i
B

S e R

X T

Eo

PRSI/ SIS A% - N

o

s e S i

LRl e i

el

ety ract

s R i et

iyt

N,

NASA STANDARD
o SPACECRAFT COMPUTER (NSSC-il)

PRINCIPLES OF OPERATION

fied J

(NASA-C2-178826) NASA STANDARD SPACECRAFT N90—7d545

COMPUTER (NS5C-2): PRINCIPLFS GF NPERATIUN
(Ia3M) 1w4 »

unclus

NO0/00 0252763

i J "CHKMI ENGRG NOTICE | LTR | DESCRIPTION | uniE | ARl
E | , l Initial Release ~ ** % _ L2/15/b7
5/15/79

- Errata Sheets

Lafle s Alet taida

The attached pages are replacements or additions to the

NSSC-I1I Principles of Operation.

o T P K LR AR

P

P W Ty - o BT HED A PA: W AP

FroN E O XA R SR

e et i e et

ke el W

oEs A AN N WS

3

s

]

3

4

4

i

%

: CONTR NO.

1 . NAS8-32808 INTERNATIONAL BUSINESS MACHINES CORP.

i . FEDERAL SYSTEMS DIVISION

‘ PREPARATION , GAITHERSBURG, MARY LAND
DSGN GHK TITLE NASA Standard Spacecraft

Computer II_(NSSC—II) Principles

DWG CHK of Operation

D5SGN APPROVAL SIZE | CODE IDENT NO, |DWG NO.

g ‘ . | 7935402

' ~ |SCALE WT : SHEET

&-1685-0 +

- v RS- - . T AT A e SO

!
i : :
i TABLE OF CONTENTS (CONTINUED)
@ | | |
; Section Paragraph Title Page
§ 7.4.4 Branch on Index High 88
§ 7.4.5 Branch on Index Low or Equal ‘ 89
p 7.4.6 Execute ' 89
Q% 7.4.6.1 Execute Exceptions 91
3 VIII ' STATUS SWITCHING 92
i 8.1 Program States . 92
¢ 8.1.1 Problem State , 92
; 8.1.2 Wait State 93
_§ 8.2 Protection . 94
i 8.2.1 Area Identification : 94
i 8.2.2 Protection Action 94
Q 8.3 Program Status Word . 94
i 8.4 Instruction Format 96
i 8.5 Instructions ' . 97
j 8.5.1 Load PSW 98
: 8.5.2 Set Program Mask 99
-8.5.3 Set System Mask 99
8.5.4 Supervisor Call 99
8.5.5 Set Storage Key o - 100
8.5.6 Test and Set 100
8.5.7 Start Input Output 101
@ 8.5.8 Timer Read and Set 103
p 8.5.9 Diagnose : © 104
ﬂ 8.6 Status-Switching Exceptions : 104
IX ‘ INTERRUPTIONS - 106
i 9.1 Interruption Action 106
& 9.1.1 Instruction Execution . 106A
: 9.1.2 Source Identification 107
k 9.1.3 Location Determination : , 108
3 9.2 Input/Output Interruption 108
i 9.3 Program Interruption 109
9.3.1 Operation Exception 110
é 9.3.2 Privileged-Operaticn Exception 110
g 9.3.3 Execute Exception , 110
A 9.3.4 Protection Exception 110
i 9.3.5 Addressing Exception ’ 110
? 9.3.6 Specification Exception) 111
% 9.3.7 Data Exception 111
i 9.3.8 Fixed-Point-Overflow Exception 111
B 9.3.9 Fixed-Point-Divide Exception 111
5 9.3.10 Exponent-Overflow Exception 111A
@ 9,3.11 Exponent-Underflow LException 111A
} 9.3.12 Significance Exception 111A
“ 9.3.13 Floating-Point-Divide Exception 111A
§ 9.3.14 Buffered.1/0 Exception S 112
*‘ 9.3.15 Supervisor-Call Interruption 112 .

v

[UCEIETIY-

R ————
[s am—

e on

3 ' TABLE OF CONTENTS

Title

UF IR N
W
]
L3
"
=

NSSC~II ARCHITECTURE
NSSC-II Instruction Set
Exceptions
Input/Output
Timer
Storage Protect
Execution Times

. Unpredictable Results
Addressing Exception
Addressing

=t

b e e
NN NN -

-
SonP>WwWwNMH

BB o ST

I1 SYSTEM STRUCTURE

2.1 Main Storage

2.2 Addressing

2.3 Information Processing
2.4 Storage Protection

RSET 22N SRSV

"oyt

4 111 : CPU

Central Processing Unit Functions
General Regilsters

Arithmetic and Logical Unit
Fixed Point Arithmetic

Decimal Numbers

Logical Operations

Program Execution

Instruction Format

Address Generation

Base Address (B)

Index (X)

Displacement (D)

Sequential Instruction Execution
Branching

Program Status Word
Interruption

External Interrupts

Program Interrupts

Input/Output Interruption
Machine States .
Running or Waiting State
Masked or Interruptible State
Supervisor or Problem State
System 1/0

Direct 1/0

Buffered 1/0

-
-~

L 4

L] L] Ll

L]
N oo UMV WWLNMNODND D
L] L] -
. - W N

WL L3 Lo L W L) W LI L L2 o L2 L)Lt L3 LW W WL W
*

L] L] -
NNNOOO\O\?‘OO\OO\OOOOOO\G\O\U‘&“UWNH
* E J
L d L]
W N = W N

* * L]
-

14

hacd
]

B IO bt bt Pt ot et Bt b e S e e 2 B B R B ‘
COWVWOVOVWOVOVLOVUOMEPEEWLRNIONOOOVENNNOR VELPWW PNRNNRNNREMEER k

2 23 e e B Tt e & P S

e i s G e a Lok ST K

PUPEIENPRRPRSCOCTRRQELT SIS S S Y. PRSI ER AW 22 5SS L S 2 B ey

¥5 ¢ NP

bl e £ B b L 2

TABLE OF CONTENTS (CONTINUED)

Section garagragh Title

Direct Memory Access (DMA)
Input/Output Operations
Buffered I/0 Status Word
Service Interrupt

TSE 1/0 Devices

Soft Stop

Test Support Equipment
Function Code

Syatem Reset

L *
L]
Nourw

UUUU:&UW“U
WOOVOOSNNNN
L]

®
N

Iv FIXED-POINT ARITHMETIC

Data Format

Number Representation
Condition Code

Instruction Format
Instructions

Load

Load Halfword

Load and Test

Load Complement '
Load Positive '
Load Negative

Load Multiple

Add

Add Halfword

Add Logical

Subtract

Subtract Halfword

Subtract Logical

Compare

Compare Halfword

Multiply

Multiply Halfword

Divide

Convert to Binary

Convert to Decimal

Store

Store Halfword

Store Multiple -
Shift Left Single

Shift Right Single

Shift Left Double

Shift Right Double
Fixed-Point Arithmetic Exceptions

L]
PRONRNRNNN R e o O WO WS W N

N M WLNHFROVENOOUMELOOMMRO

-*
-

P O A L W N N A A N N N N N N N N N O N N W G W W .
[X7 AT RV AV NE R RVEAVEV RV RVEVAVET RV I ST EV TRV ET RV EY RT RV VT RT I AR
[]

111

e o e

gggt;on
v
)
: AL
§
'@
i
7}
é
]
!
zj:
q viz
3?
p!
3
1

B e Tt el ki

et it Ere wiTo

TABLE OF CONTENTS (CONTINUED)

. [}
Paragraph Iitle
DECIMAL ARITHMETIC

5.1 Data Format

5.1.1 Packed Decimal Number
5.1.2 Zoned Decimal Number
5.2 Number Representation
5.3 Ingtructions

503.1 Pack

5.3.2 Unpack

50303 Move with Offset

LOGICAL OPERATION

Data Format

Fixed-Length Logical Information
Variable-Length Logical Information
Condition Code
Instruction Format
Instructions

Move

Move Numerics

Move Zones

Compare Logical

And

Or

Exclusive Or

Test Under Mask

Insert Character

Store Character

Load Address

Translate

Translate and Test

Shift Left Single

Shift Right Single

Shift Left Double

Shift Right Double

Logical Operation Exceptions

[] [] - [] [J - - [) [3
VPP ELEEDEDDLLEDLEDDWN MMM
- [] [] [] [2 -
»

.
R OONO NS WD -

NSOk O

L L] - L] L] . L] L3 L]
L] - ® . L] - - L L

OO
-

BRANCHING

Normal Sequential Operation
Sequential Operation Exceptions
Decision-Making '
Instruction Formats

Branching Instructions

Branch on Condition

Branch and Link

Branch on Count

L] L 2 L]
-
-

SN SNE NN NN~
[]
SBELWNMM

L J
®
(T N

iv

‘ TABLE OF CONTENTS (CONTINUED)
; Section Paragra Iitle Page
7.4.4 Branch on Index High 88
7.4.5 Branch on Index Low or Equal - 89
; 7.4.6 Execute 89
E 7.4.6.1 Execute Exceptions 91
4 VI11 STATUS SWITCHING 92
1 8.1 Program States 92
3 8.1.1 Problem State 92
8.1.2 Wait State 93
8.2 Protection 9%
LR 8.2.1 Area Identification " 94
1 8.2.2 Protection Action 94
‘ 8.3 Program Status Word 9
8.4 Instruction Format 96
i 8.5 Instructions 97
- 80501 Load PSW 98
i 8.5.2 ~ Set Program Mask 99
i 8.5.3 Set System Mask 99
. 8.5.4 Supervisor Call 99
% 8.5.5 Set Storage Key 100
i 8.5.6 Test and Set 160
‘ 8.5.7 Start Input Output 101
- 8.5.8 Timer Read and Set 103
5 8.5.9 Diagnose 104
3 : 8.6 Status-Switching Exceptions 104
i 6 ¢ INTERRUPTIONS 106
3 9.1 Interruption Action 106
9.1.1 Instruction Execution 106
9.1.2 Source Identification 107
9.1.3 Location Determination 108
9.2 Input/Output Interruption 108
: 9.3 Program Interruption 109
) 9.3.1 Operation Exception 110
y 9.3.2 Privileged-Operation Exception 110
; 9.3.3 Execute Exception 110
g 9.3.4 Protection Exception 110
3 9.3.5 Addressing Exception 110
] 9.3.6 Specification Exception) 11
3 9.3.7 Data Exception ‘ i1
I 9.3.8 Fixed-Point-Overflow Exception 11
g 9.3.9 Fixed~Point-Divide Exception 111
1 9.3.10 Buffered I/0 Exception 112
9.3.11 Supervisor-Call Interruption 112

Y ol

TR Lo e P

. . PO ST L T
T U PN D UVELL PR I ¢ SSTU N DEOIE S s S e B AR R AN

LY

sl

ol

% LT R S s
>, RO T S N P T S T
LI NUSNIERA- ARG =S Iw“..-_, RN

TABLE OF CONTENTS (CONTINUED)

Raragraph Iitle
9.4 External Interruption
9.4.1 Timer
9.4,2 Interrupt Key
9.4.3 Interval Timer
9.5 Machine~Check Interruption
SHORT PRECISION OPTION

10.1 Data Format
10.2 Number Representation
10.3 Condition Code
10.4 Instruction Format
10.5 Instructions

.S, ADD Halfword

5. ADD Short

Branch Unconditional
Compare Halfword
Compare Logical Short
Compare Short

Divide Short

Load Address Short
Load Complement Short

o 4 -
OOOOO?OOOOOO
VUMLLILUBLUBILULULL WL
[3
HEHEBOMNOWL S WN -

P P ot ot ot P b b

«5.10 Load Full to Short Register
«5.11 ‘ Load Halfword
«5.12 Load Negative Short
10.5.13 Load Positive Short
10.5.14 Load Short
10.5.15 Load and Test
10.5.16 Load and Test Short
10.5.17 Multiply Halfword
10.5.18 Multiply Short
10.5.19 Normalize
10.5.20 AND Short
10.5.21 OR Short
10.5.22 Shift Left Arithmetic Short
10.5.23 Shift Left Logical Short
10.5.24 Shift Right Arithmetic Short
10.5.25 Shift Right Logical Short
10.5.26 Subtract Halfword
10.5.27 Subtract Short .
10.5.28 Test Bits
10.5.29 Exclusive OR Short
10.6 Short Precision Exceptions
vi

112
113

113
114

115
115

- 116

116
117
119
121
121

122

123
124
125
126
127
127
128
129
129
130
131
131
132
133
133
134
135
136
137
138
139
140
140
141
142
143
144

ML S I i B B L B T U i,

e i i N e i £ M i e

R i e S ket 2]

i!.',' Section

X1

X1l

) Paragragh'

i1l.1
11.2

12.6.

12.6.14
12.7

TABLE OF CONTENTS (CONTINUED)

Title

DOUBLE PRECISION FIXED-POINT
ARITHMETIC OPTION

Data Format

Number Representation
Condition Code

Instruction Format
Instructions

Load Double

Load Complement Double

Add Double

Subtract Double

Compare Double

Store Doudble

Double Precision Fixed-Point
Arvithmetic Exceptions

FLOATING-POINT ARITHMETIC
Data Format

Number Representation
Normalization
Condition Code
Instruction Format
Instructions

Load

Load and Tast

Load Complement

Load Positive

Load Negative

Add Normalized

Add Unnormalized
Subtract Normaliszed
Subtract Unnormalized
Compare

Halve

Multiply

Divide

Store

Floating-Point Arithmetic
Exceptions

vit

Page

146
146
146
147
148
149
149
150
150
151
152
153
153

LML e BT

IEE ST S NIREFRNER LRSI EIHLAS £ 1A Tt

S e

PER=3 N

1

L

N e - e
o i i e Ko, B i P I

Lo B
T it e o1 B i e Bl o T S i AT 2 KA Mk

PREFACE

This document is the Machine Reference Manual for the NSSC-II. It provides
a description of the system structure, the arithmetic, logical, branching,
status switching, I/0 operations, and the interrupt and timer systeus.

The NSSC-II 18 a 16-bit, fixed point, microprogram controlled, general pur-
pose computer.

The NSSC~-II architecture is the same as the IBM System/360 architecture.
The basic NSSC~II supports 83 of the 87 instructions in the IBM System/360
Standard Instruction Set; the basic NSSC~II also supports three unique
instructions which control the timers, 1/0, and storage protection. The
first nine sections of this document describe the basic NSSC-II.

A short precision option is available for the NSSC~II. This option con-
sists of 53 additional instructions which deal primarily with 16-bit
operands. These instructions generally execute faster than their counter-
parts in the basic NSSC-II instruction set, which operate on 32-bit operands.
An additional instruction format is included in this option which increases
execution speed and reduces main storage requirements. The short precision
option is described in Section X.

A double precision fixed point option is also available for the NSSC-1I.
This option consists of 10 additional instructions which operate with
64~bit fixed point operands. This option is described in Section XI.

A floating point option is also available for the NSSC-II. This option
consists of 22 additional instructions which are used to perform calcula=-
tions on operands with a wide range of magnitude and yield results scaled
to preserve precision. This option is described in Section XII.

The following NSSC~1I documents contain essentially the same information as
provided in the corrasponding System/360 documentation referenced herein:

NSSC-11 Assembler Language, IBM Number 7935401
NSSC-II Linkage Editor, IBM Number 7935413

viid

B e I ki e - Bk Ao e B o

g

DB T ol RE 2 A

SRerei

(V-SRI G PSR PO EAPER PR . s LS SRR L GRS

AR TAFEE poe L S A B - Y

SECTION I
NSSC-II ARCHITECTURE

1.1 NSSC-II INSTRUCTION SET

The NSSC-II is compatible with the IBM System/360 Problem State Standard
Instruction Set. Problem programs written for the S/360 Standard
Instruction Set will execute properly without change on the NSSC-II.

There are 171 valid NSSC-II instructions. Eighty-three of them are from the
87-member S/360 Standard Instruction Set. Omitted from the NSSC-II set

are HIO, SI0, TCH, and TIO.

Three additional instructions, also described below, are:

Mnemonic OP Code Format

Timer Read and Set TMRS A4 RS
Start 1I/0 SIo AS RS
Set Storage Key 8SK 08 RR

Note that although mnemonic SIO is used for Start I/0, and is the only NSSC-II|
1/0 instruction, it is not the same instruction (and does not have the same
op code) as the 360 SIO. Op codes A4 and A5 are unused in 360, ' SSK does
have the same op code as 360 SSK, but performs a different function, as t
described below.

1.2 EXCEPTIONS

The NSSC-II is a Supervisor State compatible with the IBM System/360
with the following exceptions:

1.2.1 INPUT/OUTPUT

The 1/0 portion of the NSSC~II provides the means of communication between
the system I/0 and test support equipment (TSE) with the CPU and the main
store (MS). 1In the 16 bit NSSC-II the I/0 is implemented as a 16 bit
parallel channel providing direct 1/0, buffered I/0, external interrupt,
and direct memory access (DMA). The 16 bit channel is SP-1 hardware com-
patible. There is only one I/0 instruction - the SIO (Start 1/0)
instruction which controls direct 1/0. All other I/0 is device controlled.

1.2.2 TIMER

The NSSC~II has a real time clock and an interval timer, each containing both
hardware and microprogrammed elements. Both are accessed by using the TMRS
instruction. The §/360 interval timer in memory location 80 is not supported.

IR i s e . o F o L BRI e sy 2 wa s e by

e S

R T 1

s

EAGWET 554 SR,

T

SR YN

I

RS PP S Y

BN VD W A Ur S

PR ST SR YRS O W S

The interval timer (INTIMER) is 16 bits and is decremented every 112,64
microseconds. It has a maximum of 7.38 seconds. Underflow of the
interval timer causes a timer external interrupt (which can be masked;

see paragraph 3.6.5.1, External Interrupt.)

The real time clock (RTC) 1s 32 bits and is incremented every 112.64
microseconds. It has a maximum of 5 days, 14 hours, 23 minutes, and
5,116 seconds. It causes no interrupt on overflow.

1.2.3 . STORAGE PROTECT

The size of the storage protect blocks in the NSSC-II is 1024 bytes

(512 halfwords) and the operand of the $SK (Set Storage Key) instruc-
tion supports one bit for CPU and Buffered I/O protection and a second
bit for DMA protection. The 4 or 5 bit protection key of $/360 is not
supported. The instruction ISK (Insert Storage Key) does not exist on

the NSSC-II.

1.2.4 EXECUTION TIMES

The instruction execution time is not the same for the NSCC-II and any
IBM 360.

1.2,5 UNPREDICTABLE RESULTS
These occur due to addressing errors, etc., on the IBM 360 series and will '
not necessarily be the same unpredictable results on the NSSC-II. ' i

1.2.6 ADDRESSING EXCEPTION

Execution of most instructions residing in the last fullword of memory
will yield unpredictable results, unless memory size is 64/K bytes.

1.2.7 ADDRESSING

All effective address computation is limited to 20 bits except for the LA
(Load Address) instruction, which is 24 bits. Effective addresses larger
than 65,535 will be truncated to 20 bits (modulo 1,048,575) and will not
cause an addressing exception unless the modolo 1,048,575 address exceeds
the available main memory. If the NSSC-II has 1,048,575 bytes of main
memory, au addressing exception cannot occur. ‘

1Y ¢ an

mo ekt
AN Do et
€

oA,

- I
b G5 B ko

B
4

]
9

=

-“A.\\.’,‘_—;-_ e It sl sk s e o SN S0 RS

Ve BT
R T A -
PP SO VP RO

SECTION II

SYSTEM STRUCTURE

2.1 MAIN STORAGE

The NSSC-II has a maximum capacity of one mega-byte; however, the current
capacity is 112K-bytes of Simplex memory or 80K-bytes of Fault Tolerant
memory. The programmer should be aware of the size of the NSSC-II being
programmed. The system transmits information between main storage and
the CPU in units of eight bits, or a multiple of eight bits at a time.
Each eight bit unit of information is called a byte, the basic building

block of all formats.

Bytes may be handled separately or grouped together in fields. A half-
word is a group of two consecutive bytes and is the basic building block
of instructions. A word is a group of four consecutive bytes; a double
word is a field consisting of two words (Figure 1). The location of any
field or. group of bytes is specified by the address of its leftmost byte.

The length of fields is either implied by the operation to be performed
or stated explicitly as part of the instruction. When the length is im-
plied, the information is said to have a fixed length, which can be
either one, two, four, or eight bytes. '

- When the length of a field is not implied by the operation code, but is

stated explicitly, the information is said to have variable field length.
This length can be varied in one-byte increments.

Within any program format or any fixed length operand format, the bits
making up the format are consecutively numbered from left to right
starting with the number 0.

Byte

A
11000001

] 7,

Halfword

J K .
1101000411 0100190

o 78 . 15

Word

| B M 3
1100100111 100001 0{1101010Q0]J1111001)
°

) 1518 2324 n

Doubleword

N S S C . | ! b
11010101{11100010{11100010{:1000011j01100000[1100100131J11001001j01000000
[} 78 1516 23 24 31 32 39 40 47 48 55 56 63

Figure 1. Sample Information Formats

tBA.C 10

PRSSETRNS.. . -PX S T SOWE. - (0 SE. 2

[EREDN ALY S PN P

el

b anein o e A o BB T

JELT TN SRR Y

e 22 i

ARy

[P RN

L g
&

RS RSCI

PSR R NY N

s R .
- PP SFSMINE Y TP SR

2.2 ADDRESSING

Byte locations in storage are consecutively numbered starting with 0;
each number is considered the address of the corresponding byte. A
group of bytes in storage is addressed by the leftmost byte of the
group. The number of bytes in the group is either implied or exp}icitly
defined by the operation. The addressing arrangement uses a 20 bit
binary address. This set of main storage addresses includes some
locations reserved for special purposes. :

‘Storage addressing wraps around from the maximum byte address

to address 0. Variable length operands may be located partially in the
last and partially in the first location of storage, and are processed
without any special indication of crossing the maximum address boundary,
except, perhaps, storage protection. ’

When only a part of the maximum storage capacity is available in a given
installation, the available storage is normally contiguously address-
able, starting at address O. An addressing exception is recognized when
any part of an operand is located beyond the maximum available capacity
of an installation. Except for a few instructions, the addressing
exception is recognized only when the data are actually used and not
when the operation is completed before using the data. The addressiug
exception causes a program interruption.

2.3 INFORMATION PROCESSING

Fixed length fields, such as halfwords and double words, must be located
in main storage on an integral boundary for that unit of information.

A boundary is called integral for a unit of information when its

storage address is a multiple of the length of the unit in bytes. For
example, words (four bytes) must be located in storage so that their
address 1s a multiple of the number 4. A halfword (two bytes) must’
have an address that is a multiple of the number 2, and double word
(eight bytes) must have an address that is a multiple of the number 8.

Storage addresses are expressed in binary form. In binary, integrai
boundaries for halfwords, words, and double words can be specified
only by the binary addresses in which one, two, or three of the low

" order bits, respectively, are zero (Figure 2). For example, the

integral boundary for a word is a binary address in which the two
low order positions are zero. -

Tk

PRI TSR RIS TR WP EPPtE R PR SSEI S RSO S e

L S | T et e e

M A e 2 aanima s Il i At | bl e o e

Variable length fields are not limited to integral boundaries, and may
start on any byte location. '

Low=order Four Bits of Binary Address
‘ 0001 {0010 {0011 |0100{0101 |0110 |0Y11 {1000 /1001 | 1010

4)

Byte | Byte | Byte | Byte | Byte |Byte | Byte | Byte | Byte | Byte Iyn‘

Halfword | Halfword | Halfword | Holfword | Halfword

kY
L3

—

Word Word Word

Y
A4

L"' Dovble Word Dovble Word

)
L

Figure 2. Integral.Boundaries for Halfwords, Words, and f
Double Words ' ‘ !
. /

2.4 STORAGE PROTECTION }

Memory is protected (for storing only) in blocks of 1K = 1024 bytes.
There is no fetch protection. A two bit protect key is associated with
each block. The first bit om protects the block against stores by the
CPU; the second bit on protects the block against stores by Direct
Memory Access (DMA). The key is set by the SSK inmstruction but cannot
be read (refer to paragraph 8.5.5, SSK, and paragraph 3.7.3, DMA).

An interrupt will set the storage protect key for the first block

to 01. This will allow the CPU to store in the first block and pre-
vent DMA from storing in the first block. All other storage protect
keys are unaltered by interrupts. ‘

SR N

P DI
o

IO S ST

RO N o

I RN, IS T

o
SRR N

e b tn

Rt AT S A S ORI e S

R N R AN, B P P

JURCT L

At
M

SECTION III

CPU

3.1 CENTRAL PROCESSING UNIT FUNCTIONS

The Central Processing Unit (CPU) (Figure 3) contains the facilities
for addressing main storage, for fetching or storing information, for
arithmetic and logical processing of data, for sequencing instructions
in the desired order, and for initiating the communication between

storage and external devices.

The system control section provides the normal CPU control that guides
the CPU through the functions necessary to execute the instructions.

The CPU provides 16 general registers for fixed point operands and 4
floating point registers for floating point operands. '

Starage Address
P> MAIN STORAGE
A
| b D9 Instructions
[P :
I ¢ | A Y
i S:::‘::'er G o FixedPoint Voriable- . ’
cnerat 1xec-voin Field-Length loating Point
: Control [I(Addross Operationt gpem‘:iogm Operation
| | . A
' | :
| VR |
. A ‘
16
General 4
Registers Flaating Paint
Registers

Figure 3. Basic Concept of Central Procegsing Unit Functions.

Ry A

PV UPUNEAGY S DR W 7 S

3.2 REGISTERS

The CPU can address information in 16 general registers. The general
registers can be used as index registers, in address arithmetic and
indexing, and as accumulators in fixed point arithmetic and logical
operations. The registers have a capacity of one word (32 bits). The
general registers are identified by numbers 0-15 and are specified by
a four bit R field in an instruction. Some instructions provide for
addressing multiple general registers by having several R fields.

For some operations, two adjacent general registers are coupled to-
gether, providing a two word capacity. In these operations, the addressed
register contains the high order operand bits and must have an even
address; and the implied register, containing the low order operand bits,
has the next higher address. '

The CPU can address information in 4 floating point registers. The .regis-.

ters have a capacity of one word (32 bits). The floating point registers
are identified by the numbers 0-~2-4-6 and are specified by the four bit

R field in an instruction. The floating point registers cannot be used as
index registers, ‘

3.3 ARITHMETIC AND LOGICAL UNIT

The arithmetic and logical unit can process binary integers of fixed
length and logical information of either fixed or variable length,

3.3.1 FIXED POINT ARITHMETIC

The basic arithmetic operand is the 32 bit fixed point binary word.
Sixteen bit halfword operands may be specified in most operations for
improved performance or storage utilization (see Figure 4). To pre-.
serve precision, some products and all dividends are 64 bits long.

Halfword

S Integer -

o1 15

Full Word

S, Integer

01 : : 31

Figure 4. Fixed-Point Number Formats

Because the 32 bit word size readily accommodates a 16-bit address, fixed
point arithmetic can be used both for integer operand arithmetic and

for address arithmetic. This combined usage provides economy and per-
mits the entire fixed point instruction set and several logical opera-

tions to be used in address computation. Thus, multiplication, shifting,

and logical manipulation of address components are possible,

-

10

1.6

g g e YA o A TRE

L AYIRENT e

S g, o

IR RSP ER T 82

L W ow

Ll e Al o MRS st o it abln

I NSRS DO SN

LA e SEEEAR e

Additions, subtractions, multiplications, divisions, and comparisons
are performed upon one operand in a register and another operand either
in a register or from storage. Multiple precision operation is made
convenient by the twos~-complement notation and by recognition of the
carry from one word to another. A word in one register or a double
word in a pair of adjacent registers may be shifted left or right.

A pair of conversion instructions -- CONVERT TO BINARY and CONVERT TO
DECIMAL -- provides transition between decimal and binary radix (number

base) without the use of tables. Multiple register loading and storing
instructions facilitate subroutine switching.

3.4 DECIMAL NUMBERS

Decimal numbers are represented by four bit binary coded decimal digits
packed two to a byte (see Figure 5). They appear in fields of variable
length and are accompanied by a sign in the right-most four bits of the
low order byte. Operand fields may be located on any byte boundary,

Digit Code Sign Code
0 0000 + 1010

1 0001 - 1011
2 0010 + 1100
3 0011 - 1101
4 0100 + 1110
5 0101 + "M
6 0110
7 o
8 1000
8 1001

Figure 5. Bit Codes for Digits and Signs

and may have a length up to 31 digits and sign. Operands participating
in an operation may have different lengths. Packing of digits within

a byte (Figure 6) and of variable length fields within storage results
in efficient use of storage, in increased arithmetic performance, and in
an improved rate of data transmission between storage and files.

High-order Byte . Low=order Byte
Digit | Digit | Digit Digit | Digit | Digit| Digit} Sign

Figure 8. Packed Decimal Number Format

5 T
S !
ST S S

5
%ﬂ
! i?g
A
B

L et R

SSRGS A S S AL IR N

X A

;
i
.
'-!
;
%

An »

e e

["
N RO S,

Decimal numbers may also appear in a zoned format as a subset of the
eight bit alphanumeric character set (Figure 7)., This representation
is required for character set sensitive I/0 devices. A zoned format num-

‘ber carries its sign in the left-most four bits of the low order byte .

High-order Byte Low-order Byte

Zone | Diglt | Zone . |Digit | Zone | Digit| Sign | Digit

Figure 7. Zoned Decimal Number F;mmt

Instructions are provided for packing and unpacking decimal numbers
so that they may be changed from the zoned to the packed format and
vice versa.

3.5 LOGICAL OPERATIONS

Logical information is handled as fixed or variable length data. It
is subject to such operations as comparison, translation, bit testing,
and bit setting.

When used as a fixed length operand, logical information can conseist of

either one, four, or eight bytes and is processed in the general registers

(Figure 8).

A large portion of logical information consists of alphabetic or numeric
character codes, called alphameric data, and is used for communication
with character set sensitive I/0 devices. This information has the
variable-field-length format and can consist of up to 256 bytes

(Figure 9). It 18 processed storage to storage, left to right, an

eight bit byte at a time.

Fixed-Length Logical Operand (One, Four, or Eight Bytes)

Logical Dats

Figure 8. Fixed-Length Logical Information

Variable-Length Logical Operand (Up to 256 Bytes)

haracter | Character Character

Figure 8. Variable-Length Logical information

L
P

i

B, b, i s N

A
4

o

a2 s

AL A b

P S T

i 8o i

ok IR

e

4
by

3.6 PROGRAM EXECUTION

The CPU program consists of instructions, index words, and control
words specifying the operations to be performed. This information
resides in main storage and general registers, and may be operated
upon as data.

3.6.1 INSTRUCTION FORMAT

The length of an instruction format can be one, two, or three halfwords.
It is related to the number of storage addresses necessary for the
operation. An instruction consisting of only one halfword causes no
reference to main storage. A two halfword instruction provides one
storage address specification; a three halfword instruction provides
two storage address specifications. All instructions must be located
in storage on integral boundaries for halfwords. Figure 10 shows five
basic instruction formats.

The five basic instruction formats are denoted by the format codes RR,
BRX, RS, SI, and SS. The format codes express, in general terms, the
operation to be performed. RR denotes a register-to-register operation;
RX, a register-and-indexed storage operation; RS, a register-and-storage
operation; SI, a storage and immediate-operand operation; and SS, a
storage-to~storage operation. An immediate operand is one contained
within the instruction.

For purposes of describing the execution of instructions, operands are
designated as first and second operands and, in the case of branch-on-
index instructions, third operands. These names refer to the manner in
which the operands participate. The operand to which a field in an
instruction format applies is generally denoted by the number following
the code name of the field, for example, Ry, By, Lg, Dj. '

In each format, the first instruction halfword consists of two parts.
The first byte contains the operation code (op code). The length and

format of an instruction are specified by the first two bits of the
operation code. ’

3.6.2 ADDRESS GENERATION

For addressing purposes, operands can be grouped in tﬁree classes:
explicitly addressed operands in main storage; immediate operands placed

as part of the instruction stream in main storage; and operands located
in the general registers.

=10~

- e i o am, e S A

e -

$S Format

Fint Holtword | Second Malfword 2 Third Haltword 3
Wyte! | Byte2

H i '
: Register Register H
! Operond 1 Operand 2 !
e Amgnae Py, |
OpCode | My | "2 | &R Formar '
» X TX] [' !

