input - Accumulator Overflow Feed piint | Punch dvonce Type |Progrom
} ‘o - Selectors Cord Record | write |Advance
100 nstructiond - Choracte:r Selector
b [Track | - Blank Fleld
b l %0 w0 - Compoare
""5 ! H - Last Card
= Ingquiry Interlock
| I I
l LN U S I N N R B |
/ ~
c & @

- Accumulator Signs (+, -,0)
- Accumulator Overflow (Yes, No)
- Selectors (Norma!, Tronsferred)

- Charactor Selector (Which Character)

- Blank Fleld-(Yes, No)
- Cornpare (Yes, No)

- Lost Card (yes, no)

= Inguiry Interiock

Fig. 2 - Data Flow Chart of the IBM 305 RAMAC

-16-

' INPUT

TD 01.01.002. 005

OUTPUT

DISTRIBUTOR SNl [vALIDITY] L: PROGRAM REGISTER
TT T 1L LT L ek [T T T T [TT11]]
ONE VALIDITY|
DIGIT CHECK
ADDER
0. R. ADD. REG.
| [11

UPPER_ACCUMULATOR LOWER ACCUMULATOR

SN

EEEEEEEEEENEEEENEN

+

Fig. 3 - Data Flow Chart of the IBM 650 Data Processing System

INPUT

7500
CARD READER

-17-

CONSOLE INQUIRY
TYPE. STATION
WRITER

AS MANY AS 3

STORAGE

- ——— — - ——

1

INPUT/OUTPUT
SYNCHRONIZERS

!

INPUT/OUTPUT
CHANNEL

!

|
|
|
:

b

N

TD 01.01.002. 005

OUTPUT

7550 CARD PUNCH
OR
7400 PRINTER

AS MANY AS 3

MAGNETIC CORE STORAGE

0000 TO 9989

1

TAPE

CHANNEL |a@= |l |=p] cHANNE
1 2
AS MANY AS 6
AS MANY AS 4
PROGRAM |
[
Dy
[ARITHMETIC REGISTER J
PRIORITY
REGISTER I
t
ADDER]
> A I ACCUMULATOR 1
INSTRUCTION
COUNTER "
N D ——
1 COMPLEMENT I
ADDRESS —
REGISTER . 1
t I l ACCUMULATOR 3
Izorl W I cL I ADDR |
.
| AUXILIARY REGISTER J
1

}

TAPE

AS MANY AS &

ARITHMETIC

ACCUMULATOR 2 l

Fig. 4 - Data Flow Chart of the IBM 7070 Data Processing System

CR1_C-BIT OUT

"MF']‘VL RESULT TO MEMORY
SW

-81-

| CRI CR1 TO ADDER | MULTIPLE
MEMORY [READ MEMORY ? “|GENERATOR
MPL
REG
1. READ MEMORY CRI _ A
2. READ STORAGE TO
3. CR1 TO ADDER ¢ SUPP. ADDER ROUTE
4. CR1 TO 1/C CARRY DEC. CARRY
5. CR2TO T/C \Y / IN
6. CR1 C-BIT OUT \
7. CR2 C-BIT OUT > DA | _|DIGIT DIGIT ADDER OUT
8. SET MPL REG TO CR2 T/C [™ADDE -
9. COMPLEMENT | -
10. SUPPRESS ADDER CARRY
11. ROUTE DECIMAL CARRY IN COMP. ROUTE CHARI |GEN| | RESULT
12. ROUTE ZONE CARRY IN ZONE CARRY EMIT C-BIT| = |[REGISTER
13. DIGIT ADDER OUT CR2 / IN
14. ZONE ADDER OUT 10 ZA ZONH l -
15. GEN. C-BIT 1/C ZONE ADDER OUT _
16. CHARACTER EMIT T/C | KADDER I
17. RESULT TO MEMORY
18. RESULT TO STORAGE I
ACC & AUX|READ STORAGE CR2 SET MPL REG TO CR2
STORAGE
T CR2 C-BIT OUT
1 STOR _ RESULT TO STORAGE
SW

BASIC ROUTING LINES

Fig. 5 - Data Flow Chart of the CPU of ' 'BM 705 Data Processing System

§00°200°10° 10 Al

-19- TD 01.01.002.005

V THE BINARY NUMBER SYSTEM

The conventional decimal numbering system and its arithmetic owe their existence
primarily to the fact that humans have ten fingers, which early in civilized history made
convenient and readily available counters. Since ten fingers are divided on two hands,
the bi-quinary numbering system of the abacus was also quite natural.

Similar reasoning shows that since many high speed electronically-operated memory
devices have two well-defined "states" or "conditions, " and each type of device "switches
abruptly under the control of its input signals, the most natural numbering system for use
in electronic digital computers is binary (two—valued). For the moment the problem of
bilateral conversion between binary numbers, and the decimal and alphabetic world we
live in, can be ignored. Let us just try briefly to "think" in binary numbers.

To begin, assume that the number-symbols 2, 3, 4, 5, 6, 7, 8, and 9 do not exist.
Thus, when we count (enumerate), the progression must go 0 to 1, 1 not to 2 but to 10,
10to 11, 11 to 100, and so on. The following table correlates some common decimal
numbers with their binary equivalents:

Decimal Binary Decimal Binary Decimal Binary
0 0 10 1010 200 11001000
1] 20 10100 300 100101100
2 10 30 11110 400 110010000
3 1 40 101000 500 111110100
4 100 50 110010 600 1001011000
5 101 60 111100 700 1010111100
6 110 70 1000110 800 1100100000
7 1m 80 1010000 900 1110000100
8 1000 90 1011010 1000 1111101000
9 1001 100 1100100 1023 111111111

Table 2 - Correlation of Some Common Decimal Numbers with Their Binary Equivalents

The following examples illustrate the basic binary arithmetic operations of addition,
subtraction, multiplication, and division. Compare them with their decimal counterparts
for simplicity.

Addition: Decimal Binary
- —276 100010100
+349 +101011101
625 1007110001
1
iee 16
i: 32
Y
~ 512

T 625

-20- TD 01.01.002.005

Subtraction: Decimal Binar
349 101011101 10010 (18)
=276 -100010100 -1011 (11)
73 1001001 111 (7)
: 1
: :==8
: === 64
Multiplication: Decimal Binary
23 10111
x17 x10001
187 10111
23 10111000
397 110000111 ====w=u== 256
128
4
2
1
397
Division: Decimal Binary
\7 10001 (17)
23400 10111)110010000
23 10111
170 000100000
161 10111
) 01007 (9)

Fig. 6 - Basic Binary Arithmetic Operations

Referring back to the example of multiplication by "halving and doubling, " it
should now be apparent that the multiplication process is actually a systematic con-
version of the decimal multiplier to its binary equivalent, followed by binary multiplica-
tion of the decimal multiplicand (by selective doubling). Decimal-to-binary conversion
is accomplished ordinarily in just that way, by successive division by two, the successive
remainders being the binary equivalent, in reverse order. For example, consider the decimal
value 349 used in the following subtraction example:

2)349(1
2)T74(0
287(1
2)43(1
2)21(1
2)70(0
251
2)2(0
2701
0

-2]- TD 01.01.002.005

The binary value is 101011101, This is the decimal method of conversion to
binary. The binary method depends on the binary "code" chosen to represent the in-
dividual decimal digits in a binary computer or calculator. The problem is too complex
to deal with here. Binary-to-uecimal conversion is demonstrated in the checks of the
binary arithmetic examples given above.

VI BOOLEAN ALGEBRA

Boolean algebra is a system which provides the symbology and operating rules
for the expression and analysis of formal logic statements by the use of techniques
similar to those of conventional algebra. This similarity is probably Boolean algebra's
greatest difficulty since it is quite natural to lapse into conventional algebra during
a Boolean algebra problem. If this potentiality is kept firmly in mind, it is possible to
avoid it.

The following rules are listed to demonstrate the characteristics of Boolean algebra
without resorting to the lengthy definitions used in a more formal treatment of the sub-
ject:

Function Usage Boolean Form

AND (A AND B) Active only when both Aand Bare A * B

present.
OR (A OR B) Active if either A or B is present. A+B
NOT (NOT A) Active when A is not present. A

Table 3 - Rules Demonstrating Boolean Algebra Characteristics

Identities:

A+B=A-B,A-B=A+B;A+B=A-'B;, A-B=A+8; A-A=0;

A+A=1 A+B=B+A; A"B=B" A

It is seen that the "plus sign" of conventional algebra is used to signify the OR
and the multiplication symbol is used for the AND. The NOT is symbolized by a bar
over the top of the function symbol(s) to which it refers. Boolean algebra will be used
as a tool in the next nine sections to permit efficient coverage of the topics of informa-
tion codes and their arithmetic.

-22- TD 01.01.002.005

VIl THE LOGICAL BINARY ADDER

One of the more interesting devices in its various configurations is the logical
binary adder which will now be analyzed in detail . The basic logical objective of the
binary adder is the implementation of the simple charts of Figure 7 which are known as
“truth tables." These tables provide the individual output results for the four possible
combinations of inputs A and B on a basis of whether neither or either or both are present
(as binary "ones").

The next step in the process of logical synthesis of the truth table is to convert
the entries in the table into terms of Boolean algebra equations. The following two
equations result for the "sum" and "carry" respectively:

1) S=A-B+A:B (either, but not both)
2 C=A"B (both, only)

This pair of equations represents the so-called "binary half adder." The reason
for the qualification "half" is that a complete or "full" adder also has the arithmetic
"carry-in" as a third entry, along with A and B. This is a natural requirement for a
practical binary adder which operates serially (one bit at a time, low order to high),
similarly to the mental process of binary addition demonstrated in the section of this
report of the binary number system. Figure 8 contains the truth tables for sum and carry
for the full adder. Since there are now three binary input variables, there are 2%, or
8, entries in each table. Just as in the case of the half adder, these truth tables can
be easily converted into Boolean equations:

3) S = ABC + ABC + ABC + ABC
4) C' = ABC + ABC + ABC + ABC

These equations can be modified by factorization and other Boolean operations
into a number of different equivalent forms, resulting in various corresponding equivalent
symbolic logic circuits. The symbolic logic for equations 1) and 2) is shown in Figure 9.
Figure 10 illustrates how two half adders can be cascaded to form a full adder in symbolic
logic form. This form of the full adder can also be converted to its Boolean form, for
comparison with equations 3) and 4), as follows:

5) S=(AB + AB) C' + (AB + AB) C'
6) C = (AB + AB) C' + AB

Multiplying equation 5) to eliminate the parentheses gives equation 3) directly.
Equation 6) can be similarly checked against equation 4) by expanding the first term into
two terms and then multiplying the other term by C' and C'in turn (since C' +C' =1, this
operaiion is valid).

_23- TD 01.01.002.005

Now, if we think of the symbolic circuits in terms of, say, their transistor and
diode equivalents, the count for the circuit is 30 diodes and O transistors, while the
corresponding count for the circuit of Figure 10 is 18 diodes and 1 transistor. This means
that by converting to the logic of Figure 11, we have effectively "traded" 12 diodes
for 1 transistor, which is a quite significant saving in "hardware, " since both circuits do
exactly the same thing. There are actually many different forms of binary adders possible.
The choice of any specific form for a given application is usually made on a basis of the
other factors involved in the choice, such as economy, reliability, speed, etc.

-24- TD 01.01.002. 005

SUM CARRY
A A
0 1 0 1
010 1 0j0 O
Bl o Blilo
Fig. 7 - Simple Truth Tables for the Half Adder
SUM CARRY
A: 0 0 1 1 A: 0 0 1 1
B: 0 1 0 1 B: 0 0 1
0 0 1 0 0 0 0 0 1
C: C:
1 1 0 0 1 0 1 1
Fig. 8 - Truth Tables for Sum and Carry for the Full Adder
A —-->A_-§L
B — | A-—> .
’-—-——S AB C
- B —|
A—I\ A8
B —
Fig. 9 - Symbolic Logic for Equations 1) and 2), page 23
A —Na
\ A) ANY TWQ
B ——/ C
A—NA-B A-B+AB >—h
B |
- l
A A-B c'— ONE OR
s ‘ |/ THREE
& —

Fig.

10 - Two Half Adders Cascaded to Form a Full Adder in Symbolic Logic Form

-25~ TD 01.01.002. 005

As = | o, [Co(notused) HA C,
Bg ’ S'8
l' ? 58
Ay — :‘l >., _*t4 |
By FA 3 — FA .
- 4
Az — +2
BZ FA S! HA
2 l s,
Al
By FA ;
c;, — S,

Fig. 11 - Symbolic Description of BCD Adder

-26- TD 01.01.002.005

VIII BINARY-CODED DECIMAL ARITHMETIC

Since the binary adder and its arithmetic are relatively simple, it is a very
natural evolutionary step to recode the decimal symbols into binary form and develop
a set of arithmetic rules to compensate for differences between the two number systems.
It requires a four-position binary number to express (that is, contain all the possible
different values of) a single decimal digit. Thisbinary number, however, is actually
the binary code for a radix-16 digit, since it has that many possible valuves. The effect
of this characteristic is shown in the following examples of binary-coded-decimal (BCD)
addition: '

Example 1 Example 2
decimal BCD decimal BCD
6 0110 7 o1
+3 +0011 5 +0101
9 1001 (1) 2 1100 (12, base-16)

40110 (carry corr.)
(1) 0010 (decimal 2,
plus carry)

Fig. 12 - Examples of Binary-Coded Decimal (BCD) Addition

As illustrated in the second example, if there is a decimal carry required for the
result, the sum will be six too low. This situation requires that there by a logic circuit
monitoring the sum (of a BCD adder) to detect a sum greater than nine and apply the re~
quired correction of +6. This is included in the logic of Figure 12, which symbolically
describes the BCD adder in terms of binary full and half adders logically cascaded to
accept four binary entry-pairs broadside. The intermediate sums (with primes) are the un-
corrected (base-16) outputs, which then in turn feed the inputs of a second partial adder
to provide the +6 correction as required, on a basis of detecting the need for correction
as 8 (4 + 2) in the intermediate sum. This 8 (4 + 2) signal is also used directly to pro-
vide a "6" for the correction adder.

A variation of the above BCD code (not widely used by 1BM) is known as the
"excess-three" code. Its characters are respectively three units higher in binary value
than their BCD counterparts, ranging in binary "weight" from 3 to 11, as shown in the
following table:

0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 o1 9 1100

Table 4 - Example of "Excess-Three" Code, A Variation of the BCD Code

-27- TD 01.01.002.005

One of the unique advantages of the "excess-three" code is that it is self-
complementing, since the nines complement of a given digit value may be obtained
easily by a direct bit-by-bit inversion of the original value, independent of that
value itself. Since a computer must ordinarily subtract as well as add, this is a signif-
icant advantage to a low=cost system.

