

Advanced Program-to-Program Communication
for the IBM Personal Computer

Programming Guide

Communications Family

---------- - ---- ---- - ---- - - -----------_.-
Personal
Computer
Software

Second Edition (December 1986)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time.

It is possible that this publication may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Requests for copies of this publication and for technical information about IBM
products should be made to your IBM Authorized Dealer or your IBM Marketing
Representative.

© Copyright International Business Machines Corporation 1986. All rights
reserved.

Preface

This manual describes how to develop a program that uses
the Advanced Program-to-Program Communication for the
IBM Personal Computer (APPC/PC) program product.
APPC/PC is a data communication system that enables
IBM PC transaction programs to communicate with other
transaction programs on other IBM PCs tha t have
APPC/PC. APPC/PC also enables the IBM PC to
communicate with APPC on other systems, such as the
Series/I, System/36, System/38, and System/370 CICS.

APPC/PC provides programs with a distributed
transaction processing capability. APPC/PC enables a
program on an IBM PC to communicate with another
program on another system without operator intervention.
This manual shows you how to write IBM PC transaction
programs that use APPC/PC to communicate with other
programs.

Who Should Use This Manual
Application programmers can use this manual to develop
programs that use the APPC/PC application program
interface (API). The API consists of the commands (verbs)
and return codes described in this manual. The
application programmer needs to know how to program
the IBM PC, and needs to understand SNA concepts.

How This Manual is Organized
Chapter 1, "Introduction to APPC/PC," describes
supported features of APPC/PC and how APPC/PC fits in
the IBM PC relative to other IBM PC programs. It
describes transaction programs and application subsystem
programs and introduces other terms used throughout this
manual.

111

Chapter 2, "Developing an Application Subsystem,"
describes functions that should be considered when
designing an application subsystem.

Chapter 3, "Developing a Transaction Program,"
describes functions that should be considered when
designing a transaction program.

Chapter 4, "Introduction to APPC/PC Verbs," briefly
describes verb types and the common verb format used in
chapters 5 through 9.

Chapter 5, "Using Control Verbs," describes the
application program interface (API) to control verbs.
First, the control verbs that the· application subsystem
sends to APPC/PC are described, followed by the control
verbs APPC/PC sends to the application subsystem. Near
the end of this chapter there are examples of activating
and deactivating a node.

Chapter 6, "Using Transaction Mapped Conversation
Verbs," describes the application program interface for
mapped conversation verbs. Preceding the individual verb
descriptions is a discussion of the conversation states that
determine which verbs can be issued, and a discussion on
understanding mapped conversation return codes.

Chapter 7, "Using Transaction Basic Conversation
Verbs," describes the application program interface for
basic conversation verbs. Preceding the individual verb
descriptions is a discussion of the conversation states that
determine which verbs can be issued, and a discussion on
understanding basic conversation return codes.

Chapter 8, "Using the Network Management Verb,"
describes the verb used to provide management services
information to a network management services function.

Chapter 9, "Other APPC/PC Services," describes other
verbs provided by APPC/PC for the convenience of the
programmer. One verb assists with communication
between the application subsystem and transaction
programs. Other verbs assist with data conversion
(ASCII/EBCDIC), tracing facilities, and disabling and

IV

reenabling APPC/PC to avoid recursion problems in exit
routines.

Chapter 10, "Resolving Error Conditions," describes three
types of error conditions with possible solutions and ways
to avoid them. The types of errors discussed are return
codes, SYSLOG reported errors, and system deadlocks.

Appendix A, "Verb Operation Codes and Formats," lists
the operation codes for APPC/PC verbs and the internal
formats for the parameter lists passed between the
application subsystem or the transaction program, and
APPC/PC.

Appendix B, "Conversation State Matrices," shows the
conversation state transitions that can occur when a
program issues a conversation verb.

Appendix C, "Verb Return Codes," shows the return
codes that APPC/PC can report to a program through the
RETURN_CODE parameter of each verb.

Appendix D, "SYSLOG Type Codes," lists the SYSLOG
type codes that represent error conditions and includes
data errors reported by the transaction program, link
errors, configuration errors, and system protocol errors.

Appendix E, "Sample Programs," describes the sample
programs supplied on the APPC/PC Structures and
Sample Programs diskette. There is also a listing for a
sample CICS program.

Appendix F, "Sample CICS Host Configuration for
APPC/PC," describes sample CICS and VTAM definitions
necessary to use APPC/PC.

Appendix G, "APPC/PC. Implementation of the LU6.2
Architecture," describes the optional functions of APPC
architecture supported by APPC/PC. This appendix also
includes a mapping of APPC/PC verbs and parameters
with the verbs and parameters used in the APPC
architecture documents.

v

Appendix H, "ASCII/EBCDIC Translation Tables,"
describes translation tables used by the conversion verb
provided by APPCjPC.

Appendix I, "Statement of Service," contains a discussion
of IBM service as related to the APPCjPC program
product.

Following the appendices are a glossary and an index.

Related Publications

The following publications provide additional information
on the topics discussed in this manual.

• Advanced Program-to-Program Communication for the
IBM Personal Computer Installation and Configuration
Guide contains planning and IBM PC set-up
information for APPCjPC.

• Introduction to Advanced Program-to-Program
Communication, GG24-1584, contains general
information about APPC.

• Systems Network Architecture Concepts and Products,
GC30-3072, contains basic information on SNA for
those readers wanting either an overview or a
foundation for further study.

• Systems Network Architecture Technical Overview,
GC30-3073, contains additional details on SNA,
especially on functions and control sequences; bridges
the gap between the most elementary overview of SNA
and the detailed descriptions of the formats and
protocols.

• Systems Network Architecture Transaction
Programmer's Reference Manual for L U Type 6.2,
GC30-3084, contains reference information on L U type

VI

6.2 (APPC) verbs for programmers writing transaction
programs to run on SNA.

• Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic for L U Type 6.2,
SC30-3269, contains information for system
programmers and others who need detailed information
about SNA LU Type 6.2 (APPC) to adapt a program to
function within an SNA network.

• Systems Network Architecture Sessions Between Logical
Units, GC20-1868, contains references on SNA formats
and protocols for L U types other than Type 6.2.

• Systems Network Architecture Reference Summary,
GA27-3136, contains summary information on SNA
formats and sequences.

• IBM SDLC General Information, GA27 -3093, contains
supplementary details of Synchronous Data Link
Control.

• IBM Token-Ring Network Introduction and Planning
Guide, GA27-3677, contains planning information for
IBM Token-Ring Network.

• IBM Token-Ring Network PC Adapter Guide to
Operations, SA27-3710, is the IBM Token-Ring Network
operations guide.

• IBM Token-Ring Network PC Adapter Technical
Reference Manual, SC30-3383, contains additional
reference information for IBM Token-Ring Network.

• IBM Token-Ring Network Problem Determination
Guide, SY27-1280, contains information on problem
diagnosis for the IBM Token-Ring Network.

• IBM Option Instructions for the SDLC Communication
Adapter, supplied with the IBM SLDC communication
adapter, contains adapter installation and connector
information.

Vll

Vlll

Contents

Chapter 1. Introduction to APPC/PC 1-1
The APPCjPC Program 1-1
What You Need 1-2
Features Supported 1-3
SNA and APPC Terminology 1-4
APPCjPC for the Transaction Programmer 1-6

Understanding Locally Initiated and Remotely
Initiated Transactions 1-7

Supporting Multiple Conversations 1-7
APPCjPC for the System Programmer 1-7

Understanding Initial Application Subsystem to
APPCjPC Interactions 1-9

Managing Incoming Requests for
Conversations 1-9

Chapter 2. Developing an Application Subsystem 2-1
Coding the Initial Attach Sequence 2-2
Starting a Transaction Program 2-3
Supporting Multiple Transaction Programs 2-7
Using Application Subsystem Exits 2-9
Canceling a Transaction 2-13
DOS Interrupts 2-14

Chapter 3. Developing a Transaction Program . 3-1
Understanding Application Protocols 3-1
Understanding the Conversation States 3-2
Understanding the Available APPCjPC Services . 3-3
Choosing Between Basic and Mapped

Conversations 3-6
Understanding the Conversation Type 3-7
Sending Data 3-8
Receiving Data 3-9
Reporting Errors and Abnormal Termination 3-10
Sending an Error Log Data Record 3-11
Abnormally Terminating Because of a

Time-out 3-11
Requesting Confirmation 3-12

IX

Choosing a Transaction Program Name 3-12
Using the Network Management Verb 3-13
Using the Security Features 3-13

Partner-LU Verification (Session-Level
Security) 3-13

End-User Verification (Conversation-Level
Security) 3-14

Converting between EBCDIC and ASCII 3-15

Chapter 4. Introduction to APPC/PC Verbs 4-1
Verb Types 4-1

Control Verbs 4-1
Mapped Conversation Verbs 4-2
Basic Conversation Verbs 4-2
Network Management Verb 4-2
Other Verbs 4-3

Verb Descriptions 4-3
General Description 4-4
Supplied Parameters 4-4
Returned Parameters 4-5

Chapter 5. Using Control Verbs 5-1
Understanding Control Verb Return Codes 5-3
Application Subsystem to APPC/PC 5-5

ACTIV ATE_DLC 5-5
ATTACH_LU 5-7
ATTACH_PU 5-17
CHANGE_LU 5-20
CNOS (Change Number of Sessions) 5-23
DETACH_LU 5-45
DETACH_PU 5-47
DISPLAY 5-50
GET_ALLOCATE 5-54
TP _ENDED 5-56
TP_STARTED 5-58
TP _ VALID 5-60

APPC/PC to Application Subsystem 5-62
ACCESS_LU_LU_PW 5-63
CREATE_TP 5-66
SYSLOG 5-72

Activating and Deactivating a Node 5-75
Activating a Node 5-75
Deactivating a Node 5-77

x

Chapter 6. U sing Transaction Mapped
Conversation Verbs 6-1

Understanding Mapped Conversation States 6-1
Understanding Mapped Conversation Return

Codes 6-3
Verb Descriptions 6-13

MC_ALLOCATE 6-13
MC_CONFIRM 6-22
MC_CONFIRMED 6-26
MC_DEALLOCATE 6-28
MC_FLUSH 6-32
MC_GET_ATTRIBUTES 6-35
GET_TYPE 6-39
MC_PREPARE_TO_RECEIVE 6-42
MC_RECEIVE_AND_WAIT 6-46
MC_RECEIVE_IMMEDIATE 6-53
MC_REQUEST_TO_SEND 6-60
MC_SEND_DATA 6-63
MC_SEND_ERROR 6-67
MC_TEST 6-72

Chapter 7. Using Transaction Basic
Conversation Verbs 7-1

Understanding Basic Conversation States 7-2
Understanding Basic Conversation Return Codes 7-5
Verb Descriptions 7-17

ALLOCATE 7-17
CONFIRM 7-26
CONFIRMED 7-30
DEALLOCATE 7-32
FLUSH 7-38
GET_ATTRIBUTES 7-40
GET_TYPE 7-44
POST_ON_RECEIPT 7-47
PREPARE_TO_RECEIVE 7-53
RECEIVE_AND_ WAIT 7-57
RECEIVE_IMMEDIATE 7-66
REQUEST_TO_SEND 7-74
SEND_DATA 7-77
SEND_ERROR 7-83
TEST 7-89
WAIT 7-94

Xl

Chapter 8. Using the Network Management Verb 8-1
Understanding the Network Management Verb .. 8-1

Alerts 8-2
Problem Determination Statistics 8-2

Verb Description 8-3
TRANSFER_MS_DATA 8-3

Chapter 9. Other APPC/PC Services 9-1
Verb Descriptions 9-2

SET_PASSTHROUGH 9-2
PASSTHROUGH 9-3
CONVERT 9-4
TRACE 9-8
DISABLEjENABLE_APPC 9-12

Chapter 10. Resolving Error Conditions 10-1
Return Code Error Indications 10-1
Logged Errors 10-2
System Deadlocks 10-2

Using Multiple Active Transaction Programs 10-2
Designing to Avoid System Deadlocks 10-5
Investigating a Deadlock Situation 10-7

Appendix A. Verb Operation Codes and Formats A-I
APPCjPC to Transaction Program Verbs A-I
Transaction Program to APPCjPC Verbs A-2
Verb Operation Codes A-3
Verb Record Formats A-4

ACCESS_LU_LU_PW A-6
ACTIVATE_DLC A-6
ALLOCATE and MC_ALLOCATE A-7
ATTACH_LU A-8
ATTACH_PU A-I0
CHANGE_LU A-II
CNOS A-II
CONFIRM or MC_CONFIRM A-13
CONFIRMED or MC_CONFIRMED A-14
CONVERT A-14
CREATE_TP A-15
DEALLOCATE or MC_DEALLOCATE A-16
DETACH_LU A-17
DETACH_PU A-18

Xll

DISABLEjENABLE_APPC A-18
DISPLAY A-18
FLUSH or MC_FLUSH A-19
GET_ALLOCATE A-20
GET_ATTRIBUTES or

MC_GET_ATTRIBUTES A-20
GET_TYPE A-2I
PASSTHROUGH A-22
POST_ON_RECEIPT A-22
PREPARE_TO_RECEIVE and

MC_PREPARE_TO_RECEIVE A-23
RECEIVE_AND_ WAIT and
MC_RECEIVE_AND_ WAIT A-24

RECEIVE_IMMEDIATE and
MC_RECEIVE_IMMEDIATE A-25

REQUEST_TO_SEND and
MC_REQUEST_TO_SEND A-27

SEND_DATA or MC_SEND_DATA A-27
SEND_ERROR or MC_SEND_ERROR A-28
SET_PASSTHROUGH A-30
SYSLOG A-30
TEST or MC_TEST A-30
TP _ENDED A-32
TP_STARTED A-32
TP _ VALID A-33
TRACE A-33
TRANSFER_MS_DATA A-35
WAIT A-36

Appendix B. Conversation State Matrices B-1

Appendix C. Verb Return Codes C-1
Common Return Codes C-2
Verb-Specific Return Codes C-14

Appendix D. SYSLOG Type Codes D-1
IBM Token-Ring Network Problems D-5

Link-Level Errors D-5
Network Management NMVT Messages D-9
ALERTS D-I0

SDLC Problems D-22
3D-millisecond CTS Dropout D-23
30-millisecond DSR Dropout D-23

XlII

40-second Transmit Failure D-23
5-second DISC Not Received Time-out D-23
IO-second Inactivity Time-out D-23

Appendix E. Sample Programs E-l
Sample Conversation E-4
Sample Program Execution E-5
Modifying the Sample Program for SDLC E-7
APPCjPC-CICS Sample Program E-8

Appendix F. Sample CICS Host Configuration
for APPC/PC F-l

Appendix G. APPC/PC Implementation of the
LU6.2 Architecture G-l

Base and Option Sets for APPC JPC G-I
Basic Conversation Verbs G-2
Mapped Conversation Verbs G-8
Control Verbs G-14
Network Management Verb G-16
Other APPCjPC Services G-16

Appendix H. ASCII/EBCDIC Translation Tables H-l

Appendix I. Statement of Service

Glossary

1-1

X-I

Index X-17

XIV

Chapter 1. Introduction to
APPC/PC

The APPC/PC Program

APPC/PC is a data communications subsystem for the
IBM Personal Computer. APPCjPC provides SNA
Advanced Program-to-Program Communication (APPC)
for application programs that perform distributed
transaction processing.

An application program using APPCjPC can communicate
with application programs on other systems that support
APPC. In this book a transaction program is an
application program that uses APPC/PC communication
functions.

Transaction programs use APPC/PC verb sequences to
communicate with other programs at other SNA nodes.
You can regard this set of verbs as a programming
language in which you can write conversations.
APPC/PC verbs are coded as records, each having a
precisely defined syntax. Your transaction programs gain
access to APPC/PC facilities by providing verb records to
the APPC/PC application program interface (API) that
appears as an operating system extension of PC DOS.

Whether you write your own application or use an
existing application, you must first set up your IBM
Personal Computer to operate in a computer network.
APPC/PC simplifies setup by providing configuration
menus that help you configure your IBM Personal
Computer for connection to an IBM Token-Ring Network,
to an SNA data communication network using
Synchronous Data Link Control (SDLC) leased or
switched facilities, or to both. A simple direct connection

1-1

between IBM Personal Computers using SDLC is also
possible.

What You Need

To use APPCjPC as described in this manual, you need:

• The APPCjPC program product consisting of the
APPCjPC Installation and Configuration Guide and
two diskettes: the APPCjPC Program Diskette, and
the AP PCj PC Structures and Sample Programs
diskette.

1-2

The Guide describes hardware and software
requirements and provides information on planning,
configuring, and loading APPCjPC.

The APPCjPC Program Diskette contains:

APPCjPC load and unload commands

The APPCjPC configuration program

Data Link Control files

A sample type G conversation table.

The APPCjPC Structures and Sample Programs
diskette contains:

APPCjPC assembler verb structures, which are
used to write application subsystems and
transaction programs

A set of sample programs to illustrate the design of
an application subsystem and the coding of
APPCjPC verbs using the macro assembler verb
structures.

• In addition to the APPCjPC program product, you
need a language to compile your application subsystem
and transaction programs. You can use any language
that supports:

Issuing software interrupts

Setting general registers

Building parameter lists (as described in Appendix
A)

Providing address ability to sections of code.

For information on specifying the APPCjPC configuration
and running APPCjPC, see the APPCjPC Installation and
Configuration Guide.

Features Supported

APPCjPC provides the SNA APPC node support as
defined in the SNA Format and Protocol Reference
Manual.

APPCjPC supports an open API including the following:

• Base APPC (L U Type 6.2jPU Type 2.1)

• Parallel sessions (when attached to peer PU Type 2.1
nodes)

• Synchronization level of None or Confirm

• Mapped conversation support (but no data mapping)

• Peer and boundary function attachment

• Support for conversation- and session-level security

1-3

• Network Management support for ALERT, PDSTATS,
and general NMVTs

• Normal Response Mode SDLC

Primary point-to-point

Secondary point-to-point or multipoint

Switched support for manual dial, manual answer,
and auto-answer

• IBM Token-Ring Network support

• Compatibility with CICSjVS Version 1.7

• Operation under the latest level of IBM PC DOS at
availability of the IBM Token-Ring Network.

SNA and APPC Terminology

The diagram below illustrates the relationship between
the IBM PC hardware and the software components
involved in the operation of APPCjPC.

Application Subsystem

I Trans.cHon II
Programs

(API)-

Operating
System

(PC-DOS) APPC/PC
ROM BIOS

Hardware

1-4

I
Composite

SNA
Node

The application subsystem refers to one or more programs
whose primary function is to provide services for
APPC/PC and transaction programs. The application
subsystem logs errors, manages incoming conversations,
loads transaction programs, and provides other services.
The transaction programs use APPC/PC communication
services to communicate with a partner transaction
program to perform transactions. The API is the set of
commands that the application subsystem and transaction
programs use to communicate with APPC/PC. The
application subsystem and transaction programs are
provided by the user.

A remote transaction program can request a local
application subsystem to start a local transaction program
so that the programs can exchange data. The
corresponding transaction programs are called partner
transaction programs.

You can choose the type of conversation that your
transaction program uses: a basic conversation or a
mapped conversation. The type of conversation you use
depends on whether you need full access to the SNA
general data stream (GDS) as provided by basic
conversations. A header field (LLID) precedes all data
that a program sends in the GDS format. The logical
length (LL) portion of the header field specifies the
overall length of the data and the identification (lD)
portion specifies the type of data.

In basic conversations, data passed to and received from
the APPCjPC API must contain at least the LL fields of
the GDS headers. (See SNA Reference Summary for
information on GDS variables.) The transaction program
must build and interpret the LL fields but the ID fields are
optional. The ID information is necessary only if the
partner program expects to receive GDS variables.

In mapped conversations, the data that programs pass to
and receive from the APPC/PC API is simply user data. A
transaction program using mapped conversations does not
require GDS headers to describe the data; therefore, the
program does not have to build or interpret these headers.
When the transaction program uses mapped

1-5

conversations, APPC/PC builds and interprets GDS
variables.

APPC/PC verbs fall into three general categories:

• Conversation verbs used by a transaction program to
communicate data

• Control verbs that an application subsystem uses to
request services from or provide services to APPC/PC

• System services verbs for tasks such as network
management and ASCII/EBCDIC conversion.

APPCjPC for the Transaction
Programmer

APPC/PC provides a transaction program API and an
interface to the control functions within the application
subsystem that the system programmer provides.

The communication services of APPC/PC extend the
services that the operating system normally provides.
These services include communication primitives that
enable a transaction to use a conversation to
communicate with a partner transaction. Each
conversation is half-duplex-that is, the transaction
program with the right to send data must give up that
right before its partner transaction program can send
data. For descriptions of the capabilities of the
transaction API, see Chapter 6, "Using Transaction
Mapped Conversation Verbs," and Chapter 7, "Using
Transaction Basic Conversation Verbs."

1-6

Understanding Locally Initiated and
Remotely Initiated Transactions

A transaction can start in one of two ways: by an action
initiated at your IBM PC or by an action initiated by a
remote transaction program. Initially, the creating
transaction program has the right to send data and the
created transaction program does not have the right to
send data. After initialization, the verb sequences that
the programs issue determine the right to send data.

Supporting Multiple Conversations

A transaction program can have conversations with
several partners simultaneously. However, a transaction
that a remote program initiates is always a new
transaction. Therefore, to have more than one
conversation with remote programs, a local program must
initiate all conversations except the first one.

Each conversation uses a logical resource called a session,
and the conversation can use this session for as long as it
requires. However, while a conversation is using a
session, no other conversation can use it. When a
transaction requests APPCjPC to allocate a conversation,
APPCjPC responds by establishing a conversation and
assigning it to a session.

APPC/PC for the System
Programmer

The system programmer provides an application subsystem
that uses the defined APPCjPC interface. The primary
function of the application subsystem is to provide
services for APPCjPC, but the system programmer can
also use the application subsystem to provide services for
the transaction programs.

1-7

The application subsystem manages the services of the
communication node not managed by APPCfPC. These
services include:

• Defining the logical characteristics of the node,
including the Physical Unit (PU), the Logical Units
(LUs), the partner LUs, and the desired number of
sessions with each partner

• Activating the adapters

• Handling logged error messages

• Providing LU-LU passwords (if security features are
required)

• Validating and loading a remotely initiated
transaction program (if the capability for remote
initiation is required)

• Managing cancellation of a transaction program
(optional).

In addition to the application subsystem services just
listed, the system programmer can provide other services
to the transaction program, as appropriate.

The interface between the application subsystem and
APPC fPC consists of two parts:

• A verb interface to establish the PU and the L U s, and
to define partner LUs, session limits, and other
communication parameters. Control verbs are
described in Chapter 5, "Using Control Verbs."

• A set of exit routines to manage incoming transaction
requests, log errors, and provide LU-LU passwords,
also described in Chapter 5, "Using Control Verbs."

For information on the design of an application subsystem
see Chapter 2, "Developing an Application Subsystem."

1-8

Understanding Initial Application
Subsystem to APPC/PC Interactions
The application subsystem must issue verbs to define the
capabilities of the communication node. An
ATTACH_PU verb establishes the PU and an
ATTACH_LU verb establishes each LV. These verbs
provide information such as the LU name, processing
capabilities, and a method of handling incoming requests
for conversations. The application subsystem issues verbs
so that the transaction programmer does not need to be
concerned with the system definition.

For example, the system programmer may want to provide,
as part of the application subsystem, predefined utility
routines to execute attachment sequences for particular
system configurations.

Managing Incoming Requests for
Conversations
The application subsystem must manage requests for
conversations (incoming ALLOCATEs) from other
transaction programs. The system programmer must
decide, for each L U, the best way to manage these
incoming ALLOCATEs. Three options are available:

• The application subsystem can reject incoming
ALLOCATEs entirely

• The application subsystem can provide an exit
procedure that APPC/PC can call when an incoming
ALLOCATE arrives (asynchronous option).

• You can direct the L U to queue the incoming
ALLOCATEs until the application subsystem requests
them (synchronous option)

To process an incoming ALLOCATE, the application
subsystem must validate the request, load and/or initiate
the requested transaction program, and provide the

1-9

transaction program with the parameters it must have to
issue APPCjPC conversation verbs.

1-10

Chapter 2. Developing an
Application Subsystem

APPCjPC runs under an application subsystem that
manages features such as node definition, incoming
requests for conversations (incoming ALLOCATEs), and
error logging. This chapter describes the APPCjPC
support options available to the application subsystem
designer.

Efficient designs separate the application subsystem from
the transaction programs, and define and manage nodes
separately from the transaction programs so that these
transaction programs can concentrate on conversations
with particular partners. In this way you need to define
the characteristics of the node and its partners only once,
independently of the individual conversations.

Certain portions of the application subsystem should be
loaded and remain resident during transaction processing,
so that they can communicate with the transaction
programs as necessary. These portions become a DOS
extension, just as APPCjPC becomes a DOS extension. An
example of how to create an application subsystem is
described in Appendix E, "Sample Programs."

2-1

Coding the Initial Attach
Sequence

After loading APPC JPC through a DOS command, the
normal sequence for the application subsystem to issue
APPCjPC verbs is as follows:

The ATTACH_PU verb defines and establishes APPCjPC
conversations for the PU. It must be the first verb issued
after APPCjPC loading, or, if the node is to be redefined,
the first verb issued after issuing DETACH_PU.

The ATTACH_LU verb defines each local LV and its
characteristics, the potential partner L U s, and the
transmission service modes (called modes). It specifies
session limits for the LU, the partner LU, and the mode.
The ATTACH_LU verb returns an identifier of the LU
(L U _ID). The application subsystem must save the
LU_ID so that it can be used to specify the LU to which
the transaction belongs.

The ACTIVATE_DLC verb opens the adapters
designated in the APPCjPC menus. The application
subsystem should issue this verb after issuing the
ATTACH_LU verb. This sequence avoids receiving
messages from a remote node before the application
subsystem defines the local L U.

If you are using a switched SDLC link, you should make
the connection at this point.

The CNOS verb sets the active number of sessions with a
partner LV, and negotiates session limits with a partner
LU if parallel sessions are defined. The application
subsystem should issue the CNOS verb after issuing the
ACTIV ATE_DLC verb. This sequence assumes that the
communication adapters will be open in case CNOS
negotiation is required.

If the session limit is greater than one, the application
subsystem should issue the first CNOS for the special

2-2

mode named 'SNASVCMG' (EBCDIC characters). This
special mode enables the establishment of a session on
which to perform CNOS negotiation with the partner LU.

CNOS must set the number of sessions before APPC/PC
can start any conversations.

Initiate transactions resulting from incoming
ALLOCATEs (through the CREATE_TP exit or the
GET_ALLOCATE verb) or initiate a transaction locally
by issuing a TP _STARTED verb. The transaction
programs can now communicate with each other using
conversation verbs.

The TP _ENDED verb signals that the transaction
program is ending its operation.

The application subsystem must issue TP _ENDED before
issuing DETACH_LU.

Use the CNOS verb to lower the session limits (partner
LU and mode name) to 0, which also causes deactivation
of the sessions. The application subsystem must set the
session limits for all partner LUs to 0 through CNOS
before issuing DETACH_LU.

The DETACH_LU or DETACH_PU verbs enable the
application subsystem to undefine local LUs, their partner
LUs, and/or the PU.

Starting a Transaction Program

A transaction program may begin operating because of an
action initiated at your local IBM PC or an action
initiated by a remote partner.

2-3

Locally Initiated Transactions

A locally initiated transaction is initiated by an action at
the local node, rather than by an incoming ALLOCATE.
The application subsystem must issue a TP _STARTED
verb for each locally initiated transaction program to
establish APPCjPC resources to support that program.

The TP _STARTED verb returns an identifer for the
transaction program (TP _ID). All further verbs issued by
the transaction program must include this TP _ID. The
application subsystem must communicate the TP _ID to
the transaction program after it receives the TP _ID from
APPCjPC. For more information on the TP _ID identifier,
see "Communicating Identifiers" on page 2-6.

Remotely Initiated Transactions

A transaction program operating at a remote node can
initiate a transaction at the local node by issuing an
ALLOCATE. This type of transaction is called a remotely
initiated transaction. The remote LU sends a request for
a transaction, called an incoming ALLOCATE, to the
local node. The local node responds by accepting or
rejecting the incoming ALLOCATE.

If accepted, the incoming ALLOCATE establishes an
initial conversation, and the local transaction program
starts in RECEIVE state.

Three options for managing transaction initiation from
incoming ALLOCATEs are available:

Option 1: Rejection

The application subsystem rejects incoming ALLOCATEs.
No exit routine is needed.

Option 2: Synchronous Management

The local LU queues incoming ALLOCATEs until you
request one by issuing an ALLOCATE through a
GET_ALLOCATE verb. APPCjPC assigns a TP _ID and

2-4

CONY _ID (conversation ID) at this time. The application
subsystem should not issue a TP _STARTED verb for a
transaction program started by an incoming ALLOCATE.
The application subsystem must communicate the TP _ID
and CONY _ID parameters to the remotely initiated
transaction program. For more information on the TP _ID
and CONY _ID parameters, see "Communicating
Identifiers" on page 2-6.

A TP_VALID verb must follow the GET_ALLOCATE to
tell APPCjPC whether the transaction program is valid
and correctly loaded.

After APPCjPC accepts a request for a transaction
program, you may choose to issue the CHANGE_LU verb
to purge the incoming ALLOCATE queues for all LUs and
then begin rejecting incoming ALLOCATEs. This
procedure keeps the partner who issued the second
ALLOCATE from waiting until the accepted transaction
program is finished. In some cases this procedure avoids
potential deadlocks. (For more information on resolving
deadlocks, see "System Deadlocks" on page 10-2.)

When the accepted transaction program ends, you should
issue TP _ENDED to free APPCjPC resources for the
transaction program and CHANGE_LU to resume
queueing incoming ALLOCATEs.

The GET_ALLOCATE verb does not suspend while
waiting for an incoming ALLOCATE, but simply checks
whether one is present (and optionally dequeues it).
Therefore, you can use GET_ALLOCATE in a loop along
with checking for input from the communication line, the
keyboard, and other asynchronous devices.

Issuing CNOS(PARTNER_LU_MODE_SESSION_
LIMIT = 0) does not deactivate all sessions immediately
because each queued incoming ALLOCATE is using a
session. The CNOS verb deactivates each session after
you reject or service the incoming ALLOCATE using that
session. Issue the CHANGE_LU verb to reject queued
incoming ALLOCATEs. To service these incoming
ALLOCATEs, continue issuing GET_ALLOCATE and

2-5

initiate the requested transactions until the DISPLAY
verb indicates that no sessions remain active.

Option 3: Asynchronous Management

The application subsystem processes each incoming
ALLOCATE as it arrives. You must provide an exit
address for a routine that will validate and, if necessary,
load the requested transaction program. APPC/PC
assigns a TP _ID and CONY _ID at this time, so the
application subsystem should not issue TP _STARTED for
a transaction program started by an incoming
ALLOCATE. The application subsystem must
communicate the TP _ID and CONY _ID to the remotely
initiated transaction program.

When the transaction program ends, you should issue
TP _ENDED to free APPC/PC resources for the
transaction program.

For more information on asynchronous management of
incoming ALLOCATEs, see "Managing Asynchronous
Incoming ALLOCATEs (CREATE_TP Exit)" on
page 2-12.

Communicating Identifiers

A transaction program must know the TP _ID and
CONY _ID identifiers before it can issue valid verbs.
Because the transaction program did not issue
ATTACH_LU, it may not have direct access to the
LU_ID it requires before it can issue the TP_STARTED
verb.

For a locally initiated transaction, the application
subsystem can use the SET_P ASSTHROUGH and
PASSTHROUGH verbs to communicate the TP _ID to the
transaction program. (APPC/PC returns the CONY _ID
on the ALLOCATE verb that starts each conversation.)
Using the PASSTHROUGH and SET_PASSTHROUGH
verbs, the application subsystem can define its own utility
verb which, in turn, issues the TP _STARTED verb, and
returns the TP _ID to the transaction program.

2-6

For a remotely initiated transaction, the application
subsystem can use the same utility verb to return both the
TP_ID and CONV_ID without issuing the TP_STARTED
verb.

The utility verb will use the same interrupt mechanism
that APPCfPC uses (INT X'68'). The application
subsystem has to keep information obtained from files, or
from its own menus, relating the transaction program
names to the L U names and L U _IDs returned from the
ATTACH_LU verb. See Appendix E, "Sample Programs"
for an example of this technique. TP _INITIATE, the
sample utility verb described in Appendix E, is
user-defined and not a part of APPC fPC.

Communicating within the Application
Subsystem

It may also be necessary to communicate the L U _ID
between portions of the application subsystem. For
instance, one section of the application subsystem may
issue the ATTACH_LU verb, and another manage
incoming ALLOCATEs. The application subsystem may
use the passthrough feature to perform this
communication by having the incoming ALLOCATE
routine request the LU_ID for a given LU name. The
LU_ID would have been saved by the program that issued
the ATTACH_LU. For an example of communicating
within the application subsystem, see
Appendix E, "Sample Programs."

Supporting MUltiple Transaction
Programs

APPCfPC assumes a single-tasking operating system in
the IBM PC. If the transaction program issues a verb that
suspends APPCfPC operation (such as
RECEIVE_AND_ WAIT if not enough data is available),

2-7

APPCjPC normally loops internally, returning to the
transaction program only after the verb completes. Even
if an interrupt occurs that permits the application
subsystem or the transaction program to regain control,
issuing a second APPCjPC verb is not valid until the
actions resulting from the first have completed. With few
exceptions APPCjPC requires serialized issuance of verbs.

This single-threadedness does not prevent the existence of
multiple transaction programs.

Two approaches to providing a multiple transaction
capability are:

1. Code the transaction programs independently.

A sophisticated application subsystem can help
serialize the verbs from several transaction programs.
For example, at appropriate points a transaction
program might relinquish control so that other
transaction programs can issue APPCjPC verbs. The
application subsystem might provide runtime
constructs (such as macros) for suspension of a
transaction program.

For designs where control might pass from one
transaction program to another while a verb is being
executed (for example, time slicing) the transaction
programs can determine if APPCjPC is busy executing
another verb. The transaction program can then loop
on each verb until the verb that the transaction
program is ready to issue can be executed. (The return
code field contains a value which indicates that a verb
has been rejected because APPCjPC was busy. For
more information, see Appendix C, "Verb Return
Codes.")

2. Code one program that emulates several transaction
programs. For example, code a program that issues
APPCjPC verbs using several TP _IDs.

With either approach, problems can occur when
communicating with a partner that does not support
multitasking (such as another instance of APPCjPC). In

2-8

this case, using simultaneous multiple transaction
programs can lead to a deadlock situation in which each
side is blocked from sending because another transaction
program is waiting to receive data.

If you choose to develop an application subsystem that
can support more than one transaction program
simultaneously, you must analyze the communication
topology and incoming ALLOCATE management to
ensure that no deadlocks will occur.

Deadlock situations between IBM PCs can be caused by
an unfinished verb in a transaction program preventing
the issuance of a verb in another TP in the same node.

One way of preventing such deadlocks is to specify the
RETURN_CONTROL(INCOMPLETE) option on the
ATTACH_PU verb. This will cause control to return to
the verb issuer with an INCOMPLETE return code if a
verb cannot finish. Verbs from other transaction
programs can then be issued before the incomplete verb is
re-issued.

If you select the RETURN_CONTROL(INCOMPLETE)
option of the ATTACH_PU verb, you should consider
designing the application subsystem to perform all verb
issuances. It can then perform a round-robin scheduling
on the various TPs, including periodic re-issuance of
incomplete verbs. See "System Deadlocks" on page 10-2
for a more complete explanation of deadlocks.

Using Application Subsystem
Exits

Three application subsystem exits are available for
specification in the ATTACH_LU verb:

1. An exit for LU-LU security that provides LU-LU
passwords for an L U and a named partner L U

2-9

2. An exit that accepts errors logged during program
execution (There is also an error log exit, primarily for
hardware errors, specified on the ATTACH_PU verb.)

3. An exit that manages incoming ALLOCATEs and
validates (and loads, if necessary) the requested
transaction programs.

Different LUs can use the same or different exit addresses.
APPC/PC provides pointers to these asynchronous exits.
These pointers give the application subsystem access to
the appropriate verb (ACCESS_LU_LU_PW, SYSLOG,
or CREATE_TP). Unlike other APPC/PC verbs, these are
passed from APPC/PC to the application subsystem.

Supporting LU-LU Passwords
(ACCESS_LU_LU_PW Exit)

If LU-LU security is supported, the application subsystem
must supply an exit routine for the verb
ACCESS_LU_LU_PW. This exit routine provides the
password that allows a specified partner L U to establish a
session with a local LU. The application subsystem can
maintain the passwords in a password table (preferably in
encoded form), or the program can request them from the
operator as needed. All security measures for passwords
are the operator's responsibility. For example, if you keep
passwords on hard disk or diskette, consider what
physical security is required to maintain confidentiality.

Managing Logged Errors (SYSLOG Exit)

If you wish to log the errors occurring during a
conversation, you must provide an exit routine to accept
such errors. You cannot issue another APPC/PC verb
from this exit routine.

If you specify this error log exit, you may want to print or
display a console message, create a file of logged errors,
or send an error message to another node. However, if
the log message occurs during the processing of an

2-10

interrupt for incoming data, and the interrupted code is
within DOS, then trying to use DOS to write to the
console, a file, or a printer results in a recursive use of
DOS, which leads to unpredictable results.

Certain uses of BIOS within this exit may also lead to
unpredictable or undesirable results, depending on the use
of DOS and BIOS within the application.

APPCjPC provides an interface to suspend operation.
While APPCjPC operation is suspended, it will not call
the SYSLOG exit (or any other APPC/PC exit). You may
choose to have your application subsystem assume control
of the DOS X'21', BIOS X'10', and BIOS X'17' (and
possibly other) interrupt vectors, and then disable
APPCjPC (using the DISABLEjENABLE_APPC verb)
until the DOS or BIOS call is finished. The application
subsystem should then regain control and re-enable
APPCjPC (using the DISABLE/ENABLE_APPC verb).
You can return control to the application subsystem from
DOS or BIOS by re-establishing the interrupt vector and
issuing your own INT X'21', INT X'10', or INT X'17' (or by
simulating the effect of these interrupts). The application
subsystem then reassumes control of the interrupts and
performs an IRET (Interrupt Return) to the transaction
program.

When enabled again, APPCjPC will process any delayed
messages it received while it was disabled.

The DOS Load and Execute call (X' 4B'), which loads a
transaction program and starts it executing, does not
return until the transaction program finishes. Therefore,
if APPCjPC is disabled at the beginning of this DOS call,
you must find an opportunity to re-enable. Either do not
disable APPCjPC for this call, or have each transaction
program enable APPCjPC when the transaction program
starts executing. The section on the sample program (see
Appendix E, "Sample Programs") discusses a user-defined
TP_INITIATE verb that APPCjPC passes through the
application subsystem. Although the sample program does
not perform such re-enabling, this may be a convenient
place to do it.

2-11

If your transaction programs use DOS or BIOS calls then
you must either correct the recursion problem, or you
should not use DOS or BIOS at the asynchronous exit.

Managing Asynchronous Incoming
ALLOCATEs (CREATE_TP Exit)

If you accept incoming ALLOCATEs as they arrive, you
must provide an exit to process them.

One way of managing this is to start an application
subsystem program that waits (by looping until a switch
or counter is set) for an incoming ALLOCATE. When an
incoming ALLOCATE arrives the looping program is
interrupted by APPCjPC and the CREATE_TP exit is
called. The CREATE_TP exit code sets the switch or
counter and returns to APPCjPC. When the looping
program regains control it ends the loop, then loads the
requested transaction program and saves the TP _ID and
CONV_ID.

If your program does not support more than one
simultaneous transaction program and a transaction
program is running when the ALLOCATE arrives, you
should either queue the incoming ALLOCATE at the
CREATE_TP exit, or reject it.

To support more than one simultaneous transaction, you
can choose to pre-load all transaction programs and
activate the appropriate one for each incoming request.

Alternatively, you can use DOS to load the transaction
programs at the CREATE_ TP exit. You must suspend
APPCjPC while using DOS to prevent DOS recursion.
See "Managing Logged Errors (SYSLOG Exit)" on
page 2-10 for a description of DOS recursion.

If the asynchronous exit saves any data for access by
another section of the application subsystem, then you
should inhibit interrupts around the access code.
Otherwise, a hardware interrupt might occur at the point
of access, causing unpredictable results.

2-12

Canceling a Transaction

You may wish to permit the operator to cancel a
transaction by pressing Ctrl-Break on the keyboard. The
DOS Control Break option in the APPC/PC menus
specifies whether or not APPC/PC should issue a DOS call
("check keyboard status") while it is suspended with no
work. For example, APPC/PC has no work while the
transaction program is waiting for data after issuing a
RECEIVE_AND_WAIT verb. This DOS call does not
cause DOS, used in this manner, recursion problems.

If you select this option, the DOS Control Break routine
gains control and cancels the transaction program when
Ctrl-Break is pressed. However, APPC/PC is still in the
middle of processing the RECEIVE_AND_ WAIT verb,
and cannot be used to process another verb. You can
restore APPC/PC to a usable state by issuing the
DETACH_PU(TYPE=HARD) verb, which closes all
adapters and cleans up APPC/PC conversations. In the
environment just described, the operator has to start a
utility program that issues DETACH_PU(TYPE=HARD).

You can simplify the procedures for the operator by
having the application subsystem substitute its own DOS
Control Break routine (DOS interrupt X'23') and then by
issuing the DETACH_PU verb from this routine.
DETACH_PU overrides any existing verbs, regains
outstanding storage, and closes the adapters. The routine
should then execute the original DOS Control Break code
to cancel the application.

After canceling a transaction, the application subsystem
must repeat the ATTACH_PU, ATTACH_LU,
ACTIV ATE_DLC, and CNOS sequence to redefine
APPC/PC and restart the adapters.

If the IBM PC is communicating with a host, the effect of
an ungraceful shutdown of lines (and sessions) may result
in Network Management messages flowing to a host
application, alerting it to a potential problem. To prevent
the user from causing these messages to flow to the host,

2-13

you should prohibit the Ctrl-Break key from canceling an
application. In this case, the application subsystem
should substitute its own DOS Control Break routine,
which ignores the Ctrl-Break key. If you choose this
method, do not select the APPC/PC menu option "DOS
Control Break."

Another possibility which may be desirable in some
circumstances, is to use the BIOS keyboard Control Break
routine (interrupt X'lB') which takes effect immediately
upon pressing the Ctrl-Break key. If you choose this
method, do not select the APPC/PC menu option "DOS
Control Break."

You must consider the total operating environment when
choosing your method of cancelation. In particular, you
must make sure that other resident programs that use the
same interrupt are not affected.

DOS Interrupts

APPC/PC uses software interrupt X'68' to issue verbs. The
APPC/PC loader establishes this interrupt vector and the
APPCUNLD program resets it. The application subsystem
or the transaction program can determine if APPC/PC is
loaded by comparing the character string starting at 9
bytes before the address referred to in the X'68' vector
(location 416 in storage) to the ASCII character string
, APPC/PC'. If the value matches, APPC/PC is loaded.

Different adapters use different hardware interrupts. The
SDLC adapter uses interrupts 3 and 4. The IBM
Token-Ring Network adapter uses interrupt 2, 3, 6, or 7
depending on the setting of switch 1 on the adapter card.
For more information on this switch setting, see the IBM
Token-Ring Network PC Adapter Guide to Operations. For
more information on configuring APPC/PC for different
adapters see the APPC/PC Installation and Configuration
Guide.

2-14

Chapter 3. Developing a
Transaction Program

When developing a transaction program, you must choose
between certain design alternatives. The following list
describes the design issues to consider:

• Choosing either basic or mapped conversations

• Deciding whether to start conversations with or
without confirmation

• Choosing a name for the transaction program

• Using the network management verb

• Using the security features

• Providing for conversion of ASCII names and data (if
necessary).

The first part of this chapter provides background
information on the application protocols, conversation
states, the APPCjPC support tasks, and data formats. The
remaining parts of this chapter describe specific
requirements for operating a transaction program.

Understanding Application
Protocols

APPCjPC support enables your program to accomplish
program-to-program communication. The design of your
program depends on the protocols that you define and the
communication that your program must accomplish.

3-1

In addition to any rules that you define for your program,
APPCjPC defines rules that your program must follow
when using a conversation. To enforce these rules,
APPCjPC manages the state of your conversation and
allows your program to perform certain operations only
when the conversation is in the correct state. For
example:

• Your program cannot send data unless it has
permission to send.

• Your program cannot receive data unless the partner
program has permission to send.

• Your program cannot use a conversation after it has
been deallocated.

Understanding the Conversation
States .

APPCjPC manages and enforces the following
conversation states:

State

Reset

Send

Definition

The conversation does not exist.

The program can send data, request
confirmation, or deallocate the conversation.

Receive The program can receive information from the
partner program.

Confirm The program can reply to a confirmation
request.

Descriptions of state changes, and of the valid verbs that
a transaction program can issue in each state, are
contained in Chapter 6, "Using Transaction Mapped

3-2

Conversation Verbs," and Chapter 7, "Using
Transaction Basic Conversation Verbs."
Appendix B, "Conversation State Matrices," summarizes
the ways the state of a conversation can change.

Understanding the Available
APPC/PC Services

APPCjPC support includes a series of services that your
transaction program can use to communicate with another
program. The following list includes the name of each
service followed by a short description of the service and
the names of the conversation verbs corresponding to the
serVIce:

Allocate a Conversation

Requests that the local LU start a conversation with a
transaction program in a partner L U (the partner
program).

Corresponding verbs: ALLOCATE and MC_ALLOCATE.

Send Data

Sends data to the partner program.

Corresponding verbs: SEND_DATA and
MC_SEND_DATA.

3-3

Force Data in the Internal Buffers to be Sent

Forces the LU to send to the partner program all data it is
holding in an internal buffer.

Note: You do not normally have to use this service to
cause the LU to send the data. The LU automatically
sends the data it stores in an internal buffer when the
buffer is full or when it determines that your program is
done sending.

Corresponding verbs: FLUSH and MC_FLUSH.

Receive Data

Receives data from the partner program.

Corresponding verbs: RECEIVE_AND_ WAIT,
RECEIVE_IMMEDIATE, MC_RECEIVE_AND_WAIT,
and MC_RECEIVE_IMMEDIATE.

Request Permission to Send

Requests from the partner program permission to send
data.

Corresponding verbs: REQUEST_TO_SEND and
MC_REQUEST_TO_SEND.

Grant Permission to Send

Gives the partner program permission to send data.

Corresponding verbs: PREPARE_TO_RECEIVE and
MC_PREPARE_TO_RECEIVE.

3-4

Request Confirmation

Requests that the partner program confirm that all the
data has been received and processed successfully.

Corresponding verbs: CONFIRM and MC_CONFIRM.

Accept or Reject Confirmation

Sends a reply to a confirmation request.

Corresponding verbs: CONFIRMED, MC_CONFIRMED,
SEND_ERROR, and MC_SEND_ERROR.

Request to be Posted when Information is
Available

Requests that the LU post an event when the conversation
has information available to be received.

Corresponding verb: POST_ON_RECEIPT.

Report an Error

Reports that an error has occurred.

Corresponding verbs: SEND_ERROR and
MC_SEND_ERROR.

Obtain Conversation Attributes

Obtains the attributes of a conversation. These attributes
include:

• The name of the local L U

• The name of the partner L U

3-5

• The mode name of the session's transmission service
mode

• The type of confirmation protocols supported by the
conversation

• The type of conversation

Corresponding verbs: GET_ATTRIBUTES,
MC_GET_ATTRIBUTES, and GET_TYPE.

Deallocate a Conversation

Ends a conversation with the partner program.

Corresponding verbs: DEALLOCATE and
MC_DEALLOCATE.

Choosing Between Basic and
Mapped Conversations

APPCjPC supports two types of conversations: basic and
mapped. Mapped conversations are for transaction
programs that are the final users of the data exchanged.
A mapped conversation provides the features required for
advanced program-to-program communication in an
easy-to-use record-level manner.

Basic conversations are for LU service transaction
programs that provide services and exchange data for
other transaction programs. A basic conversation has all
the features of a mapped conversation but also has
additional features that transaction programs may
require to provide services for other applications.

APPCjPC support provides separate sets of verbs for basic
and mapped conversations. In general, mapped
conversation verbs have fewer options and are easier to

3-6

use. Basic conversation verbs are more powerful and
provide the additional flexibility required for use by an
L U service program.

You should consider the following topics when choosing
between basic and mapped conversations.

Understanding the Conversation
Type

The ALLOCATE verb designates a conversation as either
a mapped conversation or a basic conversation. A
program can issue only basic conversation verbs for a
basic conversation. A program using a mapped
conversation normally issues only mapped conversation
verbs.

You can provide your own mapped conversation support
using only basic conversation verbs for a conversation
designated as mapped. If you choose to provide your own
mapped conversation support, your program must conform
to the mapped conversation formats and protocols.

See the SN A Format and Protocol Reference Manual:
Architecture Logic for L U Type 6.2 for more information
on mapped conversation formats and protocols.

The verbs you use must be consistent for the entire
conversation. You cannot use basic conversation verbs
for some requests and mapped conversation verbs for
other requests. APPC/PC rejects the verbs if you change
from one type of verb to another within a conversation. A
remotely intitated transaction program can issue the
GET_TYPE verb to determine the conversation type.

3-7

Sending Data

Use a basic conversation when you need to optimize your
program's performance by sending the data from a buffer
that contains more than one logical record or a partial
logical record. You can use this option to improve your
program's execution efficiency by enabling it to send
several logical records with one request.

To use this basic conversation feature, your program must
provide a 2-byte length field (LL field) at the beginning of
every logical record where:

• The last 15 bits of the LL field contain a binary value
equal to the length of the logical record, including the
2-byte length field. The 15-bit limit restricts the value
to a maximum of 32767 (32765 bytes of user data plus
the 2-byte length field). If you use a value larger than
32767, APPCjPC does not detect the error. APPCjPC
uses the last 15 bits of the LL field even if the value is
larger than 32767.

The smallest value possible is 2 (the LL field followed
by no data). If you use a value that is less than 2,
APPCjPC indicates an error.

• APPCjPC ignores the first bit of the LL field. This bit
is a concatenation indicator. If the concatenation
indicator is set, the transaction program must append
the data from the following logical record to the data
received up to that point. This concatenation process
should continue until the transaction program receives
a record in which the concatenation indicator is not
set. This definition provides for logical records that
are longer than 32767 bytes.

• You must manage the reversal of byte values in your
IBM PC.

3-8

The IBM PC stores all numeric 16- or 32-bit values
with the low-order (least significant) byte stored in the
lower numbered address. Therefore, if a transaction
program computes the length of a logical message and

stores that value as the LL field, the 2 bytes appear in
memory with the low-order byte first, and your IBM
PC will send the bytes in this order (incorrectly!) over
the communication line.

The transaction program is responsible for putting all
transaction-level data, including LL fields, in the
correct order (high-order byte first).

Use a mapped conversation if you do not need to send
partial logical records, or more than one logical record.
When you send data with the mapped conversation verbs,
APPCjPC assumes that the buffer contains exactly one
complete record. The mapped conversation support
automatically provides length fields in the correct
byte-reversed order and uses concatenated logical records
as needed.

Receiving Data

Use a basic conversation when you need to receive more
than one logical record in one buffer. This option can
improve your program's execution efficiency by enabling
it to receive several logical records with one request (the
BUFFER option).

When you use this basic conversation feature, APPCjPC
places the logical records in your buffer with the 2-byte
LL fields intact. The bytes are reversed from normal IBM
PC order. (See "Sending Data" on page 3-8 to find the
format of this field.)

Your program must examine the returned fields of the
verb to determine if it has received a complete logical
record and if so, where the next logical record begins.
APPCjPC provides the rest of an incomplete logical
record after a subsequent request to receive data.

If you do not need to receive more than one record with a
single request, use a mapped conversation. When you
receive data with the mapped conversation verbs,
APPCjPC ends the receive operation when your program
receives a complete record (which may consist of several

3-9

concatenated logical records) or when your buffer is full.
APPC/PC supplies a return code when it fills your buffer
before your program has received a complete logical
record.

Your program can receive the rest of the logical record by
issuing a subsequent request to receive data. The
APPC/PC mapped conversation support removes any
length fields and automatically concatenates records as
necessary.

Reporting Errors and Abnormal
Termination

Use a basic conversation for the following reasons:

• To distinguish between errors detected by your
program and errors detected by an application that is
using your program

• To distinguish between an abnormal termination
caused by your program and one caused by an
application using your program.

When reporting an error or when abnormally terminating
a conversation with an LU service program, the basic
conversation verbs enable you to indicate which program
detected the error. When the partner LU reports the error
to the partner program with a return code, the value of
the return code indicates where APPC/PC detected the
error.

If you do not need to distinguish between errors detected
by your program and errors detected by other
applications, use a mapped conversation. The mapped
conversation verbs assume that your program detected the
error.

3-10

Sending an Error Log Data Record

Use a basic conversation to send a log record when you
detect an error or abnormally terminate a conversation.
The basic conversation verbs enable you to specify an
error log general data stream (GDS) variable when you
report an error or abnormally terminate a conversation.
APPC/PC sends this log record to the local log and to the
partner LU to be recorded in that log. This feature is
useful when your program detects a critical or
unrecoverable error and you want it to record the event to
help determine the problem.

If you send an error log GDS variable, the format of the
record must conform to the formats defined by SNA. See
SNA Reference Summary for more information on the
error log GDS variable format.

Use a mapped conversation if you do not need to send a
log record when you detect an error or abnormally
terminate a conversation. The mapped conversation verbs
assume that your program does not need to record error
data in the log to help determine the problem.

Abnormally Terminating Because of
a Time-out
To indicate that your program has abnormally terminated
the conversation because of a time-out condition, use a
basic conversation. When abnormally terminating your
conversation, the basic conversation verbs enable you to
indicate that your program is abnormally terminating the
conversation because the partner program has not done
the necessary processing in the time allowed. When
APPC/PC reports the error to the partner transaction
program, the return code value indicates that a time-out
condition caused the abnormal termination.

If you do not need to report the cause of an abnormal
termination, use a mapped conversation. The mapped
conversation verbs assume that your program requested

3-11

the abnormal termination because of a critical or
unrecoverable error.

Requesting Confirmation

Requesting confirmation is an efficient way to determine
that the partner program has received all the data sent so
far. If you plan to request confirmation during the
conversation, the allocating transaction must indicate this
fact when you request the allocation of the conversation.

If you use conversation protocols that do not request
confirmation, you should not request the allocation of a
conversation supporting confirmation services.

You can write a transaction program that participates in
conversations that use confirmation requests and
conversations that do not use confirmation requests.

Choosing a Transaction Program
Name

When you name a transaction program, choose a name
that has a first character with an EBCDIC code greater
than an EBCDIC blank (X' 40'). Transaction program
names containing first characters with EBCDIC codes less
than X'40' are reserved for LU service programs that are
defined by SNA. Transaction program names can include
up to 64 characters.

3-12

Using the Network Management
Verb

You can send network management information to a host
application. In addition, you can log such information
locally. The network management verb enables you to
report local I/O errors such as disk errors. APPC/PC
sends IBM Token-Ring Network errors to the host
automatically, provided the IBM PC successfully
establishes a connection with the host.

Using the Security Features

APPC fPC provides two types of security function:
partner-LU verification and end-user verification.
Partner-LU verification is a session-level security protocol
that takes place at the time the session is activated.
End-user verification is a conversation-level security
protocol that takes place at the time a conversation is
started. The ATTACH_LU verb specifies the level of
security.

Partner-LU Verification
(Session-Level Security)

Partner-L U verification is performed by an exchange of
security information between the two LUs. This exchange
is called LU-LU verification. This level of security is
generally required when the communications network is
not physically secure. The local L U and the remote L U
each provide their password and APPC/PC performs
encryption for password verification.

Passwords are established by the application subsystem
and are passed to APPC/PC when requested, using the
ACCESS_LU_LU_PW verb. LU-LU passwords are

3-13

established for each LU pair. It is recommended, but not
required, that each LU pair have a unique password.

End-User Verification
(Conversation-Level Security)

End-user verification is used to enable the requested LU
to verify the identity of the requester before providing
access to the requested transaction program and its
resources. The security information exchanged can
include a user ID and a password. The user IDs provided
by conversation-level security can also be used for
auditing and accounting purposes.

In conversation-level security the requesting transaction
program provides the security information on the
ALLOCATE verb and the remote application subsystem
performs the verification. (See ALLOCATE and
MC_ALLOCATE verb descriptions). If the requesting
transaction program has not supplied the correct user ID
and password, the remote application system rejects the
request.

An intermediate transaction program (one started by
another transaction program) that requires
conversation-level security may be used to access an
additional transaction program that requires
conversation-level security. In this case, an
already-verified indicator is set in the allocation request
for the additional transaction program. The user ID saved
from the first request which initiated the intermediate
transaction program is automatically supplied in the
second request.

3-14

Converting between EBCDIC and
ASCII

APPC/PC assumes that the interface between it and the
transaction program (or the application subsystem) uses
EBCDIC characters. Your program may send some data
or parameters to a system services control point (SSCP) or
partner LU where they will be compared to table values
expressed in EBCDIC. These values include the
transaction program name, the partner L U name supplied
on ALLOCATE, the mode name, the network identifier
supplied on the ATTACH_PU verb, the user ID, and the
user password.

Incoming names are in EBCDIC, and your program must
translate them to ASCII (if the application subsystem
stores them in ASCII). Therefore, both the application
subsystem and the transaction program must be prepared
to perform ASCII-to-EBCDIC conversion.

Do not yield to the temptation to define private protocols
between two IBM PCs which avoid this conversion.
Private protocols can cause unexpected difficulties and
hamper communication with other types of computers.
For example, protocol errors or problems with
unrecognized names can result from the use of an ASCII
"K" (X'4B') on an LU or net name. The EBCDIC period
used in a fully qualified name also has the value X'4B'.

The following names must be eight EBCDIC characters
long (padded on the right with blanks if the name is less
than 8 characters). These names must be Type A symbol
strings (uppercase letters; numerics; or the special
characters $, #, and @, with the first character not a
numeric.)

LU_NAME
MODE_NAME
NET_NAME
PARTNER_LU_NAME

3-15

Whether a transaction program needs to translate data
depends on private agreement between the partner
transaction programs. If your program is communicating
with a node that normally uses EBCDIC, you should
convert data to EBCDIC as appropriate.

As a convenience, APPC/PC provides a verb (CONVERT)
that converts ASCII codes to EBCDIC or EBCDIC codes
to ASCII.

3-16

Chapter 4. Introduction to
APPC/PC Verbs

A transaction program communicates with other
transaction programs by issuing conversation verbs. Just
as conversation verbs provide a mechanism for
communication between transaction programs, other verbs
communicate requests to the internal components of
APPC/PC. For example, these requests control resources,
such as conversations and sessions, available to and
provided by APPC/PC.

Verb Types

The different types of verbs that APPC/PC recognizes and
issues can be classified into the following categories:

• Control verbs
• Mapped conversation verbs
• Basic conversation verbs
• Network management verb
• Other verbs.

Control Verbs

A few verbs, called control verbs, provide a system
definition capability. The application subsystem uses
these verbs to attach and detach the PU and LUs, to start
and end locally initiated transaction programs, and to
determine local parameter settings.

In addition, APPC/PC issues three other control verbs
(CREATE_TP, SYSLOG, and ACCESS_LU_LU_PW) to

4-1

the application subsystem. These verbs request an action
from the application subsystem. See Chapter 5, "Using
Control Verbs," for detailed descriptions of the control
verbs.

Mapped Conversation Verbs

A transaction program uses mapped conversation verbs to
exchange arbitrary data records with other transaction
programs, in any format on which the programmers agree.
See Chapter 6, "Using Transaction Mapped Conversation
Verbs," for detailed descriptions of the mapped
conversation verbs.

Basic Conversation Verbs

A transaction program uses basic conversation verbs to
exchange records containing a 2-byte length prefix with
other transaction programs.

End-user transaction programs typically use mapped
conversations. Service transaction programs typically use
only basic conversations. See Chapter 7, "Using
Transaction Basic Conversation Verbs," for detailed
descriptions of the basic conversation verbs.

Network Management Verb

A transaction program uses the Network Management
Verb (TRANSFER_MS_DATA) to provide management
information to a network management services function
connected to an SNA network. The network management
services function uses this information to help manage the
network to which this SNA node belongs. See
Chapter 8, "Using the Network Management Verb," for a
detailed description of the network management verb.

4-2

Other Verbs
APPCjPC also supports five miscellaneous verbs:

• CONVERT
• DISABLEjENABLE_APPC
• SET_PASSTHROUGH
• PASSTHROUGH
• TRACE.

See Chapter 9, "Other APPCjPC Services," for detailed
descriptions of these verbs.

Verb Descriptions

The following verb syntax shows the function and
information content of the interactions between
transaction programs and APPCjPC. The transaction
verbs, (the mapped conversation and basic conversation
verbs) are described in Chapters 6 and 7 respectively. The
user must perform the actual encoding. The following
syntax is for descriptive purposes only.

4-3

General Description

Each transaction program verb is associated with
information relative to its function. This information
consists of:

• Supplied parameters
• Returned parameters
• Return codes
• Error conditions associated with each verb.

The rest of this chapter refers to the following sample
verb description. The name of the verb occupies the left
side of the figure in an area of its own. In the sample, the
name of the transaction program verb is "VERB_NAME."

SUQQlied Parameters:

VERB_NAME VARIABLE (var iable)

CONSTANT (VALUE_I)
(VALUE_2)

Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters

With each verb are several parameters that the
transaction program uses to supply information to
APPCjPC. The top area at the right side of the sample
verb description identifies each parameter the transaction
must supply with that verb. Following each parameter
name, the verb description identifies the kind of
parameter value expected by APPCjPC. In general, there
are two kinds of supplied parameters: parameters that
have a variable parameter value, and parameters that
have a limited choice of constant values.

The sample verb description includes two supplied
parameters named VARIABLE and CONSTANT.
VARIABLE is a supplied parameter with a value that the
transaction program needs to define.

4-4

The other supplied parameter, CONSTANT, has a more
limited range of possible values. A constant parameter
can take only the values listed in the verb description, in
this case VALUE_lor VALUE_2.

Returned Parameters

In addition to supplied parameters, there is a list of
parameters that APPC/PC returns to the transaction
program after,it finishes executing the verb. These
returned parameters provide information about the result
of the verb execution, with details to inform the
transaction program about possible conversation state
transitions, or problems that APPC/PC encountered while
executing the verb.

Return Codes

Most transaction program verbs include a return code as
one of the returned parameters. APPC/PC places a value
in the return code that indicates the success or failure of
the request.

Detailed parameter descriptions immediately follow each
verb description.

Error Conditions

Each of the transaction program verbs recognized by
APPC/PC has unique error conditions that can occur
during verb execution. The possible error conditions that
APPC/PC can encounter during verb execution are
identified and discussed in detail in the list of returned
parameter descriptions.

4-5

4-6

Chapter 5. Using Control Verbs

The application interface to APPC/PC includes control
verbs the application subsystem used to manage the node.
These control verbs do not transfer program data over the
communication line, but perform the following operations:

• Define the PU

• Define local LUs (the LU name, potential LU partners,
and the parameters defining the sessions between LUs)

• Start a local transaction program

• Process asynchronous events detected by APPC/PC
(for example, incoming ALLOCATEs from partner L U s
or information for the system log caused by hardware
alerts or received log messages).

5-1

The diagram below shows the relationship of the control
verbs to the application subsystem and APPCjPC. The
arrows in this figure show which control v~rbs the
application subsystem sends to APPCjPC and which
control verbs APPCjPC sends to the application
subsystem.

ACTIVATE DLC
ATTACH Lu
ATTACH-PU
CHANGE-LU
CNOS -
DETACH LU
DETACH-PU
DISPLAY-
TP STARTED
TP-ENDED

Application
Subsystem

,
APPC/PC

A
ACCESS LU LU PW
CREATETl) -
SYSLOG-

The rest of this chapter describes the operation of each of
the control verbs. See Chapter 4, "Introduction to
APPCjPC Verbs," for a description of the different verb
types and an explanation of the format used in the verb
descriptions.

5-2

Understanding Control Verb
Return Codes

All control verbs that a program can issue have a
parameter called RETURN_CODE that APPCjPC uses to
pass a return code back to the program after it executes
(or attempts to execute) a verb. The return code indicates
the results of verb execution. APPC/PC returns only one
return code at a time.

Appendix C, "Verb Return Codes," provides detailed
information on all return codes, including the actions you
should take. The following return codes can be returned
on almost any verb.

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• INCOMPLETE
• OK.

Detailed descriptions of these return codes follow. Brief
references to these return codes appear in the individual
verb descriptions later in this chapter.

• APPC_ABENDED indicates that APPCjPC has been
abnormally terminated.

• APPC_BUSY indicates that APPCjPC is currently
executing another verb and cannot execute this verb.
This error can occur if a verb is issued after APPC fPC
execution is interrupted (for example, by a Ctrl-Break
or timer interrupt).

• APPC_DISABLED indicates that APPC/PC is disabled
as a result of the DISABLEjENABLE_APPC verb.

• INCOMPLETE indicates that APPC/PC has not
finished executing the verb but is returning control so
that you can issue verbs for other transaction
programs. The only control verbs that return this code
are TP _ENDED and TP _ VALID. APPCjPC returns

5-3

this indication only if you specify
RETURN_CONTROL(INCOMPLETE) on the
ATTACH_PU verb.

• OK indicates that APPCjPC executed the verb
successfully. That is, APPCjPC performed the
function defined for the verb, up to the point at which
it returns control to the program.

5-4

Application Subsystem to
APPC/PC

The application subsystem uses the following verbs to
request actions from APPC/PC:

ACTIVATE DLC
Activates a DLC adapter. The application subsystem must
issue an ACTIV ATE_DLC verb for each DLC adapter
installed in the IBM PC. Before issuing ACTIV ATE_DLC
verbs, the application subsystem should issue the
ATTACH_LU verbs to define the LUs before traffic
arrives on the adapter.

SUQQlied Parameters:

ACT IVATE_DLC DLC_NAME (ITRN)
(SDLC)

ADAPTER_NUMBER (variable)
Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

DLC_NAME specifies the name of the adapter that the
application subsystem is activating.

• ITRN: specifies the IBM Token-Ring Network adapter.

• SDLC: specifies the IBM Synchronous Data Link
Control adapter.

ADAPTER_NUMBER specifies whether the IBM
Token-Ring Network adapter is configured as a primary or
secondary adapter. Set this value to 0 if the specified
adapter is the primary IBM Token-Ring Network adapter
or 1 if it is the secondary adapter. The adapter is
configured as a primary/secondary adapter if switch 2 on

ACTIVATE_DLC 5-5

the adapter card is set to the primary/secondary position.
For use with an SDLC adapter, set the
ADAPTER_NUMBER value to o.

Returned Parameters:

RETURN_CODE indicates whether the
ACTIVATE_DLC verb is acceptable (0) or not acceptable
(non-O). If the verb is not acceptable, APPC/PC does not
activate the adapter. The ACTIV ATE_DLC return codes
are as follows:

• NO_PU_ATTACHED: APPC/PC has not yet received
a valid ATTACH_PU verb

• UNRECOGNIZED_DLC: APPC/PC could not find the
specified DLC name and number.

• DUPLICATE_DLC: The specified DLC is already
activated

• DLC_F AlLURE: APPC/PC could not activate the
specified D LC.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3, and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

5-6 ACTIVATE_DLC

ATTACH LU
Requests APPCjPC to define a local LU with the specified
parameters. These parameters include the set of partner
LUs (and mode names) for which APPCjPC can build
sessions. The application subsystem must use this verb to
define all connections to partner L U s.

The LU name, partner LU names, and mode names must
each be 8 characters long (padded on the right with
blanks if the names are less than 8 characters) using
uppercase letters; numerics; or the special characters $, #,
and @. (The first character cannot be numeric.)

The LUcan have several partners and several modes
defined for each partner. You must repeat the
PARTNER_LU and PARTNER_SESSION_LIMIT
parameters for each partner LU you define relative to the
local LU_NAME. In addition, you must repeat the
parameters relating to MODE_NAME (MODE_NAME
through
MODE_MAX_NEGOTIABLE_SESSION_LIMIT) for
each mode name defined for the particular
PARTNER_LU. The indentation within the following
table indicates that you can specify multiple partner LUs
for each local LU and multiple mode names (and other
parameters) for each partner LU.

Supplied Parameters:

LU_NAME (variable)

LU_LOCAL_ADDRESS (variable)

LU_SESSION_LIMIT (variable)

CREATE_TP_EXIT (variable)

SYSTEM_LOG_EXIT (variable)

LU_LU_PASSWORD_EXIT (variable)

MAX_TPS (variable)

QUEUE_ALLOCATES (YES)
(NO)

QUEUE_DEPTH (variable)

.. PARTNER_LU_NAME (variable)

.. PARTNER_LU_SESSION_LIMIT (variable)

.. PARTNER_LU_MAX_MC_SEND_LL (variable)

.. PARTNER_LU_DLC_NAME (variable)

.. PARTNER_LU_ADAPTER_NUMBER (variable)

.. PARTNER LU ADAPTER ADDRESS
(variable) -

.. PARTNER LU SECURITY CAPABILITIES
(variable) -

.... MODE_NAME (variable)

.... MAX RU SIZE
(variable : variable)

.... PACING_SIZE (variable)

.... MODE MAX NEGOTIABLE SESSION LIMIT
(varIable) - -

Returned Parameters:

RETURN_CODE (variable)

LU_ID (variable)

Supplied Parameters:

LU_NAME specifies the local LU's network name (in
EBCDIC), that is, the name of the LU as known to the
network.

LU_LOCAL_ADDRESS specifies the local SNA (NAU)
address of this LU (as defined in VTAM and NCP when
connected to a host). This address should be set to zero
for LUs that establish only peer-to-peer sessions.

LU_SESSION_LIMIT specifies the maximum number of
sessions you want to permit between the local LU and
other partner LUs.

CREATE_TP _EXIT specifies the address of the
application subsystem code to process incoming
ALLOCATEs (in SNA terms, ATTACHes or FMH-5s) from
partner L U s. If you do not wish to accept any incoming
ALLOCATEs, the application subsystem must set this
parameter to allIs (X'FFFFFFFF'). In this case,
APPCjPC rejects any incoming ALLOCATEs.

SYSTEM_LOG_EXIT specifies the address of the
application subsystem code to process log messages sent
from the partner L U or transaction program, or generated
locally from detected protocol errors. If you do not wish
to process any of these types of errors, you should set this
parameter to all Is (X'FFFFFFFF').

Warning: You must provide a log exit if you want
APPCjPC to provide notification or error information.

LU_LU_PASSWORD_EXIT specifies the address of the
application subsystem code to supply the LU-LU password
for the given partner LU. If you do not plan to support
LU-LU verification security, you should set this
parameter to allIs (X'FFFFFFFF').

MAX_ TPS specifies the maximum number of transaction
programs that APPCjPC can run under this LU.
APPCjPC rejects an incoming ALLOCATE or a
TP _STARTED verb if it has already initiated this
maximum number.

QUEUE_ALLOCATES specifies whether or not you
want the LU to queue incoming ALLOCATEs, and return
them one at a time each time the application subsystem
issues a GET_ALLOCATE verb.

• YES: Set the CREATE_TP_EXIT parameter to all Os
(X'OOOOOOOO') to direct the L U to queue incoming
ALLOCATEs.