[] [] 1]
H + i 1 !
! Reglster ‘ Address ! :
: Operond | ' Operand 2 : i
st n)
Op Code l Ry l X, l 8, l D, l RX Format :
. 74) " |
: : : ! '
H Register Reglster Address ' :
! Operond 1| Operand 3 Operond 2 1 i
. — '
OpCode | M | M| % | 0, | #s Formot |
. 76 "nie [YXTY 190 » !
! ! : | :
] \ immediote : Address | |
‘ ! Operond , - Operand | X :
Op Code ly b 5,] st Formar :
g s 184 (1},] " !
! B : ; |
! ! Length ' Address ' Address ¢
: Operend | Operond 2 Operand 1 ! Oparand 2 !
[OpCose | Y J_i‘! b | 0 L% | B,]
[] e (1Y) (110 s n [1}

INSTRUCTION LENGTH RECORDING

BIT POSITIONS
(0-1)

00
01
10
"

INSTRUCTION INSTRUCTION
LENGTH FORMAT

One halfword ‘ RR

Two halfwords RX

Two halfwords RS or Sl

Thres halfwords 88

NOTE: NSSC-il instructions above the standard System/360 set may

not adhere to this

instruction length format convention.

Figure 10. Five Basic Instruction Formats

-11-

To permit the ready relocation of program segments and to provide for
the flexible specifications of input, output, a and working areas, all
instructions referring to main storage have been given the capacity

of employing a full address.

The address used to refer to main storage is generated from the fol-
lowing three binary numbers.

3.6.2.1 Base Address (B)

Base Address (B) is a 20-bit number contained in a general register

specified by the program in the B field of the instruction. The B

field is included in every address specification. The base address can

be used as a means of static relocation of programs and data. In array-

type calculations, it can specify the location of an array and, in

record-type processing, it can identify the record. The base address : !
provides for addressing the entire main storage. The base address may

also be used for indexing purposes. '

3.6.2.2 1Index (X)

" Index (X) is a 20-bit number contained in a general register specified
by the program in the X field of the instruction. It is included only
in the address specified by the RX instruction format. The RX format
instructions permit double indexing; i.e., the index can be used to
provide the address of an element within an array.

NS XN IR PP Y e

SR e i

e
g
vl Ee e o

b

B 2L W

3.6.2.3 Displacement (D)

Displacement (D) is a 12-bit number contained in the instruction format
and i1s included in every address computation. The displacement provides
for relative addressing up to 4095 bytes beyond the element or base
address. In array type calculations the displacement can be used to
specify one of many items assoclated with an element. In the proces-

sing of records, the dlsplacement can be used to identify items within
a record.

e v ot R e s F T T

il n

s AR e e

In forming the address, the base address and index are treated as
unsigned 20-bit positive binary integers. The displacement is similarly
treated as a 12--bit positive binary integer. The three are added as

20 bit binary numbers, ignoring overflow., Since every address includes
a base, the sum is always 20 bits long. The address bits are numbered
12-31 corrospondlng to the numbering of the base address and index

bits in the general register.

SRS RV S 1\ S

i

an

-.\an
1ney 5

-12-

The -program may have zeros in the base address, index, or displacement
' fields. A zero is used to indicate the absence of the corresponding

address component. A base or index of zero implies that a zero quantity
is to be used in forming the address, regardless of the contents of

3

”% general register 0. A displacement of zero has no special significance.
|k Initialization, modification, and testing of base addresses and indexes
“Q can be carried out by fixed point instructions,. or by BRANCH AND LINK,
g BRANCH ON COUNT, or BRANCH-ON-INDEX instructions.’

3 .

'§ As an ald in describing the logic of the instruction format, examples
i of two instructions and their related instruction formats follow.

} RR Format

i | 7] 0 |

3

L2 aem e s

Execution of the ADD instruction adds the contents of general register
9 to the contents of general register 7 and the sum of the addition is
placed in general register 7.

RX Format

4
o
]
o
i
4
]
i

5
b
d
|

stoe | 3 [0 [| 300

[28 iz . 1518 1?20 n

Execution of the store instruction stores the contents of general

register 3 at a main storage location addressed by the sum of 300 and
the low order 20 bits of general registers 14 and 10,

3.6.3 SEQUENTIAL INSTRUCTION EXECUTION.

Normally, the operation of the CPU is controlled by instructions taken
in sequence. An instruction is fetched from a location specified by
the instruction address in the current PSW. The instruction address is
increased by the number of bytes in the instruction fetched to address
the next instruction in sequence. The instruction is then executed and

the same steps are repeated using the new value of the instruction
address.

-13-.

L i b ana. w AR

2
[§

-

Y ek
S5

”&.&r D

Rk et

R S AR R Y.

ISR PSPRIPOUR e.7 . NSRS 4~ < s Ao i e R LT

T

e e BN o ol S an R et ST B ¢ TSI PR

L o PN o
SRS AE S BT

Conceptually, all halfwords of an instruction are fetched from storage
after the preceding operation is completed and before execution of the
current operation, even though physical storage word size and overlap

of instruction execution with storage access may cause actual instruction
fetching to be different. Thus, it is possible to modify an instruction
in storage by the immediately preceding instruction. A change from
sequential operation may be caused by branching, status switching,
interruptions, or manual intervention.

3,6.3.1 M

The normal sequential execution of instructions is changed when reference

‘18 made to a subroutine, when a two-way choice 18 encountered, or when

a segment of coding, such as a loop, is to be repeated. All these tasks
can be accomplished with branching instructions. Provision is made for
subroutine linkage, permitting not only the introduction of a new '

instruction address but also the preservation of the return address and

associated information.

Decision making is generally and symmetrically provided by the BRANCH

ON CONDITION instruction. This instruction inspects a two bit condition
code that reflects the result of a majority of the arithmetic, logical,
and I/0 operations. Each of these operations can set the code in any
one of four states, and the conditional branch can specify any selection
of these four states as the criterion for branching. For example, the
condition code reflects such conditions as nonzero, first operand high,
equal, overflow, channel busy, zero, etc. Once set, the condition code
remains unchanged until modified by an instruction that reflects a dif-

ferent condition code.

The two bits of the condition code provide for four possible condition
code settings: 0, 1, 2, and 3. The specific meaning of any setting is
significant only to the operation setting the condition code.

Loop control can be performed by the conditional branch when it tests
the outcome of address arithmetic and counting operations. For some
particularly frequent combinations of arithmetic and tests, the
instructions BRANCH ON COUNT and BRANCH ON INDEX are provided. These
specialized branches provide increased performance for these tasks.

3.6.4 PROGRAM STATUS WORD

A double word, the program status word (PSW), contains the information
required for proper program execution. The PSW includes the instruction
address, condition code, and other fields to be discussed. In general,
the PSW is used to control instruction sequencing and to hold and
indicate the status of the system in relation to the program currently

[A [,

e WA iy ATy oy e ot b

EPORAs

FENERE AR SRREE 2N Se MW RPN S WP

Fai

being executed. The active or c

ontrolling PSW is called the "current

PSW'. By storing the current PSW during an interruption, the status of

the CPU can be preserved for sub
PSW or part of a PSW, the state
Figure 11 shows the PSW format.

sequent inspection. By loading a new
of the CPU can be initialized or changed.

System Mask Key AMWP Interruption Code
c . 78 1112 15 16 31
ILC CcC Program Instruction Address
Mask

32 3334 3536 3940 4748 53

0-7 System Mask 14 Wait State {W)
0_ 1/0 Mask 15 Problem State (P)
1 16-31 Interruption Code
2 32-33 Instruction Length Code (ILC)
3 AUnused 34-35 Condition Code {CC)
4 {Don‘t Care
5 36-39 Program Mask
6 36 Fixed Point Overflow Mask
77 Timer Mask 37 Unused

811 Must be 0 38 Exponent Overflow Mask
12 ASCIl{A) 39 Significance Mask
13 Machine-Check Mask (M) 40 If on in machine check QLD PSW indicates a parity error

41-43 Unused
44-63 Instruction Address

Figure 11. Program Status Word Format

3.6.5 INTERRUPTION

The interruption system permits
of conditions external to the sy
in the CPU itself. Five classes

the CPU to change state as a result
stem, in input/output (I/0) units, or
of interruption conditions are pos—

sible: I/0, program, supervisor call, external, and machine check.

Each class has two related PSWs
storage locations (Figure 12).

called "old" and "new" in unique main
In all classes, an interruption involves

merely storing the current PSW in its "old" position and making. the PSW

at the "new'" position the curren
status information of the system
If, at the conclusion of the int

t PSW. The "old" PSW holds all necessary
existing at the time of the interruption.
erruption routine, there is an instruction

to make the old PSW the current PSW, the system 1s restored to the state

prior to the interruption and th

e 1nterrupted routine continues.

-15~

eNy 7 1A

BOPPITENTS AR
.

4

—

et

g

s

et h T
el >

Lt
N

N

a ST

FA U MR T ¥ N

. .

PP R NPT T PRE IR P RS S

P A0

L <z
PR

s |'-_.“~.\.~.:1 L im el A et bk e e dE 2 i e

© e e i St Sin S

EFPRPONE P Pt

ADDRESS LENGTH PURPOSE
0 0000 0000 Double Word Initial Program Loading PSW
8 0000 1000 Doubie Word Unused
16 0001 0000 Doubte Word Unused o
24 0001 1000 Double Word External old PSW
32 0010 0000 Double Word Supervisor call nld PSW
40 0010 1000 Double Word Program old PSW
48 0011 0000 Double Word Machine check old PSW
56 0011 1000 Double Word Input/Output oid PSW
66-67 0100 0000 -Double Word Buffered 1/O Status Word
72 0100 1000 Word Channel Address Word
76 0100 1100 Word Unused -
80 0101 0000 - Word Unused
84 0101 0100 Word Unused
88 0101 1000 Double Word External new PSW
96 0110 0000 Double Word Supervisor call new PSW
104 0110 1000 Double Word Program new PSW
112 0111 0000 Double Word Machine check new PSW
120 0111 1000 Double Word input/Output new PSW

Figure 12. Permanent Storage Assignments

Interruptions are taken only when the CPU is interruptible for the
interruption source. The system mask, program mask, and machine check
mask bits in the PSW may be used to mask certain interruptions. When
masked off, an interruption either remains pending or is ignored. The
system mask may cause I/0 and timer interruptions to be ignored, and

the machine-check mask may cause machine hard stops. Other interruptions

cannot be masked off.

An interruption always takes place after one instruction execution is
finished and before a new instruction execution is started. However, the
occurrence of an interruption may affect the execution of the current
instruction. To permit proper programmed action following an interruption,
the cause of the interruption 1s identified and provision is made to
locate the last executed instruction.

3.6.5.1 External Interrupts

External interrupts from two sources can occur: timer intefrupts (when
the interval timer underflows) and interrupts from the interrupt key.
These iInterrupts are serviced between instructions. '

These two types of external interrupts may be masked off., Timer inter-
rupts are masked by bit 7 of the system mask (PSW bit 7), as usual.

A 1 enables timer interrupts; a' 0 masks them and the interrupt remains
pending. External interrupt key interrupts are masked by system mask bit
0 (PSW bit 0) which is also used to mask I/O interrupts (refer to
paragraph 3.6.5.3). If a key.interrupt is disabled, it remains pending-

and the channel is hung. Other bits of the system mask are ignored
and need not be zero upon PSW load or in the SSM instruction.

In NSSC-II, the two types of external interrupts are not presented simul-

taneously if they occur simultaneously or if they are enabled simul-
taneously. In either case, the timer interrupt is taken and the key

~-16~

bXal

1Pt

interrupt remains pending. The timer interrupt has interrupt code
X'0080' and the external interrupt key interrupt has interrupt code

J,;é . X'0040°'.

3.6.5.2 Program Interrupts

PN

The following program exceptions are monitored in NSSC-II:
A Interruption Program Interruption
A Code Cause
: 1 00000001 Operation
R 2 00000010 Privileged operation
: 3 00000011 Execute
4 00000100 Protection
5 00000101 Addressing
» 6 00000110 Specification
4 7 00000111 Data
: 8 00001000 Fixed-point overflow
g 9 00001001 Fixed-point divide
K 10 00001010 - Unused
X - 11 00001011 Unused
E 12 00001100 Exponent overflow
1 ' ' 13 00001101 Exponent underflow
{ 14 00001110 Significance
4 15 00001111 Floating-point divide
v? ' More than one cause of a program interruption may occur at once, but only
. one program interrupt is taken. In NSSC-II, the following priorities apply

i when this occurs:
Instruction Fetch:

Addressing and specification exceptions may co-occur. If the instruction
address (address of the first halfword of the instruction) is out of

the bounds of implemented memory, an addressing interrupt will occur.

If, however, specification is bad (not on halfword boundary) and the
second, third, or fourth halfword of the instruction has a bad address,

a specification interrupt occurs.

I S I I S

e B 4

; Instruction Execution:

Occurrence of an operation exception (invalid op code) rules out other
interruptions. However, privileged operation, protection, addressing,
and specification may co-occur. Privileged instructions are dealt with
below. Barring other factors, also discussed below, the priority of
these interrupts is:

X e

RSN s SN

X
SR

Addressing
Specification
Storage Protection

e

-17-

A2

PP VN it P VATH 11 JA R A I O

~ en

vidTen e e

N

a) Privileged operations

There are six privileged instructions in NSSC-II. If a
privileged operation exception occurs together with a
‘memory reference exception (one of the three above) the
following exception has priority and causes the inter-
rupt:

1) SSK - privileged operation

i1{) SSM - memory reference, in the above order

iii) Diagnose - privileged operation

iv) SIO - memory reference, in the above order

v) TMRS - For the interval timer, the memory
reference takes priority. This is also the
case for a bad RTIC address. If only the
second halfword of the RTC address is bad,
the privileged operation exception will take
precedence over the addressing exception
(the RTC address need not be fullword aligned).

A memory reference exception can take place even in
cases of timer read only, but only for the

first halfword address. (The second halfword

is not read when the RIC is to be read only.)

vi) LPSW - If the new PSW address is not on a halfword
boundary or is an invalid address, the addressing
or specification exception will have priority over
privileged operation. If the new PSW address
is not on a double word boundary, the privileged
operation interrupt will occur if in problem
state.

b) In the Instructions D and M, a memory reference exception
(for the second operand) takes precedence over a
specification exception caused by improper (odd)
register specification for the first operand.

c) In $S instructions, memory reference exceptions for the
second operand take precedence over those for the
first operand.

Program interruptions can be masked off by the program mask in the PSW
(bits 36-39). Each bit is associated with a program exception, as speci-
fied in the following table. When the mask bit is one, the exception
results in an interruption. When the mask bit is zero, no interruption
occurs. The significance mask bit also determines the manner in which
floating~point addition and subtraction arc completed.

PROGRAM

MASKVBIT PROGRAM EXCEPTION
36 Fixed-point overflow
37 ’ Unused
38 4 Exponent underflow
39 Significance

~-18-

{08y 3 0

r
4
7
)
3
e
]

3 ::A :if;,

PR ICAR R OSRNLINPICEA SRS CF W £ 13 2oL

3.6.5.3 Ingut[Outgut Interruption

An 1/0 interruption provides a means by which the CPU responds to
conditions in the I/0 units.

An 1/0 interruption can occur only when the mask bit associated with 1/0
{8 set to one. The status and address of the I/0 unit involved are
recorded in bits 16-31 of the old PSW.

3.6.6 MACHINE STATES

3.6.6.1 Running or Waiting State

In the running state, instruction fetching and execution proceed in the
normal manner. The wait state is normally entered by the program to
await an interruption, for example, an I/0 interruption. In the wait
state, no instructions are processed; the timer 1s updated, and the I/0
and external interruptions are accepted, unless masked. Running or
waiting state is determined by the setting of bit 14 in the PSW.

3.6.6.2 Masked or Interruptible State

The CPU may be interruptible or masked for I/0, timer, machine-check,
and some program interruptions. When the CPU is interruptible for a
class of interruptions, these interruptions are accepted. When the
CPU is masked, the I/0 and timer interruptions remain pending, whereas
program interruptions are ignored. The interruptible states of the
CPU are changed by changing the mask bits of the PSW. '

3.6.6.3 Supervisor or Problem State

In the problem state, I/0 and a group of control instructions are
invalid. In the supervisor state, all instructions are valid. The
choice of problem or supervisor state is determined by bit 15 of the
PSW,

3.7 SYSTEM I/0

This section describes the interface of the NSSC-II with other system
equipment.

NSSC-II has a single 16-bit I/0 channel providing communication between
the CPU and main memory, and the I/0 devices (of which there may be 16)
and the test support equipment. Direct, or program-initiated, I/0 is
provided only through SIO instruction. All other I/0 is device or TSE

“initiated.

55

gt

i B SR LBl

R RN

S5 o wiei S a4 ;
Bl g ix..&i\.ﬂ St BB 2t i

it iR

The NSSC-II channel provides three types of device initiated infor-
mation transfer: (1) Buffered 1/0, (2) Direct Memory Access (bMA), and
(3) External Interrupts. Program initiated 1/0 is provided by Direct
I/0. A four bif device identification code permits up to 16 system
devices to be attached directly to the HIC channel. 4

3.7.1 DIRECT I/O

This allows, using the SIO instruction, the transfer of a 16-bit con-
trol word to a device and the transfer of a 16-bit data (half) word to
or from a device. Though this is the only program~controlled 1/0, and
it only allows transfer of one halfword at a time to or from memory,
the programmer can, using SIO, send a control word to a device telling

it to initiate I/0 (see SIO).

3.7.2 BUFFERED I/0O

‘This permits devices to transfer one or more 16-bit halfwords to or

from a table in main memory without knowing the location of the table.
Buffered I/0 occurs between instructions but does not cause an
interrupt (i.e., PSWs are not swapped, etc.). A device can cause an
1/0 interrupt to signal that buffered I1/0 has occurred.

3.7.3 DIRECT MEMORY ACCESS (DMA)
DMA allows devices to send data to or from main memory without going

through the CFU. It is invisible to the programmer except when an
error occurs; a device may signal DMA by causing an interrupt

3.7.4 INPUT/OUTPUT OPERATIONS

The NSSC-II interface provides a 16-bit parallel channel for support of
two classes of I/0 equipment. These are:

1, System 1/0 devices and
2. Test support equipment (TSE) I/0O devices.

A particular I/0 device is classified based on whether it is attached
directly to the NSSC-II or indirectly via the TSE. Further provision has

. been made to allow both program and device initiated information

transfer which includes I/0 commands, data words, and external I/0
interrupts. ' '

This portion of the manual describes the programmed control of I/0
devices by the channel and central processing unit (CPU) including
formats for the various types of I/O control information. Although

-20-

st - han o prem————

mn

P G

L0

L bt B e 3 E

N

Sh e T Lt El&en 5 - e

o D e Loy WRAD MR R

certain information, formats, etc., may be applicable to both system
and TSE 1/0, each type is described individually for simplicity.

Buffered I/0 allows a device to transfer single or multiple words of
data to/from a table in main memory without knowing the location of the
table. The CPU keeps track of table word count and address incrementing.
When the table is full/empty the device is notified by a signal on the
ZERO COUNT line. Separate input and output tables are maintained for
each buffered device code (16 codes).

The Channel Address Word (CAW) at memory location 72, points to the
first location of a table that consists of sixteen (16) eight (8) BYTE
entries that contain the input storage address and count, and output
storage address and count of each of the (possible) 16 Buffered I/O
devices (see Figure 13).

The programmer controls Buffered I/0 by initialization of the I/0
address and word count in the Buffered I/0 Control Table.

To initialize a buffer 1/0 sequence the programmer must:

1. Set the CAW (loc 72) to the address of the start of
the Buffered 1I/0 table.

2. Set the device I/0 word count (in the buffered I/O table)
to the number of 16 bit data words to be transferred.

3. Set the device I/0 word address (in the Buffered I/0 table) to
the memory address of the beginning of the data to be written
out (or to a location for the data to be written in).

4. Start the 1/0 device so it will request a buffer I/0 interrupt.

This is usually done by giving a direct out command to the
device via a SIO instruction.

INUT OUTPUT
DEVICE 2BYTES | 2BYTES 2BYTES | 2BYTES
*0 I/0 WORD | 1/0 WORD 1/0 WORD | 1/0 WORD
. COUNT ~ | ADDRESS COUNT | ADDRESS
2 ” ” ” . ”n
3 ‘ ” " ” [
‘ ” ” " "
s ” " ” ”n
6 " ” " ”
7 ” ”n n ”
8 ” ” ” ”
9 ” ” ” ”
1 s . n ”n . ” ”
*CAW = ADDRESS OF THIS LOCATION

Figure 13. Buffered 1/O Device Table

21~

N AR TR
B “

R os. - T

a

et Aow, e e o rm ot g

S N N

S B e B

The I/0 word count is updated by one and the 1/0 address is updated by
two in the I/0 Control Table for each sixteen (16) bit [two byte] word
that is transferred to or from memory by the CPU, unless the 1/0 word
count is in TWOs complement form. If the I1/0 word count is in twos com-
plement form, the I/0 word count and I/0 word address are not updated at
the end of a Buffered 1/0 transfer. Therefore, the I/0 address and word
count start from the initial value each time the I1/0 device initiates a
data transfer. This method of data transfer is useful for devices that
send a burst of data periodically. Once a device initiates a transfer,
the I/0 channel is tied up until the device releases it.

If an I/0 device requests a data transfer and the I/0 Word Count is zero,
an I/0 error interrupt will be generated. The I/0 Channel Code word is

furnished as the interruption code in the I/0 old PSW upon most I/0 inter-
rupts including error interrupt. The NSS5C-1I1 channel code word is shown in

Figure 14.

It should be noted that even though the CPU hardware is interrupted to
handle the buffered I/0 transfers, the program is not interrupted and
the time consuming save operations associated with program interrupt are
not required. Buffered I/0 operations are handled between instructions
and do not use any register visible to the programmer.

3.7.5 BUFFERED I/0 STATUS WORD

The Buffered I/0 status word (loc 66-67) is set to the current Buffered
I1/0 address during Buffered I/0 operations and is cleared to zero when
a Buffered I/0 operation is completed successfully.

If an addressing exception, memory protect exception, or parity error
occurs during Buffered 1/0, an exception program interruption will be
generated with the Buffered I/0 status word set non zero; the contents
will indicate the address of the Buffered I/0 word in use at the time
the error occurred. '

3.7.6 SERVICE INTERRUPT

Interrupts permit a device to interrupt the normal program sequence. A
single level of interrupt is provided. Programmed priorities may be
implemented. In the interrupt sequence an I1/0 Channel Code word is sent
from the device and stored as the Interruption Code in the old I1/0 PSW
(see Figure 14).

The new I/0 PSW is used as the current PSW on all I/0 interrupts except
Buffered 1/0. A Buffered I/0 interrupt is not visible-to the programmer.
He will never see bit 1 set in the I/0 interrupt code.

A Direct Memory Access (DMA) error will cause a normal I/0 interrupt,

except the only bits set in the old I/0 PSW interrupt code will be bits
3 or 4 indicating DMA error 1 or 2 (see Figure 14).

—22-

(AR el i1}

EnteBi Ay i T

A ot TR

A i

B et o T Sl mre

>3

A N Featd T

i o Sl

e .
il i

P . e, £ . .
JROSTVET QPN FUUOR. ST A WS S RN

s .
. e e Tkl
g e P .=

3.7.7 TSE 1/0 DEVICES

The TSE has a Typewriter/Paper Tape Reader or Typewriter/Magnetic Tape

Reader, which are both direct I/0. All commands are sent to the TSE

equipment and all data received by using the SIO instructionm.

T 1.0 EX- DMA N CPU DEVICE | FUNCT
INT ERROR U USE ADDRESS | CODE
8IT 0 1 2 3 4 6 6 7 8 11 12 15
{OTSE
a0s MSE.
0 LOGIC 0 - /O SERVICE
LOGIC 1 - TSE INTERRUPT
1 LOGIC 1 - BUFFERED INPUT
LOGIC 2 - BUFFERED OUTPUT USED ONLY
' FORBITO
2 LOGIC 1 - EXTERNAL INTERRUPT =0
LOGIC 0 - BUFFERED 1/0
DMA ERROR NO. 1
4 DMA ERROR NO. 2
s UNUSED
811 TAG (DEVICE ADDRESS) OR INTERRUPT CODE
1218 DEVICE FUNCTION CODE (MUST NOT BE 2ERO)
1@ Figurs 14. 1/0 interrupt Word

The command

word (see Figure 15 for TSE commands) is placed at the effective address
(EA); the output data word is placed in the register designated by Rl; and
the data word read will be in the register designated by R3 after instruction
completion. To write data to the typewriter:

1.
2.

3.

4.

Send a command to put the typewriter in the output mode.

Send each character (byte) to the typewriter by placing it

right justified in Rl and sending a write typewriter command.

Check the condition code after each SIO instruction to ensure

the I/0 interface was not busy and the instruction was com-

pleted successfully.

The Typewriter will give a typer cycle complete interrupt

(see Figure 16) after each character is complete and it is

ready to receive another command.

SRR T AT

IO ST 5

~— K

ST 7
i a2 wRn L st e e

PSR- S S W7 2R

PSS DS

. ewan

PR ¥4

NOTE:

It is possible to preclude the typer cycle complete interrupt
by immediately generating another Direct Out command to send
the next character to the typewriter. The SIO instructions
may be strung together in this manner and all I/0 interrupts
will be locked out as the typewriter will have control of

the 1/0 chaanel for the whole period. Note that this type

of operation will prevent the Clock and the Timer from

being updated while the channel is tied up.

The typewriter input cycle is exactly the same as the output
cycle except the typewriter must be placed in the input mode
and each character of input is the register designated by R3
at the completion of each SIO instruction. To read from the
paper tape: '

1. Send a Start Tape command.

2. When a tape character has been read and is ready to be
transmitted to the CPU a Tape Data Ready I/0-TSE
interrupt will be generated.

3. Read each character by sending a read tape command. Each
character will be right justified in the register designated
by R3 after the SIO instruction.

4. ‘tWhen the last desired character is read in, a stop tape
command is sent to the tape reader.

NOTE:

It is possible to preclude the Tape Data Ready Interrupt by
immediately generating another Direct In command to fetch the
next character from the tape. The SIO instructions may be strung
togather in this manner and I/0 interrupts will be locked out as
the Tape Reader will have control of the I/0 channel for the
whole period. Note that this type of operation will prevent the
Timer and Clock from being updated while the channel is tied up.

Direct 1/0 provides a means for the programmer to send a command or
data word to an I/0 device or request a data word from a device. Each
Direct I/0 instruction sends a 16-bit command word out on the System
I/0 channel and may send or request a data word to/from the addressed
I1/0 device. Figure 17 shows the format of the command word. The
channel 1s attached and relinquished for each Direct I/0 instruction.

~24~

+

b 0 78
e ’
iy Write Direct: - 1 1 1 1 1 1 1 1 | CommandCode
tpi . .
@
E ‘ Read Direct:. 0 0 0 0 0 0 0 0 Command Code
&
4. 8 9 1112
; Command Code: 0 ' Unit Addr Function Code
g
5
’!q Command Code
E
! Typewriter Output Mode o 0000 0111 0000 0000

Typewriter Input Mode 1111 1111 0110 0010

Read Typewriter 0000. 0000 0110 0011

Write Typewriter 1111 1111 0110 0100

1111 1111 0100 0001

Start Tape

Stop Tape Advance . 1111 1111 0100 0010
Read Tape 0000 0000 0100 0011
Read 16 right-most bitsiof panel address register 0000 0000 0000 0100
Read 8 left-most bits of panel address register 0000 QOOO 0000 0101
Read 16 left-most bits of panel data register 0000 0000 0000 Q111
Read 16 right-most bits of panel data register 0000 000G 0000 0110
Display Registers | 1111 1111 0000 1000

Figure 15, TSE Command Words

-25-

i+ e e e - . s o o ————

PR ST 4 T X T

S-S SR

CI L R Y e o

P

xS
A"
z
ol
1
oA
ot
w3
o
3

SOOI Y ST TRy

Ll A

i
b
‘i

K

INTERRUPT CODE CAUSE

Enter Soft Stop 1000 0000 0000 0001 Deprassion of STOP switch

Read SPM 1000 0000 0000 0010 Depression of READ SPM switch
Write SPM 1000 0000 0000 0011 Depression of Write SPM switch

Read Main Memory 1000 0000 0000 0100 Depression of READ Memory switch
Write Main Memory 1000 0000 0000 0101 Depression of WRITE Memory switch
Exi.t Soft Stop 1000 0000 0000 0110 Depression of START switch

External Interrupt 1000 0000 0000 0111 Depression of external interrupt switch

Tape Load
PSW Restart
Attention ¢

Clear Memory
Tape Data Ready °
- Typer Cycle Complete *

1000 0000 0000 1000
1000 0000 0000 1001
1000 1000 0110 1011

1000 0000 0000 1010
1000 0000 0100 1011
1000 0000 0110 1011

Depression of {PL Program Load switch
Dapression of PSW restart switch

Depression of attention key on
typewriter

Depression of clesr memory switch
Roadinﬁ a character on paper tape

Completion of typing an input or
output character on the typewriter.

#«These interrupts are visible to the NSSC-II program. The other interrupts
in this table are intercepted and acted upon by the microprogram,

Figure 18. Tester Interrupts

-26-

Vs Ll e e
ERWA3. TORFTRRA LI A R T o P

A

g

. E . T 5 .
oL s B R U TR A S el .
R L o o s 80w b i et ot AR ¥ et o an Ao i Y i Bl Tt 5 B

. :
SPRRSUN: 5

4 6 .6 1.8 LEI _
-1 41 11]1] COMMAND | DIRECT QUTPUT
00{0}0 |0 | COMMAND DIRECT INPUT
00 O {1 |1 |Xeoerm X RESET INTERFACE (Halt 1/0)
001110 | XX TEST INTERFACE

FIGURE 17. DIRECT I/O COMMAND WORD AND CPU TO 1/O COMMAND WORD

The start I/0 Instruction (SIO) is used to generate all Direct I/0
commands. :

1f the I/0 Interface is busy, the condition code is set to 1 without
performing the I1/0 operation. A condition code of 0 indicates suc-
cessful completion of the SIO Instruction.

The Direct I/0 command word is also used for CPU to 1/0 commands. Figure
17 shows those commands. Reset Interface immediately halts any 1/0 opera-
tion and clears the I/0 channel by sending the Service Acknowledge signal
and holding it on for .10 microseconds minimum.

Test Interface tests for channel busy and sets the condition code (1 if
busy, 0 if not busy).

Electromechanical devices such as typewriters, perforated tape readers,
and punches will have a special operation under Direct I/0. Direct
Out (DO) will be as follows:

The NSSC-II 1/ places the command word and data word on
the line normally.

The addressed device takes the command and data word and starts
to perform the indicated operation (type a character, etc.).

The DO sequence 1s terminated and the channel freed up. (All
standard so far). ‘

Programmer option: Normally during system operation the program
would perform useful work while the device is executing the com-
mand.

When the device has completed its task and is ready for the next task

(such as type another character), it will generate a standard I/0
interrupt to indicate device ready.

~27-

If the program had more tasks another DO would be generated and the
sequence repeated.

3.8 SOFT STOP

NSSC-II normally operates in the wait and running states, handling
interrupts, executing instruction, etc.; or it can operate in "soft
stop" mode. In soft stop, instructions are not executed and interrupts
are ignored. NSSC-II just waits for requests from the test support
equipment (TSE). When the system reset button or the stop button is
pressed, NSSC-II is put in the soﬁt stop mode.

In soft stop:
a) TSE requests are enabled.

b) The real time clock is incremented, but the interval timer
is not.

c) All ihterrupts are ignored except parity, which hangs up.
d) Buffered 1/0 requests are ignored.

3.9 TEST SUPPORT EQUIPMENT

The TSE allows various functions to be performed. Some of these functions
can be performed only in soft stop (where all such functions are. enabled)
and some can bc performed only outside soft stop (if the system mask bit

0 is one). External interrupt key interrupts are implemented in this

way. A TSE request is signaled by a channel code word (see paragraph
3.7.4) with bit O on and bits 12-15 containing a function code from 1

to 11. The function codes cause the following actions. They are

actually caused by console switches.

3.9.1 FUNCTION CODE |

1. STOP Enter soft stop mode. Not allowed in soft stop.

. 2. These initiate non-architectured functions which do not

change anything visible to the programmer. Allowed only
in soft stop. -

: 3. READMAIN Architecturally, a 16 bit word addressed by the
4 20 address switches of the test support equipment (TSE)

' is read from main storage. It is displayed by the TSE.

i Exits to soft stop. Allowed only in soft stop.

-28-

BRIV
1o8y ¢

Y i v i e B

L L%, vt B *
SUARS T ST TR I P Ser PR B I

L I e .
VRO SRS JOR AP Ce T R W PPN

4,

3.

6.

7.

9.

WRITEMAIN The 16 bit word designated by the TSE data switches
is written to memory at the address given by the TSE address
switches, and displayed. Exits to soft stop. Allowed only
in soft stop.

START Soft stop is exited and control is determined by the
current PSW. Allowed only in soft stop.

EXTINT This code is used to implement the external interrupt
key. Not allowed in soft stop.

PROGRAM LOAD Main memory is located from paper tape and the
IPL PSW (at location zero) becomes the current PSW. Soft stop
is exited. Allowed only in soft atop.

The paper tape frames are 8 bits. These are 3 frames for
each 16 bit data word or address.

