

IMPORTANT INFORMATION

If you have IBM applications which ran under DOS
Versions 1.00 or 1.10, please refer to Appendix K
for information about using those applications
under DOS Version 2.00.

--- ------ ----- ---- - ---- - - ----------_.-
Personal Computer
Computer Language
Series

Disk
Operating
System
by Microsoft, Inc.

First Edition Ganuary 1983)
Version 2.00

International Business Machines Corporation provides this manual "as
is" without warranty of any kind, either express or implied, including,
but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IBM may make improvements and or
change in the product(s) and or the program(s) described in this
manual at any time and without notice.

Products are not stocked at the address below. Requests for copies of
this product and for technical information about the system should be
made to your authorized IBM Personal Computer Dealer.

This publication could contain technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this publication.

A Reader's Comment Form is provided at the back of this publication.
If this form has been removed, address comments to: IBM Corp.,
Personal Computer, P.O. Box 1328-C, Boca Raton, Florida 33432.
IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligations
whatever.

© Copyright International Business Machines Corp. 1983
© Copyright Microsoft, Inc. 1983

Preface

Read This First

This reference manual comes in two sections.
Sections 1 and 2 explain how to use the IBM
Personal Computer Disk Operating System
Version 2.00 (DOS). Section 1 DOS Guide covers
those topics that apply to all DOS users that are
using developed application programs. Section 2
Advanced DOS Features and Technical Reference covers
those topics that apply to more experienced DOS
users, system programmers, or those who will be
developing their own applications. These two
sections provide information on how to issue
commands to DOS to create, edit, link, debug, and
execute programs. They also explain how to
prepare DOS and your fixed disk for use, and how
to use the new features of DOS Version 2.00.

First Time Users

Before using your DOS diskette for the first time
read the sections "About Diskettes" and "Backing
Up Your DOS Diskettes" in Chapter 1.

iii

Experienced DOS Users

Before you use DOS Version 2.00 for the first time,
please read "DOS Version 2.00 Enhancements" in
Chapter 1 and "Appendix A" in Section 2.

About Your DOS Diskettes

DOS Version 2.00 is shipped on two diskettes. The
first labeled "DOS" contains the DOS programs
and commands. It is referred to as the DOS
diskette in this manual. The second diskette
labeled "DOS Supplemental Programs" contains
the LINK Utility, EXE2BIN, DEBUG, and several
BASIC sample programs (see the BASIC manual
for information about the sample programs).

Terms Used

iv

The terms "disk," "diskette," and "fixed disk" are
used throughout this manual. Where "diskette" is
used, it applies only to diskette drives and
diskettes. Where "fixed disk" is used, it applies
only to the IBM nonremovable fixed disk drive.
Where "disk" is used, it applies to both fixed disks
and diskettes.

Considerations for Using
Applications

If you have any of the following applications,
please refer to Appendix K for additional
information about using these applications with
DOS Version 2.00:

• Accounting Packages by BPI Systems, Inc.

• Accounting Packages Version 1.00 by
Peachtree Software, Inc.

• Accounting Packages Version 1.10 by
Peachtree Software, Inc.

• Ari thmetic Games 1 and 2

• Asynchronous Communications Support
Version 1.00

• Asynchronous Communications Support
Version 2.00

• EasyWriter Version 1.10

• Fact Track

• PFS:File

• PFS:Report

• SNA 3270 Emulation and RJE Support
Version 1.00

• The Dow Jones Reporter Version 1.00

v

• Typing Tutor

• VisiCalc Version 1.10

• 3101 Emulator Version 1.00

Organization of This Manual

vi

This manual has 14 chapters and 11 appendixes.

Section 1. DOS Guide contains:

Chapter 1 contains introductory information
about DOS, DOS diskettes, diskette drives, files,
and automatic program execution.

Chapter 2 contains information about starting
DOS, as well as directions on how to use the
control keys and DOS editing keys.

Chapter 3 is an introduction to some of the more
commonly used DOS commands.

Chapter 4 contains detailed descriptions of using
fixed disk on your system.

Chapter 5 describes how to use tree-structured
directories.

Chapter 6 contains detailed descriptions of the
commands you can issue to DOS. These
commands enable you to manage files, maintain
disks, and create and execute programs.

Chapter 7 describes how to use the Line Editor
(EDLIN) program to create, alter, and display
source language files and text files.

Chapter 8 lists messages generated by the
programs described in this manual.

Section 2. Advanced DOS Features and
Technical Reference contains:

Chapter 9 describes how to configure your system.

Chapter 10 contains detailed descriptions of the
advanced commands you can issue to DOS.

Chapter 11 describes how to use the linker (LINK)
program to link programs together before
execution.

Chapter 12 describes how the DEBUG program
provides a controlled test environment so you can
monitor and control the execution of a program to
be debugged; by altering, displaying, and
executing object files.

Chapter 13 contains detailed information about
using extended screen and keyboard functions.

Chapter 14 contains detailed information about
Device Drivers.

Appendix A describes DOS enhancements.

Appendix B contains general technical
information, and introduces the technical
information in Appendixes C-H.

Appendix C describes allocation of space on disk.

Appendix D describes the system interrupts and
function calls.

Appendix E describes control blocks and work
areas, including a Memory Map, Program Segment,
and File Control Block.

vii

viii

Appendix F describes how to execute commands
from within an application.

Appendix G contains technical information about
DOS support of fixed disks.

Appendix H contains detailed information about
. EXE file structure.

Appendix I describes how to run compilers and the
macro assembler with a fixed disk.

Appendix J describes how to run the Pascal
compiler with a fixed disk.

Appendix K describes how to use applications with
DOS Version 2.00.

Contents

Section 1. DOS Guide

Chapter 1. Introduction 1-1
What Is DOS? 1-3
Why You Should Use DOS 1-4
DOS Version 2.00 Enhancements 1-5
Backing Up Your DOS Diskettes 1-6
About Diskettes 1-7

Formatting Your Diskettes 1-7
Single- and Dual-Sided Diskettes 1-8
Protective Jacket 1-9
How It Works 1-9
Tracks, Bytes, and Sectors 1-10
Careful Does It 1-12
Write-Protect Notch 1-12

About Diskette and Drive
Compatibility 1-14

Single Diskette-Drive Systems. 1-14
Automatic Program Execution 1-16

Chapter 2. Getting DOS Started 2-1
Loading (Starting) DOS 2-3

If Your Computer Is Off 2-4
If Your Computer Is On 2-5
Telling DOS the Date 2-6
Telling DOS the Time 2-8
The DOS Prompt 2-11
Specifying the Default Drive 2-12

Files and Filenames 2-12
Bad, Okay, and Good Names
for Files ·2-16

File Specifications 2-16

ix

Using Global Filename Characters 2-18
The? Character 2-18
The * Character 2-19

Some Keys You Use with DOS 2-21
Characters That Look Alike-Oh's and
Zeros, Ones and Els 2-22

The Spacebar 2-23
The Shift and Caps Lock Keys... 2-24
To Enter a Command 2-25
To Stop a Command 2-25
To Correct a Typing Mistake 2-26
To Stop the Screen Long Enough to

Read It 2-27
To Print What Is on the Screen 2-27
To Print Whatever You Type 2-28
To Start DOS Again 2-28

Control Keys 2-29
DOS Editing Keys 2- 35

Examples of Ways To Use DOS
Editing Keys 2-40

To Start EDLIN 2-41
To Stop the Editing Session 2-52

Chapter 3. Using DOS 3-1
Introduction 3- 3

Giving DOS a Command 3- 3
Getting a Diskette Ready to Be Used 3-4

Using the FORMAT Command....... 3-4
Before You Begin 3-5
If You Want DOS on Your
Diskette 3-5

With One Drive 3-5
With Two Drives 3-8

If You Do Not Want DOS on Your
Diskette 3-9

Formatting Several Diskettes 3-9
Backing Up a Diskette 3-10

Using the DISKCOPY Command 3-10
Before You Begin 3-11
Protecting Your Original Diskette 3-11
Backing Up with One Drive. 3-12
Backing Up with Two Drives 3-15

x

Backing Up One File... 3-18
Using the COpy Command.......... 3-18
Before You Begin 3-20
Copying a File to the Same
Diskette 3-20

Copying a File to Another Diskette
Using One Drive 3-22

For You to Try 3-26
Copying a File to Another Diskette
Using Two Drives 3-26

For You to Try 3-28
Backing Up More Than One File 3-29

Using the COpy Command 3-29
Finding Out What Is on a Diskette 3-30

Using the DIR Command 3-30
Before You Begin 3-30
To List All the Files 3-30

With One Drive 3-30
With Two Drives 3-32

To List One File 3- 32
With One Drive 3-32
With Two Drives 3-33

Displaying What Is in a File 3-34
Using the TYPE Command 3-34
Before You Begin 3- 34
Here's How You Do It 3- 34

Changing a File's Name 3-37
Using the RENAME Command....... 3-37
Before You Begin 3-37

With One Drive 3-38
With Two Drives 3- 39
For You to Try 3-40

Removing a File from a Diskette 3-41
Using the ERASE Command 3-41
Before You Begin 3-41

With One Drive 3-42
With Two Drives 3-43

Global Filename Characters. 3-43
Shifting the Display on the Screen 3-44

Using the MODE Command 3-44
Before You Begin 3-44
Shift Right. 3-44

xi

Helps and Hints 3-46
Summary 3-48

Chapter 4. Preparing Your Fixed Disk. .. 4-1
Introduction. 4-3
Fixed Disk Qrive Letters 4-5
Preparing Your Fixed Disk 4-6
Setting Up the DOS Partition '. 4-8
Partitioning Your Fixed Disk 4-12

Creating the DOS Partition
(Option 1) 4-15

Changing Active Partition
(Option 2) 4-19

Deleting DOS Partition
(Option 3) 4-20

Displaying Partition Data
(Option 4) 4-22

Selecting Next Fixed Disk Drive
(Option5) 4-23

Chapter 5. Using Tree-Structured
Directories 5-1

Introduction 5- 3
Directory Types 5 -5

The Current Directory 5-6
Specifying the Path to a File 5-7
Directory Commands 5-11

Creating a Sub-Directory 5 -11
Deleting a Directory 5 -12
Displaying and Changing the
Current Directory 5-12

Displaying the Directory
Structure 5-12

Where DOS Looks for Commands and
Batch Files 5-13

Chapter 6. DOS Commands............. 6-1
Introduction. 6-5
Types of DOS Commands 6-6
Format Notation 6-8

xii

DOS Command Parameters
Reserved Device Names
Global Filename Characters

Detailed Descriptions of the
DOS Commands

Information Common to All DOS
Commands

ASSIGN (Drive) Command
BACKUP (Fixed Disk) Command
Batch Commands

The AUTOEXEC.BAT File
Creating a .BA T File with Replaceable
Parameters

Executing a .BAT File with
Replaceable Parameters

ECHO Subcommand
FOR Subcommand
GOTO Subcommand
IF Subcommand
SHIFT Subcommand
PAUSE Subcommand
REM (Remark) Subcommand

BREAK (Control Break) Command
CHDIR (Change Directory) Command .. .
CHKDSK (Check Disk) Command
CLS (Clear Screen) Command
COMP (Compare Files) Command
COpy Command
DATE Command
DEL Command
DIR (Directory) Command
DISKCOMP (Compare Diskette)
Command

DISKCOPY (Copy Diskette)
Command

ERASE Command
FORMAT Command
GRAPHICS (Screen Print) Command
MKDIR (Make Directory) Command
MODE Command

6-9
6-13
6-14

6-17

6-17
6-21
6-24
6-28
6-31

6-32

6-34
6-35
6-37
6-38
6-40
6-45
6-47
6-49
6-50
6-52
6-54
6-58
6-59
6-65
6-80
6-82
6-83

6-90

6-94
6-98

6-100
6-106
6-107
6-109

xiii

PATH (Set Search Directory)
Command

PRINT Command
RECOVER Command
RENAME (or REN) Command
RESTORE (Fixed Disk) Command
RMDIR (Remove Directory)
Command

SYS (System) Command
TIME Command
TREE (Display Directory) Command
TYPE Command
VER (Version) Command
VERIFY Command
VOL (Volume) Command
Summary of DOS Commands

Chapter 7. The Line Editor (EDLIN)
Introduction
How to Start the EDLIN Program

Editing an Existing File
Editing a New File

The EDLIN Command Parameters
The EDLIN Commands

Information Common to All EDLIN
Commands

Append Lines Command
Copy Lines Command
Delete Lines Command
Edit Line Command
End Edit Command
Insert Lines Command
List Lines Command
Move Lines Command
Page Command
Quit Edit Command
Replace Text Command
Search Text Command
Transfer Lines Command
Write Lines Command
Summary of EDLIN Commands

xiv

6-117
6-120
6-126
6-129
6-131

6-134
6-135
6-136
6-138
6-141
6-143
6-144
6-145
6-146

7-1
7-3
7-4
7-4
7-5
7-7
7-9

7-9
7-12
7-13
7-14
7-18
7-21
7-23
7-27
7-32
7-33
7-34
7-35
7-39
7-44
7-45
7-46

Chapter 8. Messages 8-1
Introduction 8-3
Device Error Messages 8-3
Other Messages 8-7

Section 2. Advanced DOS Features and
Technical Reference

Chapter 9. Configuring Your System
Introduction
Configuratio1'\ Commands

BREAK Command
BUFFERS Command
DEVICE Command
FILES Command
SHELL Command

Chapter 10. Advanced DOS
Commands

Introduction
Redirection of Standard Input and
Ou tpu t Devices

Piping of Standard Input and Output
DOS Filters
Detailed Descriptions of Advanced
DOS Commands

CTTY (Change Console) Command
EXE2BIN Command
FIND Filter Command
MORE Filter Command
PROMPT (Set System Prompt)
Command

SET (Set Environment) Command
SORT Filter Command
Summary of Advanced DOS
Commands

9-1
9-3
9-3
9-4
9-4
9-7
9-9

9-10

10-1
10-3

10-4
10-6
10-7

10-9
10-11
10-13
10-16
10-18

10-19
10-22
10-26

10-28

xv

xvi

Chapter 11. The Linker (LINK)
Program

Introduction '
Files

Input Files
Output Files
VM. TMP (Temporary File)

Definitions
Segm~nt
Group
Class

Command Prompts
Detailed Descriptions of the
Command Prompts

Object Modules [.OB]]:
Run File [filename. EXE] :
List File [NUL.MAP]:
Libraries [.LIB]:
Linker Parameters

How to Start the Linker Program
Before You Begin
Option 1 - Console Responses
Option 2 - Command Line
Option 3 - Automatic Responses

Example Linker Session
How to Determine the Absolute
Address of a Segment

Messages

Chapter 12. The DEBUG Program
In troduction
How to Start the DEBUG Program
The DEBUG Command Parameters
The DEBUG Commands

Information Common to All

11-1
11-3
11-4
11-4
11-5
11-5
11-6
11-6
11-7
11-7
11-8

11-10
11-10
11-12
11-12
11-13
11-15
11-19
11-19
11-19
11-20
11-22
11-25

11-28
11-30

12-1
12-3
12-4
12-7

12-14

DEBUG Commands 12-14

Assemble Command
Compare Command
Dump Command
Enter Command
Fill Command
Go Command
Hexarithmetic Command
Input Command
Load Command
Move Command
Name Command
Output Command
Quit Command
Register Command
Search Command
Trace Command
Un assemble Command
Write Command
Summary of DEBUG Commands

Chapter 13. Using Extended Screen
and Keyboard Control

Introduction
Cursor Control

Cursor Position
Cursor Up
Cursor Down
Cursor Forward
Cursor Backward
Horizontal and Vertical Position
Device Status Report
Cursor Position Report
Save Cursor Position
Restore Cursor Position

Erasing
Erase in Display
Erase in Line

12-16
12-21
12-22
12-25
12-29
12-30
12-34
12-35
12-36
12-40
12-42
12-44
12-45
12-46
12-53
12-55
12-57
12-62
12-67

13-1
13-3
13-4
13-4
13-4
13-5
13-5
13-5
13-6
13-6
13-6
13-7
13-7
13-8
13-8
13-8

xvii

xviii

Mode of Operation
Set Graphics Rendition
Set Mode
Reset Mode

Keyboard Key Reassignment

Chapter 14. Installable Device
Drivers

Introduction
Device Driver Format

Types of Devices
Device Header

Creating a Device Driver
Installation of Device Drivers
Request Header

Unit Code
Command Code
Status Word
Function Call Parameters
MEDIA Descriptor Byte

The CLOCK$ Device
Sample Device Driver

13-9
13-9

13-10
13-10
13-11

14-1
14-3
14-3
14-3
14-5
14-8
14-9

14-11
14-11
14-12
14-13
14-16
14-21
14-26
14-27

Appendix A. DOS Version 2.00
Enhancements.......................... A-I

For All Users A-I
For Programmers A-I0

Appendix B. DOS Technical
Information B-1

DOS Structure B-1
DOS Initialization B-2
The Command Processor B- 3
Available DOS Functions B-5
File Management Notes B-5
The Disk Transfer Area (DTA) B-6
Error Trapping B-7

Appendix C. DOS Disk Allocation C-l
DOS Disk Directory C- 3
DOS File Allocation Table.. C-6
How to Use the File Allocation
Table C-9

Appendix D. DOS Interrupts and
Function Calls D-l

Interrupts D-l
Function Calls D-12
Invoking DOS Functions D-16

Appendix E. DOS Control Blocks
and Work Areas E-l

DOS Memory Map E-l
DOS Program Segment............... E-3
Program Segment Prefix E-8
File Control Block E-10

Appendix F. Executing Commands
from Within an Application F-l

Appendix G. Fixed Disk Information.... G-l
Fixed Disk Architecture G-l
System Initialization G-2
Boot Record/Partition Table G-4
Technical Information G-6

Appendix H. EXE File Structure
and Loading H-l

Appendix I. Running Compilers and
Assemblers with Fixed Disk I-I

Running Compilers and Macro
Assembler With a Fixed Disk I-I

Exceptions 1-3

xix

Appendix]. Running the Pascal
Compiler with Fixed Disk

Pascal Hex Patch

Appendix K. Considerations for
Using Applications

Accounting Package by BPI
Systems, Inc.

Accounting Packages Version 1.00 by
Peachtree Software, Inc.

Accounting Packages Version 1.10 by
Peachtree Software, Inc.

Arithmetic Games 1 and 2
Asynchronous Communications Support

Version 1.00
Asynchronous Communications Support
Version 2.00

EasyW riter Version 1.10
Fact Track
PFS:File
PFS: Report
The Dow Jones Reporter
Version 1.00

SNA 3270 Emulation and RJE Support
Version 1.00

Typing Tutor
VisiCalc Version 1.10 by VisiCorp.
3101 Emulator Version 1.00

xx

J-1
J-1

K-1

K-3

K-3

K-3
K-4

K-5

K-7
K-10
K-12
K-14
K-18

K-22

K-23
K-25
K-26
K-28

Figures

1. DOS Batch Processing Commands
2. DOS Commands
3. EDLIN Commands
4. DOS Advanced Commands
5. Input files used by the Linker
6. Output files used by the Linker
7. Alphabetic Flag Settings
8. DEBUG Commands

6-146
6-147

7-46
10-28

11-4
11-5

12-50
12-67

xxi

Notes:

xxii

Section 1. DOS Guide

Contents

Chapter 1. Introduction

. Chapter 2. Getting DOS Started .

Chapter 3. UsingDOS

Chapter 4. Preparing Y our Fixed Disk

Chapter 5. Using Tree-Structured Directories

. Chapter 6. pas Co~mands

Chapter 7. The LirieEclitot (EDLIN)

ChapterS. Messages

Notes:

l-ii

Chapter 1. Introduction

Contents

What Is DOS? 1-3

Why You Should Use DOS 1-4

DOS Version 2.00 Enhancements 1-5

Backing Up Your DOS Diskettes 1-6

Abou t Diskettes 1-7
Formatting Your Diskettes 1-7
Single- and Dual-Sided Diskettes 1-8
Protective Jacket 1-9
How It Works 1-9
Tracks, Bytes, and Sectors 1-10
Careful Does It 1-12
Write-Protect Notch 1-12

Abou t Diskette and Drive
Compatibility 1-14

Single Diskette-Drive Systems 1-14

Automatic Program Execution 1-16

1-1

Notes:

1-2

What Is DOS

The IBM Personal Computer Disk Operating
System (DOS) is a group of programs that you can
use to do work with your computer. DOS is a disk
operating system, meaning that the DOS programs
are to be used with diskettes or with fixed disks.
The programs that DOS contains are important
because they provide a way to organize and use the
information you place on disks.

The DOS programs control the way your
computer uses other programs, such as
application programs. DOS tells your computer
how to use or read information that you supply to
the programs. DOS also tells your computer how
to return or write information that the programs
supply to you.

1-3

Why you should use DOS

1-4

DOS gives you an easy way to use applications and
create and manage files for your applications. DOS
also lets you use devices such as printers and disk
drives with your computer.

You should use DOS if you are doing any of the
following:

• Using applications that need DOS

• Using new disks with applications that use
DOS

• Copying disks that have been used with DOS
or with DOS applications

• Performing other tasks on disks that have
been used with DOS or with DOS
applications

Your applications will tell you if you need to use
DOS with them. If you are using DOS, this book
will help you learn more about the tasks that you
can perform with DOS to organize and maintain
the information you place on your disks.

DOS Version 2.00 Enhancements

DOS Version 2.00 contains significant functional
enhancements and some minor operational and
technical differences from previous versions of
DOS. We strongly recommend that you take the
time to review the information in Appendix A
(Section 2), whether you are an experienced DOS
user or are about to use DOS for the first time.

Because of the significant amount of function
added, DOS Version 2.00 is considerably larger
than previous versions. We recommend a
minimum memory size of 64K bytes for DOS
Version 2.00 (128K bytes if you are using a
fixed disk).

1-5

Backing Up Your DOS Diskettes

1-6

Making a copy of your DOS diskette and your
DOS Supplemental Program diskette should be
one of the first things you do with your IBM
Personal Computer after you get DOS. That way
you won't be "shut down" if your DOS diskette
becomes misplaced or accidentally damaged. This
copy is called a backup and making the copy is
usually called backing up. Refer to "Backing Up
a Diskette" in Chapter 3 and follow the procedure
to backup your DOS diskette and DOS
Supplemental Program diskette. Label and date
the backup diskette. Use a felt-tip pen. Store the
original DOS diskette properly and use the backup
diskette in your daily operations.

About Diskettes

Formatting Your Diskettes

You must format every diskette before it can be
used by DOS. You do not need to use FORMAT
every time you want to put information on a
diskette. (Only the first time you use a diskette.)

The DOS FORMAT command writes on every
sector of your diskette, sets up the directory and
File Allocation Table, and puts the boot record
program at the beginning of your diskette.

FORMAT also creates a copy of DOS on a new
diskette if you specify it in your command. This
way, you can create a diskette containing DOS and
have plenty of space for your own data on the
same diskette. Keep in mind that only DOS system
files are copied when you run FORMAT - none of
the other files you may have on your DOS diskette
are copied.

For more information about formatting diskettes,
refer to "Getting a Diskette Ready to be Used" in
Chapter 3. For more information about FORMAT,
refer to Chapter 6.

1-7

Single- and Dual-Sided Diskettes

1-8

Your IBM Personal Computer uses 5% inch
(133 mm) diskettes for storing information. (You
may also have heard the terms "floppy disk,"
"mini-floppy," or "disk" - we will use "diskette.")

If you have single-sided drives, a diskette can hold
either 163,840 or 184,320 characters of
information. If you have dual-sided drives, you can
format your diskette to hold either 327,680 or
368,,640 characters of information.

The reason for showing two sets of numbers for
each type of diskette is that diskettes formatted by
DOS Version 1.00 or 1.10 contain only the lower
number of characters. DOS Version 2.00, though,
allows more data to be put on a single diskette by
using more of the diskette's recording surface.

You can use diskettes formatted by DOS Version
1.00 and 1.10 with DOS Version 2.00, but you can
not use diskettes formatted by DOS Version 2.00
with earlier versions of DOS, unless you use the
FORMAT 18 or IB parameter when you format
them.

Protective Jacket

The permanent protective jacket contains a
flexible diskette that is coated with a magnetic
substance. When in use, the diskette spins inside
the jacket. The read/write head comes into contact
with the recording surface through the long hole
in the protective jacket, called the head slot.

Temporary label

Permanent
label

Diskette In
permanent
protective
jacket

How It Works

Wrlta-protect notch
(Some diskettes do
not have this notch.)

Exposed recording
surface
(DO NOT TOUCH)

Head slot

Diskette
envelope

Information is written on or read from the
magnetic surface of the diskette, similar to the way
an ordinary tape recorder operates.

The information on a diskette can be read by the
computer as often as it needs, or the computer can
write new information on the diskette in an
unused space.

1-9

The computer can also replace old information with
new information by writing over it. In this case,
the old information is erased and can no longer be
read. Similarly, if you record a Chicago Symphony
program on an Elvis Presley tape, you can no
longer listen to Elvis.

Tracks, Bytes, and Sectors

1-10

Information is written on the diskette along
concentric circles called tracks. The read/write head
of the diskette drive moves back and forth from
one track to another as the diskette spins over it.
This lets the head find certain data to read or find a
place to write some new information.

There are 40 tracks on a diskette, numbered from
o to 39. DOS reserves portions of track 0 of each
diskette. The rest of the diskette is available for
your information and for a copy of DOS, if you
want.

"...------ " .,---- ,
"',," ,'

/,. ,--- "
I I,', \

I I ,. - - " \ \

::' ('/(9)'0"\ -.. \ ':
" ~\ \ :zm' '; Track 39

One sector ~ \. \, ~ , , , I I •

of track 19" \ \ , ~ , I I I . \ \" , , , Track 1 9
" -~- / / , , ,/ '"
" " '" '" -- -' ... -Y--. -'"

Track 0

You'll also hear the words byte (pronounced like
"bite") and sector used in talking about diskettes.

Space on a diskette (and the computer's memory,
too) is measured in bytes. One byte can hold one
character; thus, for diskettes formatted by DOS
2.00 the 5 X inch diskettes can hold up to 184,320
characters for a single-sided diskette and up to
368,640 characters for a dual-sided diskette.

Each track is divided into eight or nine sectors that
are 512 bytes long. One or more sector's worth of
information can be sent back and forth between
the computer and a diskette at one time.

Information on a diskette can be quickly located
by its side, track, and sector numbers - just as the
post office can locate your home by using the town
(side number 0 or 1), street name (track number),
and the address (sector number).

As long as you use DOS provided functions, you
will never have to know (or use) this side, track, or
sector, information-DOS will take care of it for
you.

1-11

Careful Does It

Be careful with your diskettes. We'd like to
emphasize these things here:

• Do not touch the exposed recording surfaces.

• Protect the diskettes from dust by putting
them back in their envelopes as soon as you
remove them from the diskette drive.

• Store often-used diskettes in their envelopes.
Don't lay heavy objects on top of them. If you
stand them on edge, make sure they aren't
bending or sagging.

• Store seldom-used diskettes in storage boxes,
away from heat and magnetic field sources
such as telephones, dictation equipment, and
electronic calculators.

• Because each piece of information occupies
such a tiny spot on the diskette, small
scratches, dust, food or tobacco particles may
make the information unusable.

Take care of your diskettes because running your
computer without programs and data is like
running your car without gasoline.

Write-Protect Notch

1-12

Besides making sure your diskettes aren't
scratched or dirtied, you can make sure the
computer cannot write over information already
on a diskette.

If your diskette has no write-protect notch, it is
already write protected. This means that the
computer cannot store (write) any information
on it. Your DOS diskette does not have a
write-protect notch.

If your diskette has a write-protect notch, you can
cover this notch with a tab supplied with the
diskette, or use a piece of tape. Then the computer
cannot write on the diskette. In this case,
information can only be read from the diskette;
information already on the diskette cannot
accidentally be erased by being overwritten with
new information.

Important diskettes (for example, purchased
program diskettes) are often protected this way.

Tab

Just for reading

1-13

About Diskette and Drive
Compatibility

DOS supports both single- and dual-sided diskette
drives in any combination. Your drives do not
need to be of the same type.

Diskettes formatted for single-sided use (see
FORMAT Command in Chapter 6) can be used in
either single- or dual-sided drives. However,
diskettes formatted for dual-sided use are usable
only in dual-sided drives, because data is recorded
on both surfaces, and the method of allocating
space is different. Therefore, you should never
attempt to use a dual-sided diskette in a
single-sided drive. Also, diskettes formatted by
DOS Version 2.00 can not be properly used by
prior DOS versions, if they are formatted at 9
sectors per track.

Single Diskette-Drive Systems

1-14

On a single diskette-drive system, you enter the
commands the same way you would on a multiple
diskette-drive system.

You should think of the single diskette-drive
system as having two diskette drives (drive A and
drive B). But, instead of A and B representing two
physical drives as on a multiple diskette-drive
system, the A and B represent diskettes.

If you specify drive B when the drive A diskette
was last used, you are prompted to insert the
diskette for drive B. For example:

A>COPY COMMAND.COM B:
Insert diskette for drive B:
and strike any key when ready

1 File(5) copied
A>_

If you specify drive A when the drive B diskette
was last used, you are again prompted to change
diskettes. This time, the system prompts you to
insert the drive A diskette.

The same procedure is used if a command is
executed from a batch file. The system waits for
you to insert the appropriate diskette and press
any key before it continues. Remember that the
letter displayed in the system prompt represents
the default drive where DOS looks to find a file
whose name is entered without a drive specifier.
The letter in the system prompt does not
represent the last diskette used.

For example, assume that A is the default drive. If
the last operation performed was DIR B:, DOS
believes the drive B diskette is still in the drive;
however, the system prompt is still A>, because
drive A is the default drive, and you did not specify
another drive in the DIR command.

1-15

Automatic Program Execution

1-16

You may want to start a specific program every
time you start DOS. You can do this with the DOS
command processor by using automatic program
execution.

Every time you start up DOS, the command
processor searches for a file named
AUTOEXEC.BAT in the root directory on the disk
that DOS was started from. This filename is special
because it refers to a batch file that is automatically
executed whenever you start the system. With this
facility, you can execute programs or commands
immediately every time you start DOS.

If the system finds the AUTOEXEC.BA T file, the
file is immediately executed by the command
processor. The date and time prompts are
bypassed.

If DOS does not find the AUTO EXEC. BAT file,
DOS issues the date and time prompts. Refer to
"Batch Processing" in Chapter 6 for details on how
to create an AUTOEXEC.BAT file.

Chapter'2. GettingDO~S Started

Contents

Loading (Starting) DOS 2,.. 3
If Your Computer Is Off 2-4
If Your Computer Is On ~.:............ 2-5
Telling DOStheDat~ 2-6
Telling DOS the Time 2-8
The DOS Prompt '. . .. 2-11
Specifying the Default Drive 2;.12

Files and Filenar:ries ~
Bad'0lcay, and.C;oodNames
farEiles,. ~: .,'~ ... · ..•• :. .. . ••. . 2:~~~ljI~;!~iit~~l~
FileSp~~~f~~~~~~n$~ .. ,~ "~ ... ~ ' 2

Using GlcibalF:ile'llame Chara~ters
The? Character 2-18
The * Character ... ~ .. : . '.' "..... 2~ 19

Some Keys'Yo'ulJse withI)OS.;;.~ .~ ... ;,.. 2;,021
Charactets~ That: Laok Alike' ~Oh's
a,ndZef<)"s,: Ories and EIs ' '
~rheSt>acebar ...•.•.•...•.. ,••........
The ,Shift: and C~psLock Keys' .. , '.
To Enter a Command' ••.............. :
To ,Stopa COPlmand .•.. : .••. ~ •• ~~,: '•... , .•
To Correcta'typlngMistalce ~ 2':'26
To Stop the Screen Long Enough
to Read It. ,.,~. ... "..... .. ~...

To PrintWhatls, on the Screen
To PrintWhateveiY Oll Type••
T()StartDOSAgain

Control Keys 2-29

DOS Editing Keys 2-35
Examples of Ways to Use DOS
Editing Keys 2-40

To Start EDLIN 2-41

To Stop the Editing Session 2-52

2-2

Loading (Starting) DOS

You will usually want to start DOS whenever you
start your computer. For example, you must have
DOS loaded before you can start the Disk BASIC
or Advanced BASIC programs.

When you start or restart your computer, it will
first check to see if it can load an operating system
from diskette drive A. If a diskette is present, it
will be read. If it is not present or the diskette
drive door on drive A is open, one of the following
two things will happen:

1. If your system does not have a fixed disk, the
system will enter Cassette BASIC.

2. If your system does have a fixed disk, then an
attempt will be made to load an operating
system from it. If the fixed disk has not been
initialized with an active partition (see
Chapter 4), then Cassette BASIC will be
entered.

The examples shown in this chapter describe using
DOS in a diskette-only environment, and are
intended to serve as an introduction to DOS. If
you have afixed disk, please refer to "Preparing
Your Fixed Disk" in Chapter 4 after reviewing this
chapter.

Starting DOS or loading DOS means that a copy of
the DOS programs is read from the DOS diskette
and placed in the computer's memory. Once the
computer finishes its self-checks, you will hear the
diskette drive whirring and clicking while the DOS
programs are being read and transferred to
memory.

2-3

DOS tells you it is ready when it asks you for the
current date and time. After that, DOS is ready for
you to type a command - that is, to tell DOS what
you want it to do.

Let's look at starting DOS, step-by-step.

There are two ways to start DOS, depending on
whether your computer is off or on.

If Your Computer Is Off

2-4

1. Insert the DOS diskette into drive A and close
the diskette drive door.

DOS diskette

2. Turn on the printer, if you have one, the
video monitor or TV, and then the computer.

3. Wait a moment while the system checks itself
out. The length of the pause depends on the
amount of memory in your computer. The
more memory, the longer the pause. Then
you will hear the diskette drive clicking and
see the drive light come on while DOS is
being read into the computer's memory.

If Your Computer Is On

1. Insert the DOS diskette in drive A and close
the drive door.

'---- DOS diskette

2. Press and hold Ctrl and Alt, and then press
Del. Then release them all:

OBJ] + [I,OJ]) and then [IGJJ J
3. You will see the diskette drive light on while

DOS is being read, and you may hear some
clicks and whirs.

Note that you will see these three keys used
again in the section "To Start DOS Again"
later in this chapter. This is the same-that is,
use Ctrl + Alt + Del to start DOS or to restart
DOS if your computer was already on and you
were running something else. This is called
System Reset.

2-5

Telling DOS the Date

2-6

When DOS is loaded and ready, you will see
something similar to this on the screen:

Current date is Tue 1-01-1980
Enter new date:_

The cursor shows where the
first number you type will
appear.

It's an excellent idea to fill in the current date
whenever you start (or restart) DOS because then
any files that you create or change will have the
correct date stored in the file directory-helpful
information months later, if you can't remember
exactly which file has the most current
information. (Y ou'lllearn about files and
directories in a little bit.)

To set the date, use the number keys across the
top of the keyboard:

1. Type one or two numbers between 1 and 12
for the month.

2. Type a dash g or a slash B .

3. Type one or two numbers between 1 and 31
for the day.

4. Type another dash or slash.

5. Type the last two numbers of the year
between 80 and 99 or a four-digit number
between 1980 and 2099.

6. Press the Enter key ~3
For example, suppose the current date is June 8,
1982.

Type this:
or this:
or this:
or this:
or this:
or this:
or this:

6-8-82
6/8/82
6·08-82
6/08/82
06·08-82
06/08/82
06/8/82

DOS checks the date that is typed. If the date that
is typed does not check out, DOS displays this
message:

Invalid date

Enter new date: _

2-7

These are some dates that would not check out:

Date Reason

060882 No dashes or slashes

APR-02-80 Letters instead of numbers

13-08-83 Month too big

9-32-82 Day too big

10 15 82 Spaces, not slashes or dashes

If DOS tells you that the date is invalid, try again.
Or if you do not wish to enter a new date, then
press the Enter key when this is displayed:

Current date is 1-01-1980
Enter new date:_

Telling DOS the Time

2-8

After you have entered the date, DOS displays
something similar to this:

Current time is 0:01 :43.53
Enter new time:_

The time displayed is:

HOURS:MINUTES:SECONDS.HUNDREDTHS OF SECONDS

To set the time, use the number keys across the
top of the keyboard:

1. Type one or two numbers between 0 and 23
for the hours.

2. Type a colon B
Note: A dash g or a slash g will
not work.

3. Type one or two numbers between 0 and 59
for the minutes. If you wish to enter the
seconds and hundredths of a second, you can
proceed with step 4, but if the hours and
minutes are sufficient, proceed to step 8. DOS
will set the remaining values to zero for you.

4. Type another colon.

5. Type one or two numbers between 0 and 59
for the seconds.

6. Type a period g to separate seconds and

hundredths of a second.

Note: Only a period will work.

2-9

2-10

7. Type two numbers between 00 and 99 for the
hundredths of a second.

8. Press the Enter key m
For example, suppose the time is 8: 30 a.m.
exactly.

Type this:
or this:

8:30:0.00
08:30:0.00
8:30:0
8:30

or this:
or this:

DOS checks the time that you type. If the time
that you type does not check out, DOS displays
this message:

Invalid time
Enter new time: _

This is a time that would not check out:

Time

8/30/0/0

Reason

Only colons between hours,
minutes, and seconds; and a period
between seconds and hundredths of
a second will work.

If DOS tells you the time is invalid, try again.
However, if you do not wish to enter a new time,
then press the Enter key when this is displayed:

Current time is 0:00: 13.89
Enter new time: _

After you have entered the time, DOS displays
this:

The IBM Personal Computer DOS
Version 2.00 (C) Copyright IBM Corp 1981,1982, 1 983
A>_

The DOS Prompt

The A> is the DOS prompt. A prompt tells you that
it is your turn to type information; that is, to tell
DOS what to do by entering a command.

This prompt tells you some other things besides
saying that DOS is waiting for you to enter a
command.

It tells you that DOS has completed the previous
command, and that it is DOS that is waiting. Other
programs have different prompts; for example,
BASIC's prompt is: Ok

Ok lets you know that you should respond with a
BASIC command.

2-11

Specifying the Default Drive

The A in the prompt designates the default drive.
DOS searches the diskette located in the default
drive to find any filenames that you enter unless
you specify another drive.

