
October 1985

Hardware
1 The IBM Personal Computer XT/370

Software
3 What's New In Personal Editor II

10 BASIC Compiler 2.00 Overview (Part 2)

17 Multiple Field Definitions In BASIC

20 DOS Device Drivers (Part 2)

24 TopView Questions and Answers (Part 2)

Getting Started
29 Decimal Numbers In BASIC

31 Programming With BASIC's FOR-NEXT Loop

33 Sequential File Input/Output In BASIC

34 From Key to Screen

Departments
35 New Products

40 Editor's Comments

INSIDE: Pull-out BASIC 3.10 Reference Chart

Exchange of IBM PC Information
--------- -- --- - -- - ---- - - ----------- ·-

Exchange of IBM PC Information is a
monthly publication of the National Dis­
tribution Division, International Business
Machines Corporation , Boca Raton,
Florida, USA.

Editor Michael Engelberg
User Group Editor Bernard Penney
Associate Editor,

Design Director Karen Porterfield
Writer John Warnock
Editorial Assistants Steve Mahlum

Illustrators

Production
User Group

Wayne Taylor
Michael Bartalos
Jeff Jamison
Narda Lebo
John Segal
Cohen and Company

Support Manager Gene Barlow

Exchange of IBM PC Information is dis­
tributed at no charge to registered PC
user groups. To register with us, please
write to:

IBM PC User Group Support
IBM Corporation (2900)
P.O. Box 3022
Boca Raton , FL 33431-0922

To correspond with Exchange, please
write to:

Editor, Exchange
IBM Corporation (2900)
P.O. Box 3022
Boca Raton , FL 33431-0922

POSTMASTER: send address changes
to Exchange of IBM PC Information ,
IBM Corporation (2900), P.O. Box 3022,
Boca Raton FL 33431-0922.

© 1985 International Business Machines
Corporation.

Printed in the United States of America .
All rights reserved .

IBM cannot be responsible for the secu­
rity of material considered by other firms
to be of a confidential or proprietary na­
ture . Such information should not be
made available to IBM.

IBM has tested the programs contained in
this publication . However, IBM does not
guarantee that the programs contain no
errors.

IBM hereby disclaims all warranties
as to materials and workmanship, either
expressed or implied including without
limitation, any implied warranty of mer­
chantability or fitness for a particular
purpose. In no event will IBM be liable to
you for any damages, including any lost
profits, lost savings or other incidental or
consequential damage arising out of the
use or inability to use any information
provided through this service even if
IBM has been advised of the possibility
of such damages, or for any claim by
any other party.

Some states do not allow the limitation
or exclusion of liability for incidental or
consequential damages so the above limi­
tation or exclusion may not apply to you.

It is possible that the material in this
publication may contain reference to, or
information about, IBM products, pro­
gramming or services that are not an­
nounced in your country. Such references
or information must not be construed to
mean that IBM intends to announce such
IBM products, programming or services
in your country.

The IBM Personal
Computer XT/370
D.J. Meyer
University of Rochester
IBM PC User Group

As part of IBM's Academic
Information System (ACIS) , the
University of Rochester often
receives IBM equipment to exam­
ine. I work with one of the univer­
sity's IBM mainframe computers,
the IBM 4341 Model 2 running
CMS. I also work with IBM PCs,
so when I heard we were receiv­
ing an XT/370 to examine, I of­
fered to take a look at it. In simple
terms, an XT/370 is a PC equipped
with a lOMB hard disk and two
boards that run the 370 instruction
set in the CMS operating environ­
ment. CMS is an operating envi­
ronment typically found on large
mainframe computers. The
XT/370 also comes with the com­
munication capabilities to talk with
a CMS mainframe. The price of
an XT/370 is at most one-tenth
that of a CMS mainframe.

To get the XT /370 up and run­
ning, the following preparations
were made. First, a coaxial line
was dropped into my office to
connect the XT/370 to the cluster
controller, which in turn connects
to the CMS mainframe. The co­
axial line allows the XT/370 to
communicate to the host. I also
needed the Virtual Machine PC
program (VMPC) , and installed
the CMS files that come on seven
disks. This set up the system so
that it could run DOS or VMPC.

1

To run CMS, I needed to in­
stall myself as a valid user on the
XT/370. The XT/370 will support
several separate users (not logged
on simultaneously) if desired.
Each user's files are protected
with user identification and pass­
words, much like those used on
the host CMS machine. I also
needed to give myself a minidisk,
which is the CMS concept of disk
storage . Once this was done, I
could tell the XT/370 to run
VMPC.

The XT/370 gives the option of
running a local or host 3270 ses­
sion . When I run as a host, I can
talk over the line to the cluster
controller and log on to CMS.
When I run a local session, I get a
screen that requests a userid and a
password before allowing CMS to
be run on the XT/370. Both op­
tions worked without a hitch.

The first program I ran on a
local session was XEDIT, a very
powerful text editor that I use on
the mainframe computer. It
worked exactly like the main­
frame editor. The files generated
during a CMS session are not typ­
ical ASCII files, and DOS com­
mands (e.g. , TYPE filename.ext)
cannot display the files properly
on the display. The only reference
a DOS DIRectory command dis­
plays is a single file that
looks like a CMS mini­
disk definition. This

file contains all the files on that
specific CMS rninidisk.

To transfer files between the
host and local machine, I needed
to install the host server programs
on the mainframe. The installa­
tion was smooth and uneventful.
To use the server programs to
transfer files between the host and
the XT/370, I had to log on to the
mainframe and start the server,
VMPCSERV, and toggle back to
the local session. With the server
active, files can be shared be­
tween the host and local machines
as if they were ordinary, local
CMS minidisks.

The XT/370 comes with no
real programming languages
other than REXX, so I tried mov­
ing a language onto it. REXX
(Restructured EXtended execu­
tor) is generally used as an inter­
preted command language and
is much like Pascal in that one
can write interpreted programs
with it. I wanted a language I
could compile, and decided on
VS FORTRAN. (We first checked
with IBM to be sure that copying
VS FORTRAN to the XT/370 was
legal.) Next, I issued a command
to the local XT/370 of the format :

LINK userid itsvaddr
myvaddr mode
password

When the XT/370 realized that I
wanted to link to a disk that it did
not have, it checked the host. It
found the host minidisk and
linked to it. Next I entered:

ACCESS myvaddr fm

which told the XT /370 to access the
disk. When I did a Query DISK,
sure enough , there were all the PC
minidisks and a host minidisk! I
simply copied the VS FORTRAN
module to the XT/370 with
the command:

COPY FORTRAN
MODULE fm=B.

After about forty minutes, I had
all the files needed to run
VS FORTRAN (about lMB of
files) right on top of my desk!

This brings up a key point. The
VS FORTRAN module, or any
other module, is just that-an exe­
cutable image to the machine . It is
not source code. That is the beauty
of the XT/370. It runs the identi­
cal 370 instruction set , so execut-

2

ables generally can be transferred
and run with no problems. I won't
be so bold as to say absolutely no
problems, since there are areas
which VMPC does not support ,
and areas in which it would fail if
a module should try to access it.
For example, the PUNCH com­
mand is unsupported in VMPC,
so if a module tried to PUNCH
something, it wouldn't work. You
can be assured, though , that it
won't fail due to the 370 instruc­
tion set. I tested a small FORTRAN
program that calculates prime
numbers, and it compiled, load­
ed , and ran without a problem. I
could just as easily have generated
a module and transferred it back
to the mainframe and executed
it there .

Jn conclusion, I liked
the machine. I thought it

was wonderful to be able to
run a local session of

CMS and share minidisks
between the host and

local machines.

What might be a stronger
point , though, would be to de­
velop an application program on
the mainframe, generate the mod­
ule and transfer it to the XT/370,
so that the application could be
run elsewhere. I found that the
compilation times left a lot to be
desired . It was relatively slow.
When I reminded myself of ex­
actly what I was doing - running
CMS and compiling VS FORTRAN
on my desk - the slowness didn't
bother me as much.

I have tried moving other
relatively large modules to the
XT/370 and found that they ran
identically to the mainframe, but
at a slower rate.

In conclusion , I liked the ma­
chine. I thought it was wonderful
to be able to run a local session of
CMS and share minidisks between
the host and local machines, as if
they were just different minidisks
with a different file mode. I think
it is an advantage to be able to use
the same editor, programming
languages, application programs
and operating environment in
both the local and host context.
The XT/370 eases the difficulty of
working between your home and
your office, and frees you from
having to contend with communi­
cations unless it 's absolutely nec­
essary. For example, you could
write a program on the XT/370
anywhere, and later transfer it to a
mainframe to execute the program .

My only reservation with the
machine is that it is rather slow. It
takes noticeable amounts of time
to read and write from the disk, as
well as to run programs. Much of
this may be due to paging required
when the virtual machine needs
more than the physical 640KB on
the XT/370. I think that the speed
problem may be eased with an
AT/370. The AT can address more
than the 640K memory the XT is
limited to. It also has a quicker
processor on the motherboard ,
the 80286.

Overall , the concept is terrific :
having some of the power of a
mainframe in a compact box , at
an affordable price. The only
thing lacking is the responsive­
ness that we have come to expect
from a big machine .

What's New in
Personal Editor 11
Jim Wyllie
IBM Corporation

3

Editor's note: This article, written by the program's
author, contains detailed information about the
changes and new features of Personal Editor ll. It
assumes you are familiar with the original IBM
Personal Editor.

Personal Editor II, now available through The
Directory of Personally Developed Software, contains
a number of enhancements and improvements to Per­
sonal Editor. In this article, the two versions of the
editor will be referred to as "PEl" and "PE2" .

Improved Command Parsing and Key Definitions
PE2 retains almost no distinction between what PE 1
called "commands" and "functions". In PEI, com­
mands could be entered only by typing them on the
command line or in a macro file; functions could be
used only by assigning them to keys. PE2 removes
both of these restrictions. You may assign any com­
mand to a key with the define command (as in " def
a-fl = [?MEMORY]" or "def3 = [c/30/XXX/*]").
You may also type function names directly on the
command line, e.g., [REFLOW] or [CENTER IN
MARGINS].

By eliminating the function/command distinction,
you can now use [EDIT] to switch among active files.
In PEI, function key F8 cycles through the active
files by writing the EDIT command on the command
line and executing it , a procedure which erased the
previous contents of the command line. Using
[EDIT] allows you to cycle through the active files
while preserving the contents of the command line
and current cursor position .

PE2 allows one key definition to invoke another.
For example, the definition of key a-fl could use the
current definition of key a-f2 as follows:

def a-fl = ' before' [KEY A-F2] ' after '

If the definition of a-f2 is

def a-f2 = ' then '

pressing a-fl would yield the character string " before
then after".

~- -'f"'~ ' ' '• •"'· 1;"'!~,-- ~ '

r

I

- -

PE2 guards against the possibility of an infinite
loop by limiting the levels of macro definitions to
five. A loop would be executed five times before the
message " Macros nested too deeply" would appear.

Included in PE2 is a set of pseudo keys intended
for use only within complex macro definitions. PEl
uses unshifted, alphabetic shift (s-) , control shift (c-),
and alternate shift (a-) in combination with each of
the 76 definable keys on the keyboard; PE2 also
allows a user shift, indicated by the prefix u-. For
example, if two key definitions share a long common
expression , the common part could be assigned to the
key u-fl and used from within the main key defini­
tions using the command [KEY U-Fl]. The user-shift
keys also can be invoked directly from the command
line by typing [KEY U- .. .].

A toggling technique is also possible using chained
key definitions :

def u-fl = [DEF ENTER = [INSERT LINE]]
[DEF A-i = [KEY U-F2]]

defu-f2 =[DEF ENTER= [DOWN]
[BEGIN LINE]] [DEF A-i =
[KEY U-Fl]]

defa-i = [KEYU-Fl]

The first time a-i is typed, the Enter key will be
defined to insert lines. The next time a-i is typed, the
Enter key will be redefined so that it just moves the
cursor down to the beginning of the next line. Typing
a-i will toggle between these two settings.

As the example above illustrates, commands (typi­
cally DEFINE commands) can be nested inside other
commands by enclosing them in the proper number
of square brackets ([]).For simple commands, the
brackets can often be omitted. The DIR command,
for example, can be typed with or without brackets.

All PE I commands you could type on the com­
mand line can be entered without brackets in PE2 . In
addition , many of the commands that required brack­
ets in PE l (functions) are properly recognized by

4

PE2 without brackets . The exceptions are those com­
mands that the PE2 parser could mistake for the
LOCATE or CHANGE commands ("center line"
looks like a CHANGE command using the letter " e"
as the string delimiter, but [CENTER LINE] is prop­
erly recognized).

Also, PE2 allows two-character abbreviations for
most of its commands. These abbreviations must
always appear within square brackets. For example,
[PD] may be used instead of PAGE DOWN. The new
SET ABBREV command controls whether command
abbreviations or full command names are generated
in response to? KEY or EDIT .KEYDEFS.

Jn PE2, you may assign
definitions to 238 typeable keys,

plus 76 user-shifted keys.

In PE2 , the keys you can define using the DEFINE
command include all keys and key combinations that
can be distinguished by the standard BIOS keyboard
handler, including the Ctrl-shifted alphabetic keys
and the numeric keypad, plus the user-shifted keys
described above . This means you may assign defi­
nitions to 238 typeable keys, plus 76 user-shifted
keys. PEI allows you to define only 99 keys. The
alphabetic and numeric keys can be redefined in
PE2 so that , for example, letters from foreign alpha­
bets can be made more readily accessible. You
might construct a PE2 profile that defines the alpha­
betic keys according to the Dvorak layout. The
EDIT .KEYDEFS command shows a complete list
of definable keys.

Alternate Ways to Enter Characters
To allow easy input of any of the 256 possible charac­
ter codes, PE2 allows you to represent a character by
its decimal number enclosed in square brackets. All
three digits must be specified . For example, [000]
represents the null character. Decimal character rep­
resentation may be used as a component in any com­
mand ; thus , the definitions

defa-flO = ' abc'

and

def a-flO = [097] [098] [099]

are equivalent. Since any command may be entered
from the command line, you may place a character
into a file by typing [NNN] on the command line,
positioning the cursor in the proper place in the data
area of a window, then using the [EXECUTE] com­
mand (c-enter by default) to "type" the character in
the cursor position.

Arbitrary characters may also be entered by hold­
ing down the Alt key while typing the character num­
ber on the numeric keypad . Unlike PEl , PE2 does
not require characters entered in this way to be pre­
ceded by [ESCAPE] .

The query command corresponding to [NNN] is
" ?CHAR". This command places the bracketed dec­
imal representation of the character at the cursor onto
the command line . Try typing " ? CHAR" on the
command line, then move the cursor to a character in
the data area, then type c-enter ([EXECUTE]).

Macro definitions can be much more complex
in PE2 than in PEL To assist you in finding errors
in macro definitions, PE2 places the cursor at the
point of an error in a key definition . For example,
the definition

def a-flO = ' hello"

is in error, since there is no single quote closing
the string hello . PE2 produces the error message
" Missing quote or] " in response to this definition, and
places the cursor on the opening quote of the string .

Split Screen Support
PE2 lets you split the screen of its display into as
many as four windows. Each window contains a
section of any file . You may use windows to view
several files at once, or you may display different
portions of a single file in different windows. Either
way, each window always contains an up-to-date
image of the file section it contains. For instance, if
the same file section is displayed in two windows,
both windows will be updated every time a character
is typed into either window. Similarly, ifa marked
area in one window is moved to another window, the
data in the marked area will simultaneously disap­
pear from one window and reappear in the other.
Each window has its own independent cursor posi­
tion , so you may freely move from one window to
another window that contains a view of a different
section of the same file without losing track of where
you are in either place.

There are several new commands that control the
PE2 split screen facility. When PE2 starts, the screen
is treated as one large window, and appears exactly as
it does in PEL The [SPLIT SCREEN] command
cycles through four possible screen organizations.

5

The first time you use [SPLIT SCREEN], PE2 splits
the screen vertically into two windows, each 39 char­
acters wide, separated by a double vertical line (one
screen column is not used). Each window contains all
the fields you would find in a full size window,
including data area, command line, status line, and
space for messages. Since the two windows are each
narrower than the full screen, the names of the files
displayed in each window may not completely fit on
the status line, in which case PE2 will display " ... "
followed by the end of the file name. Executing
[SPLIT SCREEN] a second time divides the screen
into four windows. As before, each window behaves
independently. The third [SPLIT SCREEN] divides
the screen into two horizontal windows. The fourth
[SPLIT SCREEN] returns the screen to a single win­
dow. The [SPLIT SCREEN] command is assigned to
the c-s key by default.

Only one window can be active at any time. The
active window contains the blinking cursor and dis­
plays the line and column number of the cursor posi­
tion as well as the status of Insert/Replace mode. To
move the cursor from one window to the next , use the
[NEXT WINDOW] command (c-w by default) . This
command cycles clockwise through the windows.

Another command, [NEXT VIEW] , is similar to
[NEXT WINDOW], but [NEXT VIEW] will switch
to the next window (in clockwise order) that displays
the same file as the current window. The default key
for [NEXT VIEW] is c-v. The [ZOOM WINDOW]
command returns the screen to a si ngle, large win­
dow containing the file that was active when [ZOOM
WINDOW] was executed.

As part of the changes required for split-screen
support , the algorithm for screen updates was sub­
stantially revised. PE2 defers all changes to the
screen until all commands in a macro or a key defini­
tion have finished executing . When executing very
long macros, this can be disconcerting , because
nothing immediately happens on the display. How­
ever, PE2 will quickly finish the macro and update
the screen. Unless you consecutively execute long
macros, you will not be hampered by the pause. The
advantage of the deferred update algorithm is that it
allows much better response to operations such as
word wrap while the same file is displayed in all
four windows.

When running PE2 with the IBM Enhanced Graphics
Adapter, fonts other than the standard 9-by-14 (IBM
Monochrome Display) , 8-by-8 (IBM Color Display),
or 8-by-14 (IBM Enhanced Color Display) may be
used . The new SET DISPLAY LARGE/SMALL
FONT command may be used to select either the
8-by-8 or 8-by-14 fonts built into the Enhanced Graphics

Adapter. For high resolution displays (Monochrome
or ECD) this command selects between 25- and
43-line displays. For lower resolution displays (IBM
Color Display) , the command selects either a 14- or
25-line display.

