
1I11I11111I111I111I1111I111I111I11I1I111I111I1111I11111I1I11111I

3 1176 00133 9408 NASA Technical Memorandum 80067

NASA-TM-8006719790013628

INTERPRETIVE COMPUTER SIMULATOR FOR THE

NASA STANDARD SPACECRAFT COMPUTER-II (NSSC-II)

RUDEEN S. SMITH
AND

MARIE S. NOLAND

MARCH 1979

Nl\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF00553

1 Report No 2 Government Accession No

NASA TM 80067
4 Title and Subtitle

Interpretive Computer Simulator for the NASA Standard
Spacecraft Computer-II (NSSC-II)

7 Author(s)

Rudeen S. Smith
Marie S. Noland

3 Recipient's Catalog No

5 Report Date

March 1979
6 Performing Organization Code

8 Performing Organization Report No

1-------------------------------1 10 Work Unit No
9 Performing Organization Name and Address

NASA Langley Research Center
Hampton, Virginia 23665

11 Contract or Grant No

1-____________________________ --113 Type of Report and Period Covered

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20456

15 Supplementary Notes

16 Abstract

Technical Memorandum
14 Sponsoring Agency Code

An Interpretive Computer Simulator (ICS) for the NASA Standard Spacecraft
Computer-II (NSSC-II) has been implemented on the CYEER series computer system at
Langley Research Center. The ICS is written in the higher level language PASCAL.
The NSSC-II is basically an IBM System/360 (S/360) with additional short (l6-bit)
and double (64-bit) precision instructions and a 32-bit floating-point instruction
set. The design of the ICS is general enough to be used as a S/360 simulator. The
system is implemented with sixteen 32-bit general registers, 4 floating-point
registers, 64 storage protect registers, a 65K memory, a real-time clock, an
interval timer, and a checkpOint/restart capability. The report describes the
structural design of the ICS, the interrupt handling capabilities, and discusses
the instruction definitions and the implementation of the instructions. Included
in the paper are the instruction timings, an example of the control cards required
to access the ICS system, and a sample program with the associated output. The
output file provides, per instruction, a value race, a time history, and the program
status. A program listing and card deck may be obtained from the Computing Software
Management and Information Center (COSMIC) of the University of Georgia. The ICS
has been used for preliminary verification and testing of NSSC-II flight software
for the Annular Suspension and Pointing System (ASPS) project.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement

NSSC-1I
1CS

ASPS
PASCAL
CYBER
S/360
Software Verification and Testing

19 Security Oasslf (of thiS report)

Unclassified
20 Security Classlf (of thiS page)

Unclassified

Unclassified - Unlimited

Subject Category 61

21 No of Pages

56
22 Price·

$5.25

• For sale by the National Technical Information SerVice, Springfield, Virginia 22161

TABLE OF CONTENTS

TITLE

SUMMARY

INTRODUCTION

NSSC-II INTERPRETIVE COMPUTER
SIMULATOR STRUCTURAL DESIGN

PROGRAM FLOW DIAGRAM
PROCEDURE DEFINITIONS

PROCEDURE INITIALIZE
PROCEDURE READ INPUT

PROCEDURE HEXCONV
PROCEDURE RESTART

PROCEDURE INSTLOAD
PROCEDURE FORMAT
PROCEDURE EXECUTE

PROCEDURE ADD
PROCEDURE ADDDBLE
PROCEDURE ADDLOG
PROCEDURE ADDREAL
PROCEDURE ADDRCK
PROCEDURE ADDSHORT
PROCEDURE CDCREAL
PROCEDURE CKPOINT
PROCEDURE CKSHIFT
PROCEDURE DIVIDERR
PROCEDURE EXECUTEXCP
PROCEDURE EXPONENTCK
PROCEDURE FETCHEXCP
PROCEDURE LOAD
PROCEDURE LOAD BYTE
PROCEDURE LOADDBLE
PROCEDURE LOADDREG
PROCEDURE LOADPSW
PROCEDURE LOAD REG
PROCEDURE LOGICAL
PROCEDURE MAXNUMD
PROCEDURE MAXNUMF
PROCEDURE MAXNUMS
PROCEDURE NEGATE
PROCEDURE NEGATEDBLE
PROCEDURE NORMALIZE
PROCEDURE NSSCIIREAL
PROCEDURE ODDREGCK
PROCEDURE ONESCOMP
PROCEDURE ONESCOMPD
PROCEDURE ONESCOMPS

1

1

2
8
8
9
9
9
9

10
11
11
12
12
12
12
13
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
15
16
16
16
16
16
16

TITLE

PROCEDURE PRENORHALIZE
PROCEDURE PROTECTERR
PROCEDURE PROTECTCK
PROCEDURE REGCK
PROCEDURE SHIFTD
PROCEDURE SHIFTF
PROCEDURE SHIFTL
PROCEDURE SHIFTLD
PROCEDURE SHIFTR
PROCEDURE SHIFTRD
PROCEDURE SPECCK
PROCEDURE STORE
PROCEDURE STOREMULT
PROCEDURE STOREPSW
FUNCTION TIME
PROCEDURE TWOSCOMP
PROCEDURE TWOSCOHPD
PROCEDURE UNNORMALIZE

NSSC-II INSTRUCTION IMPLEMENTATION
ADD INSTRUCTIONS
AND INSTRUCTIONS
BRANCH INSTRUCTIONS
COMPARE INSTRUCTIONS
CONVERT INSTRUCTIONS
DIVIDE INSTRUCTIONS
EXCLUSIVE OR INSTRUCTIONS
EXECUTE INSTRUCTION
INSERT CHARACTER INSTRUCTION
LOAD INSTRUCTIONS
LOAD AND TEST INSTRUCTIONS
MULTIPLY INSTRUCTIONS
HOVE INSTRUCTIONS
NORMALIZE INSTRUCTION
OR INSTRUCTION
PACK INSTRUCTION
SUBTRACT INSTRUCTIONS
START I/O INSTRUCTION
SHIFT INSTRUCTIONS
SET MASK INSTRUCTIONS
SET STORAGE KEY INSTRUCTION
STORE INSTRUCTIONS
SUPERVISOR CALL INSTRUCTION
TEST BITS INSTRUCTIONS
TIMER READ AND SET INSTRUCTION
TRANSLATE INSTRUCTIONS
UNPACK INSTRUCTION

16
17
17
17
17
17
17
17
18
18
18
18
18
18
18
19
19
19

19
21
22
22
23
24
24
25
26
26
27
29
30
31
31
32
32
32
34
34
36
36
37
37
38
39
39
40

TITLE PAGE

CONCLUDING REMARKS 41

APPENDIX A 42
ICS SYSTEM USAGE AND SUPPORT PROCESSORS 42

SAMPLE CONTROL CARDS 43
SAMPLE PROGRAM 44
SAMPLE DATAF 44
SAMPLE OUTPUT 45

APPENDIX B 46
NSSC-II INSTRUCTION SET TIMINGS 46

STANDARD INSTRUCTION SET 46
SHORT INSTRUCTION SET 49
DOUBLE INSTRUCTION SET 51
FLOATING POINT INSTRUCTION SET 52

REFERENCES 53

SUMMARY

An Interpretive Computer Simulator (ICS) for the NASA Standard Spacecraft
Computer-II (NSSC-II) has been developed at Langley Research Center as a code
verification and testing tool for the Annular Suspensicn and POinting System
(ASPS) project. The simulator is written in the higher level language PASCAL
and implemented on the CDC CYBER series computer system. It is supported by a
meta assembler, a linkage loader for the NSSC-II, and a utility library to meet
the application requirements.

The architectural design of the NSSC-II is that of an IBM System/360
(S/360) and supports all but four instructions of the S/360 Standard
Instruction Set. This paper discusses the structural design of the ICS, with
emphasis on the design differences between it and the NSSC-II hardware. The
program flow is diagrammed, with the function of each procedure being defined;
the instruction implementation is discussed in broad terms; and the instruction
timings used in the ICS are listed.

Included in the paper is an example of the steps required
assembly level language program on the ICS. The example
control cards necessary to assemble, load, and execute assembly
the sample program to be executed; the executable load module
loader; and the resulting output produced by the ICS.

to process an
illustrates the
language code;
produced by the

The ICS was designed as a verification and testing tool for the NSSC-II,
but is general enough to have applications as a basic 3/360 simulator.

INTRODUCTION

This report is to serve as the reference manual for the NSSC-II
Interpretive Computer Simulator, but should be used in conjunction with the IBM
Principles of Operation Manual (ref. 1) for the NSSC-II. The report provides
a structural description of the ICS, a general discussion of the NSSC-II
instruction set, and any variations between the ICS and the NSSC-II hardware.
The IBM document should be referred to for in-depth discussions of the NSSC-II
structural design and instruction definitions.

The NSSC-II architecture is basically that of an IBM System/360 and
supports 83 of the 87 instructions in the S/360 Standard Instruction Set. The
four unsupported S/360 instructions are discussed in the IBM manual (ref. 1).

The NSSC-II hardware provides additional short and
instructions and a 32-bit floating-point instruction set.

double

NSSC-II INTERPRETIVE COMPUTER SIMULATOR STRUCTURAL DESIGN

precision

The NSSC-II ICS is written in PASCAL for the CDC CYBER series computers.
The CYBER computer is a ones complement machine with a 60-bit word size. The
NSSC-II is a twos complement machine with a 32-bit word size. As discussed
below, these two incompatab~lities had considerable impact on the design of the
ICS.

The ones complement host machine means all arithmetic operations are
performed in ones complement arithmetic. The arithmetic operands are converted
from twos complement to ones complement, the operation is performed, and the
ones complement result is then converted to twos complement before storing the
value.

In a ones complement machine there is a positive and negative zero
represented by all zeros or all ones, respectively. Negative zero in ones
complement has the same representation as a minus one in twos complement. This
causes a major consideration in the design of the ICS, and requires special
handling in many of the arithmetic operations. These cases are discussed in
the appropriate procedure definitions.

In a twos complement system there is no negative zero, thereby creating
one more negative number than exists in a ones complement system. The twos
complement maximum negative number (the negative number with the greatest
absolute value) is not representable in ones complement. A message to this
effect is given when the maximum negative number is used in an operation that
requires conversion to ones complement. Generally, the operation is performed
with the value still in twos complement form.

The fixed-point word size on the NSSC-II is 32 bits for full word, 16 bits
for halfword, and 64 b~ts for double word. The 60-bit CYBER word is used to
represent the fixed-point full and half words with the upper 28 and 44 bits,
respectively, used for sign extension. The 64-bit double word is represented
by two 60-bit words with the first word containing the sign extension in the
upper 28 bits and the s~gn and upper 31 bits of the double word in the lower 32
bits. The second word contains the low 32 bits of the double word in the lower
32 bits; the upper 28 b~ts are extended with zeros. The upper 28 bits of the
full and double word, and the upper 44 bits of the halfword, are ignored when
storing the result but are used to record overflow.