The examples below show the operations of addition and subtraction in this

code:
Addition
decimal excess-3 decimal excess-3
3 0110 6 1001
_+é +1001 :_7_ +1010
9 1111 (15, base-16) 13 (1) 0011 (0, excess-3)
+1101 (Correction, +10) 40011 (correction, +0)
(1) T100 (9, excess=3) 0110 (3, excess-3)
Subtraction
decimal excess-3 decimal excess-3
9 1100 4 0111
-3 0110 -9 -1100
6 +1010 (complement) -5 +0100 (complement)
(1) 0110 (3, excess-3) (0) 1011 (no carry)
+0011 (0, excess~-3) 0101 (recomplement)
1001 (6, excess-3) 40011 (Correction, +0)

1000 (5, excess-3)

Fig. 13 - Addition and Subtraction in the "Excess-Three" Code

It is apparent that both addition and subtraction require a correction operation in
"excess-3" code, resulting in somewhat slower operation, so that the ultimate choice
between the two codes for a given application will very likely depend on a compromise
of the requirements, since neither code has any overriding advantages.

-28- TD 01.01.002.005

IX BI-QUINARY ARITHMETIC

The earliest well-known use of the bi-quinary information code is the abacus.
Its natural advantage in that application is that a decimal digit may be expressed in a
pattern of seven beads, rather than the 10 required for true decimal representation. This
code probably evolved by rationalization of the physical fact that the 10 human fingers,
on which our decimal system is founded, are located five each on two hands.

The structure of the code, then, consists of a five=symbol minor quinary part and
a major two-symbol binary part, one set for each decimal order of a number. Conventionally,
the quinary "bits" are symbolized by their decimal arithmetic weights 0, 1, 2, 3, and 4,
while the binary bits are weighted 0 and 5. Thus we have binary 0 and 5, and quinary
0 thru 4.

In arithmetic operations, "carries" are propagated similarly to the decimal system
since a quinary carry (count beyond 4) advances the binary value for the same digit position
to the other symbol, and a binary carry advances the quinary count for the next higher
order digit by one. Thus, it is seen that the arithmetic is carried out as if the binary and
quinary parts were successively alternating quinary and binary orders. It may help, to
consider bi-quinary arithmetic in this fashion.

By way of historical reference, the program and arithmetic control circuits of
the IBM 650 operate completely in bi-quinary code. Figure 14 is a logic diagram of the
650 arithmetic adder. The horizontal boxes are ANDs, and the vertical ones ORs. This
circuit has some very interesting logic short-cuts included in it, as will be evident
during an analysis of several cases of single-digit addition.

Another code which is very similar to bi-quinary is the qui-binary code used in
a number of current development systems. The basic difference is that the binary and
quinary parts of the code are transposed. As aresult, the quinary bits have weights of
0, 2, 4, 6, and 8, and the binary bits weights of 0 and 1. The rules of arithmetic are
otherwise the same as for bi-quinary. The minor advantage of this code over bi-quinary
is that the translation to and from BCD is more direct, since for one thing the binary one-
bit in qui-binary is the same as the one-bit of BCD. So is the quinary eight=bit the same
as the BCD eight=bit, and so on. However, as is usual in such cases, there is a compensating
disadvantage, which will be reviewed later in the section on "code translation."

-29- TD 01.01.002.005

e Q2

e Q1

e QO

B B QQ QQ Q WA
0501 23 4 ADDER ENTRY "A ONE DIGIT ADDER OUTPUT
o900 90900
Ry i
P o— T [
31(2) _B—r“
OR [
8
OR
¢ 7
1 4 —
OR
* 6 |
0
OR
50 |e— .
| R —
et
®-
R
N
* C
¢
‘ ——@ NO CARRY
¢ e CARRY
e BS
* *—
5+5+NC
ot =il * e 30
5l+j+c D OR
¢ t EX KX ——'[1 AND
B B QQQQQ " 1l
0501234 ADDER ENTRY "B (1): NO CARRY FROM LAST CYCLE

(2): CARRY FROM LAST CYCLE
Fig. 14 - Logic diagram of the 650 arithmetic adder

-30- TD 01.01.002.005

X BI-QUINARY COMPLEMENTING AND VALIDITY CHECKING

As seen during the study of the binary adder (Section VII), subtraction by a logical
adder requires the complementation of the subtrahend, and also re-complementation of the
difference if the minuend were the smaller value (resulting in a change of sign from minuend
to difference). This same consideration applies to the bi-quinary adder — the subtrahend
must be complemented.

The bi-quinary code has the useful advantage of being "self-complementing."
This means that complementation can be accomplished on a bit-by-bit basis rather than
character-by-character. In this code, complementing is done very simply by a consistent
transposition of bits, as seen in the following table:

Decimal B True Q B Complement Q
0 0 0 5 4
1 0 1 5 3
2 0 2 5 2
3 0 3 5 1
4 0 4 5 0
5 5 0 0 4
6 5 1 0 3
7 5 2 0 2
8 5 3 0 1
9 5 4 0 0

Table 5 - Bi-Quinary Complementing by a Consistent Transposition of Bits

As deduced from this table, complementation requires the transposition of the binary
0 and 5 and the quinary 0 and 4 and quinary 1 and 3. The quinary 2 does not change
since decimal 2 and 7 both have a Q2. The basic advantage of self-complementation is
that no character analysis is required, since the same "rule" is always shared by more than
one character. In addition, a valid complement can result only from a valid true value,
preserving the self-checkability of the code which depends on there always being one

and only one binary bit and one quinary bit. Figure 15 depicts the true complement logic used
in the IBM 650.

Figure 16 shows the logical bi-quinary validity check used in the IBM 650. By
way of introduction, the basic Boolean expressions for the validity check are as follows:

Quinary Error =(0+1+2+3+4)+01+02+03+04+12+13+
14+23+24+34
Binary Error = (0 + 5) + 05

Character Error = Binary Error + Quinary Error

-31- TD 01.01.002.005

These equations are simplified by factorization to the form corresponding to the
circuit of the figure. Incidentally, this logic is also applicable as is to the qui-binary
code, since the code structure is equivalent, the only difference being in the bit-weights
which have no bearing on the checking rules.

-32- TD 01.01.002.005

Qo0

A0 2 &

Ql
Ql
' | Q2
. —
BIQUINARY

__l;jl“ TRUE/COM-

Q3 ® ’ Q3 PLEMENT

j—r = LOGIC l
O

Q4 o *— —

BO
BO # —
Compl.
True —_—
B5
B5 *—
Py |

Fig. 15 - True complement logic used in the IBM 650

T‘ ERROR

|

353‘5 Cg4<l§2 ('34‘3 '3 '2 '1 30 I-
@ ez Qld BIQUINARY
Q4 — VALIDITY
Q3 — CHECK
Q2 — o— LOGIC
« B0 —
Q0 — s

Fig. 16 - Logical biquinary validity check used in the 1BM 650

-33- TD 01.01.002.005

Xl FIXED-BIT INFORMATION CODES

Fixed-bit information codes are a class of codes having the unique property
that all characters have the same bit-count (of 1's). The most commonly used of these
codes is the two-out-of-five code used in general (drum) storage in the 650 and
universally in the 7070. According to the permutation formula,

P = l n!

m! (h -m)!
there are ten permutations of five elements taken two at a time. In internal form, they
are: AB, AC, AD, AE, BC, BD, BE, CD, CE, and DE, where the sequence of the sym-
bols is not significant. The 2/5 code of the 650 and 7070 assigns arithmetic weights of
0, 1, 2, 3, and 6 to the five bits transferring these weights to the literal symbols given
above results in a character sequence of 01, 02, 03, 06, 12, 13, 16, 23, 26, and 36,
with respective decimal valuesof 1, 2, 3, 6, 0, 4, 7, 5, 8, and 9. The decimal values
0 and 3 have ambiguous arithmetic weights of 3 units, since 0 +3=1+2=3. Nor-
mally, however, this code is not used for arithmetic purposes, so the ambiguity is no
problem. The bit weights are merely a mnemonic aid, mainly to the customer engineer
maintaining the system out in the field (the logic designers, using Boolean algebra,
could just as well have used the literal symbols A, B, C, D, and E).

Incidentally, of all the other possible 2/5 codes, there is only one equivalent to
the 0-1-2-3-6 code which has all positive bit-weights and only the zero ambiguously
weighted. It is the 0-1-2-4-7 code, whose weight for the zero is 11, the 4-7 combina-
tion.

The really powerful reliability advantage of the fixed-bit codes is their complete
immunity to multiple bit-errors of a common polarity (0 to 1), which can never revalidate
the affected character, as is possible in any of the parity-checked codes (which are
checked by establishing the count of binary ones in the character as either even or odd).
Multiple bit-errors are generally caused by polarized noise, excessive power supply
regulation, or failure of one or more of the data flow control gates (which can permit
whole characters to be superimposed one on the other bit-by-bit).

One larger-capacity fixed-bit code used in IBM equipment is the four-out-of-
eight code of the IBM 65 Data Transceiver used to transmit the contents of punched
cards to another transceiver at the remote end of a conventional land line. This particular
code used 54 out of the possible 70 characters available in terms of eight elements
taken four at a time B!/(41)(8 - 4\ = (8 x 7 x 6 x 5)/(4x3x2x1) =70]. The coding
chosen for the specific 54 characters of ri.e code is based on its relatively straightforward
translation to and from the Hollerith code of the punched cards that the machine processes.

Currently-produced systems use a 51-character seven-bit parity-checked code.
A three- (or five-) out-of-eight code would provide 56 characters, and could conceivably
be optimum for some future system. However, since the current seven-bit code has a
capacity of 64 characters and both three-out-of-eight and four-out-of-eight naturally
require the same storage and data-flow capacity in a given system, it would probably generally be
wiser to adopt the "bigger" code as a company-wide standard for future systems which re-
quire fixed-bit information coding. This is true because it and the seven-bit parity~
checked code would probably always co-exist.

=34~ TD 01.01.002.005

Xl SELF-CHECKING AND SELF-CORRECTION CODING

Due to IBM's direct responsibility to furnish field maintenance support for a
nrajor percentage of itscomputers and data processing systems, self-checked information
coding has come to be a more or less traditional functional specification for any new or
proposed system. Self-checking itself is accomplished by intentionally including suf-
ficient redundancy (partial repetition or duplication) within each coded character to
detect alterations of the characters due to system malfunctions.

In the case of the familiar BCD code reviewed earlier in this report, this
redundancy takes the usual form of a parity-bit, which is simply a modulo-2 count of
the information bits which are binary 1's for that character, as shown in the following
table:

Decimal 8421C
0 0000O01
1 00010
2 00100
3 00111
4 01000
5 01011
6 01101
7 01110
8 10000
9 10011
(0) 10101

Table 6 - Redundant Self-Checking by a Parity-Bit

In this table, the parity-check bit is chosen so that the total bit-count for a
character is always odd. The parity bit is literally the 1's complement of the informa-
tion bit-count modulo-2. The choice between odd and even parity is usually made on
a basis of criteria such as insuring that all characters will contain at least one binary
"one," which applies to the "zero" in the above table. If the 8-2 were chosen as
the "zero" character, even parity would also satisfy this requirement.

Fixed-bit codes provide the required redundancy in more subtle form, as an
unvarying bit-count. The unique advantage of this characteristic is unambiguity.
Since the bit-count is constant, it is obvious that no character can be wholly contained
within any other one. The result of combining any unlike characters by bit-by-bit
superposition must necessarily result in an increase in bit-count, which violates the
consistency of that count, which would indicate the occurrence of an error. This is
a categorical advantage for all fixed-bit codes, as the succeeding study of the
statistical error probabilities will prove.

-35- TD 01.01.002.005

Referring to Table 6, it can be seen that the 1, 2, and 4 characters are all
contained within the seven character, so that superposition of an extraneous seven on
atrue 1, 2, or 4 will result in undetected conversion to a valid seven. This
possibility defeats the basic ideal of system checking, which is a built-in guarantee
of the validity and accuracy of the system's output. Assessment of the relative im-
portance of this guarantee to the eventual field success of a given system is a very
sophisticated process requiring a detailed knowledge of the system, and an intelligent
estimate of the impact of undetected errors on the system's performance in actual
field applications.

An interesting extension of parity checking is applied to IBM's magnetic
tape equipment. This technique is known as "cross-parity" checking. It operates in
the following manner. Consider a random-length "block" of information characters
written on magnetic tape in parity-checked code. The parity bit for each character pro-
vides a constant modulo-2 bit-count for each character. The characters are written
parallel-by-bit, serial-by-character on the tape. Then, at the end of the "block, "
an additional "character" generated by modulo-2 counting of the number of individual
occurrences of each bit anywhere in the "block." This bit-by-bit parity-count then
automatically forms an extra "character, " which is written on the tape right ar the
end of the "block "

All information bits are thus checked twice, and the simplest error in the block
which will satisfy the checking circuits must preserve both "vertical" and "horizontal"
parity by creating an even number of changes in arectangular error-bit pattern, re-
quiring at least four simultaneous bit-errors. The 700- and 7000~ series systems, as
well as the 650, use this powerful checking technique in their respective magnetic tape
features.

An additional advantage of cross-parity checking, not exploited by IBM, is
that since a single bit-error in the information block on tape is identified two-dimensionally,
its location is specified similarly to Cartesian coordinates. Correction of that bit then
merely requires extraction, reversal (0 to 1 or 1 to 0) and re-insertion of that one bit to
the same location. There are no unknown factors involved; this function is completely
feasible. The basic reason cross-parity checking is not used by I1BM is that a predominant
type of error on magnetic tape is the drop-out of a string of the same bit for a long
succession of characters. This is because the seven bit-channels occupy the full width
of a half-inch tape, while successive characters are packed to a density of 200 to the
inch (each character is nominally only, -005 inch long). Thus, a roughly round
blemish on the tape will actually be about 14 times as many bits "long" as it is "wide ."
Since cross-parity checking could only correct one bit error in the block, it has been
dismissed as unprofitable.

It is also possible and practical to include enough redundancy directly within
the individual character to correct any information-bit error. This technique was
developed by Hamming of Bell Telephone Laboratories during the course of some very
early information error studies. The following table demonstrates the Hamming technique
as applied to the BCD code:

-36- TD 01.01.002.005

Decimal BCD Hamming
T 8421 (Q XY z
0 0000 T TT T
1 0001 0 0 0O
2 00100 0 01
3 0011 1 110
4 0100 O 010
5 0101 1 1 01
) 0110 1 1 00
7 01110 0 1 1
8 1000 O 1 00
9 1001 1 0 1 1

Table 7 - The Hamming Technique as Applied to the BCD Code

The X, Y, and Z bits are generated from the information bits in the following
manner:

X=4Y2V1;
Y=8V2V I;
=8V 4V

where the symbol (V) means exclusive-OR or sum modulo-2. ldentification of correctible bit-
errors depends on the pattern of failure of the X, Y, and Z checks. If the character

is OK, all three are satisfied. If X fails, but not Y and Z, the X-bit itself must be in

error, since an information-bit error would fail to satisfy at least two checks. The Y and

Z bits are detected similarly.