DOS Path Support
PE2 allows full absolute or relative DOS path names
(including drive letter) to be used in all commands
involving file names. Either forward or reverse slash
(/or \) may be used as the path separator character
(see page D-14 of the DOS 2.00 manual) ; however,
PE2 always displays path names using reverse slash
as the separator. PE2 parses relative path names
according to the current directory and always dis­
plays full path names in the file name field on the sta­
tus line . For example, if the current directory is \level
1 \ level 2 and the command "e . . /new" is given, the
file name that PE2 will display is "\ level 1 \new".

There are new commands to set and query the cur­
rent working directory. The CHDIR (or CD) com­
mand operates as in DOS, except that the new default
drive may also be specified. For example, if the cur­
rent drive is C: and the current directory is \PE, the
command " CD A:\newdir" would change the current
drive to A and the current directory on that drive to
\newdir. Complementing CHDIR is a new option of
the Question-Mark command that queries the current
directory. After the CD command in the example
above is issued, the command "? dir" would produce
"chdir a:\newdir" on the command line. As in DOS,
the CHDIR command with no parameters displays
the current directory; it is identical to the "? dir"
command.

P E2 let you split the screen
of its display into as many as

four windows. Each window contains
a section of any file.

The DIR, ERASE, and RENAME commands
have been updated to use DOS path support. They
can operate on files in any directory. In addition, the
.dir file displayed in response to the DIR command
now shows directories as well as files . However,
wild-card characters are not supported in the ERASE
command, so the command " ERASE *. pas" gives
the message " File not found ".

6

Command Line Parameters
PE2 accepts several options on the DOS command
line when it is invoked. The command line consists
of a sequence of tokens, separated from one another
by one or more blanks. No blanks may appear within
any token. Tokens beginning with forward slash (/)
are the new command line options. The letter after
the slash specifies which command line option is
being set. The order of command options on the
command line is not significant. If a command line
option appears more than once, PE2 uses the last
(rightmost) value. The last command line token not
beginning with slash , if any, is used as the initial file
to be read and displayed.

The command line options Ip and Is control the
drive and file name to be used for the PE2 profile and
spill file, respectively. The name of the file follows
immediately after the one-character command name.
For example, the line

PE2 lpd:pe.pro ls\temp\petmp test

starts PE2 and displays the file named " test" from
the current directory of the default drive. The profile
will be taken from the file " pe .pro" in the current
directory on the D drive. The spill file, if it is needed,
will be named " petmp.xxx" and will reside in the
directory \temp on whatever is the default drive at the
time the spill file is created. Here as elsewhere, path
names may use either forward or backward slash
(/or\) to delimit their components. The default values
for Ip and Is are lppe2.pro and lspe2.tmp, respectively.

The command line option l q (quiet) tells PE2 not
to display the initial logo screen. Whether or not the
logo screen is displayed, a copyright notice will
always appear in the message area of the screen when
the editor is first started. It will disappear after the
first keystroke.

The command line option Ir reserves storage for
second-level command interpreters loaded by the
PE2 command " DOS ". The format of the I r option is
l rnnn, where nnn is a decimal integer. The number
given as the Ir option is the number of thousand-byte
units PE2 will reserve for DOS commands. PE2 will
never use the reserved area to store active files or
macro definitions. The default (and minimum possi­
ble) amount of storage to be reserved is 2KB, written
as lr2. PE2 will round the specified memory reserve
size according to how much is actually available.
Thus, lr999 will reserve as much as possible for DOS
commands after the PE2 code and data segments
have been allocated. The PE2 DOS command

(described below) returns all dynamic storage cur­
rently not in use by PE2 to the operating system before
loading the second-level command interpreter, so it
should not be necessary to use the Ir option very often.

The command line option lb forces PE2 to per­
form all of its screen updates using BIOS. This may
be useful when running in certain environments.
Screen update performance is approximately 20
times slower when using the lb option.

Demonstration Mode
You can set PE2 to display or demonstrate each
command of a key definition or macro as it executes.
The [DEMO FAST] command turns off the deferred
screen update (mentioned above) to allow the action
of each keystroke within a macro to be displayed as it
occurs. The [DEMO SLOW] command is similar,
but inserts a short delay between each automatic key­
stroke so that the operation of a macro can be better
observed. The [DEMO END] command turns off the
demonstration mode. Using these primitive com­
mands, fairly comprehensive demonstrations and
tutorials can be constructed, especially when com­
bined with the split screen feature.

You can also use the demonstration mode to debug
keystroke macros. Suppose you have assigned a com­
plicated key definition to key c-fl. The command
" [DEMO SLOW] [key c-fl] [DEMO END]" will
execute the actions of the key c-fl slowly enough for
you to understand how it works (or fails to work).

7

Improvements to Existing Commands
Several of the commands in PE 1 have been enhanced
with new options or more rational meanings in PE2.

MARK: The MARK command operations have
been modified. The first MARK command of a given
type (line, block, character) behaves just as in PEL
The second MARK of that type within the same file
marks all of the text between the first and second
mark points, just as in PEL Issuing a third MARK
command in PE2 does not result in an error as it did
in PEL Instead, PE2 assumes you mean to alter the
bounds of the marked area . It marks the text between
the first and third marks, and discards the location of
the second mark. Each subsequent MARK renews
the bounds of the marked area , with the first place
marked always remaining as one of the boundaries.
The third and subsequent marks can be either before
or after the first and second marks.

Display Color 80: When used on a color display,
PE2 uses different colors for each of the fields on the
display. Use the "SET DISPLAY COLDR SO" com­
mand to enable PE2 for color.

EDIT, FILE, SAVE: The EDIT, FILE and SAVE
commands now take an option TABS as an alternative
to the PEl option NOTABS. This option works in
conjunction with the new SET BLANKCOMPRESS
and SET TABEXPAND commands (see the section
below) to determine the handling of tab characters.

CHANGE, WCATE: A new option ' m' in the
CHANGE and LDCATE commands restricts the area
to be searched to the currently marked area, if any.
This makes it possible to change all occurrences of
a word within a single, marked paragraph without
affecting words outside of the marked paragraph.
The new option is indicated by ending the CHANGE
or LDCATE command with ' m' (for Mark) . For
example,

cl martian/venetian/ *m

changes all instances of the word " martian" that start
after the current cursor position and are within the
marked area to " venetian" without asking for confir­
mation after each instance is found.

SET SEARCHCASE xxxxx: The CHANGE
and LDCATE commands can optionally respect
case in performing searches. The command SET

SEARCH CASE EXACT requires that the data
in the file match the search string exactly. SET
SEARCH CASE ANY (the default) sets these com­
mands to behave as they do in PE 1 - to ignore the
case of strings in performing searches. The com­
mand ? SEARCH CASE displays the current setting
of SET SEARCH CASE on the command line.

[UP], [DOWN], [LEFT], [RIGHT]: The [UP],
[DOWN] , [LEFT] , and [RIGHT] commands accept
an optional number as an argument in PE2 . For ex­
ample, you may now use the command " [RIGHT 3]"
instead of " [RIGHT] [RIGHT] [RIGHT] ". PEl
contained some special cases of directional move­
ments in increments greater than one: [UP4],
[DOWN4], [LEFTS], [RIGHTS], [LEFT40], and
[RIGHT40]. These special cases are no longer
necessary in PE2.

LINE and COLUMN: PE2 also contains the
commands LINE nnn and COLUMN nnn , which
position the cursor to the indicated line or column
number. Line and column numbers that are outside
the bounds of the file cause the cursor to be posi­
tioned at the appropriate file boundary.

[TABWORD] and [BACKTAB WORD]: To assist
users in doing word processing with Personal Editor,
PE2 implements the [TAB WORD] and [BACKTAB

The algorithm for screen updates
was substantially revised.

PE2 defers all changes to the screen
until all commands in a macro or a key

definition have finished executing.

WORD] commands slightly different from PEL In
PE2 , these commands span lines of the file, not stop­
ping at the end of each line as in PEL Thus, starting
at the top of a file , successively iterating [TAB WORD]
will move the cursor word by word toward the end of
the file.

Status Line: If changes have been made to a file
since the last SAVE, PE2 will highlight the display of
the file name on the status line .

8

Insert Mode: In PEl, insert mode (as opposed to
replace mode) sometimes inserted spurious blanks at
the end of lines. For example, typing a single charac­
ter on a new (empty) line while in insert mode caused
PEl to put two characters on the line: the one typed
plus a blank. This was most annoying when typing
locate commands: "l/xyz" would search for "xyz"
instead of "xyz". PE2 corrects this deficiency.

New Commands
This section describes new commands that have been
added to PE2.

SET BLANKCOMPRESS and SET TABEXPAND:
By default, PE I compresses runs of blanks to tab
characters on output and expands tab characters to
blanks on input. The syntax to override the default is
difficult to use and impossible to place on a function
key. Two new commands in PE2, SET BLANK­
COMPRESS ON/OFF and SET TABEXPAND ON/
OFF, control how PE2 handles both runs of blanks
and tabs.

Setting both options to ON (the default) yields the
same behavior as PEl - blanks are compressed to
tabs on output and tabs are expanded on input unless
the NOTABS option is given on the EDIT, FILE, or
SAVE command. If SET BLANKCOMPRESS is
OFF in PE2, no strings of blanks are converted to
tabs. Blanks are stored as blanks. You can override
this using the new TABS option just like NOTABS is
used in PEl (e.g. FILE xxxxx TABS). Similarly,
SET TABEXPAND OFF disables expansion of tab
characters to runs of blanks when a file is read by the
EDIT command, unless the TABS option appears in
the EDIT command.

DOS: PE2 permits loading secondary command
interpreters using the new command DOS. The DOS
command compresses all active files , but continues
to hold them in memory. Any memory not used for
storing the compressed files is returned for use by the
second-level command interpreter. The amount of
storage can be determined while in PE2 by issuing
the new command? MEMORY. PE2 then searches
the current environment string for the CMDPROC =
parameter, and loads and executes the command
interpreter named there (usually COMMAND.COM).

The second-level COMMAND.COM can be used
to perform any DOS command . When the command
EXIT is issued to the new command interpreter,
PE2 will resume exactly where it left off. PE2 guards
itself against modification by other programs by com-

puting a checksum on its code and data every time
control is passed to a secondary command inter­
preter. The checksum is verified when the command
interpreter exits.

[PUSH MARK] and [POP MARK]: PE2 allows the
bounds of the current marked area to be pushed onto
a stack , then restored later. This permits keystroke
macros that do not disturb existing marks. The
[PUSH MARK] and [POP MARK] commands save
and restore marked areas, with a maximum stack
depth of six (five saved to the stack plus the current
mark) . The [UN MARK] command unmarks only the
current mark, leaving intact the marks saved in the
stack. A new command, [CLEAR MARKS], un­
marks all marked areas . All operations on marked
areas apply only to the current mark, the one that is
displayed (the top of the stack) . However, the bound­
aries of marked areas that have been pushed are
adjusted in response to changes in the file just as they
would be if the marked area were the current mark.
For example, suppose lines 100 through 105 are
marked in a file . If lines 1 through 10 are deleted , in
order for the marked area to still contain the same
data as before, its boundaries must be relocated to
lines 90 through 95. PE2 does this relocation whether
or not the marked area is on the top of its stack.

[BEGIN WORD] and [END WORD]: The [BEGIN
WORD] and [END WORD] commands move the
cursor to the first and last characters, respectively, in
the word containing the cursor. They are useful in
word processing applications. For example, deleting
the word pointed to by the cursor can be done with
the definition:

def a-w = [PUSH MARK] [END WORD]
[MARK CHAR] [BEGIN WORD]
[MARK CHAR] [DELETE MARK]
[POP MARK]

[LEFT MARGIN], [RIGHT MARGIN] and
[PARAGRAPH MARGIN]: PE2 has the new com­
mands [LEFT MARGIN] , [RIGHT MARGIN] , and
[PARAGRAPH MARGIN]. These move the cursor to
the column on the current line corresponding to the
left , right , and paragraph margins as set by the SET
MARGINS command .

[CENTER IN MARGINS]: Text may be centered in
PE2 using the [CENTER IN MARGINS] command.
It operates on an area defined by line marks. PE2
centers each line in the marked area between the left
and right margins established with the SET MARGINS
command.

9

[COPY TO COMMAND] and [COPY FROM
COMMAND]: The [COPY TO COMMAND]
command copies a marked line in the data area to
the command line. The inverse [COPY FROM
COMMAND] command inserts a new line in the
data area following the line containing the cursor,
then fills it with a copy of the command line.

SET BACKUP: The command SET BACKUP n
controls the amount of data to be kept in the
.unnamed file. In PE2 (and PEI) all of the lines
changed in response to a keystroke are saved as a
group in the internal file .unnamed. Block move
commands can be used to recover the original con­
tents of lines deleted or changed inadvertently. As
each group of new lines is added to .unnamed, the
oldest group is deleted . The SET BACKUP com­
mand controls the number of groups of lines saved in
. unnamed. For n = 5, the default, PE2 will behave
exact! y like PE l with respect to . unnamed. For
smaller values of n, fewer groups of lines will be
saved (and hence less memory will be consumed by
this function). SET BACKUP 0 disables the saving of
lines in .unnamed . PE2 supports as many as ten
groups of backed-up lines.

SET HSCROLL: In PE, when the cursor attempts
to leave the screen, the data on the screen is shifted.
When the cursor moves vertically off the screen, the
shift amount is one row. In PEI, when the cursor
moves horizontally off the screen , the shift amount is
half the width of the screen . PE2 contains a facility to
allow the horizontal shift amount to be either half the
screen width or a single column. SET HSCROLL
OFF is the default, and gives the same horizontal
scroll behavior as PE 1. SET HSCROLL ON sets the
horizontal scroll increment to a single column. The
command? HSCROLL displays the current setting
of SET HSCROLL.

SCROLLxxxxx: PE2 has the four new commands
SCROLL UP, SCROLLDOWN, SCROLLLEFT, and
SCROLLRIGHT. The syntax of these commands is
identical to the UP, DOWN, LEFT, and RIGHT
commands (optional number argument; default of
one). They move the cursor through the file exactly
like UP, DOWN , LEFT, and RIGHT, but change the
display differently. UP l moves the cursor up one

line in the file, moving the cursor
up on the screen if it was not already
on the top line of the window and
scrolling the screen if the cursor
was on the top line. SCROL­
L UP l moves the current file
position up one line, but the
data on the screen is always
scrolled and the cursor
remains in the same
place on the screen
(unless the top of file
line is visible). The
other SCROLLxxxxx
commands behave simi­
larly, scrolling the screen
unless their appropriate
edge is in sight.

? DISKSPACE: PE2 lets
you determine the amount of
space remaining on a disk drive with the? DISK­
SPACE command. It displays the number of bytes
remaining on a drive . This command accepts an ·
optional drive letter, without the colon suffix , as in
"? DISKSPACE C".

[PRINT MARK]: The [PRINT MARK] command
prints the contents of the current marked area. The
existing [PRINT] command prints an entire file.
Either command can be terminated early by typing
Ctrl-Break.

[BEEP]: The [BEEP] command sounds a short tone
on the speaker.

[CLEAR MESSAGE]: The [CLEAR MESSAGE]
command clears the error message area . It is useful
to suppress the messages that may normally occur
during macro processing.

*:Comment lines may be included in a command file
by placing an asterisk(*) in the first column of a line
in the command file. PE2 will not process the con­
tents of the line .

10

An Overview of IBM
BASIC Compiler 2.00
(Part 2)

John Warnock
IBM Corporation

Editor's note: This is the second in a two-part series
introducing IBM BASIC Compiler 2.00. Part 1
described changes in BASIC Compiler 2.00 and differ­
ences between the BASIC Compiler and the BASIC
interpreter. This part discusses modular programming
techniques, index.files, and the Library Manager. This
article is adapted from the IBM Personal Computer
Seminar Proceedings.

Index Files
IBM Personal Computer ISAM Files
Normally, BASIC supports two types of data files:
sequential and random access. These two types are

sufficient for most applications. The major limitation
of these two file types, however, is that they do not let
you access the records in the file by their content.
You must either search the entire file until you find
the record you want, or you must know the number of
the record you want.

The Indexed Sequential Access Method (ISAM) is
a I ibrary of subroutines that lets you access files
sequentially or randomly by an index. ISAM files
supported by BASIC Compiler 2 .00 have a special
format, consisting of a data file plus an index. An
index serves as the table of contents to a file . The
index contains the information that you use to request
a record , plus the relative record number that ISAM
uses to find the record.

With ISAM, you can access data based on the con­
tent of your records. For example, if you want to read
the record that contains information about product
number 34056-J, delete any records with information
on employee T.R. James, or update the record con­
taining information about the price and availability of
marble, ISAM provides a fast way to do so.

11

ISAM File Structure
Physically, each ISAM file is two files: a data file and
a key file . File names cannot exceed 8 characters.
Conventionally, data file names end with a .DAT
extension and key file names end with a .KEY exten­
sion. Both files must be present to use ISAM .

The data file usually consists of data records and a
data dictionary. The data dictionary, which is at the
beginning of the data file , contains binary descrip­
tions of records in the file. Whenever you create an
ISAM file , you give ISAM information about how

Jhe Indexed Sequential Access
Method (ISAM) is a library of subroutines

that lets you access files sequentially or
randomly by an index.

your data is formatted, such as where data fields start
and end, what type of data is contained in a field, and
if it is acceptable to have duplicate key values in the
file . This information is stored in the data dictionary.

The key file contains the indexing information
(where the fields are, what type of data they contain)
that ISAM uses to access the data in the data file. A
key field is a data field that has been identified and
described to ISAM as the index. Using ISAM, you
can access records in the data file according to the
value contained in the key field . ISAM gets this
information from the data dictionary in the data file.
The indexing is in the form of a B-tree, a special kind
of index that points to the records in the data file .
There is one B-tree in the key file for each key that
you specify for that data file.

Whenever you access an ISAM file , ISAM auto­
matically obtains the information it needs from the
data and key files and writes the appropriate informa­
tion to each file. For example, when you write a
record to an ISAM file , ISAM writes the data record
to the data file and the key value and relative record
information to the key file.

