
NASA STANDARD
1

SPACECRAFT COMPUTER (NSSC-SI) > e 1

4 4 PRINCIPLES OF OPERATION
2

'6

I

Uncl A S
0 2 5 2 7 6 3

DESCRIPTION Y A I C n r r $ $ u * L U
'- I ;";I 1 ENGRG NOTICE LTR

Initial Release - a- , 2 /15 / 77
Errata Sheets 5/15/79

The attached pages are replacements or additions to the
NSSC-I1 Principles of Operation.

NAS8-32808 CONTR NO.

PREPARATION

I

I NTE R N AT1 ON A L BUS1 NESS MACH I N ES CORP.
FEDERAL SYSTEMS DIVISION
GAITHERSBURG, MARYLAND

NASA Standard Spacecraft
Computer I1 (NSSC-11) Principles
of Operation

SIZE CODE IDENT NO, DWG NO.
7935402

SCALE WT SHEET

i

d
f Sec t ion

i
V I 1 1

4 .!

TABLE

Paragraph

7.4.4
7.4.5
7.4.6
7.4.6.1

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.3
8.4
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
8.6

9.1
9.1.1
9.1.2
9.1.3
9.2
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
3.3.12
9.3.13
9.3.14
9.3.15

OF CONTENTS (CONTINUED)

T i t l e

Branch on Index High
Branch on Index Low o r Equal
Execute
Execute Exceptions

STATUS SWITCHING
Program S t a t e s .
Problem S t a t e
Wait State
P ro tec t ion
Area I d e n t i f i c a t i o n
P ro tec t ion Action
Program S t a t u s Word
I n s t r u c t i o n Format
I n s t r u c t i o n s
Load PSW
S e t Program Mask
S e t System Nask
Supervisor Call
S e t Storage Key
Test and S e t
S t a r t Input Output
T i m e r Read and Se t
Diagnose
Status-Switching Exceptions

INTERRUPTIONS
I n t e r r u p t i o n Action
I n s t r u c t i o n Execution
Source I d e n t i f i c a t i o n
Location Determination
Input/Output I n t e r r u p t i o n
Program I n t e r r u p t i o n
Operation Exception
Privileged-Operaticri Exception
Execute Exception
P ro tec t ion Exception
Addressing Exception
S p e c i f i c a t i o n Exception
Data Exception
Fixed-Point-Overflow Exception
F i xe d-P o i n t - D i v i tl e Ex ce p t ion
Exponent-Overflow Exception
Exponent-Underf low Exception
S i gn i f i can c e E xcc p t i 011
Floating-Point-Divide Exception
Buffered. 110 Exception
Supervisor-Call I n t e r r u p t i o n

PaRe

88
89
89
91

92
92
92
93
94
94
94
94
96
97
98
99
99
99
100
100
101
103
104
104

106
106
106A
10 7
108
108
109
110
110
110
110
110
111
111
111
111
l l l A
l l l A
l l l A

t
l l l A
112
112

c

c'

c. -

._ . . - - . ___ . ~. . - ._ . . -

3

Paranraph

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4

1.2.6
102.5 \

102.7

2.1
2.2
2.3
2.4

3.1
3.2
3*3
303.1
3.4
3.5
3.6
3.6.1
3.602
3.6.2.1
3.6.2.2
3.6.2.3

3.6.3.1
3.603

3.6.4
3.605

3.6.5.2
3.6.5.3
3.606
3.6.6.1
306.6.2
3.6.6.3
3.7
3.7.1
307.2 .

'3 . 6 . 5 . 1

TABLE OF CONTENTS

- Title

NSSC-I1 Instruction Set
Exceptions
Input /Output
Timer
Storage Protect
Execution Times
Unpredictable Reeulte
Addrearing Exception
Addressing

NSSC-I1 ARCHITECTURE

SYSTEM STRUCTURE
Main Storage
Ad dreea ing
Information Processing
Storage Protection

CPU
Central Proceeeing Unit Function8
General Regietare
Arithmetic and Logical Unit
Fixed Point Arithmetic
Decimal Numbere
Logical Operations
Program Execution
Inatruction Format
Addrees Generation
Base Addrese (B)
Index (X)
Diaplacament (D)
Sequential Inrtruction Execution
Branching
Program Statue Word
Interruption
External Interrupts
Program Interrupts
Input /Ou tput fnterrup t ion
Machlne States
Running or Waiting State
Maeked or Interruptible State
Supervisor or Problem State

Direct 1/0
Buffered 1/0

Syrtm I/O

Pane

i
1
1
1
1
2
2
2
2
2

6
6 \
7
7
7
8
9
10
10
.lo
12
12
12
13
14
14
15
16
17
19
19
19
19
19
19
20
20

Section

Iv

PrrasraDb

3.7.3
3.7.4
307.5
3.7.6
3.7.7
3*8
3.9
3.9.1
3.9.2

4.1
4.2
4.3
4 a 4
4.5
4.5*1
4.5.2
4.5.3
4.5.4
4.5.5
465.6
4.5.7
405.8
4.5.9
4,SalO
4.5.11
404.12
4.5.13
4.5.14
4.5.15
4o5.16
405.17
4.5.16
4.5.19
4.5.20
405.21
405.22
4.5.23
4.5.24
4.5.25
4.5.26
4.5027
4.6

TABLE OF CONTENTS (CONTINUED)

Title

Direct Memory Accere (DMA)
Input /h tpu t @era tione
Buffered 1/0 Statue Word
Service Interrupt
T8E 1/0 Devices

Teat Support Equipment
Function Code
Syrtem Reset

-

Soft stop

FfXED-POINT ARITHMETIC
Data Format
Number Repreeantation
Condition Code
Inotruction Format
Inrtructionr ,

Load
Lord Halfword
Lord and Tart
Load Complament
Load Poritive
Load Negative
Load Multiple
Add
Add Halfword
Add Logical
Subtract
Subtract Halfword
Subtract Logical
Compare
Compare Halfword

Multiply Halfword
Divide
Convart to Binary
Oonvert to Decimal
Store
Store Halfword
Store Multiple
Shift Left Single
Shift Right Single
Shift Left Double
Shift Right Double
Flxad-Point Arithmetic Exceptions

Multiply

iii

Pam

20
20
22
22
23
28
28
28
30

31
31
32
33

. 33
34
36
36
37
37
38
38
39
39
40
41
42
42
43
44
45
45
46
47
48
49
49
50
50
51
52
53
53
54

1

0 TABLE OF CONTENTS (CONTIXUED)

9 w i 0 n

V

Ew!a?mh Title

DECIMAL ARITHMETIC
Sal Data Format
Salal Packad Decimal Number
Sa1.2 Zoned Decimal Number
Sa2 Nunbar Representation
5.3 Inatructione
5a3.1 Pack
5.3.2 Unpack
5a3.3 M o w with Offeat

V I
6.1
6ala1
6ala2
6.2
6a3
6a4
6.4a1
6.4a2
6a4a3
6.4.4

6,4,6
6a4aS

6a4.7
6a4.0
6a4.9
6a4a10
6.4.11
6.4.12
6.4.13
6.4a14
6a4a15 '

6a4.16
6a4.17
6.5

V I 1
7.1
7 a l a l
7a2
7 a 3
7a4
7a4a1
744a2
7.4.3

LOGICAL OPERATION
Data Format
Fixed-Length Logical Infornution
Variable-Length Logical Information
Condition Coda
Iartruction Format
Inrtructlonr
Mova
Move Numrricr
Move Zonea
Compara Logical
And
or
Exclurive Or
Tut Under Mark
Inrart Choractar
Store Character
Lord Addreir
Trarlate
Tranrlate and Teot
Shift Left Single
Shift Right Single
Shift Left Double
Shift Right Double
Logical Operation Exceptionr

BRANCHING
Normal Sequential Oparation .
Saquential Operation Excoptionr
Dacielon-Making
Inrtruction Fornrcrtr
Branching Inrtructiona
Branch on Condition
Branch and Link
Branch on Count

56
56
56
56
56
5T
57
58
59

60
60
60
61
62
62
64
65
66
C6
67
68
69
70
71
?2
72
72
73
74
75
75
76
76
77

79
79
80
02
02
84
a4
87
07

TABLE OF CONTENTS (CONTINUED)

Paranra~b

7.4.4
7.4.5
7.4.6
7.4.6.1

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2

8.4
8.3

8.5
8mSel
8.5.2
8.5.3
8.5.4
8.9.5
8.5.6
8.567
8.5.8
8.569
8.6

9.1
9.1.1
9.1.2
9.1.3
9.2
9.3
9.3.1
9.3.2
9.3.3
9.3A
9.3.5
,9s3m6
9.3.')
9.3.8
9.3.9
9.3.10
9.3.11

Title -
Branch on Index High
Branch on Index Low or Equal
Execute
Execute Exception6

STATUS SWITCHING
Program Statee
Problem State
Wait Stat e
Protection
k o a Identification
Protection Action
Program Status Word
Iartruction Format
Ine truct ionr
Load PSW
Sot Program Mark
Sot Syrtem Mark
Suporvieor Call
Sat Storage Key
Teet and Set
Start Input Output
Tlmer Read and Set
Diagnose
stAtU6-sWitChing Exceptions

INTERKUPTXONS
Interruption Action
Itutruction Execution
Source Identification
Location Detarmlaation
Iapu t /&A tpu t .Interruption
Program Interruption
Oporation Exception
Privileged-Operation Excoption
Execute Exception
Ptotoction Exception
Mdreering Exception
Specification Exception
Data Exception
Fixed-Pointdverflaw Exception
Fixed-Point-Divide Exception
Buf farad f / O Exception
Supervieor-Call Interruption

t

Pane

88
89
89
91

92
92
92
93
94
94
94
94
96
97
98
99
99
99
100
IGO
101
103
104
104

106
106
106
107
108
108
109
110
110
110
110
110
111
111
111
111
112
112

&._ _.-__. _. . _.___-_ .-.. -..- .-,. *-.-.-..(I -,. ..*.<e-.-

TABLE OF CONTENT8 (CONTINUED)

.:% : *

X

9a4 Erternrl Interruption
9a4.l Tfmor
9.4.2 Intarrupt Key
94.3 Intrrval Tlmer
9*5 Machine-Chack Interruption

10.1
loa2
loa3
10.4
10.5
10.5.1
10.5.2
10.5.3
1OaSa4
10.5as
10a5o6
10.5a7
1OeSa8
1OaSa9
10,s a 10
10.9 . 11
10 5 a 12
loa5 a 13
10oSa14
10*5.15
10.5 a 16
10 5 a 17
10.5 18
1005.19
1OaSa20
10. 5 a 21
10a5.22
10 e 5 a 23
10.5 a 24
lOaSa25
10 a 5 a 26
10a5.27
10.9 a28
10a5a29
loa6

SHORT PRECISION OPTION
Data Format
Number Representation
Condition Code
Inn truc tion Format
Inrtructioni
ADD Halfword
ADD Short
Branch Unconditional
Compare Halfword
Compare ~ogical Short
Compare Short
Divide Short
Load Mdrers Short
Load Complement Short
Load Full to Short Regintar
Load Halfword
Load Negativr Short
Load Poiitive Short
Load Short '

Load and Teat
Load and Test Short
Mu1 tiply Halfword
Multiply Short
Normallee
AND Short
OR Short .
Shift Left Arithmatic Short
Shift Left Logical Short
Shift Right Arithmetic Short
Shift Right Logical Short
Subtract Halfword
Subtract Short
Tor t Bi tr
Exclurive OR Short
Short Precirion Exceptionr

112
113
113
113
114

115
115
116
116
117
119
121
121
122
123
124
125
126
127
127
128
129
129
130
131
131
132
133
133
134
135
136
137
138
139
140
140
141
142
143
144

.
section - PrragrrPh -
XI

11 e

11 e

11 e

11 e

11 e

11
11 e

11 e

11 e

11 e

11 e

11 e

1
2
3
4
5
5
5
5
5
5
5
6

X I 1
12 e1
12 e2
12e3
12e4
1 2 e S
12 e6
12e6e1
12e6.2
12e6e3
12e6.4
12.6.5
12,666
12e6.7
12.6.8
12e6.9
12e6.10
12 e 6 e 11
12 e 6 e 12
12e6e13
12 e6 e 14
12.7

Title
- *

DOUBLE PRECISION FIXED-POINT
AMTIPIETIC OPTION
Data Format
Nunbar Rrprarantrtlon
Condition Code
Inrtruction Forput
Inrtructionr
Lord Double
Load Complement Double
Add Double
Subtract Doublr
Comprrr Doublr
Store Doublr
Double Prrcirlon Fixed-Point
Arithmetic Excrptionr

FLOATING-POINT ARITIWTIC
Data Formrt
Numbor Rrprrrrntrtlon
Normlitrtion
Condition Coda
Inetructlon Format
Inrtructlonr
Lord
Lord and Tart
Load Complrmrnt
Lord Poritlvr
Load Negatlvr
Add Nomlitrd
Add Unnonnrlitrd
Subtract Normalired
Subtract Unnormlirad
Comprrr
Ulva

Mvidr
Storr
Florting-Point Arithmatic
Excop tionr

Mu1 tlply

146
146
146
147
148
149
149
150
150
151
152
15 3
153

155
156
157
u7
1%
159
160
16 Z
162
162
162
163
164
165
166
166
167
168
169
171
171

PREFACE

i

i

Thio document is t h e Machine Referance Manual f o r t h e NSSC-11.
a deoc r ip t ion of t h e ryetem o t r u c t u r e , t h e a r i t hme t i c , l o g i c a l , branching,
s t a t u s a s i t c h i n g , f / O operat iono, and t h e i n t e r r u p t and timer syrtcunr.

It provides

The NSSC-11 i o a 16-bi t , f ixed po in t , microprogram con t ro l l ed , gene ra l pur-
pore computer.

The NSSC-I1 a r c h i t e c t u r e is t he rame as t h e IBM System/360 a r c h i t e c t u r e .
The b a s i c NSSC-I1 suppor ts 83 of t h e 87 i n s t r u c t i o n s i n the IBM System/360
Standard I n s t r u c t i o n Se t ; t h e b a s i c NSSC-I1 a l s o supports t h r e e unique
i n s t r u c t i o n r which c o n t r o l t h e t imers , I / O , and s t o r a g e p ro tec t ion . The
f i r s t n ine s e c t i o n s of t h i s document delrcribe t h e b a s i c NSSC-11.

A s h o r t p rec i s ion opt ion l e a v a i l a b l e f o r t h e NSSC-11.
sirto of 53 a d d i t i o n a l f n e t r u c t i o n s which d e a l p r imar i ly with 16-bit
operands. Them i n e t r u c t i o n r genera l ly execute f a e t e r than t h e i r counter- ,
p a r t 6 i n t h e bae ic NSSC-I1 i n e t r u c t i o n set, which opera te on 32-bit operands.
An a d d i t i o n a l i n s t r u c t i o n format is included i n t h i r opt ion which inc reases
execut ion rpeed and reduces main s t o r a g e r e q u i r m o n t s . The s h o r t p rac io ion
opt ion is descr ibed in Sect ion X,

This option con-
\

A double p r e c i r i o n f ixed poin t opt ion is also a v a i l a b l e f o r t h e NSSC-If.
This op t ion conr lo t e of 10 a d d i t i o n a l i n a t r u c t i o n s which ope ra t e wi th
64-bit f i xed po in t operands. This option is dercr ibed i n Section X I .

A f l o a t i n g poin t opt ion is a l s o a v a i l a b l e fo r t h e NSSC-11,
cansirtr of 22 a d d i t i o n a l i n r t r u c t i o n s which are ueed t o perform ca lcu la-
tione on oprrandr with a wide range of magnitude and y i e l d r e e u l t e s ca l ad
t o preserve p rec i s ion .

This op t ion

This opt ion is descr ibed i n Sec t ion X I I ,

The following NSSC-I1 documents contain essentially the same information ae
provided in t h e correrponding Syetem/360 documentatim referenced herein:

NSSC-I1 h e e m b l e r Language, IBM Number 7935401
NSSC-I1 Linkage Ed i to r , IBM Number 7935413

v i i i

SECTION I

NSSC-I1 ARCHITECTURE

SET 1.1 NSSC-11 INSTRUCTION _ _ _
The NSSC-I1 is compatible with the IBM System/360 Problem State Standard
Instruction Set.
Instruction Set will execute properly without change on the NSSC-XI.

Problem programs written for the S/360 Standard

There are171valid NSSC-I1 instructions. Eighty-three of them are from the
87-member S/360 Standard Instruction Set. Omitted from the NSSC-I1 set
are HZ09 SIO, TCH, and TfO.

Three additional iaotructione, also described below, ars:

Mnemonic OP Code Format
Timer Read and Set TMRS A4 RS
Start I/O Sf0 As Rs
Set Storage Key SSK 08 RR

Note that although mnemonic SI0 i r ured for Start I/O, and is the only NsSc-111
f/O inotruction, it is not the same inrtruction (and doer not have the eame 1

op code) ar the 360 SIO.

dercribed below.

Op codes A4 and AS are unuaed in 360. SSK does
have the lame op coda 06 360 SSK, but perfoxnu a different function, am I

1.2 EXCEPTIONS

The NSSC-I1 is a Supervisor State compatible with the IBM Syrtem/360
with the following exceptions:

1 a 2 1 INPUT/OUTPUT

The 1/0 portion of the NSSC-I1 provides the means of communication between
the system f / O and test support equipment (TSE) with the CPU and the main
store (MS).
parallel channel providing direct I/O, buffered I/O, external interrupt,
and direct memory access (DMA).
patible.
instruction which controls direct I / O .

In the 16 bit NSSC-I1 the 1/0 is implemented as a 16 bit

The 16 bit channel is SP-1 hardware com-
There is only one 1/0 instruction - the SI0 (Start 1/01

All other 1/0 i r device controlled.

1.2.2 TIMER

The NSSC-I1 has A real time clock and an interval timer, each containing both
hardware and microprogramrued elements.
instruction.

Both are accessed by using the TMRS
The S/360 interval timer in memory location 80 is not supported.

-1-

The i n t e r v a l timer (INTIMER) i s 16 b i t s and is decremented every 112.64
microseconds.
i n t e r v a l timer causes a timer e x t e r n a l i n t e r r u p t (which can be masked;
see paragraph 3.6.5.1, Externa l I n t e r r u p t .)

The real t i m e c lock (RTC) is 32 b i t s and i s incremented every 112.64
microseconds. It has a maximum of 5 days, 14 hours , 23 minutes, and
5.116 seconds. It causes no i n t e r r u p t on overflow.

It has a maximum of 7 . 3 8 seconds. Underflow of t h e

1.2.3 . STORAGE PROTECT

The s i z e of t h e s t o r a g e p r o t e c t blocks i n t h e NSSC-I1 i s 1 0 2 4 bytes
(5 1 2 halfwords) and t h e operand of t h e SSK (Set Storage Key) ins t ruc-
t i o n supports one b i t f o r CPU and Buffered I f 0 protec t ion and a second
b i t f o r DMA p ro tec t ion . The 4 o r 5 b i t p ro tec t ion key of S / 3 6 0 is n o t
supported. The i n s t r u c t i o n ISK (I n s e r t Storage Key) does no t e x i s t on
t h e NSSC-11.

1.2.4 EXECUTION TIMES

The i n s t r u c t i o n execution t i m e i s no t t he same f o r t h e NSCC-I1 and any
I B M 360.

\

1.2.5 UNPREDICTABLE RESULTS

These occur due t o addressing e r r o r s , e t c . , on t h e IBH 360 series and w i l l
no t necessa r i ly b e t h e same unpredictable r e s u l t s on 'the NSSC-11.

1.2.6 ADDRESSING EXCEPTION

Execution of most i n s t r u c t i o n s r e s i d i n g i n t h e l a s t fullword of memory
w i l l y i e l d unpredic tab le r e s u l t s , un less memory s i z e is 6 4 / K bytes .

1,

j

1.2.7 ADDRESSING

A l l e f f e c t i v e a d d r e s s computation is l i m i t e d t o 20 b i t s except f o r t h e LA
(Load Address) i n s t r u c t i o n , which is 24 b i t s . Ef fec t ive addresses larger
than 6 5 , 5 3 5 w i l l be t runcated t o 20 b i t s (modulo 1 , 0 4 8 , 5 7 5) and w i l l not
cause an addressing exception unless t he modolo 1 , 0 4 8 , 5 7 5 address exceeds
the a v a i l a b l e main memory. I f t h e NSSC-11 has 1 , 9 4 8 , 5 7 5 bytes of main
memory, an addressing exception cannot occus.

-2-

N S S C I
1 1 0 1 0 1 0 1 1 1 1 0 0 0 l 0 l t l 0 0 0 1 0 i i 0 0 0 0 1 1 0 1 1 0 0 0 0 ~ 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 ~ l 0 0 0 0 0 0

1
I

I1

i j

SECTION I1

SYSTEM STRUCTURE

2.1 M A I N STORAGE

The NSSC-I1 has a maximum capac i ty of one mega--byte; however, t h e cu r ren t
capac i ty is 112K-bytes of Simplex memory o r SOK-bytes of Fau l t Tolerant
memory.
programmed. The system t r ansmi t s in€ormation between main s t o r a g e and
t h e CPU i n u n i t s of e i g h t b i t s , or a mul t ip l e of e i g h t b i t s a t a time.
Each e i g h t b i t u n i t of information i s c a l l e d a byte , t h e b a s i c bu i ld ing
block of a l l formats.

Bytes may be handled s e p a r a t e l y o r grouped toge the r i n f i e l d s .
word is a group of two consecutive by te s and i s t h e b a s i c b u i l d i n g block
of i n s t r u c t i o n s .
word is a f i e l d c o n s i s t i n g of two words (Figure I). The l o c a t i o n of any
f i e l d or .group of by te s i s s p e c i f i e d by t h e address of i t s l e f t m o s t byte .

The programmer should be aware of t he s i ze of t h e NSSC-I1 being

A h a l f -

A word i s a group of fou r consecutive by te s ; a double

The l eng th of f i e l d s i s e i t h e r implied by t h e ope ra t ion t o be performed
o r s t a t e d e x p l i c i t l y as p a r t of t h e i n s t r u c t i o n .
p l i e d , t h e information is s a i d t o have a f ixed l eng th , which can be
e i t h e r one, two, f o u r , o r e i g h t by tes .

When the l eng th i s i m -

When t h e l e n g t h of a f i e l d is not implied by the ope ra t ion code, b u t i s
s t a t e d e x p l i c i t l y , t h e information i s s a i d t o have v a r i a b l e f i e l d length .
This l eng th can be va r i ed i n one-byte increments.

Within any program format o r any f ixed l eng th operand f o r n a t , t h e b i t s
making up t h e format are consecut ive ly numbered from l e f t t o r i g h t
s t a r t i n g w i t h t h e number 0.

Byte

[l 1 0 0; 0 0 11
0 7

Hal fword

J K
1 1 01 0 0 0 1 1 101 0 0 1

0 7 E 15

Word

0 15 1b I 3 14 J1

\

Figure 1 . Sample Information Formats

-3-

.

2.2 ADDRESSING

, Byte l o c a t i o n s i n s t o r a g e are consecut ive ly numbered sLar t ing wi th 0 ;
each number is considered t h e address of t he corresponding byte .
group of by te s i n s t o r a g e i s addressed by t h e l e f tmos t by te of t h e
group.
def ined by t h e opera t ion .
binary address.
l oca t ions reserved f o r s p e c i a l purposes.

A

3 14
The number of by tes i n t h e group is e i t h e r implied o r e x p l i c i t l y

The address ing arrangement uses a 20 b i t q
1

;i
d

This set of main s to rage addresses inc ludes some

4
I

I

Storage address ing wraps around from t h e maximum by te address
t o address 0.
l a s t and p a r t i a l l y i n t h e f i r s t l o c a t i o n of s t o r a g e , and are processed
without any special i n d i c a t i o n of c ros s ing the maximum address boundary,
except , perhaps, s t o r a g e p ro tec t ion .

Variable l eng th operands may be loca ted p a r t i a l l y i n t h e

When only a part of t h e maximum s t o r a g e capac i ty i s a v a i l a b l e i n a given
i n s t a l l a t i o n , t h e a v a i l a b l e s t o r a g e is normally contiguously address-
a b l e , s t a r t i n g a t address 0. An address ing exception i s recognized when
any p a r t of a n operand is loca ted beyond t h e maximum a v a i l a b l e capac i ty
of an i n s t a l l a t i o n . Except f o r a few i n s t r u c t i o n s , t h e address ing
except ion is recogn'ized only when the d a t a are a c t u a l l y used and not
when t h e ope ra t ion is completed be fo re using t h e da t a .
except ion causes a program i n t e r r u p t i o n .

The addressing

2.3 INFORNATION PROCESSING !

Fixed l eng th f i e l d s , such as halfwords and double words, must be loca t ed
i n main s t o r a g e on an i n t e g r a l boundary f o r t h a t u n i t of information.
A boundary i s c a l l e d i n t e g r a l f o r a u n i t of information when i ts
s t o r a g e address i s a mul t ip l e of t h e l eng th of 'the u n i t i n by tes .
example, words (fou r bytes) must be loca ted i n s t o r a g e s o t h a t t h e i r
address is a m u l t i p l e of t h e number 4 . A halfword (two bytes) mus t
have an address t h a t is a mul t ip l e of t h e number 2 , and double word
(eight bytes) m u s t have an a d d r e s s that i s a multiple of t h e number 8.

S torage addresses are expressed i n b inary form. I n b ina ry , i n t e g r a l
boundaries f o r halfwords, words, and double words can be s p e c i f i e d
only by t h e b ina ry addresses i n which one, two, o r t h ree of t h e low
o rde r b i t s , r e s p e c t i v e l y , are zero (Figure 2) . For example, t h e
i n t e g r a l boundary f o r a word is a b inary address i n which the two
low o rde r p o s i t i o n s are zero .

For

-4-

, a

. . 1 .

C

c:

........ ._ .~ - .

Variab le l eng th f i e l d r are not l i m i t e d t o i n t e g r a l boundar iw , and my
o t a r t on any b y t e loca t ion .

.L W a d Word W a d
L I

D d l o W a d Daublo W a d

t

Figure 2. Integrr1,Boundrria for Halfwords, Words, and
Dou blr Words

2.4 STORAGE PROTECTION

Memory i s pro tec t ed (f o r s t o r i n g only) i n blocks of 1 K = 1024 by te r .
There is no f e t c h p ro tec t ion .
each block.
CPU;
Memory Access (DMA).
be read (r r f e r t o paragraph 8.5.SD SSK, and paragraph 3 .7 .3 , DMA).

An i n t e r r u p t w i l l set the s t o r a g e p r o t e c t key f o r t he f i r e t block
to 01, This w i l l allow tha CPU t o s t o r e in t h r f i r s t block and pre-
vent DMA from s t o r i n g i n t h a f i r s t block. All o t h e r s t o r a g e p r o t e c t
kayo are una l t e red by i n t e r r u p t s .

A two b i t p r o t e c t key is assoc ia t ed with
The first b i t on p r o t e c t s t he block a g a i n s t s t o r e s by the

The key i e set by the SSK i n s t r u c t i o n b u t cannot
t h e eecond b i t on p r o t e c t s t he block a g a i n s t e t o r e s by Direct

t

> Storoge Address

SECTION I11

CPU

MAIN STORAGE

3.1 CENTRAL PROCESSING UNIT FUNCTIONS

A

The Central Processing Unit (CPU) (Figuie 3) contains the facilities
for addressing main storage, for fetching or storing information, for
arithmetic and logical processing of data, for sequencing instructions
in the desired order, and for initiating the communication between

r-"-% Instrvctions

I v
I

I
I Computer Voriable-

Ficld-Cength
I System I Fixed-Point

I Control 1 Operations Operotions

storage and external devices.

\ f

Flo,itiny Point
Oper,ition

The system control section provides the normal CPU control that guides
the CPU through the functims necessary to execute the instructions.

I
A I I A

I I
L,--J

y 'I
1

!

Figure 3. Basic Concept of Central Processing Unit Functions

. . ..

i '. i
4

S

t

Integer -

ri- .
f
'3

S .

3.2 REGISTERS

Integer

The CPU can address information i n 16 genera l r e g i s t e r s . The genera l
r e g i s t e r s can be used as index r e g i s t e r s , i n address a r i t h m e t i c and
indexing, and as accumulators i n f ixed po in t a r i t hme t i c and l o g i c a l
opera t ions . The r e g i s t e r s have a capac i ty o f one word (32 b i t s) .
gene ra l r e g i s t e r s are i d e n t i f i e d by numbers 0-15 and are s p e c i f i e d by
a fou r b i t R f i e l d i n an i n s t r u c t i o n .
address ing mul t ip l e genera l r e g i s t e r s by having s e v e r a l R f i e l d s .

The

Some i n s t r u c t i o n s provide f o r

For some ope ra t ions , two ad jacent genera l r e g i s t e r s are coupled to-
ge the r , providing a two word capaci ty . I n these opera t ions , t h e addressed
r e g i s t e r conta ins t h e high order operand b i t s and must have an even
address; and the implied r e g i s t e r , conta in ing t h e low order operand b i t s ,
has t h e next higher address .

The C P U can address information i n 4 f l o a t i n g p o i n t r e g i s t e r s .
ters have a capaci ty of one word (3 2 b i t s) .
are i d e n t i f i e d by the numbers 0-2-4-6 a n d are spec i f i ed by t h e four b i t
K f i e l d i n an i n s t r u c t i o n .
index r e g i s t e r s .

The reg is -
The f l o a t i n g point r e g i s t e r s

The f l o a t i n g point r e g i s t e r s cannot be used a s

3 . 3 ARITHPfETIC AED LOGICAL U N I T

i

-7-

The a r i t h m e t i c and l o g i c a l u n i t can process b inary i n t e g e r s of f i xed
l eng th and l o g i c a l information of e i t h e r f ixed o r v a r i a b l e length .

3.3.1 FIXED POINT ARITHMETIC

The b a s i c a r i t hme t i c operand is the 32 b i t f i xed po in t b inary word.
S ix teen b i t halfword operands may be s p e c i f i e d i n most: opera t ions f o r
improved performance o r s to rage u t i l i z a t i o n (see Figure 4) . To pre-.
serve p rec i s ion , some products and a l l dividends are 64 b i t s long.

Figure 4. Fixed-point Number Formats

Because t h e 32 b i t word s i z e r e a d i l y accomqodates a 16-bi t address , f i xed
po in t a r i t h m e t i c can be used both f o r i n t e g e r operand a r i thme t i c and
f o r address a r i t hme t i c . This combined usage provides economy and per-
mits t h e e n t i r e f ixed po in t i n s t r u c t i o n set and s e v e r a l l o g i c a l opera-
tions t o be used i n address computation.
and l o g i c a l manipulation of address components a r e poss ib l e .

Thus, m u l t i p l i c a t i o n , s h i f t i n g , F.
c

.._......., . _.- .---...- ,,,-7 . I.-- ,-; 7y*-c- c* -4-<* ---- -.-- -.-

I

MditiOnS, subtractions, multiplications, divisions, and comparisons
are performed upon one operand in a register and another operand either
in a register or from storage. Multiple precision operation is made
convenient by the twos-complement notation and by recognition of the
carry from one word to another. A word in one register or a double
word in a pair of adjacent registers may be shifted left or right.
A pair of conversion instructions -- CONVERT TO BINARY and CONVERT TO
DECIMAL -- provides transition between decimal and binary radix (number
base) without the use of tables. Multiple register loading and storing
instructions facilitate subroutine switching.

3.4 DECIMAL NUMBERS

Decimal numbers are represented by four bit binary coded decimal d i g i t s
packed two to a byte (see Figure 5). They appear in fields of variable
1ength.and are accompanied by a sign in the right-most four bits of the
low order byte. Operand fields may be located on any byte boundary,

. .
Digit Code Sign Code

0
1
2
3
4
5
6
7
8
9

0000 + 1010
0001 - 1011
0010 + 1100
0011 - 1101
0100 + 1110
0101 '+ 1111
01 10
0111
1060
1001

Figure 5. Bit Codes for Digits and Signs

and may have a length up to 31 digits and sign.
in an operation may have different lengths.
a byte (Figure 6) and of variable length fields within storage results
in efficient use of storage, in increased arithmetic performance, and in
an improved rate of data tranemission between storage and files.

Operands participating
Packing of digit8 within

Highh-ordrr Byto Lw-ordsr Byto
..I ..-

Digit Digit Digit Diol? Sign-.

Flgun 6. Packed DocimI Numkr Format

-8-

Docima1,numberr may a l r o appear i n a zoned format ar a rubrrrt of t h e
e i g h t b i t alphanumeric character e e t (Figure 7) .
i r requi red f o r character ret e e n s i t i v e 1/0 devicer .
' b a r carrier its s i g n i n t h e lef t -mort four b i t e of t h e low order by te *

This r ep resen ta t ion
A zoned format n u -

Figuro 7. Zoned D o c i d Number Format

I n r t r u c t i o n a are provided f o r packing and unpacking decimal numbers
r o t h a t they may be changed from t h e zoned t o t h e packed format and
vice versa.

3.5 LOGICAL OPERATIONS

Logical information is handled ae f ixed o r v a r i a b l e l eng th da ta .
i r oubjec t t o euch opera t ions as comparison, t r a n s l a t i o n , b i t t e s t i n g ,
and b i t r e t t i n g .

It

When used as a f ixed length operand, l o g i c a l information can coneie t of
e i t h e r one, f o u r , o r e i g h t by te s and I8 proceseed in t he genera l r e g i s t e r s
(Figure 8).

A l a r g e po r t ion of l o g i c a l information c o n r i e t s of a lphabe t i c o r numeric
cha rac t e r codes, c a l l e d alphameric d a t a , and ie used f o r communication
wi th cha rac t e r B e t s e n s i t i v e 1/0 devices .
var iab le- f ie ld- length format and can cons i e t of up t o 256 by tes
(Figure 9) .
r i a h t b i t by te a t a time.

This information has t h e

It ie proceescd a torage t o r t o r a g e , l e f t t o r i g h t , an

Fisrd-Lrngth Logical Operand (Onr, Four, or Eight Bytra)

I Logier1 Data I
Figure 8. f iwd-Length Logical Information

Varirblr-Length Logical Operand (Up to 266 Bytea) - -
- - - - --

Figure 8. Variablr-Length Logical Information

-9-

.

3.6 PROGRAM EXECUTION

The CPU program COnSi6tEJ of instructions, index words, and control
words specifying the operations to be performed. This information
residee in main storage and general registers, and may ba operated
upon ar data.

3.6.1 INSTRUCTION FORMAT

The length of an instruction format can be one, two, or three halfwords.
It l e related to the rider of storage addresses necessary for the
Operation.
reference to main storage.
storage address specification; a three halfword instruction provides
two storage address rpecifications. All instructions must be located

baric instruction formats.

An iasbruction consisting of only one halfword causes no
A two halfword instruction provides one

storage on integral boundaries for haY.fwords. .Figure 10 shows five

The five basic Instruction formats are denoted by the format codes RR,
Bx, m, SI, and SS. The format codes express, in general term, the
operation to be performed. RR denotes a register-to-register operation;
Rx, a register-and-indexed storage operation; RS , a register-and-rtorage 1

(1
operation; SI, a storage and ipmrediate-operand operation; and SS, a
storage-to-storage operation. An immediate operand is one contained I

wlthin the Instruction. I

For purpores of describing the execution of instructions, operands are
designated as first and second operands and, in the case of branch-on-
Index instructions, third operands. These name8 refer to the manner in
which the operands participate.
inrtruction format applies is generally denoted by the number following
the code name of the field, for example, R1, B1, L2, D2.

In each format, the firat inetructlon halfword consists of two parte.
The firrt byte containe the operation code (op code). The length and
f o m t of an instruction are specified by the firet two bits of the
operation code,

r

i
I

The operand to which a field in an

3.6.2 ADDRESS GENERATION

For addteesing purposes, operands can be grouped in three claeees:
explicitly addressed operands in main storage; immediate operands placed
u part of the instruction etrea in w i n storage; and operands located
in the general regirters.

-10-
* .

Iw Fornot

RS

1
I

INSTRUCTION LENGTH RECORDING
INSTRUCTION INSTRUCTION

FORMAT
BIT POSITIONS

(0.1 1 LENGTH

00
01
10
11

One hrlfword
Two halfword,
Two halfword'
?reo halfword'

RR
RX

RS or SI
88

NOTE: NSSC-II instructions above the standard System/360 set may
not adhere to this instruction length format convention.

Flguro 10. Fivr Buic lnatrucdon Formats

-11-

To permit t h e ready r e l o c a t i o n of 2rogram segments and t o provide f o r
t h e f l e x i b l e s p e c i f i c a t i o n s of i n p u t , ou tpu t , and working areas, a l l
i n s t r u c t i o n s r e f e r r i n g t o main s to rage have been given the capac i ty
of employing a f u l l address .

The address used t o r e f e r t o main s t o r a g e i s generated from t h e fo l -
lowing t h r e e b inary numbers.

3.6.2.1 Base Address (B)

Base Address (B) is a 20-b i t number contained i n a general r e g i s t e r
s p e c i f i e d by t h e program i n t h e B f i e l d of t he i n s t r u c t i o n .
f i e l d is included i n every address s p e c i f i c a t i o n .
be used as a means of s ta t ic r e loca t ion of programs and da ta .
type c a l c u l a t i o n s , i t can s p e c i f y t h e loca t ion of an a r r a y and, i n
record-type processing, i t can i d e n t i f y the record.
provides f o r addressing t h e e n t i r e main s to rage .
a l so be used for indexing purposes.

The B
The base address can

I n array-

The base address
The base address may

3.6.2.2 Index (X)

Index (X) is a 20-bit number contained i n a genera l r e g i s t e r spec i f i ed
by t h e program i n t h e X f i e l d of t he i n s t r u c t i o n . It is included only
i n t h e address s p e c i f i e d by the RX i n s t r u c t i o n format. The RX format
i n s t r u c t i o n s permit double indexing: i . e . , t he index can be.used t o
provide t h e address of an element w i th in an ar ray .

3.6.2.3 Displacement (D)

Displacerncnt (D) i s .a 12-bit number contained
and is included i n every address computation.

i n t h e i n s t r u c t i o n format
The displacement provides

f o r r e l a t i v e addressing up t o 4095 bytes beyond the element o r base
address .
spec i fy one of many i t e n s assoc ia ted with an element.
s i n g of records , t h e displacement can be used t o i d e n t i f y items wi th in
a record.

I n a r r a y type ca l cu la t ions the displacement can be used t o
I n the proces-

I n forming t h e address , t he base address and index are t r e a t e d as
unsigned 20-bit pos i t i ve binary in t ege r s . The d i S iJ l acement i s s imi la r ly
t r ea t ed a s a 1 2 - - b i t pos i t i ve binary in t ege r . The Clirce arc' a d d e d as
20 b i t b inary numbers, ignoring overflow. Since every address includes
a base, he s u m i s a l w a y s 20 b i t s long. T h e address b i t s a r e numbered
12-31 corrc:sponding to the numbering o f the base address and i n d e x
b i t s i n t he general r e g i s t e r ,

-12-

. .. .- _. . . . - - . ,

’. ’ .
Y.

Add 7

, .!

9

300 Store 3 10 14 I
11 ? 8 1 1 I2 I IS 16 1920

Execution of t he s t o r e i n s t r u c t i o n s t o r e s t h e conten ts of genera l
r e g i s t e r 3 a t a main s t o r a g e loca t ion addressed by the sum of 300 and
t h e low order 20 b i t s of genera l r e g i s t e r s 14 and 10.

3 . 6 . 3 SEQUENTIAL INSTRUCTION EXECUTION

Normally, t h e opera t ion of t he CPU is con t ro l l ed by i n s t r u c t i o n s taken
i n sequence.
t h e i n s t r u c t i o n address i n the cu r ren t PSW. The i n s t r u c t i o n address i s
increased by t h e number of by tes i n the i n s t r u c t i o n fe tched t o address
t h e next i n s t r u c t i o n i n sequence. The i n s t r u c t i o n i s then executed and
t h e same s t e p s are repeated using the new va lue of t he i n s t r u c t i o n
address .

An i n s t r u c t i o n i s fe tched from a loca t ion s p e c i f i e d by

The program may have zeros i n the base address , index, o r displacement
f i e l d s .
address component.
is t o be used in forming the address , r ega rd le s s of t he conten ts of
gene ra l r e g i s t e r 0.
X n i t i a l i z a t i o n , modi f ica t ion , and t e s t i n g of base addresses and indexes
can be c a r r i e d ou t by f ixed po in t i n s t r u c t i o n s , . o r by BRANCH AND LINK,
BRANCH ON COUNT, o r BRANCH-ON-INDEX i n s t r u c t i o n s .