• NO: Set the CREATE_TP_EXIT parameter to the
address of the application subsystem code to process
incoming ALLOCATEs.

QUEUE_DEPTH specifies the maximum number of
incoming ALLOCATEs for the LU to queue. APPCfPC
rejects incoming ALLOCATEs that occur when it already
has this number of ALLOCATEs in the queue. This
parameter applies only if QUEUE_ALLOCATES = YES is
also specified.

PARTNER_LU_NAME specifies the network name (in
EBCDIC) of the remote LU that the application subsystem
is defining as a partner. If the name is less than 8
characters long, the application subsystem must pad it
with EBCDIC blanks on the right.

PARTNER_LU_SESSION_LIMIT specifies the
maximum number of sessions, across all mode names, you
want to permit between the local LU and the specified
partner LU. This value should be greater than 1 only if
the partner LU supports parallel sessions.

PARTNER_LU_MAX_MC_SEND_LL specifies the
maximum size of a logical record (as indicated by the LL
field of the logical record) you want the mapped
conversation function to construct (used only in a mapped
conversation). Use the default of zero, which implies the
largest possible value (32767), unless the partner requires
a smaller value. The minimum value is 4. A value of 1, 2,
or 3 is treated as if it were a 4.

PARTNER_LU_DLC_NAME specifies the name of the
DLC used to communicate with the partner LU. This
parameter must be the name specified on the APPC fPC

5-10 ATTACH_LU

configuration menu for DLC parameters. Use "SDLC" for
SDLC operation or "ITRN" for operation with the IBM
Token-Ring Network. Use ASCII characters for this
name; it is used locally only.

PARTNER_LU_ADAPTER_NUMBER specifies
whether the IBM Token-Ring Network adapter used for
this partner LUis primary or secondary. The value of
this is 0 if the adapter is configured as the primary
adapter, and 1 if it is configured as the secondary adapter.
The adapter is primary or secondary if switch 2 on the
adapter card is set to the primary/secondary position. The
parameter must match the specification on the APPC/PC
configuration menu for the IBM Token-Ring Network.
The value of this parameter must be 0 for SDLC.

PARTNER_LU_ADAPTER_ADDRESS specifies the
adapter address of the partner L U. If the partner node is
running under APPC/PC on the IBM Token-Ring
Network, this value is the one entered in the Local Node
Address field of the APPC/PC configuration menus. This
address is not used for SDLC operation.

PARTNER_L U _SECURITY_CAP ABILITIES specifies
the LU-LU verification and conversation security support
levels of the partner LU. There are three security
functions that you mayor may not choose to support:

1. LU-LU Verification Security:

Indicates that the application subsystem provides the
LU-LU password for APPC LU-LU verification.
APPC/PC provides the verification logic.

2. Conversation Level Security:

Indicates that the application subsystem validates the
conversation-level password and user ID.

3. Already Verified:

Indicates automatic acceptance of the incoming
ALLOCATE where the partner L U has already verified

ATTACH_LU 5-11

the password and user ID (permitted only if the
conversation supports conversation level security).

MODE_NAME specifies the mode name (in EBCDIC)
designating the network properties (such as the maximum
R U size and pacing windows) for these sessions. If the
name is less than 8 characters long, the application
subsystem must pad the name with EBCDIC blanks on the
right. The partner LU must have the same mode name
defined.

MAX_RU _SIZE(low:high) specifies the range of
permissible maximum RU sizes to be used on sessions with
this mode name. When the local LUis the session
initiator, APPC/PC tries to use the high value, but the
partner LU may negotiate the value to a lower value
during session activation. APPC/PC rejects the session
activation if the negotiated value falls outside the
specified range. When the local LU does not initiate the
session, APPC/PC accepts unchanged the incoming
maximum RU size value if it falls within the range. If it
does not fall within the range, APPC/PC negotiates to the
nearest value that is within the range (that is, either the
high or low value).

Although the low value can be as low as 16, APPC/PC
gains no advantage from values less than 256. You should
specify a value less than 256 only if the partner LU gains
some efficiency from the smaller value. In the most
general environment, you should specify the value
according to the following expression:

low value ~ 256 ~ high value

APPC/PC transmits the MAX_RU_SIZE to the remote
L U in an encoded form. The formula for this encoding is:

a * 2b 8~a<16

where "a" is the mantissa and "b" is the exponent of the
MAX_RU_SIZE value. APPC/PC rounds down any value
that it cannot encode in this form. The following table
lists the values that can be encoded in this form.

5-12 ATTACH_LU

Mantissa (a)

Exponent 8 9 A B C D E F
(b) (10) (11) (12) (13) (14) (15)

0 8 9 10 11 12 13 14 15

1 16 18 20 22 24 26 28 30

2 32 36 40 44 48 52 56 60

3 64 72 80 88 96 104 112 120

4 128 144 160 176 192 208 224 240

5 256 288 320 352 384 416 448 480

6 512 576 640 704 768 832 896 960

7 1024 1152 1280 1408 1536 1664 1792 1920

8 2048 2304 2560 2816 3072 3328 3584 3840
9 4096

PACING_SIZE specifies the largest permissible receive
pacing window size on sessions of the specified mode
name. The largest possible value is 63. A value of 0
implies no pacing (specifying an infinite window size).
When the local LU initiates the session, APPCjPC tries to
use this value, but the partner LU may negotiate the
value to a lower value during session activation.

When the local LU is not the session initiator, APPCjPC
accepts unchanged the incoming receive pacing value if it
is less than the specified value. If the incoming receive
pacing value is greater than the specified value, APPCjPC
negotiates the incoming value down to the specified value.

MODE_MAX_NEGOTIABLE_SESSION_LIMIT
specifies the maximum number of sessions you want to
permit during CNOS negotiation. This parameter sets an
upper bound on the. maximum number of sessions that can
be specified between the local L U and the partner L U on
this mode for a locally issued CNOS verb with
SET_NEGOTIABLE(NO). This parameter also limits the
maximum number of sessions. See "CNOS (Change
Number of Sessions)" on page 5-23 for information on the
effects of session limits.

ATTACH_LU 5-13

Returned Parameters:

RETURN_CODE indicates whether the verb is
acceptable (0) or not acceptable (non-O). If the verb is not
acceptable, APPCjPC does not define any part of the local
LU. To indicate errors detected in the definition of a
particular partner LU or mode name, APPCjPC overwrites
the erroneous field with dollar signs ($).

See Appendix C, "Verb Return Codes," for more
information on return codes.

The ATT ACH_L U return codes are as follows:

• NO_PU_ATTACHED: The application subsystem has
not yet issued an ATTACH_PU verb.

• ALREADY_ACTIVE_LU: The LU_NAME is defined
already.

• BAD PART_SESS: The session limit for an individual
partner LU (PARTNER_LU_SESSION_LIMIT) is
greater than the session limit permitted for all partner
LUs (LU_SESSION_LIMIT).

• BAD_RU_SIZES: The second value of the
MAX_RU_SIZE parameter is smaller than the first
value. Reversing the values is the most likely solution
for this error.

• BAD_MODE_SESS: The session limit for an
individual mode name (MODE_SESSION_LIMIT) is
greater than the session limit permitted for all mode
names used for sessions with the specific partner LU
(LU_SESSION_LIMIT).

• BAD_PACING_CNT: The PACING_SIZE is not
between 0 and 63, inclusive.

• EXTREME_RUS: The upper bound for the
MAX_RU_SIZE is too large or the lower bound is too
small.

5-14 ATTACH_LU

• SNASVCMG_1: APPCjPC does not accept
"SNASVCMG" as the mode name for a single session
connection to communicate data between transaction
programs.

• UNRECOGNIZED_DLC: The specified DLC name and
ID could not be found in the configuration file.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3.

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

LU_ID specifies the LU identifier. This value is used in
subsequent application subsystem and conversation verbs
to identify the local L U.

Notes:

1. After the application subsystem defines the local and
partner LUs, it must still issue the CNOS verb before
APPCjPC permits any incoming session activations or
outgoing ALLOCATEs, for both parallel and single
session connections.

2. The application subsystem can redefine the
connections between the local L U and its partner L U
by issuing the DETACH_LU verb, and then supplying
the new parameters with another ATTACH_LU verb.
The CHANGE_LU verb can redefine only a few of
these parameters.

3. A session activation request received from a remote
L U might not specify a local L U name. If the
application subsystem specifies a null (all EBCDIC
blanks) local LU name in an ATTACH_LU verb,
APPCjPC directs the session activation request to that
local LU. If the application subsystem does not specify
a null local LU name on an ATTACH_LU verb,

ATTACH~LU 5-15

APPCjPC directs the session activation request to the
first local LU defined through an ATTACH_LU verb.

4. When defining an LU that can perform parallel
sessions, you should define the "SNASVCMG" (in
EBCDIC) mode name for any partner LUs allowing
parallel sessions (that is, where the value of the
PARTNER_LU_SESSION_LIMIT parameter is
greater than 1). If you do not explicitly define this
mode, APPCjPC does it implicitly, using default
settings for RU size (256), pacing window (1), and
session limit maximum (2). APPCjPC subtracts the
number of sessions reserved for the "SNASVCMG"
mode from the number of sessions allowed by the
local-LU and partner-LU session limits when changing
the number of sessions with CNOS.

5. You must provide the LU_NAME,
PARTNER_LU_NAME, and MODE_NAME
parameters in EBCDIC because APPCjPC transmits
them to the remote LU. You can use the CONVERT
verb to convert these parameters from ASCII to
EBCDIC.

5-16 ATTACH_LU

ATTACH PU
Requests APPCjPC to define a local PU with the specified
parameters.

SUQQlied Parameters:

ATTACH_PU PU_NAME (variable)

NET_NAME (variable)

SYSTEM_LOG_EXIT (variable)

RETURN_CONTROL (COMPLETE)
(INCOMPLETE)

Returned Parameters:

RETURN_CODE (variable)

VERSION (variable)

RELEASE (variable)
;

Supplied Parameters:

PU_NAME specifies the local PU's network name; that
is, the name of the PU, as known in its network.
APPCjPC returns the PU_NAME on error messages
logged to the PU SYSLOG exit. The PU_NAME is not
used elsewhere.

NET_NAME specifies the name (in EBCDIC) of the
network containing this PU.

SYSTEM_LOG_EXIT specifies the address of the
application subsystem code to process log messages
destined for the PU; for example, detected protocol or
hardware errors, or network management messages. If
you do not want APPCjPC to call the application
subsystem to process any of these types of messages, set
this parameter to all Is (X'FFFFFFFF').

Warning: You must provide a log exit if you want
APPCjPC to provide notification or error information.

RETURN_CONTROL indicates whether to return
control for certain verbs to the verb issuer with an
INCOMPLETE return code if APPCjPC cannot
immediately finish processing the verb. This option
enables APPCjPC to execute verbs from other transaction
programs to prevent deadlock problems. For more
information, see "System Deadlocks" on page 10-2.

• COMPLETE: Specifies that each verb is to be
processed to completion.

• INCOMPLETE: Specifies that the verbs that return
an INCOMPLETE return code must be re-issued
without change. Each verb description shows, under
"Returned Parameters", whether INCOMPLETE is a
possible return code for that verb.

Returned Parameters:

RETURN_CODE indicates whether the verb is
acceptable (0) or not acceptable (non-D). If the verb is not
acceptable, APPCjPC does not define any part of the local
PU. See Appendix C, "Verb Return Codes," for more
information on return codes. The ATTACH_PU return
codes are as follows:

• ALREADY_ACTIVE_PU: The PU is already active
and cannot be redefined at this time.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

VERSION specifies the version number of this APPCjPC
implementation.

RELEASE specifies the release number of this APPCjPC
implementation.

Notes:

1. After initially loading the system or issuing
DETACH_PU, the application subsystem must issue
the ATTACH_PU verb before issuing any other
application subsystem or conversation verbs.

2. You must provide the NET_NAME parameter in
EBCDIC because APPCjPC transmits it to the remote
LU. You can use the CONVERT verb to convert this
parameter from ASCII to EBCDIC.

CHANGE LU
Al ters parameters for an existing local LV.

SU22lied Parameters:

CHANGE_LU LU - ID (variable)

CREATE_TP_EXIT (variable)

SYSTEM_LOG_EXIT (variable)

LU_LU_PASSWORD_EXIT (variable)

MAX_TPS (variable)

QUEUE_ALLOCATES (STOP)
(RESUME)

Returned Parameters:

RETURN_CODE (variable)

i

Supplied Parameters:

L U _ID specifies the identifier for the local L U that the
application subsystem is altering. APPC/PC returned this
value when it identified and initialized the LV using
ATTACH_LV. For more information, see
"ATTACH_LU" on page 5-7.

CREATE_ TP _EXIT specifies the address of the
application subsystem code that processes incoming
ALLOCATEs from partner LVs. If you do not want the
application subsystem to accept any incoming
ALLOCATEs, set this parameter to allIs (X'FFFFFFFF').
In this case, APPC/PC rejects any incoming ALLOCATEs.

The application subsystem must not change the method of
handling incoming ALLOCATEs. If the application
subsystem specified synchronous management (queueing)
of incoming ALLOCATEs in the ATTACH_LV verb (by
setting CREATE_ TP _EXIT to 0), it must also specify this
synchronous management with CHANGE_LV. If the
application subsystem specified asynchronous
management using the CREATE_TP exit of incoming

5-20 CHANGE_LU

ALLOCATEs in the ATTACH_LU verb, then it must
specify asynchronous management with CHANGE_LU.

SYSTEM_LOG_EXIT specifies the address of the
application subsystem code that processes log messages
sent from the partner LU or transaction program, or
generated locally as a result of detected protocol errors.
If you do not want APPC/PC to call the application
subsystem to process these types of errors, set this
parameter to all Is (X'FFFFFFFF').

LU_LU_PASSWORD_EXIT specifies the address of the
application subsystem code that is to supply the LU-LU
password for the given partner L U. If the session does not
support LU-LU verification level security, the application
subsystem should set this parameter to all Is
(X'FFFFFFFF').

MAX_TPS specifies the maximum number of transaction
programs that APPC/PC can run under this LU. If you
try to initiate a transaction program when this maximum
number has already been reached, APPC/PC rejects
incoming ALLOCATEs and TP_STARTED verbs.

QUEUE_ALLOCATES applies only if the application
subsystem specified synchronous management of incoming
ALLOCATEs (QUEUE_ALLOCATES = YES with the
ATTACH_LU verb).

• STOP specifies that APPC/PC should stop queueing
incoming ALLOCATEs, and rej ect the already queued
ALLOCATEs.

• RESUME specifies that APPC/PC should resume
queueing incoming ALLOCATEs.

Returned Parameters:

RETURN_CODE indicates whether the verb is
acceptable (0) or not acceptable (non-O). If the verb is not
acceptable, APPC fPC does not change any part of the
local LU definition. See Appendix C, "Verb Return
Codes," for more information on return codes. The
CHANGE_LU return codes are as follows:

CHANGE_LU 5-21

• BAD_LU_ID: APPC/PC does not recognize the
specified LU_ID.

• INVALID_CHANGE: The application subsystem has
made an invalid change in the management of
incoming ALLOCATEs.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3, and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

5-22 CHANGE_LU

CNOS (Change Number of Sessions)

Establishes the initial mode session limit for single- or
parallel-session connections. You also use the CNOS verb
to reset the limit to o.

The CNOS verb defines a protocol boundary for use by
programs that perform L U control functions.

Before the detailed description of the CNOS verb is a
discussion of LU-LU sessions and return codes, as well as
a summary of the functions that APPC/PC supports.

Understanding LU-LU Session
Characteristics

The two characteristics of LU-LU sessions that affect the
CNOS verb are:

• The method of connecting the L Us-single session or
parallel sessions

• The contention-winner polarities of LU-LU
sessions-which LU has priority over the other LU.

A connection between two LUs can be either single or
parallel but not both.

For single session connections, APPC/PC limits the
number of active sessions between the two L U s to one.
That is, an LU cannot activate another session until it
deactivates the active session.

The value of the PARTNER LU_SESSION_LIMIT
parameter of the ATTACH_LU verb implicitly specifies
parallel- or single-session support.

For parallel-session connections, the application
subsystem can group sessions by mode names. A CNOS
verb issued by either side causes the corresponding LUs to
negotiate a limit for the number of active sessions for the
specified mode name group. Additional sessions within

CNOS (Change Number of Sessions) 5-23

the mode name group can then be activated up to this
negotiated limit.

Relating the Mode Name to Network Properties

Each single session or group of parallel sessions has
associated with it a set of similar network properties and
a mode name that identifies this set of network properties.
Transaction programs use the mode name to select the set
of network properties it wants to use for a conversation.

The network properties grouped under a single mode name
include, for example, the highest synchronization level for
conversations on the sessions, the class of service for the
sessions, and the session routing and delay
characteristics. The correlation of mode names to the sets
of network properties is established at system-definition
time by the administrator of the network.

Understanding Contention-Winner Polarity

The contention-winner polarity for a session (single or
parallel) indicates which of the corresponding L U s has
priority when both LUs try to allocate a conversation on
the session at the same time. For each single or parallel
LU-LU session, only one LU is the contention winner of
the session. The other LU is the contention loser of the
seSSIon.

The contention-winner LU can allocate a conversation on
a session without requesting permission from the
contention-loser LU. Conversely, the contention-loser LU
must request permission from the contention-winner L U to
allocate a conversation on the session. The
contention-winner LU either grants or rejects the request.
The two LUs establish contention-winner polarity of a
session when they request APPC/PC to activate a session.

For single sessions, the L U starting the session can
request that it be the contention winner or loser. The LU
responding to the session activation can accept the

5-24 CNOS (Change Number of Sessions)

requested polarity or change the polarity, depending on
the requested polarity.

If the initiating L U requests that it be the contention
winner, the responding LU can accept the polarity or
change the polarity making the responding L U the
contention winner. If the initiating LU requests that it be
the contention loser, the responding LU always accepts
the contention-winner polarity.

For parallel sessions, you can further divide each
mode-name group of sessions based on contention-winner
polarities. You can designate the minimum number of
contention-winner sessions for one LU, and all or part of
the remaining sessions as the minimum number of
contention-winner sessions for the other LU. This
partitioning enables two LUs to divide a group of parallel
sessions between them to ensure that each LU becomes
the contention winner of a minimum number of the
sessions.

The LU activating a parallel session can request that it be
the contention winner or contention loser. The initiating
LU can become the contention winner of a parallel
session only if making the initiating LU the contention
winner does not infringe on the partner L U' s minimum
number of contention winners. Otherwise, the initiating
LU becomes the contention loser. The LU responding to
the activation of a parallel session always accepts the
initiating LU's choice of polarity.

Changing the Mode Session Limit

CNOS changes the session limit for a mode group of a
given partner LU. This limit is called the mode session
limit. APPCjPC uses this limit to restrict the number of
LU-LU sessions per mode name that are available between
two LUs for allocation to conversations. You can use
CNOS to change the session limits for both single- and
parallel-session connections.

CNOS (Change Number of Sessions) 5-25

For single sessions, CNOS changes the mode session limit
only at the local L U. The remote L U does not take part
in processing the change.

For parallel sessions, a CNOS verb issued by either
partner changes the mode session limits as well as other
CNOS parameters of both LUs. These other CNOS
parameters control the minimum number of
contention-winner sessions for each LU:

• Which LU is responsible for selecting and deactivating
LU-LU sessions when you reset the mode session limit

• Whether or not the L U drains allocation requests
when you reset the mode session limits.

If you issue a CNOS verb and parallel session support is
specified, APPCjPC initiates and manages a conversation
in order to perform negotiation between the two L U s.
APPCjPC allocates this conversation on a session with
the SNA-defined mode name, SNASVCMG. Therefore,
you must first issue a CNOS verb for the SNASVCMG
mode to increase the session limit.

The LU that sends the CNOS request is referred to as the
source L U; the L U that receives the CNOS request is
referred to as the target LU. Two LUs executing a CNOS
verb are considered a CNOS transaction. The role of the
LU as a source LU or target LU lasts for the duration of
the CNOS transaction. After either side issues the CNOS
verb, APPCjPC assumes responsibility for creating and
managing the CNOS transaction.

5-26 CNOS (Change Number of Sessions)

Understanding the eNOS Verb

You must issue this verb to set the mode session limit for
either parallel- or single-session connections for a
partner-LU/mode name combination before a transaction
program issues the first ALLOCATE for that destination.
Otherwise, the ALLOCATE fails
(ALLOC_FAIL_NO_RETRY).

When setting limits for a parallel session connection, the
two LUs negotiate the mode session limits, drain settings,
and responsibility values. APPC/PC updates these
parameters in the CNOS command to reflect the settings
agreed to by both LUs during negotiation. The
application subsystem can issue the DISPLAY verb to
obtain the negotiated mode session limit values.

No CNOS negotiation occurs when setting the limits for
single sessions (that is, the two LUs do not negotiate
drain settings or responsibility values). Therefore, you
must use another method to coordinate the CNOS
parameter settings between partner L U s using a
single-session connection.

As part of setting up the initial limits, CNOS also sets the
guaranteed (that is, the minimum) number of
contention-winner polarities and contention-loser
polarities, as well as setting initial activation counts for
both polarities. The action of the CNOS verb normally
affects only the group of sessions with the specified mode
name between the source L U and the target L U.
Alternately, with one CNOS command, you can reset the
session limits of all modes for a partner LU to o.

APPC/PC enforces the new mode session limit and
contention-winner polarity maximums until one side or
the other changes them by issuing a subsequent CNOS
verb. However, the partner LU may issue the subsequent
CNOS verb, which could mean that the request is
invisible at the source API.

After the CNOS verb raises the session limit above 0, it
can only reset the limit to o. It cannot set the session

CNOS (Change Number of Sessions) 5-27

limit to a different non-O value, and it can not redistribute
the number of sessions allocated as the contention
winners and losers. Therefore, you cannot change the
mode session limits if the partner L U has already set the
limits to a non-O value.

APPCjPC may activate one or more LU-LU sessions with
the specified mode name as a result of initializing the
session limit. APPCjPC terminates all LU-LU sessions for
the specified mode name (or for all mode names) as a
result of resetting the session limit to O. APPCjPC
terminates each session as it becomes free and does not
interrupt active conversations.

The application subsystem can specify the session limit for
use in CNOS negotiations when defining the local LU
using the ATTACH_LU verb (see "ATTACH_LU" on
page 5-7). You can make this limit higher than the
current session limit to handle potential requests from the
partner L U for a higher session limit.

You can redefine the mode session limit (but not the local
LU session limit or the partner LU session limit) using the
CNOS verb. If the SET_NEGOTIABLE parameter value is
YES, the corresponding value given in this CNOS verb
overrides the
MODE_MAX_NEGOTIABLE_SESSION_LIMIT value
from the ATTACH_LU verb.

5-28 CNOS (Change Number of Sessions)

Supplied Parameters:

CNOS LU_ID (variable)

PARTNER_LU_NAME (variable)

MODE_NAME_SELECT (ALL)
(ONE, 'SNASVCMG')
(ONE, variable)

SET_NEGOTIABLE (NO)
(YES)

PARTNER_LU_MODE_SESSION_LIMIT (variable)

MIN_CONWINNERS_SOURCE (variable)

MIN_CONWINNERS_TARGET (variable)

AUTO_ACTIVATE (variable)

RESPONSIBLE (SOURCE)
(TARGET)

DRAIN_SOURCE (NO)
(YES)

DRAIN_TARGET (NO)
(YES)

Returned Parameters:

RETURN_CODE (variable)

Supplied Parameters:

LU_ID specifies the identifier for the local LU for which
you are issuing this CNOS verb. APPCjPC returns this
value when the application subsystem defines the L U with
the ATTACH_LU verb. For more information on
ATTACH_LU, see "ATTACH_LU" on page 5-7.

PARTNER_LU_NAME specifies the name of the target
LU for which the initialization of session limits and
polarities applies.

CNOS (Change Number of Sessions) 5-29

MODE_NAME_SELECT specifies the mode name for
which you are setting or resetting the session limits and
polarities.

• ALL specifies that the CNOS verb is to change the
session limits and polarities for all mode names that
apply to the target L U. The single mode name that
CNOS does not change when you specify ALL is the
SNA-defined mode name, SNASVCMG. You can use
the ALL setting for MODE_NAME_SELECT only
when resetting session limits to o.

• ONE, 'SNASVCMG' specifies the SNA-defined mode
name (in EBCDIC). This mode is only for use by a
CNOS transaction when the source LU and target LU
are using parallel sessions.

• ONE, variable (where variable represents a mode
name) specifies changes to the session limit and
polarities for only the specified mode name.

SET_NEGOTIABLE specifies whether APPC/PC also
uses the PARTNER_LU_MODE_SESSION_LIMIT
specified in the CNOS verb to override the current
settings for
MODE_MAX_NE GOTIABLE_SE SSION_LIMIT. The
application subsystem sets this limit first in the
ATTACH_LU verb but a later CNOS verb, with the
SET_NEGOTIABLE parameter equal to YES, can
override this value. When you specify
SET_NEGOTIABLE (YES), a normal CNOS negotiation
still takes place. If the CNOS verb contains no parameter
errors, the new local negotiation values take effect, even
if the partner LU (in the parallel-session case) negotiates
the suggested values down.

PARTNER_LU_MODE_SESSION_LIMIT specifies the
mode session limit for parallel-session connections. That
is, it specifies the maximum number of parallel sessions
allowed between the source L U and target L U, for the
group of sessions under the specified mode name.

5-30 CNOS (Change Number of Sessions)

If the mode session limit is currently greater than 0, the
value of this parameter must be o. That is, the CNOS
verb can raise the limit above 0, but the next CNOS verb
must set the value to 0; you cannot change the mode
session limit from one non-O number to another.

When raising the mode session limit above 0, the target
LU can negotiate this parameter to a value greater than 0
and less than the specified session limit. The specified
session limit, or the negotiated session limit if it is
negotiated, becomes the new mode session limit.

The value specified for this parameter must be greater
than or equal to the sum of the values specified on the
CNOS MIN_CONWINNERS_SOURCE and
MIN_CONWINNERS_TARGET parameters.

For single-session connections, the value of this parameter
must not be greater than 1.

For the SNASVCMG mode name, the specified mode
session limit must be 0, 1, or 2. The specified limit
depends on whether you are preparing the SNASVCMG
mode for more CNOS commands (one or two) or you are
shutting down the mode (0).

If the ATTACH_PU verb specifies
RETURN_CONTROL(INCOMPLETE), the mode session
limit should be large enough to accommodate all active
conversations on the mode for anyone transaction
program. If the ATTACH_PU verb specifies
RETURN_CONTROL(COMPLETE), the mode session
limit should be large enough to accommodate all active
conversations on the mode for all transaction programs.

MIN_CONWINNERS_SOURCE specifies the minimum
number of sessions of which the source LU is guaranteed
to be the contention winner. The specified number must
be 0 or greater. The specified number, or the negotiated
number, becomes the new minimum number of
contention-winner sessions for the source LU. The sum of
this number and the target LU's new minimum number of
contention-winner sessions cannot exceed the new session
limit.

CNOS (Change Number of Sessions) 5-31

When the specified number is greater than half the new
session limit (rounded up), the target LV can negotiate
this parameter down to half the new session limit. When
the specified number is less than or equal to half the new
session limit, the target LV cannot negotiate this
parameter.

For single-session connections, this parameter specifies
the desired contention-winner polarity of the session for
the source LV.

For the SNASVCMG mode name with a mode session
limit of 2, the specified minimum number of
contention-winner sessions for the source L U must be 1.
For the SNASVCMG mode name with a mode session
limit of 1, the specified minimum number of
contention-winner sessions for the source LV must be O.

This parameter is valid only when the application
subsystem is setting the session limit to a non-O value.

The target LV may negotiate this value for a
parallel-session connection; APPC fPC returns the new
value to the calling program in this parameter.

MIN_CONWINNERS_TARGET specifies the minimum
number of sessions of which the target LV is guaranteed
to be the contention winner. The specified number must
be 0 or greater. The specified number, or the negotiated
number if it is negotiated, becomes the new minimum
number of contention-winner sessions for the target LV.
The sum of this number and the source LV's new
minimum number of contention-winner sessions cannot
exceed the new session limit.

The target LV can negotiate this parameter to a number
less than or equal to the new session limit minus the new
minimum number of contention-winner sessions for the
source LV.

For single-session connections, this parameter specifies
the desired contention-winner polarity for the target LV.

5-32 CNOS (Change Number of Sessions)

For the SNASVCMG mode name, the specified minimum
number of contention-winner sessions for the target LU
must be 1.

This parameter is valid only when the application
subsystem is setting the mode session limit to a non-O
value.

AUTO_ACTIVATE specifies the number of
contention-winner sessions for APPCjPC to activate
automatically, rather than by allocation requests from the
transaction program.

Warning: Do not specify AUTO_ACTIVATE if the Link
Take-Down option for an SDLC switched line was
specified on the APPCjPC configuration menu that sets
the parameters for SDLC operation. Specifying both Link
Take-Down and AUTO_ACTIVATE can cause thrashing
when APPCjPC attempts to activate sessions until the
AUTO_ACTIVATE limit is reached.

This parameter is valid only when the application
subsystem is setting the mode session limit to a non-O
value. If the parameter is greater than the
MIN_CONWINNERS_SOURCE parameter (after any
negotiation in the parallel-session connection case),
APPCjPC decreases the parameter to the negotiated
value.

On a busy IBM Token-Ring Network, this parameter may
conflict with the congestion algorithm that APPCjPC uses
to terminate unused sessions and links when congestion
rises past a certain threshold. Auto-activation by either
peer partner may re-establish sessions and links, possibly
resulting in a thrashing situation. Therefore, the
application subsystem should not specify auto-activation
between peer nodes for a large congested network. The
congestion algorithm does not apply to a host connection,
and you can specify auto-activation for sessions to an
SNA network, using a boundary function.

RESPONSIBLE, DRAIN_SOURCE, and
DRAIN_TARGET are session-terminating control

CNOS (Change Number of Sessions) 5-33

parameters. These parameters are valid only when using
CNOS to set the mode session limit to O.

RESPONSIBLE specifies which LU is responsible for
deactivating the sessions as a result of resetting the
session limit for parallel-session connections. This
parameter does not apply to single-session connections or
the SNASVCMG sessions. The target LU may negotiate
this value.

• SOURCE specifies that the source LUis responsible.
The target L U cannot negotiate this specification.

• TARGET specifies that the target LU is responsible.
The target LU can negotiate this specification to
SOURCE, in which case the source LU becomes
responsible.

Whether an LU deactivates a session immediately after
the current conversation or after all queued conversations
are complete depends on the DRAIN_SOURCE and
DRAIN_TARGET parameters.

• If an LU is to drain its allocation requests, it
continues to allocate conversations to active sessions.
The responsible LU deactivates a session only when
the conversation allocated to the session is deallocated
and no request is waiting for allocation to any session
with the specified mode name. The allocation of a
waiting request takes precedence over the deactivation
of a session.

• If an LU is not to drain its allocation requests, the
responsible LU deactivates a session as soon as the
conversation allocated to the session is deallocated. If
no conversation is allocated to the session, the
responsible LU deactivates the session immediately.

However, this verb cannot force deallocation of active
conversations.

The RESPONSIBLE and MODE_NAME SELECT
parameters are interrelated as follows:

5-34 eNOS (Change Number of Sessions)

• APPCjPC ignores the RESPONSIBLE parameter for
mode names for which the session limit is currently 0
if the application subsystem specifies
MODE_NAME_SELECT(ALL).

• If the application subsystem specifies
MODE_NAME_SELECT(ONE, variable) with a
session limit of 0 and the current session limit for that
mode name is already 0, the RESPONSIBLE parameter
must specify the same LU (source or target) as is
currently responsible for deactivating sessions. You
can use this procedure to change the DRAIN option
specified in an earlier CNOS command.

DRAIN_SOURCE specifies whether the source LU can
drain its allocation requests. For parallel-session
connections, the target LU cannot negotiate this
parameter. This parameter does not apply to the
SNASVCMG sessions.

• NO specifies that the source LU cannot drain its
allocation requests. APPCjPC rejects all requests
currently waiting for allocation, or subsequently
issued requests, at the source LU and issues a return
code of ALLOCATION_ERROR.

• YES specifies that the source LU can drain its
allocation requests. The source L U continues to
allocate conversations to the sessions until no requests
are waiting for allocation, at which time its draining is
ended. APPCjPC rejects all allocation requests issued
at the source LU with a return code of
ALLOCATION_ERROR.

For parallel-session connections, the DRAIN_SOURCE
and MODE_NAME_SELECT parameters are interrelated,
as follows:

• If the application subsystem specifies
MODE_NAME_SELECT(ALL) and
DRAIN_SOURCE(YES), APPCjPC ignores the
DRAIN_SOURCE parameter for those mode names for
which the session limit is currently o.

CNOS (Change Number of Sessions) 5-35

• If the application subsystem specifies
MODE_NAME_SELECT(ALL) and
DRAIN_SOURCE(NO), APPC/PC accepts the
DRAIN_SOURCE parameter for all mode names.
APPC/PC terminates draining for any mode currently
draining its requests.

• If the application subsystem specifies
MODE_NAME_SELECT(ONE, variable) and
DRAIN_SOURCE(YES) is currently in effect,
DRAIN_SOURCE(NO) directs APPC/PC to terminate
the draining of the source L U.

• If the application subsystem specifies
MODE_NAME_SELECT(ONE, variable) and
DRAIN_SOURCE(NO) is currently in effect, the
application subsystem must specify
DRAIN_SOURCE(NO) again.

DRAIN_TARGET specifies whether the target LU can
drain its allocation requests. This parameter does not
apply to the SNASVCMG sessions.

For a parallel-session connection, the partner L U may
negotiate this value; APPC/PC returns the new value to
the calling program in this parameter.

• NO specifies that the target LU cannot drain its
allocation requests. Requests currently waiting for
allocation, or issued later at the target LU, will be
rejected. The target LU cannot negotiate this
specification for parallel-session connections.

• YES specifies that the target LU can drain its
allocation requests. The target L U continues to
allocate conversations to the sessions until no requests
are waiting for allocation, at which time its draining is
ended. Allocation requests issued at the target LU
after draining ends are rejected. For parallel-session
connections, the target LU can negotiate this
specification to NO, in which case the target LU
cannot drain its allocation requests.

5-36 CNOS (Change Number of Sessions)

For parallel-session connections, this parameter and
MODE_NAME_SELECT are interrelated, as follows:

• If the application subsystem specifies
MODE_NAME_SELECT(ALL) and
DRAIN_TARGET(YES), APPCjPC ignores the
DRAIN_TARGET parameter for the mode names for
which the session limit is currently o.

• If the application subsystem specifies
MODE_NAME_SELECT(ALL) and
DRAIN_TARGET(NO), APPCjPC accepts the
DRAIN_TARGET parameter for all mode names,
regardless of the current session limit. Any draining
of allocation requests at the target LU is terminated.

• If the application subsystem specifies
MODE_NAME_SELECT(ONE, variable) and
DRAIN_TARGET(YES) is currently in effect,
DRAIN_TARGET(NO) terminates the target LUiS
draining.

• If the application subsystem specifies
MODE_NAME_SELECT(ONE,variable) and
DRAIN_TARGET(NO) is currently in effect, the target
LU can either accept the DRAIN_TARGET(YES)
parameter or negotiate the parameter to NO. After the
target LU accepts the DRAIN_TARGET(YES)
parameter, it can drain any remaining allocation
requests.

Returned Parameters:

RETURN_ CODE indicates the result of verb execution.
It consists of a 2-byte "primary" code and a 4-byte
"secondary" code. See Appendix C, "Verb Return Codes,"
for more information on return codes. The CNOS return
codes are as follows:

• OK: Indicates that APPCjPC executed the CNOS verb
successfully.

CNOS (Change Number of Sessions) 5-37

The following secondary codes indicate whether
APPC JPC accepts the parameters as specified in the
CNOS verb or as negotiated by the partner LU.

- CNOS_ACCEPTED: APPCjPC accepts the session
limits and responsibility as specified.

- CNOS_NEGOTIATED: APPCjPC accepts the
session limits and responsibility as negotiated by
the partner LU.

• PARAMETER CHECK

- BAD_LU_ID: APPCjPC does not recognize the
value specified for the LU_ID parameter.

- ALL_MODE_MUST_RESET: APPCjPC does not
permit the specification of a non-O session limit
when MODE_NAME_SELECT indicates 'ALL'.

- BAD_SNASVCMG_LIMITS: The application
subsystem has specified invalid settings for the
P ARTNER_L U _MODE_SESSION_LIMIT,
MIN_CONWINNERS_SOURCE, or
MIN_CONWINNERS_TARGET parameters when
MODE_NAME('SNASVCMG') is indicated.

The three groups of valid settings are as follows:

P ARTNER_L U _MODE_SESSION_LIMIT(2)
MIN_ CONWINNERS_SOURCE(l)
MIN_ CONWINNERS_ T ARGET(l)

PARTNER_LU_MODE_SESSION_LIMIT(l)
MIN_ CONWINNERS_SOURCE(O)
MIN_CONWINNERS_TARGET(l)

PARTNER_LU_MODE_SESSION_LIMIT(O)
MIN_ CONWINNERS_SOURCE(O)
MIN_CONWINNERS_TARGET(O)

- MINS_GT_TOTAL: The sum of
MIN_CONWINNERS_SOURCE and
MIN_CONWINNERS_TARGET specifies a number

5-38 CNOS (Change Number of Sessions)

greater than
PARTNER_LU_MODE SESSION LIMIT.

MODE_CLOSED: CNOS cannot set a non-O limit
because the local maximum negotiable session limit
is currently 0 for the specified mode.

- BAD_MODENAME: The specified partner LU
does not support the specified mode name.

RESET_SNA_DRAINS: The SNASVCMG mode
does not support the DRAIN settings.

SINGLE_NOT_SRC_RESP: For a single-session
CNOS verb (for which an ATTACH_LU verb was
issued with PARTNER_LU_SESSION_LIMIT =
1), APPC/PC permits only the local (source) LU to
be responsible for deactivating sessions. Set the
RESPONSIBLE parameter to indicate the source
LU.

BAD_PARTNER_LU: APPC/PC does not
recognize the specified partner L U name.

EXCEEDS_MAX_ALLOWED: The local
maximum negotiable session limit is less than the
session limit specified with the CNOS verb.

CHANGE_SRC_DRAINS: APPC/PC does not
permit you to specify
MODE_NAME_SELECT(ONE) and
DRAIN_SOURCE(YES) when
DRAIN_SOURCE(NO) is currently in effect for the
specified mode.

• ALLOCATION_ERROR

ALLOCATION_FAILURE_NO RETRY:
APPC/PC cannot allocate the conversation because
of a permanent error condition.

- ALLOCATION_FAILURE_RETRY: APPCjPC
cannot allocate the conversation because of a
temporary error condition.

CNOS (Change Number of Sessions) 5-39

• STATE_CHECK

CANT_RAISE_LIMITS: APPC/PC does not
permit you to set session limits to a non-O value
unless the limits are currently o.

LU_DETACHED: A DETACH_LU verb has reset
the definition of the local LU before the CNOS
verb tried to specify that LU.

• CNOS_PARTNER_REJECT: The partner LU rejected
a CNOS request from the local LU.

CNOS_MODE_CLOSED: The local LU cannot
negotiate a non-O session limit because the local
maximum session limit of the partner LU is O.

CNOS_BAD_MODENAME: The partner LU does
not recognize the specified mode name.

CNOS_COMMAND_RACE_REJECT: APPC/PC
is currently processing a CNOS verb issued by the
partner LU. You should retry the CNOS command
later.

APPCjPC includes an internal CNOS service
transaction program that executes CNOS verbs. While
using some of the conversation verbs (ALLOCATE,
SEND, RECEIVE_AND_ WAIT, and DEALLOCATE)
to perform CNOS protocol, the CNOS service
transaction program may receive any error return code
defined for the conversation verb that it issued. In
this case, the CNOS verb returns the received return
code.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED.

5-40 CNOS (Change Number of Sessions)

Notes (when setting session limits above 0):

1. APPC/PC initializes the mode session limit for a
single-session connection to a target LU only at the
source LU; no CNOS transaction occurs. The mode
session limit for the specified target LU and mode
name must be initialized at both the source LU and
target L U before either LUcan activate the
corresponding session. APPC/PC can then activate
the session automatically after completing this verb, or
in response to an allocation request. In this case, you
may want to issue CNOS before you issue
ACTIVATE_DLC.

2. Initializing the SNASVCMG mode is the first step in
setting up a parallel-session connection to a target LU.
The application subsystem must issue the CNOS verb
to initialize the mode session limit and
contention-winner polarities for the SNASVCMG mode
for a target LU before it can initialize any other mode
for that target LU. The application subsystem issues
the ATTACH_LU verb to define the target LU and
issues the CNOS verb to enable a session with the
SNASVCMG mode name.

3. The mode session limit and contention-winner
polarities for the SNASVCMG mode name must be
initialized at both the source and target LUs before
either LU can activate the corresponding sessions.
APPC/PC can then activate the sessions automatically
after completion of this verb, or in response to an
allocation request.

4. When initializing parallel-session limits, the CNOS
verb operates on groups of sessions with the same
mode name. The application subsystem uses the CNOS
verb to initialize the limits on the number of active
parallel sessions that can exist concurrently within a
mode-name group between the source and target LUs.
The limits imposed on the number of active parallel
sessions within a mode-name group are:

• The number of active sessions cannot exceed the
mode session limit.

CNOS (Change Number of Sessions) 5-41

• The number of active contention-winner sessions
for the source L U cannot exceed the mode session
limit minus the minimum number of
contention-winner sessions for the target LU.

• The number of active contention-winner sessions
for the target L U cannot exceed the mode session
limit minus the new minimum number of
contention-winner sessions for the source LU.

5. When a CNOS verb specifies the AUTO_ACTIVATE
option, the source LU will attempt to activate sessions
to conform to the new limits.

An LU can activate sessions in response to either a
CNOS or an ALLOCATE verb according to the
following conditions:

• If the minimum number of contention-winner
sessions for the source LUis greater than 0, the
source LU can activate contention-winner sessions
up to this minimum number.

• If the sum of the minimum number of
contention-winner sessions for both the source LU
and the target LUis less than the mode session
limit, both LUs can activate additional
contention-winner sessions. APPC/PC provides
these sessions on a first-come, first-served basis up
to the new session limit. The LU can activate
these sessions in response to ALLOCATE requests.

• An LU can activate additional contention-loser
sessions up to the mode session limit when
activating additional contention-winner sessions
does not leave enough sessions to satisfy the
minimum number of contention-winner sessions for
the partner LU. The LU can activate these
contention-loser sessions in response to
ALLOCATE requests.

• Control may return to the user before APPC/PC
finishes activating any automatically activated

5-42 eNOS (Change Number of Sessions)

sessions; that is, when APPC/PC has initiated, but
not necessarily completed, the activation process.

Notes (when setting session limits to 0):

1. Only the source LU can reset the mode session limit
for a single-session connection to a target LU. In this
case, a CNOS transaction does not occur. The source
LU deactivates active sessions according to the
DRAIN_SOURCE and DRAIN_TARGET parameters.

2. The responsible LU deactivates the group of parallel
sessions associated with a specified mode name (other
than SNASVCMG) according to the DRAIN_SOURCE
and DRAIN_TARGET parameters. If the
MODE_NAME_SELECT parameter specifies ALL, the
responsible LU deactivates all sessions associated with
all modes other than SNASVCMG. The application
subsystem must reset the mode session limits and
contention-winner polarities for all mode names other
than SNASVCMG before issuing the CNOS verb with
the SNASVCMG mode name specified.

3. When the application subsystem resets the mode
session limit and contention-winner polarities for
parallel sessions associated with the SNA-defined mode
name (SNASVCMG), APPC/PC resets these parameters
only at the source LU. A CNOS transaction does not
occur. The source LU deactivates the sessions
associated with the SNASVCMG mode name as soon
as all other active sessions between the source L U and
target LU are deactivated. If no other sessions
between the two LUs are active, the source LU
immediately deactivates the sessions associated with
the SNASVCMG mode name.

4. Control may return to the program that issues the
CNOS verb before the LU finishes deactivating the
session; that is, when the deactivation process has
started but not necessarily completed.

5. You must specify the PARTNER_LU_NAME and the
mode name (including SNASVCMG) in EBCDIC. You

CNOS (Change Number of Sessions) 5-43

can use the CONVERT verb to convert these
parameters from ASCII to EBCDIC.

5-44 eNOS (Change Number of Sessions)

DETACH LU
Terminates a local LV. Transaction programs must not be
using any sessions or conversations attached to this local
LV when you issue this verb. You must make sure that
all sessions between the named local L U and the partner
LVs are first terminated by issuing a previous CNOS verb
that sets session limits to o. After DETACH_LV,
APPCjPC does not accept incoming session activation
requests for the local LU. Also, APPCjPC will not honor
locally issued verbs (such as ALLOCATE) for the specified
local LU (that is, the previously assigned LV_ID from
ATTACH_LV is now invalid).

SUQQlied Parameters:

DETACH_LU LU - ID (variable)
Returned Parameters:

RETURN - CODE (variable)
;

Supplied Parameters:

LU_ID specifies the identifier for the local LV you want
to deactivate. APPCjPC returned this value when
ATTACH_LV identified and initialized the LU. For more
information, see "ATTACH_LV" on page 5-7.

If a transaction program issues DETACH_LU before all
conversations and sessions for the LV are terminated, a
deadlock may occur because the sessions may never be
termina ted.

The application subsystem may issue DETACH_LV only
for an independent LU, that is, an LV that is not in a
session with an SNA host SSCP.

Returned Parameters:

RETURN_CODE indicates the result of APPCjPC's
execution of the DETACH_LV verb. See
Appendix C, "Verb Return Codes," for more information

DETACH_LU 5-45

on return codes. The DETACH_LU return codes are as
follows:

• BAD LU_ID: APPCjPC does not recognize the
specified L U _ID.

• SSCP_CONNECTED_LU: The LU is in a session
with an SNA host System Services Control Point
(SSCP). Peer-to-peer sessions have been deactivated
but the L U has not been terminated.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3, and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

Note:

APPCjPC terminates all transaction programs still
attached to the local LU (that is, APPCjPC generates
TP _ENDED automatically).

5-46 DETACH_LU

DETACH PU
Terminates the local PU. If any LUs are active (not
DETACHed), APPCjPC deactivates them through an
implicit (internal) invocation of DETACH_LU. For
DETACH_PU(TYPE=SOFT), the rules for detaching
sessions and local transaction programs associated with
the LUs are the same as for DETACH_LU.

DETACH_PU also deactivates the link-level connections
for the IBM PC. If you continue issuing verbs, you must
first issue the ATTACH_PU, ATTACH_LU, and
ACTIV ATE_DLC verbs to re-open the communication
adapters.

APPCjPC returns control to the program issuing the verb
after it terminates all resources of the node.

SUQQlied Parameters:

DETACH_PU TYPE (HARD)
(SOFT)

Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TYPE specifies whether APPCjPC should terminate the
sessions and conversations associated with the LUs
immediately or after the transaction programs terminate
their conversations.

• HARD directs APPC JPC to stop the sessions and
conversations immediately, without waiting for the
transaction programs to terminate the sessions and
conversations normally. The HARD option may cause
APPCjPC to send network management error messages
to a network manager (if there is a session with the
SSCP at the host). You can use this option when the
program is "hung" and the user presses the Ctrl-Break
key (for more information see Chapter 2, "Developing
an Application Subsystem").

• SOFT directs APPCjPC to wait for the transaction
programs to terminate their conversations. After all
conversations are terminated, APPCjPC terminates the
sessions those conversations were using.

Returned Parameters:

RETURN_CODE indicates the result of APPCjPC's
execution of the DETACH_PU verb. See
Appendix C, "Verb Return Codes," for more information
on return codes. The DETACH_PU return codes are as
follows:

• NO_PU_ATTACHED: The application subsystem has
not yet issued ATTACH_PU to define the PU being
detached.

• ADAPTER_CLOSE_FAILURE: APPCjPC has
experienced a failure while trying to close an adapter.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

Notes:

1. The application subsystem can gain control at an
interrupt and then issue DETACH_PU
(TYPE = HARD) while APPCjPC is processing a
conversation verb. In this case, DETACH_PU
overrides the current verb, and APPCjPC returns
control to the point at which the application
subsystem issued DETACH_PU.

You may also issue DETACH_PU (TYPE = HARD)
after APPC JPC has abnormally terminated to shut
down the adapter. This action may not succeed for
some kinds of abnormal termination.

DETACH_PU (TYPE = HARD) is the only control or
transaction verb that APPCjPC will process while it is
executing another verb.

2. A short delay may occur after issuing the
DETACH_PU verb before the SDLC adapter shuts
down.

DISPLAY
Returns the current operating parameter values that
control the operation of the local LU. DISPLAY does not
cause arty information to flow outside the locai LU; it
reads information from the local L U only.

DISPLAY

Supplied Parameters:

LU_ID (variable)

PARTNER_LU_NAME (variable)

MODE_NAME (variable)
Returned Parameters:

RETURN_CODE (variable)

LU_SESSION_LIMIT (variable)

PARTNER_LU_SESSION_LIMIT (variable)

MODE MAX NEGOTIABLE SESSION LIMIT
(varIable) - -

CURRENT_SESSION_LIMIT (variable)

MIN_NEGOTIATED_WINNER_LIMIT (variable)

MIN_NEGOTIATED_LOSER_LIMIT (variable)

ACTIVE_SESSION_COUNT (variable)

ACTIVE CONWINNER SESSION COUNT
(variable) - -

ACTIVE_CONLOSER_SESSION_COUNT (variable)

SESSION_TERMINATION_COUNT (variable)

SESSION_TERMINATION_SOURCE_DRAIN (NO)
(YES)

SESSION_TERMINATION_TARGET_DRAIN (NO)
(YES)

5-50 DISPLAY

Supplied Parameters:

LU_ID specifies the identifier for the local LU for which
APPCjPC is to retrieve operating parameters. APPCjPC
returns the LU_ID value when the application subsystem
defines the LU with the ATTACH_LU verb. (For more
information, see "ATTACH_LU" on page 5-7.)

PARTNER_LU_NAME specifies the name of the remote
L U for which DISPLAY is to retrieve operating
parameters.

MODE_NAME specifies the name of the mode for which
DISPLAY is to retrieve operating parameters.

Returned Parameters:

RETURN_CODE indicates whether the verb is
acceptable (D) or not acceptable (non-D). See
Appendix C, "Verb Return Codes," for more information
on return codes. The DISPLAY return codes are as
follows:

• BAD_LU_ID: APPCjPC does not recognize the
supplied LU_ID parameter value.

• BAD_PART_LUNAME: APPCjPC does not recognize
the supplied PARTNER_LU_NAME parameter value.

• BAD_MODENAME: APPCjPC does not recognize the
supplied MODE_NAME parameter value.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

DISPLAY 5-51

LU_SESSION_LIMIT returns the maximum number of
sessions permissible for the local LU, as specified in
ATTACH_LU. (For more information, see
"ATTACH_LU" on page 5-7.)

PARTNER_LU_SESSION_LIMIT returns the
maximum number of sessions permissible between the
local L U and the partner L U, as specified in
ATTACH_LU. (For more information, see
"ATTACH_LU" on page 5-7.)

MODE_MAX_NEGOTIABLE_SESSION_LIMIT
returns the maximum number of sessions permissible
between the local L U and the partner L U for the
designated mode name, as specified in ATTACH_LU or
altered by a CNOS transaction. For more information, see
"ATTACH_LU" on page 5-7.)

CURRENT_SESSION_LIMIT returns the currently
agreed-upon maximum session limit between the local LU
and the partner LU for the designated mode name (as
specified or negotiated by executing a CNOS verb).

MIN_NEGOTIATED_WINNER_LIMIT returns the
minimum number of contention-winner sessions
permissible between the local LU and the partner LU for
the designated mode name (as specified or negotiated by
executing a CNOS verb).

MIN_NEGOTIATED_LOSER_LIMIT returns the
minimum number of contention-loser sessions permissible
between the local L U and the partner L U for the
designated mode name (as specified or negotiated by
executing a CNOS verb).

ACTIVE_SESSION_COUNT returns the number of
currently active sessions between the local LU and the
partner L U for the designated mode name.

ACTIVE_ CONWINNER_SESSION_ COUNT returns
the number of currently active contention-winner sessions
between the local L U and the partner L U for the
designated mode name.

5-52 DISPLAY

ACTIVE_CONLOSER_SESSION_COUNT returns the
number of currently active contention loser sessions
between the local L U and the partner L U for the
designated mode name.

SESSION_TERMINATION_COUNT returns the
number of currently active sessions that the local LUis
responsible for terminating (as the result of a previous
CNOS verb).

SESSION_TERMINATION_SOURCE_DRAIN
indicates whether the local LU drains the queue of
ALLOCATE requests before terminating sessions in
response to a CNOS verb issued by either side. For more
information, see "Understanding the CNOS Verb" on
page 5-27.

SESSION_TERMINATION_TARGET_DRAIN
indicates whether the remote L U drains the queue of
ALLOCATE requests before terminating sessions as a
result of a CNOS verb. For more information, see
"Understanding the CNOS Verb" on page 5-27.

Note:

You must specify the PARTNER_LU_NAME and
MODE_NAME in EBCDIC. You can use the CONVERT
verb to convert these parameters from ASCII to EBCDIC.

DISPLAY 5-53

GET ALLOCATE
Requests APPCjPC to dequeue the next queued incoming
ALLOCATE if you have specified synchronous
management of incoming ALLOCATEs.

Alternatively, the application subsystem can test for
queued ALLOCATEs, without dequeuing one.

In both cases, APPCjPC supplies a return code of OK if
the queue holds an incoming ALLOCATE, and a return
code of UNSUCCESSFUL if the queue does not hold an
incoming ALLOCATE.

The application subsystem should issue the
GET_ALLOCATE verb only if it specified synchronous
management of incoming ALLOCATEs
(QUEUE_ALLOCATES=YES in the ATTACH_LU verb).

SUQQlied Parameters:

GET_ALLOCATE LU - ID (variable)

TYPE (DEQUEUE)
(TEST)

Returned Parameters:

RETURN_CODE (variable)

CREATE_TP_PTR (variable)

i

Supplied Parameters:

LU_ID specifies the identifier for the local LU that the
application subsystem wants to access. APPCjPC returns
this value when the application subsystem identifies and
initializes the LU by issuing the ATTACH_LU verb. For
more information, see "ATTACH_LU" on page 5-7.

TYPE specifies whether APPCjPC is to dequeue a queued
incoming ALLOCATE or only test for the presence of an
incoming ALLOCATE in the queue.

5-54 GET_ALLOCATE

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
See Appendix C, "Verb Return Codes," for more
information on return codes. The GET_ALLOCATE
return codes are as follows:

• BAD_LU_ID: APPCjPC does not recognize the
specified LU_ID.

• GET_ALLOC_BAD_TYPE: APPCjPC does not
recognize the parameter specified in the TYPE field.

• UNSUCCESSFUL: The LU is not currently holding
any incoming ALLOCATEs in its queue.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

CREATE_TP _PTR specifies a pointer to a CREATE_TP
record identical in format to the record APPCjPC passes
to the user exit for incoming ALLOCATEs when you use
asynchronous management of incoming allocates. This
record contains the TP _ID and CONV _ID of the new
transaction program and the new conversation.
CREATE_TP _PTR is set only if TYPE = DEQUEUE and
RETURN_CODE=OK. For more information see
"CREATE_TP" on page 5-66.

GET_ALLOCATE 5-55

TP ENDED
Notifies APPCjPC of the end of the identified transaction
program. APPC JPC responds by performing a
DEALLOCATE (TYPE=ABEND_PROG) to free only
conversations associated with that program. For more
information, see "DEALLOCATE" on page 7-32.

Supplied Parameters:

TP - ENDED TP - ID (variable)
Returned Parameters:

RETURN - CODE (variable)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
that you want to terminate. APPCjPC returns this value
when the application subsystem initiates the program with
the TP _STARTED verb (see "TP _STARTED" on
page 5-58) or with the CREATE_TP verb (see
"CREATE_TP" on page 5-66).

Returned Parameters:

RETURN_CODE indicates whether APPCjPC accepts
the TP _ENDED request. See Appendix C, "Verb Return
Codes," for more information on return codes. The
TP _ENDED return codes are as follows:

• BAD_TP_ID: APPCjPC does not recognize the
supplied TP _ID as an assigned transaction program
ID.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3, and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED

• INCOMPLETE (possible only if all conversations are
not deallocated)

• OK.

Note:

After the application subsystem issues TP _ENDED, the
TP _ID is no longer a legal value for any basic or mapped
conversation verb.

TP STARTED
Notifies APPCjPC that the application subsystem has
requested resources for a transaction program initiated as
a result of a local command, rather than initiated from an
incoming ALLOCATE. APPCjPC responds by generating
a transaction program identifier (TP _ID) and returning it
to the application subsystem. The initiated transaction
program must use this TP _ID with all later conversation
verbs.

SUQQlied Parameters:

TP - STARTED LU - 1D (variable)
Returned Parameters:

TP - 1D (variable)

RETURN_CODE (variable)

i

Supplied Parameters:

L U _ID specifies the identifier for the local L U under
which the application subsystem wants to initiate this
transaction program. APPCjPC returns this value when
the application subsystem identifies and initializes the LU
by issuing the ATTACH_LU verb; see "ATTACH_LU" on
page 5-7.

Returned Parameters:

TP _ID specifies the identifier for this transaction
program. Similarly, APPCjPC also provides a TP _ID for
a transaction program started by an incoming
ALLOCATE.

RETURN_CODE indicates whether APPCjPC accepts
the TP _STARTED request. See Appendix C, "Verb
Return Codes," for more information on return codes. The
TP _STARTED return codes are as follows:

• BAD_LU_ID: APPCjPC does not recognize the
LU_ID.

5-58 TP _STARTED

• TOO_MANY_TPS: APPC/PC is already running the
maximum number of transaction programs that can be
run concurrently on this LU (as defined with the
MAX_TPS parameter in the ATTACH_LU verb).

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

Note:

If an incoming ALLOCATE is in the process of being
rejected, it counts against the MAX_TPS parameter until
rej ection is complete. Therefore, for the
TOO_MANY_TPS return code, you may wish to retry the
TP_STARTED verb.

TP_STARTED 5-59

TP VALID
Notifies APPCjPC of the status of an incoming
ALLOCATE that the application subsystem has dequeued
with the GET_ALLOCATE verb. A valid status indicates
that the application subsystem has validated and loaded
the new transaction program. The application subsystem
must issue a TP _ V ALID verb before issuing any
conversation verbs for the new transaction program.

Supplied Parameters:

TP_VALID TP - ID (variable)

CREATE - TP - PTR (variable)
Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for this transaction
program. APPC fPC returns this value in the
CREATE_TP structure when the application subsystem
uses the GET_ALLOCATE verb. The transaction
program must use this identifier when it issues any
conversation verbs for APPCjPC to perform.

CREATE_TP_PTR specifies the pointer to the
CREATE_TP structure that APPCjPC returned in
response to the previous GET_ALLOCATE verb. The
application subsystem should specify whether the TP
name is valid or invalid in the SENSE CODE field of the
CREATE_TP record.

For a list of the valid sense codes, see "CREATE_TP" on
page 5-66.

5-60 TP _ VALID

Returned Parameters:

RETURN_CODE indicates whether APPCjPC accepts
the TP _ V ALID request. See Appendix C, "Verb Return
Codes," for more information on return codes. The
TP _ V ALID return codes are as follows:

• BAD_TP _ID: APPCjPC does not recognize the
TP _ID specified with the TP _ V ALID verb.

• BAD CONV _ID: APPCjPC does not recognize the
CONV _ID in the CREATE_TP record.

• BAD_STATE: TP _ VALID does not follow a
GET_ALLOCATE.

For detailed information on the following return codes,
see "Understanding Control Verb Return Codes" on
page 5-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• INCOMPLETE (possible only if the incoming

ALLOCATE is rejected with a non-O sense code)
• OK.

Note:

APPCjPC, not the transaction program, manages the
storage for the CREATE_ TP structure; the transaction
program should not allocate or free storage for this
record.

TP _ VALID 5-61

APPC/PC to Application
Subsystem

APPC/PC uses the following verbs to request actions from
an application subsystem.

In the descriptions of these verbs, APPC/PC provides the
supplied parameters and the application subsystem
provides the returned parameters.

5-62

ACCESS LU LU PW
Requests the application subsystem to provide APPCjPC
with an LU-LU password for a specified partner LU. The
application subsystem configures the local LU security
capabilities for each partner L U by using the
ATTACH_LU verb. The ATTACH_LU verb tells whether
the session with a partner LU requires the validation of
session-level security. APPCjPC requests an LU-LU
password for the validation of session-level security only
when both partner LUs are configured to use session-level
security.

The application subsystem should maintain system-defined
L U -L U passwords for each partner L U in a manner as
secure as possible. The application subsystem specifies
the user exit routine for the ACCESS_LU_LU_PW call
in the ATTACH_LU verb.

W arning: You may not use DOS (or BIOS) functions in
this exit unless APPCjPC is disabled when such functions
are issued. For more information, see
Chapter 2, "Developing an Application Subsystem."

SUQQlied Parameters:

ACCESS_LU_LU_PW LU_ID (variable)

LU_NAME (variable)

PARTNER_LU_NAME (variable)

PARTNER_FULLY_QUALIF IED_LU_NAME
(variable)

Returned Parameters:

PASSWORD_AVAILABLE (YES)
(NO)

PASSWORD (variable)

i

Supplied Parameters:

LU_ID indicates the identifier of the local LU for which
APPC/PC is processing the session security. APPC/PC
returns this value when the application subsystem
identifies and initializes the LU by using the
ATTACH_LU verb. (See "ATTACH_LU" on page 5-7 for
more details.)

LU_NAME indicates the local LU name for which
APPC/PC is processing the session security.

PARTNER_LU_NAME indicates the partner LU name
for which the application subsystem should return an
LU-LU password.

PARTNER_FULLY_QUALIFIED_LU_NAME
indicates the fully qualified name of the L U for which the
transaction program should return an LU-LU password.
The fully qualified name consists of the name of the
network (if any), a period (EBCDIC X' 4B'), and the
LU_NAME. If the network name is blank the period is
omitted and the fully qualified name is the same as the
LU name.

Returned Parameters:

PASSWORD_AVAILABLE specifies whether an LU-LU
password is available for this LU-LU session.

PASSWORD specifies the LU-LU password that the
application subsystem returns for the specified partner
LU. The LU-LU password must be a byte string
consisting of 8 bytes of binary values 0 through 255. If
the password is shorter than 8 bytes, the application
subsystem must pad this field to the right with Os.

Notes:

1. APPC/PC, not the application subsystem, manages
storage for ACCESS_LU_LU_PW; the application
subsystem should not allocate or free storage for this
record.

2. APPC/PC supplies all names exactly as you specified
them (in EBCDIC). You can use the CONVERT verb
to convert EBCDIC names to ASCII.

CREATE TP
Notifies the application subsystem that APPC/PC has
received an incoming ALLOCATE, and requests that the
application subsystem initiate a new transaction program
and attach it to the conversation being requested by the
incoming ALLOCATE. APPC/PC assigns a TP_ID for the
newly initiated transaction program and a CONY _ID
identifier for the conversation.

If the application subsystem does not accept the
parameters of the conversation (such as the transaction
program name or synchronization level), it returns a non-O
value in the SENSE_CODE parameter of the verb. This
non-O value indicates that APPC/PC should reject the
incoming ALLOCATE with that sense code (sent to the
partner L U).

Warning: You may not use DOS (or BIOS) functions in
this exit unless APPC/PC is disabled when such functions
are issued by the trans~ction program. For more
information, see Chapter 2, "Developing an Application
Subsystem. "

5-66 CREATE_TP

CREATE_TP

Supplied Parameters:

LU_ID (variable)

TP_ID (variable)

PARTNER_FULLY_QUALIFIED_LU_NAME
(variable)

PARTNER_LU_NAME (variable)

MODE_NAME (variable)

CONV_ID (variable)

TPN (variable)

TYPE (BASIC CONVERSATION)
(MAPPED_CONVERSATION)

SYNC LEVEL (NONE)
- (CONFIRM)

PASSWORD (variable)

USER_ID (variable)

ALREADY VERIFIED (YES)
- (NO)

Returned Parameters:

SENSE_CODE (variable)

ERROR_DATA_LENGTH (variable)

ERROR_DATA (variable)

Supplied Parameters:

LU_ID indicates the identifier for the local LU under
which the application subsystem should initiate the
transaction program. APPCjPC returns this value when
the application subsystem identifies and initializes the LU
with the ATTACH_LU verb. (See "ATTACH_LU" on
page 5-7 for more details.)

TP _ID indicates the identifier for the new instance of the
transaction program.

CREATE_TP 5-67

PARTNER_FULLY_QUALIFIED_LU_NAME
indicates (if known) the fully qualified name of the L U
where the remote transaction program is located. The
fully qualified name consists of the network identifier, a
period (EBCDIC X'4B'), and the LU_NAME. If the
network name is blank the period is omitted and the fully
qualified name is the same as the LU name.

PARTNER_LU_NAME indicates the name of the remote
LU from which the request came. For allocating a
session, the local LU knows the remote L U by this name;
that is, the PARTNER_LU_NAME is the LU network
name.

MODE_NAME indicates the mode name for the session
on which the application subsystem received the
ALLOCATE.

CONV _ID indicates the identifier of the new
conversation.

TPN indicates the name of the transaction program that
the application subsystem is to initiate and connect at
this end of the conversation.

TYPE indicates the type of conversation that the
application subsystem is to allocate.

• BASIC_CONVERSATION indicates the allocation of
a basic conversation.

• MAPPED_CONVERSATION indicates the allocation
of a mapped conversation.

SYNC_LEVEL indicates the synchronization level that
the remote program indicated for this conversation.

• NONE indicates that the programs do not perform
confirmation processing on this conversation. The
programs do not issue verbs and do not recognize any
returned parameters relating to the synchronization
function.

5-68 CREATE_TP

• CONFIRM indicates that the programs can perform
confirmation processing on this conversation. The
programs can issue verbs and recognize returned
parameters relating to confirmation.

PASSWORD indicates the conversation-level security
password that the remote transaction program provided to
access the specified local transaction program.

USER_ID indicates the conversation-level user ID that
the remote program provided to identify itself.

ALREADY_VERIFIED indicates whether the partner
LV has already validated the conversation-level password
and user ID.

Returned Parameters:

SENSE_CODE specifies the value that indicates to
APPCjPC whether the initiation request is acceptable (0)
or not acceptable (non-O). If the application subsystem
does not accept the request, it does not initiate a new
instance of the specified transaction program. APPC JPC
does not perform any validity checking of the
SENSE_ CODE to guarantee that it is a legal sense code,
it only returns the sense code to the partner LU. The
currently defined APPC sense codes are:

• OK (X'OOOOOOOO')

• TP _NAME_NOT_RECOGNIZED(X'10086021'): The
application subsystem does not recognize the
transaction program name. Although the application
subsystem may actually recognize the transaction
program name, it may not be able to initiate the
transaction program using the designated partner L U
or mode name.

• TP_NOT_AVAIL_RETRY(X'084B6031'): The TPN
exists but is temporarily unavailable. The remote
program can try again later.

• TP _NOT_A VAIL_NO_RETRY(X'084COOOO'): The
TPN exists but is permanently unavailable. The

CREATE_TP 5-69

remote program cannot try again later without further
operator action.

• SYNC_LEVEL_NOT_SUPPORTED(X'l0086041'): The
remote program specified an unrecognized or
unacceptable SYNC_LEVEL type for this transaction
program.

• CONVERSATION_TYPE_MISMATCH(X'10086034'):
The remote program specified an unrecognized or
unacceptable conversation type for this transaction
program.

• SECURITY_NOT_ V ALID(X'080F6051'): The
application subsystem rejects the password or user ID,
or the local transaction program requires security but
the remote program did not supply a user ID.

ERROR_DATA_LENGTH specifies the length of the
error data APPC/PC adds to the error notification it sends
to the partner L U.

ERROR_DATA specifies the data that APPC/PC adds to
the error notification it sends to the partner LU, if the
parameters and characteristics for this initiation request
are unacceptable to the application subsystem. Note that
this data must be an appropriately formatted error log
data GDS variable, with the correct GDS ID. (For more
information, see "GDS Variables" in the SNA Reference
Summary.) APPC/PC does not check the validity of this
data, but if the application subsystem improperly forms
this variable, the partner LU may deactivate the session.

State Changes (when SENSE_CODE indicates OK):

APPCjPC places the conversation in receive state for the
local transaction program to receive information from the
remote partner program.

Notes:

1. APPC/PC does not permit the transaction program to
start issuing verbs from within the CREATE_TP exit
routine. The exit code of the application subsystem

5-70 CREATE_TP

must verify the parameters of the initiation request
and save all appropriate information. The application
subsystem can then use this information to initiate the
transaction program later.

2. After the application subsystem initiates the
transaction program, the conversation enters receive
state.

3. APPC/PC, not the application subsystem, manages the
storage for the CREATE_ TP structure; the application
subsystem should not allocate or free the storage for
this structure.

4. You must specify the
PARTNER_FULL Y_ QUALIFIED _L U _NAME,
PARTNER_LU_NAME, MODE_NAME, TPN,
PASSWORD, and USER_ID in EBCDIC. You can use
the CONVERT verb to convert these parameters from
ASCII to EBCDIC.

CREATE_TP 5-71

SYSLOG

Notifies the application subsystem that APPCjPC detected
an error or that another program detected an error and
informed APPCjPC. These types of errors include a
DLC-detected transmission error, abnormal session
terminations resulting from protocol errors detected at
either the local or remote LU, and a locally or remotely
detected conversation-level error. The application
subsystem processes and handles these errors by reporting
the errors to the human operator, saving the information
for later analysis, or discarding the information.

Errors detected in an L U use the system log exit specified
in the ATTACH_LU issued for that LU. Errors detected
in the PU and network management messages (NMVTs)
use the system log exit specified in ATTACH_PU.

W arning: You may not use DOS (or BIOS) functions in
this exit unless APPCjPC is disabled when such functions
are issued by the transaction program before issuing the
macro. For more information, see Chapter 2, "Developing
an Application Subsystem."

SYSLOG

Supplied Parameters:

PU_OR_LU_NAME (variable)

TP_ID (variable)

CONV_ID (variable)

TYPE (variable)

SUBTYPE (variable)

DATA_LENGTH (variable)

DATA (variable)

ADDITIONAL_INFO (variable)

5-72 SYSLOG

Supplied Parameters:

PU_OR_LU_NAME (in EBCDIC) incidates the name of
the local LU or PU that detected the error.

TP _ID indicates the identifier for the transaction
program, if any, that detected the error. APPCjPC passes
the TP _ID to the application subsystem when the
application subsystem initiates the program using the
TP _STARTED verb (see "TP _STARTED" on page 5-58)
or using the CREATE_TP verb (see "CREATE_TP" on
page 5-66).

CONY _ID indicates the identifier of the conversation, if
any, on which APPCjPC detected the error.

TYPE identifies the major category of error detected. For
a list of type codes, see Appendix D, "SYSLOG Type
Codes."

SUBTYPE identifies the specific error type within the
major TYPE category. For locally or remotely detected
session errors or conversation-level errors, the SUBTYPE
contains the specific sense code. For a list of the subtype
codes, see Appendix D, "SYSLOG Type Codes."

DATA_LENGTH indicates the length of the data
conveyed with the error notification.

DATA is any character data conveyed along with the
error notification. APPCjPC passes data associated with
a conversation-level error to the application subsystem
using this parameter.