Frame 1: Frame 2 and 3:
O=-parity O-parity
l-sync bit: on l-gync bit: off
2-on indicates stop tape 2)
3-on indicates address 3
4 4 >data'
5 5
6 | data 6
7 7)

Each 16 bit word is read from the tape. If it is an address,
succeeding data (non-address) words are written at that and
succeeding addresses until another address is encountered or
the stop tape bit is on. Upon stop tape, soft stop is exited
and the PSW at location zero becomes the PSW. Paper tape read
errors and any I/O interrupts cause a hang up. (Addressing,
specification, and protection exceptions can occur during this
operation and will cause IPL to hang up).

PSW RESTART Soft stop 18 exited and the IPL PSW is used to
start. Allowed only in soft stop.

MEMORY CLEAR Beginning at location zero, each halfword of
memory is written with all ones, read back, and compared
with the word written. If they differ a hangup occurs.
Then a word of all zeros is written and also compared.

All storage protect keys are zeroed. Following this opera-
tion, all memory is zeroed. Only a parity exception can

occur. This exits to soft stop. Allowed only in soft
stop.

PSS W WRPSE

AL

- S

PR S ST DU S A Y5 S0 P

10. INTIO Causes an 1/0 interrupt with the channel code word as |
the interrupt code. Not allowed in soft stop.

3.9.2 SYSTEM RESET

When the system reset button is activated, the soft stop mode is entered.
The interval timer is set to its maximum value (but is not decremented
vhile in soft stop).

AR Y N A A R R

3ol PR i BB B s

S ST PR YL oS IR A

e il TR L

S L

i3 o e

e n T N N 0 e TV

SECTION IV

PIXED~POINT ARITHMETIC

The fixed-point instruction set performs binary arithmetic on operands
serving as addresses, index quantities, and counts, as well as fixed-
point data. In general, both operands are signed and 32 bits long.
Negative quantities are held in twos~complement form. One operand is
always in one of the 16 general registers; the other operand may be in
main storage or in a general register.

The instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, and storing, as well as for the sign control, radix
conversion, and shifting of fixed-point operands. The entire instruction
set is included in the standard instruction set.

The condition code is set as a result of all sign-control, add, subtract,
compare, and shift operations.

4.1 DATA FORMAT

Fixed-point numbers occupy a fixed-length format consisting of a one-bit
sign followed by the integer field. When held in one of the general
registers, a fixed-point quantity has a 31-bit integer field and occupies
all 32 bits of the register. Some multiply, divide, and shift operations
use an operand consisting of 64 bits with a 63-bit integer field. These
operands are located in a pair of adjacent general registers and are
addressed by an even address referring to the left-most register of the
pair. The sign-bit position of the rightmost register contains part of
the integer. In register-to-register operations, the same register may
be specified for both operand locations.

foll \yord Fixed-Point Number

S integer :l

Haltword Fixed-Point Number

S Integer

Fixed-point data in main storage occupy a 32-bit word or a 16-bit halfword,
with & binary integer field of 31 or 15 bits, respectively. The conversion
instructions use a 64-bit decimal field. These data must be located on
integral storage boundaries for these units of information, that is,
double word, fullword, or halfword operands must be addressed with three,
two, or one low-order address bit(s) set to zero.

B CHNET S APyt S

‘?‘ ‘ A halfword operand in main storage is extended to a fullword as the operand
is fetched from storage. Subsequently, the operand participates as a full-
vord operand.

In all discussions of fixed-point numbers in this publication, the expression
"32-bit signed integer' denotes a 31-bit integer with a sign bit, and the
expression "64-bit signed integer' denotes a 63-bit integer with a sign

‘bit.

i

RSN A AR

4.2 NUMBER REPRESENTATION

All fixed-point operands are treated as signed integers. Positive numbers
are represented in true binary notation with the sign bit set to zero.
Negative numbers are represented in twos-complement notation with a one in
the sign bit. The twos-complement representation of a negative number may be
considered the sum of the integer part of the field, taken as a positive
number, and the maximum negative number. The twos-complement of a number

4 is obtained by inverting each bit of the number and adding a one in the

' low-order bit position.

P T R R A

This type of number representation can be considered the low-order portion
of an infinitely long representation of the number. When the number is
positive, all bits to the left of the most significant bit of the number,
4ncluding the sign bit, are zeros. When the number is negative, all

these bits, including the sign bit, are ones. Therefore, when an operand
must be extended with high-order bits, the expansion is achieved by pre-
fixing a field in which each bit is set equal to the high-order bit of

the operand. '

PR A RN AP S o7 Yo e VR T 20

Twos-complement notation does not include a negative zero. It has a
number range in which the set of negative numbers is one larger than the
set of positive numbers. The maximum positive number consists of an all-
one integer field with a sign bit of zero, whereas the maximum negative
number (the negative number with the greatest absolute value) consists of
an all-zero integer field with a one-bit for sign.

LK o Ridis Bl mafs amtememn +

The CPU cannot represent the complement of the maximum negative number.
When an operation, such as a subtraction from zero, produces the complement
of the maximum negative number, the number remains unchanged, and a fixed-
point overflow exception is recognized. An overflow does not result,
however, when the number is complemented and the final result is within the
representable range. An example of this case is a subtraction from minus
one., The product of two maximum negative numbers is representable as a
double-length positive number.

R D SN

The sign bit is leftmost in a number. In an arithmetic operation, a

: carry out of the integer field changes the sign. However, in algebraic

! left-ghifting the sign bit does not change even if significant high-order
: bits are shifted out of the integer field.

P -32-

L st AR i s o

RTINSV BTV

At e b b

o AR TR e e Bt

T s el e i s 8 sm e

4.3 CONDITION CODE

The results of fixed~point sign-control, add, subtract, compare, and shift
operations are used to set the condition code in the program status word
(PSW). All other fixed-point operations leave this code undisturbed. The
condition code can be used for decision-making by subsequent branch-on-
condition instructions.

The condition code can be set to reflect three types of results for fixed-
point arithmetic. For most operations, the states 0, 1, or 2 indicate a
zero, less than zero, or greater than zero content of the result register,
while the state 3 is used when the result overflows.

Por a comparison, the states 0, 1, or 2 indicate that the first operand is
equal, low, or high.

For ADD LOGICAL and SUBTRACT LOGICAL, the codes 0 and 1 indicate a zero or
nonzero result register content in the absence of a logical carry out of
the sign position; the codes 2 and 3 indicate a zeroc or nonzero result
register content with a logical carry out of the sign position.

CONDITION CODE SETTINGS FOR FIXED-POINT ARITHMETIC

0 -1 -2 : 3
Add H/F zero <zero >zero overflow
Add Logical zero, not zero, zero, not zero,
no carry no carry carry carry
Compare H/F equal low high -
Load and Test zero <zero >zero -
Load Complement zero <zero >zero overflow
Load Negative zero <zero - -
Load Positive zero - >zero overflow
Shift Left Double zero <zero >zero overflow
Shift Left Single zero <zero >zero overflow
Shift Right Double zero <zero >zero -
Shift Right Single zero <zero >zero -
Subtract H/F zero <zero >zero overflow
Subtract Logical -— not zero, zero, not zero,
not carry carry carry

4.4 INSTRUCTION FORMAT

Fixed~point instructions use the following three formats: -
RR Format

OpCodé | 1 | *2 |

L] 70 nn 1]

RX Format

OpCode | Ry | X, | B ®,

] 18 AR} 1516 1920 . n

S . “33-

e« e a3 SRR B

AL W e
. | ’ »
e -

:
-5}
ud
]
4

o I

i LAER

RS Format

OpCode | Ry | Ry | By Dy

L] is nw $1e 1920 n

In these formats, R; specifies the general register containing the first.
operand. The second operand location, if any, is defined differently for
each format.

In the RR format, the R, field specifies the general register containing
the second operand. The same register may be specified for the first and
second operand,

In the RX format, the contents of the general registers specified by the
X, and B, fields are added to the content of the Dy field to form an
aédtess designating the storage location of the second operand.

In the RS format, the content of the general register specified by the B
field is added to the content of the D, field. This sum designates the
storage location of the second operand in LOAD MULTIPLE and STORE MULTIPLE.
In the shift operations, the sum specifies the number of bits of the shift.
The R, field specifies the address of a general register in LOAD MULTIPLE
and S%ORE MULTIPLE and 1is ignored in the shift operations.

A zero in an Xp or By field indicates the absence of the corresponding
address component.

An instruction can specify the same general register both for address
modification and for operand location. Address modification is always
completed before operation execution.

Results replace the first operand, except for STORE and CONVERT TO DECIMAL,
where the result replaces the second operand.

The contents of all general registers and storage locations participating
in the addressing or execution part of an operation remain unchanged,
except for the storing of the final result.

NOTE: In the detailed descriptions of the individual instructions, the
mnemonic and the symbolic operand designation for the NSSC-II assembly
language are shown with each instruction. For LOAD AND TEST, for example,
LTR is the mnemonic and Rj, Ry the operand designation.

4.5 INSTRUCTIONS

The fixed-point arithmetic instructions and their mnemonics, formats, and
operation codes are listed in the following table. The table also indicates
when the condition code is set and the exceptional conditions operand

" designations, data, or results that cause a program interruptiom.

[AU S U - SRR AT JOLN - SHSEIN

[SR Sr COT

NAME MNEMONIC TYPE

Load LR RR
Load L RX
Load Halfword LH RX
Load and Test " LTR RR C
Load Complement LCR RR C
Load Positive LPR RR C
Load Negative LNR RR C
Load Multiple 1M RS
Add AR RR C
Add A RX C
Add Halfword AH RX C
Add Logical ALR ‘RR C
Add Logical AL RX C
Subtract SR RR C
Subtract S RX C
Subtract Halfword SH RX C
Subtract Logical SLR RR C
Subtract Logical SL RX C
Compare CR RR C
Compare C RX C
Compare Halfword CH ‘RX C
Multiply MR RR
Multiply . M RX
Multiply Halfword MH RX
Divide DR RR
Divide D RX
Convert to Binary CVB RX
Convert to ‘Decimal CVD RX
Store ST RX
Store Halfword STH RX
Store Multiple STM RS
Shift Left Single SLA RS C
Shift Right Single SRA RS C
Shift Left Double SLDA RS C
Shift Right Double SRDA RS C
NOTES

A Addressing exception

C Condition code is set

D Data exception

IF Fixed-point overflow exception

IK ‘Fixed-point divide exception

P Protection exception

S "~ Specification exception

-35=-

EXCEPTTIONS
A,S
A,S
IF
IF
A,S
IF
A,S, IF
A,S, 1IF
A,S
IF
A,S, IF
A,S, IF
A,S
A,S
A,S
S
A,S
A,S
s, 1IK
A,s, 1IK
A,S,D,IK
P,A,S
P,A,S
P,A,S
P,A,S
IF
S, 1IF
S

CODE

18
58
48
12
13
10
11
98
1A
5A
LA
1E
5E
1B
5B
4B
1F
SF
19
59
49
ic
5¢C
4C
1D
5D
4LF
4E
50
40
90
8B.
8A
8F
'8E

1

1Py

R

e e e €

S e e e

Programming Note

The logical comparisons, shifts, and connectives, as well as LOAD ADDRESS,
BRANCH ON COUNT, BRANCH ON INDEX HIGH, and BRANCH ON INDEX LOW OR EQUAL,
also may be used in fixed-point calculations.

4.5.1 LOAD
IR Ry, R, [RR]
18 R‘ R2
[} 73 112 15
L R, D,X, B, [RX]
| 8 Ry | X | B Dy
0 73 niz 1316 1730 n

The second operand is placed in the first operand location. The second
operand is not changed.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing (L only)
Specification (L only)

4.5.2 LOAD HALFWORD

LH R, DX, B,) [RX]

L 8 ’[Ry I X, l 8,] D, ‘1

Wz 15 120 N

The halfword second operand is placed in the first operand location.
The halfword second operand is expanded to a fullword by propagating the

sign-bit value through the 16 high-order bit positions. Expansion occurs
after the operand is obtained from storage and before insertion in the

register.

Condition Code: The code remains unchanged.
Program Intefruptions:

Addressing
Specification

-36~

FFEAE ENSPRE L SEE Y T el

R i = P ORI . ST W SN S PR

o B B P b W i S L s

LR 3

e ettt . asei

4.5.3 LOAD AND TEST
LR R, R, [RR}

12 R | R
[] 78 11811 13

The second operand is placed in the first operand location, and the sign and
magnitude of the second operand determine the condition code. The second

operand is not changed.
Resulting Condition Code:
0 Result is zero

1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions: None

Proggamming Note

When the same register is specified as first and second operand location,
the operation is equivalent to a test without data movement.

4.5.4 LOAD COMPLEMENT

ICR R, R, [RR)

13 Ry | Ry
[] 78 "y 13

The twos complement of the second operand is placed in the first operand
location.

An overflow condition occurs when the maximum negative number is comple-
mented; the number remains unchanged. The overflow causes a program
interruption when the fixed-point overflow mask bit is one.
Resulting Condition Code:
0 Result 1is zero -
1 Result {s less than zero
2 Result 1is greater than zero
3 Overflow
Program Interruptions:

F;xed-point overflow

-37-

R

P

L AR

ARG T PR S, SIS ESEY SO |

e B g a0

o otk SRR b

k-4

Programming Note

Zero remains invariant under complementation.

4.5.5 LOAD POSITIVE

PR R, R, [RR)

10 R| R2

(] 72 ui 13

The absolute value of the second operand is placed in the first operand
location.

The operation includes complementation of negative numbers; positive
numbers remain unchanged.

An overflow condition occurs when the maximum negative number is comple-
mented; the number remains unchanged. The overflow causes a program
interruption when the fixed-point overflow mask bit is one.
Resulting Condition Code:
0 Result is zero

1
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed-point overflow
4.5.6 LOAD NEGATIVE

INR R, R, [RR]

" Ry | Ry
[} 78 (AR} u.

The twos complement of the absolute value of the second operand is placed
in the first operand location. The operation complements positive numbers;
negative numbers remain unchanged. The number zero remains unchanged

with positive sign.

Resulting Condition Code!
0 Result is zero

1 Result is less than zero
2 -

~38-

B et b WO PR

el A i o Bk A i i it Pl 11 T

o st

- ‘-'w..’.“:—\» JON T SR 9N

L SELNASE S99

ES. A

IO

e L

RO R

PSP T O

3 -
Program Interruptions: None.
4.5.7 LOAD MULTIPLE

“M R“ Rm 02(8'.’) [Rs]

98 Ry | Ra | B 0,

[”n ni2 1516 1920 n

The set of general registers starting with the register specified by R
and ending with the register specified by R; 1s loaded from the locations
designated by the second operand address.

The storage area from which the contents of the general registers are
obtained starts at the location designated by the second operand address
and continues through as many words as needed. The general registers are
loaded in the ascending order of their addresses, starting with the
register specified by R, and continuing up to and including the register
specified by Rqy with register O following register 15.

The second operand remains unchanged.
Condition Code: The code remains unchanged.

Program Interruptions:

Addressing
Specification

Programming Note

All combinations of register addresses specified by Ri and R are valid.

When the register addresses are equal, only one word
the address specified by R, is less than the address specified by R;, the

register addresses wrap around from 15 to 0.

4.5.8 ADD
AR R, R, [RR]
1A fij ke
[8 12 13
A Rh D2(x3‘v B‘J) [RXJ
5A ‘[Rvl % | B 02

0 3 a2 (1 R 1920 3

s transmitted When

e L PR

RIS S SIS SR VN

i 2 B .

RPN

The second operand is added to the first operand, and the sum 1is placed
in the first operand location.

Addition 1is performed by adding all 32 bits of both operands. If the carries
out of the sign-bit position and the high-order numeric bit position agree,
the sum is satisfactory; if they disagree, an overflow occurs. The sign

bit is not changed after the overflow. A positive overflow yields a nega-
tive final sum, and a negative overflow results in a positive sum. The
overflow causes a program interruption when the fixed-point overflow mask

bit is one.

Resulting Condition Code: .

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Interruptions:
Addressing (A only)

Specification (A only)
Fixed-point overflow

Programming Note

In twos complement notation, a zero result is always positive.

4.5.9 ADD HALFWORD
AN R, DX, B.) [RX]

4A Ryl % | 8 o, |

[} bR] LARE 1518 1930 M

The halfword second operand is added to the first operand and the sum is
placed in the first operand location.

The halfword second operand is expanded to a fullword before the addition
by propagating the sign-bit value through the 16 high-order bit positions.

Addition is performed by adding all 32 bits of both operands. If the carries
out of the sign-bit position and the high-order numeric bit position agree,
the sum is satisfactory; if they disagree, an overflow occurs. The sign

bit is not changed after the overflow. A positive overflow yields a nega-
tive final sum, and a negative overflow results in a positive sum. - The
overflow causes a program interruption when the fixed-point overflow mask

bit 1is one.
Resulting Condition Code:
Sum is zero
Sum 1s less than zero

0
1.
2 Sum is greater than zero
3 Overflow

-40-~

A . o
[P TIPSO,

L EUVERYE VS

PUSTIRPINENI. - SPUEA-¢ ST Sh WU

T e e =

ks ab remen wsn <imh

v

Program Interruptions:

Addressing
Specification
Fixed-point overflow

4.5.10 ADD LOGICAL

©
AR R, R, [RR]
] 78 112 13
AL R, DXy, B.) [RX]
5€ Ryl % | 8 Dy |

0 76 nn 1514 1920 n

The second operand 18 added to the first operand, and the sum is placed
in the first operand location. The occurrence of a carry out of the sign
position is recorded in the condition code.

Logical addition is performed by adding all 32 bits of both operands without
further change to the resulting sign bit. The instruction differs from ADD

in the meaning of the condition code and in the absence of the interruption
for overflow.

If a carry out of the sign position occurs, the leftmost bit of the condition
code (PSW bit 34) is made one. In the absence of a carry, bit 34 is made
gero. When the sum is zero, the rightmost bit of the condition code (PSW

bit 35) is made zero. A nonzero sum is indicated by a one in bit 35,

Regulting Condition Code:

0 Sum 1is zero (no carry)

1 Sum is not zero (no carry)
2 Sum is zero (carry)

3 Sum 1s not zero (carry)

Program Interruptions:

Addressing (AL only)
Specification (AL only)

4.5.11 SUBTRACT

SR R, R, [RR)

RIERE
] 7¢ (181 11}

s R', D;g{xﬂt B.', : le-‘

58 NEIER 0,

4 73 112 1516 1920 n

The second operand is subtracted from the first operand, and the difference
is placed in the first operand location.

Subtraction 1s performed by adding the twos complement of the second operand
to the first operand. All 32 bits of both operands participate, as in ADD.
If the carries out of the sign-bit position and the high-order numeric bit
position agree, the difference is satisfactory; if they disagree, an over-
flow occurs. The overflow causes & program interruption when the fixed-point
overflow mask bit is one.

Resulting Condition Code:

. 0 Difference is zero

1 Difference 18 less than zero

2 Difference is greater than zero
3 Overflow

Program Interruptions:
Addressing (S only)
Specifications (S only)

Fixed-point overflow

Programming Note

When the same register is speicifed as the first and second operand loca-
tion, subtracting is equivalent to clearing the register.

Subtracting a maximum negative number from another maximum negative number
gives a zero result and no overflow.

4.5.12 SUBTRACT HALFWORD

SH R, D.(X,,B,) [RX]

4 Rp | % | 8 D,]

° b 1" 1516 1920 n

42

SR SV AP SRR P SN

The halfword second operand is subtracted from the first operand, and the
difference is placed in the first operand location.

The halfword second operand is expanded to a fullword before the subtraction
by propagating the sign-bit value through 16 high-order bit positioms.

Subtraction is performed by adding the twos complement of the expanded second
operand to the first operand. All 32 bits of both operands participate, as
in ADD. 1If the carries out of the sign-bit position and the high-order
numeric bit position agree, the difference is satisfactory; if they dis-
agree, an overflow occurs. The overflow causes a program interruption

when the fixed-point overflow mask bit is one.

Resulting Condition Code:
0 Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow -
Program Interruptidns:
Addressing
Specification
Fixed-point overflow

4.5.13 SUBTRACT LOGICAL

SR R, R, (RR)
IF R, Ry
° s w1
SL Ry, DXy, B, [RX]
SF r Ry | %5 B, 0,
’ 78 3 13w 3

The second operand is subtracted from the first operand, and the difference
is placed in the first operand location. The occurrence of a carry out of
the sign position is recorded in the condition code.

Logical subtraction is performed by adding the twos complement of the second
operand to the first operand. All 32 bits of both operands participate,
without further change to the resulting sign bit. The instruction differs
from SUBTRACT in the meaning of the condition code and in the absence of

the interruption for overflow. '

B e s e,

If a carry out of the sign position occurs, the leftmost bit of the condition

code (PSW bit 34) is made one. In the absence of a carry, bit 34 is made
zero. When the sum is zero, the rightmost bit of the condition code (PSW
bit 35) is made zero. A nonzero sum is indicated by a one in bit 35.

Resulting Condition Code:

0 -
1 Difference is not zero (no carry)
2 Difference is zero (carry)

3 Difference is8 not zero (carry)

it

Program Interruptions:

Addressing (SL only)
Specification (SL only)

Programming Note

A zero difference cannot be obtained without a carry out of the sign
position. '

4.5.14 COMPARE

cr R,R, [RR]
19 R| Rz

L] 7s 112 i3

€ R, DX, By [RX]
59 Rl %21 8 0,

[} 14 LIREH 151 1920 n

The first operand is compared with the second operand, and the result
determines the setting of the condition code.

Comparison is algebraic, treating both comparands as 32-bit signed inte-
gers, Operands in registers or storage are not changed.

Resulting Condition Code:

0 Operands are equal
1 First operand is low
2 First operand is high
3

PPN

b et CAEA

DRI S

R S U N

Program Interruptions:

Addressing (C only)
Specification (C only)

4.5.15 COMPARE HALFWORD

CH R, D,iXy B2) (RX]

49 Ry | X2 | B 0,

° 70 nn 1516 1720 n

The first operand is compared with the halfword second operand, and the
result determines the setting of the condition code.

The halfword second operand is expanded to a fullword before the compari-
son by propagating the sign-bit value through the 16 high-order bit

positions.

Comparison is algebraic, treating both comparands as 32-bit signed integers.
Operands in registers or storage are not changed.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Interruptions:

Addressing
Specification

4.5.16 MULTIPLY

MR R, R, (AR}
1C Ry | Ry

[} 79 1" 1]

M R, DyX,, By (RX]
sc M %8 0,

[LA "nn 151 1920 N

The product of the multiplier (the second operand) and the multiplicand (the
first operand) replaces the multiplicand.

Both multiplier and multiplicand are 32-bit signed integers. The product
is always a 64-bit signed integer and occupies an even/odd register pair.
Because the multiplicand is replaced by the product, the R; field of the
instruction must refer to an even-numbered register. A specification
exception occurs when R; is odd. The multiplicand is taken from the odd
register of the pair. %he content of an even-numbered register replaced
by the product is ignored, unless the register contains the multiplier.
An overflow cannot occur,

The sign of the product is determined by the rules of algebra from the
multiplier and multiplicand sign, except that a zero result is always
positive.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing (M only)
Specification

Programming Note

The significant part of the product usually occuples 62 bits or fewer.
Only when two maximum negative numbers are multiplied are 63 significant
product bits formed. Since twos-complement notation is used, the sign
bit is extended right until the first significant product digit is
encountered.

4.5.17 MULTIPLY HALFWORD

MH Rp szx'.'l '2) (RXJ

‘ 4C Bl % | 5 D,

[] 78 " 15 1920 n

The product of the halfword multiplier (second operand) and multiplicand
(first operand) replaces the multiplicand.

Both multiplicand and product are 32-bit signed integers and may be

located in any general register. The halfword multiplier is expanded to

a fullword before multiplication by propagating the sign-bit value

through the 16 high-order bit positions. The multiplicand is replaced

by the low-order part of the product. The bits to the left of the 32 low-
order bits are not tested for significance; no overflow indication is given.

~46-

The sign of the product is determined by the rules of algebra from the
multiplier and multiplicand sign, except that a zero result is always
positive. _

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing
Specification

Programming Note

The significant part of the product usually occupies 46 bits or fewer,

the exception being 47 bits when both operands are maximum negative. Since
the low-order 32 bits of the product are stored unchanged, ignoring all
bits to the left, the sign bit of the result may differ from the true sign
of the product in the case of overflow.

4.5.18 DIVIDE

or R,R, (RR]
10 Ry | R

[X " 13

D R, DXy, B, (RX)
50 Ry | X3 | 8 D,

The dividend (first operand) is divided by the divisor (second operand)
and replaced by the quotient and remainder.

The dividend 1is a 64-bit signed integer and occupies the even/odd pair

of registers specified by the Ry field of the instruction. A specification
exception occurs when R, is odd. A 32-bit signed remainder and a 32-bit
signed quotient replace the dividend in the even-numbered and odd-numbered

registers, respectively. The devisor is a 32-bit signed integer.

The sign of the quotient is determined by the rules of algebra. The remain-
der has the same sign as the dividend, except that a zero quotient or a

gero remainder 18 always positive. All operands and results are treated

a8 signed integers. When the relative magnitude of dividend and divisor

is such that the quotient cannot be expressed by a 32-bit signed integer,

a fixed-point divide exception is recognized (a program interruption occurs,
no division takes place, and the dividend remains unchanged in the general
registers). .

/Oy Sy

SRS AN

R S

B e

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing (D only)

Specification

Fixed-point divide

Programming Note

Division applies to fullword operands in storage only.

4.5.19 CONVERT TO BINARY

CVB R, DyX,, B, [RX]

G Ry | %, | 8, D,
[78 Hnwn 1518 1920 3

The radix of the second operand'is changed from decimal to binary, and the
result is placed in the first operand location. The number is treated as a
right-aligned signed integer both before and after conversion.

~ The second operand has the packed decimal data format and is checked for

'valid sign and digit codes. Improper codes are a data exception and

cause a program interruption. The decimal operand occupies a double-

word storage field, which must be located on an integral boundary. The
low~order four bits of the field represent the sign. The remaining 60 bits
contain 15 binary-coded-decimal digits in true notation. The packed
decimal data format is described in Section V, "Decimal Arithmetic."

The result of the conversion is placed in the general register specified
by Rj. The maximum number that can be converted and still be contained in

.a 32-bit register is 2,147,483,647; the minimum number is =-2,147,483,648.

For any decimal number outside this range, the operation is completed by
placing the 32 low-order binary bits in the register; a fixed-point divide
exception exists, and a program interruption follows. In the case of

a negative second operand, the low-order part is in twos-complement notation.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing

Specification

Data
Fixed~point divide

A TadkE e

4.5.20 CONVERT TO DECIMAL
CVD R, DX, B,) [RX]

4E Ry | X2 | 8 0y |
[] 78 "2 1316 1920 1]

The radix of the first operand is changed from binary to decimal, and the
result is stored in the second operand location. The number is treated as

a right-aligned signed integer both before and after conversionm.

The result is placed in the storage location designated by the second
operand and has the packed decimal format, as described in Section V,
"Decimal Arithmetic." The result occupies a double-word in storage and
must be located on an integral boundary. The low-order four bits of the
field represent the sign. A positive sign is encoded as 1100 or 1010; a
negative sign is encoded as 1101 or 1011. The choice betweeen the two
sign representations is determined by the state of PSW bit 12. The re-
maining 60 bits contain 15 binary-coded-decimal digits in true notation.

The number to be converted is obtained as a 32-bit signed integer from a
general register. Since 15 decimal digits are available for the decimal
equivalent of 31 bits, an overflow cannot occur.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection

Addressing

Specification

4.5.21 STORE
ST R, DuAXy, By) [RX]

50 Ry | % | B D,

[7 ni 1516 120 N

The first operand is stored at the second operand location.

The 32 bits in the general register are placed unchanged at the second
operand location.

Condition Codé: The code remains unchanged.

Program Interruptions:

N

49~

ottt e o

g i a
AN e SR

N

JRPRTS ¥ R OURAV. R T DNUD-T Y S DD

Protection
Addressing
Specification

4.5.22 STORE HALFWORD

STH Ry, DuX,, B,) [RX]

40 R‘ X2 82 02

o ’8 112 1518 1920 N

The first operand is stored at the halfword second operand location.

The 16 low-order bits in the general register are placed unchanged at
the second operand location. The 16 high-order bits of the first operand
do not participate and are not tested.

Condition Code: The code remains unchanged.
Program Interrgptions: :

Protection
Addressing
Specification

4,5,23 STORE MULTIPLE

STM R, Ry, DB, [RS]

90 Ry | R | B Dy

] 7 na 1514 122 n

The set of general registers starting with the register specified by R; and
ending with the register specified by R, is stored at the locations desig-
nated by the second operand address.

The storage area where the contents of the general registers are placed

starts at the location designated by the second operand address and continues

through as many words as needed. The general registers are stored in the
ascending order of their addresses, starting with the register specified
by R, and continuing up to and including the register specified by R3,

with register O following register 15. The contents of the general registers

remain unchanged.
Condition Code: The code remains unchanged.
Program Interruptions:

Protection

e NP

F O

Addressing
Specification

4.,5.24 SHIFT LEFT SINGLE

SLA R,, D.(B.) [RS]

88 R E%ézzz & 0y

[4 7 nn 1518 1920 n

The integer part of the first operand is shifted left the number of bits
specified by the second operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

The sign of the first operand remains unchanged. All 31 integer bits of
the operand participate in the left shift. Zeros are supplied to the
vacated low-order register positions.

If a bit unlike the sign bit is shifted out of position 1, an overflow
occurs. The overflow causes a program interruption when the fixed-point
overflow mask bit is one.

Resulting Condition Code:

Result 1is zero

Result is less than zero
Result 1is greater than zero
Overflow

WN-O

Program Interruptions:
Fixed-point overflow

Programmingéydte

For numbers with an absolute value of less than 230, a left shift of one bit
position is equivalent to multiplying the number by 2.

Shift amounts from 31-63 cause the entire integer to be shifted out of the
register. When the entire integer field for a positive number has been
shifted out, the register contains a value of zero. For a negative
number, the register contains a value of =231,

The base register participating in the generation of the second operand
address permits indirect specification of the shift amount. A zero in the

B2 field indicates the absence of indirect shift specification.

-51-

. i
PP b e

@ 4.5.25 SHIFT RIGHT SINGLE

3 SRA R, DB.) (RS]

4

3 8A R m B2 D,

%) 78 TXT) 1516 1920 3

.};ﬁ

g The integer part of the first operand is shifted right the number of bits

specified by the second operand address.

E5Yy

% The second operand address is not used to address data; its low-order six
3 bits indicate the number of bit positions to be shifted. The remainder

4 of the address is ignored.

]

i The sign of the first operand remains unchanged. All 31 integer bits of
f the operand participate in the right shift. Bits equal to the sign are

supplied to the vacated high-order bit positions. Low-order bits are
shifted out without inspection and are lost. '

=

e T

Resulting Condition Code:

E 0 Result is zero
@ 1 Result is less than zero

;% . 2 Result 1is greater than zero
, 3 -

Program Interruptions:

None

Programmiqngote

A right shift of one bit position is equivalent to division by 2 with

} rounding downward. When an even number is shifted right one position, the
; value of the field is that obtained by dividing the value by 2. When an

y odd number is shifted right ome position, the value of the field is that
obtained by dividing the next lower number by 2., For example, +5 shifted
right by one bit position yields +2, whereas -5 yields =-3.

j Shift amounts from 31-63 cause the entire integer to be shifted out of

the register. When the entire integer field of a positive number has been
shifted out, the register contains a value of zero. For a negative
number, the register contains a value of -l. ~

The base register participating in the generation of the second operand
address permits indirect specification of the shift amount. A zero in the
B, field indicates the absence of indirect shift specification.

[PPSO,

4,5.26 SHIFT LEFT DOUBLE

SLDA R,, D.B.) [RS]

8F SR 0,

o 7e 12 1518 1920 3

The double-length integer part of the first operand is shifted left the
number of bits specified by the second operand address.

The R, field of the instruction specifies an even/odd pair of registers and
must contain an even register address. A specification exception occurs

when R; is odd.

The second operand address is not used to address data; its low-order
6-bits indicate the number of bit positions to be shifted. The remainder

of the address is ignored.

The operand is treated as a number with 63 integer bits and a sign in the
sign position of the even register. The sign remains unchanged. The high-
order position of the odd register contains an integer bit, and the content
of the odd register participates in the shift in the same manner as the
other integer bits. Zeros are supplied to the vacated positions of the

registers.

If a bit unlike the sign bit 1s shifted out of bit position 1 of the even
register, an overflow occurs. The overflow causes a program interruption
when the fixed-point overflow mask bit is one.

Resulting Condition Code:
0 Result 1is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Inferruptions:

Specification
Fixed-point overflow

4.,5.27 SHIFT RIGHT DOUBLE

SRDA R, D.(B.) |RS)
7
8E Ry é%%&? B, D,

[e nii 2371 120 1]
.