A s an a i d i n descr ib ing the l o g i c of t he i n s t r u c t i o n format, examples

A zero i s used t o i n d i c a t e t h e absence of t he corresponding
A base o r index of zero i m p l i e s t h a t a zero quan t i ty

A displacement of zero has no s p e c i a l signifj-cance.

of two i n s t r u c t i o n s and t h e i r r e l a t e d i n s t r u c t i o n formats fol low.

Execution of t h e ADD i n s t r u c t i o n adds t h e conten ts of genera l r e g i s t e r
9 t o t h e conten ts of genera l r e g i s t e r 7 and the sum of t h e add i t ion is
placed i n genera l r e g h t e r 7.

R X Format

Conceptually, a l l halfwords of an instruction are fetched from storage
after the preceding operation is completed and before execution of the
current operation, even though physical storage word size and overlap
of instruction execution with storage access may cause actual instruction
fetching to be different.
in storage by the inmrediately preceding instruction.
sequential operation may be caused by branching, status switching,
interruptions, or manual intervention.

Thus, it is possible to modify an instruction
A change from

3.6.3.1 Branching

The normal sequential execution of instructions is changed when reference
l a made to a subroutine, when a two-way choice is encountered, or when
a oegment of coding, such as a loop, is to be repeated.
can be accomplished with branching instructions. Provision is made for
eubroutine linkage, permitting not only the introduction of a new
instruction address but also the preservation of the return address and
ocrsociated Information.

A l l these tasks

Decision d i n g is generally and symmetrically provided by the BRANCH
This instruction inspects a two bit condition

code that reflects the result of a majority of the arithmetic, logical,
and 1/0 operatlone.
one of four states, and the conditional branch can specify any selection
of these four states aa the criterion for branching.
condition code reflects such conditions as nonzero, first operand high,
equal, overflow, channel busy, zero, etc. Once set, the condition code
remains unchanged until modified by an instruction that reflects a dif-
ferent condition code.

CONDITION instruction.

Each of these operations can set the code in any

For example, the

The two bite of the condition code provide for four possible Condition
code settings: 0, 1, 2, and 3. The specific meaning of any setting is
aignificant only to the operation setting the condition code.

Loop control can be performed by the conditional branch when it t e s t e
the outcome of address arithmetcic and counting operations.
particularly frequent combinations of arithmetic and teste, the
instructlone B U C H ON COUNT' and BRANCH ON INDEX are provided.
rpecialized branches provide increased performance for these tasks.

For some

These

3.6.4 PROGRAM STATUS WORD

A double word, the program statue word (PSW), contains the information
required for proper program execution.
address, condition code, and other fields to be discussed.
the PSW i r used to control instruction sequencing and to hold and
indicate the status of the system in relation to the program currently

The PSW includes the instruction
In general,

i

I

I

'c

e

e

System Mask Key AMWP

being executed.
PSW".
the CPU can be preserved for subsequent inspection.
PSW or part of a PSW, the state of the CPU can be initialized or changed.
Figure 11 shows the PSW format.

The active or controlling PSW is called the "current

By loading a new
By storing the current PSW during an interruption, the status of

Interruption Code

ILC CC Program
Mask

0-7 System Mask
0 I/O Mask
1)

Instruction Address

5
6 J 7 Timer Mask

6-11 Must be 0
12 ASCll(k)
13 Machine-Chec.. Mask (MI

Figure 1 1. Program Status Word Format

3.6.5 INTERRUPTION

14
15

16-31
32-33
34-35
36-39

36
37
38
39
40

4 1-43
44-63

Wait State (W)
Problem State (P)
interruption Code
Instruction Length Code (ILC)
Condition Code (CC)
Program Mask
Fixed Point Overflow Mask
Unused
Exponent Ovcrflow Mask
Significance Mask
If on in machine check OLD PSW indicate
Unused
Instruction Address

. I

a parity error

The interruption system permits t h e CPU to change s ta te as a r e s u l t
of conditions external to the system, in input/output (I/O) units, or
in the CPU itself.
sible:

Each class has two related PSTJs called ''old'' and "new" in unique main
storage locations (Figure 12).
merely storing the current PSI< in its "oldll position and making the PSW
at the "new'l position the current PSW.
status information of the system existing at the time of the interruption.
If, at the conclusion of the interruption routine, there is an instruction
to make the old PSW the current PSW, the system is restored to the state
prior to the interruption and the interrupted routine continues.

Five classes of interruption conditions are pos-
I/O, program, supervisor call, external, and machine check.

In all classes, an interruption involves

The "old" PSW holds a l l necessary

-15-

d I .

0
8

16
24
32
40
48
56

66-67
72
76
80
84
88
96

1 04
112
120

ADDRESS

0000 0000
0000 1000
0001 0000
0001 1000
001 0 0000
0010 1000
0011 0000
0011 1000
0100 0000
01 00 1000
0100 1100
0101 0000
0101 0100
0101 1000
01 10 0000
0110 1000
0111 0000
0111 1000

LENGTH

Double Word
Double Word
Double Word
Double Word
Double Word
Double Word
Double Word
Double Word
Double Word
Word
Word
Word
Word
Double Word
Double Word
Double Word
Double Word
Double Word

PURPOSE

Initial Program Loading PSW
Unused
Unused
External old PSW
Supervisor call old PSW
Program old PSW
Machine check old psw
Input/Output old PSW
Buffered l/O Status Word
Channel Address Word
Unused
Unused
Unused
Externai new PSW
Supervisor call ncw PSW
Program new PSW
Machine check new PSW
Input/Output new PSW

Figure 12. Permanent Storage Assignments

I n t e r r u p t i o n s are taken only when the CPU i s i n t e r r u p t i b l e f o r t he
i n t e r r u p t i o n source.
mask b i t s i n t h e PSW may be used t o mask c e r t a i n i n t e r r u p t i o n s .
masked o f f , an i n t e r r u p t i o n e i t h e r remains pending o r i s ignored.
system mask may cause 1/0 and timer i n t e r r u p t i o n s t o be ignored, and
t h e machine-check mask may cause machine hard s tops .
cannot be masked o f f .

The system mask, program mask, and machine check

The
When

\

Other interruptions

An i n t e r r u p t i o n always takes p l ace a f t e r one i n s t r u c t i o n execut ion i s
f in i shed and before a new i n s t r u c t i o n execut ion i s s t a r t e d . However, t he
occurrence of an i n t e r r u p t i o n may a f f e c t t h e execution of t h e cu r ren t
i n s t r u c t i o n .
t h e cause of t h e i n t e r r u p t i o n i s i d e n t i f i e d and provis ion is made t o
l o c a t e the l a s t executed i n s t r u c t i o n .

To permit proper programed a c t i o n following an i n t e r r u p t i o n ,

3.6.5.1 Externa l I n t e r r u p t s

Ex te rna l i n t e r r u p t s from two sources can occur: timer i n t e r r u p t s (when
t h e i n t e r v a l timer underflows) and i n t e r r u p t s from t h e i n t e r r u p t key.
These i n t e r r u p t s are serv iced between i n s t r u c t i o n s .

These two types of ex te rna l i n t e r r u p t s may be masked o f f .
r u p t s are masked by b i t 7 of t h e system mask (PSW b i t 7) , as usua l .
A 1 enables timer i n t e r r u p t s ; a 'O masks them and the i n t e r r u p t remains
pending.
0 (PSW
paragraph 3 . 6 . 5 . 3) .
and t h e channel is hung,
and need no t be zero upon PSW load o r i n t h e SSM i n s t r u c t i o n .

T i m e r i n t e r -

Externa l i n t e r r u p t key i n t e r r u p t s are masked by system mask b i t
b i t 0) which is a l s o used t o mask 1/0 i n t e r r u p t s (r e f e r t o

If a k e y . i n t e r r u p t is d isab led , i t remains pending
Other b i t s of the system mask are ignored

I n NSSC-11, the two t y p e s of ex t e rna l i n t e r r u p t s are n o t presented simul-
taneously if they occur simultaneously o r if they are enabled sirnul-
taneously. I n e i t h e r case, t h e timer i n t e r r u p t i s taken and the key

C c

c -
-16-

..-. .

i

d

f
'1

i

1

i n t e r r u p t remains pending.
X'0080' and t h e e x t e r n a l i n t e r r u p t key i n t e r r u p t has i n t e r r u p t code
X'0040 ' .

The timer i n t e r r u p t has i n t e r r u p t code

3.6.5.2 Program I n t e r r u p t s

The following program exceptions are monitored i n NSSC-11:

I n t e r r u p t i o n
Code

1
2
3
4
5
6
7

9
10
11
12
13
14
15

a

00000001
00000010
00000011
00000100
000 00 101
00000110
00000111
00001000
00001001
000010 10
0000 1011
00001100
00001101
00001 110
00001111

Program I n t e r r u p t i o n
Cause

Operation
Privi leged operat ion
E x e c u t e
Pro tcc t i o n
A d d r e s s iiig
S p e c i f i c a t i o n
Data
Fixed-point o v e r f l o w
Fixed-point d iv ide
Unused
Unused
Exponent ove r f low
Exponent underflow
Signi f icance
Floating-point divide

,
More than one cause of a program i n t e r r u p t i o n may occur a t once, b u t only

\ ' one program i n t e r r u p t is taken.
when t h i s occurs :

I n NSSC-11, the iollowing p r i o r i t i e s a p p l y

I n s t r u c t i o n Fetch:

Addressing and s p e c i f i c a t i o n exceptions may co-occur.
address (address of t h e f i r s t halfword of t h e i n s t r u c t i o n) i s o u t of
t h e bounds of implemented memory, an addressing i n t e r r u p t w i l l occur.
I f , however, s p e c i f i c a t i o n is bad (not on halfword boundary) and t h e
second, t h i r d , o r f o u r t h halfword of the i n s t r u c t i o n has a bad address,
a s p e c i f i c a t i o n i n t e r r u p t occurs.

I f t h e i n s t r u c t i o n

I n s t r u c t i o n Execution:

Occurrence of an opera t ion except ion (i n v a l i d op code) r u l e s o u t o t h e r
i n t e r r u p t i o n s . However, p r i v i l e g e d opera t ion , p r o t e c t i o n , addressing,
and s p e c i f i c a t i o n may co-occur.
below. Barring o t h e r f a c t o r s , also discussed below, t h e p r i o r i t y of
t h e s e i n t e r r u p t s i s :

P r i v i l e g e d i n s t r u c t i o n s are d e a l t with

Addressing
S p e c i f i c a t i o n
Storage P r o t e c t i o n

c a. .'. 4

? -

-17-

1’

I a) Pr iv i l eged operat ions

i

1

, 1

i

There are s i x p r i v i l e g e d i n s t r u c t i o n s i n NSSC-11. If a
p r i v i l e g e d opera t ion except ion occurs toge ther wi th a
memory r e fe rence exception (one of t he t h r e e above) the
fol lowing except ion has p r i o r i t y and causes t h e i n t e r -
rup t :

i) SSK - pr iv i l eged opera t ion
ii) SSM - memory r e fe rence , i n t h e above o rde r
iii) Diagnose - pr iv i l eged opera t ion
i v) SI0 - memory re ference , i n t h e above order
v) TMRS - For t h e i n t e r v a l timer, t h e memory

r e fe rence takes p r i o r i t y . This i s a l s o t h e
case f o r a bad RTC address . I f only the
second halfword of t he RTC address is bad,
t h e p r iv i l eged opera t ion except ion w i l l t ake
precedence over t he addressing except ion
(t h e RTC address need not be fullword a l igned) .
Amemory re ference except ion can take p l ace even i n
cases of timer read only , bu t only f o r t h e
f i r s t halfword address . (The second halfword
is no t read when the RTC i s t o be read only.)

vi) LPSiJ - If the new PSW address i s not on a halfword
boundary o r i s an i n v a l i d address , t h e addressing
o r s p e c i f i c a t i o n except ion w i l l have p r i o r i t y over
p r iv i l eged operat ion. I f t he new PSW address
i s not on a double word boundary, t he p r iv i l eged
opera t ion i n t e r r u p t w i l l occur if i n problem
state.

b) I n the i n s t r u c t i o n s D and M, a memory re ference except ion
(f o r t h e second operand) takes precedence over a
s p e c i f i c a t i o n except ion caused by improper (odd)
r e g i s t e r s p e c i f i c a t i o n f o r t he f i r s t operand.

I n SS i n s t r u c t i o n s , memory r e fe rence except ions f o r t he
second operand take precedence over those f o r t h e
f i r s t operand.

c)

Program i n t e r r u p t i o n s can be masked o f f Ly the program mask i n t h e PSW
(b i t s 36-39) .
f i e d i n the following tab le .
r e su l t s i n an in t e r rup t ion .
occurs.
f loa t ing-poin t a d d i t i o n and sub t r ac t ion a rc completed.

Each b i t i s assoc ia ted w i t h a program exception, as speci-
When the mask b i t i s one, the exception

When the mask b i t i s zero, no i n t e r r u p t i o n
The s ign i f i cance mask b i t a l s o dcterrnincs the manner i n which

PROGIlhM
PNSK E1T PRO G IUPI EXCEPT I ON

36
37
35
39

Fixed-point overflow
Unused
Exponent underflow
S i g n i f i c a n c e

-18-

3.6.5.3 Input/Output I n t e r r u p t i o n

An 1/0 i n t e r r u p t i o n provides a means by which t h e CPU responds t o
condi t ione i n t h e f/O u n i t e .

An 1/0 i n t e r r u p t i o n can occur only when the mask b i t a s soc ia t ed wi th 1/0
is a e t t o one.
recorded i n b i t e 16-31 of t h e o ld PSW.

The s t a t u s and address of t h e 1/0 u n i t involved are

3.6.6 MACHINE STATES

3.6.6.1 Running o r Waiting State

In t h e running state, i n s t r u c t i o n f e t ch ing and execut ion proceed i n t h e
normal manner.
wait an i n t e r r u p t i o n , f o r example, an 1/0 i n t e r r u p t i o n .
a t a t e , no i n s t r u c t i o n s are processed; t h e timer is updated, and t h e 1/0
and external i n t e r r u p t i o n s are accepted, unless masked.
waf t ing rtate is determined by the s e t t i n g of b i t 14 i n t h e PSW.

The wait state ig normally en tered by t h e program t o
In t h e w a i t

Running o r

3.6.6.2 Maclked o r I n t e r r u p t i b l e S t a t e

The CPU may be i n t e r r u p t i b l e o r masked f o r I / O , t imer , machine-check,
and ioma program i n t e r r u p t i o n s .
clam of i n t e r r u p t i o n s , t hese i n t e r r u p t i o n s are accepted. When t h e
CPU is masked, t h e 1/0 and timer i n t e r r u p t i o n s remain pending, whereas
program i n t e r r u p t l o n e are ignored. The i n t e r r u p t i b l e state8 of tha
CPU are changed by changing t h e mask b i t s of t h e PSW.

When the CPU is i n t e r r u p t i b l e for a

3.6.6.3 S u ~ e r v i s o r o r Problem State

I n the problem rtate, 1/0 and a group of c o n t r o l i n s t r u c t i o n s are
i n v a l i d . In t h e superv isor state, a l l i n s t r u c t i o n s are v a l i d . The
choice of problem 61: mupervieor atate l e detarminad by b i t 15 of the
PSW .
3.7 SYSTEM 1/0

This s e c t i o n describes t h e i n t e r f a c e of t he NSSC-I1 with o ther system
equipment .
NSSC-I1 has a s i n g l e 16-bit 1/0 channel providing communication between
the CPU and main memory, and the 1/0 devices (of which the re may be 16)
and the test support equipment.
provided only through SI0 i n s t r u c t i o n .
i n i t i a t e d .

Direct, o r program-ini t ia ted, 1/0 is
All other I / O is device o r TSE

-19-

The NSSC-I1 channel provides th ree t y p c s of d e v i c e i n i t i a t e d in f or-
mation t r a n s f e r :
(3) External I n t e r r u p t s .
I / O .
devices t o b e a t tached d i r e c t l y t o t h e HTC channel.

(1) Buffered I / O , (2) Direct Memory Access (UYA), and
Program i n i t i a t e d 1/0 is provided by Direct

A f o u r b i t device i d e n t i f i c a t i o n code permits up t o 16 system

3.7.1 DIRECT 1/0

This a l lows, using the S I 0 i n s t r u c t i o n , t h e t r a n s f e r of a 16-bit con-
t r o l word t o a device and t h e t r a n s f e r of a 16-bi t d a t a (h a l f) word t o
o r from a device. Though t h i s i s t h e only program-controlled I/O, and
i t only allows t r a n s f e r of one halfword a t a t i m e t o o r from memory,
t h e programmer can, using SIO, send a c o n t r o l word t o a device t e l l i n g
i t t o i n i t i a t e I/O (see SIO).

3 . 7 . 2 BUFFEFSD 1/0

This permits devices t o t r a n s f e r one o r more 16-bit halfwords t o o r
from a tab le i n main memory without knowing t h e l o c a t i o n of t h e t a b l e .
Buffered 1/0 occurs between i n s t r u c t i o n s bu t does n o t cause a n
i n t e r r u p t (i..e., PSWs are n o t swapped, e t c .) . A device can cause a n
1/0 i n t e r r u p t t o s i g n a l t h a t buf fered 1/0 has occurred.

3 . 7 . 3 DIRECT PlEMORY ACCESS (DMA)

DMA al lows devices t o send d a t a t o o r from main memory without going
through t h e CTU.
error occurs; a device may s i g n a l DPiA by causing a n i n t e r r u p t

i t i s i n v i s i b l e t o t h e programmer except when an

3 . 7 . 4 INPUT/OUTPUT OPERATIONS

The NSSC-I1 i n t e r f a c e provides a 16-bit paral le l . channel f o r suppsr t of
two c l a s s e s of 1/0 equipment. These are:

1. System 1/0 devices and

2 . Test support equipment (TSE) 1/0 devices .

A p a r t i c u l a r 1/0 device i s c l a s s i f i e d based on whether i t i s a t tached
d i r e c t l y t o t h e i'!SSC-II o r i n d i r e c t l y v i a t h e TSE.
been made t o a l low both program and device i n i t i a t e d information
t r a n s f e r which inc ludes 1/0 commands, d a t a words, and e x t e r n a l 1/0
i n t e r r u p t s .

Further provis ion has

This p o r t i o n of t h e manual descr ibcs t h e programmed c o n t r o l of I/O
devices by t h e channel and c e n t r a l processing u n i t (CPLJ) including
formats f o r t h e var ious types of 1/0 c o n t r o l information. Although

i

C

c

i

-20-

,

certain information, f o m a t s , etc., may be app l i cab le t o both system
and TSE I/O, each type is descr ibed ind iv idua l ly f o r s i m p l i c i t y .

Buffered 1/0 allows a devica t o t r a n s f e r s i n g l e o r mul t ip l e words of
data to/from a t a b l e i n main memory without knowing t h e l o c a t i o n of the
t ab le .
When t h e t a b l e is ful l /empty the device is n o t i f i e d by a s i g n a l on t h e
ZEBO COUNT l ine.
each buf fered device code (16 codes).

The CPU keeps t r a c k of t a b l e word count and address incrementing.

Separa te inpu t and output t a b l e s are maintained f o r

The Channel Addrees Word (CAW) a t memory l o c a t i o n 72, p o i n t s t o t h e
f i r o t l o c a t i o n of a t a b l e t h a t c o n s i s t s of s i x t e e n (16) e i g h t (8) BYTE
entries t h a t con ta in the inpu t s to rage address and count , and output
r t o r a g a address and count of each of t h e (poss ib le) 16 Buffered I/O
davicar (nee Figure 13).

The programmer c o n t r o l s Buffered 1/0 by i n i t i a l i z a t i o n of t h e 1/0
addrere and word count in t h e Buffered 1/0 Control Table.

To i n i t i a l i za a buf fe r 1/0 requence the progra~lmar must: \

1. S e t t h e CAW (l o c 72) t o t he addrere of t h e start of
t h e Buffarrcl 1/0 t a b l e .

2. S e t t h e device 1/0 word count (i n the buf fered 1/0 t a b l e)
t o tho n*0~ of 16 b i t d a t a word6 t o be t r a n s f e r r e d ,

I 1

i

i

‘0
i

3. Set t he device 1/0 word address (i n t h e Buffered 1/0 t a b l e) t o
t h e memory addreee of the beginning of t he d a t a t o be w r i t t e n
out (or t o a l o c a t i o n f o r t he da t a t o be w r i t t e n i n) ,

4. S t a r t the 1/0 device eo i t w i l l raqueot a b u f f e r 1/0 i n t e r r u p t .
Thie ir usua l ly done by g iv ing a d i r e c t out cormnand t o the
device v i a a S I 0 instruction.

Figure 13. Buffered I/O Device Tabla

-21-
’ .

The 1/0 word count As updated by one nd the 1/0 address i s updated by
two i n the 1/0 Control Table f o r each s i x t e e n (16) b i t [two by te] word
t h a t i s t r a n s f e r r e d t o o r from memory by t h e CPU, un les s t h e 1 /0 word
count i s i n TWOS complement form. I f t h e 1/0 word count i s i n twos com-
plement form, t h e 1/0 word count and 1/0 word address are r.ot updated a t
t h e end of a Buffered 1/0 t r a n s f e r . Therefore, t he 1/0 address and word
count s t a r t from t h e i n i t i a l va lue each time t h e 1/0 device i n i t i a t e s a
d a t a t r a n s f e r . This method of d a t a t r a n s f e r is u s e f u l f o r devices t h a t
send a b u r s t of d a t a p e r i o d i c a l l y . Once a device i n i t i a t e s a t r a n s f e r ,
t h e 1/0 channel is t i e d up u n t i l t h e device releases i t .

If an 1 /0 device r eques t s a d a t a t r a n s f e r and t h e 1/0 Word Count i s zero ,
an 1/0 e r r o r i n t e r r u p t w i l l be generated.
furn ished as t h e i n t e r r u p t i o n code i n t h e 1 /0 o ld PSI? upon most I/O i n t e r -
r u p t s inc luding e r r o r i n t e r r u p t . The NSSC-11 c h a n n e l code word is shown i n
F igure 14.

The 1/0 Channel Code word i s

It should be noted t h a t even though the CPU hardware i s i n t e r r u p t e d t o
handle t h e buf fered 1/0 t r a n s f e r s , t h e program is n o t i n t e r r u p t e d and
t h e t i m e consuming save opera t ions a s soc ia t ed wi th program i n t e r r u p t are
n o t requi red .
and do n o t use any r e g i s t e r v i s i b l e t o t h e programmer.

3.7.5 BUFFERED 1/0 STATUS WORD

Buffered 1/0 opera t ions are handled between i n s t r u c t i o n s

. I .

The Buffered 1/0 s t a t u s word (l o c 66-67) i s set t o t h e c u r r e n t Buffered
110 address dur ing Buffered 1/0 opera t ions and i s c leared t o zero when
a Buffered 1/0 ope ra t ion i s coEpleted success fu l ly .

I f an addressing except ion , memory p r o t e c t except ion , o r p a r i t y e r r o r
occurs during Buffered I / O , an exception program i n t e r r u p t i o n w i l l be
generated with t h e Buffered 1/0 s ta tus word set non zero ; t h e conten ts
w i l l i n d i c a t e t h e address of t h e Buffered 1/0 word i n use a t t h e t i m e
t h e e r r o r occurred.

3.7.6 SERVICE INTERRUPT

I n t e r r u p t s permit a device t o i n t e r r u p t t h e normal program sequence.
s i n g l e l e v e l of i n t e r r u p t i s provided. Programmed p r i o r i t i e s may be
implemented. I n t h e i n t e r r u p t sequence an 1 /0 Channel Code word i s s e n t
from t h e device and s t o r e d as t h e I n t e r r u p t i o n Code i n t h e o l d 1/0 PSW
(s e e F igure 14) .

A

The new 1/0 PSW i s used as t h e cu r ren t PSL7 on a l l 1 /0 i n t e r r u p t s except
Buffered I / O .
H e w i l l never see b i t 1 set: i n t h e 1/0 i n t e r r u p t code.

A Direct Pfernory Access (DMA) e r r o r w i l l cause a normal 1/0 i n t e r r u p t ,
except t h e only b i t s s e t i n the o l d 1 /0 PSW i n t e r r u p t code w i l l be b i t s
3 o r 4 i n d i c a t i n g DMA e r r o r 1 o r 2 (see Figure 1 4) .

A Buffered 1/0 i n t e r r u p t i s n o t v i s i b l e - t o t h e programmer.

s
c

-22-

N CPU DEVICE DMA
USE ADDRESS

T 1.0 E%-

8 11 12 16 SIT 0 1 2 3 4 6 8 7

FUNC'T
CODE

0

I NT ERROR U
b

1

1

2

LOGIC 0 - 110 SERVICE
LOGIC 1 - TSE INTERRUPT

LOGIC 1 - BUFFERED INPUT
LOGIC 2 BUFFERED OUTPUT

LOGIC 1 - EXTERNAL INTERRUPT
LOGIC 0 - BUFFERED IlO

3 DMA ERROR NO. 1

4 DMA ERROR NO. 2

5

8-1 1

UNUSED

TAG [DEVICE ADDRESS) OR INTERRUPT CODE

12.16 OEVJCE FUNCTION CODE (MUST NOT 8E ZERO)

Pigun 14. IlO Interrupt Word

3.7.7 TSE 1/0 DEVICES

USED ONLY
FOR BIT0
- 0

The TSE har a Typewriter/Paper Tape Reader or Typewrlter/Magnetlc Tape
Reader, which a r e both direct I / O .
equipment and all data received by uelng the SI0 inst ruct ion. The command
word (reo Figure 15 f o r TSE commande) I s placed a t the e f f ec t ive address
(EA); the output data word ie placed i n the register designated by R1; and
the data word read w i l l be i n the register designated by R3 after ins t ruc t ion
cornplation.

A l l commands are sent t o the TSE

To write data t o the typewriter:

1.

2.

3.

4.

1.' :
, I

S o d a command t o put the typewriter in t he output modo.

S a d each charactor (byte) t o the typawritar by placing i t tiat j u t i f l e d i n R l u ld sanding a wri t e typewriter command.

Check the condition code a f t a r each SI0 i n s t ruc t ion t o e n ~ u r a
the 1/0 i n t a r f ace war not busy and the in s t ruc t ion was c o w
plotad ruccerrful ly .

The Typewriter will give a typer cycle complete in t e r rup t
(ma Figure 16) a f t e r each character i s complate and it is
rrbdy ' t o raceive another command.

NOTE:

1

' 4

9 t

i

i

,

It i r poss ib le t o preclude the typer cycle complete in t e r rup t
by immadiately generating another Direct Out command t o Bend
the next character t o the typewri te r .
may be s t rung together i n t h i s manner and a l l 1/0 in te r rupte
w i l l be locked out as the typewriter w i l l have control of
t he 1/0 channel f o r the whole period.
of operation w i l l prevent the Clock and the Timer from
being updated while the channel. is t i ed up.

The typewriter Input cycle is exactly the same as t h e output
cycle except the typewriter must be placed i n the input mode
and each character of input ie the r e g i s t e r designated by R3
a t the completion of each SI0 ins t ruc t ion . To read from the
paper tape:

The SI0 ins t ruc t ions

Note t h a t t h l r type

1. Send a Start Tape command.

2. When a tape character has been read and 1s ready t o be
tranamitted t o the CPU a Tape Data Ready I/O-TSE
i n t e r r u p t w i l l be generatad.

R u d each character by rending a read tape command,
character w i l l be r i g h t due t i f i ed i n the r e g i s t e r deoignatrd
by R3 a f t e r the SI0 i n r t ruc t ion .

When the last deairad character is read In , a atop tape
conrrund i r Bent t o the tap+ reader.

3, Each

\

4.

NOTE:

It l o po r r ib l e t o preclude the Tape Data Ready In t e r rup t by
immediately generating another Direct In command t o fetch t he
naxt character from the tape,
together i n t h i s manner and 1/0 in t e r rup t s will be locked out ar
t h e Tape Reader w i l l have cont ro l of the I/O channel f o r t h e
whole period. Note t h a t t h i s type of operation w i l l prevent the
Timer and Clock from being updated while t he channel is t i e d up.

The SI0 i n s t ruc t ions may be rtrung

Direct 1/0 provideo a means f o r the programmer t o send a coPPnand o r
data word t o an 1/0 device o r request a da ta word from a device.
Direct 1/0 ins t ruc t ion sends a 16-bit command word out on the System
1/0 channel and MY sand o r request a data word to/from t h e addreeoed
f / O device. Figure 17 shows the format of tha cotmnand word. The
cham01 1s attached and relinquirhed f o r each Direct 1/0 ine t ruc t lon ,

Each

44-
t

Write Direct:

Read Direct:

Command Code:

1 1 1 1 1 1 1 1 Commandcode
L

-
Command

Typewriter Output Mode

Typewriter input Mode

Read Typewriter

Write Typewriter

Start Tape

S t o p Tape Advance

Read Tape

Read 16 right-most bits of panel address register

Read 8 left-most bits of panel address register

Read 16 left-most bits of panel data register

Read 16 right-most bits of panel d3t3 register

Display Registers

0 0 0 0 0 0 0 0

Figure 15. TSE Corninand Words

C o m m a n d c o d e

-25-

0

Code

Unit Addr Function Code
c

00000111 00000000

1111 1111 0110 0010

0000 0000 01 10 001 1

i

1111 1111 0110 0100

1111 1111 0100 0001

1111 1111 0100 0010

0000 0000 01 GO 001 1

0000 0000 0000 0100

0000 0000 0000 01 01

0000 0000 0000 01 11

0000 0000 0000 01 10

1111 1111 0000 1000

I

I

c

INTERRUPT

Enter Soft Stop

Read SPM

Write SPM

Read Main Memory

Write Main Memory

Exit Soft Stop

External Interrupt

Tape Load

PSW Rostut

Attention

Clear Memory

Tape Data R e d y

Typer Cycle Completr '

W O E

loo0 oooo oooo 0001
lo00 oooo 0000 0010
lo00 0000 OOOO 0011

loo0 oooo oooo 0100
lo00 oooo 0000 0101
loo0 m oooo 0110
lo00 ooo6 oooo 0111
1000 oooo 0000 1000
loo0 oooo oooo 1001
lo00 lo00 0110 1011

1000 oooo oooo 1010
1000 oooo 0100 1011
loo0 oooo 01 10 101 1

~

CAUSE

Dopression of STOP switch

Oepreuion of REA0 SPM switch

Depression of Write SPM switch

Depression of READ Memory switch

Oepression of WRITE Memory switch

Depression of START switch

Depression of external interrupt switch

Depression of IPL Program Load switd

Depression of PSW restart switch

Depression of attention key on
typwri ter

Olprcnrion of clear memory rwitch

Reading a character on paper tape

Completion of typing an Input or
output character on the typewriter.

#Tlroee interrupts are visible to the NSSC-I1 program. The other interrupts
5n t h i s table are intercepted and acted upon by the microprogram.

Figure 16. Tostor Interrupts

-26-

‘ 4
f
I

E
i

Dl RECT OUTPUT

10-0 I O I O I O 1 COMMAND i DIRECT 1NPUT
I I I. I I

. x RESET INTERFACE (Halt 1/01 1
o $ J 1 1 0 x .I....... X TEST INTERFACE I
FIGURE 17. DIRECT 1/0 COMMAND WORD AND CPU TO 1/0 COMMAND WORD

The start 1/0 Instruction (SIO) is used to generate all Direct 1/0
conmrande .
If the 1/0 Interface is busy, the condition code is set to 1 without
performing the 1/0 operation.
ceerful completion of the SI0 Instruction.

A condition code of 0 indicates suc-

The Direct I/O command word is also used for CPU to 1/0 commands. Figure
17 shows those commands.
tion and clears the 1/0 channel by sending the Service Acknowledge signal
and holding it on for.10 microeaconds minimum.

Test Interface terte for channel busy and eeto the condition code (1 if

Reset Interface immediately halts any 1/0 opera-

I
bury, 0 if not busy)

Electromechanical devices such as typewriters, perforated tape readers,
and punches will have a epecial operation under Direct I/O.
Out (DO) will be ae followe:

Direct

The NSSC-I1 I.ln places the command word and data word on
the line normally.

The addreered device takes the command and data word and starts
to perform the indicated operation (type a character, etc.),

The DO sequence ir tarmlnated and the channel freed up.
rtmdard so far) . (All

Programmer option: Normally during eystem opezation the program
would perform useful work while the device ie executing the corn-
raand.

When the devfce hua completed it8 task and is ready for thO next task
(such as type another character), it will generate a standard I / O
interrupt t o indicate device ready.

-27-

C I * ' .

.i

1, 1
, If t h e program had more t a s k s another DO would b e generated and t h e

I sequence repeated.

3 . 8 SOFT STOP

NSSC-I1 normally operates i n t h e w a i t and running s t a t e s , handling
i n t e r r u p t s , executing i n s t r u c t i o n , e t c . ; o r i t can opera te i n "sof t
stop' ' mode.
are ignored. NSSC-I1 j u s t waits f o r r eques t s Erom t h e tes t support
equipment (TSE).
pressed, NSSC-I1 i s put i n t h e s o f t s top mode.

3
P
<;
t

' *I
I n s o f t s t o p , i n s t r u c t i o n s are not executed and i n t e r r u p t s

When t h e system reset but ton o r t h e s top but ton is 4
*!

I d

In s o f t s top :

a) TSE r e q u e s t s are enabled.

b) The real t i m e c lock is incremented, b u t t h e i n t e r v a l timer
is no t .

.)
' ,4

c)

d)

A l l i n t e r r u p t s are ignored except p a r i t y , which hangs up.

Buffered 1/0 reques ts are ignored.

3 . 9 TEST SUPPORT EQUIPPENT

The TSE al lows var ious func t ions t o be performed. Some of t hese func t ions
can b e performed only i n s o f t s t o p (where a l l such func t ions are enabled)
and some C B ~ b c pxformed only o u t s i d e s o f t s t o p (i f t h e system mask b i t
0 is one) . Externa l i n t e r r u p t key i n t e r r u p t s are implemented i n t h i s
way. A TSE reques t i s s igna led by a channel code word (see paragraph
3.7.4) wi th b i t 0 on and b i t s 12-15 containing a func t ion code from 1
t o 11.
a c t u a l l y caused by console switches.

The f u n c t i o n codes cause t h e following ac t ions . They are

3.9.1 FUECT I ON CODE

1. STOP Enter s o f t s t o p mode. Not allowed i n s o f t s top .

2 . These i n i t i a t c non-architectured func t ions which do n o t
change anything v i s i b l e t o t h e prograirner.
i n s o f t s top .

Allowed only

3 . READHAIN Archi tec tura l1y;a 1 6 b i t word addressed by t h e
20 a d d r e s s s w i t c h e s of the t e s t s u p p o r t e q u i p m e n t (TSE)
i s read from main s to rage . I t i s displayed by the TSE.
Ex i t s t o s o f t : s t o p . Allowed only i n s o f t s top .

x

i
i

i

? -

4. WEtITEMAIN The 16 b i t word designated by t h e TSE d a t a switches
i o w r i t t e n to memory a t t h e address given by t h e TSE address
w i t c h e s , and displayed. E x i t s t o s o f t s top . Allowed only
in soft s t ep .

5. START
c u r r e n t PSW.

S o f t s t o p is ex i t ed and c o n t r o l is determined by t h e
Allowed only i n s o f t s top .

6. EXTINT This code i s used t o implement the e x t e r n a l i n t e r r u p t
key. Not allowed i n s o f t s top .

7. PROGRAM LOAD
I P L PSW (at l o c a t i o n zero) becomes t h e cu r ren t PSW.
is ex i t ed .

Main memory is loca ted from paper t ape and t h e
S o f t s t o p

Allowed only i n e o f t s top .

The paper t ape frames are 8 b i t s .
8ach 16 b i t d a t a word o r address .

These are 3 frames f o r

Frame 1: Frame 2 and 3:

O-parity O-pari t y
l-sync b i t : on
2-on i n d i c a t e s s t o p t ape
3-011 i n d i c a t e s address

l - ~ p c b i t : o f f

Each 16 b i t word i s read from the tape.
rucceeding d a t a (non-address) words are w r i t t e n a t t h a t and
rucceeding addresses u n t i l another address is encountered o r
t h e s t o p t ape b i t is on.
and the PSW a t location zero becomes t h e PSW. Paper t a p e read
errore and any 1/0 i n t e r r u p t s cause a hang up. (Addressing,
r p c c i f i c a t i o n , and p r o t e c t i o n except ions can occur dur ing t h i s
ope ra t ion and w i l l cause I P L to hang up).

I f i t is an address ,

Upon s t o p tape , s o f t s t o p is e x i t e d

8. PSW RESTART S o f t s t o p is e x i t e d and t h e IPL PSW is used t o
rtart. Allowed only i n s o f t s t o p .

9. MEMORY CLEAR Beginning a t l o c a t i o n zero , each halfword of
memory is w r i t t e n wi th a l l ones, read back, and compared
wi th t h e word w r i t t e n .
Then a word of a l l zeros is w r i t t e n and a l s o compared.
A l l s t o r a g e p r o t e c t keys are zeroed.
t i o n , a l l memory is zeroed.
occur. This exits t o s o f t s t o p . Allowed only i n s o f t
stop.

If they d i f f e r a hangup occurs.

Following t h i s opera-
Only a p a r i t y except ion can

I

." I 1

! ,

-29-

I

10. INTI0 Causes an 1/0 interrupt with the channel code word as
the i d t m r q t code. Not allowed i n soft atop.

3.9.2 SYSTEM RESET

When the system reset button is activated, the s o f t stop mode is entered.
The interval timer is set to its maximum value (but is not decremented
while in rof t stop)

I

-30-

SECTION IV

FIXEbhPOINT ARITHMETIC

i

The f ixed-point i n s t r u c t i o n set performs b inary arithmetic on operands
se rv ing as addresses , index q u a n t i t i e s , and counts , as w e l l as f ixed-
po in t da t a .
Negative q u a n t i t i e s are held i n twos-complement form. One operand is
alwaye i n one of t h e 16 genera l r e g i s t e r s ; t he o the r operand may be i n
main otorage or i n a genera l r e g i s t e r .

In gene ra l , both operands are signed and 32 b i t s long.

The I n s t r u c t i o n set provides f o r loading, adding, s u b t r a c t i n g , comparing,
mul t ip ly ing , d iv id ing , and s t o r i n g , as w e l l a s f o r t h e s i g n c o n t r o l , r a d i x
conversion, and r h i f t i n g of f ixed-point operands. The e n t i r e i n s t r u c t i o n
rat i r included i n t h e s tandard i n s t r u c t i o n set.

The cond i t ion code i s set as a r e s u l t of a l l s ign-cont ro l , add, s u b t r a c t ,
compare, and s h i f t opera t ions .

4.1 DATA FORMAT

Fixed-point numbers occupy a f ixed-length format cons i a t ing of a onc-bit
sign followcd by t h e i n t e g e r f i e l d .
r e g i r t e r r , a f ixed-point quan t i ty has a 31-bit i n t ege r f i e l d and occupies
a11 32 b i t e of t h e r e g i s t e r . Some mult ip ly , d i v i d e , and s h i f t ope ra t ions
use an operand c o n s i s t i n g of 64 b i t o with a 63-bit i n t e g e r f i e l d .
operands are loca ted i n a p a i r of ad jacent genera l r e g i s t e r e and are
addrcreed by an even address r e f e r r i n g t o t h e lef t -most r e g i s t e r of t h e
pair. The r lgn -b i t p o s i t i o n of t h e rightmost register conta in8 p a r t of
t h e i n t e g e r . I n r e g i s t e r - t o - r e g i s t e r ope ra t ions , t h e same r e g i s t e r may
be r p e c l f i s d f o r both operand l o c a t i o n s .

When held i n one of the gene ra l

These

cull Word C/xed.?olnf Number

Is1 Integer 1

Wolfword ?/xed-?oint Number

$1 Integer I
o t 1s

Fixed-poin t d a t a i n main s to rage occupy a 32-bit word o r a 16-bi t halfword,
w i th a b ina ry In t ege r f i e l d of 31 o r 15 b i t s , r e spec t ive ly . The conversion
I n s t r u c t i o n s uae a 64-bit decimal f i e l d . These data must be loca t ed on
i n t e g r a l s t o r a g e boundaries f o r t hese u n i t s of information, t h a t is,
double word, ful lword, o r halfword operanda must be addressed wi th t h r e e ,
two, or one low-order address b i t (s) set t o zero.