The NSSC-II floating-point word size is 32 bits, with a sign bit, a 7-bit
exponent, and a 24-bit fraction. When represented as a 60-bit CYBER word, the
upper four bits of the 11-bit exponent and the lower 24 bits of the 48-bit
fraction are padded with zeros.

2

Figure 1 shows the 60-bit CYBER representation for the NSSC-II fixed-point
and floating-point data forms. Refer to figure 3 for the NSSC-II
representation of these data forms.

SHORT/HALFWORD SIGN EXTENSION lsi INTEGER I
0 43 59

FULL SIGN EXTENSION lsi INTEGER
0 27 59

I SIGN EXTENSION lsi INTEGER I
0 27 59

DOUBLE

ZEROS INTEGER
0 27 59

FLOATING-POINT I S I ZEROS ; EXPONENT FRACTION ; ZEROS
0 4 11 35 59

Figure 1.

The ICS and NSSC-II differ somewhat in the handling of program interrupts.
During the fetch cycle, the NSSC-II hardware suppresses instructions on some
program interrupts while terminating others. The ICS suppresses instructions
on all such interrupts except for the addressing exception of the Translate
(TR) and Translate and Test (TRT) instructions, which are terminated. The
priority of the program interrupts in the ICS are as follows: operation code,
addressing, specification, storage protection, privileged, data, execute,
floating-point register, fixed-point divide, fixed-point overflow, floating
point divide, exponent overflow, significance, and exponent underflow. An
operation exception occurs when the operation code (op code) is not defined.
An addressing exception occurs when an address exceeds the available storage.
A specification exception occurs when proper alignment is not specified for an
operand or an improper register is designated. A storage protection exception
occurs when an instruction tries to store into a protected location. A
privileged exception occurs when a privileged instruction is encountered in the

3

problem state. A data exceptl0n occurs when a sign or digit code is incorrect.
An execute exception occurs when the subject instruction is an EXECUTE
instruction. A floating-polnt register exception occurs when a register
designator greater than 6 is speclfled. A fixed-point divide exception occurs
when a quotient exceeds the reglster size or the divisor is zero. A fixed
point overflow exception occurs when high-order significant bits are lost in
add, subtract, and shift operatlons. A floating-point divide exception occurs
when the divisor has a zero fractl0n. An exponent overflow occurs when the
result exponent from an add, subtract, multiply, or divide operation exceeds
127 and the result fraction lS not zero; the operation is completed and the
exponent is 128 smaller than the correct exponent. A significance exception
occurs when the result fractlon of an add or subtract operation is zero; if PSW
bit 39 is on, an interrupt occurs. An exponent underflow occurs when the
result exponent from an add, subtract, multiply, halve, or divide operation is
less than zero and the result fraction is not zero. If PSW bit 38 is on, an
interrupt occurs; otherwise, the operation is completed and the exponent is 128
larger than the correct exponent. The NSSC-II hardware handles the privileged
instructions as special cases; therefore, the program interrupts may not occur
in the ICS in the same order as they do in the NSSC-II. Program interrupts are
discussed further in the procedure deflnitions.

The program interrupt codes used ln the ICS are as follows:

INTERRUPT CODE PROGRAM INTERRUPT CAUSE

0 00000000 PSW Key Not Zero
1 00000001 Operation
2 00000010 Prlvlleged Operation
3 00000011 Execute
LJ 00000100 Protectl0n
5 00000101 Addressing
6 00000110 SpecifJ..cation
7 00000111 Data
~ 00001000 Fixed-Polnt Overflow
9 00001001 Fixed-Point Divide
10 00001010 Invalld SIO Command
11 00001011 Floatlng-Point Register
12 00001100 Exponent Overflow
13 00001101 Exponent Underflow
14 00001110 Slgnlflcance
15 00001111 Floating-Point Divide

Supervisor interrupts are handled through the execution of the
SUPERVISOR CALL (SVC) instruction, INPUT/OUTPUT interrupts are handled through
the execution of the START 1/0 (SIO) instruction, and external interrupts are
handled through the interval timer. NSSC-II machine (hardware) check
interrupts can not be detected by the ICS.

The NSSC-II interval tlmer and real-time clock are implemented on the ICS
and accessed by the TIMER READ AND SET (TMRS) instruction. The 16-bit interval
timer has a maximum tlme of 7.3818624 seconds (hex FFFF) and is decremented

4

every 112.64 microseconds. An underflow interrupt will occur if the system
mask bit 7 is set; a mask of 0 leaves the interrupt pending. The timer is
reset to zero to simulate the pending state until the timer mask bit is set, at
which time an interrupt will occur. The 32-bit real-time clock is incremented
every 112.64 microseconds and has no overflow interrupt.

The ICS is implemented with 16 32-bit general registers (numbered 0
through 15), four floating-point registers (numbered 0,2,4,6), and a memory
size of 65536 bytes (64 1024-byte blocks). The memory address range is 0 to
65535 with no memory wraparound. Any memory location greater than 65535 will
produce an addressing exception. Memory locations 0 through 131 are reserved
for the permanent storage assignments described below:

LOCATION LENGTH PURPOSE

0 Double Word Initial Program Loading PSW
8 Double Word Unused
16 Double Word Unused
24 Double Word External Old PSW
32 Double Word Supervisor Call Old PSW
40 Double Word Program Old PSW
48 Double Word Machine Check Old PSW
56 Double Word Input/Output Old PSW
64 Double Word Buffered I/O Status Word
72 Word Channel Address Word
76 Word Unused
80 Word Unused
8q Word Unused
88 Double Word External New PSW
96 Double Word Supervisor Call New PSW
104 Double Word Program New PSW
112 Double Word Machine Check New PSW
120 Double Word Input/Output New PSW
128 Word Unused

The general registers, floating-point registers, storage protect
registers, program status word, real-time clock, total t~me clock, increment
time clock, and memory are init~alized to zero unless the Checkpoint/Restart
mode is in effect. The Checkpoint/Restart status is determined by the first
value of the control file CONTRLF. A zero ind~cates preinitialization with
memory being loaded from the file DATAF and execution starting at the transfer
address provided by DATAF. For anything other than zero, the registers,
program status word, clocks, and memory are loaded from the file CKPTF and
execution resumes at the location stored in the instruction address (bits 48-
63) of the PSW. Checkpoint occurs wh~ the clock time stored at the effective
memory address is exceeded by the real-time clock value. The memory addresses
for both clocks must be aligned on a full word boundary.

5

The control file CONTRLF is a text file that contains a '0' or '1' in
column 1.

The file DATAF is a text file with the following format. The first column
of each line is a blank.

line 1
line 2

line n-1
line n

Program name
XXXXy----------y

XXXXy----------y
FFFFZZZZ

where XXXX is memory location
y-------y is code and/or data
FFFF is file terminator
ZZZZ 1S transfer address

CKPTF is a file of integers with the current register, PSW, clock, and
memory values at the time of checkpoint.

Checkpoint/Restart is activated through the Timer Read and Set (TMRS)
instruction. The NSSC-II defines the first operand of the instruction for
values of 0 (read real-time clock), 1 (read interval timer), 2 (read/set real
time clock), and 3 (read/set interval timer). The ICS uses the value of 4 to
signal a checkpoint condition. If the first operand has a value of 4 and the
real-time clock is greater than the clock time stored at the effective memory
address, then a checkpoint occurs. When the program is restarted, if the value
in column 1 of the control file CONTRLF is '1', execution resumes where the
checkpoint occurred; otherwise, execution starts from the beginning of the
program code.

The files CONTRLF, DATAF, and CKPTF must be precreated as permanent files
and replaced at the termination of each program execution.

6

The Program Status Word (PSW) is a double word (64-bits) that contains the
information required for proper program execution. In general, the PSW is used
to control instruction sequencing and to hold and indicate the status of the
system. The PSW format is as follows:

r------------,---------,----------,-------------------,
I

system key I AMWP interruption I
mask I I code

L ____________ j _________ l __________ j ___________________ J

o 7 11 15 31

r-------,------r-----------,----------,---------------1
I ILC I CC I program I unused I instruction I

mask address L _______ j ______ l ___________ j __________ J _______________ J

32 33 35 39 47 63

0 System (I/O) Mask 32-33 Instruction Length Code (ILC)
1-6 Unused 34-35 Condition Code (CC)

7 System (Timer) Mask 36-39 Program Mask
8-11 Must be 0 36 Fixed-Point Overflow Mask

12 ASCII (A) 37 Unused
13 Machine Check Mask (M) 38 Exponent Underflow Mask
14 Wait State (W) 39 Significance Mask
15 Problem State (P) 40-47 Unused

16-31 Interruption Code 48-63 Instruction Address

In addition to issuing the supervisor-call interruption, the Supervisor
Call (SVC) instruction may be used to terminate a program. If the I field of
this instruction is a 3, the program will be terminated at that point. For any
other value, the instruction will be processed normally.

The purpose of the DIAGNOSE instruction is for NSSC-II hardware testing.
Since this instruction is not intended for problem or supervisor usage, it has
not been implemented on the lCS.

The control sequence required to access the lCS is illustrated in appendix
A with a control card setup, a sample program, and the resulting output.

Appendix B lists the timings used for the NSSC-ll instruction sets.

7

PROGRAM FLOW DIAGRAM

INITIALIZE
ICS TABLES AND VARIABLES

I

I

I
V

READ
PROGRAM FILE

OR
RESTA~T FILE

I

~---------------------------->I
I

I
V

LOAD
INSTRUCTION

FOR
PROCESSING

I

I

I
V

PARSE
INSTRUCTION

FORMAT
I

I

I
V

I EXECUTE ERROR CONDITION
~------------------------INSTRUCTION -------------> OR

PROGRAM TERMINATION

PROCEDURE DEFINITIONS

The procedure definitions will be ordered as they are referenced in the
ICS. The definition of the primary level procedures will be preceded by a
diagram showing the secondary level procedures that may be referenced from the
primary level, followed by a discussion of each procedure in the diagram. The
secondary level procedure names will appear in parenthesis.

8

Procedure INITIALIZE

Program tables, arrays, and variables are initalized in this procedure.
These include the registers, memory, the block protection array, the clocks,
and, per op code, the instruction mnemonic, the instruction format, and the
instruction exception conditions.