Now, if both X and Y, but not Z, fail, the error must be the two bit, since it is
included in both X and Y parities, but not in Z. In similar fashion, XYZ identifies the
four bit, XYZ identifies the eight bit, and XYZ identifies the one bit as the error. This
identification is independent of whether the error-bit should be a 0 or a 1. Retention of the
original C-bit of the BCD code provides detection of double (two-bit) errors, making it
possible to detect errors that cannot be successfully corrected. This is important because
the correction can only identify one error-bit. If there is a double error, its symptoms
will be ambiguous with some other unrelated single error so that the correction logic would,
in the case of a double error, change a bit which was correct and ignore the real error, re-
sulting in an undetected triple error in the end.

In passing, it may be noted that if the Hamming check bits are not used for correction,
they (without the C-bit) provide double error detection.

There are many information codes, each with its own reasons for existence, on
which we have not even touched. A thorough study of codes will prove quite interesting
to anyone wishing to attempt it. This can be done fairly easily since most of the work to
date has been well documented in the technical literature. IBM's Technical Information
Service maintains an extensive bibliography on this and many other subjects.

-37~ TD 01.01.002.005

X1 STATISTICAL ERROR PROBABILITIES

A. DEFINITIONS

1.

Error: Any alteration of the bit-pattern representing a particular
specific coded character.

a. Total errors: The count of all possible bit-changes to all
code characters.

b. Error probability: Average probability of bit errors for the
the entire code-set.

Detected Error: Any bit-pattern alteration which produces an
invalid "character, " by the rules of the particular code
used.

a. Detected error probability: The ratio of "detected" errors to
"total" errors for all possible inde-
pendent bit-errors, where double
errors are considered two coincidental
single errors, etc.

b. Detected error rate: The average ratio of detected character errors to
total character quantity. (P,)

Undetected Errors: Any bit-pattern alteration which results in conversion of
a valid character into a different valid one.

Independent Bit-Error: The reversal (0 to 1 or 1 to 0) of a single information
bit caused by logic failure, superimposed noise, etc.

a. "Zero" error rate: The rate at which errors in which "ones"
change to "zeroes, " expressed as P ;. The ratio
of errors to total bit quantity during which they
occur.

b. "One" error rate: The rate at which "zeroes" change to "ones, "
expressed as P, .

c. Total error rate: The rate, expressed as P_ in terms of P, and P, at
which errors of all types occur, detected or undetected.

d. Undetected error rate: The rate at which undetected errors occur, ex-
pressed as P in terms of Py and P, .

-38- TD 01.01.002.005

COMPARATIVE CHECKING RELIABILITY OF THE 2 OUT OF 5 AND BCD CODES

1. Total Error Probability:

a.

2/5 has 2 ones and 3 zeroes for every character, so that
P =2P +3P
e 0 1

072 then

For example, if Py -~ 10 and P o=
P,=2x10°+3x10""% = 2x10®

This means that 2 missing-bit errors will occur every million
characters.

. Consider now the following form of BCD Code:

Dec. 8 421 C De. 8421C

0 00001 5 01011
1 00010 6 01101
2 0600100 7 o1110
3 00111 8 10000
4 01000 9 10011

The complete code uses 20 ones and 30 zeroes (five bits/
character x 10 characters). Assuming equivalent usage of all
10 characters and the same P and P, as for 2/5,

. =2x10° +3x107% = 2107

which is the same as for 2/5.

2. Undetected Error Probability:

a.

For the 2/5 Code, an undetected error must consist of the same
number (1 or 2) of zeroes changing to ones and ones changing to
zeroes, assuming a perfect error-free validity check, since this
condition alone can maintain the constant bit-count of two ones.
Using the same values for P, and P, as before:

_ 2 2 _
Pu =(2 PO x3P1)+(P0 x3P1)=
2 2

6P0P1+3P0 P1 ~6P0 P1

~6x10x10 % =6x10""®

-39~ TD 01.01.002.005

b. For the BCD Code defined above, an undetected error is any
error which results in no change of the character's bit-count
(of ones) modulo 2; i.e., in this case, "odd."
Accordingly:

P =1/2(P, x 4P +6 P12+p14)+
1/2(3 P x2P +3PO2 +p12)=
+2P0P1+3P12+1/2p14 +3PP+11/2P 2+
/2P =5Pp +11/2p" +31/2P, " +1/2P, "

~ 2 2
“1.5P, 7 +35 P0P1 +3.5 P1

18 24

1.5%x10 72 +5x10 P +3.5x10 "
~1.5x107"
The Pu ratio between these two codes, BCD and 2/5, is:
1.5x10"%)/(6x 107 =25x10"

meaning the BCD has an undetected error probability 250, 000 times
as high as 2/5; this ratio is roughly equivalent to

P /P=(107/107% =10° .

3. Rationalization of Assumptions

a. P =10 6
0

This is @ "missing" bit only every million characters, far from
a "solid" condition where P =1.

b. P =10 -12
1
This is an "extra" bit once every trillion characters. Using the
7070 character rate of 250KC, the mean-error free inter-
val comes out to 4 x 10® seconds, or about 15 months of elapsed
running time, (which is reasonably pessimistic) for an error in any
one functional area of a system.

4. Interpretation of Error Probabilities

a. P_is strictly a function of the size and format of the code. The
two codes used in the comparison are both five-bit codes averaging
two ones and three zeroes, so their total error rates are necessarily
the same.

-40- TD 01.01.002.005

b. The basic reason for the marked P, superiority of 2/5 is that

its undetected double errors must cancel each other, while in BCD
they can have the same polarity. While common-polarity multiple
independent bit-errors are no more plausible than opposite polarity
ones, dependent multiple bit-errors of the same polarity are quite
common in any real system. They generally result from distributed
noise or simple gating or sampling failures. These conditions can
cause undetected errors in BCD, but 2/5 is completely immune to
them.

XIV CODE TRANSLATION

Typically in a modern data processing system such as the 650 or 7070, one code is
not universally optimum from the standpoint of economy and/or reliability. For example,
the seven-channel IBM magnetic tape is optimally coded since its information checking is
based on two-dimensional bit parity, the seventh channel being the vertical (character
parity)check and the horizontal (redundancy) check character providing the second di-
mension of parity check. Since each of the parity checks requires an even number of bit
errors to defeat it, the simplest undetected bit-error pattern must be a four-bit rectangle
within a given record. In other words, the code is triple-error-detecting. All single,
double, and triple errors are detectable, and all but the rectangular quadruple errors.

However, it is impractical to carry this cross-parity check with the data during
its trip through the system. The basic result of data processing is the alteration of old
records by "updating" them to reflect current activity. This alteration inevitably de-
stroys the original parity status, implying that the "new" record generates its own parity
check information. This "bootstrapped" checking would require fail-safe processing
operations, which are impractically expensive if not actually impossible with the BCD Code.

Consequently the 7070 system designers adopted the 0-1-2-3-6 version of two-
out-of-five code for internal data transmission and storage, using the two-digit decimal
representation of alpha-numeric characters initiated in the 650. The exceptions to
universality of the 2/5 code in the 7070 are magnetic tape, the arithmetic adder, and
the "one-uppers" (which update memory addresses sequentially for block-transferring of
data and serial instruction-acquisition).

The 7070 adder operates in true decimal code using a ferrite-core matrix "addition
table." The output of this matrix is recorded by the sense-winding pattern directly back
to 2/5. The "one-uppers" logically decode individual address digits to true decimal,
shift the value up one unit, and recode to 2/5. Since the decimal "code" is a fixed-bit
code (one-out-of 10), the inherent reliability of fixed-bit data~flow can be preserved.

The same general philosophy applies to the 650, the basic difference being the use
of the bi-quinary code where the 7070 uses decimal. The practical justification for the
bi-quinary code in the 650 CPU is the state of computer circuit technology during its
development phase. Magnetic cores were expensive and lacked uniform parameters, re-
quiring that vacuum tubes and point-contact diodes (which also were quite new at the time)
be used for circuit logic. The remarkable field performance record of the 650 completely
justifies the design philosophy under which it was developed.

-41- TD 01.01.002.005

As a case study, consider the B/Q -to- 2/5 and 2/5 -to- B/Q translators via
which general (drum) storage of the 650 communicates with the rest of the system, as shown
in Figure 17. The effect of these translators, whose symbolic logic is given in Figure 18,
is that the 650 "thinks" it has a bi-quinary-coded drum.

Since an actual bi-quinary drum would require seven tracks per band, general storage
would require 280 tracks instead of 200, an increase of 40 percent. If about 200 heads is
the limiting size of general storage, adding 10 more heads (210, total) would provide only
1500 words capacity, a reduction of 25 percent. Obviously, these two translators are
vastly more economical than that.

Several current-development systems have adopted the seven-bit BCD code
(1-2-4-8-A-B-C) for general data flow. They will translate to the qui-binary (Q: 0,
2,4,6,8; B: 0,1) code for arithmetic. Since the adder has two inputs (augend and
addend), two BCD-to-Q/B translators and one Q/B-to-BCD translator are required.
Generation of their Boolean expressions (in terms of input bits, one for each output bit)
and conversion to symbolic logic form is left as an instructive exercise for the student.

-42- TD 01.01.002.005

CARD
PUNCH

PROGRAM &
Q};\ GENERAL) ARITHMETIC
/1T/ STORAGE CONTROLS

CARD T
READER

Fig. 17 - Data flow of 8/G-to 2/5 and 2/5-to-B/Q translators in the |BM 650

UL
/\J\/YY

N O O

NN

N OCWN — WN O

|

TTITTTY

l l
e T

Fig. 18 - Symbolic Logic of B/Q-to-2/5 and 2/5-to-B/Q Translators in the |BM 650

Qo

Q1

Q2

Q3

Q4

BO

BS

-43~ TD 01.01.002.005

XV COMPARISON OF CODES
The following codes have been reviewed.
1. Binary.
2. BCD, with and without a parity-check bit.
3. B/Q and its converse, qui-binary.
4. Two-out-of-five.
5. Seven-bit BCD, and
6. Three-, four-, and five-out-of-eight.

The use of decimal as a one-out-of-ten fixed-bit code has been mentioned. The
objective of the current review is to establish the application areas within which each of
these codes is optimum. They will now be considered individually, in the order listed
above.

With respect to IBM production system applications, the 701, 704, 709, and 7090
are all pure-binary-coded systems. Even the Poughkeepsie "STRETCH" and Kingston
"SAGE" computers are basically binary-mode systems. Outside IBM one finds about as
many competitive binary as non-binary systems. This wide prevalence of application re-
quirements for binary systems certainly justifies their "place in the sun." The basic reason
for the popularity and almost "necessity" status of binary computers is due to their ex-
treme performance in terms of speed and flexibility, for any given class of electronic "hard-
ware . "

As a case in point, the 704 and 705 are quite similar systems physically, both
being built out of eight-tube pluggable units and both having the same peripheral units
such as tape drive, card equipment, and wheel printers. However, functionally the two
systems are vastly different. The 704 is a pure binary machine, serial by bit at one
megacycle per second, with elegant logical instructions and a fixed 36-bit word length.
On the other hand, the 705 is an alphanumeric machine, addressable by individual seven-
bit BCD characters. Its instructions are less flexible and more varied than the 704's,
providing more efficient programming for accounting applications.

The 701 and 704 have seen wide use in nuclear physics research computation and
aerodynamic flight simulation. The 702 and 705 are broadly applicable to all types of
large-scale accounting functions. As an illustration, one insurance customer has seven
705's. This demonstration of the faith of the market in BCD-coded systems is typical since
most non-IBM competitive systems also use this code.

-44- TD 01.01.002.005

The ultimate in information reliability is obtained by the use of fixed=bit informa-
tion codes, such as the bi-quinary and two-out-of-five codes, of the 650 system. The
.past years of 650 field experience have demonstrated a characteristic of extreme operating
dependability, in the sense of the 650 seeming to have a "conscience" which almost in-
evitably prevents it from doing anything wrong. This "morality" comes about as a direct
result of the adoption of information codes which are perfectly immune to common-polarity
multiple-bit and character-superposition errors.

Such immunity permits the design of the control logic for after-the-fact validation
of all arithmetic and logical operations. Basically, the control logic is designed so that
internal failures will inevitably produce invalidation of the coding of the result of the
operation. "Too few" or "'too many" or "incorrectly timed" control signals can be de-
tected consistently only if a fixed-bit code is used. Tacit admission of this superiority
of fixed-bit codes is inherent in such areas of BCD systems as the memory address "de-
coder, " in'which BCD is converted into a four-out-of-eight or five~out-of-ten fixed bit
code, to improve reliability in a functional area where component failures are extremely
difficult to detect and still harder to analyze.

In the last analysis, the final choice of information code for any new system de-
pends on a realistic assessment of the reliability and cost and function requirements of its
intended applications. As IBM moves into the in-line data-processing and real-time pro=-
cess-control market, where information must be processed "right the first time" at almost
the same instant of time in which it occurs, reliability will gradually predominate over
cost, just as function has in the immediate past.

XVl STATIC STORAGE — TRIGGERS AND LATCHES

Our logic symbology arbitrarily has been limited to ANDs, ORs, and NOTs.
Out of these three types of logical connectives, we have seen how such devices as a
arithmetic adders and code-to-code translators are developed. Devices such as these
operate continuously in the sense that their output signals have roughly the same timing
as the input signals.

Obviously, a digital computer does not execute an entire program in one arbi-
trarily small instant of time. To begin with, arithmetic is normally serial since the
intermediate "carries" must be propagated one digit at a time. This means that it will
take about twice as long to develop a four-digit sum as a two-digit sum.

Even simpler in concept is the logical fact that arithmetic requires two operands,
one number to add and another number to be added to. Since these two numbers are not
available from a common memory simultaneously, one of them must precede the other out
of memory. This means that it must be "remembered" somewhere outside of memory. An-
other direct requirement for auxiliary information storage is for instructions, especially
the addresses of data contained in them, after their acquisition from memory, during their
execution. In addition to data flow level examples such as these, there are many control
storage requirements.

-45- TD 01.01.002.005

A universal requirement is the need to delay the output carry of an adder by one
digit-time to become the input carry for the next digit (see the full binary adder and the
bi-quinary adder). All in all, there is a universal requirement for logical memory de-
vices which can be controlled and interrogated both randomly and continuously .

The best-known and oldest electronic device of this type is the trigger. It gets
its name from its basic characteristic of abruptly changing state as the result of an input
signal and then maintaining the new state until a "reset" signal returns it to its original
or "off" state. This device was originated in vacuum tube form in 1923 by Eccles and
Jordan. A modern version of it (used in the IBM 604 Electronic Calculator) is shown
in Figure 19. lts inputs respond to the "fall" of negative-going signals. It is reset by
reducing the grid bias to the right hand triode. Basically, it consists of two cross-
coupled inverters so connected that the coupled plate-signal reinforces the input signal,
thus "remembering" it.