You can change the default drive in the prompt by
entering the new designation letter followed by a
colon. For example: .

A> (original prompt)
A>B: (new drive designation)
B> (new prompt)

Now, B is the default drive. DOS searches the
diskette located in drive B to find any filenames
that you enter, unless you specify a drive.

Remember, if you do not specify a drive when you
enter a filename, the system automatically searches
the diskette located in the default drive. Another
name for the default drive is the current drive.

Files and Filenames

2-12

Related information on a disk is grouped into/iles,
just as information in a book about particular
topics may be grouped into chapters.

Each file has a name-when you want DOS to find a
file, you give DOS its name (not the name that's
on the diskette's label).

Some examples of files:

: - A,=(Gi~-G2-11
I +63)/3 !- _______ I

1- iear Valued - I
1 Customer, I
I I
I I
1
,_ ~i~e~IY~

,-------
I Gail 4-2 I
I Walt 2-23 I

John 9-18 I l_ ~'~I_ 6-29 J

1-------1
I June 1 1

1 Happy Birthday I
I Heldlll! 1
..... _-----

A file containing a
program to calculate
bowling team averages.

A file containing the text
of a form Jetter your
company sends out.

A file containing names
and birthdays of your
friends.

A file containing a
program to print a
birthday message to all
your friends born this
month.

2-13

2-14

Files are used so that DOS can find specific
information easily, and so that information that
isn't needed isn't taking up room in the computer.
(For example, you don't need your bowling team
averages at the same time as you need the form
letter.)

You usually have a number of files on a diskette.
You can have up to 64 files in the system directory
of a single-sided diskette and 112 files on a
dual-sided diskette. The number of files on a fixed
disk is determined by the amount of space
allocated to DOS. Sometimes the files on one disk
are related to each other (like the programs and
data files to keep track of a company's inventory),
and sometimes the files have been put on whatever
diskette was handy.

It doesn't matter what combination of files is on a
disk. What matters is that each file has a unique
name.

That means that every name on a disk has to be
different-but you can have the same name on two
different disks.

For our examples a little earlier, the names of
these files might be:

BOWL
LETTER
BIRTHDAY
BIRTH DAY. BAS

A file's name is made up of afilename and an
extension.

In DOS,jilenames are from one to eight characters
long. The characters in a filename can be:

• the letters of the alphabet

• the numbers ° through 9

• and these special characters -

$ # & @! % () - {} '-'

Note: Prior versions of DOS allowed the
characters: , <, >, and to be used within a
filename. However, these characters have
special meaning to DOS Version 2.00, and can
no longer be used in filenames.

A filename can be followed by an optional short
name called an extension. An extension starts with a
period, has one, two, or three characters, and
follows immediately after the filename.

Here are some filenames with extensions:

81 PRICES.JUL
81 PRICES.AUG
AVRG.$&%
WEATHER.80

Important: If a filename is followed by an
extension, you must use both parts when telling
DOS about that file.

2-15

Bad, Okay, and Good Names for Files

With all the possibilities, filenames can be
unusual, to say the least.

DOS likes names that follow the rules. These files
have names that DOS will not accept:

Name Why DOS Won't Accept It

AANDB Spaces in it

A,B, & C Commas and spaces in it

.PGM Filename missing

ANDTHISONEISTOO.LONG

These names are okay for DOS:

oo·xxx
#1#2#A3B
@@.---
Z

but can you guess what is in any of these files?

A good name for a file will help you remember what
kind of information is in the file, and perhaps
whether it's a file that contains a program or only
data. For example, ADDRLIST.BAS is a good
name for a BASIC program file that prints an
address list.

File Specifications

2-16

The other thing that DOS needs to know to find
information is "Where" -that is, which drive to
search for a particular file.

The drive specifier is a letter and a colon, like A:, and
ft tells where the file is. You always need to type
the colon after th~ drive specifier letter.

The filename and extension immediately follow the
drive specifier, like this:

A:81 PRICES.JUL

Don't put any spaces between the three parts.
These three parts together-the drive specifier, the
filename, and the extension-are called aftle
specification.

Sometimes you don't have to type the drive
specifier; whenever the drive specifier is the same
as the default drive, you don't have to type it.

For example, assume A is the default drive
(remember you can tell by looking at the
prompt-A> in this case). Then you could type:

------Look-no drive
A:address OR ~ddress specifier!

They are exactly the same to DOS when A is the
default drive.

Here are some more file specifications:

A:81 PRICES.AUG
A:KIKI.J
B:BOWL.BAS
B:MINE
YOURS-With this kind of file specification,

DOS assumes that the file (YOURS)
can be found on the default drive.

2-17

Using Global Filename Characters

Sometimes you will want to do the same thing with
several files-for example, copying a group of files
at one time, or listing the names of a group of files
that are somehow related.

Two special global filename characters let you indicate
a number of files with one specification. These
characters are the question mark (?) and the
asterisk (*). They are used in a filename and! or an
extension to mean" any character."

These characters can save you a lot of typing if
your files are named appropriately. Let's look at
some examples to tell you about global filename
characters.

In the examples that follow, you need to know
that the DOS command DIR displays information
about files that match the file specification you
type.

The? Character

2-18

The? in a filename or extension means that any
character can be in that position. So, all files that
have a name that matches in all except the?
positions are selected. For example, suppose the
diskette in drive A has these files on it:

79PRICES.AVG
80PRICES.AVG
81 PRICES.JAN
81 PRICES.JUL
81 PRICES. AUG
791NVTRY

If you type:

dlr ??prices. ???

all the files except the last one (79INVTRy) are
listed on the screen. These are the files that match
and are listed:

79PRICES.AVG
80PRICES.AVG
81 PRICES.JAN
81 PRICES.JUL
81 PRICES. AUG

For another example, suppose you give DOS this
command:

dir ??prices.a?g

Then these files match and are listed:

79PRICES.AVG
80PRICES.AVG
81 PRICES.AUG

The * Character

The * in a filename means that any character can
be in that position and in the rest of the filename.
Likewise, a * in an extension means that any
character can be in that position and in the rest of
the extension. Using an asterisk is like typing
several ?' s, two or more * are never used together.
One is enough!

Assume that the same diskette we saw with "the?
character" is in drive A. If you give DOS this
command:

dir 81*.j*

2-19

2-20

Then these files are selected and displayed:

81 PRICES.JAN
81 PRICES.JUL

For another example, perhaps we try this:

dir 8*.*

These files would be listed:

80PRICES.AVG
81 PRICES.JAN
81 PRICES.JUL
81 PRICES. AUG

And if you type:

dir *.*

all the files would be listed.

You can use both global filename characters
together. For example, if you type:

dir ??p*.a*

you would see these files listed:

79PRICES.AVG
80PRICES.AVG
81 PRICES.AUG

Global characters are fun, but you need to be
careful both in naming your files and in using
them-you may get results you didn't expect!

So far we have discussed:

• how to get DOS started

• the DOS prompt and default drive

• formatting your diskettes

• files and filenames

• glo bal filename characters

Let's take a closer look at the keyboard keys
before we go any further.

Some Keys You Use with DOS

In addition to the keys you'd find on a typewriter,
your keyboard has some special keys you'll use
with DOS.

Before we get to the special keys, here are a few
differences between your keyboard and a
typewriter that you need to know.

2-21

Characters That Look Alike -
Oh's and Zeros, Ones and Els

2-22

Computers are fussy about
the number zero and the letter
O-they want what they want
and you can't fool them into
taking the wrong one. Make
sure you type the right key in
commands and filenames.

On our printer, the letter 0
looks a little squarer than the
number o.

On our screen, the number zero
has a diagonal line through it,
something like this: g.

If you are used to typing a
lowercase L for the number 1 (if
you have used a portable
typewriter a lot, for example),
you'll have to break that habit.

Again, the computer knows the
difference. Use the number key
when the number 1 is required,
as in a filename such as
DATA123. (Now if you were to
use lowercase L when creating a
filename, that's okay. Just be
sure to use it again when you
want to use that file!)

The Spacebar

[[
t This is the Spacebar. Use it to

put a blank (a space) in a line
you are typing. Sometimes
people want to use it for
moving the cursor. It will move
the cursor, but it will also replace
any characters with blanks as it
moves across the screen.

To the computer, blanks are
important; a blank is as much a
character as A or B. Many times
blanks are used to separate what
you type for the computer just
as we use them to separate
words in everyday writing. You
have to make sure when you're
typing that the computer allows
a blank. Otherwise, it may not
understand what you have
typed.

)J

2-23

The Shift and Caps Lock Keys

[lf~]JJ

2-24

There are two Shift keys on the
keyboard, located about where
you find them on a typewriter
keyboard.

Use them to type uppercase
(capital) letters or to type the
symbol shown in the upper
position on the key tops for all
keys except the numeric key
pad on the right. That's just as
you would expect.

The Caps Lock key lets you type
capital letters (only) until you
press it again. Only the letter
keys are affected.

You still have to press one of
the Shift keys to type the
symbols in the upper position of
the number keys at the top of
the keyboard. For example, you
must press and hold the Shift
key to type a #.

[fJI] + ~ =#

Unlike a regular typewriter,
pressing one of the Shift

keys [QED does not get you out

of Caps Lock mode. You must
press the Caps Lock key again
to type lowercase letters.

Remember that DOS will accept lowercase letters
in all commands and filenames; so you'll be using
these Shift keys mostly for special symbols.

To Enter a Command

Use the Enter key when you
have finished typing a whole
command.

To Stop a Command

[Ell]
+

Scroll
lock

Break

Press and hold the Ctrl
(Control) key, and then press
the Break key. Then release
both keys to stop a command
from finishing its job normally.
(This is sometimes called
terminating a program).

DOS shows you a prompt; then
you can type your next
command.

2-25

To Correct a Typing Mistake

Here are several ways to correct
a mistake that you notice before
you press the Enter key.

[I.EJ]JJ
One of the easiest is to move
the cursor backward, under the
leftmost wrong character. The
Backspace key deletes
characters as it moves the
cursor to the left. (The
Backspace key is located on the
top row next to the N urn Lock
key.)

2-26

Now type the correct
characters, and press the Enter
key when everything is the way
you want it.

Another way, if the line is just
too messed up to worry about,
is to press the Esc (Escape) key.
A backslash (\) is displayed, and
the cursor moves down one line
on the screen. This cancels the
messed-up line and you can
then type the command
correctly.

More ways to correct typing mistakes, which we
call editing, are discussed in Chapter 3; but these
two keys should be enough to get you started.

To Stop the Screen Long Enough
to Read It

(81]
+ [IL§]J]

If information is appearing on
the screen too fast for you to
read, press and hold the Ctrl
(Control) key and then press the
Num Lock (Number Lock) key.
Then release both of them.

When you are ready to see some
more information, press any
key.

(Scrolling is the term used to
describe how a line of
information is displayed on the
screen and then is pushed
upward until it is pushed off the
top of the screen by new lines of
information being displayed at
the bottom.)

To Print What Is on the Screen

If you have a printer and want
to print what is currently on the
screen, first make sure the
printer is on. Then press and
hold either Shift key, and then
press the PrtSc (Print screen)
key; then release both of them.

What is printed is often called a
hard copy.

2-27

To Print Whatever You Type

If you have a printer and want
to print whatever you type and
what the computer displays,
press and hold the Ctrl
(Control) key and then press the
PrtSc (Print Screen) key. Then
release them both. Now, each
time you press the Enter key, or
the computer displays a line, the
line will be printed or echoed
on the printer.

To stop echoing to the printer,
press the Ctrl and PrtSc keys
again.

This is different from Shift and
PrtSc. Shift and PrtSc prints a
whole screen's worth and then is
done. But Ctrl and PrtSc prints
one line at a time, line after
line, until you press Ctrl and
PrtSc again to stop the printing.

To Start DOS Again

(ElIJ
+[ltJ]J

+ [lbJJ]
2-28

If you want to start DOS over
from the beginning, put your
DOS diskette into drive A.
Then press and hold down the
Ctrl (Control) and Alt
(Alternate) keys and then press
the Del (Delete) key. Then
release all three. Remember,
you may see this called System
Reset.

After a bit, you'll see the DOS
startup messages.

Control Keys

Use the control keys when you are entering
commands or input lines to any program. Where
two keys are specified, for example Ctrl-Break,
you must press and hold down the first key and
then press the second key.

Here is a summary of the control keys, their
functions, and their locations on the keyboard:

Control Key Function

This is the Enter key. You press the
Enter key to send the displayed line to
the requesting program.

2-29

Control Key

Ctrl-Break

Ctrl-Enter

2-30

Function

Ends (cancels) the current operation.

Allows you to go to the next displayed
line on the screen to continue entering
the line you are typing.

Control Key Function

Ctrl-Num Lock Suspends system operation. You must
press any character key to resume
operation. This is useful when a large
amount of screen output is being
generated. You can press Ctrl-Num
Lock to temporarily suspend the
display of your output so you can
review it. You can then press any other
character key to restart the display.

2-31

Control Key

Ctrl-PrtSc

2-32

Function

These keys serve as an on! off switch
for sending displayed output to the
printer as well as to the screen.

You can press these keys to print
displayed output on the printer and
press them again to stop printing
displayed output on the printer.

Although this allows the printer to
function as a system log, it slows down
some operations because the computer
waits during the printing.

Control Key

Esc

Shift-PrtSc

Function

Cancels the current line and moves to
the next displayed line. A backslash (\)
is displayed to indicate the canceled
line.

Sends a copy of what is currently
displayed on the screen to the printer.
This, in effect, prints a "snapshot" of
the screen.

: •.•... ~ ;.
" ; " .. ' :.<:

"' . <:,. <. ". " ~ '~: " ,

..~rtSc : .
, ~.'»

',.", .. " .. ,>:, .. :;«

".; ,"."

Il:~~

2-33

Control Key

2-34

Function

Backspaces and removes a character
from the screen. This is the key to the
left of Num Lock, not key 4 on the
numeric key pad .

• ~ ..

1111J.---\111J-.-\IHI}---'lf--\IHIi---\1t

DOS Editing Keys

Use the DOS editing keys to make corrections to
commands and input lines as they are being
entered. Note that the meaning of these keys can
change if you alter their assignments through
extended keyboard control, refer to "Using
Extended Cursor and Keyboard Control" in
Chapter 13 for additional information.

The DOS editing keys are used to edit within a line.
The Line Editor (EDLIN) program operates on
complete lines within a file or document. When you
are working with EDLIN and want to edit within a
line, however, use the DOS editing keys. For more
information about EDLIN, refer to Chapter 7.

Note: Some word processing programs
define special editing rules; therefore, the
DOS editing keys may not work as described
in this chapter. You can also define special
editing rules when using the BASIC Program
Editor while programming in BASIC.

Any line you enter from the keyboard is retained
in an input buffer when you press Enter. The line
is then made available to your program for
processing.

Since the line remains in the input buffer, you can
use that line as a template for editing purposes. The
DOS editing keys operate on that copy of the line.
You can repeat or change the line by using the
DOS editing keys, or you can enter an entirely new
line.

2-35

Here is a summary of the DOS editing keys, their
functions, and their locations on the keyboard:

DOS Editing Key Function

Del

Esc

2-36

Skips over one character in the
template. The cursor does not move.

Cancels the line currently being
displayed. The template remains
unchanged.

DOS Editing Key Function

Fl or -+

F2

Copies one character from the
template and displays it.

Copies all characters up to a specified
character.

2-37

DOS Editing Key Function

F3

F4

2-38

Copies all remaining characters from
the template to the screen.

Skips over all characters up to a
specified character. (F4 is the
opposite of F2.)

DOS Editing Key Function

F5

Ins

Accepts an edited line for continued
editing - the currently displayed line
becomes the template, but it is not
sent to the requesting program.

I:~\':S 0:' G:H J:. ':: ::: ::

Allows you to insert characters within
a line.

IllJI-\lJ1HIHIHI!--\IHIHI>-\IHIHIf-\IJ-\Ii-

2-39

Examples of Ways to Use DOS
Editing Keys

2-40

The following examples show how you use the
DOS editing keys with the Line Editor (EDLIN)
program.

If you want to try these examples, you must use
the EDLIN program. The EDLIN program is on
your DOS diskette and is discussed in Chapter 7.
You do not need to review the EDLIN chapter to
complete these examples - just follow the steps
provided.

Notes:

1. Because the DOS diskette shipped with your
IBM Personal Computer is write protected, you
cannot create the file used in the following
examples on that diskette. You must use a
copy of your DOS diskette to complete these
examples. Refer to the section called
"w rite-Protect Notch" in Chapter 1, for more
information about write protected diskettes.

2. In the following examples, to enter something
means that you should type the information
and then press the Enter key.

3. If you finish one or more of the following
examples and you do not want to try the rest
of the examples, go to "To Stop the Editing
Session" at the end of this chapter.

To Start EDLIN

1. Insert your DOS diskette into drive A.

2. Create a file named EXAMPLES.

If you want the EXAMPLES file to reside on
the diskette in your default drive, enter:

EDLIN EUMPLES

or

If you want the EXAMPLES file to reside on
the diskette in another drive, you must specify
the drive, as in:

EDLIN B:EUMPLES

This command tells DOS to load the EDLIN
program and create a file called EXAMPLES.

The following message and prompt will be
displayed:

New file
*

Notice that the prompt for EDLIN is an
asterisk (*).

3. Now, enter the letter I.

This tells EDLIN that you want to begin
inserting lines in the file named EXAMPLES.

The screen looks like this:

New file

*. 1:*_

2-41

2-42

4. Type This is a mailorder file. on line 1 and
press Enter.

5. Type Editing is easy. on line 2 and press
Enter.

You now have two lines of text in your
EXAMPLES file.

6. Press the Ctrl-Break keys.

Pressing Ctrl-Break will end the insert mode
of operation and return you to the EDLIN
prompt.

7. Enter the number 1.

This tells EDLIN that you want to display line
1 on the screen.

The screen should look like this:

1 :'hThis ~$ I mliDorder file.
1~~~

You are now ready to begin the examples.

Note: If you encounter any problems while
trying these examples, press the Ctrl-Break
keys. The EDLIN prompt will be displayed
and you can start over.

Example 1

Let's delete the first two characters in the word
This and then copy the remainder of the line.

1. Press the Del key twice to delete the first two
characters.

2. Press F3 to copy the remainder of the line to
the screen. The screen looks like this:

1 :*This is a mailorder file.
1 :*is is a mailorder file._

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN
prompt. (The changes you made to line 1 will
not be saved.)

2. Enter the number 1.

Example 2

N ow we'll change line 1; then, using Esc, we will
cancel the change. A backslash (\) will be displayed
to indicate that the displayed line has been
cancelled.

Note: If the insert mode is on, the system
automatically turns it off when you use Esc.

The screen looks like this:

1 :*This is a mailorder file.
1:*_

2-43

2-44

To change line 1 to Sample file:

1. Type Sample file, but do not press Enter.

1 :*Thls Is a mallarder file.
1 :*Sample fll_

2. To cancel the line we just entered, press the
Esc key.

1 :*This is a mailarder file.
1 :*Sample file \

Now we can continue to edit the original line
This is a mail order file.

3. Press F3 to copy the original line to the
screen.

The screen looks like this:

1 :*This is a mailarder file.
1 :*Sample file \

This is a mailarder file __

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN
prompt.

2. Enter the number 2.

Example 3

Now let's copy one character by using Fl or ~ .
(Fl or ~ is the opposite of Del. Del skips over
one character in the template.)

The screen looks like this:

2:* Editing is easy.
2:*_

1. Press the Fl or ~ key three times.

The screen looks like this:

2:*Editing is easy.
2:*EdL

Each time you press the Fl or ~ key, one
more character appears.

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN
prompt.

2. Enter the number 2.

Example 4

N ow let's use the F2 key. Remember, the F2 key
copies all characters from the template to the
screen up to, but not including, the first
occurrence of a specified character.

You must always specify a character when using
this key. If the specified character is not present in
the template, nothing is copied.

2-45

2-46

The screen looks like this:

2:*Editing is easy.
2:*_

1. Press the F2 key and enter the letter g.

The screen looks like this:

2:* Editing is easy.
2:*EditiL-

N ow we'll copy all the remaining characters in
the template to the screen by using the F3
key.

(If you pressed Enter now, only Editin would
be saved in the EXAMPLES file as line 2.)

2. Press the F3 key.

The screen looks like this:

2:* Editing is easy.
2:* Editing is easy~

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN
prompt.

2. Enter the number 1.

Example 5

N ow let's scan and locate specific characters within
the template by using the F4 key. This is a way to
skip over characters. The cursor does not move
when you use this key, and no characters are
displayed.

You must always specify a character after you press
the F4 key. If the specified character is not present
in the template, no characters in the template will
be skipped.

We will also use the F3 key to copy the remaining
characters in the template to the screen.

The screen looks like this:

1 :*This is a mailorder file.
1:*_

1. Press the F4 key and enter the letter o. (No
characters are displayed.)

2. Press the F3 key to copy the remainder of the
line.

The screen looks like this:

1 :*This is a mailorder file.
1 :*order file __

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN
prompt.

2. Enter the number 1.

2-47

Example 6

2-48

Now we'll move the currently displayed line into
the template by using the F5 key. Pressing F5 is
the same as pressing Enter, except that the line is
not sent to your program. An @ character is
displayed to indicate that the new line is now the
template.

Note: If the insert mode is on, the system
automatically turns it off when you use F5.

Once you press F5, you can continue to make
changes to a line. When you are finished, press
Enter to send the line to your program.

The screen looks like this:

1 :*This is a mailorder file.
1:*_

1. Type This is not a sample file.

The screen looks like this:

1 :*This is a mailorder file.
1 :*This is not a sample file __

2. Press F5.

The result is:

1 :*This is a mailorder file.
1 :*This is not a sample file.@

The replacement line This is not a sample
file. is now in the template. The replacement
line is acceptable, but let's continue to edit it.

3. To remove the word not from the
replacement line, press F1 eight times:

1 :*Thls Is a mallorder file.
1 :*This is not a sample flle.@

4. Press Del four times to remove one blank
space and the word not.

5. Press F3 to copy the remaining characters to
the screen.

The screen looks like this:

1 :*This is a mailorder file.
1 :*This is not a sample file.@

This is a sample file._

6. Press Enter to make the replacement line
This is a sample file. the template in place of
the original line and to send the line to your
program.

(If you want to do more editing without
sending the line to your program, press F5
again to put the displayed line into the
template.)

Note: Pressing Enter immediately after
pressing F5 empties the template.

If you want to continue with the next example:

1. Press Ctrl-Break to return to the EDLIN
prompt.

2. Enter the number 1.

2-49

Example 7

2-50

Let's look at an example using the Ins key. The Ins
key serves as an on/off switch for entering and
leaving insert mode. You can press the Ins key to
enter insert mode, and press the Ins key again to
leave the insert mode.

While in the insert mode of operation, any
characters that you enter are inserted in the line
being displayed. The characters do not replace
characters in the template.

When you are not in the insert mode of operation,
any characters that you enter replace characters in
the template. If you are entering characters at the
end of a line, the characters will be added to the
line.

The screen looks like this:

1 :*This is a sample file.
1·* '-

Let's change the word sample to salary.

1. Press the F2 key and enter the letter m.

The screen looks like this:

1 :*This is a sample file.
1 :*This is a s_

2. Press the Ins key and enter the characters
lary.

The screen looks like this:

1 :*This is a sample file.
1 :*This is a salarL

Notice that the characters lary were inserted,
but no characters from the template were
replaced.

3. Now, press Ins again to leave the insert mode.

4. Enter one blank space and the three
characters tax.

1 :*This is a sample file.
1 :*This is a salary tIX..-

5. Press F3 to copy the remaining characters in
the template to the screen.

1 :*This is a sample file.
1 :*This is a salary tax file __

Notice that we inserted lary and we replaced
mple with a blank space and tax.

6. Now press Enter to make the replacement
line the template in place of the original line
and send the line to the requesting program.

2-51

To Stop the Editing Session

2-52

You have now completed the examples.

To return to the A> prompt:

1. Press Ctrl-Break.

2. Enter the letter Q.

Q tells EDLIN that you don't want to save the
EXAMPLES file and that you want to quit the
editing session. EDLIN will prompt you with
this message:

Abort edit (YIN)?

to make sure you don't want to save the file.

3. Enter the letter Y.

Chapter 3. Using DOS

Contents

Introduction;;. 3-3
Giving DOS a' Command "0 • •• • • • • • • • • • • 3-3

Getting a Diskette . Ready to Be Used
Using the FORMAT Command
Before Y ouBegin
If You Want DOS on Your Diskette .•.

With ,One Drive
With Two Drives ..•.............

IfXou })oN.of\V~ntDOS on Your
, Diskette ~ .•.. ~ ••. 'd •.•••••••• ! ••• '

FormattingSever~1 I>i~kette~' ~ :'

BackirtgUp a Dlskette'
Using the DISKCOPY Com~and
B~fore You·Begitf~: .. , ..•.... ~ ...•...... ~.
ProtectingYouiOrigina~ Di$~ette .";." .
Backing Up~ith0n.e Drive <' ••••••••••

Backing Vp",yith Two Drives

Backing Up One File ,~... 3-18
Using the COpy Command • 3-18
Before You Begin. 3-20
Copying a File to the Same Diskette ... 3~20
Copying a File to Another Diskette
Using' Oh¢Drive .. :~ ~. 3-22

ForYoutoTry ... ·• ~L""~T'~""" 3-26
Copying a rile toAnoth,~r Diskette
Using.Two Drives •.... ·. '.: .. ' ...•.. " .. 3-26

ForYo\ltoTry ... 3~.28

Backing Up More Than One File 3-29
Using the COpy Command 3-29

Finding Out What Is on a Diskette 3- 30
Using the DIR Command 3-30
Before You Begin 3- 30
To List All the Files 3- 30

With One Drive 3-30
With Two Drives 3-32

To List One File 3- 32
With One Drive 3- 32
With Two Drives 3- 33

Displaying What Is in a File 3-34
Using the TYPE Command 3- 34
Before You Begin 3- 34
Here's How You Do It 3- 34

Changing a File's Name 3-37
Using the RENAME Command 3-37
Before You Begin 3- 3 7

With One Drive 3- 38
With Two Drives 3- 39
For You to Try 3-40

Removing a File from a Diskette 3-41
Using the ERASE Command 3-41
Before You Begin 3-41

. With One Drive 3-42
With Two Drives 3-43

Global Filename Characters 3-43

Shifting the Display on the Screen 3-44
Using the MODE Command 3-44
Before You Begin 3-44
Shift Right. .. 3-44

Hel ps and Hints 3-46
Summary 3-48

3-2

Introduction

This chapter steps you through procedures that do
some everyday tasks. Read it now to get familiar
with these commands and then you can use it to
refer to when you really have to do that task.

The examples shown in this chapter describe using
DOS in a diskette-only environment, and are
intended to serve as an introduction to DOS. If
you have afixed disk, please refer to "Preparing
Your Fixed Disk" in Chapter 4 after reviewing this
chapter.

Just remember, you will have to substitute the names
of your own files for those we have used here-it's that
easy.

Giving DOS a Command

To give DOS a command:

1. Wait until you see the DOS prompt, A>.

2. Type the command and any other parts the
command requires (for example, a drive
specifier or a file specification).

You can type in uppercase or lower case
letters (or a combination). Use a blank (the
Spacebar) to separate the parts of the
command from each other.

3. Press the Enter key when you have finished
typing.

3-3

Getting a Diskette Ready to Be Used

Using the FORMAT Command

3-4

The FORMAT command gets a diskette ready to
receive information. FORMAT checks the diskette
for bad spots, builds a directory to hold
information about the files that will eventually be
written on it, and optionally, copies the DOS
system files onto the diskette.

Sometimes the terms initializing and preparing are
used instead of formatting.

You must use FORMAT before you try to use a new
diskette unless you are copying from another
diskette using the DISKCOPY command.

You can use FORMAT if a diskette has developed
defective areas. FORMAT makes sure these areas
are not used for your files. FORMAT and
CHKDSK will tell you if there are defective areas
on your diskette.

You can also use FORMAT as a way to prepare a
diskette that has information you no longer need for
use again.

DO NOT use FORMAT each and every time you
want to put information on a diskette, because
FORMAT wipes off what was already there.

To sum up, you need to use FORMAT once per
diskette, when it is new. Very occasionally you will
re-FORMA T a diskette if it has defective areas or if
you want to forget what was on it and use it as if it
were new.

Note: If you have a fixed disk, it will also
need to be initialized. Refer to "Preparing
Your Fixed Disk" in Chapter 4 for a
description of the initialization procedure.

Before You Begin

Have on hand your DOS diskette and the diskette
you want to format.

Also decide whether you want a copy of DOS on
your new diskette. Sometimes you will want DOS
on a diskette if you will be putting major programs
on it. On the other hand, if the diskette is going to
be used for data files, you will probably not want
DOS on the diskette.

If You Want DOS on Your Diskette

With One Drive

1. Make sure DOS is ready and A> is displayed.

2. Insert your DOS Diskette into drive A, if it is
not already there.

3-5

3-6

3. Type:

format a:/s

and press the Enter key. If the target drive is
dual-sided, this will create a diskette for
dual-sided use only. If you want to format a
diskette that can be used in either a
single-sided or a double-sided drive then type:

format a:/s/1

4. N ow you will see this message:

Insert new diskette for drive A
and strike any key when ready

5. When the drive A "in use" light is off, remove
the DOS diskette from drive A.

6. Put your new diskette into drive A.

7. Press any key- the Spacebar for instance.

8. You will see this message:

Formatting ...

9. After some whirring and clicking, you will see
this:

Formatting ... Format complete
System transferred

xxxxxx bytes total disk space
xxxxxx bytes used by system
xxxxxx bytes available on disk

Format another (YIN)?

10. Type:

n

You don't have to press the Enter key.

11. Now you will see the DOS prompt, A>, and
you can remove your newly formatted
diskette.

The diskette is now ready to be used. It has a
copy of the DOS system on it (that's because
in step 3 you typed Is-the s stands for system).

3-7

With Two Drives

3-8

If you have two diskette drives, insert your DOS
diskette into drive A and put your new diskette
into drive B.

Then, for step 3, type:

format b:/s
(format b:/s/l for single-sided)

or
format b:

(format b:/l for single-sided)

depending on whether you want the DOS system
on your diskette.

In step 4, the message is now going to be:

Insert new diskette for drive B
and strike any key when ready

The rest of the steps are the same except you will
not have to remove the DOS diskette.

If You Do Not Want DOS on Your
Diskette

If you don't want DOS on your diskette, in step 3
you can type instead:

format a:

or

format a:/1 for single-sided format

and press the Enter key. Then the line that says
System transferred (step 9) does not appear.

Formatting Several Diskettes

If you want to format several diskettes in a row,
follow steps 1 through 9. But do this at stepJO.

Type:

y

(Y ou probably already guessed.)

You will again see the message at step 4. Follow
the same steps for each diskette you want to
format at this time.

3-9

Backing Up a Diskette

Using the DISKCOPY Command

3-10

Backing up a diskette means to make a copy of the
diskette's data on another diskette. Similarly,
backing up a file means to make a copy of the file
(usually on a different diskette). (Backing up one
file is discussed in the next part of this chapter.)

A backup, that is, the copy, saves you the time,
trouble, and sometimes, the expense of recovering
the information on a diskette that has been lost,
damaged, or accidentally written over. A backup
often saves your temper, too.

It is a good habit to back up your important program
diskettes as soon as you purchase or create them.
Then, store your original diskettes properly in a
place where you can find them if you need to. And
then use the backup diskettes for everyday
operations.

Note: Some purchased program diskettes
cannot be copied. In these cases, the
documentation that comes with the programs
will explain the best methods of backing
them up.

Your diskettes should be backed up every time you
add or change information on them.

Before You Begin

You will need these diskettes:

• The diskette you want to back up-we're going
to call this your original diskette. You may also
see it called the source diskette.

• The diskette that will become the backup
diskette. Other names for this diskette are the
target diskette, or the destination diskette.

Protecting Your Original Diskette

Hint: It's a good idea to put a tab over the write­
protect notch in order to make sure your original
diskette is not aCcidentally written on. Then you
can remove it when the backup has been made, if
you want to.

With the write-protect notch covered, if the
diskettes get mixed up, a message similar to this is
displayed:

Target diskette write protected
Correct, then strike any key

The cursor is here

3-11

If you get this message:

1. Remove the original diskette from the drive.

2. Insert the backup diskette into the drive.

3. Press any key.

(Y ou do not have to press the Enter key.)

Backing Up with One Drive

3-12

If you have only one diskette drive, you must
remove the original diskette and insert the backup
diskette. You will have to make this switch
(" swap") four or more times. How many times you
must exchange diskettes depends on whether
you're using DISKCOPY or COPY, or how large
the files being copied are, and on how much
memory your computer has. DOS will tell you
when you must exchange diskettes. DISKCOPY
gives you these messages:

Insert source diskette in drive A:

Insert target diskette in drive A:

So you should:

Insert When

Original diskette "source" message is displayed

Backup diskette "target" message is displayed

1. Make sure DOS is ready and A> is displayed.

2. Insert the DOS diskette into the drive, if it is
not already there.

3. Type this:

diskcopy

and press the Enter key.

4. This message appears:

Insert source diskette in drive A:

Strike any key when ready

Before You Press a Key:

a. Remove the diskette that is in the drive.

h. Insert your original diskette into the drive.

c. Now press a key.

3-13

5. You will see the" in use" light come on while
the original diskette is being read, and then
this is displayed:

Insert target diskette in drive A:

Strike any key when ready

Before You Press a Key:

3-14

a. Remove your original diskette.

b. Insert the backup diskette.

c. Now press a key to tell DOS the correct
diskette has been inserted.

6. You will see the "in use" light come on while
the backup diskette is being written. Then the
message shown in step 4 appears again.

Hint: For this procedure, you can remember
which diskette to insert, if you remember

, "Original=Source." Insert your original
diskette when DISKCOPY asks for the source
diskette.

7. Keep repeating steps 4 and 5 until this
message appears:

Copy complete

Copy another (Y/N)?

8. Type this:

n

You don't have to press the Enter key.

9. The DOS prompt, A>, is displayed. Remove
the backup diskette from the drive. With a
felt-tip pen, mark the label with the contents,
the date, and perhaps the word "Backup."

Backing Up with Two Drives

1. Make sure DOS is ready and A> is displayed.

2. Insert your DOS diskette into drive A.

3. Type this:

diskcopy a: b:

and press the Enter key.

4. You will see this message:

Insert source diskette in drive A:

Insert target diskette in drive B:

Strike any key when ready

5. Remove your DOS diskette from drive A.

6. Insert your original diskette into drive A.

3-15

3-16

7. Insert your backup diskette into drive B.

Orlglna. diskette Backup diskette

8. Press any key.

This tells DOS you are ready and this message
is displayed:

Copying 9 sectors per track, 1 side(s)
Formatting while copying

The number 8 or 9 may appear in the first
line, indicating the number of sectors per
track that could be read from the original
diskette.

The Formatting while copying message will
only appear if the diskette had not previously
been formatted with the same format as the
source diskette.

9. Now all information is being copied from the
diskette in drive A to the diskette in drive B.

You will see one "in use" light go on and then
the other.

10. When the copy has been made, you will see a
message similar to this:

Copy complete

Copy another (Y/N)?_

T he cursor is here.

11. Type:

n

and press the Enter key. The DOS prompt,
A>, is displayed.

12. Remove both diskettes.

Use a felt-tip pen to label and date the backup
diskette. You may also want to write
"Backup" on the label to remind yourself that
this is a copy of another diskette.

3-17

Backing Up One File

Using the COpy Command

3-18

Sometimes you will find it useful to copy only one
file. You might want to copy one file instead of a
whole diskette when:

• Only one file of a whole diskette has been
changed and needs to be backed up.

• You want to make extensive changes to a file,
or you're not too sure of the effect of the
changes. It is safer to change a copy of the file
rather than the original.

• You want to build a new file based on the
contents of an "old file" -similar to copying a
letter and then marking up the copy to make
a new letter.

• You need two copies of a file. For example, if
you want to give a program you wrote to a
friend, you'd probably want to give a copy of
the program and not your original program.

Let's use some diagrams to illustrate the various
possibilities with COPY.

Assume that two of the files on the original
diskette are LlCORS and DIARY, and that the file
to be copied is L]CORS.

• The file (LlCORS) is copied to another
diskette and the name is the same on both
diskettes:

Original Backup

~ ILdCORS I
I WeORS I

• The file (L]CORS) is copied to another
diskette and the name of the copy is changed:

Original Backup

~
I COURSE I

IUCORS]

• The file (LlCORS) is copied onto the original
diskette with a changed name:

Original

EJ
IUCORS I
I COURSE I

3-19

• The file (L]CORS) is copied onto the original
diskette with a name that is already being
used:

Orilinal

.~---...

IUCORS

Before You Begin

Decide which kind of copy you want to make.
Then collect:

• The diskette that contains the file you want to
copy. We'll call this the original diskette.

• The diskette that will contain the copy of the
file when you are done.

This may be the same diskette as your original
diskette. Or it may be a different diskette, in
which case we will call it your backup diskette.

Also decide on the name for the copied file.

Copying a File to the Same Diskette

3-20

For this example, let's assume that LETTER is the
name of the file you want to copy, and that the
copy's name will be MEMO.

Recall that you need a different name because
every name on a diskette must be unique. You
might want to check that the name you have
chosen isn't already being used, unless you really
mean to replace that file. For this example, check
by typing: dir memo.

Let's do it:

1. Make sure DOS is ready and A> is displayed.

2. Insert the original diskette (the diskette with
LETTER on it) into drive A.

3. Type this:

copy letter memo

and press Enter.

Notice that in the command, you type the
original filename first and the backup
filename second. Separate the filenames with
a space.

4. After a few seconds (depending on how long
the file LETTER is), you will see this on the
screen.

r

1 FUe(s) copied
1>_

3-21

5. LETTER has been copied and the copy has
been given the filename MEMO.

You can use the DIR command to check, by
typing this:

dir memo

Now press the Enter key.

6. Remove the diskette and put it away in its
envelope because we are through with this
example.

Copying a File to Another Diskette
Using One Drive

3-22

Remember, with only one diskette drive, you will
need to exchange diskettes while COpy is
running. DOS will tell you when the change must
be made by showing you a message.