When choosing the key for a file , you should make
the value of that key unique for each record in the
file . This may help avoid any confusion when search­
ing the records in the file for a particular key. For
example, social security number is a good field to use
as a key because everyone has a unique social secu­
rity number. Using last name as a key field can cause
problems if you have two people named Smith .

Split Keys
There is a special
type of key, called a
split key, that contains
more than one field.
Components of a split key
can be adjacent or non­
adjacent fields of the same or
different data types, and may or may not be keys
themselves.

If a component field of a split key is also a key, that
field 's description must be given twice: once to
describe it as a key field and once to group it with the
other components of the split key. This type of field
also has more than one key handle: one handle of its
own and another handle that is the same as the other
components of the split key.

When key values are compared (to determine the
order of records or to determine if values are equal),
the split key components are compared according to
the order in which they were declared in the key
description. If the two components have equal values,
the next component in the split key is compared. This
is repeated until a difference is found.

Note: Split keys cannot be used with segmented
records.

ISAM Record Types
There are two types ofISAM data records: non­
segmented and segmented. These two record types
cannot be mixed in one file.

Non-segmented Records
Non-segmented records are the type most often used .
They contain key fields and data fields that have fixed
sizes. However, they may contain one field that is
variable in length , as long as the variable length field
is the last field in the record .

Segmented Records
ISAM data files contain either segmented or non­
segmented records. These record types cannot be
mixed in one file.

Segmented records, the second type, support key
fields that can vary in size. Segmented records are
usually used to contain variable-length strings. You
can use variable-length strings without using seg­
mented records by setting the length of your string
field long enough to hold the longest string you are
using .

Note: You should use segmented records only if it is
very important to minimize the amount of storage
space used for variable-length fields.

12

The address of a key field is given by a segment
number and an offset. For non-segmented records,
the segment number is 1. In segmented records, the
segment number acts as an index to a segment table,
which must be inserted in front of each record. The
segment table is an array of 16-bit offsets; this offset
is the number of bytes from the start of the record to
the start of the segment.

For a given key n, the address of the key is the
address in the nth entry in the segment table, plus any
offset within the segment itself. A field length of zero
indicates that the field length equals the length of the
entire segment.

You should describe each field in the
record when you create an ISAM.file. This
provides an easy way to identify each file

and its contents.

The number of segments, the segment table and
offsets within segments must be supplied in the
record and field descriptions when the file is created.
The segment table must be maintained by the appli­
cation programmer. For this reason, you should use
segmented records only if variable-length key fields
are needed. Often, all fixed-size record fields are
placed in the first segment, and each variable-length
string field is placed in its own segment.

The following diagram illustrates a three-segment
record with three keys :
• Key 1 is fixed-length, begins at offset 10 into the

segment and has a length of 4.
• Key 2 is in segment 2, begins at offset 0 and occu­

pies the entire segment.
• Key 3 is in segment 3, begins at offset 0 and occu­

pies the entire length of the segment.

If a data file contains segmented records, it is not
necessary for each record to contain the same num­
ber of segments. All segments that contain keys,
however, must be present in each record . If a seg­
ment that contains a key is missing from a record ,
the status code, IXSTAT = 10 (key not found), is
returned.

Note: Segmented records cannot contain split keys.

Writing an ISAM Application
The ISAM interface is designed to make access to
ISAM files as simple as possible . In general, ISAM
file access is similar to BASIC random 1/0. Specific
ISAM subroutines are called to open and close ISAM
files, to find records within a file and to read, write,
delete or rewrite data.

Note: MAIL.BAS is a demonstration program
included on the ISAM diskette as an aid in develop­
ing your own ISAM programs.

There are six basic steps in creating and using
ISAM files :
1. Install ISAM.EXE.
2. Open an ISAM file.
3. Seek to (search for) some record in the file.
4. Operate on the data.
5. Check the results .
6. Close the ISAM file.

Using the FIELD Statement
ISAM files are similar, in some ways, to BASIC ran­
dom files . When using ISAM files , you must estab­
lish a data buffer. You can do this by using the FIELD
or COMMON statements.

The following example establishes a buffer for an
ISAM file with a 10 character field for name and 25
character field for address:

OPEN "NUL" AS #9 LEN =35
FIELD #9, 10 AS NAME$, 25 AS ADDR$

The OPEN statement is necessary because a file must
be open before you can allocate the data buffer with
the FIELD statement. The file is opened as NUL
because the buffer is written to the ISAM file , not the
BASIC file . This means you need to locate the data
buffer for ISAM .

To get the pointer to this data buffer, use the fol­
lowing procedure:
l. Insert the following function definition into your

program.

DEF FNSADD!(VPTR)
FNSADD! =PEEK(VPTR +3)*256.0 +

PEEK(VPTR +2)
ENDDEF

This function accepts the pointer to a string
descriptor as input and returns the address of the
string.

2. Execute the following:

PDATREC ! = FNSADD! (VARPTR(NAME$))

13

This places the address of the data record into
PDATREC! .

Using the COMMON Statement
If your data record contains only numerical values,
you can establish the data buffer using a COMMON
statement. For example, if the data record consists of
IDNUM and PHONENUM!, the following statement
establishes the data buffer:

COMMON /DATA .REC/
IDNUM,PHONENUM!

Once this is done, you can get a pointer to the data
record with the following:

PDATREC ! = VARPTR(IDNUM)

Note: Remember, you can use this form only if your
data record consists solely of numerical values.

Record Description
The record description tells how many keys are in the
record, whether the record is segmented or non­
segmented, and the minimum record allocation. This
information is given to ISAM as the array Rdes.

Rdes(l) = number of fields
The number of fields is declared in the field descrip­
tor array. This number includes both key and non-key
fields and components of split keys.

Rdes(2) = segment-flag
If the record is non-segmented , segment-flag = 0. If
the record is segmented, segment-flag = 1.

Rdes(3) = minimum record allocation
If Rdes(3) = 0, the minimum record
allocation defaults to eight bytes:
five bytes of data and three bytes
of overhead.

When a record is rewritten
over a record that is too small
to contain the new record ,
ISAM makes the old record
into an indirection record.
The indirection record points
to the location of the new,
larger record. By using
indirection records, ISAM
avoids having to change
every key that pointed to the old

record location. To make sure that every record is big
enough to hold an indirection record , the minimum
record allocation defaults to eight bytes.

Field Description
Whenever you create an ISAM file, you must
describe each key field that you are using ; this is the
information used to build key files. You also can
describe non-key fields. ISAM puts this information
in the data dictionary at the beginning of the data file.
Whenever a file is opened, its data dictionary is
loaded into memory from the data file.

If you are using files created by IBM Personal
Computer Sort version 1.00, you should be aware that
some of these files do not have a data dictionary.
When using these files, you must specify the field
description each time you open the file.

You should describe each field in the record when
you create an ISAM file. This provides an easy way
to identify each file and its contents. Complete field
descriptions can also be used by other utilities to
access field information.

Creating A Key Descriptor
Field descriptions are given to ISAM as a nine­
integer array, Kdes. The parameters that you must
supply for each field you describe are explained
below.

Kdes(l) = pointer-to-field-name
This is a pointer to a buffer that contains the name of
the field. The field name must be Jess than or equal to
40 characters. If no field name is supplied, this
pointer must be null. Field names can be used by util­
ities, such as general file dump utilities, to access
fields in a data file .

Kdes(2) = 0
This is a reserved word area. It must be initialized to
zero .
Kdes(3) = data-type
This is the data type of the field , which is set by
supplying one of the following words: INTEGER,
STRING, NUMERIC, SINGLE, DOUBLE.

You must use the $INCLUDE metacommand to
include the file ISAM .INC in your program to set
these values. Once this file is included, you can set
Kdes(3) as in the following example:

KDES(3) = INTEGER

14

Kdes(4) = segment-number
The number of the segment containing the field. For
non-segmented records, this number is always l.

Segments are numbered from l to n where n is the
number of segments. Segment 1 is the first segment
in the record and segment n is the last. Each segment
can contain many fields but no field can span more
than one segment.

Kdes(S) = field-position
This is the position from the beginning of the seg­
ment to the beginning of the key field (the offset of
the field in the segment). The first byte in the seg­
ment is numbered l.

Together, Kdes(4) and Kdes(5) comprise the field
address.

Kdes(6) = field-length
This is the length of the field in bytes . A zero length
field indicates that the field size is from the field seg­
ment position to the end of the segment. If the field
length is variable, this number should always be
zero.

Kdes(7) = key-handle
Any value between 1 and n where n is the number of
keys. The convention is to assign key handles begin­
ning with 1 and starting with the leftmost byte in the
record. Using this convention makes it easier to
remember key handles. Key handles can be deter­
mined at run time by using the IGETKD procedure to
fetch key field descriptions.

If you are defining a non-key field, this number
is 0.

Kdes(8) [high byte] =duplicates-allowed flag,
descending flag, and case-insensitive flag
• The duplicates-allowed flag indicates whether

duplicate values are allowed for this particular
field.

• The descending-flag inverts the meaning of com­
parisons performed on this field. The result is that
the records are inserted into the key set in descend­
ing instead of ascending order. It is most useful
with split keys where the ordering of the different
components might need to be inverted .

• The case-insensitive-flag causes string-based data
types to ignore differences in case (for example,
the values "FiRst" and "first" would be equal).

The duplicates-allowed flag = 1, the descending
flag = 2, and the case-insensitive flag = 4.

Add the values of the desired flags together
and enter that number as the high byte . For
example, to set the duplicates-allowed
and case-insensitive flags , use:

Kdes(8) = (256 * (1 + 4)) + field-mode

Kdes(8) [low byte] =field-mode
Tells if the field is a key, and if so, whether it
is a split key.

If the field is a non-key field, field-mode =0.
If the field is a non-split key field ,
field-mode= l. If the field is a component
of a split key, field-mode =2.

Kdes(9) = filler
This is a reserved word area. It must be initialized to
zero . The following example shows typical record
and key descriptors:

DIM RDES(3) , KDES(9)
$INCLUDE: ' ISAM .INC'
RDES(l) = 1
RDES(2) = 0
RDES(3) = 8
FIELDNAME$ ="ID

NUMBER"
KDES(l) = VARPfR

(FIELD NAME$)
KDES(2) = 0
KDES(3) = INTEGER
KDES(4) = 1
KDES(5) = 1
KDES(6) = 2
KDES(7) = 1
KDES(8) = (1 *256) + 1

KDES(9) = 0

' 1 Key field
' Non-segmented
'Minimum record length

'Field name pointer
'Reserved-Set to zero
'Data type-Integer
'Segment 1
'Position 1
'Length of field in bytes
'Key number is 1
'Duplicates allowed­
Nonsplit key

'Reserved-Set to zero

Modular Programming Techniques

Structuring Modular Programs
Because BASIC Compiler version 2.00 allows you
to compile and link separate subprograms, you have a
flexible environment for structuring large programs.
The subprogram, module and named COMMON block
structures let you construct libraries of compiled
BASIC modules. Each module within a library can con­
sist of one or more subprograms. Parameters passed
with the CALL statement and named COMMON
blocks provide communication among modules .

15

Modular programming has three major benefits :
1. Ease of understanding-each subprogram or

module has a specific task that it performs on a
small number of parameters or common variables.
This makes the overall program much easier to
understand.

2 . Subprogram independence-Because the com­
munication paths among subprograms are isolated
and well-defined, a given subprogram is less
dependent on other subprograms. This allows the
subprograms to be developed independently, even
by different programmers. It also permits subpro­
grams to be reused across several applications.

3. Program flexibility-If the dependencies among
subprograms are minimized , a given subprogram
may be completely rewritten or replaced by one
with a better algorithm, as long as its overall results
do not change. Such modularity enhances the over­
all flexibility of the application program by allow­
ing it to be tailored for another system or user. An
example is recompiling a single module to change
a report heading and relinking the program.

B ecause BASIC Compiler version
2.00 allows you to compile and

link separate subprograms, you have a
flexible environment for structuring

large programs.

Named COMMON Blocks
BASIC Compiler version 2.00 supports named
COMMON blocks as one way of supporting larger
programs. COMMON blocks create data segments
that can be accessed by BASIC program segments.
Named COMMON blocks are declared by using the
blockname option with the COMMON statement.

Named COMMON blocks differ from unnamed
(blank) COMMON statements (where blockname is
not specified) in one key aspect. Items (variables and
arrays) in named COMMON blocks are not pre­
served when you chain to another program with the
CHAIN statement. To protect the information in a
named COMMON block you must use the same
blockname in the chained program and use the same
variable types and sizes in the same order. The vari-

able names need not be the same, however. For exam­
ple, chaining between A,B,C(2) and E,F,G(2) would
be valid, but A,B,C(2) and E,F(2),G would not .

There are two other ways of sharing items declared
in COMMON blocks. One is for the independent
modules to communicate through the CALL state­
ment. This lets named COMMON blocks be used for
inter-module communication without chaining. The
other way to share items between programs is to omit
the blockname. Items that are listed in the regular
COMMON statement (no blockname specified) can
still be accessed by another chained program as in
interpreted BASIC.

The Library Manager

The IBM Library Manager allows you to construct
and edit object module libraries. Object files and
other library files can be added to a library and
object modules can be removed and erased from a
library.

Command Line Format
The format of the command line is:

LIB [library-file+

where

[pagesize] +operations+
[,[list-file]][, +
[newlib]][;]]

library-file is the name of a library file .

page size is an optional switch of the form,

"/pagesize: :N" or "/p::N"

where N equals:

16, 32, 64, 128, 256 or 512 .

By default, libraries under IBM DOS
are always multiples of 512 byte blocks .
Object modules always start at the
beginning of a new block. A biock is
also called a page . If the size of the
object module is less than a block, the
rest of the block is filled with null bytes.

When you specify value for page size
in the command line, the library being
created or modified contains N byte
pages.

16

The size of the library that you are
creating or modifying can increase
when you specify larger values for page
size . However, the time it takes to link
the library decreases when you use
larger page size values.

The default value for the page size
switch is 512 if the library file is being
created , or the current page size if the
library file is being modified .

Note: Version 2.30 of the Linker is
included with this version of the BASIC
Compiler 2 .00. Previous versions of the
Linker cannot recognize page size val­
ues less than 512 . Therefore, you should
always use the latest version of the Linker.

operations is a list of operations to perform. This
list contains an operator plus the name
of the file you are adding. The default is
an empty list; no changes occur. See
" Operators," later in this section for a
description of the operators.

list-file is a filename where a cross reference
listing will be placed. No default exten­
sions are used.

The default for [,list-file] is no list
file ; a cross reference is not generated .
You are asked for this entry if it is left
empty.

newlib defines the name of a library file to be
created with the changes specified by
the operations . The default is the same
name as the library file. If you use the
default , the original file is renamed
to have the extension " BAK" instead
of " LIB."

The command line can be broken by a carriage
return at any point. You are asked for the remaining
parts of the command line . If a semicolon ends any
field after the library file name, the remaining fields
take on its default value. If you just specify LIB, you
are asked for all entries.

Note: You can have a device identification before any
of the entries that you specify in the command line.

Operators
The operators recognized by the Library Manager
are:

+ Adds the contents of an object file or a library
file .

*
Erases an object module.

Retrieves an object module and copies it into a
file whose name is the specified module name
plus the extension .OBJ.

These individual operators can be combined to per­
form more complex operations. For example:

± Replaces an object module with the contents of
the object file of the same name (plus " .OBJ") .

- * Removes an object module and at the same time
erases it.

Many operations may be performed at once. If you
want to specify operations on more than one line, fol ­
low your last operation with an ' & ' and a carriage
return.

First, erasures and removals are performed in the
order in which the specified object modules occur in
the library. Then , additions are performed in the
order you specify.

To add the file TEST.OBJ to the library BASIC.LIB
without producing a cross reference, type :

LIB BASIC.LIB+TEST.OBJ;

Note that the following is the same as the preceding
example:

LIB BASIC+ TEST;

Extensions are optional , and they default to .OBJ if
omitted. If you are using a library file that is in the
operations list , you must specify the .LIB extension .

To erase TEST from BASIC.LIB, type:

LIB BASIC-TEST;

To replace TEST in the library with a newer ver­
sion , type:

LIB BASIC-+ TEST;

If you want to make the same changes but put the
changes in a new library called BASNEW.LIB, type :

LIB BASIC-+ TEST, ,BASNEW

If you want to create a library of object modules,
type :

LIB MY SUBS+ FILE I.OBJ+ FILE2. OBJ+
. .. + FILEN.OBJ.

You are asked for the listing file .

17

Multiple Field Definitions
In BASIC
Martin Bryskier
IBM Corporation

Data files usually consist of many records, and
records usually contain many fields. A field is simply
a related group of adjacent characters (bytes) of data.
For example, in the vast Social Security data base,
your individual record might contain (among other
things) your Social Security number, name, address,
birth date, earnings each year, and amount contrib­
uted toward Social Security each year. Fields vary in
length - the field containing your name occupies
more space than the field containing your birth date.

Computer programming languages have ways of
defining fields within records. This article concen­
trates on how to define fields in IBM Personal Com­
puter BASIC, and emphasizes defining many fields
for one record by using several statements.

The OPEN Statement
Suppose that on a diskette in drive B you have a data
file named SOCSEC.DAT. (Here the extension .DAT
is used to make it obvious that the file contains data.
However, the extension can be almost anything you
wish .) In a BASIC program you would gain access
to this file by using an OPEN statement such as the
following:

10 OPEN "R, "l, "B:SOCSEC.DAT" ,346

In this OPEN statement:

"R " Indicates a random access
file, which means you have
direct access to individual
records.

1 Designates this file as file
number 1 within this BASIC
program. All further state­
ments that access this file
will use the number 1 to
point to this file .

"B:SOCSEC.DAT" Is the pointer to the drive
and to the file itself.
File number 1 is equated to
SOC SEC. DAT through the
OPEN statement.

346 Is the length in bytes of an
individual record in this file.
It is also the length of the
input/output buffer for this
file . BASIC can work with
records up to 32 ,767 bytes.

The OPEN statement actually initializes the input/
output buffer. When you issue a GET command to
read a record from the file, that record goes into the
buffer. Similarly, when you place a record in the
buffer and issue a PUT command, that record is writ­
ten to the file.