A quite similar device is the latch shown in Figure 20, developed by E. S. Hughes
of IBM and used extensively in the 650. It is really very similar to the trigger since it
too uses two cross-coupled inverters. The basic point of difference is that one or both
of the inverter outputs are cathode-followed-driven, providing an externally-controllable
grid-level input signal, permitting external logic to intervene in the cross-coupling path.
The cathode follower also has the effect of practically immunizing the latch against the
static instability for which the trigger is notorious. The basic reason for the trigger's in-
stability is its dependence on a high degree of similarity of characteristics between its two
inverters.

The current SMS solid-state logic circuitry provides transistor-diode logic blocks
which carry "trigger" and "latch" functional labels. However, the CTDL trigger has a
two-inverter, two-emitter follower configuration, which actually qualifies it as a "double
latch." This ambiguity of terminology is admittedly unnecessary, but is universally
accepted temporarily in the interests of standardization and uniformity.

One of the common applications of triggers is the cascade connection called a
"ring, " which is required to generate sequential timing and/or gating functions. A
functional operation in a computer is usually dissected by the logic designers into a pro-
longed series of sequential steps. For instance, a "multiply" operation consists of:

1. The acquisition of the multiplier and the multiplicand.

2. Repetitive addition of the multiplicand a number of times
corresponding to the value of the first multiplier digit.

3. A one-position shift of the partial product with respect to
the multiplicand.

4. Another series of repetitive additions of the multiplicand
to the partial product, based on the value of the second
multiplier digit, and"

-46- TD 01.01.002.005

5. Successive one-position shifts alternating with repetitive
additions of the multiplicand until the last digit of the
multiplier has been used and the product is complete.

Logical rings or their functional equivalents are required to control the se-
quencing of these various steps in the operation since computer operations are intended
to replace manual or mental operations based on consistent formal rules. These rules
are naturally chronological because the human mind can usually do only one thing at
a time efficiently.

There are two classical forms of trigger rings which were used in the tube circuits
of the IBM 604 Electronic Calculator. The simpler of these is the Overbeck ring, which
is shown in Figure 22. It advances one siage for each negative drive pulse. The drive
pulse affects the ring by turning off the one stage which is on, whichever one of the "m"
stages that happens to be. Next, the going-off of the stage which was on turns on the
succeeding stage, as a result of the forward-coupled "going-off" signal overriding the
drive pulse which the on-going trigger also "sees."

The main design problem with this type of ring is that the turn-on pulse must be
substantially longer than the drive pulse, which in turn must be long enough for the
off-going trigger to respond to it. Cunsequently the ring runs a lot slower than the limiting
speed ot which the same trigger will operate in logic circuits.

The other type of ring connection of triggers used in the 604 is the inverter-
coupled ring shown in Figure 23. The addition of an inverter to every stage of the ring
permits the drive pulse to be gated only to the stage succeeding the one which is on, to
turn that next stage on. Then the going on of the following stage turns off the immediately
preceding stage. In this type of ring the succeeding stage turns off the preceding one
when it comes on. The opposite effect occurs in the Overbeck ring in which the turning
off of the stage which was on turns on the following stage. It may be noticed that in the
inverted ring, the "on" durations of adjacent stages overlap during the transition, while
in the Overbeck ring there is a gap between them. In some cases this difference may be
very significant to the designer.

Due to the similarity of function between the "trigger" and the "latch, " a machine
like the 650, which uses latches exclusively as logical memory devices, also uses latches
in its rings. Because of the very stringent checking requirements of the 650's design
criteria, the only rings used in it are the timing rings. These are driven by drum-
derived pulses and checked against each other systematically.

Since the latch is basically a trigger with a cathode follower inserted between
the plate of the second inverter and the grid of the first, the latch ring is quite similar
in action to the Overbeck trigger ring in that the drive pulse, which is now a logical
"reset" pulse, turns off the latch which is on, and the going off of that latch generates
a negative signal which is capacitively coupled to the succeeding latch to turn it on,
as shown in Figure 24.

-47-

TD 01.01.002.005

OFF

INV.

INV.

OFF——-—{ &— l_’ é_
ON
Fig. 19 - Trigger
INV. INV. INV. ON
TURN
ON () RESET (-)
Fig. 20 - Single Latch
OFF
INV. l CF INV. CF
ON

=

TURN ON

TURN OFF
Fig. 21 - Double Latch

—48-

TD 01.01.002.005

— Al —= Al — Al
DRIVE i i i Y ’
\
t
Fig. 23 - Inverter-coupled Ring
hY
t
1INV, "" INV.| &% CF ™ lN\/.—l" INV. CF
| { ’ ’
11

~

AND =

4 DRIVE I N

)
{

Fig. 24 - Latch Ring

-49- TD 01.01.002.005

XVIl MAGNETIC DRUM STORAGE

The only local application of a magnetic drum as main storage in a computer
which is of immediate interest is the 650, to which this discussion will be largely re-
stricted.

The characteristics of the 650 drum are as follows:
1. Speed — 12,650 rpm.
2. Size — 4"D x 16"L.

3. Number of tracks used — 228 (200 for general storage,
14 for buffer storage, and
12 for timing tracks including
a spare set of 6).

4. Track spacing — .045" axially.

5. Bit density — approximately 50 bpi.
6. Bit rate — nominally 125 kc.

7. Recording method — discrete spot.

The drum has an information capacity of 2,000 words, each word consisting of 11
five-bit digits. The physical addressing of a word on the drum is based on cylindrical
coordinates. There are 40 bands distributed axially along the drum. Each band contains
50 words distributed angularly around the drum. Therefore, a drum address must be
separated into its band (axial) and word (angular) components.

The group of five read/write heads which serve the desired band are selected by
logical switching circuits specifically designed for the purpose, since they must operate
at "non-logical" signal levels. This selection is accomplished by electronically raising
the voltage level of the "read" winding of the drum head to "unblock" a vacuum diode
and permit the signal induced in the winding by the moving flux from the drum to reach
the voltage amplifier. This amplifier raises the weak signal from the head up to an
amplitude of 20-30 volts, which then trips a Schmitt trigger (pulse generator or single-
shot multivibrator) to product a pulse of sufficient time duration to be consistently sampled
by a timing pulse, to turn on an "output" latch which develops a six-microsecond "informa-
tion gate" as the logical output of drum storage information. These latches operate con-
tinuously as long as a drum address is in the address register. Thus all fifty words in the
band are available during the course of a drum revolution. The problem of "angular"
addressing then becomes one of dividing the periphery of the drum into 50 equal arcs.

This has been done by dividing the drum period first into five sectors and then each sector
into 10 words. This is done by providing a "sector ring" of five active stages and a "word
ring” of 10 active stages.

-50- TD 01.01.002.005

There are obviously 50 unique combinations of sectors and words. The sector ring
makes one complete cycle every drum revolution, the word ring makes a cycle every
sector "time" of 1/5 drum revolution. Because a specific combination of sector and word
repeats at a consistent point in every drum revolution, that combination of timing gates
may be used as a specific dynamic angular address, singling out one word of the 50 from
the band whose five heads are statically selected by the "band" component of the
address.

The basic timing considerations involved in understanding the 650 drum are
illustrated in Figure 25. The drum speed of 12,650 rpm provides a drum period of 4.8
milliseconds. A sector time is 1/5 revolution or 960 microseconds. A word time is
1/10 of a sector time or 96 microseconds. A digit time is 1/12 of a word time or eight
microseconds. The use of the digit ring will become evident in the later review of
capacitor storage. The digit time is further subdivided into four two-microsecond periods
labeled A, B, C, and D time. The time-interval build-up then is 2x 4 x 12x 10 x5 =
4,800 microseconds or 4.8 milliseconds per drum revolution.

The read/write technique used in 650 drum storage is as follows:

1. Information is sent to the drum in the form of six-microsecond
gates which begin at the beginning of B-time and end at the be~
ginning of the next A-time. The middle third of the gate is
sampled by the Write Sample Pulse at C-time. The fall of the
sampled output generates a write-current pulse via a current-
pulse generator, which is connected by the band-selection
switching to the record winding in the head. This winding
contains 40 turns, and the current pulse is about 150 milliamperes,
producing an mmf of about 6 ampere-turns for about one milli-
second, during which time the drum moves angularly about .0025
and for the sake of simplicity may be considered stationary.

2. The above current pulse produces magnetic flux in the core
of the head which contains a short air gap normal and adjacent
to the surface of the drum. The head-to-drum spacing is on
the order of .0015 so the gap flux fringes into the drum's
magnetic coating (a nickel-cobalt alloy with very high re-
manence). After the write pulse terminates, a "spot” of
magnetic flux will remain on the drum until the succeeding
"write" operation. This flux-spot may be thought of as the
equivalent of a tiny bar-magnet inlaid in the drum surface.
The geometry of the situation is such that the spot is about
.010 long, and successive spots have an interval of .020.
"Erase" spots have the same flux density as "record" spots,
but opposite polarity. Also, the background magnetic "bias"
of the drum is weakly in the "erase" direction. The re-
sulting flux pattern for several adjacent spots in the same track
is shown in Figure 26.

-51- TD 01.01.002.005

. At some later time during the course of the computer pro-
gram, the recorded information is called for, to be read from
the drum. The current induced in the read coil of the same
head that "wrote" the flux is the time-derivative of the re-
sidual flux, and the resulting induced voltage wave form

is shown in Figure 27. The approximate transfer character-
istics of the drum and its read/write circuitry are best de-
scribed by noting that the peak power during "write" time

is the above-mentioned 150 ma times a peak voltage of be-
tween 30 and 50, say six watts peak power. The peak power
developed during read time, assuming that the entire nega-
tive peak to positive peak signal slope is effective, is at least
(200 mv)? divided by 100K ohms, the value of the grid bias
resistor in the voltage amplifier, or about 0.4 micro-watt.
The power ratio, output to input, is on the order of 1/10, 000, 000,
or =120db.

The significance of this observation is that this is a measure of
the overall power-gain requirement of the read/write circuit,
stated in terms which may be readily appreciated by anyone
with electronic circuit design experience.

B SYNC = 600 PULSES
DSYNC = 600 PULSES

READ SAMPLE = 600 PULSES
WORD SYNC = 50 PULSES
SECTORSYNC= 5 PULSES
HOME SYNC = 1 PULSE

DRUM ROTATION

162

N

INPUT-OUTPUT BUFFER STORAGE
BIQUINARY CODE, 7 TRACKS

Fig. 25 - 1BM 650 Drum Sectors and Timing

}i
K

1 DIGIT =8 ps
1 WORD= 96 ys
1 SECTOR = 10 WORDS = 960 ps
1 = 5SECTORS
DRUM = 50 WORDS =48us
REVOLUTION =600 DIGITS

Zg

G00°200 10710 Al

Als|c]| o aAls|lclo]l alslc]o Als | clolalslclo

+ RECORD RECORD RECORD
¢ ——

BIAS | BIAS BIAS BIAS BIAS BIAS

ERASE ERASE

Fig. 26 - Residual Flux Pattern for Several Spots on Adjacent 650 Tracks

ERASE ERASE RECORD

|
|
|
|
|
I
I
|
I
|
|
|
!

Fig. 27 - Induced Voltage Wave Form of Adjacent 650 Tracks

§00°Z00°10°10 Al

~54- TD 01.01.002.005

XVIII CAPACITOR STORAGE

Capacitor storage is used for the three high-speed storage registers of the 650 —
the Program Register, the Distributor, and the Accumu lator, which have information
capacities of one, one, and two ten-digits-plus-sign words, respectively. These re-
gisters are in the program and arithmetic control section of the 650 system. As such
they handle information in the bi-quinary code, as previously mentioned.

For the data flow logic of the 650 system, refer back to Figure 3. As this figure
illustrates, the registers just described are essential units without which the system would
be incapable of computing. These registers are the unique production-system application
of capacitor storage in IBM, and certainly merit a study of their operating principles.

The essential components involved in the implementation of one "cell" or bit-
position of capacitor storage are shown in schematic form in Figure 28A. Binary "zeroes"
are stored in a low-loss ceramic capacitor (500 mmf) in the form of a charge of nearly
50 volts, static. However, this charge will not remain in even the best capacitor for
an infinite period of time. Thus it becomes necessary to periodically regenerate this
charge to restore it to its desired voltage level.

There are only two ways to sense this charge as information. The more straightfor-
ward of the two ways is to "look" at the charge with the grid of a class A vacuum tube.
However, with a signal swing of nearly 50 volts, this is impractical since vacuum tubes
normally have a cutoff to zero bias range of just a few volts, with the exception of the
low-nu power triodes (2A3, etc.) and the beam power pentodes, both of which present
other serious design problems. The alternative method of sensing the charge on the capacitor
is to attempt to charge it through a resistor and sense the voltage drop produced by the
resulting current "spike."

Such a method is used in the 650. lts primary side effect is that charging the
capacitor will place a binary "zero" in it if the capacitor had had a "one, " necessitating
the removal of the charge before the information it represented is lost. This is done by
immediately, not instantaneously, discharging the capacitor.

Naturally the capacitor cannot be charging and discharging at the same time
since this would presume current simultaneously flowing in both directions. What is re-
quired is a short time delay between "readout" and "regeneration." This is performed by
what amounts to a two-stage open-ended latch ring. During readout, the information is
stored in the first-stage latch, which is turned on by the amplified readout spike. Eight
microseconds later, the information is transferred to the second-stage latch by resetting
the first stage. This latch then has its output sampled by a timing pulse after it has stabilized
to recharge the capacitor.

Let us consider now the details of Figure 28. The triode cathode follower on the
extreme right is pulsed every time the capacitor shauld read out. In the distributor and
program register, this is once a word time during a specific digit time. As the CF output
voltage rises, it unblocks the right-hand vacuum diode and provides a circuit to charge
the capacitor from +150V to -70V via points A, C, and D in the sketch. The "1" is
sensed as a position spike on the OUT line. During the immediately-following digit time

=55- TD 01.01.002.005

the inverter at the extreme left goes into conduction; its plate voltage drops and unblocks
the left-hand diode. If a"I"is to go back into the capacitor, the output of the CF driving
point D comes up at the same time, literally "squeezing” the charge out of the capacitor
from =50V via points B, C, and D to +150V through the CF. If the capacitor is not dis-
charged, it will not recharge during the next readout operation, resulting in no output
spike. This produces a binary "0" by not tuming the latch on. The lower part of the
figure shows the voltage signals at the labeled points in the circuit.

Figure 29 is merely a demonstration of how these capacitor storage cells are com-
bined into a matrix, permitting the driving, sensing, and storage devices to be time~
shared by many positions. If this were not done, capacitor storage would be hopelessly
uneconomical since the necessary part of the job could be done with just one of the
two latches in the delay circuit with no capacitor at all. In the 650 matrix, the only
items that need be repeated 77 times (seven bits x 11 digits) are the capacitor and the
pair of diodes (a 6AL5). This part of the circuit is packaged two sets to a one-socket
preassembled pluggable unit.