COPY's messages sound as if you had two-drives
instead of one. You should think of the messages
as referring to diskettes instead of drives.

For our examples, think of your original diskette
as the drive A diskette. Think of the backup
diskette as the drive B diskette. (Even though you
have no drive B, the command is the same for one
drive or two. The computer keeps track of the
real drive A and the" imaginary" drive B.)

If you had two drives

Original
diskette

But with one drive

Original diskette
insert when drive
A is called for.

Backup
diskette

Backup diskette­
insert when drive
B is called for.

Let's assume that the fil~ you want to copy is
LETTER. For this example, we are going to copy
LETTER to another diskette without changing its
name.

3-23

3-24

1. Make sure DOS is ready and A> is displayed.

2. Insert the diskette with LETTER on it (the
original diskette) into your drive.

3. Type this:

copy letter b:

and press the Enter key.

Notice again where the spaces are.

4. This message is displayed:

Insert diskette for drive B: and strike
any key when ready

5. Remove the original diskette. (But don't put
it away-you may need it soon.)

6. Insert the previously formatted backup
diskette into the drive.

7. Now press a key to tell DOS that the diskettes
have been switched.

8. Depending on the size of the file being copied
(LETTER, in this example) and your
computer's memory, you may see this
message:

Insert diskette for drive A: and strike
any key when ready

If you do see the message, do this:

a. Remove the backup diskette from the
drive.

b. Insert the original diskette into the drive.

c. Press a key.

d. N ow go back to step 4.

Hint: It's easier to remember which diskette
to insert if you think "B is for backup." Insert
the backup diskette when the drive B message
appears.

9. When the copy has been made, this message is
displayed:

1 File(s) copied

3-25

10. Remove the backup diskette from the drive
and label it with a felt-tip pen.

11. Now you can put both diskettes away­
LETTER has been copied to the second
diskette.

For You to Try

Select a file on your DOS Diskette to copy to
another diskette-how about COMP.COM? Keep
the name the same (unless the diskette you'll put
the copy on already has a file called COMP.COM).

Copying a File to Another Diskette
Using Two Drives

3-26

Let's assume you want to copy LETTER (again!).
But this time, you want to put the copy on another
diskette.

What name do you want it to have? For this
example, we have picked the filename
CORESPND for you. Here are the steps:

1. Make sure DOS is ready and A> is displayed.

2. Insert the diskette with LETTER on it into
drive A.

3. Insert the diskette that you want the copy
(CORESPND) to be written on, into drive B.

Original diskette
(LEnER)

4. Type this:

copy letter B:corespnd

and press the Enter key.

Backup dlskeHe
(for CORESPND)

Notice the spaces between copy and letter
and between letter and b:corespnd. Do not put
a space between b: and corespnd

Also notice that you must indicate the
diskette drive (b:) of the target diskette
because it is not the same as the default drive.
(Look back at "The DOS Prompt" in Chapter
2 for information about the default drive.)

5. One "in use" light will come on and then the
other.

3-27

When the copy has been made, this is
displayed:

1 File(s) copied

6. You can now remove both diskettes and use a
felt-tip pen to label the backup diskette.

Now you can put both diskettes away­
LETTER has been copied to the second
diskette (and has been retired from use in all
future examples).

If you want the copied file to have the" same
old name" on the other diskette, this is what
you'd type in step 4:

copy letter b:

or

copy letter b:letter

For You to Try

3-28

Practice this exercise by copying the file
DISKCOPY.COM to another diskette. Change the
name, if you wish. Remember, the backup diskette
needs to have been formatted if it's brand new.

Backing Up More than One File

Using the COpy Command

Sometimes you will find it useful to copy more
than one file at a time. For example, you want to
build a new diskette file based on the contents of
an old diskette file.

To backup all the files on a diskette, enter:

COpy *.* B:

The COpy command with the global filename
characters *. * in the command line will copy all the
files from the diskette in default drive A to the
diskette in drive B, with no change in the
filenames or in the extensions.

The filenames of the files being copied are
displayed as the files are copied (refer to the
"COpy Command" in Chapter 6 for additional
information).

3-29

Finding Out What Is on a Diskette

Using the DIR Command

It is often handy to find out what files are on a
diskette-perhaps because you need to find out
how a particular filename is spelled, or because
you can't recall what's on a seldom-used diskette.

The Directory command (DIR) displays a list of all
the files that match a name you specify. You've
seen this command before in the section "Using
Global Filename Characters." Let's see how you
might use it.

Before You Begin

All you need for DIR is the diskette that you want
to see the directory.

To List All the Files

With One Drive

3-30

1. Make sure DOS is ready and A> is displayed.

2. Remove the DOS diskette from drive A, if it is
there.

3. Insert into drive A the diskette whose
directory you want to list.

4. Type:

dir

and press the Enter key.

5 . Watch the screen.

The first message to appear will display the
volume label of the diskette (if it has one),
followed by the name of the directory that is
being listed. Refer to Chapter 5, "Using Tree­
Structured Directories" for more information.
Then the files on the diskette are listed.

The screen displays the/ilename, the extension,
the size of the file (in bytes), the date and the
time that information was last written in the
file. One line is displayed for each file on the
diskette.

After the files have been listed, DIR displays
the amount of free space left on the diskette
(in bytes).

Remember, if the information is moving too
fast for you to read it, press and hold the Ctrl
key and then press the N urn Lock key. Then
press another key when you're done reading
to start displaying again. It is also a good idea
to print a copy of a diskette's directory
(Ctrl + PrtSc) to keep with the diskette.

6. When all the files have been displayed, the
DOS prompt appears:

A>

3-31

With Two Drives

If you have two diskette drives, you can keep the
DOS diskette in drive A, if it is there, and insert
your diskette into drive B. Then at step 4, type
this:

dir b:

and press the Enter key.

You have to tell DOS where to find the diskette­
in this case the one in drive B. Otherwise, DOS
assumes you mean the default drive diskette if you
type only the command (dir) without a drive
specifier.

To List One File

With One Drive

3-32

For this example, let's assume that you think you
have a file named FACT&FIG on a diskette. Here's
how you make sure:

1. With DOS ready (A> is displayed), insert the
diskette into drive A.

2. Type:

dir lacillig

and press the Enter key.

3. If FACT&FIG is indeed on the diskette, its
filename (FACT&FIG), its extension (in this
case, none), its size, and its update date and
time are shown.

If the diskette does not have a file named
FACT&FIG, then after a second or two the
message:

File not found
A>_

is displayed.

With Two Drives

You can insert the diskette with the file into drive
B and type this for step 2:

dir b:fact&fig

Now press the Enter key.

See, the only difference is that you have to tell
DOS where (what drive) the file is.

3-33

Displaying What Is in a File

Using the TYPE Command

The TYPE command lets you" look into" a file;
that is, it displays the contents of a file on the
screen.

As the example will show, you can also print the
contents if you have a printer.

Before You Begin

Locate the diskette that has the file you want to
display. You also need to know the exact name of
the file (use D IR again).

Here's How You Do It

3-34

For this example, assume that the file you want to
display is ITEMS. DA T.

1. Make sure DOS is ready for a command; A> is
displayed.

2. Insert the diskette with ITEMS.DAT into
drive A.

3. If you have a printer:

a. Make sure that the printer is turned on, is
online, and has paper in it.

b. Press and hold the Ctrl key and then
press the PrtSc key.

DBD+g
c. Release both keys.

d. Check to see that" echo to the printer"
has been turned on by pressing the Enter
key.

e. Both the screen and the printer should
show the prompt, A>.

£ If the printer didn't print A>, do steps 3b
through 3e again.

4. Now type:

type items. dat

and press the Enter key.

5. The command you just typed and contents of
ITEMS.DATwill be displayed and printed.

6. When you see the DOS prompt, A>, you can
remove the diskette and put it away.

3-35

3-36

7. Stop the printer from printing what is
displayed on the screen by pressing and
holding the Ctrl key and then pressing the
PrtSc key.

Some files contain information that you won't
be able to read. These are programs or certain
data files that the computer can read-but we
can't. The printer information might look
similar to this:

:r:
s
••••
!laij;u~<t}8 ul}7u~{t)j
.~!)u'\}]U'7I'F)

And the information on the screen looks even
stranger!

Changing a File's Name

Using the RENAME Command

The RENAME command lets you change a file's
name-either its filename, its extension, or both.

This may be useful if you've found that you simply
cannot type a name the way you've spelled it. More
often, the reason for changing is that you just want
to refer to a file with a different name.

Before You Begin

Have on hand the diskette with the file that you
want to rename. You also need to know its exact
"old" filename and extension, if it has one.
(Remember, you can use the DIR command to
find out the filename and extension.)

3-37

With One Drive

3-38

For this example, let's assume that a diskette has a
file named STOCKS.DAT on it, but that we have
decided that ASSETS. SO is a more descriptive
name for this information. Also assume that we
have checked this diskette's directory and found
that this diskette does not already have a file named
ASSETS.so on it. ~.,

01
I-cree::. :!! f~J -- ASSETS.80

Here's how to change the name:

1. Make sure DOS is ready and A> is displayed.

2. Insert the diskette with STOCKS.DAT on it
into drive A.

3. Type this:

rename stocks. dat assets.80

Check your typing, and then press Enter.

Notice that the" old" name is first, then a
space, and then the" new" name.

4. In a moment, DOS displays the prompt, A>,
and the file has been renamed.

5. You can check to see that the file has really
been renamed by typing:

dir stocks. dat

This should be displayed:

File not found
A>_

Then type:

dir assets.BO

Now the information about that file should be
displayed.

6. Remove your diskette and put it back in its
envelope.

Be careful about using global filename
characters in the" old" file specification. You
may get unexpected results. Changing back to
the names you want may be more tedious
than renaming the files one by one in the first
place.

With Two Drives

If you have two diskette drives and already have
another diskette in drive A, then insert the
diskette with STOCKS.DAT on it into drive B,
then type:

b:

This changes the default drive to drive B. Now
press Enter.

3-39

Then repeating step 3, type:

rename stocks. dat assets.BO

N ow press Enter.

Repeat step 5 also, thus:

dir stocks.dat

and

dir assets.BO

To switch the default drive back to drive A, type:

a:

then press Enter.

For You to Try

3-40

Try using the RENAME command on one of the
files that you copied (in a previous "practice"
exercise).

Removing a File from a Diskette

Using the ERASE Command

One of the housekeeping chores associated with
diskettes is to remove files that you no longer need
from diskettes. The ERASE command does this for
you.

Removing old files makes room for new
information on a diskette. It can eliminate a
potential source of confusion too-you are less
likely to use an old version of a program or an old
data file for processing.

Butplan ahead and check your typing when you use
ERASE.

After a file is erased, the data is gone. Unless you
have made a backup, the only way to recreate a file
that has been erased is by repeating the steps that
you took to create it in the first place.

Before You Begin

You need the diskette with the file that you want
to erase. Again, you need to know the exact
filename and extension of that file (use DIR if you
need to).

And make sure you really will not need this file.

3-41

With One Drive

3-42

For this example, assume that the file to be
removed is ASSETS.sO (the one we just used in the
RENAME example).

1. Make sure DOS is ready with A> displayed.

2. Insert the diskette with the file you no longer
need into drive A.

3. Type this:

erase assets.80

and check your typing. Now press Enter.

4. In a moment, DOS shows you the prompt,
A>. The ASSETS. SO file has been removed
from the diskette.

5. To assure that the file has been erased, try the
DIR command again, like this:

dlr assets.80

and press Enter.

The message File not found and the DOS
prompt, A>, should appear.

6. Remove the diskette and put it back into its
envelope.

~

With Two Drives

If you can use drive B, insert the diskette into
drive B, and type this for step 3:

erase b: assets.80

and this for step 5:

dir b:assets.80

Again, the only difference is that you have to
remember to type the drive specifier (b:) because
it is not the default drive.

Global Filename Characters

BE CAREFUL WITH GLOBAL FILENAME
CHARACTERS.

We recommend that you DO NOT USE global
filename characters in the file specification of the
ERASE command until you are familiar with
exactly what they will do.

For example, typing

erase *.*

Removes all the files from the diskette (except the
DOS system files, if present).

If the files that are removed by using global
characters are not the ones that you expected, you
can recover this information only if you have
previously made a backup diskette.

3-43

Shifting the Display on the Screen

Using the MODE Command

If you have the Color/Graphics Monitor Adapter,
then you may find that the first two or three
characters on a line of the display do not show up
on the screen. If your display does not h{ave a
horizontal adjustment control, you can use the
DOS MODE command to shift the displayed lines
to the right.

Before You Begin

You need only your DOS diskette to do this.

Shift Right

3-44

1. Make sure that DOS is ready and A> is
displayed (although you probably can't see it).

2. Type this:

mode ,r,t

Check your typing-did you put the space and
then the comma before the r?

When it's okay, press the Enter key.

3. Now a test pattern will appear on your screen.

0123456789012345678901234567890123456789

Do you see the leftmost O? (YIN)

4. If your screen looks okay, type this:

y

and press the Enter key.

If you want your screen moved over to the
right a little more still, type this:

n

and press the Enter key.

3-45

Helps and Hints

3-46

Weare ending this chapter with a few hints­
maybe they will save you some trouble or help you
as you use your IBM Personal Computer.

• Make backups regularly.

(We have repeated this already, but since this
is our last chance, we are saying it one more
time.)

• Sometimes, commands do not work as you
expected because a file specification was
typed incorrectly.

Check your typing.
Do you have the correct diskette in the
drive?
Check the directory of the diskette.
Has the correct diskette drive been
specified or is it being assumed? Has the
colon been included?
Has the filename been spelled correctly?
Have you forgotten to use the extension?
(In the case of BASIC program files, for
example, it is easy to forget the .BAS that
BASIC uses for an extension.)

• If a command still doesn't work, refer to the
page in Chapter 6 that fully describes the
command.

• Be careful with global filename characters,
especially in the ERASE command. If you
insist on using them:

Use the DIR command first with the
global filename specification, to test the
results.
Check to see that these are really the
files you want to delete.
Then, go ahead.

• Print a directory frequently (if you have a
printer) and store the listing with the diskette.
The labels on the diskettes are usually too
small to hold everything you want to write on
them.

• All commands (except DISKCOPY and
DISKCOMP) that use files will work on both
diskettes and fixed disks.

• The date and time shown with each directory
entry are the date and time of the last addition
or change to that file. The date and time are
not changed during a COpy or a DISKCOPY.

At first glance,

diskcopy a: b:

and

copy a:*.* b:

may appear to have the same purpose­
copying an entire diskette. They do, only
when copying to a diskette with no files on it.

3-47

With COPY, if files already exist on the
backup diskette, they will either be replaced
(if files being copied have the same name) or
left alone. This is because COpy goes
through the original diskette, copying each
file, one at a time. COpy does not disturb old
files on the backup diskette as long as their
names aren't the same as files being copied.

DISKCOPY, however, makes a "carbon copy"
of the original diskette, wiping out all old files
on the backup diskette during the COpy
process.

Summary

3-48

We've covered a lot in this chapter. We have told
you about:

• Making a backup copy of your DOS diskette

• Diskettes and terms that are used with them

• Finding out what files are on the DOS
diskette

• Making a backup copy of your diskettes

We have provided step-by-step procedures for
using these DOS commands:

• FORMAT

• DIR

• DISKCOPY

• COpy

• TYPE

• RENAME

• ERASE

• MODE

We hope you're well on your way to feeling
comfortable with your computer and DOS. No
matter how much we've covered, there's always
more-in particular, we haven't given you ,the
shortcuts that you'll start to pick up as you
continue through the Disk Operating System book
and use the commands.

3-49

Notes:

3-50

Notes:

4-2

Introduction

If your IBM Personal Computer has a fixed disk,
there are several facts you need to know, and
several steps to take before DOS is able to use it.
If you try to use your fixed disk before you take
the following steps, you will get the error message:

Invalid drive specification

The first section in this chapter, "Fixed Disk Drive
Letters" describes how drive letters are used with
the fixed disk. The remaining sections describe
how to prepare your fixed disk for DOS.

Note: If your fixed disk is in an expansion
uRit (not in the system unit), the expansion
unit must be turned on before you turn on the
system unit.

A fixed disk can be divided up into separate areas
called partitions. There can be from one to four
partitions on a fixed disk. These partitions can be
different sizes. Each partition is set up through a
Fixed Disk Setup Program provided by the
operating system that will use it.

You will use the DOS Fixed Disk Setup Program
to set up the DOS partition. Fixed disk drives are
referred to in the same way you refer to diskette
drives, using the fixed disk drive specifier when
you want to read from or write to the fixed disk.

4-3

4-4

If DOS is the only operating system that you
intend to use with the fixed disk, you will want to
assign all of the fixed disk space for use with DOS.
Follow the steps in "Preparing Your Fixed Disk"
to assign all of the fixed disk space to the DOS
partition.

If you do intend to use part of the fixed disk with
other operating systems, then you will need to
divide up the available fixed disk space among
them. Follow the steps in "Partitioning Your
Fixed Disk" to assign a specific amount of disk
space to DOS.

If you are not sure whether you will be using any
other operating system with the fixed disk, you
should go ahead and assign all of the fixed disk
space to DOS as described in "Preparing Your
Fixed Disk". If you decide later to use another
operating system, you can use the BACKUP
command to backup your files in your DOS
partition, reassign the DOS partition, and then use
the RESTORE command to restore your files from
diskettes. After you have followed the instructions
in "Preparing Your Fixed Disk" or "Partitioning
Your Fixed Disk," you will need to follow the
instructions in "Setting Up the DOS Partition" in
order to make the partition you have created
useable by DOS.

The menus and screens that make up the Fixed
Disk Setup Program have been designed to make
it easy for you to set up your fixed disk. When the
Fixed Disk Setup Program asks you to enter
something, it displays a default answer for you. If
that is the answer you want, you need merely press
the Enter key. If you want to enter something else,
simply type in the entry you want and then press
the Enter key.

Fixed Disk Drive Letters

You already know that if you have two diskette
drives on your system, they are known to DOS as
A and B. If you have only one diskette drive on
your system, there are still two diskette drives (A
and B) known to DOS. But in this case, they are
simulated on the same physical drive. (If you are
not yet familiar with this concept, please refer to
"Single Diskette-Drive Systems" in Chapter 1
before you continue.)

When DOS starts, it first assigns letters to all of
the diskette drives it knows about, then assigns the
following letters to your fixed disks. For example,
if you have one or two diskette drives, and one
fixed disk, the letters A and B apply to the
diskettes, and your fixed disk is known to DOS
as C (if you had a second fixed disk, it would
become D).

4-5

Preparing Your Fixed Disk

4-6

If DOS is the only operating system that you
intend on using with your fixed disk, follow the
instructions in thissectioh. All of the fixed disk
space will be assigned for use with DOS.

If you intend to use part of the fixed disk with
another operating system, then you should go to
"Partitioning Your Fixed Disk" in this chapter.

In order to prepare the fixed disk for use with
DOS, you must first use the FDISK command as
follows:

1. With your DOS diskette in drive A and the
DOS prompt (A» on the screen, type:

FDISK

and press Enter. The following screen
appears:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C)Copyright IBM Corp. 1983

FDISK Options

Current Fixed Disk Drive: 1

Choose one of the following:

1. Create DOS Partition
2. Change Active Partition
3. Delete DOS Partition
4. Display Partition Data
5. Select Next Fixed Disk Drive

Enter choice: [1)

The current fixed disk drive and option 5 will
only be shown if your system has more than
one fixed disk drive. If you want to set up the
DOS partition on the next drive, type:

5

and press Enter. The Fixed Disk Setup
Program will allow you to create an active
partition on a fixed disk other than the first
fixed disk. However, DOS can only be started
from the first fixed disk (refer to "Changing
the Active Partition" in this chapter to change
the partition status). You will see the drive
number change on the screen after you press
Enter.

2. Type:

1

and press Enter to set up the fixed disk for use
with DOS. If the fixed disk has not already
been set up for DOS or another operating
system, then the following screen appears:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C) Copyright IBM Corp. 19S3

Create DOS Partition

Current Fixed Disk Drive: 1

Do you wish to use the entire fixed disk
for DOS (Y/N) ? [V]

If your fixed disk has already been set up,
then you will see a different screen that shows
how the fixed disk partitions have been
assigned, and you will get a different prompt.
If this happens, you should follow the steps in
"Partitioning Your Fixed Disk" in this
chapter.

4-7

3. You should press Enter since you want to use
the entire fixed disk for DOS. The Fixed Disk
Setup Program will then assign the fixed disk
to DOS, and display the following message:

Insert DOS diskette in drive A:
Press any key when ready ...

4. You must now restart DOS so that it will
recognize your fixed disk and assign a drive
letter to it. With your DOS diskette in drive
A, press any key to restart DOS.

Your fixed disk has now been set up with a DOS
partition. But before DOS can use it, DOS needs
to create a directory and other information in the
partition. To do this, follow the instructions in
"Setting Up the DOS Partition."

Setting Up the DOS Partition

4-8

The DOS fixed disk partition must be formatted
by the DOS FORMAT command before it can be
used. You should only follow these instructions if
the DOS partition has been created, but has not
already been formatted and used to store data.
This is because any data in the partition will be
destroyed by the format operation.

1. Make sure your DOS diskette is in drive A and
the DOS prompt (A» is on the screen.

If DOS is to be started from the fixed disk,
enter:

FORMAT d:/S/V

If the partition is not to contain a copy of
DOS (not to be automatically started), enter:

FORMAT d:/V

In either case, substitute the correct fixed
disk drive letter for the d in the command (for
example, if you have 1 or 2 diskette drives,
you would enter C, as shown in the following
screens). This prompt now appears:

Press any key to begin formatting drive C:

2. Press any key. The red light on your fixed disk
drive will light up, and the message:

Formatting ...

appears on the screen. Do not be alarmed if
several minutes go by before you see any
more messages. DOS is checking the data in
every location in the DOS partition and it
takes several minutes. You will see the
message:

Format complete

and, if you used /S in your FORMAT
command, you also see the message:

System transferred

4-9

4-10

This tells you that a copy of DOS has been
placed on the fixed disk.

Then the following message appears:

Volume label (11 characters, ENTER for none)?

3. Enter a 1-11 character volume label (for
example, MYFIXEDDISK) that is used to
identify the fixed disk when DIR and
CHKDSK displays information. If you do not
want to label the fixed disk, just press Enter;
however, please note that you cannot add a
volume label later, so we recommend entering
one now.

FORMAT then displays the disk space
statistics and the DOS prompt:

A>

Your fixed disk is now completely usable by
DOS.

If you have placed a copy of DOS on the fixed
disk, we recommend that you do the
following two steps:

4. With your DOS diskette still in drive A,
enter:

COpy *.* d:

Remember to use a correct fixed disk letter
for your system. This copies all the programs
on the DOS diskette to your fixed disk. Once
these programs are copied, all DOS
commands can be run from the fixed disk and
your DOS diskette can be stored away in a
safe place.

Also, remember to copy the programs from
your DOS Supplemental Program diskette in
the same manner, if you will be using these
programs.

5. Remove the DOS diskette from drive A (leave
the diskette drive door open) and press the
Ctrl, Alt, and Del keys simultaneously
(Systems Reset). If you have correctly
followed the steps above, and a copy of DOS
was stored in the DOS partition, DOS will
start from the fixed disk and you will be asked
to enter the date and time.

Note: Drive A must be empty (no
diskette or the diskette drive door open)
in order for this to work correctly. This is
because the computer will first try to .
load an operating system from drive A. If
a diskette cannot be read from drive A,
then (and only then), the computer
will try to load an operating system from
the first fixed disk on the computer.

When you have entered the date and time,
you will notice that the DOS prompt (A» has
now changed. Instead of the letter A>, you
will see the drive letter of your fixed disk.
DOS remembers which drive it was started
from, and makes that drive the default drive.

If you have followed the instructions above,
your fixed disk is now completely initialized.

4-11

Partitioning Your Fixed Disk

4-12

In order that more than one operating system can
use the fixed disk, the fixed disk must be divided
into separate areas called partitions. There can be
from one to four partitions on the fixed disk.
These partitions can be different sizes and can be
set up in any order. You can specify which
partition the system will get control of when you
start or restart your computer. An operating
system can only access one partition. You cannot
transfer data directly from one partition to
another.

Each operating system that supports the fixed disk
provides a program to allow you to create a
partition for use under that system. If you try to
read from, or write to, the fixed disk using a
system that has no partition assigned to it, you will
get an error message.

The DOS Fixed Disk Setup Program can only be
used to create or delete the DOS partition. A
partition set up for another operating system can
only be created or deleted from that operating
system.

You can set up one partition for use under DOS at
the location and size you choose. You can also
delete the DOS partition if, for example, you want
to create it again at a different size or location on
the fixed disk. The following functions are
supported by the DOS Fixed Disk Setup Program:

• Create the DOS partition.

• Change the active partition (the one that will
be started when the system is restarted).

• Delete the DOS partition.

• Display fixed disk partition data.

• Select next fixed disk drive.

These functions are described below in separate
sections. In order to get access to them, you need
to start the Fixed Disk Setup Program as follows:

1. To start, type:

d~FDISK

and then press Enter. Where d: is the drive
where the FDISK. COM program resides.

2. If it is on the default drive, just type:

FDiSK

and press Enter. You will then see the
following screen:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C) Copyright IBM Corp. 19S3

FDISK Options

Current Fixed Disk Drive: 1

Choose one of the following:

1. Create DOS Partition
2. Change Active Partition
3. Delete DOS Partition
4. Display Partition Data
5. Select Next Fixed Disk Drive

Enter choice: [1]

4-13

4-14

The current fixed disk drive and option
number 5 will be shown only if your system
has mote than one fixed disk drive. Option 5
selects the next fixed disk drive.

The Fixed Disk Setup Program will allow you
to create an active partition on a fixed disk
other than the first fixed disk. However, DOS
can only be started from the first fixed disk.
The partition's status is shown as A for active
and N for not active (refer to "Changing the
Active Partition" in this chapter to change the
partition status).

Type the number of the option you want and
press the Enter key. Note that option 1 is the
default and will automatically be selected if
you don't type an option number before
pressing Enter. Proceed to the section below
that describes the option you selected.

Creating the DOS Partition (Option 1)

You can use this option to create the DOS
partition. In order to do so, you need to determine
where it should be located and how large it should
be. If there is already a partition assigned to DOS,
you will see an error message.

A fixed disk is divided into parts called cylinders.
The number of cylinders and their sizes can vary
depending on the fixed disk. A 10-megabyte disk
contains 305 cylinders and each cylinder contains
34,816 bytes or characters of information. If you
wanted to assign the whole fixed disk for use under
DOS, you would specify the size as 305 cylinders
and the starting cylinder number as 000.

The screen you see depends on whether the fixed
disk has any partitions. If it has been initialized, go
to step 2. If not, the following screen appears:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C) Copyright IBM Corp. 1983

Create DOS Partition

Current Fixed Disk Drive:

Do you wish to use the entire fixed
disk for DOS (Y/N) ? [V)

4-15

4-16

1. If DOS is the only operating system that you
intend on using with the fixed disk, then you
should follow the instructions in "Preparing
Your Fixed Disk" in this chapter. Otherwise,
type:

n

and then press the Enter key. The following
message appears:

Total fixed disk space is xxxx cylinders.
Maximum available space is xxxx.
cylinders at cylinder xxxx.

These lines show the total number of
cylinders on your fixed disk. Proceed to
step 3.

2. You will see a screen similar to the following
if your fixed disk has already been set up:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C)Copyrlght IBM Corp. 1983

Create DOS Partition

Current Fixed Disk Drive:

Partition
1
2
3

Status
N
A
N

Type
non-DOS
non-DOS
non-DOS

Totallixed disk space is 305 cyls.
Max avail space is 150 cyls at cyl 100.

Start End
000 049
050 099
250 304

Size
50
50
55

The "Create DOS Partition" screen shows a
sample fixed disk with 3 partitions. Note that
this is not necessarily a recommended setup.
I t is shown only as an example.

The line with the current fixed disk drive will
only appear if you have more than one fixed
disk drive.

There will be one line shown for each
assigned partition.

The Partition column shows the relative
number of the partition (in the order it
appears on the fixed disk).

The status column shows which partition's
system gets control when the system unit is
started from the fixed disk. That partition's
status is shown as A (for active), the others are
shown as N (for not active).

The Type column shows which partition, if
any, is the DOS partition.

The Start and End columns show the starting
and ending cylinder numbers for a partition
and the Size column shows its size in
cylinders.

The next line shows you the total amount of
space on the fixed disk, and the line after that
shows you the size of the largest available
space that you could use for a partition and
where it is located on the fixed disk.

4-17

4-18

3. The following prompt appears:

Enter partition size : [xxxx]

The partition size entry defaults to the largest
available space on the fixed disk. If you want
your DOS partition to use the largest
available space, simply press the Enter key.
Otherwise, type in the size you want (in
cylinders) and press the Enter key. The next
prompt is:

Enter starting cylinder number .. : [xxxx]

4. The starting cylinder number default depends
on the partition size you specified above. It is
the first cylinder of the largest space on the
fixed disk large enough for the partition. If
you want the DOS partition to be located
there, press the Enter key. Otherwise, type in
the starting cylinder number you prefer and
press the Enter key. The cursor is placed at
the bottom of the screen and you see this
message:

Press Esc to return to FDiSK Option []

Note that the lines on the screen change to
show the new active partition. The DOS
partition has now been created. With your
DOS diskette in drive A, press the Ctrl, Alt,
and Del keys simultaneously (System Reset).

If you need the partition you just created to
be active (startable), follow the steps in
"Changing Active Partition (Option 2)."

Your DOS partition has been created but you
still need to follow the instructions in "Setting
Up the DOS Partition" in this chapter before
you can use the DOS partition.

Changing the Active Partition (Option 2)

Select this option when you want to start a
different operating system in another partition.
You will see a screen similar to the following:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C)Copyright IBM Corp. 1983

Change Active Partition

Current Fixed Disk Drive: 1

Press Esc to return to Utility Options

Partition
1
2
3

Status
N
N
A

Type
non-DOS
non-DOS

DOS

Start End
000 049
050 149
150 304

Total disk space is xxxx cylinders.

Enter the number of the partition you want
to make active : (]

Size
50

100
155

1. Enter the number of the partition whose
operating system you want to get control
when the system is started from the fixed
disk. The following message appears:

Press Esc to return to FDISI Options (]

Note that the lines on the screen change to
show the new active partition.

2. Press the Esc key to return to the FDISK
options menu and press it again to return to
DOS.

4-19

If you want to start the operating system in
the partition you just made active, perform
the following steps:

a. Open the diskette drive A door.

h. Press and hold Ctrl and Alt, and then
press Del.

The operating system in the active partition
should then start.

Deleting the DOS Partition (Option 3)

4-20

Note: This option destroys all data in the
DOS partition so make sure you have backed
up all of your files before you proceed.

1. You will need to insert a DOS diskette and
restart the system from diskette drive A if you
want to continue processing under DOS.

If you want to start a system in another fixed
disk partition, you should change the active
partition to that partition number before you
delete the DOS partition.

You will see a screen similar to the following:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C)Copyright IBM Corp. 19S3

Delete DOS Partition

Current Fixed Disk Drive: 1

Partition Status Type Start
1 N non-DOS 000
2 N non-DOS 050
3 N DOS 100
4 A non-DOS 250

Total fixed disk space is xxxx cylinders

Warning! All data in the DOS partition
will be DESTROYED. Do you wish to
continue ? []

End Size
049 50
099 50
249 150
304 55

2. If you have backed up all of your files and are
ready to continue, type Y and press Enter. If
you decide to cancel the operation, press
either the Enter key or the Esc key to return
to the FDISK options menu.

If you type Y and press Enter, the partition
information displayed on the screen is
updated, and the following message appears:

Press Esc to return to FDISK Options []

The DOS partition has now been deleted. You
will need to start another system from the
fixed disk or restart DOS from a diskette to
proceed.

4-21

Displaying Partition Data (Option 4)

4-22

You can use this option to display fixed disk status
information. Your screen appears similar to the
following:

IBM Personal Computer
Fixed Disk Setup Program Version 1.00
(C) Copyright IBM Corp. 19S3

Display Partition Information

Current Fixed Disk Drive: 1

Partition Status
1 A
2 N

Type
DOS

non-DOS

Start End Size
000 199 200
200 304 105

Total fixed disk space is xxxx cylinders

The line with the current fixed disk drive appears
only if you have more than one fixed disk drive.

One line is shown for each assigned partition.

The Partition column shows the relative number
of the partition (in the order it appears on the
fixed disk).

The Status column shows which partition's system
gets control when the system unit is started from
the fixed disk. That partition's status is shown as A
(for active), the others are shown as N
(non-active).

The Type column shows which partition, if any, is
the DOS partition.

The Start and End columns show the starting and
ending cylinder numbers for a partition, and the
Size column shows its size in cylinders.

The next line shows you the total amount of space
on the fixed disk.

Press the Esc key when you are ready to return to
the FDISK options menu.

Selecting Next Fixed Disk Drive
(Option 5)

Select this option when you want to use the DOS
Fixed Disk Setup Program with the next fixed disk
drive.

After you have entered the option, you see the
current fixed disk drive number change on the
FDISK options menu.

This option is available only if your system has
more than one fixed disk drive.

4-23

Notes:

4-24

Notes:

5-2

Introduction

Prior to Version 2.00, DOS used a simple directory
structure that was adequate for managing files on
diskettes. Each diskette contained a single
directory that could hold a maximum of 64 or 112
files, depending on whether the diskette was single
or dual sided.

With the added support for fixed disks in DOS
Version 2.00, however, a single fixed disk can hold
literally thousands of files. Keeping a large number
of files in one directory becomes inefficient for
both you and DOS (the larger a directory is, the
longer it can take DOS to search for a file).

DOS Version 2.00 gives you the ability to better
organize your disk by placing groups of related
files in their own directories-all on the same disk
(fixed disk or diskette).

5-3

For example, let's assume that the XYZ company
has two departments (sales and accounting) that
share an IBM Personal Computer. All of the
company's files are kept on the computer's flxed
disk. The logical organization of the file categories
could be viewed like this:

Disk

Sales Acctng

/\ ~
David Joanne Don Karol

T T
Reports Reports Reports Reports

5-4

Customer.lst Accounts.rec

With DOS Version 2.00, it is possible to create a
directory structure that matches the file
organization. With this ability, all of DAVID's
report files can be grouped together in a single
directory (called REPORTS), separated from all
the other files on the disk. Likewise, all of the
accounts receivable files can be in a unique
directory, and so on.

Directory Types

As in previous versions of DOS, a single directory
is created on each disk when you FORMAT it.
That directory is called the root directory, or
system directory.

A root directory on diskette can hold either 64 or
112 files-the maximum number of files in a fixed
disk root directory depends on the size of the DOS
partition on the disk.

In addition to containing the names of files, the
root directory can also contain the names of other
directories; and these in turn can contain the
names of other files and directories; and so on.

Unlike the root directory, these other directories
called sub-directories are actually files, and are
therefore not restricted in size-- they can contain
any number of files and sub-directories, limited
only by the amount of available space on the disk.

The sub-directory names are in the same format as
filenames-a name of 1-to-8 characters optionally
followed by a period and an extension of 1-to-3
characters. All characters that are valid for a
filename are also valid for a directory name. Each
directory can contain file and directory names that
also appear in other directories. In other words,
two or more files or directories can have the same
name, as long as they are defined in separate
directories.

5-5

The Current Directory

5-6

Just as DOS remembers a default drive, it can also
remember a default directory for each drive on
your system. This is called the current directory, and
is the directory that DOS will search if you enter a
filename without telling DOS which directory the
file is in. You can change the current directory or
find out what your current directory is for any
drive by issuing the CHDIR command (described
in Chapter 6). When DOS is started, it will
automatically use the root directory as the current
directory for each drive until you issue a CHDIR
command.

Specifying the Path To a File

When you want DOS to create or search for a file,
DOS must know three things- the drive, the name
of the file, and the name of the directory
containing the file.

If the file is in the current directory, you don't
need to specify a directory-DOS will
automatically look in the current directory.

But if the file is not in the current directory, you
must supply DOS with the path of directory names
leading to the desired directory. The path you
specify can be either the path of names starting
with the root directory, or the path from the
current directory.

The path consists of a series of directory names
separated by backslashes (\). If a filename is
included, it must also be separated from the last
directory name by a backslash.

If a path begins with a backslash, DOS starts its
search from the root directory; otherwise, the
search begins at the current directory.

5-7

5-8

For example, if the current directory is DAVID,
and you want to find file ANNUAL. FIG in
DAVID's REPORTS directory, you can specify it
in either of these ways:

\SALES\OAVIO\REPORTS\ANNUAL.FIG

or

REPORTS\ANNUAL FIG

In the first case, the full path from the root
directory (leading backslash) was specified. In the
second case (no leading backslash), the path from
the current directory was given.

Each sub-directory contains two special entries­
you'll see them listed when you use the DIR
command to list a sub-directory. The first contains
a single period instead of a filename-it identifies
this "file" as a sub-directory. The second entry
contains two periods instead of a filename, and is
used by DOS to locate the higher level directory
that defines this directory, the parent of this
directory. For example, in the file organization
illustration shown on the first page of this chapter,
the parent of the directory named JOANNE is the
one named SALES. .

This second special entry can be quite useful when
you specify a path to DOS, because entering two
periods is a shorthand way of telling DOS to back
up one directory level. For example, if the current
directory is DAVID, and you want to find file
SUMMARY in]OANNE's REPORTS directory,
you can specify it in either of these ways:

\SALES\JOANNE\REPORTS\SUMMARY

or

.. \ JOANNE\REPORTS\SUMMARY

The second case causes DOS to backup one level
from the current directory (to the current
directory's parent), and to continue the path from
there. The double period can be used more than
once in a path-it simply causes DOS to back up
one level each time it is specified.

You can specify which drive to use by including a
drive specifier ahead of the path and filename
string. For example:

B: \LEVELl \ MYFILE

Notice that when defining a path, the drive is
specified ahead of the path, rather than the
filename.

5-9

5-10

Nearly all of the DOS commands that accept
filenames also accept path names. For example, if
you enter:

DIH \ACCTNG\KAHOL\HEPOHTS

all of the files in KAROL's REPORTS directory
are listed. Similarly, if you enter:

DEL \ACCTNG\KAHOL\HEPORTS

DOS assumes you want to erase all the files in
KAROL's REPORT directory.