Specify Buffer Size When Calling BASIC
The OPEN statement above specifies a record length
of 346 bytes. BASIC assumes that records from ran­
dom files are 128 bytes long , and BASIC sets up its
work areas accordingly. When you have a record
longer than 128 bytes, you have to notify BASIC at
the time you invoke BASIC.

To do this you must invoke BASIC using the
option /S:bsize (see your BASIC Reference manual
for more information) . This parameter sets the buffer
size that BASIC uses for random files. In the case
above, bsize is 346, so you should invoke BASIC
as follows.

BASIC /S:346 (plus other options you may
require)

18

Example of Fields in a Record
Now that you have defined a 346-byte buffer in mem­
ory, you can define fields within those 346 bytes.
Using the Social Security data base example (which
is, of course, hypothetical), if an individual's record
contains 346 bytes, it might look like this:

Bytes Length Contents
1-9 9 Social Security number

(dashes omitted)

10- 29 20 Last name

30- 49 20 First name

50- 69 20 Middle name

70- 75 6 Birth date (YYMMDD)

76-110 35 Current street address

111-135 25 Current city

136-137 2 Current state (postal
abbreviation)

138-146 9 Current z!.e_ code (9 di~ts)
147-155 9 Social Security number of

spouse

156-159 4 Year that Social Security
contributions began

160-168 9 Total earnings from begin-
ning year through 1973
(dddddddcc where d =dollars,
c=cents)

169-176 8 Total Social Security contri-
butions from beginning year
through 1973 (ddddddcc)

177-185 9 Total earnings for 1974

186-193 8 Total Social Security
contributions for 1974 ...
(and so on)

313-321 9 Total earnings for 1982

322-329 8 Total Social Security contri-
butions for 1982

330-338 9 Total earnin__g__s for 1983

339-346 8 Total Social Security
contributions for 1983

There are 33 fields defined in this record . For the
sake of simplicity, assume that every field is a string
of characters (i.e. , there are no fields set up for
numeric data) .

In order to work within a field, the field needs a
name. Because your fields are all character strings,
their names are string variables. String variable
names end with the $ character. You can use names of
up to 40 characters (including the$). You might want
to use long names to be descriptive-for example,
TOTALEARNINGS_ THROUGH_l973$ or
YEAR_CONTRIBUTIONS_BEGAN$. (Although
you could certainly use much shorter names, this
article purposely uses long names to illustrate a point
that will be made soon .)

The FIELD Statement
In your BASIC program you use a FIELD statement
to define fields. A FIELD statement contains the file
number and a list of fields separated by commas. For
each field the FIELD statement includes the number
of bytes-and the assigned field name. (A field name is
also called a field variable. And, if, as in this exam­
ple, tke'\field variable is assigned to a character string ,
it is also called a string variable .)

For your Social Security example, your FIELD
statement looks like this:

20 FIELD 1, 9 AS SOCIAL_ SECURITY
NUMBER$, 20 AS LAST_NAME$, 20 AS
MIDDLE-NAME$, 20 AS FIRST_
NAME$, 6 AS BIRTH_DATE$, 35 AS
STREET$, .. .

In the above FIELD statement:
• l is the file number, which refers back to the

OPEN statement for the drive and name of the
actual file .

• 9 AS SOCIAL_SECURITY_NUMBER$
defines a field of 9 bytes with the string variable
SOCIAL_SECURITY_NUMBER$. Because
this is the first field defined , the 9 bytes are
assigned to bytes l through 9 of the buffer.

• 20 AS LAST_NAME$ defines the next field to be
20 bytes with the string variable LAST_NAME$.
This field is assigned to bytes 10 through 29 of
the buffer.

• and so on .

19

Entering Definitions for Many Fields
Theoretically you could continue adding fields
to your FIELD statement until you have defined
all 33 fields. However, a BASIC statement is
restricted to a maximum of 255 characters. With
your long descriptive field names you will reach 255
characters before you are able to define all
33 fields. (Long field names were used to make
this point.)

You might think you can get around this restriction
by splitting your field definitions into more than one
FIELD statement. However, according to the BASIC
manual, each new FIELD statement redefines the
buffer from the first character position. Therefore, if
your second FIELD statement were to look like:

30 FIELD 1, 4 AS YEAR-CONTRIBUTIONS
BEGAN$, 9 AS TOTAL-EARNINGS
THROUGH-1973$, ...

Bytes 1 through 4 would be assigned the string varia­
ble YEAR-CONTRIBUTIONS-BEGAN$, bytes 5
through 13 the string variable TOTAL-EARNINGS_
THROUGH-1973$, and so on. Obviously, this is not
what you want. How, then, can you define all
33 fields in their proper positions?

There is a way to define your string variables that
will accomplish what you want to do . Look at this
example:

20 FIELD 1, 9 AS SOCIAL-SECURITY_
NUMBER$, 20 AS LAST_NAME$, 20 AS
MIDDLE_NAME$, 20 AS FIRST_
NAME$, 6 AS BIRTH-DATE$, 35 AS
STREET$, 25 AS CITY$, 2 AS STATE$, 9
AS ZIP _CODE$, 9 AS SPOUSE_
SOCIAL-SECURITY-NUMBER$

30 FIELD 1, 155 AS FILL1$, 4 AS YEAR_
CONTRIBUTIONS-BEGAN$, 9 AS
TOTAL-EARNINGS_ THROUGH_
1973$, 8 AS TOTAL-CONTRIBUTIONS
_ THROUGH-1973$, 9 AS TOTAL_
EARNINGS_IN-1974$, 8 AS TOTAL­
CONTRIBUTIONS_IN_l974$

40 FIELD 1, 193 AS FILL2$, 9 AS TOTAL­
EARNINGS_IN_l975$, 8 AS TOTAL_
CONTRIBUTIONS_IN-1975$, 9 AS
TOTAL-EARNINGS_IN_l976$, 8 AS
TOTAL_CONTRIBUTIONS_IN-1976$,
9 AS TOTAL-EARNINGS_IN_l977$, 8
AS TOTAL_CONTRIBUTIONS_IN_
1977$

50 FIELD 1, 244 AS FILL3$, 9 AS TOTAL_
EARNINGS_IN_l978$, 8 AS TOTAL_
CONTRIBUTIONS_IN_l978$, 9 AS
TOTAL-EARNINGS_IN_l979$, 8 AS
TOTAL-CONTRIBUTIONS_IN_l979$,
9 AS TOTAL-EARNINGS_IN-1980$, 8
AS TOTAL-CONTRIBUTIONS-IN_
1980$

60 FIELD 1, 255 AS FILL4$, 40 AS FILL5$,
9 AS TOTAL-EARNINGS_IN-1981$, 8
AS TOTALCONTRIBUTIONS_IN_
1981$, 9 AS TOTAL-EARNINGS-IN_
1982$, 8 AS TOTAL_CONTRIBUTIONS
IN-1982$, 9 AS TOTAL-EARNINGS
IN-1983$, 8 AS TOTAL_
CONTRIBUTIONS_IN-1983$

Here statement 20, which took 206 characters to
enter, defines ten fields that occupy bytes 1 through
155. Statement 30, therefore, begins with a string
variable FILL1$ that is defined to be 155 bytes long.
(The name FILL1$ is arbitrary - you can select any
name you wish.) FILL1$ is another definition for the
first 155 bytes, but you will probably never refer to
the field FILL1$. Its sole purpose is to mark off filler
space so that the next string variable in statement 30,
YEAR_CONTRIBUTIONS_BEGAN$, is assigned
to bytes 156 through 159. After that , the remaining
string variables defined in statement 30 will be
assigned their correct positions.

The string variables in statements 20 and 30 add
up to 193 bytes. Therefore, statement 40 begins with
the string variable FILL2$, defined to be 193 bytes
long. FILL2$ marks off 193 bytes so that the next
string variable in statement 40, TOTAL-EARNINGS
_ IN_l975$, is assigned to bytes 194 through 202.

There is another restriction to be aware of: a string
variable can be a maximum of255 bytes long. When
it is necessary to mark off more than 255 bytes of
filler space in a single BASIC statement , you will
have to use two string variables to mark off the space.
Statement 60 illustrates this.

In this manner, using BASIC statements of maxi­
mum length 255 characters and filler variables of
maximum 255 bytes, you can define whatever num­
ber of fields you require for your record, and you can
span any record length up to 32 ,767 bytes.

20

Putting Data into Field Variables
After you read a record from a random file into the
buffer, you can transfer data out of fields in the buffer
and into string variables that are outside the buffer. In
the above example, suppose you have separately
defined a string variable BEGIN_ YR$ that contains
four bytes. You can then transfer into BEGIN_
YR$ the contents of the field variable YEAR­
CONTRIBUTIONS_BEGAN$ by using a simple
LET statement (where the word LET is optional):

[LET] BEGIN_ YR$ = YEAR_
CONTRIBUTIONS-BEGAN$

However, you can't turn this statement around
because you can't use a LET statement to transfer the
contents of a separate string variable into a field vari­
able. Instead you have to use the LSET and RSET
statements (see the BASIC manual) . These state­
ments move data into a random fi le buffer in prepara­
tion for a PUT (file) statement. If the field variable is
longer than the separate string variable, LSET left­
justifies the string in the field, and RSET right­
justifies it.

To do the opposite of the LET statement above, use

LSET YEAR-CONTRIBUTIONS_
BEGAN$= BEGIN-YR$

DOS Device
Drivers
(Part 2)

John Warnock
IBM Corporation

Editor's note: This is the second
part of an article about writing
device drivers for DOS. This part
examines the various functions
that device drivers must support ,
and how to install and use device
drivers. Part I , published in the
September 1985 issue ofExchange,
gave an overview of what device
drivers do and how they do it.

The initialization function sets up
the device driver within DOS. It is
possible that the driver cannot set
up the device. You should set up
your initialization routine to allow
for this. If an INIT routine deter­
mines that it cannot set up the de­
vice and wants to abort without
using memory, it should do the
following:

• Set the number of units to zero.
• Set the ending address offset

to zero.
• Set the ending address segment

to the code segment (CS).

Whether or not your INIT routine
ends normally, it is advantageous
to set the ending address offset to
zero to ensure it lies on a para­
graph boundary.

Device Driver Function Headers
Following are descriptions of sev­
eral different function headers.
The first five fields are always the
same . The remaining fields vary
by function.

INIT (Function 0)
The INIT function :
• Defines the number of units

for DOS.
• Sets up each device.
• Sets the ending address of

the driver.
• Sets the address for the pointer

to the BIOS parameter block.
• Sets the status word.

DISPLACE LENGTH
+ 00 1 byte

+01 l byte

+02 1 byte

+03 2 bytes

+05 8 bytes

+13 1 byte

+14 2 bytes

+16 2 bytes

+ 18 2 bytes

+20 2 bytes

+22 I byte

Figure 1. INIT (Function 0)

DESCRIPTION
Length of header + data

Unit code (block devices only)

Function code OOH

Status code (set by device)

Reserved for DOS

Number of units (block devices only)

Ending address (offset) of resident code

Ending address (segment) of resident code

Indirect pointer to BIOS parameter block array
(offset) (block devices only)

Indirect pointer to BIOS parameter block array
(segment) (block devices only)

Drive number (DOS 3.00 and DOS 3.10)

BASIC 3.10 Reference Chart
Compiled by John Warnock, IBM Corporation

This chart of BASIC 3.10 commands can be
removed and used for future reference.

BASIC 3.10 Reference Chart
BASIC 3.10 Commands BASIC 3.10 Commands

BASIC TYPE DESCRIPTION BASIC TYPE DESCRIPTION

ABS(x) Function Returns absolute value of expression x MKDIRp$ Command Creates a new directory
AND Operator Logical operator-performs conjunction MKD$ Function Converts double-precision value to string
ASC (x$) Function Returns ASCII code for 1st character of x$ MK1$ Function Converts integer value to string
ATN(x) Function Returns the arctangent of x MKS$ Function Converts single-precision value to string
AUTO Command Generates line numbers automatically MOD Operator Performs modulo arithmetic

BEEP Statement Beeps through the speaker
MOTOR Statement Turns the cassette player on and off

BLOAD f$ Command Loads a memory image file into memory NAMEfASg Command Changes the name of a diskette file
BSAVE f$,o,I Command Saves portions of computer memory to a file NEW Command Deletes the program currently in memory

CALLn Statement Calls an assembly language subroutine
CDBL(x) Function Converts x to a double-precision number

NEXT Statement Ends a series of instructions in a loop
NOT Operator Logical operator-performs complement

CHAIN [MERGE]f$ Statement Transfers control and passes variables to another OCT$(x) Function Returns a string for the octal value of x
program from current program ON COM(x) GOSUB line Statement Sets an asynch port no . for BASIC to trap

CH DIR Command Changes current directory ON ERROR GOTO line Statement Enables error trapping and specifies line
CHR$(x) Function Converts ASCII code to its character equivalent ON x GOSUB line Statement Branches to one of several subroutines
CINT(x) Function Converts x to an integer ON x GOTO line Statement Branches to one of several line numbers
CIRCLE(x,y) ,r Statement Draws an ellipse centered at x,y, radius r ON KEY(x) GOSUB line Statement Sets line BASIC will trap when key x pressed
CLEAR Command Sets all numbers to 0 and strings to blank ON PEN GOSUB line Statement Sets up line no . to transfer to on light pen
CLOSE Statement Concludes I/Oto a device or file ON PLAY(x) GOSUB line Statement Plays cont. background music for x notes
CLS Statement Clears the screen ON STRIG(x) GOSUB line Statement Sets up joystick for BASIC to trap
COLOR Statement Sets foregr., backgr. , border screen color
COM(x) ONIOFFISTOP Statement Enables/disables comm. interrupts for x

ON TIMER(x) GOSUB line Statement Branch to subroutine after x seconds
OPEN f$ FOR model AS #f Statement Allows I/O to a file or device

COMMONv Statement Passes variables to a chained program OPEN mode2,#f,f$ Statement Allows I/O to a file or device
CONT Command Resumes program execution after a break OPEN "COMn: ... " AS #f Statement Sets Async port and opens a comm. file
COS(x) Function Returns the trigometric cosine function of x OPTION BASE x Statement Declares the minimum value of an array subs .
CSNG(x) Function Converts x to a single-precision number OR Operator Logical operator-performs disjunction
CSRLIN Variable Retu rns the line no. of the cursor OUTy,x Statement Sends value x to port y
CVD(x$) Function Converts 8 byte string to numeric variable
CVl(x$) Function Converts 2 byte string to double prec. var.
CVS(x$) Function Converts 4 byte string to numeric variable

PAINT(x ,y) Statement Fills screen or pattern area with a color
PEEK(x) Function Returns a byte read from a memory pos.
PEN Function Reads the light pen

DATAc Statement Stores num . & string constants for READ
DATE$ Var/Stmt Sets or retrieves the date

PEN ONIOFFISTOP Statement Enables/disables light pen
PLAY ONIOFFISTOP Statement Enables/disables background music

DEFFN __ Statement Defines and names a user-written function PLAY x$ Statement Plays music as specified by string x$
DEFSEG Statement Defines the current "segment" of storage PLAY(x) Function Returns number of notes in music buffer
DEFUSRn Statement Spec. memory location of subr. n for USR PMAP(x,n) Function Maps between physical and world coordinates
DEFDBL Statement Declares double-precision variable type POINT(x,y) Function Returns attribute of point x,y on the screen
DEFINT Statement Declares integer variable type POINT(n) Function Returns value of current screen point x,y
DEFSNG Statement Declares single-precision variable type POKEy,x Statement Writes a value x to memory location y
DEFSTR Statement Declares string variable type POS(x) Function Returns the current cursor column position
DELETE Command Deletes program lines
DIM v(x) lv$(x) Statement Specifies maximum values for array subscripts
DRAW x$ Statement Draws an object as specified by x$

EDIT line Command Displays a line for editing
ELSE Operator Specifies alt. expression for IF THEN test
END Statement Terminates program execution, closes files
ENVIRON p$ Statement Mod. parameters in BASIC 's environ . table
ENVIRON$(x) Function Read par. in BASIC's environment table

PRESET(x,y) Statement Draws a point on the screen at x,y background
PRINT xix$ Statement Displays data on the screen
PRINT USING x$; y jy$ Statement Displays data using the format x$
PRINT#f,x lx$ Statement Writes data seq. to a file
PRINT# USING x$; y ly$ Statement Writes data seq. to a file using format
PSET(x,y) Statement Draws a point on the screen at position x,y
PUT#f Statement Writes a random record to a file
PUT(x,y),a Statement Writes image on screen starting at x,y

EOF(x) Function Indicates an end of file condition on file x
EQV Operator Logical operator-performs equivalence

RANDOMIZE xlTIMER Statement Reseeds the random no . generator with x
READ xix$ Statement Reads values from DATA statements into variables

ERASE Statemsw- EJill1inates arrays from a program
ERDEV Variable DOS interrupt 24 error code variable

REM Statement Laserts "!l11o;xplanatory remark in a program
REN UM Command Renumbers the program lines

ERDEV$ Variable DOS error device name RESET Command Closes all disk files and clears the buffers
ERL Variable Returns a BASIC line no. for error RESTOREx Statement Allows data state. to be reread from line x
ERR Variable Returns a BASIC error code
ERRORn Statement Simulates a BASIC error nor allows definition

RESUME IIinelNEXT Statement Continues prog . execution after an error
RETURN Statement Returns control from a subroutine

EXP(x) Function Calculates exponential to xth power RIGHT$(y$,x) Function Returns the rightmost x char. of string y$

FIELD #f, width AS s$ Statement Allots space for variable in file buffer
FILES Command Displays the names of files on a disk
FIX(x) Function Truncates x to an integer
FN -- Function Calls a user-defined function

RM DIR Command Removes a directory
RND(x) Function Returns a random no . between 0 and 1 on x
RSET Statement Moves data into random file buffer before PUT
RUN Command Begins execution of a program

FOR v=x TOy Statement Begins a series of instructions in a loop
FRE(x) l(x$) Function Returns no . of bytes in memory not used

SAVE Command Saves a BASIC prog. on disk or cassette
SCREEN(x,y) Function Returns ASCII code for the character at x,y

GET #f (fi les) Statement Reads a record from a random file
GET (graphics) (x l,y 1)

-(x2,y2) ,a Statement Reads points from an area of the screen
GOSUB line Statement Branches to a subroutine
GOTO line Statement Branches unconditionally to specified line no.