«53~

e

LR rifm B st o e kil

B N NP
v AR A A i} 1

1 e e s ot e

The double-length integer part of the first operand is shifted right the
number of places specified by the second operand address.

The R} field of the instruction specifies an even/odd pair of registers and
must contain an even register address. A specification exception occurs

when R} 1s odd.

The second operand address is not used to address data; its low-order six
bits indicate the numb.:2r of bit positions to be shifted. The remainder of

the address is ignored.

The operand is treated as a number with 63 integer bits and a sign in the
sign position of the even register. The sign remains unchanged. The
high-order position of the odd register contains an integer bit, and the
content of the odd repister participates in the shift in the same manner

as the other integer bits. The low-order bits are shifted out without
inspection and are lost. Bits equal to the sign are supplied to the vacated
positions of the registers.

Resulting Coudition Code:
0 Result is zero

1 Result is less than zero
2 Result is greater than zero
3

Progran Interruptions:
Specification

Programming Note

A zcro shift amount in the double-shift operations provides a double-length
sign ard magnitude test.

4.6 TIXED-POINT ARITHMETIC EXCEPTIONS

Excep:ional operand designations, data, or results cause a program inter-
ruption. When a program interruption occurs, the current PSW is stored

as an old PSW, and a new PSW is obtained. The interruption code in the old
PSW identifies the cause of the interruption. The following exceptions
cause a program interruption in fixed-point arithmetic.

Protection
The CPU storage protection bit is set to a one (1). The operation

is suppressed for a store violation. Therefore, the condition code
and data in registers and storage remain unchanged.

-54-

Same

SR L NS I OUC SN MU o s S o s

e

LA

IR SUERUFoS PV

et s ke i

The only exception is STORE MULTIPLE, which is terminated; the amount of
data stored 1s unpredictable and should not be used for further computation.
The operation is terminated on any fetch violation.

Addressing

An address designates an operand location outside the available storage
for a particular installation. In most cases, the operation is terminated.
Therefore, the result data are unpredictable and should not be used

for further computation. The exceptions are STORE, STORE HALFWORD,

and CONVERT TO DECIMAL, which are suppressed. Operand addresses are

tested only when used to address storage. Addresses used as a shift
amount are not tested. The address restrictions do not apply to the
components from which an address is generated--the content of the D)

field and the contents of the registers specified by X, and Bj.

Specification

A double-word operand is not located on a 64-bit boundary, a fullword
operand is not located on a 32-bit boundary, a halfword operand is not
located on a 16-bit boundary, or an instruction specifies an odd register
address for a pair of general registers containing a 64-bit operand.

The operation is suppressed. Therefore, the condition code and data

in registers and storage remain unchanged.

Data

A sign or a digit code of the decimal operand in CONVERT TO BINARY is
incorrect. The operation is suppressed. Therefore, the condition code
and data in registers and storage remain unchanged.

Fixed-Point Overflow

The result of a sign-control, add, subtract, or shift operation overflows.
The interruption occurs only when the fixed-point overflow mask bit

is one. The operation is completed by placing the truncated low-order
result in the register and setting the condition code to 3. The overflow
bits are lost. In add-type operations the sign stored in the register

is the opposite of the sign of the sum or difference. 1In shift operations
the sign of the shifted number remains unchanged. The state of the

mask bit does not affect the result.

Fixed-Point Divide

The quotient of a division exceeds the register size, including division
by zero, or the result in CONVERT TO BINARY exceeds 31 bits. Division
is suppressed. Therefore, data in the registers remain unchanged.

The conversion is completed by recording the truncated low-order result

in the register.

-55..

B e

e i 2 e b v s e Ko B

SECTION V

DECIMAL ARITHMETIC

< 5.1 DATA FORMAT

: Decimal operands reside in main storage only. They occupy fields that
may start at any byte address and are composed of one to 16 eight-

bit bytes.

(. Lengths of the two operands specified in an instruction need not be

g the same. If necessary, they are considered to be extended with zeros
3 to the left of the high-order digits. Results never exceed the limits
' set by address and length specification.

Decimal operands may be either in the packed or zoned format.

5.1.1 PACKED DECIMAL NUMBER

; Digit | Digit | Digit Digit | Digit | Digit| Digit| Sign

! In the packed format, two decimal digits normally are placed adjacent

«‘ in a byte, except for the rightmost byte of the field. In the
rightmost byte a sign is placed to the right of decimal digit. Both

digits and a sign are encoded and occupy four bits each.

$ 5.1.2 ZONED DECIMAL NUMBER

[Zono | Digit [Zone] ﬁigdzom]omnlﬁgnhygd

' In the zoned format the low-order four bits of a byte, the numeric,
' are normally occupied by a decimal digit. The four high-order bits of
a byte are called the zone, except for the rightmost byte of the field,

where normally the sign occupies the zone position.

In the zoned format, the digits are represented as part of an alphanumeric
character set. A PACK instruction is provided to transform zoned data
into packed data, and an UNPACK instruction performs the reverse

i transformation.

5.2 NUMBER REPRESENTATION

Numbers are represented as right-aligned true integers with a plus or
minus sign.

-56-

gttt

PP X R

[N

The digits 0-9 have the binary encoding 0000-1001. The codes 1010-1111
are invalid as digits. This set of codes is interpreted as sign codes,
with 1010, 1100, 1110, and 1111 recognized as plus and with 1011 and
1101 recognized as minus. The codes 0000-1001 are invalid as sign codes.
The zones are not tested for valid codes inasmuch as they are eliminated
in changing data from the zoned t2 the packed format.

The sign and zone codes generated for all decimal arithmetic results
differ for the extended binary-coded-decimal interchange code (EBCDIC)

and the USA Standard Code for Information Interchange (USASCII-8). The
choice between the two codes is determined by bit 12 of the PSW. When

bit 12 is zero, the preferred EBCDIC codes are generated; these are plus,
1100; minus, 1101; and zone, 1111, When bit 12 is one, the preferred
USASCII-8 codes are generated; these are plus, 1010; minus, 10l11l; and zone,
0101.

5.3 INSTRUCTIONS

5.3.1 PACK .
PACK DL, B,), D.il, B)) [55)

e [T L %5 [fo]

[] re 1n12 1516 "% N LETY a

The format of the second operand is changed from zoned to packed, and
the result is placed in the first operand location.

The second operand is assumed to have the zoned format. All zones

are ignored, except the zone over the low-order digit, which is assumed
to represent a sign. The sign is placed in the right four bits of the
low-order byte, and the digits are placed adjacent to the sign and

to each other in the remainder of the result field. The sign and digits
are moved unchanged to the first operand field and are not checked

for valid codes.

The fields are processed right to left. If necessary, the second
operand 1s extended with high-order zeros. If the first operand field
is too short to contain all significant digits of the second operand
fleld, the remaining high-order digits are ignored. Overlapping fields
may occur and are processed by storing one result byte immediately
after the necessary operand bytes are fetched. Except for the right~
most byte of the result field, which is stored immediately upon fetching
;he first operand byte, two operand bytes are needed for each result
yte.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection
Addressing

IS

L e ke b eTE - 2 T 3o

Programming Notes

The PACK instruction may be used to switch the two digits in one byte
by specifying a zero in the L] and Ly fields and the same address
for both operands.

To remove the zones of all bytes of a field, including the low-order
byte, both operands must be extended with a dummy byte in the low-order
position, which subsequently is ignored in the result field.

5.3.2 UNPACK
UNPK DL, B,),D.(L,, B.) [55]

I N I N Y

M 79 112 1516 1920 3132 38 3¢

The format of the second operand is changed from packed to zoned, and
the result is placed in the first operand location.

The digits and sign of the packed operand are placed unchanged in the
first operand location, using the zoned format. Zones with coding
1111 in EBCDIC and coding 0101 in USASCII-8 are supplied for all bytes,
except the low-order byte, which receives the sign of the packed
operand. The operand sign and digits are not checked for valid codes.

The fields are processed right to left. The second operand is extended
with high-order zero digits before unpacking, if necessary. If the
first operand field is too ghort to contain all significant digits of
the second operand, the remaining high-order digits are ignored. The
first and second operand fields may overlap and are processed by storing
the first result byte immediately after the rightmost operand byte is

fetched; for the remaining operand bytes, two result bytes are stored
immediately after one byte is fetched.

Condition Code: The code remains unchanged.

Program Interruptions:

Addréssing
Protection
Programming Note

A field that is to be unpacked can be destroyed by improper overlapping.
If it is desired to save storage space for unpacking by overlapping

the operand fields, the low-order position of the first operand must

be to the right of the low-order position of the second operand by

the number of bytes in the second operand minus two. If only one or

two bytes are to be unpacked, the low-order positions of the two
operands may coincide.

-58-

S L el B e arseinl e

i
o1
R
-
ki
)
o
»

!
:
o
1
{
4
3
i

5.3.3 MOVE WITH OFFSET
MVO DL, B,), DL, B,) [55)

A J 5[] 8 %] ® [ff %)

[e -oan 1510 1920 332 35 de 47

The second operand is placed to the left of and adjacent to the low-
order four bits of the first operand.

The low-order four bits of the first operand are attached as low-
order bits to the second operand; the second operand bits are offset
by four bit positions, and the result is placed in the first operand
location. The first and second operand bytes are not checked for valid
codes.

The fields are processed right to left. If necessary, the second
operand is extended with high-order zeros. If the first operand

field is too short to contain all bytes of the second operand, the
remaining information is ignored. Overlapping fields may occur and
are processed by storing a result byte as soon as the necessary operand
bytes are fetched.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection
Addressing

Progranming Note

The instruction set for decimal arithmetic includes no shift instructions
since the equivalent of a shift can be obtained by programming. Pro-
grams for right or left shift and for an even or odd shift amount may

be written with MOVE WITH OFFSET and the logical move instructions.

SECTION VI .

LOGICAL OPERATION

| A set of instructions is provided for the logical manipulation of data.

Generally, the operands are treated as eight-bit bytes. In a few cases
the left or right four bits of a byte are treated separately or operands
are shifted a bit at a time. The operands are either in storage or in
general registers. Some operands are introduced from the instruction

stream.

Processing of data in stcrage proceeds left to right through fields
which may start at any byte position. In the general registers, the
processing, as a rule, involves the entire register contents.

The set of logical operations includes moving, comparing, bit con-
necting, bit testing, translating, and shift operations. All logical
operations are part of the standard instruction set.

The condition code is set as a result of all logical éomparing, con-
necting, and testing.

6.1 DATA FORMAT

Data reside in general registers or in storage or are introduced from
the instruction stream. The data size may be a single or double word,
a single character, or variable in length. When two operands partici-
pate they have equal length,

6.1.1 FIXED-LENGTH LOGICAL INFORMATION

Logical Dato 1

e Y]

Data in general registers normally occupy all 32 bits., Bits are treated
uniformly, and no distinction is made between sign and numeric bits.

In a few operations, only the low-order eight bits of a register
participate, leaving the remaining 24 bits unchanged. In some shift
operations, 64 bits of an even/odd pair or registers participate.

The LOAD ADDRESS introduces a 24-bit address into a general register.
The high-order eight bits of the register are made zero.

In storage-to-rcglster operations, the storage data occupy either a
word of 32 bits or a byte of eight bits. The word must be located
on word boundaries, that is, its address must have the two low-
order bits zero.

-f,;j-

WO OB BRI

g e v,
L Eamint T i s

Y 3 ST R W2)

K

6.1.2 VARIABLE-LENGTH LOGICAL INFORMATION

Character Character Choracter I

L] s 16

In storage-to-storage operations, data have a variable field-length
format, starting at any byte address and continuing for up to a total
of 256 bytes. Processing is left to right.

Operations introducing data from the instruction stream into storage,
as immediate data, are restricted to an eight-bit byte. Only one
byte is introduced from the instruction stream, and only one byte

in storage participates.

Use of general register 1 is implied in TRANSLATE AND TEST. A 24-bit
address may be placed in this register during this operation. The
TRANSLATE AND TEST also implies general register 2. The low-order eight
bits of register 2 may be replaced by a function byte during a translate-
and-test operation.

The translating operations use a list of arbitrary values. A list

provides a relation between an argument (the quantity used to reference
the list) and the function (the content of the location related to the
argument). The purpose of the translation may be to convert data from
one code to another code or to perform a control function. ;

A list is specified by an initial address - the address designating

the leftmost byte location of the list. The byte from the operand to
be translated i1s the argument. The actual address used to address

the list is obtained by adding the argument to the low-order positions
of the initial address. As a consequence, the list contains 256 eight-
bit function bytes. In cases where it is known that not all eight-bit

argument values will occur, it may be possible to reduce the size of
the list. '

In a storage-to-storage operation, the operand fields may be defined

in such a way that they overlap. The effect of this overlap depends
upon the operation. When the operands remain unchanged, as in COMPARE
or TRANSLATE AND TEST, overlapping does not affect the execution of the
operation. In the case of MOVE and TRANSLATE, one operand is replaced
by new data, and the execution of the operation may be affected by the
amount of overlap and the manner in which data are Ietched or stored.
For purposes of cvaluating the effect of overlapped operands, consider
that data are handled one eight-bit byte at a time. All overlapping
fields are considered valid.

-61-

P e i ot g

6.2 CONDITION CODE

The results of most logical operations are used to set the condition
code in the PSW. - The LOAD ADDRESS, INSERT CHARACTERS, STORE
CHARACTER, TRANSLATE, and the moving and shift operations leave

this code unchanged. The condition code can be used for decision-
making by subsequent branch-on-condition instructions.

The condition code can be set to reflect five typcs of results for
logical operations: FOR COMPARE LOGICAL the states 0, 1, or 2
indicate that the first operand is equal, low, or high.

For the logical-connectives, the states 0 or 1 indicate a zero or non-
zero result field.

For TEST UNDER MASK, the states 0, 1, or 3 indicate that the selected
bits are all-zero, mixed zero and one, or all-one.

For TRANSLATE AND TEST, the states 0, 1, or 2 indicate an all-zero
function byte, a non-zero function byte with the operand imcompletely
tested, or a last function byte non-zero.

CONDITION CODE SETTING FOR LOGICAL OPERATIONS

0 1 2 3
And zero not zero - -
Compare Logical equal low high -
Exclusive Or zZero not zero -— -
Or zZero not zero - -
Test Under Mask zero mixed ‘ - one
Translate and Test zero incomplete complete -

6.3 INSTRUCTION FORMAT

Logical instructions use the following five formats:

RR Format

[78 112 (1]

RX Format

Op Codeo R)] x2 B? D2]

[78 iz 1318 1920 N

-62-

Lt MR e PR R AT bt I BT e s NS R lr

Results replace the first operand, except in STORE CHARACTER, where the
result replaces the second operand. A variable-length result is never
stored outside the field specified by the address and length.

The contents of all general registera and storage locations participating
in the addressing or execution of an operation generally remain unchanged.

Exceptions are the result locations and gencral registers 1 and 2 in
TRANSLATE AND TEST.

NOTE:

In the detailed descriptions of the individual instructions,
the mnemonic and the symbolic operand designation for the

NSSC-I1 assembly language are shown with each instruction:
for MOVE NUMERICS, for example, MVN is the mnemonic and D

(L1B1), D2 (B2) the operand designation. 1

6.4 INSTRUCTIONS

The logical instructions, their mnemonics, formats, and operation
codes follow. The table also indicates when the condition code is

set and the exceptions in operand designations, data, or results that
cause a program interruption.

NAME MNEMONIC TYPE EXCEPTIONS CODE
Move MV1 S1 P,A 92
Move MVC SS P,A D2
Move Numerics MVN SS P,A D1 ;
Move Zones MVZ sS P,A D3 !
Compare Logical CLR RR C 15
Compare Logical CL RX C A,S 55
Compare Logical CLI SI C A 95
Compare Logical CLC §S C A D5
AND NR RR C 14
AND N RX C A.S 54
AND NI SsI C P,A 94
AND NC §s C P,A D4
OR OR RR C 16
OR 0 : RX C A,S 56
OR 01 SIC P,A 96
OR 0oC §s C P,A D6
Exclusive OR XR RR C 17
Exclusive OR X RX C A,S 57
Exclusive OR X1 S1¢C P,A 97
Exclusive OR XC Sss C P,A D7
Test Under Mask ™ SIC A g1
Insert Character Ic RX A 43
Store Character STC RX P,A 42
Load Address LA RX 41
Translate TR SS P,A DC

64

i N R Ou

e i As e o o =

S P . S

NAME MNEMONIC
Translate and Test TRT
Shift Left Single

Logical SLL
Shift Right Single

Logical SRL
Shift Left Double

Logical SLDL
Shift Right Double

Logical SRDL
Notes:

Addressing exception
Condition code is set
Data exception
Protection exception
Specification exceptio

BN Neol 2

Programming Note

n

TYPE
S C
RS
RS
RS

RS

EXCEPTIONS CODE

A DD
89
88
S 8D
S 8C

The fixed-point loading and storing instructions also may be used for

logical operations.

6.4.1 MOVE
MVI DB, I, (s
92 '2 Bl Dl
) 70 1516 1920 3
MVC D‘“-, ’[), D;(az) [ss])
[o2 l B 1%] B [} %

0 78 1516

1920 nn

38 3 47

The second operand is placed in the first operand location.

The SS format is used for a storage-to-storage move. The SI format
introduces one 8-bit byte from the instruction stream.

In storage-to-storage movement the fields may overlap in any desired
way. Movement is left to right through each field a byte at a time.

The bytes to be moved are not changed or inspected.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection
Addressing

Programming Note

It is possible to propagate one character through an entire field by
having the first operand field start one character to the right of the
second operand field.
6.4.2 MOVE NUMERICS

MVN D;(L, B)), D,(B>) [s5]

o | B, 1D,] 8 [} O,

[] s 1316 1920 nn 35 3¢ 47

The low-order four bits of each byte in the second operand field, the
numerics, are placed in the low-order bit positions of the corresponding
bytes in the first operand fields.

The instruction is storage to storage. Movement is left to right through
each field one byte at a time, and the fields may overlap in any desired
way.

The numerics are not changed or checked for validity. The high-order

four bits of each byte, the zones, remain unchanged in both operand
fields.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection
Addressing

6.4.3 MOVE ZONES

MVZ DL, B,), D.(B,) [SS]

R S N T Y

) 78 418 1v 20 nn a3 Jé

The high-order four bits of each byte in the second operand field, the
zones, are placed in the high-order four bit positions of the cor-
responding bytes in the first operand field.

-66-

WP & SRS NLPS 3.2
-

R ST TS T O

The instruction is storage-to-storage. Movement is left to right through

each field one byte at a time, and the fields may oveflap in any desired
way.

The zones are not changed or checked for validity. The low-order four
bits of each byte, the numerics, remain unchanged in both operand
fields.

Condition Code: The code remains unchanged.

Program Interruptions:

Protection
Addressing

6.4.4 COMPARE LOGICAL

CIR R, R, [RR]
15 Ry | Ry |
[] 78 112 13
CL Ry, Dy(X,, B.) (RX]
55 R‘ X2 82 02
] . 20 112 1516 1920 n
cll DB, 1, (51]
95 ! 8 0,
] 7s 1518 1920 n
CLC D,(L, B,), D.(B.) [55]

I S N | 2 Y

[} s 151 120 3122 35 3¢

The first operand 1s compared with the second operand, and the result
is indicated in the condition code.

The instructions allow comparisons that are register-to-register,
storage-to-register, instruction-to-storage, and storage~-to-storage.

Comparison is binary, and all codes are valid. The operation proceeds
left to right and ends as soon as an inequality is found or the end

of the fields is reached. However, when part of an operand in CLC is
specified in an unavailable location, the operation may be terminated
by the addressing exception, even though an inequality could have been
found in a comparison of the available operand parts.

-67-~

Resulting Condition Code:

Operands are equal
First operand 1s low
First operand is high

WN= O

Program Interruptions:

Addressing (CL, CLI, CLC only)
Specification (CL only)

Programming Note

The COMPARE LOGICAL is unique in treating all bits alike as part of an
unsigned binary quantity. In variable-length operation, comparison

is left to right and may extend to field lengths of 256 bytes. The
operation may be used to compare unsigned packed decimal fields or
alphameric information in any code that has a collating sequence

based on ascending or descending binary values., For example, EBCDIC
has a collating sequence based on ascending binary values.

6.4.,5 AND
NR R, R, [RR)
14 Ry | R
] 78 1412 i}
N R, D.X., B, [RX]
54 Ri] %2 | & 0,
] 73 Mz 154 W n
NI D,(B,), I (5]
94 | Y B | O, |
] ’s 1518 1920 b 1]
NC Dy(L, B,), Dy(B;) (55]

D4 L ERIERER

¢ 79 1518 1920 nn 383 47

The logical product (AND) of the bits of the first and second operand
is placed in the first operand location.

-68-

ERSETIIS Y

PR

~

L RD N T

Operands are treated as unstructured logical quantities, and the con-
nective AND is applied bit by bit. A bit position in the result is

set to one if the corresponding bit positions in both operands con-
tain a one; otherwise, the result bit is set to zero. All operands and

results are valid.

Resulting Condition Code:

0 Result is zero
1l Result not zero
2 —

3 -

Program Interruptions:
Protection (NI or NC)
Addressing (N, NI, NC only)
Specification (N only)

Programming Note

The AND may be used to set a bit to zero.

6.4.6 OR
OR R, R, [RR]
16 Ryl R
" R T
O Ry, DX, B, [RX]

I N N N N

12 1516 1920 3

ot D81, . [SN]

96 9 B 0,

[78 1516 1920 n

OC DL, B,), DAB.) [55]

e [T Ta [l m]

o 7 1518 172 nn 38 e

The logical sum (OR) of the bits of the first and second operand is
placed in the first operand location.

-69-

Operands are treated as unstructured logical quantities, and the con-
nective inclusive OR is applied bit by bit. A bit position in the result
18 set to one if the corresponding bit position in one or both operands
contain a one; otherwise, the result bit is set to zero. All operands
and results are valid.

Resulting Condition Code:

Result 1is zero
Result not zero

W N =O

Program Interruptions:

Protection (OI and OC)
Addressing (0, OI, OC only)
Specification (O only)

Programming Note

The OR may be used to set a bit to ome.

6.4.7 EXCLUSIVE OR

XR R, R, [RR)
17 [& [R |
] 78 e 13
X R, D.X.,, B.) (RX]
57 Ry % | B P,
-] 78 112 1516 1920 E1]
Xi D81, (51]
97 '2 B Dy
] 7e 1518 92 n
XC DyL, B,), D:(B) (5]

o7 | B 162 B Iff % |

[} 748 1816 L] 332 38 3¢ LL

The modulo-two sum (exclusive OR) of the bits of the first and second
operand is placed in the first operand location.

Operands are trcated as unstructured logical quantities, and the con-
nective exclusive OR is applied bit by bit. A bit position in the result

1s set to one if the corresponding bit positions in the two operands are
unlike; otherwige, the result bit 1s set to zero.

-70-

£ bilna ek o A smalE
-

4 .

Wi e o it 4 i s

i et e i B o brkiin,

PR

i e e T o n e e

The inetruction differs from AND and OR only in the connective applied.
Resulting Condition Code:

Result is zexo
Regult not zero

WO

Program Interruptions:
Proﬁection (X1 and XC)
Addressing (X, XI, XC only)
Specification (X only)

Programming Notes

The exclusive OR may be used to invert a bit, an operation particularly
useful in testing and setting programmed binary bit switches.

Any fileld exclusive OR'ed with itself becomes all zeros. |
The sequence A exclusive OR'ed B, B exclusive OR'ed A, A exclusive OR'ed B |
results in the exchange of the contents of A and B without the use of
an auxilisry buffer area.

6.4.8 TEST UNDER MASK

TM DB, 1, (5N

N 12 8' D

[e 1318 1920

n

The state of the first operand bits selected by a mask is used to set
the condition code.

The byte of immediate data, I, is used as an eight-bit mask. The bits

of the mask are made to correspond one for onme with the bits of the
character in storage specified by the first operand address.

A mask bit of one indicates that the storage bit is to be tested. When

the mask bit is zero, the storage bit is ignored. When all storage bits
thus selected are zero, the condition code is made 0. The code is also

made 0 when the mask i{s all-zero. When the selected bits are all-one,

the code 18 3; otherwise, the code is made 1. The character in storage
is not changed.

Resulting Condition Code:

0 Selected bits all-zero; mask is all-zero
1 Selected bits mixed zero and one

-7l-

et

[3, TR

2 -—
3 Selected bits all-one

Program Interruptions:
Addressing

6.4.9 INSERT CHARACTER
IC R, DX, B) |RX]

43 ’L R, l X, I By] D,

° 112 1518 1920

"

The eight-bit character at the second operand address is inserted into

bit positions 24~31 of the register specified as

the first operand

location. The remaining bits of the register remain unchanged.

The instruction is storage to general reglster.
is not changed or inspected.

Condition Code: The code remains unchanged.
Program Interruptions:
Addressing

6.4.10 STORE CHARACTER

STC R, D (X, 8 [RX]

The byte to be inserted

42 I D,

0 7e "niz 1914 1920 »n

Bit positions 24-31 of the register designated as
are placed at the second operand address.

the first operand

The instruction is general register to storage. The byte to be stored

is not changed or inspected.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection
Addressing

6.4.11 LOAD ADDRESS
LA R, D(X,B) [RX]

41 Ry Xq B D

[e LR} 1514 1720

b1}

PR TS TRRNARE UF SUPpyisv

[AN

UG/ SO S P SRR o

s o

NP C O

Mo ottt e i R s,

o s enaB

The address of the second operand is inserted in the low-order 24 bits
of the general register specified by R} . The remaining bits of the
general register are made zero. No storage references for operands take

place.

The address specified by the X2, B2, and D2 fields is inserted in bits
8-31 of the general register specified by Ryj. Bits 0-7 are set to zero.
The address is not inspected for availability, protection, or resolu-

tion.

The address computation follows the rules for address arithmetic. Any
carries beyond the 24th bit are ignored.

Condition Code: The code remains unchanged.
Program Interruptions:
None.,

Programming Note

The same general register may be specified by the R}, X2, and B2 in-
struction field, except that general register 0 can be specified only
by the Ry field. In this manner, it is possible to iIncrement the low-
order 24 bits of a general register, other than 0, by the contents of
the D2 field of the instruction. The register to be incremented should
be specified by Rl and by either X2 (with B2 set to zero) or B2 (with X
set to zero). :

6.4.12 TRANSIATE

TR DL, B,), DB, (5]
(o T v T&T¥e] 2 o)
[} 7S 1 21 1920 332 35 de 42

The eight-bit bytes of the first operand are used as arguments to refer-
ence the list designated by the second operand address. Each eight-bit

function byte selected from the list replaces the corresponding argument
in the first operand.

The bytes of the first operand are selected one by one for translationm,
proceading left to right. Each argument byte is added to the entire
initial address, the second operand address, in the low-order bit posi-
tions. The sum is used as the address of the function byte, which

then replaces the original argument byte.

All data are valid. The operation proceeds until the first operand
field is exhausted. The list is not altered unless an overlap occurs.

_73-

P

PPN

Fnn v

SNV

SRPUNE St D DN

[V P DU

Condition Code; The code remains unchanged.
Program Interruptions:

Protection
Addressing

6.4.13 TRANSLATE AND TEST
TRT O,(L, B,), DB, [ss]

DD L S LG] *2 [% |

] s 1314 1920 nn 33 d6

The eight-bit bytes of the first operand are used as arguments to refer-
ence the list designated by the second operand address. Each eight-bit
function byte thus selected from the list is used to determine the con-
tinuation of the operation., When the function byte is a zero, the opera-
tion proceeds by fetching and translating the next argument byte. When
the function byte is non-zero, the operation is completed by inserting
the related argument address in general register 1, and by inserting the
function byte in general register 2.

The bytes of the first operand are selected one by one for translationm,
proceeding from left to right. The first operand remains unchanged in
storage. Fetching of the function byte from the list is performed as
in TRANSLATE. The function byte retrieved from the list is inspected
for the all-zero combination.

When the function byte is zero, the operation proceeds with the next oper-
and byte. When the first operand field is exhausted before a non-zero
function byte is encountered, the operation is completed by setting the
condition code to 0. The contents of general registers 1 and 2 remain

‘unchanged.

When the function byte 1s non-zero, the related argument address 1s inserted
in the low=-order 24 bits of general register 1. This address points to the
argument last translated. The high-order eight bits of register 1 remain
unchanged. The function byte is inserted in the low-order eight bits of
general register 2. Bits 0-23 of register 2 remain unchanged. The con-
dition code is set to 1 when the one or more argument bytes have not been
translated. The condition code 18 set to 2 if the last function byte is
non-zero.

Resulting Condition Code:

0 All function bytes are zero
1 Non-zero function byte before the first operand
field is exhausted

2 Last function byte is non-zero
3 -

e o v s

SRS

FEIE N U,

Rl b d s e e 2

Program Interruptions:

Addressing
Programming Note

The TRANSLATE AND TEST is useful for scanning an input stream and locating
delimiters. The stream can thus be rapidly broken into statements or data

fields for further processing.

6.4.14 SHIFT LEFT SINGLE
SLL R, DB, (RS]

89 R, // B, D,

0 78 1RY] [ERT 1920 »

The first operand is shifted left the number of bits specified by the sec-
ond operand address. .

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder
of the address is ignored.

All 32 bits of the general register specified by R; participate in the
shift. High-order bits are shifted out without inspection and are lost.

Zeros are supplied to the vacated low-order register positions.
Condition Code: The code remains unchanged.
Program Interruptions:
None

6.4.15 SHIFT RIGHT SINGLE
SRL R, DJ8.) (RS}

v V]]
] 78 " 1518 1920 N

The first operand is shifted right the number of bits specified by the
sccond operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder
of the address is ignored.

7935402

‘ ;. Supplement to Paragraph 6.4.13 Programming Notes - Page 75

The address of operand 1 in this instruction is limited to 64K (K = 1024).
The operand 1 address at which the non-zero byte is found is stored in
general register 1 at the conclusion of instruction execution. Only the
low 16 bits of operand 1 address will be stored. If the operand address
is greater than 64K, the high bits will be lost.

75A

PR S

All 32 bits of the general register specified by Rj participate in the
shift. Low-order bits are shifted out without inspection and are lost.

Zeros are supplied to the vacated high-order register positions.
Condition Code: The code remains unchanged.
Program Intertuptions:
None

6.4.,16 SHIFT LEFT DOUBLE
SIDL R, D.(B,) [RS]

8D 7[’R‘ ¥ /ég B, l o, AJ

V12 1516 1920 3

°

The double~length first operand is shifted left the number of bits speci-
fied by the second operand address.

The R} field of the instruction specifies an even/odd pair of registers
and must contain an even register address. An odd value for R; is a
specification exception and causes a program interruption. The second
operand address is not used to address data; its low-order six bits
indicate the number of bit positions to be shifted. The remainder of the
address 18 ignored.

All 64 bits of the even/odd register pailr specified by R; participate in

the shift. High-order bits are shifted out of the even-numbered register
without inspection and are lost. Zeros are supplied to the vacated posi-
tions of the registers.

Condition Code: The code remains unchanged.
Program Interruptions:
Specification

6.4.17 SHIFT RIGHT DOUBLE
SROL R,, D48, [RS]

8C WZ/E Dy

[} e 12 1518 1920 n

The double-length first operand is shifted right the number of bits speci-
fied by the second operand address.

The R) field of the instruction specifies an even/odd pair of registers
and must contain an even register address. An odd value for R; is

~76~

m ey R Fn e W

e A e A S Wyt

b ek

a specification exception and causes a program interruption. The
second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder
of the address is ignored.

All 64 bits of the even/odd register pair specified by R} participate
in the shift. Low-order bits are shifted out of the odd-numbered
register without inspection and are lost. Zeros are supplied to
the vacated positions of the registers.

Condition Code: The code remains unchanged.

Program Interruptiohs:

Specification

Programming Note

The logical shifts differ from the arithmetic shifts in that the high-
order bit participates in the shift and is not propagated, the condition
code is not changed, and no overflow occurs.

6.5 LOGICAL OPERATION EXCEPTIONS

Exceptional operation codes, operand designations, data, or results
cause a program interruption. When the interruption occurs, the current
PSW 1s stored as an old PSW and a new PSW is obtained. The interruption
code in the old PSW identifies the cause of the interruption. The
following exceptions cause a program interruption in logical operatioms.

Protection

The CPU storage protection bit is set to a one (1). The operation is
suppressed on a store violation. Therefore, the condition code and

data in registers and storage remain unchanged. The only exceptions

are the variable-length, storage~to-storage operations (those containing
a length specification), which are terminated. For terminated opera-
tions, the result data and condition code, if affected, are unpredictable
and should not be used for further computation.

Addressing

An address designated an operand location outside the available storage
for the installation: In most cases, the operation is terminated. The
result data and the condition code, if affected, are unpredictable and
should not be used for further computation. The exceptions are the

immediate operations AND (NI), EXCLUSIVE OR (XI), OR (OI), MOVE (MVI),
and STORE CHARACTER, which are suppressed.