Capacitor storage has been regarded traditionally by experienced computer de-
signers as unfeasible commercially because of the charge-leakage problems and the drive
requirements. But so was the trigger back in the days of Eccles and Jordan when triodes
were hard to match in production quantities. Be that as it may, capacitor storage has
been a success in the 650.

-56- TD 01.01.002.005

+ .
160 %

L g —p OUT

+10 =~
A | | l I READOUT
=35 - < I—l - GATE

+150 ' &
READIN
B GATE
+$10 — ——

e 3

B¢ 1 S
Cc +10 -- 2 - |
G 1| v 1|
=35 —
+10 - -
1
+10--=----=-~---
: s
-35 it e

Fig. 28 - Capacitor storage

oDD
I

EVEN
?

OUTPUT

INPUT

gre—

Fig. 29 - Capacitor Storage Cells Combined into a Matrix

- EVEN ODD
AND | CF cs cs e o
L J »AMPL--Q
AND CF cs cs '
-
L J l AMPL
—™1AND CF o— cs o 1 cs ¢
- |
I o) & AMPL |
:AND CF o—l cs |4 | cs |—¢ I
l l l AMPL |e—
—e INV. INV. INV. INV.
—1 ¢
D1 D2 D3 D4
1 l
- I
OR DBL INV. | CF INV. DBL INV. | CF
i| | |
-~ L
OR DBL INV. |CF INV. DBL INV. |CF

-lg-

§00°200°10°10 Al

-58- TD 01.01.0n02.005

XIX FERRITE CORE STORAGE

The 650 uses a magnetic drum as storage for its coded instructions, input/output
data, and intermediate results. Most other modern computers, both in and outside I1BM,
use a box-shaped array of very small magnetic cores of one of several of the manganese
ferrite alloys which are usually manufactured by a sintering (compression and heat-fusion)
process.

A ferrite core in wide use in large memory arrays today is .030"ID x .050"OD x
.025" thick, roughly the shape of the beads used in children's handicraft work. The
arrays are generally fabricated by stringing a two-dimensional group of cores on the
various windings which pass through them, to form a "core plane" which normally con-
tains the same specific bit of all the addressable characters in either the entire memory
or, in the case of a very large one, a simple fraction of it (such as 1/4 or 1/5). The com-
pleted plane is contained in a carrier usually called a "picture frame, " which is what
it most resembles. Then the required number of frames are stacked (like hotcakes) and
the peripheral terminals of the individual frames are cross-jumpered to complete the
three~dimensional array .

Probably the most fascinating characteristic of a ferrite memory array is the
method of selecting the required address (a single character, a consistently-sized group
of characters, or a fixed-length word) from the entire array by means of electronic current-
pulses. The success of this technique depends on the peculiar shape of the hysteresis loop
of the ferrite used for the cores. As shown in Figure 30, it is almost square, with sharply-
defined second and fourth quadrant knees. The points of the loop, in the first and third
quadrants, are quite pronounced and correspond to the saturation flux density. When one
of these cores is heavily overdriven, these points become horizontal lines extending out
until either the wires burn up from excessive current or the switching losses alter the
shape of the loop by raising the temperature of the core.

The basic principle involved in address selection is called half-current coincidence.
Referring again to Figure 30, it may be noted that perceptibly more than half the saturation
mmf is required just to drive the flux density beyond the knee of the curve — in other words,
to change its value substantially.

Now refer to Figure 31, which shows a small section of a hypothetical array and
the routes of its windings. The two drive windings are usually designated as X and Y, after
the Cartesian coordinate axes. It is evident that if there is approximately one-half of the
saturation-mmf current in one each of the X and Y windings, only one core in a whole plane
will "see" full critical switching currents, the amount necessary to change the polarity of
the remanent flux in that core. (Ny+ N - 2) other cores in the plane will "see" half the
critical current. The remainder of the plane will "see" no current at all.

Suppose now that the current in the drive windings is in the direction through the
core which will reverse the remanent flux if the core is at the moment in the state of flux-
polarity defined as "1". The drive currents will co-exist in only one core of the plane,
and will reverse the flux polarity after the usual short time-delay required to re-align the
magnetic demains in the core, which also is a function of the total driving current.

-59- TD 01.01.002.005

As the flux reverses polarity, this tlux change induces a small voltage in all of
the windings through the core, including the drive windings. One of the other windings
is provided to specifically sense this weak signal, and is called the sense winding. Its
route is so chosen that the noise voltage produced by the half-selected cores, which this
winding also picks up, is canceled almost completely by reason of the fact that half of
the half-selected cores induce a voltage opposite to that induced by the other half.

This constraint is a powerful one, and makes the sense-winding pattern design a
real achievement.

Summarizing, the reason for the noise voltage from the half-selected cores is that
the top and bottom of the hysteresis loop are not quite level. Even though the slope is
very small (and consequently the induced voltage from any one core is small), the fact
that many cores are half-selected — and that the sense winding is the electrical equivalent
of so many transformer secondary windings in series — results in these noise voltages
superimposing into what would be a substantial spike (which could and would swamp the
desired readout signal) without cancellation.

The readout signal, which because of the noise-cancellation requirement may have
either polarity of voltage, is full-wave rectified via a high-efficiency pulse transformer
and push-pull diodes. The resulting rectified signal, which is usually also stepped up
through the transformer (typically 3:1) is then electronically amplified. This signal is
finally "stretched" by a trigger or latch into a useful information signal which may then
be prolonged into the "write" portion of the memory cycle. This cycle is normally ad-
jacent in time and of about the same duration as the "read" portion.

At this point, it becomes important to review the address selection drivers. It has
been found desirable through experience to use a large square-loop core to drive the
ferrite array. One of the direct benefits is temperature compensation since as the array
heats up its cores switch more easily and at the same time the output of the driver core
falls off accordingly since it also takes less energy to switch. Almost as important is the
fact that the driver cores can be specified to require an accurately-defined amount of
energy to switch them. This consistent amount of energy generates a constant pulse of
current, which is just what is required for accurate and reliable coincident-current selec-
tion. These conditions are much more a result of effort than ingenuvity, and a lot of re-
search into the significance of switch core parameters is still in progress.

Having described the driver switch-core, let us now review it in more detail.
This core, which obviously is driven by a power-switching device such as a tube or transistor,
has a square hysteresis loop and thus behaves similarly to the small cores in the array.
In other words, it switches during "read" time, generating an output current pulse of a
certain polarity. With a separate core obviously required to drive each of the select lines
in the array, one core in each dimension of drive will have been "set." Therefore, all
of the driver cores can be reset by auxiliary windings on them, all connected to a common
reset driver with appropriate de-coupling, which "sees" only the load of the one core
which was set, in the form of back emf and reset drive current.

Thus, during write time, the driver switch-cores "remember" which core was
used during read time. This is a great convenience in a lot of applications since the

-60- TD 01.01.002.005

actual memory address is required only during read time, permitting controlled replace-
ment of the "old" address with a "new" one during write time, enabling the memory
clock to operate continuously, for maximum possible speed.

The remaining problem is that of how to get the information back into memory
after its destructive readout (during read, all selected cores were driven to their "0"
state). Since the information read out during read time was stored temporarily in triggers
or latches, it may now be sampled by the memory clock during write time. To place the
information back in memory requires the use of the fourth winding shown in Figure 31,
the "inhibit" winding. If the result of the coincident read current was to flip all the
selected cores to "0", the write current being in the opposite direction through the same
windings would naturally reverse all the selected cores to their "1" state, which is not
desirable.

This problem is solved by passing half reverse (read-polarity) current through the
inhibit windings for those bits of the selected information which are zeroes, to "inhibit"
the ones which would otherwise result. These three currents add aigebraically, and net
out to half-current in the zero cores and full-current in the one cores for the selected
address, no current in the half-selected cores of the zero planes and half current in their
one planes. Finally, the unselected zero cores see reverse-half-current and the ones
no current. This satisfies all the functional requirements for a successful core memory, as
we know it today.

-61- TD 01.01.002.005

ll] n

-
"0" NOISE

Fig. 30 - Ferrite hysteresis loop

SA

\——vz-\ P [P LT %7

~

IN
DR

X
%
)4

Fig. 31 - Ferrite memory plane

- -62- TD 01.01.002.005

XX SWITCH CORES AND CORE LOGIC

Switch cores of the general type used as ferrite memory drivers perform a
potentially useful memory function in remembering during "write" the address which
was used during "read." In storage this characteristic provides the advantage of per-
mitting the controlling address to be replaced during the write operation, since it may
only have been required to "set" the desired switch cores during the read operation,
the switch cores themselves addressing the memory during write as they are reset by a
common unsteered pulse. This characteristic has been thoroughly utilized in the core
buffer-register system of the 7070.

The basic characteristics of switch-core storage registers will be reviewed, as
well as the unique functional advantages of a system of registers of this type.

The switch core, as a functional unit, will store one bit of binary information,
which is also the natural capacity of a trigger or latch. However, unlike those feed-
back-controlled logical memory devices, the storage function of the switch core is pro-
vided by the energy contained within its magnetic hysteresis loop. This energy is re-
quired to drive the magnetic state of the core from maximum remanent flux in one
direction to maximum in the other and back again. This is the same characteristic which
is utilized in ferrite memory cores.

The real difference is in their relative switching power levels. Ferrite cores,
especially in large arrays, are wound with single-turn windings literally "sewed" through
the plane of cores. On the other hand, switch core memory devices normally contain
multiple=turn windings to limit the current requirements to reasonable values (since they
are physically larger, they require more switching power, and also aecommodate more
through-wires) and to provide higher output voltages.

The standard core used in the 7070 register circuits is .050"ID x .080"OD x
.125"L, consisting of seven wraps of 4-79 Permalloy .000125" thick wound on a
ceramic bobbin having about a .030" hole for the windings. A typical core, as will
be detailed later, may contain 60 or more turns of very small size wire in its windings.
The switching voltages, as a result of the relatively large energy and the multiple-turn
windings, are on the order of 20 to 40 volts with less than a microsecond pulse-width.

The basic logical device, in which the core is a component, is a single position
of a variation of the well-documented single-core-per-bit shift register. The various
basic core shift register circuits are shown in Figure 32. Figure 33 details the circuit
of one bit in a 7070-type core register which is packaged on a conventional SMS cir-
cuit card. The circuit shown contains four input windings and their diodes, three output
windings and their transistors, and a drive winding.

The basic principle involved in the operation of a register switch-core is that if
the core contains a "one" as a result of a previous input, the next pulse through the
drive winding will reset the core, producing an output pulse via each of the output
windings. The "diodes" formed by the base~emitter junctions of the output transistors
limit the pulse amplitudes by damping their currents, making the intervening limiting
resistors necessary .

63~ TD 01.01.002.005

The pulses from the respective output windings turn on their associated transistors,
whose collector outputs are capacitively loaded, typically with 2,000 pf. shunted by 27K
ohms. The decay time constant for the charges the transistors put on the capacitors is
many times longer than the period of the drive pulses, which are not gated and repeat every
four or six microseconds. Since the core is being continually reset, its contents must be
regenerated. Regeneration is usually accomplished by connecting one of the output cir-
cuits directly to one of the input circuits. The illustrated circuit does this internally with-
in the card, to avoid using up any of the connector terminals since the regenerated in-
formation is not required externally.

The other input and output windings shown are used for inter-register communica-
tion since the registers are used functionally for the transfer and temporary storage of in-
formation, during the operation of the system on its stored program.

Figure 34 illustrates in simplified form how two registers can communicate with
each other bilaterally via a single channel, with each register at the same time being
able to read in and out serially to the right, independently. Since regeneration and
shifting are mutually exclusive functions, they may share the same output winding as
shown, the choice between the two functions being made by selection of the desired in-
put winding.

The maximum number of windings provided for any of the registers in the 7070 is
eight on each core, to permit parallel readin and readout two separate transfer channels,
shift right, and regeneration. The parallel in/out paths each require two windings, shift
and regeneration three more, and drive the remaining one.

The Auxiliary Register (see Section 1V, Figure 4) requires such flexibility, to
transfer in parallel via both the Arithmetic and Information Busses and serially to and
from the Adder, as well as regenerating itself during indexing and certain other operations.
The inherent advantages of the core registers in the 7070 system are low-cost parallel
transfers (a ten-digit-and-sign numeric word in four microseconds) and simple read-in/
read-out controls (a 53 bit register is controlled by a single switching transistor which
selects the appropriate input winding on all the cores of a register at once). This makes
possible a very elaborate register system, in comparison to the investment in circuitry
required to provide the equivalent functions with triggers or latches and the associated
turn-on and sample-out logic. The attendant drawbacks, which have been acceptedly
compensated for in the design, are radiated electrical noise (produced by the severe cur-
rent transients in the power supply distribution lines) and a fairly slow limiting speed of
operation. Due to this speed limitation, this type of register is probably obsolescent,
although switch cores operating in the megacycle range are available and in experimental
use in IBM.

-64- TD 01.01.002.005

DRIVE

One Core Per Bit Shift Register

Fig. 32 - Basic Core Shift Register Circuits

l—ﬁ =

t ‘E_.o

RE .

GEN % PINF] -6V

o % 0
PAI;JL > PAR.
. RO-1
RI-1 % g PINJP]
o O
o- o : ©
PAR. PAR.
e % % FINE] -~
C N
o— 1> A N— o)
SER. SHIFT
RI DRIVE
@
o
+6V

Switching Core Register Circuit

Fig. 33 - Circuit of One Bit in a 7070-Type Core Register

SER. RI
——

DRIVE
<

PAR. RI

N

AR.RO
SER.'RO - - -
A1 A2 Az
—— >
N
[§
REGEN.
1 — 1 C '
————>
Bi ¢ ™ B2 > Bs
— — -
hY
4

Fig. 34 - Core Register System

'99-

$00°200°10° 10 Q}

-66- TD 01.01.002.005

XXI CARD READERS AND PUNCHES

Conventional punched cards are a common input/output medium for data-processing
systems. This is true for a variety of reasons. For example, most users of data processing
systems are necessarily fairly large business organizations, to have the requirement and
economic justification for their own full-time data processing equipment. In the competitive
struggle of today's business world, economic health is signified by a process of continual
growth. This growth would be inhibited to the point of stagnation if it were not for the
availability of punched-card-operated cccounting systems of the conventional electro-
mechanical type.

As a case in point, consider the complexity of payroll accounting — with its myriad
of fixed and variable deductions (some of which are required by law) — for a typical in-
dustrial corporation with a manpower inventory of, for example, 50,000 men. The clerical
staff required to provide just this one service on a manual basis would not even be available
to train, much less have the necessary business experience, if all companies of that size in
the nation were also competing for the same kind of manpower in a common labor market .
Even more serious, from a financial point of view, would be the cost of supporting such an
accounting organization. Instead of the prevailing ratio of accounting costs to gross business
income of 5-10 per cent, these costs would probably be so high as to consume much of the
profits, and force the company that tried to grow with its market right out of business.