! -31-

!.

i
h
4

y

A halfword operand in main e torage is extended t o a fullword ae t he operand
fr fe tched frdm r to rage , Subsequently, t he opcrr&nd p a r t i c i p r t e r 4s a Sull-
w r d operand,

In a l l d i scuse ion r of fixed-point numbers i n t h i s pub l i ca t ion , t h r expreseion
"32-bit signed in teger" denotes a 31-bit i n t e g e r w i th a s i g n b i t , and t h e
sxpreeaion " 6 4 d i t aigned in teger" denotes a 63-bit i n t ege r wi th a s i g n
b i t e

4.2 NUMBER REPRESENTATION

A l l f ixed-point operands are t r e a t e d as signed i n t e g e r s . P o s i t i v e numbers
are represented i n t r u e binary no ta t ion with the s ign b i t set t o zero.
Negative numbere are represented i n twoe-complement no ta t ion wi th a one i n
the s i g n b i t .
considered t h e awn of t h e in t ege r p a r t of t he f i e l d , taken as a p o s i t i v e
number, and t h e maximum negat ive number.
i r obtained by i n v e r t i n g each b i t of the number and adding a one i n the
low-order b i t poe i t ion .

The twoe-complement representa t ion of a negat ive number may be

The twe-complement of a number

This type of number r ep resen ta t ion can be considered t h e low-order p o r t i o n
of an i n f i n i t e l y long r ep resen ta t ion of t he number.
p o s i t i v e , a l l b i t s t o the l e f t of t he most e i g n i f i c a n t b i t of t h e number,
inc luding t h e s i g n b i t , are zeros.
t hese b i t e , inc luding t h e s ign b i t , are ones. Therefore, when an operand
-st be extended w i t h high-order b i t r , t he expansion ie achieved by pre-
f i x i n g a f i e l d i n which each b i t is ret equal t o t h e high-order b i t of
t h e operand.

When t h e number is

When the numbar l e nega t ive , a l l

"woe-complement no ta t ion dore not include a nega t ive zero.
number range i n which t h e set of negat ive numberr i r one l a r g e r than the
ret of p o s i t i v e numbetre. The maximum p o s i t i v e number c o n s i s t 8 of an a l l -
one in t ege r f i e l d w i t h a e ign b i t of zero, whereao t h e maximum negat ive
number (the negative number with tha greateat abeo lu te value) c o n s i s t s of
an r l l - z e r o i n t e g e r f i e l d wi th a one-bit f o r eign.

It har a

The CPU c m n o t represent t h e complement of t h e maximum negat ive number.
When an opera t ion , such a s a sub t r ac t ion from zero, produce8 t h e complement
o f t he maximum negat ive number, t h e number remains unchanged, and a f ixed-
po in t overflow except ion is recognized.
however, when the number is complemented and t h e f i n a l r e s u l t in wi th in t h e
r ep resen tab le range.
one.
double-length porlt ivcl number.

An overflow does no t r e o u l t ,

An example of t h i s CPBO %e a r u b t r a c t i o n from minus
The product of two maximum negat ive numbere i o r ep resen tab le as a

The rlgn b i t i e l e f tmost i n a number,
c a r r y o u t of t he in t ege r f i e l d changes t h e eign.
l e f t - e h i f t i n g t h e s ign b i t does no t change even i f o i g n i f i c a n t high-order
b i t s are r h i f t c d ou t of t h e i n t e g e r f i e l d .

I n an a r i t h m e t i c opera t ion , a
However, in a lgebra i c

-32-

1
i

? .
1
I
t

'I

J

1
-! I
1
I

4.3 CONDITION CODE

The r e s u l t s of f ixed-point s ign-cont ro l , add, s u b t r a c t , compare, and s h i f t
ope ra t ions are used t o set t h e condi t ion code i n t h e program s t a t u s word
(PSW) . The
cond i t ion code can be used f o r decision-making by subsequent branch-on-
w a d i t i o n i n s t r u c t i o n s .

A l l o t h e r f ixed-point opera t ions leave t h i s code undis turbed.

The cond i t ion code can be e e t t o r e f l e c t t h r e e types of r e s u l t s f o r f ixed-
po in t a r i t h m e t i c .
ze ro , less than zero, o r g r e a t e r than zero content of t he result r e g i s t e r ,
whi le t h e state 3 i s used when t h e r e s u l t overflows.

For most ope ra t ions , the e t a t e s 0, 1, or 2 i n d i c a t e 8

For a comparison, t h e states 0, 1, o r 2 i n d i c a t e t h a t t h e first operand is
q u a l , low, or high.

For ADD LOGICAL and SUBTRACT LOGICAL, t h e codes 0 and 1 i n d i c a t e a zero o r
nonzero r e s u l t r e g i s t e r conten t i n t h e absence of a l o g i c a l c a r r y out of
the s i g n p o s i t i o n ; t he code6 2 and 3 i n d i c a t e a zero o r nonzero r e s u l t
register content w i th a l o g i c a l c a r r y out of t h e sign p o s i t i o n .

Add H/F
Add Logica l

CONDITION CODE SETTINGS FOR FIXED-POINT ARITHMETIC

0 1 2 3

Compare H/F
Load and Test
Load Complement
Load Negative
Load P o s i t i v e
S h i f t Le f t Double
Shlf t Left S i n g l e
Shif t Right Double
S h i f t Right S i n g l e
Subtract H/F
Sub t rac t Logica l

ze ro
zero ,
no carry
equal
zero
zero
zero
zero
ze ro
zero
zero
aero
ze ro -

(zero
not zero ,
no ca r ry
l O W
<zero
<zero
<zero

<zero
<zero
<zero
<zero
<zero
no t zero ,
no t c a r r y

0-

>zero
ze ro ,
c a r r y
high
>zero
>zero

>zero
>zero
>zero
>zero
>zero
>zero
zero ,
c a r r y

-0,

4.4 ZNSTRUCTION FORMAT

Fixed-point i n s t r u c t i o n s use t h e fol lowing t h r e e formats:
RR Formor

overflow
no t zero ,
c a r r y

overflow

overflow
overflow .
overflow

0-

0-

0-

0-

-0

overflow
not zero ,
c a r r y

-33-

In t h e s e formats, R1 s p e c i f i e s t h e genera l r e g i s t e r conta in ing t h e f i r s t
operand. The second operand l o c a t i o n , i f any, is def ined d i f f e r e n t l y f o r
each format.

In t h e RR format, t h e R2 f i e l d s p e c i f i e s t he genera l r e g i s t e r conta in ing
t h e second operand,
second operand.

The same r e g i s t e r may be s p e c i f i e d f o r t h e f i r s t and

I n t h e RX format, t h e con ten t s of the genera l r e g i s t e r s s p e c i f i e d by t h e
X and B2 f i e l d s are added t o t h e conten t of t h e D2 f i e l d t o form an
a 3 d r e s s des igna t ing t h e s t o r a g e l o c a t i o n of t he second operand.

In t h e RS format, t h e conten t of t h e genera l r e g i s t e r s p e c i f i e d by the B2
f i e l d i e added t o t h e conten t of t h e D2 f i e l d .
s t o r a g e l o c a t i o n of t h e second operand i n LOAD MULTIPLE and STORE MULTIPLE.
In t h e s h i f t ope ra t ions , t h e sum s p e c i f i e s t h e number of b i t s of t h e s h i f t .
The R

This sum des igna te s t h e

f i e l d s p e c i f i e s t h e address of a genera l r e g i s t e r i n LOAD MULTIPLE
and S 4 ORE MULTIPLE and is ignored i n t h e s h i f t ope ra t ions .

A zero i n an X2 or B2 f i e l d . i n d i c a t e s t h e absence of t h e corresponding
addres s component.

An i n s t r u c t i o n can s p e c i f y t h e same genera l r e g i s t e r both f o r address
modi f ica t ion and f o r operand l o c a t i o n .
completed before ope ra t ion execut ion .

Address modi f ica t ion is always

R e s u l t s r ep lace the f i r s t operand, except f o r STORE and CONVERT TO DECIMAL,
where the result replaces the second operand.

T)lc c o n t e n t s of a l l genera l r e g i s t e r s and s t o r a g e l o c a t i o n s p a r t i c i p a t i n g
in t h e address ing o r execut ion p a r t of an ope ra t ion remain unchanged,
except f o r t he s t o r i n g of t h e f i n a l r e s u l t .

NOTE: I n t h e d e t a i l e d d e s c r i p t i o n s of t h e ind iv idua l i n s t r u c t i o n s , t h e
mnemonic and the symbolic operand des igna t ion for t h e NSSC-11 assembly
language are shown wi th each i n s t r u c t i o n .
LTR is t h e mnemonic and R1, R2 t h e operand des igna t ion .

For LOAD AND TEST, f o r example,

4 .5 INSTRUCTIONS

The f ixed-point a r i t h m e t i c i n s t r u c t i o n s and t h e i r mnemonics, formats, and
ope ra t ion codes are l i s t e d i n t h e fol lowing t a b l e .
when the cond i t ion code is set and t h e except iona l cond i t ions operand
des igna t ions , d a t a , o r r e s u l t s that cause a program i n t e r r u p t i o n .

The t a b l e a l s o i n d i c a t e s

-34-
I

i

NAME MNEMONIC TYPE EXCEPTIONS CODE

4

I
9
e
'7

1

J

!

Load
Load
Load Halfword
Load and Test
Load Complement
Load P o s i t i v e
Load Negative
Load Mu1 t i p l e
Add
Add
Add Halfword'
Add Logical
Add Logical .
Subt rac t
Sub t rac t
Subt rac t Halfword
Subt rac t Logical
Subt rac t Logical
Compare
Compare
Compare Hal f wor d
Mul t ip ly
Mul t ip ly
Mult iply Halfword
Divide
Divide
Convert t o Binary
Convert t o Decimal
S to re
S to re Halfword
S to re Mul t ip le
S h i f t L e f t S ing le
S h i f t Right S ingle
S h i f t L e f t Double
S h i f t Right Double

NOTES

LR
L
LB
'LTR
LCR
LP R
LNR
LM
AR
A
AH
ALR
AL
SR
S
SH
SLR
SL
CR
C
CH
MR
M

DR
D
CVB
CVD
ST
STH
STM
SLA
SKA
SLDA
SRDA

F r n

RR
Rx
Rx
RR
RR
RR
RR
RS
RR
R x
Rx
RR
Rx
RR
Rx
Rx-
RR
Rx
RR
Rx

.Rx
RR
Rx
RX
RR
RX
Rx
R x
R x
Rx
RS
RS
RS
RS
RS

C
C
C
C
C
c .
c
C
C
C
C
C
C

C
C
C
C

IF
IF

AYS
IF

A , S , IF
A , S , IF

A , s
IF

A , S , IF
A,S, IF

S, IF
S

18
58
48
12
13
10

' 11
98
1A
511
4A
1E
5 E
1B
5B
41:
1F
5F
19
59
49
1c
5c
4c
ID
5D
4 F
4 E
50
40
90
8 B
8A
8F
8E

A Addressing except ion
C Condition code i s set
D Data except ion
IF Fixed-point overflow except ion
I K Fixcd-point d iv ide except ion
1' Pro tec t ion except ion
S Spec i f i ca t ion except ion

.;
I ' . , I

. _._--

-35-

.

Programming Note

The l o g i c a l comparisons, s h i f t s , and connec t ives , as w e l l as LOAD ADDRESS,
BRANCH ON COUNT, BRANCH ON INDEX HIGH, and BRANCH ON INDEX LOW OR EQUAL,
also may be used

4.5.1 LOAD

'LR RI , Ro

_ _ _ ~
i n f ixed-point c a l c u l a t i o n s .

I 18
0 7 1 I l I Y 1s

The second operand is placed i n t h e f i r s t operand l o c a t i o n ,
operand is n o t changed.

The second

Condit ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

Addressing (L only)
Spec i f ica t ion (L only)

4 . 5 . 2 LOAD HALFWORD

The halfword second operand is placed i n t h e f i r s t operand l o c a t i o n .

The halfword second operand is expanded t o a fullword by propagat ing t h e
a ign-b i t va lue through the 16 high-order b i t pos i t i ons .
a f t e r t h e operand i s obtained from s to rage and before i n s e r t i o n i n t h e
r e g i s t e r .

The code remains unchanged.

Expansion occurs

Condit ion Code:

Program In te r rup t ions :

Addressing
S p e c i f i c a t i o n

4.5.3 LOAD AND TEST

I

1

4
i

The ,second operand is placed i n t h e first operand l o c a t i o n , and t h e s i g n and
magnitude of t h e second operand determine the cond i t ion code.
operand is n o t changed.

The second

. Resu l t ing Condit ion Code:

0 Resu l t is zero
1 Resu l t i s less than zero
2
3 -- Resu l t is g r e a t e r than zero

Program I n t e r r u p t i o n s : None

Programming Note

When t h e same r e g i s t e r is s p e c i f i e d as f i r s t and second operand l o c a t i o n ,
t h e ope ra t ion i s equiva len t t o a test without d a t a movement.

4 . 5 . 4 LOAD COMPLEMENT

The twos complement of t h e oecond operand i s placed i n t h e f i r a t operand
l o c a t i o n .

An overflow cond i t ion occurs when t h e maximum negat ive number is comple-
mented; t h e number remains unchanged.
i n t e r r u p t i o n when t h e f ixed-point overflow mask b i t i s one.

The overflow causes a program

R e r u l t i n g Condit ion Code:

0 Resu l t is zero
1 R e 8 U l t is less than zero
2
3 Overflow

Resu l t is g r e a t e r than zero

Program I n t e r r u p t i o n s :

Fixed-point overflow

?
. ?

-3?-

!

l’i

Programing Note

Zero remaips i n v a r i a n t under complementation.

4.5.5 LOAD POSITIVE

The abso lu te va lue of t h e second operand is placed i n t h e f i r s t operand
loca t ion .

The ope ra t ion inc ludes complementation of nega t ive numbers; p o s i t i v e
numbers remain unchanged.

An overflow cond i t ion occur8 when t h e maxlmum negat ive number is comple-
mented; t h e number remains unchanged. Tha,overf low cause8 a program
i n t e r r u p t i o n when the f ixed-point overflow mask b i t i e one.

Reeul t ing Condition Code:

0 Resu l t 1s zero
1 --
2 R e s u l t is g r e a t e r than zero

I 3 Overflow

5 J Program I n t e r r u p t i o n s :

Fixed-point overflow

1
1

i

4.5.6 LOAD NEQATIVE

INR R, , R , P 1

The twos complement of the abso lu te va lue of the second operand is placed
In t h e f i r s t operand l o c a t i o n ,
nega t ive numbere remain unchanged.
w i th p o s i t i v e s ign .

The ope ra t ion complements p o s i t i v e numbers;
The number zero remains unchanged

Resul t ing Condition Code:

I 0 Resul t is zero
1 Result is less than zero
2 --

-38-

3 --
1

1 Program I n t e r r u p t i o n s : None.
I
i 4.5.7 LOAD MULTIPLE
L

i

.-s
1

.t
i

% i
1

The set of gene ra l r e g i s t e r s s t a r t i n g wi th t h e r e g i s t e r s p e c i f i e d by R1
and ending w i t h t h e r e g i s t e r s p e c i f i e d by R3 i s loaded from t h e l o c a t i o n s
der lgna ted by t h e second operand address.

*

c
t

i

The s t o r a g e area from which t h e con ten t s of t h e genera l r e g i s t e r s are
obta ined starts a t t h e l o c a t i o n designated by t h e second operand addres s
and cont inues through as many words as needed.
loaded i n t h e ascending order of t h e i r addresses , s t a r t i n g wi th t h e
r e g i s t e r s p e c i f i e d by R1 and cont inuing up t o and inc luding t h e r e g i s t e r
s p e c i f i e d by R3, wl th r e g i s t e r 0 fol lowing r e g i s t e r 15.

The second operand remains unchanged.

The genera l r e g i s t e r s are

Condit ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

Addressing
S p e c i f i c a t i o n

Programming N o t e

All combinations of register addresses spec i f i ed by R
When t h e r e g i s t e r addresses are equal , only one word
t h e addres s s p e c i f i e d by Rg is less than t h e address s p e c i f i e d by R1, t h e
r e g i s t e r addresses wrap around from 15 t o 0.

and Rj are v a l i d . f s t r ansmi t t ed . When

-39-

- , . -.-- A. . .*. ,. .,. _

I i: +,

The second operand i e added t o t h e f i r s t operand, and t h e sum is placed
in t h e f i r s t operand l o c a t i o n .

Addit ion is performed by adding a l l 32 b i t s of bo th operands.
o u t of t h e s ign -b i t p o s i t i o n and t h e high-order numeric b i t p o s i t i o n agree ,
t h e sum is a a t i s f a c t o r y ; i f they d i s a g r e e , an overflow occurs.
b i t is not changed a f t e r t h e overflow,
t i v e f i n a l sum, and a negat ive overflow r e s u l t s i n a p o s i t i v e sum.
overflow causes a program i n t e r r u p t i o n when t h e f ixed-point overflow mask
b i t is one.

I f t h e carries

The s i g n
A p o s i t i v e overflow y i e l d s a nega-

The

Resul t ing Condit ion Code: .

0 Sum is zero
1 Sum is less than zero
2
3 Overflow

Sum is g r e a t e r than zero

Program I n t e r r u p t i o n s :

Addressing (A only)
S p e c i f i c a t i o n (A only)
Fixed-point overflow

Programing Note

In twos complement n o t a t i o n , a zero r e s u l t is always p o s i t i v e ,

4 . 5 . 9 ADD HALFWORD
I

The halfword second operand is added t o the first operand and t h e sum is
placed In the f irs t operand location.

The halfword second operand i s expanded t o a fullword before the a d d i t i o n
by propagat ing t h e s ign-b i t va lue through t h e 16 high-order bit p o s i t i o n s .

Addit ion is performed by adding a l l 32 b i t s of both operands,
out of t h e s ign -b i t p o s i t i o n and t h e high-order numeric b i t p o s i t i o n agree ,
t h e sum is s a t i s f a c t o r y ; i f they d i sag ree , an overflow occurs.
b i t is no t changed a f t e r t he overflow.
t ive f i n a l sum, and a negat ive overflow results In a p o s i t i v e sum. 'The
overflow causes a program i n t e r r u p t i o n when the f ixed-poin t overflow mask
b i t le one,

I f t h e carries

The s i g n
A p o s i t i v e overflow y i e l d s a nega-

Resul t ing Condition Code:

0 Sum is zero
1 Sum is less than zero
2
3 Overflow

Sum is g r e a t e r than zero

-40-
i "

. -. . .

Program In te r rup t ions :

Add r e s 8 ing
Spacif i c a t ion
Fixed-point overflow

4.5.10 ADD LOGICAL

I 1 Rl I 1E
7 0 I 1 I ? IS

The second operand is added t o t h e f i r s t operand, and t h e sum is placed
in t h e f i r a t operand loca t ion .
p o s i t i o n is recorded i n the condi t ion code.

The occurrence of a c a r r y ou t of t h e s i g n \

Logical a d d i t i o n is performed by adding a l l 32 b i t s of both operands without
f u r t h e r change t o t h e r e s u l t i n g s i g n b i t . The i n s t r u c t i o n d i f f e r s from ADD
i n t h e meaning of the condi t ion code and i n the absence of t h e i n t e r r u p t i o n
f o r overflow.

I f a c a r r y ou t of t h e s ign p o s i t i o n occurs , t he l e f tmos t b i t of the condi t ion
code (P S W b i t 3 4) is made one.
zero.
b i t 35) is made zero.

I n the absence of a c a r r y , b i t 34 is made
When t h e sum is zero, t he r ightmost b i t of t he condi t ion code (PSW

A nonzero sum is ind ica ted by a one i n b i t 35.

Resul t ing Condition Code:

0 Sum i s zero (no ca r ry)
1 Sum is no t zero (no c a r r y)
2 Sum is zero (car ry)
3 Sum is not zero (car ry)

Program In te r rup t ions :

Addressing (AL only)
Spec i f i ca t ion (AL only)

-41-

I
_. . . _-.-

4.5.1 1 SUBTRACT 0
. .

I O2 31 I 58
0 7 8 I 1 I ? I 5 1 6 l e 2 0

The second operand is subt rac ted from t h e f i r s t operand, and t h e d i f f e r e n c e
I s placed i n t h e f i r s t operand loca t ion .

Subt rac t ion is performed by adding the twos complement of t h e second operand
to t h e f i r s t operand.
I f t he c a r r i e s ou t of t h e s ign-b i t pos i t i on and the high-order numeric b i t
p o s i t i o n agree , t h e d i f f e rence is s a t i s f a c t o r y ; i f they d i sag ree , an over-
flow occurs. The overflow causes a program i n t e r r u p t i o n when t h e f ixed-point
overflow mask b i t is one.

A l l 32 b i t s of both operands p a r t i c i p a t e , as i n ADD.

Resulting Condition Code:

0 Dif fe rence is zero
1 Difference is less than zero
2
3 Overflow

Difference is grea te r than zero

Program In t e r rup t ions :

Addreseing (S only)
Spec i f i cn t ions (S only)
Fixed-point overflow

Programming Note

When t h e same r e g i s t e r is spe ic i f ed as the f i r s t and second operand loca-
t i o n , s u b t r a c t i n g is equivalent t o c l e a r i n g the r e g i s t e r .

Subt rac t ing a maximum negat ive number from another maximum negat ive number
g ives a zero r e s u l t and no overflow.

4.5.12 SUBTRACT HALFWORD

-42-

. .._

The halfword second operand is subt rac ted from t h e f i r s t operand, and t h e
d i f f e r e n c e is placed i n t h e f i r s t operand loca t ion .

The halfword second operand is expanded t o a fullword be fo re t h e s u b t r a c t i o n
by propagat ing t h e s ign -b i t va lue through 16 high-order b i t p o s i t i o n s .

Sub t rac t ion i s performed by adding t h e twos complement of t h e expanded second
operand t o t h e f i r s t operand. A l l 32 b i t s of both operands p a r t i c i p a t e , as
i n ADD.
numeric b i t p o s i t i o n ag ree , t h e d i f f e r e n c e is s a t i s f a c t o r y ; i f they dis-
agree , an overflow occurs.
when t h e f ixed-point overflow mask b i t is one.

I f t h e carries ou t of t h e s ign-b i t p o s i t i o n and t h e high-order

The overflow causes a program i n t e r r u p t i o n

Resu l t ing Condit ion Code:

0 Difference is zero
1 Difference is less than zero
2
3 Overflow

Dif fe rence is g r e a t e r than zero

Program I n t e r r u p t i o n s :

M d r e s s i n g
S p e c i f i c a t i o n
Fixed-point overflow

4.5.13 SUBTRACT LOGICAL

i

The second operand i s subt rac ted from t h e f i r s t operand, and t h e d i f f e r e n c e
is placed i n t h e f i r s t operand l o c a t i o n .
t h e e ign p o s i t i o n is recorded i n t h e cond i t ion code.

Logical s u b t r a c t i o n is performed by adding t h e twos complement of t h e second
operand t o t h e f i r s t operand. A l l 32 b i t s of both operands p a r t i c i p a t e ,
without f u r t h e r change t o t h e r e s u l t i n g s i g n b i t .
from SUBTRACT i n . t h e meaning of t h e cond i t ion code and i n t h e absence of
t he i n t e r r u p t i o n f o r overflow.

The occurrence o f a c a r r y o u t of

The i n s t r u c t i o n d i f f e r s

, .)L -43-

,..

i

i
.I

..

I

i

3

i.

I ,

I f a c a r r y o u t of t h e s i g n p o s i t i o n occurs , t h e l e f tmos t b i t of t h e condi t ion
code (PSW b i t 34) is made one.
zero.
b i t 35) is made zero.

In t h e absence of a c a r r y , b i t 34 is made
When t h e sum i s zero, t h e r ightmost b i t of t h e cond i t ion code (PSW

A nonzero sum is ind ica t ed by a one i n b i t 35,

Resu l t ing Condit ion Code:

ii;; , 0 --
1 Dif fe rence is no t zero (no ca r ry)
2 Dif fe rence is zero (ca r ry)
3 Dif fe rence is n o t zero (ca r ry)

Program I n t e r r u p t i o n s :

Addressing (SL only)
S p e c i f i c a t i o n (SL only)

Programming Note

A zero d i f f e r e n c e cannot be obtained without a c a r r y ou t of t h e s i g n
pos it ion.

4.5.14 COMPARE

I 19 I R l I R 2]
0 2 I I 1 I J IS

The f i r s t operand is compared wi th t h e second operand, and t h e r e s u l t
determines t h e s e t t i n g of t h e cond i t ion code.

Comparison is a l g e b r a i c , t r e a t i n g both comparands as 32-bit signed inte-
ge r s . Operands i n r e g i s t e r s o r s t o r a g e are no t changed.

Resu l t ing Condit ion Code:

0 Operands are equal
1 F i r s t operand is low
2 F i r s t operand is high
3 --

r * 11
. . .

u

-44-

~ - ..., .

.-

' I

, ;
I

i

L

I

Program I n t e r r u p t i o n s :

Addressing (C only)
S p e c i f i c a t i o n (C only)

The f i r s t operand is compared wi th t h e halfword second operand, and t h e
t e e u l t determines t h e s e t t i n g of t h e condi t ion code.

The halfword second operand is expanded t o a fullword be fo re t h e compari-
son by propagat ing t h e s ign -b i t va lue through t h e 16 high-order b i t
p o i t i o n e .

Comparison is a l g e b r a i c , t r e a t i n g both comparands as 32-bit signed i n t e g e r s .
Operands i n registers o r s t o r a g e are no t changed.

Resu l t ing Condit ion Code:

0 Operands are equal
1 F i r s t operand is low
2 F i r o t operand I s high
3 --

Program I n t e r r u p t i o n s :

Add r e a s i ng
Spec i f ica t ion

4.5.16 MULTIPLY

IC
0 7 I I 1 I? 1)

-45-

The product of t h e m u l t i p l i e r (t h e second operand) and t h e mul t ip l icand (the
f i r s t operand) r e p l a c e s t h e mul t ip l icand .

Both m u l t i p l i e r and mul t ip l icand are 32-bit signed in t ege r s . The product
is always a 64-bit signed in t ege r and occupies an even/odd r e g i s t e r p a i r .
Bacauee the mul t ip l icand is replaced by t h e product , t h e R1 f i e l d of t h e
I n s t r u c t i o n must r e f e r t o an even-numbered register. A s p e c i f i c a t i o n
except ion occurs when R The mult ipl icand i s taken from t h e odd
r e g i s t e r of t h e p a i r . &he conten t of an even-numbered r e g i s t e r replaced
by t h e product is ignored, unless the r e g i s t e r con ta ins t h e m u l t i p l i e r .
An overflow cannot occur.

is odd.

The s i g n of t h e product is determined by the r u l e s of a lgeb ra from the
m u l t i p l i e r and mul t ip l icand s ign , except that a zero r e s u l t i s always
p o s i t i v e . .

Condition Code: The code remains unchanged.

Program In te r rup t ions :

Addressing (M only)
S p e c i f i c a t i o n

Programming Note

The r l g n i f i c a n t part of t h e product u sua l ly occupies 62 b i t s o r fewer.
Only when two maximum negat ive numbers are mul t ip l i ed are 63 s i g n i f i c a n t
product b i t e formed. Since twos-complement no ta t ion i s used, t h e s ign
b i t i e extended r i g h t u n t i l t h e f i r s t s i g n i f i c a n t product d i g i t is
encountered.

4.5.17 MULTIPLY HALFWORD

The product of t he halfword m u l t i p l i e r (second operand) and mul t ip l icand
(f l r r t operand) r e p l a c e s t h e mul t ip l icand .

Both mul t ip l icand and product are 32-bit signed i n t e g e r s and may be
loca ted I n any genera l r e g i s t e r .
a fullword before m u l t i p l i c a t i o n by propagating the s ign-b i t va lue
through the 16 high-order b i t pos i t i ons . The mult ipl icand is replaced
by t h e low-order p a r t of t h e product.
o rde r b i t s are not t e s t e d f o r s ign i f i cance ; no overflow i n d i c a t i o n is given.

The halfword m u l t i p l i e r is expanded to

The b i t s t o t h e l e f t of t h e 32 low-

i
T

The s i g n of t h e product is determined by t h e r u l e s of a lgeb ra from t h e
m u l t i p l i e r and mul t ip l icand s i g n , except t h a t a zero r e s u l t i s always
positive .

Condit ion Code:

Program I n t e r r u p t i o n s :

Address i n g
S p e c i f i c a t i o n

The code remains unchanged.

Programming Note

The s i g n i f i c a n t p a r t of t h e product u sua l ly occupies 46 b i t s o r fewer,
t h e except ion being 47 b i t s when both operands are maximum negat ive .
t h e low-order 32 b i t s of t h e product are s tored unchanged, ignor ing a l l
b i t e t o t h e l e f t , t h e s i g n b i t of t h e r e s u l t may d i f f e r from t h e t r u e s i g n
of t h e product i n t h e case of overflow.

Since

The d i v i d e n d (first operand) is d i v i d e d by the d i v i s o r (second operand)
and rep laced by t h e quo t i en t and remainder.

The dividend i e a 64-bit signed i n t e g e r and occupies t h e evenlodd p a i r
of r e g i s t e r s s p e c i f i e d by t h e R1 f i e l d of t h e i n s t r u c t i o n .
except ion occur s when R1 is odd.
rigned quo t i en t r ep lace t h e dividend i n t h e even-numbered and odd-numbered
r e g i s t e r s , r e spec t ive ly .

The sign of t h e quo t i en t i s determined by t h e r u l e s of a lgeb ra .
d e r has t h e same s i g n as t h e dividend, except that a zero quo t i en t o r a
tero remainder i s always p o s i t i v e .
as signed i n t e g e r s .
i o such that t h e quo t i en t cannot be expressed by a 32-bit signed i n t e g e r ,
a f ixed-point d i v i d e except ion is recognized (a program i n t e r r u p t i o n occurs ,
no d i v i s i o n t a k e s p lace , and t h e dividend remains unchanged i n t h e gene ra l
r e g i s t e r s)

A s p e c i f i c a t i o n
A 32-bit signed remainder and a 32-bit

The devisor is a 32-bit signed i n t e g e r .

The remain-

A l l operands and r e s u l t s are t r e a t e d
When t h e r e l a t i v e magnitude of dividend and d i v i s o r

-47-

Condit ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

Addressing (D only)
Specif l c a t i o n
Fixed-point d i v i d e

P rograming Note

Div ie ion a p p l i e s t o fullword operands i n s t o r a g e only.

4 . 5 . 1 9 CONVERT TO BINARY

The r a d i x of t h e second operand i s changed from decimal t o b inary , and t h e
r c e u l t is placed i n t h e f i r s t operand loca t ion .
r igh t -a l igned signed i n t e g e r both before and a f t e r conversion,

The number i o t r e a t e d as a

The second operand has t h e packed decimal d a t a format and is checked f o r
'va l id s i g n and d i g i t codes.
cau8e a program i n t e r r u p t i o n .
word s t o r a g e f i e l d , which must be loca ted on an i n t e g r a l boundary.
low-order four b i t s of t h e f i e l d r ep resen t t h e s ign .
con ta in 15 binary-coded-decimal d i g i t s i n true n o t a t i o n , The packed
decimal d a t a format I s descr ibed in Sect ion V, "ilecimal Arithmetic."

Improper codes are a d a t a except ion and
The decimal operand occupies a double-

The
The remaining 60 b i t s

The rerul t of t h e conversion i s placed i n the genera l r e g i s t e r s p e c i f i e d
by R1.

.a 32-bit r e g i s t e r is 2 , 1 4 7 , 4 8 3 , 6 4 7 ; t h e minimum number is - 2 , 1 4 7 , 4 8 3 , 6 4 8 ,
For any decimal number o u t s i d e this range, t h e ope ra t ion is completed by
p lac ing t h e 32 low-order b inary b i t s i n t h e r e g i s t e r ; a f ixed-point d i v i d e
except ion exists, and a program i n t e r r u p t i o n follows.
a negative second operand, t h e low-order p a r t is i n twos-complement no ta t ion .

The maximum number that can be converted and e t i l l be contained in

In t h e case of

Condi t ion Code:

Program In te r rup t ione :

The coda remains unchanged.

Addressing
S p e c l f i c a t i o n
Data
Fixed-point d i v i d e

-48-

4.5.20 C0"ERT TO DECIMAL

The r a d i x of t h e f i r s t operand is changed from b ina ry t o decimal, and t h e
r e s u l t is s t o r e d i n t h e second operand loca t ion .
a r igh t -a l igned signed i n t e g e r both before and a f t e r conversion.

The number is t r e a t e d as

The r e s u l t is placed i n the s to rage l o c a t i o n des igna ted by t h e second
operand and has t h e packed decimal format, as descr ibed i n Sec t ion V,
"Decimal Arithmetic . "
must be loca ted on an i n t e g r a l boundary.
f i e l d r e p r e s e n t t h e s ign .
nega t ive s i g n is encoded as 1101 o r 1011.
s i g n r e p r e s e n t a t i o n s is determined by t h e s ta te of PSW b i t 12.
maining 60 b i t s c o n t a i n 15 binary-coded-decimal d i g i t s i n t r u e no ta t ion .

The r e s u l t occupies a double-word i n s t o r a g e and
The low-order fou r b i t s of t h e

A p o s i t i v e s i g n is encoded as 1100 o r 1010; a
The choice betweeen t h e two

The re-

The number t o be converted is obtained as a 32-bit signed i n t e g e r from a
gene ra l r e g i s t e r . Since 15 decimal d i g i t s are a v a i l a b l e f o r t h e decimal
equ iva len t of 31 b i t s , a n overflow cannot occur.

Condi t ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

P r o t e c t i o n
Addressing
Specif i c a r l o n

The f i r s t operand is s to red a t t h e second operand l o c a t i o n .

The 32 b i t s i n t h e gene ra l r e g i s t e r are placed unchanged a t t h e second
operand loca t ion .

Condi t ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

4 9 -
\

-7

?

P r o t e c t i o n
M d r e08 ing
S p e c i f i c a t i o n

4.5.22 STORE HALFWORD

1 7 1 I R 1 I I I I I x2 I S M I 82 I V W I D2 31 I 40
0

The f i r s t operand is s to red a t t h e halfword second operand l o c a t i o n .

The 16 low-order b i t s i n t h e genera l r e g i s t e r are placed unchanged a t
t h e second operand l o c a t i o n .
do n o t p a r t i c i p a t e and are not t e s t e d .

The 16 high-order b i t s of t h e f i r s t operand

Condit ion Code:
Program I n t e r r u p t i o n s :

The code remains unchanged.

P r o t e c t i o n
Addressing
S p e c i f i c a t i o n

4.5.23 STORE MULTIPLE
i

The set of genera l r e g i s t e r s s t a r t i n g with the register specified by R1 and
ending wi th t h e r e g i s t e r s p e c i f i e d by R3 is s to red a t t h e l o c a t i o n s desig-
nated by t h e second operand address .

The s t o r a g e a r e a where t h e con ten t s of t he genera l registers are placed
rtarts a t t h e l o c a t i o n designated by the second operand address and cont inues
through as many words as needed,
ascending order of t h e i r addresses , s t a r t i n g with t h e register s p e c i f i e d
by R1 and cont inuing up t o and inc luding t h e r e g i s t e r s p e c i f i e d by Rg,
with r e g i s t e r 0 following r e g i s t e r 15.
remain unchanged .

The genera l r e g i s t e r s are s t o r e d i n t h e

The con ten t s of the genera l r e g i s t e r s

Condition Coder The code remains unchanged.

Program I n t e r r u p t i o n s :

P r o t e c t Ion

-50-

Addressing
S p e c i f i c a t i o n

!

I

4 . 5 . 2 4 SHIFT LEFT SINGLE

I I * 1 B2 I D2 88 I
0 7 a II I 2 I S M I P P O 11

The i n t e g e r p a r t of t h e f i r s t operand is s h i f t e d l e f t t h e number of b i t s
spec i f i ed by t h e second operand address .

The second operand address is no t used t o address d a t a ; i t s low-order six
b i t s i n d i c a t e t h e number of b i t p o s i t i o n s t o be s h i f t e d .
t h e addres s i s ignored.

The remainder of

The s i g n of t h e f i r s t operand remains unchanged.
t h e operand p a r t i c i p a t e i n t h e l e f t s h i f t .
vacated low-order r e g i s t e r pos i t i ons .

A l l 31 i n t e g e r b i t s of
Zeros are suppl ied t o t h e

I f a b i t u n l i k e t h e s i g n b i t is s h i f t e d out of p o s i t i o n 1, an overflow
occurs .
overf low mask b i t is one.

The overflow causes a program i n t e r r u p t i o n when t h e f ixed-point

Resul t ing Condition Code:

0 R e s u l t i s zero
1 Resul t i s less than zero
2 Resul t is g r e a t e r than zero
3 Overflow

Program In te r rup t ions :

Fixed-point overflow

Programming Note

For numbers wi th an abso lu te va lue of less than 230, a l e f t s h i f t of one b i t
p o s i t i o n is equiva len t t o mul t ip ly ing t h e number by 2.

S h i f t amounts from 31-63 cause t h e e n t i r e i n t e g e r t o be s h i f t e d o u t of t h e
r e g i s t e r .
s h i f t e d o u t , the r e g i s t e r con ta ins a va lue of zero.
number, t h e r e g i s t e r con ta ins a va lue of ~ 2 ~ ~ .

When the e n t i r e i n t ege r f i e l d f o r a p o s i t i v e number has been
For a nega t ive

The base r e g i s t e r p a r t i c i p a t i n g i n the generat ion of the second operand
addres s p e r m i t s i n d i r e c t s p e c i f i c a t i o n of the s h i f t amount.
B2 f i c l d i n d i c a t e s the absence of i n d i r e c t s h i f t s p e c i f i c a t i o n .

A zero i n t h e

4 .5 .25 SHIFT RIGHT SINGLE

I R A R,, 0 # 2) ~ 5 1

The i n t e g e r p a r t of t h e f i r s t operand is s h i f t e d r i g h t t h e number of b i t s
s p e c i f i e d by t h e second operand address .

The second operand address is not used t o address d a t a ; i t s low-order s i x
b i t s i n d i c a t e t h e number of b i t p o s i t i o n s t o be s h i f t e d . The remainder
of t h e addres s is ignored.

The sign of t h e f i r s t operand remains unchanged.
t h e operand p a r t i c i p a t e i n t h e r i g h t s h i f t .
eupplied t o t h e vacated high-order b i t pos i t i ons .
s h i f t e d ou t without i n spec t ion and are l o s t .

A l l 31 i n t e g e r b i t s of
Bits equal t o t h e s i g n are

Low-order b i t s are

Resul t ing Condition Code:

0 Resu l t is zero
1 Result is less than zero
2
3 -- Resu l t is g r e a t e r than zero

Program I n t e r r u p t i o n s :

None

Programing Note

A r i g h t s h i f t of one b i t p o s i t i o n is equiva len t t o d i v i s i o n by 2 with
rounding downward,
va lue of t h e f i e l d is t h a t obtained by d iv id ing t h e value by 2 . When an
odd number is s h i f t e d r i g h t one p o s i t i o n , t h e va lue of t h e f i e l d is t h a t
obtained by d iv id ing t h e next lower number by 2.
r i g h t by one b i t p o s i t i o n y i e l d s +2, whereas -5 y i e l d s -3.

S h i f t amounts from 31-63 cause t h e e n t i r e i n t e g e r t o be s h i f t e d out of
t h e r e g i s t e r .
s h i f t e d o u t , t h e r e g i s t e r con ta ins a va lue of zero.
number, t h e r e g i s t e r con ta ins a va lue of -1.

When an even number i s s h i f t e d r i g h t one p o s i t i o n , the

For example, +5 s h i f t e d

When t h e e n t i r e i n t e g e r f i e l d of a p o s i t i v e number has been
For B nega t ive

The base r e g i e t e r p a r t i c i p a t i n g i n t h e genera t ion of t h e second operand
address permi ts i n d i r e c t s p e c i f i c a t i o n of t h e s h i f t amount.
82 f i e l d i n d i c a t e s t h e absence of i n d i r e c t s h i f t s p e c i f i c a t i o n .