The fetch cycle exception conditions are initialized in the following
order: addressing, specification, protection, privileged, data, execute, and
floating-point register check. The execute cycle exceptions are divide fault
and overflow/underflow checks, followed by the appropriate condition code
setting.

Procedure READ INPUT

READ
PROGRAM FILE <--------------->

OR

READ
RESTART FILE

(RESTART)

CONVERT
TEXT FILE
TO HEX
(HEXCONV)

The first character of the control file CONTRLF is read; if the character
is '0' the textfile DATAF is read; if the character is '1' the integer file
CKPTF is read.

READ INPUT calls the procedure HEXCONV to convert the textfile to its
binary equivalent before loading memory. DATAF provides the addresses for
loading memory, the memory values, and the transfer address for the start of
program execution. If the program is to be restarted, the procedure RESTART is
called to read the restart file CKPTF and the transfer address is provided by
the program status word.

Procedure HEXCONV

The character value is translated to its hexadecimal equivalent.

The character '0'
subsequent executions.
the file CKPTF.

Procedure RESTART

is written to CONTRLF to reset the control file for
The registers, memory, PSW, and clocks are loaded from

9

Procedure INSTLOAD

The instruction is loaded from memory into an instruction record for
processing. Addressing exception is checked and the instruction length code
and instruction address of the program status word are updated.

The first two bits of the instruction op code specifies the length and
format of an instruction (figure 2). Some of the short instructions do not
adhere to this rule and are handled as special cases in this procedure.

The five basic instruction formats are RR, denoting a register-to-register
operation; RX, a register-and-indexed storage operation; RS, a register-and
storage operation; SI, a storage and immediate-operand operation; and SS, a
storage-to-storage operation.

RR FORMAT OP CODE R1 I R2
0 7 11 15

RX FORMAT I OP CODE I R1 I X2 I B2 I D2 I
0 7 11 15 19 31

I R1 I R3 ~ RS FORMAT I OP CODE B2 I D2 I
0 7 11 1 19 31

SI FORMAT OP CODE 12 B1 D1
0 7 15 19 31

SS FORMAT OP CODE I L1 I L2 I B1 I D1 I B2 I D2 I
0 7 11 15 19 31 35 47

BIT INSTRUCTION INSTRUCTION
POSITIONS (0-1) LENGTH FORMAT

00 ONE HALFWORD RR
01 TWO HALFWORDS RX
10 TWO HALFWORDS RS or SI
11 THREE HALFWORDS SS

Figure 2. BASIC INSTRUCTION FORMATS

10

Procedure FORMAT

An instruction is parsed into the appropriate operand fields. The
effective address of the RX, RS, SI, and SS instructions are calculated and the
RX flag set for the RX instructions. This flag is used in calculating the RX
instruction times (refer to appendix A).

Procedure EXECUTE

CHECK
FETCH TIME

EXCEPTION CONDITIONS
(FETCHEXCP)

I

I

I
V

PROCESS
INSTRUCTION

I

I

I
V

EXECUTE TIME
EXCEPTION CHECK

(EXECUTEXCP)
I

I

I
V

CALCULATE
TIMINGS

(TIME)
I

I

I
V

PRINT
OUTPUT

I

I

I
V I

IF ERROR EXISTS I
STORE OLD PSW <-------------------

(STOREPSW)
LOAD NEW PSW

(LOADPSW)
TERMINATE PROGRAM

11

The fetch time exception conditions for the instruction are checked
(FETCHEXCP); if no error exists, the instruction is processed. After
instruction processing is completed the execute exceptions are checked and the
condition code is set (EXECUTEXCP), the timing is updated (TIME), and trace and
timing information are written to the output file. If no error exists, the
next instruction is loaded. If an error does exists, the current PSW is stored
as the program old PSW (STOREPSW) and the program new PSW becomes the current
PSW (LOADPSW); program execution is terminated.

Due to the number of procedures referenced by EXECUTE, the descriptions
will be in alphabetical order rather than in the order referenced. Any
procedures that are referenced within another procedure will be denoted by
putting the referenced procedure name in parenthesis.

Procedure ADD

The twos complement operands are converted to ones complement (ONESCOMP)
and the addition is performed in ones complement arithmetic. If the result is
a negative zero, it is converted to a twos complement positive zero before
storing the results. A carry out must be tested for in ones complement
arithmetic and an end around carry performed if one exists. The result is then
converted to twos complement form (TWOSCOMP) and stored in the first operand
register.

Procedure ADDDBLE

The twos complement double precision operands are converted to ones
complement double precision operands (ONESCOMPD). The lower half of the
operands are added, then the upper halves and any carry out of the lower halves
are added. An end around carry is performed if there is a carry out of the
upper halves. A negative zero result is converted to a positive zero and the
carry out test for the lower and upper halves continue until no carry out
exists. The double precision result is converted to twos complement form
(TWOSCOMPD) and stored in the register pair designated by the first operand.

Procedure ADDLOG

A 32-bit logical add is performed and the result is stored in the first
operand register.

Procedure ADD REAL

The two floating-point operands are converted to the CDC CYBER system
floating-point format (CDCREAL). The reformatted operands are then added and
the result is converted back to the NSSC-II floating-point format (NSSCIIREAL)
before storing the result in the first operand register.

12

Procedure ADDRCK

The address range of an operand is checked before execution of the
instruction. If any part of the operand exceeds the maximum address range, an
addressing exception error occurs whether or not the data is used in the
instruction.

Procedure ADDSHORT

The maximum negative short precision number is not representable in ones
complement notation. If either operand is the short maximum negative number, a
warning statement is issued, the number is not changed, and the add operation
proceeds (ADD).

Procedure CDCREAL

A floating-point operand is converted to the corresponding CDC Cyber
floating-point format before a real arithmetic operation is performed.

Procedure CKPOINT

The control file CONTRLF is set to indicate restart mode for subsequent
runs. The general registers, floating-point registers, storage block
registers, memory, current PSW, real-time clock, interval timer, increment
clock, and total time clock are dumped to the checkpoint file CKPTF. This file
is used to restart the program at the point where the checkpoint occurred.

Procedure CKSHIFT

The CYBER machine has a left shift wraparound; whereas, the NSSC-II fills
the vacated bits with zeros. If a shift wraparound occurs, this procedure
voids the wraparound effect.

Procedure DIVIDERR

On a fixed-point divide error an error message is written out, the error
condition is set, and the interruption code is set in the PSW. A fixed-point
divide error occurs for a quotient value exceeding the register size, for a
division by zero, or when the result in Convert to Binary (CVB) exceeds 31
bits.

Procedure EXECUTEXCP

The execution time exception conditions are checked in this procedure.
The exceptions consist of a fixed-point overflow check, a floating-point divide
check, exponent overflow/underflow checks, a floating-point significance check,

13

and the setting of the condition codes. Condition codes are set for the
following resultant conditions: 1) =0, <0, or >0; 2) overflow; 3) carry; 4)
oompare equal; 5) oompare logioal equal; 6) 0 or not 0 oompare; 7) all zeros,
all ones, or mixed values; and 8) characteristic =0, <0, or >0. A fixed-point
overflow will produce an interrupt only if the program mask bit 36 is set. A
floating-point significanoe exception will cause an interrupt to ooour only if
the program mask bit 39 is set, and an exponent underflow will produce an
interrupt only if program mask bit 38 is set.

Procedure EXPONENTCK

The exponent of the floating-point operand is checked for underflow «0)
and overflow (>127) oonditions.

Procedure FETCHEXCP

The fetch time exceptions check for addressing (ADDRCK), specification
(SPECCK and ODDREGCK), protection (PROTECTERR), privileged (STOREPSW and
LOADPSW), data, execute, and floating-point register (REGCK) error conditions
are made in this procedure. If an error exists, the instruction is suppressed
and execution is terminated.

Procedure LOAD

Memory is loaded into a temporary register (LOADREG) and the memory
location pointer is updated by the number of bytes loaded.

Procedure LOADBYTE

A byte from memory is loaded into the lower 8 bits of a temporary register
and the memory looation pointer is increased by 1.

Procedure LOADDBLE

The eight bytes of memory that make up the second double precision operand
are loaded into two temporary registers (LOAD), and the first double precision
operand is loaded into two temporary registers.

Procedure LOADDREG

Both double precision operands are loaded into temporary registers.

Procedure LOADPSW

The Program Status Word is loaded from memory.

14

Procedure LOAD REG

From one to four bytes from memory are loaded into a temporary register.

Procedure LOGICAL

The logical operations AND, OR, and XOR
according to the instruction being processed.
of the 60 bits of a word. The reserved bit
within PASCAL. The bit reserved on the PASCAL
but this is implementation dependent.

are performed on the operands
The set operations operate on 59
is used for operational purposes
version in use at LRC is bit 0,

Procedure MAXNUMD

In the subtraction of double precision values, if both operands are the
maximum negative value, the result zero is stored in the first operand
registers. For any other combination of values the second operand is negated
(NEGATEDBLE) and the two operands are then added (ADDDBLE).

Procedure MAXNUMF

If two maximum negative numbers
otherwise, the second operand is
operand (ADD).

are subtracted,
negated (NEGATE)

Procedure MAXNUMS

the result is zero;
and added to the first

If two short maximum negative operands are subtracted, the result is zero;
otherwise, the second operand is negated (NEGATE) and added to the first
operand (ADDSHORT).

Procedure NEGATE

The twos complement of the operand is performed. Plus one, minus one, and
the maximum negative number must be handled as special cases. The maximum
negative number cannot be complemented and a message to this effect is given.

Procedure NEGATEDBLE

If the operand is the maximum negative double precision number, the
negating does not take place and a message is given. For any other value, the
twos complement of the operand is performed. Minus one and plus one must be
handled as special cases.

15

Procedure NORMALIZE

The fractional part of the floating-point operand is digit normalized;
that is, the uppermost digit may not be 0, but the uppermost bit may be. The
exponent is corrected accordingly; for each left digit shift of the fraction,
the exponent is reduced by 1.

Procedure NSSCIIREAL

The floating-point operand is converted back to the NSSC-II floating-point
format. Since the NSSC-II is a digit biased machine and the CDC machine is bit
biased, the NSSC-II exponent and fraction must be corrected accordingly.

Procedure ODDREGCK

If an odd register is specified when an even/odd register combination is
required, a specification error occurs. The error condition and interruption
code are set.

Procedure ONESCOMP

The negative twos complement operand is converted to ones complement if
the operand is not the maximum negative number. If it is, a message is given
and the operand remains unchanged. Minus one must be handled separately.

Procedure ONESCOMPD

The negative twos complement double precision operand is converted to ones
complement if the operand is not the maximum negative double precision number.
If it is, a message is given and the value remains unchanged. Minus one must
be handled separately.