,?7-

A m—— s

o i ae e SR e h e Ly

Specification

A fullword operand in a storage~to~register operation is not located

on a 32-bit boundary or an odd register address is specified for a

pair of general registers containing a 64-bit operand. The operation is
suppressed., Therefore, the condition code and data in registers and
storage remain unchanged.

Operand addresses are tested only when used to address storage. Addresses
used as a ghift amount are not tested. Similarly, the address generated
by the use of LOAD ADDRESS is not tested. The address restrictions do
not apply to the components from which an addresa is generated - the
contents of the D] and D2 fields, and the contents of the regilsters
specified by X2, By, and B3.

[T SR P

it R e

SECTION VII

BRANCHING

Instructions are performed by the central processing unit primarily in

the sequential order of their locations. A departure from this normal
sequential operation may occur when branching is performed. The branching
ingtructions provide a means for making a two-way choice, to reference a
subroutine, or to repeat a segment of coding, such as a loop.

Braﬁching is performed by introducing a branch address as a new instruc-
tion address.

The branch address may be obtained from one of the general registers or
it may be the address specified by the instruction. The branch address
is independent of the updated instruction address.

The detailed operation of branching is determined by the condition code é
which is part of the program status word (PSW) or by the results in the Cy
general registers which are specified in the loop-closing operations.

During a branching operation, the rightmost half of the PSW, including

the updated instruction address, may be stored before the instruction |
address 1s replaced by the branch address. The stored information may S
be used to link the new instruction sequence with the preceding sequence.

The instruction EXECUTE is grouped with the branching instructions. The
branch address of EXECUTEC designates a single instruction to be inserted
in the instruction sequence. The updated instruction address normally

is not changed in this operation, and only the instruction located at the
branch address is executed.

All branching operations are provided in the standard instruction set.

7.1 NORMAL SEQUENTIAL OPERATION

Normally, operation of the CPU is controlled by instructions taken in
sequence. An instruction is fetched from a location specified by the
instruction-address field of the PSW. The instruction address is increased
by the number of bytes of the instruction to address the next instruction
in sequence. This new instruction-address value, called the updated in-
struction address, replaces the previous contents of the instruction-
address field in the PSW. The current instruction is executed, and the
same steps are repeated, using the updated instruction address to fetch

the next instruction,.

Instructions occupy a halfword or a multiple thereof. An instruction may
have up to three halfwords. The number of halfwords in an instruction is
specified by the first two instruction bits. A 00 code indicates a half-
word instruction, codes 0l and 10 indicate a two-halfword instruction,
and code 1l indicates a three-halfword instruction.

-79-

Halfword Format

Op Code

o e is

Three-Halfword Format

[Opcote |7 oi-] B] D)

o 78 i518 1920 n

32 3538 7

Storage wraps around from the maximum addressable storage location, byte
location 1,048,575, to byte location O. An instruction having its last
halfword at the maximum storage location is followed by the instruction
at address 0. Also, a multiple~halfword instruction may straddle the
upper storage boundary; no special indication is given in these cases.

Conceptually, an instruction is fetched from storage after the preceding
operation is completed and before execution of the current operation,

even though physical storage width and overlap of instruction exccution
with storage access may cause actual instruction fetching to be different.

A change in the sequential operation may be caused by branching, status
switching, interruption, or manual intervention. Sequential operation
is initiated and terminated from the system control panel.

Programming Note

It is possible to modify an instruction in storage by means of the imme-
diately preceding instruction. ’

7.1.1 SEQUENTIAL OPERATION EXCEPTIONS

Exceptional instruction addresses or operation codes cause a progran
interruption. When the interruption occurs, the current PSW is stored

as an old PSW, and a new PSW is obtained. The interruption code in the
old PSW identifies the cause of the interruption. (In this manual, part
of the description of each class of instructions is a list of the program
interruptions that may occur for thesc instructicns.) The new PSW is not
checked for exceptions when it becomes current. These checks occur when
the next instruction is executed. The following program interruptions
may occur in normal instruction sequencing, independently of the instruc-
tion performed.

-80-

LoprRs o

: i
- S
PR UL TP SR PN - . ST

SRR AR WS B

Operation

An operation exception occurs when the CPU attempts to decode an operation
code that is not assigned. The operation exception can be accompanied by
an addressing or specification exception if the instruction class asso-
ciated with the undefined operation has uniform requirements for operand
designation. An instruction class is a group of instructions whose four
leftmost bits are identical. '

Addressing

An addressing exception occurs when an instruction halfword is located
outside the available storage for the particular installation. This situ-
ation can occur when normal instruction sequencing goes from a valid
storage region into an unavailable region, or following a branching or
load-PSW operation or an interruption. When the last locations in avail-
able storage contain an instruction that again introduces a valid instruc-
tion address (i.e., a branch), a program interruption is caused because
the updated instruction address designated an unavailable location which
will be referenced by instruction prefetching.

Specification

A specification exception occurs when the instruction address in the PSW
is odd. This odd-address error can occur when after a branching or load-
PSW operation or after an interruption.

A specification exception will occur when the PSW protection key is non-
zero. This error can occur after a PSW is loaded or after an interruption.

In each case, the instruction is suppressed; therefore, the condition
code and data in storage and registers remain unchanged. The instruction
address stored as part of the old PSW has been updated by the number of
halfwords indicated by the instruction length code in the old PSW.

Programming Notes

When a program interruption occurs, the current PSW is stored in the old
PSW location. The instruction address stored as part of this old PSW is
thus the updated instruction address, having been updated by the number
of halfwords indicated in the instruction-length code of the same PSW.
The interruption code in this old PSW identifies the cause of the inter-
ruption and aids in the programmed interpretation of the old PSW.

If the new PSW for a program interruption has an unacceptable instruction
address, another program interruption occurs. Since this second program
interruption introduces the same unacceptable instruction address, a
string of program interruptions is established which may be broken only
by an external or I1/0 interruption. If these interruptions also have an
unacceptable new PSW, new supervisor information must be introduced by
initial program loading or by manual intervention.

~81-

RN R P WY .,-.,f.,.x

i e+ A moi

7.2 DECISION-MAKING

Branching may be conditional or unconditional. Unconditional branches
replace the updated instruction address with the branch address. Condi-
tional branches may use the branch address or may leave the updated in-
struction address unchanged. When branching takes place, the instruction
i8 called successful; otherwise, it is called unsuccessful.

Whether a conditional branch is successful depends on the result of oper-
ations concurrent with the branch or preceding the branch. The former
case is represented by BRANCH ON COUNT and the branch-on-index instruc-
tions. The latter case is represented by BRANCH ON CONDITION, which
inspects the condition code that reflects the result of a previous arith-
metic, logical, or I/0 operation,

The condition code provides a means for data-dependent decision~-making.
The code 1is inspected to qualify the execution of the conditional-branch
instructions. The code is set by some operations to reflect the result
of the operation, independently of the previous setting of the code. The
code remains unchanged for all other operations.

The condition code occupies bit positions 34 and 35 of the PSW. When the
PSW 18 stored during status switching, the condition code is preserved as
part of the PSW, Similarly, the condition code is stored as part of the
rightmost half of the PSW in a branch-and-link operation. A new condition
code is obtained by a LOAD PSW or SET PROGRAM MASK or by the new PSW loaded
as a result of an interruption.

The condition code indicates the outcome of some of the arithmetic, logical,
or 1/0 operations. It is not changed for any branching operation, except
for EXECUTE, 1In the case of EXECUTE, the condition code is set or left
unchanged by the subject instruction, as would have been the case had the
subject instruction been in the normal instruction stream.

The table at the end of this section lists all instructiions capable of
altering the condition code and the meaning of the codes for these in-
structions.

7.3 INSTRUCTION FORMATS

Branching instructions use the following formats:

fR PFormat

Op Code |Ri/M]| Ry

[78 LIR T 1]

RX Pormut

Op Code | /M| %o | By 0y

[] 7 LIR) JERL) 120 n

-82-

A -

RS Format

[78 1" 1516 1920 k1]

In these formats R) specifies the address of a general register. In
BRANCH ON CONDITION a mask field (M1) identifies the bit values of the
condition code. The branch address is defined differently for the three

formats.

In the RR format, the R2 field specifies the address of a general register
containing the branch address, except when R2 is zero, which indicates no
branching. The same register may be specified by Rl and R2.

In the RX format, the contents of the general registers specified by the
X2 and B2 fields are added to the content of the D2 field to form the
branch address.

In the RS format, the content of the general register specified by the B2
field is added to the content of the D2 field to form the branch address.
The R3 field in this format specifies the location of the second operand
and implies the location of the third operand. The first operand is
specified by the R} field. The third operand location is always odd. If
the R3 field specifies an even register, the third operand is obtained
from the next higher addressed register. If the Rj field specifies an

odd register, the third operand location coincides with the second operand
location.

A zero in a B2 or X2 field indicates the absence of the corresponding
address component,

An instruction can specify the same general register for both address
modification and operand location. The order in which the contents of
the general registers are used for the different parts of an operation
is: '

1, Address computation.

2, Arithmetic or link information storage.

3. Replacement of the instruction address by the branch
address obtained under step 1.

Results are placed in the general register specified by R;. Except for
the storing of the final results, the contents of all general registers
and storage locations participating in the addressing or execution part
of an operation remain unchanged.

NOTE:

In the detailed description of the individual instructions,

the mnemonic and the symbolic operand designation for the NSSC-II
assembly language are shown with each instruction. For BRANCH
ON INDEX HIGH, for example, BXH is the mnemonic and Ry, R3,
D2(B2) the operand designation.

-83- !

ECTIP N S R

Programming Note

In several instructions the branch address may be specified in two ways:
in the RX format, the branch address is the address specified by X2, B2,
and D2; in the RR format, the branch address is in the low-order 20 bits
of the register specified by R2. Note that the relation of the two for-
mats in branch-address specification is not the same as in operand-address

For operands, the address specified by X2, B2, and D2 is

specification. ’
but the register specified by R2 contains the operand

the operand address,
itself.

7.4 BRANCHING INSTRUCTIONS

The branching instructions and their mnemonics, formats, and operation
codes follow. The table also shows the exceptions that cause a program
interruption during execution of EXECUTE. The subject instruction of
EXECUTE follows its own rules for interruptions. The condition code is
never changed for branching instructions.

NAME i MNEMONIC TYPE EXCEPTIONS CODE
Branch on

Condition BCR RR 07
Branch on

Condition " BC RX 47
Branch and Link BALR RR 05
Branch and Link BAL RX 45
Branch on Count BCTR RR 06
Branch on Count BCT RX 46
Branch on Index

High ' BXH RS 86
Branch on Index :

Low or Equal BXLE RS 87
Execute EX ¥ A,S,EX 44
NOTES

A Addressing exception

EX Exccute exception

S Specification exception
7.4,1 BRANCH ON CONDITION

BCR M, R. (RR]
T
07 | My] x2‘1
[} 78 12 15
BC M, D.X. B, [RX]
g Mm%y] b]

] 78 12 1518 1920 3

84~

a

LI

. I R .
YRS SO A SEPT PRSPPI L 1)

RIS Y

WA o e R b A i LR B e

S IR SN

P, i‘l (PO

—_—m e I.—h—‘wd‘ 4.

The updated instruction address i1s replaced by the branch address if the
state of the condition code is as specified by Mj; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The M1 field is used as a four-bit mask. The four bits of the mask cor-

respond, left to right, with the four condition codes (0, 1, 2, and 3)
as follows:

INSTRUCTION MASK POSITION CONDITION
BIT ‘ VALUE CODE
8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition code has a corresponding
mask bit of one.

Condition Code: The code remains unchanged.
Program Interruptions:
None

Programming Note

When a branch is to be made on more than one condition code, the perti-
nent condition codes are specified in the mask as the sum of their mask
position values. A mask of 12, for example, specifies that a branch is
to be made on condition codes O and 1.

When all four mask bits are ones, that is, the mask position value is
15, the branch is unconditional. When all four mask bits are zero or
when the R2 field in the RR format contains zero, the branch instruction
is equivalent to a no-operation.

Condition~Code Settings

CODE STATE

0 1l 2 3
Fixed-~Point Arithmetic
Add H/F zero <zero >zero overflow
Add Logical zero, not zero, zero, not zero,
no carry no carry carry carry
Compare H/F equal low high -

~85-

-~

ARk i

i e B - nn o Sk

¥ PR 3

RPN RV SHS VLI T O T O R

RN R N

S Vel e

e e e s gt

PRI

Fixed-Point Arithmetic

(Continued)

Load and Test

Load Complement
Load Negative
Load Positive
Shift Left Double
Shift Left Single
Shift Right Double
Shift Right Single
Subtract H/F
Subtract Logical

Logical Operations
And

Compare Logical
Exclusive Or

Or

Test Under Mask'
Translate and Test

Status Switching

Test and Set

CODE_STATE

0 1 2
zero <zero >zZero
zero <zero >zero
zero <zero —
zero - >zero
zero <zero >zero
zero <zero >zero
zero <zero >zero
zero <zero >zero
zero <zero >zero
—— not zero, zZero,
no carry carry
zero not zerc -
equal low high
zero not zero -
zero not zero -
zero mixed -
zero incomplete complete
zero one -

Input/Output Operations

Start 1/0
Notes

busy
carry
complete
equal

F

>zero

H

high
incomplete
< zero
low
mixed
not zero
one
overflow
zero

successful busy

Unit or channel busy

A carryout of the sign position occurs
Last result byte nonzero

Operands compare equal

Fullword -

Result is greater than zero

Halfword

First operand compares high

Nonzero result byte; not last

Result is less than zero

- First operand compares low

Selected bits are both zero and one
Result 1s not all zero

Selected bits are one

Result overflows

Result or selected bits are zero

-86-

carry
overflow
overflow
overflow
overflow

overflow
not zero,
carry

NOTE:

on code also may be changed by LOAD PSW, SET PROGRAM

MASK, IAGNOSE and by an interruption.
7.4.2 B P LINK
bR, (8]
T /il R
76 mn W
5D.(X.,, B.,) [RX]
re 5] %, | 5 0,

0 : 78 ni 1316 1920 i

The rightmost 32 bits of the PSW, including the updated instruction
address, are stored as link information in the general register speci-
fied by R;. Subsequently, the instruction address is replaced by the
branch address.

The branch address is determined before the link information is stored.
The link information contains the instruction length code, the condition
code, and the program mask bits, as well as the updated instruction
address. The instruction-length code is 1 or 2, depending on the for-
mat of the BRANCH AND LINK.

Condition Code: The code remains unchanged.

Program Interruptions:

None

Prqgrammigg:Note

The link information is stored without branching when the Ry field contains

zerxo.

When BRANCH AND LINK is the subject instruction of EXECUTE, the instruction-

length code is 2.

7.4.3 BRANCH ON COUNT

BCTIR R, R, 'RR]
06 | Ry | Ry
[] 78 112 11}
BCT R, DyX.B,) |RX]
4 Ri | X2 | By D,
[) 78 112 1518 192 N

-87~

Wl st s R

s

34N

SRR - T, AP ORI Lo SOy SR S

The content of the general register specified by R; is algebraically
reduced by one. When the result is zero, normal instruction sequencing
proceeds with the updated instruction address. When the result is not
zero, the instruction address is replaced by the branch address.

The branch address is determined prior to the counting operation. Count-
ing does not change the condition code. The overflow occurring on transi-
tion from the maximum negative number to the maximum positive number is
ignored. Otherwise, the subtraction proceeds as in fixed-point arith-
metic, and all 32 bits of the general register participate in the
operation. :

Condition Code: The code remains unchanged.
Program Interruptions:

None

Programming Notes

‘An initial count of one results in zero, and no branching takes place.

An initial count of zero results in minus one and causes branching to
be executed.

Counting is performed without branching when the Ry field in the RR
format contains zero.

7.4.4 BRANCH ON INDEX HIGH

BXH R, R, D.B.) [RS]

84 Ry /[y [By 0,

] 73 n 153 1920 i

An increment is added to the first operand, and the sum is compared
algebraically with a comparand. Subsequently, the sum is placed in the
first operand location, regardless of whether the branch is taken. When
the sum is high, the instruction address is replaced by the branch address.
When the sum 18 low or equal, instruction sequencing proceeds with the
updated instruction address. -

The first operand and the increment are in the regiesters specified by R;
and Rq. The comparand register address is odd and is either one larger
than R; or equal to Ry. The branch address is determined prior to the
addition and comparison.

Overflow caused by the addition is ignored and does not affect the com-
parison. Otherwise, the addition and comparison proceed as in fixed-point
arithmetic. All 32 bits of the general registers participate in the

R T i e e

L

et

operations, and negative quantities are expressed in two's-complement.
notation. When the first opcrand and comparand locations coincide, the
original register contents are used as the comparand.

Condition Code: The code remains unchanged.

Program Interruptions:

- None

Programming Note

The name "branch on index high" indicates that one of the major purposes
of this instruction is the incrementing and testing of an index value.
The increment may be algebraic and of any magnitude.

7.4.5 BRANCH ON INDEX LOW OR EQUAL
BXU R, Ry, DyiBy) (RS}

87 LTI L P,

[} 76 na 151 1920)]

An increment is added to the first operand, and the sum is compared
algebraically with a comparand. Subsequently, the sum is placed in the
first operand location, regardless of whether the branch is taken. When
the sum is low or equal, the instruction address is replaced by the branch

address. When the sum is high, normal instruction sequencing proceeds
with the updated instruction address.

The first operand and the increment are in the registers specified by R;
and Ry. The comparand register address is odd and is either one larger

than R3 or equal to Ry. The branch address is determined prior to the
addition and comparison,

This instruction is similar to BRANCH ON INDEX HIGH, except that the
branch is successful when the sum is low or equal compared to the com-
parand. '

Condition Code: The code remains unchanged.
Program Interruptions:
None

7.4.6 EXECUTE

EX R, DX, B, [RX]

44 Ry | X2 | 8)

] 78 "2 131 1920 3t

e g e e

o

The single instruction at the branch address is modified by the content
of the general register specified by Ry, and the resulting subject in-
struction is executed.

Bits 8-15 of the instruction designated by the branch address are OR'ed
‘'with bits 24-31 of the register specified by R;, except when register

0 is specified, which indicates that no modification takes place. The
subject instruction may be 16, 32, or 48 bits in length. The OR'ing
does not change either the content of the register specified by Ry or
the instruction in storage and 1s effective only for the interpretation
of the instruction to be executed.

The execution and exception handling of the subject instruction are
exactly as 1f the subject instruction were obtained in normal sequential
operation, except for instruction address and instruction-length record-
ing. '

The instruction address of the PSW 1s increased by the length of EXECUTE.
This updated address and the length code (2) of EXECUTE are stored in
the PSW in the event of a branch-and-link subject instruction or in the
event of an interruption.

When the subject instruction is a successful branching instruction, the
updated instruction address of the PSW is replaced by the branch address
of the subject instruction. When the subject instruction in turn is an
EXECUTE, an execute exception occurs and results in a program interrup-
tion. The effective address of EXECUTE must be even; if not, a specifi-
cation exception will cause a program interruption,

Condltion Code: The code may be sct by the subject instruction.
Program Interruptions:

Execute

Addressing

Specification

Programming Notes

The OR'ing of eight bits from the general register with the designated
instruction permits indirect length, index, mask, immediate data, and
arithmetic-register specification.

If the subject instruction is a successful branch, the length code still
stands at 2.

An addressing or specification exception may be caused by EXECUTE or by
the subject instruction.

-90-

7935402

‘ Supplement to Paragraph 7.4.6 Programming Notes ~ Page 90

The target instruction of execute cannot specify general register @ as

a base register unless the register is first initialized to a desired
value. (Normally, when general register ¢ is specified as a base register,
the hardware substitutes all zeros rather than use the actual contents

of the register.)

90A

-

. R b
NP> Y S ORGP RN D DU VI 4y

PRV SR

7.4.6.1 Execute Exceptions

Exceptional operand designations and subject-instruction operation code
specifying EXECUTE cause a program interruption. When the interruption
occurs, the current PSW is stored as an old PSW, and a new PSW is ob-
tained. The interruption code in the old PSW identifies the cause.
Exceptions that cause a program interruption in the use of EXECUTE are:

Execute

An EXECUTE instruction has as its subject instruction another EXECUTE.

Addressing

The branch address of EXECUTE designates an instruction-halfword location
outeide the available storage for the particular installation.

Specification

The branch address of EXECUTE is odd.

These four exccptions occur only for EXECUTE. The instruction is sup-
pressed. Therefore, the condition code and data in registers and storage

~ remain unchanged.

Exceptions arising for the subject instruction of EXECUTE are the same

as would have arisen had the subject instruction been in the normal
instruction stream. However, the instruction address stored in the old
PSW is the address of the instruction following EXECUTE. Similarly,

the instruction-length code in the old PSW is the instruction-length code
(2) of EXECUIE,

The address restrictions do not apply to the components from which an
address is generated - the content of the D; field and the content of
the register specified by Bj.

Programming Note

An unavailable or odd branch address of a successful branch is detected
during the execution of the mnext instruction and not as part of the
branch.

91

i ad

E R SN

e e v

ORGSO R

JRRTOPE, PN N

SECTION VIII1

. STATUS SWITCHING

A set of operations is provided to switch the status of the CPU, of storage,
and of communication between systems.

The over-all CPU status is determined by several program-state alternatives,
each of which can be changed independently to its opposite and most of which
are indicated by a bit in the program status word (PSW). The CPU status is
further defined by the instruction address, the condition code, the instruc-
tion-length code, the storage-protection key, and the interruption code.
These all occupy fields in the PSW.

Protection of main storage is achieved by matching a key in storage with a
protection key in the PSW or in a channel. The protection status of storage
may be changed by introducing new storage keys, using SET STORAGE KEY. The
storage keys may be inspected by using INSERT STORAGE KEY.)

Facilities are provided whereby a system formed by CPU, storage, and 1/0 can
communicate with other systems. The instruction READ DIRECT make signals
available to the CPU; WRITE DIRECT provides signals to other systems.

All status-switching instructions, other than those of the protection feature
or direct control feature, are provided in the standard instruction set.

8.1 PROGRAM STATES

The four types of program-state alternatives, which determine the overall
CPU status, are named Problem/Supervisor, Wait/Running, Masked/Interruptible,
and Stopped/Operating. These states differ in the way they affect the CPU
functions and in the way their status is indicated and switched. The masked
states have several alternatives; all other states have only one alternative.

All program states are independent of each other in their function, indication,
and status switching., Status switching does not affect the contents of the
arithmetic registers or the execution of I/0 operations but may affect the
timer operation.

8.1.1 PROBLEM STATE

The choice between supervisor and problem state determines whether the full
set of instructions is valid. The names of these states reflect their normal
use. : :

In the problem state all I/0, protection, and clock set instructions are
invalid, as well as LOAD PSW, SET SYSTEM MASK, and DIAGNOSE. These are called
privileged instructions. A privileged instruction encountered in the problem
state constitutes a privileged-operation exception and causes a program inter-
ruption. In the supervisor state all instructions are valid.

-92~ ‘

e el

When bit 15 of the PSW is zero, the CPU is in the supervisor state, When

bit 15 is one, the CPU is in the problem state. The supervisor state is
not indicatcd on the operator section of the system control panel.

The CPU is switched between problem and supervisor state by changing bit 15
of the PSW. This bit can be changed only by introducing a new PSW, Thus
status switching may be performed by LOAD PSW, using a new PSW with the
desired valuc for bit 15. Since LOAD PSW is a privileged instruction, the’
CPU must be in the supervisor state prior to the switch. A new PSW is also
introduced when the CPU is interrupted. The SUPERVISOR CALL causes an
interruption and thus may change the CPU state. Similarly, initial program
loading introduces a new PSW and with it a new CPU state. The new PSW may
introduce the problem or supervisor state regardless of the preceding state.
No explicit operator control is provided for changing the supervisor state.

Timer incrementing/decrementing is not affected by the choice between supervisor
and problem state. :

Programming Note

To allow return from an interruption-handling routine to a preceding program
by a LOAD PSW, the PSW for the interruption routine should specify the
supervisor state.

8.1.2 WAIT STATE

In the wait state no instructions are processed, and storage is not addressed
repeatedly for this purpose, whereas in the running state, instruction fetching
and execution proceed in the normal manner.

When bit 14 of the PSW is one, the CPU is waiting. When bit 14 is zero, the
CPU is in the running state.

The CPU is switched betwecen wait and running state by changing bit 14 of the
PSW. This bit can be changed only by introducing an entire new PSW, as is

the case with the problem-state bit. Thus, switching from the running state
may be achicved by the privileged instruction LOAD PSW, by an interruption such
as for SUPERVISOR CALL, or by initial program loading. Switching from the
wait state may be achieved by an I/0 or external interruption or, again by
initial program loading. The new PSW may introduce the wait or running

state regardless of the preceding state. No explicit operator control is
provided for changing the wait state.

Timer incrementing/decrementing is not affected by the choice between running
and wait state.

Programming Note

To leave the wait state without manual intervention, the CPU should remain
interruptible for some active I/0 or external interruption source.

-03-

e A o

o L

it W et e

J U

B
1
Fl .

When: becauce of machine malfunction the CPU is unable to end an instruction
or I/0 interrupts are disabled, the stop key is not effective, and initial
program loading or system reset should be used. » :

Input/output operations continue to completion while the CPU is in the problem,
wait, or masked state. lowever, no new L/0 operations can be initiated while ;he
CPU is stopped, waiting, or in the problem state. Also, the interruption

caused by I/0 completion is lost when the CPU is in the stopped state.

8.2 PROTECTION

Protection is provided to protect the contents of certain areas of main stor-
age from destruction {or misuse) caused by erroneous storing of information
during the execution of a program. Locations may be protected against store’

violations.-
8.2.1 AREA IDENTIFICATION

For protection purposes, main storage is divided into blocks of 1024 bytes,
each block having an address that is a multiple of 1024.

8.2.2 PROTECTION ACTION

A 2 bit key is associated with each block of storage for protection from the
CPU and DMA.

8.3 PROGRAM STATUS WORD

The PSW contains all information not contained in storage or registers but
required for proper program exccution. By storing the PSW, the program
can preserve the detailed status of the CPU for subsequent insepction., By
loading a new PSW or part of a PSW, the state of the CPU may be changed.

In certain circumstances all of the PSW is stored or loaded; in others,
only part of it. The entire PSW is stored, and a new PSW is introduced
when the CPU is interrupted. The rightmost 32 bits are stored in BRANCH
AND LINK. The LOAD PSW introduces a ncw PSW; SET PROGRAM mask introduces .
a new condition code and program-mask field in the PSW; SET SYSTEM MASK

introduces a new system-mask field.
The PSW has the following format:

Program Status Word

Syétem Mask i Unused AMWP) Interruntion Code

0 78 12 1516 3
P

ILCicce N{fﬁ:am Unused tnstruction Address

32 33343536 39 40 47 48 : 63

The following is a summary of the purposes of the PSW fields:

LA I

e Mol DFOL e o L

;!
‘ ‘l'

System Mask

Bits O-7 of the PSW are associated with I/0 channels and external signals
as specified in the following table. When a mask bit is one, the source

" can interrupt the CPU., When a mask bit is zero, the corresponding source

can not interrupt the CPU, and interruptions remain pending.

SYSTEM
MASK BIT INTERRUPTION SOURCE

1/0
Unused
Unused
Unused
Unused
Unused
Unused
Timer

~SNSounmestlboNne o

Bits 8~11 of the PSW must be zero when léaded; otherwise, a specification
exception is recognized when an attempt is made to execute the instruction
designated by the PSW. The protection key is stored unchanged.

ASCII(A)

When bit 12 of the PSW 1s one, the codes preferred for the USASCII-8 code are
generated for decimal results. When PSW bit 12 is zero, the codes preferred
for the extended binary-coded-decimal interchange code are generated.

The following instructions cause either the sign or zone code to be generated
in accordance with the setting of PSW bit 12: CVD, UNPK.

Machine-Check Mask (M)

When bit 13 of the PSW is one, detection of a machine-check condition causes
a machine-check interruption. When bit 13 of the PSW is zero, the CPU is
disabled for machine-check interruptions; when a machine check occurs, the
machine enters a hard stop.

Wait State (W)

When bit 14 of the PSW is one, the CPU is in the wait state. When PSW bit
14 is zero, the CPU is in the running state.

Problem State (P)

When bit 15 of the PSW is one, the CPU is in the problem state. When PSW
bit 15 is zero, the CPU is in the supervisor state.

]

i
:
]
1
[

L i ke

P

o 2 i =

i anmiBiner oo e

-

PRy W

Interruption Code

Bits 16-31 of the PSW identify the cause of an interruption. Use of the
code for all five interruption typecs Is shown in a table appearing in
Section IX, "Interruptions'. ‘

Instruction Length Code (ILC)

The code in PSW bits -32 and 33 indicates the length, in halfwords, of the
last-interpreted instruction when a program or supervisor-call interruption
occurs. The code is unpredictable for I/0, external, or machine-check
interruptions. Encoding of these bits is summarized in a table appearing
in Section IX, "Interruptions'.

Cendition Code (CC)

Bits 34 and 35 of the PSW are the two bits of the condition code. The condi-
tion codes for all instructions are summarized in a table appearing in Section
VII, "Branching".

Program Mask

‘Bits 36-39 of the PSW are the four program mask bits. Each bit is associated

with a program exception, as specified in the following table. When the mask
bit is one, the exception results in an interruption. When the mask bit is
zero, no interruption occurs.

PROGRAM

MASK BIT PROGRRAM EXCEPTION
36 Fixed-point overflow
37 Unused
38 ‘Unused
39 » Unused

Instruction Address

Bits 44-63 of the PSW are the instruction address. This address specifies
the leftmost eight-bit byte position of the next instruction. Bit 63 must
be zero when loaded; otherwise, a specification exception is recognized
when an attempt is made to execute the instruction designated by the PSW.

8.4 INSTRUCTION FORMAT

Status-switching instructions use the following two formats:
RR Format :

Op Code l R]] R2]

0 78 11912 13

$! Format

Op Code I lz T B] I D]

[rs . R ERT) 1920 n

-96-

o~

N Al

In the RR format, the R field specifies a general register, except for SUPER-
VISOR CALL. The R; ficld specifies a general register in SET STORAGE KEY

and INSERT STORAGE KEY. The Ry and Ry fields in SUPERVISOR CALL contain an
identification code. In SET PROGRAM MASK THE Ry field is ignored.

In the SI format the eight-bit immediate field (I2) of the instruction con-
tains an identification code. The I2 field is ignored in LOAD PSW, SET
SYSTEM MASK, and TEST AND SET. The content of the general register speci-
fied by B) is added to the content of D] field to form an address designating
the location of an operand in storage. Only one operand location is re-
quired in status-switching operations.

A zero in the By field indicates the absence of the corresponding address
component.

NOTE:

In the detailed descriptions of the individual instructions, the
mnemonic and the symbolic operand designation for the NSSC-II assembly
language are shown with each instruction. For LOAD PSW, for

example, LPSW is the mnemonic and Dj(B1) the operand designation.

8.5 INSTRUCTIONS

The status-switching instructions and their mnemonics, formats, and opera-
tion codes follow. The table also indicates the feature which an in-
struction belongs and the exceptions in instruction and operand desig-
nation that cause a program interruption.

NAME MNEMONIC TYPE EXCEPTIONS CODE
Load PSW LPSW SI L M,A,S 82
Set Program Mask SPM RR L ' 04
Set System Mask SsM SI M,A 80
Supervisor Call svC RR OA
Set Storage Key SSK RR Z M,A,S 08
Diagnose - S1 M,P,A,S 83
Test and Set TS SI C P,A 93
NOTES

Addressing exception
Condition code is set

New condition code loaded
Privileged-operation exception
Protection exception
Specification exception

NYXTO D>

b v e, Kot N B+ 1. 0 3 b ons i e

A e

PRSI S

PIT RV

£

v

o e B L e AR T T e

Programming Note

The program status is also switched by interruptions, initial program
loading, and manual control.

8.5.1 LOAD PSW

Lsw o8, (5]

(T e P77 "]| % J

' 70 X0 (X)) »

The double word at the location designated by the operand address replaces
the PSW.

The operand address must have its three low-order bits zero to designate
& double word; otherwise, a specification exception results in a program
interruption.

The double word which is loaded becomes the PSW for the next sequence of
instructions. Bits 8-11 become the new protection key. Bits 48~63 of

the double word become the new instruction address. Only bits 8~11 of the
PSW are checked for program interruptions during the load-PSW operation.
Other checks occur as part of the execution of the next instructions.

The interruption code in bit positions 16~31 of the new PSW is not retained
as the PSW is loaded. When the PSW is subsequently stored because of an
interruption, these bit positions contain a new code, Similarly, bits 32
and 33 of the PSW arc not retained upon loading. They will contain the
instruction-length code for the last-interpreted instruction when the PSW
is stored during a branch-and-link operation or during a program or
supervisor-call interruption.