A zero i n t h e

1

4 . 5 . 2 6 SHIFT LEFT DOUBLE

SLDA R,, D,(B-J la51

The double-length in t ege r p a r t of t he f i r s t operand i s s h i f t e d l e f t t h e
number of b i t s spec i f i ed by the second operand address .

The R1 f i e l d of t h e i n s t r u c t i o n s p e c i f i e s an even/odd p a i r of r e g i s t e r s and
must conta in an even r e g i s t e r address .
when R1 is odd.

The second operand addres s is not used t o address d a t a ; i t s low-order
6-b i t s i n d i c a t e t h e number of b i t p o s i t i o n s t o be s h i f t e d .
of t h e address is ignored.

The operand i s t r e a t e d as a number with 63 i n t ege r b i t s and a s i g n i n t h e
s ign p o s i t i o n of t h e even r e g i s t e r . The high-
o rde r p o s i t i o n of t h e odd r e g i s t e r conta ins an i n t e g e r b i t , and t h e conten t
of t h e odd r e g i s t e r participates i n the s h i f t i n t h e same manner as t h e
o t h e r i n t e g e r b i t s , Zeros a r e supplied t o t h e vacated p o s i t i o n s of t h e
r e g i s t e r s .

If a b i t un l ike t h e sign b i t i s s h i f t e d out of b i t p o s i t i o n 1 of t h e even
r e g i s t e r , an overflow occurs . The overflow causes a program i n t e r r u p t i o n
when the fixed-point overflow mask b i t is one.

A s p e c i f i c a t i o n except ion occurs

The remainder

The s i g n remains unchanged.

Resul t ing Condition

0 Resul t is
1 Resul t is
2 Resul t is
3 Overflow

Code :

zero
less than zero
g r e a t e r than zero

Program In te r rup t ions :

Spec i f ica t ion
Fixed-point overflow

4 . 5 . 2 7 SHIFT RIGHT DOUBLE

-53-

i
t
I

3
'..:
-1
!

, I

t

!

i

The doublc-length in t egc r p a r t of the first operand i s s h i f t e d r i g h t t he
number of p laces s p e c i f i e d by the second operand address .

The R1 f i e l d of the i n n t r u c t i o n s p e c i f i e s an evenfodd p a i r of r e g i s t e r s and
must conta in an even r e g i s t e r address .
when R1 is odd.

The second operand addres s is not used t o address d a t a ; i t s low-order s i x
b i t s i n d i c a t e the numb.?r of b i t pos i t i ons t o be s h i f t e d .
the address is ignored.

The operand is t r ea t ed as a number with 63 in t ege r b i t s and a s i g n i n the
s i g n pos i t i on of the even r e g i s t e r .
high-ordcr pos i t i on of the odd r e g i s t e r conta ins an in t ege r b i t , and t h e
contcn t of the odd r e g i s t e r p a r t i c i p a t e s i n the s h i f t i n the same manner
as the o ther in teger b i t s .
inspec t ion and are l o s t .
p o s i t i o n s of the r e g i s t e r s .

A s p e c i f i c a t i o n except ion occurs

The remainder of

The s ign remains unchanged. The

The low-order b i t s are s h i f t e d out without
B i t s equal t o the s ign are suppl ied t o the vacated

Resul t ing Co*.iditlon Code:

0 R e s u l t is zero
1
2 Resul t is g r e a t e r than zero
3 --

R e s u l t is less than zero

PrograiJ In t e r rup t ions :

Spec i f ica t ion

Programmir.ig Note

A zero s h i f t amount i n the double-shif t opera t ions provides a double-length
s ign ar.i magnitude test ,

4 6 , ?IXED-POINT ARITHMETIC EXCEPTIONS

Excep.:ional operand des igna t ions , d a t a , o r results cause a program i n t e r -
rup t ion . When a program i n t e r r u p t i o n occurs , the cu r ren t PSW is s to red
88 an old PSW, and a new PSW is obtained. The i n t e r r u p t i o n code i n the o ld
PSW i d e n t i f i e s the cause of the in t e r rup t ion . The fol lowing except ions
cau 3e a program i n t e r r u p t i o n i n fixed-point arithmetic.

P ro tec t ion

The CPU s to rage p ro tec t ion b i t is set t o a one (1).
is suppressed fo r a s t o r e v i o l a t i o n , Therefore, the condi t ion code
and da ta i n r e g i s t e r s and s to rage remain unchanged.

The opera t ion

-54-

The only except ion is STORE MULTIPLE, which is terminated; t he amount of
da t a s tored is unpredic tab le and should not be used f o r f u r t h e r computation.
The opera t ion is terminated on any f e t c h v i o l a t i o n .

Addressing

An address des igna te s an operand l o c a t i o n ou t s ide t h e a v a i l a b l e s to rage
fo r a p a r t i c u l a r i n s t a l l a t i o n . In most cases, t h e opera t ion is terminated.
Therefore, t h e result d a t a are unpredic tab le and should no t be used
for f u r t h e r computation. The except ions are STORE, STORE HALFWORD,
and CONVERT TO DECIMAL, which are suppressed. Operand addresses are
t e s t e d only when used t o address s torage . Addresses used as a s h i f t
amount are no t t a s t e d . The address r e s t r i c t i o n s do no t apply t o the
components from which an address is generated--the conten t of t he D2
f i e l d and t h e con ten t s of t h e r e g i s t e r s spec i f i ed by X2 and B2.

SDecif i c a t i o n

A double-word operand is not loca ted on a 64-bit boundary, a fullword
operand is not loca ted on a 32-bit boundary, a halfword operand is not
loca ted on a 16-bit boundary, o r an i n s t r u c t i o n s p e c i f i e s an odd r e g i s t e r
address f o r a pair of genera l r e g i s t e r s conta in ing a 64-bit operand.
The ope ra t ion is suppressed. Therefore , t h e condi t ion code and d a t a
i n r e g i s t e r s and s to rage remain unchanged.

De t a -
A s i g n o r ii d i g i t code of t h e decimal operand i n CONVERT TO BINARY is
i n c o r r e c t . The opera t ion is suppressed. Therefore, t h e condi t ion code
and d a t a i n r e g i s t e r s and s to rage remain unchanged.

Fixed-Po i n t Overflow

The r e s u l t of a sign-control, add, s u b t r a c t , o r s h i f t opera t ion overflows.
The i n t e r r u p t i o n occurs only when the fixed-point overflow mask b i t
is one.
r e s u l t i n t h e r e g i s t e r and s e t t i n g the condi t ion code t o 3.
b i t s are l o s t .
is t h e oppos i te of t he s ign of t he sum o r d i f f e rence .
t h e s ign of t h e s h i f t e d number remains unchanged.
mask b i t does not a f f e c t t h e r e s u l t .

The opera t ion i s completed by p lac ing the t runcated low-order
The overflow

In add-type ope ra t ions the s ign s tored i n t h e r e g i s t e r
In s h i f t ope ra t ions

The s ta te of t h e

I

h,

Fixed-Point Divide

The quot ien t of a d i v i s i o n exceeds t h e r e g i s t e r s i z e , inc luding d i v i s i o n
by zero, o r t h e r e s u l t i n CONVERT TO BINARY exceeds 31 b i t s .
i e suppressed.
The conversion is completed by record ing t h e t runca ted low-order result
in t h e r e g i s t e r .

Div is ion
Therefore , d a t a i n t h e r e g i s t e r s remain unchanged.

. .. . I. . . -".. -. I .

-55-

.- A

SECTION V

DECIMAL ARITHMETIC

5.1 DATA F O W T

Decimal operands r e s i d e i n main s t o r a g e only.
may s t a r t a t any b y t e address and are composed of one t o 16 e igh t -
b i t by tes .

Lengths of t h e two operands s p e c i f i e d i n an i n s t r u c t i o n need no t b e
t h e same.
t o t h e l e f t of t h e high-order d i g i t s .
set by address and l eng th s p e c i f i c a t i o n .

They occupy f i e l d s t h a t

I f necessary , they are considered t o b e extended wi th zeros
Resu l t s never exceed t h e limits

Decimal operands may be e i t h e r i n t h e packed o r zoned format.

5.1.1 PACKED DECIMAL NUMBER
- - - ..- 1-1 I Digit I Digit I Digit I Digit I Sign I -.- .-.

I n t h e packed format, tw decimal d i g i t s normally are placed ad jacent
i n a by te , except f o r t h e r ightmost b y t e of t h e f i e l d . I n t h e
r ightmost b y t e a s i g n is placed to t h e r i g h t of decimal d i g i t .
d i g i t s and it s i g n are encoded and occupy four b i t s each.

Both

5.1.2 ZONED DECIMAL NUMBER

In the zoned format the low-order four b i t s of a byte , the numeric,
are normally occupied by a decimal d i g i t .
a b y t e are c a l l e d t h e zone, except f o r the r ightmost by te of t h e f i e l d ,
where normally t h e s i g n occupies t h e zone pos i t i on .

The fou r high-order b i t s of

In t h e zoned format, t he d i g i t s are represented as p a r t of an alphanumeric
cha rac t e r se t .
i n t o packed d a t a , and an UNPACK i n s t r u c t i o n performs t h e reverse
transformation.

A PACK i n s t r u c t i o n is provided t o t ransform zoned d a t a

5.2 NUMBER REPRESENTATION

Numbers are represented as r igh t -a l igned
minus s ign .

true i n t e g e r s w i th a p l u s o r

-56-

i

i

i '>
i

'.
I
?

The d f g i t s 0-9 have t h e b inary encoding 0000-1001.
are i n v a l i d as d i g i t s .
wi th 1010, 1100, 1110, and 1111 recognized as p lus and wi th 1011 and
1101 recognized as minus.
The zones are not t e s t e d f o r v a l i d codes inasmuch as they are e l imina ted
i n changing data from t h e zoned t9 t h e pocked format.

The s i g n and zone codes generated f o r a l l decimal arithmetic r e s u l t s
d i f f e r f o r t h e extended binary-coded-decimal interchange code (EBCDIC)
and t h e USA Standard Code f o r Information Interchange (USASCII-8).
choice between t h e two codes i s determined by b i t 1 2 of t h e PSW. When
b i t 12 is ze ro , t h e p re fe r r ed EBCDIC codes are generated; t h e s e are plus,
1100; minus, 1101; and zone, 1111.
USASCII-8 codes are generated; t hese are p l u s , 1010; minus, 1011; and zone,
0101.

The codes 1010-1111
This se t of codes i s i n t e r p r e t e d as s i g n codes,

The codes 0000-1001 are i n v a l i d as s i g n codes.

The

When b i t 1 2 is one, t h e p re fe r r ed

5.3 INSTRUCTIONS

The format of t h e second operand is changed from zoned t o packed, and
the r e s u l t is placed i n t h e f i r s t operand loca t ion .

The second operand is assumed t o have t h e zoned format.
are ignored, except t he zone over t he low-order d i g i t , which is assumed
t o r ep resen t a s i g n .
low-order by te , and t h e d i g i t s are placed ad jacent t o t h e s i g n and
t o each o t h e r i n t h e remainder of t h e r e s u l t f i e l d .
are moved unchanged t o t h e f i r s t operand f i e l d and are no t checked
for v a l i d codes.

A l l zones

The s i g n i s placed i n t h e r i g h t fou r b i t s of t h e

The s i g n and d i g i t s

The f i e l d s are processed r i g h t t o l e f t .
operand is extended wi th high-order zeros.
i e too s h o r t t o con ta in a l l s i g n i f i c a n t d i g i t s of t h e second operand
f i e l d , t he remaining high-order d i g i t s ore ignored. Overlapping f i e l d s
may occur and are processed by s t o r i n g one r e s u l t by te immediately
a f t e r t he necessary operand bytes are fe tched .
most by te of t h e r e s u l t f i e l d , which is s t o r e d immediately upon f e t c h i n g
the f i r s t operand by te , two operand by te s are needed f o r each r e s u l t
byte.

I f necessary , t he second
I f t h e f i r s t operand f i e l d

Except f o r t h e r i g h t -

Condi t ion Code: The code remains unchanged.

\

Program In te r rup t ions :

P r o t e c t i o n
Addressing

-57-

.. .

ProgramminP Notes

The PACK i n s t r u c t i o n may be used t o swi tch t h e two d i g i t s i n one byte
by spec i fy ing a zero i n t h e L 1 and L2 f i e l d s and t h e same address
f o r bo th operands.

To remove the zones of a l l by te s of a f i e l d , inc luding the low-order
b y t e , both operands must be extended wi th a dummy byte i n t h e low-order
p o s i t i o n , which subsequently is ignored i n t h e r e s u l t f i e l d .

The format of t h e second operand is changed from packed t o zoned, and
t h e r e s u l t is placed i n the f i r s t operand loca t ion .

The d i g i t s and s i g n of the packed operand are placed unchanged i n t h e
f i r s t operand l o c a t i o n , us ing t h e zoned format.
1111 i n EBCDIC and coding 0101 i n USASCII-8 are suppl ied f o r a l l by te s ,
except t h e low-order by te , which receives t h e s i g n of t h e packed
operand.

Zones wi th coding

The operand s i g n and d i g i t s are not checked f o r v a l i d codes.

The f i e l d s are processed r i g h t t o l e f t .
w i th high-order zero d i g i t s before unpacking, if necessary.
f i r s t operand f i e l d is too s h o r t t o conta in all s i g n i f i c a n t d i g i t s of
the second operand, the remaining high-order d i g i t s are ignored. The
f i r s t and second operand f i e l d s may over lap and are processed by s t o r i n g
t h e f i r s t r e s u l t by te immediately a f t e r t he rightmost operand by te is
fe tched; f o r t h e remaining operand by te s , two r e s u l t by tes are s t o r e d
immediately a f t e r one b y t e is fetched.

The second operand is extended
I f t h e

Condit ion Code: The code remains unchanged.

Program In te r rup t ions :

Addressing
P r o t e c t i o n

Pronramniinn Note

A f i e l d t h a t is t o be unpacked can b e destroyed by improper overlapping.
I f i t is des i r ed t o save s t o r a g e space f o r unpacking by overlapping
the operand f i e l d s , t he low-order p o s i t i o n of t h e f i rs t operand m u s t
be t o t he r i g h t of t he low-order p o s i t i o n of the second operand by
the number of bytes i n t h e second operand minus two. I f only one or
two bytes a re t o be unpucked, t he low-order p o s i t i o n s of the two
operands may co inc ide .

-58-

5.3.3 MOVE WI'L" OFFSET

I

1

i

The second operand is placed t o t h e l e f t of and ad jacen t t o t h e low-
o r d e r f o u r b i t s of t h e f i r s t operand.

The low-order f o u r b i t s of t h e f i r s t operand are a t t ached as low-
o r d e r b i t s t o t h e second operand; t h e second operand b i t s are o f f s e t
by f o u r b i t p o s i t i o n s , and t h e r e s u l t is placed i n t h e f i r s t operand
l o c a t i o n .
codes

The f i r s t and second operand by te s are no t checked f o r v a l i d

The f i e l d s are processed r i g h t t o l e f t .
operand is extended wi th high-order zeros.
f i e l d is too s h o r t t o con ta in a l l by te s of t h e second operand, t h e
remaining informat ion is ignored.
are processed by s t o r i n g a r e s u l t by te as soon as t h e necessary operand
b y t e s are fe tched .

I f necessary , t h e second
I f t h e f i r s t operand

Overlapping f i e l d s may occur and

Condit ion Code: The code remains unclinnged.

Program I n t e r r u p t i o n s :

P r o t e c t i o n
Addressing

; Programming Note
4

The i n s t r u c t i o n set f o r decimal a r i t h m e t i c inc ludes no s h i f t i n s t r u c t i o n s
s i n c e t h e equ iva len t of a s h i f t can be obtained by programming.

be written wi th MOVE WITH OFFSET and t h e l o g i c a l move ins t ruc t ions ,

Pro-
* grams for right or left shift and for an even or odd shift amount may

I

-59-

SECTION VI

LOGICAL OPURATION

A se t of i n s t r u c t i o n s is provided f o r t he l o g i c a l manipulation of da t a .
General ly , the operands are t r e a t e d as e igh t -b i t byteo. I n a few cases
the l e f t o r r i g h t four b i t s of a by te are t re t l tcd s e p a r a t e l y o r operands
are s h i f t e d a b i t a t a t i m e .
genera l r c g i s t e r s .
8 t ream.

The operands a r e e i t h e r i n s t o r a g e or i n
Some operands are introduced from t h e i n s t r u c t i o n

Processing of d a t a i n s t o r a g e proceeds l e f t t o r i g h t through f i e l d s
which may start a t any byte pos i t i on .
p rocess ing , as a r u l e , involves the e n t i r e r e g i s t e r conten ts .

I n the genera l r e g i s t e r s , t h e

The set of l o g i c a l opera t ions inc ludes moving, comparing, bit con-
nec t ing , b i t t e s t i n g , t r a n s l a t i n g , and s h i f t opera t ions . A l l l o g i c a l
opera t ions are p a r t of t he s tandard i n s t r u c t i o n set .

The cond i t ion code is set as a result of a l l l o g i c a l comparing, con-
nec t ing , and t e s t i n g ,

6.1 DATA FORMAT

Data r e s i d e i n genera l r e g i s t e r s o r i n s t o r a g e or are introduced from
the I n s t r u c t i o n stream.
a s i n g l e c h a r a c t e r , o r v a r i a b l e i n length .
p a t e they have equal length .

The d a t a s i ze may be a s i n g l e o r double word,
When two operands p a r t i c i -

6.1.1 FIXED-LENGTH LOGICAL INFORMATION

Logical Dot0 1
at

Data i n gene ra l r e g i s t e r s normally occupy a l l 32 b i t s .
uniformly, and no d i s t i n c t i o n is made between s i g n and numeric b i t s .
I n a few ope ra t ions , only t h e low-order e i g h t b i t s of a r e g i s t e r
p a r t i c i p a t e , l eav ing the remaining 24 b i t s unchanged. I n some s h i f t
ope ra t ions , 64 b i t s of an even/odd p a i r o r r e g i s t e r s p a r t i c i p a t e .

B i t s are t r e a t e d

The LOAD ADDRISSS in t roduces a 24-bit address i n t o a gene ra l r e g i s t e r .
The high-order e i g h t b i t s of the r e g i s t e r are made zero.

In s to rage - to - r eg i s t e r opera t ions , t h e s t o r a g e d a t a occupy e i t h e r a
word of 32 b i t s o r a by te of e i g h t b i t s .
on word boundaries , t h a t is, i ts address must have t h e two low-
o rde r b i t s zero.

The word must be loca t ed

. .
-60-

6.1.2 VAKIABLE-LENGTH LOGICAL INFORMATION
- - -

Choractcr I Choractcr--- I Character 1
0 b I6

I n s torage-to-s torage opera t ions , d a t a have a v a r i a b l e f i e ld - l eng th
format, s t a r t i n g a t any byte address and cont inuing f o r up t o a t o t a l
of 256 bytes . Processing is l e f t t o r i g h t .

Operation8 in t roducing d a t a from the i n s t r u c t i o n stream i n t o s t o r a g e ,
a8 immediate d a t a , are r e s t r i c t e d t o an e igh t -b i t byte . Only one
by te is introduced from t h e i n s t r u c t i o n stream, and only one by te
i n s t o r a g e p a r t i c i p a t e s .

Use of genera l r e g i s t e r 1 is implied i n TRANSLATE AND TEST.
address may be placed i n t h i s r e g i s t e r during t h i s opera t ion .
TRANSLATE AND TEST a l s o implies genera l r e g i s t e r 2.
b i t s of r e g i s t e r 2 may be replaced by a func t ion by te during a translate-
and-test opera t ion .

A 24-bit
The

The low-order e i g h t

The t r a n s l a t i n g opera t ions use a l i s t of a r b i t r a r y va lues .
provides a r e l a t i o n between an argument (t h e quan t i ty used t o r e fe rence
the l i s t) and t h e func t ion (the conten t of t he loca t ion r e l a t e d to the
argument). The purpose of t he t r a n s l a t i o n may be t o convert d a t a from
one code t o another code o r t o perform a con t ro l func t ion .

A l is t i s s p e c i f i e d by an i n i t i a l address - t he address des igna t ing
the l e f tmos t by te l o c a t i o n of t h e l ist .
be t r a n s l a t e d is the argument.
t he l i s t is obtained by adding the argument t o the low-order p o s i t i o n s
of t h e i n i t i a l address . A s a consequence, t h e l ist conta ins 256 e ight -
b i t func t ion bytes . I n cases where i t is known t h a t no t a l l e igh t -b i t
argument values w i l l occur , i t may be poss ib l e t o reduce the s i ze of
the list.

A l ist
I

i

The byte from the operand t o
The a c t u a l address used to address

I n a storage-to-s torage opera t ion , t h e operand f i e l d s may be def ined
I n such a way t h a t they overlap. The e f f e c t of t h i s overlap depends
upon the opera t ion . When t h e operands remain unchanged, as i n COMPARE
or TRANSLATE ANI) TEST, overlapping does not a f f e c t t h e execut ion of t h e
ope ra t ion . I n t h e case of MOVE and TRANSLATE, one operand is replaced
by new d a t a , and the execut ion of the opera t ion may be a f f e c t e d by t h e
moun t of overlap and the manner i n which d a t a n re Cetched o r s to red .
For purposes of cva lua t ing the e f f e c t of overlapped operands, consider
t h a t d a t a arc handled one e igh t -b i t by te a t a time.
f i e l d 8 are considered va l id .

A l l over lapping

-61-

I

,

6 . 2 ENDITION CODE

The results of most logical operations ore used to set the condition
code in thc PSW. The LON) ADDRESS, INSERT CHWUCTERS, STORE
CHARACTER, TRANSLATE, and the moving and shift operations leave
this code unchanged. The condition code can be used for decision-
making by subsequent branch-on-condition instructions.

The condition code can be sct to reflect five typcs of results for
logical operations:
indicate that the first operand is equal, low, or high.

FOR COMPAliE LOGICAL the states 0, 1, or 2

Far the logical-connectives, the states 0 or 1 indicate a zero or non-
zero result field.

For TEST UNDER MASK, the states 0, 1, or 3 indicate that the selected
bits are all-zero, mixed zero and one, or all-one.

For TRANSLATE AND TEST, the states 0, 1, or 2 indicate an all-zero
function byte, a non-zero function byte with the operand incompletely
tested, or a last function byte non-zero.

CONDITION CODE SETTING FOR LOGICAL OPERATIONS

0 1 2 3

And zero not zero _- -_
Compare Logical equal low high --
Exclusivc Or zero not zero -- -I

Or zero not zero -- --
one Test Under Mask zero mixed --

Translate and Test zero incomplete complete --
6 . 3 -ON FORMAT

Logical instructions u8e the following five formats:

RR Formot

R X Formot

-62-

.

Results rcplace the first operand, except in STORE ClWCTEK, where the
result replaces the second operand. A variable-length result is never
stored outside the field specified by the address and length.

The contcpts of all general register8 and storage locations participating
in the addressing or execution of an operation generally remain unchanged.
Exceptions are the result locations and general registers 1 and 2 in
TRANSLATE AND TEST.

NOTE :

In the detailed descriptions of the individual instructions,
the mnemonic and the symbolic operand designation for the
NSSC-11 assembly language are shown with each instruction:
for MOVE NUMERICS, for example, MVN is the mnemonic and D

1 (LlBi), D2 (B2) the operand designation.

6.4 INSTKUCTIONS

The logical instructions, their mnemonics, formats, and operation
codes follow.
set and the exceptions i n operand designations, data, or results that
cause a program interruption.

The table also indicates when the condition code is

NAME

Move
Move
Move Numerics
Move Zones
Compare Logical
Compare Logical
Compare Logical
Compare Logical
AND
AND
AM)

AND
OR
OR
OR
OR
Exclusive OR
Exclusive OR
Exclusive OR
Exclusive OR
Test Under Mask
Insert Character
Store Character
Load Address
Trans lot e

1

MNEMONIC

MVI
MVC
MVN
MVZ
CLR
CL
CLI
CLC
NR
N
NI
NC
OR
0
01
oc
XR
X
XI
xc
TM
IC
STC
LA
TR

TYPE

SI
ss
ss
ss
R R C
R X C
SI c
ss c
R R C
R X C
SI c
ss c
R R C
R X C
SI c
ss c
R R C
R X C
SI c
ss c
SI c
RX
Rx
Rx
SS

-64-

EXCEPTIONS

ASS
A
A

CODE

92
D2
D1
D3
1s
55
95
D5
14
54
94
D4
16
56
96
D6
17
57
97
D7
91
43
42
41
DC

!

NAME MNEMONIC TYPE

Translate and Test TRT ss c
Shift Left Single

Logical SLL RS
Shift Right Single

Logical SRL RS
Shift Left Double

Logical SLDL RS
Shift Right Double

Logical SRDL . RS

Notes:

A Addressing exception
C Condition code is set
D Data exception
P Protection exception
S Specification exception

Programming Note

The fixed-point loading and storing instructions also may be used for
logical operations. .
6.4.1 MOVE

I 92 I '2 I Bl I Dl I
31 0 ? # I S 1 6 I * P O

S

S

EXCEPTIONS CODE

A DD

89

88

8D

8C

The second operand is placed in the first operand location.

The SS format is used for n storage-to-storage move.
introduces one 8-bit byte from the instruction stream.

The SI format

In storage-to-storage movement the fields may overlap in any desired
way. Movement is left to right through each field a byte at a time.

The bytes to be moved are not changed or inspected.

\

. . .

-65-

+

i

*

Condition Code: The code remains unchanged.

I .

!

i

Program I n t e r r u p t i o n s :

P r o t e c t i o n
Addressing

Programming Note

It is p o s s i b l e t o propagate one cha rac t e r through an e n t i r e f i e l d by
having t h e f i r s t operand f i e l d s t a r t one cha rac t e r t o t h e r i g h t of t h e
eecond operand f i e l d .

The low-order fou r b i t s of each b y t e i n t h e second operand f i e l d , t h e
numerics, are placed i n the low-order b i t p o s i t i o n s of t h e corresponding
b y t e s i n t h e f i r s t operand f i e l d s .

The i n s t r u c t i o n is s t o r a g e t o s to rage .
each f i e l d one by te a t a time, and the f i e l d s may over lap i n any des i r ed
way

Movement is l e f t t o r i g h t through

The numerics a r e not changed o r checked f o r v a l i d i t y .
f o u r b i t s of each by te , t h e zones, remain unchanged i n both operand
f i e l d s .

The high-order

Condi t ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

P r o t e c t i o n
Addressing

6 . 4 . 3 MOVE ZONES

The high-order fou r b i t s of each by te in t h e second operand f i e l d , t h e
zones, are placed i n t h e high-order fou r b i t p o s i t i o n s of t h e cor-
responding by te s i n t h e f i r s t operand f i e l d .

-66-

. . . .

The instruction is storage-to-storage,
each field one byte at a time, and the fields may overlap in any desired
way.

Movement is left to right through

The zones are not changed or checked for validity.
bits of each byte, the numerics, remain unchanged in both operand
fields .

The low-order four

Condition Code: The code remains unchanged. ,

Program Interruptions:

Protection
Addressing

6.4.4 COMPARE LOGICAL

The firet operand is compared with the second operand, and the reeult
l e indicated in the condition code.

The instructions allow comparisons that are register-to-register,
storage-to-register, instruction-to-storage, and storage-to-storage,

Comparison is binary, and all codes are valid.
l e f t to right and ends as soon as an inequality is found or the end
of the fields is reached. However, when part of an operand in CLC is
specified in an unavailable location, the operation may be terminated
by the addressing exception, even though an inequality could have been
found in a comparison of the available operand parts.

The operation proceeds

-67-

1 :

i

i

I

i

Res ul t ing

0
1
2
3

Condition Code:

Operands are equal
First operand is low
First operand is high --

Program Interruptions:

Addressing (CL, CLI, CLC only)
Specification (CL only)

Programming Note

The COMPARE LOGICAL is unique in treating all bits alike as part of an
unsigned binary quantity,
is left to right and may extend to field lengths of 256 bytes.
operation may be used t o compare unsigned packed decimal fields or
alphameric information in any code that has a collating sequence
based on ascending or descending binary values.
has a collating sequence based on ascending binary values.

In variable-length operation, comparison
The

For example, EBCDIC

6 . 4 . 5 AND
P I NR R i , R Z

14
0 7 I I 1 17 15

54 I
31 0 7 8 1 1 1 7 I S l b 1 V ? O

c 94 I '2 Dl 1 11 0 ? I 151b 1VW

The logical product (AND) of the bits of the first and second operand
is placed in the first operand location.

.- . _ -

I

Operands are t r e a t e d as uns t ruc tured l o g i c a l q u a n t i t i e s , and t h e con-
n e c t i v e AND i s appl ied b i t by b i t . A b i t p o s i t i o n i n the r e s u l t is
set t o one i f t h e corresponding b i t p o s i t i o n s i n bo th operands con-
t a i n a one; o therwise , the r e s u l t b i t is set t o zero, A l l operands and t

1 r e s u l t s are v a l i d .

!
Resul t ing Condition Code:

0 Resul t is zero
1 Resu l t no t zero
2 --
3 --

Program I n t e r r u p t i o n s :

P r o t e c t i o n (NI o r NC)
Addressing (N, N I , NC only)
S p e c i f i c a t i o n (N only)

Programming Note

The AND may be used t o set a b i t t o zero.

6 . 4 . 6 OR

I 96 I '2 31 1
7 1 I516 1920 0

I

The l o g i c a l sum (OR) of t h e b i t s of t h e f i r s t and second operand is
Dlaced i n t h e f i r s t operand loca t ion .

-69-

Operands are treated as unstructured logical quantities, and
nective inclusive OR is applied bit by bit.
is set to one if the corresponding bit position in one or both operands
contain a one; otherwise, the result bit is set to zero.
and results are valid,

he con-
A bit position in the result

All operands

Resulting Condition Code:

0 Result is zero
1 Result not zero
2 --
3 --

Program Interruptions:

Protection (01 and OC)
Addressing (0, 01, OC only)
Specification (0 only)

Programming Note

The OR may be used to set a bit to one.

6 . 4 . 7 EXCLUSIVE OR

X R R l , R , l R R l

1
a i

57 D2
7 8 I 1 I ? I5 Ib I V 2 0

I 97 I '2 I I Dl I
a1 1316 I V Y 0 0 7 8

The modulo--two sum (exclusive OR) of the bits of the first and second
operand is placed in the first operand location,

Opermiids arc treated as Unstructured logical quantities, and the con-
nective exclusive OK it3 applied bit by bit.
is set to one if the corrcsponding bit positions in the two operands are
unlike; othcrwise, the result bit is set to zero,

A bit position in the result

I '

f

-70-

'tlw Lnulrucrton d t f f r r e from APlD and OB only in ths conntctlve applied.

Raru l t i ng Condit ion Code:

0 R e r u l t is zero
1 Resu l t n o t zero
2 --
3 -

4

Program I n t e r r u p t i o n s :

P r o t e c t i o n (XI and XC)
Addressing (X, X I , XC only)
S p e c i f i c a t i o n (X only)

Programming Notes

The exc lue ive OR may be used t o i n v e r t a b i t , an ope ra t ion p a r t i c u l a r l y
w e f u l i n t e s t i n g and s e t t i n g programed b ina ry b i t switches.

Any f i e l d exc lue ive OR'ed w i t h I t s e l f becomes a l l zeroe.

The sequence A exc lus ive OR'ed B, B exc lus ive OR'ed A, A exc lus ive OR'& B

an a u x i l i a r y b u f f e r area.

6.4.8 TEST UNDER MASK I

I

,
I I

r e s u l t s i n t h e exchange of t h e con ten t s of A and B without t h e use of
,

I

The s ta te of t h e f i r e t operand b i t s s e l e c t e d by a mask ie used t o sa t
t h e cond i t ion code.

The b y t e of immediatd d a t a , 12, ie used as an e i g h t - b i t mask,
of t h e mark ar0 made t o correspond one fo r one wi th t h e b i t s of t h e
c h a r a c t e r i n s t o r a g e a p e c i f i e d by t h e f irst operand address ,

A mark b i t of one i n d i c a t e s t h a t t h e s t o r a g e b i t l e t o be t e s t e d .
t h e mask b i t i r zero , t h e o torage b i t is ignored.
t hus s e l e c t e d are zero, t h e condi t ion code is made 0.
made 0 when t h e mask is a l l - ze ro . When t h e s e l e c t e d b i t s are all-one,
t h e code is 3; o t h e m i s s , t h e code is made 1.
l a not changed .

The b i t s

When

The code l o a l s o

The character l a s t o r a g e

When a l l s t o r a g e b i t s

Reeul t lng Condition Code:

0
1

Selec ted b i t e a l l - ze ro ; maek is all-zero
Se lec t ed b i t r mixed zero and one

-7 1-

. .~ -
-_ .

2 --
3 Selected bits all-one

! Program Interruptions:
i
i
i
1

Addrcssing

6.4 .9 INSERT CHARACTER

I

i

The eight-bit character at the second operand address is inserted into
bit positions 24-31 of the register specified as the first operand
location. The remaining bite of the register remain unchanged.

The instruction is storage to general register.
is not changed or inspected.

The byte t o be inserted

Condition Code: The code remains unchanged.

Program Interruptions:

Addressing

6.4.10 STORE CHARACTER

src R : , o (x , a ,) I R X l

Bit positions 24-31 of the register designated a6 the first operand
are placed a t the second operand address.

The instruction is general register to storage.
io not changed or inspected.

The byte to be stored
i

Condition Code: The code remains unchanged.

Program Interruptions:
i

Protection
Addreseing

! '

-12-

The address of t h e second operand is i n s e r t e d i n t h e low-order 24 b i t s
of t h e gene ra l r e g i s t e r s p e c i f i e d by R 1 ,
gene ra l r e g i s t e r are made zero.
place.

The remaining b i t s of t h e
No s t o r a g e r e fe rences f o r operands t a k e

The addrcss s p e c i f i e d by t h e X 2 , Bl;, and D2 f i e l d s i s i n s e r t e d i n b i t s
8-31 of t h e gene ra l r e g i s t e r s p e c i f i e d by R 1 .
The address is not inspec ted f o r a v a i l a b i l i t y , p r o t e c t i o n , o r reso lu-
tion.

B i t s 0-7 a r e set t o zero.

The address computation follows the r u l e s f o r address a r i t hme t i c .
carries beyond the 24th b i t are ignored.

Any

Condit ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

None.

P r o a r s d n g Note

Tho same gene ra l r e g i s t e r may be s p e c i f i e d by t h e R l , X2, and B2 in -
r t r u c t i o n f i e l d , except t h a t genera l r e g i s t e r 0 can be s p e c i f i e d only
by t h e R1 f i e l d .
o r d e r 24 b i t s of a genera l r e g i s t e r , o the r than 0 , by t h e con ten t s of
the D2 f i e l d of tho i n s t r u c t i o n .
be s p e c i f i e d by R1 and by e i t h e r X2 (with B2 set t o zero) o r B2 (with X2
e e t t o zero) .

I n t h i s manner, i t is p o s s i b l e t o increment t he low-

The r e g i s t e r t o be incremented should

6.4 . 1 2 TRANSIATE

The c i g h t - b i t by tee of t h e f i r s t operand are used as arguments t o r e f e r -
ence t h e list des igna ted by t h e second operand address.
func t ion b y t e s e l e c t e d from t h e l i s t rep lace8 t h e corresponding argument
in t h e f i r r t operand.

Each e i g h t - b i t

The b y t e s of t h e f i r s t operand are s e l e c t e d one by one f o r t r a n s l a t i o n ,
proceeding l e f t t o r i g h t .
i n i t i a l add res s , t h e second operand address , i n t h e low-order b i t posi-
t i o n r .
then r e p l a c e s t h e o r i g i n a l argument byte.

Each arsument b y t e is added t o t h e e n t i r e

The sum is used os t he address of t h e func t ion by te , which

All du ta arc v a l i d .
f i e l d is exhausted.

The ope ra t ion proceeds u n t i l t h e f i r s t operand
The list is not a l t e r e d unless an over lap occurs.

,

-73-

. .

i '

r,

j

I

I

I

1

Condition Code; Thc code remains unchanged.

Program Interruptions:

Protection
Addreesing

The eight-bit bytes of the first operand are used as arguments to refer-
ence the list designated by the second operand address. Each eight-bit
function byte thus selected from the list is used to determine the con-
tinuation of the operation. When the function byte is a zero, the opera-
tion proceeds by fetching and translating the next argument byte. When
the function byte is non-zero, the operation is completed by inserting
the related argument address in general register 1, and by inserting the
function byte in general register 2.

The bytes of the first operand are selected one by one for translation,
proceeding from left to right.
atorage.
In TRANSLATE.
for the all-zero combination,

The first operand remains unchanged in
Fetching of the function byte from the list is performed as

The function byte retrieved from the list is inspected

,
When the function byte is zero, the operation proceeds with the next oper-
and byte.
function byte is encountered, the operation is completed by setting the
condition code to 0.
unchanged.

When the first operand field is exhausted before a non-zero

The contents of general registers 1 and 2 remain

When the function byte is non-zero, the related argument address is inserted
in the low-order 24 bits of general register 1.
argument last translated.
unchanged.
general register 2.
dition code is set to 1 when the one or more argument bytes have not been
translatcd.
non-zcro.

This address points to the
The high-order eight bits of register 1 remain

The function byte is inserted in the low-order eight bits of
Bits 0-23 of register 2 remain unchanged. The con-

The condition code is set to 2 if the last function byte is

Resulting Condition Code:

0
1

2
3 --

All function bytes are zero
Non-zero function byte before the first operand
field is exhausted
Last function byte is non-zero

-74-

Program Interruptions:

Addressing

'!

,

Programming Note

The TRANSLATE AND TEST is useful for scanning on input stream and locating
delimiters. The stream can thus be rapidly broken into statements or data
fields for further processing.

6.4.14 SHIFT LEFT SINGLE
I L L R, , D;dS,l P I

The first operand is shifted left the number of bits specified by the sec-
ond operand addrees.

The second operand address ie not used to address data; its low-order six
bits indicate the number of bit positions to be shifted.
of the address is ignored,

The remainder

All 32 bits of the general register specified by R1 participate in the
ohift.
Zeros are supplied to the vacated low-order register positions.

High-order bits are shifted out without inspection and are lost.

Condition Code: The code remains unchanged.

Program Interruptions:

None

6.4.15 SHIFT RIGIiT SINGLE

SRL R , , DLofB21 lRSl

88 D2 1
7 1 1 1 1) 1516 I S 2 0 a i

The first operand is shifted right the number of bits specified by the
eccond operand nddress.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted.
of the address l e ignored,

The remainder

-75-

...

7935402

:a Supplement t o Paragraph 6.4.13 Programming Notes - Page 75

The address of operand 1 i n t h i s i n s t r u c t i o n is l imi t ed t o 64K (K = 1024).
The operand 1 address a t which t h e non-zero byte is found is s tored i n
general r e g i s t e r 1 a t t h e conclusion of i n s t r u c t i o n execution.
low 16 b i t s of operand 1 address w i l l be s tored .
i s g r e a t e r than 64K, t h e high b i t s w i l l be l o s t .

i Only t h e
I f t h e operand address

75A

i

A l l 32 b i t s of t he genera l r e g i s t e r s p e c i f i e d by R 1 p a r t i c i p a t e i n the
e h i f t .
Zeros arc suppl ied t o the vacated high-order r e g i s t e r pos i t i one .

Low-order b i t s are s h i f t e d out without i n spec t ion and are l o s t .

Condition Code: The code remains unchanged,

Program In te r rup t ions :

None

The double-length f i r s t operand is s h i f t e d l e f t t he number of b i t s spec i -
f i e d by t he second operand address ,

The R 1 f i e l d of the i n s t r u c t i o n s p e c i f i e s an evenlodd pa i r of r e g i s t e r s
and must conta in an even r e g i s t e r address.
r p e c i f i c a t i o n except ion and causes a program i n t e r r u p t i o n .
operand address is no t used t o address d a t a ; i t s low-order six b i t s
I n d i c a t e the number of b i t p o s i t i o n s t o be s h i f t e d .
address is ignorcd.

An odd value f o r R1 is a
The second

The remainder of t h e

A l l 64 b i t s of t he evenlodd r e g i s t e r pa i r spec i f i ed by R 1 p a r t i c i p a t e i n
the s h f f t .
wi thout i n spec t ion and arc l o s t .
t i o n s o f t he r e g i s t e r s .