Procedure ONESCOMPS

If the twos complement operand is the maximum negative short number, then
a message is given. The operand is then converted to ones complement
(ONESCOMP).

Procedure PRENORMALIZED

The operands of the floating-point operations multiply and divide are
prenormalized before the operation is performed. The exponent of the operands
is corrected aocording to the number of digit shifts required for the
prenormalization.

16

Procedure PROTECTERR

Before a memory byte is stored into, the corresponding storage block is
checked for storage protection. If the block is protected, a storage protect
exception occurs and the error condition and interruption code are set.

Procedure PROTECTCK

If the instruction terminated prematurely, a protection exception
occurred. An error statement is output, the error condition is set, the
interruption code is set, and the timing parameter is set to the number of
bytes processed before termination.

Procedure REGCK

The NSSC-II has four floating-point registers, numbered 0, 2, 4,
error exception occurs if the register designator is greater than 6.
message is written and the error condition is set.

Procedure SHIFTD

6. An
An error

The timing parameters are evaluated according to the number of bits the
double precision operand was shifted.

Procedure SHIFTF

The timing parameters are evaluated according to the number of bits the
full precision operand was shifted.

Procedure SHIFTL

The operand is shifted left by multiplying by the appropriate power of 2.
The vacated bits are filled with zeros. A shift greater than 30 shifts all
zeros into the 31-bit arithmetic operand with the sign being retained. For the
logical operands, all 32 bits participate in the shift.

Procedure SHIFTLD

For shifts less than 32, the upper half of the double precision operand is
shifted left (SHIFTL) and the result is checked for any left shift wraparound
effect (CKSHIFT). The lower half is then moved into the upper half according
to the number of bits specified. For shifts greater than or equal to 32, the
second half is shifted into and possibly out of the first half and zeros fill
the vacated bits (SHIFTL and CKSHIFT). The timing parameters are set to
reflect the shift that takes place.

17

Procedure SHIFTR

The operand is shifted right by dividing by the appropriate power of 2.
An arithmetic shift propagates the sign through the vacated bits; a shift
greater than 30 propagates the sign throughout the arithmetic operand. For the
logical operand, zeros are supplied to the upper bits. M~nus one and negative
values must be handled as special cases.

Procedure SHIFTRD

For shifts less than 32, the lower half of the double precision operand is
shifted out and the upper half shifted into the lower half the number of bits
specified (SHIFTR). For shifts greater than or equal to 32, the lower half is
shifted out entirely and the upper half is shifted into and possibly out of the
lower half (SHIFTR). The timing parameters are evaluated according to the
number of shifts that takes place.

Procedure SPECCK

The boundary requirements specify that a double-word operand must be
located on a 64-bit boundary, a full word must be located on a 32-bit boundary,
and a halfword/short operand must be located on a 16-bit boundary. If the
instruction is not on a halfword boundary or if the operand is not properly
aligned, a boundary specification exception occurs, an error message is
written, the error condition is set, and the interruption code is set.

Procedure STORE

The contents of a register are stored into memory one byte at a time. Up
to four bytes may be stored.

Procedure STOREMULT

Multiple register values are
location is checked for storage
(PROTECTERR).

stored into
protection

Procedure STOREPSW

memory
before

(STORE). The memory
the store takes place

The current PSW is stored into memory at the specified locations.

Function TIME

The timing calculation is made for the current instruction. The timing
parameters TFLAG, TFLAG2, and TFLAGR are evaluated during the instruction
process.

18

Procedure TWOSCOMP

The negative ones complement value is converted to a twos complement value
before the result is stored in the result register. Minus one must be handled
as a special case.

Procedure TWOSCOMPD

The negative ones complement double precision value is converted to twos
complement notation before the result is stored in the result register pair.
Minus one must be handled as a special case.

Procedure UNNORMALIZE

The floating-point arithmetic operations performed on the CDC machine
require normalized operands. The result of the floating-point unnormalized add
and subtract operations (AU, AUR, SU, SUR) must be unnormalized before storing
into the result register.

NSSC-II INSTRUCTION
IMPLEMENTATION

The instructions will be discussed in groups rather than by each
individual instruction. The groupings will be ordered alphabetically and not
according to any operational hierarchy.

The data forms generally used in the instructions are full word, double
word, halfword, short precision, and floating-point (figure 3). A full word
occupies a fixed-length format consisting of a one-bit sign followed by a 31-
bit integer field (32-bit signed integer). Some multiply, divide, and shift
operations use an operand consisting of 64 bits with a sign bit and a 63-bit
integer field (64-bit signed integer). When these operands are in registers,
they are located in a pair of adjacent registers and are addressed by an even
address referring to the left-most register of the pair. The sign-bit position
of the right-most register contains part of the integer. Likewise, the double
precision data value is contained 1n a 54-bit signed integer field and, when in
registers, occupies an even/odd register pair.

A halfword data value is a 16-bit signed integer,
halfword operand is extended to a full word operand before
processed. The extension is performed by propagating the
16 high-order bit positions of the register.

Short precision numbers occupy a fixed-length format
followed by a 15-bit integer field (16-bit signed
precision quantity occupies the right-most 16 bits of a
the leftmost 16 bits are neither tested nor altered.

but most generally a
the instruction is
sign-bit through the

of a one-bit sign
integer). The short
register; generally,

19

Floating-point operands contain a sign bit field, a 7-bit exponent field,
and a 24-bit fraction field. The exponent is expressed in excess 64 binary
notation (0-127 range); the fraction is expressed as a hexadecimal number
having a radix point to the left of the high order digit. When the floating
point operand is contained in a register, the register must be numbered 0, 2,
4, or 6; any other designation is invalid.

For an in-depth discussion of the instructions, the IBM Principles of
Operation (ref. 1) should be referenced.

BYTE I
0 7

HALFWORD/SHORT lsi INTEGER
o 1 15

FULL lsi INTEGER I
o 1 31

DOUBLE I S I INTEGER I
0 1 63

LOGICAL (ONE, I I I
FOUR, OR EIGHT 0 7 31 63
BYTES)

PACKED DECIMAL DIGIT DIGIT DIGIT I ... , . , . , , . , . J DIGIT DIGIT SIGN

ZONED DECIMAL ZONE DIGIT ZONE L ••••••••••• J DIGIT SIGN DIGIT I

FLOATING-POINT L-I ,::,s..I.:1 E=X:.:.P..:.ON:.:..:E=N.:...:T~I_---=-F.:..:.RA:.:.C=-=T::.::I:.:;O~N __ --II
o 1 7 31

Figure 3. DATA FORMS

20

Instruction Definitions

ADD INSTRUCTIONS.-

Add
Add Double
Add Halfword
Add Logical
Add Short
Add Normalized
Add Unnormalized

A,AR
AD,ADR
AH,AHI
AL,ALR
AS,ASI,ASR
AE,AER
AU,AUR

The second operand is added to the first operand, and the sum is placed in
the first operand location.

The halfword second operand is expanded to a full word before the addition
by propagating the sign-bit.

Logical addition is performed on 32-bit operands. The occurrence of a
carry out of the sign position is recorded in the condition code for the
logical adds.

The normalized sum is placed in the first operand after a normalized add;
the unnormalized sum is stored after an unnormalized add.

Resulting Condition Code:
0 2

Add =0 <0 >0
Add Double =0 <0 >0
Add Halfword =0 <0 >0
Add Logical =O,no carry ;to,no carry =O,carry
Add Short =0 <0
Add Normalized =0 <0
Add Unnormalized =0 <0

Program Interruptions:
Addressing (A,AD,AE,AH,AL,AS,AU)
Specification (A,AD,ADR,AE,AER,AH,AL,AS,AU,AUR)
Fixed-Point Overflow (A,AR,AD,ADR,AH,AHI,AS,ASI,ASR)
Significance (AE,AER,AU,AUR)
Exponent Overflow (AE,AER,AU,AUR)
Exponent Underflow (AE,AER)

Procedures Referenced:
LOAD (A,AH,AL,AS,AE,AU)
LOADDBLE (AD)
LOADREG (ADR)
ADD (A,AR,AH,AHI)
ADDDBLE (AD,ADR)
ADDLOG (AL,ALR)
ADDSHORT (AS,ASI,ASR)

>0
>0
>0

3
overflow
overflow
overflow
;to ,carry
overflow

21

ADDREAL (AE,AER,AU,AUR)
NORMALIZE (AE,AER)
UNNORMALIZE (AU,AUR)

AND INSTRUCTIONS.-

And
And Short

N,NC,NI,NR
NS,NSI,NSR

The logical product (AND) of the bits of the first and second operand is
placed in the first operand location. All bits of the fixed-length integers
are treated uniformly.

Resulting Condition Code:
0 1 2 3

And =0 ;to
And Short =0 ;to

Program Interruptions:
Addressing (N,NC,NI,NS)
Specification (N,NS)
Protection (NC,NI)

Procedures Referenced:
LOAD (N,NS)
LOGICAL (N,NC,NI,NR,NS,NSI,NSR)
PROTECTCK (NC)

BRANCH INSTRUCTIONS.-

Branch and Link BAL,BALR
Branch on Condition BC,BCR
Branch on Count BCT,BCTR
Branch Unconditional BU,BUR
Branch on Index High BXH
Branch on Index Low or Equal BXLE

The Branch and Link instruction stores the rightmost 32 bits of the PSW as
link information in the first operand. The instruction address of the PSW is
replaced by the branch address in the second operand unless this operand is
register O.

The Branch on
address with the
specified by the
proceeds.

Condition instruction replaces the updated instruction
branch address if the state of the condition code is as
mask operand; otherwise, normal instruction sequencing

The Branch on Count instruction reduces the first operand by one. If the
result is zero, normal instruction sequencing proceeds; otherwise, the
instruction address is replaced by the branch address.

22

The Branch Unconditional instruction replaces the instruction address with
the branch address.

The Branch on Index High instruction increments the first operand; the sum
is then compared algebraically with a second operand. If the sum is high, the
instruction address is replaced by the branch address; otherWise, normal
sequencing proceeds. The Branch on Index Low or Equal is a similar instruction
except that the branch is taken when the sum is low or equal compared to a
second operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
None

Procedures Referenced:
ONESCOMP (BCT,BCTR,BXH,BXLE)
TWOSCOMP (BCT,BCTR,BXH,BXLE)

COMPARE INSTRUCTIONS.-

Compare
Compare Double
Compare Halfword
Compare Logical
Compare Logical Short
Compare Short
Compare Floating-Point -

C,CR
CD,CDR
CH,CHI
CL,CLC,CLI,CLR
CLS,CLSI,CLSR
CS,CSI,CSR
CE,CER

The first operand is compared with the second operand, and the result
determines the setting of the condition code.