Condition Code: The code is set according to bits 34 and 35 of
the new PSW loaded.

Progfam Interruptions:

Privileged operation
Addressing
Specification

Programming Note

The CPU enters the problem state when LOAD PSW loads a double word with a
one in bit position 15 and similarly enters the wait state if bit position
14 is one. The LOAD PSW is the only instruction available for entering
the problem state or the wait state.

-98-

b e b

8.5.2 BSET PROGRAM MASK
M R, [rR]

04 R
[) 78 "ne 1

Bits 2-7 of the general register specified by the R; field replace the
condition code and the program mask bits of the current PSW.

Bits 0, 1, and 8-31 of the register specified by the R; field are ignored.

The contents of the register specified by the Ry field remain unchanged.

The instruction permits setting of the condition code and the mask bits
in either the problem or supervisor state.

Condition Code: The code is set according to bits 2 and 3
' of the register specified by Rl.

Program Interruptions:
None

Programming Note

Bits 2-7 of the general register may have been loaded from the PSW by
BRANCH AND LINK.
8.5.3 SET SYSTEM MASK

SSM D8, (s

(= w7 "] =)

13 1920 n

The byte at the location designated by the operand address replaces the
system mask bits of the current PSW.

Condition Code: The code remains unchanged.
Program Interruptions:

Privileged operation
Addressing

8.5.4 SUPERVISOR CALL

sve | [RR]

0A a

SRPUF VRSP RRERY F P S W

The instruction causes a supervisor-call interruption, with the I field
of ‘the instruction providing the interruption code.

The contents of bit positions 8-15 of the instruction are placed in bit
positions 24-31 of the old PSW which is stored in the course of the inter-
ruption. Bit positions 16-23 of the old PSW arc made zero. The old PSW
is stored at location 32, and a new PSW is obtained from location 96. The
instruction is valid in both problem and supervisor statc.

Condition Code: The code remains unchanged in the old PSW.
Program Interruptions:
None

8.5.5 SET STORAGE KEY
SSK R, R, [RR}

e [515]

] 7e 12 13

. The key of the storage block addressed by the register designated by R2

is set according to the key in the register designated by Rj.

The storage block of 1024 bytcs, located on a multiple of the block length,
is addressed by bits 12-21 of the register designated by the Ry field.
Bits 0-15 and 22-31 of this register are ignored.

The two bit key is obtained from bits 30 and 31 ef the register designated
by the Rj field. Bits O through 29 of this register are ignored. Bit 30 =

protects against CPU and buffered I1/0 storing, and bit 31 = 1 protects against

DMA storing.
Condition Code: The code remains unchanged;
ProgramAInterruptions:
Privileged operation

Addressing
Specification

8.5.6 TEST AND SET

TS D,(B,) (5]

(w777] 0, |

78 ., 1516 iv 20 N

The leftmost bit (blt position 0) of the byto located at the first operand
address is used to set the condition code, and the entire addressed byte

is set to all ones.

-100-

- .
I e e va - -

The byte in storage is set to all oncs as it is fetched for the testing
of bit positien 0. No other access to this location is permitted betwcen
the moment of fetching and the moment of storing all ones.

The operation is terminated on any
code setting 1s unpredictable when

Resulting Condition Code:

Leftmost Eit of byte
Leftmost bit of byte

WO

Program Interruptions:

Protection
Addressing

Programming Note

protection violation. The condition-
a protection violation occurs.

specified is zero
‘specified is one

TEST AND SET can be used for controlled sharing of a common storage area
by more than one program. To accomplish this, bit position 0 of a byte
must be designated as the control bit.
achieved by establishing a program convention in which a zero in the bit
position indicates that the common area is available but a cne means that
the area is being used. Each using program then must exanine this byte
by means of TEST AND SET before making access to the common area. If

the test sets the condition code to zero, the area is available for use;

if it sets the condition code to one,

The desired interlock can be

P

the area cannot be used. Because

TEST AND SET permits no access to the test byte between the moment of
fetching (for testing) and the moment of storing all ones (setting),
the possibility is eliminated of a second program's testing the byte

before the first program is able to reset it.

8.5.7 START INPUT OUTPUT

1le) R1,R3, 02(82) [RS)

AS R

1 R 82

The SIO instruction is used to issue one of the four (4) 16-bit command

words as shown below.

00000 | 111 COMMAND

0 a5 78 5
00000 | 000 [COMMAND

0 45 74 15

DIRECT OUTPUT (WRITE DIRECT)

DIRECT INPUT (READ DIRECT)

e

P A = WP

PR

et

Lo

e TP ¥

v e B R AT i & w87 R

i R e

R IRV -V

00000 | o011 X X X X X X X X RESET INTERFACE (HALT I/0)

0 45 78 15

00000 110 XXX XXXXX
> as 78 16

TEST INTERFACE

The least significant bits of the command (9-15) are the device address
and function. The most significant bit of the command (bit 8) shall be
a one (1) for a non-tester I/0 function and zero (0) for a Tester
function.

The SIO Instruction is also used to send or receive a 16-bit data word
to/from an 1/0 device in conjunction with the command word (such as a
write character to the typewriter).

The command word is placed at the Effective Address (EA); R must contain
any output word and any input word will be placed in Rj during the instruc-
tion operation,

The least significant 16 bits of Rj will be made available to the I/0
interface after a direct INPUT/OUTPUT command is transmitted.

Similarly, the least siﬁnificant bits of the R3 will be replaced by
the I/0 input word after a direct INPUT/OUTPUT command is transmitted.

If the I/0 interface is busy the condition code is set to one and the
ingtruction terminates without performing the I/O operation.

On a test interface, the command i1s transmitted and the condition code
is set without any attempt to exchange data; Rj and Ry are ignored.

Condition Codes:

0 Interface Not Busy
1l 1Interface Busy

Program interruptions:
Addressing

Specification
Privileged operation

~102-

P U W S

PO AR

— —

I T

PR)

Programming Note

Both Rj and Rj3 must be designated on all Direct Input or Output functions.

8.5.8 TIMER READ AND SET

TMRS R, Ry, D,(8,) (RS]

Al R

1 R3 8, D

The R; field {s used as an extension of the opcode to allow multiple
functions of this instruction as shown below:

1. Ri1 = 0000 Read the Real Time Clock

2. Rl = 0010 Read and Set the Real Time Clock
3. Rl = 0001 Read the Interval Timer

4, R1 = 0011 Read and Set the Interval Clock

The Real Time Clock (or the Interval Timer) is read into the register
designated by R,.

The Real Time Clock is comprised of 32 bits and increments by one every
112,64 usec. The period of the Real Time Clock is approximately 5.6 days.
No interrupt is taken when the clock overflows.

The Interval Timer is comprised of 16 bits and decrements by one every
112.64 upsec. The Interval Timer has a period of approximately 7.38 seconds.
An interrupt is taken when the clock decrements beyond zero if PSW bit 7

is set to one. If PSW bit 7 is set to zero, the timer interrupt will remain
pending. When the Interval Timer is read, it will be placed into bits 16-31
of the register designated by Rj and bits 0-15 will be set to zero.

When the Real Time Clock is to be set, the effective address (By+Dj)
must designate a fullword (32 bit) memory location, which contains the

number to be set into the clock. When the Interval Timer is to be set,
the effective address (B,+D;) must designate a halfword (16 bit) memory
location which contains the number to be set into the Interval Timer.

Condition Code: The code remains unchanged.
Program Interruptions:
Addressing

Specification
Privileged operation (only 2 and 4 above)

-103-

o

Programming Note

The contents of the register designated by R3 will always be replaced by
the current contents of either the clock or the timer even if R3 1s zero.

8.5.9 DIAGNOSE

° 78 1516 1920 k1]

The purpose of the DIAGNOSE instruction is to execute self test and/or
special purpose microprograms that may be developed from the NSSC-II,

The Bl and D1 fields are added together to compute an effective address. The
NSSC~II microprogram branches to that address in the NSSC-II microprogram con-
trol storage and executes the microprogram routine that begins at that address.

The purpose of the I field may be defined in any way by the microprogram.
The microprogram may affect any part of or all of the PSW, the program
counter; the problem status, supervisor status, and interruptible status

of the CPU, the condition code, and the contents of storage, registers, and
timers, as well as the progress of I/0 operationms.

Since the instruction is not intended for problem=-program or supervisor-
program use, DIAGNOSE has no mnemonic.

Condition Code: The code is unpredictable.
Program Interruptions:

Privileged operation

Protection

Specification

Addressging

8.6 STATUS-SWITCHING EXCEPTIONS

Exceptional instructions, operand designations, or data cause a program
interruption. When the interruption occurs, the current PSW is stored

as an old PSW, and a new PSW is obtained. The interruption code inserted
in the old PSW identifies the cause of the interruption. The following
exception conditions cause a program interruption in status-switching
operations. _ :

Privileged Operation

A LOAD PSW, SET SYSTEM MASK, SET STORAGE KEY, TMRS (Set only), or DIAGNOSE
is encountered while the CPU is in the problem state.

~104- .

TG S Ly PV VA VPR SO AR VS

[T

L e i e o e o

ot

Addresgsing

An address designates a location outside the available storage for the
installation. The operation is terminated.

Specification

The operand address of a LOAD PSW does not have all three low-order bits
zero; a PSW with a nonzero bits 8-11 is introduced.

When an instruction is suppressed, storage and external signals remain
unchanged, and the PSW is not changed by information from storage.

When an interruption is taken, the instruction address stored as part of
the old PSW has been updated by the number of halfwords indicated by the
instruction-length code in the old PSW.

Operand addresses are tested only when used to address storage. The
address restrictions do not apply to the components from which an address
is generated: the content of the D field and the content of the register
specified by By.

Programming Notes

When a program interruption occurs, the current PSW is stored in the old
PSW location. The instruction address stored as part of this old PSW is
thus the updated instruction address, having been updated by the number
of halfwords indicated in the instruction-length code of the same PSW.

If the new PSW for a program interruption has an unacceptable instruction
address, another program interruption occurs. Since this second program
interruption introduces the same unacceptable instruction address, a
string of program interruptions is established which may be broken only
by an external or I/0 interruption. If these interruptions also have an
unacceptable new PSW, new supervisor information must be introduced by
initial program loading or by manual intervention.

-105-

,_ SECTION X
IWL‘ERRUPTION

1

-,,.4

of " condltlons external to.the system, in 1/0 un1§$; qr‘ln the.CPu ﬁtself
the fiVe classes ef these condigxops are 1npurlautgut grogramﬁ,snper~
: ' Lion .

P;oce351ng reqymes in the state 1nd1cated by the new PSW The .new PSW
:ds not checke&"for programming errors when it hecomes the current Psw.

These checks are made when the next instruction is executed The<01&‘

'PSW contains: the address of’the 1nstruct10n that would have been- “exe~

cuted next if an interruption had not occurred and the;lnstructlon—i“:'
‘length code of the last-1nterpreted 1nstruction. . :

Interruptions are taken only when. the' CPU is 1nterrupt1ble for the
interruption’ squrce.‘ Input/output and external 1nterrupt10ns may’ be
_masked by the system mask; one of the 9 program;inte:ruptions may be

e

\

: An 1nterrupt10n always takes place after omne iﬂscrpction 1nterpretation
‘is finished and before a new instruction 1nterpre:atlon is started. How-
ever, the occufrence of an interruptlon may affect the execution of the,
.current 1nstruqtzon. - To permit proper programmed action fo]low1ng an
1interruptlon, ‘the ‘cause of.the’ 1nterruption is ‘id¢ntified and- prov;sxon 5
4*&5 made to 1ocate the last—interpreted instrucflnn.i : :

The details of instruction execution, source 1dent1f1cation, aﬁd location
" determinatlon are explained in later sections.. . S i

-Programm;ng Noué

A pendlng interruptlon will be taken even if the CPU becames intérrugﬁible
'-‘durlng onlyyonefanstructlon. CoT

g

i

JECR g e

"=106-

}Sllppl CRSUd
supprossod

00000000«@00001

woooucm mam ¥

lxxed—y 1«

g va &c H

rluatxng—
dzvid;s
e

%unervxﬁnr_barl {uld qu ﬁa,Anpw PSM 9

3
L
2,
B

0 ﬁ{‘bfﬁ T it~gn

”&epeadenl cod ‘bits
of memhryadepen&bwt

pdr&t
SBits of R1 and R2 f;eld
Unpredictable NP

3

ct}oﬁiis finished and"the
in which the preceding o

ed.

Curs when‘the precedlng instru
‘The mannexr,
fluenced by the cause of the inCe«rup—
have been completed termlnated 9T

'An 1nterruption o¢
next 1nstructldn is not 'yet, start
nstructicn is finished may‘be 1n
The instrucuion is saaﬂ

B RN e Ay T

n v e e E

In the case of instruction completion, results are stored and the condi-
tion code is set as for normal instruction operation, although the result
may be influenced by the exception which has occurred.

" In the case of instruction termination, all, part, or none of the result

may be stored. Therefore, the result data are unpredictable. The set-
ting of the condition code, if called for, may also be unpredictable.
In general, the results should not be used for further computation.

In the case of instruction suppression, the execution proceeds as if no
operation were specified. Results are not stored, and the condition
code is not changed.

9.1.2 SOURCE IDENTIFICATION

The five classes of interruptions are distinguished by the storage loca-
tions in which the old PSW is stored and from which the new PSW is
fetched. The detailed causes are further distinguished by the inter-
ruption code of the old PSW, except for the machine~check interruption.
The bits of the interruption code are numbered 16-31, according to their
position in the PSW,

For machine-check interruptions, additional information is provided by
the diagnostic procedure, which is part of the interruption.

The following table lists the permanently allocated main-storage loca-
tions.

ADDRESS LENGTH PURPOSE

0 0000 0000 Double Word Initial program loading PSW
8 0000 1000 Double Word Unused

16 0001 0000 Double Word Unused

24 0001 1000 Docuble Word External old PSW

32 0010 0000 Double Word Supervisor call old PSW

40 0010 1000 Double Word Program old PSW

48 0011 0000 Double Word Machine old PSW

56 0011 1000 Double Word Input/output old PSW

64 0100 0000 Double Word Buffered I/0 status word

72 0100 1000 Word Channel address word

76 0100 1100 Word Unused

80 0101 0000 Word Unused

84 0101 0100 Word Unused

88 0101 1000 Double Word External new PSW

96 0110 0000 Double Word Supervisor call new PSW
104 0110 1000 Double Word Program new PSW
112 0111 0000 Double Word Machine-check new PSW
120 0111 1000 Double Word Input/output new PSW
128 1000 0000 Word Unused

-107~

9.1.3 LOCATION DETERMINATION

For some interruptions, it is desirable to locate the instruction being
interpreted when the interruption occurred. Since the instruction address
in the old PSW designates the instruction to be executed next, it is
necessary to know the length of the preceding instruction. This length

" is recorded in bit positions 32 and 33 of the PSW as the instruction-

length code.

The instruction-length code is predictable only for program and super-
visor-call interruptions. For I/0 and external interruptions, the inter-
ruption is not caused by the last-interpreted instruction, and the code
is not predictable for these instructions. For machine-check interrup-
tions, the setting of the code may be affected by the malfunction and,
therefore, is unpredictable.

For the supervisor-call interruption, the instruction-length code is 1,
indicating the halfword length of SUPERVISOR CALL. For program inter-
ruptions, the codes 1, 2, and 3 indicate the instruction length in half-
words. The following table shows the states of the instruction-length
code. :

INSTRUC-
PSW BITS TION INSTRUCTION
ILC 32-33 . BITS 0-1 LENGTH FORMAT
1 0l 00 One halfword RR
2 10 01 Two halfwords RX
2 10 10 Two halfwords RS or SI
3 11 11 Three halfwords SS

Programming Notes

When a program interruption is due to incorrect branch address, the
location determined from the instruction address and instruction-length

code is the branch address and not the location of the branch instruc-
tion.

When an interruption occurs while the CPU is in the wait state, the
instruction-length code is always unpredictable.

The Instruction EXECUTE represents upon interruption an instruction-
length code which does not reflect the length of the instruction executed,
but is 2, the length of EXECUTE,

9.2 INPUT/OUTPUT INTERRUPTION

The I/0 interruption provides a means by which the CPU responds to signals
from I/0 devices.

f108-

A request for an I/0 interruption may occur at any time, and more than one
request may occur at the same time. The roqucsfs arc preserved in the
I/0 section until accepted by the CPU. Priority is established among
requests so that only cone interruption request is processed at a time.

An I/0 interruption can occur only after exccution of the current instruc-
tion is completed and while the CPU is interruptible for I/0. 1I/0 inter-
rupts are masked by system mask bit O, Interruptions masked off remain
pending.

The I/0 interruption causes the old PSW to be stored at location 56.
Subsequently, a new PSW is loaded f{rom location 120.

The interruption code in the old PSW identifiecs the device and status
causing the interruption. The old PSW will contain the device dependent

data., The instruction-length code is unpredictable.

9.3 PROGRAM INTLRRUPTION

Excepticns resulting from improper specification or use of instructions
and data cause a program interruption,

The current instructiocn is completed, terminated, or suppressed. Only
one program interruption occurs for a given instruction and is identified
in the old PSW. The occurrence of a propram interruption does not pre-
clude the simultancous occurrence of other program-interruption causes.
Which of several causes is identificd may vary from one occasion to the

next.

A program interruption can occur only when the corresponding mask bit,

if any, is one. When the mask bit is zero, the interruption is ignored.
Program interruptions do not remain pending. Program mask bit 36 permits
masking of one of the 9 interruption causes.

The program interruption causes the old PSW to be stored at location 40
and a new PSW to be fetched from location 104,

The cause of the interruption is identified by the four low-order bit
positions in the interruption code, PSw bits 28-31. The remainder of

the interruption code, bits 16-27 of the PSW, are made zero. The instruc-
tion-length code indicates the length of the preceding instruction in half-
words. TFor a few cases, the instruction length is not available. These

cases are indicated by code O.

If the new PSW for a program interruption has an unacceptable instruction
address, another program interruption occurs. Since this second program
interruption introduces the same unacceptable instruction address, a
string of program interruptions is established which may be broken only
by ‘an external or I/0 interruption. If thesc interruptions also have an
unacceptable new PSW, new supervisor information must be introduccd by
initial program loading or by manual intervention.

~109-

A description of the individual program exceptions follows. The applica-
tion of these rules to each class of instructions is further described in
the applicable sections. Some of the exceptions listed may also occur in
operations executed by I/0 channels. In that event, the exception is in-
dicated in the channel status word stored with the I/O interruption (as
explained in paragraph 3.7.4, "Input/Output Operations').

~9.3.1 OPERATION EXCEPTION

When an operation code is not assigned or the assigned operation is not
available on the particular model, an operation exception is recognized.
The operation is suppressed.

The instruction-length code is 1, 2, or 3.

9.3.2 PRIVILEGED-OPERATION EXCEPTION

When a privileged instruction is encountered in the problem state, a
privileged-operation exception is recognized. The operation is suppressed.

The instruction-length code is 1 or 2.
9.3.3 EXECUTE EXCEPTION

When the subject instruction of EXECUTE is another EXECUTE, an execute
exception is recognized. The operation is suppressed.

The instruction-length code is 2.
9.3.4 PROTECTION EXCEPTION

When an instruction tries to store into a protected location a protection
exception is recognized.

The operation is suppressed on a store violation, except in the case of
STORE MULTIPLE, TEST AND SET, and variable-~length operations, which are

terminated.

The instruction-length code is 0, 2, »r 3.

9.3.5 ADDRESSING EXCEPTION

When an address specifies any part of data, an instruction, or a control
word outside the available storage for the particular installation, an
addressing exception is recognized.

In most cases, the operation is terminated for an invalid data address.
Data in storage remain unchanged, except when designated by valid addresses.

In a few cases, an involved data address causes the instruction to be
suppressed - AND (NI), EXCLUSIVE OR (XI), OR (OI), MOVE (MVI), CONVERT

-110-~

TO DECIMAL, DIAGNOSE, EXECUTE, and certain store operations (ST, SIC,
and STH). The operation is suppressed for an invalid instruction address.

The instruction-length code normally is 1, 2, or 3, but may be 0 in the
case of a data address.

9.3.6 SPECIFICATION EXCEPTION
A specification exception is recognized when:

1. A data, instruction, or control-word address does not specify
an integral boundary for the unit of informatiom.

2. The Rj field of an instruction specifies an odd register
address for a pair of general registers that contains a
64-bit operand.

3. A PSW with nonzero bits 8-11 1s encountered.
The operation is suppressed. The instruction-length code is 1, 2, or 3.
9.3.7 DATA EXCEPTION
A data exception is recognized when:

1. The sign or digit code of operands editing operations or in
CONVERT TO BINARY are incorrect,

The operation is terminated. The instruction-length code is 2 or 3.
9.3.8 FIXED-POINT~OVERFLOW EXCEPTION

When a high-order carry occurs or high~order significant bits are lost
in fixed~-point add, subtract, shift, or sign-control operations, a

fixed-point-overflow exception is recognized.

The operation is completed by ignoring the information placed outside the
register. The interruption may be masked by PSW bit 36.

The instruction~length code i8'1l or 2.

9.3.9 FIXED-POINT-DIVIDE EXCEPTION

A fixed-point-divide exception is recognized when a quotient exceceds the
register size in fixed-point division, ircluding division by zero, or the
result of CONVERT TO BINARY exceeds 31 bits.

Division 1s suppressed. Conversion is completed by ignoring the informa-
tion placed outside the register.

The instruction-length code 1s 1 or 2,

-111~

9.3.10 EXPONENT-OVERVLOW IEXCEPTION

When the result characteristic in floating-point addition, subtraction,
multiplication, or division exceceds 127 and the result fraction is not
zero, an exponent-overflow exception is rccognized. The operation is
completed. The fraction is normalized, and the sign and fraction of
the result remain correct. The result characteristic is made 128
smaller than the correct characteristic,

The instruction~length code is 1 or 2.

9.3.11 EXPONENT-UNDERFLOW EXCEPTION

When the result characteristic in floating-point addition, subtraction,
multiplication, halving, or division is less than zero and the result

fraction is not zero, an exponent-underflow exception is recognized.
The operation is completed.

The setting of the exponent-underflow mask (PSW bit 38) affects the
results of the operation. When the mask bit is zero, the sign, char-
acteristic, and fraction are set to zero, making the result a true
zero, When the mask bit is one, the fraction is normalized, the
characteristic is made 128 larger than the correct characteristic, and
the sign and fraction remain correct. '

The instruction-length code is 1 or 2,
9.3.12 SIGNIFICANCE EXCEPTION

When the result of a floating-point addition or subtraction has an
all-zero fraction, a significance exception is recognized.

The operation is completed. The interruption may be masked by PSW bit
39. The manner in wuich the operation is completed is determined by
the mask bit,

The instruction-length code is 1 or 2,

9.3.13 [LOATING-POINT-DIVIDE EXCEPTION

When division by a floating-point number with zero fraction is attempted,
a floating-point divide exception is recognized. The operation is

suppressed.

The instruction-length code is 1 or 2,

~111A-

_when system mask bit 0 is one.

9.3.14 BUFFERED I/0 EXCEPTION

If any of the addressing exceptions or parity errvors occur during a Buffered
I/0 operation, an Exception Program Interruption will be generated in the
same manner as any exception. However, the Buffcred I/0 status word (Loc
66-67) will be set non-zero and will contain the address of the Buffered

I/0 word in use at the time the error occurred.

9.3.15 SUPERVISOR-CALL INTLRRUPTION

The supervisor-call interruptiouloccurs as a result of the cxecution of SUPERVI-
SOR CALL

The supervisor-call interruption causes the old PSW to be stored at location
32 and a new PSW to be fetched from location 96.

- The contents of bit positions 8-15 of the SUPERVISOR CALL become bits 24—

31 in the interruption code of the old PSW. PSW bit positions 16-23 in the
old PSW arc made zero. The instruction-length code is 1, indicating the
halfword length of SUPLRVISOR CALL,

Programming Notes

The name ''supervisor call" indicates that one of the major purposes of the
interruption is the switching from problem to supervisor state. This major
purpose does not preclude the use of this interruption for other types of

status switching.

The interruption code may be used to cenvey a message from the calling program
to the supervisor.

When SUPERVISOR CALL is performed as the SUbJeCC instruction of EXECUTE,
the instruction-length code is 2.

9.4 FEXTERNAL INTERRUPTION

The external interruption provides a means by which the CPU responds to signals
from the timer, from the interrupt key, and from external units.

A request for an external interruption may occur at any time, and requests
from diffcrent sources may occur at the same time. Requests are preserved
until honored by the CPU. Each request is prcsented only once. When several
requests from one source arec made before the interruption is taken, only

one interruption occurs.

An external interruption from the interval timer can occur only when system
mask bit 7 is one and after exccution of the current instruction is completed.
An external interruption from the TSI external interrupt key can occur only
The interruption causes the old PSW to be

stored at location 24 and a new PSW to be fetched from location 88.

~-112-

The source of the interruption is identified in bit positions 24-31 of

the old PSW.

The remainder of

the interruption code, PSW bits 16-23,

is made zero. The instruction-length code is unpredictable for external
interruptions. :

9.4.1 TIMER

A timer value changing from positive to negative causes an external inter-
ruption with PSW bit 24 set to one.

9.4.2 INTERRUPT KEY

Pressing the interruptfkey on the operator control section of the TSE
control panel causes an external interruption with PSW bit 25 set to one.

The key is active while power is on.

9.4.3 INTERVAL TIMER

The interval timer is a 16 bit decrementing counter that contains both
hardware and microprogrammed elements.

The interval timer may be read by using the TMRS (opcode A4) instruction
with the R]1 field set to Ol.

with the Rl field set to 03.
absolute value (unsigned integer), that is counted down one bit for each

decrementing pulse.

It may be set by using the TMRS instruction
The interval timer is treated as a 16 bit

The interval timer may be set to any value between Hex 1 to FFFF.

The Real Time Clock is a 32 bit incrementing counter that contains both
microprogrammed and hardware elements.

The Real Time Clock may be read by using the TMRS instruction (opcode A4)
with the R] field set to zero.
tion with the Ry field set to 02.

It may be set by using the TMRS instruc-

Timing Pulse

Occurs Every 110 Usec

Clock Low
Order Bit

Incremented by Timing
Pulse + 10 = 112.64 usec

Interval Timer
Low Order Bit

Decremented by Timing
Pulse + 10 = 112.64 usec

Max Value of

Interval 7.3819

Timer Seconds

(16 bits)

Max Value of Real 5 days 14 hours 23 min.
Time Clock 5.1162 Seconds

(32 bits)

-113-

9.5 MACHINE-CHECK INTERRUPTION

The machine-check interruption provides a means for recovery from and
fault location of machine malfunctiou.

The old PSW is stored at location 48 and the new PSW is fetched from
location 112, Bit 40 of the old PSW will be on and will indicate that
a parity error has occurred. Any recovery procedure should be aware
that bit 40 should not be includec as part of the instruction address.

~114-

SECTION X

SHORT PRECISION OPTION

The short precision instruction set performs binary arithmetic on operands
serving as addresses, index quantities, and counts, as well as fixed-point

-data. In general, both operands are signed and 16 bits long. Negative

quantities are held in two's-complement form. One operand is always in
one of the 16 general registers; the other operand may be in main storage
or in a general register.

The instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, sign control, and shifting of fixed-point operands.

The condition code is set as a result of all sign-control, add, subtract,
compare, and arithmetic shift operations.

10,1 DATA FORMAT

Short precision fixed-point numbers occupy a fixed-length format consisting
of a one-bit sign followed by the integer field consisting of 15 bits.

When held in a general register, a short precision quantity occupies the
rightmost 16 bits (16-31). Unless otherwise stated, the leftmost 16

bits (0-15) are neither tested nor altered. In register-to-register
operations the same register may be specified for both operand locations.

SHORT PRECISION FIXED-POINT NUMBER IN MAIN STORAGE

s INTEGER
01 18

SHORT PRECISION FIXED—POINT NUMBER IN A GENERAL REGISTER

1616 17]|

Short precision data in main storage occupy a 16-bit halfword, with a
binary integer field of 15 bits. These data must be located on integral
storage boundaries for these units of information, that is, halfword
operands must be addressed with the last low-order .address bit set to
zero.,

-115-

In all discussions of fixed-point numbers in this section, the expression
"16-bit signed integer' denotes a 15-bit integer with a sign bit.

10.2 NUMBER REPRESENTATION

All fixed-point operands are treated as signed integers. Positive num-
bers are represented in true binary notation with the sign bit set to
zero. Negative numbers are represented in two's-complement notation
with a one in the sign bit. The two's-complement representation of a
negative number may be considered the sum of the integer part of the
field, taken as a positive number, and the maximum negative number. The
two's-complement of a number is obtained by inverting each bit of the
number and adding a one in the low-order bit position.

This type of number representation can be considered the low-order portion
of an infinitely long representation of the number. When the number is
positive, all bits to the left of the most significant bit of the number,
including the sign bit, are zeros. When the number is negative, all these
bits, including the sign bit, are ones. Therefore, when an operand must
be extended with high-order bits, the expansion is achieved by prefixing

a field in which each bit is set equal to the high-order bit of the oper-
and.

Two's-complement notation does not include a negative zero. It has a num-
ber range in which the set of negative numbers is one larger than the

set of positive numbers. The maximum positive number consists of an
all-one integer field with a sign bit of zero, whercas the maximum nega-
tive number (the negative number with the greatest absolute value) con-~
sists of an all-zero integer field with a one-bit sign.

The CPU cannot represent the complement of the maximum negative number.
When an operation, such as a subtraction from zero, produces the comple-
ment of the maximum negative number, the number remains unchanged, and a
fixed-point overflow exception is recognized. An overflow does not result,
however, when the number is complemented and the final result is within
the representable range. An example of this case is a subtraction from
minus one. The product of two maximum negative numbers is representable

"as a double-length positive number.

The sign bit is leftmost in a number. In an arithmetic operation, a
carry out of the integer field changes the sign. However, in algebraic
left-shifting the sign bit does not change even if significant high-order
bits are shifted out of the integer field.

10.3 CONDITION CODE

The results of fixed-point sign-control, add, subtract, compare, and shift
operations are used to set the condition code in the program status word

-116-

(PSW). All other short precision operations leave this code undisturbed.
The condition code can be used for decision-making by subseqeunt branch-
on-condition instructions.

The condition code can be set to reflect three types of results for short
precision fixed-point arithmetic. For most operations, the states 0, 1,
or 2 indicate a zero, less than zero, or greater than zero content of the
result register, while the state 3 is used when the result overflows.

For a comparison, the states 0, 1, or 2 indicate that the first operand
is equal, low, or high.

CONDITION CODE SETTINGS FOR FIXED-POINT ARITHMETIC

0 1 2 3

Add Half/Short. zero <zero szero overflow
Compare Short equal low high -—
Load and Test zero <Zero >Zero -
Load and Test Short zero <zero >Zero -
Load Complement Short zero <zero >Zero overflow
Load Negative Short zero <zero - -
Load Positive Short zero - >Zero overflow
Normalize zero <zZero >Zero -
Shift Left Short zero <zero >Zero overflow
Shift Right Short zero <zero szero -
Subtract Half/Short zero <zero >zero overflow
Test Bits zero mixed - ones

10.4 INSTRUCTION FORMAT

Fixed-point instructions use the following four formats:

RR FORMAT
OP CODE "Ry R2
0 78 1m2 15
RX FORMAT
OP CODE Ry X9 By D,
0 78 1112 1516 1920 31

-117-

NOTE:

In this document, instructions with halfword second operands

(16 bits) propagate the sign bit to form a 32-bit number before
combining it with a 32-bit first operand. Short operand instruc-
tions differ from halfword operand instructions in that both

short operands are 16 bits in length and only the rightmost 16 bits
of register operands are altered and/or tested. Short operands are
never expanded to 32 bits. (The short operand multiply and divide
instructions work with a 32-bit product, dividend, and quotient.)

10.5 INSTRUCTIONS

The short precision instructions and their mnemonics, formats, and
operation codes are listed in the following table. The table also
indicates when the condition code is set and the exceptional conditions
in operand designations, data, or results that cause a program inter-~
ruption.