HEX$(x) Function Returns the hexadecimal rep. of x

SCREEN c$ Statement Sets the screen attributes
SGN(x) Function Returns the sign of x
SHELL Statement Execute prog . or BATch file within BASIC
SIN(x) Function Calculates the trig . sine function of x
SOUND f,d Statement Generates sound through the speaker
SPACE$(x) Function Returns a string of x spaces
SPC(x) Function Skips x spaces in a PRINT statement

IF x Ix$ GOTO ITHEN Statement Makes a decision regarding program flow
IMP Operator Logical operator- performs implication
IN KEY$ Variable Reads a char. from the keyboard if available
INP(x) Function Returns the byte read from port x
INPUT xix$ Statement Receives input from the keyboard
INPUT #fx Ix$ Statement Reads data from a sequential device or file
INPUT$(x,n) Function Returns x char. read from keyb. or file n
INSTR(z ,y$,x$) Function Searches for x$ within y$ starting at z
INT(x) Function Rtns. largest integer less than or equal to x
INTER$ Reserved International character set
IOCTL #f,x$ Statement Send control string to device driver

SQR(x) Function Returns the square root of x
STEP Operator Specifies the increment size of FOR state .
STICK(n) Function Returns the x and y coord . of joystick n
STOP Statement Stops the program (RESUME continues)
STR$(x) Function Returns a string rep. of the value x
STRIG (n) Function Returns the status of the joystick button n
STRIG ON IOFF Statement Enables/disables joystick button trapping
STRIG(x) ON I OFF I STOP Statement Enables/disables trapping joystick buttons
STRING$(n,mlx$) Function Returns a string of n characters
SWAP __ , __ Statement Exchanges two variables
SYSTEM Command Exits BASIC and returns to DOS

IOCTL$(#f) Function Read control data string from dev. driver TAB(x) Function Tabs to position x in PRINT instruction

KEY ONIOFFILISTln,x$ Statement Sets or displays soft keys or key trapping
KEY(n) ONIOFFISTOP Statement Activates I deactivates trapping for key n
KILL x$ Command Deletes a file from disk

LEFT$(y$,x) Function Returns the leftmost x characters ofy$
LEN(x$) Function Returns the number of characters in x$
LET x=y lx$=y$ Statement Assigns value of an expression to a variable

TAN(x) Function Returns the trigonometric tangent of x
THEN Operator Allows for expression based on IF test
TIME$ Var/Stmt Sets or retrieves the current time
TIMER ONIOFF Statement Enables or disables elapsed time trapping
TIMER Function Returns seconds since midnight or reset
TO Operator Sets the ending value in a FOR NEXT loop
TROFF Command Ends trace of execution of program statements

LINE Statement Draws a line or box on the screen TRON Command Starts trace of execution of program statements
LINE INPUT Statement Reads entire line from keyboard
LINE INPUT #f,x$ Statement Reads entire line from sequential file
LIST Command Lists the prog . cur. in memory to screen

USING Operator Des. format used in PRINT and PRINT#
USR(n) (arg) Function Calls assembly Jang . subr. n with arg

LUST Command Lists the prog. cur. in memory to printer
LOADf$ Command Loads a program into memory
LOC(x) Function Returns the current position in the file x
LOCATE Statement Positions the cursor on the active screen
LOF(x) Function Returns the no . of bytes alloted to file x
LOG(x) Function Returns the natural logarithm of x
LPOS(x) Function Returns pos. of print head for printer x
LPRINT x ix$ Statement Prints data on the printer
LPRINT USING x$; y ly$ Statement Prints on the printer using the format x$
LSET f$=x$ Statement Moves data into a rdm. file buffer bef. PUT

MERGE Command Merges lines from ASCII file to current program
MID$(x$,y,z) Stmt/Func Returns part of string x$ starting at y for z

VAL(x$) Function Returns the numerical value of string x$
VARPTR(V) Function Returns the memory address of the variable
VARPTR$(V) Function Returns the char. form of a memory address
VIEW IVIEW SCREEN Statement Defines a WINDOW subset of screen

WAIT x,a Statement Suspends prog . execution until port x input
WEND Statement Ends a WHILE loop
WHILEx Statement Begins a loop while expression x is true
WIDTH s ld ,s l#f,s Statement Sets output line width
WINDOW Statement Redefines coordinates of viewport
WRITE xix$ Statement Outputs data to the screen
WRITE #f,x lx$ Statement Writes data to a sequential file

XOR Operator Logical operator- exclusive or

•

Media Check (Function 1)
The Media Check function:
• Reads the media descriptor byte.
• Tests the media .
• Sets the status word .
• Sets the media return code.

The media return code can be -1 ,
indicating a change; 0, for un­
known result ; or + 1, indicating
no change. In DOS versions 3.00
and later, if the return byte has
been set to -1 , and the device
driver sets bit 11 of the device
header attribute on , the driver
must set the pointer to the pre­
vious volume ID. DOS then deter­
mines if that change is an error
and returns an invalid disk change
error on behalf of the device.

Build BIOS Parameter Block
(Function 2)
The Build BIOS Parameter Block
function :
• Checks the device to find the

descriptor byte.
• Finds the matching BIOS

parameter block.
• Sets the direct pointer to the

BIOS parameter block.

This function causes the device
driver to read the boot sector of the
media for the media description.

Input or Output (Functions 3, 4,
8, 9, U)
The INPUT or OUTPUT
function:
• Reads the sector byte count.
• Performs the requested

function .
• Sets the actual count of sectors

or bytes.
• Sets the status word .

Nondestructive Input No Wait
(Function 5)
The Nondestructive Input No
Wait function :
• Provides a one-character look­

ahead (character devices only).
• Sets the status word .
• Does not alter the input buffer.

21

DISPLACE LENGTH DESCRIPTION

+00 I byte Length of header + data

+01 I byte Unit code (block devices only)

+02 I byte Function code 01 H

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

+ 13 I byte Media descriptor byte from DOS

+14 I byte Media return code

+ 15 2 bytes Pointer to previous volume ID (DOS 3.00 and
DOS 3.10)

Figure 2. Media Check (Function 1)

DISPLACE LENGTH DESCRIPTION

+00 1 byte Length of header + data

+01 I byte Unit code (block devices only)

+02 I byte Function code 02H

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

+ 13 I byte Media descriptor byte from DOS

+14 2 bytes Transfer address (offset)

+16 2 bytes Transfer address (segment)

+ 18 2 bytes Direct pointer to BIOS parameter block (offset)

+20 2 bytes Direct pointer to BIOS parameter block (segment)

Figure 3. Build BIOS Parameter Block (Function 2)

DISPLACE LENGTH DESCRIPTION

+00 1 byte Length of header + data

+01 I byte Unit code (block devices only)

+02 I byte Function code 03H, 04H, 08H, 09H, OCH

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

+ 13 I byte Media descriptor byte from DOS

+14 2 bytes Transfer address (offset)

+16 2 bytes Transfer address (segment)

+18 2 bytes Byte count (character device drivers)
Sector count (block device drivers)

+20 2 bytes Starting sector number (block devices only)

+22 4 bytes Pointer to volume-ID ifOFH error occurs
(DOS 3.00 and DOS 3.10)

Figure 4. Input or Output (Functions 3, 4, 8, 9, U)

DISPLACE LENGTH DESCRIPTION

+00 1 byte Length of header + data

+01 1 byte Unit code (block devices only)

+02 1 byte Function code 05H

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

+13 I byte Byte read from device)

Figure 5. Nondestructive Input No Wait (Function 5)

Input or Output Status
(Functions 6, 10)
The Input or Output Status
function:

22

Input or Output Flush
(Functions 7, 11)
The Input or Output Flush
function:

• Determines the status of the
input or output device.

• Clears the input or output
buffer.

• Sets the status word. • Sets the status word.

There is no data associated with
this function.

There is no data for this function.

DISPLACE LENGTH DESCRIYI'ION

+00 1 byte Length of header + data

+01 1 byte Unit code (block devices only)

+02 1 byte Function code 06H, or OAH

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

Figure 6. Input or Output Status (Functions 6, 10)

DISPLACE LENGTH DESCRIYI'ION

+00 1 byte Length of header + data

+01 1 byte Unit code (block devices only)

+02 I byte Function code 07H, or OBH

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

Figure 7. Input or Output Flush (Functions 7, ll)

DISPLACE LENGTH DESCRIYI'ION

+00 I byte Length of header + data

+01 I byte Unit code (block devices only)

+02 I byte Function code OOH, or OEH

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

Figure 8. OPEN or CLOSE (Functions 13 & 14)
(DOS 3.00 and DOS 3.10 only)

DISPLACE LENGTH DESCRIYI'ION

+00 I byte Length of header + data

+01 I byte Unit code (block devices only)

+02 I byte Function code OFH

+03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

Figure 9. Removable Media (Function 15)
(DOS 3.00 and DOS 3.10 only)

Open or Close (Functions 13, 14)
The Open or Close function is for
setting a device before starting
a task.

Removable Media (Function 15)
The Removable Media function
sets the busy bit (9) of the status
word to 1 if the media is non­
removable.

Installing Device Drivers
Your device driver program must
be available when you start or
reboot your system. DOS looks
for references to device drivers in
its CONFIG.SYS file. This file
must be in the root directory of
drive A or C, and must contain
the line:

DEVICE =[d:] [path]
filename.ext

where

[d:] is the name of the
drive where the
device driver pro­
gram is located .

[path] is the path where
the device driver
program is located.

filename.ext is the name and
extension of the
device driver
program .

When DOS is loaded , it looks
for all the device drive programs
specified in CONFIG.SYS and
makes them part of the operating
system . If a character device
driver name (listed in the device
header) has the same name as an
existing device driver, such as
LPT I, DOS will use the new
device driver in place of the old
one. In the case of a block device
driver, DOS will count the num­
ber of units, place that amount in
the first byte of the driver name,
and assign the appropriate num­
ber of device letters to the driver.

Using Device Drivers
Using a new device driver is rela­
tively easy. You treat it exactly
like other DOS devices: CON,
LPTl , COMl, A , B, C, etc. If the
device driver is written properly,
you should be able to issue com­
mands to the new device, or open
it for input and output, just like
any other DOS device.

The device driver should make
the input and output from the
device transparent to the user. The
only exception is in a program,
such as BASIC, that does not use
standard input or output. How­
ever, BASIC allows you to open
the device as a file, send control
information to it through the
IOCTL statement, and read con­
trol information from it with the
IOCTL$ function.

For a character device driver,
the system uses the name built
into the device driver. As stated
before, if the device name is the
same as an existing one, DOS
uses the new driver in place of the
old one. This can be useful when
you use an asynchronous device
driver to make a " dumb" terminal
the console. (A dumb terminal is
one with no built-in processing
capabilities, in contrast to a
"smart" terminal , which has
some intelligence .) For example,
creating an asynchronous driver
and calling it CON will make
the system use a remote terminal in
place of your display and keyboard.

For a block device driver, DOS
assigns that device the next availa­
ble letter as the device name. An
instance of this is where you use a
virtual disk device driver with
system memory. DOS defines it as
drive C, Dor E depending on how
many drives and adapter cards are
installed on your system .

23

Communicating with
Device Drivers
You use a device driver in order
to convey commands to a "smart"
physical device, to make a " dumb"
hardware device look "smart"
to the system, or to pass non-system
information to the device . Com­
munication can take two forms: byte
stream communication or control
channel communication.

In byte stream communication ,
the driver must recognize some
kind of escape character in the
byte stream and use the characters
that follow the escape as control
characters. For example, byte
stream communication is used
when positioning the cursor with
the ANSI.SYS device driver.

JMP NEXT
MSG DB 'OK',13,10
FILE DB 'CHRDVR',O

NEXT PUSH DS
MOY AX,CS
MOV DS,AX
PUSH BX
PUSH ex
PUSH DX

MOV AH,3CH
MOV CX,O
LEA DX,FILE

INT 21H
JC EXIT

MOV BX,AX
MOY AH,44H
MOY AL,3
MOV CX,4
LEA DX,MSG
INT 21H

MOY AH,3EH

INT 21H

EXIT: POP DX
POP ex
POP BX
POP DS

CONT:

Control channel communica­
tion requires that the driver recog­
nize a hardware control channel.
In control channel communica­
tion, you:
• Build the message .
• Build the device driver name.
• Create the handle (file control

block).
• Send a message to the handle.
• Close the handle.

Control channel communication
is used , for example, when telling
a printer to indent five spaces
after each line feed.

The fo llowing is an assembly
language program that performs
control channel communication :

'
; BUILD THE MESSAGE
; BUILD THE DEVICE NAME

'
; save DS register
; set DS register to
; e.qual the CS register
; save the other registers

'
; CREATE THE HANDLE
; function 3CH; create file handle
; select the file attribute
; DS:DX point to the file/device

' name
; execute DOS function call
; exit on error

'
; SEND THE MESSAGE
; move file handle to BX
; function 44H; IO-CNTL

write IO-CNT message
; length of message
; DS:DX points to message
; execute DOS function call

'
; CLOSE THE HANDLE
; function 3EH; close handle
; (BX still contains the handle)
; execute DOS function call

'
; restore the registers

'
; and continue . . .

Figure 10. Control Channel Communication Program

24

TopView Questions
and Answers
(Part 2)

Compiled by the TopView Development Team
IBM Corporation

Editor's Note: This is the second part of an article cov­
ering TopView questions and answers. Part 1, published
last month, discussed the General and Multitasking
categories.

The following questions and answers are intended to
assist developers of IBM Personal Computer applica­
tions in evaluating TopView and the TopView Program­
mer's TooLKit.

Questions and answers fall into these categories:
• Windowing
• Data Exchange
• Program Information File
• TopView Programming Conventions
• Language Interface Support
• Mouse Support
• Device Driver Support
• Problem Determination

Windowing
042: Can an application have more than one

window?
A: An application can have as many windows as

it needs. There is a limit of 255 windows in
TopView; however, some of these arc already
used by TopView. The major constraint on
the number of windows in a system is the
amount of system memory available.

043: Does the application determine the initial size
of a window? Can it be a different size than
full screen (25 x 80)? What are the minimum
and maximum sizes of a window?

A: Yes, the application determines the initial
(and maximum size) of each window when
the window object is created. The maximum
size of a window is 127 x 127. The minimum
size is 0 x 0. However, the maximum size
window that can be created by the Window
Design Aid is 25 x 80.

Q44:

A :

Q45:

A:

Q46:
A:

Q47:

A :

Q48:

A :

Can an application change the size of a win­
dow or move the window on the screen?
Yes. Refer to the TopView Programmer's
Too/Kit reference book, Chapter 4, " Defining
Window Data Streams."

Can the same window be used for both input
and output?
Yes, TopView windows can be read from as
well as written to.

Is an application required to have a window?
Yes. However, the window may have a size of
0 x 0 and be hidden from view.

Can an application have a window that can't be
viewed by the user?
Yes, an application can hide a window when
the user is not supposed to see it.

Does TopView support color for windows?
What colors does TopView use? Can the user
change the colors?
Yes. TopView supports both the color text
and color graphics modes on the Color/
Graphics Monitor Adapter. TopView has
conventions for color usage and defaults for
both TopView usage and application usage.
Application developers can use either the
pre-defined TopView colors or colors of their
own choosing. Colors used for TopView
functions can be changed to black and white
if preferred, or, if the user has a black and

049:
A:

050:

A:

051 :

A:

052:

A:

053:

A:

0 54:

A:

25

white monitor, connected to the Color/
Graphics Monitor Adapter. Colors used by
an application can be changed by the user if
the application provides the facility.

Can applications share a single window?
Yes. It is possible but not recommended
because of the difficulty of coordinating
updates to the window.

Does TopView support multiple displays at
the same time?
TopView allows users with both a mono­
chrome and a color adapter to run applica­
tions on both displays. However, only one
display is active at a time . The current fore­
ground (interactive) application determines
which display is active.

Can an application update windows on
different displays at the same time?
No. An application can use only one display
at a time, but it can change video modes.

Can an application cause the screen to be
redrawn , or is that under TopView's control?
The scheduling of the physical redrawing of
the screen is under TopView's control. How­
ever, an application can request that any of
its windows be redrawn at any time. The
requesting application is suspended until the
redraw has occurred.

What input modes does TopView support
(full screen, fielded data, etc.)?
TopView supports a full-screen input mode
that allows a complete set of fields to be
returned to the application at one time. It
also provides character editing and cursor
positioning functions . A keystroke input
mode allows the application to interpret and
process each keystroke entered by the user.

Does TopView support field validation for
keyboard input data?
No. TopView provides several editing func­
tions, such as uppercase conversion and
automatic clearing of default data . However,
no checking is performed on data entered in
a field. TopView does provide a mechanism
by which a special routine in the application
can validate keystrokes.

055:
A:

056:
A:

057:

A:

What is the Window Design Aid?
The Window Design Aid is an interactive
tool for designing windows for a TopView
application. A window created by the
Window Design Aid is stored in a disk file
as a sequence of data stream codes called
a panel.

How does an application use a panel object?
When an application applies a panel to
TopView, the data stream codes are used to
create and/or define a window.

How does an application access panels
created by the Window Design Aid?
TopView provides facilities for accessing
panels that reside on disk or in RAM mem­
ory. A ToolKit utility merges groups of pan­
els into a library of panels so they can be
accessed more readily from your program .
The TopView Programmer's ToolKit also
contains a utility for converting panels or a
panel library to an object module that can be
linked with an application.

Data Exchange
058: What data exchange function does TopView

support?
A: TopView supports the CUT, COPY and

PASTE of ASCII data taken from or inserted
into a window. However, TopView provides
only the COPY function directly. The CUT
and PASTE functions must be implemented
by each application as appropriate . Existing
applications can implement these functions
by providing appropriate filter table entries
that translate the selection of a CUT or
PASTE option into the appropriate keyboard
commands for the application.