High-order b i t s a r c s h i f t e d out of the even-numbered r e g i s t e r
Zeros are suppl ied t o the vacated posi-

Condition Code: The code remains unchanged.

Program In te r rup t ions :

S p e c i f i c a t i o n

6.4.17 SHIFT RIGHT DOUBLE
SRDL R I , DLdlJ P S I

The double-length f i r s t operand is s h i f t e d r i g h t t he number of b i t s spec i -
f i e d by the second operand address .

The R 1 f i e l d of t h e i n s t r u c t i o n s p e c i f i e s an even/odd p a i r of r e g i s t e r s
and must conta in an even r e g i s t e r address . An odd va lue f o r R 1 is

-7 6-

a specification exception and causes a program interruption.
second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted,
of the address 10 ignored.

The

The remainder

4 All 64 bits of the even/odd register pair specified by R1 participate
in the shift.
register without inspection and are lost,
the vacated positions of the registers.

Low-order bits are shifted out of the odd-numbered
Zeros are supplied to

7
i

1

Condition Code:

Program Interruptions:

The code remains unchanged,

I Specification
1

I
Programming Note

The logical shifts differ from the arithmetic shift8 in that the high-
order bit participates in the shift and is not propagated, the condition
code I s not Changed, and no overflow occurs.

6.5 LOGICAL OPERATION EXCEPTIONS

4

f
I

I

I

Exceptional operation codes, operand designations, data, or results
cause a program interruption. When the interruption occurs, the current
PSW is stored a8 an old PSW and a new PSW is obtained. The interruption
code in the old PSW identifies the cause of the interruption. The
following exceptions cause a program interruption in logical operations,

Protection

The CPU storage protection bit is set to a one (1).
eupprcscrcd on a store violation. Therefore, the condition code and
data I n registers and storage remain unchanged.
are the variable-length, storage-to-storage operations (those containing
a length specification), which are terminated.
tions, the result data and condition code, if affected, are unpredictable
and ehould not be ueed for further computation.

The operation is

The only exceptions

For terminated opera-

Addressing

An address deaignated an operand location outside the available storage
for the installation: In mort cases, the operation i s terminated, The
result data and the condition code, if affected, are unpredictable and
ohould not be used for further computation,
immediate operations AND (NI), EXCLUSIVE OR (XI), OR (Of), MOVE (MVI),
and STORE CHARACTER, which are suppressed.

The exceptions are the

i I.

r

i

S p e c i f i c a t i o n

A ful lword operand i n a s torage- to- reg is te r ope ra t ion is n o t l oca t ed
on o 32-bit boundary o r an odd r e g i s t e r address is a p e c i f i e d f o r a
p a i r of gene ra l r e g i s t e r s conta in ing a 64-bit operand.
suppressed. Therefore , t h e condi t ion code and d a t a i n r e g i s t e r s and
s t o r a g e remsin unchanged.

The opera t ion is

Operand addresses are t e s t e d only when used t o address s to rage .
used as a s h i f t amount are not t e s t e d .
by t h e use of LOAD ADDRESS is not t e s t e d .
no t apply t o t h e components from which an address is generated - t h e
con ten t s of the D1 and D2 f i e l d s , and t h e con ten t s of t h e r e g i s t e r s
s p e c i f i e d by X2, B 1 , and B2.

Addresses
S i m i l a r l y , t h e addreos generated

The address r e s t r i c t i o n s do

,

SECTION VI1

BRANCHING

Instructions arc performed by the ccntrnl processing unit primarily in
the sequential order of their locations. A departure from this normal
sequential operation may occur when branching is performed.
instructions provide a means for making a two-way choice, to reference a
subroutine, or to repeat a segment of coding, such as a loop.

The branching

Branching is performed by introducing D branch address as a new instruc-
tion address.

The branch address may be obtained from one of the general registers or
it may be the address specified by the instruction. The branch address
is independent of the updated instruction address.

The detailed operation of branching is determined by the condition code
which is part of the program status word (PSW) or by the results in the
general registere which are specified in the loop-closing operations.

During a branching operation, the rightmost half of the PSW, including
the updated instruction address, may be stored before the instruction
address is replaced by the branch address. The stored information may
be used to link the new instruction sequence with the preceding sequence.

The instruction EXECUTE is grouped with the branching instructions. The
branch address of EXECUTE designates a single instruction to be inserted
in the instruction sequence,
is not changed in this operation, and only the instruction located at the
branch address is executed,

The updated instruction address normally

All branching operations are provided in the standard instruction set.

7 . 1 NORMAL SEQUENTIAL OPERATION

Normally, operation of the CPU is controlled by instructions taken in
sequence, An instruction is fetched from a location specified by the
inetruction-address field of the PSW. The instruction address is increased
by the number of bytes of the instruction to address the next instruction
in sequence. This new instruction-address value, called the updated in-
struction address, replaces the previous contents of the instruction-
address field in the PSW. The current instruction is executed, and the
same steps are repeated, using the updated instruction address to fetch
the next instruction.

Instructions occupy a halfword or a multiple thereof. An instruction may
have up to three halfwords. The number of halfwords in an instruction is
specified by the first two instruction bits. A 00 code indicates a half-
word instruction, codes 01 and 10 indicate a two-halfword instruction,
and code 11 indicates a three-halfword instruction.

-79-

. .

Two-Holfword Format

,!

i

i
S t o r a g e wraps a r o u n d iron1 t h e maximum a d d r e s s a b l e s t o r a g e l o c a t i o n , b y t e
l o c a t i o n 1 , 0 4 8 , 5 7 5 , t o b y t e l o c a t i o n 0. An i n s t r u c t i o n hav ing i t s l a s t

1 hal fword a t t h e maximum s t o r a g e l o c a t i o n i s fo l lowed by t h e i n s t r u c t i o n
a t a d d r e s s 0. Also , a mul t ip le -ha l fword i n s t r u c t i o n inay s t r a d d l e t h e
upper s t o r a g e boundary; no s p e c i a l i n d i c a t i o n i s g iven i n t h e s e cases .

Concep tua l ly , an i n s t r u c t i o n is f e t c h e d from s t o r a g e a f t e r the p reced ing

even though p h y s i c a l s t o r a g e wid th and o v e r l a p of i n s t r u c t i o n e x e c u t i o n
w i t h s t o r a g e a c c e s s may cause a c t u a l i n s t r u c t i o n f e t c h i n g t o be d i f f e r e n t .

A change in t h e s e q u e n t i a l o p e r a t i o n may bc caused by b ranch ing , s t a t u s
s w i t c h i n g , i n t c r r u p t i o n , o r manual i n t e r v e n t ; o n . S e q u e n t i a l o p e r a t i o n
i s i n i t i a t e d and t e rmina ted from t h e system c o n t r o l p a n e l .

1

f o p e r a t i o n i s completed and b e f o r e execu t ion 0: t h e c u r r e n t o p e r a t i o n ,

Prograinming N o t e

I t i s p o s s i b l e t o modify an i n s t r u c t i o n i n s t o r a g e by means o f t h e imme-
diately precedi,ng instruction.

7 . 1 . 1 SEQUENTIAL OPFIaTION EXCEPTIONS
,

E x c e p t i o n a l i n s t r u c t i o n a d d r e s s e s o r o p e r a t i o n codes cause a program

as an o l d PSIJ, m d a new PSW i s o b t a i n e d .
o l d PSW i d e n t i f i e s t h e cause of t h e i n t e r r u p t i o n .
of t h e d e s c r i p t i o n of each c l a s s o f i n s t r u c t i o n s i s a l i s t of t h e program
i n t e r r u p t i o n s t h a t nay o c c u r f o r thcscb i n s t r u c t i t n s .) The new PSW is n o t
checked f o r e x c e p t i o n s when i t becomes c u r r e n t .
t h e n e x t i n s t r u c t i o n i s execu ted .
may o c c u r i n normal i n s t r u c t i o n sequenc ing , i ndependen t ly of t h e i n s t r u c -
t i o n performed.

1 i n t e r r u p t i o n . Idhen t h e i n t e r r u p t i o n occurb , t h e c u r r e n t PSW i s s t o r e d
The i n t e r r u p t i o n code i n t h e t (I n t h i s manual, p a r t

I

These clieclts o c c u r when
The following program i n t e r r u p t i o n s

-80-

I.

i
i

. I

,

.;. I

I

!

Operat ion

An operation exception occurs when the CPU attempts to decode an operation
code that is not assigned.
an addressing or specification exception if the instruction class asso-
ciated with the undefined operation has uniform requirements for operand
designation. An instruction class is a group of instructions whose four
leftmost bits are identical.

The operation exception can be accompanied by

Addressing

An addressing exception occurs when an instruction halfword is located
outside the available storage for the particular installation.
ation can occur when normal instruction sequencing goes from a valid
storage region into an unavailable region, or following a branchifig or
load-PSW operation or an interruption, When the last locations in avail-
able storage contain an instruction that again introduces a valid instruc-
tion address (i.e., a branch), a program interruption is caused because
the updated instruction address designated an unavailable location which
will be referenced by instruction prefetching.

This situ-

Specification

A specification exception occurs when the instruction address in the PSW
is odd.
PSW operation or after an interruption.

This odd-address error can occur when after a branching or load-

A specification exception will occur when the PSW protection key is non-
zero. This error can occur after a PSW is loaded or after an interruption,

In each case, the instruction is suppressed; therefore, the condition
code and data in storage and registers remain unchanged.
address stored as part of the old PSW has been updated by the number of
halfwords indicated by the instruction length code in the old PSW.

The instruction

Programming Notes

When a program interruption occurs, the current PSW is stored in the old
PSW location. The instruction address stored as part of this old PSW is
thus the updated instruction address, having been updated by the number
of halfwords indicated in the instruction-length code of the same PSW.
The Jntcrruptfon code in this old PSW identifies the cause of the inter-
ruption and aids in the programmed interpretation of the old PSW.

If thc new PSW for a program interruption has an unacceptable instruction
address, another program interruption occurs. Since this second program
interruption introduces the same unacceptable instruction address, a
string of program interruptions is established which may be broken only
by an external or IIO interruption.
unacceptable new PSW, new supervisor information must be introduced by
initial program loading or by manual intervention.

If these interruptions also have an

-81-

7.2 DECISION-MAKING

f

1

Branching may be conditional or unconditional.
replace the updated instruction address with the branch address,
tional branches may use the branch address or may leave the updated ln-
struction address unchanged.
is called successful; otherwise, it is called unsuccessful.

Unconditional branches
Condi-

When branching takes place, the instruction

Whether a conditional branch is successful depends on the result of oper-
ations concurrent with the branch or preceding the branch.
case is represented by BRANCH ON COUNT and the branch-on-index instruc-
tions.
inspects the condition code that reflects the result of a previous arith-
metic, logical, or 1/0 operation.

The condition code provides a means for data-dependent decision-making.
The code is inspected to qualify the execution of the conditional-branch
instructions. The code is set by some operations to reflect the result
of the operation, independently of the previous setting of the code.
code remains unchanged for all other operations.

The former

The latter case is represented by BRANCH ON CONDITION, which

The

The condition code occupies bit positions 34 and 35 of the PSW. When the
PSW is stored during status switching, the condition code is preserved as
part of the PSW.
rightmost half of the PSW in a branch-and-link operation,
code is obtained by a LOAD PSW or SET PROGRAM MASK or by the new PSW loaded
ae a result of an interruption.

Similarly, the condition code is stored ae part of the
A new condition

0 I

, The condition code indicates the outcome of some of the arithmetic, logical,
i or 1/0 operations. It is not changed for any branching operation, except
1 for EXECUTE. In the case of EXECUTE, the condition code is set or left

1 b

I

I unchanged by the eubject inetruction, as would have been the case had the
aubJect instruction been in the normal instruction stream. 4

I

The table a t t h e end of this section lists all instructions capable of
altering the condition code and the meaning of the codea for these ln-
rtructions.

7.3 INSTRUCTION FORMATS

Branching instructions use the following formats:

RX Format

-82-

. ,

RS Format

I R3 I 82 1 D2 I
ti

OpCode [R , I
0 7 I II I 2 0 1 0 I910

I

I

I n t h e s e formats R 1 s p e c i f i e s t h e address of a genera l r e g i s t e r .
BRANCH ON CONDITION R mask f i e l d (MI) i d e n t i f i e s t h e b i t va lues of t h e
cond i t ion code.
formats

I n

The branch address is def ined d i f f e r e n t l y f o r t h e t h r e e

In t h e RR format , t h e R2 f i e l d s p e c i f i e s t h c address of a gene ra l r e g i s t e r
conta in ing the branch address , except when R2 is zero , which i n d i c a t e s no
branching, The same r e g i s t e r may be s p e c i f i e d by R 1 and R2.

In t h e RX format , t h e con ten t s of t h e gene ra l r e g i s t e r s s p e c i f i e d by t h e
X2 and B2 f i e l d s are a d d e d ' t o t h e conten t of t h e D2 f i e l d t o form t h e
branch address .

I n t h e RS format , t h e conten t of t h e gene ra l r e g i s t e r s p e c i f i e d by t h e B2
f i e l d is added to t h e conten t of the D2 f i e l d to form the branch address .
The R 3 f i e l d in t h i s format s p e c i f i e s t h e l o c a t i o n of t h e second operand
and impl ies t h e l o c a t i o n of t h e t h i r d opcrand.
s p e c i f i e d by t h e R 1 f i e l d ,
t he R 3 f i e l d s p e c i f i e s an even r e g i s t e r , t he t h i r d operand is obtained
from the next h igher addressed r e g i s t e r . I f t he R3 f i e l d s p e c i f i e s an
odd r e g i s t e r , t h e t h i r d operand l o c a t i o n co inc ides wi th t h e second operand
loca t ion .

The f i r s t operand is
The t h i r d operand l o c a t i o n is always odd. I f

A zero i n a U2 o r X2 f i e l d i n d i c a t e s t he absence of t h e corresponding
address component,

An i n s t r u c t i o n can s p c c i f y t h e same genera l r e g i s t e r f o r both address
modi f ica t ion and operand l o c a t i o n , The order i n which t h e conten ts of
the gene ra l r e g i s t e r s are used f o r t he d i f f e r e n t p a r t s of an ope ra t ion
iS

1. Address computation.
2.
3,

Ar i thmet ic or l i n k information s torage .
Replacement of t h e i n s t r u c t i o n address by t h e branch
address obtained under s t e p 1.

Reeulta are placed i n t h e genera l r e g i s t e r s p e c i f i e d by R1. Except f o r
t h e s t o r i n g of t h e f i n a l r e s u l t s , t he conten ts of a l l gene ra l r e g i s t e r s
and s t o r a g e l o c a t i o n s p a r t i c i p a t i n g i n t h e address ing o r execut ion p a r t
of an opera t ion remain unchanged.

NOTE :

I n the d e t a i l e d d e s c r i p t i o n of t h e ind iv idua l i n s t r u c t i o n s ,
t h e mnemonic and t h e symbolic operand des igna t ion f o r t h e NSSC-I1
assembly language are shown wi th each i n s t r u c t i o n ,
ON INDEX HIGH, f o r example, BXH is t h e mnemonic and RJ, R 3 ,
Dz(B2) t h e operand des igna t ion .

For BRANCH

-83-

t .

i

1

I

. .

I

I

!

Programming Note

I n s e v e r a l i n s t r u c t i o n s t h e branch a d d r e s s may b e s p e c i f i e d i n two ways:
i n the RX f o r m a t , the brancii a d d r e s s i s t h c a d d r e s s specici icd by X2, B2,
and D2; i n t h e KR f o r m a t , t h e branch a d d r e s s i s i n t h e lov-ordcr 20 bits
of t h e r e g i s t e r s p e c i f i e d by R2. Note that the r e l a t i o n of the two f o r -
mats i n branch-address s p e c i f i c a t i o n i s n o t t h e same as i n operand-address
s p e c i f i c a t i o n . For ope rands , t h e a d d r e s s s p e c i f i e d by X2, I32, and D2 i s
t h e operand a d d r e s s , b u t t h e r e g i s t e r s p e c i f i e d by K2 c o n t a i n s t h e operand
i t s e l f .

7.4 BRANCHING IKSTRUCTIONS

The b r a n c h i n g i n s t r u c t i o n s and t h c i r mncmonics, f o r m a t s , and o p e r a t i o n
codes f o l l o w . The t a b l e a l s o shows t h e e x c e p t i o n s t h a t c a u s e a program
i n t e r r u p t i o n d u r i n g e x e c u t i o n o f EXECUTE.
EXECUTE f o l l o w s i t s own r u l e s f o r i n t e r r u p t i o n s . The c o n d i t i o n code i s
n e v e r changed f o r b ranch ing i n s t r u c t i o n s .

The s u b j e c t i n s t r u c E i o n of

NAME

Branch on

Branch on

Branch acd L i n k
Branch and Link
Branch on Count
Branch on Count
Branch on Index

Iligh
Branch on Index

Low o r Equal.
Execute

Cond i t ion

Cond i t ion

PlK C 1 O N I c TYPE EXCEPTIONS CODE

B CR

BC
BALR
BAL
BCTR
B CT

BXI1

BXLE
EX

RR

Rx
RR
Rx
RR
Rx

RS

RS
Rx

' NOTES

A Address ing e x c e p t i o n
EX Execute e x c e p t i o n
S S p e c i f i c a t i o n e x c e p t i o n

7 . 4 . 1 BRANCH ON C O N D I T I O N

I 47 1 " 1 1 x 2 1 B2 1 O2 1
7 8 I I I 1 1 5 16 I V l O 3 1

07

47
05
45
06
46

86

87
A , S , EX 44

\

c
c

4 4 -

I
' f

The updated instruction address is replaced by the branch address if the
state of the condition code is as specified by Mi; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The M1 field is used as a four-bit mask.
respond, left to right, with the four condition codes (0, 1, 2, and 3)
as follows:

The four bits of the mask cor-

INSTRUCTION
BIT

MASK POSITION CONDITION
VALUE CODE

8
9
10
11 i

The branch is successful whenever the condition code has a corresponding
mask bit of one.

Condition Code: The code remains unchanged.

Program Interruptions:

None i

Programming Note

When a branch is to be made on more than one condition code, the pcrti-
nent condition codes ore specified in the mask QB the sum of their mask
position valucs. A mask of 12, for example, specifies that a branch is
t o be made on condition codes 0 and 1. I

When all four mask bits are ones, that is, the mask position value is
15, the branch is unconditional. When all four mask bits are zero or
when the R2 field in the RR format contains zero, the branch instruction
l e equivalent to a no-operation.

Condition-Code Settings

CODE STATE
1 2 0 3

Fixed-point Arithmetic

k i d H/F
Md Logical

zero <zero >cero overflow
zero, not zero, zero, not zero,
no carry no carry carry carry
equal l O W high u Compare H/F

* -85-

. -

&ad and Test
Load Complement
h a d Negative
Load Positive
Shift Left Double
Shift Left Single
Shift Right Double
Shift Right Single
Subtract H/F
Subtract Logical

0

Fixed-Point Arithmetic
(Continued)

zero
zero
zero
zero
zero
zero
zero
zero
zero --

CODE STATE
1 2

<zero
<zero
<zero

<zero
<zero
(zero
<zero
c zero
not zero,
no carry

_-
>zero
>zero

>zero
>zero
>zero
>zero
>zero
>zero
zero,
carry

I-

3

carry
overflow

overflow
overflow
overflow

0-

-- -- .
overflow
not zero,
carry

Logical Operations
,

And
Compare Logical
Exclusive Or
Or
Test Under Moek
Translate and Test

__ _- zero not zero

zero not zero
zero not zero
zero mixed -_ one
zero incomplete complete -0

equal low high -0 -- -- -- _-

Statua Switching

Test and Set

Input/Output Operatione

Start I/O

Notes

busy
carry
complete
equal
F
> ecro
H
hlgh
incomplete
< zero
lOW
mixed
not zero
one
overflow
zero

-0 -0 zero one

successful busy

Unit or channel busy
A carryout of the sign position occurs
Last result byte nonzero
OperandB compare equal
Fullword
Result I 8 greatcr than zero
Half wor d
First operand compares high
Nonzero result byte; not last
Result is less than zero
First operand compares low
Selected bits ore both zero and one
Result is not all zero
Selactsd bit8 are one
Result overflow6
Result or selected bits are eero

-86-

NOTE :

on code also may be changed by LOAD PSW, SET PROGRAM
IAGNOSE and by an interruption.

The rightmost 32 bits of the PSW, including the updated instruction
address, are stored as link information in the general register speci-
fied by R1.
branch address.

Subsequently, the instruction address is replaced by the

The branch address is determined before the link information is stored.
The link information contains the instruction length code, the condition

addrcss.
mat of the BRANCH AND LINK.

\
f

i code, and the program'mask bits, as well as the updatcd instruction
1

The instruction-length code ie 1 or 2 , depending on the for-

Condition Code: The code remains unchanged.

Program Interruptions:

None

Programing Note

The link information is
zero .
When BRANCH AND LINK is
length code is 2.

7 . 4 . 3 BRANCII ON COUNT

stored without branching when the R2 field contains

the subject instruction of EXECUTE, the instruction-

8CtR R,, R, I R R l

-8 7-

.

1
.i

!

L

i

The content of the general register specified by R1 is algebraically
reduced by one.
proceeds with the updated instruction address.
zero, the instruction address is replaced by the branch address.

Wren the result is zero, normal instruction sequencing
When the result i e not

' / . .

The branch address is determined prior to the counting operation.
ing does not change the condition code.
tion from the maximum negative number to the maximum positive number is
ignored.
metic, and all 32 bits of the general register participate in the
operation.

Count-
The overflow occurring on transi-

Othenctise, the subtraction proceeds as in fixed-point arith-

Condition Code: The code remains unchanged.

Program Interruptions:

None

Programming Notes

An initial count of one results in zero, and no branching takes place.
An initial count of zero results in minus one and causes branching to
be executed.

Counting is performed without branching when the R2 field in the RR
format contains zero.

7.4.4 BRANCH ON INDEX HIGH

An increment is added to the first operand, and the sum is compared
algebraically with a comparand,
first operand location, regardless of whether the branch is taken.
the sum is high, the Instruction address is replaced by the branch address.
When the sum I s low or equal, instruction sequencing proceeds with the
updated instruction address.

Subsequently, the sum is placed in the
When

The first operand And the increment are in the regieters specified by R1
and K3.
than R3 or equal to R3.
addition and comparison.

The comparand rcgistcr address is odd and is either one larger
The branch address is determined prior to the

Overflow caused by the addition is ignored and does not affect the com-
parison. Otherwise, the addition and comparison proceed as in fixed-point
arithmetic. All 32 bits of the general registers participate in the

-88-

i

operations, and negative quantities arc expressed in two's-complement
notation.
original rcgiuter contents are used as the comparand.

When the first operand and cornparand locations coincide, the

Condition Code: The code remains unchanged.

Program Interruptions:

None

Programming Note

Ibe name "branch on index high" indicates that one of the major purposes
of this instruction is the incrementing and testing of an index value.
The increment may be algebraic and of any magnitude.

i -

i

(

An increment is added to the first operand, and the sum is compared
algebra1caZly with a comparand.
first operand location, regardless of whether the branch is taken.
the sum is low or equal, the instruction address is replaced by the branch
address.
with the updated instruction address.

Subsequently, the sum is placed in the
When

1

When the sum is high, normal instruction sequencing proceeds

The first operand and the increment are in the registers specified by R1
and R3.
than R3 or equal to R3.
addition and comparison,

The comparand register address is odd and is either one larger
The branch address is determined prior to the

This instruction is similar to BRANCH ON INDEX HIGH, except that the
branch is successfu1,when the sum is low or equal compared to the com-
parand.

Condition Code: The code remains unchanged.

Program Interruptions:

None
?
i 7 .4 .6 EXECUTE

-49-

I

L

!

!

!

The single instruction at the branch address is modified by the content
of the general register specified by R1, and the resulting subject in-
struction I s executed.

Bits 8-15 of the instruction designated by the branch address are OR'ed
wfth bits 24-31 of the register specified by R1, except when register
0 is specified, which indicates that no modification takes place.
subject instruction may be 16, 32, or 48 bits in length.
does not change either the content of the register specified by R1 or
the instruction in storage and is effective only for the lnterprctntion
of ttrc instruction to be executed.

The
The OR'ing

The execution and exception handling of the subject instruction are
exactly as if the subject instruction were obtained in normal sequential
operation, except for instruction address and instruction-length record-
ing.

The instruction address of the PSW is increased by the length of EXECUTE.
This updated address and the length code (2) of EXECUTE are stored in
the PSW in the event of a branch-and-link subject instruction or in the
event of an interruption.

When the subject instruction is a successful branching instruction, the
updated instruction address of the PSW is replaced by the branch address
of the subject instruction. When the subject instruction in turn is an
EXECUTE, an execute exception occurs and results in a program interrup-
tion. The effective addrese of EXECUTE must be even; if not, a specifi-
cation exccption will causc a program interruption.

CondLtiori Code: Tlic code moy bc act by thc sihject instruction.

Program Interruptions:

Execute
Addressing
Specification

Programing Notes

The OR'ing of eight bits from the general register with the designated
inetruction permits indirect length, index, mask, immediate data, and
arithmetic-register specification.

If the subject instruction is a successful branch, the length code still
stands at 2.

An addressing or Specification exception may be caused by EXECUTE or by
the sub j ec t instruct ion.

I

-90-

! *

0 Supplement t o Paragraph 7.4 .6 Programming Notes - Page 90

7935402

The t a r g e t i n s t r u c t i o n of execute cannot spec i fy general r e g i s t e r 8 as
a base r e g i s t e r un le s s t h e r e g i s t e r is f i r s t i n i t i a l i z e d t o a des i red
value.
t h e hardware s u b s t i t u t e s a l l zeros r a t h e r than use t h e a c t u a l contents
of t h e r e g i s t e r ,)

(Normally, when general r e g i s t e r 8 is spec i f i ed as a base r e g i s t e r ,

!

i

1

90A

7.4.6.1 Execute Exceptions

Exceptional operand designations and subject-instruction operation code
specifying EXECUTE cause a program interruption. When the interruption
occurs, the current PSW is stored as an old PSW, and a new PSW is ob-
tained.
Exceptions that cause a program interruption in the use of EXECUTE are:

The interruption code in the old PSW identifies the cause.

Execute

An EXECUTE instruction has as its subject instruction another EXECUTE,

Add r e m in&

The branch address of EXECUTE designates an instruction-halfword location
outeide the available storage for the particular installation.

Specification

\

The branch address of EXECUTE i s odd.

These four exccptions occur only for EXECUTE.
pressed.
remain unchanged.

Exceptions arising for the subject instruction of EXECUTE are the same
as would have arisen had the subject instruction been in the normal
instructfon stream. However, the instruction address stored in the old
PSW is the address of the instruction following EXECUTE.
the instruction-length code in the old PSW is the instruction-length code
(2) of EXECUTE.

The instruction is sup-
Therefore, the condition code and data in registers and storage

Similarly,

The address restrictions do not apply to the components from which an
address is generated - the content of the D1 field and the content of
the register specified by B1.

Programing Note

An unavailable or odd branch address of a successful branch is detected
during the execution of the next instruction and not as part of the
branch e

91

SECTION VI11

STATUS SWITCHING

A set of operations is provided to switch the status of the CPU, of storage,
and of communication between systems.

The over-all CPU status is determined by several program-state alternatives,
each of which can be changed independently to its opposite and most of which
are indicated by a bit in the program status word (PSW).
further defined by the instruction address, the condition code, the instrue-
tion-length code, the storage-protection key, and the intcrruption code.
These all occupy fields in the PSW.

The CPU status is

Protection of main storage is achieved by matching a key In storage with a
protection key in the PSW or in a channel.
may be changed by introducing new storage keys, using SET STORAGE KEY.
atorage keys may be inspected by using INSERT STORAGE KEY.

Facilities are provided whereby a system formed by CPU,
communicate with other systems.
available to the CPU; WRITE DIRECT provides signals to other systems.

All status-switching instructions, other than those of the protection feature
or direct control feature, are provided in the standard instruction set.

The protection status of storage
The

storage, and 110 can
The instruction READ DIRECT make signals

\

8.1 PROGRAM STATES

The four types of program-state alternatives, which determine the overall
CPU status , are named Problem/Supervisor , Waithunning, Masked/Interruptible ,
and Stopped/Operating.
functions and in the way their status is indicated and switched.
atates have several alternatives; all other states have only one alternative.

These states differ in the way they affect the CPU
The masked

All program states are independent of each other in their function, indication,
and status switching.
arithmetic registers or the execution of 1/0 operations but may affect the
timer operation.

Status switching does not affect the contents of the

8.1.1 PROBLEM STATE

The choice between supervisor and problem state determines whether the full
set of instructions is valid. The names of these states reflect their normal
use.

In the problem state all I/O, protection, and clock set instructions are
invalid, as well as LOAD PSW, SET SYSTEM MASK, and DIAGNOSE. These are called
privileged instructions.
state constitutes a privileged-operation exception and causes a program inter-
ruption.

A privileged instruction encountered in the problem

In the supervisor state all instructions are valid.

-92-

- . . . _ '. ._" :.-.

I

' !

When b i t 15 of t he PSW is zero , t h e CPU is i n the superv isor state.
b i t 15 is one, t h e CPU i s i n t h e problem state.
not i nd ica t ed on t h e ope ra to r s e c t i o n of t he system c o n t r o l pane l ,

When
The supe rv i so r state is

The CPU is switched between problem and superv isor s ta te by changing b i t 15
of t he PSW.
s t a t u s switching may be performed
des i r ed va lue f o r b i t 15. Since LOAD PSW is a p r iv i l eged i n s t r u c t i o n , t h e
CPU must be i n t h e supe rv i so r s ta te p r i o r t o the switch. A new PSW is also
introduced when t h e CPU is in t e r rup ted . The SUPISRVISOR CALL causes an
i n t e r r u p t i o n and thus may change the CPU s t a t e . S imi l a r ly , i n i t i a l program
loading in t roduces a new PSW and wi th i t a new CPU state.
in t roduce the problem o r superv isor s t a t e regard less of t he preceding state,
No e x p l i c i t ope ra to r c o n t r o l is provided f o r changing the superv isor state.

l 'h is b i t can be changed only by in t roducing a new PSW. Thus
by LOAD PSW, using a new PSW with the

The new PSW may

Timer incrementing/decrementing is no t a f f ec t ed by t h e choice between supe rv i so r
and problem state.

Propramming Note

To al low r e t u r n from an interrupt ion-handl ing r o u t i n e t o a preceding program
by a LOAD PSW, t h e PSW f o r t h e i n t e r r u p t i o n r o u t i n e should spec i fy t h e
superv isor s tate.

8.1.2 WAIT STATE

I n t h e w a i t s t a t e no i n s t r u c t i o n s are processed, and s t o r a g e is not addressed
repea ted ly f o r t h i s purpose, whereas i n the running s ta te , i n s t r u c t i o n f e t ch ing
and execut ion proceed i n t h e normal manner.

When b i t 14 of t he PSW is one, t he CPU is wait ing.
CPU i u i n t he running s ta te .

When b i t 14 is zero, t h e

i

The CPU is switched between wai t and running s t n t c by changing b i t 14 of t he
PSW. This b i t can be changed only by introducing an e n t i r e new PSW, as is
the case with the problem-state b i t . Thus, switching from the running s t a t e
may be achicved by the p r iv i l eged i n s t r u c t i o n LOAD PSW, by an i n t e r r u p t i o n such
as f o r SUPERVISOR CALL, or by i n i t i a l program loading. Switching from t h e
wait state may be achieved by an 1/0 o r e x t e r n a l i n t e r r u p t i o n o r , again by
i n i t i a l program loading.
s ta te r ega rd le s s of the preceding s t a t e .
provided f o r changing t h e wait state.

The new PSW may in t roduce the w a i t o r running
No e x p l i c i t opera tor c o n t r o l is

Timer incrementing/decrementing i s no t a f f e c t e d by t h e choice between running
and wait state.

Programming Note

To leave t h e wait s ta te without manual i n t e rven t ion , the CPU should remain
i n t e r r u p t i b l e f o r some a c t i v e 1/0 o r e x t e r n a l i n t e r r u p t i o n source ,

-93-

i Systc rn Mask Unuscd AMWP

When because of mdchinc malfunction the CPU i s unable t o end an i n s t r u c t i o n
o r 1/0 i n t e r r u p t s a r c d i s a b l e d , t h e scop kcy i s no t c f f c c t i v c , and i n i t i a l
progrsin 1.oading o r system reset should bc used.

lr~ti!rru;>tion COLIC

Input /output opera t ions cont inue t o complction whilc t h e CPU is i n t h e problem,
w a i t , o r maslted s t a t e .
CPU is stopped, wai t ing , o r i n the problem s t a t e .
caused by 1/0 completion is l o s t when t h e CPU i s i n the stopped s ta te .

Ilowcver, no ncw L / O opcrnt ions can be i n i t i a t e d while the
Also, t h e interruption

ILC

8 .2 PR0TI:C:TTON

Program
hl'rsk u I1 uscd Instruction Address cc

P r o t e c t i o n i s provided to p r o t e c t t h e contents of c e r t a i n areas of main s t o r -
age from d e s t r u c t i o n (o r misuse) caused by erroneous s t o r i n g of information
during t h e execution of a program. Locations may be pro tec ted a g a i n s t s to re :
v i o l a t i o n s . '

8 . 2 . 1 AREA IDENTIYICATION

For p r o t e c t i o n purposes, main s t o r a g e is divided i n t o blacks of 1024 by tes ,
each block having a n address t h a t is a mul t ip le of 102'4.

8 .2.2 PROTECTION ACTION

A 2 b i t key is assoc ia ted wi th each block of s t o r a g e f o r p r o t e c t i o n from t h e
CPU and DhlA.

i

1

8 . 3 PROGIW STATUS worw

The PSW conta ins a l l i n f o r n a t i o n n o t contained i n s t o r a g e or r e g i s t e r s but
requi red f o r proper program exccution.
can preserve the d e t a i l c d s t a t u s of t h e CPU'for subsequent i n sepc t ion . By
loading a new PSW o r p a r t of a PSN, t h e s t a t e of t h e CPU may be changed.

Ey s t o r i n g t h e PSW, t h e program

I n c e r t a i n c i rcunstnnccs a l l of the PSI.? i s s t o r e d o r loaded; i n o t h e r s ,
only part: of i t . The e n t i r e PSW i s s t o r e d , and a new PSI? i s introduced
~ h c n the CPU i s i n t e r r u p t e d . T h e r ightmost 32 bits arc s to red i n BRAXCII
AND LI1;?:. The LOMI PSW int roduccs a ncw PSL!; SET PROGRilM mask int roduces
a ncw cond i t ion code and program-mask f ie ld i n t h e PSW; SET SYSTEPl llASK
introduces a new system-mask f i e l d .

The PSW h a s t h e fol-lotling format: :

The f o l l o w i n g i s a summary of t h e purposes of t h e PSW f i e l d s :

'

C

L

r

c'

-94-

System Mask

;
. !

B i t s 0-7 of t h e PSW are asaoc la t ed wi th I/O channels and external s i g n a l s
as s p e c i f i e d i n t h e fo l lowing tob le .

1 When a mask b i t ie, one, t h e source

i '

1

i

SYSTEM
MASK BIT INTERRUPTION SOURCE

I/O
Unueed
Unused
Unused
Unused
Unused
Unused
Timer

B i t s 8-11 of t h e PSW must be zero when loaded; o therwise , a s p e c i f i c a t i o n
except ion is recognized when an a t tempt is made t o execute t h e i n s t r u c t i o n
des igna ted by t h e PSW. The p r o t e c t i o n key is s t o r e d unchanged.

ASCII (A)

When b i t 12 of t h e PSW is one, t h e codes p re fe r r ed f o r t h e USASCII-8 code are
generated f o r decimal results.
f o r t he extended binary-coded-decimal interchange code a r e generated.

j
1 When PSW b i t 12 is ze ro , t h e codes p r e f e r r e d

The fo l lowing i n s t r u c t i o n s cause e i t h e r t h e s i g n o r zone code t o be generated
I n accordance wi th thc s e t t i n g of PSW b i t 12: CVD, UNPK.

Machine-Check Mask (M)

When bit 13 of the PSW is one, detection of a machine-check cond i t ion causes
a machine-check i n t e r r u p t i o n .
d i s a b l e d for machine-check i n t e r r u p t i o n s ; when a machine check occurs , the
machine e n t e r s a hard s top .

When b i t 1 3 of t h e PSW is ze ro , t h e CPU is

< Walt S t a t e (W)
$

When b i t 14 of t h e PSW is one, t h e CPU is i n t h e wait state.
14 is ze ro , t h e CPU is i n t h e running state.

Problem S t a t e (P)

When b i t 15 of t h e PSW is one, t h e CPU is i n t h e problem state.
b i t 15 is ze ro , the CPU is in t h e supe rv i so r state.

When PSW b i t

i When PSW

-95-

I n t e r r u p t i o n Code

B i t s 16-31 of t h e PSW i d e n t i f y t h e cousc of an i n t e r r u p t i o n .
code f o r a l l f i v e i n t e r r u p t i o n typcs- Js sliown i n a t a b l e appearing i n
Sect i o n I X , " In te r rupt ions" .

Use of ttic

I n s t r u c t i o n 1,cnpt.h Code (I1,C)

The code i n PSW b i t s .32 and 33 i n d i c a t e s t h e l e n g t h , i n halfwords, o f t he
l a s t - i n t e r p r c t c d i n s t r u c t i o n when a program o r s u p e r v i . s o r - c J l 1 i n t e r r u p t i o n
occurs . The code i s unpredictable f o r J/O, e x t e r n a l , o r machine-check
i n t e r r u p t i o n s . Encoding of t hese b i t s i s su~r,n:arized i n a t a b l e appearing
i n Sect ion I X , " In t t r rupt ior i s" .

Condition Code (CC)

B i t s 34 and 35 of t h e PSW are t h e two b i t s of t h e condi t ion code. The condi-
t i o n codes f o r a l l i n s t r u c t i o n s are summarized i n a t a b l e appearing i n Sect ion
VI1 , "Branching".

ProRram Mask

B i t s 36-39 of t h e PSW arc t h e fou r program mask b i t s . Ihch b i t is assoc ia ted
with a program except ion, as s p c c i f i e d i n t h e followi.ng t a b l e . When t h e mask
b i t i s one, t h e except ion r e s u l t s i n an i n t e r r u p t i o n .
ze ro , no i n t e r r u p t i o n occurs.

*:hen t h e mask b i t is

PROGiWEl
PlASK E I T

36
37
38
39

PROGPJM EXCEPTION

Fixed-point overflow
Unused
'Unused
Unused

Ins t ruc t io i i Address

B i t s 44-63 of t h e PSIJ a rc t h e i n s t r u c t i o n address. This address s p e c i f i e s
t h e le f tmost e i g h t - b i t b y t e p o s i t i o n of t h e next i n s t r u c t i o n . B i t 6 3 must
be z e r o when loaded; otherwise, a s p e c i f i c a t i o n except ion i s recognized
when a n at tempt is made t o execute t h e i n s t r u c t i o n designated by t h e PSW.

8 . 4 INSTRUCTION FORELAT

Status-switching i n s t r u c t i o n s use t h e following two formats:
R R Format

I Op Code 1 R , 1 R2 J
0 7 6 11 1 1 13

SI Format

I
O I3 11 I910 I1

o p Code ' 2
7 1

-96-

I

I

i

I

?
1

In the KK format, the R1 field specifies o general register, except for SUPER-
VISOR CALL,
and INSEKT STORAGE KEY,
identification code.

The R2 ficld specifies a general register in SET STORAGE KEY
The R1 and R2 fields in SUPERVISOR CALL contain on

In SET PROGRAM MASK THE R2 field le ignored.

In the SI format the eight-bit immediate field (12) of the Instruction con-
tains an identification code.
SYSTEM MASK, and TEST AND SET.
fied by I31 i e added to the content of D1 field to form an address designating
the location of an operand instorage.
quired in status-ewitching operations.

The 12 field is ignored in LOAD PSW, SET
The content of the general register speci-

Only one operand location is re-

A zero in the B1 field indicates the absence of the corresponding address
component.

8.5

NOTE :

In the detailed descriptions of the individual instructions, the
mnemonic and the symbolic operand designation for the NSSC-I1 assembly
language are shown with each instruction.
example, LPSW is the mnemonic and Dl(B1) the operand designation.