IBM itself is a prime example of how mechanized accounting fosters corporate growth.
Since accounting equipment is out stock in trade, we believe in it implicitly to the extent
of being one of our own best customers. The result is that, by the commonly accepted yard-
sticks of corporate value, IBM has doubled in size every five years since its founding in 1914;
This means that, in the intervening 45 years, we have doubled nine times to increase roughly
500 times. If this growth rate continues, IBM will probably reach its "natural” limit within
a decade or so.

Other companies, those which are the giants of industry now, would be ponderously
inefficient and hopelessly unproductive if it were not for their huge investments in mechanized
accounting systems as well as the other forms of automation they now utilize.

The purpose of this discussion has been to set the stage for an exhibition of the peri-
pheral card equipment used for computer input/output. It is rational to assume, since com-
puters come in a limited range of finite sizes, that even branches and small divisions of the
very large corporations can not afford them. This consideration also applies to the separate
small accounting applications in their central offices. As a result, a substantial part of the
total accounting work in a large corporation is still being done on conventional electro-
mechanical accounting machines which utilize punched cards as their common processing
medium. Thus there is a natural need for a computer, even a very large one, to be able to
communicate with these satellite punched card systems in their native tongue, the punched
card.

-67- TD 01.01.002.005

The limiting speed of a punched card accounting system is pretty well set by the men-
tal and physical speeds of the human links in the chain of operations. On the other hand,
electronic computers and data-processing systems are speed-limited only by the prevailing
status of technology, which has improved all along at amuch faster rate than human ef-
ficiency. Today a computer can do the work of thousands of accountants and mathematicians,
and more quickly and accurately. As a direct result of their greater speed and computing
power, electronic systems require higher input/output speeds in their peripheral card equip-
ment as well. Consequently, card readers and card punches are continually being improved
in speed as well as in function.

A. IBM 533 READER PUNCH

Figure 35 shows the feed schematics of the IBM 533 Reader-Punch used in the IBM 650
Data Processing System, the only card machine originally released for use with the 650.
The reader section operates at a speed of 200 cards per minute, and the punch at 100 cards
per minute. These speeds are sufficient to match the internal processing speed of the 650,
which is based on now-obsolete electronic technology and market requirements. The parti-
cular feed mechanisms used in the 533 were chosen for two basic reasons — because they
were available, and because their reliability had already been established in electro-mechan-
ical applications.

B. IBM 537 COMPUTING PUNCH

A later development as a 650 attachment is the IBM 537Computing Punch shown in
Figure 36. It feeds cards at 155 per minute and is designed to punch results back into the
same card from which the input information was read. This requirement is basic to public
utilities accounting since the card which contains meter readings usually has room for the
billing amounts as well, and will only be used for one accounting cycle. Once the bill is
- paid, the card may be filed and forgotten.

In these illustrations the following system of abbreviations is used:

H - hopper,

R - read station,

P - punching station,

B - blank station (normally required for mechanical
reasons),

and S-stacker.

C. IBM 7070 SYSTEM

Figures 36 and 37 show the schematics of the reader and punch attachments to the
IBM 7070 Data Processing System. The Type 7500 Reader operates at 500 cards per minute
in contrast to the 200 cpm speed of the 533. The Type 7550 Punch operates at 250 cards per
minute, compared to the 100 cpm of the 533 punch and the 155 cpm of the 537. It can be
seen that the speed has been improved by a factor of 2.5. This improvement, especially in
the reader, is limited by the incidental nature of its card equipment to the 7070 system,
rather than by current card-handling technology which has generated card transports running
experimentally in the 3,000-4,000 cpm range.

-68- TD 01.01.002.005

D. BASIC IBM 650 SYSTEM

Figures 38 and 39 present the simplified data flow charts for card input and output
in the basic 650 system. In Figure 38 "first read" and "second read" are the two reading
stations required by the input card buffer, which collects the contents of the cards, one at
a time, as they are read row-by-row while passing through the feed. Since the buffer is
part of drum storage, it is serial by digit. However, the card is being read parallel-by-
digit, so each horizontal row must be serialized as it is read. This is done by the "row
buffer, " which converts the information represented by a row of holes in the card into a
binary pulse-train. This in turn feeds the "translator" (XL) which converts the serialized
binary information train into its appropriate machine code. The coded output of the transla-
tor is then sent to the input buffer which accumulates the information, a row at a time, so
that after the card has been completely read (all 12 rows) the buffer will contain the entire
contents of the card record in valid machine code (biquinary, in the 650).

In the case of alphabetic and special character information, the 650 codes the
characters into a two-digit numeric representation. Since acceptable characters in card-code
form can range in hole-count from zero for the blank column to three for some of the special
characters, it is obvious that any one hole can not generate the entire two-digit-biquinary
character, especially since this particular hole may or may not be alone in its column. The
actual relationship of the individual punched hole to the character which contains it must
be "pre-sensed." This is done by a previous reading of the same card (one mechanical card
cycle earlier) at "first read." The card information at the first read station must also pass
through a row buffer and a translator to be serialized and coded. The information is then
stored in the "pre-sense buffer, " which in turn "tells" the second read translator how to trans-
late a given hole in a given column for all holes in all columns of a given card.

In Figure 40 is shown the output data flow chart. Information to be punched in cards
comes from "main memory" where it was developed by the stored program, to the "output
buffer." From here it passes, once each drum revolution, to a translator which scans the
entire contents of the output buffer for those coded characters which require holes to be
punched in the immediate row on the output cards. This occurs row by row until the com-
plete card has been punched. The output buffer data flow is straight=line, since the entire
character representing a given column to be punched in the card is available to be analyzed
for each required potential hole.

The storage buffers fulfill a very basic requirement — that of providing a "time delay"
for the duration of the relevant mechanical feed cycle(an extremely slow process in terms of
program execution time). In a buffered system like the 650 or the 7070, it is usually possible
to do the entire processing of a given card record in less time than it takes to physically
read the following input card and punch the preceding output card. If the processing unit
were not buffered, the mechanical card cycles would pre-empt as much or more real time as
is required to do the programmed processing. With buffering, these two necessities can be
and are concurrent, for the duration of the shorter of the two. In other words, if it takes less
than a card cycle to process a record, the program is finished, first and must wait for the com-
pletion of the card cycle in progress. If the program takes more than one card cycle, the
card machine must wait until the program calls for another "read" and/or "punch" operation.

-69- TD 01.01.002.005

Thus the system paces itself automatically, the mechanically-generated interlock signals
holding up the program if necessary, and the program delaying the following card cycle
whenever it needs more real time. This process has the additional advantage that the card
cycle need not be precisely synchronized with the program cycle since the two are mutually

interlocked by the buffers' control logic.

-70- TD 01.01.002.005

w

Fig. 35 - IBM 533 Card Reader and Punch

-~

RV

Fig. 36 - IBM 537 Computing Card Punch

O

R S

S NS W W
SO0

Fig. 37 - IBM 7500 Card Reader

~71= TD 01.01.002.005

Fig. 38 - IBM 7550 Card Punch

TRANSA PRE-SENSE

FIRST ROW
READ —>LurrEr 2 LaTOR [BUFFER

SECOND L) ROW |___3u TRANSH _ ., INPUT S—— MAIN
READ BUFFER LATOR BUFFER MEMORY

Fig. 39 - Card Input Data Flow for IBM 650

PUNCH

MAIN — OUTPUT | gl TRANS}— gl ROW | gt ool s
MAGNETS

MEMORY BUFFER LATOR BUFFER

Fig. 40 - Card Output Data Flow for IBM 650

~72- TD 01.01.002.005

XXII WHEEL AND WIRE PRINTING

Another type of mechanical peripheral unit used with a great variety of data pro-
cessing systems is the output printer. The IBM 717 and 718 Wheel Printers are available for
attachment to the 700-series electronic computers, such as the 704, the 705, and the 709.
The basic mechanism of these printers was developed in the 1940's and reached the accounting
machine market in the form of the 407 Accounting Machine. The 407 can read punched cards,
add their contents into electro-mechanical accumulating counters, list the information from
the cards, andfinally print totals called out on a basis of common identifying information
punched on the cards.

The functions of the 717 and 718 are much more limited. Their basic application
is the printing of intermediate and final results of the programmed processing of accounting of
scientific information records. They are controlled by the stored program of the computer
in the same manner as the readers and punches studied previously; in addition to the instruc-
tions, "read" and "punch, " there is one which says "print."

The technique which the computer uses to communicate its output information to the
printer is similar to that for the punch. The print magnets in the printer unit, which indi-
vidually control a given horizontal position on all lines printed, are selected in the same
manner as the punch magnets in the punch unit (i.e., the program controls the assembly of
the output information using a group of memary addresses reserved for this purpose).

A. IBM 407 WHEEL PRINTER

Figure 41 is a detailed sketch of the basic print mechanism of the wheel printer taken
from the Customer Engineering instruction manual. The succeeding figures will help to ex~-
plain the operation of this mechanism. The purpose of Figure 41 is to demonstrate con-
cretely the mechanical complexity of this device. Figure 42 is the mechanical timing chart
for the print mechanism. The print cams may be considered the mechanical equivalent of
the timing rings in the electronic circuits of the computer, since their function is also to con-
trol the ordered sequencing of steps which make up the operation. Figure 43 is a sketch of
the typewheel — the component carrying the embossed characters which do the actual printing.
Figure 44 shows the relative positions of the print mechanism parts when they are set up to
print the character "V". Figure 44 is an enlarged portion of the mechanism shown in Figure

41.
The operation of the printing mechanism is as follows:

1. A timed impulse energizes the print magnet, attracting
its armature .

2. The movement of the armature operates the upper pull rod
and its four associated analyzer slides, which in turn
mechanically "feel" the contours of the analyzer cams.

3. The analyzer cams select a unique combination of the four
analyzer slides by allowing them to drop off their respective
latches. This produces a mechanical storage effect which

-73- TD 01.01.002.005

is required to delay the information for a discrete
amount of time so that the other parts of the print
mechanism position themselves correctly.

4. After the predetermined delay time, the previously
unselected analyzer slides, operated by the analyzer
cams, release the lower pull rod. This trips the
selector gear clutch by releasing the clutch pawl
into one of the flutes of the revolving reamer shaft
(named for its resemblance to a line reamer).

5. The rotation of the selector gear drives the typewheel
around to position the selected character for printing.

6. Since the selector reamer shaft operates at a variable
speed during the course of the operating cycle of the
mechanism, the type wheel slows down during printing to
a speed that matches the velocity at which the type-
wheel hanger is cammed forward by the rotation of
the print cam. The timing of the engagement of the
print cam with its own reamer shaft, produced by a
second (zone) impulse to the print magnet, controls which
of the four characters in the selected group will print.
Since there are four zones (because of the Hollerith
code in the 407), there are four printing times, 15
mechanical degrees apart. This helps to distribute the
impact of firing as many as all 120 printing positions at
once. In addition to the 15-degree zone spacing, the
print reamer shaft also has a 4-degree twist end-to-end
further spread the impact.

Apparent from this description of its operation is the fact that this mechanism is very
difficult to maintain. After a decade of concentrated re-design effort it has become a re-
liable and trouble-free device. This printing mechanism, an important part of the history
of IBM engineering developments, is used in hundreds of computer output printers and
thousands of accounting machines.

B. IBM WIRE PRINTERS

As mentioned earlier, the quest for greater operating speeds for peripheral equipment
is countinuous. The basic 407 wheel printing mechanism has an optimum working speed of
150 lines per minute, which can not be exceeded significantly enough to justify the attempt.
Because of the need for something faster was born the wire printer, which operates at a speed
of 500 and 1,000 lines per minute. Figure 45 shows the print mechanism plate and the me-
chanical drive.

The character is printed by forming it in a matrix of 35 dots produced by the ends of
selected print wires. These wires are vertically aligned adjacent to a selection mechanism so
that they can be controlled individually by a common code rod. This rod is shown in Figure
46, with its guide tube, which positions the print wire ends.

—74- TD 01.01.002.005

Figure 47 shows the various combinations of rotational and lateral positions of the
code rod and the correspondingly selected characters. Figure 48 shows the incremental values
of two groups of mechanical wedges which operate as "adders" to develop the code rod pos-
itioning information.

Figure 49 shows the complete character set which the wire printer is capable of
printing, including some previously unmentioned characters whose Hollerith equivalent codes
are 8-5 and 8-6, extrapolated from the familiar 8-3 and 8-4 special characters. Figure 50
shows the dot pattern produced by a 5 x 7 print wire matrix for some of the printed characters.

-75- TD 01.01.002.005

Print Cam Print Clutch Dog
Reamer Shaft Print Wheel Arm

Print Control
Contact Assembly

Print Unit

Analyzer Unit

Contact Arm
Armature
Knockoft Cam
Magnet Armature
Magnet Assembly

Selector Gear Reamer Shaft

Selector Clutch Detent Arm

Ww-nmww

Rebound
Lever

Print Wheel
Contact Assembly
(Echo Impulse)

* Selector Clutch
Operating Link

Fig. 41 - Printing Mechanism of the IBM 407 Accounting Machine

-76- TD 01.01.002.005

66 198 228 288 1 38 348

5 . 7% 108 N o] .
o7 | 30 | so | e 0 | 80 w0 | mo 240 270 20
— L
-49 s 7 [5 4’ 3 gl | o‘ 1" e n‘ carny| sresoL
READ (MPULSE Y +] 2 3 3] 2 i «rm‘ﬁu«zn 0 l
2
24° i
i
PRINT MAGNET
N vOre ‘_’[\.:/D:/\. | N e W e W P W P W
24° 3 e+
-8 k3
ANALYZER CAMS i L
H nO.§ — 4] ~— ~N
)
E:E sof 63
gsg ~G.2 L\ " 1L L_\ ,\
cu '.* ll%
Eof | |
2234 g —T I N
- '
§o§ ?"l
s
o no.
LT T — :
DOoN 3047
=29 104 |
(3 [e
Egé‘i TRiP GaM Wy Wy Wy
N\ 104 r
29
SELECTOR SHAFT F\‘
(2% REVOLUTIONS \h\f\N\NNN\I\lN\J;\I I ——1
PER CYCLE) [\
sAIL 'wucnu LATGHES —o{318°
SELECTOR j=-8AIL CLEARS LATCHES
O] ar — %
P
tor+ o4l 1 1
.| rolsmoulnzo zn'ror smn; 58 sy ot
PRINT SHAFT
= Rk, 27— R 4 ST=aa
12 REV. PER CYCLE) [T 1ce D REVOLUTION DOTTED) roBITION t ENO OF sHarTl—” 10 NG
1e0) ' u'r*
3
PRINT CLUTGH] LI
T 203
ea3f | CONTACTS LATCHED
Zemo S, CONTAGTS FREE TO TRIP) I]
o | I