In all cases, to refer to a specific file, simply add
the filename to the end of the path (separated
from the path by a backslash, of course).

To refer to the root directory (if the root is not the
current directory), enter one backslash. For
example, if the current directory is DAVID,
issuing:

DlH\

will list all the files in the root directory.

You can create as many sub-directories as you
wish. However, you should ensure that the longest
path you create (from the root to the last directory
in a single path) can be expressed in 63 characters
or less.

Directory Commands

The following commands are new in DOS Version
2.00, and are included to help you create and
manage your directory structure. A brief
explanation of each is presented here-for more
detailed information, please refer to the individual
command descriptions in Chapter 6.

System programmers and application developers
should also refer to the technical appendixes (in
Section 2) for descriptions of the DOS function
calls.

Creating a Sub-Directory

The MKDIR (MD) command is used to create new
directories. Be sure to include the appropriate
drive and path, ending with the name of the new
directory you want created. Also, be sure that the
full path from the root to the new directory name
is 63 characters or less.

5-11

Deleting a Directory

Directories can be deleted (removed) only with the
RMDIR (RD) command. They cannot be deleted
with the ERASE or DEL commands. A dir-ectory
can be removed only if it is empty-that is, it has no
files or sub-directories other than the two special
entries shown as. and .. in the DIR command
display. The last directory name in the specified
path is removed-only one directory at a time can
be deleted. The root directory and the current
directory cannot be deleted. Entering CHDIR or
CD with no parameters (or only a drive
specification) causes DOS to display the current
directory for the drive.

Displaying and Changing the
Curren t Directory

The CHDIR (CD) command is used to tell DOS
which directory path it should "remember" as the
current directory. Enter just a backslash for the
root, or a full path for any other directory. The
current directory is where DOS will look to find
files whose names are entered without path
specifiers.

Displaying the Directory Structure

5-12

The TREE command will produce a report
describing the entire directory structure of a disk.
Included in the report are all directory paths and,
optionally, the names of all files in each
sub-directory.

Where DOS Looks for Commands
and Batch Files

When you enter a command, DOS searches the
current directory for it (if the command is not
built-in). The PATH command allows you to
specify a series of additional paths that DOS can
search if it does not find the command in the
current directory. The PATH command is
described in Chapter 6.

5-13

Notes:

5-14

Chapter 6. DOS Commands

Contents

Introduction 6-5

Types of DOS Commands 6-6

Format Notation 6-8

DOS Command Parameters 6-9
Reserved Device Names 6-1 3
Global Filename Characters 6-14

The? Character 6-14
The * Character 6-15
Examples of Ways to Use
? and * 6-16

Detailed Description of the
DOS Commands 6-1 7

Information Common to All DOS
Commands ~ 6-17

ASSIGN (Drive) Command 6-21

BACKUP (Fixed Disk) Command 6-24

6-1

Batch Commands 6-28
TheAUTOEXEC.BATFile 6-31
Creating a .BAT File with
Replaceable Parameters 6- 32

Executing a . BAT File with
Replaceable Parameters 6- 34

ECHO Subcommand 6-35
FOR Subcommand 6- 37
GOTO Subcommand 6- 38
IF Subcommand 6-40
SHIFT Subcommand................ 6-45
PAUSE Subcommand 6-47
REM (Remark) Subcommand 6-49

BREAK (Control Break) Command 6-50

CHDIR (Change Directory) Command ... 6-52

CHKDSK (Check Disk) Command 6-54

CLS (Clear Screen) Command 6-58

COMP (Compare Files) Command 6-59

COpy Command 6-65

DATE Command 6-80

DEL Command 6-82

DIR (Directory) Command 6-83

DISKCOMP (Compare Diskette)
Command 6-90

DISKCOPY (Copy Diskette)
Command 6-94

6-2

ERASE Command 6-98

FORMAT Command 6-100

GRAPHICS (Screen Print) Command 6-106

MKDIR (Make Directory) Command 6-107

MODE Command 6-109

PATH (Set Search Directory)
Command 6-117

PRINT Command 6-120

RECOVER Command.................. 6-126

RENAME (or REN) Command.......... 6-129

RESTORE (Fixed Disk) Command 6-131

RMDIR (Remove Directory)
Command 6-134

SYS (System) Command 6-135

TIME Command 6-136

TREE (Display Directory) Command 6-138

TYPE Command. .. 6-141

VER (Version) Command 6-143

VERIFY Command 6-144

VOL (Volume) Command 6-145

Summary of DOS Commands 6-146

6-3

Notes:

6-4

Introduction

This chapter explains how to use the DOS
commands. You can use DOS commands to:

• Compare, copy, display, erase, rename files,
and format fixed disks and diskettes.

• Execute system programs, such as EDLIN and
DEBUG, plus your own programs.

• Set various printer and screen options.

• Request DOS to pause.

• Transfer DOS to another diskette.

• Set options for the Asynchronous
Communications Adapter.

• Cause printer output to be directed to the
Asynchronous Communications Adapter.

• Recover a specific file from a damaged disk,
or recover the entire disk or diskette.

• Print the contents of a graphics display screen
on a printer.

• Print files on the printer while the system is
doing other work.

• Backup and restore files on a fixed disk.

6-5

Types of DOS Commands

6-6

There are two types of DOS commands.

• Internal

• External

Internal commands execute immediately because
they are built-in to DOS.

External commands reside on disk as program
files; therefore, they must be read from disk before
they execute. This means that the disk containing
the command must already be in a drive, or DOS is
unable to find the command. For example, if you
entered the command:

B:GRAPHICS

you must be sure that the diskette containing
GRAPHICS.COM is in drive B. If you entered:

GRAPHICS

then DOS will look on the default drive (the one in
your system prompt) for the GRAPHICS
command.

Any file with a filename extension of .COM or
.EXE is considered an external command. This
allows you to develop your own unique commands
and add them to the system. (For example,
programs such as FORMAT.COM and
COMP.COM are external commands.)

When you select an external command, do not
include the filename extension.

For Application Developers: DOS Version 2.00
has a provision that allows you to cause execution
of DOS commands from within your application.
Please refer to Appendix F for details.

6-7

Format Notation

6-8

We will use the following notation to indicate how
the DOS commands should be entered:

• You must enter any words shown in capital
letters. These words are called keywords and
must be entered exactly as shown. You can,
however, enter keywords in any combination
of uppercase and lowercase letters. DOS
automatically converts keywords to uppercase.

• You must supply any items shown in
lowercase italic letters. For example, you
should enter the name of your file when
filename is shown in the format.

• Items in square brackets ([]) are optional. If
you want to include optional information, you
do not need to type the brackets, only the
information inside the brackets.

• Items separated by a bar () mean that you can
enter one of the separated items. For
example:

ON I OFF

Means you can enter ON or OFF, but not
both.

• An ellipsis (...) indicates that you can repeat
an item as many times as you want.

• You must include all punctuation (except
square brackets and vertical bars) such as
commas, equal signs, question marks, colons,
slashes, or backslashes where shown.

DOS Command Parameters

Parameters are items that you can include in your
DOS command statements. They are used to
specify additional information to the system. Some
parameters are required in your commands, others
are optional. If you do not include some
parameters, the system provides a default value.
Default values that the system provides are
discussed in the detailed descriptions of the DOS
commands.

Use the following parameters in your DOS
command statements:

Parameter Definition

d: Denotes when you should specify a drive.
Enter a drive letter followed by a colon to
specify the drive. For example, A
represents the first drive on your
system, B represents the second. If you
omit this parameter, DOS assumes the
default drive.

6-9

Parameter Definition

path [\] [dirname] [\ dirname[...]]

Denotes a path of directory names. Enter
the directory names, separated by
backslash characters. If a filename is also
to be appended, it should be separated
from the last directory name by a
backslash. For example:

\DIR1\DIR2\FILEl

The first backslash is optional. If used, it
tells DOS to begin with the root directory.
If omitted, the directory path is assumed
to begin with the current directory. Global
filename characters are not allowed in
path specifications. The longest path
allowed by DOS (from root directory to
the last level) is 63 characters.

6-10

Parameter Definition

filename Diskette filenames are 1-8 characters in
length and can be followed by a filename
extension.

The following characters can be used for
filenames:

A-Z 0-9 $ & # @!
%"o-{}
-1\.--

Any other characters are invalid. An
invalid character is assumed to be a
delimiter, in which case the filename is
truncated.

Refer also to "Reserved Device Names"
in this chapter for more information
about filenames.

6-11

Parameter Definition

. ext The optional filename extension consists
of a period and 1-3 characters. When
used, filename extensions immediately
follow filenames.

The following characters can be used for
filename extensions:

A-Z 0-9 $&#@!
%"o-{}
-/\.-

Any other characters are invalid.

Remember to include the extension
when you refer to a file that has a
filename extension; otherwise, DOS will
be unable to locate the file.

filespec [d: l/ilename[. ext]

Examples:

B:myprog.COB
A:yourprog
DATAFILE.pas
coblile

6-12

Reserved Device Names

Certain names have special meaning to DOS. DOS
reserves the following names as system devices:

Reserved Name Device

CON Console keyboard/screen. If used as an
input device, you can press the F6 key;
then press the Enter key to generate an
end-of-file indication, which ends
CON as an input device.

AUX First Asynchronous Communications
or Adapter port.
COMl

COM2 Second Asynchronous Communications
Adapter port.

LPTl First Parallel Printer (as an output
or device only).
PRN

LPT2 Second Parallel Printer
or
LPT3 Third Parallel Printer

NUL Nonexistent (dummy) device for
testing applications. As an input
device, immediate end-of-file is
generated. As an output device, the
write operations are simulated, but no
data is actually written.

6-13

Notes:

1. When using a device name, you should
assure that the device actually exists;
using the name of a nonexistent device
can cause unpredictable errors in DOS
operation.

2. The reserved device names can be used in
place of a filename.

3. Any drive specifier or filename extension
entered with these device names will be
ignored.

Global Filename Characters

Two special characters? and * can be used within a
filename and its extension. These special
characters give you greater flexibility with the
DOS commands.

The ? Character

6-14

A ? in a filename or in a filename extension
indicates that any character can occupy that
position. For example,

DIR AB?DE.XYZ

lists all directory entries on the default drive with
filenames that have five characters, begin with AB,
have any next character, are followed by DE, and
have an extension of XYZ.

Here are some examples of the files that might be
listed by the DIR command:

ABCDE IYZ
ABIDE IYZ
ABODE IYZ

The * Character

An * in a filename or in a filename extension
indicates that any character can occupy that
position and all the remaining positions in the
filename or extension. For example,

DIR AB*.XYZ

lists all directory entries on the default drive with
filenames that begin with AB and have an
extension ofXYZ. In this case, the filenames may
be from 2-8 characters in length.

Here are some example files that might be listed
by the DIR command:

ABCDE XYZ
ABC357 XYZ
ABIDE XYZ
ABnOU IYZ
ABO$$$ XYZ
AB XYZ

6-15

Examples of Ways to Use? and *

6-16

Example 1

To list the directory entries for all files named
INPUT on drive A (regardless of their filename
extension), enter:

OIR A:INPUT.???
or

OIR A:INPUT.*

Example 2

To list the directory entries for all files on drive A
(regardless of their filenames) with a filename
extension of XYZ, enter:

OIR A:????????XYZ
or

OIR A:*.XYZ

Example 3

To list the directory entries for all files on drive A
with filenames beginning with ABC and extensions
beginning with E, enter:

OIR A:ABc?????E??
or

OIR A:ABc*.E*

Detailed Descriptions of the DOS
Commands

This section presents a detailed description of how
to use the DOS commands. The commands appear
in alphabetical order; each with its purpose,
format, and type. Examples are provided where
appropriate.

Information Common to All DOS
Commands

The following information applies to all DOS
commands:

• The normal prompt from the command
processor is the default drive letter plus>,
such as A> unless changed by the PROMPT
command.

• When a command completes, the system
prompt will reappear on the screen. If no
error messages are displayed before the
system prompt reappears, the command has
been successfully completed.

• Commands are usually followed by one or
more parameters.

• Commands and parameters may be entered in
uppercase or lowercase, or a combination of
both.

6-17

6-18

• DOS will search the current directory of the
specified or default drive to find a command
or batch file whose name you have entered. If
not found, DOS will continue its search in
each of the directories listed in the PATH
command.

• Most commands allowing you to enter
filenames will also accept a path (directory)
name ahead of the filename. If you do not
plan to create directories of your own, you
may disregard all references to path names.
This will greatly simplify the command syntax
for you.

• Commands and parameters must be separated
by delimiters (space, comma, semicolon,
equal sign, or the tab key). The delimiters can
be different within one command. For
example, you could enter:

COpy oldfile.rel;newfile.rel
RENAM E, thi.file thatfile

• The three parts of filespec (d: filename. ext)
must not be separated by delimiters. The
colon (:) and period (.) already serve as
delimiters.

• In this book, we usually use a space as the
delimiter in the commands for readability.

• Also in this book, when we say" Press any key, "
we mean "Press any character key."

• Files are not required to have filename
extensions when you create or rename them;
however, you must include the filename
extension when referring to a file that has a
filename extension.

• You can end commands while they are
running by pressing Ctrl-Break. Ctrl-Break is
recognized only while the system is reading
from the keyboard or printing characters on
the screen, unless you have used BREAK=ON
in your configuration file or have issued a
BREAK=ON command. Thus, the command
may not end immediately when you press
Ctrl-Break.

• Commands become effective only after you
press the Enter key.

• Global filename characters and device names
are not allowed in a command name. You may
only use them in command parameters.

• For commands displaying a large amount of
output, you can press Ctrl-Num Lock to
suspend the display of the output. You can
then press any character key to continue the
display.

• You can use the control keys and the DOS
editing keys described in Chapter 3 while
en tering DOS commands.

• Drives will be referred to as source drives and
torget drives. A source drive is the drive you
will be transferring information/rom. A target
drive is the drive you will be transferring
information to.

• When an external command is entered, DOS
first looks for it in the current directory of the
default or specified drive. If not found, DOS
continues searching for it in the directories
listed in the most recen t PATH command.

6-19

6-20

• If the characters <, >, or : appear anywhere in
the command line you enter, DOS will act
upon them as described in "Redirection of
Standard Input and Output" and "Piping of
Standard Input and Output Device" in
Chapter 10. Thus, the command:

REM this is a : test

would pipe the output of the REM command
(none) to a program named "test". If the
program "test" does not exist, this message
appears:

Bad command or filename

ASSIGN (Drive)
Command

Purpose: Instructs DOS to use a different drive from the
one that was specified for disk operations.

Format: ASSIGN [x=y [...]]

Type: Internal External

Remarks: Use this command to tell DOS to route all
requests for a disk drive to a different drive.

The first drive letter x is internally converted by
DOS to the second drive letter y. This command
does not require you to enter a colon after the
drive letter. Entering ASSIGN with no
parameters causes all drive reassignments to be
reset so that normal drive assignments will
resume.

6-21

ASSIGN (Drive)
Command

Example: This example causes DOS to route all requests
for drive A to drive C. Thus, if you issue Olft A:,
DOS will display the directory that is on physical
drive C:

6-22

ASSIGN A=C

In this example, any requests for drive A or
drive B are routed by DOS to drive C:

ASSIGN A=C B=C

The command:

ASSIGN

will undo the reassignment so that requests for
drive A will again go to physical drive A, etc.

Note: This command has been included to
assist you with applications that were
designed to perform their disk operations
specifically on drives A and B (those
applications that do not allow you to
specify a drive). By using a command
such as:

ASSIGN A=C B=C

those applications can be made to use
drives other than A and B, such as a fixed
disk.

ASSIGN (Drive)
Command

Reassignment of drives should only be used
when necessary for these cases. It should
never be used with the PRINT command or
when running DOS in normal operations,
because it can hide the true device type from
commands and programs that require actual
drive information. Also note that
DISKCOPY and DISKCOMP will ignore
any drive reassignments.

If you will be developing an application
program, we recommend that you avoid
using specific drive assignments within your
program, but instead, allow the user to
specify the drive(s) to be used.

6-23

BACKUP (Fixed Disk)
Command

Purpose: Backs up one or more files from a fixed disk to
diskettes.

Format BACKUP [d.'] [path] [/llename] [.ext]
d: [IS] [1M] [I A] [lD:mm-dd-yy]

Type: Internal External

Remarks: Use DOS formatted diskettes only. The first
parameter you specify is the fixed disk file you
want to back up. The second p~.I:ameter is the
backup diskette drive. Files are backed up from
the current directory if you do not specify a
path. If you do not specify a filename or
extension, then all files in the directory will be
backed up.

6-24

Global filename characters are allowed in the
filename. They cause all files matching the
filename to be backed up onto diskettes. For
example, entering:

BACKUP C:* .DAT A:

Causes each file from the current directory of
fixed disk drive C that has an extension of . DA T
to be backed up onto the diskette in drive A.

BACKUP (Fixed Disk)
Command

The parameter IS causes the files in all
sub-directories to be backed up in addition to
the files in the specified directory itself. This
includes sub-directories at all levels beyond the
specified directory.

The parameter 1M indicates that only files that
have been modified since the last backup should
be backed up. Use this parameter to avoid
backing up files that never change. The
BACKUP command can tell which files have
been changed because of an indicator in each
file's directory entry that is set by DOS
whenever the file is written to.

The parameter I A indicates that backed up files
should be added to the files on the backup
diskette already in the specified drive. If this
parameter is omitted, then you will be prompted

, to insert a diskette when the backup program is
loaded.

The parameter ID can be used to back up files
written only on or after the specified date. See
the description of the DATE command for valid
date formats.

The following example backs up all of the files
on fixed disk drive C:

BACKUP C:\ A: /S

6-25

BACKUP (Fixed Disk)
Command

6-26

The next example backs up three different files
from the default fixed disk drive onto the same
set of backup diskettes:

BACKUP levell \filel.dat A:
BACKUP levell\leveI2\file2.dat A: /A
BACKUP level1\leveI3\file3.dat A: /A

The next example backs up all files in the
current directory that have changed since the
last backup:

BACKUP *.* A: 1M

After you enter the BACKUP command, you
will be prompted to insert a diskette (unless you
specified the fA parameter). Use DOS formatted
diskettes only. BACKUP will erase existing files
on the diskette before it starts backing up the
fixed disk file, unless you have used the fA
parameter. After BACKUP fills up a diskette, it
will prompt you to insert a new diskette. You
should label each diskette and record the date
and diskette number.

BACKUP (Fixed Disk)
Command

BACKUP displays the name of each file as it
backs it up. If you want a printed copy of this
list, you can use redirection of output to the
printer. Refer to "Redirection of Standard Input
and Output Devices" in Chapter 10 for
additional information.

The BACKUP command sets the exit code as
follows:

o Normal completion

1 No files were found to backup

3 Terminated by user (Ctrl-Break)

4 Terminated due to error

These codes can be used with the batch
processing IF subcommand.

Note: The files on the backup diskettes
are unusable in normal processing and
should only be used by the RESTORE
command.

6-27

Batch
Commands

Purpose: Executes the commands contained in the
specified file from the current directory of the
designated or default drive. If the batch file is
not found in the current directory, DOS
searches for it in the directories listed in the
PATH command.

Format: [d:1filename [parameters]

Type: Internal

External

Remarks: A batch file is a file containing one or more
commands that DOS executes one at a time. All
batch files must have a filename extension of
.BAT.

6-28

You can pass parameters to thefilename.BAT file
when the file executes. Therefore, the file can
do similar work with different data during each
execution.

Batch
Commands

You create a batch file by using the Line Editor
(EDLIN), or by using the COpy command
directly from the keyboard.

Notes:

1. Do not enter the name BATCH (unless
the name of the file you want to
execute is BA TCH.BA T).

2. Only the filename must be entered to
run the batch file. Do not enter an
extension.

3. The commands in the file named
filename.BAT are executed.

4. There are seven sub commands that can
be used to control batch processing:
ECHO, FOR, GOTO, IF, SHIFT,
PAUSE, and REM. They are explained
in the following pages.

5. If you press Ctrl-Break while in batch
mode, this prompt appears:

Terminate batch job (Y/N)?

I f you press Y, the remainder of the
commands in the batch file are ignored
and the system prompt appears.

6-29

Batch
Commands

6-30

If you press N, only the current
command ends and batch processing
continues with the next command in
the file.

6. If you remove a diskette containing a
batch file being processed, DOS
prompts you to insert it again before
the next command can be read.

7. The last command in a batch file may
be the name of another batch file. This
allows you to invoke one batch file
from another when the first is finished.

8. DOS will remember which directory your
batch file was started from. Therefore,
the commands within the batch file
may change the current directory at
will, and the batch file will continue
executing.

Batch
Commands

The AUTOEXEC.BAT File

The AUTOEXEC.BAT file is a special batch file.
When you start or restart DOS, the command
processor searches for the AUTOEXEC.BAT file.
If this file is present in the root directory of the
drive DOS was started from, DOS automatically
executes the file whenever you start DOS.

For example, if you want to automatically load
BASIC and run a program called MENU, create an
AUTOEXEC.BA T file as follows:

1. Enter:

COpy CON: AUTO EXEC. BAT

This statement tells DOS to copy the
information from the console (keyboard) into
the AUTOEXEC.BAT file on the default
drive.

2. Now, enter:

BASIC MENU

and press Enter.

This statement goes into the
AUTOEXEC.BAT file. It tells DOS to load
BASIC and to run the MENU program
whenever DOS is started.

6-31

Batch
Commands

3. Press the F6 key, then press the Enter key to
end copying from the keyboard to the file.

The MENU program will now run
automatically whenever you start DOS.

To run your own BASIC program, enter the name
of your program in place of MENU in the second
line of the example. Remember, you can enter any
DOS command, or series of commands, in the
AUTOEXEC.BAT file.

Note: If you use AUTOEXEC.BAT, DOS
does not prompt you for the current date and
time unless you include DATE and TIME
commands in the AUTOEXEC.BAT file.

Creating a .BAT File With Replaceable
Parameters

6-32

Within a batch file you may include dummy
parameters that can be replaced by values supplied
when the batch file executes.

For example, enter:

A>Copy con: ASMFILE.BAT
Copy °/ol.MAC °/02.MAC
Type °/02.PRN
Type °/oO.BAT

Press Enter after entering each line.

Batch
Commands

Now, press F6; then press Enter.

The system responds with this message:

1 File(s) copied
A>_

The file ASMFILE.BA T, which consists of three
commands, now resides on the diskette in the
default drive.

The dummy parameters %0, % 1, and %2 are
replaced sequentially by the parameters you supply
when you execute the file. The dummy parameter
%0 is always replaced by the drive designator, if
specified, and the filename of the batch file.

Notes:

1. Up to 10 dummy parameters (%0 - %9)
can be specified within a batch file, more
than 10 parameters can be specified on a
command line (see SHIFT subcommand).

2. If you want to use % as part of a filename
witbin a batch file, you must specify it
twice. For example, to specify the file
ABC%.EXE you must enter it as
ABC%%.EXE in the batch file.

6-33

Batch
Commands

Executing a .BAT File With
Replaceable Parameters

6-34

To execute the ASMFILE.BAT file and pass
parameters, enter the batch filename followed by
the parameters you want sequentially substituted
for %1, %2, etc.

For example, you can enter:

ASMFILE A:PROGl B:PROG2

ASMFILE is substituted for %0, A:PROGI for %1,
and B:PROG2 for %2.

The result is the same as if you entered each of the
three commands (in the ASMFILE.BAT file) from
the console with their parameters, as follows:

Copy A: PROG1. MAC B: PROG2. MAC
Type B: PROG2. PRN
Type ASMFILE.BAT

Remember that the dummy parameter %0 is
always replaced by the drive designator, if
specified, and the filename of the batch file.

Batch
Commands

ECHO Subcommand

Purpose: The ECHO batch processing subcommand
allows or inhibits the screen display of DOS
commands executed from a batch file. It does
not interfere with messages produced while the
commands are executing.

Format: ECHO [ON IOFF I message]

Type: Internal External

Remarks: Batch commands are normally displayed on the
screen as they are read from the batch file.
ECHO is ON after power-on or system reset.
ECHO ON displays all the commands on the
screen as they are executed. ECHO OFF stops
the display of commands on the screen
(including the REM command).

Echo message displays message on the screen
regardless of the current ON or OFF state. In
this way, you can cause specific messages to be
displayed even when ECHO has been turned off.
If ECHO is issued with no parameters, the
current ECHO state (ON or OFF) is displayed.

6-35

Batch
Commands

Example: In this example, the batch file contains the
following:

6-36

echo off
rem **** command display is off
dir a:/w
echo on
dir a:/w

Upon execution of the above batch file, the
following display will occur:

echo off

Volume on drive A has no 10
Directory of A: \

filenamel.ext filename2.ext

2 file(s) xxxxx bytes free

dir a:/w

Volume in drive A has no 10
Directory of A: \

filenamel.ext filename2.ext

2 file(s) xxxxx bytes free

In the above example, the ECHO OFF is
displayed. The rem command and dir a:/w are
not displayed because ECHO is OFF, but the
output of the dir is not inhibited.

Batch
Commands

FOR Subcommand

Purpose: The FOR batch processing subcommand allows
iterative execution of DOS commands.

Format: FOR %%variable IN (set) DO command

Type: Internal

External

Remarks: The %%variable is sequentially set to each
member of set and then the command is evaluated
and executed. If a member of set is an expression
involving * and! or?, then the %%variable is set
to each matching filename from disk.

Example: In this example, if you enter the command:

FOR 0/0%1 IN (proal.asm prog2.asm proga.asm) DO dlr 0/00/01

The result is

dir progl.asm
dir prog2.asm
dir prog3.asm

Note: FOR subcommands cannot be
nested; that is, only one FOR subcommand
can be specified on a command line. Also,
path names are not accepted with
filenames.

6-37

Batch
Commands

GOTO Subcommand

Purpose: The GOTO batch processing subcommand
transfers control to the line following the one
containing the appropriate label. A label is
inserted in a batch file as a colon (:) followed by
the label name.

Format: GOTO label

Type: Internal

External

Remarks: The GOTO label causes commands to be
executed beginning with the line immediately
after :label. If :label is not defined, the current
batch file terminates with the message Label
not found. A label in a batch file is defined as
a character string where the first 8 characters
are significant (make it different).

6-38

Batch
Commands

Example: In this example, the following batch file
produces an indefinite sequence of rem
looping ... and GOTO LOOP messages on the
screen:

:LOOP
rem looping ...
GOTO LOOP

Note that labels within a batch file are never
displayed while the batch file is executing. In
the example above, the line :LOOP would not
be displayed. Thus, unreferenced labels provide
a handy means for placing comments within
your batch file that are not displayed when the
file is executed.

6-39

Batch
Commands

IF Subcommand

Purpose: The IF batch processing subcommand allows
conditional execution of DOS commands.

Format: IF [NOT] condition command

Type: Internal

External

Remarks: The condition parameter is one of the following:

ERRORLEVEL number

stringl ==string2

EXIST filespec

6-40

Batch
Commands

When the IF parameter's condition is true, then
the DOS command is executed. Otherwise, the
DOS command is skipped, and the following
command in the file is executed.

ERROELEVEL number is true if the previous
program had an exit code of number or higher.
The number is specified as a binary value.

Stringl ==string2 is true when stringl and string2
are identical.

Note: The corresponding characters of
stringl and string2 must both be uppercase
or lowercase to be identical.

EXIST filespec is true if filespec is found on the
specified drive. Path names are not allowed with
the filespec.

NOT condition is true if the condition is false.

Example: This example is for the IF EXIST filespec
command:

if exist filel goto abc

:abc
command

6-41

Batch
Commands

6-42

Execution of a batch file containing this
command with/ilel given as the %1 parameter
would make the condition true providedfilel is
found on the default drive. The goto abc ~ould be
executed causing the system to skip to the
command following the label :abc. If/llel is not
found, the goto abc would not be executed.
Processing would then continue with the next
command in the batch file.

The following example is for the IF
string! ==string2 command:

if DID 1 = Doug echo Doug was here!

Execution of a batch file containing this
command with Doug given as the %1 parameter
would make the condition true. The ECHO
batch command would then be executed
displaying Doug was here!. If Doug was not
given as the %1 parameter, the condition would
have been false. The ECHO batch command
would not have been executed. Processing
would continue with the next command in the
batch file.

Batch
Commands

The following example is for the IF
ERRORLEVEL number command:

myprogl
if errorlevel 1 echo myprogl failed - end batch file execution

The above two commands are in a batch file;
MYPROGI is a program that sets the errorlevel
when it completes its processing. In the simple
case, MYPROG 1 sets the errorlevel to 0 if it
completed processing successfully and sets
errorlevel to 1 if processing completed
unsuccessfully. The batch file conditional if
errorlevel 1 echo ... tests for the situation when
MYPROGI failed. If MYPROGI completed
processing unsuccessfully, the condition is
true and the ECHO batch command is executed.
The ECHO batch command displays the data (or
message) immediately following echo. If
MYPROG 1 was successful, the condition would
not be true and the ECHO batch
command would not be executed. Processing
would then continue with the next command in
the batch file.

6-43

Batch
Commands

6-44

The following example is for the IF NOT
EXIST filespec command:

if not exist 8:%1 copy b:% 1 a:
program

The above IF batch command demonstrates the
NOT condition. The batch file that this
command is in, is going to execute a program
that requires a particular file to be on drive A.
The IF command is executed prior to the
program to make sure that the required file is on
drive A. If the file does not exist on drive A, the
condition is true. The copy will then be executed,
copying the file from drive B to drive A to
satisfy the requirements of the program. If the
file does exist on drive A, the copy will not be
executed. Processing will then continue to
execu te the program.

Note: At the present time, only BACKUP
and RESTORE commands set an
ERRORLEVEL that can be tested. The
facility is included to allow your own
programs to set an error code that can then
be interrogated by the IF ERRORLEVEL
subcommand.

SHIFT Subcommand

Batch
Commands

Purpose: The SHIFT batch processing subcommand
allows command lines to make use of more than
10 (%0 through %9) replaceable parameters.

Format SHIFT

Type: Internal

External

Remarks: Replaceable parameters are numbered %0
through %9. If you wish to use more than 10
parameters on a command line, you can use
SHIFT to get at parameters past the tenth. All
parameters on the command line are shifted one
position to the left, with the %0 parameter
being replaced by the %1 parameter, etc. Each
subsequent shift command causes all the
parameters to be shifted to the left by one
position. For example:

0/00 = A
0/01 = B
0/02 = C
0/03 = 0

0/09

6-45

Batch
Commands

The SHIFT results are:

0/00 = B
0/01 = C
0/0 2 = 0

0/0 9

Example: This example demonstrates how the SHIFT
subcommand can be used in a batch file. If a
batch file named MYFILE.BAT contains the
following commands, and the default drive is A:

6-46

echo 0/00 % 1 0/02 0/03
shift
echo 0/00 % 1 0/02 0/03
shift
echo 0/00 % 1 0/02 0/03
shift
echo 0/00 % 1 0/02 0/03
shift
echo 0/00 % 1 0/02 0/03

Invoke the batch file with the following
parameters:

MYFILE PROGl PROG2 PRoa

Batch
Commands

Produces the following results:

A>echo MYFILE PROGl PROG2 PROG3
MYFILE PROGl PROG2 PROG3

A>shiH

A>echo PROGl PROG2 PROG3
PROGl PROG2 PROG3

A>shiH

A>echo PROG2 PROG3
PROG2 PROG3

A>shift

A> echo PROG3
PROG3
A>shiH
A> echo

A>

PAUSE Subcommand
Purpose:

Format:

Type:

Suspends system processing and displays the
message Strike a key when ready

PAUSE [remark]

Internal External

6-47

Batch
Commands

Remarks: You can insert PAUSE comrnands within a
batch file to display messages and to give you
the opportunity to change diskettes between
commands. To resume execution of the batch
file, press any key except Ctrl-Break. (Ctrl- Break
ends processing.)

If you include the optional remark, the remark is
also displayed. The optional remark can be any
string of characters up to 121 bytes long.

You can control how much of a batch file you
want to execute by placing PAUSE commands at
strategic points in the file. At each PAUSE
command, the system stops and gives you time
to decide whether to end processing. To end
processing, press Ctrl-Break. To continue
processing, press any other key.

Example: If you enter this PAUSE command in a batch
file, the following message is displayed:

6-48

A >PAUSE Change diskette in drive A
Strike a key when ready ... _

This PAUSE "enables you to change diskettes
between commands.

Batch
Commands

REM (Remark) Subcommand
Purpose: Displays remarks from within a batch file.

Format REM [remark]

Type: Internal External

Remarks: The remarks are displayed when the batch
execution reaches the remark.

Remarks can be any string of characters up to
123 bytes long.

You can use REM commands without remarks
for spacing within your batch file, for
readability.

Example: If the following REM command is issued in a
batch file, this remark is displayed:

REM This is the daily checkout program

Note: See "Detailed Descriptions of the
DOS Commands" in this chapter for
considerations in using the REM command.

6-49

BREAK (Control Break)
Command

Purpose: Allows you to instruct DOS to check for a
control break whenever a program requests
DOS to perform any functions (such as disk
operations).

Format: BREAK [ON I OFF]

Type: Internal External

Remarks: Use this command to specify when DOS should
check for a Ctrl-Break being entered at the
keyboard. Normally, DOS only performs this
check during screen, keyboard, printer, or
auxiliary device operations.

6-50

Ctrl-Break allows you to breakout of a program
that performs few or no screen or keyboard
operations (such as a compiler).

BREAK (Control Break)
Command

The ON parameter causes DOS to begin
checking for Ctrl-Break whenever a program
requests any DOS function. Specifying OFF
causes DOS to check only during screen,
keyboard, printer, or Asynchronous
Communications Adapter operations.

You can also turn on the extended checking by
using BREAK=ON in your configuration file.
Refer to "Configuring Your System" in Chapter 9.

Entering BREAK with no parameter causes
DOS to display the current state (on or off) of
Ctrl-Break checking.

6-51

CHDIR (Change Directory)
Command

Purpose: Change the DOS current directory of the
specified or default drive, or to display the
current directory path of a drive.

Format: CHDIR [[d:]patb]

Type:

or

CD [[d:]patb]

Internal

External

Remarks: The current directory is where DOS looks to
find files whose names were entered without
specifying which directory they were in. If you
do not specify a drive, the default drive is
assumed. If you enter CHDIR or CD with no
parameters or with only a d: parameter, the
current directory path of the specified or default
drive is displayed.

6-52

CHDIR (Change Directory)
Command

Example: In this example, the command will change the
current directory of the default drive to its root
directory:

CHOIR \

In this example, the command will change drive
B's current directory to the path
"root -;> LEVELl-;=> LEVEL2":

CD B:\LEVEU\LEVEI2

In this example, the command will change drive
B's directory to the current directory path plus
LEVEL3:

CD B:LEVEI.3

Thus, if the second example had been used, the
resultant path would be:

rool-> LEVEU-> LEVEI2-> LEVEI.3

The search for the LEVEL3 directory begins in
the directory that was current when the
command was issued.

6-53

CHKDSK (Check Disk)
Command

Purpose: Analyzes the directories and the File Allocation
Table on the designated or default drive and
produces a disk and memory status report.

Format: CHKDSK [d:] lfilename] [IF] [IV]

Type: Internal External

Remarks: If you specify a filename, CHKDSK will display
the number of non-contiguous areas occupied
by the file or files. Note thatCHKDSK only
looks in the current directory for these files.

6-54

CHKDSK will not automatically correct errors
found in the directory or file allocation table. If
you want it to make the corrections, use the IF
(fix) parameter. If you do not specify the IF
parameter, CHKDSK continues to function as
though it were preparing to correct the disk so
that you can analyze the possible results of
correction, but does not actually write the
corrections on the disk.

If you use the IV parameter, CHKDSK will
display a series of messages indicating its
progress, and provide more detailed information
about the errors it finds.

CHKDSK (Check Disk)
Command

After checking the disk, CHKDSK displays any
error messages, followed by a status report. A
complete listing of error messages can be found
in Chapter 8.

Following is an example of the status report that
is displayed:

Volume MYDISK Created AUG 12, 1983 10:00

179712 bytes total disk space
18944 bytes in 3 hidden files

512 bytes in 1 directories
26112 bytes in 4 user files

134144 bytes available on disk

196608 bytes total memory
170736 bytes free

Note that in this status report, three hidden files
were reported. These are the volume label, and
the DOS system files IBMBIO.COM and
IBMDOS.COM, that are hidden from the
normal directory searches. Some application
programs also create hidden files.

CHKDSK does not wait for you to insert a
diskette. It assumes that the diskette to be
checked is in the specified drive. Therefore, on a
single diskette-drive system, it is especially
important that the specified drive is different
from the default drive, unless you are checking
the DOS diskette itself.

6-55

CHKDSK (Check Disk)
Command

6-56

You should run CHKDSK occasionally for each
fixed disk and diskette to ensure the integrity of
the file structures.

Notes:

1. All yes or no (YIN) prompts from
CHKDSK require you to press Enter
after entering Y or N, to prevent
accidental changes to your disk.

2. If you specified a filenalne, the number
of non-contiguous areas occupied by
the file will be reported. Badly
fragmented files (many non-contiguous
areas) can cause system performance to
slow down when those files are
accessed, since DOS can not read them
sequentially. You can determine the
extent of file fragmentation by using *. *
in the filename field of the CHKDSK
command.

3. If CHKDSK finds lost allocation units
(clusters) on the disk, it asks if you
wish to recover the lost data into files.
If you say yes, and the IF parameter
was used, CHKDSK recovers each
chain of lost allocation units into a file
whose name is in the form:

FILEnnnn. CHK

CHKDSK (Check Disk)
Command

Where nnnn is a sequential number
starting with 0000. These files are
created in the root directory of the
specified drive. You can then look at
these files to see if they have any useful
information. If not, you can erase
them.

4. If you redirect CHKDSK's output to a
file, for example:

CHKDSK B:>FILE

It will report errors on that file. In this
case, be sure not to use the IF
parameter.

6-57

CLS (Clear Screen)
Command

Purpose: Clears the display screen.

Format: CLS

Type: Internal

External

Remarks: This command clears the display screen upon
execu tion. If foreground and background colo rs
have been selected through the "Extended
Screen Control and Keyboard" functions
described in Chapter 1 3, the colors will remain
unchanged. Otherwise, the screen is set to white
characters on a black background.