For example, a CUT might be translated
into a BLOCK DELETE application com­
mand. When the user selects CUT, the
marked data would be copied to a TopView
buffer and the BLOCK DELETE command
would be passed to the application just as if
that command had been entered from the
keyboard.

New applications written using the
TopView Applications Programming Inter­
face can implement the CUT and PASTE
functions without requiring filter tables.

059:

A:

060:

A:

26

' I (
A -,' g •----

' I -~--,-, D
\ , -

H ; (\I

I \ - - --;---- -

What is the syntax of the filter table entries
for CUT, COPY and PASTE functions?
Refer to the TopView Programmer's Too/Kit
reference book, Chapter 7, " Creating a
Filter Table" .

How does TopView know how to manipulate
the data in the Application windows in order
to perform the data exchange functions?
TopView does not manipulate the data in an
application's window or in an application's
file . These functions are the responsibility of
each application. TopView provides a facility
to initiate the function in a standard way and
a facility to store and transfer data between
applications.

Program Information File
061 : What information is required by TopView so

that an Application can run with TopView?
A: TopView must have the following informa­

tion in order to run an application :
• Program title
• Full pathname of the program's start-up

file (*.COM, *.EXE, etc.)
• Data files location (default drive and

directory)
• Memory requirements (minimum, maxi-

mum and system)
• Screen type (e.g . , 25 x 80 color, etc.)
• Number of screen pages
• Range of software interrupt vectors used

(modified)
• Window size and offset
• Shared program information
• Program behavior characteristics

Note: Refer to the TopView Programmer's
Too/Kit reference book, Chapter 7,
"TopView Program Information Files," for a
detailed description of each of these items.

062: Where should the application's Program
Information File be located?

A: The Program Information File must be
located on the same drive and directory as
the application itself.

063:

A:

064:

A:

0 65:

A:

Does a user have to develop the Program
Information File for every application?
Program Information Files have been devel­
oped for some existing applications that are
compatible with TopView. These files are
shipped on the TopView diskettes. However,
developers of new applications that run with
TopView can develop a Program Information
File as part of their development process and
ship it on the diskette that contains their
application.

It also is possible to run an existing appli­
cation that does not have a Program Informa­
tion File. When the user adds (installs) the
program, TopView searches the location
(disk and directory) for a file named 'pro­
gram name.PIP' . If no file with that name is
found , the user is prompted for some of the
information. The user has to enter only the
program title, the location and name of the
start-up file, and the memory requirements.
TopView gives default values to the remain­
ing information. The user can modify the
program information later if necessary.

Is the user expected to remember and specify
all the information in the Program Informa­
tion File each time the program is used?
No. When the user adds (installs) a pro­
gram, TopView creates a record of the infor­
mation in a master file used by TopView.
There is one record in the file for each appli­
cation that has been added. This record must
exist before a program can be started, but it
need be added only once.

When a Program Information File is not
supplied on the application diskette, does
TopView supply any defaults?
Yes. TopView supplies defaults that will (in
most cases) allow the application to run.
However, the default values may need to be
modified in order to make the best use of
TopView features.

066:

A:

27

What happens if the program information for
an application is incorrect?
In most cases, an error message will be dis­
played when the user tries to start the pro­
gram (e.g., "File not found" or "Not
enough memory"). In other cases, the
results can be unpredictable.

TopView Programming Conventions
067:
A:

068:

A:

What interrupts does TopView use?
Interrupts 50H through 57H; 15H (AH= 10,
AH=ll, AH=l2).

Can an application use the TopView inter­
rupts too?
Applications can use INT 15H (AH= 10,
AH = 12) to make use of TopView-specific
facilities, but should not use the other
interrupts.

069: What is the TopView call /return
convention?

A: Refer to "The TopView Subroutine Call"
and "The TopView Object/Message Call"
in Chapter 2 of the TopView Programmer's
ToolKit reference book.

070:

A:

071:
A:

072:

A:

Does TopView support shared re-entrant
code?
Yes, through the use of a shared program and
data. See the TopView Programmer's Too/Kit
reference book, Chapter 8, "Creating Com­
patible Applications," for a discussion about
shared programs.

What are the TopView subroutine calls?
See answer to Q69.

Is there a recommended way to use the
printer so that my application can share the
printer resource?
The recommended method for using the
printer is to OPEN the printer (e.g . , LPTl:) ,
WRITE to the printer using DOS or BIOS
functions, and then CLOSE the printer. The
printer remains in control of your applica­
tion. However, TopView provides a mecha­
nism by which the user can give control of
the printer to another application that
requests it.

073:
A:

Does TopView reserve the use of any keys?
Although TopView uses certain keys, it does
not preclude an application from using any
key. For example, the Alt key is used by
many applications in conjunction with
another key, and is used by TopView to dis­
play the main menu . If the Alt key is held
down and another key is pressed, the key­
stroke is passed to the application . If the Alt
key is pressed and released , TopView dis­
plays its main menu.

Language Interface Support
074:
A:

075:

A:

What languages are currently supported?
TopView currently supports an interface to
IBM 8088 assembly language programs. It
also provides a sample interface to IBM Pas­
cal. However, programs that do not use the
TopView API can be written in any language
as long as they do not violate the TopView
well-behaved program guidelines.

Are there plans to support any other
languages?
Not at this time. However, using the existing
interface as an example, an application
developer could write an interface to another
language. The source code for the TopView
interface to Pascal is provided on the TopView
Programmer's Tooll(jt diskette to help facili­
tate this translation.

076:

A:

28

What functions do the language interface
routines provide the developer?
The interface routines provide full access
to the TopView subroutine calls (INT 15,
AH= JO) and object message calls (INT 15,
AH= 12). See the TopView Programmer's
Too/Kit reference book for a complete
description .

Mouse Support
077:
A:

078:

A:

079:

A :

080:

A:

Is a mouse required in order to use TopView?
No . A mouse is optional for use with
TopView. The keyboard can be used as the
TopView pointing device .

Must all applications support a mouse point­
ing device in order to run with TopView?
No . Applications do not have to provide sup­
port for a mouse .

What mouse devices are currently
supported?
TopView currently supports the following
mouse devices:
• Microsoft Mouse for IBM Personal

Computers n 1
, model number 037-099

(parallel interface)
• Microsoft Mouse for IBM Personal

Computers rn, model number 039-099
(serial interface)

• PC MouseT:'o1 by Mouse Systems, part
number 900120-214 (serial interface)

• Visi On Mousern by VisiCorp, part num­
ber 69910-1011 (serial interface)

• Other pointing devices that have not been
tested by IBM may work with TopView.

Is there a special way to set up a mouse to
work with TopView?
Most pointing devices connect to an RS-232
serial communications port. These devices
may be connected to either COM I : or
COM2:. Take care to ensure that there is no
conflict between the pointing device and any
communications programs over the use of a
particular communications port. When oper­
ating with two RS-232 attachments, it is rec­
ommended that any serial mouse be attached
to COM2: . In addition , the software drivers
required for all of the mouse devices listed
above are supplied on the TopView diskette .
It is not necessary to install any software that
comes with the mouse .

The Microsoft Mouse (parallel interface)
connects to an interface card that must be
installed in an expansion slot. This card has

081 :

A:

a small jumper which selects the interrupt
level that will be generated by the interface
card . The setting of this jumper can be very
important , since the interrupts generated by
the interface card must not be at the same
level as any other interrupts generated in
the system.

Can other pointing devices that are currently
not supported by TopView be used?
Yes. Other types of pointing devices that sat­
isfy the following conditions may be used :
• A standard TopView pointing device

driver has been provided for the particular
device.

• The device is capable of presenting
either absolute position information or
relative position information that can be
tracked and converted to absolute position
information .

• The device has three independent "but­
tons" or their equivalent. For example,
devices with two pushbuttons often map
the third button to the simultaneous press­
ing of both buttons.

Device Driver Support
082: Can device drivers supplied with TopView be

modified to support other devices or adapter
cards?

A: No. The source code is not provided.

083:

A:

084:

A :

Can a device driver be written that will run
with TopView?
Yes . See the TopView Programmer 's Too/Kit
reference book.

Can a device driver be written that will run
both with and without TopView?
Any device driver (except a pointer device
driver) written according to DOS 2.00, 2.10,
3.00 or 3.10 device driver format will run
with or without TopView. However, device
drivers that use the CON : device, perform
keyboard 110 or are not well behaved
will not run with TopView. For example,
ANSI.SYS is not supported.

Problem Determination
085: Does TopView provide any debug aids for

determining what caused a problem?
A: No . TopView does not provide a debug aid.

However, the IBM Professional Debug Facil­
ity can be used with TopView ; it was used
during TopView development.

Decimal
Numbers
In BASIC
Scott Wellman
IBM Corporation

In IBM Personal Computer
BASIC, a decimal number some­
times cannot be stored directly in
binary (internal machine) form. A
decimal number will first be con­
verted to floating point notation
and then into binary form.

Just as 10 divided by 3 does not
yield a whole number (transcen­
dental or non-repeating), a number
such as .09 cannot be represented
as a binary number. The computer

29

stores it as .09000001 when
using single-precision floating
point variables and prints it as
9.00000lE-02.

One way to correct the printed
number is to print with the PRINT
USING statement, which rounds
off the number to a more reason­
able display. Instead of the state­
ment PRINT .09, use PRINT
USING "##. ##"; .09, which
prints as 0.09. (For more informa­
tion about PRINT USING, see the
BASIC Reference manual).

The PRINT USING statement
solves how the number prints out,
but not the way the number is
stored in the computer. Normally,
however, you wouldn't care how
the computer stores numbers,

)r----~~~----~~~~~-----

l

unless you write extensive scien­
tific programs. But if you are
writing even a simple math pro­
gram, such as a checkbook bal­
ancer, a small error repeated many
times can result in a large error.
For example, run the following
program and notice what answer
is printed.

Problem: Subtract .09 from
100,000 a thousand times.

Correct answer: 99,910

10 TOTAL = 100000: NBR
= .09 'Assign numbers

20 FORI = l TO 1000
'Loop 1000 times

30 TOTAL = TOTAL -
NBR 'Subtract

40 NEXT!
50 PRINT TOTAL 'Print

answer

Printed answer : 99,906.25

(I'd love to have $100,000 in my
checking account , but I'm not so
sure I'd want to write a thousand
checks for 9 cents!)

The easiest approach to
improving the accuracy of the
number in storage is to use
double-precision, floating point
numbers. In the program above,
instead of TOTAL and NBR, use
TOTAL# and NBR# (or see
DEFtype in the BASIC Reference
manual). The program-generated
answer will be 99909. 9999 ,
which is more accurate, but not
precisely correct, because there is
still no way to keep .09 as .09 in
binary form.

By replacing the PRINT
statement with PRINT USING
" ######. ##"; TOTAL#, the result-

ing answer improves to 99910.00.
If you are balancing your check­
book, this technique is probably
close enough so that you will
never notice a discrepancy. Larger
decimal numbers (e.g., 8.9) are
similarly affected.

We still haven't determined
how to process fractional numbers
precisely over many iterations.
BASIC has several built-in func­
tions (INT, FIX, CINT, CSNG
and CDBL) that strip off decimal
places and return only whole
numbers, or round up and down.
Each function has special proper­
ties that affect results , usually
by rounding. For example, INT
will work only if the number is
between 32767 and -32768, and it
drops the decimal value, e.g. , 8. 9
becomes 8, and -8. 9 becomes -9.

The best approach is to store
the number in the computer as a
whole number. Instead of 8. 9, use
89. However, your program must
keep track of where the decimal
point is supposed to be. When
you wish to display or print the
value, you may have to divide the
results by some power of 10 (e.g .
TOTAL#/100) .

For applications that use even
smaller decimal numbers, a larger
divisor is required. A quick rule
is : the number of decimal places
you require should equal the num­
ber of zeros in the divisor. For
example, in an inventory pro­
gram , 8 nails cost 1 cent , so 1 nail
costs .125 cent = .00125 dollars
= 125/ 100000. Notice 5 decimal
places in the number and 5 zeros
in the divisor.

Now that you have fooled the
computer into keeping the num­
ber correctly, you certainly don't
want to fool the user, too . You
want the user to be able to enter
8. 9 rather than 89. To do this , you

30

must add program code that
accommodates the correct input.

Again , use double-precision
numbers to be as close to correct
as possible. A few lines of code
might be:

10 INPUT "Enter amount of
check "; CHK#

20 TOTAL# = TOTAL# -
(CHK# * 100)

These two lines merely multiply
the number entered by 100. The
number 8. 9 x 100 is stored as
889. 999961. ... Since this is close,
but not the correct value, round
the number before you multiply it:

30 TOTAL# = TOTAL# -
((CHK# + .0001) * 100)

Purists will insist you should cor­
rect the sign of the value of CHK#,
e .g. , ((-8.9 + .0001) * 100) =
-889. 989866 The code then
appears:

(CHK# + (.0001 *
SGN(CHK#))) * 100

The value of CHK# is
890.00996 , again close, but
not exact. Eliminating the deci­
mal places will make the number
correct. The INT function may be
used if the number is between
32767 and -32768. I prefer to use
the FIX function to strip off the
decimals.

20 TOTAL# = TOTAL# -
FIX((CHK# + (.0001 *
SGN(CHK#))) * 100)

Great! You now have the correct
answer and can write a thousand
checks for 9 cents each and main­
tain a correct balance.

This program code is cumber­
some, however, and if you use the
same code in several places, it
will mean a lot of careful coding
(with probable errors) . It is much

more reliable to define a function
that you can use anywhere in the
program. I have chosen to call the
function DF for Decimal Fix.
When passed the value of CHK#,
the DF function will correctly
convert it to a whole integer. The
following code defines the DF
function:

10 DEF FNDF(CHK#) =

FIX((CHK# + (.0001 *
SGN(CHK#))) * 100)

20 TOTAL# = TOTAL# -
FNDF(CHK#)

Now, go back and recode the orig­
inal problem, add a line of code
that will input a value, subtract it
1000 times, and print the results .

9 REM Create the user
function to fix the input

10 DEF FNDF(CHK#) =

FIX((CHK# +(.0001 *
SGN(CHK#))) * 100)

19 REM Assign the begin­
ning value, * 100 for no
decimals

20 TOTAL# = 100000 * 100
30 INPUT "Enter a num­

ber" ; NBR# 'Get a test
number

40 FOR I = I TO 1000
' Loop 1000 times

50 TOTAL# = TOTAL# -
FNDF(NBR#) 'Subtract

60NEXTI
70 PRINT USING

"######.##" ;
TOTAL# I 100
'Print answer

The results will be:

RUN
Enter a number? .09

99,910.00
OK
RUN
Enter a number? 8.9

91 ,100.00
OK

31

Structured Programming
With BASIC's
FOR-NEXT Loop
Phil Niehoff
Madison IBM-PC Users' Group

Because BASIC is an unstructured programming
language, it is very easy to write sloppy program
code. Sloppy code, often called "spaghetti code," is
so unstructured that it is usually readable by only the
person who wrote it (and then only if reading it five
minutes after it was written). However, one can avoid
writing spaghetti code programs by disciplining one­
self to structure the code and creating program code
that a subsequent programmer can read and under­
stand with little effort. Using and structuring the
FOR-NEXT loop is one way to improve the readabil­
ity of BASIC programs.

The FOR-NEXT loop is used to perform repetitive
tasks in a program. The concept is simple. Every
statement between the FOR and the NEXT statement
will be executed a specified number of iterations .

This effect could be accomplished without using a
FOR-NEXT loop. For example, if you wanted to add
all the numbers between 1 and 10 and print the result ,
your program might look like the following:

10
20
30
40
50
60

X=l
Y=O
Y=Y+X
X=X+l
IF X > 10 THEN PRINT Y : END
GOT030

Line 10 sets the counter (variable X) to 1. X will be
incremented by one until it reaches 10. Line 20 sets
variable Y, the variable by which the sum will be
accumulated to 0. Line 30 adds the value of X to the
previous value of Y and saves the result back in Y.
Line 40 increments the counter (X) by one. Line 50
determines if the value of X has exceeded 10. If it
has, Y, the sum, is printed , and the program stops. If
the value of X is 10 or less, line 60 tells the program
to go back to line 30 and continue.

The same program can be written using a FOR-
NEXT loop as follows:

10 Y=O
20 FORX=l TO 10
30 Y=Y+X
40 NEXTX
50 PRINTY
60 END

Line 10 sets the value of Y, the variable in which the
sum will be accumulated to 0. Line 20 starts the
FOR-NEXT loop and will execute all of the state­
ments between it and line 40, the NEXT statement,
10 times (from 1 to 10). Each time through the loop,
X will be incremented by one. Line 30 adds the value
of X to the previous value of Y and saves the result
back in Y. Line 50 prints the value of Y, the sum.

The first example could be called an unstructured
program . Notice that the program is relatively harder
to understand than the second program. All of the
program lines start flush-left. The use of the GOTO
statement often indicates poor program planning.
The GOTO statement can almost always be avoided
in any program.

The second example does not contain any GOTO
statements. The X at the end of the NEXT statement
in Line 40 is optional. If the variable is not indicated ,
the computer will match the NEXT statement to the
immediately preceding active FOR statement. A
FOR-NEXT loop is active when the program has
encountered a FOR statement, but has not yet exe­
cuted the loop the indicated number of times.

Notice also that all of the statements between the
FOR and the NEXT statement are indented , which
allows the programmer to visually match FOR and
NEXT statements easily. Indenting is especially
important when FOR-NEXT loops are nested:

10
20
30
40
50
60

FORX=l TO 10
PRINT X
FOR Y =20 TO 30

PRINT X;Y
NEXTY

NEXTX

In all preceding examples, the FOR loop is incre­
mented by one each time the loop is executed. If you
want to count to 100 by 4 's, it's not quite as easy.

10 FOR COUNT =0 TO 100 STEP 4
30 PRINT COUNT
40 NEXT COUNT

This example varies from the previous ones in two
respects. First , notice that the program starts at 0.
This is called the initial value of the loop. The initial
value is required so that the last number printed
would be exactly 100 (the terminal value). If we had
started at 1, the last number printed would have been
97. The initial value can be set to any value, negative
or positive .