For LOAD PSW, for

INSTRUCTIONS

The status-switching instructions and their mnemonics, formats, and opera-
tlon codes follow. The table also Indicates the feature which an in-
rtruction belongs and the exceptions in instruction and operand desig-
nation that cause a program interruption,

I

I

NAME MNEMONIC TYPE EXCEPTIONS CODE

Load PSW LPSW SI L M A S 82 .
Set Program Mask SPM R R L 04
Set System Mask SSM SI M,A 80
Supervisor Call svc RR OA
Set Storage Key SSK R R Z M S A D 08
Diagnose - SI M,P,A,S 83
Test and Set TS SI c p ,A 93

NOTES
1

!

A Addressing exception
C Condition code is set

M Privileged-operation exception
P Protection exception

! L New condition code loaded

! S Specification exception

-97-

I

I

i

t

I

Programinn Note

The program s t a t u e is a l e o switched by i n t e r r u p t i o n s , i n i t i a l program
loading , and manual c o n t r o l .

8.5.1 LOAD PSW

I 82 Dl a i I
a I O

The double word a t the l o c a t i o n designated by t h e operand address r ep laces
t h e PSW.

The operand address must have i t s t h r e e low-order b i t s zero t o des igna te
a double word; o therwise , a s p e c i f i c a t i o n except ion r e s u l t s i n 8 program
i n t e r r u p t i o n .

The double word which is loaded becomes the PSW f o r t h e next sequence of
i n s t r u c t i o n s .
t he double word become t h e new i n s t r u c t i o n address .
PSW are checked f o r program i n t e r r u p t i o n s dur ing t h e load-PSW opera t ion .
Other checks occur as p a r t of t h e execut ion of t h e next i n s t r u c t i o n e .

The i n t e r r u p t i o n code in b i t p o s i t i o n s 16-31 of t he new PSW i e not r e t a i n e d
a8 t h e PSW is loaded.
i n t e r r u p t i o n , these b i t p o s i t i o n s conta in a new code. S i m i l a r l y , b i t e 32
and 33 oE t h e PSW arc no t r e t a i n e d upon loading.
i ne t ruc t ion - l eng th code f o r t h e l a s t - i n t e r p r e t e d i n s t r u c t i o n when t h e PSW
i e s t o r e d dur ing a branch-and-link ope ra t ion o r dur ing a program o r
rupe rv i so r -ca l l i n t e r r u p t i o n .

B i t s 8-11 become t h e new p r o t e c t i o n key. B i t s 48-63 of
Only b i t s 8-11 of t h e

When t h e PSW is subsequent ly s t o r e d becauee of an

Tliey w i l l con ta in t h e

Condition Code: The code is set according t o b i t s 34 and 35 of
t h e new PSW loaded.

Program I n t e r r u p t i o n s :

P r iv i l eged ope ra t ion
Add res s i n g
S p e c i f i c a t i o n

Pronramminn Note

The CPU e n t e r s t he problem s ta te when LOM PSW loads a double word with a
one i n b i t p o s i t i o n 15 and s i m i l a r l y e n t e r s t h e wai t s ta te i f b i t p o s i t i o n
14 I s one.
t h e problem a t a t e o r t h e wait state.

9 The LOAD PSW is the only i n s t r u c t i o n a v a i l a b l e f o r e n t e r i n g

-98-

,!

,

8.5.2 SET PROGW MASK

ICM Rl P I

B i t s 2-7 of t h e genera l r e g i s t e r spec i f i ed by the R 1 f i e l d r e p l a c e t h e
cond i t ion code and the program mask b i t s of t h e cu r ren t PSW.

B i t s 0, 1, and 8 - 3 1 o f the r e g i s t e r spec i f i ed by t h e R 1 f i e l d are ignored.
The con ten t s of t he r e g i s t e r spec i f i ed by t he R1 f i e l d remain unchanged.

The i n s t r u c t i o n permits s e t t i n g of t h e condi t ion code and t h e mask bits
in e i t h e r the problem o r eupervisor state.

Condition Code: The code is set according t o b i t s 2 and 3
of t h e r e g i s t e r s p e c i f i e d by R1.

Program In te r rup t ions :

None

Prograauning Note

B i t s 2-7 of t h e genera l r e g i a t e r may have been loaded from t h e PSW by
BRANCH AND LINK.

8.5.3 SET SYSTlDl MASK
SSM D,fB,) P I

The byte at t h e location des ignated by the operand address r e p l a c e s t h e
ryrtem mask bits of t h e current PSW.

Condit ion Code: The code remains unchanged.

Program In te r rup t ions :

P r iv i l eged ope ra t ion
Addressing

8.5.4 SUPERVISOR CALL

j .

-99-

. - -

T h e i n s t r u c t i o n causes a superv isor -ca l l i n t c r r u p t i o n , wi th t h e I f i e l d
of t h c i n s t r u c t i o n prov.iclin2 tlic i n t c r r u p t j o n code.

The contents of b i t p o s i t i o n s 8-15 of thc i n s t r u c t i o n a r c placcd i n b i t
p o s i t i o n s 24-31 of the o l d 1’SW wllicli i s s to red i n the course of t h e i n t e r -
rup t ion . B i t p o s i t i o n s 16-23 of the old PSW are made zero .
i s s to red a t l o c a t i o n 3 2 , and n ncsw PSW i s ohtninccl from l o c a t i o n 96 . Thc
i n s t r u c t i o n i s v a l i d i n both p rob lc~ t i and supc>rvisor s t a t e .

?‘he 0l.d PSI4

Condition Code: T h c code remains unchanged i n the o ld PSW.

Program I n t e r r u p t i o n s :

None

8.5.5 SET,STORAGE KEY
S S K R,, R , I R R I .

The key of t h e s torage block nddrcssed by the r e g i s t e r designated by R2
i s set accordins t o t h c key i n t h e r e g i s t e r designated by R 1 .

The s torage block of 1024 bytcss, located on a m u l t i p l e of the block length,
i s addressed by b i t s 12-21. of t he r e g i s t c r designatccl by t h e K2 f i e l d .
B i t s 0-15 and 22-31 of tliis r e g i s t e r are ignored.

The two b i t key is obtained from b i t s 30 and 31 of t h e r e g i s t e r designated
by t h e R 1 f i e l d .
p r o t e c t s a g a i n s t CPU a n d buffered 1/0 s t o r i n g , and b i t 31 = 1 p r o t e c t s a g a i n s t
DXA storing.

H i t s 0 through 29 of t h i s r e g i s t e r are ignored. B i t 30 = 1
.

Condition Code : T h e code remnins unchanged.

Program I n t e r r u p t i o n s :

Pr iv i leged operat ion
Addressing
S p e c i f i c a t i o n

8.5.6 TEST AND SET
TS D , f a , l IS’]

The lef tmost b i t (b i t p o s i t i o n 0) of t h e byte loca ted a t t h e f i r s t operand
address is used‘ t o set the condi t ion code, and tIic e n t i r e addressed byte
i s set t o a l l ones.

-103-

c .

i

f
1

The b y t e i n s t o r a g e i s set: t o a l l ones as i t i s f e t c h e d f o r t h e t e s t i n g
of b i t p o s i t i o q 0.
t h e mon!cnL of f e t c h i n g aiid t h e moment: of s t o r i n g a l l ones .

KO other acccss t o t h i s l o c a t i o n i s p e r m i t t e d between

The o p e r a t i o n is t e rmina ted on any p r o t e c t i o n v i o l a t i o n .
code s e t t i n g i s u n p r e d i c t a b l e when ii p r o t e c t i o n v i o l a t i o n occur s .

The c o n d i t i o n -

R e s u l t i n g Cond i t ion Code:

0 Leftrnost b i t of b y t e s p c c i f i e d i s ze ro
1 L e f t n o s t b i t : o f b y t e s p e c i f i e d i s one
2 --

' 3 --

Program I n t e r r u p t i o n s :

P r o t e c t i o n
Address ing

F r o granwi in F: No t e

TEST AND SET can b e used f o r c o n t r o l l e d s h a r i n g of a cormon storsgc a r e a
by more than one program. To a c c o n p l i s h t h i s , b i t p o s i t i o n 0 of a b y t e

achieved by e s t a b l i s h i n g a program convent ion i n which I ze ro i n t h e b i t
p o s i t i o n i n d i c a t e s t h a t t h e common area i s a v a i l a b l e but a o n e means thzt
t h e area is be ing u s e d .
by means of TEST MU SET b e f o r e making a c c e s s t o t h e common a r e a .
t h e t e s t sets t h e c o n d i t i o n code t o z e r o , t h e a r e a is a v a i l a b l e f o r use;
i f i t sets t h e c o n d i t i o n code t o one , t h e a r e a cannot be u s e d . Because
TEST A" SET permits no a c c e s s t o t h e test b y t e between t h e rroment of
f e t c h i n g (f o r t e s t i n g) a n d t h e monicnt of s t o r i n g a l l ones (s e t t i n g) ,
t h c p o s s i b i l i t y is e!iminatcd of a second program's t e s t i n g t h e b y t e
b e f o r e t h e f i r s t program i s a b l e t o r e s e t i t .

I

d

I must b e d e s i g n a t e d a s t h e c o n t r o l b i t . The d e s i r e d i n t c r l o c k can he . ' 1

i

I Each u s i n g program then mus t exarnine t h i s b y t e
I f

8.5.7 START INPUT OUTPUT

The SI0 i n s t r u c t i o n is used t o i s s u e one of t h e f o u r (4) 1 6 - b i t command
words as shown below.

DIRECT OUTPUT (VRITE DIRECT)

DIRECT IRPUT (READ DIRECT)

-101-

*

The least

1

x x x x x x x x
0 4 6 7 8 16

RESET INTERFACE (HALT I/O)

x x x x x x x x
TEST INTERFACE b 4 6 7 8 16

significant bits of the command (9-15) are the device address
The most significant bit of the command (bit 8) shal l be and function.

a one (1) for a non-tester 1/0 function and zero (0) for a Tester
function.

The S I 0 Instruction is also used to send or receive a 16-bit data word
tolfrom an 1/0 device in conjunction with the commend word (such as a
write character to the typewriter) ,

The command word is placed at the Effective Address (EA); R1 must contain
any output word and any input word will be placed in R3 during the instruc-
tion operation,

The least significant 16 bits of R1 will be made available to the 1/0
interface after a direct INPUT/OUTPUT command is transmitted.

Similarly, the least significant bits of the R3 will be replaced by
the 1/0 input word after a direct INPUT/OUTPUT command is transmitted.

If the 1/0 interface is busy the condition code is set to one and the
instruction terminates without performing the 1/0 operation.

On a test interface, the command is transmitted and the condition code
i r set without any attempt to exchange data; R1 and R3 are ignored.

Condition Codes:

0 Interface Not Busy
1 Interface Busy

Program Interruptions:

Addressing
Specification
Privileged operation

-102-

!

i

i

i

1
J
i

!

’

Programming Note

Both R1 and R3 must be des igna ted on a l l D i rec t Input o r Output func t ions .

8.5.8 TIMER READ AND SET

The R 1 f i e l d is used as an ex tens ion of t h e opcode t o a l low m u l t i p l e
functiona of t h i s i n s t r u c t i o n as shown below:

1. R1 - 0000 Read t h e Real Time Clock
2. R 1 - 0010 Read and S e t t h e Real Time Clock
3. R 1 - 0001 Read t h e I n t e r v a l Timer
4. R1 0011 Read and Se t t h e I n t e r v a l Clock

The Real Time Clock (o r t h e I n t e r v a l Timer) is read i n t o t h e r e g i s t e r
des igna ted by R3.

The Real Time Clock is comprised of 32 b i t s and increments by one every
112.64 psec.
No i n t e r r u p t is taken when t h e c lock overflows.

The per iod of t h e Real Time Clock is approximately 5.6 days.

The I n t e r v a l Timer is comprised of 16 b i t s and decrements by one every
112.64 psec.
An i n t e r r u p t is taken when t h e c lock decrement8 beyond zero i f PSW b i t 7
%e set t o one.
pending.
of t h e r e g i s t e r des igna ted by R3 and b i t s 0-15 w i l l be set to zero.

The I n t e r v a l Timer has a per iod of approximately 7.38 seconds.

I f PSW b i t 7 is set t o zero, t h e timer i n t e r r u p t w i l l remain
When the I n t e r v a l T imer is read, i t w i l l be placed i n t o b i t s 16-31

When the Real T i m e Clock I s to be set, the effective address (B +Dp)
must d e s i g n a t e a fullword (32 b i t) memory l o c a t i o n , which contafns the
number t o be set i n t o t h e clock. When t h e I n t e r v a l Timer is t o be set ,
t h e e f f e c t i v e address (B2+D2) must des igna te e halfword (16 b i t) memory
l o c a t i o n which con ta ins t h e number t o be set i n t o t h e I n t e r v a l Timer.

Condi t ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

Addressing
S p e c i f i c a t i o n
P r iv i l eged ope ra t ion (only 2 and 4 above)

i
i

-103-

Programming Note

The contents of t h e r e g i s t e r designated by R3 w i l l always be replaced by
the c u r r e n t con ten t s of e i t h e r t h e c lock or the timer even i f R3 is zero.

8.5.9 DIAGNOSE
51

83 I '2 I I Dl I
a i T I I S 1 6 l t l O

The purpose of t he DIAGNOSE i n s t r u c t i o n is t o execute s e l f test and/or
s p e c i a l purpose microprograms t h a t may be developed from the NSSC-11,

The B 1 and D 1 f i e l d s are added toge ther t o compute an e f f e c t i v e address .
NSSC-I1 microprogram branches t o t h a t address i n the NSSC-I1 microprogram con- 1;:
t r o l s to rage and executes the microprogram rou t ine t h a t begins a t t h a t address-..

~ .,.:

The

The purpose of the I
The microprogram may
counter ; t h e problem
of t h e CPU, t h e condj

f i e l d may be def ined i n any way by t h e microprogram.
a f f e c t any p a r t of o r a l l of t h e PSW, t he program
s t a t u s , superv isor s t a t u s , and i n t e r r u p t i b l e s t a t u s
.tion code, and t h e conten ts of s to rage , r e g i s t e r s , and

timers, as well as t h e progress of 1/0 opera t ions .

S ince the I n s t r u c t i o n is no t intended f o r problem-program or supervisor-
program use, DIAGNOSE has no mnemonic.

Condition Code: The code is unpredictable .

Program In ter rupt ior i s :

P r iv i l eged opera t ion
P r o t e c t i o n
S p e c i f i c a t i o n
Addressing

8.6 STATUS-SWITCHING. EXCEPTIONS

Except ional i n s t r u c t i o n s , operand des igna t ions , or d a t a cause a program
i n t e r r u p t i o n . When t h e i n t e r r u p t i o n occurs , t h e c u r r e n t PSW is s t o r e d
as an o l d PSW, and a new PSW is obtained.
in t h e o l d PSW i d e n t i f i e s t h e cause of the i n t e r r u p t i o n . The fol lowing
except ion condi t ions cause a program i n t e r r u p t i o n i n s ta tus-swi tch ing
opera t ions .

P r iv i l eged Operation

A LOAD PSW, SET SYSTEM MASK, SET STORAGE KEY, TMRS (Set on ly) , o r DIAGNOSE
is encountered while t h e CPU is i n t h e problem state.

The i n t e r r u p t i o n code i n s e r t e d

. .

Addreminx

An address designatcs a location outside the available storage for the
installation. The operation is terminated.

Specification

The operand address of a LOAD PSW does not have all three low-order bfts
zero; a PSW with a nonzero bits 8-11 is introduced.

When an instruction is suppressed, storage and external signals remain
unchanged, and the PSW is not changed by information from storage.

When an interruption is taken, the instruction address stored as part of
the o1.d PSW has been updated by the number of halfwords indicated by the
instruction-length code in the old PSW.

Operand addresses are tested only when used to address storage.
address restrictions do not apply to the components from which an address
is generated:
epecif ied by B1 .

The

the content of the D1 field and the content of the register

Programming Notes

When a program interruption occurs, the current PSW is stored in the old
PSW location. The instruction address stored as part of this old PSW is
thus the updated instruction address, having been updated by the number
of halfworda indicated in thc instruction-length code of the same PSW.

If the new PSW for a program interruption has an unacceptable instruction
address, another program interruption occurs.
interruption introduce8 the same unacceptable instruction address, a
string of program interruptions is established which may be broken only
by an external or I/O interruption.
unacceptable new PSW, new supervisor information must be introduced by
initial program loading or by manual intervention.

Since this second program

If these interruptions also have an

-105-

~~ ~

. length,code of t h e last-interpreted i n s t r u c t i m ,

rruptible f o r the

action fo~.?awing an

f i c a t i o n , and location

’ .

. .

-106-

In the case of instruction completion, results are stored and the condi-
tion code is set as for normal instruction operation, although the result
may be influenced by the exception which has occurred.

In the case of instruction termination, all, part, or none of the result
may be stored.
ting of the condition code, if called for, may also be unpredictable.
In general, the results should not be used for further computation.

In the case of instruction suppression, the execution proceeds as if no
operation were specified.
code is not changed.

Therefore, the result data are unpredictable. The set-

Results are not stored, and the condition

9.1.2 SOURCE IDENTIFICATION

The five classes of interruptions are distinguished by the storage loca-
tions in which the old PSW is stored and from which the new PSW is
fetched.
ruption code of the old PSW, except for the machine-check interruption.
The bits of the interruption code are numbered 16-31, according to their
position in the PSW.

The detailed causes are further distinguished by the inter-

For machine-check interruptions, additional information is provided by
the diagnostic procedure, which is part of the interruption.

h e following table lists the permanently allocated main-storage loca-
t ions.

ADDRESS

0
8

16
24
32
40
48
56
64
72
76
80
84
88
96
104
112
120
128

0000 0000
0000 1000
0001 0000
0001 1000
0010 0000
0010 1000
0011 0000
0011 1000
0100 0000
0100 1000
0100 1100
0101 0000
0101 0100
0101 1000
0110 0000
0110 1000
0111 0000
0111 1000
1000 0000

LENG'ilf

Double Word
Do ub 1 e Word
Double Word
Double Word
Double Word
Double Word
Double Word
Double Word
Double Word
Word
Word
Word
Word
Double Word
Doub 1 e Word
Double Word
Double Word
Double Word
Word

PURPOSE

Initial program loading PSW
Unused
Unused
External old PSW
Supervisor ca l l old PSW
Program old PSW
Machine old PSW
Input/output old PSW
BufIered 1/0 status word
Channel address word
Unused
Unused
Unused
External new PSW
Supervisor call new PSW
Program new PSW
Machine-check new PSW
Input/output new PSW
Unused

-107-

..

I *

I
! '

, *

9.1.3 IACATION DETERMINATION

For some intcrruptions, it is desirable to locate the instruction being
intqrpreted when the interruption occurred.
in the old PSW designates the instruction to be executed next, it is
necessary to know the length of the preceding instruction.
is recorded in bit positions 32 and 33 of the PSW as the instruction-
length code.

Since the instruction address

This length

The instruction-length code is predictable only for program and super-
visor-call interruptions. For 1/0 and external interruptions, the inter-
ruption is not caused by the last-interpreted instruction, and the code
is not predictable for these instructions. For machine-check interrup-
tions, the setting of the code may be affected by the malfunction and,
therefore, is unpredictable.

For the supervisor-call interruption, the instruction-length code is 1,
indicating the halfword length of SUPERVISOR CALL.
ruptions, the codes 1, 2, and 3 indicate the instruction length in half-
words.
code.

For program inter-

The following table shows the states of the instruction-length

INSTRUC-
PSW BITS TION INSTRUCTION

ILC 32-33 . BITS 0-1 LENGTH FORMAT

1 01 00 One halfword RR
2 10
2 10
3 11

01 Two halfwords Rx
10 Two halfwords RS or SI
11 Three halfwords ss

Programming Notes

When a program interruption is due to incorrect branch address, the
location determined from the instruction address and instruction-length
code is the branch address and not the location of the branch instruc-
tion.

When an interruption occurs while the CPU is in the wait state, the
instruction-length code is always unpredictable.

The instruction EXICCUTK represents upon interruption an instruction-
lcngtli code which docs not reflect the length of the instruction executed,
but ia 2, the length of EXECUTE.

9.2 INPUT/OUTPUT INTERRUPTION

The I/O interruption provides a means by which the CPU responds to signals
from I/O devices.

-108-

A r e q u e s t f o r an 1 / 0 i n t e r r u p t i o n rnny occur a t ilny t i ne , arid niorc t h a n oiie
r e q u e s t may occur a t t1-1~ same t imc . T h e rcqucsts a r c p rc sc rved i n t h e

r e q u e s t s s o t h a t o n l y one i n t e r r u p t i o n rcqucs t is p rocessed a t a t ine.
I 1/0 s e c t i o n u n t i l acceptcd by t h c CI’U. P r i o r i t y is c s t n b l i s h c d among
0

,

An 1/0 i n t e r r u p t i o n can O C C I I T o n l y a f t e r c z c c u t i o n of the c u r r e n t i n s t r u c -
t i o n i s completed and w h i t e t h e CPU is i n t e r r u p t i b l e f o r I / O . T / O i n t e r -
r u p t s a r e masked by syst:c>m mask b i t 0. I n t e r r u p t i o n s masked oEf remain
pending.

The 1 /0 i n t e r r u p t i o n C ~ I I S C S the o l d PSW t o be s t o r e d a t l o c a t i o n 56.
Subsequen t ly , a new PSIJ i s loadcci from l o c a t i o n 1 2 0 .

The i n t e r r u p t i o n code i n the o l d ‘PSI; i d c n t i f i c s t h e d e v i c e and s t a t u s
caus ing t h e i n t e r r u p t t o n . Thc: o l d PSW w i Ll c o n t a i n t h e dcv ice dependent
d a t a . Tlie i n s t r u c t i o n - l e n g t h code i s u n p r e d i c t a b l e .

9.3

Excep t i cns r e s u l t i n g from improper s p e c i f i c a t i o n o r u s e of i n s t r u c t i o n s
and d a t a c a u s e a program i n t e r r u p t i o n .

The c u r r e n t i n s t r u c t i c n i s cor.ipleted, t e r m i n a t e d , o r s u p p r e s s e d . Only
one program i n t e r r u p t i o n o c c u r s f o r a g iven i n s t r u c t i o n and is i d c n t i f i e d
i n rhe o ld PSW. T h e occur rence o f a p r o c r n c i n t e r r u p L i o n does n o t p re -
c l u d e t h e s i rnul tancous occur rence o f o t h e r p r o ~ r a ~ , - i n t c r r u p t i o n c a u s e s .
Vhich of s e v e r a l causes is i d c n c i f i c d mny va ry from one occas ion t o t h e
n e x t . 0
A program i n t e r r u p t i o n can occur o n l y when t h e co r re spond ing mask b i t ,
i f any , i s one. \vlicn the rririslc b i t i s z e r o , t h e i n c c r r u p t i o n i s ignored .
Program i n t e r r u p t i o n s do n o t remain pending.
masking of one of t h e 3 i n t e r r u p t i o n causes .

Program mask b i t 36 permits

The p r o l ; r n m interruprion causes t h e old PSLJ to be s t o r c d at l o c a t i o n 40
and a IICW PSbJ t o be fe tched from l o c a t i o n 104,

The c a u s e of t h e i n t e r r u p t i o n i s i d e n t i f i e d by t h e f o u r low-order b i t
p o s i t i o n s i n t h e i n t c r r u p t i o n code , PSh b i t s 28-31. The remainder of
t h e i n t e r r u p t i o n code , b i t s 16-27 of t h e PSlJ, are made ze ro .
t i o n - l e n g t h code i n d i c a t e s t h e l e n g t h of t h e p reced ing i n s t r u c t i o n i n half-
words. For a few cases, t h e i n s t r u c t i o n l e n g t h i s no t ava i . l ab l e . These
cases are i n d i c a t e d by code 0.

The i n s t r u c -

I f t h e new PSW f o r a program i n t e r r u p t i o n has an unaccep tab le i n s t r u c t i o n
a d d r e s s , a n o t h e r program i n t e r r u p t i o n o c c u r s . S i n c e t h i s second program
i n t e r r u p t i o n i n t r o d u c e s t h e same unaccep tab le i n s t r u c t i o n a d d r e s s , a
s t r i n g of program i n t e r r u p t i o n s is e s t a b l i s h e d which may be broken o n l y
by an esterrial o r 1/0 i n t e r r u p t i o n .
u n a c c e p t a b l e new PSIJ, new s u p e r v i s o r i n f o r r a t i o n must b c i n t r o d u c e d by
i n i t i a l program l o a d i n g or by manu1 i n t e r v c n t i o n .

I f these i n t e r r u p t i o n s a l so have a n

-109-

.

A description of the individual program exceptions follows. The applica-
tion of these rules to each class of instructions is further described in
the applicable sections. Some of the exceptions listed may also occur in
operations executed by 1/0 channels. In that event, the exception is in-
dicated in the channel status word stored with the 1/0 interruption (as
explained in paragraph 3 . 7.4, "Input/Output Operations") . '

9.3.1 OPERATION EXCEPTION

When an operation code is not assigned or the assigned operation is not
available on the particular model, an operation exception is recognized.
The operation is suppressed.

The instruction-length code is 1, 2, or 3.

9.3.2 PRIVILEGED-OPERATION EXCEPTION

When a privileged instruction is encountered in the problem state, a
privileged-operation exception is recognized, The operation is suppressed,

The Instruction-length code is 1 or 2.

9.3.3 EXECUTE EXCEPTION
I

When the subject instruction of EXECUTE is another EXECUTE, an execute
exception is recognized.

The instruction-length code is 2.

The operation is suppressed. :e
9.3.4 PROTECTION EXCEPTION

When an instruction tries to store into a protected location a protection
exception is recognized.

The operation ie suppressed on a store violation, except in the case of
STORE MULTIPLE, TEST ANI) SET, and variable-length operations, which are
terminated.

The instruction-length code is 0, 2,)r 3.

9.3.5 ADDRESSING EXCEPTION

When an address specifies any part of data, an instruction, or a control
word outside the available storage for the particular installation, an
addressing exception is recognized.

In most cases, the operation is terminated for an invalid data address.
Data in storage remain unchanged, except when designated by valid addresses.
In a few cases, an involved data address causes the instruction to be
Suppressed - AND (NI) , EXCLUSIVE OR (XI) , OR (OI), MOVE (MVI) , CONVERT

-110-

_ _ - .
_ -

.

I

TO UECIMAL,, DIAGNOSE, EXECUTE, and ccrtain store operations (ST, STC,
and STI1). The operation I s suppressed for an invalid instruction address.

The instruction-length code normally is 1, 2, or 3, but may be 0 in the
case of a data address.

9.3.6 SPECIFICATION EXCEPTION

A specification exception is recognized when:

1. A data, instruction, or control-word address does not specify
an integral boundary for the unit of infomation.

2. The K1 field of an instruction specifies an odd register
address for a pair of general registers that contains a
64-bit operand.

3. A PSW with nonzero bits 8-11 is encountered.

The operation is suppressed. The instruction-length code is 1, 2, or 3.

9 . 3 . 7 DATA EXCEPTION

A data exception is recognized when:

1. The s i g n or d i g i t code of operands editing operations or in
CONVERT TO BINARY are incorrect.

The operation is terminated. The instruction-length code is 2 or 3.

9 .3 .8 FIXED-POINT-OVERFLOW EXCEPTION

When a high-order carry occurs or high-order significant bits are lost
in fixed-point add, subtract, shift, or sign-control operations, a
fixed-point-overflow exception is recognized.

The operation is completed by ignoring the information placed outside the
register. The interruption may be masked by PSW bit 36.

The instruction-length code is'l or 2 .

903.9 FIXED-POINT-DIVIDE EXCEPTION

A fixed-point-divide exception is recognized when a quotient exceeds the
register size in fixed-point division, iccluding division by zero, or the
result of CONVERT TO BINARY exceeds 31 bits.

Division is suppressed.
tion placed outside the register.

Conversion is completed by ignoring the informa-

The instruction-length code is 1 or 2.

I '
I .

When t h e r e s u l t C h a r a c t e r i s t i c i n f l o a t i n g - p o i n t a d d i t i o i i , s u b t r a c t i o i l ,
m u l t i p l i c a t i o n , o r d i v i s i o n excccds 1 2 7 and t h e resiilt f r a c t i o n i s n o t
ze ro , a n exponent-overf Low e x c e p t i o n i s recognized .
completed.
t h e r e s u l t remain c o r r e c t . The r c s u l t c h a r a c t e r i s t i c i s made 128
smal ler than t h e c o r r e c t c l i a r a c t c r i s t i c .

The o p e r a t i o n i s
The f r a c t i o n is n o r m l i z e d , and t h e s i g n and f r a c t i o n of

T h e i n s t r u c t i o n - l e n g t l i coclc. i s 1 o r 2 .

When t h e r e s u l t c l i a r n c t e r i s t i c i n f l o a t i n g - p o i n t addition, s u b t r a c t i o n ,
mu1 t i p l i c a t i o n , h a l v i n g , o r d i v i s i o n i s less than z e r o and t h e r e s u l t
f r a c t i o n i s n o t z e r o , an exponent-underflow e x c e p t i o n is recognized .
The o p e r a t i o n i s completed.

The s e t t i n g of the exponent-underflow mask (PSW b i t 38) a f f e c t s t h e
r e s u l t s of t h e o p e r a t i o n . When t h e mask b i t i s z e r o , t h e sign, char-
a c t e r i s t i c , and f r a c t i o n a r c s e t t o ze ro , nuking t h e r e s u l t a t r u e
z e r o . IJllen t he mask b i t i s one, t h e f r a c t i o n i s normal ized , rhe
c h a r a c t e r i s t i c i s made 128 l a r g e r t h a n t h e c o r r e c t c h a r a c t e r i s t i c , and
t h e s i g n and f r a c t i o n remain c o r r e c t .

The i n s t r u c t i o n - l e n g t h code is 1 o r 2.
i

9.3.12 S I G N I F I C A N C E E X C E P T I O N

When t h e r e s u l t of a f l o a t i n g - p o i n t a d d i t i o n o r s u b t r a c t i o n h a s an
a1 1-zero f r a c t i o n , a s i g n i f i c a n c e excep t ion i s recognized .

T h c o p e r a t i o n i s completed.
39. The manner i n wiiich t h e o p e r a t i o n i s completed i s determined by
the mask b i t .

The i n t e r r u p t i o n may be masked by PSW b i t

The i n s t r u c t i o n - l e n g t h code is 1 o r 2 .

9.3.1.3 [~LOATING-POINT-DLVIDE E X C E P T I O N

When d i v i s i o n by a f l o a t i n g - p o i n t ' number w i t h z e ro f r a c t i o n i s a t t empted ,
a f l o a t i n g - p o i n t d i v i d e e x c e p t i o n i s recognized .
s upp r ess e d . The o p e r a t i o n is

The i n s t r u c t i o n - l e n g t h code i s 1 o r 2.

I t . 9.3.14 BUFFERED I/O EXCI:FTION

I f any of t h e acldrcssii lg esccbptions o r p a r i t y (arrors occur clurinr, n Huffcred
I/O opcra t ion , an Exception Procram In tc r rup t ion vi11 be ~ c - n c ~ r a t e d i n t l i c !

sanie nimner as any exception, IIowcvci-, i.1:e Buffered I/O status word (Loc
66-67) w i l l be s e t non-zero and will conta in thc. adclrcss o i the Cuffcred
1/0 word i n use a t the t i n i c tlic e r r o r occurred.

I

I
I
I

9.3.1.5 SLTERVISOR-CALL ITJTCRRL'T'TIUi3

The superv isor -ca l l i n t e r r u p t i o n occurs as a r e s u l t of t:ie execut ion o f SC:?L:RVI-
SOR CALL.

The supcrvisor-cal l . i n t e r r u p t i o n causes t h c o l d PSW t o be s t o r e d a t l o c a t i o n
32 znd a new PSTJ t o be fe tched from l o c a t i o n 96.

The con ten t s of b i t p o s i t i o n s 8-15 of the SUPERVISOR CALL bcconie b i t s 24-
31 i n t h e i n t e r r u p t i o n code of t he o l d PSU.
o l d PSW arc n u d e zero. The ins t ruc t ion- length code i s 1, i n d i c a t i n g the
halfword l eng th of SUPCRVlSOK CALL.

PSW b i t pos i t i ons 16-23 i n the

Programming No tcs,

The name "supervisor ca1.l" i n d i c a t e s t h a t one of t he major purposes of t he
i n t e r r u p t i o n is t h e svi. tching from problcn t o supcrv isor s t a t e .
purpose docs no t preclude the use of t h i s i n t e r r u p t i o n f o r o the r types of
s t a t us swi t: ch i 11 .

This major e
The i n t e r r u p t i o n code nay be used .to conviy a message from the c a l l i n g p r o g r m
t o the supe rv i so r .

\ h e n SUPlXVISOli CALL is perfornicd as the s u b j e c t i n s t r u c t i o n of EXECUTE,
the ins t ruc t ion- length code is 2 .

9 .4 EXTERNAL I N T K R R U P T I O N

The external i n t e r r u p t i o n provides a means by which the CPU responds t o signczls
from t h e t imer, from the i n t e r r u p t key , and from e x t e r n a l units.

A r eques t f o r an e x t e r n a l i n t c r r u p t i o n may occur a t any t i m e , and r eques t s
from d i f f c r c n t s o u r c w may occur a t t he same time. Requests are preserved
u n t i l honored by the CPU.
r eques t s from one source arc made beforc t h e i n t e r r u p t i o n is taken, only
one i n t e r r u p t i o n occurs .

Each reques t is presented o n l y once. When s e v e r a l

An e x t e r n a l i n t e r r u p t i o n from t h e i n t e r v a l timer can occur only when s y s t e m
mask b i t 7 i s one and a f t e r execut ion of the cu r ren t i n s t r u c t i o n is compl-eted.
An cxternctl i n t e r r u p t i o n from the TSE e x t e r n a l i n t e r r u p t key can occur only
when systcni mask b i t 0 i s one.
s t o r e d a t l o c a t i o n 24 and n ncw PSW t o be fetched from loca t ion 88.

The i i i t c r rupr ion causes the o ld PSW t o be

e
-112-

,

c

The noutce of the interruption is identified in bit positions 24-31 of
the old I’SW.
ie made zero.
interruptiono.

The remainder of the interruption code, PSW bite 16-23,
The instruction-length code is unpredictable for external

Timing Pulse Occurs Every 110 Usec
Clock Low Incremented by Timing
Order Bit Pulse + 10 = 112.64 psec
Interval Timer ‘ Decremented by Timing
Low Order Bit Pulse + 10 = 112.64 psec
Max Value of
Interval 4 7 ..3819
Timer Seconds
(16 bits)
Max Value of Real 5 days 14 hours 23 min.
Time Clock 5.1162 Seconds
(32 bits)

I

9.4.1 TIMER

A timer value changing from positive to negative causes an external inter-
ruption with PSW bit 24 eet to one.

9.4.2 INTERRUPT KEY

Pressing the interrupt’key on the operator control section of the TSE
control panel causes an external interruption with PSW bit 25 set to one.

The key is active while power is on.

9.4.3 INTERVAL TIMER

The interval timer is a 16 bit decrementing counter that contains both
hardware and microprogrammed elements.

The interval timer may be read by using the TMRS (opcode A4) instruction
with the R1 field set to 01.
with the R1 field set to 03.
absolute value (unsigned integer), that is counted down one bit for each
decrementing pulse.

It may be set by using the TMRS instruction
The interval timer is treated as a 1 6 bit

The Interval timer may be set to any value between Hex 1 to FFFP.

The Real Time Clock is a 32 bit incrementing counter that contains both
microprogrammed and hardware elements.

The Real Time Clock may be read by using the TMRS instruction (opcode A4)
with the R1 field set to zero.
tion with the R1 field set to 02.

It may be set by using the TNRS instruc-

1 I f

-113-

.
9.5 MACHINE-CHECK I N T E l U < U P T I O N

The machine-check i n t e r r u p t i o n p rov ides a inc311s f o r r ecove ry from and
f a u l t l o c a t i o n O F machine malfunct iot l .

The o l d PSW i s s t o r e d a t l o c a t i o n 48 and t l ic . new PSW i s ie tched from
l o c a t i o n 112. B i t 40 of t h e o l d PSW w i l l IIC. on and w i l l i n d i c a t e t h a t
a p a r i t y e r r o r h a s occur red . Any recovery procedure shou ld be aware
t h a t b i t 40 should n o t be include(' as p a r t of t h e i n s t r u c t i o n a d d r e s s .

-114-

c

. --._-..... 2 -..

i

.

SECTION X

i

SHORT PRECISION OPTION

l i
The short precision instruction set performs binary arithmetic on operand6
serving as addresses, index quantities, and counts, as well as fixed-point
data.
quantities are held in two's-complement form,
one of the 16 general registers; the other operand may be in main storage
or in a general register.

In general, both operands are signed and 16 bits long. Negative
One operand is always in

The instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, sign control, and shifting of fixed-point operands.

The condition code is set as a result of all sign-control, add, subtract,
compare, and arithmetic shift operations.

10,l DATA FORMAT

Short precision fixed-point numbers occupy a fixed-length format consisting
of a one-bit sign followed by the integer field consisting of 15 bits.
When held in a general register, a short precision quantity occupies the
rightmost 16 bits (16-31). Unless otherwise stated, the leftmost 16
bits (0-15) are neither tested nor altered. In register-to-register
operations the same register may be specified for both operand locations. 1

i

SHORT PRECISION FIXED-POINT NUMBER IN MAIN STORAGE

S INTEGER I
0 1 15

SHORT PRECISION FIXED-POINT NUMBER IN A GENERAL REGISTER

S INTEGER 1
0 16 16 17 31

Short precision data in main storage occupy a 16-bit halfword, with a
binary integer f i e l d of 15 bits.
storage. boundaries for these units of information, that is, halfword
operands must be addressed.with the last low-order.address bit set to
zero

These data must be located on integral

-115-

In all discussions of fixed-point numbers in this section, the expression
"16-bit signed integer" denotes a 15-bit integer with a sign bit,

10.2 NUMBER REPRESENTATION

All fixed-point operands are treated as signed integers. Positive num-
bers are represented in true binary notation with the sign bit set to
zero. Negative numbers are represented in two's-complement notation
with a one in the sign bit. The two's-complement representation of a
negative number may be considered the sum of the integer part of the
field, taken as a positive number, and the maximum negative number. The
two's-complement of a number is obtained by inverting each bit of the
number and adding a one in the low-order bit position.

. .

This type of number representation can be considered the low-order portion
of an infinitely long representation of the number.
positive, all bits to the left of the most significant bit of the number,
including the sign bit, are zeros. When the number is negative, all these
bits, including the sign bit, are ones. Therefore, when an operand must
be extended with high-order bits, the expansion is achieved by prefixing
a field in which each bit is set equal to the high-order bit of the oper-
and.

I When the number is

Two's-complement notation does not include a negative zero.
ber range in which the Get of negative numbers is one larger than the
set of positive numbers.
all-one integer f f e l d with A sign bit of zero, wfrercao the maximum nega-
tive number (the negative number with the greatest absolute value) con-
sists of an all-zero integer field with a one-bit sign.

It has a num-

The maximum positive number consists of an e
The CPU cannot represent the complement of the maximum negative number.
When an operation, such as a subtraction from zero, produces the comple-
ment of the maximum negative number, the number remains unchanged, and a
fixed-point overflow exception is recognized.
however, when the number is complemented and the final result is within
the representable range. An example of this case is a subtraction from
minus one.
as a doublc-length positive number.

An overflow does not result,

The product of two maximum negative numbers is representable

The sign bit is leftmost in a number.
carry out of the integer field changes the sign.
left-shifting the sign bit does not change even if significant high-order
bits are shifted out of the integer field.

In an arithmetic operation, a
However, in algebraic

10.3 CONDITION CODE

The results of fixed-point sign-control, add, subtract, compare, and shift
operations are used to set the condition code in the program status word

-116-

. .

(PSW)
The condition code can be used for decision-making by subseqeunt branch-
on-condition instructions.

All other short precision operations leave this code undisturbed.

The condition code can be set to reflect three types of results for short
precision fixed-point arithmetic. For most operations, the states 0 , 1,
or 2 indicate a zero, less than zero, or greater than zero content of the
result register, while the state 3 is used when the result overflows.

For a comparison, the states 0, 1, or 2 indicate that the first operand
is equal, low, or high.