Fig. 42 - Mechanical Timing Chart for the 1BM 407 Print Mechanism

Fig. 43 - IBM 407 Print Mechanism Typewheel

~77= TD 01.01.002.005

y m Detent
S

A
‘ O

“lﬁ\}

(Q" I]‘

2 ‘!Ii!;ﬁf;":.;g" e
< Il

ey 1 %

Print Com

Rebound Lever

Fig. 44 - IBM 407 Print Mechanism Positioned for Printing V

Print
Drive
Arm

Print
Cam

Code

-78-

Print Drive
Rod Guide
Tube

TD 01.01.002.005

Print
Drive Print
Rod Head

{

Print
Wire
Tubes

Print
Wire

Rod

Fig. 45 - Print Mechanism Plate and Mechanical Drive

-79- TD 01.01.002.005

Fig. 46 - Code Rod and Tube for the IBM Wire Printer

-80- TD 01.01.002.005

CODE ROD
CHARACTER IBM BINARY ROT LAT
DISP. DISP.
A 12-1 X=0-1 0 +7
8 12-2 X-0-2 +1 +6
C 2-3 X-0-1-2 +1 +7
3 2-4 X-0-4 2 +6
3 2-5 X-0-1-4 +2 +7
ROTATION POS. 3 12-4 X=0-2-4 3 w6
G 12-7 X=0-1-2-4 | +3 +7
H 12-8 X-0-8 +4 +6
[12-9 X=0-1-8 +4 +7
L TPM 12-2-8 X<0-2-8 +5 +6
. 2-3- X-0-1-2-8 +5 +7
S 24- X-0-4-8 +6 +6
& 12 X-0 0 +6
SPARE 12-5-8 X-0-1-4-8 | +6 +7
J 1-1 X-1 0 +5
K 11-2 X-2 +1 +4
L 11-3 X-1-2 +1 +5
M }1-4 X-4 +2 +4
N 11-5 X-1-4 +2 +5
[6) 11-6 X-2-4 +3 +4
P -7 X-1-2-4 +3 +5
Q 11-8 X-8 +4 +4
R 11-9 X-1-8 +4 +5
- IPM 11-2-8 X-2-8 +5 +4
$ 11-3-8 X-1-2-8 +5 +5
. 11-4-8 X-4-8 +6 +4
. _ - 1 X 0 +4
Fig. 47 Rot(.:rnlonol and Lateral SPARE 58 e vy +5
Positions of the Code Rod
7 0-1 0-1 0 +3
S 0-2 0-2 1 +2
T 0-3 0-1-2 +1 +3
U 0-4 0-4 +2 +2
v 0-5 0-1-4 +2 +3
W 0-6 0-2-4 +3 +2
X 0-7 0-1-2-4 +3 +3
BINARY WEDGE Y 0-8 0-8 +4 +2
CODE VALUE Z 0-9 0-1-8 +4 +3
\ # TPM 0-2-8 0-2-8 +5 +2
X +4 . 0-3-8 0-1-2-8 +5 +3
% 0-4-8 0-4-8 76 +2
0 +2 SLATERAL @ (ZERO) 0 0 0 +2
SPARE 0-5-8 0-1-4-8 +6 +3
! +1 1 1] 0 +1
] 2 2 2 +1 0
2 " 3 3 1-2 +1 1
4 4 4 +2 0
4 +2 fROTARY 5 5 -4 72 1
6) 2-4 +3 0
8 +4 7 7 1-2-4 +3 +1
4 8 8 8 +4 0
9 9 1-8 +4 ¢
Fig. 48 - Mechanical Wedge Values . - e * ~
@ 4-8 4-8 6 0
BLANK 0 0
SPARE 5-8 1-4-8 6 Y]

Fig. 49 - Available Character Set

O000O

OO0 OO

O
O 0000000

O
O

O
O

O

O

O
OO000O0

O

O
O OO

O
O

O
O
O

TD 01.01.002.005

O
O
O O
o 0O
0]0]0]0]0.

Fig. 50 - Dot Patterns Produced by a Print Wire Matrix

-82- TD 01.01.002.005

XXIl CHAIN, BAR-AND-HELIX, AND STICK PRINTING
A. IBM CHAIN PRINTER

A new line printer development is the chain printer, released for the 1401 Stored
Program Accounting Machine. The basic 1401 consists of a transistorized (CTDL) processing
unit, an opposed-feed reader-punch, and a chain printer. It is intended as a market re-
placement for multiple 407's. The 407 has a constant operating speed of 150 cycles per
minute. In comparison, the 1401 reads cards at 800 per minute, punches at 250 per minute,
and prints at 600 lines per minute. These speeds are maxima which progressively reduce the
time requirements of the stored program. Normally the 1401 will read and punch concurrently,
while the program is suspended, because the card equipment is unbuffered (uses main memory
directly). Due to memory access limitations, printing is mutually exclusive with reading and
punching and also suspends the program. The usual sequence of functional events is:

1. Read the next card and simultaneously punch
the output card for the previous input.

2. Print the line corresponding to the card just punched.
3. Process (compute) the card just read.
4. Repeat this sequence for the balance of the run.

Figure 51 shows the layout of the print chain. There are five complete sets of char-
acters in the chain, arranged in identical sequence. Figure 52 illustrates how printing takes
place. The chain operates continuously. The timing of the drive pulse to the hammer magnet
is critically synchronized with the immediate position of the character set on the chain, in
order to strike the desired character in flight, through the paper form on which the character
is to be printed. The operating time of the armature and hammer is in the range of one to
one and one-half milliseconds. The contact duration between the hammer and the chain is
sufficiently short to minimize the horizontal smudging or scuffing which takes place due to
the continuous motion of the chain.

The data flow of printed information is shown in Figure 53. The print area of memory
is read out serially-by-character as each new character is positioned for printing. There are
48 characters in the set, spaced on .150" centers in the chain. Since the hammers are on
.100" centers(ten to the inch), every other character will line up with every third hammer.
Thus, three "sub-scans" are required.for each complete "print scan" of the hammers, for a
total of 144 memory scans per line of printing.

The Print Scan Counter is used to hold the starting value for the Compare Counter for
each sub-scan. The Compare Counter advances in synchronism with the memory readout. It
distributes the information in memory to the correct printing positions on a basis of the rela-
tionship between the contents of memory and the respective characters available to the
hammers during that particular sub-scan. The Hammer Scan Matrix distributes the print im-
pulses to the corresponding Hammer Drivers, which in turn energize their respective Hammer
Magnets.

-83- TD 01.01.002.005

B. IBM BAR-AND-HELIX PRINTER

Another interesting line printing technique is the bar-and-helix mechanism. The
helix is carried on a rotating shaft and its potential point of contact with the horizontal
bar during one revolution of its shaft generates one "line" of a TV-type raster (corresponding
to the horizontal sweep in TV). The bar shuttles radially, producing point impressions which
are the "elements" of the raster "line." At the same time, the paper form is moving verti-
cally upward, generating the vertical component of the raster. Thus, the character raster
is scanned by a combination of the horizontal sweep of the helix relative to the bar and the
slower vertical motion of the paper. The radial motion of the bar with respect to the helix
produces the elements of the character (the "video" signal). Figure 55 shows how the char-
acters "1" and "S" are formed. There are seven possible impression points on each of nine
lines of the raster, providing somewhat better visual definition of the character than does the
wire printer. This mechanism, however, has not yet achieved acceptable performance for
commercial use.

C. IBM STICK PRINTER

Another unusual printing device is the "stick" printer, which is used in the Type 370
Output Printer of the 305 RAMAC system. Like a typewriter, it prints only one character at
a time. Figure 56 shows how the characters are laid out on the flat surfaces of the "stick"
(o modified octagonal cylinder). A combination of axial and angular movements of the
stick aligns the selected character with the platen, which moves to provide the impression
impact.

The 370 prints ten characters to the inch (80 characters per line) at a maximum speed
of 3,000 characters per minute. This printing speed is equivalent to 500 words per minute on
a typewriter — the normal output of eight or ten typists.

-84- TD 01.01.002.005

| I e

Fig. 51 - Positioning of the Print Chain

HAMMER

<+———MAGNET

\C \—ARMATURE
HAIN

Fig. 52 - Descriptive Drawing of the Print Mechanism

PRINT
SCAN HAMMER
CIRCUIT MAGNETS
PRINT SENSE
BUFFER I— AMPLI~- COMPARE HAMMER
MEMORY FIER CIRCUIT DRIVERS
CHAR- CHAR- HAMMER
IgHIB;T e——————a ACTER }—3p ACTER e SCAN
RIV REGISTER COMPARE MA TRIX

Fig. 53 - Data Flow of the Printed Information

-85- TD 01.01.002.005

I FORM _J

o~ N="7

Fig. 54 - IBM Bar-and-Helix Printer

Fig. 55 - Formation of the Figures "1" and "S"

-86-

TD 01.01.002.005

Form

Mylar Film Backin Ribbon

Hammer Platen

Print Element

\
\
\
|
|
|
|
|
|
|
|
|
|
|
1
@ 9
% H 6 3 2 1R 2
Zero
7o z U / 0 2R 0
PRINT ELEMENT CODE AND MOTION VALUES .
E//«‘-’/% ’ w1 s | 2-1r 0-2
Binary Code Motion Values Degree
X + 4 x| R Ml a b= 4& X
0 + 2 Rotary %}_ o) L K | 41r X-2
!
2 i X | p | A &] 42¢r 0-X
1 + 1
]
4 + 2 Horizontal F C B 4-2-1R | OX-2
4 14 2 PRINT
4
2 b P E 4“1 HI2H | TH D pacners
‘ l g | 4 1 BINARY CODE
8 8 4

Shaded Characters Are Not Obtainable With Valld Data Coding

Fig. 56 - Print Element Positioning in the IBM Stick Printer

-87- TD 01.01.002.005

XXIV TAPE DRIVE UNITS

Multiple-channel magnetic tape has become the most popular of all dara-processing
system input/output media. There are competitive (non-1BM) systems on the market today
which rely exclusively on magnetic tape for input/output and are supported by "off-line"
equipment for transcription from punched cards, punched paper tape, and keyboards onto
magnetic tape. The system advantages of this arrangement are: a) the relatively slow input/
output functions can be carried out without tying up the expensive electronic system just
to acquire input information, and b) the system can produce output information in forms
acceptable to the external man-controlled processes which link the system with the outside
world. This method of establishing the input/output link (i.e., via magnetic tape) avoids
the high cost of direct "on-line" buffering of the mechanical card, paper tape, and keyboard
equipment by investing instead in one or more small satellite tape transcription systems. The
choice between these two basic approaches depends largely on the nature of the data-pro-
cessing application and the relative cost and availability of peripheral equipment (on- and
off-line) for the given system.

In any case, the traditional application of magnetic tape equipment is on-line (dir-
ectly tied into the electronic system and generally unbuffered), reading in and out of memory
under program control. At IBM, this function is provided by the IBM 727 and 729 Magnetic
Tape Drive Units and their associated control circuitry which are usually tailored to the im-
mediate system using the tape drives. The attached illustrations are taken from the 727
customer engineering instruction manual and will be discussed in detail.

Figure 57 depicts the geometry of the information flux-patterns on the tape as used
in the 727; the 729 does not differ markedly from these dimensions. There are seven tracks
on the tape, provided by a seven-gap read/write head. Since the tape itself is one-half
inch wide, the track-to-track spacing is about one-seventh of that, or .07 inch. The actual
width of the flux-pattern in a track is .032 inch or about one thirty-second inch. This
leaves slightly more than that as a "no-man's land" between adjacent tracks. The distance
from the edge of an outside track to the edge of the tape is a little more than half the width
of the "no-man’s land" (.021 inch). The lateral spacing of successive bits in a given track
is .005 inch (a bit density of 200 per inch).

Figure 58 shows the general shape of the hysteresis loop of the iron oxide coating on
the tape, which has a cellulose acetate (cellophane) base. (This is the basis for one of
magnetic tape's quaint nicknames, "rusty cellophane.")

The flux pattern on the tape is written by a read/write head, shown schematically
in Figure 59a. The two coils shown oppose each other, one of them used for each of the two
current polarities with which the flux can be "written." Figure 59b shows the flux-pattern
of a typical sample of information in terms of flux density. This is the so-called NRZ!| (non-
return to zero, IBM) technique, which represents binary information by reversing the polarity
of the flux for each successive "one." The 111001 information shown produces four flux-
reversals, whose timing identifies the location of the binary "ones" in the information.
Figure 59c shows the resulting flux-pattern in terms of lines of force looking at the edge of
the tape. The flux reversals produce concentrations of leakage flux because of the adjacency
of the like magnetic poles. It is this flux leakage that is coupled to the read/write head to
sense the flux-pattern during the reading of the tape.

-88- TD 01.01.002.005

Figure 60 shows the front view of the tape drive unit, illustrating its essential func-
tional devices. This unit feeds tape between 2400 foot reels at a closely-regulated speed of
75 inches per second during reading and writing. Since the bit density is 200 bits per inch,
this speed produces an information rate of 15,000 bits per second (15 ke). The total capacity
of a reel of tape as written on an IBM 727 is 200 bpi x 7 tracks x 12 inches per foot x 2, 400
feet or 40, 320,000 bits of binary information. In a system like the IBM 705, which writes
seven-bit coded characters, this reduces to 5,960,000 characters, provided the entire reel of
tape was written as one intact record (not possible on the 705 due to memory limitations).

The basic function of the 727 tape drive is to feed the tape from the file reel to the
machine reel past the read/write head. During this operation the tape moves from the file
reel, down into the left-hand vacuum column and back up. This forms a loop which seals
the vacuum column and puts gentle tension on the tape to provide complete control over the
position of the tape as it passes through the drive unit. The tape then moves through the
read/write head assembly, down and back up the right~hand vacuum column, and onto the
machine reel. The vacuum columns operateat a suction head of about five or six inches of
mercury (about .8 atmosphere) with substantial leakage of air past the edges of the tape in
the columns for lubrication. The length of the tape loop in the column is controlled by the
sensing or, either vacuum or ambient air pressure, by two vacuum switches in each column.
A servo system keeps the bottom of the loop between the two vacuum switches. This servo
action is based on the constant movement of the tape past the head. The tape is pressed
against one or the other switch by the action of its idler roller, carried on a movable bracket .
The drive unit also rewinds the tape under program control at a speed of 500 ips,a full-reel
rewind requiring about one minute.

Figure 61 shows the arrangement of the control keys and indicator lights, which the
operator and the tape drive use to communicate with each other. These will be considered
later under the topic of the 650 tape system.

Figure 62 is a sectional view of the powdered-iron magnetic clutch used to drive the
reels. The rotor is keyed to the drive shaft (not shown) which carries the tape reel spool.
The three-sheave V-pulley is belted to the drive motor which supplies the mechanical power
controlled by the clutch. The clutch coil is connected to its external control circuits by slip
rings (not shown), which provide DC current. This magnetizes the iron powder contained in
the chamber where the driven rotor is located. Magnetization of this iron powder causes it
to congeal, "freezing" the rotor to the rotating housing and transfering the mechanical power
to the rotor and its reel. Gradual application of current to the clutch coil allows the clutch
to "pick up" its load smoothly, minimizing the tendency of the tape to slip or kink on the
reel.