NAME MNEMONIC TYPE EXCEPTIONS CODE
Add Halfword Immediate AHI RI C IF BA
Add Short AS RX C A,S IF 53
Add Short Immediate ASI RI C IF AA
Add Short Register ASR RR C IF CA
Branch Unconditional BU RX 73
Branch Unconditional BUR RR CE
Register
Compare Halfword Immediate CHI RI C B9
Compare Logical Short CLS RX C A,S 65
Compare logical Short CLsI RI C BS
Immediate
Compare Logical Short CLSR RR C Cc5
Register
Compare Short Cs RX Cc A,S 61
Compare Short Immediate CsI RI C A9
Compare Short Register CSR RR C Cc9
Divide Short DS RX A,S IK 4D
Divide Short Immediate DSI RI IK BO
Divide Short Register DSR RR IK CcDh
Load Address Short LAS RX 51
Load Complement Short LCSR RR C IF C3
Register
Load Full to Short LFSR RR C IF 0B
Register
Load Halfword Immediate LHI R1 B8

-119-

. NAME MNEMONIC TYPE EXCEPTIONS CODE

Load Halfword Register LHR

RR DO
Load Negative Short LNSR RR C Cl
Register
Load Positive Short LPSR RR C IF co
Register
Load Short LS RX A,S 74
Load Short Immediate LSI RI A8
Load Short Register LSR RR c8
Load and Test LT RX C A,S 62
Load and Test Short LTS RXK C A,S 52
Load and Test Short LTSR RR C Cc2
Register '
Multiply Halfword Immediate MHI RI BC
Multiply Short MS RX A,S 71
Multiply Short Immediate MSI RI B3
Multiply Short Register MSR RR cc
Normalize NRM RR C CF
AND Short NS RX C A,S 64
AND Short Immediate NSI RI C B4
AND Short Register NSR RR C C4
OR Short 0s RX C A,S 66
: OR Short Immediate 0SI RI C A6
. OR Short Register OSR RR C Cé
Shift Left Arithmetic SLAS RS C IF A3
Short
Shift Left Logical Short SLLS RS Al
Shift Right Arithmetic SRAS RS C A2
Short
Shift Right Logical Short SRLS RS AO
Subtract Halfword Immediate SHI RI C IF BB
Subtract Short SS RX C A,S IF 72
Subtract Short Immediate SS1 RI C IF AB
Subtract Short Register SSR RR C IF CB
Test Bits TB RX C A,S 75
Test Bits Immediate TBI RI C AE
Exclusive OR Short Xs RX C A,S 63
Exclusive OR Short XST RI C A7
* Iwmediate
Exclusive OR Short XSR RR C c7?
Register
NOTES:

A Addressing exception

B Condition code is set

IF Fixed-Point overflow exception

IK Fixed-Point divide exception
. S Specification exception

-120-

10.5.1 ADD HALJVWORD

ANt Ryl {R1]

BA R, // I

0 78 112 1516 31

The halfword second operand is added to the first operand and the sum is
placed in the first operand location.

The halfword second operand is expanded to a fullword before the addi-
tion by propagating the sign-bit value through the 16 high~order bit

positions.

Addition is performed by adding all 32 bits of both operands. If the
carry out of the sign-bit position and the carry out of the high-order
numeric bit position agree, the sum is satisfactory; if they disagree, an
overflow occurs. The sign bit is not changed after the overflow. A posi-
tive overflow yields a negative final sum, and a negative overflow results
in a positive sum. The overflow causes a program interruption when the
fixed-point overflow mask bit is one.

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Interruptions:
Fixed-point overflow

10.5.2 ADD SHORT

ASR R, R, RR]
CA R, Ry
0 78 1112 15
AS R,,D,(X,, B,) {RX]
83 R, X, B, D,
) 8 1112 1616 1920 31
Asl Ryl {R1)
CA Ry ,/jj Iy

0 T 1112 1516 31

-121-

The second operand is added to the first operand, and the sum is placed
in the first operand location.

Addition is performed by adding 16 bits of both operands. If the carry
out of the sign-bit position 16 and the carry out of the high~order numeric
bit position 17 agree, the sum is satisfactory; if they disagree, an over-
flow occurs. The sign bit is not chianged after the overflew. A positive
overflow yields a negative final sum, and a negative overflow results in

a positive sum. The overflow causes a program interruption when the
fixed-point overflow mask bit is one.

Resulting Condition Code:

Sum is zero

Sum is less than zero
Sum is greater than zero
Overflow

WO

Program Interruptions:
Addressing (AS only)
Specification (AS only)
Fixed-point overflow

Programming Note

In two'é-complement notation, a zero result is always positive.

10.5.3 BRANCH UNCONDITIONAL \

BUR R, (RR) |
ce // R2
0 78 1112 15 i
|
B8U) oztxz, 82) (RX) 1
Y, .
73 722N D,
0 78 1112 1516 1920 3

The updated instruction address is unconditionally replaced by the branch
address. This instruction is almost functionally equivalent to a Branch
On Condition instruction with a mask of all ones, but this instruction

-122-

executes about 407 faster than the Branch On Condition. Unlike the Branch
On Condition, this instruction will branch when the R2 field in the RR
format contains zero.

Condition Code: The code remains unchanged.

Program Interruptions:

None

Programming Note

The NSSC-II assembler OPSYN statement may be used to force the
extended mnemonics B and BR to generate the Branch Unconditional opcodes.

10.5.4 COMPARE HALFWORD

CHI Ry ly (R1)
B9 Ry Y’ ’ / I2
0 78 1112 1516 31

The first operand is compared with the halfword second operand, and
the result determines the setting of the condition code.

The halfword second operand is expanded to a fullword hefore the com-
parison by propagating the sign-bit value through the 16 high-order bit
positions,

Comparison is algebraic, treating both comparands as 32-bit signed
integers. Operands in registers or storage are not changed.

Resulting Condition Code:

Operands are equal
First operand is low
First operand is high

WO

Program Interruptions:

None

-123~

10.5.5 COMPARE LOGICAL SHORT

CLSR Ry, R, [RR]
cs Ry Ry
) 78 1112 16
CLS R,.D,(X,.B,) (RX)
65 Ry X2 82 D,
) 78 1112 1618 1920 31
CLS! Ry.ly -
85 R, Az/ﬁ/ .
0 78 1112 1616 31

The first operand is compared with the second operand, and the result is \
indicated in the condition code. ’

The instructions allow comparisons that are register to register, storage
to register, and register to instruction.

Comparison is binary, and all codes are valid.
Resulting Condition Code:
Operands are equal

First operand is low
First operand is high

WNH=O

Program Interruptions:

Addressing (CLS only)
Specification (CLS only)

Programming Note

The COMPARE LOGICAL is unique in treating all bits alike as part of an
unsigned binary quantity.

=124~

vt e

10.5.6 COMPARE SHORT

CSR R, R, [RR]

co Ry Ry
0 78 1112 16
CS Ry.Dy(X,.B,) {RX]

61 R, X, By D,y
0 78 1112 15816 1920 31
CS!I Ry, [R1)

!

A9 R, /fkc;; 2

0 78 1112 1516 31

The first operand is compared with the second operand, and the result
determines the setting of the condition code.

Comparison is algebraic, treating both comparands as 16-bit signed
integers. Operands in registers or storage are not changed.

Resulting Condition Code:

Operands are equal
First operand is low
First operand is high

WO

Program Interrbptions:

Addressing (CS only)
Specification (CS only)

-125~ '

10.5.7 DIVIDE SHORT

DSR Ry.R, {RR])

co R, R,
0 78 11 12 16
Ds R1.02(X2.82) (RX]

40 Ry Xy 8, 02
0 78 1112 1616 19 20 a1
DS Ry.1, [RI)

80 Ry 4 '/ '2

0 78 11 12 15 16 31

The dividend (first operand) is divided by the divisor (second operand)
‘ and replaced by the quotient. A remainder is not developed.

The dividend is a 32-bit signed integer and occupies the register
specified by the R, field of the instruction. A 32-bit signed quotient
replaces the dividend. The divisor is a 16-bit signed integer.

The sign of the quotient is determined by the rules of algebra. All
operands and results are treated as signed integers. When the relative
magnitude of dividend and divisor is such that the quotient cannot be
expressed by a 16-bit signed integer, a fixed-point divide exception is
recognized (a program interruption occurs, no division takes place, and
the dividend remains unchanged in the general registers).

Condition Code: The code remains unchanged.
Program Interruptions:
Addressing (DS only)

Specification (DS only)
Fixed-point divide

-126-~ '

Programming Note

Divide short develops a 16-bit signed quotient. The sign bit 1s then
propagated to create the 32-bit signed quotient.

10.5.8 LOAD ADDRESS SHORT

LAS Ry, Dzlxz. 82) {RX]

61 Ry) 82 D,
0 78 1112 1618 1920 31

The address of the second operand is inserted in the low-order 16 bits of
the general register specified by R,. The remaining bits of the general
register are not altered. No storage references for operands take place.

The address specified by the Xz, Bz, and D2 fields is inserted in bits

16-31 of the general register specified by R,. Bits 0-15 are not changed.
The address is not inspected for availability, protection, or resolution,

The address computation follows the rules for address arithmetic. Any
carries beyond the 16th bit are ignored.

Condition Code: The code remains unchanged.
Program Interruptions:
None

Programming Note

The same general register may be specified by Rl’ xz, and B, instruction
field, except that general register O can be specified only by the R
field. In this manner, it is possible to increment the low-order 16
bits of a general register, other than 0, by the contents of the D

field of the instruction. The register to be incremented should be
specified by R, and by either X, (with B, set to zero) or Bz‘(with X,
set to zero).

10.5.9 LOAD COMPLEMENT SHORT

LCSR R,. Ry [RR}

€3 Ry Ry

(1] 78 11 12 15

-127-

The two's-complement of the second operand is placed in the first operand
location. ‘

An overflow condition occurs when the maximum negative number is comple-
mented; the number remains unchanged. The overflow causcs a program in-
terruption when the fixed-point overflow mask bit is one. Only bits
16-31. of both registers participate.

Resulting Condition Code:

Result is zero

Result is less than zero
Result is greater than zero
Overflow

WN= O

Program Interrupticns:
Fixed~point overflow

Programming Note

Zero remains invariant under complementation.

10.5.10 LOAD FULL TO SHORT REGISTER

LFSR R, R, (RR]

o8 R‘ 'RZ
0 78 11 12 15

The second operand is placed in the first operand location; and the
sign and magnitude of the second operand determines the condition code.
The second operand is not changed.

The second operand is a 32-bit signed integer and the first operand is

a 16-bit signed integer. An overflow condition occurs when the second
operand is too large to be contained by the first operand; the left
truncated second operand 1s placed in the first operand location regard-
less of the overflow condition. The overflow causes a program inter-
ruption when the fixed-point overflow mask is omne.

Resulting Condition Code:

0 Result is zero
1l Result is less than zero

~128-

2 Result i3 greater than zero

3 Overflow
Program Interruptions:
Fixed~point overflow

Programming Note

When the same register is specified as first and second operand loca-
tion, the operation is equivalent to a test without data movement.

10.5.11 LOAD HALFWORD

LHRR, R, [RA]

Do Ry | &,
o 78 112 15
LHI R1,|2 (Ri]
74
w |~ V7 2
0 78 1112 1516 N

The halfword second operand is placed in the first operand location,

The halfword second operand is expanded to a fullword by propagating the
sign~bit value through the 16 high-order bit positions. Expansion occurs
after the operand is obtained and before insertion in the register.

Condition Code: The code remains unchanged.

Program Interruptions:
None

10.5.12 LOAD NEGATIVE SHORT

LNSR R, R, [AR]

(4] R’ R?
0 78 1112 15

-129-

The two's-complement of the absolute value of the second operand is
placed in the first operand location. The operation complements posi-
tive numbers; negative numbers remain unchanged. The number zero remains
unchanged with positive sign. Only bits 16-31 of both registers parti-
cipate.

Resulting Condition Code:
Result 1is zero

Result 1s less.than zero

WO

Program Interruptions:
None

10.5.13 LOAD POSITIVE SHORT

WPSR Ry, R, (RRA]

co. R, R2
0 78 1112 16

The absolute value of the second operand is placed in the first operand
location.

The operation includes complementation of negative numbers; positive
numbers remain unchanged. ‘

An overflow condition occurs when the maximum negative number is comple-

mented; the number remains unchanged. The overflow causes a program inter-
ruption when the fixed-point overflow mask bit is one. Only bits 16-31

of both registers participate.
Resulting Condition Code:
0 Regult 1is zero

1
2 Result if greater than zero
3 Overflow

Program Interruptions:

Pixed—point overflow

-130-

10,5.14 LOAD SHORT

0 78 1112 16

L8 Ry, D,(X,,B,) [RX]

LA Ry Xy 8, D,
0 78 1112 1616 1920
LSIR,L, (AI)
A8 Rl /// '2
0 78 1112 1516 31

The second operand is placed in the first operand location. The second
operand is not changed. Only bits 16-31 of the first operand register
are loaded. Bits 0-15 remain unchanged.

Condition Code: The code remains unchanged.

Program Interruptions:

Addressing (LS only)
Specification (LS only)

10.5.15 LOAD AND TEST

LT R,, o,(xz, 82) [RX]

62 R, Xa 8, D,
0 78 1112 1516 1920 31

The second operand is placed in the first operand location, and the sign
and magnitude of the second operand determine the condition code. The
second operand is not changed. Both operands are 32 bits in length.

-1;1_

FENT WY WP

SO S T

Resulting Condition Code:
0 Result is zero

1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:

Addressing
Specification

10.5.16 LOAD AND TEST SHORT

LYSR R,.R, (AR

c2 Ry Ra
0 : 78 1112 15
62 Ry x2 82 oz
0 78 1112 1518 19 20 31

The second operand is placed in the first operand location, and the sign
and magnitude of the second operand determine the condition code. The
second operand is not changed. Only bits 16-31 of R1 are loaded and tested.

Regsulting Condition Code:

Result 1s zero
Result is less than zero
Result is greater than zero

WN O

Program Interruptions:

Addressing (LTS only)
Specification (LTS only)

Programming Note

When LTS is used with the same register specified as first and second
operand location, the operation is equivalent to a test without data
movement,

-132-

10.5.17 MULTIPLY HALFWORD

MHI R,, l2 (RI]

8C) R, // Iy

o 78 11 12 15 16 3

The product of the halfword multiplier (second operand) and multiplicand
(first operand) replaces the multiplicand.

Both multiplicand and product are 32-bit signed integers and may be located
in any general register. The halfword multiplier is expanded to a full-
word before multiplication by propagating the sign~bit value through the

16 high-order bit positions. The multiplicand is replaced by the low-
order part of the product. The bits to the left of the 32 low-order bits
are not tested for significance; no overflow indication is given.

The sign of the product is determined by the rules of algebra from the
multiplier and multiplicand sign, except that a zero result is always
positive.

Condition Code: The code remains unchanged.

Program Interruptions:

None

Programming Note

The significant part of the product usually occupies 46 bits or fewer,
the exception being 47 bits when both operands are maximum nagative.
Since the low-order 32 bits of the product are stored unchanged, ignoring
all bits to the left, the sign bit of the result may differ from the

true sign of the product in the case of overflow.

10.5.18 MULTIPLY SHORT

MSR R, R, IRR)
cc R, R,

0 B 1112 15

MS R,,D,(X,, B,) IRX]
" o R; X, 8, D,

0 78 1112 1618 1920 31

..133..

MSt Ry, 1, (R}

BC R, [/ !

0 K 112 15 16 31

The product of the multiplier (the second operand) and the multiplicand
(the first operand) replaces the multiplicand.

Both multiplier and multiplicand are 16-bit signed integers. The product
is alwvays a 32-bit signed integer. An overflow camnot occur.

The sign of the product is determined by the rules of algebra from the
multiplier and multiplicand sign, except that a zero result is always
positive.

Condition Code: The code remains unchanged.

Program Interruptions:

Addressing (MS only)
Specification (MS only)

Programming Note

The significant part of the product usually occupies 30 bits or fewer.
Only when two maximum negative numbers are multiplied are 31 significant
product bits formed. Since two's-complement notation is used, the sign
bit is extended right until the first significant product digit is
encountered.

10.5.19 NORMALIZE

NRM R, R, (RR)

CF R, R2

0 78 1112 5

The 32 bits in the register specified by R1 are shifted arithmetically left
until bit 0 is not equal to bit 1. The number of shifted bit positions is
then placed into the 32-bit register specified by Rz.

If the first operand is already normalized, no shifting takes place and a

zero is placed into the second operand. If the first operand is all zero,
it 18 considered to be normalized.

-134-

1f the first and second operand are in the sanme register, the first operand

will be normalized and the shift count will bLe lost.
Resulting Condition Code:

Result is zero
Result is necgative
Result is positive

WMo

Program Interruptions:
None

Propramming Note
18]

The maximum shift count for a positive number is 30 and for a negative
number is 31.

10.5.20 AND SHORT

NSR R,,R, (RA)

c4 Ry R,
0 78 112 15
NS R,.D,(X,, B, _ [RX] .

64 n.\ X2 82 02
0 78 1112 1516 19 20 31
NSI R1,l2 (Ri]

B4 %

|77 |

0 78 1112 15716 ’ 3t

The logical product (AND) of the bits of the first and second operand is
placed in the first operand location. DBoth operands are 16 bits in length.

Opecrands are treated as unstructured logical quantities, and the con-
nective AND is'applicd bit by bit. A bit position in the result is set

~135-

Nelnis)

1rey

- ‘ to one if the corresponding bit positions in both operands contain a one;
otherwise, the result bit is set to zero. All operands and results are

t - wvalid.

Resulting Condition Code:

PN

" Result is zero
Result not zero

WO

Program Interruptions:

Addressing (NS only)
Specification (NS only)

Programming Note

The AND may be used to set a bit to zero.

10.5.21 OR SHORT

OSR R,,Rz {RR)

;‘ll’ ce R, Ry
: 0 78 112 15

05 R,.D,(X,8,) (RX]
66 R, Xy B, o,
78 1112 1516 1920 31
OS! Ry, 1y , (RI)
s | M) 2 |
0 7 1113 15 16 31

The logical sum (OR) of the bits of the first and second operand is
placed in the first operand location. Both operands are 16 bits in
length.

~136~-

Operands are trcated as unstructurcd logical quantities, and the connec~
tive inclusive OR is applied bit by bit. A bit position in the result is
set to one if the corresponding bit position in one or both operands con-
tains a one; otherwise, the result bit is set to zero. All operands and
results are valid.

Resulting Condition Code:

Result is zero
Result not zero

WN~O

Program Interruptions:

Addressing (0S only)
Specification (0S only)

Programming Note

The OR may be used to set a bit to one.

10.5.22 SHIFT LEFT ARITHMETIC SHORT

SLAS R,,D,(8,) (RS}
/
A3 R, A B2 0,
0 78 1112 1516 1920 3

The integer part of the first operand is shifted left the number of bits
specified by the second operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder
of the address is ignored.

The sign of the first operand remains unchanged. All 15 integer bits of
the operand participate in the left shift. Zeros are supplied to the
vacated low-order register positioms.

If a bit unlike the sign bit position 16 is shifted out of position 17,
an overflow occurs. The overflow causes a program interruption when
the fixed-point overflow mask bit 1s one.

Resulting Condition Code:

Result 1is zero

Result is less than zero
Result is greater than zero
Overflow

WNH-=O

-137-

Progranm Interrupticns:

' . ‘ Fixed~-point overflow

Propramming Note

214, a left shift of one

For numbers with an absolute value of less than
bit position is equivalent to multiplying the number by 2.

Shift amounts from 15-63. cause the entire integer to be shifted out of
the right half of the register. When the entire integer field for a '
positive number has been shifted out, the half register contains a value
of zero. For a negative number, the half register contains a value of

-215,

The base register participating in the generation of the second operand
address permits indirect specification of the shift amount. A zero in
the B2 field indicates the absence of indirect shift specification.

10.5.23 SHIFT LEFT LOGICAL SHORT

SLLS R,.D,(B,) {RS]
L
Al R, /// B, 0,
0 78 1112 1516 19 20 31
. The first opevand is shifted left the number of bits specified by the

second operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder
of the address is ignored.

Only bits 16-31 of the general register specified by R, participate in
the shift. High-order bits are shifted out from bit position 16 without
inspection and are-lost. Zeros are supplied to the vacated low-order
register positions. As in all short operand instructions, bit positions
0-15 of the first operand are neither inspected nor changed.

Condition Code: The code remains unchanged.

Program Interruptions:

None

10.5.24 SHIFT RIGHT ARITIMETIC SHORT

SRAS R,, °2.‘32’ (RS]
A2 SRZZIE 0,
0 78 1112 1516 19 20 1

The integer part of the first operand is shifted right the number of bits
specified by the second operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder
of the address is ignored.

The sign of the first operand remains unchanged. All 15 integer bits of
the operand participate in the right shift. Bits equal to the sign bit
position 16 are supplied to the vacated high-order bit position 17. Low-
order bits are shifted out without inspection and are lost.

Resulting Condition Code:

0 Result 1s zero

1 Result is less than zero

2 Regult is greater than zero
3 ——

Program Interruptions:
None

Programming Note

A right shift of one bit position is equivalent to division by 2 with
rounding downward. When an even number is shifted right one position,
the value of the field is that obtained by dividing the value by 2. When
an odd number is shifted right one position, the value of the field is
that obtained by dividing the next lower number by 2. For example, +5
shifted right by one bit position yields +2, whereas -5 yields -3.

Shift amounts from 15~63 cause the entire integer to be shifted out of
the right half of the register. When the entire integer field of a
positive number has been shifted out, the half register contains a value
of zero. For a negative number, the half register contains a value of
-1,

-139-

The base register participating in the generation of the second operand
address permits indirect specification of the shift amount. A zero in
the Bz field indicates the absence of indirect shift specification.

10.5:25 SHIFT RIGHT LOGICAL SHORT

SRLS R,,D,(B,) (RS}
AD R, K://j// 8, D,
0 76 112 1516 1920)

The first operand is shifted right the number of bits specified by the
second operand address.

The second operand address is not used to address data; its low-order six
bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

Only bits 16-31 of the general register specified by Ry participate in the
shift. Low-order bits are shifted out without inspection and are lost.
Zeros are supplied to the vacated high-order register bit position 16.

As in all short operand instructions, bits 0-15 of the first operand are
neither inspected nor altered.

Condition Code: The code remains unchanged.
Program Interruptions:
None

10.5.26 SUBTRACT HALFVWORD
SHI Ry, 1, [R1)

) Ry (/) I

0 78 1112 1516 31

The halfword second operand is subtracted from the first operand, and
the difference is placed in the first operand location.

The halfword second operand is expanded to a fullword before the sub-

traction by propagating the sign-bit value through 16 high-order bit
positions.

-140-

Subtraction is considered to be performed by adding the one's complement
of the expanded second operand and a low-order one to the first operand.
All 32 bits of both operands participate, as in ADD. If the carry out

of the sign-bit position and the carry out of the high-order numeric bit
position agree, the differcuce is satisfactory; if they disagree, arn over-
flow is recognized. The overflow causes a program interruption when the
fixed-point overflow mask bit is one.

Resulting Condition Code:

Difference is zero

Difference is less than zero
Difference is greater than zero
Overflow

WO

Program Interruptions:
Fixed-point overflow

10.5.27 SUBTRACT SHORT

SSR Ry, Ry IRR]
c8 R, R,
0 78 112 15
SS Ry DylX5. Byl (RX}
72 Ry X, B, D,
0 78 1112 1516 19 20 1
SSt R1.'2 (Rt}
0 78 1112 1516 31

The second operand is subtracted from the first operand, and the dif-
ference is placed in the first operand location.

Subtraction is considered to be performed by adding the one's-complement

of the second operand and a low-order one to the first operand. All 16
bits of both operands participate, as in ADD. If the carry out of the

-141-

sign-bit position and the carry out of the high-order numeric bit posi-
tion agrece, the difference is satisfactory; if they disagree, an overflow
is recognized. The overflow causes a program interruption when the fixed-
point overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Interruptions:
Addressing (SS only)
Specifications (SS only)
Fixed-point overflow :

Programming Note

The use of the one's-complement and the low-order one instead of the two's
complement of the second operand is necessary for proper recognition of
overflow.

When the same register is specified as first and second operand location,
subtracting is equivalent to clearing the register.

Subtracting a maximum negative number from another maximum negative num-
ber gives a zcro result and no overflow.

10.5.28 TEST BITS

T8 R, 02(X2, 82) {RX)

75 R1 X2 82 Dz
0 78 1112 1616 1920 31
T8I R,,I .
o2 (Rl

7,

AE R, /i)ﬁjA Iy

0 78 1112 1516 31

The state of the first operand bits selected by a mask is used to set
the condition code.

—142f

The second operand is used as a 16~bit mask. The bits of the mask are
made to correspond one for one with bits 16-31 of the register specified
by the first operand.

A mask bit of one indicates that the first opcrand bit is to be tested.
When the mask bit is zero, the first operand bit is ignored. When all
first operand bits thus selected are zero, the condition ccde is made O.
The code is also wmade 0 when the mask 1s all-zero. When the selected bits
are all-one, the code is made 3; otherwise, the code is made 1. The first
operand 1is not changed.

Resulting Condition Code:

Selected bits all-zero; mask 1f all-zero
Selected bits mixed zero and one

Selected bits all-one

wnNo=O

Program Interruptions:

Addressing (TB only)
Specification (TB only)

10.5.29 EXCLUSIVE OR_ SHORT

XSR R,,R, [RR] .
c? R, R,
0 78 112 15
XS Ry, D, (X, 32) IRX])
63 Ry X2 B2 O2
[+) a8 1112 1516 19 20 31
XSt R.‘. I2 Gl
A7 R1 //. // '2)
0 78 1112 16 16 31

The modulo-two sum (exclusive OR) of the bits of the first and second operand
is placed in the first operand location.

~143-

Operands arc trcated as unstructurcd logical quantities, and the con-
nective exclusive OR is applied bit by bit. A bit position in the
result is set to one if the corresponding bit positions in the two oper-
ands are unlike; otherwise, the result bit-is set to zero.

The instruction differs from AND and OR only in the connective applied.
Resulting Condition Code:
Result is zero

Result not zero

Wt — O

Program Interruptions:

Addressing (XS only)
Specification (XS only)

Programming Note

The exclusive OR may be used to invert a bit, an operaticn particularly
uscful in testing and setting programmed binary bit switches.

Any field exclusive ORed with itself becomes all zeros.
The sequence A exclusive ORed B, B exclusive ORed A, A exclusive ORed B
results in the exchange of the contents of A and B without the use of

an auxiliary buffer area.

10.6 SHOKT PRECISTICON EXCEPTIOKS

Exceptional operand designations, data, or results cause a program inter-
ruption., When a program interruption occurs, the current PSV is stored
as an old P8V, and a new PSW is obtained. The interruption code in the
old PSW identifies the cause of the interruption. The fcllowing excep-
tions cause a program interruption in fixed-point arithmetic.

Addressing

An address designates an operand location outside the available storage
for a particular installation. In most cases, the operation is terminated.
Therefore, the result data are unpredictable and should unot be used for
further computation. Operand addresses are tested only when used to
address storage. Addresses used as a shift amount arc not tested. The
address restrictions do not apply to the components from which an

address is generated - the content of the D2 field and the contents of

the registers specified by X2 and BZ.

~144-

Alal

-

L2

Specification

A halfword operand is not located on a 16-bit boundary.

The operation is suppressed. Thereiore, the condition code and data in
registers and storage remain unchanged.

Fixed-Point Overflow

The result of a sign-control, add, subtract, or shift operation over-
flows. The interruption occurs only when the fixed-point overflow mask
bit is one. The operation is completed by placing the truncated low-
order result in the register and setting the condition code to 3. The
overflow bits are lost. In add-type operations the sign stored in the
register is the opposite of the sign of the sum or difference. 1In shift
operations the sign of the shifted number remains unchanged. The state
of the mask bit does not affect the result.

Fixed-Point Divide

The quotient of a division exceeds 16 bits including division by zero.
Division is suppressed. Therefore, data in the register remain unchanged.

-145-

@

SECTION X1

DOUBLIE. PRECISION FI i"-POINT ARITHMETIC OPTIONW

The double precision fixed-point instruction set performs binary arith-
metic on fixed-point data where both operands are signed and 64 bits
long. Negative quantities are held in two's-complement form. One
operand is always in a pai. of :he 16 genera’ regi=:ters; 'he other oper-
and may be in main storage or in a general register pair.

The instruction set provides for loading, adding, nubtracting, comparing,
complementing, and storing.

The condition code is set as a result of all add, subtract, complement,
and compare operations.

11.1 DATA FORMAT

Fixed-point numbers occupy a fixed~length format consisting of a one~bit
sign followed by the integer field. When held in a pair of general
registers, a fixed-point quantity has a 63~-bit integer field and occu-
piles all 64 bits of the register pair. These operands are located in a
pair of adjacent general registers and are addressed by an even address
referring to the left-most register of the pair. The sign-~bit position
of the rightmost register contains part of the integer. In register-to-
register operations the same register may be specified for both operand
locations. -

DOUBLE PRECISION FIXED--POINT NUMBER

s INTEGER
0 83

Double precision fixed-point data in main storage occupy a 64-bit word
with a binary intcger field of 63 bits. These data must be located on
integral storage boundaries for fullword units of information, that is,
double word operands must be addressed with two low-order address bits
set to zero.

In all discussions of fixed-point numbers in this publication, the expres-
sion "64-bit signed integer' denotes a 63-bit integer with a sign bit.

11.2 NUMBER REPRESENTATION

All fixed-point operands are trcated as signed integers. Positive numbers
are represented in true binary notation with the sign bit set to zero.
Negative numbers are represented in two's-complement notation with a ome
in the sign bit. The two's-complement representation of a negative number
may be considered the sum of the integer part of the field, taken as a

~146-

positive number, and the maximum negative number. The two's complement
of a number is obtained by inverting each bit of the number and adding a
one in the low-order bit position.

This type of number representation can be considercd the low-order portion
of an infinitely long representation of the number. When the number is
positive, all bits to the left of the most significant bit of the number,
including the sign bic, are zeros. When the number is negative, all

these bits, including the sign 1-it, are ones Thevzfore, when an operand
must be extended with high-order bits, the expansinn is achieved by pre-
fixing a field in whic:h ezch bi: is set equal to ti: high-order bit of the
operand.

Two 's-complement notation does not include a negative zero. It has a num-
ber range in which the set of negative numbers is one larger than the

set of positive numbers. The maximum positive number consists of an all-one
integer field with a sign bit of zero, whereas the maximum negative number
(the negative number with the greatest absolute value) consists of an all-
zero integer field with a one-bit for sign.

The CPU cannot represent the complement of the maximum negative number.
When an operation, such as a subtraction from zero, produces the complement
of the maximum negative number, the number remains unchanged, and a fixed-
point overflow exception is recognized. An overflow does not result,
however, when the number is complemented and the final result is within

the representable range. An example of this case is a subtraction from
minus one,

The sign bit is leftmost in a number. In an arithmetic operation, a carry
out of the integer field changes the sign.

11.3 CONDITION CODE

The results of fixed-point sign-control, add, subtract, and compare opera-
tions are used to set the condition code in the program status word (PSW).
All other double precision fixed-point operations leave this code undis-
turbed. The condition code can be used for decision-making by subsequent
branch-on~condition instructions.

The condition code can be set to reflect three types of results for fixed-
point arithmetic. For most operations, the states 0, 1, or 2 indicate a
zero, less than zero, or greater than zcro content of the result register,
while the state 3 is uscd when the result overflows.

For a comparison, the states 0, 1, or 2 indicate that the first operand
is equal, low, or high.

Condition Code Settings for Double Precision Fixed-Point Arithmetic

0 1 2 3
Add Double zero <zero >zero overflow
Compare Double equal low high -
Load Complement Double zero <zero >zero overflow
Subtract Double zero <zero >zero overflow

~147-

.
§

Programming Note

The $/360 instruction SRDA with a zero shift count can be used to test a

general register pair.

11.4 INSTRUCTION FORMAT

RR FORMAT
R4
OP CODE R, J R,
0 78 112 15
RX FORMAT
‘ OP CODE R, X, B, 0,
0 78 1112 1516 1920 31

In these formats, R, specifies the general register pair containing the
first operand. The second operand location, lf any, is defined differently

for each format.

In the RR format, the R, [icld specifies the general register pair con-—
taining the sccond operind. The same register may be specified for the
first and second operand.

In the RX format, the contents of the general registers specified by the
X, and B, fields arc added to the content of the D, field to form an addxcuu
deslgnatlng the storage location of the second opefand.

A zero in an X, or B2 field indicates the absence of the corresponding
address componént.

An instruction can specify the same general register both for address modi-
fication and for operand location. Address modification is always com-
pleted before operation execution.

The contents of all general registers and storage locations participating
in the addressing or execution partof an operation remain unchanged, except
for the storing of the final result.

NOTE:

In the detailed descriptions of the individual instructions, the

“mnemonic and the symbolic operand designation for the NSSC-II
assembly language are shown with each instruction. Tor ADD
DOUBLE, for example, ADR is the mnemonic and Rl’ R2 the operand
designation.

~148-

k!

pes e s

11.5 INSTRUCTIONS

The double precision fixed-point arithmetic instructions and their mne-
monics, formats, and operation codes are listed in the following table.

The table also indicates when the condition code is set and the exceptional
conditions in operand designations, data, or ~csults that caure a pro-
gram interruption.