6-58

COMP (Compare Files)
Command

Purpose: Compares the contents of the first set of
specified files to the contents of the second set
of specified files. Usually, you would run COMP
after a COpy operation to ensure that the two
sets of files are identical.

Note: This command compares two sets
of/iles; the DISKCOMP command
compares two entire diskettes.

Format: COMP [d:] [path] [filename[.ext]]
[d:] [path] [fllename[.ext]]

Type: Internal External

Remarks: The first parameter you specify is the primary
file. The second parameter is the secondary file.
The files that you compare may be on the same
drive or on different drives. They can also be in
the same directory or different directories.

Global filename characters are allowed in both
filenames, and will cause all of the files matching
the first filename to be compared with the
corresponding files from the second filename.
Thus, entering:

COMP A:*.ASM B:*.BAK

6-59

COMP (Compare Files)
Command

6-60

causes each file that has an extension of .ASM
from drive A to be compared with a file of the
same name (but with an extension of .BAK)
from drive B.

If no parameters are entered with the COMP
command, or if the second parameter is missing,
you are prompted for them. If either parameter
only contains a drive or a path with no filename,
COMP assumes a filename of *.*. You can enter
a complete path with either of the two
filenames. For example, the command:

COMP B:*.ASM C:

causes all .ASM files on drive B to be compared
with the files of the same names and extensions
on drive C.

It is also possible to compare all files in one
directory with all corresponding files in another
directory. For example:

COMP A:\LEVEL 1 A:\LEVEL2

locates all the files in the LEVELl directory of
drive A and compares them with the same
filenames from the LEVEL2 directory on the
same drive.

If no file matches the primary filename, COMP
will prompt you for both the primary and
secondary parameters again.

COMP (Compare Files)
Command

The paths and names of the files being
compared are displayed as the comparing
process proceeds. An error message will follow if
a file matching the second filespec cannot be
found, or the files are different sizes, or a
specified directory path is invalid.

During the comparison, an error message
appears for any location that contains
mismatching information in the two files. The
message indicates the offset into the files of the
mismatching bytes, and the contents of the
bytes themselves (all in hexadecimal), as follows:

Compare error at offset XXXXXXXX
File 1 = XX
File 2 = XX

In this example, File 1 is the first filename
entered; File 2 is the second filename entered.

After ten unequal comparisons, COMP
concludes that further comparing would be
useless; processing ends; and the following
message is displayed:

10 Mismatches - ending compare

6-61

COMP (Compare Files)
Command

6-62

After a successful comparison, COMP displays:

Files compare OK

After the comparison of the two files ends,
comparing will proceed with the next pair of
files that match the two filenames, until no
more files can be found that match the first
parameter. Then COMP displays:

Compare more files (YIN)? _

Y ou now have the option to compare two more
files or to end the comparison. If you want to
compare two more files, enter Y. You will be
prompted for new primary and secondary
filenames.

If you want to end COMP processing, enter N.
You will return to the DOS prompt. In all
compares, COMP looks at the last byte of the
files being compared to assure that it contains a
valid end-of-file mark (Ctrl-Z, which is the
hexadecimal character lA). If found, no action is
taken by COMPo If the end-of-file mark is not
found, COMP produces the message:

EOF mark not found

COMP (Compare Files)
Command

This is done because some products produce
files whose sizes are always recorded in the
directory as a multiple of 128 bytes, even
though the actual usable data in the file is
usually a few bytes less than the directory size.
In this case, COMP may produce compare
error messages when comparing the few bytes
beyond the last real data byte in the last block
of 128 bytes (COMP always compares the
number of bytes reflected in the directory).
Thus, the EOF mark not found message
indicates that the compare errors may not have
occurred in the usable data portion of the file.

Notes:

1. The two sets of files you want to
compare can have the same path and
filenames-provided they are on
different drives.

2. If you only specify a drive for the
second file, it is assumed that the
second filename is the same as the first
filename. But, the current directory is
to be used. That is, it is the same as
entering:

d'· •

3. A comparison does not take place if
the file sizes are different.

6-63

COMP (Compare Files)
Command

6-64

4. COMP does not wait for you to insert a
diskette containing a file to be
compared. Therefore, if a file to be
compared is not on the same diskette
as the COMP command itself, you
should enter COMP with no
parameters. When COMP prompts for
the filenames, you can insert the
desired diskette and reply with the
name of the file to be compared.

COpy
Command

Purpose: Copies one or more files to another disk ar:td
optionally, gives the copy a different name if
you specify it in the COpy command.

COpy also copies files to the same disk. In this
case, you must give the copies different names
unless different directories are specified;
otherwise, the copy is not permitted.
Concatenation (combining of files) can be
performed during the copying process.

You can also use COpy to transfer data between
any of the system devices. (An example of how
to copy information that you enter at the
keyboard to a file is provided at the end of the
description of COpy.)

Format: COPY [I A] [lB] [d:] [pathlfilename[.ext] [I A] [lB]
[d:] [path] [filename[.ext]] [I A] [lB] [IV]

Type:

or

COpy [I A] [lB] [d:] [pathlfilename[.ext] [/ A] [lB]
[+[d:] [pathlfilename[.ext] [I A] [lB] ...]
[d:] [path] [filename[.ext]] [/ A] [lB] [IV]

Internal

External

6-65

COpy
Command

Remarks: The first file specified is the source file. The
second file specified is the target file. If the
second parameter is a directory (path with no
filename), files are copied into that directory
without changing their names.

6-66

The parameter IV causes DOS to verify that the
sectors written on the target diskette are
recorded properly. Although errors in recording
data are very rare, this option has been provided
for those of you who wish to verify that critical
data has been correctly recorded. This option
causes the COpy command to run more slowly,
due to the additional overhead of verification.

The IV parameter provides the same check as
does the VERIFY ON command. IV is
redundant if the VERIFY ON command has
been executed previously. The difference is that
IV is effective during the execution of the
COpy command. The VERIFY ON command is
in effect continually until VERIFY OFF is
entered.

COpy
Command

The parameters / A and /B indicate the amount
of data to be processed by the COpy command.
Each applies to the filespec preceding it and to
all remaining filespecs on the command line
until another / A or /B is encountered. These
parameters have the following meanings:

When used with a source filespec:

/ A Causes the file to be treated as an ASCII
(text) file. The file's data is copied up to,
but not including, the first end-of-file
character (Ctrl-Z, which is hex 1A) found
in the file; the remainder of the file is not
copied.

/B Causes the entire file (based on the
directory file size) to be copied.

When used with a torget filespec:

/ A Causes a Ctrl- Z character to be added as the
last character of the file.

/B Causes no end-of-file character (Ctrl-Z) to
be added.

6-67

COpy
Command

6-68

The default values are / A when concatenation ,is
being performed (see Option 3 below), and /B
when concatenation is not being performed
(Options 1 and 2).

Notes:

1. When copying to or from a reserved
device name, the copy is performed
in ASCII (/ A) mode. The first Ctrl-Z
character encountered will end the
copy unless /B was specified.

2. When making a copy of a file that is
marked read-only, the copy will not
be marked read-only.

You can use the global characters? and * in the
filename and in the extension parameters of
both the original and duplicate files. If you enter
a? or * in the sourcefilespec, the names of the
files will be displayed as the files are being
copied. For more information about global
characters, refer to "Global Filename
Characters" in this chapter.

COpy
Command

The COpy command has three format options:

Option 1 - Copy With Same Name

Use this option to copy a file with the copied file
having the same filename and extension as the
source file. For example:

COpy [d:] [pathlfi"lename[.ext]

or

COpy [d..] [pathlfi"lename[.ext] d.·[path]

In the first example, we want to copy a file to
the current directory of the default drive. In the
second example, we specify the target drive
and! or directory. In both examples, because
we did not specify the second filename, the
copied file will have the same filename as the
source file. Because we did not specify a name
for the second file, the source drive and the
target drive must be different unless different
directories were specified or implied;
otherwise, the copy is not permitted

6-69

COpy
Command

6-70

For example, assume the default drive is A. The
command:

COpy B: MYPROG

copies the file MYPROG from drive B, to the
default drive A, with no change in the filename.
The command:

COpy *.* B:

copies all the files from the default drive A to
drive B, with no change in the filenames or in
the extensions. The filenames are displayed as
the files are copied. This method is very useful
if the files on drive A are fragmented. The
command:

COpy B:\MYPROG B:\LEVELl

COpy
Command

copies the file MYPROG from the root
directory of drive B to the directory path:

rool-> LEVELl

on the same drive. The copy has the same
filename as the original file. Note that the above
example assumes that directory LEVELl exists
on drive B. If it did not, then the file MYPROG
would have been copied into a file named
LEVELl in the root directory of drive B. In
other words, if the second parameter specifies a
directory th~t exists, the file (or files) will be
placed in that directory, keeping the same
filename. If the second parameter does not
specify a directory that exists, DOS will treat it
as a filename.

Option 2 - Copy With Different Name

Use this option when you want the copied file to
have a different name from the file that is being
copied. For example:

COpy [d:] [pathlfilename[.ext] [d:] [pathlfilename[.ext]

or

COpy [d:] [pathlfilename[.ext] [d:] [pathlfilename[.ext]

6-71

COpy
Command

6-72

In the first example, we copied a file (first file
specified), and renamed the copy (second file
specified). We did not specify a drive, so the
default drive was used. In the second example,
we copied a file and renamed the copy also. In
this example, we did specify the target drive.
Because we changed the name of the file, the
source drive and the target drive do not have to
be different. The current directory can be the
same or different.

For example:

COPY MYPROG.ABC B:*.XXX

copies the file MYPROG.ABC from the diskette
in default drive A to drive B, naming the copy
MYPROG.XXX. The current directory of each
drive was used.

You can also use reserved device names for the
copy operation. For example:

COPY CON: fileA
COPY CON: AUX:
COPY CON: LPT1:
COPY fileA CON:
COPY fileB AUX:
COPY fileC LP12:
COPY AUX: LPT1:
COPY AUX: CON:

COpy
Command

Also, NUL: can be used in any variation. The
colon is not required when specifying a reserved
device name.

Refer to "Reserved Device N a~es" in this
chapter for information about system devices.

This example shows how to use COpy to put
what you enter from the keyboard into a file:

A>COPY CON: fileA
Type a line and press Enter.
Type your next line and press Enter.
•
•
•
Type your last line and press Enter.
Now, press F6 and then press Enter.

When you press F6, and then press Enter, the
COpy operation ends and saves the information
you entered. In this example, the information is
saved in a file named fileA.

Note: This example assumes that you
have not altered the meaning of F6 through
the" Extended Keyboard Support"
functions described in Chapter 1 3. If you
have, then substitute the key that you have
assigned Ctrl-Z for F6 in this example.

6-73

COpy
Command

6-74

Option 3 - Copy and Combine Files

Use this option when you want to combine files
while copying. That is, you can combine two or
more files into one file by adding the additional
files to the end of the first. The date and time
recorded in the result file directory are the
current date and time. The message indicating
the number of files copied refers to the number
of result files created.

To combine files, list any number of source files,
separated by plus (+) signs in the COpy
command. Use the following format:

COpy [/A] [/B] [d:] rJ;atblfilename[.ext] [/A] [/B]

[+[d:] rJ;atb]filename[.ext] [I A] [/B] ...]

[d:] rJ;atblfilename[.ext]] [I A] [/B] [IV]

For example:

COPY A.XYZ+B.ABC+B:C.TXT BIGFILE.TXT

This command creates a new file called
BIGFILE.TXT on the default drive. The
combination of A.XYZ, B.ABC, and B:C. TXT is
put into BIGFILE. TXT.

COpy
Command

If you do not specify a resultfilename, the
additional files are added to the end of the first
file, leaving the result in the first file. For
example:

COPY A.ASM+B.ASM

In this case, COpy appends B.ASM to the end of
A.ASM and leaves the result in A.ASM.

Note: Combining files is normally
performed in text (or ASCII) mode. That is,
the first Ctrl-Z (hex lA) character in the file
is interpreted as an end-of-file mark. To
combine binary files, use the /B parameter
to force COpy to use the physical
end-of-file (the file length shown in the DIR
command).

You can also combine ASCII and binary files by
using the following parameters:

• ASCII - fA

• Binary - fB

6-75

COpy
Command

6-76

For example:

COPY A.XYZ+B.COM/B+B:C.TXT/A BIGFILE.TXT

A/A or /B takes effect on the file it is placed
after, and it applies to all subsequent files on the
command line until another / A or /B is found. A
/ A or /B on the result file causes a Ctrl-Z to be
added (I A), or not to be added (lB), as the last
character in the result file.

You can use the global characters? and * in the
filenames of both the files to be combined and
the result file. For example:

COPY *.LST COMBIN.PRN

In this example, all files matching * .LST are
combined into one file called COMBIN.PRN.
Also:

COPY *.LST+*.REF COMBIN.PRN

This example combines all files matching * .LST
and then all files matching * .REF into one file
called COMBIN.PRN.

COPY *.LST+*.REF *.PRN

COpy
Command

In this example, each file matching *.LST is
combined with the corresponding. REF file,
with the result having the same name but with
extension .PRN. Thus, a file FILE1.LST would
be combined with FILE1.REF to form
FILE1.PRN; XYZLST would be combined with
XYZREF to form XYZPRN; etc. Note that in
this case (when multiple files are to be created),
only one file from each of the source filespecs is
used to create a given target file.

For more information about global characters,
refer to "Global Filename Characters" in this
chapter.

It is easy to enter a COpy command to combine
files where one of the source files is the same as
the target, yet this often cannot be detected. For
example:

COPY *.LST ALL.LST

This would produce an error if ALL.LST already
existed. The error would not be detected,
however, until it was time for ALL.LST to be
appended; by this time, ALL LST could already
have been altered.

6-77

COpy
Command

6-78

COpy handles this situation as follows: As each
input file is found, its name is compared with
the target filename. If the names are the same,
that one input file is skipped, and the message
Content of destination lost before copy is
displayed. Further copying proceeds normally.
This allows summing files, with a command like:

COPY ALL.LST + *.LST

This command appends all * .LST files, except
ALL.LST itself, to ALL.LST. In this case, the
error message is suppressed, because this is a
true physical append to ALL.LST.

The following are special cases. Remember to
use the IB parameter whenever you use the plus
(+) sign with non-ASCII files.

COPY B:XYZ.ASM+

This command copies the file XYZ.ASM to the
default drive and gives it a new date and time.
To simply change the date and time, leaving the
file in place, you can use the following
command:

COPY B:XYZ.ASM+, , B:

Note that the two commas are necessary to
define the end of the source filename, because
COpy normally expects to see another filename
after the plus (+) sign.

COpy
Command

In these special cases, if glo hal filename
characters are used in the filename or extension,
then all of the matching files will be appended
together into the first filename that matches.
Thus, the command:

COPY B:*.* +, , B:

will not update the dates and times of all files on
drive B, but will append all of drive B's files
together into a single file that will replace the
first file found on drive B.

Note: When combining files, COpy
considers the copying process to be
successful if at least one, but not necessarily
all, of the named source files is found. If
none of the source files can be found, you
receive the message

o file(s) copied

6-79

DATE
Command

Purpose: Permits you to enter a date or change the date
known to the system. The date is recorded in
the directory entry for any files you create or
alter.

Format: DATE [mm-dd-yy]

Type: Internal

External

Remarks: If you enter a valid date with the DATE
command, the new date is accepted, and the
system prompt appears. Otherwise, the DATE
command issues the following prompt:

6-80

Current date is day m..-dd-yy
Enter new date: _

The system displays the day of the week in the
day location.

Enter a new date in the form mm-dd-yy or mm/dd/
yy, where:

mm is a one- or two-digit number from 1-12
dd is a one- or two-digit number from 1-31
yy is a two-digit number from 80-99 (the 19 is

assumed) or a four-digit number from
1980-2099

DATE
Command

You can change the date from the keyboard or
from a batch file. Remember, when you start the
system, it does not prompt you for the date if
you use an AUTO EXEC. BAT file. You may
want to include a DATE command in that file.
For more information about the
AUTOEXEC.BA T file, refer to "Batch
Commands" in this chapter.

Notes:

1. To leave the date as is, press Enter.

2. The valid delimiters within the date are
hyphens (-) and slashes (I).

3. Any date is acceptable as today's date,
as long as the digits are in the correct
ranges.

4. If you enter an invalid date or
delimiter, you receive an Invalid date
message.

Example: In this example, once you press Enter, the date
known to the system is 7/24/82.

A> DATE
Current date is Mon 1-18-1982
Enter new date: 7/24/82_

6-81

DEL
Command

See" ERASE Command" in this chapter.

6-82

DIR (Directory)
Command

Purpose: Lists either all the directory entries, or only
those for specified files. The information
provided in the display includes the volume
identification and the amount of free space left
on the disk. The display line for each file
includes its size in decimal bytes and the date
and time the file was last written to. Entries that
name other directories are clearly identified with
<DIR> in the file size field.

Note: Directory entries for system files
IBMBIO.COM and IBMDOS.COM are not
listed, even if present.

Format: DIR [d:] [path] [filename[.ext]] [/P] [lW]

Type: Internal

External

Remarks: The IP parameter causes the display to pause
when the screen is full. When you are ready to
continue with the directory listing, press any
key.

The IW parameter produces a wide display of
the directory, which lists only the filenames and
directory names. Each line displayed contains
five names. (This parameter is only
recommended for sO-column displays.)

6-83

DIR (Directory)
Command

6-84

You can use the global characters? and * in the
filename and extension parameters. For more
information about the global characters, refer to
"Global Filename Characters" in this chapter.

The DIR command has two format options (the
IP and IW parameters may be used with either
option):

Option 1 - List All Files

Use this option to list all the files in a directory.
F or example:

DIR [path]

or

DIR d: [path]

In the first example, we want to,list all directory
entries on the default drive. In the second
example, we want to list all directory entries on
the specified drive. In both cases, if a path is
specified, the listing is of files in the specified
directory. Otherwise, the current directory is
listed.

DIR (Directory)
Command

The directory listing might look like this:

A>dir

Volume in drive A is MYDISK
Directory of A: \

FILE1 A 10368
FILE3 A 1613
9X 31
LEVEl2 <DIH>
FILEl 2288

7-20-83
5-27-83
8-17-82
9-09-82
9-02-82

5 File(5) 141312 bytes free

12:13p
12:14p
10:59a
12:10p
12:25p

Note that if the directory being listed is not the
root directory, the above example would have
included two special entries. The first entry
would contain a period in place of a filename.
The second would contain two periods in place
of a filename. The list of files shown above
would follow these two entries. These special
entries tell you that the directory being listed is
a sub-directory, rather than the root directory.

6-85

DIR (Directory)
Command

6-86

Option 2 - List Selected Files

Use this option to list selected files from a
directory. For example:

DIR filename. ext

or

DIR d:filename. ext

If eitherjtlename or. ext is omitted, an * is
assumed.

In the first example, we want to list all the files
in the directory of the default drive that have the
specified filename and extension. In the second
example, we want to list all the files in the
directory of the specified drive that have the
specified filename and extension.

Using the previous example, if you enter:

dlr tlld .•

the screen might look like this:

A>dlr Illd .•

Volume In drive A Is MYDISK
Dlractory of A:\

FILE3 A 1613 5 .. 27 .. 83 12:14p
1 Flla(s) 141312 bytas free

DIR (Directory)
Command

If you enter:

dlr *.8

or

dir.8 (omission of/ilename defaults to *)

the screen might look like this:

A>dlr *.8

Volume in drive A is MYDISK
Directory of A:\

FILEl A 10368 7-20-83
FILE3 A 1613 5-27-83

2 Filels) 141312 bytes free

If you enter:

dir filel

12:13p
12:14p

the screen might look like this (omission of. ext
defaults to *):

A> dir fllel

Volume in drive A is MYDISK
Directory of A:\

FILEl A 10368 7-20-83 12:13p
FILEl 2288 9-02-82 12:25p

2 Fllel s) 141312 bytes free

6-87

DIR (Directory)
Command

6-88

To display only the entry for a file that has no
extension, enter the filename followed by a
period. In this case, the. ext does not defa ul t to *.
For example,

dir filel

displays the entry for FILEt, but not for
FILEt.A.

If you wish to display all the files in directory
LEVEL2 on the above drive, you can enter:

dir level2

The screen will look like this:

A>dir level2

Volume in drive A is MYDISK
Directory of A:\leveI2

<Dlft> 9·09·82
<Dlft> 9-09·82

MYPROG COM 2463 7·30·82
3 File(s) 141312 bytes free

DIR (Directory)
Command

Note that all files in directory LEVEL2 have
been listed, including the two special entries
found in all sub-directories. The entry marked
with a single period denotes the directory being
listed (LEVEL2), and the double period denotes
this directory's parent directory (in this case, the
root directory). Thus, if your current directory is
LEVEL2 and you wish to see the files in its
parent directory, you can enter:

dir ..

The following screen is displayed:

A>dir ..

Volume in drive A is MYDISK
Directory of A:\

FILEl A 10368
FILE3 A 1613
9X 31
LEVEL2 <DIR>
FILEl 2288

7-20-83
5-27-83
8-17-82
9-09-82
9-02-82

5 File(s) 141312 bytes free

12:13p
12:14p
10:59a
12:10p
12:25p

6-89

DISKCOMP (Compare Diskette)
Command

Purpose: Compares the contents of the diskette in the
first specified drive to the contents of the
diskette in the second specified drive. Usually,
you would run DISKCOMP after a DISKCOPY
operation to ensure that the two diskettes are
identical.

Notes:

1. This command is used only for comparing
diskettes. If a fixed disk drive letter is
specified, an error message is displayed.

2. This command compares two entire diskettes;
the COMP command compares two files.

Format: DISKCOMP [d:] [d:] [/1] [/8]

Type: Internal External

Remarks: You can specify the same drive or different
drives in this command. If you specify the same
drive, a single-drive comparison is performed.
You are prompted to insert the diskettes at the
appropriate time. DISKCOMP waits for you to
press any key before it continues.

6-90

DISKCOMP (Compare Diskette)
Command

The /1 parameter forces DISKCOMP to
compare only the first side of the diskettes, even
if the diskettes and drives are dual-sided.

The /8 parameter causes DISKCOMP to
compare only 8 sectors per track, even if the
first diskette contains 9 sectors per track.

DISKCOMP compares all 40 tracks on a
track-for-track basis and issues a message if the
tracks are not equal. The message indicates the
track number (0- 39) and the side (0 or 1) where
the mismatch was found.

After completing the comparison, DISKCOMP
prompts:

Compare more diskettes (YIN)? _

If you press Y, the next comparison is done on
the same drives that you originally specified,
after you receive prompts to insert the proper
diskettes.

6-91

D ISKCOMP (Compare Diskette)
Command

6-92

To end the command, press N.

Notes:

1. If you omit both parameters, a single­
drive comparison is performed on the
default drive.

2. If you omit the second parameter, the
default drive is used as the secondary
drive. If you specify the default drive in
the first parameter, this also results in a
single-drive comparison.

3. On a single-drive system, all prompts
are for drive A, regardless of any drive
specifiers entered.

4. DISKCOMP usually does not issue a
Diskettes compare OK message if you
try to compare a backup diskette
created by the COpy command with
the diskette you copied from. The
COpy operation produces a copy that
contains the same information, but
places the information at different
locations on the target diskette from
those locations used on the source
diskette. In this case, you should use
the CaMP command to compare
individual files on the diskettes.

DISKCOMP (Compare Diskette)
Command

5. If a diskette error occurs while
DISKCOMP is reading the diskette, a
message is produced that indicates
where (track and side) the error
occurred. Then DISKCOMP continues
to compare the rest of the diskette.
Because the remainder of the data to
be compared cannot be read correctly
from the indicated track and side, you
can expect to receive a Compare error
message.

6. DISKCOMP automatically determines
the number of sides and sectors per
track to be compared, based on the
diskette that is to be read first (the first
drive parameter entered).

If the first diskette or drive can be read
on only one side, or if the /1 parameter
is used, only the first side is read from
both diskettes. If the first diskette
contains 9 Sectors per track, then
DISKCOMP will compare 9 sectors per
track unless you used the /8 parameter.
If the first drive and diskette are
dual-sided, and /1 is not specified, a
two-sided comparison is done. An error
message is produced if either the
second drive or the diskette is a
single-sided diskette.

6-93

DISKCOPY (Copy Diskette)
Command

Purpose: Copies the contents of the diskette in the source
drive to the diskette in the target drive. The
target diskette is formatted if necessary, during
the copy.

Note: This command is used only for
copying diskettes. If a fixed disk drive letter
is specified, an error message is displayed.

Format: DISKCOPY [d:] [d:][/I]

Type: Internal External

Remarks: The first parameter you specify is the source
drive. The second parameter is the target drive.

6-94

The /1 parameter causes DISKCOPY to copy
only the first side of the diskette, regardless of
the diskette or drive type.

You can specify the same drives or different
drives. If the drives are the same, a single-drive
copy operation is performed. You are prompted
to insert the diskettes at the appropriate times.
DISKCOPY waits for you to press any key
before continuing.

After copying, DISKCOPY prompts:

Copy another (YIN)? _

DISKCOPY (Copy Diskette)
Command

If you press Y, the next copy is done on the
same drives that you originally specified, after
you are prompted to insert the proper diskettes.

To end the command, press N.

Notes:

1. If the target diskette has not been
formatted with the same number of
sides and sectors per track as the
source diskette, DISKCOPY will
format the target diskette during the
copy operation.

2. If you omit both drive parameters, a
single-drive copy operation is
performed on the default drive.

3. If you omit the second parameter, the
default drive is used as the target drive.

4. If you omit the second parameter and
you specify the default drive as the
source drive, a single-drive copy
operation is performed.

5. On a single-drive system, all prompts
will be for drive A, regardless of any
drive letter you may enter.

6-95

DISKCOPY (Copy Diskette)
Command

6-96

6. Diskettes that have had a lot of file
creation and deletion activity become
fragmented, because diskette space is
not allocated sequentially. The first
free sector found is the next sector
allocated, regardless of its location on
the diskette.

A fragmented diskette can cause
degraded performance due to excessive
head movement and rotational delays
involved in finding, reading, or writing
a file.

If this is the case, it is recommended
that you use the COpy command,
instead of DISKCOPY, to eliminate
the fragmentation.

For example, place a freshly formatted
diskette in drive B, and the diskette
you wish to copy in drive A. The
command:

COpy A:*.* B:

copies all the files from the diskette in
drive A to the diskette in drive B.

7. You can run DISKCOMP after a
successful DISKCOPY to ensure that
the diskettes are identical.

DISKCOPY (Copy Diskette)
Command

8. If disk errors are encountered on either
diskette, DISKCOPY indicates the
drive, track, and side in error and
proceeds with the copy. In this case,
the target diskette (copy) mayor may
not be usable, depending on whether
the affected diskette location was to
contain valid data.

9. DISKCOPY automatically determines
the number of sides and sectors per
track to copy, based on the source
drive and diskette. If only the first side
of the source diskette can be read, then
only the first side can be copied. If the
source drive and diskette are
dual-sided, both sides can be copied
(unless you override it with the /1
parameter). In this case, if the target
drive is single-sided, an error message
will indicate that the drives are
incompatible.

If the source diskette has ever been
physically formatted with 9 sectors per
track, then all 9 sectors on each track
will be copied.

6-97

ERASE
Command

Purpose: Deletes the file with the specified filename from
the specified directory on the designated drive,
or deletes the file from the default drive if no
drive is specified. If no path is entered, the file is
deleted from the current directory.

Format: ERASE [d:] [path] [fi°lename[oext]]

Type:

or

DEL [d:] [path] [fi°lename[o ext]]

Internal

External

Remarks: The shortened form, DEL, is a valid
abbreviation for ERASE.

6-98

You can use the global characters? and * in the
filename and in the extension. Global characters
should be used with caution, however, because
multiple files can be erased with a single
command. For more information about global
characters, refer to "Global Filename
Characters" in this chapter.

To erase all files in the current directory, enter:

ERASE [d:]*.*

ERASE
Command

To erase all files in a specific directory, enter:

ERASE [d:] path

ERASE assumes a filename of * . * if no filename
is given.

Notes:

1. The system files IBMBIO. COM and
IBMDOS.COM cannot be erased.

2. If you use the filespec *. * to erase all of
the files in a directory or on a disk,
DOS issues the following message to
verify that you actually want to erase
all files:

Are you sure (YIN)?

If you do want to erase all of the files
on the diskette, enter Y. Otherwise,
enter N. Then press the Enter key.

3. The two special entries in each
sub-directory (. and .. in place of
filenames) cannot be erased.

Example: In this example, the file myprog.l will be erased
from the current directory of drive A.

A> ERASE A: myprog.l

6-99

FORMAT
Command

Purpose: Initializes the disk in the designated or default
drive to a recording format acceptable to DOS;
analyzes the entire disk for any defective tracks;
and prepares the disk to accept DOS files by
initializing the directory, File Allocation Table,
and system loader.

Format: FORMAT [d:] [/S] [/1] [/8] [/V] [/B]

Type: Internal External

Remarks: You must format all new diskettes (by using
either the FORMAT or DISKCOPY command)
and fixed disks (through FORMAT) before they
can be used by DOS.

6-100

A fixed disk must also be formatted again if you
change the size of its DOS partition through the
FDISK command.

If you specify /S in the FORMAT command, the
operating system files are also copied from the
default drive to the new disk or diskette in the
following order:

IIMIIO.COM
IIMDOS.COM
COMMAND.COM

FORMAT
Command

If you specify /1, the target diskette is formatted
for single-sided use, regardless of the drive type.

If you specify /8, the target diskette is formatted
for use at 8 sectors per track. FORMAT will
default to 9 sectors per track usage if you do not
specify /8. Note that format always creates 9
physical sectors on each diskette track, but that
it instructs DOS to use only 8 sectors per track
if you use the /8 parameter. The /1 and /8
parameters are valid only for diskettes.

If you specify IV, FORMAT will prompt you for
a volume label which will be written on the disk.

The volume label cannot be used in place of
filenames as input to any of the DOS
commands. The volume label is for your use in
keeping track of your diskettes. The /V
parameter cannot be used with the /8
parameter.

The IB parameter causes FORMAT to create an
8 sector per track diskette with space allocated
for the IBMBIO.COM and IBMDOS.COM
system modules. It does not place the system
modules or the command processor on the
diskette. This parameter is used to create a
diskette on which any version of DOS (1.00,
1.10, or 2.00) can be placed through that
version's SYS command. If the IB parameter is
not used, only DOS Version 2.00 can be placed
on the diskette through the SYS command.

6-101

FORMAT
Command

6-102

The IV and IS parameters cannot be used with
the IB parameter.

Notes:

1. Formatting destroys any previously
existing data on the disk.

2. During the formatting process, any
defective tracks are marked as reserved
to prevent the tracks from being
allocated to a data file.

3. Directory entries for IBMBIO. COM
and IBMDOS.COM are marked as
hidden files, and therefore, they do not
appear in any directory searches­
including the DIR command.

4. FORMAT will prompt you to enter a
volume label (volume identification) if
you have used the IV parameter. The
label can consist of from 1 to 11
characters. All characters acceptable in
filenames are acceptable in the volume
label. Unlike filenames, however, the
volume label does not contain a period
between the eighth and ninth
characters.

FORMAT
Command

5 . FORMAT produces a status report,
tha t indicates:

• Total disk space

• Space marked as defective

• Space currently allocated to files
(when /S is used)

• Amount of space available for
your files

6. FORMAT determines the target drive
type and formats the disk or diskette
accordingly. For diskettes, if the
diskette can be successfully read and
written on only one side, the diskette is
formatted for single-sided use; it can be
used in either type of drive. If the
target drive is dual-sided and you do
not use the /1 parameter, the diskette
is formatted for dual-sided use; it will
not be usable in a single-sided drive.

7. Fixed disks are already physically
formatted (proper recording format)
when shipped by IBM. When
formatting a fixed disk, FORMAT
checks all locations within the DOS
partition, but does not physically
format them again.

6-103

FORMAT
Command

8. If the /S parameter is used and the
system has insufficient available
memory for FORMAT to load all three
system modules, it will load as many
modules as it can, format the target
disk and write the modules that are in
memory. It must then read the
remaining modules from the source
disk so they can be placed on the target
disk. If the source diskette has been
removed from the drive, an
appropriate message will prompt you
to reinsert it before FORMAT can
continue.

Example: By issuing the following command, the diskette
in drive B is formatted and the operating system
files are also copied:

6-104

A >FORMAT I:/S/I

The system displays the following message:

Insert new diskette for drive I:
and strike any key when ready

After you insert the appropriate diskette and
press any key, the system displays this message:

Formatting ...

while the diskette formatting is taking place.

FORMAT
Command

Once the formatting is complete, the system
displays this message:

formatting ... format complete
System transferred

Volume label (11 character, ENTER for none)? MYDISI(

179712 bytes total disk space
xxxxx bytes used by system

xxxxxx bytes available on disk

format another (Y/N)?n

In the above example, note that MYDISK was
entered as the volume label.

Enter Y to format another diskette.

Enter N to end the FORMAT program.

When you format a fixed disk, you will see the
following message instead of the prompt to
insert a diskette:

Press any key to begin formatting x:

The x is replaced by the drive letter you typed.
The messages will otherwise appear in the same
manner.

Fixed disk formatting can take several minutes
because of the large size that can be allocated to
DOS, so don't be alarmed if it takes some time
before you are prompted for the volume label.
You can tell that FORMAT is working by noting
that your fixed disk drive light is on.

6-105

GRAPHICS (Screen Print)
Command

Purpose: Prints the contents of a graphics display screen
on an IBM Personal Computer 80 cps Graphics
Printer when using a Color/Graphics Monitor
Adapter. This command increases the resident
size of DOS in memory by 736 bytes.

Format: GRAPHICS

Type: Internal External

Remarks: Press the Shift-PrtSc keys to print the screen
contents on the printer. If the screen is in text
mode, the text is printed in under 30 seconds. If
the screen is in the graphics mode, each time the
PrtSc key is pressed, the following things occur:

• In the 320x200 color graphics mode, the
screen contents are printed in up to four
shades of gray.

• In the 640x200 color graphics mode, the
screen is printed sideways on the paper. The
upper right corner of the screen is printed
on the upper left corner of the paper.

• Printing may take as long as three minutes.

• To invoke the screen print from a program,
use the following coding example:

PUSH BP
INT 5

6-106 POP BP

MKDIR (Make Directory)
Command

Purpose: Creates a sub-directory on the specified disk.

Format: MKDIR [d:]path

Type:

or

MD [d:]path

Internal

External

Remarks: If you do not specify a drive, the default drive is
assumed.

Example: In this example, the command creates an entry
in the root directory for a new sub-directory
called LEVEL2:

MD\LEVE12

If you have done this and wish to add another
directory level, you can use either of the
following two examples.

Use this example if your current directory is the
root directory:

MD \ LEVE12\LEVE13

6-107

MKDIR (Make Directory)
Command

6-108

Adds an entry for sub-directory LEVEL3 in the
LEVEL2 directory.

Use this example if your current directory is
LEVEL2:

MD LEVEL3

This command will do the same thing as the
previous example. Note that in the previous
example, the first \ tells DOS to begin its
directory search with the root directory. The
absence of a leading \ in the last example causes
DOS to begin at the current directory. Each
directory may contain the names of still other
directories.

Note: You can create as many
sub-directories as you wish, limited only by
available disk space. However, you should
ensure that the maximum length of any
single path from the root directory to the
desired level is 63 characters, including
imbedded backslashes.

MODE
Command

Purpose: Sets the mode of operation on a printer or on a
display connected to the Color/Graphics
Monitor Adapter, sets options for an
Asynchronous Communications Adapter, or
causes printer output to be routed to an
Asynchronous Communications Adapter.

Technical Note: When used in Option 1,
3, or 4, the MODE command causes printer
and Asynchronous Communications
Adapter intercept code to be made resident
in memory. This increases the size of DOS
in memory by approximately 256 bytes.

Format: MODE LPT#:[n] [,[m] [,P]]

or

MODEn

or

MODE [n] ,m[, T]

or

MODE COMn:baud[,parity[,databits[,stopb#s[,P]]]]

or

MODE LPT#:=COMn

6-109

MODE
Command

Type: Internal External

Remarks: A missing or invalid nor m parameter means that
the mode of operation for that parameter is not
changed. The MODE command has four format
options:

6-110

Option 1 (For the printer)

MODE LPT#:[n] [,[m] [,P]]

where:

is 1, 2, or 3 (the printer number)
n is 80 or 132 (characters per line)
m is 6 or 8 (lines per inch vertical spacing)
P specifies continuous retry on time-out

errors

For example:

MODE LPT1: 132,8

sets the mode of operation of printer 1 to 132
characters per line and 8 lines per inch vertical
spacing. The power-on default options for the
printer are 80 characters per line and 6 lines per
inch.

MODE
Command

The retry loop can be stopped by pressing
Ctrl-Break. To stop time-out errors from being
continuously retried when you have entered P,
you must use MODE Option 1 without
specifying P.

Option 2 (For switching Display Adapters,
and setting the display mode of the
Color/Graphics Monitor Adapter)

MODEn

or

MODE [n],m[,T]

where:

n is 40, 80, BW 40, BWBO, C040, CaBO,
or MONO

40 sets the display width to 40 characters
per line (for Color/Graphics Monitor
Adapter).

80 sets the display width to 80 characters
per line (for Color/Graphics Monitor
Adapter).

BW40 switches the active display adapter to
the Color/Graphics Monitor Adapter,
and sets the display mode to Black and
White (disables color) with 40
characters per line.

6-111

MODE
Command

6-112

BWBO switches the active display adapter to
the Color/Graphics Monitor Adapter,
and sets the display mode to Black and
White (disables color) with 80
characters per line.

C040 switches the active display adapter to
the Color/Graphics Monitor Adapter,
enables color, and sets the display
width to 40 characters per line.

coso switches the active display adapter to
the Color/Graphics Monitor Adapter,
enables color, and sets the display
width to 80 characters per line.

MONO switches the active display adapter to
the Monochrome Display Adapter
(which always has display width of 80
characters per line).

m is R or L (shift display right or left).

T requests a test pattern used to align the
display.