CONDITION CODE SETTINGS FOR FIXED-POINT ARITHbiETIC

Add Half/Short
Compare Short
Load and Test
Load and Test Short
Load Complement Short
Load Negative Short
Load Positive Short
Normalize
Shift Left Short
Shift Right Short
Subtract Half /Shor t
Test Bits

10.4 INSTRUCTION FORMAT

0 1 2 3

zero
equal
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

<zero
low
<zero
aero
<zero
<zero

<zero
<zero
<zero
<zero
mixed

--

>zero
high
>zero
>zero
>zero

>zero
>zero
>zero
>zero
>zero

_-

--

Fixed-point instructions use the following four formats:

RR FORMAT

overflow -

0 7 8 1112 15

RX FORMAT

OP CODE oz 1
31 0 7 8 1112 1516 1920

u

overflow

overflow

overflow

overflow
ones

--
-_
--

-117-

. .. -.. . .. -,> - ~ I . ,. .. I

NOTE :

In this document, instructions with halfword second operands
(16 bits) propagate the sign bit to form n 32-bit number before
combining It with o 32-bit first operand.
tions differ from halfword operand instructions in that both
short operands are 16 bits in length and only the rightmoet 16 bits
of register operands are altered and/or tested. Short operands are
never expanded to 32 bits.
instructions work with a 32-bit product, dividend, and quotient.)

Short operand instruc-

(The short operand multiply and divide

10.5 INSTRUCTIONS

The short precision instructions and their mnemonics, formats, and
operation codes are listed in the following table. The table also
indicates when the condition code is set and the exceptional conditions
in operand designations, data, or results
ruption.

NAME

Add Halfword Immediate
Add Short
Add Short Immediate
Add Short Register
Branch Unconditional
Branch Unconditional

Register
Compare Halfword Immediate
Compare Logical Short
Compare Logical Short

Imediate
Compare Logical Short

Register
Compare Short
Compare Short Immediate
Compare Short Register
Divide Short
Divide Short Immediate
Divide Short Register
Load Address Short
Load Complement Short

Load Full to Short

Load Halfword Immediate

Register

Register

MNEMONIC

AH1
AS
AS I
ASR
BU
BUR

CHI
CLS
CLSI

CLSR

cs
CSI
CSR
DS
DSI
DSR
LAS
LCSR

LFSR

LHI

that cause a program inter-

TYPE

RI
Rx
RI
RR
Rx
RR

RI
Rx
RI

RR

Rx
RI
RR
Rx
RI
RR
Rx
Rx
RR

RI

C
C
C
C

C
C
C

C

C
C
C

C

C

EXCEPTIONS

IF
A,S IF

IF
IF

A,S IK
IK
IK

IF

IF

CODE

BA
53
AA
CA
73
CE

t

B9
65
B5

c5

61
A9
c9
4D
BO
CD
51
c3

OB

B 8

-119-

I

NAME

Load Halfword Register
Load Negative Short

Load Positive Short

Load Short
Load Short Inmediate
Load Short Register
Load and Test
Load and Test Short
Load and Test Short

Register
Multiply Halfword 1m.ediate
Multiply Short
Multiply Short Imediate
Multiply Short Register
Normalize
AND Short
AND Short Immediate
AND Short Register
OR Short
OR Short Immediate
OR Short Register
Shift Left Arithmetic

Shift Left Logical Short
Shift Right Arithmetic

Shift Right Logical Short
Subtract Halfword Immediate
Subtract Short
Subtract Short Imediate
Subtract Short Register
Test Dits
Test Bits Immediate
Exclusive OK Short
Exclusive OR Short
' Immediate
Exclusive OR Short

Register

Register

Short
a

Short

Register

NOTES :

A Addressing exception
B Condition code is set

MNFXON I C

LBR
LNSR

LPSR

LS
LS I
LSR
LT
LTS
LTSR

MIII
MS
MS I
MSR
NRN
NS
NS I
NSR
os
os1
OSR
SLAS

SLLS
SRAS

SRLS
SHI
ss
SSI
S SR
TB
TBI
xs
xs 1:
XSR

IF Fixed-point overflow exception
IK Fixed-point divide exception
S Specification exception

TYPE

RR
RR

RR

Rx
RI
RR
Rx
Rx
RR

RI
Rx
RI
RR
RR
Rx
RI
RR
Rx
RI
RR
RS

RS
RS

RS
RI
Rx
RI
RR
Rx
RI
Rx
RI

RR

C

C

C
c
C

C
C
C
c
C
C
C
C

c

c
c
C
C
c
C
C
C

C

EXCEPTIONS CODE

DO
c1

I F co
74
A8
C8
62
52 .
c2

BC
7 1
B3
cc
CF
64
B4
c4
66 I

A6 i
C6

IF A3

Al
A2

A0
IF BB
IF 72
IF AB
IF CB

75
AE
63
A7

c7

-120-

,
I

i

10.5.1 ADD IIALRION) (0

I BA I
0 7 8 1112 1616 31

I

I The halfword second ope.rand is added t o t h e f i r s t operand and t h e sum is
placed i n t h e f i r s t operand l o c a t i o n .

The halfword second operand is expanded t o a fullword be fo re t h e addi-
t i o n by propagat ing t h e s ign -b i t value through t h e 16 high-order b i t
p o s i t i o n s .

i

i Addition I s performcd by adding a l l 32 b i t s of both operands.
c a r r y out of t h e s ign -h i t p o s i t i o n and t h e c a r r y o u t of t h e high-order
numeric b i t p o s i t i o n agree , t h e sum is s a t i s f a c t o r y ; i f they d f sag ree , an
overflow occurs . A posi-
tive overflow y i e l d s a negative f i n a l sum, and a negat ive overflow r e s u l t s
in a p o s i t i v e sum.
fixed-point overflow mask b i t is one.

I f t h e

The s i g n b i t is not changed a f t e r t h e overflow.

The overflow causes a program i n t e r r u p t i o n when t h e

i

Resul t ing Condition Code:

!

0 Sum is zero
1 Sum is l e s s than zero
2
3 Overflow

Sum is g r e a t e r than zero

Progt‘am I n t e r r u p t i o n s :

Fixed-point overflow

10.5.2 ADD SHORT

I

I CA
0 7 8 1112 16

I I 0 8 1112 1616 1920 31
I 1 I

9’ Rl”2 [RII

I CA I R1 vA ‘2 I
0 7 8 1112 1516 31

-121-

.. .

The second operand is added to the first operand, and the sum is placed
in the first operand location. a
Addition is performed by adding 16 bits of both operands,
out of the sign-bit position 16 and the carry out of the high-order numeric
bit position 17 agree, the sum is satisfactory; if they disagree, an over-
flow occurs. The sign bit is not changed after the overflow.
overflow yields a negative final sum, and a negative overflow results in
a positive sum.
fixed-point overflow mask bit i s one.

If the carry

A positive

The overflow causes a program interruption when the

Resulting Condition Code:

0 Sum is zero
1 Sum is less than zero
2
3 Overflow

Sum is greater than zero

Program Interruptions:

Addressing (AS only)
Specification (AS only)
Fixed-point overflow

Programming Note

In two's-complement notation, a zero result is always positive.

10.5.3 BRANCH UNCONDITIONAL
e

I CE

0 7 8 1112 16

The updated instruction address is unconditionally replaced by the branch
address.
On Condition instruction with a mask of all ones, but this instruction

This instruction is almost functionally equivalent to a Branch

I

-122-

_ _ . * - .

.
!

executes about 40% faster than the Branch On Condition.

format contains zero,

Unlike the Branch
On Condition, this instruction will branch when the R2 field in the RR

Condition Code:

Program Interruptions:

The code remains unchanged.

None

Programming Note

The NSSC-I1 assembler OPSYN statement may be used to force the
extended mnemonics B and BR to generate the Branch Unconditional opcodes.

I 10.5.4 COMPARE HALFWORD

CHI R1' 12

0 7 8 1112 1616 31

The first operand is compared with the halfword second operand, and
the result determines the setting of the condition code.

0 The halfword second operand is expanded to a fullword before the com-
parison by propagating the sign-bit value through the 16 high-order bit
positions.

Comparison fs algebraic, treating both cornparands as 32-bit signed
integers, Operands in registers or storage are not changed.

Resulting Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3 --

Program Interruptions:

None

-123-

I

10,5.5 COMPARE LOGICAL SHORT

I 4 L 4

I 66 D2 I
31 0 7 8 1112 1610 1920

The first operand is cpmparcd with the second operand, and the result is
indicated in the condition code.

The instructions allow comparisons that are register to register, storage
to register, and register to instruction.

Comparison is binary, and all codes are valid.

e
Resulting Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3 --

Program Interruptions:

Addressing (CLS only)
Specification (CLS only)

Programing Note

The COMPARE LOGICAL I s unique in treating all bits alike as part of an
unsigned binary quantity.

-124-

d io
10.5.6 COMPARE SHORT

I c9 I R1 I % I
0 7 % 1112 16

,

c 1 - 1 2

I A9 I R l t////(l '2 I
4
0 7 8 11 12

I

15 16 31

1 The first operand is compared wi th t h e second operand, and t h e r e s u l t
determines the s e t t i n g of the condi t ion code.

Comparison is a lgeb ra i c , t r e a t i n g both comparnnds os 16-bit signed
'a
I i n t e g e r s . Operands i n r e g i s t e r s o r s to rage are not changed.

Resul t ing Condition Code:

0 Operands are equal
1 F i r s t operand i s low
2 First operand is high
3 --

I Program I n t e r r u p t ions:

Addressing (CS only)
Spec i f i ca t ion (CS only)

i

-125-

10.5.7 D I V I D E SHORT ' e

DS R ,D2(X2,B2) IRXI

I 4 0 1 R l I x2 1 02 I
0 7 8 11 12 16 16 19 20 31

DSI R1,I2 IRll -

80 '2
0 7 8 11 12 16 16 31

The dividend (f i r s t operand) is d iv ided by t h e d i v i s o r (second operand)
and rep laced by t h e quo t i en t .

The dividend is a 32-bit signed i n t e g e r and occupies t h e r e g i s t e r
s p e c i f i e d by t h e R1. f i e l d of t h e i n s t r u c t i o n .
r e p l a c e s t h e dividend.

A remainder is no t developed. e
A 32-bit s igned quo t i en t

The d i v i s o r i e a 16-bit signed i n t e g e r .

The s i g n of t h e q u o t i e n t is determined by t h e r u l e s of a lgeb ra .
operands and r e s u l t s are t r e a t e d as signed i n t e g e r s . When t h e r e l a t i v e
magnitude of dividend and d i v i s o r is such t h a t t h e quo t i en t cannot be
expressed by a 16-b i t signed i n t e g e r , a fixed-point divide except ion is
recognized (a program i n t e r r u p t i o n occurs, no d i v i s i o n t a k e s p l ace , and
t h e dividend remains unchanged i n t h e genera l r e g i s t e r s) .

A l l

Condi t ion Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

Addressing (DS only)
S p e c i f i c a t i o n (DS only)
Fixed-point d i v i d e

-126- $

,: a Programming Note

Divide s h o r t develops o 16-bit signed quo t i en t .
propagated t o create t h e 32-bit signed quot ien t .

The sign b i t is then

I : 10.5.8 LOAD ADDRESS SHORT

U S R1, D2(X2, B2) IRXl

I I 61 I
0 7 8 11 12 16 16 19 20 31

The address of t he second operand i s i n s e r t e d i n t h e low-order 16 b i t s of
t h e gene ra l r e g i s t e r s p e c i f i e d by R1.
register are no t a l t e r e d . No s to rage r e fe rences f o r operands t ake p lace .

The address s p e c i f i e d by the Xq, B2, and D2 f i e l d s is i n s e r t e d i n b i t s
16-31 of t h e genera l r e g i s t e r spec i f i ed by R1,
The address is n o t inspec ted f o r a v a i l a b i l i t y , p ro t ec t ion , or r e so lu t ion .

The remaining b i t s of t h e genera l

Bits 0-15 are no t changed.

The address computation fol lows t h e rules for address arithmetic.
carries beyond the 16 th b i t are ignored,

Any

Condition Code:

Program In te r rup t ions :

The code remains unchanged. e

,

None

Programming Note

The same genera l r e g i s t e r may be s p e c i f i e d by R1, X2, and B2 i n s t r u c t i o n
f i e l d , except t h a t genera l r e g i s t e r 0 can be spec i f i ed only by the R1
f i e l d .
b i t s of a genera l r e g i s t e r , o t h e r than 0, by t h e con ten t s of t h e D2
f i e l d of t h e i n s t r u c t i o n . The r e g i s t e r t o be incremented should be

set t o zero).

In this manner, it is possible t o increment t h e low-order 16

s p e c i f i e d by R1 and by e i t h e r X2 (with B2 set t o zero) o r B2 (with X 2

10 , 5.9 LOAD COIPLEMENT SHORT

LCSR R1,RZ [RRI

I

I c3 p 1 I R2 I
0 7 8 11 12 1s

-127-

, . .!. ..&Ad

I . The two's-complement of the second operand is placed in the first operand
I locat ion .

An overflow condition occurs when the nqxinium negative number is comple-
rented; the number remains unchanged. The overflow causcs a program in-
terruption when the fixed-point overflow mask bit is one.
16-31.of both registers participate.

~

Only bits

Resulting Condition Code:

0 Result i s zero
1 Result is less than zero
2
3 Overflow

Result is greater than zero

Program Interruptions:

Fixed-point overflow

Programing Note

Zero remaine invariant under complementation.

10.5.10 LOAD FULL TO SNORT REGISTER e

The second operand is placed in the first operand location; and the
sign and magnitude of the second operand determines the condition code.
The second operand is not changed.

The second operand is a 32-bit signed integer and the first operand is
a 16-bit signed integer. An overflow condition occurs when the second
operand is too large to be contained by the first operand; the left
truncated second operand is placed in the first operand location regard-
less of the overflow condition.
ruption when the fixed-point overflow mask is one.

The overflow causes a program inter-

Resulting Condition Code:

0 Result is zero
1 Reoult is less than zero

-128-

,

2
3 Overflow

Resu l t is g r e a t e r than zero

Program In te r rup t ions :

Fixed-point overflow

Programming Note

When the same r e g i s t e r is spec i f i ed a s f i r s t and second operand loca-
t i o n , t he ope ra t ion is equiva len t t o a test without d a t a movement.

10.5.11 LOAD HALFWORD

The halfword second operand is placed i n the f i r s t operand loca t ion .

The halfword second operand is expanded t o a fullword by propagat ing the
s ign -b i t va lue through the 16 high-order b i t pos i t i ons .
a f t e r t h e operand is obtained and before i n s e r t i o n i n t h e r e g i s t e r .

Expansion occurs

Condition Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

None

10.5.12 LOAD NEGATIVE SHORT

-129-

The two's-complement of the absolute value of the second operand is
placed in the first operand location.
tive numbers; negative numbers remain unchanged.
unchanged with positive sign.
cipate .

The operation complements posi-
e

The number zero remains
Only bits 16-31 of both registers parti-

e

Resulting Condition Code:

0 Result is zero
1 Result is less. than zero
2 --
3 --

Program Interruptions:

None

10.5.13 LOAD POSITIVE SHORT

I I R l I R2 J CO.

0 7 8 1112 15

The absolute value of the second operand is. placed in the first operand
location.

e '

The operetion includes complementation of negative numbers; positive
numbers remain unchanged.

An overflow condition occurs when the maximum negative number is cornple-
mented; the number remains unchanged.
ruption vhen the fixed-point overflow mask bit is one.
o f both registers participate.

The overflow causee a program inter-
Only bits 16-31

Resulting Condition Code:

0 Result is zero
1 --
2
3 Overflow

Result if greater than zero

Program Interruptions:

Fixed-point overflaw

-130-

~, _ . _ . I . .
I .

1O,5.14 LOAD SHORT

0 7 8 1112 15

0 7 8 1112 1610 1920

0 9 8 1112 1516 31

The second operand is placed in the first operand location.
operand is not changed.
are loaded,

The second
Only bits 16-31 of the first operand register

Bits 0-15 remain unchanged,
a

Condition Code: The code remains unchanged,

Program Interruptions:

Addressing (LS only)
Specification (LS only)

10.5.15 LOAD AND TEST

0 7 8 1112 1616 I S 2 0 31

The second operand is placed in the first operand location, and the sign
and magnitude of the second operand determine the condition code.
second operand is not changed.

The
Both operands are 32 bits in length.

-131-

.

Resul t ing Condit ion Code:

0 Resul t is zero
1
2
3 --

Resu l t is less than zero
Result is g r e a t e r than zero

Program I n t e r r u p t i o n s :

. Addressing
S p e c i f i c a t i o n

10.5.16 LOAD AND TEST SHORT

. -
c2 R2 I

0 7 8 1112 15

L= R1. D2tX1' B2)

i 62 I R1 I 0 2 1
31 0 7 8 1112 1516 1020

The second operand is placed i n the f i r s t operand l o c a t i o n , and t h e sign
and magnitude of t h e second operand determine t h e condi t ion code.
second operand is n o t changed.

Resul t ing Condition Code:

The
Only bits 16-31 of R1 are loaded and t e s t e d .

0 Result is zero
1
2
3 --

Resul t is less than zero
Result is g r e a t e r than zero

Program I n t e r r u p t i o n s :

Addressing (LTS only)
Specif i c o t i o n (LTS only)

Programming Note

When LTS is used w i t h t h e same r e g i s t e r s p e c i f i e d as f i r s t and second
operand l o c a t i o n , t h e ope ra t ion is equiva len t t o a test without d a t a
movement

i

'2

I

10.5.17 MULTIPLY 1IALFIJORD

MHI R1,12 IRII

1 BC

7 8 0

The product of t h e halfword m u l t i p l i e r '(second operand) and mul t ip l icand
(f i r s t operand) replaces the mul t ip l icand .

Both mul t ip l icand and product are 32-bit signed i n t e g e r s and may be loca ted
i n any genera l r e g i s t e r . The halfword m u l t i p l i e r is expanded t o a f u l l -
word before m u l t i p l i c a t i o n by propagat ing the s ign -b i t va lue through the
16 high-order b i t pos i t i ons .
o rde r p o r t of t he product.
are not t e s t e d f o r s ign i f i cance ; no overflow i n d i c a t i o n is given.

The mult ipl icand is replaced by the low-
The b i t s t o the l e f t of t h e 32 low-order b i t s

The s i g n of t h e product is determined by the r u l e s of a lgebra from t h e
m u l t i p l i e r and mul t ip l icand s ign , except t h a t a zero r e s u l t is always
p o s i t i v e .

Condition Code: The code remains unchanged.

Program I n t e r r u p t i o n s :

None

Programming Note

The s i g n i f i c a n t p a r t of t h e product u sua l ly occupies 46 b i t s o r fewer,
the except ion being 47 b i t s when both operands a r e maximum nclgative.
Since the low-order 32 b i t s of the product a r e s to red unchanged, ignor ing
a l l bits t o the l e f t , the sign b i t of the result may differ from the
true sign of t h e product i n the case of overflow.

10.5 . 18 MULTIPLY SIIORT

. 71 0 2 I
0 713 11 12 16-16 1920 31

BC '2
0 7 8 1112 15 16 31

The product of the multiplier (the second operand) and the multiplicand
(the first operand) replaces the multiplicand.

Both multiplier and multiplicand are 16-bit signed integers.
is always a 32-bit signed integer.

The product
An overflow cannot occur.

The sign of the product is determined by the rules of algebra from the
multiplier and multiplicand sign, except that a zero result is always
positive.

Condition Code: The code remains unchanged.

Program Interruptions:

Addressing (MS only)
Specification (MS only)

Programing N s e

The significant part of the product usually occupies 30 bits or fewer.
Only when two maxinum negative numbers are multiplied are 31 Aignificant
product bits formed.
bit is extended right until the first significant product digit is
encountered.

a
Since two's-complement notation is used, the sign

10.5.19 NORMALIZE

I

The 32 bits in the register specified by R1 are shifted arithmetically left
until bit 0 is not equal to bit 1.
then placed into the 32-bit register specified by R2.

If the first operand is already normalized, no shifting takes place and a
zero is placed into the second operand.
i t I s considered to be normalized.

The number of shifted bit positions it3

If the first operand is all zero,

i

-134-

. .

T f thc. f i r s t and second operand arc i n t hc S;;I;IC r e g i s t e l - , t h e f i r s t operand
w i l l be norniailizcd and the s h i f t count: vi II Lie l o s t .

R e s u l t i n g Cond i t ion Code:

0 R e s u l t i s z e r o
1 R e s u l t i s n e g a t i v e
2 R e s u l t i s p o s i t i v e -

Program I n t e r r u p t i o n s :

None

Progrnnmiir1g Kote

The maximum s h i f t count f o r a p o s i t i v e number i s 30 and f o r a n e g a t i v e
number i s 31.

10.5 .20 AILTI) SiiORT

NSI R,, l2 I R i I

The l o s i c a l p r o d u c t (A?;D) of the b i t s of t h c f i r s t and sccond operiir:d i s
p lnccd i n tlic f i r s t opcrnnd l o c a t i o n . not11 operands are 1.G b i t s i n l e n g t h .

Opcrnnds z r c t r t n r c d a:; u n s t r u c t u r r d log ica l . q i i a n t i t i c s , and t h e con-
nec t ive A?111) i s a p p l i e d b i t by b i t . A b i t p o s i t i o n i n tlie r e s u l t i s s e t

-135-

t

c
c

t o one i f t h e corrcsponding b i t p o s i t i o n s i n both operands conta in a one;
o therwise , the r e s u l t b i t is set t o zero.
v a l i d .

All operands and r e s u l t s are

Resul.ting Condition Code:

0 Resul t is zero
1 Resul t no t zero
2 --
3 --

Program In te r rup t ions :

Addressing (NS only)
S p e c i f i c a t i o n (NS only)

Programming Note

The AND may be used t o set a b i t t o zero.

10.5.21 OR SIiORT

I ! R1 I R2 I
L I
0 7 8 1111 15

IRll OS1 R1,12

12 A6 I
0 7 8 31

The l o g i c a l sum (OR) of the b i t s of t he f i r s t and fiecond operand is
pl.accd i n the f l r s t operand l o c a t i o n . Both operands are 16 b i t s i n
length .

-136- ,

'
Operands are t r cn tcd OS unstructured log ica l q u a n t i t i e s , and t h e contiec-
t i v e inc lus ive OK is appl ied b i t by b i t . A b i t pos i t i on i n the r e s u l t i s
set t o one i f t h e corresponding b i t pos i t i on i n one o r both operands con-
t a i n s a one; otherwise, t h e r e s u l t b i t is set t o zero .
r e s u l t s are v a l i d .

A l l operands and

Resul t ing Condition Code:

0 Result is ze.ro
1 R e s u l t not zero
2 --
3 --

Program In te r rup t ions :

Addressing (OS only)
Spec i f i ca t ion (0s only)

Programing Note

The OR may be used t o set a b i t t o one.

10.5.22 SHIFT LEFT A R I T ~ E T I C SHORT
SLAS R,, D,(O,) IRSJ .
1 D2 1 f a 11 12 1516 19'20 31

A3

0

The i n t e g e r p a r t of the f i r s t operand is s h i f t e d l e f t t h e number of b i t s
s p e c i f i e d by the second operand address .

The second operand address i s not used t o address da t a ; its low-order s ix
b i t s i n d i c a t e t h e number of bit positions to be shifted. The remainder
of the address is ignored.

The s i g n of t h e f i r s t operand remains unchanged.
t h e operand p a r t i c i p a t e i n the l e f t s h i f t .
vacated low-order r e g i s t e r pos i t i ons .

All 15 i n t e g e r b i t s of
Zeros are suppl ied t o t h e

I f a b i t un l ike the s i g n b i t pos i t i on 16 is s h i f t e d out of p o s i t i o n 1 7 ,
an overflow occurs .
t h e f ixcd-point overflow mask b i t is one.

The overflow causes a program i n t e r r u p t i o n when

Resul t ing Condition Code:

,

0 Resul t is zero
1 R e s u l t is less than zero
2 Resul t i s g r e a t e r than zero
3 Overflow

-137-

P r o f i r m Tnteri:uptio:ls:

F ixed-poin t o v c r f low

For numbcrs w i th a n a b s o l u t e v a l u e of l e s s Lhan 2 ' " , 3 left s h i f t of one
b i t p o s i t i o n i s e q u i v a l e n t t o m u l t i p l y i n g the number by 2.

S h i f t amounts fron 15-63 c a u s e the e n t i r e i n t e g e r t o be s h i f t e d o u t of
tlie ri[;lit. ha l f of t h e r e g i s t e r .
p o s i t i v e number h a s been s h i f t e d o u t , t h e h a l f r e g i s t e r c o n t a i n s a valluc
o f z e r o .

When t h e c n t i r c i n t e g e r f i e l d f o r a

For a n c g z t j v e number, t h c h a l f r e g i s t e r c o c t a i n s a v a l u e of
-215.

The base r e g i s t e r p a r t i c j p a t i n g i n the g e n e r a t i o n o f the second operand
a d d r e s s p e r m i t s i n d i r e c t : s p e c i f i c a t i o n o f t h e shift amount.
t h e U2 f i e l d i n d i c a t e s the absciicc: of i n d j rcct s h i f t s p e c i f i c n t i o n .

10.5.23 SIIIFT LEFT LOGICAL SHORT

A ze ro in

SLLS R1,D2(B2)

D2

31 0

The second operand a d d r e s s i s n o t used t o a d d r e s s d a t a ; i t s low-ordcr s i x
b i t s i n d i c a t e t h e number of b i t p o s i t i o n s t o be s h i f t e d . The , r ema inde r
of the a d d r c s s is i g n o r e d .

Only h i t s 16-31 of t h e g m e r a l r e g i s t e r s p c c i f i c d by R p a r t i c i p a t e i n
the shift . I I igh -o rde r b i t s a r e s h i f t e d o u t from b i t p o s i t i o n 16 wi thou t
i n s p e c t i o n and are l o s t . Zeros are supp l i ed t o the vscatcd low-order
r e g i s t e r p o s i t i o n s . A s i n (ill s h o r t o p c r m d i n s t r u c t i o n s , b i t p o s i t i o n s
0-15 of t h e f i r s t operand a re n c i t h c r i n s p c c t c d no r changed.

1

Cond i t ion Code: The code r c n a i n s unchanged.

Program I n t e r r u p t i o n s :

None

._ -. , -. .._. _.

1 0 10.5.24 SIIIFT RIGIIT ARITIIMETLC SHORT
I

i

I

Tlie i n t e g e r part of the f i r s t operand i s sliiftcd rjp,ht t hc number of h i t s
spec i f i ed by the second operand address.

The second operand address is not used t o address d a t a ; i ts low-order s i x
b i t s i n d i c a t e the number of b i t p o s i t i o n s t o be s h i f t e d .
of t h e address is ignored.

The remainder

The s i g n of t h e f i r s t operand remains unchanged.
t h e operand p a r t i c i p a t e i n the r i g h t s h i f t .
p o s i t i o n 16 are suppl ied t o the vacated high-order b i t P o s i t i o n 17 .
o rder b i t s are s h i f t e d out without inspec t ion and are l o s t .

All 15 i n t e g e r b i t s of
B i t s equa l t o t h e s i g n b i t

Low-
i

,
Resul t ing Condition Code:

0 Resul t is zero
1 Resul t is less than zero
2 R e s u l t is g r e a t e r than zero
3 --

Program In te r rup t ions :

None

Programing Note

A right shift of one b i t p o s i t i o n i s equiva len t t o d iv i s ion by 2 with
rounding downward. When an even number is shifted r i g h t one pos i t i on ,
t h e va lue of t he f i e l d is t h a t obtained by d iv id ing the va lue by 2.
an odd number is s h i f t e d r i g h t one p o s i t i o n , t h e value of t h e f i e l d is
t h a t obtained by d iv id ing t h e next lower number by 2. For example, +5
s h i f t e d r i g h t by one b i t p o s i t i o n y i e l d s +2, whereas -5 y i e l d s -3.

When

S h i f t amounts from 15-63 cause t h e e n t i r e i n t e g e r t o be s h i f t e d out of
t h e r i g h t ha l f of t h e r e g i s t e r .
p o s i t i v e number has been s h i f t e d o u t , t h e h a l f r e g i s t e r con ta ins a value
of zero.
-1.

When the entire i n t e g e r f i e l d of a

For n negat ive number, t he h a l f r e g i s t e r conta ins n value of

-139-

.

The base register participating in the generation of the second operand
address permits indirect specification of the shift amount.
the B2 field indicates the absence of indirect shift specification.

10.5.25 SHIFT R I G W LOGICAL SHORT

A zero in

The first operand is shifted right the number of bits specified by the
second operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted.
the address is ignored.

The remainder of

Only bits 16-31 of the general register specified by RI participate in the
ehift.
Zeros are supplied to the vacated high-order register bit position 16.
As in all short operand instructions, bits 0-15 of the first operand are

Low-order bits are shifted out without inspection and are lost.

neither inspected nor altered.

Condition Code: The code remains unchanged.

Program Interruptions:

None

10.5.26 SUBTUCT HALFVOF!
SHt A , , t 2 IRtJ

1 '2 I BB
0 7 8 11 12 15'16 31

The halfword second operand is subtracted from the first operand, and
the difference is placed in the first operand location.

The halfword second operand I s expanded t o a fullword before the sub-
traction by propagating the sign-bit value through 16 high-order bit
positions.

-140-

.

!

Subtri1ction is considered to he performed by adding the one's complement
of the expanded second operand and a low-order one to the first operand,
All 32 bits of both operands participate, as in ADD.
of the sign-bit position and the carry out of the high-order numeric bit
position agree, the cl!.ffere,ice is satisfactory; if they disagree, er: over-
flow is recognized. ';he overflow causes a program interruption when the
fixed-point overflow mask bit is one.

If the carry out

Resulting Condition Code:

0 Difference is zero
1
2
3 Overflow

Difference is less than zero
Difference is greater than zero

Program Interruptions:

Fixed-point overflow

10.5.27 SUBTRACT SHORT

72 x2 I 02

7 -8 11 12 1516 1920 0

The second operand is subtracted from the first operand, and the d i f -
ference is placed in the first operand location.

Subtraction is considered to be performed by adding the one's-complement
of the second operand and a low-order one to the first operand.
bits of both operands participate, as in ADD.

All 16
If the carry out of the

e

-14%-

sign-bit position and the carry out of the high-order numeric bit pod.-
tion agree, the differencc is satisfactory; if they disagree, an overflow
is recognized.
point ovcrflow mask bit is one.

The ovcrflow causcs a program interruption when the fixcd-

Resulting Conditim Code:

0 Difference is zero
1 Difference is less than zero

. 2 Difference is greater than zero
3 Overflow

Program Interruptions:

Addressing (SS only)
Specifications (SS only)
Fixed-point overflow

Programming Note

The use of the one's-complement and the low-order one instead of the two's
complement of the second operand is necessary for proper recognition of
overflow.

When the same register is specified as first and second operand location,
subtracting is equivalent to clearing the register. 0
Subtract lng n muximum ncgat ivc number from nno tlier maximum ncgn tive num-
ber gives n zcro result and no ovcrflow.

10.5.28 TEST BITS

I 75 I x2 I B2 I O2 I 0 7s 920 31 11 12 1516

I AE

0

The state of the first operand bits selected by D mask is used t o set
the condition code.

-142-

I

!

I

The second operand i s used as a 1.6-bit mask.
made t o correspond one f o r one wi th b i t s 16-31 of t he r e g i s t e r s p e c i f i e d
by the f i r s t operand.

A mask b i t of one i n d i c a t e s t h a t t h e f i r s t operand b i t is t o be t e s t e d .
When t h e mask b i t i s zero, t h e f irst operand b i t is ignored.
f i r s t operand b i t s thus s e l e c t e d a r c zero, the cond i t ion code i s made 0 .
The code is also made 0 when t he mask i s a l l - zc ro .
are a l l -one , t h e code is made 3; otherwise, t h e code is made 1.
operand i s not changed.

The b i t s of t h e mask are

When a l l

When t h e s e l e c t e d b i t s
The f i r s t

Resul.ting Condition Code:

0 Se lec ted b i t s a l l - ze ro ; mask i f a l l - ze ro
1 Selec ted b i t s mixed zero and one
2 --
3 Selec ted b i t s a l l -one

Program In t e r rup t ions :

Addressing (TB only)
S p e c i f i c a t i o n (TB only)

10.5.29 EXCLUSIVE 0R.SHORT

xs R,, D + X ~ , e2) fRXl

I 63 I x2 I B2 I D2 I
f 8 11 12 15-16 1920 31 0

XSI R1, l2

I 11 12 31
A7 I

7 a 12 1516 0

The modulo-two sum (exc lus ive OR) of t h e b i t s of t h e f i r s t and second operand
is placed i n t h e f i r s t operand loca t ion .

-143-

. '.

Opernntls a r c t r c n t c d a:; u n s t r u c t u r e d loy, ic ; i l q t i ' inLi t ics , and t h e con-
i i ec t ivc C X C ~ U S ~ V C OK i s n p p l i c d h i t by b i t .
r e s u l t i s se t t o one if tlic corrcspondjn!: Lit p o s i t i o i l s i n t h e two oper-
ands are u n l i k e ; o t h c r w i s c , t h e r e s u l t h i t is se t t o z e r o .

A b i t p o s i t i o n i n the a
T h c i n s t r u c t i o n d i f f e r s from AND and OR on ly i n t h e c o n n c c t i v e a p p l i e d .

k s u l t i n g Cotidi t i o n Code :

0 K e s u l c i s z e r o
1 R e s u l t n o t z e r o

Program I n t e r r u p t i o n s :

Address ing (XS on ly)
S p e c i . f i c a t i o n (XS o n l y)

- Programming Kote

The e x c l u s i v e O R n a y b e uscd t o i n v e r t a b i t , 8n operat ic in p a r t i c u l a r l y
u s e f u l i n t e s t i n g and s e t t i n g programmed b i n a r y b i t s w i t c h e s .

Any f i e l d excl .usivc ORcd w i t h f t s e l f becomes a l l z e r o s .

T h e scqueiicc A exc1~ : s ive OKcd B , E e x c l u s i v e OKcd A , A c x c l u s j v e ORed R
r e s u l t s i n thc cxchnnge of t h e c o n t c n t s o f A and 13 without: t h e use o f
an a u x i l i a r y b u f f e r area.

10.6 EI:O!tT PRECISTC;: EXCEPTTOKS

Exccptioniil . operand d e s i g n a t i o n s , d a t a , o r rc:sul.ts czuse a program i n t e r -
r u p t i o n , \die11 a prograni i r i t c r r u p t i o n o c c u r s , tlic current : PSI,! is s t o r e d
as an o l d PSI.:, and a neb.: PSI2 i s o b t a i n e d . T h e i n t e r r u p t i o n code in t h e
o l d PSW identifies tlie c a u s e o f t h e i n t e r r u p t i o n . T h e f o l l o w i n g e x c e p -
tions causc a program i n t e r r u p t i o n i n f ixed -po in t a r i t h m e t i c .

Ad d re s s i n g

An a d d r e s s d c s i g n a t c s a11 operand location o u t s i d c t h e ava i l . nb le . s t o r a g e
f o r a p a r t i c u l a r i n s t a l l a t i o n . In most cases , t h e apera t i .on i s t e rmina ted .
T h e r e f o r e , t he resu l t d a t a are unpredict?.blc ar.d s h o u l d l;ot be used f o r
f u r t h c r coniputnt ion. Operand addrcsscs a r c t c s f c d only when uscd t o
a d d r e s s s t o r a g e . Addresses usccl as a s h i f f m o u n t arc n o t t c s t ed . The
a d d r e s s r c s t r i c t i o n s do n o t a p p l y t o tlie cocipoxcnts from which an
a d d r e s s i s gcne ra t ed - t h e c o n t e n t o f the D f i e l d and t h e c o n t e n t s o f
the r e g i s t e r s s p e c i f i c d b y X 2

and 1 5 ~ . 2

-144-

C

. .

, Spec i f i ca t ion

A halfword operand is not loca ted on a 16-bit boundary.

The opera t ion is suppressed.
r e g i s t e r s and s to rage remain unchanged.

Therefore, the c5rldition code and d a t a I n

1

Fixed-point Overflow

The r e s u l t of a s ign-cont ro l , add, s u b t r a c t , o r s h i f t opera t ion over-
flows.
b i t is one. The opera t ion is completed by p lac ing the t runcated low-
order r e s u l t i n the r e g i s t e r and s e t t i n g the condi t ion code t o 3.
overflow b i t s arc l o s t .
r e g i s t e r is t h e oppos i te of t h e s ign of t h e sum o r d i f f e rence .
ope ra t ions t h e s i g n of the s h i f t e d number remains unchanged.
of the mask b i t does no t a f f e c t t he r e s u l t .

The i n t e r r u p t i o n occurs only when the fixed-point overflow mask

The
In add-type opera t ions the sign s t o r e d i n t h e

I n s h i f t
The state

Pixed-Point Divide

The quo t i en t of a d i v i s i o n exceeds 16 b i t s inc luding d i v i s i o n by zero.
Div is ion is suppressed. Therefore, da t a I n the r e g i s t e r remain unchanged.

-145-

.. .

SEC? I ON X 1

DOUBLE FBECISLON FI: ';?"'-POINT ARITHMETIC OPTIW

!

The double precision fixed-point instruction set performs binary arith-
metic on fixed-point data where both operands are signed and 64 bits
long. Negative quantities are held in two's-complement form. One
operand is always in a palL of :he 16 genera" regi-qters; :he other oper-
and may be in main storage or in a general register pair.

The Instruction set proviaes for loading, adding, nUbtr8CtingS comparing,
complementing, and storing.

The condition code is set as a result of all add, subtract, complement,
and compare operations.

11.1 DATA FORMAT

Fixed-point numbers occupy a fixed-length format consisting of a one-bit
sign followed by the integer field.
registers, a fixed-point quantity has a 63-bit integer field and occu-
pies all 64 bits'of the register pair. These operands are located in a
pair of adjacent general registers and are addressed by an even address
referring to the left-most register of the pair. The sign-bit position
of the rightmost register contains part of the integer.
register operations the same register may be specified for both operand
locations.

When held in a pair of general

In register-to-

DOUBLE PRECISION FIXED--POINT NUMBER

INTEGER 1
63

Double precision fixed-point data in main storage occupy a 64-bit word
with a binary integer field of 63 b i t s . These data must be located on
integral storage boundaries for fullword units of information, that is,
double word operands must be addressed with two low-order address bits
eet to zero.

In all discussions of fixed-point numbers in this publication, the expres-
sion "64-bit signed integer" denotes a 63-bit integer with a sign bit.

11.2 NUMBER REPRESENTATION

All fixed-point operands are treated as signed integers.
are represented in true binary notation with the sign bit set to zero.
Negative numbers arc represented in two's-complement notation with a one
in thc sign bit.
may be considered the sum of the integer part of the field, taken as a

Positive numbers

The two's-complement repteeentation of a negative number

-146-

posilivc! rttinil~ctr, and the in;ixf.mum Iicgiitivc nurrtbcr.
of u. numbcr i s obtained by inve r t ing each b i t of t he number and adding a
one i n t h e low-order b i t pos i t ion .

The two's complement

This t y p e of numbcr r ep rcsen ta t ion can be considercd t h e low-order po r t ion
of an i n f i n i t e l y long r ep resen ta t ion of the number.
p o s i t i v e , all b i t s t o the l e f t of the most s i g n i f i c a n t b i t of t he number,
inc luding the s i g n b i t , are zeros ,
t hese b i t s , inc luding the sj.;n i . iL, a r e ones Thcrzforc , when an operand
must be extended with high-order b i t s , the expansialn is achieved by prc-
f i x i n g a f i e l d i n whif;h ecch b i z is set equal t o t. L high-order b i t of the
operand.

Two's-complement no ta t ion does not inc lude a nega t ive zero.
ber range i n which the s e t of nega t ive numbers i s one l a r g e r than t h e
set of p o s i t i v e numbers.
i n t e g e r f i e l d wi th a s ign b i t of zero, whereas the maximum negat ive number
(t h e nega t ive number with the g r e a t e s t absolu te va lue) c o n s i s t s of an al l -
zero i n t e g e r f i e l d wi th a one-bit f o r s ign.