ADDITIONAL_INFO identifies a pointer to additional
information about the error. For more detail, see
"Understanding Link Error Data" on page D-9.

Notes:

1. Not all parameters are available for all types of error
notifications. If a TP _ID, CONY _ID, or SUBTYPE is
unavailable in a particular log message, the parameter
value is o. For example, if APPCjPC detects a DLC

SYSLOG 5-73

hardware error, the PU_OR_LU_NAME contains the
PU name, but the TP _ID and CONV _ID parameters
contain a value of 0 to indicate that the application
subsystem should ignore them.

2. The DATA and ADDITIONAL_INFO parameters are
meaningful for certain types of SYSLOG.
Appendix .D, "SYSLOG Type Codes," identifies these
types.

3. APPCjPC directs abnormal termination logs only to
the PU system log exit.

4. APPCjPC, not the application subsystem, manages
storage for SYSLOG; the application subsystem should
not allocate or free the storage for this structure.

5. You must specify the PU_OR_LU_NAME in
EBCDIC. You can use the CONVERT verb to convert
this parameter value from ASCII to EBCDIC.

5-74 SYSLOG

Activating and Deactivating a
Node

The following procedures and examples describe how to
activate and deactivate an APPCjPC node.

Activating a Node

Follow these steps to prepare for transaction program
conversations and then activate a transaction program.

1. Define the local PU using ATTACH_PU.

2. Define local LUs and their potential partner LUs using
ATTACH_LU.

3. Activate the DLCs using ACTIVATE_DLC.

4. If you are using an SDLC switched connection, dial
the number to establish the connection. If you are
issuing a CNOS verb for a single session, you do not
need to dial until you are ready to start the
conversation. You must dial before issuing CNOS if
you are using parallel sessions or you have specified
the AUTO_ACTIVATE option on the CNOS verb.

5. Use CNOS to set the mode session limit (for a specified
partner LU and mode) so that there are enough
sessions to satisfy session activation requests (that is,
both incoming and local session activation requests).

For parallel sessions, use CNOS to set the mode
session limit for the SNASVCMG mode so that the
corresponding L U s can perform CNOS negotiation.
Next, set the mode session limit for the mode you want
to use for a conversation. The application subsystem
must raise both single- and parallel-session limits from
o.

6. Initiate a transaction program resulting from an
incoming ALLOCATE or start a local transaction

5-75

program by issuing the TP_STARTED verb from the
application subsystem. Use the passthrough verbs to
set up the transaction program (For more information
see "Communicating Identifiers," on page 2-6).

7. Issue conversation verbs from within the transaction
program.

Example: Activating a Simple Configuration

The following examples show the configuration of a single
LU (APPCLUl) with a single partner LU (APPCLU2) at
ring address ADDR2. An IBM Token-Ring Network
connects these LUs, which use only a single session with
a mode name of APPCMODE.

ATTACH_PU
PU_NAME (APPCPU)

ATTACH LU
LU NAME (APPCLU1)
LU-SESSION LIMIT (1)

PARTNER LU NAME (APPCLU2)
PARTNER-LU-SESSION LIMIT (1)
PARTNER-LU-DLC NAME (ITRN)
PARTNER-LU-ADAPTER NUMBER(O)
PARTNER-LU-ADAPTER-ADDRESS(ADDR2)

MODE NAME (APPCMODE)
MODE-MAX NEGOTIABLE SESSION LIMIT (1)

LU_ID (LU_ID) /*** RETURNED ***/
ACTIVATE DLC

DLC_NAME (ITRN)

At this point the partner LUs are defined and the adapter
is open. Communication to partner LU APPCLU2 can
begin.

CNOS
LU ID (LU ID) /*** FROM ATTACH_LU ***/
PARTNER LU NAME (APPCLU2)
MODE_NAME_SELECT (ONE, APPCMODE)
PARTNER_LU_MODE_SESSION_LIMIT (1)

If the transaction is to be locally initiated, enter the name
of the transaction program at the DOS prompt or at the
prompt displayed by the application subsystem. The
transaction program then uses the passthrough verbs to

5-76

direct the application subsystem to issue the
TP_STARTED verb.

Note:

You may want to issue a single-session CNOS verb before
the ACTIVATE_DLC verb to ensure that both sides have
raised their session limits before you attempt to start
conversations.

Deactivating a Node

Follow these steps to terminate a transaction program,
release the APPC/PC conversations allocated to this
program, detach the PU, and unload APPC/PC.

1. After all conversations have ended, issue TP _ENDED
to indicate the termination of the transaction program.

2. Reset the mode session limits to 0 using the CNOS
verb. Resetting these limits causes APPC/PC to
deactivate the sessions used by the transaction
program for conversations.

3. U ndefine the local PU using the
DETACH_PU(TYPE = SOFT) verb.

4. Enter APPCUNLD at the DOS prompt to unload
APPC/PC.

Example: Deactivating a Simple Configuration

TP ENDED
-TP ID (TP ID) /*** FROM TP_STARTED ***/

CNOS - -
LU ID (LU ID) /*** FROM ATTACH_LU ***/
PARTNER LU NAME (APPCLU2)
MODE_NAME_SELECT (ONE, APPCMODE)
PARTNER LU MODE SESSION LIMIT (0)

DETACH PU - - - -
TYPE(SOFT)

5-77

5-78

Chapter 6. Using Transaction
Mapped Conversation Verbs

This chapter describes the category of verbs called
mapped conversation verbs. Mapped conversation verbs
define the Mapped Conversation API for end-user
program-to-program support. In particular, the mapped
conversation protocol is for use by transaction programs.

Before the detailed descriptions of the mapped
conversation verbs is a discussion of the conversation
states and common error codes at the mapped
conversation protocol boundary and a description of the
mapped conversation return codes and abnormal
termination conditions. These subjects apply generally to
all the mapped conversation verbs.

Understanding Mapped
Conversation States

The selection of verbs that a program can issue for a
particular mapped conversation depends on the state of
the mapped conversation. As the program issues verbs,
the state of the mapped conversation can change. This
state change is a result of the function of the verb, a verb
issued by the remote program, or of network errors.

APPC/PC defines the state of a mapped conversation in
terms of the local program's view of the local end of the
mapped conversation. The states of other mapped
conversations allocated to the program can be different.
For example, one mapped conversation can be in receive
state and another in send state, concurrently.

6-1

The state of the mapped conversation determines the verbs
that APPC/PC allows a program to issue. The table below
correlates the verbs, and parameters if applicable, to the
mapped conversation states.

Conversation States at
Mapped Conversation

Protocol Boundary

Verb Reset Send Re- Con-
ceive f"mn

MC_ALLOCATE Yes n/a n/a n/a
MC_CONFIRM n/a Yes No No

MC_CONFIRMED n/a No No Yes

MC DEALLOCATE with n/a Yes No No
TYPE(FLUSH) or
TYPE(SYNC_LEVEL)

MC DEALLOCATE with n/a Yes Yes Yes
TYPE(ABEND)

MC_FLUSH n/a Yes No No

MC_GET_ATTRIBUTES n/a Yes Yes Yes

GET_TYPE n/a Yes Yes Yes

MC_PREPARE_TO_RECEIVE n/a Yes No No
MC_RECEIVE_AND_ W AIT n/a Yes Yes No

MC_RECEIVE_IMMEDIATE n/a No Yes No
MC_REQUEST_TO_SEND n/a No Yes Yes
MC_SEND_DATA n/a Yes No No

MC_SEND_ERROR n/a Yes Yes Yes

MC_TEST n/a Yes Yes Yes

At the intersection of each verb row and state column, the
table indicates Yes, No, or n/a. Yes means that APPC/PC
allows the program to issue the verb when the mapped
conversation is in that state.

No means the program cannot issue the verb because
APPC/PC disallows the verb in that state. APPC/PC
treats a verb issued for a mapped conversation in a
disallowed state as a state-check condition. The
individual verb descriptions list the applicable state-check
conditions.

n/a means the state is not applicable either because it
cannot exist when the verb is issued or because the state
is not relevant to the verb.

6-2

A mapped conversation enters a particular state when the
program issues a verb that causes a state transition or
when the program receives a returned value that indicates
a state transition has occurred. This chapter defines the
specific state transitions in the individual verb
descriptions under the heading "State Changes" in the
return code ·descriptions and under the following heading,
"Understanding Mapped Conversation Return Codes."

Understanding Mapped
Conversation Return Codes

All conversation verbs have a parameter called
RETURN_CODE that APPC/PC uses to pass a return
code back to the transaction program after the L U
finishes executing a verb. The return code indicates the
results of verb execution, including any state changes to
the specified mapped conversation. For information on
which verbs a program can issue in each state, see
"Understanding Mapped Conversation States" on
page 6-1.

The structure of a RETURN_CODE parameter is a 2-byte
primary code identifying the error type, and a 4-byte
secondary code which provides more detailed error
information.

Some of the return codes indicate results of the local LU's
processing of a verb; APPC fPC returns these return codes
with the verb that initiated the local processing. Other
return codes indicate results of processing initiated at the
remote end of the mapped conversation.

Depending on the verb, APPC/PC returns these return
codes with the verb that initiated the remote processing or
with a subsequent verb. Still other return codes report
events occurring at the remote end of the mapped
conversation. In any case, APPC/PC returns only one
return code at a time.

6-3

Appendix C, "Verb Return Codes" provides detailed
information on all return codes, including the actions you
should take.

The following return codes can be returned on one or
more mapped conversation verbs:

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY
APPC DISABLED
CONY FAILURE_NO_RETRY
CONY _FAILURE_RETRY
CONVERSATION_TYPE_MIXED
DEALLOCATE_ABEND
DEALLOCATE_NORMAL
INCOMPLETE
INCOMPLETE_ALTERED_VERB
INVALID_ VERB
OK
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING.

Detailed descriptions of these return codes follow. Brief
references to these return codes appear in the individual
verb descriptions later in this chapter.

ALLOCATION_ERROR indicates that the local
transaction program issued an MC_ALLOCATE and
APPC/PC could not complete the allocation of the
specified mapped conversation. The
ALLOCATION_ERROR indication and one of the
following secondary return codes form the complete return
code that APPCjPC returns to the transaction program;
the secondary return code identifies the specific error.

The remote L U and remote transaction program referred
to in the following secondary return code definitions are
the LU specified in the PARTNER_LU_NAME parameter
and the transaction program specified in the TPN
parameter, respectively, of the MC_ALLOCATE verb.

APPC/PC reports allocation errors caused by the local LU
failing to obtain a session for the conversation on the

6-4

MC_ALLOCATE verb, and by the remote LU rejecting
the allocation request on a subsequent verb.

Whenever APPCjPC returns an ALLOCATION_ERROR
return code to the program, it places the mapped
conversation in reset state.

The ALLOCATION_ERROR secondary return codes are:

• ALLOCATION_FAILURE_NO_RETRY indicates
that APPCjPC cannot allocate the mapped
conversation on a session because of a permanent
condition. For example, APPCjPC cannot activate the
session to be used for the mapped conversation because
the current mode session limit for the specified partner
LU is 0; or because of a system definition error or a
session-activation protocol error; or because APPCjPC
deactivated the session in response to a session
protocol error before it could allocate the mapped
conversation. The transaction program should not try
the conversation again until it corrects the condition.

• ALLOCATION_FAILURE_RETRY indicates that
APPCjPC cannot allocate the mapped conversation on
a session because of a temporary condition. For
example, APPCjPC cannot allocate a session for the
mapped conversation because of a temporary lack of
resources at the local LU or remote LU, or because
APPC/PC deactivated the session due to a line or
modem failure before it could allocate the mapped
conversa tion.

The condition is temporary; the transaction program
can try the conversation again. However, to avoid
congesting the network with attempted allocation
requests, the transaction program should pause or wait
for a keystroke before retrying the conversation.

• CONVERSATION_TYPE_MISMATCH indicates
that the remote LU rejects the allocation request
because either it does not support mapped
conversations, or the remote transaction program does
not support the mapped conversation protocol

6-5

boundary. APPCjPC returns this return code on a
subsequent verb.

• PIP _NOT_ALLOWED indicates that the remote LU
rejects the allocation request because the local
program specified program initialization parameters
(by setting the PIP_DATA_LENGTH parameter to a
non-O value) and either the remote LU does not
support PIP data, or the remote transaction program
has no PIP variables defined. APPC JPC returns this
return code on a subsequent verb.

• PIP_NOT_SPECIFIED_CORRECTLY indicates
that the remote LU rejects the allocation request
because the remote transaction program has one or
more PIP variables defined and the local transaction
program has specified that there are no program
initialization parameters (by setting the
PIP_DATA_LENGTH parameter to 0).

This error can also indicate that the local transaction
program has specified program initialization
parameters (by setting the PIP_DATA_LENGTH
parameter to a non-O value) that do not correspond in
number to those defined for the remote transaction
program. APPC JPC returns this return code on a
subsequent verb.

• SECURITY_NOT_ VALID indicates that the remote
LU rejects the allocation request because the access
security information (specified using the
MC_ALLOCATE SECURITY parameter) is invalid.
APPCjPC returns this return code on a subsequent
verb.

• SYNC_LEVEL_NOT_SUPPORTED indicates that
the remote LU rejects the allocation request because
the local transaction program specified a
synchronization level (using the SYNC_LEVEL
parameter) that the remote transaction program does
not support. APPCjPC returns this return code on a
subsequent verb.

6-6

• TPN_NOT_RECOGNIZED indicates that the remote
LU rejects the allocation request because the local
transaction program specified a remote transaction
program name that the remote LU does not recognize.
APPCjPC returns this return code on a subsequent
verb.

• TRANS_PGM NOT A V AIL NO RETRY indicates
that the remote LU rejects the allocation request
because the local transaction program specified a
remote transaction program that the remote L U
recognizes but cannot start. The condition is
permanent; the transaction program should not try the
conversation again. APPCjPC returns this return code
on a subsequent verb.

• TRANS_PGM_NOT_A V AIL_RETRY indicates that
the remote LU rejects the allocation request because
the local transaction program specified a remote
transaction program that the remote LU recognizes but
currently cannot start. The condition is temporary;
the transaction program can try the conversation
again. APPCjPC returns this return code on a
subsequent verb.

APPC_ABENDED indicates that APPCjPC has been
abnormally terminated.

APPC_BUSY indicates that APPCjPC is currently
executing another verb and cannot execute this verb.
This error can occur if a verb is issued after APPC JPC
execution is interrupted (for example, by a Ctrl-Break or
timer interrupt).

APPC_DISABLED indicates that APPCjPC is disabled
as a result of the DISABLEjENABLE_APPC verb.

CONY _FAILURE_NO_RETRY indicates that a failure
occurred that caused APPCjPC to terminate the mapped
conversation prematurely. For example, APPCjPC
deactivated the session that the transaction programs
were using for the mapped conversation because of a
session protocol error, or APPCjPC deallocated the
mapped conversation because of protocol error between

6-7

the mapped conversation components of the LUs. The
condition is permanent; the transaction program should
not try the conversation again until the condition is
corrected. APPC JPC can report this return code to the
local transaction program with a verb it issues in any
state other than reset. APPCjPC places the mapped
conversation in reset state.

CONV_FAILURE_RETRY indicates that a failure
occurred that caused APPCjPC to terminate the mapped
conversation prematurely. For example, APPCjPC
terminates conversations when it must deactivate the
associated sessions in response to a line or modem failure.
The condition is temporary; the transaction program can
try the conversation again. However, to avoid congesting
a network with attempted allocation requests, the
transaction program should pause or wait for a keystroke
before retrying the transaction. APPC JPC can report this
return code to the local transaction program on a verb
that the transaction program issues in any state other
than reset. APPCjPC places the mapped conversation in
reset state.

CONVERSATION_TYPE MIXED indicates that the
local transaction program issued both basic and mapped
conversation verbs for the same conversation. APPCjPC
reports this return code with the verb issued. The state of
the mapped conversation remains unchanged.

DEALLOCATE_ABEND indicates that the remote
transaction program issued an MC_DEALLOCATE verb
specifying the TYPE(ABEND) parameter. The remote LU
can also issue an MC_DEALLOCATE verb specifying the
TYPE(ABEND) parameter in response to a remote
transaction program abnormal termination condition. If
the mapped conversation for the remote transaction
program was in receive state when the remote transaction
program or LU issued an MC_DEALLOCATE,
information sent by the local transaction program and not
yet received by the remote transaction program is purged.

APPCjPC returns the DEALLOCATE_ABEND return
code to the local program with a verb the program issues
in either send or receive state. After APPCjPC issues this

6-8

return code, it places the mapped conversation in reset
state.

DEALLOCATE_NORMAL indicates that the remote
transaction program issued an MC_DEALLOCATE verb
specifying the TYPE(SYNC_LEVEL) where the
synchronization level of the conversation is NONE or
TYPE(FLUSH) parameter. APPC/PC reports this return
code to the local transaction program on a verb the
program issues in receive state. APPC/PC leaves the
mapped conversation in reset state.

INCOMPLETE indicates that the verb has not finished
and must be re-issued unchanged before any other verb
with the same TP _ID. Before re-issuing the verb, you
should try to issue verbs on other transaction programs,
including other unfinished verbs. If you are queueing
incoming ALLOCATEs in the L U s, you should also
periodically issue GET_ALLOCATE. This return code is
returned only if ATTACH_PU
(RETURN_CONTROL = INCOMPLETE) was issued. For
more information on this return code, see "System
Deadlocks" on page 10-2.

INCOMPLETE_ALTERED_ VERB indicates that a verb
was issued with the same TP _ID as that of an unfinished
verb, or the unfinished verb was altered before it was
re-issued.

Note: You may change the first 12 bytes of an incomplete
verb so that you can place list pointers in this area to
create a list of incomplete verbs.

INVALID_VERB indicates that APPC/PC did not
recognize the verb operation code of the issued verb.
APPC/PC reports this return code on the verb issued. The
state of the mapped conversation remains unchanged.

OK indicates that APPC/PC executed the verb
successfully. That is, APPC/PC performed the function
defined for the verb, up to the point at which it returns
control to the transaction program. The state of the
mapped conversation is as defined for the verb.

6-9

PROG_ERROR_NO_TRUNC indicates that the remote
program issued an MC_SEND_ERROR verb and the
mapped conversation for the remote transaction program
was in send state. No truncation of data occurs at the
mapped conversation API.

APPC/PC reports this return code to the local transaction
program on an MC_RECEIVE_AND_ WAIT or
MC_RECEIVE_IMMEDIATE verb that the transaction
program issues before receiving data records or after
receiving one or more complete data records. The mapped
conversation remains in receive state.

PROG_ERROR_PURGING indicates that the remote
transaction program issued an MC_SEND_ERROR verb,
and the mapped conversation for the remote transaction
program was in receive or confirm state. The
MC_SEND_ERROR may cause data sent by the local
transaction program to be purged.

Purging occurs when a transaction program issues
MC_SEND_ERROR in receive state before receiving all
the information sent by its partner transaction program.
That is, APPC/PC purges the information sent before it
reports the error.

The purging can occur at the local LU, the remote LU, or
both. No purging occurs when a transaction program
issues MC_SEND_ERROR in confirm state or receive
state after receiving all the information sent by its
partner program.

APPC/PC normally reports this return code to the local
transaction program with a verb that the local transaction
program issues after sending some information to the
remote transaction program. However, APPC/PC can
report the return code with a verb that the program issues
before sending any information, depending on the verb
and when the program issues it. APPC/PC leaves the
mapped conversation in receive state.

6-10

Note:

The PARAMETER_CHECK and STATE_CHECK errors
can also occur on any verb. When APPCjPC detects these
error conditions, it does not try to execute the verb. A
PARAMETER_CHECK error occurs when APPCjPC
detects an invalid parameter value. A STATE_CHECK
error occurs when the conversation is not in the correct
state for the verb the transaction program is issuing. The
verb descriptions list the secondary return codes that
identify the causes of these errors.

The table below correlates the return codes to the verbs
on which they can be returned.

Verbs

M M M M M M G M M M M M M M
C C C C C C E C C C C C C C

T
A C C D F G P R R R S S T
L 0 0 E L E T R E E E E E E
L N N A U T Y E C C Q N N S
0 F F L S P P E E U D D T
C I I L H A E A I I E
A R R 0 T R V V S D E
T M M C T E E E T A R
E E A R T R

D T I T A I T A 0
E B 0 N M 0 R

U D M
T R E S
E E W D E
S C A I N

E I A D
I T T
V E
E

Return Codes

ALLOCATION ERROR X X X X X X X X
APPC ABENDED X X X X X X X X X X X X X X
APPC-BUSY X X X X X X X X X X X X X X
APPC -DISABLED X X X X X X X X X X X X X X
CONVFAILURE NO RETRY X X X X X X X
CONY -F AIL URE - RETR Y X X X X X X X
CONVERSA TION TYPE MIXED X X X X X X X X X X X X
DEALLOCATE ABEND- X X X X X X X
DEALLOCATE~NORMAL X X X
INCOMPLETE X X X X X X X X
IN COMPLETE _ ALTERED_VERB X X X X X X X X
OK X X X X X X X X X X X X X X
PARAMETER CHECK X X X X X X X X X X X X X X
PROG ERROR NO TRUNC X X
PROG -ERROR -PURGIN G X X X X X X X
STATE CHECK X X X X X X X X X
UNSUCCESSFUL X X X

6-11

Each X in the table means that APPCjPC can return the
return code with the corresponding verb.

The individual verb descriptions list the applicable return
codes. The descriptions for most verbs do not explicitly
list the secondary return codes of ALLOCATION_ERROR
because they can occur at any time and are not
necessarily a result of the verb on which they are
returned. The description of the MC_ALLOCATE verb,
however, lists the two secondary return codes that
indicate an allocation failure.

6-12

Verb Descriptions

Detailed descriptions of the mapped conversation verbs
follow.

MC ALLOCATE
Allocates a session, if one is available, between the local
LV and a remote LU, and establishes a mapped
conversation between the local transaction program and a
remote transaction program on that session. APPCjPC
assigns a CONY _ID to the conversation. Except for the
first conversation of a remotely initiated transaction
program, the transaction program must issue this verb
before it can issue any verbs that refer to the mapped
conversation.

MC_ALLOCATE 6-13

MC_ALLOCATE

Supplied Parameters:

TP_ID (variable)

PARTNER_LU_NAME (variable)

MODE_NAME (variable)

TPN (variable)

RETURN CONTROL
(wHEN SESSION ALLOCATED)
(IMMEDIATE) -
(WHEN_SESSION_FREE)

SYNC LEVEL (CONFIRM)
- (NONE)

SECURITY (NONE)
(SAME)
(PGM (USER ID (variable)

PASSWORD -(variable))

PIP_DATA_LENGTH (variable)

PIP_DATA (variable)
Returned Parameters:

CONV_ID (variable)

RETURN_CODE (variable)

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

PARTNER_LU_NAME specifies the name (in EBCDIC)
of the remote LU at which the remote transaction
program is located. The local L U uses the
PARTNER_LU_NAME to identify the remote LU when
allocating a session. That is, the PARTNER_LU_NAME
is the remote L U network name.

6-14 MC_ALLOCATE

MODE_NAME specifies the mode name (in EBCDIC)
designating the network properties for the session
APPC/PC is to allocate for the mapped conversation. For
example, one network property is the class of service
APPC/PC provides for the session used. Mapped
conversations cannot use the SNASVCMG mode.

TPN specifies the name (in EBCDIC) of the remote
transaction program that manages the other end of the
mapped conversation. TPN cannot specify an SNA
service transaction program name at the mapped
conversation API. (SNA service transaction program
names begin with a character value in the range X'OO' to
X'3F'.)

RETURN_CONTROL specifies when the local LU is to
return control to the local transaction program, after the
program requests the LU to allocate a session for the
conversation. APPC/PC also reports allocation errors
caused by the local LU's failure to obtain a session for the
conversation on this verb. APPC/PC reports allocation
errors caused by the remote LU rejecting the allocation
request on a subsequent verb. The valid values for the
RETURN_CONTROL parameter are:

• WHEN_SESSION_ALLOCATED directs the LU to
allocate a session for the conversation before
returning control to the transaction program. Except
for instances of conversation failure, the LU does not
return control to the program until a session becomes
available.

This option may cause a deadlock situation if there are
not enough sessions for the currently active
conversations of all transaction programs. Specifying
the RETURN_CONTROL(INCOMPLETE) option on
the ATTACH_PU verb can confine the problem to the
currently executing transaction program, but if this
program has itself used up all sessions, the program
can still cause a deadlock situation by using the
RETURN_ CONTROL(WHEN_SESSION_ALLOCATED)
option. You must analyze your operating environment
to determine if this option is safe. For more

MC_ALLOCATE 6-15

information on this problem, see "System Deadlocks"
on page 10-2.

• IMMEDIATE directs the LU to allocate a session for
the conversation if a contention-winner session is
immediately available. This option returns control to
the transaction program immediately with a return
code indicating whether a session is allocated. In this
case, the local LU does not have to wait for a response
from the partner LU, and the MC_ALLOCATE verb
does not require information to be sent to the partner
LU.

A return code of OK indicates that a session is
immediately available and is allocated for the
conversation. A session is immediately available
when it is active, it is not allocated to another
conversation, and the local LUis the contention
winner for the session.

A return code of UNSUCCESSFUL indicates that a
session is not immediately available and that the
L U did not perform the allocation.

• WHEN_SESSION_FREE directs the LU to allocate
a session for the conversation only if a session (either
a contention winner or loser) is available or able to be
activated, and then to return control to the
transaction program with a return code indicating
whether a session is allocated.

A return code of OK indicates that a session is
available and is allocated for the conversation. If
activation of a session is necessary, the LU
performs the session activation before returning
control to the transaction program.

A return code of ALLOCATION_ERROR indicates
that a session is unavailable and that the LU
cannot activate a new session. No session is
allocated.

6-16 Me_ALLOCATE

SYNC_LEVEL specifies the synchronization level that
the local and remote transaction programs can use for this
conversation.

• NONE specifies that the transaction programs do not
perform confirmation processing on this conversation.
The programs do not issue verbs and do not recognize
returned parameters relating to the synchronization
function.

• CONFIRM specifies that the transaction programs can
perform confirmation processing on this conversation.
The programs can issue verbs and recognize returned
parameters relating to confirmation.

SECURITY specifies access security information that the
remote LU uses to validate access to the remote
transaction program and its conversations. The access
security information includes a user ID and a password
provided using the following arguments:

• NONE specifies that this conversation does not use
conversation-level security.

• SAME informs the remote LU that the user ID has
already been verified as part of the allocation request
that initiated execution of the local transaction
program. APPCjPC saved the user ID when the local
transaction program was remotely initiated. This
option also causes APPCjPC to send this saved user ID
to the remote LU with an 'already verified' indication.
If there was no user ID, APPCjPC sends the allocation
request with no security information and a 'not
already verified' indication.

• PGM directs the remote L U to use the security
information that the local transaction program
provides on this parameter. The local transaction
program uses the following arguments to provide this
security information:

USER_ID specifies the ID (in EBCDIC) of the end
user. The USER_ID is 8 bytes long. The remote
LU uses this value and the password to verify the

MC_ALLOCATE 6-17

identity of the end user making the allocation
request. In addition, the remote LU may use the
user ID for auditing or accounting to associate
conversation accesses with the end user.

PASSWORD specifies the password (in EBCDIC)
of the end user. The PASSWORD can be up to 8
bytes long. The remote LU uses this value and the
user ID to verify the identity of the end user
making the allocation request.

PIP _DAT A_LENGTH specifies the length of the
program initialization parameters for the remote program.
Set this parameter to 0 if there is no PIP data.

PIP _DATA specifies the variable containing the PIP
data that the local program is sending to the remote
program. The transaction program must format the PIP
data according to the GDS format (see "FM Headers" in
SNA Reference Summary).

Returned Parameters:

CONY _ID indicates the ID of the new conversation.

RETURN_ CODE indicates the result of verb execution.
The MC_ALLOCATE return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

DATA_AREA_ACROSS_SEGMENT: APPCjPC
does not permit PIP data to cross a segment
boundary.

BAD_TPN_LEN: The value that TPN specifies is
too short (less than 1) or too long (greater than 64).

BAD_SYNC_LEVEL: APPCjPC does not
recognize the specified SYNC_LEVEL.

6-18 MC_ALLOCATE

BAD_SECURITY_SELEC: APPCjPC does not
recognize the specified SECURITY.

BAD_RETURN_CONTROL: APPCjPC does not
recognize the specified RETURN_ CONTROL.

TOO_BIG_SEC_TOKENS: APPCjPC does not
accept a password or user ID that is longer than 8
bytes.

PIP_LEN_INCORRECT: APPCjPC does not
accept PIP data that is longer than 32767 bytes.

NO_USE_OF_SNASVCMG: APPCjPC does not
accept SNASVCMG as the value for the
MODE_NAME parameter.

UNKNOWN_PARTNER_MODE: APPCjPC does
not recognize the specified PARTNER_LU_NAME
or MODE_NAME.

• ALLOCATION_ERROR

ALLOCATION_FAILURE_NO RETRY:
APPCjPC cannot allocate the conversation because
of a permanent error condition.

ALLOCATION_FAILURE_RETRY: APPCjPC
cannot allocate the conversation because of a
temporary error condition.

• UNSUCCESSFUL: The program specified
RETURN_CONTROL(IMMEDIATE) and APPCjPC
could not allocate the conversation because no
contention-winner sessions were available.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• INCOMPLETE

MC_ALLOCATE 6-19

• INCOMPLETE_ALTERED_VERB
• OK.

State Changes:

The conversation enters send state if the
RETURN_CODE indicates OK.

Notes:

1. The local LU does not send PIP data immediately
unless the local transaction program issues a verb
(other than MC_SEND_DATA) that explicitly directs
the LU to flush its send buffer. Otherwise, the LU
retains the PIP parameter of the MC_ALLOCATE
verb and accumulates data from subsequent
MC_SEND_DATA verbs.

The LU sends this data to the partner LU when it
accumulates enough data for transmission. The
amount of information that is sufficient for
transmission depends on the characteristics of the
session allocated for the conversation, and can vary
from session to session.

2. The local transaction program can ensure that
APPC fPC connects the remote transaction program as
soon as possible by issuing the MC_FLUSH verb after
the MC_ALLOCATE verb.

3. Contention for a session can occur when two LUs
connected by a session both try to allocate a
conversation on the session at the same time.
APPCfPC resolves contention by making one LU the
contention winner of the session and the other LU the
contention loser of the session.

The contention-winner LU allocates a conversation on
a session without asking permission from the
contention-loser LU. Conversely, the contention-loser
LU requests permission from the contention-winner LU
to allocate a conversation on the session. Then the
contention-winner LU either grants or rejects the
request.

6-20 MC_ALLOCATE

4. The remote transaction program starts the
conversation in receive state.

5. For an IBM Token-Ring Network, one link must be
reserved for outgoing calls to enable the
MC_ALLOCATE verb to complete. For more
information on reserving links, see "Entering
Information for an IBM Token-Ring DLC" in the
APPC/PC Installation and Configuration Guide

6. You must specify the PARTNER_LU_NAME,
MODE_NAME, TPN, USER_ID, and PASSWORD in
EBCDIC. You can use the CONVERT verb to convert
these parameters from ASCII to EBCDIC.

MC_ALLOCATE 6-21

Me CONFIRM
Sends a confirmation request to a remote transaction
program and waits for a reply. This verb enables the local
and remote transaction programs to synchronize their
processing with one another. MC_CONFIRM also causes
the LV to flush its send buffer. To use this verb, the
transaction program must allocate the conversation with
a synchronization level of CONFIRM.

Su~~lied Parameters:

MC_CONFIRM TP - ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is requesting confirmation.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_CONFIRM return codes are:

• OK: The remote program replied CONFIRMED.

• PARAMETER_CHECK

6-22 MC_CONFIRM

- BAD_TP _ID: APPCfPC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPCfPC does not recognize the
specified CONY _ID.

- CONFIRM_ON_SYNC_NONE: APPCfPC does
not permit the program to use this verb if it
allocated the conversation with
SYNC_LEVEL(NONE).

• STATE_CHECK

- CONFIRM BAD_STATE: The conversation is not
in send state.

- CONFIRM_NOT_LL_BDY: The conversation is
in send state, and the program started, but did not
finish, sending a logical record.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• PROG_ERROR_PURGING.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU received an MC_REQUEST_TO_SEND
verb. The two indications APPC fPC can return are YES
and NO.

• YES indicates that the local L U received an
MC_REQUEST_TO_SEND verb from the remote
transaction ,program. The remote transaction program

MC_CONFIRM 6-23

issues an MC_REQUEST_TO_SEND verb to request
the local transaction program to enter receive state
and place the remote transaction program in send
state.

• NO indicates that the local LU has not received an
MC_REQUEST_TO_SEND notification from the
remote transaction program

State Changes:

If the RETURN_CODE parameter indicates OK, the state
of the conversation remains the same.

For more information on state changes when the
RETURN_CODE indicates other than OK, see
"Understanding Mapped Conversation Return Codes" on
page 6-3.

Notes:

1. The transaction program can use this verb for various
application-level functions. For example:

• The transaction program can issue this verb
immediately after an MC_ALLOCATE to
determine whether the allocation of the
conversation is successful before sending data

• The transaction program can issue this verb to
request acknowledgment of data it sent to the
remote program. The remote program can respond
by issuing MC_ CONFIRMED to indicate that it
received and processed the data without errors.
Alternatively, the remote program can issue an
MC_SEND_ERROR to indicate that it found an
error.

2. When the REQUEST_TO_SEND_RECEIVED
parameter indicates YES, the remote transaction
program is requesting that the local transaction
program enter receive state and place the remote
program in send state. A transaction program enters
receive state by issuing the

6-24 MC_CONFIRM

MC_PREPARE_TO_RECEIVE verb or the
MC_RECEIVE_AND_WAIT verb. The transaction
partner program enters send state after it issues the
MC_RECEIVE_AND_WAIT verb or the
MC_RECEIVE_IMMEDIATE verb, and receives the
SEND indication from its partner transaction program
on the WHAT_RECEIVED parameter.

MC_CONFIRM 6-25

MC CONFIRMED
Sends a confirmation reply to the remote transaction
program. This verb enables the local and remote
transaction programs to synchronize their processing.
The local transaction program can issue this verb when it
receives a confirmation request. (For more information
on confirmation requests, see the WHAT_RECEIVED
parameter of the MC_RECEIVE_AND_ WAIT verb.)

SU22lied Parameters:

MC - CONFIRMED TP - ID (variable)

CONV_ ID (variable)
Returned Parameters:

RETURN - CODE (variable)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP_ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the local transaction program is returning confirmation.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_CONFIRMED return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONY _ID.

6-26 MC_CONFIRMED

CONFIRMED_BAD STATE: The conversation is
not in confirm state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

The conversation enters receive state if the program
received CONFIRM on the preceding
MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE.

The conversation enters send state if the program
received CONFIRM_SEND on the preceding
MC_RECEIVE_AND_ WAIT or
MC_RECEIVE_IMMEDIATE.

The conversation enters reset state if the program
received CONFIRM_DEALLOCATE on the preceding
MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE.

Note:

The program can issue this verb only as a reply to a
confirmation request.

Me_CONFIRMED 6-27

MC DEALLOCATE
Deallocates the specified conversation.
MC_DEALLOCATE can perform the function of the
MC_CONFIRM verb before it deallocates the
conversation. APPCjPC discards the conversation ID
after deallocating the conversation.

SUQQlied Parameters:

MC_DEALLOCATE TP - ID (variable)

CONV_ID (variable)

TYPE (SYNC_LEVEL)
(FLUSH)
(ABEND)

Returned Parameters:

RETURN_CODE (variable)

i

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation that the
local transaction program is deallocating.

TYPE specifies the type of deallocation APPCjPC is to
perform.

• SYNC_LEVEL directs APPCjPC to deallocate the
conversation based on the synchronization level
allocated to this conversation.

If the SYNC_LEVEL is NONE, APPC/PC performs
the function of the MC_FLUSH verb and then
deallocates the conversation normally.

6-28 Me_DEALLOCATE

If the SYNC_LEVEL is CONFIRM, APPC/PC
performs the function of the MC_CONFIRM verb
and, if it is successful (as indicated by a return
code of OK on this MC_ALLOCATE verb),
APPC/PC deallocates the conversation normally. If
it is unsuccessful, the return code determines the
state of the conversation.

• FLUSH directs APPC/PC to perform the function of
the FLUSH verb and then to deallocate the
conversation normally. When you specify FLUSH as
the type, the remote partner receives a
DEALLOCATE_NORMAL following the successful
deallocation of a conversation.

• ABEND directs APPC fPC to perform the function of
the FLUSH verb when the conversation is in send
state, and then to deallocate the conversation
abnormally by purging data, if necessary. APPCjPC
purges data when a program deallocates a
conversation in receive state.

The remote program is informed of the deallocation by
a DEALLOCATE_ABEND indication unless the
remote program has issued an MC_SEND_ERROR. If
the remote program has issued an
MC_SEND_ERROR, it may receive a
DEALLOCATE_NORMAL return code instead of
DEALLOCATE_ABEND.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_DEALLOCATE return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

MC_DEALLOCATE 6-29

- DEALLOCATE_BAD_TYPE: APPCfPC does not
recognize the specified TYPE.

• STATE_CHECK

DEALLOC_FLUSH_BAD_STATE: The program
specified the TYPE(SYNC_LEVEL) parameter for
a conversation specified with
SYNC_LEVEL(NONE) and the conversation is not
in send state. Alternatively, the program may have
specified TYPE(FLUSH) when the conversation
was not in send state.

DEALLOC_CONFIRM_BAD_STATE: The
program specified the TYPE(SYNC_LEVEL)
parameter for a conversation specified with SYNC_
LEVEL(CONFIRM) when the conversation was not
in send state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK.

APPC fPC can report the following return codes if the
program specifies TYPE(SYNC_LEVEL) and the
synchronization level allocated to this conversation is
CONFIRM. For detailed information on these return
codes, see "Understanding Mapped Conversation Return
Codes" on page 6-3 and Appendix C, "Verb Return
Codes."

• ALLOCATION_ERROR
• CONY _FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND
• PROG_ERROR_PURGING.

6-30 MC_DEALLOCATE

State Changes:

The conversation enters reset state when
RETURN_CODE indicates OK.

For information on state changes when RETURN_CODE
indicates other than OK, see "Understanding Mapped
Conversation Return Codes" on page 6-3.

Notes:

1. A transaction program can use the
TYPE(SYNC_LEVEL) parameter to deallocate the
conversation according to the synchronization level
allocated to the conversation.

• If the synchronization level is NONE, APPCjPC
deallocates the conversation unconditionally.

• If the synchronization level is CONFIRM,
APPCjPC deallocates the conversation after the
remote program responds to the confirmation
request by issuing MC_CONFIRMED. APPCjPC
does not deallocate the conversation if the remote
program responds to the confirmation request by
issuing MC_SEND_ERROR.

2. A transaction program can use the TYPE(FL USH)
parameter to deallocate the conversation
unconditionally (that is, regardless of its
synchronization level).

3. A transaction program can use the TYPE(ABEND}
parameter to deallocate the conversation
unconditionally regardless of its synchronization level
and its current state. Specifically, a transaction
program uses this parameter when it detects an error
that prevents useful communication (that is,
communication leading to successful completion of the
transaction). The transaction programs define the
specific use and meaning of ABEND.

Me_DEALLOCATE 6-31

Me FLUSH

Flushes the send buffer of the local LU by sending all
buffered information to the remote LU. APPC/PC sends
all of the information stored in the local L U to the remote
LU. Information buffered by the LU can come from
MC_ALLOCATE, MC_SEND_DATA,
MC_PREPARE_TO_RECEIVE, and
MC_SEND_ERROR. Refer to the descriptions of these
verbs for more details on this buffered information,
including when APPC/PC places information in the
buffer.

Supplied Parameters:

MC - FLUSH TP - ID (variable)

CONV_ ID (variable)
Returned Parameters:

RETURN - CODE (var iable)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
APPC/PC is to flush the local LU's send buffer.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_FLUSH return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

FLUSH NOT_SEND_STATE: The conversation
is not in send state. The MC_FLUSH verb can
only be issued in send state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

None

Notes:

1. This verb is useful for reducing the time a remote
transaction program must wait for data. The LU
normally buffers the data from consecutive
MC_SEND_DATA verbs until it has enough to
transmit. Then it transmits the buffered data to the
remote LU. However, the local transaction program
can issue MC_FLUSH to force the local LU to
transmit the buffered data, eliminating the wait for the
buffer to fill. In this way, the local transaction
program can minimize the time that the remote
transaction program has to wait to receive the data it
is to process.

2. The LU flushes its send buffer only when it has some
information to transmit. If the LU has no information
in its send buffer, it does not transmit anything to the
remote LU.

3. The local transaction program can ensure that
APPCjPC connects the remote transaction program as
soon as possible by issuing the MC_FLUSH verb
immediately after the MC_ALLOCATE verb.

Me GET ATTRIBUTES
Returns information pertaining to the specified mapped
conversation.

Supplied Parameters:

Supplied Parameters:

TP_ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (variable)

LU_ID (variable)

OWN_NET_NAME (variable)

OWN_LU_NAME (variable)

PARTNER_LU_NAME (variable)

PARTNER_FULLY_QUALIFIED_LU_
NAME
(variable)

MODE_NAME (variable)

SYNC_LEVEL (variable)

USER_ID (variable)

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation for which
the attributes are desired.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_GET_ATTRIBUTES return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

For detailed. information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

LU_ID indicates the identifier for the local LU under
which the transaction program is executing. APPC/PC
returns this value to the application subsystem of the
transaction program when it defines the LU after the
application subsystem issues ATTACH_LU. For more
information, see "ATTACH_LU" on page 5-7.

OWN_NET_NAME indicates the name (in EBCDIC) of
the network containing the LU at which the local
transaction program is located.

OWN_LU_NAME indicates the network name (in
EBCDIC) of the LU at which the local transaction
program is located.

PARTNER_LU_NAME indicates the name (in EBCDIC)
of the LU at which the remote transaction program is
located. The local LU uses this name to identify the
remote LU when allocating a conversation. For more
details, see the description of the L U _NAME parameter

of MC_ALLOCATE under "MC_ALLOCATE" on
page 6-13.

PARTNER_FULLY_QUALIFIED_LU_NAME
indicates the fully qualified name (in EBCDIC) of the LU
at which the remote transaction program is located. If
APPC/PC does not know the partner's fully-qualified LU
name, it returns a null (O-length) value.

MODE_NAME indicates the mode name (in EBCDIC) for
the session on which APPC/PC allocated the
conversa tion.

SYNC_LEVEL indicates the level of synchronization
processing that the programs are using for the
conversation. The synchronization levels are NONE and
CONFIRM.

USER_ID indicates the user ID (in EBCDIC) if the
program specified conversation-level security. An
incoming ALLOCATE specifies this USER_ID when it
requests the application subsystem to start a transaction
program. If the program did not specify
conversation-level security, or if the transaction program
was initiated locally, APPC/PC returns a null (O-length)
value for the USER_ID parameter.

State Changes:

None

Notes:

1. The program issues this verb to obtain the attributes
of a conversation.

2. The following parameters are returned in EBCDIC:

• OWN_NET_NAME
• OWN_LU_NAME
• PARTNER_LU_NAME
• PARTNER_LU_FULLY_QUALIFIED_NAME
• MODE_NAME
• USER_ID in EBCDIC

You can use the CONVERT verb to convert these
parameter values from ASCII to EBCDIC.

GET TYPE
Returns the conversation type (basic or mapped) of the
specified conversation. A transaction program can use
this verb for both basic conversations or mapped
conversations.

Supplied Parameters:

GET_TYPE TP - ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (var iable)

TYPE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP_ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation for which
the con versa tion type is desired.

Returned Parameters:

RETURN_ CODE indicates the result of verb execution.
The GET_TYPE return codes are:

• PARAMETER_CHECK

BAD_TP_ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

TYPE indicates the conversation type. The conversation
types are:

• BASIC_CONVERSATION indicates that a basic
conversation was initiated by one of the following
methods:

The conversation was initiated with an
ALLOCATE
(CONV _TYPE = BASIC_CONVERSATION) verb.

An incoming ALLOCATE specified a basic
conversation.

• MAPPED_CONVERSATION indicates that a mapped
conversation was initiated by one of the following
methods:

The conversation was initiated with an
MC_ALLOCATE verb.

The conversation was initiated with an
ALLOCATE
(CONV _TYPE = MAPPED_CONVERSATION)
verb.

An incoming ALLOCATE specified a mapped
conversation.

State Changes:

None

6-40 GET_TYPE

Note:

A program that APPCjPC can process at either the basic
conversation API or the mapped conversation API uses
this verb to determine which category of verbs, basic
conversation or mapped conversation, to issue.

MC PREPARE TO RECEIVE -- --

Changes a mapped conversation from send to receive state
in preparation to receive data. Also performs the function
of the MC_FLUSH or MC_CONFIRM verbs.

SUQQlied Parameters:

MC_PREPARE_TO_RECEIVE TP - ID (variable)

CONV_ID (variable)

TYPE (SYNC_LEVEL)
(FLUSH)

LOCKS (SHORT)
(LONG)

Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is preparing to receive data.

TYPE specifies how APPC/PC prepares the conversation
to receive data.

• SYNC_LEVEL directs APPC/PC to prepare the
conversation to receive data based on the
synchronization level allocated to this conversation:

If SYNC_LEVEL is NONE, execute the function of
the MC_FLUSH verb and then place the
conversation in receive state.

If SYNC_LEVEL is CONFIRM, execute the
function of the MC_CONFIRM verb (including
flushing the local LU's send buffer) and then place
the conversation in receive state if the
MC_CONFIRM function is successful (as indicated
by a return code of OK with this
MC_PREPARE_TO_RECEIVE verb). If the
execution of the MC_ CONFIRM function is
unsuccessful, the return code determines the state
of the conversation.

• FLUSH directs APPCjPC to flush the local LU's send
buffer before placing the conversation in receive state.

LOCKS specifies when APPCjPC is to return control to
the local program after executing the MC_CONFIRM
function of this verb. APPCjPC ignores this parameter
unless the verb also specifies TYPE(SYNC_LEVEL) and
the synchronization level for this conversation is
CONFIRM.

• SHORT directs APPCjPC to return control to the
local transaction program after it receives an
MC_CONFIRMED reply. With the short option,
control is returned to the transaction program more
quickly; however, more data flows on the line.

• LONG informs APPCjPC that the MC_CONFIRMED
reply is to be returned with any returned data that is
available. With the LONG option, there is less line
flow but APPCjPC takes longer to return control to
the local transaction program.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
For detailed information on return codes listed below that
do not include descriptions, see "Understanding Mapped
Conversation Return Codes" on page 6-3 and
Appendix C, "Verb Return Codes." The
MC_PREPARE_TO_RECEIVE return codes are:

• PARAMETER_CHECK

MC_PREPARE_TO_RECEIVE 6-43

- BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPC/PC does not recognize the
specified CONY _ID.

- P _TO_R_INV ALID_TYPE: APPC/PC does not
recognize the specified TYPE.

- P TO R NOT_SEND_STATE: The conversation
is not in send state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK.

APPC fPC can report the following return codes if the
program specifies TYPE(SYNC _LEVEL) and the
synchronization level allocated to this conversation is
CONFIRM.

• ALLOCATION_ERROR
• CONY _FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND
• PROG_ERROR_PURGING.

State Changes:

The conversation enters receive state when
RETURN_CODE indicates OK.

6-44 MC_PREPARE_TO_RECEIVE

For information on state changes when RETURN_CODE
indicates other than OK, see "Understanding Mapped
Conversation Return Codes" on page 6-3.

Notes:

1. The conversation for the remote transaction program
enters send state when the remote transaction program
issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the
SEND indication on the WHAT_RECEIVED
parameter. The remote transaction program can then
send data to the local transaction program.

2. If the local transaction program issues
MC_PREPARE_TO_RECEIVE with a SYNC_LEVEL
of CONFIRM, the remote transaction program enters
send state after issuing MC_CONFIRMED.

MC_PREPARE_TO_RECEIVE 6-45

MC RECEIVE_AND_W AIT
Waits for information to arrive on the specified
conversation and then receives the information. If
information is already available, the transaction program
receives it without waiting. The information can be data,
conversation status, or a request for confirmation.
APPCjPC returns control to the transaction program and
indicates the -type of information received.

The transaction program can issue this verb when the
conversation is in either receive or send state. If the
conversation is in send state, the LU first flushes its send
buffer, sending all buffered information and the SEND
indication to the remote transaction program. This action
places the local conversation in receive state. The LU
then waits for information to arrive from the remote
transaction program. The remote transaction program
sends data to the local transaction program after it
receives the SEND indication.

Supplied Parameters:

TP_ID (variable)

CONV_ID (variable)

DATA_PTR (variable)

MAX_LENGTH (variable)
Returned Parameters:

RETURN_CODE (variable)

DATA_LENGTH (variable)

DATA (see DATA_PTR)

WHAT_RECEIVED (variable)

REQUEST_TO_SEND_RECEIVED
(YES)
(NO)

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the conversation ID of the
conversation on which the local transaction program is to
receive data.

DAT A_PTR specifies the address of the buffer that is to
accept the received data.

MAX_LENGTH specifies the maximum amount of data
(in bytes) that the program is to receive. Values between
o and 65535 are valid for this parameter, but the sum of
this value and the offset portion of DATA_PTR must not
exceed 65535. This limit keeps the incoming data from
crossing a segment boundary.

Returned Parameters:

RETURN_ CODE indicates the result of verb execution.
The MC_RECEIVE_AND_WAIT return codes are:

• PARAMETER_CHECK

BAD_TP_ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONY _ID.

DATA_AREA_ACROSS_SEGMENT: The data
receiving area crosses a segment boundary.

• STATE_CHECK

RCV_AND_WAIT_BAD STATE: The
conversation is not in send or receive state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_NORMAL
• DEALLOCATE_ABEND
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING.

DATA_LENGTH indicates the actual amount of data the
transaction program received up to the maximum
(MAX_LENGTH). The value of this variable is 0 if the
program receives information other than data, or no
information at all.

DAT A from the partner transaction program is received
in the buffer specified by the address in the DATA_PTR
parameter. APPCjPC does not place any information in
this buffer when the program receives information other
than data, as indicated by the WHAT_RECEIVED
parameter.

WHAT_RECEIVED indicates what the transaction
program received. The transaction program should
examine this variable only when RETURN_CODE
indicates OK. APPCjPC does not place any information
in this variable when RETURN_CODE indicates other
than OK.

• DATA_COMPLETE indicates that the transaction
program has received a complete data record, or the
last remaining portion of a data record.

• DATA_INCOMPLETE indicates that the transaction
program has received an incomplete data record. The
transaction program can issue another
MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE (or more than one) to
receive the remaining data.

• SEND indicates that the remote transaction program
has entered receive state, thereby placing the local
transaction program in send state. After receiving the
SEND indication, the local transaction program can
issue the MC_SEND_DATA verb to send data to the
remote program.

• CONFIRM indicates that the remote transaction
program has issued MC_CONFIRM, requesting the
local transaction program to respond by issuing
MC_CONFIRMED. The program may respond,
instead, by issuing MC_SEND_ERROR.

• CONFIRM_SEND indicates that the remote
transaction program has issued
MC_PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL), and the synchronization level
is CONFIRM. The local transaction program can
respond by issuing MC_CONFIRMED or
MC_SEND_ERROR.

• CONFIRM_DEALLOCATE indicates that the remote
transaction program has issued MC_DEALLOCATE
with TYPE(SYNC_LEVEL), and the synchronization
level is CONFIRM. The local transaction program can
respond by issuing MC_CONFIRMED or
MC_SEND_ERROR.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND. The
indication is either YES or NO.

• YES indicates that the local LU has received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program
has issued MC_REQUEST_TO_SEND, requesting the
local transaction program to enter receive state and

thereby place the remote transaction program in send
state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification from the remote
transaction program.

State Changes:

The following state changes occur when the
RETURN_CODE parameter indicates OK. For
information on state changes when RETURN_CODE
indicates other than OK, see "Understanding Mapped
Conversation Return Codes" on page 6-3.

• The conversation enters receive state when the verb is
issued in send state and WHAT_RECEIVED indicates
DATA_COMPLETE or DATA_INCOMPLETE.

• The conversation enters send state when
WHAT_RECEIVED indicates SEND.

• The conversation enters confirm state when
WHAT_RECEIVED indicates CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE.

• No state change occurs when the transaction program
issues MC_RECEIVE_AND_WAIT in receive state
and WHAT_RECEIVED indicates
DATA_COMPLETE or DATA_INCOMPLETE.

Notes:

1. When the transaction program issues
MC_RECEIVE_AND_WAIT in send state, the LU
implicitly executes an MC_PREPARE_TO_RECEIVE
with TYPE(FLUSH) before executing the
MC_RECEIVE_AND~WAIT. See the description of
MC_PREPARE_TO_RECEIVE for details of this
function.

2. The mapped conversation protocol boundary provides
for sending and receiving only data records. Unlike
the logical records defined for the basic conversation

protocol boundary, data records contain only data;
they do not contain the logical record length field.

3. The MC_RECEIVE_AND_WAIT verb can receive
only as much of the data record as the program
specifies using the MAX_LENGTH parameter. The
WHAT_RECEIVED parameter indicates whether the
transaction program has received a complete or
incomplete data record, as follows:

• The WHAT_RECEIVED parameter indicates
DATA_COMPLETE after the transaction program
receives a complete data record or the last portion
of a data record. The length of the record (or
portion of the record) is equal to (or less than) the
length specified on the MAX_LENGTH parameter.

• The WHAT_RECEIVED parameter indicates
DATA_INCOMPLETE after the transaction
program receives a portion of a data record other
than the last remaining portion. APPC fPC detects
that the data record is incomplete because the
remaining length of the record is greater than the
length specified on the MAX_LENGTH parameter.
The amount received equals the length specified.
The transaction program must issue another,
MC_RECEIVE_AND_WAIT (or possibly more
than one) to receive the rest of the data record.

4. A program can use MC_RECEIVE_AND_ WAIT with
MAX_LENGTH(O) to determine the type of
information that is available without actually
receiving data. The RETURN_CODE and
WHAT_RECEIVED parameters provide this
information as usual. However, the transaction
program receives no data in this case.

5. The transaction program receives only one kind of
information at a time. For example, it may receive
data or a CONFIRM request, but it cannot receive
both at the same time. The RETURN_CODE and
WHAT_RECEIVED parameters indicate to the
program the kind of information the program receives.

6. The local transaction program usually receives a
REQUEST_TO_SEND notification when it is in send
state. APPC/PC reports this request to the local
transaction program on an MC_SEND_DATA verb or
an MC_SEND_ERROR verb issued in send state.
However, the local transaction program can receive
notification when the program is in receive state in
the following cases:

• When the local transaction program just entered
receive state and the remote transaction program
issues MC_REQUEST_TO_SEND before it enters
send state.

• When the remote transaction program has just
entered receive state by using the
MC_PREPARE_TO_RECEIVE verb (not
MC_RECEIVE_AND_WAIT), and then issuing
MC_REQUEST_TO_SEND before the local
transaction program responds by entering send
state. This ambiguity can occur because
MC_REQUEST_TO_SEND is an expedited request
and this request can, therefore, arrive ahead of the
request carrying the SEND indication.

The local transaction program might not be able to
distinguish this case from the preceding case. The
remote transaction program can avoid this
ambiguity by waiting until it receives information
from the local transaction program before it issues
the MC_REQUEST_TO_SEND.

• The remote program issues the
MC_REQUEST_TO_SEND in send state.

MC RECEIVE IMMEDIATE
Receives information that is available from the specified
mapped conversation, but does not wait for information to
arrive. The information (if any) can be data, conversation
status, or a request for confirmation. APPC JPC returns
control to the transaction program with an indication of
whether information was received and, if so, the type of
information.

Supplied Parameters:

Supplied Parameters:

TP_ID (variable)

CONV_ID (variable)

DATA_PTR (variable)

MAX_LENGTH (variable)
Returned Parameters:

RETURN_CODE (variable)

DATA_LENGTH (variable)

DATA (see DATA_PTR)

WHAT_RECEIVED (variable)

REQUEST_TO_SEND_RECEIVED
(YES)
(NO)

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is to receive data.

DAT A_PTR specifies the address of the data buffer that
is to accept the received data.

MAX_LENGTH specifies the most data (in bytes) the
program is to receive when APPCjPC executes this verb.
Values between 0 and 65535 are valid for this parameter
but the sum of this value and the offset portion of
DAT A_PTR must not exceed 65535. This limit keeps the
incoming data from crossing a segment boundary.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_RECEIVE_IMMEDIATE return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

DATA AREA ACROSS_SEGMENT: The data
receiving area crosses a segment boundary.

• STATE_CHECK

RCV _IMMD_NOT_RCV STATE: The
conversation is not in receive state.

UNSUCCESSFUL: No data was available to be
received.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY

6-54 MC_RECEIVE_IMMEDIATE

• CONY_FAILURE_RETRY
• DEALLOCATE_NORMAL
• DEALLOCATE_ABEND
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING.

DATA_LENGTH indicates the actual amount of data the
transaction program received up to the maximum
(MAX_LENGTH). If the program receives information
other than data, or no information at all, this variable is
o.

DATA from the partner transaction program is received
in the buffer that the DAT A_PTR parameter specifies.
When the program receives information other than data,
as indicated by the WHAT_RECEIVED parameter,
APPC/PC does not place any information in this buffer.

WHAT_RECEIVED indicates what kind of information
the transaction program received. The program should
examine this variable only if the RETURN_CODE
parameter indicates OK. APPC/PC does not place any
information in this variable if the RETURN_CODE is
other than OK. The WHAT_RECEIVED indications are:

• DATA_COMPLETE indicates that the transaction
program has received a complete data record, or the
last portion of a data record.

• DATA_INCOMPLETE indicates that the transaction
program has received less than a complete data record.
The transaction program can issue another
MC_RECEIVE_IMMEDIATE or
MC_RECEIVE_AND_WAIT (or possibly more than
one) to receive the remaining data.

• CONFIRM indicates that the remote transaction
program has issued MC_CONFIRM, requesting the
local transaction program to respond by issuing
MC_CONFIRMED. The program can respond by
issuing MC_CONFIRMED or MC_SEND_ERROR.

• CONFIRM_SEND indicates that the remote
transaction program has issued
MC_PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL), and the synchronization level
is CONFIRM. The local transaction program can
respond by issuing MC_CONFIRMED or
MC_SEND_ERROR.

• CONFIRM_DEALLOCATE indicates that the remote
transaction program has issued MC_DEALLOCATE
with TYPE(SYNC_LEVEL), and the synchronization
level is CONFIRM. The local transaction program can
respond by issuing MC_CONFIRMED or
MC_SEND_ERROR.

• SEND indicates that the remote transaction program
has entered receive state, placing the local transaction
program in send state. After receiving the SEND
indication, the local transaction program can issue the
MC_SEND_DATA verb to send data to the remote
transaction program.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND from
the remote transaction program. The indication is either
YES or NO.

• YES indicates that the local LU has received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program
has issued MC_REQUEST_TO_SEND, requesting the
local transaction program to enter receive state and
thereby place the remote transaction program in send
state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification.

State Changes:

The following state changes occur when the
RETURN_CODE parameter indicates OK. For
information on state changes when RETURN_CODE

indicates other than OK, see "Understanding Mapped
Conversation Return Codes" on page 6-3.

• The conversation enters send state when
WHAT_RECEIVED indicates SEND.

• The conversation enters confirm state when
WHAT_RECEIVED indicates CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE.

• No state change occurs when the transaction program
issues MC_RECEIVE_IMMEDIATE and
WHAT_RECEIVED indicates DATA_COMPLETE or
DATA_INCOMPLETE.

Notes:

1. The mapped conversation API provides for sending and
receiving data records only. Unlike the logical records
defined for the basic conversation API, data records
contain only data; they do not contain the logical
record length field.

2. The MC_RECEIVE_IMMEDIATE verb can receive
only as much of the data record as the transaction
program specifies using the MAX_LENGTH
parameter. The WHAT_RECEIVED parameter
indicates whether the program has received a complete
or incomplete data record, as follows:

• The WHAT_RECEIVED parameter indicates
DATA_COMPLETE after the transaction program
receives a complete data record or the last
remaining portion of a data record. The length of
the record (or portion of the record) is equal to (or
less than) the length specified on the
MAX_LENGTH parameter.

• The WHAT_RECEIVED parameter indicates
DATA_INCOMPLETE after the transaction
program receives part of a data record other than
the last portion. The program issues another
MC_RECEIVE_IMMEDIATE (or possibly more
than one) to receive the rest of the data record.

3. A program can use MC_RECEIVE_IMMEDIATE with
MAX_LENGTH(O) to determine the type of
information that is available without actually
receiving data. The RETURN_CODE and
WHAT_RECEIVED parameters provide this
information, as usual. However, the program receives
no data in this case.

4. The transaction program receives only one kind of
information at a time. For example, it may receive
data or a CONFIRM request, but it cannot receive
both at the same time. The RETURN_CODE and
WHAT_RECEIVED parameters indicate to the
program the kind of information the program receives.

5. The local transaction program usually receives a
REQUEST_TO_SEND notification when it is in send
state. APPCjPC reports this request to the local
transaction program in the RETURN_CODE of an
MC_SEND_DATA verb or an MC_SEND_ERROR
verb that the local transaction program issues in send
state. However, the local transaction program can
receive the notification when the program is in receive
state in the following cases:

• When the local transaction program just entered
receive state and the remote transaction program
issues MC_REQUEST_TO_SEND before it enters
send state.

• When the remote transaction program has just
entered receive state by issuing the
MC_PREPARE_TO_RECEIVE verb (not
MC_RECEIVE_AND_WAIT), and then issuing
MC_REQUEST_TO_SEND before the local
transaction program responds by entering send
state. This ambiguity can occur because
MC_REQUEST_TO_SEND is an expedited request
and this request can arrive ahead of the request
carrying the SEND indication.

The local transaction program might not be able to
distinguish this case from the preceding case. The
remote transaction program can avoid this

6-58 MC_RECEIVE_IMMEDIATE

ambiguity by waiting until it receives information
from the local transaction program before it issues
the MC_REQUEST_ TO_SEND.

• When the remote transaction program issues the
MC_REQUEST_TO_SEND in send state.

MC_REQUEST_TO_SEND
Notifies the remote transaction program that the local
transaction program is requesting to enter send state for
the mapped conversation. APPCjPC places the mapped
conversation in send state when the local transaction
program subsequently receives a SEND indication from
the remote transaction program

SUQQlied Parameters:

MC_REQUEST_TO_SEND TP - ID (variable)

CONV - ID (variable)
Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the local transaction program is requesting to send data.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_REQUEST_TO_SEND return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

R_T_S_NOT_RCV_STATE: The conversation is
not in receive or confirm state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

None

Notes:

1. A transaction program enters receive state by issuing
the MC_RECEIVE_AND_ WAIT verb or the
MC_PREPARE_TO_RECEIVE verb. The partner
transaction program enters the corresponding send
state when it issues an MC_RECEIVE_AND ____ WAIT
or MC_RECEIVE_IMMEDIATE verb and receives the
SEND indication (on the WHAT_RECEIVED
parameter).

2. The REQUEST_TO_SEND_RECEIVED indication of
YES is normally given to the remote transaction
program when the conversation is in send state; that
is, on an MC_SEND_DATA verb or on an
MC_SEND_ERROR verb issued in send state.
However, the YES indication can also be given on an
MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb. For more
information, see "MC_RECEIVE_AND_ WAIT" on
page 6-46 or "MC_RECEIVE_IMMEDIATE" on
page 6-53.

3. When the remote L U receives the
MC_REQUEST_TO_SEND notification, it retains the

notification until the remote transaction program
issues a verb with the
REQUEST_TO_SEND_RECEIVED parameter.

The remote L U retains only one
MC_REQUEST_TO_SEND notification at a time (for
each conversation). The remote LU discards
additional notifications until the LU can indicate the
retained notification to the remote transaction
program. Therefore the local transaction program can
issue the MC_REQUEST_TO_SEND verb more times
than the remote L U indicates to the remote
transaction program.

Me SEND DATA - -

Sends one data record to the remote transaction program.
The data format consists entirely of data.

SU22lied Parameters:

MC_SEND_DATA TP - ID (variable)

CONV_ID (variable)

DATA_LENGTH (variable)

DATA (variable)
Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is sending the data.

DAT A_LENGTH specifies the length of the data record
to be sent. The length of the data record can range from 0
to 65535 bytes. The local LU sends a null data record if
the local transaction program specifies a data record
length of o. The sum of the DATA_LENGTH value and
the offset portion of the DATA address cannot exceed
65535. This limit keeps the data from crossing a segment
boundary.

DATA specifies the data record that the local transaction
program is sending.

MC_SEND_DATA 6-63

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The MC_SEND_DATA return codes are:

• PARAMETER_CHECK

- BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

- DATA AREA ACROSS_SEGMENT: The data to
be sent crosses a segment boundary.

• STATE_CHECK

- SEND_DATA_NOT_SEND_STATE: The
conversation is not in send state.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK
• PROG_ERROR_PURGING.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND
notification. The indication is either YES or NO.

• YES indicates that the local LU has received a
REQUEST_TO_SEND notification from the remote

transaction program. The remote transaction program
issues MC_REQUEST_TO_SEND to request the local
transaction program to enter receive state and place
the remote transaction program in send state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification.

State Changes:

The state does not change when the RETURN_CODE
indicates OK.

For information on state changes when the
RETURN_CODE indicates other than OK, see
"Understanding Mapped Conversation Return Codes" on
page 6-3.

Notes:

1. The mapped conversation API provides for sending and
receiving data records only. Unlike the logical records
defined for the basic conversation API, data records
contain only data; they do not contain the logical
record length field.

2. The MC_SEND_DATA verb sends a complete data
record. The sending program, therefore, cannot
truncate a data record.

3. The local L U stores in a send buffer the data the local
transaction program is sending. The local L U sends
the data to the remote LU when the send buffer
accumulates enough data for transmission. The local
transaction program can force the L U to flush its send
buffer by issuing the MC_FLUSH verb. The amount
of data that is enough for transmission depends on the
characteristics of the session allocated for the mapped
conversation, and can vary from session to session.

4. When REQUEST_TO_SEND_RECEIVED indicates
YES, the remote transaction program is requesting the
local transaction program to enter receive state and
thereby place the remote transaction program in send

state. A transaction program uses the
MC_RECEIVE_AND_ WAIT verb or the
MC_PREPARE_TO_RECEIVE verb to enter receive
state. The partner transaction program enters send
state when it issues an MC_RECEIVE_AND_WAIT
or MC_RECEIVE_IMMEDIATE verb and receives the
SEND indication on the WHAT_RECEIVED
parameter.

Me SEND ERROR

Informs the remote transaction program that the local
transaction program found an error. If the conversation
is in send state, the local LU flushes its send buffer.

After the successful completion of this verb, the local
transaction program is in send state and the remote
transaction program is in receive state. The transaction
program must take the appropriate actions to correct the
problem.

SUQQlied Parameters:

Me - SEND_ERROR TP - ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameters,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the local transaction program is sending the error.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.

APPCjPC returns the following MC_SEND_ERROR
return codes independently of the state of the
conversation:

MC_SEND_ERROR 6-67

• PARAMETER_CHECK

- BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPC/PC does not recognize the
specified CONY -"-ID.

- DATA_AREA_ACROSS_SEGMENT: The data to
be sent crosses a segment boundary.

For detailed information on return codes listed below,
see "Understanding Mapped Conversation Return
Codes" on page 6-3 and Appendix C, "Verb Return
Codes."

- APPC_ABENDED
- APPC_BUSY
- APPC_DISABLED
- CONV_FAILURE_NO_RETRY
- CONV-,-FAILURE_RETRY
- CONVERSATION_TYPE_MIXED
- INCOMPLETE
- INCOMPLETE_ALTERED_VERB
- OK.

If the transaction program issues MC_SEND_ERROR in
send state, APPC/PC can report the following return
codes:

• ALLOCATION_ERROR
• DEALLOCATE_ABEND
• PROG_ERROR_PURGING.

If the transaction program issues MC_SEND_ERROR in
receive state, APPC/PC can report the following return
code:

• DEALLOCATE_NORMAL: The remote transaction
program issued a DEALLOCATE specifying the
TYPE(SYNC_LEVEL) where the SYNC_LEVEL of
the conversation is NONE or TYPE(FLUSH)
parameter. This return code does not indicate an error
condition.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND
notification. The indication is either YES or NO.

• YES indicates that the local LU has received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program
has issued MC_REQUEST_TO_SEND, requesting the
local transaction program to enter receive state and
thereby place the remote transaction program in send
state.

• NO indicates that the local L U has not received a
REQUEST_TO_SEND notification.

State Changes:

The following state changes occur when the
RETURN_CODE parameter indicates OK. For
information on state changes when the RETURN_CODE
indicates other than OK, see "Understanding Mapped
Conversation Return Codes" on page 6-3.

The conversation enters send state after the local
transaction program issues MC_SEND_ERROR in
receive or confirm state.

No state change occurs when the local transaction
program issues the verb in send state.

Notes:

1. The local transaction program can ensure that the
remote transaction program receives the complete
error notification as soon as possible by issuing
MC_FLUSH immediately after MC_SEND_ERROR.

2. An MC_SEND_ERROR is reported to the remote
transaction program as one of the following return
codes:

• PROG_ERROR_NO_TRUNC: The local
transaction program issued MC_SEND_ERROR in

MC_SEND_ERROR 6-69

send state. No data truncation occurs at the
mapped conversation API.

• PROG_ERROR_PURGING: The local transaction
program issued MC_SEND_ERROR in receive
state and all data sent by the remote transaction
program and not yet received by the local
transaction program is purged. This return code
can also occur if the local transaction program
issued MC_SEND_ERROR in confirm state, in
which case no data is purged.

3. When a transaction program issues
MC_SEND_ERROR in receive state, all incoming
information is purged. The incoming information that
is purged includes the following return code
indications:

• ALLOCATION_ERROR
• DEALLOCATE_ABEND
• PROG_ERROR_PURGING.

APPCjPC reports the DEALLOCATE_NORMAL
return code instead of ALLOCATION_ERROR or
DEALLOCATE_ABEND. It reports OK instead of
PROG_ERROR_PURGING.

The other kinds of incoming information that are
purged are:

• Data sent by a transaction program issuing the
MC_SEND_DATA verb.

• Confirmation requests sent by a transaction
program issuing the MC_CONFIRM verb.

If a transaction program sends a confirmation request
in conjunction with the MC_DEALLOCATE verb by
specifying the TYPE(SYNC_LEVEL) parameter, then
the deallocation request is also purged.

However, incoming REQUEST_TO_SEND indications
are not purged.

4. When the returned
REQUEST_TO_SEND_RECEIVED parameter
indicates YES, the remote transaction program is
requesting the local transaction program to enter
receive state and thereby place the remote program in
send state. A transaction program enters receive state
by issuing the MC_RECEIVE_AND_ WAIT or
MC_PREPARE_TO_RECEIVE verb.

The partner transaction program enters send state
when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the
SEND indication on the WHAT_RECEIVED
parameter.

5. The local transaction program can use
MC_SEND_ERROR for various application-level
functions. For example, the local transaction program
can issue this verb to inform the remote transaction
program of an error it found in the data records it
received, or to reject a confirmation request.

Me TEST

Tests the specified conversation to determine if the local
LU has received a REQUEST_TO_SEND notification
from a remote transaction program. The return code
indicates the result of the test.

Supplied Parameters:

MC - TEST TP - ID (variable)

CONV_ ID (variable)
Returned Parameters:

RETURN - CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation the local
transaction program is checking for a
REQUEST_TO_SEND indication.

