IBM INDUSTRIAL PRODUCTS

LINE AMPLIFER (LA-1A) MODULE P/N 841576

361476

Functional Description

The Line Amplifier, LA-1A, is used to tap a transmission line at two or more locations, the tapped connections must present a high impedance to the transmission line to prevent loading.

The terminating resistor (R_T) is external and connected only on the LA-1A at the receiving end of the transmission line. There can be only one R_T connection per transmission line. For a 93Ω transmission line R_T should be a 100Ω resistor.

T₁ is an emitter follower. Resistor R₂ is used to obtain emitter follower stability. In normal operation the L.A. drives an Al or AOI module.

Schematic

Terminal Configuration

Pins 2, 3, 4 and 11 Leave Open

Block Diagram

Maximum Ratings

Input Voltage = 3.6V Output Voltage = 6.0V I_E = 23ma

LA-1A Module Functional Tests

TESTS	TERMINAL CONDITIONS												ADDITIONAL LOAD	VAR-	LIMITS		UNITS	
	1	2	3	4	5	6	7	8	9	10	11	12	C		ABLE	MIN	MAX	0.4113
DC ON	525Ω to +2,88V					+5.76V				GND		٧o	25		v _o	1.9		٧
DC ON						+5.76V	525Ω to +2.88V		v _o	GND			25		v _o	1.9		٧
DC OFF	+0.9V					+6.24V				GND		v _o	75	CONSTANT CURRENT OF 1.8mo INTO TERM.12	v _o		0.45	V
DC OFF						+6.24V	+0,9V		v _o	GND			75	CONSTANT CURRENT OF 1.8ma INTO TERM.9	v _o		0.45	v

Input Requirements

*This voltage is determined from the chosen value of $R_{\overline{1}}$ and its power supply return voltage, and is computed as follows,

 V_1 = (Min. value of power supply) - (Max. value of RT) (.4 ma) η

where \P = number of LA's connected to the line, R $_T$ = resistance in KB; the equivalent resistance of R $_T$ must equal $100\,\Omega$ to properly terminate the transmission line,

** V2 is determined from the saturation level of the driver and the IR drop of the line.

V2 = .3V + (line Res/ft.) (line length to LA in ft.) (1)

where I = current flowing in transmission line when the line driver is "ON".

Output Specifications

Since the L.A. normally drives either an AI-2A or an AOL-2A and no other loads, the usable output is that of the driven AI-2A or AOI-2A. Refer to these circuits for output specifications.

Maximum Power Supply Current Requirements (per module)

Maximum Power Dissipation (per module)

Average Normal Power Dissipation =
$$\frac{NOMINAL ON + NOMINAL OFF}{2} = 74.1 \text{mw}$$

General Wiring Rules (For Printed Circuit Wire - 10 Mil Width Lines)

The input line length from the L.A. to the terminated line must not exceed 6 inches. This will insure the stability of the L.A. The maximum output length should not exceed 60 inches unless longer delays can be tolerated.