MODE
Command

For readability, you can shift the display one
character (for 40 columns) or two characters (for
80 columns) in either direction. If you specify T
in the MODE command, a prompt asks you if
the screen is aligned properly. If you enter Y the
command ends. If you enter N the shift is
repeated followed by the same prompt. For
example,

MODE 80,R,1

sets the mode of operation to 80 characters per
line and shifts the display two character
positions to the right. The test pattern is
displayed to give you the opportunity to further
shift the display without having to enter the
command again.

Option 3 (For Asynchronous Communications
Adapter)

MOD E COMn: baud[,parity [,databits[,stopbits
[,P]]]]

where:

n Either 1 or 2 (Asynchronous
Communications Adapter number)

baud 110,150,300,600,1200,2400,4800,
or 9600

Note: Only the first two
characters are required;
subsequent characters are ignored.

6-113

MODE
Command

6-114

parity Either N (none), 0 (odd), or E (even) -
(default = E)

databits Either 7 or 8 (default = 7)

stop bits Either 1 or 2 (if baud equals 110,
default = 2; if baud does not equal 110,
default = 1)

These are the protocol parameters. They are used
to initialize the Asynchronous Communications
Adapter. When you specify the protocol, you
must specify at least the baud rate. The other
parameters can be omitted, with the defaults
accepted, by entering only commas. For
example:

MODE COM1:12,N,8,1,P

sets the mode of operation to 1200 baud rate,
no parity, eight databits, and one stopbit. To use
the defaults listed in the definitions above, you
enter:

MODE COM1: 12"" P

The parity defaults to even, the data bits defaults
to seven, and the stopbits defaults to one.

MODE
Command

The P option indicates that the asynchronous
adapter is being used for a serial interface
printer. If you enter the P, time-out errors are
continuously retried. You can stop the retry
loop by pressing Ctrl-Break. To stop the
time-out errors from being continuously retried
when you have entered P, you must reinitialize
the asynchronous adapter without entering the
P.

Option 4 (To redirect parallel printer output
to an Asynchronous
Communications Adapter)

MODE LPT#:=COMn

where:

Either 1, 2, or 3 (printer number)

nEither 1 or 2 (Asynchronous
Communications Adapter number)

6-115

MODE
Command

6-116

All output directed to printer LPT# is redirected
to the asynchronous adapter n.

Notes:

1. Before you can use MODE to redirect
parallel printer output to a serial
device, you must initialize the
Asynchronous Communications
Adapter by using Option 3 (see above).
If that serial device is a printer, your
serial initialization command should
also include the P parameter.

2. MODE LPT#:[n] [,m] disables the
redirection for the printer designated
by the#.

PATH (Set Search Directory)
Command

Purpose: Causes specified directories to be searched for
commands or batch files that were not found by
a search of the current directory.

Format: PATH [[d.·]path[[;[d.·]path] ...]]

Type: Internal

External

Remarks: You may specify a list of drives and path names,
separated by semicolons (note that path names
must be specified and will not default to current
directory). Then, when you enter a command
that is not found in the current directory of the
drive that was specified (or implied) with the
command, DOS searches the named directories
in the sequence you entered them. The current
directory is not changed.

Entering PATH with no parameters causes DOS
to display the names that were specified on a
previous PATH command (that is, the search
paths currently defined to DOS). Entering
PATH with only a semicolon (PATH;) resets the
search path to null (no extended search path).
This is the default when DOS is started. In this
case, DOS searches only the current directory
for commands and batch files.

6-117

PATH (Set Search Directory)
Command

Example: In this example, assume the program
MYPROG.COM resides only in directory
MYDIR on drive B, and that the default drive is
drive A:

6-118

PATH LEVEl2; LEVEL2 LEVEL3;B: MYDIR

This command instructs DOS to look in the
current directory of the drive specified, followed
by A: LEVEL2, then A: LEVEL2 LEVEL3 then
B: MYDIR until it finds the command you have
entered. If the command entered is not found in
any of the directories specified in PATH, the
message Bad command or filename is
displayed.

In the previous example, if you enter the
command:

MYPROG

PATH (Set Search Directory)
Command

DOS searches four directories, finding the
program MYPROG in B:\MYDIR.

Notes:

1. Erroneous information in the paths,
such as invalid drive specifications or
imbedded delimiters, will not be
detected until DOS actually needs to
search the specified paths.

2. If a path is specified that no longer
exists at the time DOS uses it to search
for a command or batch file, DOS
ignores that path and goes on to the
next.

6-119

PRINT
Command

Purpose: Prints a queue (list) of data files on the printer
while you are doing other tasks on the computer.
Up to 10 filenames can be queued for printing at
one time. The first time this command is issued,
it increases the resident size of DOS in memory
by approximately 3200 bytes.

Format: PRINT [[d:] [/i'lename[.ext]] [IT] [Ie] [lP] ...]

Type: Internal External

Remarks: You can enter more than one filename on the
command line, each with appropriate
parameters. Global filename characters * and?
are allowed in the filename and extension. Only
files in the current directory can be queued for
printing. Once a file has been queued, you can
change the current directory without affecting
the printing of the files already in the print
queue.

6-120

IT sets the terminate mode. All queued files are
canceled from the print queue. If a file is
currently being printed, the printing stops, a
cancellation message is printed, the paper is
advanced to the next page, and the printer's
alarm sounds.

PRINT
Command

Ie sets the cancel mode. Allows you to select
which file or files to cancel. The preceding
filename and all following filenames entered on
the command line are canceled from the print
queue until a IP is found on the command line,
or the Enter key is pressed.

IP sets the print mode. The preceding filename
and all following filenames are added to the
print queue until a Ie is found on the command
line, or the Enter key is pressed.

Global filenalne characters * and? are allowed in
the filename and extension. You can enter more
than one filename on the command line, each
with appropriate parameters.

If no I parameters are specified and the Enter
key is pressed, the files listed on the command
line are queued for printing (lP is assumed).

If PRINT is entered with no parameters, PRINT
displays the names of the files currently in the
print queue.

The first time the PRINT command is executed
after you start your system, the following
message is displayed on the display screen:

Name of list device [PRN):

6-121

PRINT
Command

6-122

This allows you to specify the output list device,
LPTl, LPT2, LPT3, PRN, COMl, COM2, AUX,
etc. The default is PRN, and will be selected if
you press Enter.

Note: Be sure the device you name is
physically attached to your system; naming
a nonexistent device will cause
unpredictable system behavior.

The files are queued for printing in the order
entered. After each file is printed, the printer
paper is advanced to the next page. Any tab
characters found are expanded with blanks to
the next 8-column boundary.

If PRINT encounters a disk error while
attempting to read the file to be printed, PRINT
will cause:

• The file currently printing to be canceled

• The disk error message to be printed on the
printer

• The printer paper to be advanced to the
next page and the alarm to be sounded

• The remaining files in the print queue to be
printed

PRINT
Command

If the IT or I C parameters are used to cancel a
file or files currently being printed:

• The printer alarm sounds.

• A file cancellation message prints on the
printer. If IT, All files canceled by
operator. If I C, the name of the file
followed by File canceled by operator,
where File is the name of the file.

• The printer paper advances to the next
page.

• If all files in the print queue have not been
canceled, printing resumes with the first file
remaining in the print queue.

6-123

PRINT
Command

Notes:

1. The disk containing the files being
printed must remain in the specified
drive until all printing is complete. Any
file in the print queue must not be
altered or erased until after it has been
printed.

2. The printer cannot be used for any
other purpose while PRINT has data to
print. Any attempt to use the printer
(Shift-PrtSc, LLIST, LPRINT, etc.)
results in an "out-of-paper" or
"time-out" indication until all files
have been printed or printing is
terminated (/1). Using Ctrl-PrtSc will
result in a "not ready" error message.
You should press Ctrl-PrtSc again and
reply A to the error message.

Example: In this example, the PRINT command is being
used for the first time since system was started.
The command:

6-124

PRINT a:templ.tst

has just been entered, DOS responds with:

Name of list device (PRN]:

Press the Enter key to send output to the
printer.

PRINT
Command

Then it adds the file TEMPI. TST from drive A
to the print queue and sends the output to the
device "PRN" printer. The command:

PRINT IT

empties the print queue. Any other information
on the line is ignored. The command:

PRINT temp.*/C

removes all TEMP.??? files from the print
queue that have the same drive letter as the
default drive. The command:

PRINT a:templ.tstlC a:temp2.tst a:temp3.tst

removes the three files TEMPI, 2, and 3 on
drive A from the print queue. The command:

PRINT templ.tstlC temp2.tst/P temp3.tst

removes file TEMP1.TST from the print queue,
adds the files TEMP2.TST and TEMP3.TST to
the print queue. The command:

PRINT templ.tst temp2.tst temp3.tstlC

adds files TEMPI.TST and TEMP2.TST to the
print queue, then removes TEMP3. TST from
the print queue.

6-125

RECOVER
Command

Purpose: Recovers files from a disk that has developed a
defective sector . You can recover the file that
contains the bad sector (minus the data in the
bad sector), or all the files on the disk can be
recovered if the directory has been damaged.

Format: RECOVER [d:] fpathifilename [.ext]

Type:

or

RECOVERd:

Internal External

Remarks: The file named by filename is the file to be
recovered. If you do not specify a drive, the
default drive is used. If you do not specify a
path, the current directory is used. The size of
the recovered file is a multiple of the DOS
allocation unit size. In most cases, this is larger
than the original file size. Text files will
normally require re-editing to remove unwanted
data from the end of the recovered file before
they can be used for normal processing.

6-126

In the second format shown, RECOVER
assumes the directory is damaged, and recovers
all files on the specified disk.

RECOVER
Command

If the global filename characters * and? are used
in the filename or extension, only the first file
that matches the filespec will be recovered.
RECOVER only recovers one file at a time when
a filespec is entered.

Example: For this example assume the disk file to be
recovered is MYPROG:

RECOVER A:MYPROG

This command causes the disk file MYPROG on
drive A to be read sector-by-sector, skipping the
bad sectors. The bad sectors are allocated in a
system table, thus preventing future allocations
of that sector. The filename is not changed.

The following example shows how to recover
the contents of an entire disk from drive A:

RECOVER A:

This command causes the disk file allocation
table on drive A to be scanned for chains of
allocation units. A new root directory is created
for each chain of allocation units in the form:

FILEnnnn.REC

6-127

RECOVER
Command

6-128

Where nnnn is a sequential number starting with
0001. Each FILEnnnn.REC points to one of the
recovered files on the disk.

Note: This form of the RECOVER
command should only be used if the
directory of the disk has become unusable.
Because RECOVER has no way to know
whether the data in the directory is valid or
not, it must assume that the entire directory
is invalid, and therefore recovers all files
into filenames of the form shown above,
including any files for which there may still
have been valid directory entries.

RENAME (or REN)
Command

Purpose: Changes the name of the file specified in the
first parameter to the name and extension given
in the second parameter. If a valid drive is
specified in the second parameter, the drive is
ignored.

Format: REN[AME] [d:] [path]filename[.ext] filename[.ext]

Type: Internal

External

Remarks: You can use the abbreviated form REN for the
RENAME command. You can also use the
global characters? and * in the parameters. For
more information about global characters, refer
to "Global Filename Characters" in this chapter.
A path can be specified only with the first
filename; the file will remain in the same
directory after its name has been changed.

6-129

RENAME (or REN)
Command

Example: The command:

6-130

RENAME B:ABODE HOME

renames the file ABODE on drive B to HOME.

The command:

REN B:ABODE *.XY

renames the file ABODE on drive B to
ABODE.XY.

The command:

REN B: LEVEL2 MYPROG.COM MYPROG1.COM

renames the file MYPROG .COM in directory
LEVEL2 on drive B to filename

MYPROGl.COM.

RESTORE (Fixed Disk)
Command

Purpose: Restores one or more files from diskettes to a
fixed disk.

Format: RESTORE d: [d:] [path] [filename] [.ext] [IS] [lP]

Type: Internal External

Remarks: The files being restored must have been placed
on the diskettes by the BACKUP command. The
first parameter you specify is the backup
diskette drive. The second parameter is the
fixed disk file you want to restore.

Files are restored to the current directory if you
do not specify a path. If you do not specify a
filename or extension, then all files backed up
from the directory will be restored.

Global filename characters are allowed in the
filename, and will cause all of the files matching
the filename to be restored. For example,
entering:

RESTORE A: C:*.DAT

restores each file from the backup diskettes
with an extension of .DAT that had been backed
up from the current directory.

6-131

RESTORE (Fixed Disk)
Command

6-132

The parameter IS causes backed up files in all
sub-directories to be restored in addition to the
files in the specified directory itself. This
includes sub-directories at all levels beyond the
specified directory.

The parameter IP will cause RESTORE to
prompt you before restoring files that have
changed since they were last backed up, or that
are marked read-only. You can then choose to
restore the file or not. Read-only is a file
attribute that an application can set by
interfacing with DOS internally. The two DOS
system files (IBMBIO.COM and IBMDOS.COM)
are marked read-only when they are created by
the FORMAT and SYS commands.

The following example restores all files on the
backup diskettes to fixed disk drive C:

RESTORE A: C:\ /S

The next example restores three different files
from the backup diskettes to the default fixed
disk drive:

RESTORE A: \ level1\ filel. dat
RESTORE A: \level1\level2\flle2.dat
RESTORE A: \level1\level3\file3.dat

RESTORE (Fixed Disk)
Command

When RESTORE prompts you to insert the
backup diskette, make sure you insert the first
diskette that might contain the file you want to
restore. If you are not sure, insert backup
diskette number one. If the file is not on the
diskette you inserted, RESTORE will prompt
you to insert the next diskette.

If you used global filename characters,
RESTORE will prompt you to insert the next
diskette after it has restored all files on the
backup diskette that match the specified
filename.

The RESTORE command sets the
ERRORLEVEL (see Batch Commands) as
follows:

o Normal completion

1 No files were found to restore

3 Terminated by user (Ctrl-Break or ESC)

4 Terminated due to error

These codes can be used with the batch
processing IF subcommand to control
subsequent error level processing.

6-133

RMDIR (Remove Directory)
Command

Purpose: Removes a sub-directory from the specified
disk.

Type:

RMDIR [d:]path

or

RD [d:]path

Internal

External

Remarks: The directory must be empty before it can be
removed with the exception of the "." and "oo"
entries. The last directory name in the path is
the directory to be removed.

Example: In this example, the command:

6-134

RD B:\ LEVEI2\ LEVEl3

removes the entry for LEVEL3 from directory
LEVEL2.

Note: The root directory and the current
directory cannot be removed.

SYS (System)
Command

Purpose: Transfers the operating system files from the
default drive to the specified drive.

Format: SYS d:

Type: Internal External

Remarks: The directory of the disk in the specified drive
must be completely empty, or the disk must
have been formatted by a FORMAT d:/S or
FORMAT d:/B command to contain directory
entries for the DOS files IBMBIO.COM and
IBMDOS. COM. This is necessary because DOS
startup requires these files to occupy the first
two directory entries, and because
IBMBIO.COM must reside on consecutive
sectors on the disk.

Note: SYS lets you transfer a copy of DOS
to an application program diskette designed
to use DOS, but sold without it. In this
case, the space required for the DOS files
has already been allocated, although the
DOS files are not actually present. The SYS
command will transfer the files to the
allocated space.

6-135

TIME
Command

Purpose: Permits you to enter or change the time known
to the system. Whenever you create or add to a
file, the time is recorded in the directory. You
can change the time from the console or from a
batch file.

Format: TIME [bb:mm:ss.xx]

Type: Internal

External

Remarks: If you enter a valid time with the TIME
command, the time is accepted, and the system
prompt appears. Otherwise, the TIME command
displays the following prompt:

6-136

Current time is hh:mm:ss.xx
Enter new time: _

where:

bb is a one- or two-digit number from 0-23
(representing hours)

mm is a one- or two-digit number from 0-59
(representing minutes)

ss is a one- or two-digit number from 0-59
(representing seconds)

xx is a one- or two-digit number from 0-99
(representing hundredths of a second)

Notes:

TIME
Command

1. To leave the time as is, press Enter.

2. If you enter any information (for
example, just the hours, and press
Enter), the remaining fields are set to
zero.

3. Any time is acceptable as long as the
digits are within the defined ranges.

4. The valid delimiters within the time are
the colon (:) separating the hours,
minutes, and seconds, and the period
(.) separating the seconds and the
hundredths of a second.

5. If you specify an invalid time or
delimiter, you receive an Invalid time
message.

Example: In this example, once you press Enter, the time
known to the system is changed to 13:55:00.00.

A>TIME
Current time is 00:25:16.65
Enter new time: 13:55_

6-137

TREE (Display Directory)
Command

Purpose: Displays all of the directory paths found on the
specified drive, and optionally lists the files in
each sub-directory.

Format: TREE [d:][/F]

Type: Internal External

Remarks: If no drive is specified, the default drive is
assumed.

6-138

For each directory found, its full path name will
be displayed, along with the names of any
directories defined within it (these are called
sub-directories in the output). If the IF
parameter is used, the names of all files in each
sub-directory will also be displayed.

TREE (Display Directory)
Command

Example: In this example, the command:

TREE B:/F > TREE.LST

causes all directories on drive B to be listed.
The output will be placed in file TREE.LST in
the current directory of drive B, and will contain
the names of all sub-directories and files at each
directory level.

Following is an example of a directory path
listing. If the disk called MYDISK in drive A had
the following directory structure:

MYPROI1.ASM
MYPROG2.ASM

No 1111.

LEVE13

MYPROI1.EIE

6-139

TREE (Display Directory)
Command

6-140

then TREE would display:

DIRECTORY PATH LISTING FOR VOLUME MYDISK

Path: \SOURCE

Sub-directories: None

Files: MYPROGl .ASM
MYPROG2 .ASM

Path: \LEVEL2

Sub-directories: LEVEL3

Files: None

Path: \LEVEL2\LEVEL3

Sub-directories: None

Files: MYPROGl .EXE

The following example lists all the
sub-directories and filenames from drive A on
the printer:

TREE A:/F >PRN

TYPE
Command

Purpose: Displays the contents of the specified file on the
screen.

Format: TYPE [d:] fpatblfilename[. ext]

Type: Internal External

Remarks: The data is unformatted except that tab
characters are expanded to an eight-character
boundary; that is, columns 8, 16, 24, etc.

6-141

TYPE
Command

Notes:

1. Press Ctrl-PrtSc if you want the
contents of a file to be printed as it is
being displayed. You can also redirect
the output to a file or the printer.

2. Text files appear in a legible format;
however, other files, such as object
program files, may appear unreadable
due to the presence of nonalphabetic
or nonnumeric characters.

3. You must specify a filespec.

4. Global filename characters are not
allowed in the filename or extension. If
glo bal filename characters are used in
the filename or extension, the message
File not found will appear.

Example: In this example, the file MYPROG.ONE on the
diskette in drive B is displayed on the screen:

nPE B: myprog.one

6-142

VER (Version)
Command

Purpose: Displays the DOS version number that you are
working with on the display screen.

Format: VER

Type: Internal

External

Remarks: The DOS version consists of a single-digit major
version number, followed by a period, followed
by a two-digit minor revision level.

Example: A>VER
IBM Personal Computer DOS Version 2.00

6-143

VERIFY
Command

Purpose: Verifies that the data written on a disk has been
correctly recorded.

Format: VERIFY [ON I OFF]

Type: Internal

External

Remarks: VERIFY ON remains on until it is turned off
through the SET VERIFY System Call or a
VERIFY OFF command.

When ON, DOS performs a verify operation
following each disk write operation, to verify
that the data just written can be read without
error. Because of the extra time required to
perform the verification, the system runs slower
when programs write data to disk.

Entering VERIFY with no parameters causes
DOS to display the current state (on or off) of
the verify feature.

Example: This example causes the verify feature to be
turned on:

6-144

A>VERIFY ON

This example displays the current status:

A>VERIFY
VERIFY is on

A>

VOL (Volume)
Command

Purpose: Displays the disk volume identification of the
specified drive.

Format: VOL [d:]

Type: Internal

External

Remarks: If you do not specify a drive, the default drive is
assumed.

Example: A>VOL
Volume in drive A is MYDISK

A>

6-145

Summary of DOS Commands

The following chart is provided for quick
reference. The section called "Format Notation"
at the beginning of this chapter explains the
notation used in the format of the commands.

Note: In the column labeled Type, the I
stands for Internal and the E stands for
External.

Command Type Purpose Format

(Batch) I Executes batch [d:Vilename
file [parameters]

ECHO I Inhibits screen ECHO
display [ON I OFF

message]

FOR I Interactive FOR %%variable
execu tion of IN (set) DO
commands command

GOTO I Transfers control GOTO label
to line following
the label

IF I Conditional IF [NOT] condition
execu tion of command
commands

PAUSE I Provides a system PAUSE [remark]
wait

Figure 1 (Part 1 of 2). DOS Batch Processing Commands

6-146

Command Type Purpose Format

REM I Displays remarks REM [remark]

SHIFT I Shift command SHIFT
lines

Figure 1 (Part 2 of 2). DOS Batch Processing Commands

Command Type Purpose Format

ASSIGN E Routes requests ASSIGN [x=y [...]]
to a different
drive

BACKUP E Backs up fixed BACKUP
disk files [d:] [path]

r/ilename] [. ext]d:
[IS] [1M] [I A]
[D:mm-dd-yy]

BREAK I Checks for BREAK
control break [ON I OFF]

CHDIR I Change current CHD IR [[d:]path]
directory

or

CD [[d:]path]

CHKDSK E Checks disk and CHKDSK
reports status [d:] [filename] [.ext]

[IF] [IV]

CLS I Clears the display CLS
screen

Figure 2 (Part 1 of 6). DOS Commands

6-147

Command Type Purpose Format

COMP E Compares files COMP
[d:] [path] r/ilename
[.ext]]
[d:] [path] r/ilename
[.ext]]

COPY I Copies files COpy [I A] [lB]
[d:] [path lfilename
[.ext] [I A] [lB]

[d:] [path] r/ilename
[.ext]] [I A] [lB] [IV]

or

COpy [I A] [lB]
[d:] [path lfilename
[.ext] [I A] [lB]

[+[d:] [pathlfilename
[.ext] [I A] [lB] ...]

[d:] [path] r/ilename
[. ext]] [I A] [lB] [IV]

DATE I Enter date DATE [mm-dd-yy]

DIR I Lists filenames DIR [d:] [path]
[filename [.ext]]
[lP][lW]

DISKCOMP E Compares DISKCOMP
diskettes [d:] [d:]

[11][/8]

DISKCOPY E Copies diskettes DISKCOPY [d:]
[d:] [/1]

Figure 2 (Part 2 of6). DOS Commands

6-148

Command Type Purpose Format

ERASE I Deletes files ERASE
[d:] [patb] [filename]
[.ext]

or

DEL
[d:] [patb] [filename]
[.ext]

FORMAT E Formats diskette FORMAT [d:][/S]
[11] [18] [IV] [lB]

GRAPHICS E Prints graphics GRAPHICS
display screen

MKDIR I Creates a MKDIR [d:]patb
sub-directory

or

MD [d:]patb

Figure 2 (Part 3 of 6). DOS Commands

6-149

Command Type Purpose Format

MODE E Sets mode on MODE LPT#:[n]
printer/ display [,[m][,P]]

or

MODEn

or

MODE [n],m[,T]

or

MODECOMn:
baud[,parity [,data bits
[,stopbits[,P]]]]

or

MODE LPT#:=
COMn

PATH I Searches PATH
directories for [[d:]path[[; [d:]
commands or path] ...]]
batch files

PRINT E Queues and PRINT
prints data files [[d:] [ji'lename[. ext]]

[/T] [lC] [lP] ...]

Figure 2 (Part 4 of 6). DOS Commands

6-150

Command Type Purpose Format

RECOVER E Recovers files RECOVER
from disk or [d:] [path Vilename
diskette [.ext]

or

RECOVERd:

RENAME I Renames files REN[AME]
[d:] [pathVilename
[. extVilename[. ext]

RESTORE E Restores diskette RESTOREd:
files to fixed disk [d:] [path] [ti"lename]

[.ext] [IS] [IP]

RMDIR I Removes a RMDIR [d:]path
sub-directory

or

RD [d:]path

SYS E Transfers DOS SYSd:

TIME I Enter time TIME [hh:mm:ss.xx]

TREE E Displays all TREE [d:] [IF]
directory paths

TYPE I Displays file TYPE
contents [d:] [pathVilename

[.ext]

VER I Displays version VER
number

Figure 2 (Part 5 of 6). DOS Commands

6-151

Command Type Purpose Format

VERIFY I Verifies data VERIFY
[ON I OFF]

VOL I Displays volume VOL [d:]
iden tifica tio n

Figure 2 (Part 6 of 6). DOS Commands

6-152

Contents

Introduction.. 7-3

How to Start the ED,LINProgram 7-4
Editing an "Existing File' ~ . 7-4
EditingaNewFile ~""""""".""" . 7-5

TheEDLINC()mmand Parameters ," 7-7

Notes:

7-2

Introduction

In this chapter, you will learn how to use the Line
Editor (EDLIN) program.

You can use the Line Editor (EDLIN) to create,
change, and display source files or text files.
Source files are unassembled programs in source
language format. Text files appear in a legible
format.

EDLIN is a line text editor that you can use to:

• Create new source files and save them

• Update existing files and save both the
updated and original files

• Delete, edit, insert, and display lines

• Search for, delete, or replace text within one
or more lines

The text of files created or edited by EDLIN is
divided into lines of varying length, up to 253
characters per line.

Line numbers are generated and displayed by
EDLIN during the editing process, but are not
actually present in the saved file.

7-3

When you insert lines, all line numbers following
the inserted text advance automatically by the
number of lines inserted. When you delete lines,
all line numbers following the deleted text
decrease automatically by the number of lines
deleted. Consequently, line numbers always go
consecutively from 1 through the last line number.

Note: EDLIN will erase the original backup
copy (.BAK) of the file when you issue an E
(end edit) command, or if the disk space is
required during the editing session to satisfy a
W (write lines) command.

How to Start the EDLIN Program

To start EDLIN, enter:

EDLIN (d:](path]filename[.extH/Bj

Editing an Existing File

7-4

If the specified file exists on the designated or
default drive, the file is loaded into memory until
memory is 75% full. If the entire file is loaded, the
following message and prompt is displayed:

End of input file
*

You can then edit the file.

Note: If you have not used the /B
parameter, EDLIN will stop loading the file
when the first Ctrl-Z is encountered in the
file's text. If you wish to edit a file that is
known to contain embedded Ctrl-Z characters
(end-of-file marks), you should use the /B
parameter. EDLIN will then process the entire
file regardless of any embedded end-of-file
marks.

Notice that the prompt for EDLIN is an
asterisk (*).

If the entire file cannot be loaded into memory,
EDLIN loads lines until memory is 75% full, then
displays the * prompt. You can then edit the
portion of the file that is in memory.

To edit the remainder of the file, you must write
some of the edited lines to diskette in order to free
memory so that you can load unedited lines from
diskette into memory. Refer to the Write Lines
and Append Lines commands in this chapter for
the procedure you will use.

Editing a New File

If the specified file does not exist on the drive, a
new file is created with the specified name. The
following message and prompt are displayed:

New file
*

You can now create a new file by entering the
desired lines of text. To begin entering text, you
must enter an I command to insert lines.

7-5

7-6

When you have completed the editing session, you
can save the original and updated (new) files by
using the End Edit command. The End Edit
command is discussed in this chapter in the section
called "The EDLIN Commands." The original file
is renamed to an extension of .BAK, and the new
file has the filename and extension you specified in
the EDLIN command.

Note: You cannot edit a file with a filename
extension of .BAK with EDLIN because the
system assumes it is a backup file. If you find
it necessary to edit such a file, rename the file
to another extension; then start EDLIN and
specify the new name.

The EDLIN Command Parameters

Parameter Definition

line Denotes when you must specify a line
number.

There are three possible entries that you
can make using this parameter:

1. Enter a decimal integer from 1-65529.
If you specify a number greater than
the number of lines that are in
memory, the line will be added after
the last line that exists.

Line numbers must be separated from
each other by a comma or space.

OR

2: Enter a pound sign (#) to specify the
line after the last line in memory.
Entering a # has the same effect as
specifying a number greater than the
number of lines in memory.

7-7

Parameter Definition

line OR

3. Enter a period (.) to specify the current
line.

The current line indicates the location
of the last change to the file, but it is
not necessarily the last line displayed.
The current line is marked by an
asterisk (*) between the line number
and the first character of text in the
line. For example:

lO:*FIRST CHARACTER OF TEXT

n Denotes when you must specify lines.

Enter the number of lines that you want to
write to diskette or load from diskette.

You only use this parameter with the Write
Lines and Append Lines commands. These
commands are meaningful only if the file to
be edited is too large to fit in memory.

string Denotes when you must enter one or more
characters to represent text to be found,
replaced, deleted, or to replace other text.

You only use this parameter with the
Search Text and Replace Text commands.

7-8

The EDLIN Commands

This section describes the EDLIN commands and
tells how to use them. The commands are in
alphabetical order; each with its purpose, format
and remarks. Examples are provided where
appropriate.

Information Common to All EDLIN
Commands

The following information applies to all EDLIN
commands:

• With the exception of the Edit Line
command, all commands are a single letter.

• With the exception of the End Edit and Quit
Edit commands, commands are usually
preceded and! or followed by parameters.

• Enter commands and string parameters in
uppercase or lowercase, or a combination of
both.

• Separate commands and parameters with
delimiters for readability; however, a delimiter
is only required between two adjacent line
numbers. Remember, delimiters are spaces or
commas.

• Commands become effective only after you
press the Enter key.

7-9

7-10

• Stop commands by pressing the Ctrl-Break
keys.

• For commands producing a large amount of
output, press Ctrl-Num Lock to suspend the
display so that you can read it before it scrolls
away. Press any other character to restart the
display.

• Use the control keys and DOS editing keys,
described in Chapter 3, while using EDLIN.
They are very useful for editing within a line,
while the EDLIN commands can be used for
editing operations on entire lines.

• The prompt from EDLIN is an asterisk (*).

• It is possible to refer to line numbers relative
to the current line. Use a Minus (-) sign and a
number to indicate a line before the current
line. Use a Plus (+) sign and a number to
indicate a line after the current line. For
example:

-10,+10L

This command displays 10 lines before the
current line, the current line, and 10 lines
after the current line.

• Multiple commands can be entered on one
command line. When you enter the command
to edit a single line using [line], you must use a
semicolon to separate the commands on the
line. In the case of the Search or Replace
command the [string] can be terminated by
Ctrl-Z (F6) instead of the Enter key. Otherwise,
one command can follow another without any
special delimiting characters. For example:

15;-5,+5L

edits line 15 and then displays lines 10
through 20 on the screen.

• Control characters can be inserted into the
text, or can be used in the strings for the
Search text and Replace text commands. To
enter a control character, press Ctrl-V, then
enter the desired control character in
uppercase. For example, the sequence Ctrl-V,
followed by Z generates the control character
Ctrl-Z.

7-11

A ppend Lines
Command

Purpose: Adds the specified number of lines from disk to
the file being edited in memory. The lines are
added at the end of the current lines in memory.

Format: [n]A

Remarks: This command is only meaningful if the file
being edited is too large to fit in memory. As
many lines as possible are read into memory for
editing when you start EDLIN.

7-12

To edit the remainder of the file that will not fit
into memory, you must write edited lines in
memory to disk before you can load unedited
lines from disk into memory by using the
Append Lines command. Refer to the Write
Lines command for information on how to write
edited lines to disk.

Notes:

1. If you do not specify the number of
lines, lines are appended to memory
until available memory is 75% full. No
action is taken if available memory is
already 75% full.

2. The message End of input file is
displayed when the Append Lines
command has read the last line of the
file into memory.

Copy Lines
Command

Purpose: Copies the lines in the specified range to the line
number specified by the third parameter. The
new data is placed ahead of the line that was
specified in the third parameter. This third
parameter is not optional. The operation is
repeated the number of times specified in count.

Format: [line], [line] ,line Lcount]C

Remarks: The parameter count defaults to 1. To repeat text
specify the number of times the operation is to
be performed in count. If the first parameter or
the second parameter is omitted, the default is
the current line. This effectively copies the
current line to the specified line. The file is
renumbered accordingly. The first of the copied
lines becomes the current line. For example:

1,5,8C

copies lines 1 through 5 to line 8. Line 8
becomes the current line.

Note: The line numbers must not overlap
or an error is reported. Also, the characters
- and + are not allowed in the count field.

7-13

Delete Lines
Command

Purpose: Deletes a specified range of lines.

Format: [line] [,line] D

Remarks: The line following the deleted range becomes
the current line, even if the deleted range
includes the last line in memory. The current
line and any following lines are renumbered.

7-14

Default values are supplied if either one or both
of the parameters are omitted.

If you omit the first parameter, as in:

,lineD

deletion starts with the current line and ends
with the line specified by the second parameter.
The beginning comma is required to indicate the
omitted first parameter.

Delete Lines
Command

If you omit the second parameter, as in:

lineD

or

line,D

only the one specified line is deleted. If you
omi t both parameters, as in:

D

only the current line is deleted, and the line that
follows becomes the current line.

Example: Assume that you want to edit the following file.
The current line is line 29.

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5: line number generation.
•
•
•

25: See what happens
26: to the lines
27: and line numbers
28: when lines are
29:*deleted.

7-15

Delete Lines
Command

7-16

If you want to delete a range of lines, from 5 -25,
enter:

5,250

The result is:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5:*to the lines
6: and line numbers
7: when lines are
8: deleted.

Lines 5-25 are deleted from the file. Lines 26-29
are renumbered to 5-8. Line 5 becomes the
current line. If you want to delete the current
and the following line, enter:

,60

The result is:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5:*when lines are
6: deleted.

Lines 5-6 are deleted from the file. Lines 7-8 are
renumbered to 5-6. Line 5 is still the current
line, but now it has different text.

Delete Lines
Command

If you want to delete a single line, say line 2,
enter:

20

The result is:

1: This is a sample file
2:*line deletion
3: and dynamic
4: when lines are
5: deleted.

Line 2 is deleted. Lines 3-6 are renumbered to
2-5. The new line 2 becomes the current line. If
you want to delete only the current line, enter:

o

The result is:

1: This is a sample file
2:*and dynamic
3: when lines are
4: deleted.

The current line, line 2, is deleted. Lines 3-5 are
renumber~d to 2-4. The new line 2 becomes the
current line.

7-17

Edit Line
Command

Purpose: Allows you to edit a line of text. You must enter
the line number of the line to be edited, or enter
a period (.) to indicate the current line.

Format: [line]

Remarks: If you just press Enter, you specify that the line
after the current line is to be edited.

7-18

The line number and its text are displayed and
the line number is repeated on the line below.

You can use the control keys and the editing
keys, described in Chapter 3, to edit the line, or
you can replace the entire line by typing new
text.

When you press the Enter key, the edited line is
placed in the file and becomes the current line.

If you decide not to save the changed line, press
either Esc or Ctrl-Break instead of Enter. The
original line remains unchanged. Pressing the
Enter key with the cursor at the beginning of
the line has the same effect as pressing Esc or
Ctrl-Break.

If the cursor is in any position other than the
beginning or the end of a line, pressing Enter
erases the rest of the line.

Edit Line
Command

Example: Assume that you want to edit line 6. The
following display wOl,lld appear on the screen:

*6
6: This is a sample unedited line.
6: _

The first line is your request to edit line 6,
followed by the two-line display response.

If you want to move the cursor to the letter u,
press F2 and enter:

u

The result is:

*6
6: This is a sample unedited line.
6: This is a sample_

If you want to delete the next two characters
and keep the remainder of the line, press Del
twice; then press F3.

The result is:

*6
6: This is a sample unedited line.
6: This is a sample edited line._

7-19

Edit Line
Command

7-20

N ow you can take one of the following actions:

• Press Enter to save the changed line.

• Extend the changed line by typing more
text. You are automatically in insert mode
when the cursor is at the end of a line.

• Press F5 to do additional editing to the
changed line without changing the original
line.

• Press Esc or Ctrl-Break to cancel the
changes you made to the line. The original
contents of the line will be preserved.

End Edit
Command

Purpose: Ends EDLIN and saves the edited file.

Format: E

Remarks: The edited file is saved by writing it to the drive
and filename specified when you started EDLIN.

The original file, the one specified when EDLIN
was started, is given a . BAK filename extension.
A . BAK file will not be created if there is no
original file; that is, if you created a new file
instead of updating an old file during the editing
session.

7-21

End Edit
Command

7-22

EDLIN returns to the DOS command processor,
which displays the command prompt.

Notes:

1. Be sure your disk has enough free
space to save the entire file. If your
disk does not have enough free space,
only a portion of the file is saved. The
portion in memory that is not written
to disk is lost. In this case, your
original file will not be renamed to
. BAK, and the portion of data that was
written to disk will have a filename
extension of $$$.

2. EDLIN appends a carriage return, line
feed sequence to the end of the file if
they were not already present, to
delimi t the last line of text in the file.
Also, a Ctrl-Z character is added as the
last character in the saved file. This
serves as an end-of-file mark.

Insert Lines
Command

Purpose: Inserts lines of text immediately before the
specified line. When you create a new file, you
must enter the Insert Lines command before
text can be inserted.

Format: [line] I

Remarks: If you do not specify line, or if you specify line
as a period (.), the insert is made immediately
before the current line.

If the line number you specify is greater than
the highest existing line number, or if you
specify # as the line number, the insertion is
made after the last line in memory.

EDLIN displays the appropriate line number so
that you can enter more lines, ending each line
by pressing Enter. During the insert mode of
operation, successive line numbers appear
automatically each time Enter is pressed.

You must press Ctrl-Break to discontinue the
insert mode of operation.

The line that follows the inserted lines becomes
the current line, even if the inserted lines are
added t<> the end of the lines in memory. The
curren t line and any remaining lines are
renumbered.

7-23

Insert Lines
Command

Example: Assume that you want to edit the following file.

7-24

Line 3 is the current line:

1: This is a sample file
2: used to demonstrate
3:*line deletion
4: and dynamic
5: line number generation.

If you want to insert text before line 4, the entry
and immediate response look like this:

*41
4:*_

Now, if you want to insert two new lines of text,
enter:

*4 I
4:* first new line of text
5:* Second new line of text
6:*

and press Ctrl-Break.

The original lines 4 and 5 are now renumbered
to lines 6 and 7.