Returned Parameters:

RETURN_ CODE indicates the result of the test. The
M C _TEST return codes are:

• OK: The local LU has received a
REQUEST_TO_SEND notification. The remote
program has issued MC_REQUEST_TO_SEND,
requesting the local program to enter receive state and
thereby place the remote program in send state.

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

• UNSUCCESSFUL: The local LU has not received a
REQUEST_TO_SEND notification.

For detailed information on the following return codes,
see "Understanding Mapped Conversation Return Codes"
on page 6-3 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• INCOMPLETE
• INCOMPLETE_ALTERED_ VERB.

State Changes:

None

Notes:

1. When the local LU receives a REQUEST_TO_SEND
notification, the remote transaction program is
requesting the local transaction program to enter
receive state and thereby place the remote transaction
program in send state. A transaction program enters
receive state by issuing the
MC_RECEIVE_AND_WAIT or
MC_PREPARE_TO_RECEIVE verb.

2. The partner transaction program enters send state
after it issues an MC_RECEIVE_AND_ WAIT or
MC_RECEIVE_IMMEDIATE verb and then receives
the SEND indication on the WHAT_RECEIVED
parameter.

Chapter 7. U sing Transaction
Basic Conversation Verbs

This chapter describes the category of verbs called basic
conversation verbs that are available for use by
transaction programs. Basic conversation verbs define the
basic conversation API for end-user program-to-program
support.

Before the detailed descriptions of the basic conversation
verbs is a discussion of the conversation states at the
basic conversation API, and a description of the basic
conversation return codes. These subjects apply generally
to all of the basic conversation verbs.

Note:

Every conversation is either a basic or a mapped
conversation. A transaction program cannot use the basic
conversation verbs and mapped conversation verbs on the
same conversation. However, a transaction program
providing its own mapped conversation layer can use a
basic conversation to perform mapped conversation
operations.

7-1

Understanding Basic
Conversation States

The selection of verbs that a program can issue for a
particular conversation depends on the state of the
conversation. As the program issues verbs, the state of
the conversation can change. This state change occurs in
response to a verb issued by the local program, a verb
issued by the remote program, or as a result of network
errors.

APPCjPC defines the state of a conversation in terms of
the local program's view of the local end of the
conversation. The local end of the conversation is the end
to which the local program is connected. The states of
other conversations allocated to the program can be
different. For example, one conversation can be in
receive state and another in send state, concurrently.

The state of the basic conversation determines which
verbs APPCjPC allows a program to issue. The folowing
table correlates the verbs, and parameters if applicable, to
the basic conversation states.

7-2

Conversation States at
Basic Conversation
Protocol Boundary

Verb Reset Send Re- Con-
ceive firm

ALLOCATE Yes n/a n/a n/a
CONFIRM n/a Yes No No

CONFIRMED n/a No No Yes

DEALLOCATE with n/a Yes No No
TYPE(FLUSH) or
TYPE(SYNC_LEVEL)

DEALLOCATE with n/a Yes Yes Yes
TYPE(ABEND_PROG),
TYPE(ABEND_SVC), or
TYPE(ABEND_ TIMER)

FLUSH n/a Yes No No
GET_ATTRIBUTES n/a Yes Yes Yes
GET_TYPE n/a Yes Yes Yes
POST_ ON_RECEIPT n/a No Yes No
PREPARE_TO_RECEIVE n/a Yes No No
RECEIVE_AND_ W AIT n/a Yes Yes No
RECEIVE_IMMEDIATE n/a No Yes No
REQUEST_TO_SEND n/a No Yes Yes
SEND_DATA n/a Yes No No
SEND_ERROR n/a Yes Yes Yes
TEST with TEST(POSTED) n/a No Yes No
TEST with n/a Yes Yes Yes

TEST(REQUEST_ TO_
SEND_RECEIVED)

WAIT n/a No Yes No

At the intersection of each verb row and state column, the
table indicates Yes, No, or n/a. Yes means that APPC/PC
allows the program to issue the verb when the
conversation is in that state.

No means the program cannot issue the verb because
APPC/PC disallows the verb in that state. APPC/PC
treats a verb issued for a conversation in a disallowed
state as a state-check condition and issues an appropriate
return code. The individual verb descriptions list the
applicable state-check conditions.

7-3

n/a means the state is not applicable either because it
cannot exist when the verb is issued or because the state
is not relevant to the verb.

A conversation enters a particular state when the
transaction program issues a verb that causes a state
transition or when the program receives a return code
that indicates that a state transition has occurred. This
chapter defines the specific state transitions under the
following heading, "Understanding Basic Conversation
Return Codes," and in each verb description under the
headings "Returned Parameters" and "State Changes."

7-4

Understanding Basic
Conversation Return Codes

All conversation verbs have a parameter called
RETURN_CODE that APPCfPC uses to pass a return
code back to the program when the LU finishes executing
a verb. The return code indicates the result of verb
execution, including any state changes to the specified
basic conversation. For information on which verbs a
program can issue in each state, see "Understanding Basic
Conversation States" on page 7-2.

The structure of a return code is a 2-byte primary code
that identifies the error type, and a 4-byte secondary code
that provides more detailed error information.

Some of the return codes indicate results of the local LU'S
processing of a verb; APPCfPC returns these return codes
on the verb that initiated the local processing. Other
return codes indicate results of processing initiated at the
remote end of the conversation.

Depending on the verb, APPC fPC returns these codes on
the verb that initiated the remote processing or on a later
verb. Still other return codes report events occurring at
the remote end of the conversation. In any case,
APPCfPC returns only one code at a time.

The following return codes can be returned on one or
more basic conversation verbs:

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DATA_POSTING_BLOCKED
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER

7-5

• DEALLOCATE_NORMAL
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• INVALID_VERB
• OK
• POSTING_NOT_ACTIVE
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC
• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

Detailed descriptions of these return codes follow. Brief
references to these return codes appear in the individual
verb descriptions later in this chapter. For a description
of unique parameters or return codes, see the individual
verb descriptions.

ALLOCATION_ERROR indicates that the local
transaction program issued an ALLOCATE and APPCjPC
could not complete the allocation of the specified
conversation. The ALLOCATION_ERROR indication and
one of the following secondary return codes form the
complete return code that APPCjPC returns to the
transaction program; the secondary return code identifies
the specific error.

The remote L U and the remote transaction program
referred to in the following secondary return code
definitions are the LU specified in the LU_NAME
parameter and the program specified in the TPN
parameter, respectively, of the ALLOCATE verb.

APPCjPC reports allocation errors caused by the local LU
failing to obtain a session for the conversation on the
ALLOCATE verb, and by the remote LU rejecting the
allocation request on a subsequent verb. When APPCjPC
returns an ALLOCATION_ERROR to the transaction
program, it places the basic conversation in reset state.

The ALLOCATION_ERROR secondary return codes are
as follows:

7-6

• ALLOCATION_FAILURE_NO_RETRY indicates
that APPCjPC cannot allocate the basic conversation
on a session because of a permanent condition. For
example, APPCjPC cannot activate the session to be
used for the basic conversation because the current
mode session limit for the specified partner LU is 0;
because of a system definition error or a
session-activation protocol error; or because APPCjPC
deactivated the session in response to a session
protocol error before it could allocate the basic
conversation. The transaction program should not try
the allocation request again until the condition is
corrected.

• ALLOCATION_FAILURE_RETRY indicates that
APPCjPC cannot allocate the basic conversation on a
session because of a temporary condition. For
example, APPCjPC cannot allocate the session for the
basic conversation because of a temporary lack of
sessions at the local LU or remote LU. The error can
also occur if APPCjPC deactivates the session because
of a line or modem failure before it could allocate the
conversation.

The condition is temporary; the transaction program
can try the allocation request again. However, to
avoid congesting the network with attempted
allocation requests, the transaction program should
pause or wait for a keystroke before retrying the
transaction.

• CONVERSATION_TYPE_MISMATCH indicates
that the remote LU rejects the allocation request
because the remote transaction program does not
support basic conversations. APPCjPC returns this
return code on a subsequent verb.

• PIP _NOT_ALLOWED indicates that the remote LU
rejects the allocation request because the local
program specified program initialization parameters
(by setting the PIP_DATA_LENGTH parameter to a
non-O value) and either the remote LU does not
support PIP data, or the remote transaction program

7-7

has no PIP variables defined. APPCjPC returns this
return code on a subsequent verb.

• PIP_NOT_SPECIFIED_CORRECTLY indicates
that the remote LU rejects the allocation request
because the remote transaction program has one or
more PIP variables defined and the local transaction
program has specified that there are no program
initialization parameters (by setting the
PIP _DATA_LENGTH parameter of the ALLOCATE
verb to 0).

This error can also indicate that the local transaction
program has not specified program initialization
parameters (by setting the PIP_DATA_LENGTH
parameter to a non-O value) that do not correspond in
number to those defined for the remote transaction
program. APPCjPC returns this return code on a
subsequent verb.

• SECURITY_NOT_ VALID indicates that the remote
LU rejects the allocation request because access
security information (specified using the ALLOCATE
SECURITY parameter) is invalid. APPCjPC returns
this return code on a subsequent verb.

• SYNC_LEVEL_NOT_SUPPORTED indicates that
the remote LU rejects the allocation request because
the local program specified a synchronization level
(using the SYNC_LEVEL parameter) that the remote
program does not support. APPCjPC returns this
return code on a subsequent verb.

• TPN_NOT_RECOGNIZED indicates that the remote
LU rejects the allocation request because the local
transaction program specified a remote transaction
program name that the remote LU does not recognize.
APPC/PC returns this return code on a subsequent
verb.

• TRANS_PGM_NOT_A V AIL_NO_RETRY indicates
that the remote LU rejects the allocation request
because the local transaction program specified a
remote transaction program that the remote LU

7-8

recognizes but cannot start. The condition is
permanent; the transaction program should not try the
allocation request again. APPCjPC returns this return
code on a subsequent verb.

• TRANS_PGM_NOT_A V AIL_RETRY indicates that
the remote LU rejects the allocation request because
the local transaction program specified a remote
transaction program that the remote LU recognizes but
currently cannot start. The condition is temporary;
the transaction program can try the conversation
again. APPC JPC returns this return code on a
subsequent verb.

APPC_ABENDED indicates that APPCjPC has been
abnormally terminated.

APPC_BUSY indicates that APPCjPC is currently
executing another verb and cannot execute this verb.
This error can occur if a verb is issued after APPC JPC
execution is interrupted (for example, by a Ctrl-Break or
timer interrupt).

APPC_DISABLED indicates that APPCjPC is disabled
as a result of the DISABLEjENABLE_APPC verb.

CONVERSATION_TYPE_MIXED indicates that the
local program issued a combination of basic conversation
verbs and mapped conversation verbs on the same
conversation. APPCjPC reports this return code on the
verb issued.

CONY FAILURE_NO_RETRY indicates that a failure
occurred that caused APPCjPC to terminate the
conversation prematurely. For example, APPCjPC
deactivated the session that the transaction programs
were using for the conversation because of a session
protocol error. The condition is permanent; the
transaction program should not try the transaction again
until the condition is corrected. APPCjPC can report this
return code to the local transaction program on a verb the
program issues in any state other than reset. APPCjPC
leaves the conversation in reset state.

7-9

CONV _FAILURE_RETRY indicates that a failure
occurred that caused APPCfPC to terminate the
conversation prematurely. For example, APPCfPC
terminates conversations when it must deactivate the
associated sessions in response to a line or modem failure.
The condition is temporary; the transaction program can
try the conversation again. However, to avoid congesting
a network with attempted allocation requests, the
transaction program should pause or wait for a keystroke
before retrying the transaction. APPC fPC can report this
return code to the local program on a verb that the
program issues in any state other than reset. APPCjPC
places the conversation in reset state.

DATA_POSTING_BLOCKED indicates that a
transaction program issued aWAIT or TEST verb and
APPCjPC cannot post one of the active conversations
because the APPCfPC workspace storage assigned to a
session is filled, and the transaction program is unable to
send a pacing response. The condition can be corrected
by issuing a RECEIVE_IMMEDIATE or
RECEIVE_AND_ WAIT on one of the conversations
specified in the TEST or WAIT verb. APPCfPC reports
this return code only if receive pacing is active.

DEALLOCATE_ABEND_PROG indicates that the
remote transaction program issued a DEALLOCATE verb
specifying the TYPE(ABEND_PROG) parameter. The
remote LU can also issue a DEALLOCATE verb
specifying the TYPE(ABEND_PROG) parameter in
response to a remote transaction program abnormal
termination condition. If the conversation for the remote
transaction program is in receive state when the remote
transaction program or LU issues a DEALLOCATE verb,
information sent by the local transaction program and not
yet received by the remote transaction program is purged.

APPCjPC returns the DEALLOCATE_ABEND_PROG
return code to the local transaction program on a verb the
program issues in either send or receive state. After
APPCjPC issues this return code, it deallocates the
conversation, making the conversation unavailable to the
program.

7-10

DEALLOCATE_ABEND_SVC indicates that the remote
transaction program issued a DEALLOCATE verb
specifying the TYPE(ABEND_SVC) parameter. If the
conversation for the remote transaction program is in
receive state when the remote transaction program issues
a DEALLOCATE verb, information sent by the local
transaction program and not yet received by the remote
transaction program is purged.

APPC/PC returns the DEALLOCATE_ABEND_SVC
return code to the local transaction program on a verb the
program issues in either send or receive state. After
APPC/PC issues this return code, it deallocates the
conversation, making the conversation unavailable to the
program.

DEALLOCATE_ABEND_TIMER indicates that the
remote transaction program issued a DEALLOCATE verb
specifying the TYPE(ABEND_TIMER) parameter. If the
conversation for the remote transaction program is in
receive state when the program issues a DEALLOCATE
verb, information sent by the local transaction program
and not yet received by the remote transaction program is
purged.

APPC/PC returns the DEALLOCATE_ABEND_TIMER
return code to the local transaction program on a verb the
program issues in either send or receive state. After
APPC/PC issues this return code, it deallocates the
conversation, making the conversation unavailable to the
program.

DEALLOCATE_NORMAL indicates that the remote
transaction program issued a DEALLOCATE verb
specifying the TYPE(SYNC_LEVEL) or TYPE(FLUSH)
parameter. APPC/PC reports this return code to the local
transaction program on a verb the program issues in
receive state. After APPC/PC issues this return code, it
deallocates the conversation, making the conversation
unavailable to the program.

INCOMPLETE indicates that the verb has not finished
and must be re-issued unchanged before any other verb
with the same TP _ID. Before re-issuing the verb, you

7-11

should try to issue verbs on other transaction programs,
including other unfinished verbs. If you are queueing
incoming ALLOCATEs in the LUs, you should also
periodically issue GET_ALLOCATE. This return code is
returned only if ATTACH_PU
(RETURN_CONTROL = INCOMPLETE) was issued. For
more information on this return code, see "System
Deadlocks" on page 10-2.

INCOMPLETE ALTERED_VERB indicates that a verb
was issued with the same TP _ID as that of an unfinished
verb, or the unfinished verb was altered before it was
re-issued.

Note: You may change the first 12 bytes of an incomplete
verb so you can place list pointers in this area to create a
list of incomplete verbs.

INVALID_VERB indicates that APPCjPC did not
recognize the issued verb. APPCjPC reports this return
code on the verb issued. The state of the conversation
remains unchanged.

OK indicates that the verb issued by the local transaction
program executed successfully. That is, APPCjPC
performed the function defined for the verb, to the point
where APPCjPC returns control to the transaction
program. The state of the basic conversation is as defined
for the verb.

POSTING_NOT_ACTIVE indicates that a transaction
program issued a WAIT verb for which none of the listed
conversations had an active POST_ON_RECEIPT
outstanding. APPCjPC reports this return code on the
WAIT verb.

PROG ERROR NO TRUNC indicates that the remote
transaction program issued a SEND_ERROR specifying
the TYPE(PROG) parameter, the conversation for the
remote transaction program was in send state, and the
SEND_ERROR did not truncate a logical record.
APPCjPC does not truncate a record if the remote
transaction program issues SEND_ERROR before sending
logical records or after sending a complete logical record.

7-12

APPC fPC reports this return code to the local transaction
program on a RECEIVE_AND_ WAIT or
RECEIVE_IMMEDIATE verb which the local transaction
program issues before receiving any logical records or
after receiving one or more complete logical records. The
conversation remains in receive state.

PROG_ERROR_PURGING indicates that the remote
transaction program issued a SEND_ERROR specifying
the TYPE(PROG) parameter, and the conversation for the
remote transaction program was in receive or confirm
state. The--8END_ERROR may cause data sent by the
local transaction program to be purged.

Purging occurs when a transaction program issues
SEND_ERROR in receive state before it receives all the
information sent by its partner transaction program (that
is, the information sent before APPCfPC reports the
error). The purging can occur at the local LU, remote
LU, or both. No purging occurs when a program issues
SEND_ERROR in confirm state or receive state after
receiving all the information sent by its partner
transaction program.

APPCfPC normally reports this return code to the local
transaction program on a verb the local transaction
program issues after sending information to the remote
program. However, APPCfPC can report this return code
on a verb the transaction program issues before sending
any information, depending on the verb and when the
program issues it. APPCfPC leaves the conversation in
receive state.

PROG_ERROR_TRUNC indicates that the remote
transaction program issued a SEND_ERROR specifying
the TYPE(PROG) parameter, the conversation for the
remote transaction program was in send state, and the
SEND_ERROR truncated a logical record. Truncation
occurs when a transaction program begins sending a
logical record and then issues SEND_ERROR before
sending the complete logical record.

APPCfPC reports this return code to the local program on
a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE

7-13

verb the program issues after receiving the truncated
logical record. APPCfPC leaves the conversation in
receive state.

SVC ERROR_NO_TRUNC indicates that the remote
transaction program issued a SEND_ERROR specifying
the TYPE(SVC) parameter, the conversation for the
remote transaction program was in send state, and the
SEND_ERROR did not truncate a logical record. No
truncation occurs when a transaction program issues
SEND_ERROR before sending logical records or after
sending a complete logical record.

APPC fPC reports this return code to the local transaction
program on a RECEIVE_AND_ WAIT or
RECEIVE_IMMEDIATE verb the program issues before
receiving any logical records or after receiving one or
more complete logical records. APPC fPC places the
conversation in receive state.

SVC_ERROR_PURGING indicates that the remote
transaction program issued a SEND_ERROR specifying
the TYPE(SVC) parameter, and that the conversation for
the remote transaction program was in receive or confirm
state. The SEND_ERROR may cause information to be
purged.

Purging occurs when a transaction program issues
SEND_ERROR in receive state before it receives all the
information sent by its partner transaction program (that
is, the information sent before APPCjPC reports the
SVC_ERROR_PURGING return code to the partner
program). The purging can occur at the local LU, remote
LU, or both. No purging occurs when a transaction
program issues SEND_ERROR in confirm or receive
state after receiving all the information sent by its
partner transaction program.

APPC fPC normally reports this return code to the local
transaction program on a verb the program issues after
sending information to the remote transaction program.
However, APPCfPC can report the return code on a verb
that the transaction program issues before it sends any
information, depending on the verb and when the

7-14

transaction program issues it. APPCjPC leaves the
conversation in receive state.

SVC_ERROR_TRUNC indicates that the remote
transaction program issued a SEND_ERROR specifying
the TYPE(SVC) parameter, the conversation for the
remote transaction program was in send state, and the
SEND_ERROR truncated a logical record. Truncation
occurs when a transaction program begins sending a
logical record and then issues SEND_ERROR before
sending the complete logical record.

APPCjPC reports this return code to the local transaction
program on a RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb that the program issues
after receiving the truncated logical record. APPCjPC
leaves the conversation in receive state.

Note:

The PARAMETER_CHECK and STATE_CHECK errors
can also occur on any verb. When APPCjPC detects these
error conditions, it does not try to execute the verb. A
PARAMETER_CHECK error occurs when APPCjPC
detects an invalid parameter value. A STATE_CHECK
error occurs when the conversation is not in the correct
state for the verb the transaction program is issuing. The
verb descriptions list the secondary return codes which
identify the causes of these errors.

The following table correlates the verbs to the return
codes on which they can be returned.

7-15

Verbs

A C C D F G G P P R R R S S T W
L 0 0 E L E E 0 R E E E E E E A
L N N A U T T S E C C Q N N S I
0 F F L S T P E E U D D T T
C I I L H A T A I I E
A R R 0 T Y 0 R V V S D E
T M M C T P N E E E T A R
E E A R E T R

D T I R T A I T A 0
E B E 0 N M 0 R

U C D M
T E R E S
E I E W D E
S P C A I N

T E I A D
I T T
V E
E

Return Codes

ALLOCA TION ERROR X X X X X X X
CON V FAILURE NO RETRY X X X X X X X
CONV-FAILURE-RETRY X X X X X X X
CONVERSA TION TYPE MIXED X X X X X X X X X X X X X X
DATA POSTING BLOCKED X X
DEALLOCATE ABEND PROG X X X X X X
DEALLOCATE-ABENDSVC X X X X X X X
DEALLOCATE-ABEND -TIMER X X X X X X X
DEALLOCA TEYORMAL X X X
INCOMPLETE X X X X X X X X X X
IN COMPLETE _ AL TERED _VERB X X X X X X X X X X
OK X X X X X X X X X X
PARAMETER CHECK X X X X X X X X X X X X X X X X
POSTING NOT ACTIVE X
PROG ERROR-NO TRUNC X X
PROG-ERROR-PURGING X X X X X X X
PROG-ERROR-TRUNC X X
STATE CHECK X X X X X X X X X X X X
SVC ERROR NO TRUNC X' X
SVC-ERROR-PURGING X X X X X X X
SVC-ERROR-TRUNC X X
UNSUCCESSFUL X X X X

Each X in the table means that APPCjPC can return the
indicated return code with the corresponding verb.

The individual verb descriptions list the applicable return
codes. The descriptions for most verbs do not explicitly
list the secondary return code of the
ALLOCATION_ERROR return code because they can
occur at any time and are not necessarily a result of the
verb on which they are returned. The description of the
ALLOCATE verb, however, lists the two secondary codes
that indicate an allocation failure.

7-16

Verb Descriptions

Detailed descriptions of the basic conversation verbs are
as follows:

ALLOCATE
Allocates a session, if one is available, between the local
LU and a remote LU, and establishes a basic or mapped
conversation between the local transaction program and a
remote transaction program on that session. APPC/PC
assigns a CONV _ID to the conversation. Except for the
first conversation of a remotely initiated transaction
program, the transaction program must issue this verb
before it can issue any verbs that refer to the
conversation.

A program can request the allocation of a mapped
conversation and then issue basic conversation verbs on a
mapped conversation. However, the local transaction
program is then responsible for providing its own mapping
layer.

For example, you want to provide your mapping layer in
order to do data mapping, or to permit
MC_POST_ON_RECEIPT and MC_WAIT, neither of
which are implemented by the APPC/PC mapped
conversation API.

ALLOCATE 7-17

ALLOCATE

SUPplied Parameters:

TP_ID (variable)

PARTNER_LU_NAME (variable)

MODE_NAME (variable)

TPN (variable)

CONVERSATION_TYPE (BASIC CONVERSATION)
(MAPPED_CONVERSATION)

RETURN_CONTROL (WHEN SESSION ALLOCATED)
(IMMEDIATE) -
(WHEN_SESSION_FREE)

SYNC_LEVEL (NONE)
(CONFIRM)

SECURITY (NONE)
(SAME)
(PGM (USER 10 (variable)

PASSWORD -(variable))

PIP_DATA_LENGTH (variable)

PIP_DATA (variable)
Returned Parameters:

CONV_ID (variable)

RETURN_CODE (variable)

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

PARTNER_LU_NAME specifies the name (in EBCDIC)
of the remote LU at which the remote transaction
program is located. The local LU uses the
PARTNER_LU_NAME to identify the remote LU when
allocating a session. That is, the PARTNER_LU_NAME
is the remote L U network name.

7-18 ALLOCATE

MODE_NAME specifies the mode name (in EBCDIC)
designating the network properties for the session
APPC/PC is to allocate for the conversation. For
example, one network property is the class of service
APPC/PC provides for the session used. Basic
conversations cannot use the SNASVCMG mode.

TPN specifies the name (in EBCDIC) of the remote
transaction program that manages the other end of the
con versation.

CONVERSATION_TYPE specifies the type of
conversation APPC/PC is to allocate.

• BASIC_CONVERSATION directs APPCjPC to
allocate a basic conversation.

• MAPPED_CONVERSATION directs APPCjPC to
allocate a mapped conversation.

RETURN_CONTROL specifies when the local LU is to
return control to the local transaction program after the
program requests the L U to allocate a session for the
conversation. APPC/PC reports allocation errors caused
by the local LU failing to obtain a session for the
conversation on this verb. APPCjPC also reports
allocation errors caused by the remote LU rejecting the
conversation request on a subsequent verb. The valid
values for the RETURN_CONTROL parameter are:

• WHEN_SESSION_ALLOCATED directs the LU to
allocate a session for the conversation before
returning control to the transaction program. Except
for instances of conversation failure, the LU does not
return control to the transaction program until a
session becomes available.

This option may cause a deadlock situation if there are
not enough sessions for the currently active
conversations of all transaction programs. Specifying
the RETURN_CONTROL(INCOMPLETE) option on
the ATTACH_PU verb can confine the problem to the
currently executing transaction program, but if this
program has itself used up all sessions, the program

ALLOCATE 7-19

can still cause a deadlock situation by using the
WHEN_SESSION_ALLOCATED option. You must
analyze your operating environment to determine if
this option is safe. For more information on this
problem, see "System Deadlocks" on page 10-2.

• IMMEDIATE directs the LU to allocate a session for
the conversation if a contention-winner session is
immediately available. This option returns control to
the transaction program immediately with a return
code indicating whether a session is allocated. In this
case, the local LU does not have to wait for a response
from the partner LU, and the ALLOCATE verb does
not require information to be sent to the partner LU.

A return code of OK indicates that a session is
immediately available and is allocated for the
conversation. A session is immediately available
when it is active, it is not allocated to another
conversation, and the local LU is the contention
winner for the session.

A return code of UNSUCCESSFUL indicates that a
session is not immediately available and that the
LU did not perform the allocation.

• WHEN_SESSION_FREE directs the LU to allocate
a session for the conversation only if a session (either
a contention winner or loser) is available or able to be
activated, and then to return control to the
transaction program with a return code indicating
whether a session is allocated.

A return code of OK indicates that a session is
available and is allocated for the conversation. If
activation of a session is necessary, the LU
performs the session activation before returning
control to the transaction program.

A return code of ALLOCATION_ERROR indicates
that a session is unavailable and that the LU
cannot activate a new session. No session is
allocated.

7-20 ALLOCATE

SYNC_LEVEL specifies the synchronization level that
the local and remote programs can use for this
conversation.

• NONE specifies that the transaction programs do not
perform confirmation processing on this conversation.
The programs do not issue any verbs and do not
recognize returned parameters relating to the
synchronization function.

• CONFIRM specifies that the transaction programs can
perform confirmation processing on this conversation.
The programs can issue verbs and recognize returned
parameters relating to confirmation.

SECURITY specifies access security information that the
remote L U uses to validate access to the remote
transaction program and its resources. The access
security information includes a user ID and a password
provided using the following arguments:

• NONE specifies that this conversation does not use
conversation level security.

• SAME directs the remote LU to use the user ID it has
already verified as part of the allocation request that
initiated execution of the local program. This option
also causes APPC/PC to send this saved user ID to the
remote LU with an 'already verified' indication. If
there was no user ID, APPC/PC sends the allocation
request with no security information and a 'not
already verified' indication.

• PGM directs the remote LU to use the security
information that the local transaction program
provides on this parameter. The local transaction
program uses the following arguments to provide this
security information:

USER_ID specifies the ID (in EBCDIC) of the end
user. The USER_ID value is 8 bytes long. The
remote LU uses this value and the password to
verify the identity of the end user making the
allocation request. In addition, the remote L U may

ALLOCATE 7-21

use the USER_ID for auditing or accounting to
associate conversation accesses with the end user.

PASSWORD specifies the password (in EBCDIC)
of the end user. The PASSWORD value can be up
to 8 bytes long. The remote LU uses this value and
the USER_ID to verify the identity of the end user
making the allocation request.

PIP _DATA_LENGTH specifies the length of the
program initialization parameters for the remote program.
Set this parameter to 0 if there is no PIP data.

PIP_DATA specifies the variable that contains the PIP
data that the local program is sending to the remote
program. The transaction program must format the PIP
data according to the GDS format specified in "FM
Headers" in the SN A Reference Summary.

Returned Parameters:

CONV _ID indicates the ID of the new conversation.

RETURN_CODE indicates the result of verb execution.
The ALLOCATE return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

DATA_AREA_ACROSS_SEGMENT: APPCjPC
does not permit PIP data to cross a segment
boundary.

BAD_TPN_LEN: The value that TPN specifies is
too short (less than 1) or too long (greater than 64).

- BAD_CONV _TYPE: APPCjPC does not recognize
the specified CONVERSATION_TYPE.

BAD_SYNC_LEVEL: APPCjPC does not
recognize the specified SYNC_LEVEL.

7-22 ALLOCATE

BAD_SECURITY_SELEC: APPC/PC does not
recognize the specified SECURITY.

- BAD_RETURN_CONTROL: APPC/PC does not
recognize the specified RETURN_CONTROL.

TOO_BIG_SEC_TOKENS: APPC/PC does not
accept a password or user ID longer than 8 bytes.

PIP _LEN_INCORRECT: APPC/PC does not
accept PIP data longer than 32767 bytes.

NO_USE_OF_SNASVCMG: APPC/PC does not
accept SNASVCMG as the value for the
MODE_NAME parameter.

UNKNOWN_PARTNER_MODE: APPCjPC does
not recognize the specified PARTNER_LU_NAME
or MODE_NAME.

• ALLOCATION_ERROR: The following two secondary
return codes indicate the local transaction programs
failure to obtain a conversation. For detailed
information on these secondary return codes, see
"Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

ALLOCATION_F AlLURE_NO _RETRY:
APPC/PC cannot allocate the conversation because
of a permanent error condition.

ALLOCATION_FAILURE_RETRY: APPCjPC
cannot allocate the conversation because of
temporary error condition.

• UNSUCCESSFUL: The program specified
RETURN_CONTROL(IMMEDIATE) and APPC/PC
could not allocate the conversation because no
contention-winner sessions were available.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

ALLOCATE 7-23

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK.

State Changes:

The conversation enters send state if the
RETURN_CODE indicates OK.

Notes:

1. The local L U does not send PIP data immediately
unless the local transaction program issues a verb
(other than SEND_DATA) that explicitly directs the
LU to flush its send buffer. Otherwise, the LU retains
the PIP parameter of the ALLOCATE verb and
accumulates data from subsequent SEND_DATA
verbs.

The LU sends this data to the partner LU when it
accumulates enough data for transmission. The
amount of information that is sufficient for
transmission depends on the characteristics of the
session allocated for the conversation, and can vary
from session to session.

2. The local transaction program can ensure that
APPC JPC connects the remote transaction program as
soon as possible by issuing the FLUSH verb
immediately after the ALLOCATE verb.

3. Contention for a session can occur when two LUs
connected by a session both try to allocate a
conversation on the session at the same time.
APPCjPC resolves the contention by making one LU
the contention winner of the session and the other LU
the contention loser of the session.

The contention-winner LU allocates a conversation on
a session without asking permission from the
contention-loser LU. Conversely, the contention-loser

7-24 ALLOCATE

LU requests permission from the contention-winner LU
to allocate a conversation on the session. Then the
contention-winner LU either grants or rejects the
request.

4. The remote transaction program starts the
conversation in receive state.

5. For an IBM Token-Ring Network, one link must be
reserved for outgoing calls to enable the ALLOCATE
verb to complete. For more information on reserving
links, see "Entering Information for an IBM
Token-Ring DLC" in the APPCjPC Installation and
Configuration Guide

6. You must specify the PARTNER_LU_NAME,
MODE_NAME, TPN, USER_ID, and PASSWORD in
EBCDIC. You can use the CONVERT verb to convert
these parameter values from ASCII to EBCDIC.

ALLOCATE 7-25

CONFIRM
Sends a confirmation request to a remote transaction
program and waits for a reply. This verb enables the local
and remote programs to synchronize their processing with
one another. CONFIRM also causes the LU to flush its
send buffer. To use this verb, the program must have
allocated the conversation with a synchronization level of
CONFIRM.

SUQQlied Parameters:

CONFIRM TP - ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
~ee "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the transaction program is sending a confirmation
request.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The CONFIRM return codes are as follows:

• OK: The remote transaction program replied
CONFIRMED.

• PARAMETER_CHECK

7-26 CONFIRM

- BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPC/PC does not recognize the
specified CONY _ID.

- CONFIRM_ON_SYNC_NONE: APPC/PC does
not permit the transaction program to use this verb
if it allocated the conversation with
SYNC_LEVEL(NONE).

• STATE_CHECK

- CONFIRM_BAD_STATE: The conversation is not
in send state.

- CONFIRM_NOT_LL_BDY: The conversation is
in send state, and the transaction program started,
but did not finish, sending a logical record.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• PROG_ERROR __ PURGING
• SVC_ERROR_PURGING.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU received a REQUEST_TO_SEND verb. The
two indications APPC/PC can return are YES and NO.

CONFIRM 7-27

• YES indicates that the local LU received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote program issued a
REQUEST_TO_SEND verb to request the local
program to enter receive state and place the remote
program in send state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification from the remote
program.

State Changes:

The state of the conversation does not change when the
RETURN_ CODE indicates OK. For information on state
changes when the RETURN_CODE indicates a code other
than OK, see "Understanding Basic Conversation Return
Codes" on page 7-5.

Notes:

1. The transaction program can use this verb for various
application-level functions. For example:

• The transaction program can issue this verb
immediately following an ALLOCATE to determine
whether the allocation of the conversation is
successful before sending data.

• The transaction program can issue this verb to
request acknowledgment of data it sent to the
remote transaction program. The remote program
can respond by issuing CONFIRMED to indicate
that it received and processed the data without
error, or by issuing SEND_ERROR to indicate that
it found an error.

2. When the REQUEST_TO_SEND_RECEIVED
parameter indicates YES, the remote transaction
program is requesting that the local transaction
program enter receive state and place the remote
transaction program in send state. A transaction
program enters receive state by issuing the
PREPARE_TO_RECEIVE verb or the

7-28 CONFIRM

RECEIVE_AND_ WAIT verb. The partner transaction
program enters send state after it issues the
RECEIVE_AND_ WAIT verb or the
RECEIVE_IMMEDIATE verb, and receives the SEND
indication from its partner transaction program on the
WHAT_RECEIVED parameter.

CONFIRM 7-29

CONFIRMED
Sends a confirmation reply to the remote transaction
program. This verb enables the local and remote
programs to synchronize their processing. The local
program can issue this verb when it receives a
confirmation request. (For more information on
confirmation requests, see the WHAT_RECEIVED
parameter of the RECEIVE_AND_ WAIT or the
RECEIVE_IMMEDIATE verbs).

SUQQlied Parameters:

CONFIRMED TP - ID (var iable)

CONV_ ID (variable)
Returned Parameters:

RETURN - CODE (variable)

i

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the transaction program is sending a confirmation reply.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The CONFIRMED return codes are as follows:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

7-30 CONFIRMED

- BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

CONFIRMED_BAD STATE: The conversation is
not in confirm state.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

The conversation enters receive state if the transaction
program received CONFIRM on the preceding
RECEIVE_AND_ WAIT or RECEIVE_IMMEDIATE verb.

The conversation enters send state if the transaction
program received CONFIRM_SEND on the preceding
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb.

The conversation enters reset state if the transaction
program received CONFIRM_DEALLOCATE on the
preceding RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb.

Note:

The transaction program can issue this verb only as a
reply to a confirmation request.

CONFIRMED 7-31

DEALLOCATE
Deallocates the specified conversation. DEALLOCATE
can perform the function of the FLUSH or the CONFIRM
verb before it deallocates the conversation. APPCjPC
discards the CONY _ID after APPCjPC deallocates the
associated conversation.

SU22lied Parameters:

DEALLOCATE TP - ID (variable)

CONV_ID (variable)

TYPE (SYNC_LEVEL)
(FLUSH)
(ABEND_PROG)
(ABEND_SVC)
(ABEND_TIMER)

LOG_DATA_LENGTH (variable)

LOG_DATA (variable)
Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation that the
transaction program is deallocating.

TYPE specifies the type of deallocation APPCjPC is to
perform.

• SYNC_LEVEL directs APPCjPC to deallocate the
conversation based on one of the following
synchronization levels allocated to this conversation:

7-32 DEALLOCATE

If the SYNC_LEVEL is NONE, APPCjPC performs
the function of the FLUSH verb and then
deallocates the conversation normally.

If the SYNC_LEVEL is CONFIRM, APPCjPC
performs the function of the CONFIRM verb and, if
it is successful (as indicated by a return code of OK
on this DEALLOCATE verb), APPCjPC deallocates
the conversation normally. If it is unsuccessful,
the return code determines the state of the
conversation.

• FLUSH directs APPCjPC to perform the function of
the FLUSH verb, and then to deallocate the
conversation normally .

• ABEND_PROG, ABEND_SVC, or ABEND_TIMER
directs APPCjPC to perform the function of the
FLUSH verb when the conversation is in send state,
and then to deallocate the conversation abnormally.
APPCjPC can perform logical record truncation if the
program deallocates a conversation in send state. If
the program deallocates a conversation in receive
state, APPCjPC can perform data purging.

For types SYNC_LEVEL and FLUSH, APPCjPC informs
the remote transaction program of the deallocation with a
DEALLOCATE_NORMAL return code. For type
ABEND_PROG, ABEND_SVC, or ABEND_TIMER,
APPCjPC informs the remote transaction program of the
deallocation with a DEALLOCATE_ABEND_PROG,
DEALLOCATE_ABEND_SVC, or
DEALLOCATE_ABEND_TIMER return code
(respectively), except in the following case: if the remote
transaction program has issued a SEND_ERROR, it may
receive a DEALLOCATE_NORMAL return code instead
of one of the DEALLOCATE_ABEND return codes.

If APPCjPC performs the FLUSH or the CONFIRM
function as part of the DEALLOCATE verb, APPCjPC
also flushes the send buffer of the local LU.

DEALLOCATE 7-33

LOG_DATA_LENGTH specifies the number of bytes of
log data to be sent. Set this parameter to 0 if there is no
log data. The parameter must be 0 for any TYPE value
except ABEND_PROG, ABEND_SVC or
ABEND_TIMER. Values between 0 and 65535 are valid
for this parameter, but the sum of this value and the offset
of the LOG_DATA address must not exceed 65535. This
limit prevents the log data from crossing a segment
boundary.

LOG_DATA specifies the variable (consisting of a single
LL) containing transaction program error information
that APPC/PC is to send to the partner LU. The partner
LU either discards the data or saves it in a system error
log. (For a description of how APPC/PC passes the
LOG_DATA it receives to the application subsystem, see
"Managing Logged Errors (SYSLOG Exit)" on page 2-10.)
The transaction program must format this error
information as an error log GDS variable (for the correct
format, see "GDS Variables" in the SNA Reference
Summary).

Returned Parameters:

RETURN_ CODE indicates the result of verb execution.
The TYPE parameter determines which of the following
DEALLOCATE return codes APPC/PC can return to the
program.

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

DATA_AREA_ACROSS_SEGMENT: The log
data area crosses a segment boundary.

DEALLOCATE_BAD_TYPE: APPC/PC does not
recognize the specified TYPE.

7-34 DEALLOCATE

- LOG_LL_ WRONG: The program specified an
incorrect length for the log data.

• STATE_CHECK

DEALLOC_FLUSH_BAD_STATE: The program
specified the TYPE(SYNC_LEVEL) parameter for
a conversation specified with
SYNC_LEVEL(NONE) and the conversation is not
in send state. Alternatively, the program may have
specified TYPE(FL USH) when the conversation
was not in send state.

- DEALLOC_CONFIRM_BAD_STATE: The
program specified TYPE(SYNC_LEVEL) for a
conversation specified with
SYNC_LEVEL(CONFIRM) when the conversation
was not in send state.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK.

If the program specifies TYPE(SYNC_LEVEL) and the
synchronization level allocated to this conversation is
CONFIRM, APPCjPC can report one of the following
return codes: (For detailed information on these return
codes, see "Understanding Basic Conversation Return
Codes" on page 7-5 and Appendix C, "Verb Return
Codes.")

• ALLOCATION_ERROR
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC

DEALLOCATE 7-35

• DEALLOCATE_ABEND_TIMER
• PROG_ERROR_PURGING
• SVC_ERROR_PURGING.

State Changes:

The conversation enters reset state when the
RETURN_CODE indicates OK. For information on state
changes when the RETURN_CODE indicates other than
OK, see "Understanding Basic Conversation Return
Codes" on page 7-5.

Notes:

1. A transaction program can use the
TYPE(SYNC_LEVEL) parameter to deallocate the
conversation based on the synchronization level
allocated to the conversation.

• If the synchronization level is NONE, APPC/PC
deallocates the conversation unconditionally.

• If the synchronization level is CONFIRM,
APPC/PC deallocates the conversation if the
remote transaction program issues CONFIRMED to
respond to the confirmation request. The
conversation remains allocated if the remote
transaction program issues SEND_ERROR to
respond to the confirmation request.

2. A transaction program can use the TYPE(FL USH)
parameter to deallocate the conversation
unconditionally, regardless of its synchronization
level.

3. A transaction program can use the
TYPE(ABEND_PROG), TYPE(ABEND_SVC), and
TYPE(ABEND_TIMER) parameters to deallocate the
conversation unconditionally, regardless of its
synchronization level and its current state.
Specifically:

• The TYPE(ABEND_PROG) parameter is for use by
a transaction program when it detects an error

7-36 DEALLOCATE

condition that prevents further useful
communication; that is, communications that would
lead to successful completion of the transaction.
The specific use and meaning of ABEND_PROG
are program-defined.

• The TYPE(ABEND_SVC) parameter is for use by
an LU services component, such as one that
processes mapped conversation verbs, when it
detects an error condition caused by its peer LU
services component in the remote LU. For
example, the L U services component issues the
DEALLOCATE verb with this parameter when it
detects a format error in control information sent
by the peer L U services component.

• The TYPE(ABEND_TIMER) parameter is for use
by an LU services component, such as one that
processes mapped conversation verbs, when it
detects or is informed of a condition that requires
the conversation to be deallocated without further
communication. For example, the LU services
component issues the DEALLOCATE verb with this
parameter if too much time elapses without
receiving any information, or an operator
prematurely ends program execution.

4. DEALLOCATE with TYPE(ABEND_PROG),
TYPE(ABEND_SVC), or TYPE(ABEND_TIMER)
resets or cancels posting. If posting is active and
APPCjPC has posted the conversation, it resets the
posting. If posting is active and APPCjPC has not
posted the conversation, APPCjPC cancels posting so
that no more posting occurs. For more details about
posting, see the description of the
POST_ON_RECEIPT verb.

DEALLOCATE 7-37

FLUSH
FI ushes the send buffer of the local L U by sending all
buffered information to the remote L U. Information
buffered by the LU can come from ALLOCATE,
DEALLOCATE, SEND_DATA,
PREPARE_TO_RECEIVE, and SEND_ERROR. Refer to
the descriptions of these verbs for more details on this
buffered information, including when APPC/PC places
information in the buffer.

Supplied Parameters:

FLUSH TP - ID (variable)

CONV_ ID (variable)
Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation for which
the local LU is to flush its send buffer.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The FLUSH return codes are as follows:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

7-38 FLUSH

- BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

FLUSH NOT_SEND_STATE: The conversation
is not in send state.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

None

Notes:

1. A transaction program can use this verb to optimize
the processing between the local and remote
transaction programs. The L U normally buffers the
data from consecutive SEND_DATA verbs until it has
a sufficient amount for transmission. At that time it
transmits the buffered data. However, the local
transaction program can issue FLUSH in order to
force the LU to send the buffered data, minimizing the
delay in the remote transaction programs processing of
the data.

2. The LU flushes its send buffer only when it has
information to transmit; otherwise, the FLUSH verb
has no effect.

FLUSH 7-39

GET ATTRIBUTES
Returns the attributes of the specified conversation.

GET_ATTRIBUTES

Supplied Parameters:

TP_ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (variable)

LU_ID (variable)

OWN_NET_NAME (variable)

OWN_LU_NAME (variable)

PARTNER_LU_NAME (variable)

PARTNER_FULLY_QUALIFIED_LU_NAME
(variable)

MODE_NAME (variable)

SYNC_LEVEL (variable)

USER_ID (variable)

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation for which
the attributes are desired.

7-40 GET_ATTRIBUTES

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The GET_ATTRIBUTES return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONY _ID.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

LU_ID indicates the identifier of the LU at which the
local transaction program is located. APPC/PC passes
this value to the application subsystem when the
application subsystem defines the L U by issuing the
ATTACH_LU verb. (For more information on the LU_ID
parameter, see "ATTACH_LU" on page 5-7.)

OWN_NET_NAME indicates the name (in EBCDIC) of
the network containing the LU at which the local
transaction program is located.

OWN_LU_NAME indicates the name (in EBCDIC) of
the L U at which the local transaction program is located.

PARTNER_LU_NAME indicates the name (in EBCDIC)
of the LU at which the remote transaction program is
located. The local L U uses this name to identify the
remote LU when allocating a conversation. (For more
information on the PARTNER_LU_NAME, see the
description of the LU_NAME parameter of the
ALLOCATE verb.)

GET_ATTRIBUTES 7-41

PARTNER_FULLY_QUALIFIED_LU_NAME
indicates the fully-qualified name (in EBCDIC) of the LU
at which the remote transaction program is located. If
APPCjPC does not know the partner's fully-qualified LU
name, it returns a null (O-length) value.

MODE_NAME indicates the mode name (in EBCDIC) for
the session on which APPCjPC allocated the
conversation.

SYNC_LEVEL indicates the level of synchronization
processing specified for the conversation. For information
on a conversation's level of synchronization., see the
description of the SYNC_LEVEL parameter of the
ALLOCATE verb. The synchronization levels are:

• NONE
• CONFIRM.

USER_ID indicates the user ID (in EBCDIC) if the
program specified conversation-level security. An
incoming ALLOCATE specifies this USER_ID when it
requests the application subsystem to start a transaction
program. If the program did not specify
conversation-level security, or if the transaction program
was initiated locally, APPCjPC returns a null (O-length)
value for the USER_ID parameter.

StfJ,te Changes:

None

Note:

The following parameters are returned in EBCDIC:

• OWN_NET_ID
• OWN_LU_NAME
• PARTNER_LU_NAME
• PARTNER_LU_FULLY_QUALIFIED_NAME
• MODE_NAME
• USER_ID.

7-42 GET_ATTRIBUTES

You can use the CONVERT verb to convert these
parameter values from ASCII to EBCDIC.

GET_ATTRIBUTES 7-43

GET TYPE
Returns the conversation type (basic or mapped) of the
specified conversation. A transaction program can issue
this verb for both basic and mapped conversations.

Supplied Parameters:

GET_TYPE TP - ID (variable)

CONV_ID (variable)
Returned Parameters:

RETURN_CODE (variable)

TYPE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation for which
the conversation type is desired.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The GET_TYPE return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONY _ID.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• OK.

TYPE indicates the conversation type. The conversation
types are:

• BASIC_CONVERSATION indicates that a basic
conversation was initiated by one of the following
methods:

The conversation was initiated with an
ALLOCATE(CONV _TYPE = BASIC_
CONVERSATION) verb.

An incoming ALLOCATE specified a basic
conversation.

• MAPPED_CONVERSATION indicates that a mapped
conversation was initiated by one of the following
methods:

The conversation was initiated with an
MC_ALLOCATE verb.

The conversation was initiated with an
ALLOCATE(CONV _TYPE = MAPPED_
CONVERSATION) verb.

An incoming ALLOCATE specified a mapped
conversation.

State Changes:

None

Note:

A program that APPCjPC can process at either the basic
conversation API or the mapped conversation API uses
this verb to determine which category of verbs, basic
conversation or mapped conversation, to issue.

7-46 GET_TYPE

POST ON RECEIPT
Causes the LU to post the specified conversation when
information is available for the transaction program to
receive. The information can be data, conversation
status, or a request for confirmation. If the transaction
program must wait for posting to occur, it should issue
the WAIT verb after POST_aN_RECEIPT.
Alternatively, the transaction program can determine
whether posting has occurred by issuing the TEST verb
after POST_aN_RECEIPT.

SUQQlied Parameters:

POST_ON_RECEIPT TP - ID (variable)

CONV_ID (variable)

FILL (BUFFER)
(LL)

MAX_LENGTH (variable)
Returned Parameters:

RETURN_CODE (variable)

i

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation the LUis
to post when it receives information for the local
transaction program.

FILL specifies when the LU should post the conversation.

• BUFFER directs the L U to post the conversation
when the amount of available data is at least equal to
that specified by the MAX_LENGTH parameter, or
when the end of the data is available, whichever

occurs first. The amount of data required for posting
is independent of the logical record format of the data.

• LL directs the LU to post the conversation when it
receives a complete or truncated logical record, or
when it receives a part of a logical record that is at
least equal in length to that specified by the
MAX_LENGTH parameter, whichever occurs first.

The FILL(BUFFER) and FILL(LL) parameters for
POST_aN_RECEIPT apply only at the time the
transaction program issues the verb. They do not affect
later uses of the POST_aN_RECEIPT verb or the other
verbs that use these parameters (RECEIVE_AND_ WAIT
and RECEIVE_IMMEDIATE).

Posting also occurs independent of the FILL specification
when the LU receives information other than data, such
as conversation status (SEND, PROG_ERROR_TRUNC,
or DEALLOCATE_NORMAL indications, for example), or
a confirmation request.

MAX_LENGTH specifies the maximum length of
received data that causes posting to occur. The
transaction program should set this value equal to the
maximum amount of data that it is prepared to receive.
The LU uses the MAX_LENGTH and FILL parameters to
determine when to post the conversation for the receipt of
data. Values between 0 and 65535 bytes are valid for this
parameter.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The POST_aN_RECEIPT return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPCjPC does not recognize the
specified CONV _ID.

INVALID_LENGTH: The program specified an
illegal value for the MAX_LENGTH parameter.

P _0 N_R_BAD _FILL: The program specified an
illegal value for the FILL parameter.

P ON R NOT_RCV_STATE: The conversation
is not in receive state.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

None

Notes:

1. A transaction program can use this verb with the
TEST and WAIT verbs. The program can use
POST_aN_RECEIPT followed by WAIT to
synchronize the receipt of data from multiple
conversations. To prepare to receive data from
multiple conversations, the program issues
POST_aN_RECEIPT for each of the conversations
and then issues WAIT for all of the conversations.
The program then waits for the L U to post one of the
conversations as soon as the LU receives the specified
amount of data from its respective partner LUs.

The transaction program can periodically use
POST_aN_RECEIPT followed by TEST to continue
processing until the test indicates that the local LU
data is available.

POST_ON_RECEIPT 7-49

2. Posting occurs when the LU has the specified amount
of information that the transaction program can
receive. This information can include conversation
status, or a request for confirmation, as well as data
from the partner transaction program. For a
description of the different types of information a
program can receive, see the description of the
RECEIVE_AND_ WAIT verb.

3. Posting is active tor a conversation after the
transaction program issues POST_ON_RECEIPT for
the conversation and before it issues a verb that resets
or cancels posting for that conversation.

A transaction program can reset posting by issuing
any of the following verbs after the L U posts the
conversation:

• DEALLOCATE with TYPE(ABEND_PROG),
TYPE(ABEND_SVC), or TYPE(ABEND_TIMER)

• RECEIVE_AND_WAIT

• RECEIVE_IMMEDIATE

• SEND_ERROR

• TEST

• WAIT.

A transaction program can cancel posting by issuing
any of the following verbs before the L U posts the
conversation:

• DEALLOCATE with TYPE(ABEND_PROG),
TYPE(ABEND_SVC), or TYPE(ABEND_TIMER)

• RECEIVE_IMMEDIATE

• SEND_ERROR.

The transaction program can reactivate posting by
issuing another POST_ON_RECEIPT verb.

7-50 POST_ON_RECEIPT

4. A transaction program can issue any number of
POST_aN_RECEIPTs for a given conversation before
it resets or cancels posting. The last
POST_aN_RECEIPT that a program issues for a
conversation determines when the L U posts the
conversation.

For example, a program can specify posting parameters
by issuing POST_aN_RECEIPT with FILL(BUFFER)
and MAX_LENGTH(1000) in preparation to receive
1000 bytes of data~ If the program then issues the verb
again with MAX_LENGTH(500), the LU posts the
conversation when 500 bytes of data are available.
Alternatively, if the program issues
POST_aN_RECEIPT again with FILL(LL), the LU
posts the conversation in terms of logical records.

5. POST_aN_RECEIPT with MAX_LENGTH(O) or
MAX_LENGTH(l) directs the LU to post a
conversation upon receipt of any number of bytes of
data.

6. The FILL(BUFFER) parameter directs the LU to post
data according to the number of data bytes it receives,
regardless of the logical record format. The LU posts
the conversation when the number of data bytes in its
receive buffer is equal to, or less than, the number
specified with the MAX_LENGTH parameter. The LU
posts the conversation for less than the
MAX_LENGTH amount of data only when it receives
the end of the data. The state of the conversation
changes to send, confirm, or reset when the local LU
receives the end of the data.

For more information on the change in state, see the
description of the RECEIVE_AND_ WAIT verb.

7. APPC/PC stores incoming data in its buffers during a
POST operation. If the POST_aN_RECEIPT verb
specifies a large MAX_LENGTH value, the received
data could possibly exhaust the storage reserved for
these buffers before the program accepted the data
from the LU. If receive pacing is not specified,
APPC/PC does not control the sending of data from

POST_ON_RECEIPT 7-51

the partner transaction program and APPC fPC
abnormally terminates if its workspace buffers become
filled. If you use receive pacing and issue aWAIT or
TEST for more than R(P-l) bytes of data (where P =
pacing window, R = negotiated maximum RU size),
APPC/PC may report a buffer full condition with a
return code of DATA_POSTING_BLOCKED. When
the buffers are full, you can choose to receive the data.
If you want the buffers to accumulate more than this
amount of data before you receive the data,
reconfigure APPC/PC to increase the pacing window
size or the MAX_RU_SIZE. Alternatively, you can
choose not to use pacing.

PREPARE_TO_RECEIVE
Changes a basic conversation from send to receive state in
preparation to receive data. Also performs the function of
the FLUSH or CONFIRM verbs.

SUQQlied Parameters:

PREPARE_TO_RECEIVE TP - ID (variable)

CONV_ID (variable)

TYPE (SYNC_LEVEL)
(FLUSH)

LOCKS (SHORT)
(LONG)

Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is preparing to receive data.

TYPE specifies the type of prepare-to-receive to be
performed for this conversation.

• SYNC_LEVEL directs APPCjPC to perform the
prepare-to-receive based on the synchronization level
allocated to this conversation:

If the SYNC_LEVEL is NONE,
PREPARE_TO_RECEIVE performs the function of
the FLUSH verb and then places the conversation
in receive state.

PREPARE_TO _RECEIVE 7 -53

If the SYNC_LEVEL is CONFIRM,
PREPARE_TO_RECEIVE performs the function of
the CONFIRM verb (which includes the function of
the FLUSH verb) and then, if the verb is
successful, places the conversation in receive state.
If the action of the CONFIRM verb is not
successful (as indicated by a return code other than
OK on the PREPARE_TO_RECEIVE verb), the
return code determines the state of the
conversation.

• FL USH directs APPC fPC to perform the function of
the FLUSH verb and then to place the conversation in
receive state.

LOCKS specifies when APPC/PC is to return control to
the local transaction program after it performs the
CONFIRM function of this verb. APPC/PC ignores this
parameter unless TYPE(SYNC_LEVEL) is also specified
and the synchronization level for this conversation is
CONFIRM.

• SHORT directs APPC/PC to return control as soon as
the LU receives a CONFIRMED reply from the partner
transaction program. The SHORT option returns
control to the transaction program more quickly than
the LONG option but it causes more information to be
sent to the partner.

• LONG directs APPC/PC to return control after the LU
receives information, such as data, from the remote
transaction program following a CONFIRMED reply.
The LONG option causes less information to be sent to
the partner than the SHORT option but it requires
more time.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The TYPE parameter determines which of the following
return codes can be returned to the program:

• PARAMETER_CHECK

7-54 PREPARE_TO_RECEIVE

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV _ID: APPC/PC does not recognize the
specified CONY _ID.

P _TO_R_INVALID_TYPE: APPC/PC does not
recognize the specified TYPE.

- UNFINISHED_LL: The conversation is in send
state, and the program started, but did not finish,
sending a logical record.

P_TO_R_NOT_SEND_STATE: The conversation
is not in send state.

For detailed information on the following four return
codes, see "Understanding Basic Conversation Return
Codes" on page 7-5 and Appendix C, "Verb Return
Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• INCOMPLETE .
• INCOMPLETE_ALTERED_VERB
• OK.

If the program specifies TYPE(SYNC_LEVEL) and the
synchronization level allocated to this conversation is
CONFIRM, APPC/PC can report one of the following
return codes. For detailed information on these return
codes, see "Understanding Basic Conversation Return
Codes" on page 7-5 and Appendix C, "Verb Return
Codes."

• ALLOCATION_ERROR
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC

PREPARE_TO_RECEIVE 7-55

• DEALLOCATE_ABEND_TIMER
• PROG_ERROR_PURGING
• SVC_ERROR_PURGING.

State Changes:

The conversation enters receive state when the
RETURN_ CODE indicates OK. For information on state
changes when the RETURN_CODE indicates other than
OK, see "Understanding Basic Conversation Return
Codes" on page 7-5.

Notes:

1. The conversation for the remote transaction program
enters send state when the remote transaction program
issues a RECEIVE_AND_ WAIT or
RECEIVE_IMMEDIATE verb and receives the SEND
indication from the local transaction program on the
WHAT_RECEIVED parameter. The remote
transaction program can then send data to the local
transaction program.

2. If the local transaction program issues
PREPARE_TO_RECEIVE with a SYNC_LEVEL of
CONFIRM, the remote transaction program enters
send state after issuing CONFIRMED.

7-56 PREPARE_TO_RECEIVE

RECEIVE AND WAIT
Waits for information to arrive on the specified
conversation and then receives the information. If
information is already available, the transaction program
receives it without waiting. The information can be data,
conversation status, or a request for confirmation.
APPCjPC returns control to the transaction program and
indicates the type of information.

The transaction program can issue this verb when the
conversation is in either send or receive state. If the
conversation is in send state, the LU flushes its send
buffer, sending all buffered information and the SEND
indication to the remote transaction program. The SEND
indication places the conversation in receive state. The
LU then waits for information to arrive from the remote
transaction program. The remote transaction program
sends data to the local transaction program after it
receives the SEND indication.

Supplied Parameters:

TP_ID (variable)

CONV_ID (variable)

FILL (BUFFER)
(LL)

DATA_PTR (variable)

MAX_LENGTH (variable)
Returned Parameters:

RETURN_CODE (variable)

DATA_LENGTH (variable)

DATA (see DATA_PTR)

WHAT_RECEIVED (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

RECEIVE_AND_ WAIT 7-57

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP_ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the local transaction program is waitirtg to receive
information.

FILL specifies whether the transaction program should
receive data according to the logical record format of the
data or according to the number of bytes received.

• BUFFER directs the LU to release the data in its
receive buffer when the amount of available data is at
least equal to that specified by the MAX_LENGTH
parameter, or when the end of data is available,
whichever occurs first. The amount of data required
for receipt by the transaction program is independent
of its logical record format. The amount of data
received is equal to, or less than, the number of data
bytes specified on the MAX_LENGTH parameter. The
amount can be less than the specified length only at
the end of the data.

• LL directs the LU to release the data in its receive
buffer when it receives a complete or truncated logical
record, or a part of a logical record that is at least
equal in length to that specified by the
MAX_LENGTH parameter, whichever occurs first.

The FILL(BUFFER) and FILL(LL) parameters for
RECEIVE_AND_WAIT apply only at the time the
transaction program issues the verb. They do not affect
later uses of the RECEIVE_AND _ WAIT verb or the other
verbs that use these parameters (POST_ ON_RECEIPT
and RECEIVE_IMMEDIATE).

7-58 RECEIVE_AND_ WAIT

DATA_PTR specifies the address of the buffer which is
to contain the received data.

MAX_LENGTH specifies the maximum amount of data
(in bytes) that the transaction program is to receive.
Values between 0 and 65535 are valid for this parameter,
but the sum of this value and the offset portion of
DATA_PTR must not exceed 65535. This limit keeps the
incoming data from crossing a segment boundary.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The RECEIVE_AND_WAIT return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize the
specified CONV _ID.

DATA_AREA_ACROSS_SEGMENT: The receive
data area crosses a segment boundary.

RCV_AND_WAIT_BAD_FILL: The transaction
program specified an illegal value for the FILL
parameter.

• STATE_CHECK

RCV_AND_WAIT_BAD STATE: The
conversation is not in send or receive state.

RCV _AND_ WAIT_NOT_LL_BDY: The
conversation is in send state, and the program
started, but did not finish, sending a logical record.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR

RECEIVE_AND_ WAIT 7-59

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• DEALLOCATE_NORMAL
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC
• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

DATA_LENGTH indicates the actual amount of data the
transaction program received up to the maximum
(MAX_LENGTH). If the program receives information
other than data the value of this variable is O.

DATA from the partner transaction program is received
in the buffer specified by the address in the DATA_PTR
parameter. APPCjPC does not place any information in
this buffer when the program receives information other
than data, as indicated by the WHAT_RECEIVED
parameter.

WHAT_RECEIVED indicates what the transaction
program received. The program should examine this
variable only when RETURN_CODE indicates OK.
APPCjPC does not place any information in this variable
when RETURN_CODE indicates other than OK.

• DATA indicates that the transaction program received
a MAX_LENGTH amount of data or the end of data
(independent of its logical record format) after
specifying FILL(BUFFER).

7-60 RECEIVE_AND_WAIT

• DAT A_COMPLETE indicates that the transaction
program received a complete logical record or the last
portion of a record after specifying FILL(LL).

• DATA_INCOMPLETE indicates that the transaction
program received less than a complete logical record
after specifying FILL(LL). The program can use
another RECEIVE_AND_WAIT (or possibly more
than one) to receive the rest of the data for the
incomplete logical record.

• CONFIRM indicates that the remote transaction
program has issued CONFIRM, requesting the local
transaction program to respond by issuing
CONFIRMED. The program can respond, instead, by
issuing SEND_ERROR.

• CONFIRM_DEALLOCATE indicates that the remote
transaction program has issued DEALLOCATE with
TYPE(SYNC_LEVEL), and the synchronization level
is CONFIRM. The local transaction program can
respond by issuing CONFIRMED or SEND_ERROR.

• CONFIRM_SEND indicates that the remote
transaction program has issued
PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL), and the synchronization level
is CONFIRM. The local transaction program can
respond by issuing CONFIRMED, or by issuing
another verb such as SEND_ERROR.

• SEND indicates that the remote transaction program
has entered receive state, placing the local transaction
program in send state. This indication signals that the
local transaction program can issue the SEND _DATA
verb to send data to the remote transaction program.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND
notification. The indication is either YES or NO.

• YES indicates that the local LU has received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program

RECEIVE_AND_ WAIT 7-61

has issued REQUEST_TO_SEND, requesting the local
transaction program to enter receive state and place
the remote transaction program in send state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification from the remote
transaction program.

State Changes:

• A change in state occurs only if RETURN_CODE
indicates OK. For information on state changes when
RETURN_CODE indicates other than OK, see
"Understanding Basic Conversation Return Codes" on
page 7-5.

• The conversation enters receive state when the
transaction program issues RECEIVE_AND_ WAIT in
send state and WHAT_RECEIVED indicates DATA,
DATA_COMPLETE, or DATA_INCOMPLETE.

• The conversation enters send state when
WHAT_RECEIVED indicates SEND.

• The conversation enters confirm state when
WHAT_RECEIVED indicates CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE.

• No state change occurs when transaction program
issues RECEIVE_AND_ WAIT in receive state and
WHAT_RECEIVED indicates DATA,
DATA_COMPLETE, or DATA_INCOMPLETE.

Notes:

1. When the transaction program issues
RECEIVE_AND_WAIT in send state, the LU
implicitly executes a PREPARE_TO_RECEIVE with
TYPE(FLUSH) before it executes the
RECEIVE_AND_ WAIT. See the description of the
PREPARE_TO_RECEIVE verb for details of its
function.

7-62 RECEIVE_AND_ WAIT

2. When the transaction program specifies FILL(LL) to
receive data in terms of logical records, the
WHAT_RECEIVED parameter can return either the
DATA_COMPLETE or the DATA_INCOMPLETE
indication depending on the data received. The two
sequences of events leading to these indications are:

• The transaction program receives a complete
logical record or the last portion of a record. The
length of the record or portion of the record is
equal to or less than the length specified on the
MAX_LENGTH parameter. The
WHAT_RECEIVED parameter indicates
DATA_COMPLETE.

• The transaction program receives an incomplete
logical record. The logical record is incomplete
because:

The logical record contains more data than the
program specified in the MAX_LENGTH
parameter, so the program receives a portion of
the logical record equal to the specified length.

Only a portion of the logical record is available
because the remote transaction program
truncated it. The length of the truncated
portion is less than, or equal to, the length the
program specifies in the MAX~~ENGTH
parameter.

In these two cases, the WHAT_RECEIVED
parameter indicates DATA_INCOMPLETE. The
transaction program issues another
RECEIVE_AND_WAIT (or more than one) to
receive the remainder of the logical record.

For a definition of complete and incomplete logical
records, see the description of the SEND_DATA verb.

3. The transaction program specifies FILL(BUFFER) to
receive data independent of its logical record format.
This specification indicates that the program is to
receive an amount of data less than, or equal to, the

RECEIVE_AND_ WAIT 7-63

length it specifies in the MAX_LENGTH parameter.
The local transaction program can receive less than
the MAX_LENGTH amount of data only at the end of
the data sent from the remote transaction program.
The end of data occurs when the conversation changes
to send, confirm, or reset state after the program
receives the data. When the transaction program
specifies FILL(BUFFER), it must perform its own
tracking of the data's logical record format.

4. A transaction program can use
RECEIVE_AND_ WAIT with MAX_LENGTH(O) to
determine the type of information available without
actually receiving any information. The
RETURN_CODE and WHAT_RECEIVED parameters
indicate the type of information available as usuaL If
data is available and the program specified FILL(LL),
the WHAT_RECEIVED parameter indicates
DATA_INCOMPLETE. If data is available and the
program specified FILL(BUFFER), the
WHAT_RECEIVED parameter indicates DATA. In
either case, however, the program receives no data.

5. The transaction program receives only one kind of
information at a time. For example, it may receive
data or a CONFIRM request, but it cannot receive
both at the same time. Also, if the remote transaction
program truncates a logical record, the local
transaction program receives an indication of the
truncation from the RECEIVE_AND_ WAIT verb it
issues after receiving the truncated record.

The RETURN_CODE and WHAT_RECEIVED
parameters indicate the kind of information the
program receives.

6. RECEIVE_AND_ WAIT performs the same posting as
the POST_ON_RECEIPT verb. If posting is already
active when the local transaction program issues the
RECEIVE_AND_ WAIT verb, the parameter values of
this verb supersede those specified with the previous
POST_ON_RECEIPT verb. APPC/PC resets posting
when it finishes executing RECEIVE_AND_ WAIT.

7-64 RECEIVE_AND_WAIT

For more information on posting, see the description of
the POST_ON_RECEIPT verb.

7. The local transaction program usually receives a
REQUEST_TO_SEND notification when it is in send
state. APPC/PC reports the REQUEST_TO_SEND
notification to the program with a SEND_DATA verb
or with a SEND_ERROR verb it issues in send state.
However, the program can receive the
REQUEST_TO_SEND notification when its
conversation is in receive state under the following
conditions:

• When the local transaction program has just
entered receive state and the remote transaction
program issues REQUEST_TO_SEND before it
enters send state.

• When the remote transaction program has just
entered receive state by issuing the
PREPARE_TO_RECEIVE verb (not
RECEIVE_AND_ WAIT), and then issues
REQUEST_TO_SEND before the local transaction
program responds by entering send state. This
ambiguity can occur because
REQUEST_TO_SEND is an expedited request and
this expedited request can arrive ahead of the
request carrying the SEND indication.

The local transaction program might not be able to
distinguish this condition from the preceding case.
The remote transaction program can avoid this
ambiguity by waiting until it receives information
from the local transaction program before it issues
the REQUEST_TO_SEND verb.

• When the remote transaction program issues the
REQUEST_TO_SEND in send state.

RECEIVE_AND_ WAIT 7-65

RECEIVE IMMEDIATE
Receives information that is available from the specified
conversation, but does not wait for information to arrive.
The information (if any) can be data, conversation status,
or a request for confirmation. APPCjPC returns control
to the transaction program with an indication of whether
information was received and, if so, the type of
information.

RECEIVE_IMMEDIATE

Supplied Parameters:

Supplied Parameters:

TP_ID (variable)

CONV_ID (variable)

FILL (BUFFER)
(LL)

DATA_PTR (variable)

MAX_LENGTH (variable)
Returned Parameters:

RETURN_CODE (variable)

DATA_LENGTH (variable)

DATA (see DATA_PTR)

WHAT_RECEIVED (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is to receive information.

7-66 RECEIVE_IMMEDIATE

FILL specifies whether the program should receive data
according to the logical record format of the data or
according to the number of bytes received.

• BUFFER directs the LU to release the data in its
receive buffer when the amount of available data is at
least equal to that specified by the MAX_LENGTH
parameter, or when the end of data is available,
whichever occurs first. The amount of data required
for receipt by the transaction program is independent
of its logical record format. The amount of data
received is equal to, or less than, the number of data
bytes specified on the MAX_LENGTH parameter. The
amount can be less than the specified length only at
the end of the data.

• LL directs the LU to release the data from its receive
buffer when it receives a complete or truncated logical
record, or part of a logical record that is at least as
long as the logical record specified by the
MAX_LENGTH parameter, whichever occurs first.

The FILL(BUFFER) and FILL(LL) parameters for
RECEIVE_IMMEDIATE apply only at the time the
transaction program issues the verb. They do not affect
later uses of the RECEIVE_IMMEDIATE verb or the
other verbs that use these parameters
(POST_aN_RECEIPT and RECEIVE_AND_ WAIT).

DATA_PTR specifies the address of the buffer that is to
contain the received data.

MAX_LENGTH specifies the maximum amount of data
(in bytes) that the transaction program is to receive.
Values between 0 and 65535 are valid for this parameter,
but the sum of this value and the offset portion of
DATA_PTR must not exceed 65535. This limit prevents
the incoming data from crossing a segment boundary.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The RECEIVE_AND_WAIT return codes are:

RECEIVE_IMMEDIATE 7-67

• PARAMETER_CHECK

- BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

- BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

- DATA AREA ACROSS_SEGMENT: The receive
data area crosses a segment boundary.

- RCV _IMMD_BAD_FILL: The program specified
an illegal value for the FILL parameter.

• STATE_CHECK

- RCV IMMD NOT_RCV _STATE: The
conversation is not in receive state.

• UNSUCCESSFUL: The local LU has nothing for the
program to receive.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• DEALLOCATE_NORMAL
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC

7-68 RECEIVE_IMMEDIATE

• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

DATA_LENGTH indicates the actual amount of data the
local transaction program received up to the maximum
(MAX_LENGTH). If the program receives information
other than data, or no information at all, the value of this
variable is O.