When t h e number is

When the number i s negat ive , a l l

It has a num-

The maximuin p o s i t i v e number c o n s i s t s of an a l l -one

The CPU cannot represent t h e complement of t he maximum negat ive number.
When an ope ra t ion , such as a sub t r ac t ion from zero, produces t h e complement
of t h e maximum negat ive number, t h e number remains unchanged, and a f ixed-
po in t overflow except ion is recognized.
however, when t he number is complemented and the f i n a l r e s u l t i s wi th in
the rcprcsentnble range. An example of t h i s case is a sub t r ac t ion from
minus one.

The sign tit is l e f tmos t i n a number. In an a r i t h m e t i c opera t ion , a carry
ou t of the i n t e g e r f i e l d changes the s ign .

An overflow does not r e s u l t ,

!

11.3 _CONDITION CODE

The r e s u l t s of f ixed-point s ign-control , add, s u b t r a c t , and compare opera-
t i o n s a r e used t o set the condi t ion code i n the program s t a t u s word (PSW).
A l l other double p rec i s ion fixed-point opera t ions l eave t h i s code undis-
turbed.
branch-on-condition i n s t r u c t i o n s .

The condi t ion code can be used f o r decision-making by subsequent

The cond i t ion code can be set t o r e f l e c t t h ree types of resu l t s f o r f ixed-
po in t a r i t hme t i c . For most opera t ions , t h e states 0, 1, o r 2 i n d i c a t e a
zcro , lcss than zcro, o r g ren tc r than zcro content of the r e s u l t r e g i s t e r ,
w t i i l c t he s t n t c 3 is used when the r c s u l t overflows.

For D comparison, t h e s t a t e s 0 , 1, o r 2 i n d i c a t e t h a t the f i r s t operand
i s equal , low, or high.

Condition Code S e t t i n g s f o r Double P rec i s ion Fixed-point Ari thmetic

Add Double zero t z e r o >zero overflow
Compare Double equal low high
Load Complement Double zero <zero >zero overflow
Subt rac t Double zero <zero >zero overflow

0 1 2 3

-_

-147-

!

R X FORMAT

O2 I
31

OP CODE

0 7 8 ' 1112 1516 1920

I n t h c s c f o n i n t s , P. 1 s p e c i f i c s the g e n e r a l r e g i s t e r p a i r c o n t a i n i n g t h e
f i r s t opcrand . T h e second operand l o c a t i o n , i f any , i s dc!fincd d i f f e r e n t l y
f o r each f o r n s t .

In the RI1 fo rma t , the R 2 L ic ld s p e c i f i c s the gcr1era.l r c & i s t e r paisr COR-

r a i n i n g the sccond oper.lncl. The same r e g i s t e r inny be s p e c i f i e d f o r t h e
f i r s t and secorld ope rand .

A ze ro i n an X 2 o r I! 2 f i e l d i n d i c a t e s t h e absence of t h c co r re spond ing
a d d r e s s component.

An i n s t r u c t i o n can s p e c i f y the same gcncral r e g i s t e r b o t h f o r a d d r e s s modi-
fication and f o r o p c l - a n d location.
p l e t c d b e f o r e o p e r a t i o n execu t ion .

T h e c o n t e n t s of 31 I g e n e r a l r e g i s t e r s and s t o r a r c l o c a t ions p a r t i c i p a t i n g
i n t h e ,?ddrcss ing o r e x e c u t i o n p a r t of nn o p e r a t i o n rci!Tain unchanged, except
f o r t h c s t o r i n g of the f i n a l r e s u l t .

Addrc.ss m o d i f i c a t i o n i s always corn-

NOTE :

-148-

- _ . r -

E

I

1 0 11.5 INSTRUCTIONS

~ The double precision fixed-point arithmetic instructions and their mne-
monies, formats, and operation codcs are listed in the following table.
The tablc also indicates wlrcn the condition code is set and the exceptional
conditions in operiirid designations, data, or -=csults that caure e pro-
gram interruption.

NAME MNIIPIONIC TYPE EXCEPTIONS

Load Double
Load Double
Load Coniplcmeii t
Add Double
Add Double
Subtract Double
Subtract Double
Compare Double
Compare Double
Store Double

NOTES

A
C
IF
P
S

LDR
LD

ADR
AD
SDR
SD
CDR
CD
STD

Double LCDIi

KR
RX
RR C
R R C
RX C
RR C
RX C
RR C
RX C
RX

S
ASS
S IF
S IF
A , S , IF
S IF
P,A,S, IF
S
A , s
P , A , S

Addressing exception
Condition code is set
Fixed-point overflow exception
Protection exccption
Specification exception

11.5.1 LON) DOUBLE

I I R1 1 R2
28

7 8 1112 16 0

CODE

28
68
23
2A
6A
2B
6B
29
69
60

I 68 0 2 J
31 7 8 11 12 1516 1920 0

The second opcrniid is placed in the f i r s t operand location.
opcrairtl is not clrntigccl.

The second
110th operi~ntls arc 64 bits in length.

Condition Code : The code remains unclianged.

Program Interruptions:

Addressing (LD only)
Specification

11.5.2 LOAD COWLEPUSNT DOUBLE

The two's complement of t h e second operand is placed i n t h e first operand
loca t ion . Both operands are 64 b i t s i n length.

An overflow condi t ion occurs when the maxinlum negat ive number is comple-
mented; t he number remains unchanged.
i n t e r r u p t i o n when t h e fixed-point overflow mask b i t is one.

The overflow causes a program

Resul t ing Condition Code:

0 Resul t i s zero
1
2
3 Overflow

Resul t is l e e a than zero
Resul t is g r e a t e r than zero

Program In te r rup t ions :

Fixed-point overflow
Spec i f i ca t ion

ProgramminE Note

Zero rcmains i n v a r i a n t under coniplcnlcntation.

11.5.3 ADD DOUULE

I 2A

0 7 8 11 12 16

The second operand is added t o the f i r s t operand, and t h e sum is placed
in thc f i r s t opernncl loca t ion .

Additlot1 i:: pc-riornled by adding 011 64 b i t s of botli operands.
c a r r y out o f t hc s ign-b i t pooi t lon uiid tlic ciirry o u t of t h e high-order
numcrlc b i t p o s i t i o n agree, t h e sum i s s a t i s f a c t o r y ; i f they d i sag ree ,
an overflow occurs.

I f t he

Tne s ign b i t is no t changed a f t e r t he overflow.

. - ..i r

A positive ovc?rflow yields a negative final sum, and a negative overflow
results in D positive sum.
when the fixed-point overflow mask bit is one.

The ovcrflow causes a program interruption

Resulting Condition Code:

0 Sum is zero
1 Sum i n less than zero
2 Sum is grci\ter than zero
3 0 v e r f l . o ~

Program In terrupl: ions :

Addressing (AD only)
Specification
Fixed-point overflow

Programming Note

In two's-complement notation, a zero result is always positive.

1 1 . 5 . 4 SUBTRACT DOUBLE

The second operand is subtracted from the first operand, and the differ-
ence is placed in the first operand location.

Subtraction' is considered to be performed by adding the one's complement
of the second operand and a low-order one to the first operand.

sign-bit position and the carry out of the high-order numeric bit position
agree, the difference is satisfactory; if they disagree, an overflow is
recoRnizcd. The ovcrf.low causes ;1 program interruption when the fixed-
point ovcrrlow mask b i t is onc.

All 64
, bits of both operands participate, G S in AD. If the carry out of the

Resulting Condition Code:

0 Difference is zero
1 Difference is less than zero

I

!

2
3 Overflow

Dif fe rence I s g r e a t e r than zero

Program In te r rup t ions :

Addressing (SD only)
S p e c i f i c a t i o n s
Fixed-point overflow

Programming Note

The use of t h e one ' s complement and t h e low-order one i n s t e a d of t h e two's
complement of t h e second operand is necessary f o r proper r ecogn i t ion of
overflow.

When t h e same r e g i s t e r is s p e c i f i e d as f i r s t and second operand l o c a t i o n ,
s u b t r a c t i n g i s equ iva len t t o c l e a r i n g t h e r e g i s t e r p a i r .

I
I Sub t rac t ing a maximum nega t ive number from another maximum nega t ive num-

b e r g ives a ze ro r e s u l t and no overflow.

11.5.5 COMPARE DOUBLE

i

CD R 1 , b2(X2, B2) IRXl

89 1 . 1 1 x 2 1 D2 1
0 7 8 11 12 1616 1920 31

The f i r s t operand is compared wi th t h e second operand, and t h e r e s u l t
determines the setting of the condition code.

Comparison is algebraic, t r e a t i n g both comparands as 64-bit signed i n t e g e r s .
Operands i n r e g i s t e r s or s to roge are no t changed.

d

Resul t ing Condition Code:

0 Operands are equal
1 F i r s t operand is low
2 F i r s t operand is h igh
3 --

Program I n t e r r u p t i o n s :

Addressing (CD only)
S p e c i f i c a t i o n

-152-

... .. ~ ._-. -..- .- _.I. .._ . . ~ .-

, a

j

I

b

60
0 7 8 11 12 1518 1920 31

The first operand is stored at the second operand location.

The 64 bits in the general register pair are placed unchanged at the
second operand location.

Condition Code: The code remains unchanged.

Program Interruptions:

Protection
Addressing
Specification

11.6 DOUBLE PRECISION FIXED-POINT ARITIDWTIC EXCEPTIONS

Exceptional operand dcsignations or results cause a program interruption.
When a program interuption occurs, the current PSW is stored as an old
PSW, and a new PSW is obtained.
Identifies the cause of the interruption.
a program interruption in fixed-point arithmetic.

The interruption code in the old PSW
The following exceptions cause

Protection

The second operand in storage is storage protected. The operation is ..
suppressed for a storage violation. Therefore, the condition code and
data in registers and storage remain unchanged.

Addressing

An address designates an operand location outside the available storage for
a particular installation. In most cases, the operation is terminated.
Therefore, the regult data are unpredictable and should not be used for
furthcr computation. The exception is STORE which is suppressed. Operand
addresses are tested only whcn used to address storage. The address
restrictions do not apply to the components from which an address is
generated - the content of the D2 field and the contents of the registers
specified by X2 and B2.

Specification

A double-word operand is not located on a 32-bit boundary, or an instruc-
tion specifies an odd register address for a pair of general registers
containing a 64-bit operand. The operation is suppressed. Therefore,
the condition code and data in registers and storage remain unchanged.

-453-

. I. I__LL_ ...--.--.-. .._.. -- _,.. . .. - ,- . .

Fixed-Point Overflow

The r c s u l t of a s ign-cont ro l , add, o r s u b t r a c t , opera t ion overflows.
The i n t e r r u p t i o n occurs only when the f ixed-point overflow mask b i t is
one.
in t h e r e g i s t e r and s e t t i n g tho condi t ion code t o tr.ree. The overflow
b i t s are l o s t . I n add-type opera t ions the s ign s t o r e d i n t h e r e g i s t e r
is t h e oppos i te of the s i g n of t h e sum o r d i f f e rence .
mask b i t does not a f f e c t the result .

The opera t ion i s completed by p lac ing the t runcated low-order r e s u l t s

The s ta te of t h e

i

..

I

i

-154-

SECTION X I 1

Fraction
0 1 3'

FLOATING-POINT ARITIIMETIC OPTION

The floating-point instruction set is used to perform calcul.~tions on oper-
ands with a wide range of ciagnitude : d yiel.din:r rest'-!.* sc-fed ' io :)reserve
precision.

A floating-point number consists of a signed exponent and a signed fraction.
The quantity expressed by this number is the product of the fraction and the
number 16 raised to the power of the exponent. The exponent is expressed in
excess 64 binary notation; the fraction is expressed as a hexadecimal number
having a radix point to the left of the high-order digit.

To avoid unnecessary storing and loading operations for results and operands,
four floating-point registers are provided.
set provides for loading, adding, subtracting, comparing, multiplying, divid-
ing, and storing, as well as the sign control, Operations may be either reg-
ister to register or storage to register.
and registers are part of the floating-point feature.

.The floating-point instruction

All floating-point instructions

Maximum precision i s preserved in addition, subtraction, multiplication, and
division by producing normalized results. For addition and subtraction, in-
structions are also provided that generate unnormalized results, Normalized
and unnormalized operands may be used in any floating-point operation.

The condition code is set as a result of all sign control, add, subtract and
compare operations.

12.1 DATA FORMAT

The first bit is the sign bit (S) . The subsequent seven bit positions are
occupied by the characteristic.
digits.

The fraction field may have s i x hexadecimal

All operands and results are 32-bit floating-point words.

-155-

a
!

:.

1 u.

- .

Although final results have six fraction digits, intermediate results in ADD

PARE, HALVE, and NLJLTIPLY may have one additional low-order digit. This low-
order digit, the guard digit, increases the precision of the final result,

NORMALIZED, SUBTRACT NORMALIZED, ADD UNNOI1MALIZED, SUBTRACT UNNORMALIZED, COM-

12.2 N”BER REPRESENTATION

The fraction of a floating-point number i s expressed in hexadecind digits.
The radix point of the fraction is assumed to be immediately to the left of
the high-order fraction digit. To provide the proper magnitude for the float-
ing-point number, the fraction is considered to be multiplied by a power of
16. The Characteristic portion, bits 1-7, indicates this power. The bits
within the characteristic field can represent numbers from 0 through 127.
To accommodate large and small magnitudes, the characteristic is formed by
adding 64 to the actual exponent.
through + 6 3 .
t ion.

The range of the exponent is thus -64
This technique produces a characteristic in excess 64 nota-

Both positive and negative quantities have a true fraction, the difference in
sign being indicated by the sign bit.
accordingly as the sign bit i s zero or one.

The number is positive or negative

The range covered by the magnitude (M) of a normalized floating-point number
is

16 -65 - - < M < (1 -16’6) 1663 or approximately 5 . 4 10”’ - - < M < 7.2

A number of zero characteristic, zero fraction, and plus sign is called a
true zero, A true zero may arise as the result of an arithmetic operation
because of the particular magnitude of the operands. A result is forced to
bc true zero when (1) an exponent underflow occurs and the exponent-undcrflow
mask (PSW bit 3 8) i s zero, (2) a result fraction of an addition or subtraction
operation is zero and the significance mask (I’SW bit 39) is zero, or (3) the
operand of HALVE, one or both operands of MULTIPLY, or the dividend in DIVIDE
has a zero fraction, When a program interruption due to exponent underflow
occurs, a true zero fraction is not forced; instead, the fraction and sign
Yemain correct, and the characteristic is 128 too large. When a program
interruption due to lost significance occurs, the fraction remains zero,
and the fraction sign and characteristic remain correct. Whenever a result
has a zero fraction, the exponent overflow and underflow exceptions do not
cause a program interruption. W e n a divisor has a zero fraction, division
1s omitted, a floating-point divide exception exists, and a program interrup-
tion occurs. In addition and subtraction, an operand with a zero fraction or
characteristic participates as a normal number.

The sign of a sum, difference, product, or quotient with zero fraction is pos-
itive. The sign of n zero fraction resulting from other operations is estab-
lished by the rules of algebra from the operand signs.

-156-

12.3 NORMALIZATION

A quantity can be represented with the greatest precision by a floating-point
number of given fraction length when that number is normalized. A normalized
floating-point number has a nonzero high-order hexadecimal fraction digit. If
one or more high-order fraction digits are zero, the numbei is said to be un-
normalized. The process of normalization consists of shifring the fraction
left until the high-order hexadecimal digit is nonzero and reducing the char-
acteristic by the number of hexadecimal digits shifted. A zero fraction can-
not be normalized, and its associated characteristic therefore remains unchanged
when normalization is callcd for.

$

1

Normalization usually takes place when the intermediate arithmetic result is
changed to the final result. In
performing multiplication and division, the operands are normalized prior to
the arithmetic process,

This function is called po8tnomaZization.

This function is called prenomaZization.

Floating-point operations may be performed with or without normalization. Most
operations are performed in only one of these two ways. Addition and subtrac-
tion may be specified either way.

When an operation is performed without normalization, high-order zeros in the
result fraction are not eliminated. The result may or may not be normalized,
depending upon the original operands.

In both normalized and unnormalized operations, the initial operands need not
be in normalized form. Also, intermediate fraction results are shifted right
when an overflow occurs, and the intermediate fraction result is truncated to
the final result length after the shifting, if any.

Programming Note

Since normalization applies to hexadecimal digits, the three high-order bits
of a normalized number may be zero.

12.4 CONDITION CODE
-c

. The results of floating-point sign-control, add, subtract, and compare opera-
tions are used to s e t the condition code. Multiplication, division, loading,
and storing leave the code unchanged. The condition code can be used for de-
cision-making by subsequent branch-on-condition instructions.

The condition code can be set to reflect two types of results for floating-
point arithmetic. For most operations, the states 0, 1, or 2 indicate that
the result is zero, less than zero, or greater than zero. A zero result is
indicated whenever the result fraction i s zero, including a forced zero, State
3 ie never set by floating-point operations.

! '

For comparison, the states 0, 1, or 2 indicate that the first operand is equal,
low, or high.
a

-157-

CONDITION CODE SETTING FOR FLOATING-POINT ARITHMETIC

0 1 2 3

Add Normalized
Add Unnormalized
Compare
Load and Test
Load Complement
Load Negative
Load Positive
Subtract Normalized
Subtract Unnormalized

zero
zero
equal
zero
zero
zero
zero
zero
zero

<zero
(zero
lOW
<zero
<zero
<zero

(zero
<zero

--_

hero
>zero
hipb

>zero

>zero
>zero
>zero

>Zero

-.I Y

12.5 INSTRUCTION FORMAT

Floating-point instructions use the following two formats:

RR Format

I R 1 IR2
7 8 11 12 1

RX Format

op Code 0 2 1
7 8 11 12 16 16 19 20 31

- . .. - ...

In these formats, R1 designates the address of a floating-point register.
The content6 of this register will be called the first operand.. The sec-
ond operand location is defined differently for two formats.

In the RR format, the R2 field specifies the address of a floating-point
register containing the second operand.
for the first and second operand.

.I

The same register may be specified

In the RX format, the contents of the general register specified by X2 and
B2 are added to the content of the D2 field to form an address designating
the location of the second operand.

A zero in an x2 or B2 field indicates the absence of the corresponding ad-
dress component.

-158-

Resu l t s rcp!.-.clc rhc f i r s t o:c:-nd, c x c c p t for t h e s t o r i n g c p e r a t i o c s , rsherc
t h c scccnd orcrr.iid i s rcpl.icc.2.

Except f o r t!ia s t o r i n ; of the fiazl resul t , the c c c t e n t s of all floating-point
or Kenera1 r e g i s t c r s ar.d S ~ G ~ G ; , C l c c a r i o n s pcr t i c i 2 a t i n G i n the a d d r e s s i n g o r -
execution p z r t of a n cj?cr;lticr; r e x i n unchar.ged.

The flonti::;;--,oi:lt i r . s r ruc t ic : : s zrr2 t h e c n l y i n s t r c c t i o n s s s i n g t h e f l c a t i n g -
pcint r e g i s t e r s .

CCZ:
sonic arid the s!:nbolic opernzci d e s i p l t i o n f o r the SSSC-I1 assembly lan-
gang" arc s'ii,iwn w i t h c:ich i n s t r u s t i o n .
c ion u s i n g L@.\D, f o r esample, LER is the mnemonic and R1, R2 t h e operand
des i gnn t i o n .

I n t h c d e t a i l e d Z e s c r i T t i c z s of the i n d i v i l u a l i n s t r u c t i o n s , t h e me-

For a r e g i s t e r - t o - r e g i s t e r opera-

The f l c n t i n g - p o i n t s r i c h r x t i c i r s t r u c t i o n s end t h e i r n c e n o z i c s , f o r c a t s , and
o p e r a t i o n c c i c s f o l ; o ~ . A l l c7cra:ioas are p a r t of t h e f l c a t i n g - p o i n t f c a c u r c .
The 'follcwir. ; c a l l c i r d i c a t e s vhen the cor .d i t ion ccdc is se t and the c:ccepticr.s
i n opcranc'. Icsigncti~co, d r t t s , o r r e s u l t s : l i n t cause a program i n t e r r u p t i o n .

. LER
LE

. LTZR
LCZR
LPER
L:.; E R
A n
AE

AV
5 EX
S::

AUR .

TYPE

RR F
RXF
RR F,C
RP, F,C
2R F,C
Ri i F,C
BF. F , C
RY I:,C
RR F , C

R i i E',C
w. F,C

Rx I',C
r.2 l', c
PX P,C
?.?, 1: , c
I?:; F,C

EXCEPTICSS

.S
A, s

S
S
S
s

S,U,E,LS -
A,S,U,E,LS

S,E,LS
A, s ,E,LS
s ,u, E,LS

A, s , c , E , LS
S,E,LS

A , s , E , L s
S

A , s

CODE

36
78
32
33
30
31 .
3A
7A
3E

. 7E
3B
7 B -
3F
7F
33
79

-159-

t
b

L
1
eu

t
L

b l v e
Mu 1 t i p 1 y
Multiply
Divide
Divide
Store

HER RR F s mu
MER R R F SPU,E
ME R X F ApSsUPE
DER RR F ' S,U,E,FK
DE RX F A,S,U,E,FK
STE R X F P A S

A Addressing exception
C Condition code is set
E Exponent-overflow exception
F Floating-point feature
FK Floating-point divide exception
LS Significance exception
P Protection exception
S Specification exception
U Exponent-underflow exception

12.6.1 LOAD

34
3c
7c
3D
7D
70

-8..

C. , The eecond operand is placed in the first operand location.

The second operand is not changed.
or lost Significance cannot occur.

Exponent overflow, exponent underflow,

Condition Code:
Program I n t e m p tions:

Addressing (LE, only)
Specification

The code remains unchanged.

..'.
a&..

-160-

t

t 12.6.2 MAD ANP TEST
L

l '
e

i,

\
jY The second operand is placed i n t h e f i r s t operand l o c a t i o n , and i t s s i g n and

magnitude determine the condi t ion code.

The second operand is no t changed.

Rssutting Condition Code: 0 0 Reoult f r a c t i o n is zero &

k 3 --
L Program Interruptions :

1

1 Resul t is less than zero
2 Resul t is g r e a t e r than zero

S p e c i f i c a t i o n

clr,
Programing Note

When the same r e g i s t e r i s ' s p e c i f i e d as f i r s t and second operand l o c a t i o n , t h e
ope re t ion is equ iva len t t o a test without d a t a movement.

12.6.3 LOAD COMPLEMENT

i
L

I4
Ir

1
t
L

LCER RpRz [RRJ

'-The second operand is placed i n t he first operand l o c a t i o n wi th t h e sign
changed t o t h e oppos i t e va lue .

The s i g n b i t of the second operand is i nve r t ed , whi le c h a r a c t e r i s t i c and
f r a c t i o n are no t changed.

u.

Resutting CowKtion Code:
0 Resul t f r a c t i o n is ze ro
1 Resul t is less than zero
2
3 --

& o g m Intermcptions:
S p e c i f i c a t i o n

Resul t is g r e a t e r than zero

-161-

t
\
t

L
t

, b

.

12.6.4 LOAD POSITIVE

The second operand is placed in the first operand location with the sign made

The sign bit of the second operand is made zero, while characteristic and frac-
tion are not changed.

plus *

Resutting Condition Code:
0 Result fraction is zero
1 --
2
3 --

Program Interruptions:
Specification

Result is greater than zero

12.6.5 LOAD NEGATIVE

LNER RpR2 Iff Rl

1 3 1)
0 I 11 I

The second operand is placed in the first operand location with the sign made
minus

The sign bit of the second operand is made one, even if the fraction is zero.
Characteristic and fraction are not changed.

-# Resulting Condition 'Code: . .L . 0 Result fraction is zero
1 Result is less than zero
2 -
3 -

program Interruptions:
Specification

. '; i t'
12.6.6 ADD NORMALIZED t

7A D2 I
0 7-8 11 12 16-10 19 20 31

The second opcrand is added t o the first operand, atid the normalized sum
is placed in the first operand location.

e
t,
s c

The low-order halves of the floating point registers are ignored and remain
unchanged.

Addition of two floating-point numbers consists of a characteristic compari-
son and a fraction addition.
compared, and the fraction with the smaller characteristic is right-shifted;
its characteristic is increased by one for each hexadecimal digit of shift,
until the two characteristics agree.
to form an intermediate sum. If an overflow carry occurs, the intermediate
sum is right-shifted one digit, and th.e characteristic is increased by one.
If this increase causes a characteristic overflow, an exponent-overflow ex-
ception is signaled, and a program interruption occurs.
normalized and correct, the sign is corrcct, and t h e characteristic is 128
smaller than the corrcct: characteristic.

The characteristics of the two operands are

The fractions are then added algebraically

The fraction i s

The lnterniediate sum consists of 7 hexadecimal digits and a poesible carry.
The low-order digit is a guard digit obtained from the fraction which is
shifted right.
addition.

After the addition, the jntermediate sum is left-shifted as necessary to
form a normalized fraction; vacated low-order digit positions are filled
with zeros; the Characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and if the corres-
ponding mask bit is one, a program interruption occurs.

--.: correct and normalized, the sign is correct, and the characteristic is 128
larger than the correct one.
result is made n true zero.
sum is truncated to the proper fraction length.

When the intermedintr sum j s zero and the significance mask b i t is one, a
significance exception exists, and a program interruption takes place. No
normalization occurs; the intermediate sum characteristic remains unchanged.
When the lntermediatc sum is zero and the significance mask bit is zero,
the program interruption for the significance exception does not occur;
rather, the characteristic is made zero, yielding a true zero result.
ponent underflow does not occur for a zero fraction.

Only one guard digit position participates in the fraction
The guard digit is zero if no shift occurs.
- 1-

w . 7

,I:
L

-4

t
(J

t
The fraction is

If the corresponding mask bit is zero, the
If no left shift takes place, the intermediate L

a

I
4u

L
Ex-

. * , 1
L

t
L
t
I
L

P
I
t

The sign of the sum is derived by the rules of algebra.
with zero result fraction is always positive.

The sign of a Bum

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero
2
3 --

Bogram Interruptions :
Addressing (AE only)
Specification
Significance
Exponent overflow
Exponent underflow

Result is greater then zero

Programming Note

Interchanging the two operands in a floating-point addition does not affect
the value of the sum.

12.6.7 ADD UNNORMALIZED

The s e c o n d ' o p e r a n d i s added t o the f irst [operand, and the unnorrnalized sum
is placed in the first operand location.

-a

After the addition the intermediate sum is truncated to the proper fraction
length.

- - .

When the resulting fraction is zero and the significance mask bit is one, a
aignificance exception exists and a program interruption takes place. When
the resulting fraction is zero and the significance mask bit is zero, the
program interruption for the significance exception does not occur; rather,
the characteristic is made zero, yielding a true zero result.

Leading zeros in the result are not eliminated by normalization, and an ex-
ponent underflow cannot occur.

.-*d..
-h:

-164- ' .

. .

a

L

t
t

i
b

1

b
t
t
t
t
0 c

t

The s i g n of t h e sum is der ived by t h e r u l e e of a lgeb ra ,
wi th zero r e s u l t f r a c t i o n is always p o s i t i v e .

The s i g n of a sum

Resulting Condition Code:
0 Result f r a c t i o n is zero
1 Result is less than ze ro
2 Result is g r e a t e r than zero
3 --

Program Interrupt ions :
Addressing (AU only)
S p e c i f i c a t i o n
S ign i f i cance
Exponent overflow

12.6.8 SUBTRACT NORMALIZED
SER Ri,R2 fRRJ

78 0 2 1
0 7 8 11 12 16 10 19 20 31

The second operand is sub t r ac t ed from t h e f i r s t operand, and t h e normalized
d i f f e r e n c e is placed i n t h e f i r s t operand loca t ion .

The SUBTRACT NORMALIZED i s similar t o ADD NORMALIZED, except t h a t t h e s i g n
of t h e second operand is inve r t ed be fo re add i t ion .

The s i g n of t h e d i f f e r e n c e is derived by t h e r u l e s of a lgebra .
a d i f f e r e n c e wi th zero r e s u l t f r a c t i o n is always p o s i t i v e .

The s i g n of

Resulting Condit ion Code:
0 Result f r a c t i o n is zero
1 Result is less than zero

- 2 Resul t is g r e a t e r than zero
3 --

program In terrup tionrr:
Addressing (SE only)
S p e c i f i c a t i o n
S ign i f i cance
Exponent overflow
Exponent underflow

t

-165-

L

t

t
t
t
L
t
t

t

1
I I

b

t
L

12.6.9 SUBTRACT UNNORMALLZED

SUR R p R:, IRRI

SU RpOXpB IRXl

0 7 I R 1 8 11 1x2 12 15 1 6 2 16 19 I 20 31

7F

The second operand is subtracted from the first operand, and the unnormalized
difference is placed in the first operand location.

The SUBTRACT UNNORMALIZED is similar to ADD UNNORMALIZED, except for the in-
version of the sign of the second operand before addition.

The sign of the difference is derived by the rules of algebra.
a difference with zero result fraction is always positive,

The sign of

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero
2
3 --

Program Interruptions:
Addressing (SU only)
Specification
Significance
Exponent overflow

Result is greater than zero

12.6.10 COMPARE

39
0 7 8 11 12 16

79 0 2 I
0 7 8 11 12 16 16 19 20 31 4

The first operand is compared with the second operand, and the condition code
indicates the result.

L
-166-

Comparison is algebraic, taking into account the sign, fraction, and exponent
of each number.
nation since the fractions may have different numbers of leading zeros.
equality is established by following the rules for normalized floating-point
subtraction. When the intermediate sum, including the guard digit, is zero,
the operands are equal.
t ion.

An exponent inequality is not decisive for magnitude detenni-
An

Neither operand is changed as a result of the opera-

An exponent-overflow, exponent-underflow, or lost-significance exception can-
not occur .

ReeuZting Condition Code:
0 Operands are equal
1 First operand is low
2 First operand is high
3 --

Frogram Interruptions:
Addressing (CE only)
Specification

Programing Note

Numbers with zero fraction compare equal even when they differ in sign or
characteristic.

12.6.11 HALVE

34
0 7 0 11 12 16

The second operand is divided by two, and the normalized quotient is placed
In the first-operand location.

The second operand remains unchanged.

The fraction of the second operand is shifted right one bit position, placing
the contents of the low-order bit position into the high-order bit position
of the guard digit and dntroducing a zero into the high-order bit position
of the fraction. The intermediate result is subsequently normalized, and
the normalized quotient is placed in the first-operand location.
digit participates in the normalization.

The guard

-167- '

1
t
c
1
t
1
t

When normalization CiiUses the chnrnctcristic to becomc less than zero, expo-
nent underflow occurs.
characteristic, and fraction are set to zero, thus making the result a true
zero. If the exponent-underflow mask is one, a program interruption occurs.
The result is normalized, its sign and fraction remain correct, and the chax-
acteristic is made 128 larger than the correct characteristic.

If the exponent-underflow mask is zero, the sign,

When the fraction of the second operand is zero, the sign, characteristic,
and fraction of the result are made zero. No normalization is attempted, and
a significance exception is not recognized.

Condition Code: The code remains unchanged.
Program Interruptions:

Specification
Exponent underflow

Programming Notes

The halve operation is identical to a divide operation with the number two
as divisor. The halve operation is identical to a multiply operation with
one-half as a multiplier.

The result of HALVE is replaced by a true zero only when the second-operand
fraction I s zero, or when exponent underflow occurs with the exponent-under-
flow mask set to zero. When the fraction of the second operand is zero, ex-
cept for the lororder bit position, the low-order one is shifted into the
guard digit position and participates in the postnorxnalizatlon.

,

L
L
t
t
tu

e,
I
L,

12.6.12 MULTIPLY

0 7 8 11 12 15 16 19 20 31

The normalized product of multiplier (the second operand) and multiplicand
(the first operand) replaces the multiplicand.

The multiplication of two floating-point numbers consists of a characteris-
tic addition and a fraction multiplication. The sum of the characteristics
less 64 is used as the characteristic of an intermediate product. The sign
of the product is determined by the rules of algebra.

The product fraction is normalized by prenormalizing the operands and post-
normalizing the intermediate product, if necessary. The intermediate product
characteristic is reduced by the number of left-shifts. The intermediate
product fraction lias 12 digits which is normalized and then truncated to 6
digits.

L -168-

' t \'

t

t
t
1.
1
t
t
b
t
L
1
,L
t
t
t

t

1.

C

Exponent ovcrflow occurs if the final product characteristic exceeds 127.
The operation is completed, and a program interruption occurs.
is normalized and correct, the sign is correct, and the characteristic is
128 smaller than the correct characteristic. The overflow exception does
not occur for an intermediate product characteristic exceeding 127 when the
final characteristic is brought within range because of normalization.

The fraction

Exponent underflow occurs if the final product characteristic is less than
zero.
The fraction is normalized and correct, the sign is correct, and the char-
acteristic is 128 larger than the correct characteristic. If the correspond-
ing mask bit is not one, the result is made a true zero. Underflow is not
signaled when an operand's characteristic becomes less than zero during
prenormalization, and the correct characteristic and fraction value are
used in the multiplication.

When all 6 digits of the intermediate product fraction are zero, the product
sign and characteristic are made zero, yielding a'true zero result.
terruption for exponent underflow or exponent overflow can occur when the
result fraction is zero.
never taken for multiplication.

If the corresponding mask bit is one, a program interruption occurs.

No in-

The program interruption for lost significance is

.Condition Code:
Program Interruptions :

The code remains unchanged.

Addressing (ME only)
Specification
Exponent overflow
Exponent underflow

Programming Note

Interchanging the two operands in a floating-point multiplication does not
affect the value of the product.

12.6.13 D I V I D E

The dividend (the first operand) is divided by the divisor (the second oper-
and) and replaced by the quotient. No remainder is preserved.

-169-

'I i L

L

t
t
1
1
L
t

t
L
e
i
L
1
t

I

1 Lo

b

e

t

The low-order ha lves of t h e f loa t ing -po in t r e g i s t e r are ignored and remain
unchanged.

A f loa t ing -po in t d i v i s i o n c o n s i s t s of a c h a r a c t e r i s t i c s u b t r a c t i o n and a
f r a c t i o n d i v i s i o n .
t e r i s t i c s p l u s 64 is used as an in te rmedia te quo t i en t c h a r a c t e r i s t i c .
s i g n of t h e quo t i en t is determined by t h e r u l e s of a lgebra .

The quo t i en t f r a c t i o n is normalized by prenormalizing t h e operands.
normalizing t h e in t e rmed ia t e quo t i en t is never necessary, bu t a r i g h t - s h i f t
may be c a l l e d for .
f o r t h e s h i f t s .
q u o t i e n t , even i f t h e normalized dividend f r a c t i o n is l a r g e r than t h e nor-
malized d i v i s o r f r a c t i o n ,
number of d i g i t s .

The d i f f e r e n c e between the dividend and d i v i s o r charac-
The

Post-

The intermediate-quot ient c h a r a c t e r i s t i c is ad jus t ed
A l l d ividend f r a c t i o n d i g i t s p a r t i c i p a t e i n forming t h e

The quo t i en t f r a c t i o n is t runca ted t o t h e d e s i r e d

A program i n t e r r u p t i o n f o r exponent overflow occurs when the f ina l -quo t i en t
c h a r a c t e r i s t i c exceeds 127. The opera t ion is completed. The f r a c t i o n is
c o r r e c t and normalized, t h e s i g n is c o r r e c t , and t h e c h a r a c t e r i s t i c is 1 2 8
smaller than t h e c o r r e c t c h a r a c t e r i s t i c .

I f t h e f i n a l quo t i en t c h a r a c t e r i s t i c is lerss than zero and t h e mask b i t is
one, a program i n t e r r u p t i o n f o r exponent underflow occurs.
c o r r e c t and normalized, t h e s i g n is c o r r e c t , and t h e c h a r a c t e r i s t i c is 128
l a r g e r than t h e c o r r e c t cha rac t e r i f f t i c .
no t one, t h e r e s u l t is made a true zero. Underflow is no t s igna led f o r t h e
in t e rmed ia t e quo t i en t o r f o r t h e operand c h a r a c t e r i s t i c s dur ing prenormali-
za t ion.

The f r a c t i o n is

If t h e corresponding mask b i t is

When d i v i s i o n by a d i v i s o r wi th zero f r a c t i o n is attempted, t h e opera t ion is
suppressed. The dividend remains unchanged, and a program i n t e r r u p t i o n f o r
f loa t ing -po in t d i v i d e occurs. #en t h e dividend f r a c t i o n is zero, t h e quo-
t i e n t f r a c t i o n w i l l be zero, y i e l d i n g a t r u e ze ro r e s u l t without t ak ing t h e
program i n t e r r u p t i o n fo r exponent underflow and exponent overflow.
gram i n t e r r u p t i o n f o r s i g n i f i c a n c e l e never taken for division.

The pro-

Condition Code:
Program Interruptions:

Addressing (DD only)
S p e c i f i c a t i o n
Exponent overflow
Exponent underflow
Float ing-point d i v i d e

The code remains unchanged.

-170-

12.6.14 STORE

70 I R1 1x2 I B2 I 0 2 I
I I I I I I
0 7 8 11 12 16 16 19 20 31

The first operand is stored at the second operand location.

The first operand remains unchanged.

Condition Code:
A.ogrum Interrupt ions :

Addressing
Protection (store violation)
Specification

The code remains unchanged.

12.7 FLOATING-POINT ARITHMETIC EXCEPTIONS

Exceptional operation codes, operand designations, data, or results cause a
program interruption.
as an old PSW, and a new PSW is obtained,
identifier the c a u ~ e of the interruption.

\ When the interruption occurs, the current PSW is stored 1

1 The interruption code in the old PSW
The following exceptions cause a pro

gram interruption in floating-point arithmetic. I
@erat&m: The floating-point feature is not installed, and an attempt is

made to execute a floating-point instruction.
The condition code and data in registers and storage remain unchanged.

The instruction is suppressed.

Protection: The storage protection bit for CPU stores is set to a 1 in
the addressed block of main storage when a STE instruction is encountered.

Address$ng: An address designates an operand location outside the avail-
able storage for the installed system. In most cases, the operation is termi-
nated. The result data and the condition code, if affected, are unpredictable
and should not be used for further computation. The exception is STORE (STE),
which is suppressed.

a floating-point register address other than 0, 2, 4, or 6 is specified.
instruction is suppressed.
and storage remain unchanged.
components from which an address is generated-the content of the D2 field and
the contents of the registers specified by X2 and B p .

Specif$cath: A storage operand is not located on a 32-bit boundary or
The

Therefore, the condition code and data in registers
The address restriction does not apply to the

’

-171-

i

-L &'

1
F v

t
1
I
t
1

t
t
t
t:
1
t
L

L

,t
<I !

,

Exponent OverfZm:
multiplication, or division exceeds 127, and the result fraction is not zero,
The operation is completed, and a program interruption occurs.
is normalized, and the sign and fraction of the result remain correct.
result characteristic is made 128 smaller than the correct characteristic.
For addition and subtraction, the condition code is set to 1 when the result
is less than zero, and the condition code is set to 2 when the result is greater
than zero. For.multiplication and division, the condition code remains unchanged.

The result characteristic in addition, subtraction,

The fraction
The

Exponent Underflow: The result charactcrist?~ in addition, subtraction,
multiplication, halving, or division is less than zero, and the result fraction
is not zcro,
the exponent-underflow mask bit (PSW bit 38) is one.

The operation is completed, and a program interruption occurs if

The setting of the exponent-underflow mask also affects the result of the
operation.
are set to zero, thus mqhing the result a true zero. When the mask bit is one,
the fraction is normalized, the characteristic is made 128 larger than the 6or-

When the mask bit is zero, the sign, characteristic, and fraction

I rect characteristic, and the sign and fraction remain correct. I

For addition and subtraction, the condition code is set to 0 when the gx-
ponent-underflow mask bit is zero. With the mask bit one, the condition code
for addition and subtraction is set to 1 when the result is less than zero,>

multiplication, halving, and division, the condition code is left unchanged Fr and the condition code is set to 2 when the result is greater than zero.

A program interruption occurs i f the significance mask bit (PSW bit 39) is 0.4.
The mask bit affects also the result of the operation. When the significan e
mask bit is a zero, the operation is completed by replacing the result with ! a
true zero. When the significance mask bit is one, tlic operation is completed
without further change to the Characteristic of the result,

Signif<cance: The result fraction of an addition or subtraction is ze I, o j

In either case,
the

The
and

condition code is set to 0.

Floating-Point Divide:
division is suppressed; therefore, the condition code and data in registers
storage remain unchanged.

Division by a number with zero fraction is attempted.

-172-

L