The halfword second operand is expanded to a full word before the
comparison by propagating the sign-bit.

The logical comparisons are binary, proceeding left to right; the other
comparisons are algebraic, treating each operand as a signed integer.

The floating-point comparison is algebraic, considering the sign,
fraction, and exponent of each operand.

Resulting Condition Code:
0 1 2 3

Compare Operands= 1st Operand Low 1st Operand High
Compare Double Operands= 1st Operand Low 1st Operand High
Compare Halfword Operands= 1st Operand Low 1st Operand High
Compare Logical Operands= 1st Operand Low 1st Operand High
Compare Logical Short Operands= 1st Operand Low 1st Operand High
Compare Short Operands= 1st Operand Low 1st Operand High
Compare Floating-Point Operands= 1st Operand Low 1st Operand High

23

'\

Program Interruptions:
Addressing (C,CD,CE,CH,CL,CLC,CLI,CLS,CS)
Specification (C,CD,CDR,CE,CER,CH,CL,CLS,CS)

Procedures Referenced:
LOAD (C,CD,CE,CH,CL,CLS,CS)
LOADBYTE (CLC)
CDCREAL (CE,CER)

CONVERT INSTRUCTIONS.-

Convert to Binary
Convert to Decimal

CVB
CVD

The Convert to Binary instruction changes the radix of the second operand
from decimal to binary, and the result is placed in the first operand location.

The Convert to Decimal instruction changes the radix of the first operand
from binary to decimal, and the result is stored in the second operand
location. The number is treated as a right-aligned signed integer before and
after conversion for both instructions.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (CVB,CVD)
Specification (CVB,CVD)
Protection (CVD)
Data (CVB)
Fixed-Point Divide (CVB)

Procedures Referenced:
NEGATE (CVB,CVD)
DIVIDERR (CVB)

DIVIDE INSTRUCTIONS.-

Divide
Divide Short
Divide Floating-Point
Halve

- D,DR
DS,DSI,DSR
DE,DER

- HER

The dividend (first operand) is divided by the divisor (second operand)
and then replaced by the remainder and quotient for the full divide. The
dividend is a 64-bit signed integer occupying an even/odd pair of registers.
The 32-bit signed remainder and 32-bit signed quotient replace the even/odd
registers, respectively.

24

The dividend (first operand) is divided by the divisor (second operand)
and then replaced by the quotient for the short divide4 No remainder is
stored. The dividend is a 32-bit signed integer and is replaced by a 16-bit
signed quotient with sign extended.

The floating-point dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient; the remainder is not retained.
The initial operands are prenormalized to produce a normalized result. The
Halve instruction divides the second operand by two, and the normalized
quotient is placed in the first operand location. Exponent overflow and
underflow are detected but the underflow mask bit may prohibit the underflow
interrupt.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (D,DE,DS)
Specification (D,DE,DER,DR,DS,HER)
Fixed-Point Divide (D,DR,DS,DSI,DSR)
Exponent Overflow (DE,DER)
Exponent Underflow (DE,DER,HER)
Floating-Point Divide (DE,DER)

Procedures Referenced:
LOAD (D,DE,DS)
ONESCOMP (DS,DSI,DSR)
ONESCOMPS (DS,DSI,DSR)
NEGATE (D,DR)
NEGATEDBLE (D,DR)
TWOSCOMP (DS,DSI,DSR)
DIVIDERR (D,DR,DS,DSI,DSR)
PRENORMALIZE (DE,DER)
CDCREAL (DE,DER,HER)
EXPONENTCK (DE,DER)
NSSCIIREAL (DE,DER,HER)
NORMALIZE (DE,DER,HER)

~XCLUSIVE OR INSTRUCTIONS.-

Exclusive Or
Exclusive Or Short

X,XC,XI,XR
XS,XSI,XSR

The modulo-two sum (exclusive OR) of the bits of the first and second
operand is placed in the first operand location. All bits of the fixed-length
integers are treated uniformly.

Resulting Condition Code:

Exclusive Or
Exclusive Or Short

o
=0
=0

2 3

25

Program Interruptions:
Addressing <X,XC,XI,XS)
Specification <X,XS)
Protection <XC,XI)

Procedures Referenced:
LOAD <X,XS)
LOGICAL <X,XC,XI,XR,XS,XSI,XSR)
PROTECTCK <XC)

EXECUTE INSTRUCTION.-

Execute EX

The single instruction at the branch address is modified by the contents
of the first operand and the resulting subject instruction is executed. The
modification is effective only for this execution of the instruction and does
not affect the instruction in memory. Normal execution sequencing resumes
following the Execute instruction unless a branch occurs while processing the
subject instruction.

Condition Code:
The code may be set by the subject instruction.

Program Interruptions:
Addressing
Specification
Execute

Procedures Referenced:
INSTLOAD
FORMAT
EXECUTE

INSERT CHARACTER INSTRUCTION.-

Insert Character IC

The eight-bit character at the second operand is inserted into the lower
byte of the first operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing

Procedures Referenced:
None

26

LOAD INSTRUCTIONS.-

Load
Load Double
Load Halfword
Load Short
Load Floating-Point

- L,LR
- LD,LDR

LH,LHI,LHR
LS,LSI,LSR

- LE,LER

The second operand is placed in the first operand location. The halfword
second operand is expanded to a full word before storing by propagating the
sign-bit.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (L,LD,LE,LH,LS)
Specification (L,LD,LDR,LE,LER,LH,LS)

Procedures Referenced:
LOAD (L,LD,LE,LH,LS)

Load Address
Load Address Short

LA
LAS

The address of the second operand is inserted in the low-order 24 bits of
the first operand for Load Address; the upper 8 bits are made zero. For Load
Address Short the address is inserted in the low-order 16 bits; the upper bits
are not altered.

Condition Code:
The code remains unchanged.

Program Interruptions:
None

Procedures Referenced:
None

Load Complement LCR
Load Complement Double LCDR
Load Complement Short LCSR
Load Complement

Floating-Point LeER

The twos complement of the second operand is placed in the first operand
location.

The floating-point value in the second operand is placed in the first
operand with a sign change.

27

Resulting Condition Code:
0

Load Complement =0
Load Complement Double =0
Load Complement Short =0
Load Complement

Floating-Point =0

Program Interruptions:
Specification (LCDR,LCER)
Fixed-Point Overflow (LCR,LCDR,LCSR)

Procedure Referenced:
NEGATE (LCR,LCSR)
NEGATEDBLE (LCDR)

Load Negative
Load Negative Short
Load Negative

Floating-Point
Load Positive
Load Positive Short
Load Positive

Floating-Point

1
<0
<0
<0

<0

LNR
LNSR

LNER
LPR
LPSR

LPER

2 3
>0 overflow
>0 overflow
>0 overflow

>0

The twos complement
first operand location
instructions. Negative
second operand is placed
(one).

of the positive valued second operand is placed in the
for the Load Negative and Load Negative Short

numbers and zero remain unchanged. The floating-point
in the first operand location with the sign made minus

The absolute value of the second operand is placed in the first operand
location for the Load Positive and Load Positive Short instructions. Positive
numbers and zero remain unchanged. The floating-point second operand is placed
in the first operand location with the sign made plus (zero).

Resulting Condition Code:

Load Negative
Load Negative Short
Load Negative

Floating-Point
Load Positive
Load Positive Short
Load Positive

Floating-Point

Program Interruptions:

o
=0
=0

=0
=0
=0

=0

Specification (LNER,LPER)
Fixed-Point Overflow (LPR,LPSR)

28

1
<0
<0

<0

2

>0
>0

>0

3

overflow
overflow

Procedures Referenced:
NEGATE (LNR,LNSR,LPR,LPSR)

Load Multiple
Load Full to Short
Load PSW

LM
LFSR
LPSW

The Load Multiple instruction loads the register range specified from the
memory locations designated by the second operand address. The registers are
loaded in ascending order with register 0 following register 15.

The Load Full to Short instruction loads the second operand into the first
operand location.

The Load PSW instruction replaces the PSW with the double word at the
location designated by the operand address.

Resulting Condition Code:
o 1 2

Load Multiple The code remains unchanged.
Load Full To Short
Load PSW

=0 <0 >0
The code is set according to
bits 34 and 35 of the new PSW.

Program Interruptions:
Addressing (LM,LPSW)
Specification (LM,LPSW)
Privileged (LPSW)
Fixed-Point Overflow (LFSR)

Procedures Referenced:
LOAD (LM)

LOAD AND TEST INSTRUCTIONS.-

Load and Test
Load and Test Short
Load and Test Floating-Point -

LT,LTR
LTS,LTSR
LTER

The second operand is placed in the first operand location.

Resulting Condition Code:
0 1 2

Load and Test =0 <0 >0
Load and Test Short =0 <0 >0
Load and Test

Floating-Point =0 <0 >0

3

overflow

3

29

Program Interruptions:
Addressing (LT,LTS)
Specification (LT,LTER,LTS)

Procedures Referenced:
LOAD (LT,LTS)

MULTIPLY INSTRUCTIONS.-

Multiply
Multiply Halfword
Multiply Short
Multiply Floating-Point

M,MR
~,~I
MS,MSI,MSR
~,~R

The product of the multiplier (the second operand) and the multiplicand
(the first operand) replaces the multiplicand. In the full word multiply, both
operands are 32-bit signed integers. The product is a 64-bit signed integer
and occupies an even/odd register pair.

The halfword multiplier is
sign-bit and the multiplication
operands.

expanded to a full word by propagating the
is processed with 32-bit signed integer

The short precision operands are 16-bit signed integers and the product is
a 32-bit signed integer.