DATA from the partner transaction program is received
in the buffer specified by the address in the DAT A_PTR
parameter. APPC/PC does not place any information in
this buffer when the program receives information other
than data, as indicated by the WHAT_RECEIVED
parameter.

WHAT_RECEIVED indicates what the transaction
program received. The program should examine this
variable only when RETURN_CODE indicates OK.
APPC/PC does not place any information in this variable
when RETURN_CODE indicates other than OK.

• DATA indicates that the transaction program received
a MAX_LENGTH amount of data or the end of data
(independent of its logical record format) after
specifying FILL(BUFFER).

• DATA_ COMPLETE indicates that the transaction
program received a complete logical record or the last
portion of a record after specifying FILL(LL).

• DATA_INCOMPLETE indicates that the transaction
program received less than a complete logical record
after specifying FILL(LL). The program can use one
or more RECEIVE_IMMEDIATE or
RECEIVE_AND_WAIT verbs to receive the rest of
the data for the incomplete logical record.

• CONFIRM indicates that the remote transaction
program has issued CONFIRM, requesting the local
transaction program to respond by issuing .
CONFIRMED. The program can respond, instead, by
issuing SEND_ERROR.

RECEIVE_IMMEDIATE 7-69

• CONFIRM_SEND indicates that the remote
transaction program has issued
PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL), and the synchronization level
is CONFIRM. The local transaction program can
respond by issuing CONFIRMED, or SEND_ERROR.

• CONFIRM_DEALLOCATE indicates that the remote
transaction program has issued DEALLOCATE with
TYPE(SYNC_LEVEL), and the synchronization level
is CONFIRM. The local transaction program can
respond by issuing either CONFIRMED or
SEND_ERROR.

• SEND indicates that the remote transaction program
has entered receive state, placing the local transaction
program in send state. This indication signals that the
local transaction program can issue the SEND_DATA
verb to send data to the remote transaction program.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND
notification. The indication is either YES or NO.

• YES indicates that the local LU received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program
has issued REQUEST_TO_SEND, requesting the local
transaction program to enter receive state and place
the remote transaction program in send state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification from the remote
transaction program.

State Changes:

The following state changes occur when the
RETURN_ CODE indicates OK. For information on state
changes when RETURN_CODE indicates other than OK,
see "Understanding Basic Conversation States" on
page 7-2.

7-70 RECEIVE_IMMEDIATE

• The conversation enters send state when
WHAT_RECEIVED indicates SEND.

• The conversation enters confirm state when
WHAT_RECEIVED indicates CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE.

• No state change occurs when WHAT_RECEIVED
indicates DATA, DATA_COMPLETE, or
DATA_INCOMPLETE.

Notes:

1. When the transaction program specifies FILL(LL) to
receive data in terms of logical records, the
WHAT_RECEIVED parameter can return either the
DATA_COMPLETE or the DATA_INCOMPLETE
indication depending on the data received. The two
sequences of events leading to these indications are:

• The transaction program receives a complete
logical record or the . last portion of a record. The
length of the record or portion of the record is
equal to or less than the length specified on the
MAX_LENGTH parameter. The
WHAT_RECEIVED parameter indicates
DATA_COMPLETE.

• The transaction program receives an incomplete
logical record. The logical record is incomplete
because:

The logical record contains more data than the
program specifies in the MAX_LENGTH
parameter so the program receives a portion of
the logical record equal to the specified length.

Only a portion of the logical record is available
because the remote transaction program
truncated it. The length of the truncated
portion is less than, or equal to, the length the
program specifies in the MAX_LENGTH
parameter.

RECEIVE_IMMEDIATE 7-71

In these two cases, the WHAT_RECEIVED
parameter indicates DATA_INCOMPLETE. The
transaction program issues another
RECEIVE_IMMEDIATE or
RECEIVE_AND_ WAIT (or more than one) to
receive the remainder of the logical record.

For a definition of complete and incomplete logical
records, see the description of the SEND_DATA verb.

2. The transaction program specifies FILL(BUFFER) to
receive data independent of its logical record format.
This specification directs the p.rogram to receive
whatever data is available up to the MAX_LENGTH
amount. When the program specifies FILL(BUFFER),
it must perform its own tracking of the data's logical
record format.

3. A program can use RECEIVE_IMMEDIATE with
MAX_LENGTH(O) to determine the type of
information available without actually receiving any
information. The RETURN_CODE and
WHAT_RECEIVED parameters indicate the type of
information available as usual. If data is available
and the program specified FILL(LL), the
WHAT_RECEIVED parameter indicates
DATA_INCOMPLETE. If data is available and the
program specified FILL(BUFFER), the
WHAT_RECEIVED parameter indicates DATA. In
either case, however, the transaction program receives
no data.

4. The transaction program receives only one kind of
information at a time. For example, it may receive
data or a CONFIRM request, but it cannot receive
both at the same time. Also, if the remote transaction
program truncates a logical record, the local
transaction program receives the indication of the
truncation from the RECEIVE_IMMEDIATE verb it
issues after receiving the truncated record.

The RETURN_CODE and WHAT_RECEIVED
parameters indicate the kind of information the
transaction program receives.

7-72 RECEIVE_IMMEDIATE

5. RECEIVE_IMMEDIATE resets or cancels posting.
RECEIVE_IMMEDIATE resets posting if posting is
active and the LU has posted the conversation. The
verb cancels further posting if posting is active and
the LU has not posted the conversation. For
information about posting, see the description of the
POST_ON_RECEIPT verb.

6. The local transaction program usually receives a
REQUEST_TO_SEND notification when it is in send
state. APPCjPC reports the REQUEST_TO_SEND
notification to the program with a SEND_DATA verb
or with a SEND_ERROR verb it issues in send state.
However, the program can receive the
REQUEST_TO_SEND notification when its
conversation is in receive state under the following
conditions:

• When the local transaction program has just
entered receive state and the remote transaction
program issues REQUEST_TO_SEND before it
enters send state.

• When the remote transaction program has just
entered receive state by issuing the
PREPARE_TO_RECEIVE verb (not
RECEIVE_IMMEDIATE), and then issuing
REQUEST_TO_SEND before the local transaction
program responds by entering send state. This
ambiguity can occur because
REQUEST_TO_SEND is an expedited request and
this expedited request can arrive ahead of the
request carrying the SEND indication.

The local transaction program might not be able to
distinguish this condition from the preceding case.
The remote transaction program can avoid this
ambiguity by waiting until it receives information
from the local transaction program before it issues
the REQUEST_TO_SEND.

• When the remote transaction program issues the
REQUEST_TO_SEND in send state.

RECEIVE_IMMEDIATE 7-73

REQUEST_TO_SEND
Notifies the remote transaction program that the local
transaction program is requesting to enter send state.
APPCjPC places the conversation in send state when the
local transaction program subsequently receives a SEND
indication from the remote transaction program.

SU22lied Parameters:

REQUEST_TO_SEND TP - ID (variable)

CONV_ ID (variable)
Returned Parameters:

RETURN - CODE (variable)

i

Supplied Parameters:

TP _ID specifies the identifier for the instance of the
transaction program issuing this verb. The application
subsystem receives this value from APPCjPC when it
starts the transaction program. For more information on
the TP _ID parameter, see "CREATE_TP" on page 5-66 or
"TP _STARTED" on page 5-58.

CONY _ID specifies the ID of the conversation for which
the local transaction program is requesting to enter send
state.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The REQUEST_TO_SEND return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONY _ID: APPCjPC does not recognize the
specified CONY _ID.

R_T_S_NOT_RCV_STATE: The conversation is
not in receive or confirm state.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• OK.

State Changes:

None

Notes:

1. A transaction program enters receive state by issuing
the PREPARE_TO_RECEIVE verb or the
RECEIVE_AND_ WAIT verb. The remote transaction
program enters send state after the local transaction
program issues RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE, and after it receives the
SEND indication on the WHAT_RECEIVED
parameter.

2. APPC fPC normally returns the
REQUEST_TO_SEND_RECEIVED indication of YES
to the remote transaction program when the
conversation is in send state; that is, on a
SEND_DATA or SEND_ERROR verb issued in send
state. However, APPCfPC can also return the
REQUEST_TO_SEND indication of YES on a
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE
verb. See the description of these verbs for more
information about the REQUEST_TO_SEND
indication.

3. When the remote LU receives the
REQUEST_TO_SEND notification, it retains the

notification until the remote transaction program
issues a verb on which LU can indicate the
notification with any verb that includes the
REQUEST_TO_SEND_RECEIVED parameter.

The remote L U retains only one
REQUEST_TO_SEND notification at a time (for each
conversation). The remote LU discards additional
notifications until the LU can indicate the retained
notification to the remote transaction program.
Therefore, the local transaction program can issue the
REQUEST_TO_SEND verb to the remote transaction
program more times than the remote LU indicates.

SEND DATA
Sends one data record to the remote transaction program.
The data format consists of logical records but the amount
of data that this verb sends is independent of the data
format.

Su~~lied Parameters:

SEND_DATA TP - ID (variable)

CONV_ID (variable)

DATA_LENGTH (variable)

DATA (variable)
Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPC/PC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the local transaction program is sending the data.

DATA_LENGTH specifies the length of the data the
local transaction program is sending. This data length
has no relation to the length of a logical record.
APPC/PC uses this information only to determine the
length of the data at the location specified by the DATA
parameter.

Values between 0 and 65535 are valid for this parameter,
but the sum of this value and the offset portion of the

SEND_DATA 7-77

DATA address must not exceed 65535. This limit prevents
the data from crossing a segment boundary.

If the transaction program specifies a data length value of
0, the local L U does not send any data. In this case,
APPCjPC ignores the DATA parameter.

DAT A specifies the variable containing the data record
that the transaction program is sending. The data may
include multiple records or part of a record. Each logical
record consists of a 2-byte length field (denoted as LL)
followed by a data field; the length of the data field can
range from 0 to 32765 bytes. The 2-byte length field
contains the 15-bit binary length of the record, and a
high-order bit. The LU ignores this high-order bit when
performing basic conversations (the LU's mapped
conversation component uses this bit to support the
mapped conversation verbs).

The length of the record includes the 2-byte length field;
that is, a record is 2 bytes longer than the length of the
data. For this reason, record length values of X'OOOO',
X'OOOI', X'SOOO', and X'SOOI' are invalid.

Returned Parameters:

RETURN_ CODE indicates the result of verb execution.
The SEND_DATA return codes are:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPCjPC does not recognize the
specified CONY _ID.

DATA_AREA_ACROSS_SEGMENT: The data to
be sent crosses a segment boundary.

BAD_LL: The DATA parameter contains an
invalid logical record length (LL) value of X'OOOO',
X'OOOI', X'SOOO', or X'SOOI'.

7-7S SEND_DATA

• STATE_CHECK

- SEND DATA_NOT_SEND_STATE: The
conversation is not in send state.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB

• OK
• PROG_ERROR_PURGING
• SVC_ERROR_PURGING.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND
notification. The indication is either YES or NO.

• YES indicates that the local LU has received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program
has issued REQUEST_TO_SEND, requesting the local
transaction program to enter receive state and place
the remote transaction program in send state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification from the remote
transaction program.

State Changes:

The state of the conversation does not change when
RETURN_ CODE indicates OK. For information on state

SEND_DATA 7-79

changes when RETURN_CODE indicates other than OK,
see "Understanding Basic Conversation Return Codes" on
page 7-5.

Notes:

1. The data sent by the transaction program consists of
logical records. The DATA_LENGTH parameter of
the SEND_DATA verb determines the amount of data
a program sends when it issues this verb. This amount
of data is independent of the length of the logical
records. That is, the data may consist of one or more
complete records, the beginning of a record, the middle
of a record, or the end of a record. The following
combinations of complete and partial records are also
possible:

• One or more complete records, followed by the
beginning of a record

• The end of a record, followed by one or more
complete records

• The end of a record, followed by one or more
complete records, followed by the beginning of a
record

• The end of a record, followed by the beginning of a
record.

2. A complete logical record contains the 2-byte LL field
followed by the number of data bytes the program
specifies in the LL field. (A value of 2 in the LL field
specifies that the complete logical record contains only
the 2-byte length field.)

An incomplete logical record contains any amount of
data less than a complete record. It can consist of
only the first byte of the 2-byte LL field, the LL field
plus all of the data field except the last byte, or any
amount in between. A logical record remains
incomplete until the program sends the last byte of the
data field.

7-80 SEND_DATA

If the value of the LL field is 2 (indicating a data field
of O-length), the logical record is complete after the
transaction program sends the second byte of the LL
field.

3. The transaction program must finish sending a logical
record before it can issue any of the following verbs:

• CONFIRM
• DEALLOCATE with TYPE(FLUSH)
• DEALLOCATE with TYPE(SYNC_LEVEL)
• PREPARE_TO_RECEIVE
• RECEIVE_AND_WAIT.

A transaction program finishes sending a logical
record when it sends a complete record or when it
truncates an incomplete record.

4. A program can truncate an incomplete logical record
by issuing the SEND_ERROR verb. When the LU
receives the SEND_ERROR verb, it flushes its buffer
and sends whatever portion of a logical record it has
accumulated before the program issues the
SEND_ERROR verb. The LU then treats the first 2
bytes of data specified in the next SEND_DATA as the
LL field for the next record.

The program can also truncate an incomplete logical
record by issuing DEALLOCATE with
TYPE(ABEND_PROG), TYPE(ABEND_SVC), or
TYPE(ABEND_TIMER).

5. The LU retains the data from the program until it
accumulates (from one or more SEND_DATA verbs) a
sufficient amount for transmission, or until the
program issues a verb that forces the LU to flush its
send buffer. The amount of data that is sufficient for
transmission depends on the characteristics of the
session allocated for the conversation. This amount
varies from one session to another.

6. When the REQUEST_TO_SEND_RECEIVED
parameter indicates YES, the remote transaction
program is requesting that the local transaction

SEND DATA 7-81

program enter receive state and place the remote
transaction program in send state. A transaction
program enters receive state by issuing the
PREPARE_TO_RECEIVE verb or the
RECEIVE_AND_ WAIT verb. The partner transaction
program enters send state after it issues the
RECEIVE_AND_ WAIT verb or the
RECEIVE_IMMEDIATE verb, and receives the SEND
indication from its partner transaction program on the
WHAT_RECEIVED parameter.

7-82 SEND_DATA

SEND_ERROR
Informs the remote transaction program that the local
transaction program detected an error. If the
conversation is in send state, the LU flushes its send
buffer.

After the successful completion of this verb, the local
transaction program is in send state and the remote
transaction program is in receive state. The transaction
program must take the appropriate actions to correct the
problem.

SU22lied Parameters:

SEND_ERROR TP - ID (var iable)

CONV_ID (variable)

TYPE (PROG)
(SVC)

LOG_DATA_LENGTH (variable)

LOG_DATA (variable)
Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (YES)
(NO)

;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP_ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONV _ID specifies the ID of the conversation on which
the local transaction program is notifying the remote
transaction program of an error.

SEND_ERROR 7-83

TYPE specifies the type of error being reported. A
normal transaction program should use PROG. Programs
that provide services to transaction programs should use
SVC.

LOG_DATA_LENGTH specifies the number of bytes of
log data to be sent. Set this parameter to 0 if there is no
log data. The parameter must be 0 for any TYPE value
except ABEND_PROG, ABEND_SVC or
ABEND_TIMER. Values between 0 and 65535 are valid
for this parameter, but the sum of this value and the offset
of the LOG_DATA address must not exceed 65535. This
limit prevents the log data from crossing a segment
boundary.

LOG_DATA specifies the variable (consisting of a single
LL) containing transaction program error information
that APPC/PC is to send to the partner LU. The partner
LU either discards the data or saves it in a system error
log. (For a description of how APPC/PC passes
LOG_DAT A it receives to the application subsystem, see
"Managing Logged Errors (SYSLOG Exit)" on page 2-10.
The transaction program must format this error
information as an error log GDS variable (for the correct
format, see "GDS Variables" in the SN A Reference
Summary).

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
APPC JPC can· return the following return codes in any
conversation state:

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

BAD_CONV _ID: APPCjPC does not recognize the
specified CONY _ID.

DATA AREA ACROSS_SEGMENT: The log
data area crosses a segment boundary.

7-84 SEND_ERROR

LOG_LL_ WRONG: The LL field of the log data
does not match the specified
LOG_DATA_LENGTH.

- BAD_TYPE: APPCjPC does not recognize the
specified TYPE.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• OK.

The following return codes can occur when the
transaction program issues SEND_ERROR and the
conversation is in send state. For detailed information on
these return codes, see "Understanding Basic
Conversation Return Codes" on page 7-5 and
Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• PROG_ERROR_PURGING
• SVC_ERROR_PURGING.

The following return codes can occur when the
transaction program issues SEND_ERROR and the
conversation is in receive state. For detailed information
on these return codes, see "Understanding Basic
Conversation Return Codes" on page 7-5 and
Appendix C, "Verb Return Codes."

• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY

SEND_ERROR 7-85

• DEALLOCATE_NORMAL.

The following return codes can occur when the
transaction program issues SEND_ERROR and the
conversation is in confirm state. For detailed information
on these return codes, see "Understanding Basic
Conversation Return Codes" on page 7-5 and
Appendix C, "Verb Return Codes."

• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY.

REQUEST_TO_SEND_RECEIVED indicates whether
the local LU has received a REQUEST_TO_SEND
notification. The indication is either YES or NO.

• YES indicates that the local L U has received a
REQUEST_TO_SEND notification from the remote
transaction program. The remote transaction program
has issued REQUEST_TO_SEND, requesting the local
transaction program to enter receive state and place
the remote transaction program in send state.

• NO indicates that the local LU has not received a
REQUEST_TO_SEND notification.

State Changes:

The following state changes can occur if RETURN_CODE
indicates OK. For information on state changes when
RETURN_CODE indicates other than OK, see
"Understanding Basic Conversation States" on page 7-2.

The conversation enters send state when the transaction
program issues the verb in receive or confirm state. No
state change occurs when the program issues
SEND_ERROR in send state.

Notes:

1. The L U retains the error notification and log data in
its send buffer until it accumulates enough
information for transmission, or until the local
transaction program issues a verb that causes the LU

7-86 SEND_ERROR

to flush its send buffer. The amount of information
that is sufficient for transmission depends on the
characteristics of the session allocated for the
conversation. This amount can vary from one session
to another.

2. APPC/PC reports the SEND_ERROR to the remote
transaction program as one of the following return
codes (based on the TYPE parameter).

For detailed information on these return codes, see
"Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes,"

• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC
• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

3. When the local transaction program issues
SEND_ERROR in receive state, APPC/PC purges
incoming information including return code
indications. After purging these return code
indications, APPC/PC reports others in their place.

APPC/PC reports DEALLOCATE_NORMAL for the
following purged return code indications.

• ALLOCATION~ERROR
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER.

APPC/PC reports OK for the following purged return
code indications.

• PROG_ERROR_PURGING
• SVC_ERROR_PURGING.

The other kinds of incoming information that
APPC/PC can purge are:

SEND_ERROR 7-87

• Data that a program sends by issuing the
SEND_DATA verb

• Confirmation requests that a program sends by
issuing the CONFIRM verb.

If the transaction program sends a confirmation
request in conjunction with the DEALLOCATE verb
by specifying the TYPE(SYNC_LEVEL) parameter,
APPCjPC also purges the deallocation request.

APPC JPC does not purge an incoming
REQUEST_TO_SEND indication. When the
transaction program issues a verb that includes the
REQUEST_TO_SEND_RECEIVED parameter, it
receives the REQUEST_TO_SEND indication on this
parameter.

4. The transaction program may use the SEND_ERROR
verb for various application-level functions. For
example, the program can issue this verb to truncate
an incomplete logical record it is sending, to inform
the remote program of an error it detected in data it
received, or to reject a confirmation request.

5. The SEND_ERROR verb resets or cancels posting.
This verb resets posting if posting is active and the LU
has posted the conversation. The SEND_ERROR verb
cancels posting if posting is active and the LU has not
posted the conversation. Further posting will not
occur. (For information on posting, see the description
of the POST_ON_RECEIPT verb.)

6. LOG_DATA_LENGTH specifies the number of bytes
of log data to be sent. Set this parameter to 0 if there
is no log data. The parameter must be 0 for any TYPE
value except ABEND_PROG, ABEND_SVC or
ABEND_TIMER. Values between 0 and 65535 are
valid for this parameter, but the sum of this value and
the offset of the LOG_DATA address must not exceed
65535. This limit prevents the log data from crossing a
segment boundary.

7-88 SEND_ERROR

TEST
Tests the specified conversation for a condition. The
return code indicates the result of the test.

Supplied Parameters:

TEST TP - ID (variable)

CONV_ID (variable)

TEST (POSTED)
(REQUEST_TO_SEND_RECEIVED)

Returned Parameters:

RETURN_CODE (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID specifies the ID of the conversation on which
the local transaction program is performing the test.

TEST specifies the condition to be tested.

• POSTED tests whether the L U has posted the
conversation. Before posting can occur, the program
must have issued the POST_ON_RECEIPT verb. The
return code indicates whether posting has occurred, as
follows:

OK indicates that the LU has posted the
conversation and that posting is now reset. The
transaction program should issue
RECEIVE_AND_ WAIT or
RECEIVE_IMMEDIATE to receive the
information waiting in the receive buffer of the
local LU.

TEST 7-89

UNSUCCESSFUL indicates that the conversation
is in receive state but the LU has not posted the
conversation.

POSTING_NaT_ACTIVE indicates that posting is
not active for the specified conversation.

• REQUEST.,.-TO_SEND_RECEIVED tests whether
the local LU has received a REQUEST_TO_SEND
notification from the remote transaction program. The
return code indicates the results of this test as follows:

OK indicates that the LU has received a
REQUEST_TO_SEND indication. The remote
transaction program has issued
REQUEST_TO_SEND, requesting the local
transaction program to enter receive state and
place the remote transaction program in send state.

UNSUCCESSFUL indicates that the LU has not
received a REQUEST_TO_SEND indication.

Returned Parameters:

RETURN CODE indicates the result of verb execution.
The TEST ~eturn codes other than those described above
are:

• OK

POSTED_DATA: The LU has posted the
conversation and data is available in the LU's
receive buffer.

POSTED_NaT_DATA: The LU has posted the
conversation and information other than data is
available in the LU's receive buffer.

• PARAMETER_CHECK

BAD_TP _ID: APPCjPC does not recognize the
specified TP _ID.

7-90 TEST

BAD_CONV _ID: APPCjPC does not recognize the
specified CONV _ID.

TEST_INVALID_TYPE: APPCjPC does not
recognize the specified TYPE.

NOT_RCV_STATE: The conversation is not in
receive state and the transaction program specified
the POSTED option for the TYPE parameter.

• DATA_POSTING_BLOCKED: APPCjPC does not
have sufficient storage space to permit posting one of
the active conversations. This error does not cause
APPC JPC to reset or cancel posting. The transaction
program can continue issuing verbs, but to provide
sufficient space for further posting it should issue
RECEIVE_IMMEDIATE or RECEIVE_AND_WAIT
to free some space. Alternatively, the program can
issue DEALLOCATE_ABEND to terminate a
conversation.

If you use receive pacing and issue a TEST or WAIT
for more than R(P-1) bytes of data (where P = the
receive pacing window, and R = the negotiated
maximum RU size for the session), APPCjPC may
report a buffer full condition with this return code.
Even this amount of data may be too large if the
partner transaction program issues the FLUSH verb
between SEND_DATA verbs, causing messages of less
than the maximum RU size to flow on the line.
Posting is blocked if the allotted session buffers are
filled for the conversation being posted. If you need to
test for more data than this amount, reconfigure
APPCjPC and increase the pacing window size or do
not use pacing. If you increase the pacing window size
you must also increase the workspace size accordingly.
However, if receive pacing is not used, APPCjPC will
have no control of data sent from the partner
transaction program. If its workspace becomes full
APPCjPC abnormally terminates and rejects
subsequent verbs.

TEST 7-91

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• DEALLOCATE_NORMAL
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC
• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

State Changes:

None

Notes:

1. The transaction program can use this verb in
conjunction with POST_ON_RECEIPT. Using
POST_ON_RECEIPT with this verb enables a
transaction program to continue its processing while
waiting for information to become available. The
program can issue POST_ON_RECEIPT for one or
more conversations and then periodically issue the
TEST verb for each conversation to determine when
information is available in the receive buffer of the
local LU.

2. Posting is active for a conversation if the transaction
program has issued the POST_ON_RECEIPT verb for
that conversation and posting has not been reset or

7-92 TEST

canceled. (For information on posting, see the
description of the POST_ON_RECEIPT verb).

3. The remote transaction program sends a
REQUEST_TO_SEND notification to request the
local transaction program to enter receive state and
place the remote transaction program in send state.
To enter receive state, a program issues either
RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE.
The partner transaction program enters send state
when the local transaction program issues either the
RECEIVE_AND_WAIT verb or the
RECEIVE_IMMEDIATE verb and receives the SEND
indication on the WHAT_RECEIVED parameter.

TEST 7-93

WAIT
Waits for posting to occur on any basic conversation
included in a list of conversations specified with this verb.
Posting a conversation occurs when posting is active for
the conversation and the L U has any information that the
transaction program can receive, such as data,
conversation status, or a request for confirmation.

SUQQlied Parameters:

WAIT TP - ID (variable)

CONV_ ID_LIST (variablel, variable2, ...)
Returned Parameters:

RETURN - CODE (variable)

CONV_POSTED (variable)
;

Supplied Parameters:

TP _ID specifies the identifier for the transaction program
issuing this verb. The application subsystem receives this
value from APPCjPC when it starts the transaction
program. For more information on the TP _ID parameter,
see "CREATE_TP" on page 5-66 or "TP _STARTED" on
page 5-58.

CONY _ID_LIST specifies the ID of each of the
conversations that the LU can post.

• variablel, variable2, ... are the individual
conversation IDs. The transaction program can
specify one or more CONY _IDs in this list.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The WAIT return codes are:

• OK: The LU has posted one of the conversations in
the CONY _ID_LIST.

7-94 WAIT

POSTED_DATA: The LU has posted a
conversation and data is available in the LU's
receive buffer.

POSTED_NaT_DATA: The LU has posted a
conversation and information other than data is
available in the LU's receive buffer.

• PARAMETER_CHECK

BAD_TP _ID: APPC/PC does not recognize the
specified TP _ID.

BAD_CONV_ID: APPC/PC does not recognize one
of the CONV _IP values specified by
CONY _ID_LIST.

• STATE_CHECK

NOT_RCV _STATE: One of the conversations in
the CONV _LIST is not in receive state.

• POSTING_NaT_ACTIVE: Posting is not active for
any of the conversations in the CONV_ID_LIST.

• DATA_POSTING_BLOCKED: One of the active
conversations cannot be posted because the APPC/PC
internal storage is temporarily being used. The local
program cannot send a pacing response. This error
does not cause APPC/PC to reset or cancel posting.
The transaction program can continue issuing verbs,
but to provide sufficient space for further posting, it
should issue RECEIVE_IMMEDIATE or
RECEIVE_AND_WAIT to free some space.
Alternatively, the prqgram can issue
DEALLOCATE(TYPE = ABEND_PROG) to terminate
a conversation.

If you use receive pacing and issue a TEST or WAIT
for more than R(P-l) bytes of data (where P = the
receive pacing window, and R = the negotiated
maximum RU size for the session), APPC/PC may
report a buffer full condition with this return code.
Even this amou,nt of data may be too large if the

WAIT 7-95

partner transaction program issues the FLUSH verb
between SEND_DATA verbs causing messages of less
than the maximum R U size to flow on the line.
Posting is blocked if the allotted session buffers are
filled for the conversation being posted. If you need to
test for more data than this amount, reconfigure
APPC fPC and increase the pacing window size or do
not use pacing. If you increase the pacing window
size, you must also increase the workspace size
accordingly. However, if receive pacing is not used,
APPCfPC will have no control of data sent from the
partner transaction program. If its workspace becomes
full APPCjPC abnormally terminates and rejects
subsequent verbs.

For detailed information on the following return codes,
see "Understanding Basic Conversation Return Codes" on
page 7-5 and Appendix C, "Verb Return Codes."

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• APPC_DISABLED
• CONVERSATION_TYPE_MIXED
• CONV_FAILURE_NO_RETRY
• CONV_FAILURE_RETRY
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• DEALLOCATE_NORMAL
• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC
• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

CONY _POSTED: indicates the CONY _ID of the posted
(or blocked) conversation.

7-96 WAIT

UNSUCCESSFUL indicates that APPC/PC could not
successfully execute the function of the verb, or that the
requested data or notification was not yet available.
APPC/PC reports this return code to the local program on
the verb issued. The state of the conversation remains
unchanged.

State Changes:

None

Notes:

1. A transaction program can use this verb with the
POST_aN_RECEIPT verb to receive information from
multiple conversations in a synchronous fashion. The
program must issue POST_aN_RECEIPT for each of
the conversations and then issue WAIT for all of these
conversations to wait until the LU has information for
the program to receive from one or more of the
conversa tions.

2. Posting may not be active for all of the conversations
included in the CONY _LIST. This WAIT verb waits
for posting to occur only on the conversations for
which posting is active. If posting is not active for
any of the conversations included in the CONY _LIST,
APPC/PC reports the POSTING_NaT_ACTIVE
return code to the program.

3. Posting is active for a conversation if the transaction
program has issued the POST_aN_RECEIPT verb for
that conversation and posting has not been reset or
canceled. (For information on posting, see the
description of the POST_aN_RECEIPT verb).

4. The return code OK indicates that the LU has posted
one of the conversations included in the CONY _LIST
for which posting is active. This return code also
indicates that posting for that conversation is now
reset. APPC/PC returns the CONY _ID of the posted
conversation with the CONY _POSTED parameter.
The transaction program should issue

WAIT 7-97

RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE
to receive the ip.formation from a posted conversation.

7-98 WAIT

Chapter 8. Using the Network
Management Verb

A fundamental capability of SNA is to manage a node or a
network of nodes. SNA also provides facilities that an
operator (programmed or human) can use to manage an
SNA node or network of nodes.

A transaction program uses the TRANSFER_MS_DATA
verb to provide management services information to a
network management services function (that is, an SSCP).

The SSCP can use this information to manage the
network to which this node is connected.

Understanding the Network
Management Verb

The TRANSFER_MS_DATA verb builds and sends an
unsolicited Network Management Vector Transport
(NMVT) RU to a network management services function.
A transaction program can also use the
TRANSFER_MS_DATA verb to log user-defined data.
Transaction programs can provide the following NMVT
vector information to APPC/PC:

• Alerts
• Problem determination statistics (PDSTATS)
• Other network management data.

For information on the specific format of the NMVT RU,
see the SNA Reference Summary.

8-1

Alerts

Alerts notify the control point management services that a
system conversation is unavailable (or will soon become
unavailable) to end users. An alert is the primary method
that a transaction program can use to communicate
problem determination information to the network
operator.

Problem Determination Statistics

PDSTATS provide the SNA control point management
services with error-rate data for communication links.
This information assists the control point management
services in determining and diagnosing problems
associated with communication links.

8-2

Verb Description

TRANSFER MS DATA

Supplied Parameters:

Supplied Parameters:

DATA_TYPE (USER DEFINED)
(NMVT)
(ALERT_SUBVECTORS)
(PDSTATS_SUBVECTORS)

CORRELATOR SUBVECTOR (ADD)
- (NO_ADD)

PRODUCT SET ID SUBVECTOR
(ADD) - -
(NO_ADD)

SYSLOG (LOG)
(NO_LOG)

SSCP_PU_SESSION (SEND)
(NO_SEND)

DATA_LENGTH (variable)

DATA (variable)
Returned Parameters:

RETURN_CODE (variable)

DAT A_TYPE specifies the variable that the transaction
program uses to define the type of data it is providing.
The valid data types are:

• USER_DEFINED specifies that the data is user
defined. APPCjPC logs this data and does not send it
on the SSCP-PU session.

• NMVT specifies that the data contains a complete
NMVT. The data must include the Network Services
(NS) header, the major Network Management Vector,
and the appropriate subvectors.

• ALERT_SUBVECTORS specifies that the data
contains management services information for an alert,
in the format appropriate for an alert. (For specific
details on alerts, see the SN A Reference Summary.)
The data consists of the RU without the NMVT or the
NS header which APPCjPC adds automatically.

• PDSTATS_SUBVECTORS specifies that the data
contains management services information for problem
determination statistics (PD Stats) in the format
appropriate for this subvector. (For details on the
formats for the PD Stats, see the SNA Reference
Summary.) The data consists of the RU without the
NMVT or the NS header which APPCjPC adds
automatically.

CORRELATOR_SUBVECTOR specifies whether
APPCjPC is to add the CORRELATOR subvector (X'42')
to the NMVT. This parameter applies to all of the options
identified by the DATA_TYPE parameter.

The two options for this parameter are:

• ADD directs APPCjPC to add the CORRELATOR
subvector to the NMVT.

• NO_ADD directs APPCjPC not to add the
CORRELATOR subvector to the NMVT.

PRODUCT_SET_ID_SUBVECTOR specifies whether
APPCjPC adds the Product Set ID Subvector (X'IO') to the
data. Network management services use this information
to identify the sender of the alert and the alerted
conversation. This parameter applies to all of the entities
identified by DATA_TYPE, except USER_DEFINED.
APPC JPC ignores this parameter if the program specifies
DATA_TYPE (USER_DEFINED). The two options for
this parameter are:

• ADD directs APPCjPC to add the Product Set ID
Subvector.

• NO_ADD directs APPCjPC not to add the Product Set
ID Subvector.

SYSLOG specifies whether APPCjPC is to transfer the
data to the PU SYSLOG exit. (For more information, see
"ATTACH_PU" on page 5-17.) The two options for this
parameter are:

• LOG directs APPCjPC to transfer the log data to the
PU syslog exit.

• NO_LOG directs APPC/PC not to transfer the log
data to the PU syslog exit.

SSCP _PU_SESSION specifies whether or not APPC/PC
is to send the data on the SSCP-PU session. APPCjPC
logs the data if the program specifies not to send the data.
APPC/PC also logs the data if the program specifies to
send the data, but the SSCP-PU session is not active.
APPC/PC ignores this parameter if the program specifies
DATA_TYPE (USER_DEFINED). Therefore, the program
cannot send user-defined data on the SSCP-PU session.
The two options for this parameter are:

• SEND directs APPC/PC to send the data on the
SSCP-PU session.

• NO_SEND directs APPC/PC not to send the data on
the SSCP-PU session.

DATA_LENGTH specifies the number of data bytes the
program is sending (including the LL field). All data,
including fields that APPCjPC adds, must fit within one
RU (as specified for the adapter on the APPC/PC
configuration menu).

DAT A specifies the variable containing the management
services data or the user-defined data that the program is
sending. When the program specifies the TYPE(NMVT}
this data includes only LL fields; APPCjPC adds the
headers.

Returned Parameters:

RETURN_CODE indicates the result of verb execution.
The TRANSFER_MS_DATA return codes are:

• APPC_ABENDED indicates that APPCjPC has been
abnormally terminated.

• APPC_BUSY indicates that APPCjPC is executing
another verb and cannot execute this verb. This error
can occur if a verb is issued after APPCjPC execution
is interrupted (for example, by a Ctrl-Break or timer
interrupt).

• APPC_DISABLED indicates that APPCjPC is disabled
by the DISABLEjENABLE_APPC verb.

• DATA_EXCEEDS_RU_SIZE indicates that the data
length exceeded the allowable RU size.

• OK indicates that APPCjPC executed the verb
successfully.

• SSCP _PU_SESSION_NOT ACTIVE indicates that
APPCjPC could not send the NMVT because the
SSCP-PU session was not active.

Chapter 9. Other APPC/PC
Services

APPCjPC provides additional services for the convenience
of the programmer. These functions include:

• A passthrough capability which enables an application
subsystem to define its own verbs using the same
interrupt vector as APPCjPC.

• An ASCII/EBCDIC conversion service.

• The ability to trace API invocations and sent and
received messages.

• The ability to disable and re-enable the operation of
APPC/PC.

9-1

Verb Descriptions

The descriptions of the verbs that provide these services
are as follows:

SET_PASSTHROUGH
The SET_PASSTHROUGH verb provides the address of
an exit to which APPC/PC branches when the application
subsystem issues the PASSTHROUGH verb. This e~it
enables a transaction program to issue verbs to the
application subsystem, using the same interrupt X'68'
mechanism used by APPC/PC verbs. The exit procedure
may itself issue further verbs.

Unlike most verbs, the program must define the
information for the SET_PASSTHROUGH verb entirely
within registers; there is no verb structure.

SUQQlied Parameters:

SET_PASSTHROUGH PASSTHROUGH_ADDRESS (variable)

;

Supplied Parameters:

P ASSTHROUGH_ADDRESS specifies the exit address
to which" APPC/PC branches when the program issues the
PASSTHROUGH verb.

9-2 SET_PASSTHROUGH

PASSTHROUGH
Permits an application subsystem to define its own verbs
using the interrupt vector X'68'. APPCjPC ignores these
user-defined verbs as it passes them through to the
application subsystem.

When the program issues the PASSTHROUGH verb,
APPC JPC performs a far branch (not a call) to the
specified exit procedure. APPCjPC leaves hardware
interrupts inhibited and registers untouched. The
application subsystem uses the SET_PASSTHROUGH
verb to specify the address of the exit procedure.

The exit procedure may itself issue APPCjPC verbs.

The PASSTHROUGH verb enables a program to access
application subsystem services without using another
software interrupt. The application subsystem must define
its own verbs for transaction programs to access through
this verb.

P ASSTHROUGH 9-3

CONVERT
CONVERT provides a utility service for ASCII/EBCDIC
conversion. This verb operates on a specified character
string to produce a converted character string.

APPC/PC assumes that all names that a program passes
over the interrupt X'68' interface use EBCDIC coding.
Therefore, programs that use ASCII coding for APPC/PC
names (L U names, TP names, passwords, and so on) must
convert these names to EBCDIC. Conversely, the
application subsystem may need to convert incoming
names from EBCDIC to ASCII.

A program may also need to perform data conversion if it
is communicating with a node that expects EBCDIC data.

Appendix H, "ASCII/EBCDIC Translation Tables"
provides the tables APPC/PC uses to convert data from
EBCDIC to ASCII and ASCII to EBCDIC. You can
specify your own (type G) conversion table on the
APPC/PC configuration menus.

Supplied Parameters:

CONVERT DIRECTION (ASCII_TO_EBCDIC)
(EBCDIC_TO_ASCII)

LENGTH (variable)

SOURCE (variable)

TARGET (variable)

CHARACTER_SET (AE)
(A)
(G)

Returned Parameters:

RETURN_CODE (variable)
;

9-4 CONVERT

Supplied Parameters:

DIRECTION specifies whether conversion is ASCII to
EBCDIC or EBCDIC to ASCII. The two options for this
parameter are:

• ASCII_TO_EBCDIC: Directs APPC/PC to convert
ASCII characters to EBCDIC.

• EBCDIC_TO_ASCII: Directs APPC/PC to convert
EBCDIC characters to ASCII.

LENGTH specifies the number of characters in the string
APPC/PC is to convert.

SOURCE specifies the variable containing the string
APPC/PC is to convert.

Warning: The sum of the SOURCE offset and the
LENGTH must be less than 65535 to prevent the area for
the SOURCE string from overlapping a segment boundary.

TARGET specifies the variable that is to receive the
converted character string.

Warning: The sum of the TARGET offset and the
LENGTH must be less than 65535 to prevent the area for
the TARGET string from overlapping a segment boundary.

If the program does not need to preserve the source string,
it can specify the same variable for the SOURCE and
TARGET parameters.

CHARACTER_SET enables the program to specify the
set of characters permitted in the source string. The
options for this parameter are:

• Type AE: Permits the source string to include
lowercase a-z; uppercase A-Z; numerics 0-9; and special
characters $, #, @, and the period (.). This option does
not place any restrictions on the first character in the
source string; it also permits the string to include
trailing blanks.

CONVERT 9-5

• Type A: Permits the source string to include
uppercase A-Z; numerics 0-9; and special characters $,
#, and @. In the ASCII to EBCDIC direction, the type
A option accepts lowercase characters and converts
them to uppercase EBCDIC characters. This option
requires the first character of the string to be an
uppercase letter or one of the three special characters.
The type A option also permits the source string to
include trailing blanks.

• Type G: This option permits the source string to
include any character. APPC/PC converts the source
string according to the conversion code table that you
specify on the APPC fPC configuration menus. If no
such table exists, the program should not specify type
G conversion.

Returned Parameters:

RETURN_CODE indicates whether the conversion was
successful.

• APPC_ABENDED indicates that APPC/PC has been
abnormally terminated.

• CONVERSION_ERROR indicates that the program
specified the CHARACTER_SET(A) or
CHARACTER_SET(AE) parameter and APPC/PC
encountered one or more characters in the source
string that are not defined in the selected conversion
table. APPC/PC converts undefined characters to
X'OO'. This error cannot occur if the program specifies
the CHARACTER_SET(G) parameter.

• INVALID_DIRECTION indicates that APPC/PC does
not recognize the specified DIRECTION.

• INVALID_FIRST_CHARACTER indicates that the
program specified the CHARACTER_SET(A)
parameter and the first character in the source string
does not satisfy the requirements of this character set
specification.

9-6 CONVERT

• INVALID_TYPE indicates that APPC/PC does not
recognize the specified CHARACTER_SET type.

• OK indicates that the code conversion was successful.

• SEGMENT_OVERLAP indicates that the area
specified for either the source or target string area
overlaps a segment boundary.

• TABLE_ERROR indicates that APPC/PC could not
locate the type G conversion table.

CONVERT 9-7

TRACE
TRACE enables or disables the APPCjPC tracing
function. After a program enables tracing, APPCjPC can
trace verbs through the API, and trace sent and received
messages above the adapter layer. APPCjPC passes trace
parameters in registers instead of using a control block.
The program can direct APPCjPC to display, print, file, or
save trace messages in a storage buffer. APPCjPC uses
ASCII coding for trace messages.

SU221ied Parameters:

TRACE TRACE_MESSAGES (ON (TRUNC(variable)))
(OFF)

TRACE_API (ON)
(OFF)

TRACE_DESTINATION (DISPLAY)
(PRINTER)
(STORAGE

TRACE_STATS(variable))
(FILE

TRACE_STATS(variable))
;

Supplied Parameters:

TRACE_MESSAGES directs APPCjPC to enable or
disable tracing. The two options for this parameter are
ON and OFF. The ON specification includes a TRUNC
specification that determines how many characters of a
message the trace can return.

• ON directs APPCjPC to begin tracing sent and
received messages.

In addition to the messages, a trace indicates when a
link becomes active by returning LINK CONNECTED.
When the link becomes inactive because of a link
error, the trace indicates LINK INOPERATIVE.

TRUNC specifies the maximum number of characters
in the RU portion of the trace that APPCjPC is to
return. APPCjPC truncates any characters exceeding

9-8 TRACE

this maximum number. A value of 0 specifies that
APPCjPC should not truncate the RU portion of the
trace.

• OFF directs APPCjPC to stop tracing messages.

TRACE_API enables and disables the tracing of verbs
passing through the API. The two options for this
parameter are ON and OFF.

• ON: Directs APPCjPC to trace verbs passed through
the API.

This option returns the first 64 bytes of each traced
verb in hexadecimal format.

• OFF: Stops the tracing of verbs passed through the
API.

TRACE_DESTINATION determines whether APPCjPC
directs the tracing output to the IBM PC screen, printer,
storage, or a file. A program can specify more than one
destination for the tracing output. The options for this
parameter are:

• DISPLAY: Directs APPCjPC to display the trace
output on the IBM PC screen. The operator can stop
and restart the display of the trace output by pressing
the Scroll Lock key.

• PRINTER: Directs APPCjPC to send the trace output
to the IBM PC printer (LPTl:). The operator can stop
and restart the display of the trace output by pressing
the Scroll Lock key.

• STORAGE: Directs APPCjPC to place the trace
output in internal storage. This option requires the
application subsystem to provide a routine for printing
the trace output stored in this buffer. This option
stores 80 character records, the last two characters of
which are carriage return and line feed (X'ODOA').

When the program directs APPC JPC to place the trace
output in an internal storage buffer, it must also

TRACE 9-9

include certain information in the TRACE_STATS
parameter area of the TRACE verb. The
TRACE_STATS parameter area must provide the
address of the buffer that is to receive the trace
output, the maximum number of records to place in the
buffer, and an initialized space for trace statistics. For
a description of the contents of the TRACE_STATS
buffer, see the description of the TRACE verb in
Appendix A, "Verb Operation Codes and Formats."

Mter the trace output fills the buffer with the specified
maximum number of records, it wraps around to begin
placing new records at the front of the buffer again.

• FILE: Directs APPC/PC to place the trace output in a
file named OUTPUT.PC (in the same directory as
APPC/PC).

When the program directs APPC/PC to place the trace
output in a file, it must also include certain
information with the TRACE_ST ATS parameter area
of the TRACE verb. For the FILE option, the
TRACE_STATS parameter area must provide the
maximum number of records to place in the file, and
an initialized space for trace statistics. Mter the trace
output fills the file with the specified maximum
number of records, it wraps around to begin placing
new records at the front of the file again.

The following table illustrates the tracing formats for API
Entry Format, API Return Format, Sent Message Format,
and Received Message Format:

Tracing Message Formats

API Entry Format
API req 5DOO:20c6

2E007E3D 2E007E3D C620005D 01000000
00000000 00000000 00000000 7E3DOAOO
00000000 00000001 00000000 00000000
0000004C 55534944 4532204D 4F444531
20202008 54505349 44453241 20202020
20202020 20202020 20202020 20202020

9-10 TRACE

< •• == •• ==F .) •••• >
< •••••••••••• == •• >
< ••••.••••••••••• >
< ••• LUSIDE2 MODEl>

.TPSIDE2A >

<=S== #:6000 TH:2D000101000E RH:6B8000
RU: 31001307 BOBODOB1 01008585 80010602 00000000 00000000 20000008 4C555349

44453120 28000902 4D4F4445 31202020 09030000 OOOOOFOO 00001204 41505043
4E455420 4B4C5553 49444531 2000084C 55534944 453220

==R=> #:4FOO TH:2DOOOI01000E RH:EB8000
RU: 31001307 BOBODOB1 01018585 81010602 00000000 00000000 20000000 28000902

4D4F4445 31202020 09030000 OOOOOFOO 00001205 41505043 4E455420 4B4C5553
49444532 2000

API ret
67007E3D
00000000
00000000
0000004C
20202008
20202020

5DOO:20C6
67007E3D C620005D
00000000 00000000
CB3DOOOl 00000000
55534944 4532204D
54505349 44453241
20202020 20202020

01000000
7E3DOAOO
00000000
4F444531
20202020
20202020

<g.==g.==F .) >
< •••••••••••• == .. >
< ••••• = •••••••••• >
< ... LUSIDE2 MODEl>

• TPSIDE2A

API req
API ret
<=8==
==R=>

indicates an issued verb at the given address
indicates a completed verb at the given address
indicates a message being sent
indicates a message being received

TH
RH

indicates the size in hexidecimal of the RU
indicates the Transmission Header
indicates the Request or Response Header

The second line and succeeding lines describe
groups of 8 hexidecimal digits (4 bytes).

indicates APPC/PC has performed truncation
according to the TRUNC specification.

the RU in

TRACE 9-11

DISABLE/ENABLE_APPC
This verb provides a program with the ability to enable
and disable the operation of APPC/PC. A program can
use this verb to avoid recursion problems in exit routines
after it intercepts a call to DOS or BIOS (if those exit
routines include calls to DOS or BIOS).

APPC/PC does not end completely when the application
subsystem specifies the DISABLE option. Instead, the
adapters continue operating to queue incoming messages
for APPC/PC. APPC/PC processes these queued messages
after the program specifies the ENABLE option.

In addition to the DISABLE/ENABLE_APPC verb,
APPC/PC can execute the CONVERT, TRACE,
SET_PASSTHROUGH, and PASSTHROUGH verbs when
it is operating in the disabled state. In normal operation,
the program should not issue any other APPC fPC verbs.
If the program issues one of the other APPC/PC verbs, it
receives an APPC_DISABLED return code.

SUQQlied Parameters:

DISABLEjENABLE_APPC DISABLE_OR_ENABLE (DISABLE)
(ENABLE)

;

Supplied Parameters:

DISABLE_OR_ENABLE specifies whether to disable or
enable APPC/PC operation. The two options for this
parameter are:

• DISABLE: Suspends APPC/PC operation.
• ENABLE: Resumes APPC/PC operation.

9-12 DISABLE/ENABLE_APPC

Chapter 10. Resolving Error
Conditions

This chapter describes different kinds of error conditions
and indicates possible solutions.

The types of error conditions that can occur during
APPC/PC operation are:

• Errors indicated with a return code
• Errors indicated in a log
• System deadlocks.

Note that APPC/PC can detect return code and log errors
but cannot detect system deadlocks.

Return Code Error Indications

When an application subsystem or transaction program
issues a verb, APPC/PC uses the RETURN_CODE
parameter to indicate the success or failure of the request.
The program requesting APPC/PC services by issuing the
verb must check the value of the return code to determine
its next action. Appendix C, "Verb Return Codes"
contains the complete list of return codes that APPC/PC
can report after it executes (or attempts to execute) each
verb. This appendix also suggests the appropriate actions
to correct the problem causing the error.

10-1

Logged Errors

During processing, APPCjPC can detect error conditions
that are not directly associated with verb requests. In
addition to APPCjPC, a transaction program at either end
of a conversation can also detect these errors.

When APPCjPC detects this type of error, it builds a
SYSLOG control block, and invokes the error exit routine
that the application subsystem specifies. Use of a log exit
routine is recommended because APPCjPC itself does not
display error messages.

System Deadlocks

Using Multiple Active Transaction
Programs
System deadlocks can occur as a result of one verb
blocking the completion of another verb, or due to other
unforeseen conditions. This section describes methods of
diagnosing and correcting system deadlocks.

Under a single-tasking operating system such as PC DOS
on the IBM PC, certain deadlock conditions are possible
which can be prevented by careful design of the
application subsystem.

These deadlocks involve "blocking" verbs that do not
return control to the transaction program until some form
of data or indicator has been received from the remote
partner. The remote partner must issue a verb on the
conversation before control at the local node can be
returned. Deadlock occurs when the partner cannot issue
that verb because it too is issuing a blocking verb on a
different simultaneous conversation.

10-2

The potential blocking verbs include most conversation
verbs. (Any verb that lists INCOMPLETE as a possible
return code is a potential blocking verb.)

Such deadlocks are possible only when all nodes involved
in the simultaneous conversations operate under a
single-tasking system (which is the case if all nodes are
IBM PCs), and only if the graph of such nodes forms a
loop. For example, using parallel sessions between two
IBM PCs forms a loop between them.

Such deadlocks are not possible if you support only one
active transaction program (one TP _ID) at every
single-tasking node. In this case no such loop is possibie
because you can allocate a conversation only to a new
remote transaction program, not to an existing one.

An example of a situation where two parallel
conversations can experience a blocking deadlock
condition is when each of the partner programs waits for
data after issuing a RECEIVE_AND_ WAIT verb. While
these transaction programs wait, no other transaction
program at either node can issue a SEND_DATA to
satisfy its partner. The figure below illustrates this
deadlock situation.

IBM PC I

I Transaction IA

RECEIVE AND WAIT
(suspended)

Transaction IB

SEND DATA
(cannot-execute,

APPC/PC busy)

IBM PC 2

Transaction 2B

RECEIVE AND WAIT
(suspendecU

Transaction 2A I
SEND DATA

(cannot-execute,
APPC/PC busy)

If Transaction 1A (in IBM PC 1) is conversing with
Transaction 2A (in IBM PC 2), and issues a

10-3

RECEIVE_AND_ WAIT on that conversation, IBM PC 1
waits until data is received to satisfy the
RECEIVE_AND_ WAIT. If Transaction 2B (in IBM PC 2)
is conversing with Transaction 1B (in IBM PC 1)
concurrently, and issues a RECEIVE_AND_ WAIT on
that conversation, then IBM PC 2 also waits to receive
data.

Deadlocks are also possible between more than two nodes
even when only one session and one conversation exists
between any two nodes. For example, in the figure below,
if TP 1A in IBM PC 1 ALLOCATEs conversation 1 to TP
2A in IBM PC 2, TP 2A ALLOCATEs conversation 2 to
TP 3A in IBM PC 3, and TP 3A in turn ALLOCATEs
conversation 3 to TP 1B in IBM PC 1, then TP 1A may
issue a blocking verb on conversation 1, TP 2A may issue
one on conversation 2, and TP 3A may issue one on
conversation 3, each waiting for a verb at the partner
which will not be issued. The figure below illustrates this
deadlock situation.

IBM PC 1

conversation 1

IBM PC 3

Use of pacing can also cause a deadlock. A local
transaction program can be prevented from sending data
because its remote partner is blocked from issuing a
receive verb which would clear the session buffers of the
remote partner. If the session buffers are not cleared, the
partner cannot transmit the pacing response required
before the local send can occur.

If the system appears to be in a deadlock state and if the
configuration of APPC/PC included the DOS Ctrl-Break

10-4

option, the operator may be able to return to the DOS
prompt by pressing Ctrl-Break. For a description of
Ctrl-Break operation, see "Canceling a Transaction" on
page 2-13 in Chapter 2, "Developing an Application
Subsystem. "

Alternately, you can bring down the connection by
turning off the modem, if there is one. Any existing
conversations on this line will fail.

Designing to Avoid System
Deadlocks

There are two methods of avoiding deadlocks caused by
issuing blocking verbs:

Method 1 (Recommended): Using the INCOMPLETE
option

Specify RETURN_CONTROL = INCOMPLETE in the
ATTACH_PU verb, and expect return codes of
INCOMPLETE on conversation verbs, as well as on
TP _ VALID and TP _ENDED. APPCjPC will return
control to the application, rather than suspend
operation even if a verb is unfinished, so that verbs
that were blocked can now be issued.

You must issue verbs on all other transaction
programs, then re-issue the incomplete verb (or verbs,
if several verbs from different transaction programs
are incomplete) without alteration. You can, however,
use the first 12 bytes to keep the incomplete verbs in a
list. You may have to issue a verb several times before
it completes.

If you are using synchronous management of incoming
ALLOCATEs (queueing them in the LU), and have not
stopped queueing by issuing a CHANGE_LU verb, you
must also periodically issue GET_ALLOCATE,
because a queued ALLOCATE can also cause blocking
of the partner.

10-5

In order to manage multiple simultaneous transaction
programs, the application subsystem can implement
some form of scheduier to issue verbs from the various
transaction programs. With Method 1, the scheduler
must get INCOMPLETE return codes, save the verb
(or a pointer to it) and periodically re-issue the verb
until it completes. You should, therefore, use a
different verb storage buffer, as well as a different data
buffer, for each transaction program.

TP _ V ALID can return INCOMPLETE only if the
incoming ALLOCATE was rejected with a non-O sense
code (in which case the equivalent of SEND_ERROR
is performed). You do not need to test for
INCOMPLETE if you accept the incoming
ALLOCATE.

TP _ENDED can return INCOMPLETE only if it was
issued before ending any existing conversations (in
which case the equivalent of DEALLOCATE TYPE
ABENDis performed). You do not need to test for
INCOMPLETE if all conversations have been
terminated before you issue TP _ENDED.

Method 2: Restrictions on your protocol design

Impose the following restrictions on your transaction
programs and application subsystem:

1. Do not use pacing.

2. Send small amounts of data (using one or more
consecutive SEND_DATA verbs) at a time. Wait
for data from the partner that indicates it has
received what you have sent before sending more.
The amount that you can send at one time depends
on the storage that is made available to your node
and the partner. (For more information, see
"APPC/PC Workspace Requirements" in the
APPC/PC Installation and Configuration Guide.)

3. Do not use conversations with a synchronization
level of CONFIRM.

10-6

4. Do not use the following blocking verbs:

• ALLOCATE or MC_ALLOCATE (TYPE =
WHEN_SESSION_ALLOCATED)

• SEND_ERRORorMC_SEND_ERROR

• RECEIVE_AND_WAIT or
MC_RECEIVE_AND_ WAIT

• DEALLOCATE(TYPE = ABEND_PROG,
ABEND_SVC, ABEND_TIMER)

• MC_DEALLOCATE(TYPE = ABEND)

• WAIT.

5. If you use synchronous management of incoming
ALLOCATEs, stop queueing (by issuing the
CHANGE_LU verb) when any transaction program
is initiated. You can start multiple transaction
programs by using the asynchronous exit.

6. Do not issue TP _ V ALID with a non-O sense code in
the CREATE_ TP structure. Use the asynchronous
exit if you need to test, and possibly reject,
incoming ALLOCATEs.

7. Issue TP _ENDED only after all conversations of
the transaction program have been deallocated.

Investigating a Deadlock Situation
The TRACE verb can provide valuable information for
debugging many problems, including deadlock situations.
For a description of the TRACE verb, see "TRACE" on
page 9-8 in Chapter 9, "Other APPCjPC Services." You
can determine the point at which a deadlock occurs by
enabling tracing. Tracing indicates both the start and
finish of verb execution. This information can indicate
which verb was the last one to start before the deadlock
occurred. You can also use tracing to check the contents
of the parameter lists for each verb as it executes.

10-7

10-8

Appendix A. Verb Operation
Codes and Formats

This appendix defines the operation codes for APPC/PC
verbs and the internal formats for the parameter lists
passed between a transaction program and APPC/PC.

APPC/PC to Transaction Program
Verbs

APPC/PC performs a FAR CALL to execute verbs that
send information from APPC/PC to the application
subsystem (SYSLOG, CREATE_TP,
ACCESS_LU_LU_PW). The SS : SP register pair points
to an 8-byte field on the stack. The 8 bytes consist of:

• A return address (4 bytes in IBM PC byte order)
• A verb pointer (4 bytes in IBM PC byte order).

In many programming languages, this procedure is the
standard calling convention used when a program passes a
single parameter (such as a verb pointer) to a subroutine.
When the routine begins, at least 64 bytes of stack space
are available on the stack for use by the routine.

A-I

When the routine is complete and ready to return control
to APPC/PC, it must remove the verb pointer parameter
from the stack. In IBM PC Macro Assembler language,
the return statement would appear as follows:

create_tp proc far

ret 4 ;Return to APPC after
;removing verb pointer

create_ tp endp

Transaction Program to APPC fPC
Verbs

All verb requests come to APPC/PC through interrupt
vector X'68'. The transaction program can verify that
APPC fPC is loaded by checking for the ASCII character
string 'APPC/PC' starting 9 bytes prior to the address
pointed to by interrupt vector X'68' (storage location 416).

Before issuing the interrupt, the transaction program sets
the AH register as indicated by the record format for each
verb and points the DS:DX register pair to the location of
the verb parameter list.

If APPC/PC receives an invalid AH value from the
transaction program, it rejects the verb and places a value
of X'FF' in the AL register. APPC/PC indicates a valid
AH value by setting AL to O. The AH setting for each
verb appears immediately after the header line for the
verb record. Following the AH setting for each verb is
the parameter list. The first parameter you supply on this
list is the operation code that identifies the verb.

A-2

Verb Operation Codes

The following is a list of the verb operation codes and
their corresponding hexadecimal values.

Op Code AH Verb Name
(hex) Value

0100 2 ALLOCATE or MC_ALLOCATE
0200 2 (reserved)
0300 2 CONFIRM or MC_CONFIRM
0400 2 CONFIRMED or MC_CONFIRMED
0500 2 DEALLOCATE or MC_DEALLOCATE
0600 2 FLUSH or MC_FLUSH
0700 2 GET_ATTRIBUTES or

MC_GET_ATTRIBUTES
0800 2 GET_TYPE
0900 2 POST_ ON_RECEIPT
OAOO 2 PREPARE_TO_RECEIVE or

MC_PREPARE_TO_RECEIVE
OBOO 2 RECEIVE_AND_ WAIT or

MC_RECEIVE_AND_ WAIT
OCOO 2 RECEIVE_IMMEDIATE or

MC_RECEIVE_IMMEDIATE
ODOO (reserved)
OEOO 2 REQUEST_TO_SEND or

MC_REQUEST_TO_SEND
OFOO 2 SEND_DATA or MC_SEND_DATA
1000 2 SEND_ERROR or

MC_SEND_ERROR
1100 - (reserved)
1200 2 TEST or MC_TEST
1300 2 WAIT
1400 - (reserved)
1500 6 CNOS
1600 - (reserved)
1700 - (reserved)
1800 - (reserved)
1900 - ACCESS_LU_LU PW
1AOO 251 CONVERT
1BOO 1 DISPLAY

A-3

Op Code AH Verb Name
(hex) Value

1COO
1DOO
1EOO
1FOO
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
2AOO
2BOO

5 TRANSFER_MS DATA
- (reserved)
- (reserved)
- (reserved)
1 ATTACH_PU
1 ATTACH_LU
1 DETACH_LU
- CREATE_TP
3 TP_STARTED
4 TP_ENDED
- SYSLOG
1 DETACH_PU
3 GET_ALLOCATE
4 TP_VALID
3 CHANGE_LU
1 ACTIV ATE_DLC

Verb Record Formats

The rest of this appendix contains the record formats for
the APPCjPC verbs. The records appear in alphabetic
order according to the verb names.

Each record begins with a header line that specifies the
AH value. Following the header line, each record
includes four columns:

• Disp indicates the displacement of the parameter from
the beginning of the record.

• Lng indicates the length of the parameter field in
bytes.

• Value indicates any constant values defined for the
parameter.

• Field Name indicates the name of the parameter field
and the names of constant parameter values (indented
below the name of the constant parameter).

A-4

The program using APPC/PC must set all "Reserved"
parameters to O.

Most data fields of the verb are in normal order with the
high order byte in the lower address. However, for values
designated by an asterisk (*) in the "Length" column, the
value is in the reversed-order style of the IBM PC. That
is, for 2-byte values (such as a length field), the IBM PC
stores the most significant byte in the right-most byte of
the field. The decimal value appears within parentheses
for such a field if it is a non-O constant.

Similarly, for 4-byte values (such as an address field), the
most significant byte is stored in byte 3 (right-most) of the
field, the next-most significant byte is stored in byte 2 of
the field, the next in byte 1 of the field, and the
least-significant byte is stored in byte 0 of the field.

The IBM PC uses the following ordering conventions for
bit fields: bit 0 is the left-most bit of a field; bit 7 is the
right-most bit of a byte; and bit 15 is the right-most bit of
a half-word.

All data areas passed to APPC/PC, either for sending or
receiving data, must fit within a single segment. For
example, when issuing the RECEIVE_AND_ WAIT verb, a
program provides a 32-bit pointer and a 16-bit maximum
length value specifying the area into which APPC/PC
places received data. All bytes in the range delimited by
these values must have the same segment value.

For example, a transaction program violates this
restriction if the data area pointer was segment X'1234',
the offset was X'FFFO' and the length was X'0030'. In this
case, the sum of the offset and length exceeds X'FFFF',
the maximum offset value within a segment. APPC/PC
provides individual return codes to indicate violations of
this restriction.

A double asterisk (**) in the "Value" column indicates
that APPC/PC uses the field internally.

APPC/PC operation requires at least 256 bytes of stack
space. At least 320 bytes must be available if the program

A-5

specifies tracing. This allocation provides 64 bytes of
stack space for interrupt processing while using
APPC/PC.

Note:

All numbers in the following formats are decimal unless
preceded by an X (meaning hexadecimal) or a B (meaning
bit). In this appendix, the' abbreviation CS:IP refers to the
Code Segment: Instruction Pointer (offset) values.

ACCESS_LU_LU_PW

record format

Disp Lng Value

o
12
14
22
30
38
55

56

12
2*
8
8
8

17
1

8

**
X'l900' (25)

X'OO'
X'Ol'

Field Name

Required APPC/PC area
Verb operation code
LU_ID
LU_NAME
PARTNER LU NAME
PARTNER=FULLY_QUALITIED_LU_NAME
PASSWORD_AVAILABLE

NO
YES

PASSWORD

ACTIVATE DLC

record format (AH = 1)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2BOO' (43) Verb operation code
14 6 6X'00' Reserved
20 4 RETURN_COPE

X'OOOOOOOO' OK
X'OOOOOOO8' NO PU ATTACHED
X'0Q000283' DLC_FAILURE
X'OOOOO284' UNRECOGNIZED_DLC
X'OOOOO286' DUPLICATE_PLC

A-6

Disp Lng Value

X'FOO10000'
X'FOO20000'
X'FOO30000'

24 8

32 1

Field Name

APPC DISABLED
APPC=BUSY
APPC_ABENDED
DLC_NAME

ITRN
SDLC

ADAPTER_NUMBER

ALLOCATE and MC' ALLOCATE

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'Ol00' (1) Verb operation code
14 1 Verb extension code

X'OO' ALLOCATE
X'Ol' MC_ALLOCATE

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER CHECK
X'OOO3' ALLOCATION-=-ERROR
X'OO14' UNSUCCESSFUL
X'FOO1' APPC_DISABLED
X'FOO2' APPC_BUSY
X'FOO3' APPC_ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'OOOOOOO4' ALLOCATION FAILURE NO RETRY
X'OOOOOOO5' ALLOCATION-FAILURE-RETRY
X'OOOOOOO6' DATA_AREA-=-ACROSS_SEGMENT
X'OOOOOOlO' BAD_TPN_LEN
X'OOOOOOll' BAD CONY TYPE
X'OOOOOO12' BAD-SYNC-LEVEL
X'OOOOOO13' BAD-SECURITY SELEC
X'OOOOOO14' BAD=RETURN_CONTROL
X'OOOOOO15' TOO_BIG_SEC_TOKENS
X'OOOOOO16' PIP LEN INCORRECT
X'OOOOOO17' NO -USE -OF SNASVCMG
X'OOOOOO18' UNKNOVfN_PARTNER_MODE

26 8 TP_ID
34 4 CONV ID
38 1 CONVERSATION_TYPE (note 1)

X'OO' BASIC CONVERSATION
X'Ol' MAPPED_CONVERSATION (user supported)

39 1 SYNC LEVEL
X'OO' NONE
X'Ol' CONFIRM

A-7

Disp Lng Value Field Name

40 2 2X'OO' Reserved
42 1 RETURN CONTROL

X'OO' WHEN-=-SESSION_ALLOCATED
X'01' IMMEDIATE
X'02' WHEN_SESSION_FREE

43 8 8X'OO' Reserved
51 8 PARTNER LU NAME
59 8 MODE_NAME-
67 1 TP name length
68 64 TP name
132 1 SECURITY

X'OO' NONE
X'01' SAME
X'02' PGM

133 11 llX'OO' Reserved
144 1 Password length
145 10 PASSWORD
155 1 User ID length
156 10 USER_ID
166 2* PIP _DATA_LENGTH

(0 if no PIP data)
168 4* PIP_DATA

Note 1: Reserved if MC_ALLOCATE.

Note 2: Not applicable if MC_ALLOCATE.

ATTACH LU

record format (AH = 1)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2100' (33) Verb operation code
14 6 6X'00' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOO08' NO PU ATTACHED
X'00OOO211' ALREADY ACTIVE LU
X'OOOOO212' BAD PART SESS -
X'OOOO0213' BAD - RU SIZES
X'00000214' BAD=MODE_SESS
X'OOOO0216' BAD PACING CNT
X'00OO0219' EXTREME RUS
X'OOOO021A' SNASVCMG 1
X'OOOOO284' UNRECOGNIZED_DLC
X'FOO10000' APPC_DISABLED
X'F0020000' APPC_BUSY

A-8

Disp Lng Value Field Name

X'FOO30000' APPC ABENDED
24 2* X' 4600' (70) Offset topartner LU record

length field
26 8 LU_NAME
34 8 LU ID
42 1 LU-LOCAL ADDRESS
43 1 LU=SESSION_LIMIT
44 4* CREATE_TP _EXIT

(in CS :IP format)
X'FFFFFFFF' Reject incoming ALLOCATES
X'OOOOOOOO' QUEUE_ALLOCATES (YES)

48 4* 4X'OO' Reserved
52 4* SYSTEM LOG EXIT

(in CS :IP fOnMt)
X'FFFFFFFF' Do not log errors

56 4* 4X'OO' Reserved
60 1 MAX TPS
61 1 QUEUE_DEPTH
62 4* LU_LU_PASSWORD_EXIT

(in CS :IP format)
X'FFFFFFFF' No password exit

66 4* 4X'OO' Reserved
70 2* Total length of partner LU

records

(Repeat for each partner LU)

72+0 2* Length of this partner LU
record (including parameters for
each mode name defined)

2 2* X'2AOO' (42) Offset to start of mode records
4 8 PARTNER LU NAME
12 1 PARTNER - LU -SECURITY CAPABILITIES

bits 0-4 B'OOOOO' Reserved- - -
bit 5 Session level security

B'O' Not supported
B'l' Supported

bit 6 Conversation level security
B'O' Not supported
B'l' Supported

bit 7 Already verified
B'O' Not supported
B'l' Supported

13 1 PARTNER LU SESSION LIMIT
14 2* PARTNER-LU-MAX -

MC_SEND~LL -
16 8 PARTNER LU DLC NAME
24 1 PARTNER=LU=ADAPTER_NUMBER
25 1 Length of partner LU adapter

address
26 16 PARTNER LU ADAPTER ADDRESS
42 2* Total length of ail mode -

name records
44+0 2* X'l000' (16) Length of this mode name

record

A-9

Disp Lng Value Field Name

(Repeat for each mode)

2 8
10 2*
12 2*
14 1

15 1

ATTACH PU

MODE NAME
RU_SIZE high bound
RU SIZE low bound
MODE MAX NEGOTIABLE

SESSION LiMIT -
PACING_SIZE (for receive)

record format (AH = 1)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2000' (32) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOO201' ALREADY _ACTIVE_PU
X'FOO10000' APPC DISABLED
X'FOO20000' APPC=BUSY
X'FOO30000' APPC_ABENDED

24 2 X'OOOO' Reserved
26 1 VERSION
27 1 RELEASE
28 8 NET_NAME
36 8 PU_NAME
44 8 8X'00' Reserved
52 4* SYSTEM LOG EXIT

(in CS :IP format)
(X'FFFFFFFF' = > none)

56 4 4X'00' Reserved
60 1 RETURN CONTROL

X'OO' COMPLETE
X'OI' INCOMPLETE

A-IO

CHANGE LU -

record format (AH = 3)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2AOO' (42) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOO3' BAD LU ID
X'OOOOO230' iNV AiJD - CHANGE
X'FOO10000' APPC DiSABLED
X'FOQ20000' APPC=BUSY
X'FOO30000' APPC_ABENDED

24 2 2X'00' Reserved
26 8 LU ID
34 4* CREATE_TP _EXIT

(in CS :IP format)
X'FFFFFFFF' Reject incoming ALLOCATES
X'OOOOOOOO' QUEUE_ALLOCATES (YES)

38 4* 4X'00' Reserved
42 4* SYSTEM LOG EXIT

(in OS :fp fo~at)
X'FFFFFFFF' Do not log errors

46 4* 4X'00' Reserved
50 1 MAX TPS
51 1 QUEUE_ALLOCATES

X'OO' STOP
X'OI' RESUME

52 4* LU_LU_PASSWORD_EXIT
X'FFFFFFFF' No password exit

56 4* 4X'00' Reserved

CNOS

record format (AH = 6)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'1500' (21) Verb operation code
14 6 -6X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARA~ETER_CHECK
X'OOO2' STATE_CHECK

A-II

Disp Lng Value Field Name

X'OOO3' ALLOCATION ERROR
X'0018' CNOS PARTNER LU REJECT
X'FOO1' APPC=DISABLED- -
X'FOO2' APPC_BUSY
X'FOO3' APPC ABENDED

22 4 Secondary RETURN_CODE
X'OOOOOOOO' CNOS_ACCEPTED
X'OOOOOOOl' CNOS NEGOTIATED
X'OOOOOO03' BAD LU ID
X'OOOOOO04' ALLOCATION_FAILURE_NO_RETRY
X'OOOOOOO5' ALLOCATION FAILURE RETRY
X'00OOO151' CANT RAISE-LIMITS -
X'OOOOO153' ALL MODE MUST RESET
X'OOOOO154' BAD - SNASVCMG LIMITS
X'OOOOO155' MINS GT TOTAL-
X'OOOOO156' MODE_CLOSED

(primary RETURN_CODE - X'OOOl')
X'OOOOO156' eNOS MODE CLOSED

(primary RETURN_CODE - X'0018')
X'OOOOO157' BAD_MODENAME

(primary RETURN_CODE - X'OOOl')
X'000OO157' CNOS BAD MODENAME

(prima-;-y RETURN_CODE - X'OO18')
X'OOOOO159' RESET SNA DRAINS
X'OOOOO15A' SINGLE_NOT_SRC_RESP
X'00OOO15B' BAD_PARTNER_LU
X'OOOOO15C' EXCEEDS MAX ALLOWED
X'OOOOO15D' CHANGE--=SRC_DRAINS
X'OOOOO15E' LU_DETACHED
X'OOOOO15F' CNOS_COMMAND_RACE_REJECT

26 8 LU_ID
34 8 8X'20' Reserved
42 8 PARTNER_LU_NAME
50 8 MODE NAME

(if MODE_NAME_SELECT = ONE)
58 1

bits 0-5 B'OOOOOO' Reserved
bit 6 SET NEGOTIABLE

B'O' Do oot set negotiable values
B'l' Set negotiable values

bit 7 MODE_NAME_SELECT
B'O' ONE
B'l' ALL

59 1 PARTNER LU MODE SESSION LIMIT
60 1 MIN CONWINNERS SOURCE -
61 1 MIN-CONWINNERS-TARGET
62 1 AUTO_ACTIVATE -
63 1 X'OO' Reserved
64 1 Termination settings

bits 0-4 B'OOOOO' Reserved
bit 5 RESPONSIBLE

B'O' SOURCE (local)
B'l' TARGET (partner)

bit 6 DRAIN_SOURCE
B'O' NO
B'l' YES

A-12

Disp Lng Value

bit 7
B'O'
B'l'

Field Name

DRAIN TARGET
NO -
YES

CONFIRM or MC CONFIRM

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'0300' (3) Verb operation code
14 1 Verb extension code

X'OO' CONFIRM
X'Ol' MC_CONFIRM

15 5 5X'00' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER CHECK
X'OOO2' STATE CHECK
X'OOO3' ALLOCATION_ERROR
X'OO05' DEALLOCATE_ABEND (note 2)
X'OOO6' DEALLOCATE_ABEND_PROG (note 1)
X'OOO7' DEALLOCATE_ABEND_SVC (note 1)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 1)
X'OOOE' PROG ERROR PURGING
X'OOOF' CONV-FAILURE RETRY
X'OOlO' CONV-FAILURE-NO RETRY
X'OO13' SVC_ERROR_PURGING (note 1)
X'OO19' CONVERSATION_ TYPE_MIXED
X'FOO1' APPC DISABLED
X'FOO2' APPC=BUSY
X'FOO3' APPC ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'OOOOOOO2' BAD-CONV ID
X'OOOOOO31' CONFIRM ON SYNC NONE
X'OOOOOO32' CONFIRM-BAD STATE
X'OOOOOO33' CONFIRM=NOT=LL_BDY

26 8 TP ID
34 4 CONY ID
38 1 REQUEST_TO_SEND_RECEIVED

X'OO' NO
X'Ol' YES

Note 1: Not applicable if MC_ CONFIRM.