Insert Lines
Command

If you display the file with a List Lines
command, the file looks like this:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: First new line of text
5: Second new line of text
6:* and dynamic
7: line number generation.

If the two lines that were inserted had been
placed at the beginning of the file, the screen
would look like this:

1: First new line of text
2: Second new line of text
3:*This is a sample file
4: used to demonstrate
5: line deletion
6: and dynamic
7: line number generation.

If the two lines that were inserted had been
placed immediately before the current line (3 I
or. I or I), the screen would look like this:

1: This is a sample file
2: used to demonstrate
3: First new line of text
4: Second new line of text
5:*line deletion
6: and dynamic
7: line number generation.

7-25

Insert Lines
Command

7-26

If the two inserted lines had been placed at the
end of the file (6 I or # I), the screen would look
like this:

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5: line number generation.
6: first new line of text
7: Second new line of text

List Lines
Command

Purpose: Displays a specified range of lines.

The current line remains unchanged.

Format: [line] [,line] L

Remarks: Default values are provided if either one or both
of the parameters are omitted.

If you omit the first parameter, as in:

,lineL

the display starts 11 lines before the current line
and ends with the specified line. The beginning
comma is required to indicate the omitted first
parameter.

Note: If the specified line is more than 11
lines before the current line, the display is
the same as if you omitted both parameters.
(An example is provided in this section
showing both parameters omitted.)

7-27

List Lines
Command

7-28

If you omit the second parameter, as in:

IineL

or

line, L

a total of 2 3 lines are displayed, starting with the
specified line.

If you omit both parameters, as in:

L

a total of 2 3 lines are displayed - the 11 lines
before the current line, the current line, and the
11 lines after the current line. If there aren't 11
lines before the current line, then extra lines are
displayed after the current line to make a. total
of23 lines.

List Lines
Command

Example: Assume that you want to edit the following file.
Line 15 is the current line.

1: This is a sample file
2: used to demonstrate
3: line deletion
4: and dynamic
5: line number generation.
•
•
•

15:*This is the current line (note the asterisk)
•
•
•

25: See what happens
26: to the lines
27: and line numbers
28: when lines are
29: deleted.

If you want to display a range of lines, from
5-25, enter:

5,25L

7-29

List Lines
Command

7-30

The screen looks like this:

5: line number generation.
•
•
•

15:*This is the current line (note the asterisk)
•
•
•

25: See what happens

If you want to display the first three lines, enter:

1,3L

The screen looks like this:

1: This is a sample file
2: used to demonstrate
3: line deletion

If you want to display 23 lines of the file,
starting with line 3, enter:

3L

The screen looks like this:

3: line deletion
4: and dynamic
5: line number generation.
•
•
•

List Lines
Command

15:*This is the current line (note the asterisk)
•
•
•

25: See what happens

If you want to display 23 lines centered around
the current line, enter:

L

The screen looks like this:

4: and dynamic
5: line number generation.
•
•
•

15:*This is the current line (note the asterisk)
•
•
•

25: See what happens
26: to the lines

7-31

Move Lines
Command

Purpose: Moves the range of lines specified by the first
two line parameters ahead of the line specified in
the third line parameter. The third parameter is
not optional.

Format: [line] ,[line] ,lineM

Remarks: Use this command to move a block of data from
one location in the file to another. If the first or
second line parameter is omitted, it will default
to the current line. After the move, the first of
the moved lines becomes the current line. The
lines are renumbered according to the direction
of the move. For example:

7-32

,+25,100M

moves the data from the current line plus 25
lines to line 100. If the arguments overlap an
entry error is reported.

Page
Command

Purpose: Lists the specified block of lines.

Format: [line] [,line] P

Remarks: If the first line parameter is omitted, it defaults
to the current line plus one. If the second line
parameter is omitted, 23 lines are listed. The
new current line becomes the last line displayed
by the Page command and is marked with an
asterisk. This command pages through a file
displaying 23 lines at a time. It differs from the
List Lines command in that it changes the
curren t line.

7-33

Quit Edit
Command

Purpose: Quits the editing session without saving any
changes you may have entered.

Format: Q

Remarks: EDLIN prompts you to make sure you really
don't want to save the changes. .

Enter Y if you want to quit the editing session.
No editing changes are saved and no .BAK file is
created. Refer to the End Edit command for
information about the .BAK file.

Enter N, or any other character, if you want to
continue the editing session.

Example: 0
Abort edit (Y/Nlt_

7-34

Replace Text
Command

Purpose: Replaces all occurrences of the first string in the
specified range of lines with the second string.

Format:

Notes:

1. If you omit the second string, Replace
Text deletes all occurrences of the first
string within the specified range of
lines. If you omit both strings, EDLIN
will re-use the search string entered
with the most recent (previous) S or R
command, and the Replace Text string
entered with the last R command.

2. This command uses the F6 key as
normally setup by DOS. If you have
changed the meaning of the F6 key
through" Extended Keyboard
Control" (see Chapter 13), you should
press Ctrl- Z where F6 is referred to
below.

EDLIN displays the changed lines each time
they are changed. The last line changed becomes
the current line.

[line] [,line] [?] R[string] [<F6>string]

7-35

Replace Text
Command

Remarks: You can specify the optional parameter? to
request a prompt (O.K.?) after each display of a
modified line. Press Y or the Enter key if you
want to keep the modification.

7-36

Enter any other character if you don't want the
modification. In either case, the search
continues for further occurrences of the first
string within the range of lines, including
multiple occurrences within the same line.

Defaults occur if either one or both of the line
parameters are missing.

If you omit the first line, the search begins with
the line after the current line. If you omit the
second line, the search ends with the last line in
memory. If you omit both line parameters, the
system will search from the line following the
current line to the last line in memory.

Note: The first string begins with the
character in the position immediately
following the R, and continues until you
press F6 orCtrl-Z (or the Enter key if the
second string is omitted).

The second string begins immediately after
you press F6 or Ctrl-Z and continues until
you press Enter.

Replace Text
Command

Example: Assume that you want to edit the following file.
Line 7 is the current line.

1: This is a sample file
2: used to demonstrate
3: the Replace and Search Text commands.
4: This includes the
5: optional parameter?
6: and required string
7:*parameter.

To replace all occurrences of and with or in the
lines in memory, enter:

1,7 Rand

Then press F6, type Of, and press Enter.

The result is:

3: The Replace or Search Text commands
6: or required string

Line 6 becomes the current line in the file,
because line 6 was the last line changed. Notice
that lines 1, 2, 4, 5, and 7 are not displayed
because they were not changed.

7-37

Replace Text
Command

7-38

Greater selectivity can be achieved by
requesting a prompt (by using the? parameter)
after each display of a modified line. If you
request a prompt, the screen looks like this:

*1,7? Rand (Press F6, type or, and press Enter)
3: the Replace or Search Text commands

O.K.? y
3: the Replace or Search Text commands

O.K.? N
6: or required string

O.K.? y
*

Lines 3 and 6 are displayed like this:

3: the Replace or Search Text commands.
6: or required string

Search Text
Command

Purpose: Searches a specified range of lines in order to
locate a specified string.

Format: [line] [,line] [?] S[string]

Remarks: The first line to contain the specified string is
displayed and the search ends (unless you use
the? parameter). The first line found that
contains the specified string becomes the
current line.

Note: The Search command always
searches for the exact same character in
text. That is, it searches for UPPERCASE if
you enter UPPERCASE, and lowercase if
you enter lowercase.

You should specify the optional parameter? if
you would like a prompt (O.K.?) after each
display of a line containing the specified string.

7-39

Search Text
Command

7-40

If you do not enter a string, the S command will
use the last search string that was entered on a
Replace or Search command. If the specified
string is not found, the search ends and the
message Not found is displayed. The current
line remains unchanged. If you enter Y or press
the Enter key, the line that matches the
specified string becomes the current line and the
search ends. Enter any other character to
continue the search until another string is
found, or until all lines within the range are
searched. Once all the lines within the range are
searched, the Not found message is displayed.

Search Text
Command

The system provides default values if you omit
the first, second, or both line parameters. If you
omit the first line parameter, the system defaults
to the line followil).g the current line. If you
omit the second line parameter, the system
defaults to the last line in memory. If you omit
both line parameters, the system searches from
the line following the current line to the last line
in memory.

Notes:

1. The string begins with the character in
the position immediately following the
S and continues until you end the
string by pressing the Enter key.

2. If you wish to place more than one
command on a line containing a Search
Text command, the Search Text
command should end in a Ctrl-Z (F6),
and the next command should begin in
the following character position.

7-41

Search Text
Command

Example: Assume that you want to edit the following file.

7-42

Line 7 is the current line.

1: This is a sample file
2: used to demonstrate
3: the Search Text command.
4: This includes the
5: optional parameter?
6: and required string
7:*parameter.

If you want to search for the first occurrence of
and in the file, enter:

1,7 Sand
or

1, Sand
or

lSand

The result is:

3: the Search Text command.
*

The and is part of the word command. Notice
that line 3 becomes the current line in the file.

Search Text
Command

Perhaps this is not the and you were looking
for. To continue the search, simply enter the
letter S and press Enter. The search will
continue with the line following the current line
(the line just found).

The screen looks like this:

*1,7 Sand
3: the Search Text command.

*S
6: and required string

*

Line 6 now becomes the current line in the file.

You can also search for strings by requesting a
prompt (by means of the? parameter) after each
display of a matching line. In this case, the
screen looks like this:

*1,7? Sand
3: the Search Text command.

O.K.? N
6: and required string

O.K.? y
*

7-43

Transfer Lines
Command

Purpose: Transfers (merges) the contents of a specified
file into the file currently being edited.

Format: [line]T[d:lfilename

Remarks: The filename contents will be inserted ahead of
the line in the file being edited. If line is omitted,
then the current line is used.

7-44

Note: The file being merged is read from
the current directory of the specified or
default drive. If a path was specified when
you issued the EDLIN command, then that
path will be the current directory for that
drive for the duration of the EDLIN
session, and any Transfer Lines commands
for that drive must be satisfied from the
same directory.

Write Lines
Command

Purpose: Writes a specified number of lines to diskette
from the lines that are being edited in memory.
Lines are written beginning with the line
number 1.

Format: [n] W

Remarks: This command is only meaningful if the file you
are editing is too large to fit in memory. When
you start EDLIN, EDLIN reads lines into
memory until memory is 75% fulL

To edit the remainder of your file, you must
write edited lines in memory to diskette before
you can load additional unedited lines from
diskette into memory by using the Append Lines
command.

Note: If you do not specify the number of
lines, lines are written until 25% of available
memory is used. No action is taken if
available memory is already less than 25%
used. All lines are renumbered so that the
first remaining line becomes number 1.

7-45

Summary of EDLIN Commands

The following chart is provided for quick
reference.

Command

Append Lines

Copy Lines

Delete Lines

Edit Line

End Edit

Insert Lines

List Lines

Move Lines

Page

Quit Edit

Replace Text

Note: The section called "Format
Notation" in Chapter 6 explains the
notation used in the format of the following
commands.

Format

[n]A

[line] ,[line] ,line, [,count] C

[line] [,line] D

[line]

E

[line] I

[line] [,line] L

[line], [line] ,lineM

[line] [,line] P

Q

[line] [,line] [?] R[string] [<F6> string]

Figure 3 (Part 1 of2). EDLIN Commands

7-46

Command Format

Search Text [line] [,line] [?] S[string]

Transfer Lines [line] T filename

Write Lines [n]W

Figure 3 (Part 2 of 2). EDLIN Commands

7-47

Notes:

7-48

Chapter 8. Messages

Contents

Introduction '. 8-3

Device Error Messages 8-3

Other Messages 8-7

Notes:

8-2

In trod uction

This chapter contains two parts; first, device errors
(the message that DOS uses to indicate errors
while reading or writing to devices on your
system), and second, Other messages (the remainder
of the DOS messages) in alphabetical order. Each
message is indicated here by bold type, and the
description follows the message.

The first word of the description of each message
is the name of the program or command that
generated the message.

Device Error Messages

When an error is detected while reading or writing
any of the devices (disk drives, printer, etc.) on
your system, DOS will display a message in the
following format:

<type> error reading <device>
Abort, Retry, Ignore?

or
<type> error writing <device>
Abort, Retry, Ignore?

8-3

In these messages, <device> is the name of the
device in error, such as PRN, or B:, and <type> is
one of the following error types:

Bad call format

A device driver was passed an incorrect length
request header. If this occurs, contact the dealer
you purchased the device driver from.

Bad command

A device driver has issued an invalid command to
<device>.

Bad unit

A device driver has been passed an invalid sub-unit
number. If this occurs, contact the dealer you
purchased the device driver from.

Data

The data was unable to be read or written
correctly. This usually means a disk has developed
a defective spot.

Disk

An error of a type not described above has
occurred.

No paper

The indicated printer is either out of paper or is
not turned on.

Non-DOS disk

The file allocation table contains invalid
information, and needs to be re-formatted.

Not ready

The named device is not ready, and cannot accept
or transrnit data.

Read fault

DOS was unable to successfully read the data.

Sector not found

The sector containing the data could not be
located on the disk, usually occurring when a
defective spot develops on the disk.

Seek

The fixed disk or diskette drive was unable to
locate the proper track on the disk.

Write fault

DOS was unable to successfully write the data to
the device, from the device.

8-5

8-6

Write protect

An attempt was made to write on a write protected
diskette.

Warning
If any of these messages appear for a diskette
drive, DO NOT change diskettes.

The system now waits until one of the following
responses is made, Enter:

• A for Abort. The system ends the program
that requested the disk read or write.

• R for Retry. The system tries the disk read or
write operation again.

• I for Ignore. The system pretends the error
did not occur and continues the program.

To recover from an error condition, the responses
are generally made in the following order:

R to retry the operation because the error may
not occur again.

A to abort the program.

I to ignore the error condition and continue the
program. (This response is not recommended
because data is lost when you use it.)

Note: One of these messages will appear if
you attempt to use a dual-sided diskette in a
single-sided drive, or if you attempt to use a 9
sector per track diskette on a pre-version 2.00
level of DOS.

Other Messages

The following messages are in alphabetical order.

A

About to generate .EXE file
Change disks <hit ENTER>

LINK. This message is displayed when you specify
the IPAUSE parameter. Insert your Runfile
diskette into the appropriate drive and press Enter.

Access denied

DEBUG. An attempt was made to write to a file
which is marked read-only.

All files canceled by operator

PRINT. This message appears on the printer when
you cancel the printing of all queued files via the
IT parameter.

All specified file(s) are contiguous

CHKDSK. The file or files you named are all
written sequentially on the disk.

8-7

8-8

Allocation error for file, size adjusted

CHKDSK. A filename precedes this message. An
invalid sector number was found in the file
allocation table. The file was truncated at the end
of the last valid sector.

Ambiguous switch: z

LINK. The characters specified by z do not
uniquely identify a linker parameter. Use more
characters from the parameter name.

Amount read less than size in header

EXE2BIN. The program portion of the file was
smaller than indicated in the file's header. You
should re-compile or re-assemble, and re-LINK the
program.

An internal failure has occurred

LINK. An error has occurred in the linker
program. Report the conditions under which the
message appeared to your Authorized IBM
Personal Computer Dealer.

Attempt to access data outside of segment
bounds

LINK. An object file is probably invalid.

Attempted write-protect violation

FORMAT. The diskette being formatted cannot be
written on because it is write-protected. You are
prompted to insert a new diskette and press a key
to restart formatting.

B

Backup file sequence error

RESTORE. A file to be restored was backed up
onto more than one diskette. You did not insert
the diskette with the first part of the file. Rerun
RESTORE and start with the correct diskette.

Bad command or file name

DOS. The command just entered is not a valid
command to DOS. You should check your spelling
and re- en ter the command. If the command name
is correct, check to see that the default drive
contains the external command or batch file you
are trying to execute.

Bad numeric parameter

LINK. The value you specified with the /STACK
parameter is not a valid numeric constant.

8-9

8-10

Bad or missing Command Interpreter

DOS. The disk that DOS is being started from
does not contain a copy of COMMAND. COM, or
an error occurred while the disk was being loaded.
If System Reset fails to solve the problem, copy
COMMAND. COM from a backup diskette to the
root directory of the disk that failed.

This message also appears if COMMAND. COM has
been removed from the directory it was in
originally when DOS was started; or if the
COMSPEC= parameter in the environment points
to a directory not containing COMMAND. COM
and DOS is attempting to reload the command
processor.

Bad or missing < filename>

DOS. This message appears only at startup, and
indicates that a device driver named in a DEVICE=
<filename> parameter in the CONFIG.SYS file
was not found, or set a break address that was out
of bounds for the machine size, or an error
occurred while the driver was being loaded. That
driver is not installed by DOS.

Batch file missing

DOS. DOS was unable to locate the batch file it
had been processing. The file has probably been
erased or renamed by one of the steps within it.
Batch processing stops and the DOS prompt
appears.

BF

DEBUG. Bad flag. An invalid flag code setting was
specified. Try the Register (R F) command again
with the correct code.

BP

DEBUG. Breakpoints. More than ten breakpoints
were specified for the Go command. Try the Go
(G) command again with ten or fewer breakpoints.

BR

DEBUG. Bad register. An invalid register name
was specified. Try the Register (R) command again
with a correct register name.

BREAK is On/Off

DOS. This message indicates that BREAK is on or
off.

c

Cannot do binary reads from a device

COPY. You have used the /B parameter with a
device name while attempting to copy from the
device. The copy cannot be performed in binary
mode because COpy must be able to detect
end-of-file from the device. You should omit the
/B parameter or use the / A parameter after the
device name.

8-11

8-12

Cannot edit .BAK file - rename file

EDLIN .. BAK files are considered to be backup
files, with more up-to-date versions of the files
assumed to exist. Therefore, .BAK files shouldn't
be edited.

If it is necessary to edit the .BAK file, either
rename the file, or copy it and give the copy a
different name.

Cannot find file object file
Change diskette <hit ENTER>

LINK. The linker could not locate the specified
object module on the drive. Insert the diskette
with the specified module on it and press Enter.

Cannot find library library file
En ter new drive letter:

LINK. The specified library could not be found on
the drive. Enter the letter for the drive the library
is on.

Cannot load COMMAND, system halted

DOS. While attempting to reload the command
processor, DOS determined that the area in which
it keeps track of available memory has been
destroyed, or the command processor could not be
found in the path specified by the COM SPEC .
environment parameter. You should restart DOS.

Cannot nest response file

LINK. You used @filespec within an automatic
response file. Automatic response files cannot be
nested.

Cannot open list file

LINK. The directory or disk is full.

Cannot open overlay

LINK. The directory or disk is full.

Cannot open response file

LINK. The automatic response file could not be
found.

Cannot open temporary file

LINK. The directory or disk is full.

Cannot start COMMAND, exiting

DOS. While attempting to load a second copy of
the command processor, either the FILES=
parameter in the configuration file was found to
contain too small a value, or there is insufficient
available memory to contain the new copy of
COMMAND. COM.

8-13

8-14

COMn: bbbb,p,d,s,t initialized

MODE. The Asynchronous Communications
Adapter has been initialized. The values represent:

n adapter (COM1 or COM2)

bbbb baud rate

p parity

e even

o odd

n none

s stop bits (1 or 2)

t type of serial device

p serial printer (serial timeouts will be
retried)

other serial device (serial timeouts
will not be retried)

Compare error at offset xxxxxxxx

CaMP. The files being compared contain different
values at the displayed offset (in hexadecimal) into
the file. The differing values are also displayed in
hexadecimal.

Compare error(s) on
Track xx, side xx

DISKCOMP. One or more locations on the
indicated track and side contain differing
information between the diskettes being
compared.

Compare more diskettes (Y /N)?

DISKCOMP. If you wish to compare another pair
of diskettes, enter Y, and DISKCOMP will prompt
you to insert the required diskettes. If you do not
want to compare any more diskettes, enter N.

Compare more files (Y/N)?

COMPo If you wish to compare the contents of two
more files, enter Y, and COMP will prompt you for
the names of the files to compare. If you do not
wish to compare more files, enter N.

Comparing x sectors per track, n side(s)

DISKCOMP. The n will be either 1 or 2, indicating
the number of sides that DISKCOMP will compare
on the two diskettes. This number is determined
by the number of sides DISKCOMP was able to
successfully read from the first track of the first
diskette. The x indicates the number of sectors per
track found on the first diskette (8 or 9). If you use
/8, then the number 8 will appear.

8-15

8-16

Contains invalid cluster,
file truncated

CHKDSK. The file whose name precedes this
message contains an invalid pointer to the data
area. The file is truncated at the last valid data
block if the IF parameter was used.

Contains xxx non-contiguous blocks

CHKDSK. The file whose name precedes this
message is not written sequentially on disk-it is
written in xxx pieces on different areas of the disk.
This is an information only message, and does not
indicate a problem on the disk. Since fragmented
files take longer to read, you should consider
copying badly fragmented files to another disk.
This w~ll record the file sequentially, resulting in
better system performance when the file is read.

Convert directory to file (YIN)?

CHKDSK. The directory whose name appears
ahead of this message contains enough invalid
information that it is no longer usable as a
directory. If you reply Y, CHKDSK will convert
the directory to a file so that you may examine it
with DEBUG. If you reply N, the entry is not
changed.

Convert lost chains to files (YIN)?

CHKDSK. If you wish to recover the data in the
"lost" blocks found by CHKDSK, reply Y. If you
reply N, CHKDSK will free the blocks up so they
can be allocated to new files.

Copy another (Y /N)?

DISKCOPY. If you wish to copy another entire
diskette, enter Y; DISKCOPY will prompt you to
insert the required diskette. If you do not wish to
make another copy, enter N.

Copy complete

DISKCOPY. The source diskette contents have
been successfully copied to the target diskette.

Copying x sectors per track, n side(s)

DISKCOPY. The n will be either 1 or 2, indicating
the number of sides that DISKCOPY has
successfully read from the first track of the source
diskette. The x will be 8 or 9, indicating the
number of sectors per track found on the source
diskette.

D

DF

DEBUG. Double flag. Conflicting codes were
specified for a single flag. A flag can be changed
only once per Register (R F) command.

Disk boot failure

DOS. An error occurred while trying to load DOS
into memory. If subsequent attempts to start the
system also fail, place a backup DOS diskette in
drive A and restart your system.

8-17

8-18

Disk error wri ting FAT x

CHKDSK. A disk error was encountered which
CHKDSK was attempting to update the file
allocation table (FAT) on the specified drive. X will
be 1 or 2, depending on which of the 2 copies of
the file allocation table could not be written. If
this message appears twice, for FAT's 1 and 2, the
disk should be considered unusable.

Disk full- write not completed

EDLIN. An End Edit command ended abnormally
because the disk does not have enough free space
to save the entire file.

Some of the file may be saved on disk, but the
portion in memory not saved is lost.

Disk not compatible

FORMAT. The drive you specified cannot be
formatted by the DOS FORMAT command. It is
not supported by the IBM device interfaces that
FORMAT requires.

Disk unsuitable for system disk

FORMAT. A defective track was detected where
the DOS files were to reside. The diskette can be
used only for data.

Diskettes compare OK

DISKCOMP. The two diskettes just compared
contain identical information.

Diskette is not a backup diskette

BACKUP and RESTORE. The diskette was not
created by BACKUP. The first file on a backup
diskette is always BACKUPID.@@@. Rerun with
the correct diskette.

Divide overflow

DOS. A program attempted to divide a number by
zero, or the program had a logic error that caused
an internal malfunction. The system simulates
Ctrl-Break processing.

Do you see the leftmost 9? (YIN)

MODE. ,R,Twas specified. Respond Y or N. This
prompt is repeated until you respond Y.

Do you see the rightmost 9? (YIN)

MODE. ,L, T was specified. Respond Y or N. This
prompt is repeated until you respond Y.

Do you wish to use the en tire fixed
disk for DOS (Y IN) ? []

FDISK. When the "Create DOS Partition" option
is used on the current fixed disk and the fixed disk
has never been set up, this question is asked. If you
enter Y, the entire current fixed disk will be used
for DOS and it will be made active. If you enter N,
you will be asked to enter the limits of the DOS
partition you want to create.

8-19

8-20

Dup record too complex

LINK. Problem resides in object module created
from an assembler source program. A single DUP
requires 1024 bytes before expansion. Debug the
source program; then rerun LINK.

Duplicate filename or
file not found

RENAME. You tried to rename a file to a filename
that already exists on the diskette, or the file to be
renamed could not be found on the specified (or
default) drive.

E
Enter the number of the partition you
want to make active : []

FDISK. The "Change Active Partition" option is
requesting that you enter the number of the
partition you want to make active. Type the
number of the partitions that you want to make
active on the current fixed disk. They are displayed
above the prompt. Then press the Enter key.

Enter partition size : [dddd]

FDISK. The "Create DOS Partition" option
requests that you enter the size of the partition
you wish to create. The number shown in the
brackets is the default size. If you only press Enter,
that size will be used as the partition size.

En ter primary file name

CaMP. Enter the filespec of the first of two files to
be compared.

Enter starting cylinder number .. : [dddd]

FDISK. The "Create DOS Partition" option is
requesting that you enter the starting cylinder
number for the DOS partition you are creating.
The value in the brackets is the default value. It is
the starting cylinder of the largest piece of free
space on the current fixed disk. Type a number
and press Enter, or just press Enter to use the
default value.

Enter 2nd file name or drive id

CaMP. Enter the filespec of the second of two
files to be compared, or just enter the drive
designator if the filename is the same as the
primary filename.

Entry error

EDLIN. Correct the syntax error on the last
command.

Entry has a bad attribute
(or size or link)

CHKDSK. This message may begin with one or
two periods, indicating which entry in the
subdirectory was in error. CHKDSK will attempt
to correct the error if the IF parameter was
specified.

8-21

8-22

EOF mark not found

COMPo An unsuccessful attempt was made to
locate the end of valid data in the last block of the
files being compared. This message usually occurs
when comparing nontext files; it should not occur
when comparing text files. For more details, see
the COMP command in Chapter 5.

Error found, F parameter not specified
Corrections will not be written to disk

CHKDSK. You have not used the IF parameter.
CHKDSK will perform its analysis as though it
were going to correct any errors detected, so that
you can see the results of its analysis, but it will
not actually write the corrections on the disk.

Error in EXE file

DOS. An error was detected in the relocation
information placed in the file by the LINK
program. This may be due to a modification to the
file.

Error in EXE/HEX file

DEBUG. The file contained invalid records or
characters.

Error loading operating system

Startup. A disk error occurred while attempting to
load your operating system from fixed disk. If the
situation persists after several attempts to
re-start the system, you should start DOS from
your DOS diskette and use the SYS command to
transfer a new copy of DOS to your fixed disk.

Error reading fixed disk.

FDISK. The FDISK program was unable to read
the startup record of the current fixed disk after
five tries. Try the FDISK program again. If after
several tries you are unable to proceed, consult the
Guide to Operations book "Problem Determination"
section and see your IBM Personal Computer
Dealer.

Error writing fixed disk.

FDISK. The FDISK program was unable to write
the startup record of the current fixed disk after
five tries. Try the FDISK program again. If after
several tries you are unable to proceed, consult the
Gutde to Operations book "Problem Determination"
section and see your IBM Personal Computer
Dealer.

Error writing to device

Commands. DOS was unable to write the
requested number of bytes to the device. This
indicates that you tried to send more data to the
device than the device was expecting.

Errors on list device indicate that
it may be off-line. Please check.

PRINT. The device being used for background
printing is offline. This message only appears when
the device is offline and you enter a new PRINT
command.

8-23

8-24

EXE and HEX files cannot be written

DEBUG. The data would require a backwards
conversion that DEBUG doesn't support.

EXEC failure

Commands. An error was encountered while
reading a command from disk, or the FILES=
command in the configuration file (CONFIG.SYS)
does not specify a large enough value. You should
increase that value and restart DOS.

F

File allocation table bad, drive x
Abort, Retry, Ignore?

DOS. See the message Disk error reading drive x
under "Device Error Messages" at the beginning of
this chapter. If this error persists, the disk is
unusable and should be formatted again.

File AND File

COMPo This message indicates the full path and
filenames of the two files currently being
compared.

File canceled by operator

PRINT. This message appears on the printer after
you cancel the printing of a file to serve as a
reminder that the printout is incomplete.

File cannot be copied onto itself

DOS. A request is made to COpy a file and place
the copy (with the same name) in the same
directory on the same disk as the originaL You
should change the name given to the copy, put it
in a different directory or put it on another disk.

F He creation error

DOS and commands. An unsuccessful attempt was
made to add a new filename to the directory or to
replace a file that was already there. If the file was
already there, it was marked read-only and
therefore could not be replaced. Otherwise run
CHKDSK to determine if the directory is full, or if
some other condition caused the error.

F He is cross-linked:
on cluster xx

CHKDSK. This message will appear twice for each
cross-linked cluster number, naming the two files
in error. The same data block is allocated to both
files. No corrective action is taken automatically,
so you must correct the problem. For example,
you can:

• Make copies of both files (use COpy
command).

• Delete the original files (use ERASE
command).

• Review the files for validity and edit as
necessary.

8-25

8-26

File is currently being printed
File is in queue

PRINT. These messages appear together when you
issue a PRINT command with no parameters, or
individually when you queue the first or a
subsequent file for printing. This message is
provided for your information.

File not found

DOS and commands. A file named in a command
or command paranleter does not exist in the
directory in the specified (or default) drive.

Files are different sizes

COMPo The sizes of the files to be compared do
not match. The comparison cannot be done
because one of the files contains data which the
other does not.

Files compare OK

COMPo The two files just compared contain
identical information.

First cluster number is invalid,
entry truncated

CHKDSK. The file whose name precedes this
message contains an invalid pointer to the data
area. The file is truncated to a zero-length file if
the IF parameter was specified.

Fixed disk already has a DOS partition.

FDISK. You chose the "Create DOS Partition"
option and the current fixed disk which already
has a DOS partition.

Fixup offset exceeds field width

LINK. An assembler instruction refers to an
address with a NEAR attribute instead of a FAR
attribute. Edit assembler source program and
process again.

Fixups needed- base segment (hex):

EXE2BIN. The source (.EXE) file contained
information indicating that a load segment is
required for the file. Specify the absolute segment
address at which the finished module is to be
loaded.

WARNING
We do not recommend using such a program as a
.COM file because the program is dependent
upon being loaded at a specific memory
location.

8·27

8-28

FOR cannot be nested

Batch. More than one FOR subcommand was
found on one command line in the batch file. Only
one FOR subcommand is allowed per command
line.

Format failure

FORMAT. A disk error was encountered while
creating the target diskette. The diskette is
unusable.

Formatting while copying

DISKCOPY. The target diskette was found to
contain unformatted tracks. DISKCOPY will
format the remainder of the target diskette as it
copies data. If this message is followed by the
message Incompatible drive types, you have tried
to copy a dual sided diskette to a drive that does
not have dual sided capability; processing will end,
and the target diskette will not contain any useful
data

I

Illegal Device N arne

MODE. The specified printer must be LPTl:,
LPT2:, or LPT3:; the specified Asynchronous
Communications Adapter must exist and be
COMl: or COM2:. There must be no more than
one blank between MODE and its parameters.

Incompatible diskette or drive types

DISKCOMP. The first diskette was successfully
read on both sides, but the second diskette could
only be read on the first side. Either the second
drive or diskette is single sided or the first diskette
contains 9-sectors per track and the second
diskette contains only 8-sectors per track.

Incompatible drive types

DISKCOMP. The source diskette and drive are
dual sided, but the target drive has only single
sided capability. The target diskette contains no
useful data.

Incompatible system size

SYS. The target diskette contained a copy of DOS
tha t is smaller than the one being copied. The
system transfer does not take place. A possible
solution might be to format a blank diskette (use
the FORMAT IS command) and then copy any
files to the new diskette.

Incorrect DOS version

Commands. The command you just entered
requires a different version of DOS than the one
you are running.

8-29

8-30

Insert backup diskette xx in drive x:
Strike any key when ready

RESTORE. Insert the new backup diskette in
sequence. RESTORE will continue when you press
a key.

Insert backup diskette xx in drive x:
Warning! Diskette files will be erased
Strike any key when ready

BACKUP. Insert the next diskette to be used for
the backup. Use DOS formatted diskettes only.
BACKUP will continue when you press a key.

Insert COMMAND.COM disk in drive x:
and strike any key when ready

DOS. DOS is attempting to reload the command
processor, but COMMAND. COM is not on the
drive that DOS was started from. Insert the DOS
diskette in the indicated drive and press any key.

Insert disk to be recovered in to
drive x: and press any key when ready

RECOVER. Insert the diskette to be recovered in
the indicated drive and press any character key.

Insert disk with batch file
and strike any key when ready

DOS. The diskette that contained the batch file
being processed was removed. The batch processor
is trying to find the next command in the file.
Processing will continue when you insert the
diskette in the appropriate drive and press a key.

Insert DOS disk in x:
and strike any key when ready

SYS and FORMAT. FORMAT or SYS is trying to
load the DOS files, but the indicated drive x: does
not contain the DOS diskette.

Insert DOS diskette in drive A:
Press any key when ready ...

FDISK. You have successfully created the DOS
partition on the current fixed disk. Insert the DOS
diskette into drive A: and press any key. This will
restart your IBM Personal Computer. The current
fixed disk will now be assigned a fixed disk letter
and you can now FORMAT the fixed disk.

Insert first diskette in drive x
Insert second diskette in drive x

DISKCOMP. Insert the first (or second) diskette
of the two diskettes to be compared in to the
indicated drive. One or both of these messages will
be followed by the message Strike any key when
ready. When you press a key, the comparison will
continue.

Insert source diskette in drive x
Insert target diskette in drive x

DISKCOPY. Insert the appropriate diskette into
the indicated drive, and press any key when
prompted. The copying process will continue.

8-31

8-32

Insufficien t disk space

DOS and commands. The disk does not contain
enough free space to contain the file being written.
If you suspect this condition is invalid, run
CHKDSK to determine the status of the disk.

Insufficien t memory

Commands. The amount of available memory is
too small to allow these commands to function.
You should change the BUFFERS= parameter in
the CONFIG.SYS file to a smaller value (if you
have specified BUFFERS=), restart the system and
try the command again. If the message still
appears, then your system does not have enough
memory to execute the command.

Insufficient room in root directory
Erase files from root and repeat CHKDSK.

CHKDSK. You have instructed CHKDSK to
create files from the "lost" data blocks it has
found, but the root directory is full, so all of the
lost chains could not be recovered into files. You
should copy some of the recovered files to another
disk for further examination, delete them from the
disk you are checking, then run CHKDSK again to
recover the remainder of the lost data.

Insufficien t space on disk

DEBUG. A Write command was issued to a disk
that doesn't have enough free space to hold the
data being written. If you are writing to diskette,
you may insert a diskette that does have enough
free space and re-issue the Write command.
Otherwise, you should erase files from the disk and
run DEBUG again.

Intermediate file error during pipe

DOS. DOS was unable to create one or both of its
intermediate files because the default drive's root
directory was full, or DOS is unable to locate the
piping files, or the disk contains insufficient
available space to hold the data being piped. You
should erase some files from the default drive's
root directory and re-issue the command that
failed. If it still fails, one of the programs in the
command line has erased one or both of the piping
files. You should correct the program and re-issue
the command line.

Invalid baud rate specified

MODE. The baud rate you specify must be 110,
150, 300,600, 1200, 2400,4800, or 9600 (or the
first two characters of the number).

Invalid characters in volume label

FORMAT. One or more of the characters you
entered in the volume label is not a valid filename
character, or the name contained a period (volume
labels contain 1 to 11 valid characters without a
period).

Invalid COMMAND. COM in drive n

DOS. While trying to reload the command
processor, the copy of COMMAND. COM on the
disk was found to be an incorrect version. You are
prompted to insert the correct DOS diskette and
press any key to continue.

8-33

8-34

Invalid date

DATE. An invalid date or delimiter was entered.
The only valid delimiters in a date entry are
hyphens (-) and slashes (I).

Invalid device

CTTY. The device name you specified is an invalid
name to DOS.

Invalid directory

DOS and commands. One of the directories in the
specified path does not exist.

Invalid drive in search path

DOS. An invalid drive specifier was found in one
of the paths specified in the PATH command. This
message appears when DOS attempts to locate a
command or batch file, not at the time you issued
the erroneous PATH command.

Invalid drive specification

DOS and commands. An invalid drive specification
was just entered in a command or one of its
parameters.

Invalid format file

LINK. A library is in error.

Invalid number of parameters

Commands. You have specified too few or too
many parameters for the command you issued.

Invalid numeric parameter

LINK. Numeric value not in digits.

Invalid object module

LINK. Object module(s) incorrectly formed or
incomplete (as when the language processor was
stopped in mid-process).

Invalid parameter

DOS and commands. One or more of the
parameters entered for these commands was not
valid. If the program expects a drive specifier, be
sure to enter a colon following the drive letter. In
other cases, be sure the character following the
slash (I) is valid for the program being run.

Invalid parameters

MODE. No parameters were entered, or the first
parameter character was other than L, or C, or the
first parameter was other than 40, 80, BW 40,
BW80, C040, C080, MONO, L, R, or the display
adapter the parameter refers to is not present in
the machine.

8-35

8-36

Invalid partition table

Startup. While attempting to start DOS from your
fixed disk, the start-up procedures detected invalid
information in the disk's partition information.
You should start DOS from diskette and use the
FDISK command to examine and correct the fixed
disk partition information.

Invalid path

TREE. Tree was unable to use a directory whose
name was found in another directory. You should
run CHKDSK to determine what is wrong with the
directory structure.

Invalid path, not directory
or directory not empty

RMDIR. The specified directory was not removed
because one of the names you specified in the path
was not a valid directory name, or the directory
you specified still contains entries for files or other
sub-directories. You cannot remove a directory
unless it is empty (with the exception of the. and
.. entries). Also you cannot remove a current
directory.

Invalid path or file name

COPY. You specified a directory or file name that
does not exist.

Invalid sub-directory

CHKDSK. Invalid information was detected in the
sub-directory whose name precedes this message.
CHKDSK will attempt to correct the error. For
more specific information about the nature of the
error, run CHKDSK with the IV parameter.

Invalid switch: z

LINK. The characters indicated by z do not form a
valid linker parameter.

Invalid time

TIME. An invalid time or delimiter was entered.
The only valid delimiters are the colon between
the hours and minutes, and the minutes and
seconds; and a period between the seconds and
hundredths of a second.