Second , the FOR statement contains the word
STEP with a number following it. This allows the

32

program to skip over numbers as it passes through
the loop. The 4 is called the step value. When the step
value is one, the STEP command may be excluded
since the default value is 1. Notice also that the loop
variable (in this case COUNT) must conform to the
normal naming conventions for BASIC variables.

The step value can be either positive or negative.
Below is an example of a FOR-NEXT loop that
counts from 100 back to -100 by 3 's.

10 FOR LOOP= 100 TO -100 STEP -3
20 PRINT LOOP
30 NEXTLOOP

Unlike the DO loops in FORTRAN that are executed
once before the conditions of the loop are tested, the
FOR-NEXT loop in BASIC is tested before the state­
ments in the loop are executed . Therefore, in the fol­
lowing BASIC FOR loop:

FOR LOOP= 10 TO 1

none of the statements in the loop would be executed
since 10 is greater than one, and without a negative
step value, it is impossible to count from 10 to 1.

Also, a FORTRAN DO loop variable cannot be
changed inside the loop; however, in BASIC the con­
trol variable can change inside the FOR-NEXT loop.
This difference can save time, but for the unwary
BASIC programmer, it can cause major problems.

Assume that you have five numbers stored in an
array, and that you want to write a program that indi­
cates in which element of the array a certain number
is stored . The program might appear :

10 DIM ARRAY(5)
20 ARRAY(l)=7
30 ARRAY(2)=9
40 ARRAY(3) =5
50 ARRAY(4) =9
60 ARRAY(5)=3
70 INPUT "Number: ";A
80 FORX=l T05
90 IF ARRAY(X)=A THEN PRINT X

100 NEXT X
110 END

If you typed in the above program and entered the
number 9 when asked for a number, the program
would print the numbers 2 and 4 on the monitor. This
type of program works well for looking up numbers
in a table. The program compares the number typed
in with each of the numbers in the array, one at a
time. When a match is found , it prints the number of

the array element containing the requested number,
then continues matching the rest of the elements of
the array to determine if there are any further
matches.

This is fine , unless you know that a number can
appear in the array only once, or you are interested
only in the first occurrence of the number, in which
case it is not necessary to continue searching after the
match is found. If the array is very large (in the hun­
dreds), you might not want the program to continue
searching through the array, since it is not only
unnecessary but may take a considerable length of
time. So you change line 90 to read:

90 IF ARRAY (X) =A THEN PRINT X :
GOTO 110

With this line inserted in the program, the number
of the element is printed when a match is found, and
the program control jumps to line 110, causing the
program to stop executing . This code accomplishes
the objective, but it uses a GITTO statement. It also
leaves the FOR-NEXT loop active. To see this, type
GOTO 100 after the program runs. The FOR-NEXT
loop starts executing again from where it left off. If
too many FOR-NEXT loops are left active, the mem­
ory stacks could overflow, and the computer would
issue an error message informing you it is out of
memory.

To solve this problem , change line 90 to read:

90 IF ARRAY (X) =A THEN PRINT X :
X=5

Because BASIC allows you to set the loop variable
within the loop, the loop will terminate normally
when the NEXT statement is encountered after a
match is found. By setting the value of the loop varia­
ble to its terminal value, you will fool the loop into
thinking that it has gone through the loop for the indi­
cated number of times.

This can be verified by running the program,
entering a 9 when prompted to enter a number, then
typing GOTO 100 when the program stops running.
You should see a message that says "NEXT without
FOR in 100." This solution also avoids the GOTO
statement.

With a little practice, you should have no trouble
using FOR-NEXT loops in your programs; just
remember to keep those loops structured with appro­
priate indenting.

33

Sequential File
Input/Output In BASIC
J.iznce Jaqua
Rocketdyne PC Users Group

BASIC accesses two types of files: sequential and
random access. Sequential files store information in
direct sequence, and, when BASIC reads these files,
it must start at the top and read through it from the
first byte to the end-of-file. To illustrate how BASIC
handles sequential files, I will use a program that cre­
ates a data file of checks that can then be sorted.

The program must first open the file and name it.
It must also instruct the computer whether to receive
input from or to write output to this file. The first few
lines of your program might look like this:

l 000 REM PROGRAM TO CREATE DATA FILE
FOR CHECKS

2000 INPUT "NAME DESIRED FOR FILE";NM$
3000 OPEN "O" ,#l,NM$

Line 3000 opens file #1 as a file that will recieve out­
put ("0") from the program and assigns it the name
(NM$) which the user enters when prompted to type
a file name. BASIC numbers the file to allow you to
have more than one file open at a time, and the pro­
gram may be reading from one file and writing
to another.

Files created using this program are ASCII files
that contain information you can read and edit with a
text editor. The file needs no special extension . If you
desire, you can assign an extension , such as .CHK, to
the file name to help you identify the file, but an exten­
sion is not necessary.

We will now enter the data from the checkbook.

3100 INPUT "INPUT CHECK NUMBER (ZERO
TO END SESSION):" ,CHKNO

3110 IF CHKNO =0 THEN 5000
3120 INPUT "CHECKAMOUNT:",AMNT
3140 INPUT "NAME CHECK MADE OUT

TO: ",NAM$
3160 INPUT "DATE NAME OF MONTH, DAY

NUMBER, YEAR:" ,MO$,DAY, YR
3180 INPUT "REASON OR PURPOSE OF

CHECK:" ,PURP$
3200 INPUT "TYPE FOR TAXES l)MED, 2)

TAXES, 3)BUS EXP, 9)MISC: ",TN

To output this information to the file for storing ,
use the following format:

4000 WRITE#l ,CHKNO,AMNT,NAM$
4020 WRITE#l,MO$,DAY,YR,PURP$,TN
4500 GOTO 3100
5000 REM SESSION COMPLETED
5100 CLOSE

This program will repeat the questions and prompt
you to enter data until you input a zero for CHECK
NUMBER to tell the program that you have completed
the entry session. The program will then close the
file. (Before the file can be used, it must be closed.)

You can now sort this file of checks according to
type. For example, you may want a listing of all
checks used to pay medical bills. Below is an exam­
ple of such a sort program:

1000 REM PROGRAM TO READ DATA FILE OF
CHECKS

2000 INPUT "NAME OF FILE TO BE
REVIEWED" ;NM$

3000 OPEN "I" ,#l,NM$

Line 3000 sets NM$ as file number l and allows the
program to receive input (" I") from the file.

If you wanted not only a printout of the sorted
checks but also a disk file, you could add the follow­
ing lines to the program:

3100 INPUT "NAME OF FILE FOR SORTED
CHECKS" ;SNM$

3200 OPEN "O" ,#2 ,SNM$

34

To print the file of selected checks, add the follow­
ing lines (change PRINT to LPRINT if you want the
output sent directly to your printer):

3500 INPUT "TYPE OF CHECK TO BE SORTED
1)MED. ' 2)TAXES, ETC.: II' TNS

4000 INPUT#l,CHKNO,AMNT,NAM$
4020 INPUT#l ,MO$,DAY,YR,PURP$,NT
5000 IF TNS < >NT THEN 6000
5100 PRINT CHKNO,AMNT,NAM$
5200 PRINT MO$,DAY, YR
5300 PRINT PURP$
5500 WRITE#2,CHKNO,AMNT,NAM$
5600 WRITE#2 ,MO$,DAY, YR,PURP$,NT
6000 REM NOT SORTED
6100 IF NOT EOF(l) THEN 4000
7000 REM END OF FILE 1
7500 CLOSE

Opening the original file to add new information
and make corrections requires more code. I have
chosen to write another program for updating the
checks file. The new program reads the checks file,
allows you to add or correct data, and then writes the
output to a new, updated file. (Note that the END
statements used below not only terminate the pro­
gram but also close all files.)

1000 REM PROGRAM TO UPDATE FILE
2000 INPUT "OLD FILE NAME";ONM$
2010 INPUT "NEW FILE";NNM$
3000 OPEN "I" ,#l,ONM$
3010 OPEN "0 ",#2,NNM$
4000 INPUT#l,CHKNO,AMNT,NAM$
4010 INPUT#l,MO$,DAY, YR,PURP$,NT
5000 PRINT CHKNO,AMNT,NAM$
5010 PRINT MO$,DAY,YR,PURP$,NT
5100 INPUT "UPDATE DESIRED l)NONE,

2)CHANGE, 3)ADD NEW CHECK: II ,CD
5102 ON CD GOTO 5130, 5120, 5110
5104 END
5110 GOSUB 7000
5120 GOSUB 6500
5130 GOSUB 7000
6000 IF NOT EOF(l) THEN 4000
6100 REM END OF FILE DETECTED
6200 END
6500 INPUT "NEW CHECK NO. , AMOUNT,

NAME: II ,CHKNO,AMNT,NAM$
6510 INPUT "NEW MONTH, DAY, YR, YR,

PURPOSE, TYPE: II ,MO$,DAY, YR,
PURP$,NT

6520 RETURN
7000 WRITE#2,CHKNO,AMNT,NAM$
7010 WRITE#2,MO$,DAY,YR,PURP$,NT
7020 RETURN

New Directory
Available
Karen Porterfield
IBM Corporation

To counter rising software costs,
IBM offers personally developed
software through its catalogue
The Directory of Personally
Developed Software. Due to an
enthusiastic response to the first
two editions, IBM now presents
the third edition of The Directory.

The expanded Directory
includes affordable, high-quality,
high-function software and has
additional innovative program
selections.

The Directory features 76
Personal Computer programs,
including 22 new products and
three Special Holiday Packages.
There's software for learning,
personal productivity, managing
your business, programming, and
-for the first time-lifestyle pro­
ducts . All the offerings reflect the
value that subscribers have come
to expect from The Directory.

While programs are priced
from $14.95 to $249.95, over half
the products cost less than $20.
To order The Directory free, call
1-800-IBM-PCSW or write to :

Personally Developed
Software
P.O. Box 3280
Wallingford , CT 06494

35

New Products

By completing and returning the
survey form enclosed in the cata­
logue, you will automatically
receive the next edition of The
Directory free.

The three Special Holiday
Packages offer an opportunity to
save an additional 30 percent on
the cost of personally developed
software. There's an Education
package that offers six programs
for $99, a savings of $50.70 off the
regular price:

• Algebra Tutor
• Beyond Basic BASIC
• The Combined Adventures

With Numbers
• FORTRAN Tutor
• Private Tutor Presenter 1.10
• Word Seeking

An Entertainment package offers
six programs for $99, a savings of
$45.70:

• Alley Cat™
• Bridge Break 200
• M.U.L.E.™
• Sports Appeal
• Trivia 103
• The World's Greatest

Baseball Game™

A Word Processing package fea­
tures five programs for $99, a sav­
ings of $65.75 :

• PC Paint
• Personal Editor II
• Personal Print Control
• Select-A-Font
• Word Proof II

To receive the Special Holiday
Package discounts, your order must
be placed by December 31 , 1985.

The Directory has these
advantages:
• Direct ordering by phone

or mail
• Low-cost, high-quality

programs tested by IBM
employees.

• Online program documentation
to guide users through programs
quickly and easily.

• Discounts on quantity orders
when you order 50 or more of
the same title (excluding Value
Packages).

The following new products are
available from The Directory of
Personally Developed Software.

BUSINESS FAMILY

Programmed Evaluation of Contract
Option Strategies
A valuable tool for analyzing listed stock
and stock index options, this program is a
complete toolkit of analytical techniques
previously available only to the options­
market professional at a premium price.
You can use a system-provided set of
widely used strategies or allocate space
for your own. You can sort and compare
the results of previously saved strategies.
You can retain the most attractive strate­
gies on the screen. A Relative Perform­
ance Index is computed fo r each of the
strategies and is automatically recom­
puted as the price range changes. You can
display information screens showing
potential profit or loss, break-even points,
return rate indices, commissions, days to
expiration, dividends, and margin
requirements for each strategy. You can
SCAN for the best option values, analyze
fair market value and hedge rations via
the Black-Scholes valuation model.
($249.95)

RealEstate Investment Package
This program includes 17 spreadsheet
templates that provide the information
you need to make decisions in today 's
changing real estate market. Now you can
analyze your investments before you sign
on the dotted line .

Each template, when combined with
the "what if" capability of spreadsheet
software, produces accurate answers
in seconds.

You don't need to remember complex
formulas. Templates are provided for
eight-year investment analyses, amortiza­
tion , depreciation , income/expense track­
ing , and lease versus purchase analysis.
($ 19.95)

EDUCATION FAMILY

The Combined Adventures
With Numbers
This program is a math adventure game
for "young people" who can explore up
to 12 castles while solving math problems.
($39.95)

PC Morse Code
Thi s program breaks down the alphabet,
numbers, and special characters into
" bite-sized " groups that let you learn and
practice Morse code eas ily. ($19. 95)

36

ENTERTAINMENT FAMILY

Trivia 103 (Challenges for Young
People)
This game brings Trivia excitement for
" kids" from 8 to 80. There are 5,000
questions covering 150 categories.
($19.95)

Sports Appeal (Trivia from Billiards to
Baseball)
This game features more than 5,000 ques­
tions in over 125 topics from the world of
athletics. ($19. 95)

AJley Catrn
Trying to steal a kiss from his girl friend
Felicia is quite an ordeal for Freddy the
Cat. He must first get through seven dif­
ferent mini-games in which, among other
feats , he must catch mice, fish , and birds,
while avoiding such dangers as a junk
yard dog (Bowser Von Spike) , an electric
eel, a very poisonous spider, and Felicia's
protective brothers.

This arcade-style game with delightful
color graph ics offers four skill levels,
keyboard or joystick support, a pause
mode, an original music theme (three
voice music on the PCjr) , and an on/off
option for the sound . ($24.95)

M.U.L.E!"
This is a fun-filled strategy game based
on free enterprise economics. You use a
Multiple Use Labor Element (M.U.L.E.)
to help develop your land on the distant
planet lraton . Players are given money
and materials to start with , and have six
" months" to play. Players can develop
their land for farming , energy production
or mining. The game has four levels of
action.Players can see status reports of
their own resources and the resources
available at the general store . Each level
introduces more complex act ivi ties such
as land auct ions and fluctuating resource
prices . The tournament level is extremely
fast-movi ng and requires fast decisions.
($29. 95)

The World's Greatest Baseball Game.,."
The World 's Greatest Baseball Game is a
baseball simulation game based on real
statistics. You can play The World 's
Greatest Baseball Game three ways :
player against player, player agai nst the
computer, or participate as the computer
plays itself. In each mode, you can
choose from a large list of teams, featur­
ing recent World Series and All Star
teams, many National and American
league teams, and classic teams of the
past like Babe Ruth's Yankees. This

allows you to play a team from one era
(1961 New York Yankees) versus a team
from another era (1984 Detroit Tigers)
using actual team statistics.

No game is ever the same, however,
because you can observe, participate or
manage. Jn any mode, the two teams
play each other, pitching, batting , and
fielding the ball. If you are in control , you
choose where the pitcher throws the ball.
The batter presses a button to hit the ball
when it crosses home plate . Fielders are
positioned with quick sequences of joy­
stick moves, and runners can steal after
the pitcher throws the ball.

The Major League Player's Associa­
tion has granted permission to use the
players' actual names. ($24.95)

LIFESTYLE FAMILY

Bridge Break 200
Play up to 200 hands created by two-time
World Bridge Champion Mike Lawrence
or choose the Autoplay option to have the
computer play as you see on-screen
explanations of key plays. ($24. 95)

PC Checkbook
This program is designed to help you
manage your checkbook. It prints a sim­
ple transaction , helps reconcile your
checki ng account with the bank state­
ment , and prints checks, if you use com­
puter check stock paper. ($ 19. 95)

Checkbook 1/0
This high-function program helps you set
up a budget and maintain up to five differ­
ent checkbooks and cash books. It even
reminds you when your bills are due.
($29.95)

PRODUCTIVITY FAMILY

Personal Editor II
This text editor can be customized into a
personalized word processor. Options
include variable tab and margin settings,
word wrapping , and text formatting. New
features include the ability to assign com­
mands to keys, DOS path support , and a
split screen that allows you to divide your
sc reen into two or four " windows" so you
can work with more than one file at a time
or four parts of the same file at once.
($49.95)

Ediror 's nore: See rhe arricle " Whar s New
in Personal Editor If " elsewhere in this
issue.

PrintDW
This program enables you to convert
IBM DisplayWrite print files to standard
ASCII files without embedding printer
controls , as well as to manipulate ASCII
files. This allows you to take advantage of
function-rich DisplayWrite word process­
ing programs to produce documents for
use with compatible programs, printers,
and host computer software. ($19. 95)

DOS Memories
This program offers full-screen console
capabilities to DOS, allowing you to
scroll and edit commands on previously
displayed screens. Any screen displayed
by either a DOS command (e.g. , TYPE
or DIR) or a compiler can be reviewed
and edited. DOS Memories remembers
your previously entered commands and
lets you recall them with one keystroke .
You can edit these commands and assign
often-used commands to keys. ($34.95)

Multimedia Presentation Aid
Make your presentations come alive with
color. You can use this program with a
text ed itor to create presentations for
viewi ng on the PC. You can scroll presen­
tations forward and backward or set up a
" timed " operation. You can prepare
multicolor transparencies using a plotter
connected to an IBM PC through an
Asynchronous Communications Adapter.
Using an IBM printer, you can produce
transparency-quality presentations.
($24.95)

Personal Correspondence Manager
This program gives your personal com­
puter greater flexibility and versatility to
create, view, proof, file, and print docu­
ments. Repetitive work is reduced when
you can save often-used names and

37

addresses to be used in different letters,
memos, and other correspondence . IBM
SCRIPT/PC, IBM Personal Editor, or
IBM Word Proof can be started with a
single keystroke. ($39.95)

PC Print
With this program, you can print reports
or other documents using a variety of font
selections and options. You can create and
edit fonts and produce output sideways as
well as normally. PC Print 's powerful
commands can be run from the program
menu , DOS prompts, or BATch files. You
can print ASCII files from ed itors,
BASIC, or assembler language source
code documents. Print command options
are easi ly built from menu selections and
quickly started with a function key.
($24.95)

Joy Mouse
With Joy Mouse, you can substitute a joy­
stick fo r your keyboard to move the cur­
sor with the speed of a mouse . Joy Mouse
allows a joystick connected to your IBM
Game Control Adapter to be used for cur­
sor movements. You can even define the
joystick buttons to perform the tasks of up
to three function keys or key combina­
tions. You can assign one of nine different
speeds for cursor movement and redefine
joystick buttons for different programs
($14.95)

PROGRAMMING FAMILY

Language Extension System Assembler
Your Macro Assembler programs can
access the 8087 or 80287 math proces­
sors to do equations faster and more accu­
rately. You can use macros to include
8087 /80287 opcodes in your Macro
Assembler output. ($24.95)

PC WATCH
Now you can zero in quickly on program­
ming trouble spots. This powerful debug­
ging tool lets you monitor computer
activity at the system interface level. You
can trace external interrupts, BIOS sys­
tem functions, DOS services, and user­
defined functions built around the INT
instruction . ($39.95 until December
31 , 1985, $49.95 after)

Structured BASIC Facility
Turn BASIC into a structured language to
help you work faster. The Editor helps
you create and edit programs with line
and full-screen editing capabilities. The
Preprocessor converts Structured BASIC
into source files for both the BASIC inter­
preter and Compiler. The Generator con­
verts existing BASIC programs into
structured BASIC source files . ($54.95)

Additional
New Products
Following is a listing of new products that
IBM has recently announced.