Note 2: Not applicable if CONFIRM.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "U sing Transaction Mapped Conversation

A-13

Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

CONfIRMED or MC CONFIRMED

record format (AH;::: 2)

Disp Lng Value Field Name

0 12 1<* Required APPC/PC area
12 2* X'0400' (4) Verb operation code
14 1 Verb extension code

X'OO' CONFIRMED
X'Ol' MC CONFIRMED

15 5 5X'OO' Rese~ed
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER_CHECK
X'OOO2' STATE CHECK
X'OOl9' CONVERSATION_TYPE_MIXED
X'FOO1' APPC DISABLED
X'FOP2' APPC-BUSY
X'FOO3' APPC=ABENDED

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'OOOOOO02' BAD-CONV ID
X'OOOOOO41' CONFIRMED_BAD_STATE

26 8 TP_ID
34 4 CONV_ID

CONVERT

record format (AH = 251)

Disp Lpg Value Field Name

0 12 ** Required APPC/PC area
12 2* X'lAOO'(26) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOO0401' INVALID_DIRECTION
X'OOOOO402' INVALID TYPE
X'OOOOO403' SEGMENT OVERLAP
X'OOOOO404' INVALID FIRST CHARACTER
X'OOOOO405' TABLE_ERROR -

A-14

Disp Lng Value Field Name

X'OOOOO406' CONVERSION_ERROR
X'FOO30000' APPC ABENDED

24 1 DIRECTION
X'OO' ASCII TO EBCDIC
X'OI' EBCDIC TO ASCII

25 1 CHARACTER_SET
X'OO' AE
X'OI' A
X'02' G

26 2* LENGTH
28 4* SOURCE
32 4* TARGET

CREATE TP

record format

Disp Lng Value Field Name

0 12 ** Required. APPC/PC area
12 2* X'2300' (35) Verb operation code
14 6 6X'OO' Reserved.
20 4 SENSE_CODE

X'OOOOOOOO' OK
X'080F6051' SECURITY_NOT_ VALID
X'084B6031' TP _NOT_AVAIL_RETRY
X'084COOOO' TP NOT AVAIL NO RETRY
X'I0086021' TP -NAME NOT-RECOGNIZED
X'I0086034' CONVERSATION-TYPE MISMATCH
X'10086041' SYNC_LEVEL_NOT_SUPPORTED

24 8 TP_ID
32 8 LU_ID
40 4 CONV_ID
44 1 TYPE

X'OO' BASIC_CONVERSATION
X'OI' MAPPED_CONVERSATION

45 1 SYNC LEVEL
X'OO' NONE
X'OI' CONFIRM

46 1 Reserved.
47 1 Transaction program name length
48 64 TPN
112 6 6X'OO' Reserved.
118 2* Length of ERROR_ LOG_DATA to return
120 4* Pointer to ERROR LOG DATA to return
124 8 PARTNER LU NAME-
132 1 Length of f~lly qualified partner LU name
133 17 PARTNER_FULLY_QUALIFIED_LU_NAME
150 8 MODE_NAME
158 12 12X'OO' Reserved.
170 1 Length of password

A-15

Disp Lng Value Field Name

171 10 PASSWORD
181 1 Length of user ID
182 10 USER_ID
192 1 ALREADY_VERIFIED

X'OO' NO· Verification should
be performed

X'OI' YES

DEALLOCATE or
MC DEALLOCATE -

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'0500' (5) Verb operation code
14 1 Verb extension code

X'OO' DEALLOCATE
X'OI' MC_DEALLOCATE

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOI' PARAMETER CHECK
X'OOO2' STATE CHECK
X'OOO3' ALLOCATION ERROR
X'OOO5' DEALLOCATE-=-ABEND (note 2)
X'OOO6' DEALLOCATE_ABEND_PROG (note 1)
X'OOO7' DEALLOCATE_ABEND_SVC (note 1)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 1)
X'OOOE' PROG ERROR PURGING
X'OOOF' CONV-FAILURE RETRY
X'OOIO' CONV-FMLURE-NO RETRY
X'OOI3' SVC_ERROR_PURGING (note 1)
X'OOI9' CONVERSATION TYPE MIXED
X'FOOl' APPC DISABLED -
X'FOO2' APPC=BUSY
X'FOO3' APPC ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOI' BAD TP ID
X'OOOOOOO2' BAD=CONV _ID
X'OOOOOOO6' DATA_AREA_ACROSS_SEGMENT (note 1)
X'OOOOOO51' DEALLOC BAD TYPE
X'OOOOOO52' DEALLOC-FLUSH BAD STATE
X'OOOOOO53' DEALLOC-CONFIRM BAD STATE
X'OOOOOO55' DEALLOC=NOT_LL_BDY (note 1)
X'OOOOOO57' LOG_LL_ WRONG (note 1)

26 8 TP ID
34 4 CONV_ID

A-16

Disp Lng Value Field Name

38 1 X'OO' Reserved
39 1 TYPE

X'OO' SYNC LEVEL
X'Ol' FLUSH
X'02' ABEND_PROG (note 1)
X'03' ABEND SVC (note 1)
X'04' ABEND = TIMER (note 1)
X'05' ABEND (note 4)

40 2* Length of error log data (note 3)
42 4* Address of error log data (note 3)

Note 1: Not applicable if MC_DEALLOCATE.

Note 2: Not applicable if DEALLOCATE.

Note 3: Reserved if MC_ DEALLOCATE.

Note 4: Reserved if DEALLOCATE.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation
Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

DETACH LU

record format (AH = 1)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2200' (34) Verb operation code
14 6 6X'00' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOO3' BAD LU ID
X'OOOOO223' SSCP CO-NNECTED LU
X'FOO10000' APPC- DISABLED -
X'FOO20000' APPC-BUSY
X'FOO30000' APPC=ABENDED

24 8 LU_ID
32 1 X'OO' Reserved

A-17

DETACH PU

record format (AH = 1)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2700' (39) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOO8' NO PU ATTACHED
X'OOOOO272' ADAPTER CLOSE FAILURE
X'FOO10000' APPC_DISABLED -

24 1 TYPE
X'OO' HARD
X'01' SOFT

DISABLE/ENABLE_APPC

record format (AH = 250)

This verb passes all parameters in registers; no control structure
is used.

• Disable APPC/PC: AL = 1 (note 1)
• Enable APPC/PC: AL=O (note 1)

Note 1: APPC/PC examines only the last bit of the AL
register.

DISPLAY

record format (AH = 1)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'1BOO' (27) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

A-18

Disp Lng Value

24 2
26 8
34 8
42 8
50 1
51 1

X'OOOOOOOO'
X'OOOOOOO3'
X'OOOOOlB1'
X'OOOOOlB2'
X'FOO10000'
X'Foo20000'
X'Foo30000'
X'OOOO'

Field Name

OK
BAD_LU_ID
BAD PART LUNAME
BAD-MODENAME
APPC DISABLED
APPC=BUSY
APPC_ABENDED

Rese:rved
LU_ID
PARTNER LU NAME
MODE NAME-
LU _SESSION_LIMIT
PARTNER LU SESSION LIMIT

52 1
53 1
54 1
55 1
56 1

MODE MAX NEGOTIABLE SESSION LIMIT

57 1
58 1
59 1
60 1

bits 0-5
bit 6

bit 7

B'OOOOOO'

B'O'
B'l'

B'O'
B'l'

CURRENT SESSION LIMIT - -
MIN NEGOTIATED WINNER LIMIT
MIN-NEGOTIATED-LOSER LIMIT
ACTIVE SESSION COUNT-
ACTIVE - CONWINNER . SESSION COUNT
ACTIVE - CONLOSER SESSION COUNT
SESSION_TERMINATION_COUNT
Termination settings

Rese:rved
SESSION TERMINATION
SOURCE-DRAIN -

NO -
YES

SESSION TERMINATION
TARGET-DRAIN -

NO -
YES

FLUSH or Me FLUSH

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'06OO' (6) Verb operation code
14 1 Verb extension code

X'OO' FLUSH
X'Ol' MC_FLUSH

15 5 5X'00' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER CHECK
X'oo02' STATE_CHECK
X'OOl9' CONVERSATION TYPE MIXED
X'Foo1' APPC_DISABLED -
X'FOO2' APPC_BUSY

A-19

Disp Lng Value

X'F003'
22

26
34

4

8
4

X'OOOOOOOI'
X'OOOOOOO2'
X'00OO0061'

Field Name

APPC_ABENDED
Secondary RETURN_CODE

BAD_TP_ID
BAD CONY ID
FLUSH_NOT_SEND_STATE

TP_ID
CONV_ID

GET ALLOCATE

record format (AH = 3)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2800' (40) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOO3' BAD LU ID
X'OOOO0281' GET-ALLOC BAD TYPE
X'OOOOO282' UNSUCCESSFUL -
X'FOOI0000' APPC_DISABLED
X'FOO20000' APPC_BUSY
X'F0030000' APPC_ABENDED

24 2 2X'OO' Reserved
26 8 LU_ID
34 1 TYPE

X'OO' DEQUEUE
X'OI' TEST

35 4* Pointer to CREATE_TP record

GET ATTRIBUTES or
MC GET ATTRIBUTES -

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'0700' (7) Verb operation code
14 1 Verb extension code

X'OO' GET_ATTRIBUTES
X'Ol' MC_GET_ATTRIBUTES

15 5 5X'00' Reserved

A-20

Disp Lng Value Field Name

20 2 Primary RETURN_CODE
X'OOOO' OK
X'OOOI' PARAMETER CHECK
X'0019' CONVERSATiON TYPE MIXED
X'FOOl' APPC DISABLED -
X'FOO2' APPC-BUSY
X'F003' APPC-ABENDED

22 4 Secondary RETURN_CODE
X'OOOOOOOI' BAD TP ID
X'OOOOOOO2' BAD=CONV _ID

26 8 TP ID
34 4 CONV_ID
38 8 LU_ID
46 1 X'OO' Reserved
47 1 SYNC LEVEL

X'OO' NONE
X'OI' CONFIRM

48 8 MODE_NAME
56 8 OWN NET NAME
64 8 OWN=LU_NAME
72 8 PARTNER_LU_NAME
80 1 Length of PARTNER_FULLY_

QUALIFIED_LU_NAME
81 17 PARTNER_FULLY_QUALIFIED_

LU_NAME
98 1 X'OO' Reserved
99 1 Length of USER_ID
100 10 USER_ID

GET TYPE

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPCjPC area
12 2* X'0800' (8) Verb operation code
14 6 6X'00' Reserved
20 2 Primary RETURN_CODE

X'OOOQ' OK
X'OOOI' PARAMETER CHECK
X'FOOl' APPC DISABLED
X'F002' APPC=BUSY
X'F003' APPC ABENDED

22 4 Secondary RETURN_CODE
X'OOOOOOOI' BAD TP ID
X'OOOOOOO2' BAD=CONV _ID

26 8 TP_ID
34 4 CONV_ID
38 1 TYPE

X'OQ' BASIC_ CONVERSATION

A-21

Disp Lng Value Field Name

X'Ol' MAPPED_CONVERSATION

PASSTHROUGH

record format (AH = 7)

This verb must be formatted according to the specifications of the
application subsystem.

POST ON RECEIPT

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPCjPC area
12 2* X'0900' (9) Verb operation code
14 6 6X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER_CHECK
X'OOO2' STATE_CHECK
X'OO19' CONVERSATION_TYPE_MIXED
X'FOOl' APPC_DISABLED
X'FOO2' APPC_BUSY
X'FOO3' APPC ABENDED

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'OOOOOO02' BAD-CONV ID
X'OOOOO09l' INV AtID_LENGTH
X'OOOOOO92' P_ON_R_NOT_RCV_STATE
X'OOOOOO93' P _ON_R_BAD_FILL

26 8 TP ID
34 4 CONV_ID
38 2* MAX_LENGTH
40 1 FILL

X'OO' BUFFER
X'Ol' LL

A-22

PREPARE TO RECEIVE and
MC PREPARE TO RECEIVE -- --

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'OAOO' (10) Verb operation code
14 1 Verb extension code

X'OO' PREPARE_TO_RECEIVE
X'Ol' MC_PREPARE_TO_RECEIVE

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER_CHECK
X'OOO2' STATE CHECK
X'OOO3' ALLOCATION_ERROR
X'OOO5' DEALLOCATE_ABEND (note 2)
X'OOO6' DEALLOCATE_ABEND_PROG (note 1)
X'OOO7' DEALLOCATE_ABEND_SVC (note 1)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 1)
X'OOOE' PROG ERROR PURGING
X'OOOF' CONV-FAILURE RETRY
X'OO10' CONV-FAILURE-NO RETRY
X'OO13' SVC_ERROR_PURGING (note 1)
X'OOl9' CONVERSA TION_TYPE_MIXED
X'Foo1' APPC DISABLED
X'Foo2' APPC-BUSY
X'FOO3' APPC-ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'OOOOOOO2' BAD-CONV ID
X'OOOOOOA1' P TO R INVALID TYPE
X'OOOOOOA2' UNFINtSHED_LL (~ote 1)
X'OOOOOOA3' P_TO_R_NOT_SEND_STATE

26 8 TP ID
34 4 CONV_ID
38 1 TYPE

X'OO' SYNC LEVEL
X'Ol' FLUSH

39 I LOCKS
X'OO' SHORT
X'OI' LONG

Note 1: Not applicable if MC _PREP ARE_TO _RECEIVE.

Note 2: Not applicable if PREPARE_TO - RECEIVE.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation

A-23

Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

RECEIVE AND WAIT and - -
MC RECEIVE AND WAIT - --

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'OBOO' (11) Verb operation code
14 1 Verb extension code

X'OO' RECEIVE_AND_ WAIT
X'OI' MC_RECEIVE_AND_ WAIT

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOI' PARAMETER CHECK
X'OO02' STATE CHECK
X'OOO3' ALLOCATION ERROR
X'OOO5' DEALLOCATE-=-ABEND (note 3)
X'OOO6' DEALLOCATE_ABEND_PROG (note 1)
X'OO07' DEALLOCATE_ABEND_SVC (note 1)
X'0008' DEALLOCATE_ABEND_TIMER (note 1)
X'OOO9' DEALLOCATE NORMAL
X'OOOC' PROG ERROR-NO TRUNC
X'OOOD' PROG=ERROR=TRUNC (note 1)
X'OOOE' PROG ERROR PURGING
X'OOOF' CONV-FAILURE RETRY
X'0010' CONV-FAILURE-NO RETRY
X'OOll' SVC_ERROR_NO-=-TRUNC (note 1)
X'0012' SVC_ERROR_TRUNC (note 1)
X'OOI3' SVC_ERROR_PURGING (note 1)
X'OOl9' CONVERSATION TYPE MIXED
X'FOOl' APPC DISABLED -
X'FOO2' APPC=BUSY
X'FOO3' APPC_ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'00OOOOO2' BAD-CONV ID
X'OOOOOOO6' DATA_AREA_ACROSS_SEGMENT
X'OOOOOOBl' RCV AND WAIT BAD STATE
X'OOOOOOB2' RCV =AND= WAIT=NOT=LL_BDY (note 1)
X'OOOOOOB5' RCV _AND_ WAIT_BAD_FILL (note 1)

26 8 TP ID
34 4 CONY ID
38 1 WHAT-RECEIVED

X'OO' DATA (note 1)

A-24

Disp Lng Value Field Name

39

40

41
43
45

X'Ol' DATA COMPLETE
X'02' DATA-INCOMPLETE
X'03' CONFIRM
X'04' CONFIRM_SEND
X'05' CONFIRM_DEALLOCATE
X'06' SEND

1 FILL (note 2)
X'OO' BUFFER
X'Ol' LL

1 REQUEST_TO_SEND_RECEIVED
X'OO' NO
X'Ol' YES

2* MAX_LENGTH
2* DATA_LENGTH
4* DATA_PTR

Note 1: Not applicable if MC_RECEIVE_AND_WAIT.

Note 2: Reserved if MC_RECEIVE_AND_ WAIT.

Note 3: Not applicable ifRECEIVE_AND_WAIT.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation
Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

RECEIVE_IMMEDIATE and
MC_RECEIVE_IMMEDIATE

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'OCOO' (12) Verb operation code
14 1 Verb extension code

X'OO' RECEIVE_IMMEDIATE
X'Ol' MC_RECEIVE_IMMEDIATE

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER CHECK
X'OOO2' STATE CHECK
X'OOO3' ALLOCATION ERROR
X'OOO5' DEALLOCAT~ABEND (note 3)

A-25

Disp Lng Value Field Name

22

26
34
38

39

40

41
43
45

X'OO06' DEALLOCATE_ABEND_PROG (note 1)
X'OO07' DEALLOCATE_ABEND_SVC (note 1)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 1)
X'OO09' DEALLOCATE_NORMAL
X'OOOC' PROG ERROR NO TRUNC
X'OOOD' PROG=ERROR=TRUNC (note 1)
X'OOOE' PROG_ERROR_PURGING
X'OOOF' CONY _FAILURE_RETRY
X'OO10' CONY FAILURE NO RETRY
X'OOll' SVC_ERROR_NO-=-TRUNC (note 1)
X'OO12' SVC_ERROR_TRUNC (note 1)
X'OO13' SVC_ERROR_PURGING (note 1)
X'OO14' UNSUCCESSFUL
X'0019' CONVERSATION TYPE MIXED
X'FOO1' APPC_DISABLED -
X'F002' APPC_BUSY
X'F003' APPC_ABENDED
X'F004' INCOMPLETE

4 Secondary RETURN_CODE
X'OOOOOOOl' BAD TP ID
X'OOOOOO02' BAD= CONY _ID
X'OOOOOO06' DATA AREA ACROSS SEGMENT
X'OOOOOOC1' RCV_IMMD_NOT_RC"_STATE
X'OOOOOOC4' RCV _IMMD_BAD_FILL (note 1)

8 TP_ID
4 CONV_ID
1 WHAT RECEIVED

X'OO' DATA (note 1)
X'Ol' DATA_COMPLETE
X'02' DATA_INCOMPLETE
X'03' CONFIRM
X'04' CONFIRM_SEND
X'05' CONFIRM_DEALLOCATE
X'06' SEND

1 FILL (note 2)
X'OO' BUFFER
X'Ol' LL

1 REQUEST_TO_SEND_RECEIVED
X'OO' NO
X'Ol' YES

2* MAX LENGTH
2* DATA_LENGTH
4* DATA_PTR

Note 1: Not applicable if MC_RECEIVE_IMMEDIATE.

Note 2: Reserved if MC_RECEIVE_IMMEDIATE.

Note 3: Not applicable if RECEIVE_IMMEDIATE.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation
Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

A-26

REQUEST_TO_SEND and
MC_REQUEST_TO_SEND

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'OEoo' (14) Verb operation code
14 1 Verb extension code

X'OO' REQUEST_TO_SEND
X'Ol' MC_REQUEST_TO_SEND

15 5 5X'00' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER CHECK
X'OOO2' STATE_CHECK
X'OOl9' CONVERSATION TYPE MIXED
X'Foo1' APPC DISABLED -
X'FOO2' APPC=BUSY
X'FOO3' APPC ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD_TP_ID
X'OOOOOOO2' BAD CONY iD
X'OOOOOOE1' R_T=S_NO~RCV_STATE

26 8 TP_ID
34 4 CONV_ID

SEND DATA or Me SEND, DATA

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'OFoo' (15) Verb operation code
14 1 Verb extension code

X'OO' SEND_DATA
X'OI' MC_SEND_DATA

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER_CHECK
X'OOO2' STATE CHECK
X'OOO3' ALLOCATION ERROR
X'OOO5' DEALLOCATE-=-ABEND (note 2)

A-27

Disp Lng Value Field Name

X'OOO6' DEALLOCATE_ABEND_PROG (note 1)
X'OOO7' DEALLOCATE_ABEND_SVC (note 1)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 1)
X'OOOE' PROG ERROR PURGING
X'OOOF' CONV-FAILURE RETRY
X'OO10' CONV-FAILURE-NO RETRY
X'OO13' SVC_ERROR_PURGING (note 1)
X'OO19' CONVERSATION_TYPE_MIXED
X'FOO1' APPC DISABLED
X'FOO2' APPC-BUSY
X'FOO3' APPC-ABENDED
X'F004' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOl' BAD_TP_ID
X'OOOOOOO2' BAD CONY ID
X'OOOOOO06' DATA_AREA_ACROSS_SEGMENT
X'OOOOOOF1' BAD_LL (note 1)
X'OOOOOOF2' SEND_DATA_NOT~SEND_STATE

26 8 TP_ID
34 4 CONY ID
38 1 REQUEST_TO_SEND_RECEIVED

X'OO' NO
X'Ol' YES

39 1 X'OO' Reserved
40 2* DATA_LENGTH
42 4* DATA_PTR

Note 1: Not applicable if Me_SEND_DATA.

Note 2: Not applicable if SEND_DATA.

SEND ERROR or
Me SEND ERROR - -

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'1000' (16) Verb operation code
14 1 Verb extension code

X'OO' SEND ERROR
X'Ol' MC - SEND_ERROR

15 5 5X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER CHECK
X'OO03' ALLOCATIO~ERROR

A-28

Disp Lng Value Field Name

22

26
34
38

39

40
44
46

X'OOO5' DEALLOCATE_ABEND (note 3)
X'OOO6' DEALLOCATE_ABEND_PROG (note 2)
X'OOO7' DEALLOCATE_ABEND_SVC (note 2)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 2)
X'OOO9' DEALLOCATE NORMAL
X'OOOE' PROG_ERROR=PURGING
X'OOOF' CONV_FMLURE_RETRY
X'OO10' CONY FMLURE NO RETRY
X'OO13' SVC_ERROR_PURGING (note 2)
X'OOl9' CONVERSATION TYPE MIXED
X'FOO1' APPC_DISABLED -
X'FOO2' APPC_BUSY
X'FOO3' APPC ABENDED
X'FOO4' INCOMPLETE

4 Secondary RETURN_CODE
X'OOOOOOOl' BAD_TP_ID
X'OOOOOOO2' BAD_CONV_ID
X'OOOOOOO6' , DATA AREA ACROSS SEGMENT

(~ote 2) - -
X'OOOOO102' LOG_LL_ WRONG (note 2)
X'OOOOO103' BAD_TYPE (note 2)

8 TP_ID
4 CONV_ID
1 REQUEST_TO_SEND_RECEIVED

X'OO' NO
X'Ol' YES

1 TYPE (note 1)
X'oo' PROG
X'Ol' SVC

4 4X'OO' Reserved
2* LOG_DATA_LENGTH (note 1)
4* LOG_DATA (note 1)

Note 1: Reserved if MC_SEND_ERROR.

Note 2: Not applicable if MC_SEND_ERROR.

Note 3: Not applicable if SEND_ERROR.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation
Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

A-29

SET PASSTHROUGH

format (AH = 255)

This verb passes all parameters in registers; APPC/PC does not
require a control structure block.

DS:DX contains the passthrough exit address.

SYSLOG

record format

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2600' (38) Verb operation code
14 10 10X'00' Reserved
24 2 TYPE See

Appendix D, "SYSLOG Type Codes"
26 4 SUBTYPE See

Appendix D, "SYSLOG Type Codes"
30 4* Pointer to ADDITIONAL_INFO
34 4 CONY _ID (0 if unknown)
38 8 TP _ID (0 if unknown)
46 8 PU_OR_LU_NAME (0 if unknown)
54 2* DATA LENGTH
56 4* DATA=ADDRESS
60 1 X'OO' Reserved

TEST or Me TEST

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'1200' (18) Verb operation code
14 1 Verb extension code

X'OO' TEST
X'OI' MC_TEST

15 5 5X'00' Reserved

A-30

Disp Lng Value Field Name

20 2 Primary RETURN_CODE
X'OOOO' OK
X'OOOI' PARAMETER CHECK
X'OOO2' STATE_CHECK (note 1)
X'OOO3' ALLOCATION_ERROR (note 1)
X'OOO6' DEALLOCATE_ABEND_PROG (note 1)
X'OOO7' DEALLOCATE_ABEND_SVC (note 1)
X'OOO8' DEALLOCATE_ABEND_TIMER (note 1)
X'OOO9' DEALLOCATE_NORMAL (note 1)
X'OOOA' DATA_POSTING_BLOCKED (note 1)
X'OOOB' POSTING NOT ACTIVE
X'OOOC' PROG_ERROR-=:-NO_TRUNC (note 1)
X'OOOD' PROG_ERROR_TRUNC (note 1)
X'OOOE' PROG_ERROR_PURGING (note 1)
X'OOOF' CONY _FAILURE_RETRY (note 1)
X'OOIO' CONV_FAILURE_NO_RETRY (note 1)
X'OOll' SVC_ERROR_NO_TRUNC (note 1)
X'OO12' SVC_ERROR_TRUNC (note 1)
X'OO13' SVC_ERROR_PURGING (note 1)
X'OO14' UNSUCCESSFUL
X'OO19' CONVERSATION TYPE MIXED
X'FOOl' APPC DISABLED -
X'FOO2' APPC=BUSY
X'FOO3' APPC ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOO' POSTED_DATA (note 1)
X'OOOOOOOI' POSTED NOT DATA

(primary RETuRN_CODE - X'OOOO')
X'OOOOOOOI' BAD_TP_ID

(primary RETURN_CODE - X'OOOI')
X'OOOOOOO2' BAD_CONV _ID
X'OOOOO121' TEST INVALID TYPE
X'OOOOOI22' NOT_RCV_STATE (note 1)

26 8 TP ID
34 4 CONV ID
38 1 TEST ~ote 2)

X'OO' POSTED
X'OI' REQUEST_TO_SEND_RECEIVED

Note 1: Not applicable if MC_TEST.

Note 2: Reserved if MC _TEST.

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation
Verbs" or Chapter 7, "Using Transaction Basic Conversation
Verbs."

A-31

TP ENDED

record format (AH = 4)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2500' (37) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOO1' BAD TP ID
X'FOO10000' APPC DISABLED
X'FOO20000' APPC=BUSY
X'F0030000' APPC ABENDED
X'FOO40000' INCOMPLETE

24 2 2X'00' Reserved
26 8 TP_ID

TP STARTED -

record format (AH = 3)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'2400' (36) Verb operation code
14 6 6X'00' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOO3' BAD LU ID
X'OOOO0243' TOO -MANY TPS
X'FOO10000' APPC DISABLED
X'F0020000' APPC=BUSY
X'FOO30000' APPC_ABENDED

24 2 2X'OO' Reserved
26 8 LU_ID
34 8 TP_ID

A-32

TP_VALID

record format (AD = 4)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'29OO' (41) Verb operation code
14 6 6X'OO' Reserved
20 4 RETURN_CODE

X'OOOOOOOO' OK
X'OOOOOOOl' BAD TP ID
X'OOOOOOO2' BAD-CONV ID
X'OOOOOllO' BAD=STATE-
X'FOO10000' APPC_DISABLED
X'FOO20000' APPC_BUSY
X'F0030000' APPC ABENDED
X'FOO40000' INCOMPLETE

24 2 2X'00' Reserved
26 8 TP ID
34 4* CREATE_TP _PTR

TRACE

formats

This verb passes all parameters in registers; APPC/PC does not
require a control structure block.

• TRACE_MESSAGES (AH = 252)

AL = 0: Trace OFF (disable message tracing)

AL = 1: Trace ON (enable message tracing)

DX = n: Number of bytes at which to truncate RU
DX =0: Indicates no truncation

• TRACE_API (AH = 253)

AL=l: Trace ON (enable API verb trace)

AL=O: Trace OFF (disable API verb trace).

• TRACE_DESTINATION (AH=254)

A-33

Combinations of the following values cause APPC/PC to
direct the trace statistics to multiple destinations. For
example, AL=6 directs the trace output to the display of the
IBM PC and to a file in the current directory.

AL=l: STORAGE

DS:DX = user-provided address of TRACE_STATS

AL = 2: DISPLAY

AL=4: FILE

OUTPUT.PC = file containing the trace
DS:DX = user-provided address of TRACE_ST ATS

AL = 8: PRINTER

TRACE_STATS formats

Record format for TRACE_STATS, pointed to by DS :DX.

Disp Lng Description

0 4* Start address of
storage buffer (needed
for storage trace only)

4 2* Maximum number of records
to retain (file or buffer
will wrap after this many
80-byte records)

6 2 Current record number
(must be initialized to 0)

8 4 Number of records written
(must be initialized to 0)

12 4 Reserved

Note: The TRACE_STATS record must remain at the specified
address while tracing is active. When tracing to STORAGE or
FILE, APPCjPC updates the record number (displacement 6) and
number of records written (displacement 8) each time it makes a
trace en try.

A-34

TRANSFER_MS DATA

record format (AH = 5)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
~2 2* X'lCO<Y (28) Verb operation code
14 1 DATA_TYPE

X'OO' USER_DEFINED
X'Ol' NMVT
X'02' ALERT SUBVECTORS
X'03' PDSTATS_SUBVECTORS

15 5 5X'OO' Reserved
20 4 RETURN_CODE

X' ()()()()()()OO' OK
X'OOOOO301' SSCP PU SESSION NOT ACTIVE
X'000Q0302' DAT£EXCEEDS_RU_SIZE
X'FOO10000' APPC_DISABLED
X'FOO2000<Y APPC_BUSY
X'FOO30000' APPC_ABENDED

24 12 12X'OO' Reserved
36 1 Verb options

bit 0 CORRELATOR_SUBVECTOR
B'O' ADD
B'l' NO ADD

bit 1 PRODUCT_SET_ID_SUBVECTOR
B'O' ADD
B'l' NO_ADD

bit 2 SYSLOG
B'O' LOG
B'l' NO LOG

bit 3 SSCP =PU _SESSION
B'O' SEND
B'l' NO_SEND

bits 4-7 B'OOOO' Reserved
37 1 X'OO' Reserved
38 2* DATA LENGTH
40 n DATA (note 1)

N ote1: For information on management services data, refer
to the SNA Format and Protocol Reference Manual under
Management Services and under User-Defined Data.

A-35

WAIT

record format (AH = 2)

Disp Lng Value Field Name

0 12 ** Required APPC/PC area
12 2* X'1300' (19) Verb operation code
14 6 6X'OO' Reserved
20 2 Primary RETURN_CODE

X'OOOO' OK
X'OOOl' PARAMETER_CHECK
X'OO02' STATE CHECK
X'OO03' ALLOCATION ERROR
X'OOO6' DEALLOCATE-ABEND PROG
X'OOO7' DEALLOCATE-ABEND-SVC
X'OOO8' DEALLOCATE-ABEND-TIMER
X'OOO9' DEALLOCATE-NORMAL
X'OOOA' DATA POSTING BLOCKED
X'OOOB' POSTiNG NOT ACTIVE
X'OOOC' PROG ERROR -NO TRUNC
X'OOOD' PROG-ERROR-TRUNC
X'OOOE' PROG-ERROR-PURGING
X'OOOF' CONV-FAILURE RETRY
X'OOlO' CONV-FAILURE-NO RETRY
X'OOll' SVC_ERROR_N~TRUNC
X'OO12' SVC ERROR TRUNC
X'OO13' SVC=ERROR=PURGING
X'OO19' CONVERSATION_ TYPE_MIXED
X'FOO1' APPC_DISABLED
X'FOO2' APPC_BUSY
X'FOO3' APPC_ABENDED
X'FOO4' INCOMPLETE

22 4 Secondary RETURN_CODE
X'OOOOOOOO' POSTED DATA
X'OOOOOOOl' POSTED-NOT DATA

(primary RETURN_CODE - X'OOOO')
X'OOOOOOOl' BAD TP ID

(p~ary RETURN_CODE - X'OOOl')
X'OOOOOO02' BAD_CONV _ID
X'OOOOO122' NOT_RCV _STATE

26 8 TP ID
34 4 CONY _POSTED
38 1 Number of conversations to wait on
39 4*n CONY _ID_LIST

For descriptions of the ALLOCATION_ERROR secondary return
codes, see Chapter 6, "Using Transaction Mapped Conversation
Verbs," or Chapter 7, "Using Transaction Basic Conversation
Verbs."

A-36

Appendix B. Conversation State
Matrices

This appendix shows the conversation state transitions that can
occur when a program issues a conversation verb.

The three causes of state transitions are:

• Verbs the local program issues
• Verbs the remote program issues
• Network errors.

APPCjPC indicates a state change caused by the remote program
or a network error by reporting a return code other than OK to
the local program. For the RECEIVE_AND _WAIT and
RECEIVE_IMMEDIATE verbs, APPCjPC can also indicate a
state change on the WHAT_RECEIVED parameter.

The following figures illustrate the possible conversation state
transitions in a matrix format. The columns of the matrix show
the states, and the rows show the verbs. A verb appears more
than once if there is more than one way for that verb to cause a
state change.

The verbs listed in the matrix apply to the basic conversation API
as well as the mapped conversation API, unless noted otherwise
by the "not MC" indication next to the verb name.

APPCjPC defines the following conversation states:

Reset is the state in which the program can allocate the
conversation.

Send is the state in which the program can send data, request
confirmation, or deallocate a conversation normally.

Receive is the state in which the program can receive
information from the remote program.

B-1

Confirm, Confirm Send, and Confir~ Deallocate are the
states in which the program can reply to a confirmation
request. (Chapters 1 through 10 refer to this group of states
as "confirm state.")

These matrices use abbreviations for the parameters, return
codes, and WHAT_RECEIVED indications. The definitions for
the abbreviations and symbols used in the state-transition matrix
appear at the bottom of the following figure.

Several return codes (for example, P ARAM~TER_ CHECK,
STATE_CHECK, and CONVERSATION_TYPE_MIXED) are
valid return codes for almost all verbs but they do not cause a
state change. Therefore, the matrices do not list these errors
separately for each verb.

B-2

Verb Conversation States

Verb Reset Send Re- Con- Con- Con-
ceive firm firm ium

Send De-
allo-
cate

1 2 3 4 5 6

Conv Initiated by Partner 3 / / / / /
ALLOCATE [ok] 2 / / / / /
ALLOCATE [er] / / / / /
C ONFIRM [ok] / / / / /
CONFIRM[er] / 1 / / / /
CONFIRM[ep] I 3 / / / I
CONFIRMED I I I 3 2 1
DEALLOCATE(F)[ok] I 1 I I I I
DEALLOCA TE(C)[ok] I 1 / / / I
DEALLOCATE(A)[ok] I 1 1 1 1 1

DEALLOCATE(C)[er] I 1 I I I /
DEALLOCATE(C)[ep] I 3 I / I I
FLUSH I I I I I
GET ATTRIBUTES I
GET=TYPE I
POST_ON_RECEIPT (not MC) I I I I I
PREPARE_TO _RECEIVE(F)[ok] I 3 I / I I
PREPARE_TO_RECEIVE(C)[ok] I 3 I I I I
PREPARE_TO_RECEIVE(C)[er] I 1 I / I I
PREPARE TO_RECEIVE(C)[ep] I 3 I I I I
RECEIVE_AND_ W AIT[ok]{da} / 3 / I /
RECEIVE_AND_ W AIT[ok] {se} I 2 I I I
RECEIVE_AND_WAIT[ok]{co} / 4 4 I I I
RECEIVE_AND_WAIT[ok]{cs} / 5 5 / I I
RECEIVE_AND_ W AIT[ok]{ cd} I 6 6 I I /
RECEIVE_AND_ W AIT[dn] I / 1 I / /
RECEIVE_AND_ W AIT[da] I 1 1 I / /
RECEIVE_AND_ W AIT[er] I 1 1 / / I
RECEIVE_AND_ WAIT [ep] I 3 I I I
RECEIVE_AND_ W AIT[et] I I I I I
RECEIVE_IMMEDIATE [ok] {da} I I I / I
RECEIVE_IMMEDIATE [ok] {se} I I 2 / / /
RECEIVE_IMMEDIATE [ok]{ co} I / 4 / / /
RECEIVE_IMMEDIATE [ok]{cs} I / 5 / / /
RECEIVE IMMEDIATE [ok]{ cd} I / 6 / / I
RECEIVE_IMMEDIATE [dn] I / 1 / / I
RECEIVE_IMMEDIATE [da] I I 1 / / I
RECEIVE_IMMEDIATE [er] / / 1 / I I
RECEIVE_IMMEDIATE [ep] / / / I /
RECEIVE_IMMEDIATE [etJ I / / / /

B-3

Verb Conversation States

Verb Reset Send Re- Con- Con- Con-
ceive firm firm firm

Send De-
allo-
cate

1 2 3 4 5 6

RECEIVE_IMMEDIATE [un] / / / / /
REQUEST_TO_SEND / /
SEND_DATA[ok] / / / / /
SEND_DATA[er] / 1 / / / /
SEND_DATA[ep] / 3 / / / /
SEND_ERROR[ok] / 2 2 2 2
SEND_ERROR[er] / 1 1 1 1 1
SEND_ERROR[dn] / / 1 / / /
SEND_ERROR [ep] / 3 / / / /
TE ST(P) [ok] / / / / /
TEST(P) [un] / / / / /
TEST(P) [er] / / 1 / / /
TEST(P)[ep] / / / / /
TEST(P)[et] / / / / I
TEST(P)[dn] I / 1 / / I
TEST(P)[da] I / 1 I / I
TEST(Q) [ok] I / / I
TEST(Q) [un] I / / I
W AIT[ok] (Not MC) I / / / I
WAIT [er] / / 1 / / I
WAIT [ep] I / / I I
WAIT[et] I / I / I
WAIT[dn] I / 1 / / I
WAIT [da] I / 1 / / I

B-4

Conversation State Transition Matrix Abbreviations

Parameter Abbreviations (...) Return-Code Abbreviations,
continued

A TYPE(ABEND_PROG),
TYPE(ABEND_SVC), da DEALLOCATE ABEND
TYPE(ABEND_TIMER) if issued by partner
basic conversation, or
TYPE(ABEND) if mapped
conversation

C TYPE(SYNC_LEVEL) with What-Received Abbreviations { •.• }
synchronization level
CONFIRM co CONFIRM issued by partner

F TYPE(FLUSH) cd Conflrm. Deallocate (partner
issued DEALLOCATE using

P TEST(POSTED) Conflrm.)

Q TEST(REQUEST_ TO_ cs Conflrm. Send (partner issued
SEND_RECEIVED) PREPARE TO RECEIVE

using CONFIRM)

Return-Code Abbreviations [•.. J da DATA received

er Error on link or when se SEND (partner issued some
allocating a conversation to a form. of receive)
session or resource failure

Matrix Symbols
ep Partner issued a

SEND_ERROR, data purged I Verb cannot be issued in
or no truncation occurred this state

et Partner issued a - Remains in current state
SEND_ERROR, data
truncated number Number of next state

dn DEALLOCATE issued by
partner

un UNSUCCESSFUL

ok Successful completion of
command

B-5

B-6

Appendix C. Verb Return Codes

This appendix describes the return codes that APPC/PC can
report to a program through the RETURN_CODE parameter of
each verb. The descriptions include the hexadecimal return code
value, an explanation of the condition causing the return code,
and the corrective actions required if the return code indicates an
error condition.

This appendix includes two sections. The first section describes
the return codes that are common to most verbs. The second
section describes the return codes that are unique to each verb
and lists the common return codes described in the first section.
These common return codes are:

• ALLOCATION_ERROR
• APPC_ABENDED
• APPC_BUSY
• AP:PC _DISABLED
• CONVERSATION_TYPE MIXED
• CONV_FAILURE_NO_RETRY
• CONY _FAILURE_RETRY
• DATA_POSTING_BLOCKED
• DEALLOCATE_ABEND
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• DEAL~OCATE_NORMAL

• INCOMPLETE
• INCOMPLETE_ALTERED_VERB
• INV ALID_ VERB
• OK
• POSTING_NOT_ACTIVE
• PROG_ERROR_NO_TRUNC
• PROG_ERROR_PURGING
• PROG_ERROR_TRUNC
• SVC_ERROR_NO_TRUNC
• SVC_ERROR_PURGING
• SVC_ERROR_TRUNC.

The INVALID_VERB return code indicates a problem in
recognizing a verb.

C-l

If the problem is due to an incorrectly issued verb, APPCjPC
cannot identify which verb was intended. Therefore, this return
code is not listed with each verb.

Conversation verbs and the CNOS verb return 2-byte primary
return codes and 4-byte secondary return codes. Control verbs
(except CNOS) return 4-byte return codes only. In this appendix,
bullets indicate primary return codes and dashes indicate
secondary return codes.

Common Return Codes

The following list describes the return codes that are common to
many verbs.

• X'OOOOOOOO' or X'OOOO' OK

Description: APPCjPC executed the verb as specified.

Action: No action is required.

• X'0003' ALLOCATION_ERROR

C-2

Description: APPCjPC could not properly allocate a
conversation.

Action: Check the parameters of the ALLOCATE or
MC_ALLOCATE verb.

The ALLOCATION_ERROR secondary return
codes are:

X'00000004' ALLOCATION_FAILURE NO RETRY

Description: APPCjPC cannot allocate the conversation
on a session because of a permanent
condition. For example, APPCjPC cannot
activate the session to be used for the
conversation because the current mode
session limit for the specified partner LU is
0; or because of a system definition error or
a session-activation protocol error before it
could allocate the conversation.

The program should not try the
conversation again until the condition is
corrected. APPC fPC reports this return
code on the ALLOCATE or
MC_ALLOCATE requesting the
conversation.

Action: For the IBM Token-Ring Network adapter,
check that the adapter number setting in
the IBM Token-Ring configuration menu
matches the switch setting on the adapter
card and the partner LU address specified
on the ATTACH_LU verb. For SDLC,
check that any modems are properly
plugged. Check that the station role in the
SDLC configuration menu is properly set at
primary, secondary, or negotiable, and that
this corresponds to the settings at the
partner node. If host-connected, the PC
must be secondary. Check that the NRZI
setting in the SDLC configuration menu
matches the NRZI setting of the partner
node. Restart APPC fPC by unloading and
then reloading it.

X'OOOOOOO5' ALLOCATION_FAILURE_RETRY

Description: APPC/PC cannot allocate the conversation
on a session because of a temporary
condition. For example, APPC/PC cannot
activate the session to be used for the
conversation because of a temporary lack of
resources at the local LU or because
APPC/PC deactivated the session in
response to a line or modem failure before it
could allocate the conversation. The
program can try the conversation again.
APPC fPC reports this return code on the
ALLOCATE or MC_ALLOCATE requesting
the conversation.

Action: For the IBM Token-Ring Network adapter,
check that the adapter number setting in
the IBM Token-Ring configuration menu
matches the switch setting on the adapter
card and the partner L U address specified
on the ATTACH_LU verb. For SDLC,

C-3

C-4

X'10086034'

check that any modems are properly
plugged. Check that the station role in the
SDLC configuration menu is properly set at
primary, secondary, or negotiable, and that
this corresponds to the settings at the
partner node. If host-connected, an IBM PC
must be secondary. Check that the NRZI
setting in the SDLC configuration menu
matches the NRZI setting of the partner
node.

Reissue the ALLOCATE or
MC_ALLOCATE verb. However, to avoid
congesting the network with attempted
allocation requests, the program should
pause or wait for a keystroke before
retrying the conversation.

CONVERSATION_TYPE_MISMATCH

Description: The remote LU rejected the allocation
request because it or the remote transaction
program does not support the specified
conversation type. APPCfPC reports this
return code on a verb issued after the
ALLOCATE or MC_ALLOCATE verb.

Action: Change the transaction program so that it
uses the other conversation type (basic or
mapped).

X' 1008603 l' PIP NOT_ALLOWED

Description: The remote LU rejected the allocation
request because the local transaction
program specified program initialization
parameters and either the remote LU does
not support PIP data or the remote
transaction program has no PIP variables
defined. APPC fPC reports this return code
on a verb issued after the ALLOCATE or
MC_ALLOCATE verb.

Action: Do not use PIP data.

X'l0086032'

Description: The remote LU rejected the allocation
request because the remote transaction
program has one or more PIP variables
defined and the local transaction program
has specified that no PIP variables are to be
used. This secondary return code can also
indicate that the number of PIP variables
defined by the local transaction program is
different than the number specified by the
remote transaction program. APPC fPC
reports this return code on a verb issued
after the ALLOCATE or MC_ALLOCATE
verb.

Action: Specify that PIP data is to be used with the
PIP(YES) parameter on the
MC_ALLOCATE or ALLOCATE verb and
make sure that the number of PIP variables
agrees with the number defined for the
remote transaction program.

X'080F6051' SECURITY_NOT_ VALID

Description: The remote LU rejected the user ID or
password supplied on the ALLOCATE or
MC_ALLOCATE verb. APPC/PC reports
this return code on a verb issued after the
ALLOCATE or MC_ALLOCATE verb.

Action: Request the operator to re-enter the user ID
and password.

X'l0086041' SYNC LEVEL_NOT_SUPPORTED

Description: The remote program rejected the
allocation request because the local
transaction program specified an
unrecognized or unacceptable
SYNC_LEVEL type. APPC/PC reports this
return code on a verb issued after the
ALLOCATE or MC_ALLOCATE verb.

Action: Change the SYNC_LEVEL specification.

C-5

X'l008602l'

Description: The remote LU rejected the allocation
request because the local transaction
program specified a remote transaction
program name that the remote L U does not
recognize. This return code can also
indicate that the remote LU recognized the
TPN but could not initiate the TPN using
the designated partner LU or mode name.

Action: Check the validity of the program name and
the designated partner LU and mode names.

Description: The remote LU rejected the allocation
request because it cannot start the specified
transaction program. APPC fPC reports this
return code on a verb issued after the
ALLOCATE or MC_ALLOCATE verb.

Action: Do not retry the allocation request.
Consult the system operator.

Description: The remote LU rejected the allocation
request because it cannot start the specified
transaction program immediately.

Action:

APPC/PC reports this return code on a verb
issued after the ALLOCATE or
MC_ALLOCATE verb.

Retry the allocation request. However, to
avoid congesting the network with
attempted allocation requests, the program
should pause or wait for a keystroke before
retrying the conversation.

• X'FOOlOOOO' or X'FOOl' APPC_DISABLED

C-6

Description: APPC/PC did not execute the verb because
APPC/PC was disabled by the
DISABLE/ENABLE_APPC verb.

Action: Issue the DISABLE/ENABLE_APPC verb to
re-enable APPC/PC.

• X'FOO20000' or X'F002' APPC_BUSY

Description: APPC/PC did not execute the verb because
APPC/PC was processing another verb.
APPC/PC can process only one verb at a time.
This error can occur if a hardware interrupt
during APPC/PC processing calls a routine that
issues an APPC/PC verb.

Action: Wait until APPC/PC is not busy and then
reissue the verb.

• X'F0030000' or X'F003' APPC_ABENDED

Description: APPC/PC did not execute the verb because
APPC/PC has abnormally terminated.

Action:

• X'0019'

Restart APPC fPC by unloading and then
reloading it.

CONVERSATION_TYPE MIXED

Description: The program issued both basic and mapped
conversation verbs on the same conversation.

Action:

• X'OOlO'

Change the transaction program so that it
issues only one type of conversation verb on
this conversation.

Description: A permanent failure prematurely terminated
the conversation.

Action:

• X'OOOF'

The condition is not temporary; operator
intervention is necessary to correct the
problem.

Description: A temporary failure prematurely terminated
the conversation.

Action: Allocate conversation again.

C-7

• X'OOOA'

Description: APPC/PC cannot post one of the active
conversations because the APPC/PC internal
workspace storage is in use and the program is
unable to send a pacing response. The
condition is temporary. APPC/PC can report
this return code on the WAIT and TEST verbs.

Action: The transaction program can still issue any
verb but it should issue
RECEIVE_IMMEDIATE or
RECEIVE_AND _WAIT to free some space so
that APPC/PC can resume posting active
conversations.

Alternatively, you can reconfigure APPC/PC to
provide a larger MAX_RU_SIZE, a larger
receive pacing window size, or no pacing at all.
If you use receive pacing and issue a TEST or
WAIT for more than R(P-l) bytes of data (where
P = pacing window and R = negotiated
maximum RU size for the session), APPC/PC
may report a buffer full condition with this
return code. Even this amount of data may be
too large if the partner transaction program
issues the FLUSH verb between SEND_DATA
verbs causing messages of less than the
maximum RU size to flow on the line. If pacing
is not used, APPC/PC cannot control the flow of
data sent by the partner transaction program.
If its workspace storage becomes full APPC/PC
abnormally terminates and rejects subsequent
verbs.

• X'0005' DEALLOCATE_ABEND

e-8

Description: The source of the error notification is either
the remote transaction program or the remote
L U. The remote transaction program causes
this error notification by issuing an
MC_DEALLOCATE verb specifying the
TYPE(ABEND) parameter. Alternatively, the
remote LU can issue an MC_DEALLOCATE
because of a remote transaction program
ABEND condition.

Action: Check the transaction program for errors.

• X'0006'

Description: The remote transaction program or the remote
L U causes this error notification by issuing a
DEALLOCATE verb specifying the
TYPE(ABEND _PROG) parameter. If the
conversation for the remote transaction
program is in receive state when the
DEALLOCATE occurs, information sent by the
local transaction program, and not yet received
by the remote transaction program, is purged.

Action:

• X'0007'

APPC/PC reports this return code on a verb the
program issues in send or receive state when
the remote transaction program or remote L U
deallocates the conversation.

Check the transaction program for errors.

Description: The remote transaction program or the remote
LU causes this error notification by issuing a
DEALLOCATE verb specifying the
TYPE(ABEND _SVC) parameter. If the
conversation for the remote transaction
program is in receive state when the
DEALLOCATE occurs, information sent by the
local program, and not yet received by the
remote program, is purged.

Action:

• X'0008'

APPC/PC reports this return code on a verb the
program issues in send or receive state when
the remote program or remote LU deallocates
the conversation.

Check the transaction program for errors.

DEALLOCATE_ABEND_TIMER

Description: The remote transaction program causes this
error notification by issuing a DEALLOCATE
verb specifying the TYPE(ABEND_TIMER)
parameter. If the conversation for the remote
transaction program is in receive state when

C-9

Action:

• X'0009'

the DEALLOCATE occurs, information sent by
the local transaction program, and not yet
received by the remote transaction program, is
purged.

APPC/PC reports this return code on a verb the
transaction program issues in send or receive
state when the remote transaction program or
remote LU de allocates the conversation.

Check the transaction program for errors.

DEALLOCATE_NORMAL

Description: The remote transaction program issued a
DEALLOCATE specifying the
TYPE(SYNC_LEVEL) or TYPE(FLUSH)
parameter. APPC/PC reports this return code
on a verb the local transaction program issues
in receive state.

Action: This return code is not an error indication.

• X'F0040000' or X'F004' INCOMPLETE

Description: The issued verb has suspended without
completing its defined function.

Action: To avoid a deadlock situation (as described
under "System Deadlocks" on page 10-2), issue
verbs on any other active transaction programs,
and then issue one or more GET_ALLOCATE
verbs to process incoming ALLOCATEs queued
in any LU. Then re-issue the current verb
without changing any parameter, (except for the
first 12 bytes which you can use to store list
pointers to maintain a list of incomplete verbs).

• X'F0050000' or X'F005' INCOMPLETE_ALTERED_ VERB

Description: A verb that has previously returned as
INCOMPLETE was altered when it was
re-issued. You may have changed the verb, or
issued a new verb from the same transaction
program before re-issuing the incomplete verb.

C-IO

Action: Alter the transaction program so that no verb
other than the unchanged incomplete verb
(except for the first 12 bytes) is issued from that
program.

• X'FFFFFFFF' or X'FFFF' INV ALID _ VERB

Description: APPCjPC did not recognize the supplied verb
operation code and did not execute the verb.
An incorrect AH value can also cause this
return code.

Action: Correct the operation code or the AH value.

• X'OOOB'

Description: Posting is not active for the specified
conversations.

Action:

• X'OOOC'

Issue POST_ON_RECEIPT before testing the
conversation.

Description: The remote transaction program issued a
SEND_ERROR specifying the TYPE(PROG)
parameter, the conversation for the remote
transaction program was in send state, and the
SEND_ERROR did not truncate a logical
record. No truncation occurs when a program
issues SEND_ERROR before sending any
logical records or after sending a complete
logical record.

Action:

• X'OOOE'

APPCjPC reports this return code on a receive
verb and the conversation remains in receive
state.

Check the error.

Description: The remote transaction program issued a
SEND_ERROR verb specifying the
TYPE(PROG) parameter in receive or confirm
state. If the remote transaction program issues
a SEND_ERROR verb when it is in receive

C-l1

Action:

• X'OOOD'

state, information sent to, but not yet received
by, the remote transaction program is purged.

APPC fPC normally reports this return code on
a verb the local transaction program issues
after sending information to the remote
transaction program. However, APPCfPC can
also report this return code on a verb the
program issues before sending any information,
depending on the verb and when the program
issues it. The conversation remains in receive
state.

Check the error and prepare to res end data that
may have been lost.

Description: The remote transaction program issued a
SEND_ERROR specifying the TYPE(PROG)
parameter, the conversation for the remote
transaction program was in send state, and the
SEND_ERROR truncated a logical record.
Truncation occurs when a program begins
sending a logical record and then issues
SEND_ERROR before sending the complete
logical record. APPC fPC reports this return
code on a RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb the local
transaction program issues after receiving the
truncated logical record.

Action: Check the error.

• X'OOll' SVC __ ERROR_NO_TRUNC

Description: The remote transaction program or remote LU
issued a SEND_ERROR specifying the
TYPE(SVC) parameter, the conversation for the
remote transaction program was in send state,
and the SEND_ERROR did not truncate a
logical record. No truncation occurs when a
program issues SEND_ERROR before sending
any logical records or after sending a complete
logical record.

C-12

Action:

• X'0013'

APPC/PC reports this return code on a receive
verb and the conversation remains in receive
state.

Check the error.

Description: The remote transaction program or remote LU
issued a SEND_ERROR specifying the
TYPE(SVC) parameter in receive or confirm
state. If the remote transaction program issues
a SEND_ERROR verb when it is in receive
state, information sent to, but not yet received
by, the remote transaction program is purged.

Action:

• X'OO12'

APPC/PC reports this return code on a verb the
local transaction program issues after sending
information to the remote transaction program.
However, APPC/PC can also report this return
code on a verb the program issues before
sending any information, depending on the verb
and when the program issues it. The
conversation remains in receive state.

Check the error and prepare to res end the data
that may have been purged.

Description: The remote transaction program or remote LU
issued a SEND_ERROR specifying the
TYPE(SVC) parameter, the conversation for the
remote transaction program was in send state,
and the SEND _ERROR truncated a logical
record. Truncation occurs when a program
begins sending a logical record and then the
program or LU issues SEND_ERROR before
sending a complete logical record. APPC/PC
reports this return code on a
RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb the local
transaction program issues after receiving the
truncated logical record.

Action: Check the error.

C-13

Verb-Specific Return Codes

The rest of this appendix describes the return codes for all verbs,
arranged in alphabetic order by verb name.

• X'00000008'

Description: APPC/PC has not yet received a valid
ATTACH_PU verb.

Action: Issue an ATTACH_PU verb.

• X'00000283'

Description: This return code indicates one of many
possible error conditions. For example, the
adapter number may have been incorrectly
specified on the APPC/PC configuration menus
or on the ATTACH_LU verb. This return code
can also indicate that the adapter address for
the IBM Token-Ring Network exists elsewhere
on the token ring.

Action:

C-14

If the adapter is for the IBM Token-Ring
Network, check switch 2 (the
primary/secondary adapter switch) and verify
that it matches the adapter number parameters
specified on the ACTIV ATE_DLC and
ATTACH_LU verbs, and the adapter number
entry on the APPC/PC configuration menus.

If another program which uses the IBM
Token-Ring Network adapter (such as the
NETBIOS program) was loaded before
APPC/PC, you may have to reload the other
program again, specifying an adequate number
of service access points and links for APPC/PC
operation. For more information of Service
Access Point (SAP) operation, see the IBM
Token-Ring Network NETBIOS Program User's
Guide. For information on loading APPC/PC,

• X'00000284'

refer to the APPC/PC Installation and
Configuration Guide.

If you unloaded APPC/PC and moved to another
IBM PC in the same token ring after your
program issued ACTIVATE_DLC, you must use
a new soft address on the new IBM PC.
Alternatively, you can free the original soft
address by turning off the first IBM PC or by
re-initializing the first IBM PC with the adapter
diagnostic program after unloading APPC/PC.
This program is supplied with the IBM
Token-Ring Network adapter.

Check the SYSLOG entry for error information
on DLC failures.

UNRECOGNIZED_DLC

Description: APPC/PC could not find the specified DLC
name and adapter number in the configuration
file.

Action:

• X'00000286'

Check the DLC name and adapter number
supplied in the configuration file.

DUPLICATE_DLC

Description: The specified DLC is already open.

Action: Check the DLC name and adapter number on
the ACTIV ATE_DLC verb to see if they are
correct.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'
• X'OOOOOOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

C-15

ALLOCATE and MC_ALLOCATE

• X'OOOl' PARAMETER_CHECK

C-16

X'OOOOOOOl'

Description: APPC JPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPCjPC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

Description: APPCjPC does not permit PIP data to
cross a segment boundary.

Action: Recalculate the segment and offset registers
so that offset registers will not wrap back
around to o.

Description: The value that TPN_LENGTH specifies is
too short (less than 1) or too long (greater
than 64).

Action: Check the TPN_LENGTH value.

X'OOOOOOll' BAD _ CONV _TYPE

Description: APPCjPC does not recognize the specified
conversation TYPE.

Action: Check the conversation TYPE field. The
only valid values are X'OO' for
BASIC_CONVERSATION and x'or for
MAPPED_CONVERSATION.

- X'OOOOOOI2' BAD_SYNC_LEVEL

Description: APPC/PC does not recognize the specified
SYNC_LEVEL type.

Action: Check the SYNC_LEVEL type field. The
only valid values are X'OO' for NONE and
X'OI' for CONFIRM.

- X'OOOOOOI3' BAD_SECURITY_SELEC

Description: APPC/PC does not recognize the specified
SECURITY type.

Action: Check the SECURITY type field. The only
valid values are X'OO' for NO_
CONVERSATION_LEVEL_SECURITY,
X'OI' for SAME, and X'02' for PGM.

- X'OOOOOOI4' BAD_RETURN_CONTROL

Description: APPC/PC does not recognize the specified
RETURN_CONTROL value.

Action:

- X'OOOOOOI5'

Check the RETURN_CONTROL field. The
only valid values are X'OO' for
WHEN_SESSION_ALLOCATED, X'OI' for
IMMEDIATE, and X'02' for
WHEN_SESSION_FREE.

TOO _BIG_SEC_TOKENS

Description: APPC/PC does not accept a password or a
user ID that is greater than 8 bytes.

Action: Check length of password or user ID.

- X'OOOOOOI6' PIP _LEN_INCORRECT

Description: APPC/PC does not accept PIP data that is
longer than 32767 bytes.

Action: Make sure that the PIP data is not longer
than 32767 bytes.

C-17

- X'00000017'

Description: APPC/PC does not permit the EBCDIC
mode name SNASVCMG with the
ALLOCATE or MC_ALLOCATE verbs.

Action: Check the mode name.

X'00000018' UNKNOWN PARTNER_MODE

Description: APPC/PC does not recognize the specified
partner LU or mode name.

Action: Check the partner L U and mode name
specified for the ATTACH_LU verb. The
partner LU and mode names must be the
same as specified for the ATTACH_LU
verb.

• X'0014' UNSUCCESSFUL

Description: The program specified
RETURN_CONTROL(IMMEDIATE) on the
allocation request and APPC/PC could not
allocate the conversation because no
contention-winner sessions were available.

Action: Use the CNOS verb to increase the number of
available contention-winner sessions or issue
the allocation request with a
RETURN_CONTROL
(WHEN_SESSION_ACTIVATED) or
RETURN_CONTROL
(WHEN_SESSION_FREE) parameter. Check
the previously issued verbs for error conditions,
check all verb parameters for validity, and then
resend the verb.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'FOO3' APPC_ABENDED
• X'FOO2' APPC_BUSY
• X'FOOl' APPC_DISABLED
• X'OOO3' ALLOCATION ERROR
• X'FOO4' INCOMPLETE
• X'FOO5' INCOMPLETE_ALTERED_VERB

C-18

• X'OOOO' OK.

• X'00000008'

•

•

Description: The PU is not defined because APPCjPC has
not yet received a valid ATTACH_PU verb.

Action: Issue an ATTACH_PU verb.

X'OOOOO211' ALREADY_ACTIVE_LU

Description: The LUis already defined.

Action: Do not attempt to attach two LUs with the
same name.

X'OOOOO212' BAD PART_SESS

Description: The session limit for an individual partner LU
(PARTNER_LU_SESSION_LIMIT) is greater
than the session limit permitted for all partner
LUs (LU_SESSION_LIMIT).

Action: Increase the session limit for all partner LUs
(LU_SESSION_LIMIT) to accommodate the
specified session limit for the partner LU (that
is, the PARTNER_LU_SESSION_LIMIT) or
decrease the session limit for the partner LU.

• X'OOOO0213' BAD_RU_SIZES

Description: The maximum RU size value of the
MAX_RU _SIZE parameter is smaller than the
minimum RU size value.

Action: Reverse the values of the RU sizes.

• X'00000214'

Description: The session limit for an individual mode name
(MODE_MAX_NEGOTIABLE_SESSION_
LIMIT) is greater than the session limit
(P ARTNER_LU _SESSION_LIMIT) permitted

C-19

Action:

• X'00000216'

for all mode names used for sessions with the
specific partner L U.

Increase the P ARTNER_L U _SESSION_LIMIT
or decrease the session limit of the individual
mode name
(MODE_MAX_NEGOTIABLE_SESSION_
LIMIT).

BAD_PACING_CNT

Description: The PACING_SIZE is not in the range of 0 to
63, inclusive.

Action:

• X'00000219'

Check the pacing size. Increase or decrease
this size to fit within the specified range.

Description: The upper bound for the MAX_RU_SIZE size
is too large or the lower bound is too small.

Action:

• X'0000021A'

The low value must be at least 16, and the high
value must not be more than allowed by the
link station that is to carry the session traffic
(specified as the MAX_RU _SIZE value in the
configuration file). In the most general
environment, you should have low value less
than or equal to 256 and high value greater
than or equal to 256.

Description: APPC/PC does not accept the EBCDIC name
"SNASVCMG" as the mode name for a single
session connection to communicate data
between transaction programs.

Action:

C-20

Using the mode name "SNASVCMG" implies
parallel sessions are being used. Therefore, a
single session connection cannot use the
"SNASVCMG" mode name.

• X'OOOOO284' UNRECOGNIZED _DLC

Description: APPC/PC could not find the specified DLC
name and adapter number.

Action: Check the DLC name and adapter number
supplied on the APPC/PC configuration menus.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'FOO20000'
• X'FOOlOOOO'
• X'OOOOOOOO'

• X'00000201'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

Description: The PU is already active and cannot be
redefined at this time. This error can result if a
previous DETACH_PU has not completed.

Action: Wait for APPC/PC to complete execution of a
previous DETACH_PU verb or issue the
DETACH_PU immediately before the
ATTACH_LU verb.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'
• X'OOOOOOOO'

• X'OOOOO003'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

Description: APPC/PC does not recognize the specified
LU_ID.

C-21

Action: Match this LU_ID with the one APPC returns
after executing the ATTACH_LU verb.

• X'00000230' INVALID_CHANGE

Description: The application subsystem has made an
invalid change in the management of incoming
ALLOCATEs.

Action: Check the exit pointer. You cannot change the
synchronous or asynchronous handling of
incoming ALLOCATEs.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000' APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

• X'F0020000'
• X'FOOIOOOO'
• X'OOOOOOOO'

eNOS

• X'OOOO' OK

C-22

X'OOOOOOOO' CNOS_ACCEPTED

Description: APPCjPC executed the CNOS verb
successfully as specified.

Action: This return code is not an error condition,
just a positive response.

X'OOOOOOOl' CNOS_NEGOTIATED

Description: APPCjPC executed the CNOS verb
successfully as negotiated by the partner
LU.

Action: This return code is not an error condition.
It indicates that one or more parameter
values have been negotiated. The program
can obtain the negotiated values by issuing
the DISPLAY verb.

• X'OOOl' PARAMETER_CHECK

- X'OOO00003'

Description: APPC/PC does not recognize the specified
LU_ID.

Action: Match this LU_ID with the one APPC/PC
returns after executing the ATTACH_LU
verb.

Description: APPC/PC does not permit the specification
of a non-O session limit when the
MODE_NAME_SELECT parameter
indicates ALL.

Action: When setting the MODE_NAME_SELECT
parameter to ALL, you must set the session
limits to o. Set limits to 0 or check the
MODE_NAME_SELECT'parameter.

- X'00000154' BAD_SNASVCMG_LIMITS

Description: The application subsystem has specified
invalid settings for the

Action:

P ARTNER_LU _MODE_SESSION_
LIMIT, MIN_CONWINNERS_SOURCE, or
MIN_CONWINNERS_TARGET parameters
when MODE_NAME(SNASVCMG) is
indicated.

The three groups of valid settings for the
SNASVCMG mode are as follows:

PARTNER_LU _MODE_SESSION_
LIMIT(2)

MIN_CONWINNERS_SOURCE(l)
MIN_CONWINNERS_TARGET(l)

PARTNER_LU _MODE_SESSION_
LIMIT(l)

MIN_CONWINNERS_SOURCE(O)
MIN_CONWINNERS_TARGET(l)

C-23

PARTNER_LU_MODE_SESSION __
LIMIT(O)

MIN_CONWINNERS_SOURCE(O)
MIN_CONWINNERS_TARGET(O)

- X'00000155' MINS_GT_TOTAL

Description: The sum of
MIN_CONWINNERS_SOURCE and
MIN_CONWINNERS_TARGET is greater
than the value specified for the
PARTNER_LU_MODE_SESSION_LIMIT.

Action: Check values of these three fields.

- X'00000156' MODE_CLOSED

Description: CNOS cannot set a non-O limit because the
local maximum negotiable session limit is
currently 0 for the specified mode.

Action: Issue the CNOS with SET_NEGOTIABLE
= YES.

- X'00000157' BAD_MODENAME

Description: The specified partner LU does not support
the specified MODE_NAME.

Action: Match the MODE_NAME with the
MODE_NAME specified with the
ATTACH_LU verb.

- X'00000159' RESET_SNA_DRAINS

C-24

Description: The SNASVCMG mode does not support
the DRAIN settings (CNOS).

Action: Do not set the DRAIN_SOURCE and the
DRAIN_TARGET parameters when using
CNOS with SNASVCMG mode.

Description: For a single session mode (for which
PARTNER_LU_SESSION_LIMIT = 1) or
the SNASVCMG mode, APPC/PC permits

only the local LU to be responsible for
deactivating sessions.

Action: Change the value of the RESPONSIBLE
parameter to SOURCE.

X'0000015B' BAD_PARTNER_LU

Description: APPC/PC does not recognize the specified
partner L U name.

Action: The specified PARTNER_LU_NAME must
be one of the PARTNER_LU_NAMEs
defined by the ATTACH_LU verb. Check
the PARTNER_LU_NAME value specified
with the CNOS verb or add the
PARTNER_LU_NAME in the
ATTACH_LU definition.

X'0000015C' EXCEEDS_MAX_ALLOWED

Description: The local maximum negotiable session
limit is less than the session limit specified
with the CNOS verb.

Action: Increase the local maximum session limit
(MODE_MAX_NEGOTIABLE_SESSION_
LIMIT) determined by the ATTACH_LU
verb, decrease the session limit
(P ARTNER_L U _MODE_SESSION_LIMIT)
specified with the CNOS verb or use the
SET_NEGOTIABLE(YES) option.