The normalized product of the floating-point operands replaces the first
operand. The multiply operation consists of exponent addition and fraction
multiplication; the sign of the product is determined by the rules of algebra.
The result is normalized by prenormalizing the initial operands and
postnormalizing the intermediate product. Exponent overflow and underflow are
detected but the underflow interrupt may be masked off.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (M,~,~,MS)
Specification (M,~,MER,MR,~,MS)
Exponent Overflow (ME,MER)
Exponent Underflow (ME,~R)

Procedures Referenced:

30

LOAD (M,ME,~,MS)
NEGATE (M,MR)
NEGATEDBLE (M,MR)
ONESCOMP (~,~I)
ONESCOMPS (~,~I,MS,MSI,MSR)
TWOSCOMP (~,~I,MS,MSI,MSR)
PRENORMALIZE (ME,MER)
CDC REAL (ME,MER)

EXPONENTCK (ME,MER)
NSSCIIREAL (ME,MER)
NORMALIZE (ME,MER)

MOVE INSTRUCTIONS.-

Move
Move With Offset
Move Numerics
Move Zones

MVC,MVI
MVO
MVN
MVZ

The second operand is placed in the first operand location for the Move
instructions. The Move With Offset instruction places the second operand to
the left of and adjacent to the low-order four bits of the first operand, and
the result is placed in the first operand location. The low-order four bits of
each byte in the second operand field, the numerics, are placed in the low
order bit positions of the corresponding bytes in the first operand fields for
the Move Numerics instruction. The Move Zones instruction places the zones,
the high-order four bits of each byte, of the second operand field in the
corresponding zones of the first operand field.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (MVC,MVI,MVO,MVN,MVZ)
Protection (MVC,MVI,MVO,MVN,MVZ)

Procedures Referenced:
PROTECTCK (MVC,MVN,MVZ)

NORMALIZE INSTRUCTION.-

Normalize NRM

The 32 bits in the first operand are shifted arithmetically left until bit
o is not equal to bit 1. The number of shifted bit positions is then placed
into the second operand. A zero is considered to be normalized.

Resulting Condition Code:

Normalize

Program Interruptions:
None

Procedures Referenced:
CKSHIFT

o
=0

1
<0

2
>0

3

31

OR INSTRUCTIONS.-

Or
Or Short

O,OC,OI,IOR
OS,OSI,OSR

The logical sum (OR) of the bits of the first and second operand is placed
in the first operand location. All bits of the fixed-length integers are
treated uniformly.

Resulting Condition Code:

Or
Or Short

Program Interruptions:
Addressing (O,OC,OI,OS)
Specification (O,OS)
Protection (OC,OI)

Procedure Referenced:
LOAD (O,OS)

o
=0
=0

LOGICAL (O,OC,OI,IOR,OS,OSI,OSR)
PROTECTCK (OC)

PACK INSTRUCTION.-

Pack PACK

1
;to
;to

2 3

The format of the second operand is changed from zoned to packed, and the
result is placed in the first operand location.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Protection

Procedures Referenced:
None

SUBTRACT INSTRUCTIONS.-

32

Subtract
Subtract Double
Subtract Halfword
Subtract Logical
Subtract Short
Subtract Normalized
Subtract Unnormalized

S,SR
SD,SDR
SH,SHI
SL,SLR
SS,SSI,SSR
SE,SER
SU,SUR

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location. Subtraction is performed
by adding the twos complement of the second operand to the first operand.

The halfword second operand is expanded to a full word before the
subtraction by propagating the sign-bit.

The occurrence of a carry out of the sign position is recorded in the
condition code for the logical subtracts.

In the Subtract Normalized instruction, the second operand is subtracted
from the first operand and the normalized difference is placed in the first
operand. In Subtract Unnormalized, the unnormalized difference is placed in
the first operand. The subtraction is performed by inverting the sign of the
second operand and adding. The exponent underflow interrupt may be inhibited
by setting the mask bit.

Resulting Condition Code:
0 2

Subtract =0 <0 >0
Subtract Double =0 <0 >0
Subtract Halfword =0 <0 >0
Subtract Logical ~O,no carry =O,carry
Subtract Short =0 <0 >0
Subtract Normalized =0 <0 >0
Subtract Unnormalized =0 <0 >0

Program Interruptions:
Addressing (S,SD,SE,SH,SL,SS,SU)
Specification (S,SD,SDR,SE,SER,SH,SL,SS,SU,SUR)
Fixed-Point Overflow (S,SR,SD,SDR,SH,SHI,SS,SSI,SSR)
Significance (SE,SER,SU,SUR)
Exponent Overflow (SE,SER,SU,SUR)
Exponent Underflow (SE,SER)

Procedures Referenced:
LOAD (S,SE,SH,SL,SS,SU)
LOADDBLE (SD)
LOADDREG (SDR)
MAXNUMF (S,SR)
MAXNUMD (SD,SDR)
MAXNUMS (SS,SSI,SSR)
NEGATE (SH,SHI,SL,SLR)
ADD (SH,SHI)
ADDLOG (SL,SLR)
ADD REAL (SE,SER,SU,SUR)
NORMALIZE (SE,SER)
UNNORMALIZE (SU,SUR)

3
overflow
overflow
overflow
*O,carry
overflow

33

START I/O INSTRUCTION.-

Start I/O SIO

The Start I/O instruction is used to issue one of four 16-bit command
words to direct output, direct input, reset interface, and test interface. The
SIO instruction is implemented to decode these commands only.

Condition Code:
The code is not set by the ICS.

Program Interruptions:
Addressing
Specification
Privileged

Procedures Referenced:
None

SHIFT INSTRUCTIONS.-

Shift Left Arithmetic
Shift Left Double Arithmetic -
Shift Left Arithmetic Short

SLA
SLDA
SLAS

The integer part of the first
specified by the low-order six
first operand remains unchanged.
bits.

operand is shifted left the number of bits
bits of the second operand. The sign of the

Zeros are supplied to the vacated low-order

Resulting Condition Code:
o

Shift Left Arithmetic =0
Shift Left Double Arithmetic =0
Shift Left Arithmetic Short =0

Program Interruptions:
Specification (SLDA)
Fixed-Point Overflow (SLA,SLDA,SLAS)

Procedures Referenced:

34

SHIFTL (SLA,SLAS)
SHIFTF (SLA,SLAS,SLDA)
SHIFTLD (SLDA)
CKSHIFT (SLA,SLAS)

Shift Left Logical
Shift Left Double Logical
Shift Left Logical Short

SLL
SLDL
SLLS

1
<0
<0
<0

2
>0
>0
>0

3
overflow
overflow
overflow

The first operand is shifted left the number of bits specified by the low
order six bits of the second operand. High-order bits are shifted out and
zeros are supplied to vacated low-order bits.

Condition Code:
The code remains unchanged.

Program Interruptions:
Specification (SLDL)

Procedures Referenced:
SHIFTL (SLL,SLLS)
SHIFTF (SLL,SLLS)
SHIFTLD (SLDL)
CKSHIFT (SLL,SLLS)
SHIFTD (SLDL)

Shift Right Arithmetic SRA
Shift Right Double Arithmetic - SRDA
Shift Right Arithmetic Short - SRAS

The integer part of the first operand is shifted right the number of bits
specified by the low-order six bits of the second operand. The sign of the
first operand remains unchanged. Bits equal to the sign are supplied to the
vacated high-order bit positions.

Resulting Condition Code:
o

Shift Right Arithmetic =0
Shift Right Double Arithmetic =0
Shift Right Arithmetic Short =0

Program Interruptions:
Specification (SRDA)

Procedures Referenced:
SHIFTR (SRA,SRAS)
SHIFTF (SRA,SRAS,SRDA)
SHIFTRD (SRDA)

Shift Right Logical SRL
Shift Right Double Logical SRDL
Shift Right Logical Short SRLS

1
<0
<0
<0

2
>0
>0
>0

3

The first operand is shifted right the number of bits specified by the
low-order six bits of the second operand. Low-order bits are shifted out and
zeros are supplied to the vacated high-order bits.

Condition Code:
The code remains unchanged.

35

Program Interruptions:
Specification (SRDL)

Procedures Referenced:
SHIFTR (SRL,SRLS)
SHIFTF (SRL,SRDL,SRLS)
SHIFTRD (SRDL)

SET MASK INSTRUCTIONS.-

Set Program Mask
Set System Mask

SPM
SSM

The Set Program Mask instruction sets the condition code and program mask
bits of the current PSW from bits 2-7 of the first operand.

The Set System Mask instruction replaces the system mask bits of the
current PSW with the byte at the location designated by the operand address.

Condition Code:
Set Program Mask - The code is set according to bits 2 and 3 of the

operand.
Set System Mask - The code remains unchanged.

Program Interruptions:
Addressing (SSM)
Privileged (SSM)

Procedures Referenced:
None

SET STORAGE KEY INSTRUCTION.-

Set Storage Key SSK

The key of the storage block addressed by the second operand is set
according to the key in the first operand. Bits 16-21 of the second operand
register gives the block address; the two bit key is obtained from bits 30 and
31 of the first operand register.

Condition Code:
The code remains unchanged.

Program Interruptions:

36

Addressing
Specification
Privileged

Procedures Referenced:
None

STORE INSTRUCTIONS.-

Store
Store Character
Store Double
Store Halfword
Store Multiple
Store Floating-Point

ST
STC
STD
STH
STM
STE

The first operand is stored at the second operand location. The Store
Character instruction places the low-order byte at the second operand address.
The Store Multiple instruction stores the contents of a range of registers
starting at the location designate by the second operand address. The
registers are stored in ascending order with register 0 following register 15.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (ST,STC,STD,STE,STH,STM)
Specification (ST,STD,STE,STH,STM)
Protection (ST,STC,STD,STE,STH,STM)

Procedures Referenced:
STORE (ST,STD,STE,STH)
STOREMULT (STM)

SUPERVISOR CALL INSTRUCTION.-

Supervisor Call SVC

This instruction causes a supervisor call interruption, with the operand
field providing the interruption code. The interruption code is used to update
the current PSW which is stored as the old program PSW; the new program PSW
then becomes the current PSW. If the operand field is 3, the SVC instruction
acts as a program terminator.

Condition Code:
The code remains unchanged in the old PSW.

Program Interruptions:
None

Procedures Referenced:
STOREPSW
LOADPSW

37

TEST BITS INSTRUCTIONS.-

Test Bits
Test Bits Immediate

TB
TBI

The state of the first operand bits selected by a mask is used to set the
condition code. The second operand is used as a 16-bit mask and corresponds
one for one with bits 16-31 of the first operand. A mask bit of one indicates
the first operand bit is to be tested; a zero indicates the bit is to be
ignored.

Resulting Condition Code:

Test Bits
Test Bits Immediate

Program Interruptions:
Addressing (TB)
Specification (TB)

Procedures Referenced:
LOAD (TB)

Test Under Mask

o
All Zeros
All Zeros

TM

Mixed
Mixed

2 3
All Ones
All Ones

The state of the first operand bits selected by a mask is used to set the
condition code. The byte of immediate data is used as an eight-bit mask and
corresponds one for one with the bits of the character in storage specified by
the first operand address. A mask bit of one indicates the storage bit is to
be tested; a zero indicates the bit is to be ignored.

Resulting Condition Code:

Test Under Mask

Program Interruptions:
Addressing

Procedures Referenced:
None

Test and Set

o
All Zeros

TS

1
Mixed

2 3
All Ones

The leftmost bit of the byte located at the operand address is used to set
the condition code and the byte is then set to all ones.