Hardware

IBM Personal Computer
1200 BPS Modem
The IBM Personal
Computer 1200
BPS Modem is
a half-card
sized , micro­
processor
based
modem
designed for Asynchronous data trans­
mission at speeds up to 1200 BPS. The
modem supports point-to-point configu­
rations in duplex mode and is compatible
with Bell 212A (asynchronous only) and
103 practices, and with CCITT V.228
(asynchronous only) recommendation for
transmitting over the public switched tele­
phone network .

Automatic dialing is supported along
with most of the " intelligent" Attention
(AT) commands popular within the indus­
try. The modem includes a completely
unique set of commands which permit
various diagnostics to be executed under
the control of the IBM Personal Com­
puter. These commands also control
speed selection , V.22 operational mode,
call progress reporting and help func­
tions. Both command sets are built-in
functions of the modem .

In addition , the modem supports:
• Asynchronous data transmission

in full duplex mode at speeds up to
1200 BPS

• Automatic and adaptive equalization
performed by V.22 configurations of
the modem and continuing to adapt
while in data mode

• Automatic generation of2100 hertz
answer tone in Y.22 mode or 2225
hertz in Bell 212 mode

• Automatic or manual answer capability
• Control for Al A I telephone leads

in applications with Key Telephone
Systems

• Automatic speed detection for DTE
transmiss ion speeds of 75, 100, 110,
134.5, 150, 200, 300, 600 or 1200 BPS
and adjusts for compatibility

• Automatic or manual dial
• Tone or pulse dialing
• Automatic redial

• Audio monitoring of the call in pro­
gress via the IBM PC speaker with
command driven volume control

• Automatic detection of tones for dial ,
busy, ringback and attention

• Automatic detection of voice or
failed call

• Data quality indication can be
accessed when receiving data in Bell
212 or V.22 modes

The IBM Personal Computer 1200 BPS
Modem can be installed in the IBM Per­
sonal Computer, IBM Personal Computer
XT, IBM Portable Personal Computer, or
IBM Personal Computer AT. It requires
one feature slot and comes with a 15 foot
cable to connect the modem to a modular
phone jack. A customer-supplied handset
can be attached.

IBM Quietwriter Printer model 2
The IBM Quietwriter Printer model 2
has all the functions of the original Quiet­
writer plus high-resolution , all-points­
addressable graphics compatible with the
IBM Personal Computer. The IBM
Quietwriter printer features quiet , non­
im,Pact letter quality printing in four
pitches, and multiple type styles. The
Quietwriter Printer holds two removable
font cart ridges, each supporting the full
IBM Personal Computer character set.
A cut-sheet feeder or continuous forms
feeder is optional .

The Quietwriter Printer prints at up
to 40 to 60 characters per second burst
speed , and has a 13.2 inch writing line.
Graphics are compatible with the IBM
Graphics Printer and IBM Proprinter.
Graphics resolutions supported are 72 x
60, 72 x 120, 72 x 240, 60 x 60, 120 x 120
and 240 x 240. The Quietwriter Printer
can be directly attached to any member of
the IBM Personal Computer Family with
the appropriate printer adapter. Owners
of the Quietwriter Printer model 1 may
purchase an upgrade to a model 2 through
their IBM Service Repair Center or
Authorized IBM Dealer.

In addition, IBM announced the IBM
Quiet Non-Correcting Ribbon . This rib­
bon cannot be erased without detection ,
and is therefore suitable for checks and
other negotiable documents.

38

Software

Biology Series 11-20
The Biology Series is a set of integrated
science programs designed to help high
school students learn the major concepts
and processes found in modern biology.
Highly varied and interactive instructions
ensure high student involvement. An
investigative approach coupled with
thinking skills and an emphasis on sc ien­
tific processes make these programs valu­
able tools in biology classrooms and
laboratories. Each program contains
several lessons and one testing section .
Other features include:
• Animation to illustrate major concepts

and processes
• Simulation to show experimentation
• Interact ive sequences for student

participation
• Problems to encourage reasoning

sk ills
• " Learning loops" for reinforcement of

difficult concepts
• Quizzes and tests to promote subject

mastery
• Instructional guides

Each program comes in a Single Pack
which contains one program diskette and
one instructor's manual. Also available
are School Packs which contain 12
program diskettes and one instructor's
manual.

The Biology Series programs require
an IBM Personal Computer, IBM Per­
sonal Computer XT, IBM Portable Per­
sonal Computer, IBM Personal Computer
AT or IBM PCjr with 128KB of memory ;
one double-sided diskette drive; the IBM
Color Graphics Display, IBM Enhanced
Color Display or IBM PCjr Color Dis­
play with the appropriate adapter; and
DOS 2 .00 or higher (DOS 3.00 or higher
on the Personal Computer AT).

Chemicals of Life III:
Proteins and Nucleic Acids
This program describes how proteins and
nucleic acids are formed and how these
biochemicals function in living orga­
nisms. This course teaches students dehy­
dration synthesis reactions, hydrolysis
reactions, the structural formula for
amino acids, protein synthesis, proteins
and their functions in living organisms,
enzymes and coenzymes and dipeptide
bonds .

Mendelian Genetics:
The Science of Inheritance
The laws of heredity governing gene
inheritance are covered in this program .
Laws including independent assortment ,
segregation , dominance, codominance,
recession and sex-linkage are covered .
Students learn about dominant and reces­
sive traits , crossing genes that show
codominance, phenotypic ratios for
hybrid crossing , laws of segregation with
chromosomal models in meiosis , gene
linkage and gene studies of various
organisms.

Regulation and Homeostasis:
Systems in Balance
This program describes the natural proc­
esses that regulate the internal and exter­
nal environments of living systems. The
program explores body temperature ver­
sus environmental temperature and body
regulation of oxidation. It discusses the
role of the brain in the regulatory proc­
esses of homeostasis and feedback as well
as which organs in the human body regu­
late what conditions, and what actions the
nervous and endocrine systems take in
regulation and the function of hormones.

Cytology and Histology:
Cells and Tissues
This program explains the st ructure and
function of cell organelles and how cells
work together to form tissues. Students
learn the similarities and differences
between animal and plant cells in struc­
ture and function . Lessons identify the
difference between li ving and nonliving

things, and the relationship between cell
structure and specialized function in an
organism . Students learn to identify the
organelles of plant and animal cells, the
function of those organelles and the func­
tion of parts of unicellular organisms.

Human Life Processes II:
Systems Level
This program describes complex tissue
and organ functions , such as respiration ,
digestion and excretion. Students study
the cell as a basic structural unit of the
body, specialization of cells in multicellu­
lar organisms as tissues, major tissues of
the human body, organs like the stomach
and their tissues, and the role of the major
organs and systems of the body.

Students learn about internal and exter­
nal respiration and how cells obtain
energy. Students trace the passage of oxy­
gen and waste molecules through the res­
piratory system, identifying the parts.
The parts of the kidneys and urinary sys­
tem are labeled as students define the fil­
tration and selective reabsorption that
occurs in the kidneys.

The role of the nervous system is
explained. Students see examples of
reflexes and learn the various sense
organs of the body and their stimuli and
response. Students cover the parts of the
neuron as well as the major parts of the
nervous system and their functions
including the structure of the spinal cord.

The Environment I:
Habitats and Ecosystems
The Environment I: Habitats and Ecosys­
tems shows students how abiotic factors
influence biotic factors in populations and
communities within ecosystems. Students
learn about ecology and the effects that
light, temperature, moisture, soil and air
have on community organisms. Biotic
factors like predation , competition and
symbiosis are explained in light of their
effect on organisms and species domi­
nance . Students learn the terms commu­
nity, niche, biosphere, population and
biotic potential. Students explore numer­
ous terrestrial and aquatic biomes.

39

Physics Discovery Series 1-4
The Physics Discovery Series 1-4 is a set
of programs that helps physics students
understand and investigate the physical
processes at work in their surroundings.
Each program uses highly interactive
instruction to achieve high student inter­
est and comprehension. Emphasizing sci­
entific investigation and thinking skills,
these courses provide valuable tools for
physics classrooms and laboratories.

Each program has three modules. The
first lets students change variables to dis­
cover physical relationships. In the sec­
ond, students analyze phenomena ,
develop formulas, and record and graph
data. In the third module, students apply
physical laws and concepts to problems
and investigations . For advanced stu­
dents , an additional section offers more
challenging activities.

Each program is available in a Single
Pack version which includes one program
diskette and one guidebook, or as a
School Pack with 12 copies of the pro­
gram diskette and one guidebook.

The Physics Discovery Series 1-4
requires an IBM Personal Computer,
IBM Personal Computer XT, IBM Porta­
ble Personal Computer, IBM Personal
Computer AT or IBM PCjr with at least
128KB of memory ; an IBM Color Dis­
play or IBM PCjr Color Display and
appropriate adpater; one double-sided
diskette drive and DOS 2.00 or higher
(DOS 2.10 for the PCjr and DOS 3.00 for
the Personal Computer AT). A printer is
optional.

Investigating Acceleration
Investigating Acceleration teaches the
laws and concepts of acceleration. Stu­
dents cover motion in terms of distance,
velocity and acceleration and design
experiments to measure the variables that
affect acceleration. The students then
determine the formula that expresses the
relationship between acceleration and its
related variables. Students learn to calcu­
late force, mass or acceleration, given
the appropriate information and apply
Newton's Second Law of Motion to
commonly observed phenomena.

Investigating Gravitational Force
This program lets students explore gravi­
tational force and determine the variables
that affect it. Students design experiments
to measure these variables, analyze
graphs and determine the mathematical
formula that expresses the relationship
between gravity and the variables that
affect it. Students apply the Universal
Law of Gravity to forces on masses on the
earth's surface and develop hypotheses
about the effects of different gravitational
forces on the earth.

Investigating Conservation of Energy
Investigating Conservation of Energy lets
students explore, analyze and apply the
laws and concepts of energy conserva­
tion. They determine which measurable
variables affect the potential and kinetic
energy transfer, and they design experi­
ments, analyze graphs and draw conclu­
sions based on the graphs. Students
determine the mathematical formula that
expresses the relationship between mass,
height , and acceleration in gravity to the
potential energy of an object. Students
calculate the potential and kinetic ener­
gies of an object based on given varia­
bles. They also apply the potential and
kinetic energy relationships as well as
applying conservation-of-energy princi­
ples to commonly observed phenomena.

Investigating Thermal Energy
Students study the concepts and laws of
thermal energy, determining the variables
which affect thermal energy transfer. Stu­
dents design experiments to determine the
specific heat of common materials . They
determine the formula that expresses the
relationship between heat , mass, specific
heat and change in temperature, then per­
form calculations based on appropriate
information. Experiments and observa­
tions of common phenomena are
included.

40

Editor's Comments

Exchange
Mirrors User
Group Growth

Expanded Support
You're growing and so is IBM PC
User Group Support! From 1983
to 1984, the number of user
groups registered with us nearly
tripled. From 1984 to 1985, that
number nearly doubled. These
growing numbers have been par­
alleled by the growing support
and services User Group Support
offers to registered user groups.

Consider this publication. We
are now publishing this expanded
version of Exchange in a maga­
zine format. Exchange's attractive
design and layout presents to you
the information we print as invit­
ingly as possible. Articles are
carefully chosen to give you infor­
mation from IBM as well as to pass
along valuable information from
user groups around the country.
And each month our distribution
numbers increase.

More Departments
In Exchange we include a
Departments section, with various
departments such as New Products,
Ask IBM , and Editor's Comments.

In the future, we'd like to add a
Letters column featuring letters
from you. We welcome any sug­
gestions or comments you may
have about Exchange, IBM soft­
ware and hardware products, or
other related subjects. Your feed­
back will help Exchange remain a
healthy publication and allow us
to stay attuned to your needs. You
can write to us at:

Editor, Exchange
IBM Corporation (2900)
P. 0. Box 3022
Boca Raton , FL 33431-0922

Your Input Counts
We're delighted with the favorable
responses to Exchange that we
have seen so far in your user
group newsletters. We're glad you
like Exchange!

It takes both of us to make
Exchange a success-and together
we make a great team. So, keep
writing articles for your own user
group newsletters and let ~s hear
your comments or suggestions
about this publication. You can
make Exchange even better
and ensure that it truly serves
your needs.

Karen Porterfield
Associate Editor

Copyrights, Trademarks, and Service Marks

ColorPaint by Marek and Rafa! Krepec
Incorporated .

Color Plus is a trademark of Plantronics
Corporation.

CompuServe is a trademark of Compu­
Serve, Incorporated .

CP/M is a registered trademark of Digital
Research , Incorporated .

CP/M-86 is a trademark of Digital
Research , Incorporated.

Data Encoder and its associated docu­
mentat ion are under the U.S. Department
of State Munitions list , Category Xlll(b)
and , as such , must be licensed by the
U.S. Department of State prior to export
from the United States.

DIF is a trademark of Software Arts,
Incorporated .

Dow Jones News/Retrieval Service is a
registered trademark and Dow Jones is a
trademark of Dow Jones & Company,
Incorporated .

Easy Writer is a trademark of Information
Unlimited Software, Incorporated .

Electric Poet is a registered trademark of
Control Color Corporation.

Fact Track is a trademark of Science
Research Associates, Incorporated .

Home Word is a trademark of Sierra
On-Line, Incorporated .

IBM is a registered trademark of
International Business Machines Corp.

INTERACTIVE and IS/5 are trademarks
of Interactive Systems Corporation.

Jumpman is a trademark of EPYX,
Incorporated .

King's Quest is a trademark of Sierra
On-Line, Incorporated.

Logo is a trademark of Logo Computer
Systems Incorporated .

Lotus and 1-2-3 are trademarks of Lotus
Development Corporation.

Managing Your Money is a trademark of
MECA (TM).

M ECA is a trademark of Micro
Education Corporation of America,
Incorporated.

Microsoft and the Microsoft logo are
registered trademarks of Microsoft
Corporation.

Multiplan is a U.S. trademark of
Microsoft Corporation .

NEC is a trademark of Nippon Electric
Co. , Ltd .

PCj r is a trademark of International
Busi ness Machines Corp.

PC Mouse is a trademark of
Metagraphics/Mouse Systems.

Peach text is a trademark of Peachtree
Software Incorporated , an MSA company.

Personal Computer AT is a trademark of
International Business Machines Corp.

Personal Computer XT is a trademark of
International Business Machines Corp.

pfs: is a registered trademark of Software
Publishing Corporation.

PlannerCalc is a trademark of Comshare.

REALCOLOR is a trademark of Micro
Developed Systems. Inc.

SHAMUS is a trademark of SynSoft(TM) .

SMARTMODEM is a trademark of
Hayes Microcomputer Products, Inc.

Synonym information in PCWriter and
Word Proof is based on the American
Heritage Dictionary Data Base, Roget's
II , The New Thesaurus, owned by
Houghton Mifflin Company and used
with permission. Copyright 1982 by
Houghton Mifflin Company.

The Learning Company reserves all
rights in the Rocky, Bumble, Juggles and
Gertrude characters and their names as
trademarks under copyright law. Rocky's
Boots, Bumble Games, Bumble Plot,
Juggles' Butterfly, Gertrude's Puzzles,
Gertrude's Secrets and The Learning
Company are trademarks of The Learn­
ing Company.

THE SOURCE is a service mark of
Source Telecomputing Corporation,
a subsidiary of The Reader's Digest
Association , Incorporated .

Time Manager is a trademark of The
Image Producers, Incorporated .

Top View is a trademark of International
Business Machines Corp.

UCSD, UCSD p-System and UCSD
Pascal are trademarks of the Regents of
the University of California .

UNIX is a trademark of AT&T Bell
Laboratories.

VisiCalc is a trademark of VisiCorp.

Visi On is a trademark ofVisiCorp.

WD212-X is a trademark ofWolfdata, Inc.

Word is a U.S. trademark of Microsoft
Corporation.

WordStar is a trademark of M icroPro
International Corporation .

XENIX is a trademark of Microsoft
Corporation .

Z-80 is a registered trademark of Zilog.

..._,,__
··In conclusion, I liked the

machine. I thought it was won-
derful to be able to run a local
session of CMS and share
minidisks between the host and
local machines. (E_age 2)

••In PE2 , you may assign defini-
tions to 238 !YQ_eable k~s,_Q_lus
76 user-shifted keys. (page 4)

~

•• PE2 let you split the screen of its display into as
many as four windows. Each window contains a
section of any file. (page 5)

~ .

.._

The algorithm for screen updates was substan-
tially revised . PE2 defers all changes to the
screen until all commands in a macro or a key
definition have finished executing. (page 7)

The Indexed Sequential Access Method (ISAM)
is a library of subroutines that lets you access
files sequentially or randomly by an index.
(page 11)

.......
· •• You should describe each field

in the record when you create
an ISAM file . This provides an
easy way to identify each file
and its contents. (page 12)

,,._
··Because BASIC Compiler ver-

sion 2 .00 allows you to compile
and link separate subprograms,
you have a flexible environ-
ment for structuring large pro-
grams. (page 15)

G320-0846-00