X'0000015D' CHANGE_SRC_DRAINS

Description: APPC/PC does not permit a program to
specify MODE_NAME_SELECT(ONE) and
DRAIN_SOURCE(YES) when
DRAIN_SOURCE(NO) is currently in effect
for the specified mode.

Action: A previous CNOS has set session limits to 0
without draining the source. After this
action, a program cannot change the drain
option.

C-25

• X'0002'

X'0000015l'

Description: APPC/PC does not permit a program to
change the session limit to a non-O value
unless the limit is already o.

Action: Reset the session limit by issuing the CNOS
verb with
PARTNER_LU _MODE_SESSION_LIMIT = I

• X'0018' CNOS_PARTNER_REJECT

Description: The partner LU rejected a CNOS request from
the local LU because of a condition specified in
one of the secondary return codes.

Action: Take the action described for the indicated
secondary return code.

C-26

X'00000156' CNOS_MODE_CLOSED

Description: The local LU cannot negotiate a non-O
session because the local maximum session
limit of the partner LU is o.

Action: Check the session limit for the specified
mode name on the remote LU.

X'00000157' CNOS_BAD_MODENAME

Description: The partner LU does not recognize the
specified MODE_NAME.

Action: Check the partner LU MODE_NAME on
the remote system.

X'0000015F' CNOS_COMMAND_RACE REJECT

Description: APPC/PC is currently processing a CNOS
verb issued by the partner LU.

Action: This is not an error condition. This
secondary return code simply indicates that
a race condition occurred during CNOS
negotiation between two LUs. The program

can issue the DISPLAY verb to obtain the
negotiated values. You may reissue the
CNOS verb.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F003'
• X'F002'
• X'FOOl'
• X'OOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

CONFIRM and MC_CONFIRM

• X'OOOl' PARAMETER_CHECK

X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

X'00000002' BAD_CONV _ID

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

X'0000003l' CONFIRM_ON_SYNC_NONE

Description: APPC/PC does not permit the program to
use this verb if it allocated the conversation
with SYNC_LEVEL(NONE).

Action: The program can issue a CONFIRM or
MC_CONFIRM verb only when the
SYNC_LEVEL is confirm.

C-27

• X'OOQ2' STATE_CHECK

- X'00000032' CONFIRM_BAD_STATE

Description: The convers&tion is not in send state.

Action: Issue the verb in send state.

Description: The conversation is in send state, and the
program started, but did not finish, sending
a logical record.

Action: Finish sending a logical record before
issuing CONFIRM.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'0003'
• X'F003!
• X'F002'
• X'FOOI'
• X'OOI9'
• X'OOIO'
• X'OOOF'
• X'0005'
• X'0006'
• X'0007'
• X'OQ08'
• X'F004'
• X'F005'
• X'OOOO'
• X'OOOE'
• X'OOI3'

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONVERSATION_TYPE_MIXED
CONY _FAILURE_NO _RETRY
CONY _FAILURE_RETRY
DEALLOCATE_ABEND
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK
PROG_ERROR_PURGING
SVC_ERROR_PURGING.

CONFIRMED and MC_CONFIRMED

• X'OOOI' PARAMETER_CHECK

- X'OOOOOOOI'

C-28

Description: APPC fPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC fPC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

X'OOO00002' BAD _ CONY _ID

Description: APPC fPC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

• X'0002' STATE_CHECK

X'OO000041' CONFIRMED_BAD STATE

Description: The conversation is not in confirm state.

Action: The local transaction program can issue a
CONFIRMED only as a reply to a
confirmation request from the remote LU.
Check the transaction program for errors.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'FOO3' APPC_ABENDED
• X'FOO2' APPC_BUSY
• X'FOOl' APPC_DISABLED
• X'OO19' CONVERSATION_TYPE_MIXED
• X'FOO4' INCOMPLETE
• X'FOO5' INCOMPLETE_ALTERED_VERB
• X'OOOO' OK.

CONVERT

• X'00000401' INVALID_DIRECTION

Description: APPCfPC does not recognize the specified
conversion DIRECTION.

Action: Check the value supplied in the DIRECTION
parameter.

C-29

• X'00000402' INVALID_TYPE

Description: APPC/PC does not recognize the
CHARACTER_SET type for conversion.

Action:

• X'00000403'

Check the value supplied in the
CHARACTER_SET parameter.

SEGMENT_OVERLAP

Description: The area containing characters to be
converted or the area that is to contain the
converted characters overlaps a segment
boundary.

Action:

• X'00000404'

Make sure the SOURCE or TARGET offset plus
the LENGTH value does not exceed 65535.
Alternatively, you can reduce the number of
bytes to be converted.

INVALID_FIRST_CHARACTER

Description: APPC/PC detected an invalid first character
for a type "A" conversion.

Action:

• X'00000405'

Make the first character in the SOURCE buffer
an uppercase letter or one of the special
characters, $, #, or @.

Description: APPC/PC could not find the type G conversion
table.

Action:

• X'00000406'

Reload APPC/PC and make sure that the file
containing the type G conversion table is in the
same directory as APPC/PC. Also make sure
that the name of the file is the same as that
specified on the APPC/PC configuration menus.

CONVERSION_ERROR

Description: The CONVERT verb found an unrecognized
character and converted it to X'OO'.

Action: Check the characters in the source string.

C-30

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOlOOOO'
• X'OOOOOOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

DEALLOCATE and MC_DEALLOCATE

• X'OOOl' PARAMETER_CHECK

- X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

- X'OO000002' BAD _ CONY _ID

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

- X'OOO00006' DATA_AREA_ACROSS_SEGMENT

Description: The log data area crosses a segment
boundary.

Action: Make sure the offset of the LOG_DATA
address plus the LOG_DATA_LENGTH
does not exceed 65535.

X'00000051' DEALLOC_BAD_TYPE

Description: APPC/PC does not recognize the specified
TYPE.

C-31

Action:

X'00000057'

Check the value of the TYPE field. The
only valid values for DEALLOCATE are
X'OO', X'OI', X'02', X'03', and X'04'. The only
valid values for MC_DEALLOCATE are
X'OO', X'OI', and X'05'.

Description: The LOG_DATA_LENGTH does not
match the value on the LL field of the
LOG_DATA.

Action: Check the length of the log data.

• X'0002' STATE_CHECK

C-32

X'00000052'

Description: The program specified the
TYPE(SYNC_LEVEL) parameter on a
conversation specified with
SYNC_LEVEL = NONE when the
conversation was not in the send state.
Alternatively, the program can cause this
error by specifying TYPE(FLUSH) when the
conversation is not in send state.

Action: Issue the verb in the correct state.

X'00000053' DEALLOC _CONFIRM_BAD _STATE

Description: The program specified the
TYPE(SYNC_LEVEL) parameter on a
conversation specified with
SYNC_LEVEL=CONFffiM when the
conversation was not in send state.

Action: Issue the verb in the correct state.

Description: The program specified the TYPE(FLUSH)
or the TYPE(SYNC_LEVEL) parameter,
the conversation is in send state, and the
program started but did not finish sending a
logical record.

Action: Finish sending the logical record.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'0003'
• X'F003'
• X'F002'
• X'FOOl'
• X'OOlO'
• X'OOOF'
• X'0019'
• X'0005'
• X'0006'
• X'0007'
• X'0008'
• X'F004'
• X'F005'
• X'OOOO'
• X'OOOE'
• X'0013'

• X'00000003'

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONV_FA~URE_NO_RETRY
CONY _FA~URE_RETRY
CONVERSATION_TYPE_MIXED
DEALLOCATE_ABEND
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK
PROG_ERROR_PURGING
SVC_ERROR_PURGING.

Description: APPC/PC does not recognize the specified
LU_ID.

Action: Match this LU_ID with the one APPC/PC
returns after executing the ATTACH_LU verb.

• X'00000223' SSCP_CONNECTED_LU

Description: The program can issue DETACH_LU only for
independent LUs that do not have active
sessions with the SSCP.

Action: Use the DETACH_PU verb to reset the node.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED

C-33

• X'OOOOOOOO' OK.

• X'00000008'

Description: The application subsystem has not yet issued
ATTACH_PU to define the PU being detached.

Action: Issue an ATTACH_PU verb.

• X'00000272' ADAPTER_ CLOSE_FAILURE

Description: APPC/PC has experienced a failure while
trying to close an adapter.

Action: Check the SYSLOG entry for possible adapter
problem indications.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'
• X'OOOOOOOO'

APPC_ABENDED
APPC_BUSY
APPC _DISABLED
OK.

DISABLE/ENABLE_APPC

The DISABLE/ENABLE_APPC verb does not provide a
RETURN_CODE parameter.

DISPLAY

• X'00000003'

Description: APPC/PC does not recognize the specified
LU_ID.

Action:

C-34

Match this LU_ID with the one APPC/PC
returns after executing the ATTACH_LU verb.

• X'OOOOOlBl'

Description: APPC/PC does not recognize the supplied
PARTNER_LU_NAME parameter value.

Action: Match the PARTNER_LU_NAME with the
PARTNER_LU_NAME specified with the
ATTACH_LU verb.

• X'OOOOOlB2' BAD_MODENAME

Description: APPC/PC does not recognize the
MODE_NAME parameter value.

Action: Match the MODE_NAME with the
MODE_NAME specified with the
ATTACH_LU_verb.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'
• X'OOOOOOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

FLUSH and Me_FLUSH

• X'OOOl' PARAMETER_CHECK

X'OOOOOOOl'

Description: APPC fPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_ TP record for a
remotely initiated TP.

X'00000002' BAD _ CONY _ID

Description: APPC fPC does not recognize the specified
CONV_ID.

C-35

Action: Check the CONY _ID parameter for validity.

• X'0002' STATE_CHECK

X'00000061'

Description: The conversation must be in send state to
flush the local LU's send buffer.

Action: Issue the verb in send state.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F003'
• X'F002'
• X'FOOI'
• X'OOI9'
• X'OOOO'

• X'00000003'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONVERSATION_TYPE_MIXED
OK.

Description: APPC/PC does not recognize the specified
LU_ID.

Action:

• X'0000028I'

Match this LU_ID with the one APPC/PC
returns after executing the ATTACH_LU verb.

Description: APPC/PC does not recognize the parameter
specified in the TYPE field.

Action:

• X'00000282'

Check the TYPE field. The TYPE should be
X'OO' for DEQUEUE or X'OI' for TEST.

UNSUCCESSFUL

Description: The LU is not currently holding any incoming
ALLOCATEs in the queue.

Action: This is not an error indication.

C-36

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'FOO30000'
• X'FOO20000'
• X'FOOIOOOO'
• X'OOOOOOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

GET_ATTRIBUTES and MC_GET_ATTRIBUTES

• X'OOOl' PARAMETER_CHECK

X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_JD.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

- X'OOO00002' BAD_CONV_ID

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F003'
• X'F002'
• X'FOOl'
• X'0019'
• X'OOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONVERSATION_TYPE_MIXED
OK.

C-37

• X'OOOl' PARAMETER_CHECK

X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F003'
• X'F002'
• X'F001'
• X'OOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

PASSTHROUGH

The P ASSTHROUGH verb does not provide a RETURN_CODE
parameter.

C-38

• X'OOOI' PARAMETER_CHECK

X'OOOOOOOI'

Description: APPC fPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

X'OOOO0002' BAD_CONV _ID

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

X'OOO00091' INVALID_LENGTH

Description: The program specified an illegal value for
the MAX_LENGTH parameter.

Action: Specify a length in the range 0 to 32767
inclusive.

Description: The program specified an illegal value for
the FILL parameter.

Action:

• X'OOO2'

Check the FILL field. The only valid values
are X'OO' for BUFFER and X'OI' for LL.

STATE_CHECK

Description: The conversation is not in receive state.

Action: Issue the verb in receive state.

C-39

• X'OOI9'

Description: The program issued the verb on a mapped
conversation.

Action: Issue the verb only on a basic conversation.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F003' APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

• X'F002'
• X'FOOI'
• X'OOOO'

PREPARE_TO_RECEIVEand
MC_PREPARE_TO_RECEIVE

• X'OOOI' PARAMETER_CHECK

- X'OOOOOOOI'

Description: APPC/PC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

- X'00000002' BAD_CONV_ID

C-40

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONV _ID parameter for validity.

Description: APPC/PC does not recognize the specified
TYPE.

Action: Check the TYPE field. The only valid
values are X'OO' for SYNC_LEVEL and
X'OI' for FLUSH.

• X'0002' STATE_CHECK

- X'OOOOOOA2' UNFINISHED _LL

Description: The conversation is in send state, and the
program started, but did not finish, sending
a logical record.

Action: Finish sending the logical record.

Description: The conversation is not in send state.

Action: Issue the verb in send state.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'0003'
• X'F003'
• X'F002'
• X'FOOl'
• X'0019'
• X'OOlO'
• X'OOOF'
• X'OOO5'
• X'0006'
• X'0007'
• X'0008'
• X'F004'
• X'F005'
• X'OOOO'
• X'OOOE'
• X'0013'

• X'OOOl'

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONVERSATION_TYPE_MIXED
CONV_FA~URE_NO_RETRY
CONY _FAILURE_RETRY
DEALLOCATE_ABEND
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK
PROG_ERROR_PURGING
SVC_ERROR_PURGING.

PARAMETER_CHECK

X'OOOOOOOl'

Description: APPCjPC does not recognize the specified
TP_ID.

C-41

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONV _ID parameter for validity.

Description: The receive data area crosses a segment
boundary.

Action: Make sure the offset of the LOG_DATA
address plus the LOG_DATA_LENGTH
does not exceed 65535.

X'OOOOOOB5' RCV _AND _ WAIT_BAD _FILL

Description: The program specified an illegal value for
the FILL parameter.

Action: Check the FILL field. The only valid values
are X'OO' for BUFFER and X'Ol' for LL.

• X'0002' STATE_CHECK

C-42

X'OOOOOOB1' RCV_AND_WAIT BAD STATE

Description: The conversation is not in send or receive
state.

Action: Issue the verb only in send or receive state.

Description: The conversation is in send state, and the
program started, but did not finish, sending
a logical record.

Action: Finish sending the logical record.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'0003'
• X'F003'
• X'F002'
• X'FOOI'
• X'OOI9'
• X'OOIO'
• X'OOOF'
• X'0005'
• X'0006'
• X'0007'
• X'0008'
• X'0009'
• X'F004'
• X'F005'
• X'OOOO'
• X'OOOC'
• X'OOOE'
• X'OOOD'
• X'OOII'
• X'OOI3'
• X'OOI2'

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONVERSATION_TYPE_MIXED
CONY _FAILURE_NO_RETRY
CONV_FAlLURE_RETRY
DEALLOCATE_ABEND
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC.

RECEIVE_IMMEDIATE and MC_RECEIVE_ IMMEDIATE

• X'OOOI' PARAMETER_CHECK

- X'OOOOOOOI'

Description: APPCjPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPCjPC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

Description: APPCjPC does not recognize the specified
. CONV_ID.

Action: Check the CONY _ID parameter for validity.

C-43

- X'00000006'

Description: The data area crosses a segment boundary.

Action: Make sure the offset of the LOG_DATA
address plus the LOG_DATA_LENGTH
does not exceed 65535.

- X'OOOOOOC4' RCV _IMMD_BAD_FILL

Description: The program specified an illegal value for
the FILL parameter.

Action: Check the FILL field. The only valid values
are X'OO' for BUFFER and X'OI' for LL.

• X'0002' STATE_CHECK

- X'OOOOOOCI'

Description: The conversation is not in receive state.

Action: Issue the verb in receive state.

• X'OOI4' UNSUCCESSFUL

Description: There is nothing to receive.

Action: This return code is not an error indication.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'OOO3' ALLOCATION_ERROR
• X'FOO3' APPC_ABENDED
• X'FOO2' APPC_BUSY
• X'FOOI' APPC_DISABLED
• X'OOI9' CONVERSATION_TYPE_MIXED
• X'OOIO' CONY _FAILURE_NO_RETRY
• X'OOOF' CONY _FAILURE_RETRY
• X'OOO5' DEALLOCATE_ABEND
• X'OOO6' DEALLOCATE_ABEND_PROG
• X'OOO7' DEALLOCATE_ABEND_SVC
• X'OOO8' DEALLOCATE_ABEND_TIMER
• X'OOO9' DEALLOCATE_NORMAL
• X'FOO4' INCOMPLETE
• X'FOO5' INCOMPLETE_ALTERED_VERB

C-44

• X'OOOO'
• X'OOOC'
• X'OOOE'
• X'OOOD'
• X'OOll'
• X'0013'
• X'0012'

• X'OOOl'

OK
PROG_ERROR NO TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC.

PARAMETER_CHECK

- X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

• X'OOO2' STATE_CHECK

- X'OOOOOOEl'

Description: The conversation is not in receive or
confirm state.

Action: Do not issue REQUEST_TO_SEND in send
state.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F003'
• X'F002'
• X'FOOl'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED

C-45

• X'0019' CONVERSATION_TYPE_MIXED
OK. • X'OOOO'

• X'OOOI' PARAMETER_CHECK

- X'OOOOOOOI'

Description: APPCfPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC fPC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

- X'00000002' BAD _ CONY _ID

Description: APPCfPC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

Description: The send data area crosses a segment
boundary.

Action: Make sure the offset of the LOG_DATA
address plus the LOG_DATA_LENGTH
does not exceed 65535.

- X'OOOOOOFl' BAD _LL

C-46

Description: DATA contains an invalid logical record
length (LL) value of hex 0000, 0001, 8000, or
8001.

Action: Check the logical record length and the LL
field.

• X'0002' STATE_CHECK

- X'OOOOOOF2'

Description: The conversation is not in send state.

Action: Issue the verb in send state.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'0003'
• X'F003'
• X'F002'
• X'FOOl'
• X'0019'
• X'OOlO'
• X'OOOF'
• X'0005'
• X'0006'
• X'0007'
• X'0008'
• X'0009'
• X'F004'
• X'F005'
• X'OOOO'
• X'OOOE'
• X'0013'

• X'OOOl'

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY
APPC_DISABLED
CONVERSATION_TYPE_MIXED
CONV_FA~URE_NO_RETRY
CONY _FAILURE_RETRY
DEALLOCATE_ABEND
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK
PROG_ERROR_PURGING
SVC_ERROR_PURGING.

PARAMETER_CHECK

- X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

C-47

- X'00000002'

Description: APPCjPC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

Description: The log data area crosses a segment
boundary.

Action: Make sure the offset of the LOG_DATA
address plus the LOG_DATA_LENGTH
does not exceed 65535.

- X'OOOOOI02' LOG_LL_ WRONG

Description: The LL field of the log data does not
match the specified length.

Action: Check the length of the data and the LL
field.

- X'OOOOOI03' BAD_TYPE

Description: APPCjPC does not recognize the specified
error TYPE.

Action: Check the value of the TYPE parameter.
The valid values are PROG (X'OO') and SVC
(X'OI').

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'OOO3' ALLOCATION_ERROR
• X'FOO3' APPC_ABENDED
• X'FOO2' APPC_BUSY
• X'FOOl' APPC_DISABLED
• X'OO19' CONVERSATION_TYPE_MIXED
• X'OOIO' CONY _FAILURE_NO _RETRY
• X'OOOF' CONY _FAILURE_RETRY
• X'OOO5' DEALLOCATE_ABEND
• X'OOO6' DEALLOCATE_ABEND_PROG
• X'OOO7' DEALLOCATE_ABEND_SVC
• X'OOO8' DEALLOCATE_ABEND_TIMER

C-48

• X'OOO9' DEALLOCATE_NORMAL
• X'FOO4' INCOMPLETE
• X'FOO5' INCOMPLETE_ALTERED - VERB
• X'OOOO' OK
• X'OOOE' PROG_ERROR_PURGING
• X'OO13' SVC_ERROR_PURGING.

The SET_PASSTHROUGH verb does not provide a
RETURN_CODE parameter.

TEST and Me_TEST

• X'OODO' OK

X'OOOOOOOO'

Description: The LU has posted the connection and
data is available in an LU's receive buffer.

Action: This return code does not indicate an error
condition.

X'OOOOOOOl' POSTED _NOT_DATA

Description: The LU has posted the conversation and
information other than data is available in
the LU's receive buffer. This return code is
not an error condition.

Action:

• X'OOOl'

Issue RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE to receive the
information. This return code is not an
error notification.

PARAMETER_CHECK

- X'OOOOOOOl'

Description: APPC/PC does not recognize the specified
TP_ID.

C-49

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

X'00000002' BAD _ CONY _ID

Description: APPC/PC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

• X'0002'

X'00000122'

Description: The conversation is not in receive state
and the program specified the POSTED
option for the TYPE parameter.

Action: Issue the verb in receive state.

• X'0014' UNSUCCESSFUL

Description: For TEST(POSTED), the conversation has not
been posted. For TEST
(REQUEST_TO_SEND_RECEIVED), the
REQUEST_TO_SEND indication has not been
received.

Action: Reissue the verb later.

• X'OOOB' POSTING_NOT_ACTIVE

Description: Posting is not active for the specified
conversations.

Action: Issue POST_ON_RECEIPT before testing the
conversation.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'0003'
• X'F003'
• X'F002'

C-50

ALLOCATION_ERROR
APPC_ABENDED
APPC_BUSY

• X'FOOl'
• X'0019'
• X'OOlO'
• X'OOOF'
• X'OOOA'
• X'0005'
• X'0006'
• X'0007'
• X'0008'
• X'0009'
• X'F004'
• X'F005'
• X'OOOC'
• X'OOOE'
• X'OOOD'
• X'OOll'
• X'0013'
• X'0012'

• X'OOOOOOOl'

APPC _DISABLED
CONVERSATION_TYPE_MIXED
CONY _FAILURE_NO _RETRY
CONY _FAILURE_RETRY
DATA_POSTING_BLOCKED

DEALLOCATE_ABEND
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
INCOMPLETE
INCOMPLETE_ALTERED_VERB
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC.

Description: APPC fPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated TP or
the CREATE_TP record for a remotely initiated
TP.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'
• X'F0040000'
• X'F0050000'
• X'OOOOOOOO'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK.

C-51

• X'00000003'

Description: APPC/PC does not recognize the specified
LU_ID.

Action:

• X'00000243'

Match this LU_ID with the one APPC/PC
returns after executing the ATTACH_LU verb.

TOO_MANY _TPS

Description: APPC/PC is already running the maximum
number of transaction programs that this LU
can run concurrently (as defined with the
MAX_TPS parameter in the ATTACH_LU
verb). This return code indicates that the
application subsystem cannot initiate the
transaction program locally. The condition may
be temporary if an incoming ALLOCATE was in
the process of being rej ected.

Action: Terminate other transaction programs to make
room, or issue the CHANGE_LU verb to
increase MAX_ TPS.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOIOOOO'
• X'OOOOOOOO'

TP_VALID

• X'OOOOOOOl'

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

Description: APPC/PC does not recognize the specified
TP_ID.

Action:

C-52

Match the TP _ID with the TP _ID that
APPC/PC returns after executing the
TP _STARTED verb for a locally initiated TP or

the CREATE_TP record for a remotely initiated
TP.

• X'00000002' BAD_CONV _ID

Description: APPCjPC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

• X'OOOOOllO' BAD_STATE

Description: TP _ V ALID does not follow a
GET_ALLOCATE.

Action: Issue TP _ V ALID verb immediately after
GET_ALLOCATE.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000'
• X'F0020000'
• X'FOOlOOOO'
• X'F0040000'
• X'FOO50000'
• X'OOOOOOOO'

TRACE

APPC_ABENDED
APPC_BUSY
APPC_DISABLED
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK.

The TRACE verb does not provide a RETURN_CODE parameter.

• X'00000301'

Description: APPCjPC could not send the NMVT because
the SSCP _PU session was not active.

Action: Contact the host operator to activate an
SSCP _PU session.

C-53

• X'00000302'

Description: The data exceeded the allowable RU size.

Action: Reduce the size of data sent or check that the
RU size is adequate.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'F0030000' APPC_ABENDED
APPC_BUSY
APPC_DISABLED
OK.

• X'F0020000'
• X'FOO 1 0000'
• X'OOOOOOOO'

WAIT

• X'OOOO' OK

X'OOOOOOOO'

Description: The L U has posted the conversation and
data is available in an LU's receive buffer.

Action: This return code does not indicate an error
condition.

X'OOOOOOOl' POSTED_NaT_DATA

Description: The L U has posted the conversation and
information other than data is available in
the LU's receive buffer.

Action: Issue RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE to receive the
information. This return code is not an
error notification.

• X'OOOl' PARAMETER_CHECK

C-54

X'OOOOOOOl'

Description: APPC fPC does not recognize the specified
TP_ID.

Action: Match the TP _ID with the TP _ID that
APPCjPC returns after executing the
TP _STARTED verb for a locally initiated
TP or the CREATE_TP record for a
remotely initiated TP.

Description: APPCjPC does not recognize the specified
CONV_ID.

Action: Check the CONY _ID parameter for validity.

• X'0002' STATE_CHECK

XOOO00122'

Description: One of the conversations in the CONY _ID
list is not in receive state (for

Action:

TYPE = POSTED).

Check the TYPE field for accuracy. Issue
verbs to place the conversation in receive
state.

• X'OOOB'

Description: The program issued a WAIT verb before
issuing POST_ON_RECEIPT verbs for any of
the conversations included on the WAIT verb
list.

Action: The transaction program must issue a
POST_ON_RECEIPT for at least one of the
conversations on the WAIT verb list.

For descriptions of the following return codes, see "Common
Return Codes" on page C-2.

• X'OOO3' ALLOCATION_ERROR
• X'FOO3' APPC_ABENDED
• X'FOO2' APPC_BUSY
• X'FOOl' APPC_DISABLED
• X'OO19' CONVERSATION_TYPE_MIXED
• X'OOlO' CONY _FAILURE_NO _RETRY
• X'OOOF' CONY _FAILURE_RETRY
• X'OOOA' DATA_POSTING_BLOCKED

C-55

• X'0006'
• X'0007'
• X'OOO8'
• X'0009'
• X'F004'
• X'F005'
• X'OOOO'
• X'OOOC'
• X'OOOE'
• X'OOOD'
• X'OOll'
• X'0013'
• X'0012'

C-56

DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
INCOMPLETE
INCOMPLETE_ALTERED_VERB
OK
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC.

Appendix D. SYSLOG Type Codes

This appendix lists the SYSLOG type codes. SYSLOG codes
represent error conditions including data errors reported by the
transaction program, link errors, configuration errors, and
system protocol errors. If protocol errors persist, refer to
Appendix I, "Statement of Service," for information on obtaining
program service.

Some of the terminology below is not defined in this manual. See
the SNA Format and Protocol Reference Manual, for unfamiliar
terms. The asterisk (*) in the following tables indicates that the
SYSLOG type code signals a protocol error.

Type Subtype

X'OOOl' Sense code

X'0002' *

X'0003'

Meaning

Conversation error
generated from SEND_ERROR,
MC_SEND_ERROR,
DEALLOCATE
(of an ABEND type),
MC_DEALLOCATE
(TYPE = ABEND).
SYSLOG ADDITIONAL_INFO
points to a byte containing
one of the following:

X'OO' - locally generated
conversation error
X'Ol' - remotely generated
conversation error

If log data is present, SYSLOG
DATA points to the data.

If log data is not present,
SYSLOG DATA is
X'FFFFFFFF' .

Received an OAF-DAF address
which duplicates one already
active

Cannot route request to LU
(The LU may not be ATTACHed

D-l

Type Subtype Meaning

or the LU name or NAU
address may be incorrect.)

X'OOO4' * OAF-DAF address space filled
(Too many sessions may be active.)

X'OOO5' * Begin Bracket bit not set in RH
X'OOO6' * Received an unexpected RTR
X'OOO7' * Received an unexpected BIS reply
X'OOO8' Sense Code * Conversation-level protocol

error detected at the
basic conversation level.
The session is deactivated
with an UNBIND indicating
a type X'FE' protocol error.

X'OOO9' * Conversation level protocol
error detected for a mapped
conversation. APPCjPC issues a
DEALLOCATE TYPE(ABEND)
for the conversation.

X'OOOA' * Received a BIND response with no
outstanding request

X'OOOB' * NS header not recognized on
an SSCP-LU or SSCP-PU session

X'OOOC' * Received an UNBIND request
with syntax error

X'OOOD' * Received session control
request with format error

X'OOOE' * Received UNBIND response with no
outstanding request

X'OOOF' * Received INITSELF response with
no outstanding request

X'OOlO' Sense code * Received BIND request with syntax,
state, or semantic error

X'OOll' * Received unexpected BIS request
X'OO12' * Received invalid NS record
X'OO13' * Session level protocol error detected
X'OO14' Received frame from DLC in error
X'OO15' * Bracket error
X'OO16' Received route inop - line has gone

down (This is the only logged
SDLC error.) See

"SDLC Problems" on page D-22.
X'OO17' Network Management NMVT

message (See "Network
Management NMVT Message"

D-2

Type

X'OO18'

X'0019'
X'OOlA'
X'OOlB'

Subtype

X'OOOOOOOO'
X'OOOOOOOl'

X'OOOOOOO2'
X'OOOOOOO3'

*

X'OOOOOlOl'
X'OOOOOl02'
X'OOOOOl03'
X'OOOOOl05'
X'OOOOOl06'
X'OOOOOl07'

X'OOOOOl08'

X'00000200'
X'00000300'
X'00000400'
X'00000500'
X'00000600'
X'00000700'
X'00000800'
X'8xxxxxxx'

Meaning

in this appendix.)
User-defined data
A complete NMVT (NS header,

major vector, and appropriate
subvectors)

TRANSFER_ALERT
TRANSFER_PDSTATS

Received Error Data GDS Variable
from a partner on a mapped
conversation. APPC/PC issues
a DEALLOCATE(ABEND)
for the conversation

Session Level Security Error
Conversation Level Security Error
Link Level Error (See IBM

Token-Ring Network Problems
on page D-5 and IBM
Token-Ring Network Problem
Determination Guide)
Invalid adapter
Command not recognized
Invalid link ID
Invalid parameter table
Required parameter missing
Invalid Parameter Table

field
Invalid number of

connections
Adapter not open
Duplicate command
Remote station not responding
DLC unsuccessful-retry
DLC unsuccessful-no retry
XID protocol error
Connection failure
DLC-specific link level error
(A 1 must appear in left-most bit;
the meaning of each code is
determined by the
particular DLC.)

D-3

Note:

For link level errors, SYSLOG ADDITIONAL_INfO points to
a DLC address of up to 26 characters, in the same format as
in the ATTACH_LU verb.

Type fSubtype Meaning

X'OOlC' NMVT message too large for the
RU size

X'OOID' * Received non-normal UNBIND
(Due to a protocol error or a
DETACH_PU(HARD) verb)

The subcodes below refer to the UNBIND type:

Type Subtype Meaning

Note:

X'00000003'
X'00000006'
X'00000007'
X'00000008'
X'00000009'
X'OOOOOOGA'
X'OOOOOOOB'
X'OOOOOOOC'
X'OOOOOOOE'
X'OOOOOOOF'
X'OOOOOOll'
X'OOOOOOFE'

Session outage
Invalid parameters
Virtual route map
Route extension INOP
Hierarchical reset
SSCP gone
Virtual route deactivated
Unrecoverable LU failure
Recoverable LU failure
Cleanup
Gateway node cleanup
Protocol violation

For abnormal UNBIND errors, SYSLOG ADDITIONAL-INFO
points to the 17 character fully qualified partner L U name,
followed by the 8-character mode name.

Type Subtype Meaning

X'FFFF' abnormal termination
of APPC/PC

D-4

The abnormal termination subtypes below indicate either an
invalid configuration file or an APPC/PC program error.
Restore or reconstruct the configuration file from the
APPC/PC menu~, if possible, to correct these problems. (For

information on the APPCfPC menus refer to the APPCfPC
Installation and Configuration Guide.)

Type Subtype

X'OOOOOOOO'

X'OOOOOOOl'

X'00000002'
X'00000003'
X'OOOOO004'
X'00000005'
X'00000006' *

Meaning

No available storage, APPC fPC will
try to close adapters.

No available storage, APPCfPC
cannot continue. If the IBM
Token-Ring Network is left
in an unstable state, the
keyboard may be locked. The
SYSLOG exit routine can
choose to unlock the keyboard
and not return to APPCfPC.

Process being created is unknown.
Process fell through to its end.
Sending to a nonexistent queue.
Receiving from a nonexistent queue.
Invalid variant variable in

configuration file.

* These SYSLOG type codes indicate protocol errors.

IBM Token-Ring Network
Problems

APPCfPC reports failures on the IBM Token-Ring Network and
the adapter using its SYSLOG facilities. APPCfPC uses two
SYSLOG TYPE codes for these data-link-level errors. A SYSLOG
of type LINK_ERROR (X'OOlB') indicates that either the IBM
Token-Ring Network adapter or the component of APPCfPC that
interfaces to the adapter has determined that it is unable to
complete a command. A SYSLOG of type Network Management
NMVT Message (X'0017') indicates the loss or impending loss of
an adapter or a network resource.

Link-Level Errors
The SUBTYPE and ADDITIONAL_INFO fields of the SYSLOG
record return information for link level errors.

D-5

Understanding Link Error Subtypes

The link error subtype identifies the specific link-level error that
occurred.

The following list of link error subtypes describes the causes of
these errors and provides recommended solutions.

• X'OOOOOlOl' Invalid Adapter

Description: APPC/PC tried to issue a command to the
IBM Token-Ring Network containing an
adapter ID which is not X'OO' or X'Ol'.

Action: Verify that the definition of Partner LUs on the
ATTACH_LU verb specifies only adapter ID
values X'OO' or X'Ol'.

• X'OOOOOl02' Command Not Recognized

Description: An unexpected internal APPC/PC software
error occurred.

Action: Refer to Appendix I, "Statement of Service,"
for information on obtaining program service.

• X'OOOOOl03' Invalid Link ID

Description: APPC/PC Invalidly issued commands for an
IBM Token-Ring Network link which was in the
process of being disconnected, or after an
unrecoverable software error occurred.

Action: ALLOCATE a conversation as necessary to
establish the link. If the error persists, refer to
Appendix I, "Statement of Service," for
information on obtaining program service.

• X'OOOOOl05' Invalid Parameter Table

D-6

Description: An unexpected internal APPC/PC software
error occurred.

Action: Refer to Appendix I, "Statement of Service,"
for information on obtaining service.

• X'OOOOOl06' Required Parameter Missing

Description: An unexpected internal software error
occurred.

Action: Refer to Appendix I, "Statement of Service,"
for information on obtaining program service.

• X'OOOOOl07' Invalid Parameter Table Field

Description: The IBM Token-Ring Network adapter found
an invalid value for a parameter table field.

Action: If the error occurred during processing of the
ACTIV ATE_DLC verb, verify that the adapter
address specified in your APPC/PC
configuration is valid (that is, the high order bit
in this address is not set).

• X'OOOOOl08' Invalid Number of Connections

Description: The number of incoming link connections
calculated was greater than the maximum
number Qf link stations.

Action: Retry the ACTIV ATE_DLC verb. If the error
persists, refer to Appendix I, "Statement of
Service," for information on obtaining program
service.

• X'00000200' Adapter Not Open

Description: The program issued commands to an IBM
Token-Ring Network adapter that the
application subsystem has not opened.

Action: Issue the ACTIV ATE_DLC verb to open the
adapter.

• X'00000300' Duplicate Command

Description: The program issued two ACTIV ATE_DLC
verbs for the same IBM Token-Ring Network
adapter, or an unexpected software error
occurred.

D-7

Action: Verify that the program is not issuing two
ACTIVATE_DLC verbs for the same adapter. If
this action does not solve the problem, refer to
Appendix I, "Statement of Service" for
information on obtaining program service.

• X'00000400' Remote Station Not Responding

Description: IBM Token-Ring Network adapter received no
response on the network when attempting to
locate a partner node.

Action: Verify that the specification of the adapter
address of the partner node is correct and that
the node is operational on the network (that is,
its adapter has been open and initialized).

• X'00000500' DLC Unsuccessful-Retry

Description: The IBM Token-Ring Network adapter
detected a sequence error.

Action: Retry the conversation that failed.

• X'00000600' DLC Unsuccessful-No Retry

Description: A catastrophic, unrecoverable failure
occurred.

Action: The application subsystem must reopen the
adapter that failed by issuing the
ACTIVATE_DLC verb.

• X'00000700' XID Protocol Error

D-8

Description: An unexpected XID was received during the
XID exchange process on the IBM Token-Ring
Network link.

Action: If error persists refer to Appendix I, "Statement
of Service," for information on obtaining
program service.

• X'00000800' Connection Failure

Description: The IBM Token-Ring Network link that
previously existed with a partner node has been
unexpectedly disconnected.

Action: Check that the partner node has not
deliberately disconnected.

Understanding Link Error Data

In addition to a subtype code, the link error specifies an
ADDITIONAL_INFO pointer. This pointer indicates the location
of the following information:

DLC NAME: 'ITRN '(8 ASCII characters)

ADAPTER NUMBER: X'OO' if the error occurred on the primary
adapter and X'01' if the error occurred on the
secondary adapter.

DESTINATION ADDRESS: length (one byte)

DESTINATION ADDRESS: Token-Ring Network address of the
partner node as defined in the ATTACH_LU verb.
Not applicable on all link errors. (~p to 16-byte hex
address)

Network Management NMVT
Messages
The following fields of the SYSLOG record contain information
for Network Management NMVT messages:

SUBTYPE Specifies the NMVT message:

DATA

X'OOOOQOOO' = USER DATA

X'00000002' = ALERT

provides a Network Management vector.

D-9

ALERTS
In addition to logging ALERTS locally, APPC/PC also sends the
ALERT vector to an application program residing in the host
computer if there is an active host SSCP-PU session when
APPC/PC reports the ALERT. The application program displays
information about the failure condition to an operator console.

The ALERT Network Management vector is composed of the
ALERT Major Vector, the Correlator Subvector, the Product Set
ID Subvector, the Basic Alert Subvector, and a variable number
of Hexadecimal Detail Qualifier Subvectors.

The values for the Basic Alert Subvector and Hexadecimal Detail
Qualifier Subvectors are unique to the type of error APPC/PC
reports. The error categories that this section describes are:

• Adapter bring-up errors
• Adapter open errors
• Adapter check
• Ring status
• Ring status-remove received
• PC-detected
• Software errors.

It is beyond the scope of this document to describe the subvector
formats in detail. Consult the SN A Reference Summary for a
complete description of the structure and format of the ALERT
Major Vector and the associated subvectors. Consult the IBM
Token-Ring Network PC Adapter Technical Reference Manual for
a description of the specific adapter errors contained in the
Hexadecimal Detail Qualifier Subvectors.

In the following format descriptions, h represents a hexidecimal
digit.

Adapter Bring-Up Errors

Description: Bring-up errors occur when the ACTIVATE_DLC
verb cannot initialize the IBM Token-Ring Network
adapter successfully. These errors indicate that the
adapter has failed a hardware diagnostic test.

D-IO

Action: Run the IBM Token-Ring Network adapter
diagnostics as described in the manual IBM
Token-Ring Network PC Adapter Guide to
Operations.

For bring up errors, the ALERT subvectors are:

Basic Alert Subvector

• Subvector Length X'OD'
• Subvector Key X'9l'

• Flags X'OO' Not operator
initiated

• Alert Type X'Ol' Permanent error
• General Cause Code

• Specific Component Code

• Alert Description Code

• User Action Code
• Detail Text Ref Code

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

EBCDIC Qualifier

• Subector Length
• Subvector Key

• Qualifier Data

Hex Qualifier

• Subector Length

X'Ol'

X'0012'

X'0040'
X'0040'
X'0040'

X'04'
X'Al'

Hardware or
microcode

Communication
link adapter

X'hhhh' Adapter bring­
up error code

X'03'
X'Al'
X'hh'

X'04'
X'AO'

X'4040'

X'12'

Adapter (0 I 1)

Type = qualifying
data (hex)

Null field =
NPDA screen
filler

D-l1

• Subvector Key

• Qualifier Data

Adapter Open Errors

X' AI' Type = qualifying
data (hex)

6X'hh' Adapter node
address

10X'hh' Microcode EC
level (10
bytes)

Description: The ACTIV ATE_DLC verb has failed to open the
IBM Tpken-Ring Network adapter. The adapter
could not successfully enter itself into the network.

Action: Perform IBM Token-Ring Network problem
determination procedures.

For open errors, the ALERT subvectors are:

Basic Alert Subvector

• Subvector Length
• Subvector Key

• Flags

• Alert Type

• General Cause Code
• Specific Component Code

• Alert Description Code
• User Action Code
• Detail Text Ref Code

Hexadecimal Detail Qualifier

.. Subvector Length
• Subvector Key
• Qualifier Data

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

D-12

X'OD'
X'9l'
X'OO'

X'Ol'
X'OB'
X'0080'

X'0041'
X'0041'
X'0041'

X'04'
X'Al'
X'QOhh'

X'03'
X'Al'
X'hh'

Not operator
initiated

Permanent error
Hardware
Token-Ring

adapter

Adapter (0 I 1)

EBCDIC Qualifier

• Subvector Length X'04'

• Subvector Key X'AO' Type = qualifying
data (hex)

• Qualifier Data X'4040' Null field =
NPDA screen
filler

Hex Qualifier

• Subvector Length X'12'

• Subvector Key X'Al' Type = qualifying
data (hex)

• Qualifier Data 6X'hh' Adapter node
address

10X'hh' Microcode EC
level (10
bytes)

Adapter Check

Description: The IBM Token-Ring Network Adapter has failed
during operation.

Action: Perform IBM Token-Ring Network problem
determination procedures.

For adapter check errors, the ALERT subvectors are:

Basic Alert Subvector

• Subvector Length X'OD'
• Subvector Key X'9l'
• Flags X'OO' Not operator

initiated
• Alert Type X'Ol' Permanent error
• General Cause Code X'Ol' Hardware or

microcode
• Specific Component Code X'OO12' Communications

Link Adapter
• Alert Description Code X'0042'
• User Action Code X'0040'
• Detail Text Ref Code X'0042'

D-13

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

Hexadecimal Detail Qualifier

• Subvector Length

• Subvector Key

• Qualifier Data

EBCDIC Qualifier

• Subvector Length
• Subvector Key

• Qualifier Data

Hex Qualifier

•
•
•

Subvector Length
Subvector Key

Qualifier Data

Ring Status

X'OA'
X'AI'
X'hhhh'

6X'hh'

X'03'
X'AI'
X'hh'

X'04'
X'AO'

X'4040'

X'12'
X'AI'

6X'hh'

10X'hh'

Adapter check
error code

Adapter check
parms 0-2

Adapter (0 I 1)

Type = qualifying
data (hex)

Null field =
NPDA screen
filler

Type = qualifying
data (hex)

Adapter node
address

Microcode EC
level (10
bytes)

Description: The IBM Token-Ring Network adapter has
encountered a token-ring failure condition. If the
failure was the fault of the adapter, the token ring
can recover without intervention.

Action:

D-14

Perform IBM Token-Ring Network problem
determination procedures.

For ring status errors, the ALERT subvectors are:

Basic Alert Subvector

• Subvector Length X'OD'
• Subvector Key X'91'

• Flags X'OO' Not operator
initiated

• Alert Type X'OI' Permanent
error

• General Cause Code X'OB' Hardware or
microcode

• Specific Component Code X'0080' Token-Ring
Network error

• Alert Description Code X'0043'
• User Action Code X'0041'
• Detail Text Ref Code X'0043'

Hexadecimal Detail Qualifier

• Subvector Length X'04'
• Subvector Key X'AI'
• Qualifier Data X'hhhh' Ring status

code

Hexadecimal Detail Qualifier

• Subvector Length X'03'
• Subvector Key X'AI'
• Qualifier Data X'hh' Adapter (0 I 1)

EBCDIC Qualifier

• Subvector Length X'04'
• Subvector Key X'AO' Type = qualifying

data (hex)
• Qualifier Data X'4040' Null field =

NPDA screen
filler·

Hex Qualifier

• Subvector Length X'12'
• Subvector Key X'AI' Type = qualifying

data (hex)
• Qualifier Data 6X'hh' Adapter node

address

D-15

10X'hh' Microcode EC
level (10
bytes)

Ring Status - Remove Received

Description: Another network entity forced the IBM
Token-Ring Network adapter to remove itself from
the network.

Action: If this problem occurs repeatedly, refer to
Appendix I, "Statement of Service," for
information on obtaining program service.

For ring status-remove received errors, the ALERT subvectors
are:

Basic Alert Subvector

• Subvector Length X'OD'

• Subvector Key X'91'

• Flags X'OO' Not operator
initiated

• Alert Type X'OI' Permanent error
• General Cause Code X'OF' Undetermined
• Specific Component Code X'OOFF' Undetermined
• Alert Description Code X'0044'
• User Action Code X'0044'

• Detail Text Ref Code X'0044'

Hexadecimal Detail Qualifier

• Subvector Length X'04'
• Subvector Key X'AI'
• Qualifier Data X'hhhh' Ring status

code

Hexadecimal Detail Qualifier

• Subvector Length X'03'
• Subvector Key X'AI'
• Qualifier Data X'hh' Adapter (0 I 1)

EBCDIC Qualifier

• Subvector Length X'04'

D-16

• Subvector Key

• Qualifier Data

Hex Qualifier

•
•
•

Subvector Length
Subvector Key

Qualifier Data

PC-Detected

X' AO' Type = qualifying
data (hex)

X' 4040' Null field =
NPDA screen
filler

X'12'
X'A1'

6X'hh'

10X'hh'

Type = qualifying
data (hex)

Adapter node
address

Microcode EC
level (10
bytes)

Description: The IBM Token-Ring Network adapter detected
an internal error.

Action: Reboot the program if possible; if the error persists,
refer to Appendix I, "Statement of Service," for
information on obtaining program service.

For PC-detected errors, the ALERT subvectors are:

Basic Alert Subvector

• Subvector Length X'OD'

• Subvector Key X'91'
• Flags X'OO' Not operator

initiated
• Alert Type X'Ol' Permanent error
• General Cause Code X'Ol' Hardware or

microcode
• Specific Component Code X'OO12' Communication

link adapter
• Alert Description Code X'0045'
• User Action Code X'0045'
• Detail Text Ref Code X'0045'

Hexadecimal Detail Qualifier

• Subvector Length X'04'

D-17

• Subvector Key X'AI'

• Qualifier Data X'hhhh' Ring status
code

Hexadecimal Detail Qualifier

• Subvector Length X'03'
• Subvector Key X'AI'
• Qualifier Data X'hh' Adapter (0 I 1)

EBCDIC Detail Qualifier

• Subvector Length X'04'

• Subvector Key X'AO'

• Qualifier Data X'4040' Null Field

Hexadecimal Detail Qualifier

• Subvector Length X'12'

• Subvector Key X'AI'

• Qualifier Data 6X'hh' Adapter node
address

• Qualifier Data 10X'hh' Microcode EC
level (10
bytes)

D-18

Software Errors

Description: The IBM Token-Ring Network data link control
software detected an internal error.

Action: Reboot the program if possible; if the error persists,
refer to Appendix I, "Statement of Service," for
information on obtaining program service.

For software errors, the ALERT subvectors are:

Basic Alert Subvector

• Subvector Length
• Subvector Key
• Flags

• Alert Type
• General Cause Code

• Specific Component Code
• Alert Description Code
• User Action Code
• Detail Text Ref Code

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

EBCDIC Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

X'OD'
X'91'
X'OO'

X'OI'
X'18'

X'OOFF'
X'0046'
X'0046'
X'0046'

X'04'
X'AI'

Not operator
initiated

Permanent error
Microcode or

software
Undetermined

X'hhhh' Contents of IP
register at
detection

X'03'
X'AI'
X'hh'

X'04'
X'AO'

Adapter (0 I 1)

X'4040' Null Field

D-19

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

• Qualifier Data

Hexadecimal Detail Qualifier

• Subvector Length
• Subvector Key
• Qualifier Data

USER DATA

X'12'
X'Al'
6X'hh' Adapter node

address
lOX'hh' Microcode EC

level

X'lO'
X'Al'
X'hhhh' APPC/PC

software error
code

X'hhhh' Contents of
register ES

X'hhhh' Contents of
register BX

X'hhhh' Contents of
register S1

X'hhhh' Contents of
register DS

X'hhhh' Contents of
register D1

X'hhhh' Contents of
memory
at ES:BX

As with ALERTS, APPC/PC logs USER DATA locally. Unlike
ALERTS, however, APPC/PC does not send USER DATA
information on the SSCP-PU session. The USER DATA Network
Management vector contains the USER DATA Major Vector, the
Correlator Subvector, and a variable number of USER DATA
subvectors.

The fields and values for the subvectors are unique to the type of
error APPC/PC reports. It is beyond the scope of this document
to describe the contents of the adapter log and status block that
APPC/PC returns in the USER DATA subvectors. For this
information, consult the IBM Token-Ring Network PC Adapter
Technical Reference Manual.

D-20

The user data subvectors fall into two categories:

• DLC link status
• Counter overflow.

The descriptions of these USER DATA subvectors are as follows:

DLC Link Status

Description: The IBM Token-Ring Network data link control
software detected a link status that indicates an
error condition.

For DLC link status errors, the USER DATA subvectors are:

• Adapter (0 I 1) X'hh'

• User Data Code X' 10' condition = Link Status

• Qualifier Data

X'hhhh' DLC Status Block
6X'hh' Remote adapter node address
X'OOhh' Remote Service Access Point
6'hh' Frame Reject (FRMR) data (when applicable)

Counter Overflow

Description: The IBM Token-Ring Network data link control
software detected a statistical counter overflow.

For Counter Overflow errors, the USER DATA subvectors are:

• Adapter (0 11)

• User Data Code X'0020'

• User Data Log ID

X'hh'

condition =
Log Counter
Overflow

For Adapter Counter Overflow

LogID X'OOOl'

D-21

Qualifier Data 14X'hh' Adapter Log
(14 bytes)

For DLC Link Counter Overflow

Log ID X'0002'
Qualifier Data 6X'hh'

X'hhhh'

16X'hh'

Remote adapter
node address

Remote Service
Access Point

DLC Link Log

For DLC SAP Counter Overflow

Log ID X'0003'
Qualifier Data 18X'hh'

SDLC Problems

DLC SAP Log
(18 bytes)

APPC/PC reports failures in an SDLC link through a SYSLOG of
type X'0016' to indicate the failure of the adapter or a network
resource. If a link failure occurs APPC/PC attempts to reactivate
SDLC five times. If this is not successful you must fix the line
problem and re-issue the ACTIVATE_DLC verb. The following
timers within SDLC indicate when INOP conditions can occur.

The abbreviations used below are:

CTS: Clear To Send

DCE: Date Communication Equipment (a modem)

RTS: Request To Send

DTE: Data Terminal Equipment

DSR: Data Set Ready

DISC: Disconnect command

UA: Unnumbered Acknowledgement

D-22

30-millisecond CTS Dropout
If the CTS signal from the modem goes inactive during an active
transmission (that is, when RTS from the DTE is active), SDLC
initiates a 30-millisecond time-out. SDLC generates a link failure
if DSR remains inactive after 30 milliseconds.

30-millisecond DSR Dropout
If there is an abnormal transition in DSR status from the modem
(that is, the modem changes from active state to inactive state
without the DTR changing from active to inactive state), SDLC
will wait for 30 milliseconds for DSR to become active again.
SDLC generates a link failure if DSR remains inactive after 30
milliseconds.

40-second Transmit Failure
If a transmit operation continues for more than 40 seconds, SDLC
generates a link failure. This time limit applies for both primary
and secondary link stations. This time interval is sufficient to
transmit 4 kilobytes of data using the maximum supported frame
size and the minimum supported speed of 1200 bits per second.

5-second DISC Not Received
Time-out
After a secondary station receives a "close," it waits for 5 seconds
for a DISC from the primary station. If the DISC arrives within
this time limit, the secondary station responds with a U A and
waits for the primary station to terminate the link in a normal
fashion. If the DISC does not arrive within the 5 seconds, the
secondary station terminates the link connection and stops
responding to the primary station.

lO-second Inactivity Time-out
A secondary SDLC station generates a link failure if it detects
line inactivity (no polls from the primary station) for more than
10 seconds.

D-23

D-24

Appendix E. Sample Programs

The APPC/PC Structures and Sample Programs diskette included
with the APPC/PC Installation and Configuration Guide contains
a set of sample programs written in IBM PC Macro Assembler
language and assembled using the IBM Macro Assembler Version
2.00. These programs represent two small application subsystems
and the two sides of a cooperating transaction program. The
sample programs run on two IBM PCs connected by the IBM
Token-Ring Network. The diskette includes the following four
executable programs:

A sample sending side application subsystem.
A sample sending side transaction program.

SEND_AS
SEND_TP
RCV_AS
RCV_TP

A sample receiving side application subsystem.
A sample receiving side transaction program.

The AP PC/PC Structures and Sample Programs diskette also
includes files containing the listings for each program:
SEND_AS, SEND_TP, RCV _AS, and RCV _TP. These programs
illustrate the design of an application subsystem and the coding
of APPC/PC verbs using the macro-assembler verb- request
parameter lists included on the diskette.

The application subsystem programs (SEND_AS.EXE and
RCV _AS.EXE) are minimum application subsystems as described
in Chapter 5, "Using Control Verbs." Both of these application
subsystems follow the saine basic operation sequence:

• Verify that APPC/PC is loaded.

• Translate (CONVERT) ASCII names to EBCDIC.

• Define the Passthrough exit to APPC/PC. APPC/PC uses this
exit to communicate the TP _ID between the application
subsystem and its transaction program. This exit also
communicates the CONV _ID to remotely allocated
transaction programs.

• Initialize the session using the following APPC/PC verbs:

ATTACH_PU defines the Physical Unit.

E-l

ATTACH_LU defines the Logical Unit.
ACTIVATE_DLC opens the DLC adapter.
CNOS AUTO_ACTIVATEs the single session between the
two nodes.

• Execute the transaction program.

On the receiving side, the application subsystem performs a
GET_ALLOCATE loop while it waits for an incoming
ALLOCATE. When the application subsystem receives an
ALLOCATE, it verifies the ALLOCATE and then initiates the
receive side transaction program.

• After the sample transaction program terminates, the
application subsystem takes down the session with the
following APPC/PC verbs:

CNOS sets the session limit to o.
DETACH_LU deactivates the Logical Unit.
DETACH_PU deactivates the Physical Unit.

• The application subsystem then resets the Passthrough exit
address, and

• Exits to DOS.

The sample transaction programs (SEND_TP.EXE, and
RCV _TP.EXE) are small programs that demonstrate the use of
-conversation verbs. Both of these programs follow the same
operation sequence:

• Inform (TP_INITIATE) APPC/PC and the application
subsystem that the transaction program has begun, and in
turn, receive the TP _ID (and in the case of the receive side,
the CONV _ID) from the application subsystem (see
Chapter 2, "Developing an Application Subsystem").

• Set up the conversation (ALLOCATE).

• Execute some conversation verbs (SEND_DATA and
RECEIVE_AND_ WAIT).

• Take down the conversation (DEALLOCATE).

• Inform APPC/PC that the transaction program is complete
(TP _ENDED).

E-2

• Exit to the application subsystem.

Each transaction program requires a TP _ID and a CONY _ID in
order to issue valid conversation verbs. On the send side, the
TP _ID is returned on the TP _STARTED verb issued by the
application subsystem, and the CONY _ID is returned on the
ALLOCATE verb. The receive side, on the other hand, need only
have these values communicated to it by the application
subsystem when the receive side is initiated, since the
ALLOCATE has already been issued by the send side.

To provide the same interface to both transaction programs, the
application subsystem defines a user-defined verb for the sample
application subsystem.

Sample User-Defined Verb

The transaction program uses this user-defined verb to request
the TP _ID (and in the case of the remotely initiated transaction
program, the CONY _ID) from the application subsystem.

SUQQlied Parameters:

TP - INITIATE LOCAL_REMOTE - INDICATOR (variable)

TP_NAME (variable)

LU_NAME (variable)
Returned Parameters:

TP - ID (variable)

CONV_ID (variable)

RETURN_CODE (variable)
;

Supplied Parameters:

LOCAL_REMOTE_INDICATOR specifies whether this
transaction program is local (that is, the program that will issue
the ALLOCATE), or remote (that is, the program allocated by a
remote transaction program).

TP _NAME specifies the name of the transaction program the
application subsystem is initiating.

E-3

LU_NAME specifies the name of the partner LU at which the
transaction program is being initiated.

Returned Parameters:

TP _ID specifies the TP _ID.

CONY _ID specifies the CONV _ID, when a remote transaction
program is executing the TP _INITIATE.

RETURN_CODE specifies the return code indicating whether
the TP _INITIATE verb is acceptable (0) or not acceptable
(non-O).

Sample Conversation

The sample conversation performed by the transaction program is
as follows. The send side of the conversation executes the
following verbs:

TP _INITIATE(LOCAL) causes the application subsystem to
issue a TP _STARTED verb and return the TP _ID.

ALLOCATE causes APPC/PC to allocate a conversation and
return the CONV _ID.

SEND _DATA sends data on the conversation.

DEALLOCATE deallocates the conversation.

TP _ENDED informs APPC/PC that the transaction program
is complete.

The receive side of the conversation executes the following verbs:

E-4

TP _INITIATE(REMOTE) returns the TP _ID and the
CONY _ID to the transaction program.

RECEIVE_AND _WAIT receives the transmitted data.

RECEIVE_AND _WAIT receives the deallocate.

TP _ENDED informs APPC/PC that the transaction program
is complete.

Sample Program Execution

The procedure for running the sample program is:

1. Configure the hardware of two IBM PCs which are to run the
sample program (they should each contain an IBM
Token-Ring Network adapter).

2. Use the APPC/PC Configuration program to prepare two
APPC/PC diskettes (one for each side).

The send side diskette must contain:

• An APPC/PC configuration file. Use the configuration
program to create a configuration file as described in the
APPC/PC Installation and Configuration Guide. Use the
default values with the following changes:

On the "IBM Token-Ring DLC Parameters" screen,
set the "Load Option" parameter to 1.

On the same screen, set the "Local Node Address"
parameter to a soft address of 400000000001.

• APPC fPC system files (APPC fPC commands and
execution code)

• The sample programs, SEND_AS.EXE (the sample
application subsystem) and SEND_TP.EXE (the sample
transaction program).

The receive side diskette must contain:

• An APPC/PC configuration file. Use the configuration
program as described in the APPC/PC Installation and
Configuration Guide to create a configuration file. Use
the default values with the following changes:

On the "IBM Token-Ring DLC Parameters" screen,
set the "Load Option" parameter to 1.

E-5

On the same screen, set the "Local Node Address"
parameter to a soft address of 400000000002.

• APPC/PC system files (APPC/PC commands and
execution code).

• The sample programs, RCV _AS.EXE (the sample
application subsystem) and RCV _TP.EXE (the sample
transaction program).

3. Boot the two IBM PCs.

4. Type TOKREUI and press Enter to load the support interface
code for the IBM Token-Ring Network adapter.

5. Load APPC/PC on each machine.

6. On side two, type ReV_AS and press Enter.

The application subsystem prints a few messages to let you
know that it has brought up the node and that it is waiting
for an incoming ALLOCATE.

7. On side one, type SEND_AS and press Enter.

This action starts the sending application subsystem, which
activates the node, and executes the transaction program.

When the transaction program begins execution, the receive side
of the transaction program (RCV _TP.EXE) is automatically
loaded and executed when the incoming ALLOCATE is received
from the send side. After receipt of the ALLOCATE, the send
side sends a message, and the receive side displays the received
message. Each side terminates the transaction and brings down
the session.

The sample program can be rerun by simply executing the
application subsystem.

E-6

Modifying the Sample Program
for SDLC

The sample program provided on the diskette is written to use the
IBM Token-Ring Network. To run this sample program on an
SDLC connection, modify the program as follows:

• Use the configuration program to define an SDLC Data Link
Control (DLC).

• Change the application subsystem programs (SEND _AS.ASM,
and RCV _AS.ASM) to refer to the correct DLC.

The places in these programs that include DLC-specific
information are as follows:

In the ATTACH_LU control block (the PARTNER_LU
structure), the following fields identify the DLC.

dlcname Identifies the DLC Adapter Name (for
example, 'SDLC' or 'ITRN'). The value
should match that entered on the
configuration menu.

adaptid Indicates the adapter number (for example,
o or 1). This field should have a value of 0
for SDLC operation.

adp_adrlen Indicates the length of the Partner LU
adapter address in bytes. This field should
have a value of 0 because the SDLC code
does not use this field.

The following fields in the ACTIV ATE_DLC control
block identify the DLC.

dlcname Identifies the DLC Adapter Name ('SDLC'
or 'ITRN'). The value should match that
entered on the APPC/PC configuration
menus, and that found in the Partner LU
portion of the ATTACH_LU control block.

adaptid Indicates the adapter number (for example,
o or 1). This field should have a value of o.

E-7

Note: If the program is to use a switched line, you should
prompt the user to establish the switched connection (that is, dial
the originating telephone). The application subsystem should
display this prompt after issuing the ACTIVATE_DLC verbs and
then it should wait for acknowledgment from the user in the form
of a keystroke before continuing.

After entering these changes to both of the application subsystem
programs, SEND _AS.ASM and RCV _AS.ASM, assemble each
using the IBM Macro Assembler (Version 2.0). Then link each
program using the latest version of the link program to create
new EXE files. Execute the programs using the same
instructions as for operation with an IBM Token-Ring Network.

APPC/PC-CICS Sample Program

The following program is an assembler-language program written
as a transaction program to CICS. This program was written
using the EXEC CICS GDS format and can be run against the
receive side transaction program supplied for the sample for two
IBM PCs.

Appendix F, "Sample CICS Host Configuration for APPC/PC"
contains the CICS and VT AM definitions needed to run this
program.

*ASM XOPTS(CICS,GDS,SOURCE)
**

SAMPLE TRANSACTION PROGRAM SEND SIDE

* FUNCTION: This transaction program runs on the CICS
subsystem. It issues the verbs necessary to transmit*
a simple string of data to a transaction program on *
the receive side.

* METHOD: Issue the following verbs
* ALLOCATE

CONNECT PROCESS
SEND
SEND LAST WAIT
FREE

**

E-8

DFHEISTG DSECT
USING *,2,3
SPACE 2

SMPl DFHEIENT CODEREG=(2,3)
PRINT NOGEN
B INTRO
SPACE 2
DC CL4' SMP1' IDENTIFY PROGRAM
SPACE 2

INTRO DS OH

ALLOCATE

EXEC

CLI
BE
CLI
BE
SPACE

CICS GDS ALLOCATE
SYSID (, APPC')
CONVID(CONVID)
RETCODE(RCODE)
MODENAME (, normal')
RCODE,X'Ol'
QUIT
RCODE,X'02'
QUIT
2

CONNECT PROCESS

EXEC

eLI
BE
eLI
BE
eLI
BE
SPACE

CICS GDS CONNECT PROCESS
PROCNAME ('rcvtp')
PROCLENGTH(S)
SYNCLEVEL(O)
CONVID(CONVID)
CONVDATA(CONVDATA)
RETCODE(RCODE)
RCODE,X'03'
QUIT
RCODE,X'04'
QUIT
RCODE,X'OS'
QUIT
2

SEND

EXEC CICS GDS SEND

FROM (REQ1)
FLENGTH(4S)
CONVID (CONVID)
CONVDATA(CONVDATA)
RETCODE(RCODE)

eLI RCODE,X'03'
BE QUIT
eLI RCODE,X'04'
BE QUIT
eLI RCODE,X'OS'
BE QUIT
SPACE 2

E-9

SEND LAST WAIT

EXEC

CLI
BE
CLI
BE
CLI
BE
SPACE

CICS GDS SEND LAST
CONVID(CONVID)
CONVDATA(CONVDATA)
RETCODE(RCODE)
RCODE,X'03'
QUIT
RCODE,X'04'
QUIT
RCODE,X'05'
QUIT
2

WAIT

FREE

QUIT

CONVID
RCODE
CONVDATA
APSYSID
INLEN

REQl

E-IO

EXEC

CLI
BE
CLI
SPACE
DS
EXEC
EJECT
DC
DC
DC
DS
DS
EJECT

CICS GDS FREE
CONVID (CONVID)
CONVDATA(CONVDATA)
RETCODE(RCODE)
RCODE,X'03'
QUIT
RCODE,X'04'
2
OH
CICS RETURN

F'O'
XL4'OO'
XL24'OO'
CL4
F

DC XL2'002D'

CONVERSATION IDENTIFIER
RETURN CODE INFORMATION
CONVERSATION RELATED DATA
SYSTEM ID

DC XL16'2A2A2A2044617461207472616E736D69'
DC XL16'747465642066726F6D20434943532074'
DC XLll'6F205243565450202A2A2A'
END

o

Appendix F. Sample CICS Host
Configuration for APPC/PC

This appendix contains the CICS and VT AM definitions
necessary to use APPCjPC with a connection between an IBM PC
and a host system.

DEFINITIONS FOR APPC/PC - CICS SAMPLE TEST

CICS DEFINITIONS

APPC

PCT DEFINITION

DFHPCT TYPE=ENTRY,
TRANSID=SMP1,
PROGRAM=SMP1,
TWASIZE=160,
DTB=(YES),
SPURGE=YES,
TPURGE=YES,
INBFMH=ALL,
RSL=PUBLIC,
RSLC=NO

PPT DEFINITION

DFHPPT TYPE=ENTRY,PROGRAM=SMP1,PGMLANG=ASSEMBLER,RSL=PUBLIC

TCT DEFINITION

DFHTCT TYPE=SYSTEM, LUTYPE62 IBM PC
TRMTYPE=LUTYPE62,
ACCMETH=VTAM,
CONNECT=AUTO,
NETNAME=rcvlu (See note 1)
SYSIDNT=APPC,
FEATURE=SINGLE,
BUFFER=1024,
RUSIZE=256,
TCTUAL=255,
TRMPRTY=O,
TRMSTAT=TRANSCEIVE

x
X
X
X
X
X
X
X
X
X
X

F-l

VTAM DEFINITIONS

NCP DEFINITION (FOR GROUP,LINE,PU,LU)

HDXGRP GROUP LNCTL=SDLC,
DIAL=NO,
TYPE=NCP,
REPLYTO=3,
NRZI=YES

SPACE 2

SDLC CONNECTION
LEASED LINK (NON-SWITCHED)
LINK DEDICATED TO NCPi I.E., NO PEP
LINK IDLE FOR 3 MINUTES, TIMEOUT
MODEM AND IBM PC MUST ALSO BE NRZI=YES

HDXLNl LINE ADDRESS=020, LINK ADDRESS FOR IBM PC ATTACHMENT
CLOCKNG=EXT, EXTERNAL MODEM PROVIDES CLOCKING
SPEED=9600, LINK SPEED

X
X
X
X

X
X
X

DUPLEX=FULL, DUPLEX TRANSMISSION FACILITY X
ISTATUS=ACTIVE, LINK, PU AND LUS INITIALLY ACTIVATED X
SSCPFM=USSSCS, US~ CHAR CODED MSGS ON SSCP-LU SESSION X
MODETAB=LU62MODT, USER DEFINED VTAM LOGON MODE TABLE X
DLOGMOD=SAMPLE DEFAULT ENTRY IN LOGON MODE TABLE

SPACE 2
SERVICE ORDER=(HDX260A)

SPACE 2
puname PU ADDR=lC, SDLC STATION ADDRESS FOR IBM PC X

ANS=STOP,
MAXOUT=7,
MAXDATA=265,
PACING=7,
PASSLIM=8,
PUTYPE=2,
RETRIES=(,1,4)

STOP POLLING IF HOST SESSIO~ FAILS X
ALLOW MAX OF 7 OUTSTANDING SDLC FRAMES X
MAX DATA TRANSFER TO IBM PC X
PACING WINDOW SIZE NCP TO IBM PC X

rcvlu
APPCPC02
APPCPC03
APPCPC04
APPCPC05
APPCPC06
APPCPC07

SPACE 2
LU
LU
LU
LU
LU
LU
LU

SERVICE ORDER TABLE PASS LIMIT
IBM PC IS PU2.0 NODE TO NCP BOUNDARY
PAUSE 1 SECOND BETWEEN 4 RETRIES

LOCADDR=l,ISTATUS=INACTIVE (See note 2)
LOCADDR=2,ISTATUS=INACTIVE
LOCADDR=3,ISTATUS=INACTIVE
LOCADDR=4,ISTATUS=INACTIVE
LOCADDR=5,ISTATUS=INACTIVE
LOCADDR=6,ISTATUS=INACTIVE
LOCADDR=7,ISTATUS=INACTIVE

MODE TAB DEFINITION

LU62MODT MODETAB
MODEENT LOGMODE=NORMAL
MODEEND
END

APL DEFINITION FOR CICS

SENDLU APPL ABCNAME=SENDLU,AUTH=(ALQ,PASS,VPACE),
DLOGMOD=NORMAL,MODETAB=LU62MODT,
EAS=lO,PARSESS=YES,VPACING=3,SORSCIP=YES

F-2

X
X

X
X

Notes:

1. The NETNAME parameter specifies the network name to
identify the APPC system to ACF/VTAM. In APPC/PC this
name is specified on the ATTACH_LU verb with the
LU_NAME parameter.

2. The LOCADDR parameter specifies the LU local address of
the session and is equivalent to a logical unit number. In
APPC/PC this LU local address is specified on the
ATTACH_LU verb with the LU_LOCAL_ADDRESS
parameter.

F-3

F-4

Appendix G. APPC/PC
Implementation of the LU6.2
Architecture

This appendix first describes the APPC architected optional
functions supported by APPC/PC. It then describes the mapping
of the APPC/PC verbs to the verbs as described in the SNA
Transaction Programmers Reference Manual for LU Type 6.2.

Base and Option Sets for
APPC/PC

The APPC/PC program product supports the base set of APPC
functions plus a list of optional subsetted functions. For a
description of APPC function subsetting, see the topic
"Product-Support-Subsetting" in Chapter 3 of SNA Transaction
Programmer's Reference Manual for L U Type 6.2. Appendix A of
the same manual describes each APPC subset in detail.

APPC/PC supports the following optional subsets:

• Immediate allocation of a session

• Session-level LU-LU verification

• User ID verification

• Program-supplied user ID and password

• PIP data (sending only)

• Logging of data in a system log

• Flush the LU's send buffer

G-I

• Prepare to receive

• Long locks

• Post on receipt with wait

• Post on receipt with test for posting

• Receive immediate

• Test for request-to-send received

• Get attributes

• Get conversation type

• Mapped conversation LU services component

• MIN_CONWINNERS_TARGET parameter

• RESPONSIBLE(TARGET) parameter

• DRAIN_TARGET(NO) parameter

• LU-parameter verbs

• LU-LU session limit

• Maximum RU size bounds

• Contention winner automatic activation limit

Basic Conversation Verbs

This section contains the cross-reference lists for basic
conversation verbs and parameters.

Cross-Reference for Basic Conversation
Verbs

The following table provides a cross-reference for Basic
Conversation verbs:

G-2

LU Type 6.2 Architecture APPC/PC Implementation
ALLOCATE ALLOCATE

BACK OUT
CONFIRM CONFIRM
CONFIRMED CONFIRMED
DEALLOCATE DEALLOCATE
FLUSH FLUSH

GET_ATTRIBUTES GET_ATTRIBUTES
GET_TYPE GET_TYPE
POST_ON_RECEIPT POST_ON_RECEIPT
PREPARE_TO_RECEIVE PREPARE_TO_RECEIVE
RECEIVE_AND_ WAIT RECEIVE_AND_ WAIT
RECEIVE_IMMEDIATE RECEIVE_IMMEDIATE
REQUEST_TO_SEND REQUEST_TO_SEND
SEND_DATA SEND_DATA
SEND_ERROR SEND_ERROR

SYNCPT

TEST TEST
WAIT WAIT

Cross-Reference for Basic Conversation
Verb Parameters

The following tables provide a cross-reference for Basic
Conversation verb parameters.