Resulting Condition Code:

Test and Set

38

o
Leftmost bit 0

1
Leftmost bit 1

2 3

Program Interruptions:
Addressing
Protection

Procedures Referenced:
None

TIMER READ AND SET INSTRUCTION.-

Timer Read/Set T~S

The functions performed by this instruction depend on the first operand.
The real-time clock and interval timer can be read or read and set according to
the value given as the first operand. This value range is 0 through 3; a 0
indicates the real-time clock is to be read; 1, read the interval timer; 2,
read and set the real-time clock; and 3, read and set the interval timer. A
value of 4 indicates that a checkpoint is to be taken if the real-time clock
value exceeds the value stored at the effective memory address. Program
execution terminates after the checkpoint is taken and will resume at this
point when restarted.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Specification
Privileged

Procedures Referenced:
LOAD
CKPOINT

TRANSLATE INSTRUCTIONS.-

Translate
Translate and Test

TR
TRT

The bytes of the first operand are used as arguments to reference the list
designated by the second operand address. The first operand bytes are added to
the second operand address to form the function byte address. In the Translate
instruction, the function byte replaces the original first operand byte. This
process continues until the first operand field is exhausted.

In the Translate and Test instruction, the function byte is used to
determine the continuation of the operation. When the byte is zero, the
operation proceeds by fetching and translating the next argument byte. When
the byte is non-zero, the operation is completed by storing the argument
address in register 1 and inserting the function byte in register 2.

39

Resulting Condition Code:
o

Translate
Translate and Test

The code remains
All function
bytes are
zero

Program Interruptions:
Addressing (TR,TRT)
Protection (TR)

Procedures Referenced:
ADDRCK (TR,TRT)
PROTECTERR (TR)

UNPACK INSTRUCTION.-

Unpack UNPK

unchanged.
Non-zero function
byte before
first operand
field is
exhausted

2

Last function
byte is
zero

3

The format of the second operand is changed from packed to zoned, and the
result is placed in the first operand location.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Protection

Procedures Referenced:
None

40

CONCLUDING REMARKS

The interpretive computer simulator described in this paper' has
successfully been used to develop the utility library that will support the ICS
applications, and for preliminary testing of the executive software designed
for the ASPS project. The visibility of instruction processing and the control
the ICS provides are essential when debugging and testing software code, as the
experience with the ASPS executive has confirmed. These features make an ICS a
most serviceable software verification and testing tool.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
February 1979

41

APPENDIX A

ICS SYSTEM USAGE AND SUPPORT PROCESSORS

The ICS is supported by a Meta Assembler and a Linkage Loader that reside
on the CYBER system at LRC. The input file to the ICS is a load module in the
format defined for the DATAF input file (See page 6). If the program to be
processed by the ICS is written in NSSC-II assembly level language, the
assembler assembles the program and generates an input file for the loader.
The loader processes this file and generates a load module file that becomes
the DATAF input file for the ICS. The ICS reads the load module file, storing
the code and/or data in the appropriate memory locations, and transfers control
to the memory address specified as the transfer address of the file. The ICS
then executes the code, generating an output file consisting of the instruction
mnemoniC, the accumulated time, the program status word, the result contained
in the first operand expressed as a hexadecimal and decimal value, and any
error condition that exists. The assembler-loader-ICS system requires a field
length of 140K to assemble, load, and execute.

The LRC Meta Assembler and Linkage Loader may be bypassed by running the
assembly code on an IBM S/360 or S/370. A utility exists at LRC that reads the
resulting IBM load module and rewrites it in the DATAF format required for the
ICS. If the assembler and loader are bypassed, the ICS requires a field length
of 77K to execute preassembled code.

A utility library has been built to support the ICS. Currently, the
library has sine, cosine, and arctangent functions in both full and short
precision, and a full, short, and floating-point square root function.

A program card deck and/or listing of the ICS may be obtained from:
Computer Software Management and Information Center (COSMIC)
112 Barrow Hall
University of Georgia
Athens, Georgia 30602

When contacting COSMIC, inquiries should be for the Interpretive Computer
Simulator for the NASA Standard Spacecraft II.

42

APPENDIX A

The following control cards are required to assemble a program, link and
load the object code, and execute the load module of the ICS.

Sample Control Cards

.NEW ASSEMBLY OF TEST PROGRAM

.ICSLIB = (SIN,COS,ARCTAN,SQRT,ETC.)
·TAPE15 = NSSCII MACHINE DEFINITION
.NSCLIB = NSSCII LIBRARY
·CONIN = PROGRAM LOAD DIRECTIVE FILE
·MODBIN = META ASSEMBLER
.NWLKBIN = LINKAGE LOADER
.LGO = ICS EXECUTE FILE
·CKPTF = CHECK POINT FILE
.CONTRLF = CHECK POINT CONTROL FILE
.=0 NO CHECK POINT, =1 CHECK POINT
.LIBTP = LOADER LIBRARY
·TAPE8 = ASSEMBLER MODULE
.DATAF = LOAD MODULE
.SYMTBLE = SYMBOL TABLE
GET,TAPE14=ICSLIB.
GET,TAPE15.
GET,TEST,NSCLIB,CONIN.
GET,MODBIN,NWLKBIN/UN=290885N,ST=CPF.
GET,LGO,CKPTF,CONTRLF,LIBTP.
FILE,TAPE8,RT=S,BT=C,FO=SQ.
LDSET,FILES=TAPE8.
LDSET,PRESET=ZERO,MAP=BS •
• ASSEMBLE TEST
MODBIN(TEST)
REWIND,TAPE8.
REPLACE,TAPE8.
REWIND,TAPE15.
REPLACE,TAPE15.
ATTACH,PASCAL,PASLIB/UN=LIBRARY.
RFL,77000.
REDUCE,- •
• LOAD TAPE8 - CREATE DATAF
LDSET,LIB=NSCLIB/PASLIB,MAP=BS.
NWLKBIN(OUTPUT,TAPE8,CONIN,DATAF,LIBTP,SYMTBLE)
-EXECUTE DATAF
LGO.
REWIND (CKPTF, CONTRLF, DATAF)
REPLACE (CKPTF)
REPLACE (CONTRLF)
REPLACE{DATAF)
EXIT.

43

APPENDIX A

The assembly and loading of this program generates the following DATAF
file which in turn is executed, producing the output listed.

Sample Program

OPTION LIB: ICSLIB,PREDEF,LIST(48,LIB),BOUND
TEST START
•
• TEST PROGRAM
•
MAIN CSECT

FFORM
PST ART BALR

USING
L
L
L
CR
BXH
A
BU

B1 S
B2 ST

SVC
DATA1 DATA
DATA2 DATA
DATA3 DATA

END

NEG:2COMP,TRUNC
12,0
·,12
3,DATA1
4,DATA2
5,DATA3
3,4
3,4,B1
4,DATA1
B2
4,DATA2
4,DATA3
3
X' 189'
2
430
PSTART

Sample DATAF

PROGRAM NAME140513142D2D2D2D2D2D
010005C05830C0265840C02A5850C02E19348634C01A5A40C02673OOC01E5B40C02A
01205040C02EOA0300000000018900000002000001AE
FFFF0100

OPCODE BALR
R1 40000102

OPCODE L
R1 00000189

OPCODE L
R1 00000002

OPCODE L
R1 000001AE

OPCODE CR
R1 00000189

OPCODE BXH
R1 0000018B

OPCODE A
R1 0000018B

OPCODE BU
R1 00000000

OPCODE ST
R1 0000018B

OPCODE SVC
R1 00000000

APPENDIX A

Sample Output

TOTAL TIME 3. 8500000000000E+000
(1073742082)
TOTAL TIME 7. 1500000000000E+000
(393)
TOTAL TIME 1.0450000000000E+001
(2)
TOTAL TIME 1.3750000000000E+001
(430)
TOTAL TIME 1.6170000000000E+001
(393)
TOTAL TIME 2.4420000000000E+001
(395)
TOTAL TIME 2.7720000000000E+001
(395)
TOTAL TIME 2.9920000000000E+001
(0)
TOTAL TIME 3.3660000000000E+001
(395)
TOTAL TIME 4.9720000000000E+001

o)

PSW 0000000040000102

PSW 0000000080000106

PSW 000000008000010A

PSW 000000008000010E

PSW 0000000060000110

PSW 00000000A0000114

PSW 00000000A0000118

PSW 00000000A0000120

PSW 00000000A0000124

PSW 0000000000000000

45

APPENDIX B

NSSC-II INSTRUCTION SET TIMINGS

Standard Instruction Set

NAME MNEMONIC TYPE CODE USEC

ADD AR RR 1A 2.2
ADD A RX 5A 3.3
ADD HALFWORD AH RX lJA 3.63
ADD LOGICAL ALR RR 1E 2.2
ADD LOGICAL AL RX 5E 3.3
AND NR RR 14 2.2
AND N RX 5lJ 3.3
AND NI SI 94 3.3
AND NC SS D4 5.06+2.09L+

1.65L/64
BRANCH AND LINK BALR RR 05 3.85+.44B
BRANCH AND LINK BAL RX 45 4.4
BRANCH ON CONDITION BCR RR 01 2.42+1.1B
BRANCH ON CONDITION BC RX 41 2.86+1.1B
BRANCH ON COUNT BCTR RR 06 2.64+1.32B
BRANCH ON COUNT BCT RX 46 3.63+1.1B
BRANCH ON INDEX HIGH BXH RS 86 8.25
BRANCH ON INDEX

LOW OR EQUAL BXLE RS 81 8.25
COMPARE CR RR 19 2.lJ2
COMPARE C RX 59 3.52
COMPARE HALFWORD CH RX 49 3.96
COMPARE LOGICAL CLR RR 15 2.64
COMPARE LOGICAL CL RX 55 3.14
COMPARE LOGICAL CLC SS D5 4.84+2.53L+

1.65L/64
COMPARE LOGICAL CLI SI 95 2.31
CONVERT TO BINARY CVB RX lJF 94.4
CONVERT TO DECIMAL CVD RX 4E 99.0
DIVIDE DR RR 1D 5lJ.12
DIVIDE D RX 5D 54.18
EXCLUSIVE OR XR RR 11 2.2
EXCLUSIVE OR X RX 51 3.3
EXCLUSIVE OR XI SI 91 3.3
EXCLUSIVE OR XC SS D1 4.01+2.09L+