Figure 63 shows a rear view of the system of motors, belts, and clutches required to
drive the unit. Notice particularly the capstan drive belt, which drives the two capstans
in opposing directions. This is required since the tape must be pulled, rather than pushed,
past the head. The take-up motor, used only at the beginning of the tape run for the purpose
of slowly lowering the tape into the vacuum columns, feeds tape off both reels at the same
time by rotating the m in opposite directions until the upper vacuum switches sense the arrival
of the loops.

-89~ TD 01.01.002.005

The IBM 727 is a very popular device, but it is now obsolescent because of its speed
limitations and mechanical complexity. A series of IBM Type 729's is now in existence,
which provide basic mechanical improvements, and in turn make it possible both to feed the
tape faster (by 50 per cent at 112.5 ips) and to achieve higher bit densities (up to 555 bpi).
The resulting increase in information rate provides a limiting bit frequency of 62.5 kc, more
than four times that of the 727. However, the functional capabilities of the two units (read,
write, backspace, rewind, load, and unload) are virtually the same.

-90- TD 01.01.002.005

.032%

! —=crofoisotoos
B S I g i
) ZZEZE:E:IZJZ;\\\\\\
s et e
(~CCCICoLoI e —
~---C-CIC-L™
P il

_.l l-—.oos"

Fig. 57 - Geometry of Information Flux Patterns on Tape
B= FLUX DENSITY

TRACKS)

A

¢

i z H= AMPERE TURNS
B8

Fig. 58 - Hysteresis Loop of Tape Coating

- — =e—PLASTIC BASE

MAGNETIC OXIDE
R/W HEAD

CURRENT L& sw2™

GENERATORE2),)

~—

b 3wl * L CURRENT

D A GENERATOR
Fig. 59a - Schematic Diagram of Read/Write Head

+0 | | | 0 0 |

-0

Ti T2 T3 T4 T5 Te

Fig. 59b - Flux-Pattern of Typical Information Sample

|

N{N SIS N[N

Sis

Fig. 59¢ - Resulting Flux Pattern

FILE REEL \

REEL RELEASE

-91-

SWITCHES ‘§\
)

HEAD ASSEMBLY — |

LOWER MAIN o
PLATE

VACUUM COLUMNS s

P mm—

e

=]~ UPPER MAIN PLATE

—

A

O o)
o
__.g-—-—' -
o o < o
r———~ /
o ¢ M o ““5/
N1
/0 & 0 o1 o
o| o o b
N
° °
lo o o o
o o -
= =

L,'

"I’J

Fig. 60 - Front View of the IBM 727 Tape Drive Unit

SELECT
(LIGHT)

RESET

START

READY
(LIGHT)

TD 01.01.002.005

MACHINE REEL
SENSING ARM

MACHINE REEL

TAPE

VACUUM SWITCHES (4)

FILE
PROTECT
ON
(LIGHT)

REWIND

LOAD

UNLOAD

TAPE
INDICATE
ON
(LIGHT)

Fig. 61 - Tape Drive Unit Control Keys and Indicator Lights

(I

CCCCCC
HHHHHHH

HI
MMMMMMM

-4 ~ROTOR

Y,

FRONT VIEW

BACKWARD
MOTOR

TAKE— UP
MOTOR

A

ReYs

Fig. 63 - Drive Motors and Pulleys

CAPSTAN
MOTOR

-86-

600°co0°" 10" 10 Al

—94- TD 01.01.002.005

XXV RANDOM ACCESS DISK FILE MEMORY

The random access disk file memory is unique to IBM data processing systems. It
was developed originally for the IBM 305 RAMAC* (Random Access Method of Accounting and
Control) system by the San Jose Product Development Laboratory. The 305 is the first sys-
tem of a new line of equipment specifically designed for what has come to be known as "in-
line" data processing. This accounting method is basically a mechanized version of the
traditional "journal ledger, " which is an accounting record book maintained in the chrono-
logical order of the transactions being accounted.

In an old-time retail sales operation, at the time of occurrence of the sale of one or
more items, an entry would be made on a page reserved for each iten: aftected, immediately
below the last previous activity for that same item, to provide a continuous current record
of the status of each item in stock. Sales would reduce inventory; received orders would in-
crease it, the running balance representing the amount immediately on hand. In a historical
era where life was simple and merchandising was very primitive and where the typical re-
tail store might stock several hundred items ot the most, this accounting method was quite
satisfactory. However, in the course of the last several decades of merchandising and ac-
counting history, the art of retailing has grown immensely.

Consider the very large department stores, chain groceries, and drug stores which form
an important part of our personal lives today. They stock tens and hundreds of thousands of
different items whose only common denominator is that they are sold under the same roof.
Imagine the fantastic confusion that would result if thishugh operation were requiredto be
accounted by the "journal ledger" method. Each time a clerk sold something he would have
to go to the "book" and record the effect of his sale on the inventory balance. Very likely,
before he even found the item he was looking up in the book, several more clerks would line
up behind him for their turns to record a sale. In a busy store there would probably be more
clerks than customers. Extrapolating this manpower situation to the entire economy, so many
people would be required for selling that there wouldn't be anyone left to do the buying. At
least a natural balance would be struck, where there would be just enough people left as
customers to keep all the others busy as clerks.

In contrast, retail sales accounting has been mechanized by the use of cash registers,
adding machines, price tags, and punched cards to a point where accounting costs require
only a minor percentage of the price of a sales item. RAMAC accounting is a pioneering
attempt on the part of IBM to drive this cost down even further. In this system the old "jour-
nal ledger" is replaced by the disk file, which, in the 305 system, has a capacity of 50,000
100-character records and access times of 50 minutes minimum, 250 minutes average, and
750 minutes maximum. Compare this to the time required for accounting using the ledger-
book. The remainder of this review will cover the electro-mechanical aspects of the disk
file. The attached figures are taken from the IBM 305 customer engineering instruction
manual .

Figure 64 shows the disk array, which comsists of 50 aluminum disks, 24 inches in dia-
meter and coated on both sides with iron oxide (similar to magnetic tape). The array is
driven from the bottom, through a gear-box, at 1200 rpm. The resulting revolution period

of the array is 50 milliseconds. There are 100 concentric information tracks on each of the
*Registered Trademark, IBM Corp.

-95- TD 01.01.002.005

100 disk sides in the array and these are further divided angularly into five sectors of 100
characters each, providing a total file capacity of 5,000,000 characters. This is comparable
to the character capacity of a 2400-foot reel of magnetic tape. The record access time is
much less than with tape because it is direct rather than sequential .

Figure 65 is an exploded view of the ‘access arm which straddles the selected disk.
It carries two read/write heads of the type shown, one for the top and one for the bottom of
the straddled disk.

Figure 66 shows the relative positions of the access arm and the array in top and side
views.

Figure 67 presents the construction details of the read/write head. The upper view
demonstrates how the coils are assembled on the core, "potted, " and machined. The other
two views show the read/write head mounted in the air head, which, lubricated by a film
of moving air, floats the read/write head against the disk surface.

Figure 68 shows the mechanical relationship between the track detents and the access
arm. The arm is required to be positioned accurately and repeatably on each of the 100
tracks. In operation the access arm is driven very close to its final position by a servo sys-
tem controlled by the position error of the arm. Then the track detent locks the arm "dead
on" the selected track.

Figure 69 illustrates the basic elements of the access mechanism, which drives the
arm off the disk from which it starts, up or down to the newly selected disk, and in to the
selected track. The access arm is driven out, up and in, or down by a reversing clutch.

The arm is coupled to the clutch by an "elevator" cable. The arm can move up or down only
if it is mechanically fully retracted from the array. It can move in or out only if the disk
detent, shown unlabeled behind the access arm, is seated.

Figure 70 is a detailed drawing of the magnetic clutch assembly showing its con-
struction to be quite similar to that of the drive clutches on the 727 tape drive unit.

Figure 71 shows the arm retraction mechanism, which removes the arm from and drops
it below the array when the file "shuts down" for any reason including failure of the normal
access drive controls.

Figure 72 is a schmeatic of the logic of the access control circuits. A specific one
out of hundred taps on a Markite* potentiometer is selected by the "disk" portion of the file
address by the central processing unit of the system. The uniform voltage gradient across
the potentiometer generates a position-error voltage at the wiper, which moves with the up-
down motion of the access mechanism. The polarity of this voltage determines via the clutch
amplifier whether the arm moves up or down. When the potentiometer "nulls, " the disk de-
tent operates pneumatically to align the fork of the access arm accurately with the selected
disk. It also operates the disk detent switch, which feeds the track position-error voltage to
the clutch amplifier for the arm-in motion. When the wiper of the potentionmeter "nulls"
with its controlling track address, the track detent operates and the access operation is com-
pleted.

* Trade name

Record

Head (5)~]|

Disk oo/

Permanent /

Moagnet (1)

Track 99\
Track 00\

Shield~_ |

Disk 49—__ |

-96-

\;‘;l
e Nz
4 =
7 =
—
=
“
SN
oS
Z
o e z
N - =t
z
= =97
= A

UURANARARANARRRRNRNN

TD 01.01.002.005

/Shleld

LR

DR

DRIVE MOTOR

Oil Waste

Fig. 64 - Disk Array of the RAMAC Disk File

/Dlp Stick
P

Oll Drain Plug

-97 - . TD 01.01.002.005

Heod Cover

‘ Piston Pins

Alr Inlet Nipple

Fig. 65 - Exploded View of the RAMAC Access Arm

10 Records on Each Trock
(0 thru 4 on TOP,
5 thru 9 on BOTTOM)

100 Characters
on Each Record

/

och Disk
ité Heads
% \ .
€4 §

50 Disks

100 Tracks

Access Arm

,,-
|1

A‘/

3
A

,
411

-
-84~

d

TS Permanent Magnet 3
- 23 Rotates F
Inner CE Track
(100)
/’ g
Disk 49
SIDE VIEW

Outer CE Track
(-1)

A am | TOP VIEW

Fig. 66 - Positioning of the Access Arm and Disk Array

600°Z00°10°10 Al

FOURTEEN LAMINATIONS

Nozzle

Alr Inlet —=|

-99- TD 01.01.002.005

8 Laminatlons 14 Laminations

= A .

READ WRITE HEAD
Erase Coil

Elght Laminatlions
on Read-Write Core, 4
3 Outer Lominations j
hava been cut off each slde
LAMINATIONS WITH COILS

Read-Wrlite Colil

Mogr.ut Assembly Air Escape Hole Pistons

Lc::r:::a::

\

Connector

SECTION OF AIR HEAD THROUGH GIMBAL PINS

ALL OF THE ABOVE
DRAWINGS ARE FIVE TIMES SIZE

Fig. 67 - Construction Details of the Read/Write Head

-100- TD 01.01.002.005

Return Springs
/Even Detent

CINIIOIINILY IS

NN

/.
o 2 S o 4 TIT L

X

BN

A\ Odd Detent

Alr Inlet

= - Detent Assembly
Adjusting Screw

Fig. 68 - Track Detent

_ _ Trolley King Pin . Locking Screw
101 ?“”—'_— TD 01.01.002.005

Cable Tenslon

Adjustment \

Mounting Screws

oS o/

=

2D

- —

Track Detent =

3 :(f Hole
N i ‘
A : CARRIAGE
) | ‘MOVEMENT
) :
) i
A |
3 |
) |
) |
) |
) }
) i
Mounting Screws ;
|
{
|
!

Fig. 69 - RAMAC Access Mechanism

Magnet Coil

==\ Powdered lron and Graphite BYBYEBYE
SR]
ZaF : O
—
Commutator Rings
a
Rotor
\ p (Keyed to Shaft
, SCITRE
ST TR . -
Key X :‘Lﬁl)} ;E EAETIN “i
: s
’//4,1“ “aft
AN //////’7/ a
4 4 W '
\
E\ =
Z ——
UP-OUT —
e
Y, =
.
\ A { / i
RIS T
A
N 3 /
\ N OSSN f
// ’ -
I . ’f o
s Al Ned -l
AN = iR { U 1 o
il L] L U _._

] wlil i Pinion Assembly
Clutch Housing
(Rotates Free on Shcft)

Fig. 70 - Magnetic Clutch Assembly

AV by

G00°¢00° 1010 Al

TD 01.01.002.005

-103-

Micro Switch

Clutch Shaft

Compression Spring

| ™"~ Uni-directional Clutch

SN

‘_\) ol
(

\W

Fig. 71 = Arm Retraction Mechanism

Yes

Disk Null % -104- TD 01.01.002.005
4 vﬁ

Access Arm

Out t————»In

__— Disk Detent interlock

e

Disk Detent

|
|
|
|
|
|
i
Track Null :
Detector |
|
|
Track Null :
Detent
Dis-engaged
) |
:Disk Detent
AND | Swiich
Arm
Home
Track Detent Air
Y
OR
A
Disk Markite
+ < Tach Signal Clutch Amplifier
New Disk
Address |
- l I +
Disk Null
Detector
Disk Null No Track Null
Not Home
1\ 1
OoR Tachom Up -
achometer . out
ul
s
Disk Detent Air I

Motor

Fig. 72 - Access Control Circuit Logic

-105- TD 01.01.002.005

XXVl CONCLUSION

Just as each of the systems discussed has added a list of accomplishments to the history
of data processing, succeeding generations of processing systems will make significant contri-
butions toward advancing the collection, processing, and evaluation of data. Though many
trends stand out in the history of digital computation, the same three logical functions —
AND, OR, and NOT ~ are always used as a foundation for new equipment.

While memory access times and operation times have greatly decreased, memory cap-
acities have correspondingly increased. For example, the IBM 305 system has a memory
capacity of 50,000 100-character records and random access time of 750 milliseconds maxi-
mum, while a popular form of abacus has a capacity of 13 characters and an access time de-
pendent upon the skill of the human operator.

Along with the improvements came an increase in equipment volume, power require-
ments, and circuit complexity. To solve these problems, computer engineers have developed
new solid-state techniques and diagnostics concepts.

It is significant that in the history of digital computation the philosophy has remained
fundamentally unchanged; the use of some discrete entity for counting, whether it be beads
or electrical impulses, has remained the foundation upon which the present data-processing
system is built. It is possible that this foundation may be significantly altered in the future.
Attempts are now being made to formulate and exploit multi-valued logic to replace the
Aristotelian logic which has been used so effectively in the past.

XXVIl BIBLIOGRAPHY

1. Faster Than Thoug_llt_, E. V. Bowden (Pitman, 1953).

2. 305 RAMAC Reference Manual, Form A26-3502.

3. 650 DPS Bulletin Form G24-5000
650 DPS Bulletin Form G24-5003
650 DPS Bulletin Form G24-5005

4, 7070 General Information Manual, Form D24-7004.

(For more detailed technical descriptions of the 604, 305, 650, and 7070, the reader
is referred to the respective Customer Engineering Instruction Manuak, listed in the Stationery
Stores Forms Catalog and available on the same basis as the above.)

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105