LU Type 6.2 APPC/PC
ALLOCATE parameters ALLOCATE parameters

TP_ID

LU_NAME PARTNER_LU_NAME
MODE_NAME MODE_NAME

TPN TPN
TYPE CONVERSATION_TYPE
RETURN_CONTROL RETURN_CONTROL
SYNC_LEVEL SYNC_LEVEL

SECURITY SECURITY
PIP PIP

RESOURCE CONV_ID

RETURN_CODE RETURN_CODE

G-3

Note:

TP _ID specifies the identifier for the instance of the transaction
program issuing this verb. The application subsystem receives
this value from APPC/PC when it starts the program. For more
information on the TP _ID parameter, see the descriptions of the
"CREATE_TP" or "TP _STARTED" verbs in Chapter 5, "Using
Control Verbs."

APPC/PC does not support MODE_NAME(SNASVCMG) from
the API.

APPC/PC does not support the APPC
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED)
option. It does, however, support an additional option:
RETURN_CONTROL(WHEN_SESSION_FREE).

The only synchronization level values that APPC/PC supports are
NONE and CONFIRM.

APPC/PC provides three security options: NONE, SAME, and
PGM.

LU Type 6.2 APPC/PC
CONFIRM parameters CONFIRM parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE RETURN_CODE

REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND_RECEIVED

LU Type 6.2 APPC/PC
CONFIRMED parameters CONFIRMED parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE

LU Type 6.2 APPC/PC
DEALLOCATE parameters DEALLOCATE parameters

TP ID
RESOURCE CONV_ID

TYPE TYPE

G-4

LU Type 6.2 APPC/PC
DEALLOCATE parameters DEALLOCATE parameters

LOG DATA LOG_DATA

RETURN_CODE RETURN_CODE

Note:

APPC/PC does not support deallocation TYPE(LOCAL).

LU Type 6.2 APPC/PC
FLUSH parameters FLUSH parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE

LU Type 6.2 APPC/PC
GET_ATTRIBUTES parameters GET_ATTRIBUTES parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE
LU_ID

OWN_FULL Y_QUALIF1ED_ OWN NET ID NAME
LU_NAME OWN=LU_NAME
PARTNER_LU_NAME PARTNER_LU_NAME

PARTNER_FULLY_QUALIF1ED_ PARTNER_FULLY_QUALIF1ED_
LU_NAME LU_NAME

MODE_NAME MODE_NAME

SYNC_LEVEL SYNC_LEVEL
SECURITY _USER_ID USER_ID

Note:

LU_ID specifies the identifier for the local LU under which the
transaction program is executing. APPC/PC returns this value
when the application subsystem identifies and initializes the LU
by issuing the ATTACH_LU verb. For more information, see the
description of the ATTACH_LU verb in Chapter 5, "Using
Control Verbs."

USER_ID specifies the user identification field from the
ALLOCATE or incoming ALLOCATE if conversation level
security was specified.

G-5

LU Type 6.2
GET_TYPE parameters

RESOURCE

TYPE

LU Type 6.2
POST_ON_RECEIPT parameters

RESOURCE

FILL

LENGTH

LU Type 6.2
PREPARE_TO_RECEIVE
parameters

RESOURCE

TYPE

LOCKS

RETURN_CODE

LU Type 6.2
RECEIVE_IMMEDIATE
parameters

RESOURCE

FILL

LENGTH

RETURN CODE -

DATA

WHAT_RECEIVED

REQUEST_TO_SEND_RECEIVED

G-6

APPC/PC
GET_TYPE parameters
TP_ID

CONV_ID

RETURN_CODE

TYPE

APPC/PC
POST_ON_RECEIPT parameters

TP_ID

CONV_ID

FILL

MAX_LENGTH

RETURN_CODE

APPC/PC
PREPARE_TO_RECEIVE
parameters

CONV_ID

TYPE

LOCKS

RETURN_CODE

APPC/PC
RECEIVE_IMMEDIATE
parameters
TP_ID

CONV_ID

FILL

MAX LENGTH

RETURN_CODE
DATA_LENGTH

DATA_PTR
DATA

WHAT_RECEIVED

REQUEST_TO_SEND_RECEIVED

LU Type 6.2
RECEIVE_AND_ WAIT
parameters

RESOURCE
FILL
LENGTH

RETURN_CODE

DATA

WHAT_RECEIVED

APPC/PC
RECEIVE_AND_ WAIT
parameters

FILL

RETURN_CODE

DATA PTR
DATA-

WHAT_RECEIVED

In the SNA Transaction Programmer's Reference Manual for LU
Type 6.2, the LENGTH parameter supplies the length of the
buffer when the program issues the request. This parameter
contains the actual number of bytes received when control is
returned. APPCjPC uses the MAX_LENGTH parameter to
indicate the size of the buffer and the DATA_LENGTH
parameter to indicate the actual number of bytes received.

DATA_PTR specifies the address of the buffer which is to
contain the received data.

LU Type 6.2 APPC/PC
REQUEST_TO_SEND parameters REQUEST_TO_SEND parameters

TP_ID

RESOURCE CONV_ID
RETURN_CODE

LU Type 6.2 APPC/PC
SEND_DATA parameters SEND _DATA parameters

TP_ID

RESOURCE CONV_ID

DATA DATA
LENGTH DATA_LENGTH
RETURN_CODE RETURN_CODE
REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND_RECEIVED

G-7

LU Type 6.2 APPC/PC
SEND_ERROR parameters SEND_ERROR parameters

TP_ID

RESOURCE CONV_ID

TYPE TYPE

SENSE

LOG_DATA LOG_DATA

RETURN_CODE RETURN_CODE

REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND_RECEIVED

LU Type 6.2 APPC/PC
TEST parameters TEST parameters

TP_ID

RESOURCE CONV_ID

TEST TEST

RETURN_CODE RETURN_CODE

LU Type 6.2 APPC/PC
WAIT parameters WAIT parameters

TP_ID

RESOURCE_LIST CONV_ID_LIST

RETURN_CODE RETURN_CODE

RESOURCE_POSTED CONY _POSTED

Mapped Conversation Verbs

This section contains the cross-reference lists for mapped
conversation verbs and parameters.

Cross-Reference for Mapped Conversation
Verbs

The following table provides a cross-reference for Mapped
Conversation verbs:

G-8

LU Type 6.2 Architecture APPC/PC Implementation

BACK OUT
GET_TYPE GET_TYPE

MC_ALLOCATE MC_ALLOCATE
MC_CONFIRM MC_CONFIRM

MC_CONFIRMED MC_CONFIRMED

MC_DEALLOCATE MC_DEALLOCATE

MC_FLUSH MC_FLUSH

MC_GET_ATTRmUTES MC_GET_ATTRIBUTES

MC_POST_ON_RECEIPT

MC_PREPARE_TO_RECEIVE MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_ WAIT MC_RECEIVE_AND_ WAIT

MC_RECEIVE_IMMEDIATE MC_RECEIVE_IMMEDIATE
MC_REQUEST_TO SEND MC_REQUEST_TO_SEND

MC_SEND_DATA MC_SEND_DATA

MC_SEND_ERROR MC_SEND_ERROR
MC_TEST MC_TEST

SYNCPT
WAIT

Cross-Reference for Mapped Conversation
Verb Parameters

The following tables provide a cross-reference for Mapped
Conversation verb parameters.

LU Type 6.2 APPC/PC
MC_ALLOCATE parameters MC_ALLOCATE parameters

TP_ID

LU_NAME PARTNER_LU_NAME

MODE_NAME MODE_NAME

TPN TPN
RETURN_CONTROL RETURN_CONTROL
SYNC_LEVEL SYNC_LEVEL

SECURITY SECURITY

PIP PIP
RESOURCE CONV_ID

RETURN_CODE RETURN_CODE

Note:

APPC/PC does not support the APPC
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED)

G-9

option. It does, however, support an additional option:
RETURN_CONTROL(WHEN_SESSION_FREE).

The only synchronization level values that APPC/PC supports are
NONE and CONFIRM.

APPC/PC provides three security options: NONE, SAME, and
PGM.

LU Type 6.2 APPC/PC
MC_CONFIRM parameters MC_CONFIRM parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE RETURN_CODE

REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND_RECEIVED

LU Type 6.2 APPC/PC
MC_CONFIRMED parameters MC_CONFIRMED parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE

LU Type 6.2 APPC/PC
MC_DEALLOCATE parameters MC_DEALLOCATE parameters

TP_ID

RESOURCE CONV_ID

TYPE TYPE

RETURN_CODE RETURN_CODE

Note:

APPC/PC does not support de allocation TYPE(LOCAL).

LU Type 6.2 APPC/PC
MC_FLUSH parameters MC_FLUSH parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE

G-IO

LU Type 6.2 APPC/PC
MC_GET_ATTRIBUTES parameters MC_GET_ATTRIBUTES parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE

LU_ID

LUW _IDENTIFIER
OWN_FULLY_QUALIFIED_ OWN NET ID NAME
LU_NAME OWN=LU_NAME
PARTNER_LU_NAME PARTNER_LU_NAME

PARTNER_FULLY_QUALIFIED_ PARTNER_FULLY_QUALIFIED_
LU_NAME LU_NAME

MODE_NAME MODE_NAME

SYNC_LEVEL SYNC_LEVEL

SECURITY_USER_ID USER_ID

Note:

LU_ID specifies the identifier for the local LU under which the
transaction program is executing. APPC/PC returns this value
when the application subsystem identifies and initializes the LU
by issuing the ATTACH_LU verb. For more information, see the
description of the ATTACH_LU verb in Chapter 5, "Using
Control Verbs."

USER_ID specifies the user identification field from the
ALLOCATE or incoming ALLOCATE, if conversation level
security was used.

LU Type 6.2
MC_PREPARE_TO_RECEIVE
parameters

APPC/PC
MC_PREPARE_TO_RECEIVE
parameters

RESOURCE

TYPE TYPE

LOCKS LOCKS

RETURN_CODE RETURN_CODE

Note:

TYPE(SYNC_LEVEL) is equivalent to TYPE(CONFIRM) if
ALLOCATE SYNC_LEVEL is CONFIRM.

G-ll

LU Type 6.2
MC_RECEIVE_AND_ WAIT
parameters

RESOURCE
LENGTH

RETURN_CODE

DATA

WHAT_RECEIVED

Note:

APPC/PC
MC_RECEIVE_AND_ WAIT
parameters

CONV_ID

DATA PTR
DATA-

WHAT_RECEIVED

In the SNA Transaction Programmer's Reference Manual for LU
Type 6.2 for MC_RECEIVE_AND_WAIT, the LENGTH
parameter supplies the length of the buffer when the program
issues the request. This parameter contains the actual number of
bytes received when control is returned. APPC/PC uses the
MAX_LENGTH parameter to indicate the size of the buffer and
the DATA_LENGTH parameter to indicate the actual number of
bytes received.

LU Type 6.2 APPC/PC
MC_RECEIVE_IMMEDIATE MC--,-RECEIVE_IMMEDIATE
parameters parameters

TP_ID

RESOURCE CONV_ID

LENGTH MAX_LENGTH

RETURN_CODE RETURN_CODE

DATA_LENGTH

REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND _RECEIVED

DATA DATA_PTR
DATA

WHAT_RECEIVED WHAT_RECEIVED

MAP_NAME

G-12

LU Type 6.2 APPC/PC
MC_REQUEST_TO_SEND MC_REQUEST_TO_SEND
parameters parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE

LU Type 6.2 APPC/PC
MC_SEND_DATA parameters MC_SEND_DATA parameters

TP_ID

RESOURCE CONV_ID

DATA DATA

LENGTH DATA_LENGTH
MAP_NAME

FMH_DATA

RETURN_CODE RETURN_CODE

REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND_RECEIVED

LUType6.2 APPC/PC
MC_SEND_ERROR parameters MC_SEND_ERROR parameters

TP_ID

RESOURCE CONV_ID

RETURN_CODE RETURN_CODE

REQUEST_TO_SEND_RECEIVED REQUEST_TO_SEND_RECEIVED

LU Type 6.2 APPC/PC
MC_TEST parameters MC_TEST parameters

TP_ID

RESOURCE CONV_ID

TEST TEST
RETURN_CODE RETURN_CODE

Note:

APPCjPC does not support MC_TEST(POSTED).

G-13

Control Verbs

This section contains the cross-reference lists for control operator
verbs and parameters.

Cross-Reference for Control Verbs to
APPC/PC Verbs

L U Type 6.2 Architecture APPCjPC Implementation

ACTIVATE_SESSION

CHANGE_SESSION_LIMIT

INITIALIZE SESSION LIMIT
RESET SESSION LIMIT CNOS
PROCESS_SESSION_LIMIT

DEACTIVATE_SESSION

DEFINE

DISPLAY DISPLAY

DETACH PU

CREATE_TP

TP_ENDED

TP_VALID

SYSLOG

G-14

Cross-Reference for Control Verbs to
APPC/PC Verb Parameters

LV Type 6.2 APPC/PC
INITIALIZE_SESSION_LIMIT, CNOS parameters
RESET SESSION LIMIT and
PROCESS_SESSION_LIMIT
parameters
(Note: The above verbs will be
abbreviated below as ISL, RSL,
and PSL respectively.)

LU_ID

LU_NAME ISL,RSL,PSL PARTNER_LU_NAME

MODE_NAME ISL,RSL MODE_NAME_SELECT
SET_NEGOTIABLE

LU _MODE_SESSION_LIMIT ISL PARTNER_LU_MODE_SESSION_
LIMIT

MIN_ CONWINNERS_SOURCE ISL MIN_CONWINNERS_SOURCE

MIN_CONWINNERS_TARGET ISL MIN_CONWINNERS_TARGET
AUTO_ACTIVATE

RESPONSIBLE RSL RESPONSIBLE

DRAIN_SOURCE RSL DRAIN_SOURCE

DRAIN_TARGET RSL DRAIN_TARGET

RETURN_CODE ISL,RSL,PSL RETURN_CODE

Note:

AUTO_ACTIVATE specifies the number of contention winner
sessions that APPCjPC automatically activates before any
transaction program ALLOCATE requests occur.

SET_NEGOTIABLE specifies whether the
PARTNER_LU_MODE_SESSION_LIMIT specified in the
CNOS verb will also be used to override the current settings for
MODE_MAX_NEGOTIABLE_SESSION_LIMIT, as given in the
ATTACH_LU verb (or previously overridden by an earlier CNOS
verb with this parameter set to YES). In this case, a normal
CNOS negotiation still takes place. If the CNOS verb has no
parameter errors in it, the new value takes effect as the local
value for this and future negotiations. The partner LU (in the
parallel session case) can still negotiate the suggested values
downwards.

G-15

Network Management Verb

LU Type 6.2 Architecture APPC/PC Implementation

Other APPC/PC Services

The following table list verbs not architecturally defined:

LU Type 6.2 Architecture APPC/PC

CONVERT

PASSTHROUGH
SET_PASSTHROUGH

TRACE

G-16

Appendix H. ASCII/EBCDIC
Translation Tables

This appendix describes the three kinds of ASCII/EBCDIC
conversion tables you can specify for use by the CONVERT verb
(for information on the CONVERT verb, see Chapter 9, "Other
APPC/PC Services." The type A and type AE tables are internal
to APPC/PC. The type G table is user-supplied; its file name is
specified on the APPC/PC configuration menus. The conversion
table types correspond to the symbol string types A, AE, and G
described in the SNA Transaction Programmer's Reference
Manual for LU Type 6.2. For information on the APPC/PC
configuration menus, refer to the APPC/PC Installation and
Configuration Guide.

The type A table converts characters including uppercase A-Z;
numerics 0-9; and special characters $, #, and @. This table also
converts lowercase ASCII characters to uppercase EBCDIC
characters. When you specify this table, APPC/PC requires the
first character in each string to be an uppercase letter or one of
the three special characters. The string can contain trailing
blanks.

The type AE table converts characters to the same characters as
the type A table but also converts lowercase a-z and the period (.).
APPC/PC does not place any restrictions on the first character of
the string, and the string can contain trailing blanks.

The type G table is a user-defined table that converts any
character. This appendix includes a sample of a type G table that
you can edit to satisfy the specific conversion requirements of
your program. The APPC/PC diskette includes a file named
APPCGT AB.DAT, containing this sample type G table.

The format of a conversion table consists of 32 lines of 32
characters each. Each line represents 16 "printable" hexadecimal
characters followed by a carriage return and line feed. The first
16 lines provide the information for ASCII to EBCDIC conversion
and the second 16 lines provide the information for EBCDIC to
ASCII conversion. The table must include all 32 lines.

H-l

When APPC/PC performs a conversion, it uses the numeric
equivalent of each incoming character as a O-origin index into the
conversion table. This index specifies the table location
containing the hexadecimal value of the converted character.
For example, assume that the 48th position in the table contains
a value of X'FO'. APPC/PC will then convert incoming
characters with a value of 48 (X'30') to a value of 240 (X'FO') .

• TABLE A

H-2

00000000000000000000000000000000
00000000000000000000000000000000
40000007B5BOOOOOOOOOOOOOOOOOOOOO
FOF1F2F3F4F5F6F7F8F9000000000000
7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6
D7D8D9E2E3E4E5E6E7E8E90000000000
00C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6
D7D8D9E2E3E4E5E6E7E8E90000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
20000000000000000000000000000000
00000000000000000000002400000000
00000000000000000000000000000000
00000000000000000000002340000000
00616263646566676869000000000000
006A6B6C6D6E6F707172000000000000
0000737475767778797AOOOOOOOOOOOO
00000000000000000000000000000000
00414243444546474849000000000000
004A4B4C4D4E4F505152000000000000
0000535455565758595AOOOOOOOOOOOO
00000000000000000000000000000000

• TABLE AE

00000000000000000000000000000000
00000000000000000000000000000000
4000007B5B0000000000000000004BOO
FOF1F2F3F4F5F6F7F8F9000000000000
7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6
D7D8D9E2E3E4E5E6E7E8E90000000000
00818283848586878889919293949596
979899A2A3A4A5A6A7A8A90000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
OOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOO
20000000000000000000002EOOOOOOOO
00000000000000000000002400000000
00000000000000000000000000000000
00000000000000000000002340000000
00616263646566676869000000000000
006A6B6C6D6E6F707172000000000000
0000737475767778797AOOOOOOOOOOOO
00000000000000000000000000000000
00414243444546474849000000000000
004A4B4C4D4E4F505152000000000000
0000535455565758595AOOOOOOOOOOOO
30313233343536373839000000000000

H-3

• TABLE G

The following is a properly formatted sample of the type G
table you can supply for APPCjPC:

H-4

00010203372D2E2F1605250BOCODOEOF
101112133C3D322618193F27221D351F
405A7F7B5B6C507D4D5D5C4E6B604B61
FOF1F2F3F4F5F6F7F8F97A5E4C7E6E6F
7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6
D7D8D9E2E3E4E5E6E7E8E9ADEOBD5F6D
79818283848586878889919293949596
979899A2A3A4A5A6A7A8A9C06ADOA107
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
00010203FF09FF7FFFFFFFOBOCODOEOF
10111213FFFF08FF1819FFFFFF1DFFIF
FFFF1CFFFFOA171BFFFFFFFFFF050607
FFFF16FFFFIEFF04FFFFFFFF1415FFIA
20FFFFFFFFFFFFFFFFFFFF2E3C282BFF
26FFFFFFFFFFFFFFFFFF21242A293B5E
2D2FFFFFFFFFFFFFFFFF7C2C255F3E3F
FFFFFFFFFFFFFFFFFF603A2340273D22
FF616263646566676869FFFFFFFFFFFF
FF6A6B6C6D6E6F707172FFFFFFFFFFFF
FF7E737475767778797AFFFFFF5BFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFF5DFFFF
7B414243444546474849FFFFFFFFFFFF
7D4A4B4C4D4E4F505152FFFFFFFFFFFF
5CFF535455565758595AFFFFFFFFFFFF
30313233343536373839FFFFFFFFFFFF

Appendix I. Statement of Service

IBM will provide service for valid program-related defects in the
IBM APPCjPC program product at no additional charge.
Program service is available until June 30, 1987. However,
service will be provided only for the current update level.

The way each customer obtains access to program service
depends on the marketing channel through which the program
was obtained.

In the United States and Puerto Rico, if the IBM APPCjPC
program product was obtained through an authorized IBM
Personal Computer dealer, requests for program service should be
made through the dealer. If the program was obtained through
the IBM National Accounts Division or the IBM National
Marketing Division, requests for program service should be made
through the service coordinator for the customer.

The IBM Support Center will help the service coordinator
diagnose and solve problems. The service coordinator may call
the IBM Support Center at any time, and will usually be called
back within eight business hours. The IBM Support Center will
contact the service coordinator Monday through Friday between
8 a.m. and 5 p.m., local customer time.

IBM does not guarantee service results, or that the program will
be error-free, or that all program defects will be corrected.

When a report of a defect in an unaltered portion of a supported
release of the program is submitted, IBM will respond by issuing
one of the following:

• Defect correction information, such as corrected
documentation, corrected code, or notice of availability of
corrected code

• A restriction notice

• A bypass.

1-1

Corrected code is provided on a cumulative basis on diskettes; no
source code is provided. Only one copy of the corrections with
supporting documentation will be issued to the customer
coordinator or authorized dealer. IBM will authorize various
agents, such as IBM Personal Computer dealers and service
coordinators of IBM National Accounts Division and IBM
National Marketing Division customers, to make and distribute a
copy of the corrections, if needed, to each IBM APPC/PC user
that they serve.

The total number of copies of an update distributed to IBM
APPC/PC users within a customer's location may not exceed the
number of copies of the IBM APPC/PC program products that the
customer has acquired.

IBM does not plan to release updates of IBM APPC/PC on a
routine basis for preventive service purposes. However, should
IBM determine that there is a general need for a preventive
service update, it will be made available to all users through the
same process used to distribute general IBM APPC/PC updates.

Following the discontinuance of all program services, this
program will be distributed on an "as is" basis, without warranty
of any kind either express or implied.

1-2

Glossary

abnormal termination. A system or program failure, or
operator action that causes a program (APPCjPC,
application subsystem or transaction program) to end
unsuccessfully. See normal termination.

adapter. An IBM communications adapter interface card
for the IBM Personal Computer.

Advanced Program-to-Program Communication
(APPC). A set of protocols that provide communication
capabilities between computer programs on diverse
systems.

Advanced Program-to-Program Communication for
the IBM Personal Computer (APPC/PC). A DOS
extension that performs APPC functions for transaction
programs running on an IBM PC.

alert. The primary network management message that
communicates problem determination information to the
network operator.

American National Standard Code for Information
Interchange (ASCII). The standard interchange
between data processing systems, data communications
systems, and associated equipment. The code uses a coded
character set consisting of 7-bit coded characters (8 bits
including parity check). The set consists of control
characters and graphic characters.

API. Application Program Interface.

APPC. Advanced Program-to-Program Communication.

APPC/PC. Advanced Program-to-Program
Communication for the IBM Personal Computer.

X-I

application program. A program that processes
transactions for a specific purpose. Also called a
transaction program.

Application Program Interface (API). The set of
commands, described in this manual, that the application
subsystem and transaction programs use to communicate
with APPCjPC.

application subsystem. A user-supplied set of programs
that provide services to APPCjPC and transaction
programs.

ASCII. American National Standard Code for
Information Exchange.

basic conversation. A conversation between two
transaction programs using the APPC JPC basic
conversation API. in typical situations, service
transaction programs use basic conversations and
end-user transaction programs use mapped conversations.
however, either type of program may use either type of
conversation.

basic conversation verb. A verb that a transaction
program issues when using the APPCjPC basic
conversation API.

bind. The RU involved in activating an LU6.2 session.

bind session (BIND). In APPC, the process that APPC
performs to establish a session between two LUs.

boundary function. Services provided to a peripheral
node in an SNA network, by an intermediate or host node.
These services include message re-formatting and address
translation.

byte reversal. The IBM Personal Computer stores all
numeric 16- or 32-bit values with the low-order (least
significant) byte stored in the lower-numbered address.
This format is the reverse of that used in larger IBM
computer systems.

X-2

change-direction protocol. A data flow control
protocol in which the sending logical unit stops sending
requests, signals this fact to the receiving LU, and
prepares to receive requests.

CICS/VS. Customer Information Control System for
Virtual Storage.

class of service. A designation of the path control
network characteristics, such as path security,
transmission priority, and bandwidth, that applies to a
particular session. The end-user program specifies the
class of service when requesting a session by using a
symbolic name that APPC maps into a list of virtual
routes, anyone of which can provide the requested level
of service for the session.

communication adapter. Hardware that enables a
processor to perform data communication.

configuration services (CS). One of the types of
network services in a control point (SSCP or PNCP) and
in the physical unit (PU). Configuration services
activate, deactivate, and maintain the status of physical
units, links, and link stations.

confirmation. A program's acknowledgment that the
data has been received.

contention loser. The LU that must request and receive
permission from the session partner LU to allocate a
seSSIon.

contention-loser polarity. The designation that an L U
is the contention loser for a session.

contention winner. The LU that can allocate a session
without requesting permission from the session partner
LU.

contention-winner polarity. The designation that an
LU is the contention winner for a session.

X-3

control point. Refers to a system services control point
(SSCP).

control verb. One of the verbs a program issues to set
up the IBM PC hardware and APPCjPC software to
perform transactions with a remote program. Typically,
an application subsystem issues these verbs and a
transaction program issues conversation verbs.

conversation. The communication between two
transaction programs communicating over a Type 6.2
L U -L U session.

conversational transaction. Two or more programs
communicating with each other using the services of LUs.
Among the components in a conversational transaction
are the transaction programs and the transaction
resources associated with the programs (including the
conversations connecting the transaction programs).

conversation type. A conversation can be either a basic
conversation or a mapped conversation.

conversation verb. One of the verbs a transaction
program issues to perform transactions with a remote
program. Typically, a transaction program issues these
verbs and an application subsystem issues control verbs.

CS. Configuration services.

Customer Information Control System for Virtual
Storage (CICS/VS). A host (Systemj370) program
product that can be used in a communications network.

data link. See link.

data link control (DLC) layer. The SNA layer that
consists of the link stations that schedule data transfer
over a link between two nodes and perform error control
for the link. Examples of data link control are SDLC for
serial-by-bit link connection and data link control for the
IBM Token-Ring Network.

X-4

deadlock. A situation that occurs when two or more
nodes are waiting for messages from each other and
cannot continue processing verbs.

dependent LU. An LU with an active session to an LU
within an SNA host system. A dependent LU cannot send
BINDs.

distributed transaction processing services. The set
of services that enable transaction programs to
communicate with each other and access remote
resources, and to aid in synchronization and error
recovery.

DLC. Data link control.

EBCDIC. Extended Binary-Coded Decimal Interchange
Code.

error log exit. A routine that APPCjPC can call to log
errors during a conversation.

Extended Binary-Coded Decimal Interchange Code
(EBCDIC). A coded character set consisting of 256
eight-bit characters.

flow control. The process of managing the rate at which
data traffic passes between components of the network.
Flow control optimizes the rate of flow of message units to
minimize congestion in the network; that is, to neither
overflow the buffers at the receiver or at intermediate
routing nodes, nor leave the receiver waiting for more
message units. See also pacing.

FMH. Function management header.

function management header (FMH). An optional
field at the beginning of a request unit that carries
certain logical unit control information. Different types of
logical units use different types of FM headers:

Type 6.2 logical units use three types of headers:

X-5

• An Attach FM header (FMH 5) to specify the name of
required characteristics of a partner transaction
program

• An Error-description FM header (FMH 7) to describe a
transaction program error or an ATTACH failure

• A security FM header (FMH 12) to carry LU-LU
session password verification data.

GDS. The General Data Stream data format. (See SNA
Reference Summary for more information.)

half-session. A component that provides data flow
control and transmission control for one of the sessions of
a network addressable unit. See also session, primary
half-session and secondary half-session.

hang. See deadlock.

hexadecimal. Pertaining to a numbering system with a
base of 16. Valid numbers are the digits 0 through 9 and
the characters A through F, where A represents 10 and F
represents 15.

host node. A subarea node that contains a system
services control point (SSCP); for example, a system/370
computer with OS/VS2 and VTAM.

independent LU. An LU that does not have an active
session to an LU within an SNA host system. An
independent LUcan send BINDs.

intermediate node. A node that provides intermediate
routing services in an SNA network.

layer. A grouping of related functions that are logically
separate from the functions in other layers; the
implementation of the functions in one layer can be
changed without affecting function in other layers.

link. The line connection and the link stations joining
network or peer nodes.

X-6

link connection. The physical equipment providing
two-way communication between one link station and
other link stations.

link station. The hardware and software that enables a
node to attach to and provide control for a link. See also
primary link station and secondary link station.

local transaction program. The transaction program at
the local LU.

logical unit. A set of logical services by which one user
communicates with another, using sessions.

Logical unit Type 6.2. The architectural base for APPC.
An L U Type 6.2 supports sessions between two
applications in a distributed data processing environment.

LU. Logical unit.

LU 6.2. Logical unit 6.2.

mapped conversation. A conversation between two
transaction programs using the APPCjPC mapped
conversation API. In typical situations, end-user
transaction programs use mapped conversations and
service transaction programs use basic conversations.
However, either type of program may use either type of
conversation.

mapped conversation verb. A verb that a transaction
program issues when using the APPCjPC mapped
conversation API.

mode. The set of parameters defining the network
properties of a session.

modem. A mechanism that modulates and demodulates
signals transmitted over data communications facilities.

mode name. A name that a program uses to request a
specific set of network properties of a session the program
wants to use for a conversation. These properties include,
for example, the highest synchronization level for

X-7

conversations on the sessions, the class of service for the
sessions, and the session routing and delay
characteristics. The network administrator establishes
the mode names for a network.

multipoint line. A communication line or circuit
interconnecting several nodes. Contrast with
point-to-point line.

NAU. Network addressable unit.

negotiable BIND. An RU that can enable two LU-LU
half-sessions to negotiate the parameters of a session
when the LUs are activating a session.

network addressable unit (NAU). A logical unit,
physical unit, or system services control point. An NAU
is the origin or the destination of information transmitted
through the path control network. See also network name.

network management services function. A set of
programs to manage a network. The programs receive
network management data through NMVTs.

network management verb. The
TRANSFER_MS_DATA verb is used to provide network
management information to a network management
services function within an SNA network.

network name. The symbolic identifier by which the
network refers to a network addressable unit (NAU), a
link station, or a link.

NMVT. A Network Management Vector Transport RU
provides alert, problem determination statistics, and other
network management data to a network management
services function.

node. An endpoint of a link or a junction common to
two or more links in a network. Nodes can be host
processors, communication controllers, or terminals.
Nodes can vary in routing and other functional
capabilities.

X-B

nonswitched line. A connection between systems or
devices that does not have to be made by dialing. Contrast
with switched line.

normal termination. Termination that results in
successful execution of a program. Normal termination of
APPC/PC is through successful execution of the
APPCUNLD command. See abnormal termination.

NS header. The part of a network services RU that
identifies the type of RU.

pacing. The technique of limiting the amount of data
that a program can send or receive at one time to prevent
overrunning the L U buffers. See also flow control, receive
pacing, and send pacing.

pacing window size. The number of RUs that a program
can send before getting permission to send more.

parallel sessions. Two or more concurrently active
sessions between the same two logical units (LUs). Each
session can have different session parameters.

partner transaction programs. Transaction programs
corresponding on the same conversation.

path control network. The routing portion of an SNA
network.

PD Stats. The problem determination statistics that
enable the SNA network management services function to
determine and diagnose problems associated with the
communication links used for sessions.

peer-to-peer. Communication between two LUs that is
not managed by a host.

peripheral node. A node that has no intermediate
routing function, and is dependent upon an intermediate
or host node to provide certain network services for its
dependent LUs. APPC/PC provides a peripheral node
capability.

X-9

physical unit (PU). The component that manages and
monitors the resources of a node, as requested by an SSCP
using an SSCP-PU session. Each node of an SNA network
contains a physical unit.

physical unit (PU) services. The components within a
physical unit (PU) that provide configuration services and
maintenance services for SSCP-PU sessions.

PIP. Program initialization parameter.

PLU. Primary logical unit.

point-to-point line. A communication line or circuit
that connects a single remote node to another node; it can
be either switched or non-switched. Contrast with
multipoint line.

polarity. See contention-winner polarity and
contention-loser polarity.

posting. When a transaction program directs APPC fPC
to post a conversation, APPCfPC enables the transaction
program to check whether a specific amount of data is
available in the local LU's receive buffer.

primary logical unit (PLU). The logical unit (LU) that
contains the primary half-session for a particular LU-LU
session. See also secondary logical unit.

primary half-session. The half-session on the node that
sends the session activation request. See also primary
logical unit and secondary half-session.

primary link station. The link station that is
responsible for the control of the link. A link has only
one primary link station. All traffic over the link is
between the primary link station and a secondary link
station. See also secondary link station.

PU. Physical unit.

receive pacing. The pacing of message units that a
component is receiving. See also send pacing.

X-IO

remote transaction program. The partner transaction
program using the remote L U.

request/response header (RH). Control information,
preceding a request/response unit (RU), that specifes the
type of RU (request unit or response unit) and contains
control information associated with that RU.

request/response unit (RU). A generic term for a
request unit or a response unit.

request unit. A message unit that contains control
information such as a request code, function management
headers (FMHs), end-user data, or a combination of these
types of information.

response unit. An LU'S response to one or more request
units, indicating successful receipt of data or an error
condition.

responsible LU. The LU responsible for deactivating a
session when it is no longer being used by two L U s for a
conversation.

return code. A code APPC/PC returns to the issuer of a
verb to indicate the results of verb execution.

RH. Request/response header.

RU. Request/response unit.

SDLC. See synchronous data link control.

secondary half-session. The half-session on the node
that receives the session-activation request. See also
secondary logical unit and primary half-session.

secondary link station. Any link station that is not the
primary link station. A secondary link station can
exchange data with the primary link station, but not with
other secondary link stations. See also primary link
station.

X-11

secondary logical unit (SLU). The logical unit (LU)
that contains the secondary half-session for a particular
LU-LU session. A logical unit may contain secondary and
primary half-sessions for different active LU-LU sessions.
See also primary logical unit.

send pacing. Pacing of message units that a component
is sending. See also receive pacing.

sense code. The code that indicates the type of error
that has occured. Sense codes are logged or sent to the
partner node in function management headers or negative
responses.

session. Communication between L U s. A logical
connection between two network addressable units
(NAUs). The connection can be activated, tailored to
provide various protocols, and deactivated, as requested.
See also half-session, primary half-session, and secondary
half-session.

session activation. The process of exchanging a session
activation request and a positive response between
network addressable units (NAUs). See also session
deactivation.

session deactivation. The process of exchanging a
session deactivation request and response between
network addressable units (NAUs). See also session
activation.

session parameters. The parameters that specify or
constrain the protocols (such as bracket protocol and
pacing) for a session between two network addressable
units (NAUs).

session partner. One of the two network addressable
units (NAUs) participating in an active session.

single session. A session that is the only session
connecting two L U s.

SLUe Secondary logical unit.

X-12

SNA. Systems network architecture.

SNASVCMG. The APPCfPC-defined mode, used only for
CNOS negotiations.

SSCP. System services control point.

SSCP-LU session. A session between a system services
control point (SSCP) and a logical unit (L U); the session
enables the LU to request the SSCP to help initiate
LU-LU sessions.

SSCP-PU session. A session between a system services
control point (SSCP) and a physical unit (PU); SSCP-PU
sessions enable SSCPs to send requests to and receive
status information from individual nodes to control the
network configuration.

state. The state of a conversation determines which
verbs APPC fPC allows a program to issue. For example,
in receive state the program can only receive data. The
four states are reset, send, receive, and confirm.

switched line. A connection between two nodes that is
established by dialing. Contrast with nonswitched line.

synchronization level. The specification indicating
whether the corresponding transaction programs exchange
confirmation requests and replies.

synchronous data link control (SDLC). A discipline
for managing synchronous, code-transparent, serial-by -bi t
information transfer over a link connection.
Transmission exchanges can be half-duplex over switched
links, and full-duplex or half-duplex over non-switched
links. The configuration of the link connection can be
point-to-point, multipoint, or loop. SDLC conforms to
subsets of the Advanced Data Communication Control
Procedures (ADCCP) of the American National Standards
Institute and High-Level Data Link Control (HDLC) of the
International Standards Organization.

systems network architecture (SNA). The description
of the logical structure, formats, protocols, and

X-13

operational sequences for transmitting information units
through, and controlling the configuration and operation
of, networks.

systems network architecture (SNA) network. The
part of a user-application network that conforms to the
formats and protocols of systems network architecture. It
provides a reliable method of transferring data among
programs and provides protocols for controlling the
resources of various network addressable units (NAUs),
boundary-function components, and the path control
network.

Systems network architecture node. A node that
supports SNA protocols. See also node.

systems services control point (SSCP). A control
point in a host node. It provides network services for
dependent nodes.

time-out condition. An error condition indicating that
a specified amount of waiting time has elapsed without
the occurrence of an expected event.

transaction. A unit of communication processing- that
accomplishes a particular result.

transaction program. An application program that
performs transactions with one or more remote programs.

transaction service mode. See mode.

UNBIND. The RU involved in deactivating an LU Type
6.2 session.

verb. Usually, a request by a user program for an
APPC/PC action. In a few cases, a request by APPC/PC
for an application subsystem action. A verb requesting an
APPC/PC action is performed by issuing a software
interrupt accompanied by APPC/PC-specific information
stored in registers and memory.

Virtual Telecommunications Access Method
(VTAM). A set of programs that control communications

X-14

between nodes and application programs running on a
host (System/370) system.

VT AM. Virtual Telecommunications Access Method.

X-15

X-16

Index

accepting confirmation 3-5
ACCESS_LU_LU_PW 2-10, 5-62
ACTIVATE_DLC 2-2, 2-13, 5-5, 5-47,

5-75
activating a node 5-75
ACTIVE CONLOSER SESSION

COUNT 5-52 - -
ACTIVE CONWINNER

SESSION COUNT 5-52
ACTIVE_SESSION_COUNT 5-52
adapter 2-14
ADAPTER NUMBER 5-5
ADDITIONAL INFO 5-73
ALERT_SUBVECTORS 8-4
alerts 5-1, 8-2
ALLOCATE 3-7,6-40, 7-6,7-17, 7-38
allocating a conversation 3-3
ALLOCATION_ERROR 6-4,7-6
already verified security 5-11
ALREADY_VERIFIED 5-69
APPC/PC services 3-3
APPC/PC to transaction program

verbs A-I
APPC/PC-CICS sample program E-8
APPC_ABENDED 6-7, 7-9
APPC_BUSY 6-7, 7-9
APPC_DISABLED 6-7, 7-9
APPCUNLD program 2-14
Application Program Interface

(API) iii
application subsystem 1-1,2-9

application subsystem design 2-1
application subsystem

functions 1-7
application subsystem

program 1-5
application subsystem functions 1-7
ATTACH_LU 2-2,2-7,2-13,5-5,5-7,

5-20, 5-21, 5-45, 5-47, 5-51, 5-52, 5-54,
5-59,5-63,5-64,5-67,5-75,6-36, 7-41

ATTACH_PU 2-2,2-13,5-17,5-19,5-47,
5-75

auto-activation 5-33
AUTO_ACTIVATE 5-33
avoiding deadlocks 10-5

basic conversation return codes 7-5
basic conversation states 7-2
basic conversation verb

GET TYPE 7-44
POST_ON_RECEIPT 7-47

basic conversation verbs 4-2, 7-26
ALLOCATE 7-17
CONFIRM 7-26
CONFIRMED 7-30
DEALLOCATE 7-32
FLUSH 7-38
GET_ATTRIBUTES 7-40
PREPARE TO RECEIVE 7-53
RECEIVE-=-AND_ WAIT 7-57, 10-3
RECEIVE IMMEDIATE 7-66
REQUEST-='TO_SEND 7-74
SEND_DATA 7-77, 10-3
SEND ERROR 7-83
TEST-7-89
WAIT 7-94

basic conversations 3-6
byte reversal 3-8, 3-9

canceling an application 2-14
CHANGE_LU 2-5, 5-20
CHARACTER_SET 9-5
CICS sample configuration F-1
CNOS 2-2,2-13,5-13,5-52,5-75
CNOS (Change Number of

Sessions) 5-23
common return codes C-2

ALLOCATION_ERROR 6-4,7-6
APPC_ABENDED 5-3,6-7,7-9
APPC_BUSY 5-3,6-7,7-9
APPC_DISABLED 5-3,6-7,7-9
CONV_FAlLURE_NO_

RETRY 6-7, 7-9
CONV _FAILURE_RETRY 6-8,

7-10
CONVERSATION TYPE

MIXED 6-8, 7-9 - -
DATA POSTING

BLOCKED 7-10-

X-17

DEALLOCATE 7-11
DEALLOCATE ABEND 6-8
DEALLOCATE=ABEND_

PROG 7-10
DEALLOCATE_ABEND_

SVC 7-11
DEALLOCATE_ABEND_

TIMER 7-11
DEALLOCATE_NORMAL 6-9,

7-11
DISABLE/ENABLE_APPC 7-9
INCOMPLETE 5-3
INVALID_VERB 6-9, 7-12
OK 5-4,7-12
POST ON RECEIPT 7-12
POSTING -NOT ACTIVE 7-12
PROG ERROR -NO

TRUNC 6-10,7-12-
PROG_ERROR_PURGING 6-10,

7-13
PROG_ERROR_TRUNC 7-13
RECEIVE_AND_ WAIT 7-13
RECEIVE IMMEDIATE 7-13
SEND_ERROR 7-12,7-13
SVC_ERROR_NO_ TRUNC 7-14
UNSUCCESSFUL 7-97
WAIT 7-12

communicating identifiers to the
transaction program 2-6

communicating within the application
subsystem 2-7

communication adapter 2-14
concatenation indicator 3-8
CONFIRM 7-26, 7-69, 7-81, 7-88
confirmation 7-21

accepting confirmation 3-5
CONFIRM 7-26, 7-69, 7-88
confirm state 6-50,6-57
CONFIRMED 7-28, 7-30, 7-69
MC_CONFIRM 6-22,6-49,6-55,

6-70
MC_CONFIRMED 6-24,6-26,6-49,

6-55
MC DEALLOCATE 6-70
MC -SEND ERROR 6-24
rejecting co~firmation 3-5
requesting confirmation of data

received 3-5
SEND ERROR 7-28
SYNC=LEVEL 5-68,6-17,6-29,

7-21, 7-32, 7-42, 7-53
synchronization level 6-30, 6-31,

6-42, 7-36, 7-55
CONFIRMED 7-28, 7-30, 7-69
congestion algorithm 5-33
constant parameters 4-5

X-18

contention-loser LU 5-24,6-20,7-24
contention-winner 7 -24
contention-winner LU 5-24, 6-20
contention-winner polarity 5-24
control verb return codes 5-3
Control Verbs 4-1,5-1

ACCESS LU LU PW 5-62
ACTIV ATE_DLC -5-5, 5-47
ATTACH_LU 5-5,5-7, 5-20, 5-21,

5-45, 5-47, 5-59
ATTACH_PU 5-17,5-19,5-47
CHANGE LU 5-20
CNOS 5-13
CNOS (Change Number of

Sessions) 5-23
CREATE_ TP 5-55, 5-56, 5-60
DETACH_LU 5-45
DETACH_PU 5-19, 5-47
DISPLA Y 5-50
GET_ALLOCATE 5-10,5-54
SYSLOG 5-72
TP ENDED 5-56
TP=STARTED 5-9, 5-21, 5-56, 5-58
TP VALID 5-60

CONV=FAILURE_NO_ RETRY 6-7,
7-9

CONV_FAILURE_RETRY 6-8,7-10
CONY _ID 2-5, 2-6, 2-12, 5-55, 5-66,

5-68,5-73,6-18,6-22,6-26,6-28,6-32,
6-35,6-39,6-42,6-47,6-53,6-60,6-63,
6-67,6-72, 7-22, 7-26, 7-30, 7-32, 7-38,
7-40,7-44,7-47,7-53,7-58, 7-66, 7-74,
7-77, 7-83, 7-89

CONV ID LIST 7-94
CONV=POSTED 7-96
conversation attributes 3-5
conversation-level security 3-13, 5-11
conversation states 3-2
conversation types 3-7
CONVERSATION_TYPE 7-19
CONVERSATION_ TYPE_

MIXED 6-8, 7-9
CONVERT 3-16, 9-4
Converting between EBCDIC and

ASCII 3-15
CORRELATOR_SUBVECTOR 8-4
coversion tables

Type A 9-6
Type AE 9-5
Type G 9-6

CREATE_TP 2-3,2-12,5-55,5-56,5-60,
5-66,6-63

CREATE_TP_EXIT 5-9,5-20
CREATE_ TP _PTR 5-55, 5-60
Ctrl-Break operation 2-13
CURRENT_SESSION_LIMIT 5-52

DATA 5-73,6-48,6-63, 7-60, 7-69, 7-78,
8-5

DATA_LENGTH 5-73, 6-48, 6-63, 7-60,
7-69, 7-77, 8-5

DATA POSTING BLOCKED 7-10
DATA -PTR 6-47:-6-54,7-59,7-67
DATA-TYPE 8-3
deactiwting a node 5-77
deactivating LU-LU sessions 5-26
deadlock 2-9,5-47, 10-7
deadlocks 10-2
DEALLOCATE 6-56,6-68, 7-10, 7-11,

7-32, 7-38, 7-50, 7-81, 7-88, 7-95
DEALLOCATE ABEND 6-8
DEALLOCATE-ABEND PROG 7-10
DEALLOCATE=ABEND=

TIMER 7-11
DEALLOCATE_ABEND_SVC 7-11
DEALLOCATE_NORMAL 6-9,7-11
DEPENDENT_LU 5-46
DETACH_LU 2-3,5-45
DETACH_PU 2-3,2-13,5-19,5-47,5-77
DIRECTION 9-5
DISABLE/ENABLE_APPC 5-3,6-7,

7-9,9-12
DISABLE_ OR_ENABLE 9-12
DISPLAY 5-50
DLC_NAME 5-5
dollar signs 5-14
DOS Interrupts 2-14
DOS recursion 2-11,2-12
DRAIN SOURCE 5-35
DRAIN=TARGET 5-36
draining allocation requests 5-26,5-34,

5-53

error conditions 4-5
error log 2-10
error log data 3-11
error log messages 5-1
ERROR DATA 5-70
ERROR-DATA LENGTH 5-70
executioo efficioocy 3-8, 3-9
exit

ACCESS_LU_LU_PW 2-10
application subsystem 2-9
CREATE_TP 2-3,2-12
CREATE_TP _EXIT 5-9, 5-20
error log 2-10

LU LU PASSWORD EXIT 5-9
SYSLOG 2-10 -
SYSTEM_LOG_EXIT 5-9, 5-17

FILL 7-47,7-58, 7-67
FLUSH 7-24, 7-38
flushing the send buffer 3-4
fully qualified name 5-64

GDS 1-5
GET_ALLOCATE 2-3, 2-4, 2-5, 5-10,

5-54
GET ATTRIBUTES 7-40
GET=TYPE 3-7,6-39, 7-44
granting permission to send data 3-4

header field 1-5

IBM Token-Ring Network 5-5,5-11
IBM Token-Ring Network

problems D-5
incoming ALLOCATEs 1-9,2-4,2-12,

5-1,6-40, 10-4
asynchronous management 2-6,

2-12
CREATE_TP 5-66
queueing 5-10
synchronous management 2-4, 5-54

incoming session activation
requests 5-75

incoming and local
ALLOCATEs 5-75

INCOMPLETE 5-3
incomplete records 3-9
independent LU 5-45
initial attach sequence 2-2
interrupt 2-7, 2-8, 2-11, 2-12, 2-14
INVALID_VERB 6-9, 7-12

X-19

LENGTH 9-5
length field 3-8
LL 7-48
LL field 2-byte 3-8

concatenation indicator 3-8
LLID 1-5
locally initiated transactions 1-7,2-4
LOCKS 6-43,7-54
LOG_DATA 7-34, 7-84
LOG_DATA_LENGTH 7-84
logged errors 10-2
LU 7-18

ATTACH_LU 2-2,2-7,2-13,5-7,
5-52,5-63,5-75,6-36, 7-41

CHANGE_LU 2-5
conversation attributes 3-5
deactivating LU-LU sessions 5-26
DETACH LU 5-45
LU-LU Session

Characteristics 5-23
LU_ID 5-15,5-20,5-29,5-45,5-51,

5-54,5-58,5-64,5-67,7-41
LU_LU_PASSWORD_EXIT 5-9,

5-21
LU_NAME 5-9,5-64
LU SESSION LIMIT 5-51
MODE_NAME_SELECT 5-30
OWN_LU_NAME 6-36,7-41
PARTNER_FULLY _QUALIFIED_

LU_NAME 5-64,5-67,6-37,7-42
PARTNER LU MODE SESSION

LIMIT 5-=30 - - -
PARTNER_LU_NAME 5-29,5-51,

5-64, 5-68, 6-14, 6-36, 7-18, 7-41
PARTNER_LU _SESSION_

LIMIT 5-52
PU OR LU NAME 5-73
QUEUE='ALLOCATES 5-21

LU-LU passwords 5-63
LU-LU Session Characteristics 5-23
LU-LU verification security 5-9, 5-11,

5-21
LU service program names 3-12
LU_ID 5-15, 5-20,5-29,5-45,5-51,5-54,

5-58, 5-64, 5-67, 6-36, 7-41
LU LOCAL ADDRESS 5-9
LU=LU_PASSWORD_EXIT 5-9,5-21
LU_NAME 5-9,5-64
LU_SESSION_LIMIT 5-9,5-51

X-20

mapped conversation return codes 6-3
mapped conversation states 6-1
mapped conversation verb

GET_TYPE 7-44
mapped conversation verbs 4-2, 6-1

GET TYPE 6-39
MC ALLOCATE 6-13
MC-CONFIRM 6-22
MC-CONFIRMED 6-26
MC-DEALLOCATE 6-28
MC-FLUSH 6-32
MC-GET ATTRIBUTES 6-35
MC=PREPARE_TO_

RECEIVE 6-42,6-66
MC_RECEIVE_AND_WAIT 6-46,

6-66
MC RECEIVE IMMEDIATE 6-53
MC=REQUEST-=-TO_SEND 6-60
MC SEND DATA 6-63
MC-SEND-ERROR 6-67
MC=TEST -6-72

mapped conversations 3-6
MAX_LENGTH 6-47, 6-51, 6-54, 6-57,

7-48, 7-59, 7-63, 7-67, 7-71
MAX RU SIZE 5-12
MAX=TPS 5-9,5-21
MC_ALLOCATE 6-13,6-20,6-24,6-32,

6-34,6-37,6-40
MC_CONFIRM 6-22,6-28,6-42,6-43,

6-49, 6-55, 6-70
MC_CONFIRMED 6-24,6-26,6-31,

6-49,6-55
MC_DEALLOCATE 6-8, 6-28, 6-32,

6-70
MC_FLUSH 6-20, 6-32, 6-42, 6-65
MC GET ATTRIBUTES 6-35
MC=PREPARE_TO_RECEIVE 6-32,

6-42,6-50,6-52,6-56,6-58,6-61,6-66,
6-71,6-73

MC_RECEIVE_AND_WAIT 6-10,
6-27,6-46,6-55,6-61,6-66,6-71,6-73

MC_RECEIVE_IMMEDIATE 6-10,
6-27,6-53,6-61,6-73

MC_REQUEST_TO_SEND 6-52,
6-58, 6-60, 6-69

MC_SEND_DATA 6-20,6-32,6-33,
6-49, 6-52, 6-56, 6-58, 6-61, 6-63, 6-70

MC_SEND_ERROR 6-10,6-24,6-29,
6-31, 6-32, 6-49, 6-52, 6-55, 6-58, 6-61,
6-67

MC_TEST 6-72
MIN_ CONWINNERS_SOURCE 5-31
MIN CONWINNERS TARGET 5-32
MIN=NEGOTIATED"=-LOSER_

LIMIT 5-52
MIN_NEGOTIATED_ WINNER_

LIMIT 5-52

mode name 5-24
mode session limit 5-25
MODE MAX NEGOTIABLE

SESSION_LIMIT 5-13, 5-52-
MODE_NAME 5-12, 5-51, 5-68, 6-15,

6-37, 7-19, 7-42
MODE NAME SELECT 5-30
modifyh;.g the s~ple program for

SDLC E-7
multiple conversations 1-7
multiple transaction capability 2-8
multiple transaction programs 2-8
multitasking 2-8

name lengths 5-7
NET_NAME 5-17
Network Management Vector

Transport 8-1
Network Management Verb 3-13,4-2
network properties 5-24
NMVT 8-1,8-3
NMVT error messages 5-47
NMVT messages 2-13

OK 6-9,7-12
OWN_LU_NAME 6-36,7-41
OWN_NET_NAME 6-36, 7-41

PACING_SIZE 5-13
parameters 5-3

ACTIVE CONLOSER SESSION
COUNT 5-52 -

ACTIVE CONWINNER
SESSION COUNT 5-52

ACTIVE SESSION COUNT 5-52
ADAPTER_NUMBER 5-5
ADDITIONAL INFO 5-73
ALREADY VERIFIED 5-69
AUTO ACTIVATE 5-33
CHARACTER SET 9-5
CONV _ID 5~6, 5-68, 5-73, 6-18,

6-22, 6-26, 6-28, 6-32, 6-35, 6-39, 6-42,
6-47,6-53,6-60,6-63,6-67,6-72, 7-22,
7-26, 7-30, 7-32, 7-38, 7-40, 7-44, 7-47,
7-53,7-58, 7-66, 7-74, 7-77, 7-83, 7-89

CONV_ID_LIST 7-94

CONV _POSTED 7-96
CONVERSATION_TYPE 7-19
CORRELATOR_SUBVECTOR 8-4
CREATE_TP_EXIT 5-9,5-20
CREATE_TP _PTR 5-55, 5-60
CURRENT_SESSION_LIMIT 5-52
DATA 5-73,6-48,6-63,7-60,7-69,

7-78,8-5
DATA_LENGTH 5-73, 6-48, 6-63,

7-60, 7-69, 7-77, 8-5
DATA_PTR 6-47,6-54, 7-59, 7-67
DEALLOCATE 6-68
DIRECTION 9-5
DISABLE_OR_ENABLE 9-12
DLC NAME 5-5
DRAIN SOURCE 5-35
DRAIN=TARGET 5-36
ERROR_DATA 5-70
ERROR_DATA_LENGTH 5-70
FILL 7-47, 7-58, 7-67
IBM Token-Ring Network
LENGTH 9-5
LL 7-48
LOCKS 6-43,7-54
LOG_DATA 7-34, 7-84
LOG_DATA_LENGTH 7-84
LU_ID 5-15,5-20,5-29,5-45,5-51,

5-54,5-58,5-64,5-67,6-36, 7-41
LU LOCAL ADDRESS 5-9
LU=LU_PASSWORD_EXIT 5-9,

5-21
LU_NAME 5-9,5-64
LU_SESSION_LIMIT 5-9,5-51
MAX_LENGTH 6-47, 6-51, 6-54,

6-57,7-48,7-59,7-63, 7-67, 7-71
MAX RU SIZE 5-12
MAX=TPS 5-9, 5-21
MIN CONWINNERS

SOURCE 5-31 -
MIN CONWINNERS

TARGET 5-32 -
MIN_NEGOTIATED_LOSER_

LIMIT 5-52
MIN_NEGOTIATED_WINNER_

LIMIT 5-52
MODE_MAX_NEGOTIABLE_

SESSION_LIMIT 5-13, 5-52
MODE_NAME 5-12,5-51,5-68,

6-15, 6-37, 7-19, 7-42
MODE_NAME_SELECT 5-30
NET NAME 5-17
OWN_LU_NAME 6-36, 7-41
OWN_NET_NAME 6-36, 7-41
PACING_SIZE 5-13
PARTNER_FULLY_QUALIFIED_

LU_NAME 5-64,5-67,6-37,7-42
PARTNER LV ADAPTER

ADDRESS 5-li -
PARTNER_LU_ADAPTER_

NUMBER 5-11

X-21

PARTNER LU DLC NAME 5-10
PARTNER-LU-MAX- MC

SEND_LL 5-10 - -
PARTNER_LU_NAME 5-10,5-29,

5-51, 5-64, 5-68, 6-4,6-14, 6-36, 7-18,
7-41

PARTNER_LU_SECURITY_
CAPABILITIES 5-11

PARTNER_LU _SESSION_
LIMIT 5-10, 5-52

PASSTHROUGH ADDRESS 9-2
PASSWORD 5-64, 5-69,6-18,7-22
PASSWORD_AVAILABLE 5-64
PIP_DATA 6-18,7-22
PIP DATA LENGTH 6-18,7-22
PRODUCT -SET ID

SUBVECTOR 8-4-
PU_NAME 5-17
PU OR LU NAME 5-73
QUEUE=ALLOCATES 5-9, 5-21
QUEUE_DEPTH 5-10
RELEASE 5-18
REQUEST_TO_SEND_

RECEIVED 6-23, 6-49, 6-64, 7-27,
7-61, 7-70, 7-79, 7-86

RESPONSIBLE 5-34
RETURN_CODE 5-3,6-3
RETURN_CONTROL 6-15, 7-19
SDLC 5-11
SECURITY 6-17, 7-21
SENSE CODE 5-69
SESSION TERMINATION

COUNT- 5-53 -
SESSION TERMINATION

SOURCE DRAIN 5-53 -
SESSION TERMINATION

TARGET DRAIN 5-53 -
SET_NEGOTIABLE 5-30
SNASVCMG mode 7-19
SOURCE 9-5
SSCP PU SESSION 8-5
SUBTYPE - 5-73
SYNC_LEVEL 5-68, 6-17, 6-37,

7-21,7-42
SYSLOG 8-5
SYSTEM_LOG_EXIT 5-9, 5-17,

5-21
TARGET 9-5
TEST 7-89
TP _ID 5-56, 5-58, 5-60, 5-66, 5-67,

5-73,6-14,6-22,6-26,6-28,6-32,6-35,
6-39, 6-42, 6-47, 6-53, 6-60, 6-63, 6-67,
6-72,7-18, 7-26, 7-30, 7-32, 7-38, 7-40,
7-44,7-47,7-53, 7-58, 7-66, 7-74, 7-77,
7-83, 7-89, 7-94

TPN 5-68, 6-15, 7-19
TRACE_API 9-9
TRACE DESTINATION 9-9
TRACE=MESSAGES 9-8
TYPE 5-54,5-68,5-73,6-28,6-42,

7-32, 7-45, 7-53, 7-84

X-22

USER_ID 5-69, 6-17, 6-37, 7-21,
7-42

VERSION 5-18
WHAT_RECEIVED 6-45,6-48,

6-55, 7-60, 7-69
partner transaction programs 1-5
PARTNER_FULL Y_QUALIFIED_

LU_NAME 5-64,5-67,6-37,7-42
PARTNER LU ADAPTER

ADDRESS 5-ii -
PARTNER_LU _ADAPTER_ ID 5-11
PARTNER LU DLC NAME 5-10
PARTNER=LU=MAX-=:"MC_ .

SEND LL 5-10
PARTNER_LU _MODE_SESSION_

LIMIT 5-30
PARTNER_LU_NAME 5-10,5-29,

5-51, 5-64, 5-68,6-4,6-14,6-36, 7-18, 7-41
PARTNER LU SECURITY

CAPABILITIES 5-11 -
PARTNER_LU_SESSION_LIMIT 5-10,

5-52
PASSTHROUGH 2-6,9-2,9-3
PASSTHROUGH_ADDRESS 9-2
password 2-10, 5-64, 5-69, 6-18, 7-22

ACCESS_LU_LU_PW 2-10
ALREADY_VERIFIED 5-69
LU-LU passwords 5-63
LU-LU verification security 5-11
LU_LU_PASSWORD_EXIT 5-9,

5-21
PASSWORD 5-64,5-69,7-22
PASSWORD AVAILABLE 5-64
QUEUE_ALLOCATES 5-21
SECURITY 6-17, 7-21

PASSWORD_AVAILABLE 5-64
PDSTATS 8-2
PDSTATS_SUBVECTORS 8-4
PIP data 6-18, 7-24
PIP_DATA 6-18,7-22
PIP DATA LENGTH 6-18, 7-22
POST_ON~ECEIPT 7-12, 7-47, 7-64,

7-73, 7-89, 7-92, 7-97
posting

requesting posting 3-5
POSTING_NOT_ACTIVE 7-12
PREPARE_TO_RECEIVE 7-28, 7-38,

7-53, 7-62, 7-75, 7-81, 7-82, 7-93
Problem Determination Statistics 8-2
PRODUCT SET ID

SUBVECTOR 8-4-
PROG_ERROR_NO_TRUNC 6-10,

7-12
PROG_ERROR_PURGING 6-10,7-13
PROG_ERROR_TRUNC 7-13
program

application subsystem design 2-1
program hangs 5-47
programs

application program 1-5

application subsystem
program 1-5

partner transaction programs 1-5
transaction program 1-5
transaction program design 3-1

PU_NAME 5-17
PU_OR_LU_NAME 5-73

QUEUE_ALLOCATES 5-9,5-21
QUEUE_DEPTH 5-10

RECEIVE_AND_WAIT 2-7,2-13,6-45,
7-13, 7-14, 7-28, 7-29, 7-31, 7-48, 7-50,
7-56, 7-57, 7-72, 7-75, 7-81, 7-82, 7-89,
7-93, 7-98, 10-3

RECEIVE_IMMEDIATE 6-45,7-13,
7-14, 7-29, 7-31, 7-48, 7-50, 7-56, 7-66,
7-75, 7-82, 7-89, 7-93, 7-98

receiving data 3-4
rejecting confirmation 3-5
RELEASE 5-18
remotely initiated transaction

program 2-5,3-7
remotely initiated transactions 1-7, 2-4
reporting errors 3-5
reporting errors and abnormal

termination 3-10
REQUEST_TO_SEND 6-23, 6-56, 7-65,

7-73, 7-74
REQUEST TO SEND

RECEIVED 6-23,6-49, 6-56,6-64,7-27,
7-61, 7-70, 7-79, 7-86

requesting confirmation 3-12
requesting confirmation of data

received 3-5
requesting permission to send data 3-4
requesting posting, 3-5
resolving blocking deadlocks 10-4
resolving error conditions 10-1
RESPONSIBLE 5-34
return codes 4-5
RETURN_CODE 5-3, 6-3
RETURN_CONTROL 6-15, 7-19
returned parameters 4-5

sample conversation E-4
sample program execution E-5
SDLC 5-6,5-11,5-49
SDLC problems D-22
SECURITY 6-17, 7-21
security functions 5-11
SEND_DATA 7-24,7-38,7-39, 7-65,

7-73, 7-75, 7-77, 7-81, 7-88, 10-3
.sEND_ERROR 7-12, 7-13, 7-14, 7-28,

7-38, 7-50, 7-73, 7-75, 7-81, 7-83
sending data 3-3
SENSE_CODE 5-66,5-69
serialized issuance of verbs 2-8
service, statement of I-I
Service, statement of M-1 session 1-7
session 1-7
SESSION_TERMINATION

COUNT 5-53 -
SESSION_TERMINATION

SOURCE_DRAIN 5-53 -
SESSION_TERMINATION

TARGET_DRAIN 5-53 -
SET_NEGOTIABLE 5-30
SET_PASSTHROUGH 2-6, 9-2, 9-3
single-tasking operating system 2-7
single-threadedness 2-8
SNA control point management

services 8-2
SNA operation

LU service program names 3-12
LU_LOCAL_ADDRESS 5-9
ungraceful shutdown 2-13

SNA service transaction program
names 6-15

SNASVCMG mode 5-26,5-41,5-75,
6-15, 7-19

SNASVCMG mode name 2-3, 5-16
SOURCE 9-5
source LU 5-26, 5-34
SSCP _PU _SESSION 8-5
Starting a Transaction Program 2-3
state changes 3-2
states 3-2

confirm 3-2
receive 3-2
reset 3-2
send 3-2

SUBTYPE 5-73
Supporting Multiple Transaction

Programs 2-7
suspending APPC/PC 2-11,2-12
suspension of a transaction

program 2-8
SVC_ERROR_NO_TRUNC 7-14
SYNC_LEVEL 5-68, 6-17, 6-37, 7-21,

7-42
SYSLOG 5-72, 8-5

X-23

system deadlocks 10-2
system services control point

(SSCP) 3-15
SYSTEM_LOG_EXIT 5-9, 5-17, 5-21

TARGET 9-5
target LU 5-26,5-34
TEST 7-47,7-49,7-50,7-89
time-out conditions 3-11
TP_ENDED 2-3,2-5,5-56,5-77
TP_ID 2-4,2-6, 2-12, 5-55, 5-56, 5-58,

5-60,5-66,5-67,5-73,6-14,6-22,6-26,
6-28,6-32,6-35,6-39,6-42,6-47,6-53,
6-60,6-63,6-67,6-72,7-18,7-26, 7-30,
7-32, 7-38, 7-40, 7-44, 7-47, 7-53, 7-58,
7-66,7-74, 7-77, 7-83

TP _STARTED 2-4,2=5, 2-6, 5-9, 5-21,
5-56, 5-58, 5-76, 5-77

TP _ VALID 2-5, 5-60
TPN 5-68, 6-15, 7-19
TRACE 9-8,10-7
TRACE API 9-9
TRACE-DESTINATION 9-9
TRACE-MESSAGES 9-8
transaction program 1-1, 1-5,4-1
transaction program design 3-1
transaction program names 3-12
transaction program to APPC/PC A-2
TRANSFER MS DATA 8-1,8-3
TYPE 5-47;5-54;5-68,5-73,6-28,6-42,

7-32, 7-45, 7-53, 7-84

ungraceful shutdown 2-13
user-defined communication

protocol 3-1
USER_ID 5-69,6-17,6-37,7-21,7-42
using multiple active transaction

programs 10-2

variable parameters 4-4
Verb-Specific Return Codes C-14
verb types 1-6, 4-1
verbs

ACCESS LU LU PW 5-62
ACTIVATE_DLC -2-2,2-13,5-5,

5-47,5-75

X-24

ALLOCATE 3-7, 6-40, 7-6, 7-17,
7-38

APPC DISABLED 7-9
ATTACH_LU 2-2,2-7,2-13,5-5,

5-7, 5-20, 5-21, 5-45, 5-47, 5-51, 5-52,
5-59, 5-63, 5~64, 5-67, 5-75, 6-36, 7-41

ATTACH_PU 2-2,2-13,5-17,5-19,
5-47,5-75

basic conversation verbs 4-2, 7-1
CHANGE LU 5-20
CNOS 2-2, 2-13, 5-13, 5-52, 5-75
CNOS (Change Number of

Sessions) 5-23
CONFIRM 7-26, 7-69, 7-81, 7-88
CONFIRMED 7-28, 7-30, 7-69
control verbs 4-1, 5-1
CONV_ID 2-5,2-6,2-12
CONVERT 3-16, 9-4
CREATE_TP 5-55,5-56,5-60
DEALLOCATE 6-56, 7-10, 7-32,

7-38, 7-50, 7-81, 7-88, 7-95
DEALLOCATE_ABEND_

PROG 7-10
DEALLOCATE_NORMAL 7-11
DETACH_LU 2-3, 5-45
DETACH_PU 2-3, 2-13, 5-19, 5-47,

5-77
DISABLE/ENABLE_APPC 5-3,

6-7, 7-9,9-12
DISPLAY 5-50
FLUSH 7-24, 7-38
general description 4-4
GET_ALLOCATE 2-3, 2-4, 5-10,

5-54
GET_ATTRIBUTES 7-40
GET_TYPE 3-7,6-39,7-44
mapped conversation verbs 4-2, 6-1
MC ALLOCATE 6-4,6-13,6-20,

6-24,6-32,6-34,6-37,6-40
MC_CONFIRM 6-22, 6-28, 6-42,

6-43, 6"49, 6-55, 6-70
MC_CONFIRMED 6-24,6-26,6-31,

6-49,6-55
MC_DEALLOCATE 6-8, 6-9, 6-28,

6-32,6-70
MC FLUSH 6-20, 6-32, 6-42, 6-65
MC-GET ATTRIBUTES 6-35
MC -PREPARE TO

RECEIVE 6-42, 6-66
MC PREPARE TO RECEIVE 6-3

6-50,6-52,6-56,6-58,6-61,6-71,6-73
MC RECEIVE AND WAIT 6-10,

6-27, 6-46, 6-55~-61, 6-=66, 6-71, 6-73
MC,-RECEIVE_IMMEDIATE 6-10,

6-27,6-53,6-61,6-73
MC_REQUEST_TO_SEND 6-52,

6-58, 6-60, 6-69
MC SEND DATA 6-20,6-32,

6-33, 6-49, 6-52, 6-56, 6-58, 6-61, 6-63,
6-70

MC_SEND_ERROR 6-10, 6-24,
6-29, 6-31, 6-32, 6-49, 6-52, 6-55, 6-58,
6-61,6·67

MC_TEST 6·72
Network Management Verb 3·13,

4·2
PASSTHROUGH 2·6, 9·2, 9·3
POST_ON_RECEIPT 7-12, 7·47,

7·64, 7·73, 7·89, 7·92, 7-97
PREPARE_TO_RECEIVE 7·28,

7-38, 7·53, 7·62, 7·75, 7·81, 7·82, 7-93
PROG ERROR NO

TRUNC 7-12- -
PROG_ERROR_PURGING 7·13
RECEIVE_AND_WAIT 2·7,2·13,

6·45, 7·13, 7·14, 7·28, 7-29, 7-31, 7·48,
7·50, 7·56, 7-57, 7·72, 7-75, 7·81, 7·82,
7·89, 7·93, 7·98, 10·3

RECEIVE_IMMEDIATE 6·45,
7-13, 7-14, 7-29, 7-31, 7-48, 7·50, 7·56,
7·66,7-75,7·82,7·89,7-93, 7·98

REQUEST_TO_SEND 6·23, 6-56,
7·65, 7·73, 7-74

SEND_DATA 7-24,7·38,7·39, 7·65,
7·73, 7·75, 7-77, 7·81, 7·88, 10·3

SEND_ERROR 7-12, 7-13, 7-14,
7-28, 7-38, 7-50, 7-73, 7-75, 7·81, 7-83

SET_PASSTHROUGH 2·6, 9-2, 9-3
SYSLOG 5·72
TEST 7-47, 7-49, 7-50, 7-89
TP _ENDED 2·3, 5-56, 5·77
TP _ID 2·4, 2·6, 2-12
TP _STARTED 2-4, 2·5, 2·6, 5·9,

5·21, 5·56, 5-58, 5-76, 5·77
TP _ VALID 2·5, 5·60
TRACE 9·8, 10-7
transaction program 4·1
TRANSFER_MS_DATA 8·1,8-3
verb types 4·1
WAIT 7-12, 7-47, 7-49, 7-50, 7·94

VERSION 5·18

WAIT 7·12, 7·47, 7-49, 7·50, 7-94
WHAT_RECEIVED 6·45,6·48,6·55,

7·60,7-69

X-25

Notes:

© IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation
Department 95H , Bldg. 998
11400 Burnet Road
Austin, Texas 78758

Printed in the
United States of America

84X0561

---- ------ --- - ---- ----- -- ---- - - ------------_ .