NAME MNEMONIC TYPE EXCEPTIONS CODE
Load Double LDR RR S 28
Load Double LD RX A,S 68
Load Complement Double LCDR RR cC S IF 23
Add Double ADR RR cC S IF 2A
Add Double AD RX C A,S, IF 6A
Subtract Double SDR RR cC s IF 2B
Subtract Double SD RX C P,A,S, IF 6B
Compare Double ‘ CDR RR cC S 29
Compare Double CcD RX C A,S 69
Store Double STD RX P,A,S 60
NOTES

A Addressing exception

C Condition code is set

IF Fixed-Point overflow exception
P Protection exception

S Specification exception

11.5.1 LOAD DOUBLE

LDR R,.R, [RR)

8 R‘ R2
0 78 112 15

LD R,.D,iX,, 8,) (RX])

68 R, X, 8, o,

) 78 1112 1616 1920 N
The second operand is placed in the first operand location. The second
operand is not chauged. Both operands are 64 bits in length.
Condition Code: ‘The code remains unchanged.
Program Interruptions:

Addressing (LD only)
Specification

~149~

11.5.2 LOAD COMPLEMENT DOUBLE

LCOR R, A, (RA

23 R, Ry
"0 78 1112 16

The two's complement of the second operand is placed in the first operand
location. Both operands are 64 bits in length.

An overflow condition occurs when the maximum negative number is comple-
mented; the number remains unchanged. The overflow causes a program
interruption when the fixed-point overflow mask bit is one.

Resulting Condition Code:

Result 1is zero

Result is less than zero
Result is greater than zero
Overflow

WNH-=OQO

Program Interruptions:

Fixed-point overflow
Specification

Programming Note

Zero remains invariant under complementation.

11.5.3 ADD DOUBLE

ADR R,R, [RR]

2A R, R,
0 78 1112 16

AD Ry.D,(Xp, 8,) (Rx]

6A R, X, B, D,
0 78 112 1516 1920 3

The second operand is added to the first operand, and the sum is placed
in the first operand location.

Addition 1s performed by adding all 64 bits of both operands. If the
carry out of the sign-bit position and the carry out of the high-order
numeric bit position agree, the sum is satisfactory; if they disagree,
an overflow occurs. The sign bit is not changed after the overflow.

-150~ !

' A positive overflow yields a negative final sum, and a negative overflow
results in a positive sum. The overflow causes a program interruption
when the fixed-point overflow mask bit is one.

Resulting Condition Code:

Sum is zero

Sum 18 less than zero
Sum 1is grecater than zero
Overflow

WMo C

Program Interruptions:
Addressing (AD only)
Specification
Fixed-point overflow

Programming Note

In two's-complement notation, a zero result is always positive.

11.5.4 SUBTRACT DOUBLE

' SOR R,.R, [RR] .
: .Il 28 R,

0 78 1112 16

SO R1,02(X2.82) IRX])

68 Ry X2 B, D,
0 78 1112 1616 1920 31

The second operand is subtracted from the first operand, and the differ-
ence is placed in the first operand location.

Subtraction is considered to be performed by adding the one's complement
of the second operand and a low-order one to the first operand. All 64
bits of both operands participate, as in AD. If the carry out of the
sign-bit position and the carry out of the high~order numeric bit position
agrce, the difference is satisfactory; if they disagree, an overflow is
recognized. The overflow causes a program interruption when the fixed-
point overflow mask bit is one.

Resulting Condition Code:

‘ 0 Difference is zero
' 1 Difference is less than zero

-;5;-

e m e e .

P

2 Difference 18 greater than zero
3 Overflow :

Program Interruptions:

Addrcssing (SD only)
Specifications
Fixed-point overflow

nggrammiqg Note

The use of the one's complement and the low~order one instead of the two's
complement of the second operand is necessary for proper recognition of
overflow.

When the same register is specified as first and second operand location,
subtracting is equivalent to clearing the register pair.

Subtracting a maximum negative number from another maximum negative num-
ber gives a zero result and no overflow.

11.5.5 COMPARE DOUBLE

COR R, R, [RR]

3 | Ry R,
0 78 1112 15

CD Ry, D,IX,, Bz) [RX)

bt Ry | X2 | B2 92
0 78 1112 1618 1920 31

The first operand is compared with the second operand, and the result
determines the setting of the condition code.

<

Comparison is algebraic, treating both comparands as 64-bit signed integers.

Operands in registers or storage are not changed.

Resulting Condition Code:

Operands are equal
First operand is low
First operand is high

W N O

Program Interruptions:

Addressing (CD only)
Specification

-152-

11.5.6 STORE DOUBLE

STD R,.0,(X,.B,) [RX]

60 R, X, 8, 2
0 78 1112 15618 1920 31

The first operand is stored at the second operand location.

The 64 bits in the general register pair are placed unchanged at the
second operand location.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection

Addressing

Specification

11.6 DOUBLE PRECISION FIXED-POINT ARITHMETIC EXCEPTIONS

Exceptional operand designations or results cause a program interruption.
When a program interuption occurs, the current PSW is stored as an old
PSW, and a new PSW is obtained. The interruption code in the old PSW
identifies the cause of the interruption. The following exceptions cause
a program interruption in fixed-point arithmetic.

Protection

The second operand in storage is storage protected. The operation is
suppressed for a storage violation. Therefore, the condition code and
data in registers and storage remain unchanged.

Addressing

An address designates an operand location outside the available storage for
a particular installation. In most cases, the operation is terminated.

" Therefore, the result data are unpredictable and should not be used for

further computation. The exception is STORE which is suppressed. Operand
addresses are tested only when used to address storage. The address
restrictions do not apply to the components from which an address is
generated -~ the content of the D2 field and the contents of the registers
specified by xz and Bz.

Specification

A double-word operand is not located on a 32-bit boundary, or an instruc-
tion specifies an odd register address for a pair of general registers
containing a 64-bit operand. The operation is suppressed. Therefore,
the condition code and data in registers and storage remain unchanged.

-153-

Fixed~-Point Overflow

The rcsult of a sign-control, add, or subtract, operation overflows.

The interruption occurs only when the fixed-point overflow mask bit is

one. The operation is completed by placing the truncated low-order results
in the register and setting the condition code to trree. The overtflow
bits are lost. In add-type operations the sign stored in the register

is the opposite of the sign of the sum or difference. The state of the
mask bit does not affect the result.

~154-

[

1 et s B i e et e T L

SECTION XII

FLOATING~-POINT ARITHMETIC OPTION

The floating-point instruction set is used to perform calculations on oper-

ands with a wide range of nagnitude -"yd yleldins resv’t~ sc-led o preserve
precision.

A floating-point number consists of a signed exponent and a signed fraction.
The quantity expressed by this number 1s the product of the fraction and the
number 16 raised to the power of the exponent. The exponent 1s expressed in

- excess 64 binary notation; the fractlon is expressed as a hexadecimal number

having a radix point to the left of the high-order digit.

To avoild unnecessary storing and loading operations for results and operands,
four floating-point registers are provided. The floating-point instruction
set provides for loading, adding, subtracting, comparing, multiplying, divid-
ing, and storing, as well as the sign control. Operations may be either reg-
ister to register or storage to register. All floating-point instructions

"and registers are part of the floating-point feature.

Maximum precision is preserved in addition, subtraction, multiplication, and
division by producing normalized results. For addition and subtraction, in-
structions are also provided that generate unnormalized results, Normalized
and unnormalized operands may be used in any floating-point operation.

The condition code is set as a result of all sign control, add, subtract and
compare operations.

12.1 DATA FORMAT

Floatihg—poiht aata occupy a fixed-length format, which is a fullword short for-
mat. This format may be used in main storage and in the floating-point regis-
ters. The floating-point registers are numbered 0, 2, 4, and 6.

Shart Floating-Point Number

S| Characteristid Fraction
0 1 78 3

The first bit is the sign bit (S). The subsequent seven bit positions are
occupied by the characteristic. The fraction field may have six hexadecimal
digits.

All operands and results are 32-bit floating-point words.

-155-

Although final results have six fraction digits, intermediate results in ADD
NORMALIZED, SUBTRACT NORMALIZED, ADD UNNORMALIZED, SUBTRACT UNNORMALIZED, COM~
PARE, HALVE, and MULTIPLY may have one additional low~-order digit. This low-
order digit, the guard digit, increases the precision of the final result,

12,2 NUMBER REPRESENTATION

The fraction of a floating-point number is expressed in hexadecimal digits.
The radix point of the fraction is assumed to be Immediately to the left of
the high-order fraction digit. To provide the proper magnitude for the float-
ing-point number, the fraction is considered to be multiplied by a power of
16. The characteristic portion, bits 1-7, indicates this power. The bits
within the characteristic field can represent numbers from 0 through 127,

To accommodate large and small magnitudes, the characteristic is formed by
adding 64 to the actual exponent. The range of the exponent is thus -64
through +63. This technique produces a characteristic in excess 64 nota-

. tion.

Both positive and negative quantities have a true fraction, the difference in
sign being indicated by the sign bit. The number is positive or negative
accordingly as the sign bit 1is zero or one.

The range covered by the magnitude (M) of a normalized floating-point number
is .

-65 79 75

1677 <M< (1 -16-65 . 1693 or approximately 5.4 ¢ 10~
A number of zero characteristic, zero fraction, and plus sign is called a

true zero. A true zero may arise as the result of an arithmetic operation
because of the particular magnitude of the operands. A result is forced to

be true zero when (1) an exponent underflow occurs and the exponent-underflow
mask (PSW bit 38) is zero, (2) a result fraction of an addition or subtraction
operation 1is zero and the significance mask (PSW bit 39) is zero, or (3) the
operand of HALVE, one or both operands of MULTIPLY, or the dividend in DIVIDE
has a zero fraction. When a program interruption due to exponent underflow
occurs, a true zero fraction is not forced; instead, the fraction and sign
“remain correct, and the characteristic is 128 too large. When a program
interruption due to lost significance occurs, the fraction remains zero,

and the fraction sign and characteristic remain correct. Whenever a result
has a8 zero fraction, the exponent overflow and underflow exceptions do not
cause a program interruption. When a divisor has a zero fraction, division

is omitted, a floating-point divide exception exists, and a program interrup-
tion occurs. In addition and subtraction, an operand with a zero fraction or
characteristic participates as a normal number.

The sign of a sum, difference, product, or quotient with zero fraction is pos-
itive. The sipgn of a zero fraction resulting from other operations is estab-
lished by the rules of algebra from the operand signs,

L\

-156-

. 12.3 NORMALIZATION

A quantity can be represented with the greatest precision by a floating-point
number of given fraction length when that number is normalized. A normalized
floating-point number has a nonzero high-order hexadecimal fraction digit. If
one or more high-order fraction digits are zero, the number is said to be un-
normalized. The process of normalization consists of shifting the fraction

left until the high-order hexadecimal digit is nonzero and reducing the char-
acteristic by the number of hexadecimal digits shifted. A zero fraction can-
not be normalized, and its associated characteristic therefore remains unchanged
when normalization is called for.

Normalization usually takes place when the intermediate arithmetic result is
changed to the final result. This function is called postrormalization. In
performing multiplication and division, the operands are normalized prior to
the arithmetic process. This function is called prenormalization.

Floating-point operations may be performed with or without normalization. Most
operations are performed in only one of these two ways. Addition and subtrac-
tion may be specified either way.

f When an operation is performed without normalization, high-order zeros in the
result fraction are not eliminated. The result may or may not be normalized,
depending upon the original operands.

be in normalized form. Also, intermediate fraction results are shifted right
when an overflow occurs, and the intermediate fraction result is truncated to
the final result length after the shifting, if any.

-" In both normalized and unnormalized operations, the initial operands need not

Programming Note

Since normalization applies to hexadecimal digits, the three high-order bits
of a normalized number may be zero.

§ 12,4 CONDITION CODE
The results of floating-point sign-control, add, subtract, and compare opera-
tions are used to set the condition code. Multiplication, division, loading,
and storing leave the code unchanged. The condition code can be used for de-~
cision-making by subsequent branch-on-condition instructions.

The condition code can be set to reflect two types of results for floating-
point arithmetic. For most operations, the states 0, 1, or 2 indicate that
the result i{s zero, less than zero, or greater than zero. A zero result is
indicated whenever the result fraction is zero, including a forced zero. State
3 18 never set by floating-point operations.

For comparison, the states 0, 1, or 2 indicate that the first operand is equal,
low, or high. i

-157-

T L

Add Normalized

Add Unnormalized

Compare
Load and Test

Load Complement

Load Negative
Load Positive

Subtract Normalized
Subtract Unnormalized

12,5 INSTRUCTION FORMAT

CONDITION CODE SETTING FOR FLOATING~POINT ARITHMETIC

0 1 2 3
zero <zero >zero ———
zero <zero >zero —
equal low high ——
zero <zero >zero ——
zero <zero >zero ———
zero <zero —— -
zero ——— >zero —
zero <zero >zero ———
zero <zero >zero —

Floating-point instructions use the following two formats:

RR Format
Op Code Ry |R2 ,
78 1112 15 5
‘ RX Format
Op Code R1 [X2 B2 D2
78 1112 1616 19 20 31

In these formats, Ry designates the address of a floating-point register.
The contents of this register will be called the first operand. The sec-
ond operand location is defined differently for two formats.

-

In the RR format, the Ry field specifies the address of a floating-point
register containing the second operand. The same register may be specified
for the first and second operand.

In the RX format, the contents of the general register specified by X, and
B2 are added to the content of the Dy field to form an address designating
the location of the second operand.

A zero in an X or By field indicates the absence of the corresponding ad-
-dress component.

~-158-

LU

The resister address speciticed by the &y and Ro {iclds should be 0, 2, 4, or
) . . . P B JEUTR S -y (e P 5 -
G. Othdrwice, o specibficatien cuecption iy vecepnized, and a program inter

rustion i coured,

sheuld designate word boundaries

The storepe address of the secend operand
Loundarics for leng operands. Otherwise
s

4

for short epcrands and doublo-word boundar
»d, and a prearam interruption is caus

L4
a specificaticn exceprticn Is rocognised, cd.

Results replace the first opcrand, except for the storing cperatiorns, where

er
the sccond operand is voplaced.
Except for the storing of the final result, the contents of all floating-point
or general registers and storage lecations participating in the addressing or
exccution pert of an cperatien remain unchanged.

The floating-point instructicus are the cnly instructions using the fleating-
pcint registers.

ICIT: In the detailed descripticns of the individuzl iastructions, the mne-
monic and the symbolic operand designation for the NSSC-II assembly lan-
guage are shown with cach instruction. For a register-to-register opera=
tion using LOAD, for example, LER is the mnemonic and Ry, Ry the operand
designation. : -

12.6 INSTRLUCTIONS

The fleating-point arithmetic instructions and their mremonics, formats, and

operation cedes feollow. All creratione are part of the fleating-point faoature.
The follewin: table indicates when the condition cede is set and the excepticns
in operand designstions, data, or results that cause a program interruption.

NAME MNENONIC TYPE EXCEPTICNS CODE
Load . LER . RR F ‘S 38
Load . LE . RX F A,S 78
Load and Tcst . LTER RR F,C) 32
Load Complenernt LCLR - RR F,C S 33
Lozd Positive LPER BRR F,C S 30
Load XNegative LXER RR F,C S 31
Add Normalized ARR RR F,C s,U,E,LS . 3A
Add Yormalized AL RY F,C 4,S8,U,E,LS 7A
Add Unnormalized AUR RR F,C 5,E,LS 3E
&dd Unnormalized AU RX F,C A,S,E,LS 7E
Subtract Nerralized SER RR F,C S,U,E,LS 3B
Sulitract o : S= RX T,C £,S,U,E,LS 7B
Subtract Unnermalize sua L r,C S,E,LS 3F
Subtruact Unncemzalized sU PX T,C A,8,E,LS F
Compare CzZR ER F,C S 39
¥,C A,S 79

cE RX

-159-

i; Halve HER RR F s,U 34
Multiply MER RR F S,U,B 3C
‘ Multiply ME RX F A,8,U,E 7C
| Divide DER RRF~ S,U,E,FK 3D
b Divide DE RX F A,S,U,E,FK 4]
R Store STE RX F P,A,S 70
}
-
NOTES
¥
o A Addressing exception
C Condition code is set
E Exponent-overflow exception
z& F Floating-point feature
FK Floating-point divide exception
_ ' LS Significance exception
t. P Protection exception
S Specification exception
U Exponent-underflow exception
12,6.1 LOAD
L LERR;Ry [RR]
38 Ry | Ry
! I) 78 1112 5
¥
- LE RyDHX58)) [RX]
[y Sith ¢ 78 - : R 1 X2 Bz Dz
l, 0 78 11121516 19 20 an

- - The second operand is placed in the first operand location.

The second operand is not changed. Exponent overflow, exponent underflow,
or lost eignificance cannot occur.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing (LE, only)

Specification

e

-160-

12,6.2 LOAD AND TEST

LTER RLR, [RR]

32 Ry |Ry l
-0 7

The second operand is placed in the first operand location, and its sign and
magnitude determine the condition code.

The second operand is not changed.

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3 -

Program Interruptions:
Specification

Programming Note

@ (" - K“"T‘l'"" —

When the same register is'specified as first and second operand location,the
operation is equivalent to a test without data movement.

12,6.3 LOAD COMPLEMENT

LCER RpRy [RA]

;
H

0 78 1112 AN

'+ The second operand is placed in the first operand location with the sign
changed to the opposite value.

The sign bit of the second operand 1s inverted, while characteristic and
fraction are not changed.

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3 -- .
Program Interruptions:
Specification
S,

..16]_-

— Q@ - M T — — —
| |

12.6.4 LOAD POSITIVE

LPER RyR, [RR]

30 Rqy| Ry
0 78 1112186

The second operand is placed in the first operand location with the sign made
plus. ' :

The sign bit of the second operand is made zero, while characteristic and frac-
tion are not changed.

Resulting Condition Code:
0 Result fraction is zero
1 -- .
2 Result is greater than zero
-

Program Interruptions:
Specification

12.6.5 LOAD NEGATIVE

LNER Rpﬁb [RR]
31 Ry | Ry
0 78 1112 1

~ The second operand is placed in the first operand location with the sign made

o~

minus.

The sign bit of the second operand 1s made one, even if the fraction is zero.
Characteristic and fraction are not changed.

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero
2 -
3 -

Program Interruptions:
Specification

- B

~-162-

12.6.6 ADD NORMALIZED
AER ﬁ],ﬁz [RR]
3A Rl R
7 134115
AE A1DyX 5B [RX]

7A Ry| X2 | By D,
o 78 112 1616 19 20 3

The second operand is added to the first operand, aud the normalized sum
is placed in the first operand location.

The low-order halves of the floating point registers are ignored and remain
unchanged.

Addition of two floating-point numbers consists of a characteristic compari-
son and a fraction addition. The characteristics of the two operands are
compared, and the fraction with the smaller characteristic is right-shifted;
its characteristic is increased by one for each hexadecimal digit of shife,

until the two characteristics agree. The fractions are then added algebraically

to form an intermediate sum. If an overflow carry occurs, the intermediate
sum is right-shifted one digit, and the characteristic is increased by one.
If this increase causes a characteristic overflow, an exponent-overflow ex-
ception is signaled, and a program interruption occurs. The fraction is
normalized and correct, the sign is correct, and the characteristic is 128
smaller than the correct characteristic,

The intermediate sum consists of 7 hexadecimal digits and a possible carry.
The low-order digit is a guard digit obtained from the fraction which is

shifted right. Only one guard digit position participates in the fraction
addition. The guard digit is zero if no shift occurs.

" After the addition, the intermediate sum is left-shifted as necessary to

form a normalized fraction; vacated low-order digit positions are filled
with zeros; the characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and if the corres-
ponding mask bit is one, a program interruption occurs. The fraction is
correct and normalized, the sign is correct, and the characteristic is 128
larger than the correct one. If the corresponding mask bit is zero, the
result is made a true zero. If no left shift takes place, the intermediate
sum 18 truncated to the proper fraction length.

When the intermediate sum is zero and the significance mask bit is one, a
significance exception exists, and a program interruption takes place. No
normalization occurs; the intermediate sum characteristic remains unchanged.
When the intermediate sum is zero and the significance mask bit is zero,

the program interruption for the significance exception does not occur;
rather, the characteristic is made zero, yielding a true zero result. Ex-
ponent underflow does not occur for 2, zero fraction.

24

-163~

The sign of the sum is derived by the rules of algebra. The sign of a sum

with zero result fraction is always positive.

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero

2 Result is greater than zero

3 -

Program Interruptions:
Addressing (AE only)
Specification
Significance
Exponent overflow
Exponent underflow

Programming Note

Interchanging the two operands in a floating-point addition does not affect

the value of the sum.

12.6.7 ADD UNNORMALIZED

AUR Ry,Ry [RR]
3E Ry | Ry
0 7 Y
AU R1,D4X8)) (RX)
7€ Ry X | 8, D,
N

0 ; 78 1112 15616 9 20

The second operand is added to the first operand, and the unnormalized sum
is placed in the first operand location.

length.

After the addition the intermediate sum is truncated to the proper fraction

When the resulting fraction is zero and the significance mask bit is one, a
significance exception exists and a program interruption takes place. When
the resulting fraction is zero and the significance mask bit is zero, the
program interruption for the significance exception does not occur; rather,
the characteristic is made zero, yielding a true zero result.

Leading zeros in the result are not eliminated by normalization, and an ex-

ponent underflow cannot occur.

=164~

The sign of the sum is derived by the rules of algebra. The sign of a sum
with zero result fraction is always positive,

Resulting Gondition Code:
0 Result fraction 1s zero
1 Result is less than zero
2 Result is greater than zero
3 -
Program Interruptions:
Addressing (AU only)
Specification
Significance
Exponent overflow

12.6.8 SUBTRACT NORMALIZED
SER RuB, [RR)

lliB Ft1 RZ
0 78 11312 1
SE R 10X 5.85) [RX]
] 78 1112 1616 19 20 31

The second operand is subtracted from the first operand, and the normalized
difference is placed in the first operand location.

The SUBTRACT NORMALIZED is similar to ADD NORMALIZED, except that the sign
of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of
a difference with zero result fraction is always positive.

Resulting Condition Code:
0 Result fraction 1s zero
1 Result is less than zero
2 Result is greater than zero
3 -

Program Interruptions:
Addressing (SE only)
Specification
Significance
Exponent overflow
Exponent underflow

-165-

el T ot il el Sl gl el el N call aall o e — — rgr

gl

12,6.9 SUBTRACT UNNORMALIZED
SUR BBy [RA)
3F Ry R2

0 78 1112 16
SU R1.05X 585 [RX]

0 78 1112 151619 20 3

The second operand is subtracted from the first operand, and the unnormalized
difference is placed in the first operand location.

The SUBTRACT UNNORMALIZED is similar to ADD UNNORMALIZED, except for the in-
version of the sign of the second operand before addition.

The sign of the difference is derived by the rules of algebra. The sign of
a difference with zero result fraction is always positive.

Resulting Condition Code: _
0 Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3 -
Program Interruptions:
Addressing (SU only)
Specification
Significance
Exponent overflow

12.6.10 COMPARE
CER RuR, [RR]

39 Ry [R,
0 78 1112 16
CE Ry,05XymBy) [RX]

79 R, X, |8, D,
) 78 1112 15 16 19 20 31 .

The first operand 1s compared with the second operand, and the condition code
indicates the result.

~166-

Comparison is algebraic, taking into account the sign, fraction, and exponent
of each number. An exponent inequality is not decisive for magnitude determi-
nation since the fractions may have different numbers of leading zeros. An
equality is established by following the rules for normalized floating-point
subtraction. When the intermediate sum, including the guard digit, is zero,
the operands are equal. Neither operand is changed as a result of the opera-
tion,

An exponent-overflow, exponent-underflow, or lost-significance exception can-
not occur.

Resulting Condition Code:
0 Operands are equal
1 First operand is low
2 First operand is high
3 -

Program Interruptions:
Addressing (CE only)
Specification

Programming Note

Numbers with zero fraction compare equal even when they differ in sign or
characteristic.

12.6.11 HALVE
HER R;,ﬁz [RR]

34 Ry R,
0 78 1112 16

The second operand is divided by two, and the normalized quotient is placed
in the first-operand location.

The second operand remains unchanged.

The fraction of the second operand is shifted right one bit position, placing
the contents of the low-order bit position into the high-order bit position
of the guard digit and introducing a zero into the high-order bit position

of the fraction. The intermediate result is subsequently normalized, and

the normalized quotient is placed in the first-operand location. The guard
digit participates in the normalization.

-167-

r-.o-
K

When normalization causes the characteristic to become less than zero, expo-
nent underflow occurs. If the exponent-underflow mask is zero, the sign,
characteristic, and fraction are set to zero, thus making the result a true
zero. If the exponent-underflow mask is one, a program interruption occurs.
The result is normalized, its sign and fraction remain correct, and the char-
acteristic is made 128 larger than the correct characteristic.

When the fraction of the second operand is zero, the sign, characteristic,
and fraction of the result are made zero. No normalization is attempted, and
a significance exception is not recognized.

Condition Code: The code remains unchanged.
Program Interruptions:

Specification
Exponent underflow

Programming Notes

The halve operation 1s identical to a divide operation with the number two
as divisor. The halve operation is identical to a multiply operation with
one-half as a multiplier.

The result of HALVE is replaced by a true zero only when the second-operand
fraction is zero, or when exponent underflow occurs with the exponent-under-
flow mask set to zero. When the fraction of the second operand is zero, ex-
cept for the low-order bit position, the low-order one is shifted into the
guard digit position and participates in the postnormalization.

\

12.6.12 MULTIPLY
MER ﬂ;,ﬁz [RR]

|3c Ry| R, |
0

ME R.D,X 585 [RX]
7C Ryl X | B, D,
0 78 1112 1516 19 20 31

The normalized product of multiplier (the second operand) and multiplicand
(the first operand) replaces the multiplicand.

The multiplication of two floating-point numbers consists of a characteris-
tic addition and a fraction multiplication. The sum of the characteristics
less 64 is used as the characteristic of an intermediate product. The sign
of the product is determined by the rules of algebra.

The product fraction is normalized by prenormalizing the operands and post-
normalizing the intermediate product, if necessary. The intermediate product
characteristic is reduced by the number of left-shifts. The intermediate
product fraction has 12 digits which is normalized and then truncated to 6
digits.

~-168-

s
I
.Y

r““r—.r'r*r“r‘r“r“r*‘r”r"r’“r""r*r'r*‘r*

Exponent overflow occurs if the final product characteristic exceeds 127.
The operation is completed, and a program interruption occurs. The fraction
is normalized and correct, the sign 1s correct, and the characteristic is
128 smaller than the correct characteristic. The overflow exception does
not occur for an intermediate product characteristic exceeding 127 when the
final characteristic is brought within range because of normalization.

Exponent underflow occurs if the final product characteristic is less than
zero. If the corresponding mask bit is one, a program interruption occurs.
The fraction is normalized and correct, the sign is correct, and the char-
acteristic is 128 larger than the correct characteristic. If the correspond-
ing mask bit is not one, the result is made a true zero. Underflow is not
signaled when an operand's characteristic becomes less than zero during
prenormalization, and the correct characteristic and fraction value are

used in the multiplication.

When all 6 digits of the intermediate product fraction are zero, the product
sign and characteristic are made zero, yielding a true zero result. No in-
terruption for exponent underflow or exponent overflow can occur when the
result fraction is zero. The program interruption for lost significance is
never taken for multiplication.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing (ME only)

Specification

Exponent overflow

Exponent underflow

P:ggramming Note

Interchanging the two operands in a floating-point multiplication does not
affect the value of the product.

12.6.13 DIVIDE
DER R,R, [RR]

30 Ry Ry
0 7 T
DE RyD X8, [RX]
70 Ry | Xy B, 02
0 78 1112 1516 19 20 N

The dividend (the first operand) is divided by the divisor (the second oper-
and) and replaced by the quotient. No remainder is preserved.

-169-

r—

ol ol el el e
o

r“rir-"r*r"r‘"r-*r—r—-—‘wr-u

The low-order halves of the floating-point register are ignored and remain
unchanged.

A floating-point division consists of a characteristic subtraction and a
fraction division. The difference between the dividend and divisor charac-
teristics plus 64 is used as an intermediate quotient characteristic. The
sign of the quotient is determined by the rules of algebra.

The quotient fraction is normalized by prenormalizing the operands. Post-
normalizing the intermediate quotient is never necessary, but a right-shift
may be called for. The intermediate-quotient characteristic is adjusted

for the shifts. All dividend fraction digits participate in forming the
quotient, even if the normalized dividend fraction is larger than the nor-
malized divisor fraction. The quotient fraction is truncated to the desired

number of digits.

A program interruption for exponent overflow occurs when the final-quotient
characteristic exceeds 127. The operation is completed. The fraction is
correct and normalized, the sign is correct, and the characteristic is 128
smaller than the correct characteristic.

If the final quotient characteristic is less than zero and the mask bit is
one, a program interruption for exponent underflow occurs. The fraction is
correct and normalized, the sign is correct, and the characteristic is 128
larger than the correct characteristic. If the corresponding mask bit is
not one, the result 1s made a true zero. Underflow is not signaled for the
intermediate quotient or for the operand characteristics during prenormali-
zation,

When division by a divisor with zero fraction is attempted, the operation is
suppressed. The dividend remains unchanged, and a program interruption for

floating-point divide occurs. When the dividend fraction is zero, the quo-

tient fraction will be zero, yielding & true zero result without taking the

program interruption for exponent underflow and exponent overflow. The pro-
gram interruption for significance 1s never taken for division.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing (DD only)

Specification

Exponent overflow

Exponent underflow

Floating-point divide

-170-

12,6.14 STORE

STE R1,04X3.85) [RX]
70 Ry X, |89 D,y
0 78 1112 1616 189 220 k)|

The first operand is stored at the second operand location.
‘The first operand remains unchanged.

Condition Code: The code remains unchanged.
Program Interruptions:

Addressing
Protection (store violation)
Specification

12.7 FLOATING-POINT ARITHMETIC EXCEPTIONS

Exceptional operation codes, operand designations, data, or results cause a %
program interruption. When the interruption occurs, the current PSW is stored ;
as an old PSW, and a new PSW is obtained. The interruption code in the old PSW|
identifies the cause of the interruption. The following exceptions cause a pro=
gram interruption in floating-point arithmetic. ;

Operation: The floating-point feature is not installed, and an attempt is'
made to execute a floating-point instruction. The instruction is suppressed.
The condition code and data in registers and storage remain unchanged.

Protection: The storage protection bit for CPU stores is set to a 1 in
the addressed block of main storage when a STE instruction is encountered.

Addressing: An address designates an operand location outside the avail-
able storage for the installed system. In most cases, the operation is termi-
nated. The result data and the condition code, if affected, are unpredictable
and should not be used for further computation. The exception is STORE (STE),
which is suppressed.

Specification: A storage operand is not located on a 32-bit boundary or
a floating-point register address other than 0, 2, 4, or 6 is specified. The
instruction is suppressed. Therefore, the condition code and data in registers
and storage remain unchanged. The address restriction does not apply to the
components from which an address is generated--the content of the D2 field and
the contents of the registers specified by x.2 and BZ‘ ‘

-171-

I

—

1
|

CLrer

r

r*r.r*r*'r"r'-r”r*r*.*r*r*r

/

Exponent Overflow: The result characteristic in addition, subtraction,
multiplication, or division exceeds 127, and the result fraction is not zero.
The operation is completed, and a program interruption occurs. The fraction
is normalized, and the sign and fraction of the result remain correct. The
result characteristic is made 128 smaller than the correct characteristic.

For addition and subtraction, the condition code 1s set to 1 when the result
is less than zero, and the condition code is set to 2 when the result is greater

than zero.

Exponent Underflow: The result characteristic in addition, subtractiom,
multiplication, halving, or division is less than zero, and the result fraction
is not zero. The operation is completed, and a program interruption occurs if

the exponent~underflow mask bit (PSW bit 38) is one.

The setting of the exponent-underflow mask also affects the result of the
operation. When the mask bit is zero, the sign, characteristic, and fraction
are set to zero, thus making the result a true zero. When the mask bit is one,
the fraction is normalized, the characteristic is made 128 larger than the éor-
rect characteristic, and the sign and fraction remain correct. !

For addition and subtraction, the condition code is set to 0 when the ex-
ponent-underflow mask bit is zero. With the mask bit one, the condition code
for addition and subtraction is set to 1 when the result is less than zero,
and the condition code is set to 2 when the result is greater than zero. For'
multiplication, halving, and division, the condition code is left unchanged

Significance: The result fraction of an addition or subtraction is zero

A program interruption occurs if the significance mask bit (PSW bit 39) is ¢nl.
The mask bit affects also the result of the operation. When the significance
mask bit is a zero, the operation is completed by replacing the result withja
true zero. When the significance mask bit is one, the operation is completed
without further change to the characteristic of the result. In either case,

the condition code is set to O.

Floating-Point Divide: Division by a number with zero fraction is attempted.

The division is suppressed; therefore, the condition code and data in registers
and storage remain unchanged.

“NASA—MSFC

-172-~

For multiplication and division, the condition code remains unchanged.