1.65L/64
EXECUTE EX RX lJlJ 6.49+TARGET
INSERT CHARACTER IC RX lJ3 3.19
LOAD LR RR 18 2.2
LOAD L RX 58 3.3

46

APPENDIX B

LOAD ADDRESS LA RX 41 2.86
LOAD AND TEST LTR RR 12 2.2
LOAD COMPLEMENT LCR RR 13 2.2
LOAD HALFWORD LH RX 48 3.52
LOAD MULTIPLE LM RS 98 3.63+1.98N
LOAD NEGATIVE LNR RR 11 2.53
LOAD POSITIVE LPR RR 10 2.53
LOAD PSW LPSW SI 82 10.34
MOVE MVI SI 92 2.75
MOVE MVC SS D2 4.4+1.54L+

1.21L/64
MOVE NUMERICS MVN SS D1 5.06+2.09L+

1.65L/64
MOVE WITH OFFSET MVO SS F1 6.27+3.63L
MOVE ZONES MVZ SS D3 5.5+2.09L+

1.65L/64
MULTIPLY MR RR 1C 34.045
MULTIPLY M RX 5C 34.595
MULTIPLY HALFWORD MH RX 4C 15.565
OR OR(IOR) RR 16 2.2
OR 0 RX 56 3.3
OR 01 SI 96 3.3
OR OC SS D6 5.06+2.09L+

1.65L/64
PACK PACK SS F2 7.7+4.29L
SET STORAGE KEY SSK RR 08 3.52
SET PROGRAM MASK SPM RR 04 1. 76
SET SYSTEM MASK SSM SI 80 7.48
SHIFT LEFT DOUBLE SLDA RS 8F 4.73+3.52Q+

1.76R
SHIFT LEFT SINGLE SLA RS 8B 3.52+.44Q+.44R
SHIFT LEFT DOUBLE

LOGICAL SLDL RS 8D 5.06+1.76q+
1.76r

SHIFT LEFT SINGLE
LOGICAL SLL RS 89 3.52+.44Q+.44R

SHIFT RIGHT DOUBLE SRDA RS 8E 4.73+3.96Q+
3.96R

SHIFT RIGHT SINGLE SRA RS 8A 3.08+.44Q+.44R
SHIFT RIGHT DOUBLE

LOGICAL SRDL RS 8C 3.85+3.96Q+
3.96R

SHIFT RIGHT SINGLE
LOGICAL SRL RS 88 3.08+.44Q+.44R

START I/O SIO SI A5 9.955
STORE ST RX 50 3.74
STORE CHARACTER STC RX 42 3.19
STORE HALFWORD STH RX 40 3.19
STORE MULTIPLE STM RS 90 3.63+1.98N
SUBTRACT SR RR 1B 2.2

47

SUBTRACT
SUBTRACT HALFWORD
SUBTRACT LOGICAL
SUBTRACT LOGICAL
SUPERVISOR CALL
TEST AND SET
TEST UNDER MASK
TIMER READ/SET

TRANSLATE

TRANSLATE AND TEST

UNPACK

APPENDIX B

S RX
SH RX
SLR RR
SL RX
SVC RR
TS SI
TM SI
TMRS RS

TR SS

TRT SS

UNPK SS

NOTE:

5B
4B
1F
5F
OA
93
91
A4

DC

DD

F3

3.3
3.63
2.2
3.3
16.06
3.74
3.08
7.04+3.41(1)
7.04+6.49(2)
7.04+2.53(3)
7.04+8.91(4)
5.72+2.09L+

1.10L/64
6.49+2.53L
+1.54L164

H.14+4.07L

The standard mnemonic, OR, is a reserved word
in PASCAL forcing a new mnemonic, lOR, to
be adopted for use in the ICS.

B-1 if branch is successful, otherwise 0
L - number of first operand bytes processed
N - number of registers processed
q - integral result of shift count divided by 16
Q - integral result of shift count divided by 4
r - shift count modulo 16
R - shift count modulo 4
(1) - read Real Time Clock
(2) - read/set Real Time Clock
(3) - read Interval Timer
(4) - read/set Interval Timer

Add .5 if instruction type is RX and an
index register is specified.

APPENDIX B

Short Instruction Set

NAME MNEMONIC TYPE CODE USEC

ADD HALFWORD
IMMEDIATE AHI RI BA 3.08

ADD SHORT AS RX 53 2.75
ADD SHORT IMMEDIATE ASI RI AA 2.2
ADD SHORT REGISTER ASR RR CA 1.76
BRANCH UNCONDITIONAL BU RX 73 2.2
BRANCH UNCONDITIONAL

REGISTER BUR RR CE 1.76
COMPARE HALFWORD

IMMEDIATE CHI RI B9 3.3
COMPARE LOGICAL SHORT CLS RX 65 3.19
COMPARE LOGICAL SHORT

IMMEDIATE CLSI RI B5 2.2
COMPARE LOGICAL SHORT

REGISTER CLSR RR C5 1.76
COMPARE SHORT CS RX 61 2.75
COMPARE SHORT

IMMEDIATE CSI RI A9 2.42
COMPARE SHORT

REGISTER CSR RR C9 1.54
DIVIDE SHORT DS RX 4D 18.11
DIVIDE SHORT

IMMEDIATE DSI RI BO 17.56
DIVIDE SHORT REGISTER DSR RR CD 17.56
LOAD ADDRESS SHORT LAS RX 51 2.64
LOAD COMPLEMENT SHORT

REGISTER LCSR RR C3 1.76
LOAD FULL TO SHORT

REGISTER LFSR RR OB 2.805
LOAD HALFWORD

IMMEDIATE LHI RI B8 2.97
LOAD HALFWORD

REGISTER LHR RR DO 1.87
LOAD NEGATIVE SHORT

REGISTER LNSR RR C1 2.09
LOAD POSITIVE SHORT

REGISTER LPSR RR CO 2.09
LOAD SHORT LS RX 74 2.75
LOAD SHORT IMMEDIATE LSI RI A8 2.2
LOAD SHORT REGISTER LSR RR C8 1.16
LOAD AND TEST LT RX 62 3.3
LOAD AND TEST SHORT LTS RX 52 2.75
LOAD AND TEST SHORT

REGISTER LTSR RR C2 1.76

49

APPENDIX B

MULTIPLY HALFWORD
IMMEDIATE MHI RI BC 15.015

MULTIPLY SHORT MS RX 71 8.965
MULTIPLY SHORT

IMMEDIATE MSI RI B3 8.525
MULTIPLY SHORT

REGISTER MSR RR CC 8.525
NORMALIZE NRM RR CF 5.06+1.320+

1.21R
AND SHORT NS RX 64 2.64
AND SHORT IMMEDIATE NSI RI B4 2.2
AND SHORT REGISTER NSR RR C4 1. 76
OR SHORT OS RX 66 2.75
OR SHORT IMMEDIATE OSI RI Ab 2.2
OR SHORT REGISTER OSR RR C6 1. 76
SUBTRACT HALFWORD

IMMEDIATE SHI RI BB 3.08
SHIFT LEFT ARITHMETIC

SHORT SLAS RS A3 3.52+.44Q+
.44R

SHIFT LEFT LOGICAL
SHORT SLLS RS A1 3.52+.44Q+

.44R
SHIFT RIGHT ARITHMETIC

SHORT SRAS RS A2 3.08+.44Q+
.44R

SHIFT RIGHT LOGICAL
SHORT SRLS RS AO 3.08+.44Q+

.44R
SUBTRACT SHORT SS RX 72 2.75
SUBTRACT SHORT

IMMEDIATE SSI RI AB 2.2
SUBTRACT SHORT

REGISTER SSR RR CB 1. 76
EXCLUSIVE OR SHORT XS RX 63 2.75
EXCLUSIVE OR SHORT

IMMEDIATE XSI RI A7 2.2
EXCLUSIVE OR SHORT

REGISTER XSR RR C7 1.76
TEST BITS TB RX 75 3.52
TEST BITS IMMEDIATE TBI RI AE 2.53

NOTE:

Q - integral result of shift count divided by 4
R - shift count modulo 4

Add .5 if instruction type is RX and an
index register is specified.

50

APPENDIX B

Double Instruction Set

NAME MNEMONIC TYPE CODE USEC

ADD DOUBLE AD RX 6A 6.6
ADD DOUBLE REGISTER ADR RR 2A 6.93
COMPARE DOUBLE CD RX 69 1.15
COMPARE DOUBLE

REGISTER CDR RR 29 1.26
LOAD COMPLEMENT

DOUBLE REGISTER LCDR RR 23 6.05
LOAD DOUBLE LD RX 68 4.95
LOAD DOUBLE REGISTER LDR RR 28 6.05
SUBTRACT DOUBLE SD RX 6B 6.82
SUBTRACT DOUBLE

REGISTER SDR RR 2B 6.93
STORE DOUBLE STD RX 60 6.05

NOTE:

Add .5 if instruction type is RX and an
index register is specified.

51

NAME

ADD NORMALIZE
ADD NORMALIZE
ADD UNNORMALIZE
ADD UNNORMALIZE
COMPARE
COMPARE
DIVIDE
DIVIDE
HALVE
LOAD AND TEST
LOAD COMPLEMENT
LOAD NEGATIVE
LOAD POSITIVE
LOAD
LOAD
MULTIPLY
MULTIPLY
STORE
SUBTRACT

NORMALIZED
SUBTRACT

NORMALIZED
SUBTRACT

UNNORMALIZED
SUBTRACT

UNNORMALIZED

52

APPENDIX B

Floating-Point Instruction Set

MNEMONIC TYPE CODE USEC

AER RR 3A 28.3
AE RX 1A 28.14
AUR RR 3E 25.135
AU RX 1E 25.685
CER RR 39 20.51
CE RX 19 21.01
DER RR 3D 54.4+1.65N
DE RX 1D 54.84+1.65N
HER RR 34 12.265
LTER RR 32 5.06
LCER RR 33 5.5
LNER RR 31 5.5
LPER RR 30 5.06
LER RR 38 3.41
LE RX 18 3.52
MER RR 3C 39.82+1.65N
ME RX 1C 40.31+1.65N
STE RX 10 4.51
SER RR 3B 29.18

SE RX 1B 29.51

SUR RR 3F 25.945

SU RX 1F 26.055

NOTE:

N - no. of digits of prenormalization required

Add .5 if instruction type is RX and an
index register is specified.

REFERENCES

1. IBM NASA Standard Spacecraft Computer II Principles of Operation.
IBM Number 7935402. Contract Number NASB-32BOB.

2. IBM System/360 Principles of Operation.
Ninth Edition, November 1970. GA22-6B21-7.

3. Thornton, J. E.: Design of a Computer - The Control Data 6600.
Scott, Foresman and Company, 1970.

4. Struble, George: Assembler Language Programming: - The IBM System/360.
Addison - Wesley Publishing Company, 1971.

53

End of Document