L

Label not found

Batch. A GOTO command named a label which
does not exist in the batch file.

Line too long

EDLIN. Upon replacing a string, the replacement
causes the line to expand beyond the
25 3-character limit. The Replace Text command is
ended abnormally.

Split the long line into shorter lines; then issue the
Replace Text command again.

8-37

8-38

List output is not assigned to a device

PRINT. The device you named to be the PRINT
list device is not recognized as a valid device. You
should re-issue the PRINT command and reply
with a valid list device name when prompted.

LPT#: not redirected.

MODE. The parallel printer will now receive its
own output, even if this printer's output had
previously been redirected to a serial device. This
indicates cancellation of any previous redirection
which may have been in effect, because you have
set the printer width or vertical spacing.

LPT#: redirected to COMn:

MODE. Any request that would normally have
gone to the parallel printer LPT# (#=1, 2, or 3) is
sent instead to the serial device COMn (n=1 or 2).

LPT#: set for 80

MODE. An attempt was made to set the printer
line length to 80 characters by requesting standard
type format. If the attempt was unsuccessful, an
error message will follow this message on the
screen.

LPT#: set for 132

MODE. An attempt was made to set the printer
line length to 132 characters by requesting
compressed type format. If the attempt was
unsuccessful, an error message will follow this
message on the screen.

M

Maximum available space is xxxx
cylinders at cylinder xxxx.

FDISK. The "Create DOS Partition" option
displays the largest available piece of space on the
current fixed disk. These numbers are also used as
the defaults for the two prompts that will follow.

Memory allocation error
Cannot load COMMAND, system halted

DOS. A program has destroyed the area in which
DOS keeps track of available memory. You should
restart DOS.

Missing operating system

Startup. While attempting to start DOS from fixed
disk, the startup procedures determined that the
DOS partition was marked as being "bootable"
(startable), but that it doesn't contain a copy of
DOS. You should start DOS from diskette and use
FORMAT with the /S parameter to place a copy of
DOS on the fixed disk. You might want to backup
your files before doing the FORMAT.

Must specify destination line number

EDLIN. A Move or Copy command was entered
without a destination line number. Reenter the
command with a valid destination line number.

8-39

8-40

N

No DOS partition to delete.

FDISK. You chose the "Delete DOS Partition"
option when there was no DOS partition on the
current fixed disk to be deleted.

N arne of list device [PRN]:

PRINT. This message appears the first time you
start print after DOS has been restarted Reply
with the reserved device name which is to receive
the printed output, or simply press Enter if the
first parallel printer [PRN] is to be used.

No free file handles
Cannot start COMMAND, exiting

DOS. An attempt to load a second copy of the
command processor has failed because there are
currently too many files open. You should increase
the number in the FILES= command in the
configuration file (CONFIG.SYS), and restart
DOS.

No fixed disks present.

FDISK. The FDISK program was run on an IBM
Personal Computer that:

• Does not have a fixed disk.

• Has a fixed disk in the expansion unit and the
expansion unit is not powered on.

• Has a fixed disk that is not properly installed.

No object modules specified

LINK. You did not name any object modules in
the command line or in response to the prompt.
The linker needs some files to link.

No partitions to make active.

FDISK. You chose the "Change Active Partition"
option when there were no partitions on the
current fixed disk to be made active. You can use
the "Create DOS Partition" option to create a
partition and then the "Change Active Partition"
option to make it the active partition.

No path

PATH. There is currently no alternate path for
DOS to search to find commands and batch files if
it does not find them in the specified (or default
directory).

No room for system on destination disk

SYS. The destination diskette did not already
contain the required reserved space for DOS;
therefore, the system cannot be transferred. A
possible solution would be to format a blank
diskette (use the FORMAT /S command), and then
copy any other files to the new diskette.

8-41

8-42

No room in directory for file

EDLIN. The directory on the specified disk is full.
Your editing changes are lost. You should assure
that your disk has auditable directory entries and
run EDLIN again.

No space for a xxxx cylinder partition.

FDISK. You entered a "Partition Cylinder Size"
that is larger than the largest piece of free space on
the disk. Enter a smaller number.

No space for a xxxx cylinder partition
at cylinder xxxx.

FDISK. You requested a partition to be created at
a place on the current fixed disk and it does not
have space at that place to create a DOS partition.

No space to create a DOS partition

FDISK. You chose the "Create DOS Partition"
option on the current fixed disk which has no
space to create a DOS partition.

No sub-directories exist

TREE. The specified drive contains only a root
directory. Therefore, there is no directory path to
display.

Non-System disk or disk error
Replace and strike any key when ready

Startup. There is no entry for IBMBIO. COM or
IBMDOS. COM in the directory; or a disk read
error occurred while starting up the system. Insert
a DOS diskette in drive A: and restart your system.

Not enough room to merge the entire file

EDLIN. A Transfer command was unable to merge
the entire contents of the specified file because of
insufficient memory. Part of the file was merged.

Not found

EDLIN. Either the specified range of lines does
not contain the string being searched for by the
Replace Text or Search Text commands; or if a
search is resumed by replying N to the OK?
prompt, no further occurrences of the string were
found.

8-43

8-44

o
Out of environment space

DOS. DOS was unable to accept the SET
command you just issued because it was unable to
expand the area in which the environment
information is kept. This normally occurs where
you try to add to the environment after loading a
program which makes itself resident (PRINT,
MODE, or GRAPHICS for example).

Out of space on list file

LINK. This error usually occurs when there is not
enough disk space for the List file.

Out of space on run file

LINK. This error usually occurs when there is not
enough disk space for the Run file (.EXE).

Out of space on VM. TMP

LINK. No more disk space remained to expand
the VM. TMP file.

p

Parameters not compatible

FORMAT. You attempted to use two parameters
that are not compatible with each other (lB and IV
for example).

Parameter not compatible with fixed disk

FORMAT. You specified the /1 or /8 parameter
while formatting a fixed disk. Neither of these
parameters is valid for a fixed disk.

Press any key to begin formatting x:

FORMAT. The fixed disk (drive x) is about to be
formatted. Formatting will lose track of all
previously existing data on the disk. If you do not
want the disk formatted, press Ctrl-Break. If you
do want the disk formatted, press a character key.

Print queue is empty

PRINT. There are currently no files being
processed by PRINT.

Prin t queue is full

PRINT. You attempted to add more than the limit
of 10 files to the print queue. You will have to wait
until a file is printed before you can add another
file to the print queue.

Prin ter error

MODE. The MODE command (option 1) was
unable to set the printer mode because of an I/O
error, out of paper (or POWER OFF), or time out
(not ready) condition.

8-45

8-46

Prin ter lines per inch set

MODE. An attempt has been made to set the
printer vertical spacing to the specified 6 or 8 lines
per inch. If the attempt was unsuccessful, an error
message will follow this message on the screen.

Probable non-DOS disk.
Continue (Y/N)?

CHKDSK. The file allocation table identification
byte contains invalid information. Either the disk
was not formatted by DOS or has become badly
damaged. If you did not use the /F parameter, and
you reply Y, CHKDSK will indicate its possible
corrective actions without actually changing the
disk. We recommend doing this first, before you
consider using the /F switch and replying Y.

Processing cannot continue,

CHKDSK. This message will be followed by
another message which explains why CHKDSK
cannot continue. Normally, this condition is
caused by insufficient memory.

Program size exceeds capacity of LINK

LINK. Load module is too large for processing.

Program too big to fit in memory

DOS. The file containing the external command
cannot be loaded because it is larger than the
available free memory. You should reduce the
number in the BUFFERS= parameter in your
CONFIG.SYS file (if you have specified
BUFFERS=), restart your system and re-issue the
command. If the message reappears, your system
does not have enough memory to execute the
command.

R

Requested stack size exceeds 64K

LINK. Specify a size ~ 64K bytes when the STACK
SIZE: prompt appears.

Resident part of PRINT installed

PRINT. The message appears the first time you
use the PRINT command. A program has been
loaded into memory to handle subsequent PRINT
commands. Available memory for your
applications has been reduced by approximately
3200 bytes.

Resident portion of MODE loaded

MODE. When MODE is invoked for a
non-screen-setting function it is sometimes
necessary to load a portion of code to be made
permanently resident.

8-47

8-48

s
Sector size too large in file < filename>

Startup. The device driver named in <filename>
specifies a device sector size larger than the devices
previously defined to DOS.

Segment size exceeds 64K

LINK. Attempted to combine identically named
segments which resulted in a segment requirement
of greater than 64K bytes. The addreSSing limit is
64K bytes.

Stack size exceeds 65535 bytes

LINK. The size specified for the stack must be less
than or equal to 65535.

Symbol defined more than once

LINK. The Linker found two or more modules
that define a single symbol name.

Symbol table capacity exceeded

LINK. Very many, very long names were entered.
The names exceeded approximately 50K bytes.
Use shorter and! or fewer names.

Syntax error

DOS. The command you entered is improperly
formatted. Check to make sure you have used the
correct format for this command.

T

Target diskette may be unusable

DISKCOPY. This message follows an
unrecoverable read, write, or verify error message.
The copy on the target diskette may be incomplete
because of the unrecoverable VO error.

Target diskette write protected
Correct, then strike any key

DISKCOPY. You are trying to produce a copy on
a diskette that is write-protected.

Terminate batch job (Y/N)?

DOS. This message appears when you press
Ctrl-Break while DOS is processing a batch file.
Press Y to stop processing the batch file. Pressing
N only ends the command that was executing
when Ctrl-Break was pressed; processing resumes
with the next command in the batch file.

The current active partition is x.

FDISK. The "Change Active Partition" option
displays the active partition on the current fixed
disk.

The last file was not restored

RESTORE. You stopped RESTORE before it
completely restored the last file listed or there was
not enough room on the fixed disk. RESTORE
then deleted the partially restored file.

8-49

8-50

There was/were
number errors detected

LINK. This message is displayed for your
information at the end of the link session.

Too many external symbols in one module

LINK. The limit is 256 external symbols per
module.

Too many groups

LINK. The limit is 10, including DGROUP.

Too many libraries specified

LINK. The limit is eight libraries.

Too many overlays

LINK. The limit is 64.

Too many public symbols

LINK. The limit is 1024 public symbols.

Too many segments or classes

LINK. The limit is 247 (segments and classes taken
together).

Total disk space is xxxx cylinders.

FDISK. The total space on the current fixed disk is
displayed.

Track 0 bad-disk unusable

FORMAT. Track 0 is where the boot record, file
allocation table, and directory must reside. The
disk is unusable.

Tree past this point not
processed

CHKDSK. CHKDSK is unable to continue
processing the directory path currently being
examined because track 0 is bad.

u
Unable to create directory

MKDIR. The directory you wish to create already
exists, or one of the directory path names you
specified could not be found, or you attempted to
add a directory to the root directory and it is full,
or a file already exists by that name in that
directory.

Unable to write BOOT

FORMAT. The first track of the diskette or DOS
partition is bad. The BOOT record could not be
written on it. The diskette or DOS partition is not
usable.

8-51

8-52

Unexpected end-of-file on library

LINK. This is probably caused by an error in the
library file.

Unexpected end of file on VM. TMP

LINK. The diskette containing VM.TMP has been
removed.

Unrecognized command in CONFIG.SYS

Startup. An invalid command was detected in the
configuration file CONFIG.SYS. You should edit
the file, correct the invalid command and restart
DOS.

Unrecoverable format error on target
Target diskette unusable

DISKCOPY. An unrecoverable error was
encountered while formatting the target diskette.
The diskette contains no usable data.

Unrecoverable read error on drive x
Track xx, side x

DISKCOMP. Four attempts were made to read the
data from the diskette in the specified drive. THe
data could not be read from the indicated track
and side.

Unrecoverable read error on source
Track xx, side x

DISKCOPY. Four attempts were made to read the
data from the source diskette. DISKCOPY
continues copying, but the copy may contain
incomplete data.

Unrecoverable verify error on target
Track xx, side x

DISKCOPY. Four attempts were made to verify
the write operation to the target diskette.
DISKCOPY continues copying, but the copy may
contain incomplete data.

Unrecoverable write error on target
Track xx, side x

DISKCOPY. Four attempts were made to write
the data to the target diskette. DISKCOPY
continues copying, but the copy may contain
incomplete data.

Unresolved externals: list

LINK. The external symbols listed were not
defined in the modules or library files that you
specified. If this error occurs, do not attempt to
run the executable file created by the linker.

8-53

8-54

v
VM. TMP is an illegal filename and has been
ignored

LINK. VM. TMP cannot be used for an object:
filename. This message is only a warning.

Volume label (1.1 characters, ENTER for none) ?

FORMAT. You are requested to enter ~ 1 to 11
character volume label which will be written on
the disk being formatted. If you do not want a
volume label on the disk, press only the ENTER
key.

w
Warning! All data in the DOS partition
will be DESTROYED. Do you wish to
con tinue ? [d]

FDISK. The "Delete DOS Partition" option is
warning you that if you continue, all data in the
DOS partition on the current fixed disk will be
destroyed. If you press Enter, the DOS partition
will NOT be destroyed. If you do wish to delete
the DOS partition, type Y and press Enter.

Warning-directory full

RECOVER. There is insufficient directory space to
recover more files. You should copy some of the
files to another disk, erase them from this disk an,..'
run RECOVER again.

Warning! Diskette is out of sequence
Replace the diskette or continue
Strike any key when ready

RESTORE. The backup diskette is not the next
one in sequence. Replace the diskette unless you
are sure no files on the diskette(s) you skipped
would be restored. RESTORE will continue when
you press a key. This message will be repeated if
you try to skip a diskette which contains part of a
file being restored.

Warning! File xx
is a read-only file
Replace the file (Y/N)?

RESTORE. The indicated file is read-only. Enter Y
if you want to replace it or N if you do not.
RESTORE will continue after you press ENTER.
You will see this message only if you specified the
IP option.

Warning! File xx
was changed after it was backed up
Replace the file (Y/N)?

RESTORE. The indicated file on the fixed disk has
a later date and time than the corresponding file
on the backup diskette. Enter Y if you want to
replace it with the backed up version or N if you
do not. RESTORE will continue after you press
ENTER. You will see this message only if you
specified the IP option.

8-55

8-56

Warning! No files were found to back up

BACKUP. No fixed disk files were found that
matched the backup file specification.

Warning! No files were found to restore

RESTORE. No backup diskette files were found
that matched the restore file specification.,

Warning: no stack segment

LINK. None of the object modules specified
contain a statement allocating stack space.

WARNING-Read error on EXE file

EXE2 BIN. An error occurred while reading the
input file. EXE2BIN will attempt to continue, but
the result file may be unusable.

x
x is not a choice. Enter a choice.

FDISK. You entered x which is not a choice for
this question.

x is not choice. Enter Y or N.

FDISK. You entered x which is not a choice for
this question. Enter Y or N.

xxxxxxxxxx bytes disk space freed

CHKDSK. Diskette space marked as allocated was
not allocated. Therefore, the space was freed and
made available.

xxxx error on file yyyy

PRINT. This message appears on the printer.
While attempting to read data from file yyyy for
printing, a disk error of type xxxx was encountered.
Printing of that file is stopped.

xxx lost clusters found in yyy chains

CHKDSK. CHKDSK located xxx blocks of the
data area which were marked as allocated, but were
not associated with a file. These clusters are
assumed to contain "lost" data, and CHKDSK will
ask whether you wish to free them, or to recover
each chain into a separate file.

*** Backing up files to diskette xx ***

BACKUP. This message will be followed by a list
of files that were backed up on the indicated
diskette.

*** Files were backed up xx/xx/xxxx ***

RESTORE. The files on the backup diskette were
backed up on the indicated date.

8-57

8-58

••• Restoring files from diskette xx •••

RESTORE. This message will be followed by a list
of files that were restored from the indicated
diskette.

-More-

MORE. The screen is full and there is more data
waiting to be displayed. Press any character to see
the next screen full.

10 Mismatches-ending compare

CaMP. Ten mismatched locations were detected
in the files being compared. CaMP assumes that
the files are so different that further comparisons
would serve no purpose.

Notes:

9-ii

Notes:

9-2

Introduction

Each time DOS is started, it searches the root
directory of the drive (from which it was started)
for a special configuration file named
CONFIG.SYS. If found, it reads the file and
interprets the text commands within it.

Configuration Commands

The following commands can be included in the
configuration file. If you add or change any of the
configuration file commands, they will become
effective the next time DOS is started

9-3

BREAK Command

BREAK=ON/OFF

This command should only be used once in the
configuration file. The default value is OFF, and
causes DOS to check for Ctrl-Break being entered
at the keyboard only when DOS is performing
screen, keyboard, printer or Asynchronous
Communication Adapter operations. With this
setting, it may not be possible to cancel an
executing program by using Ctrl-Break unless the
program causes DOS to perform one of those four
operations. Specifying ON causes DOS to check
for Ctrl-Break whenever it performs any function
for a program. This allows you to "break" out of
programs that perform few (or no) screen,
keyboard, printer, or auxiliary device operations
(such as compilers). The ON/OFF state set in the
configuration file can later be changed by issuing a
BREAK command (see Chapter 6).

BUFFERS Command

9-4

BUFFERS=xx

Where xx is a numberbetween 1 and 99. This is
the number of disk buffers that DOS should
allocate in memory when it starts up. The default
value is 2, and this value will remain in effect until
DOS is restarted with a different value specified in
the configuration file.

What Is a Buffer

A disk buffer is a block of memory that DOS uses
to hold data being read from, or written to a disk
(fixed disk or diskette), when the amount of data
being transferred is not an exact multiple of the
sector size. For example, if an application reads a
128-byte record from a file, DOS will read the
entire sector into one of its buffers, locate the
correct 128-byte record in the buffer, and move
the record from the buffer into the application's
area of memory. It then marks that buffer as
having been used recently. On the next request to
transfer data, DOS will attempt to use a different
buffer. In this way, all of the buffers will eventually
contain the most recently-used data. The more
buffers DOS has, the more data will be in memory.

Read/Write Requests

Each time DOS is requested to read or write a
record that is not an exact multiple of the sector
size, it first looks to see if the sector containing
that record is already in a buffer. If not, it must
read the sector as described above. But if the data
is already in a buffer, then DOS can simply transfer
the record to the application's area without the
need to read the sector from the disk-this saves
time. This savings is realized on both reading and
writing records, since DOS must first read a sector
before it can insert a record your application is
attempting to write.

9-5

Random/Sequential Applications

9-6

For applications that read and write records in a
random fashion (such as many Basic and data base
applications), the likelihood of finding the correct
record already in a buffer increases if DOS has
more buffers to work with. This can greatly speed
up the performance of those applications.

For applications doing sequential reads and writes,
however (read an entire file, write an entire file),
there is little advantage to having a large number
of buffers allocated.

Because all applications are different, there is no
specific number of buffers that will serve all
applications equally well. If your applications do
little random reading and writing of records, the
system default of 2 buffers (if you do not specify
BUFFERS= in your configuration file) should be
sufficient.

However, if you use data-base type applications, or
run programs that perform a lot of random reads
and writes of records, you will want to increase the
number of DOS buffers. The "best" number of
buffers for your particular application can only be
determined by using different values until the best
performance is achieved. For most data base
applications, a value between 10 and 20 buffers
will usually provide the best results.

Beyond that point, the system may appear to start
running slower - this is because, with a very large
number of buffers it can take DOS longer to
search all the buffers for the record than it would
take to read the record from disk.

Size of Your Computer

The final consideration in determining the number
of buffers to allocate is the memory size of your
computer. Since each additional buffer increases
the resident size of DOS by 528 bytes, the amount
of memory available to the application is reduced
by that amount. Therefore, additional buffers may
actually cause some applications to slow down,
since there is less memory in which the application
itself can keep data-this could result in more
frequent reads and writes than would otherwise be
necessary.

In summary, the optimum number of buffers must
be determined by you, based on:

1. The types of applications most often used

2. The memory size of your computer

3. Your analysis of system performance when
using your applications with different
numbers of buffers allocated

4. For computers with fixed disks, we
recommend a minimum of BUFFERS=3.

DEVICE Command

DEVICE=[d:] [path Vi/enamel. ext]

This command allows you to specify the name of a
file containing a device driver. During startup,
DOS loads the file into memory as an extension of
itself, and gives it control as described in
"Installable Device Drivers" in Chapter 14. Please
refer to that section for technical information
about installable device drivers.

9-7

Loading Standard Device Drivers

The standard device drivers loaded by DOS
support the standard screen, keyboard, printer,
auxiliary device, diskette, and fixed disk devices. A
clock driver is also loaded (see Chapter 14). You
don't need to specify any DEVICE= commands for
DOS to support these devices.

Replacing Standard Device Drivers

If you wish to use the "Extended Screen and
Keyboard Control" features described in Chapter
13, you should create the file CONFIG.SYS on the
disk you will be starting DOS from. The file should
contain the command DEVICE=ANSI.SYS. This
command causes DOS to replace the standard
screen and keyboard support with the extended
functions.

Installing Your Own Device Driver

9-8

For systems programmers and application
developers-if you have written device drivers that
you want DOS to load when it starts, include a
DEVICE= command in the CONFIG.SYS file for
each driver to be loaded.

FILES Command

FILES=xx

The maximum value for xx is 99.

Beginning with DOS Version 2.00, there is no
need for an application to construct a special
control block (FCB) in order to access a file.
Instead, the program can simply specify an ASCII
string consisting of drive specifier, complete
directory path name and filename when opening or
creating a file. DOS will locate the correct drive,
directory and file, and will create and return a
handle-merely a 16-bit binary value.

Accessing a File

All file accesses (reads, writes, close) can then be
performed by telling DOS which handle to use.
When an application opens a file in this manner,
DOS constructs a control block in its own memory
on behalf of the application, in an area that was set
aside when DOS started. The size of this area (and
consequently, the maximum number of files that
can be concurrently open), depends on the value
specified in the FILES= command.

The default value is FILES=8; that is, no more
than 8 files can be open at the same time. There is
no effect on the number of files that can be
concurrently open using the traditional (OPEN
FCB) functions. This default value is sufficient for
the majority of operating environments. However,
if applications are installed that result in error
messages indicating an insufficient number of
handles, the FILES= command should be used to
provide DOS with additional handles.

9-9

Number of Files Opened

9-10

The value specified in FILES= becomes the new
maximum number of files that DOS allows to be
concurrently open.

Note that this value is the maximum number of
files allowed for the entire system. The maximum
number of files that a process can have
concurrently open is 20 (this number includes the
5 predefined handles for standard input, output,
error, auxiliary, and standard printer).

If you specify FILES= in your configuration file,
the size of the resident portion of DOS increases
by 39 bytes for each additional file above the
default value of 8. Consequently, the memory
available to the application is reduced by the same
amount. See function calls hex 3C through hex 46
in Appendix D for descriptions of the new
file-handling functions.

SHELL Command

SHELL=[d.·]fpath]fi/ename[. ext]

This command allows you to specify the name and
location of a top-level command processor that
DOS initialization will load in place of
COMMAND. COM.

System programmers who develop their own
top-level command processor should remember to
include provisions for handling interrupts hex 22,
hex 23 and hex 24, and for reading and executing
commands.

Note: Because the internal commands,
batch processor, and EXEC function call
(program loader) reside in COMMAND. COM.
These functions will not be available to the
user unless they are duplicated in your
command processor.

9-11.

Notes:

9-12

Notes:

10-2

Introduction

This chapter explains how to use the advanced
DOS commands. You can use advanced DOS
commands to:

• Set options for the Asynchronous
Communications Adapter.

• Define a remote device as your primary
console.

• Sort text data.

• Search files for occurrences of specified
strings of text.

• Display a screen full of data at a time.

• Set new system prompt.

• Set the system environment.

• Convert .EXE files to .COM files.

10-3

Redirection of Standard Input and
Ou tpu t Devices

10-4

The DOS standard input and output device
redirection feature allows a program to receive its
input from a source other than the keyboard
(standard input), or direct its output to a device
other than the display screen (standard output).

The standard input and output devices can be
redirected to or from files or other devices by the
following DOS command line parameters:

>[d:] fpathlfilename

Causesfilename to be created (or truncated to
zero length) and then assigns standard output
to that file. All output that would normally
have gone to the screen from the command is
placed in the file.

> > [d:] fpathlfilename

Causes filename to be opened (created if
necessary) and positions the write pointer at
the end of the file so that all output is
appended to the file.

<[d:] fpathlfilename

Causes standard input to be assigned to
filename. All input to the program comes from
this file instead of from the keyboard.

CAUTION
When using this method of providing input to a
program, be sure all of the program's input is in
the file. If the program attempts to obtain more
input after end-of-file is reached, DOS is unable
to supply the input, and processing will stop.
You can return to the DOS prompt by entering
Ctrl-Break.

Note: If an application does not use DOS
function calls to perform standard input
and/or output (for example you put text
directly into the video buffer), then
redirection will not work for that application.

Example: In this example, the output of the DIR
command is sent to the printer:

OIR >PRN

In this example, the output of the DIR
command is sent to file DIRLIST:

OIR >OIRLlST

In the following example, program MYPROG
will receive its input from file INPUT. TXT,
instead of from the keyboard:

MYPROG <INPUT.TXT

10-5

Piping of Standard Input and
Output

10-6

The DOS piping feature)llows the screen output
of one program to be used as the keyboard input
to another program. DOS uses temporary files to
hold the input and output data being piped. These
temporary files are created in the root directory of
the default drive and have the form:

0/0 PI PEx.$$$

The programs being piped must use care not to
cause the piping files to be erased or modified.

Piping is the chaining of programs with automatic
redirection of standard input and output (refer to
"Redirection of Standard Input and Output
Devices" in this chapter for additional
information). The names of the programs to be
chained are separated by the vertical bar (:)
character on the command line.

The following are typical examples of using the
piping feature for a program that does all of its
input and output to the standard devices (screen
and keyboard). For example, if the program named
SORT read all of it's standard input, sorted it, and
then wrote it to the standard output device, the
command:

OIR:SORl

would generate a sorted directory listing. This
causes all standard output generated by the DIR
command to be sent to the standard input of the
SORT program.

To send the sorted directory to a file, you would
type:

OIR lSORT>FILE

If you wish the file to contain only the directory
entries for sub-directories, you could enter:

OIR :FINO "OIR": SORT>FILE

DOS Filters

A filter is a program or command that reads data
from a standard input device, modifies the data,
then writes the result to a standard output device.
Thus, the data has been "filtered" by the program.
For example, one of the filters on your DOS
diskette is called SORT. SORT reads input from
the standard input device (normally the keyboard),
sorts the lines of data, then writes the sorted
results to the standard output device (normally the
screen). With the redirection capabilities described
earlier in this chapter, you can cause SORT to
receive its input from some other source, and to
send its output to a different destination. For
example,

SORT <MYFILE >RESULT

will cause SORT to read the file MYFILE, sort the
lines within it, and write the sorted output to file
RESULT.

10-7

10-8

By using the piping feature, you can cause a filter
to receive its input from the output of another
command, or to send its output to the input of
another command. For example,

DIR : SORT

causes the output listing from the DIR command
to be used by SORT as its input. The listing will be
sorted and the result displayed on the screen.

There are three filters on your DOS diskette, and
they are described as individual commands in this
chapter. They are:

SORT Sorts text data.

FIND Searches files for occurrences of specified
strings of text.

MORE Displays a screen full of data at a time,
then pauses with the message -More--.

You can easily add your own filter to the filters
that have been supplied; just write a program that
reads its input from the standard input device, and
writes its output to the standard output device.

Note: If an application does not use DOS
function calls to perform standard input
and/or output (for example you put text
directly into the video buffer), then filters will
not work for that application.

Detailed Descriptions of Advanced
DOS Commands

This section presents a detailed description of how
to use the advanced DOS commands. The
commands appear in alphabetical order; each with
its purpose, format, and type. Examples are
provided where appropriate. For "Information
Common to All DOS Commands" refer to Chapter 6.

Invoking a Secondary Command
Processor

If you wish to invoke a secondary command
processor, the following syntax should be used:

COMMAND [d:](path) [IP) [IC string)

Where d.-path will be the directory searched for
the command processor to be loaded, IP causes
the new copy to become permanent in memory,
and Ie string allows you to pass a command line
(string) as a parameter. The command line will be
interpreted and acted upon as if you had entered it
as a normal command. For example, COMMAND
IC DIR B: causes a secondary command processor
to be loaded, and it executes the command
DIRB:.

10-9

10-10

Issuing COMMAND without any parameters
causes a new copy of the command processor to be
loaded, and this new copy will inherit the
environment (will never be able to change the
environment via a SET command).

When a secondary command processor has been
loaded, you can cause it to return to the previous
level of command processor by issuing the special
command EXIT. If you used the /p parameter, it
will not return to the previous level (refer to
Appendix F for additional information).

CTTY (Change Console)
Command

Purpose: Changes the standard input and output console
to an auxiliary console, or restores the keyboard
and screen as the standard input and output
devices.

Format CTTY device-name

Type: Internal

External

Remarks: Defines the device to be used as the primary
console. Specifying AUX, COMl, or COM2
causes DOS to use that device as the primary
console. Specifying CON resets the standard
input and output device to the primary console.

Example: In this example, the command causes DOS to
use the AUX device for its screen and keyboard
operations:

cmAUX

10-11

CTTY (Change Console)
Command

10-12

In this example, the command reverses the
previous assignment, causing DOS to switch
back to the standard screen and keyboard for its
operations:

em CON

Notes:

1. The CTTY command accepts the
name of any character-oriented device
to allow you to install your own device
drivers, and to specify their device
names. You must be certain that the
named device is capable of both input
and output operations. For example,
you should not specify the name of a
printer, because DOS will attempt to
read from that device.

2. The CTTY command only accepts
programs that use DOS function calls.
Other programs, such as BASIC (that
do not use DOS function calls), will
not be able to use the CTTY command
to change the standard input and
output device.

EXE2BIN
Command

Purpose: Converts .EXE files that have no segment fix up
to a form that is compatible with. COM
programs. This results in a saving of diskette
space and faster program loading.

Format: EXE2BIN [d:] [pathlfitename[.ext]]

[d:] [path] [fi'lename[.ext]]

Type: Internal External

Remarks: The file named by filespec is the input file. If no
exten~ion is specified, it defaults to . EXE. The
input file is converted to . COM file format
(memory image of the program) and placed in
the output file, [d:lfitename[.ext]. If you do not
specify a drive, the drive of the input file is used.
If you do not specify an output filename, the
input filename is used. If you do not specify a
filename extension in the output filename, the
new file is given an extension of. BIN. If you do
not specify a path, the current directory is used.

The input must be in valid .EXE format as
produced by the linker. The resident, or actual
code and data, part of the file must be less then
64K. There must be no STACK segment.

10-13

EXE2BIN
Command

10-14

Two kinds of conversions are possible,
depending on the specified initial CS:IP:

• If CS:IP is not specified in the program (the
.EXE file contains 0:0), a pure binary
conversion is assumed. If segment fixups
are n~essary (the program contains
instructions requiring segment relocation),
you are prompted for the fixup value. This
value is the absolute segment at which the
program is to be loaded.

In this case, the resultant program is usable
only when loaded at the absolute memory
address specified by a user application. The
DOS command processor will not be
capable of properly loading the program.

• If CS:IP is specified as OOOO:100H, it is
assumed that the file is to be run as a COM
file, with the location pointer set at 100H
by the assembler statement ORG; the first
100H bytes of the file are deleted. No
segment fixups are allowed, as COM files
must be segment relocatable; that is, tliey
must assume the entry conditions explained
in Appendixes B-K. In this case, once the
conversion is complete, you may rename
the resultant file to a .COM extension.
Then, the command processor is capable of
loading and executing the program in the
same manner as the .COM programs
supplied on your DOS diskette.

EXE2BIN
Command

If CS:IP does not meet one of these criteria, or if
it meets the COM file criterion but has segment
fixups, the following message is displayed:

File cannot be converted

This message is also displayed if the file is not a
valid. EXE file.

To produce standard COM files with the
assembler, you must both use the assembler
statement ORG to set the location pointer of
the file at 100R and specify the first location as
the start address. (This is done in the END
statement.) Also, the program must not use
references that are defined only in other
programs. For example, with the IBM Personal
Computer MACRO Assembler:

ORG 100H
START:
•
•
•

END START

EXE2 BIN resides on your DOS Supplemental
Program diskette.

10-15

FIND Filter
Command

Purpose: This filter sends to the standard output device
all lines from the filenames specified in the
command line that contain the specified string.

Format: FIND [IV] [Ie] [lNlrtring[[d.·] [pathlfilename[. ext] ...]

Type: Internal External

Remarks: The IV parameter causes all lines not containing
the string to be displayed.

10-16

The Ie parameter causes FIND to display only a
count of the number of matching occurrences of
strillg in each file, without displaying the
matching lines from the file.

The IN parameter causes the relative line
number of each matching line to be displayed
ahead of the line from the file.

The string should be enclosed in double quotes.
Two quotes in succession are taken as a single
quote.

Global filename characters are not allowed in
the filenames or extensions.

FIND Filter
Command

Examples: A>FIND "Fool's Paradise" bookl.txt book2.txt book3

will output all lines from the book1. txt,
book2. txt, and book3 (in that order) that
contain the string "Fool's Paradise". Or,

A>OIR B: : FIND IV "OAT'

will ou tpu t the names of all the files in drive B
that do not contain the string DAT.

10-17

MORE Filter
Command

Purpose: This filter reads data from the standard input
device, and sends one screen-full of data to the
standard output device, and then pauses with
the message -More--.

Format: MORE

Type: Internal External

Remarks: Pressing any character key causes another
screen-full of data to be written to the standard
output device. This process continues until all
input data is read.

Example: In this example, the command line will display
the contents of file TEST.ASM one screen-full at
a time. When the screen is full, the message
-More- appears on the bottom line. You can
press any key to see the next screen-full:

MORE <TEST.ASM

10-18

PROMPT (Set System Prompt)
Command

Purpose: Sets a new system prompt.

Format: PROMPT [prompt-text]

Type: Internal External

Remarks: All text on the PROMPT command line is taken
by DOS to be the new system prompt. If no
parameter is specified, the normal DOS prompt
is assumed. Special meta-strings can be
imbedded in the text in the form $c.

Where c is one of the following:
$ The "$" character.
t The time.
d The date.
p The current directory of the default drive.
v The version number.
n The default drive.
g The ">" character.
1 The "<" character.
b The"" character.
q The "=" character.
h A backspace and erasure of the previous

character.
e The ESCape character.

The CR LF sequence (go to beginning of
new line on the display screen).

10-19

PROMPT (Set System Prompt)
Command

Any other character is treated as a null
character-no action is taken on it by the
PROMPT command.

Example: In this example, the command would set the
normal DOS prompt:

10-20

PROMPT n1

In this example, the command would set ABC as
the system prompt:

PROMPT ABC

In this example, the command would set a two
line prompt that displays:

Time = (current time)

Date = (current date)

PROMPT Time = t_ Date = $d

If you wish to create a prompt that begins with
any of the DOS command delimiters (such as
semicolon, blank, etc.), you can precede that
character with a null meta-string. In this case,
the character will be treated as the first
character of the prompt, rather than as a
delimiter between the word PROMPT and its
parameter. For example:

PROMPT $A;ABC

PROMPT (Set System Prompt)
Command

causes the PROMPT command to interpret the
$A as a null character, because A is not one of
the defined characters in the above list. All
characters following the null character will
become the new system prompt.

10-21

SET (Set Environment)
Command

Purpose: This command inserts strings into the command
processor's environment. The entire series of
strings in the environment is made available to
all commands and applications.

Format: SET [name=[parameter]]

Type: Internal

External

Remarks: The entire string (beginning with name) is
inserted into a block of memory reserved for
environment strings. Any lowercase letters in
the name are converted to uppercase letters
when added to the environment; the remainder
of the line is inserted as you entered it. If the
name already existed in the environment, it is
replaced with the new parameter.

10-22

If the SET command is entered with no name
specified, then the current set of environment
strings will be displayed.

If a name is specified, but the parameter is not
specified, then the current occurrence of
name=parameter is removed from the
environment.

SET (Set Environment)
Command

The environment (series of names and
parameters) is made available to all DOS
commands and applications (see the "Program
Segment Prefix description" in Appendix E).
You can display the current environment
contents by entering a SET command with no
parameters. You can select the strings in the
environment. For example, entering:

SET abe==xyz

will add the string ABC=xyz to the other strings
already in the environment (note the conversion
of abc to uppercase ABC). In this way, it is
possible for you to enter keywords and
parameters that are not meaningful to DOS, but
can be found and interpreted by applications
that are designed to examine the environment.

Example: This example will add the string
PGMS= LEVEL2 to the environment. When an
application program receives control, it could
search the environment for the name PGMS,
and use the supplied parameter as the directory
name to use for its files:

SET PGMS-\LEVE12

10-23

SET (Set Environment)
Command

10-24

The following example would remove
PGMS= LEVEL2 from the environment:

SET PGMS=

Notes:

1. DOS automatically adds any PROMPT
or PATH commands to the
environment when you enter them.
You do not need to use the SET
command to add either of these two
commands to the environment.

2. One of the strings in the environment
(placed there by DOS when it starts
up) will always be a COMSPEC =
parameter. That parameter describes
the path that DOS uses to reload the
command processor when necessary.

SET (Set Environment)
Command

3. If you have not loaded a program that
~emains resident (such as MODE,
PRINT, GRAPHICS, etc.), DOS
expands the environment string area to
hold additional strings. If you have
loaded a program that remains
resident, DOS is unable to expand the
environment area beyond 127 bytes or
if the environment area has already
expanded beyond 127 bytes when you
load a program that is to remain
resident, DOS is unable to expand the
environment area beyond that point.
The message Out of environment
space appears if you issue a SET
command that would cause the
combined environment strings to
exceed 127 bytes.

10-25

SORT Filter
Command

Purpose: This filter command reads data from the
standard input device, sorts the data, then writes
the data to the standard output device.

Format: SORT (/R] (/+n]

Type: Internal External

Remarks: Sorts are done using the ASCII collating
sequence. Tab characters are not expanded with
blanks.

10-26

The /R parameter will reverse the sort, for
example make" Z" come before" A. "

The / + n parameter is an integer that starts the
sort with column n. If no parameters are
specified, the sort starts with column 1. The
maximum file size that can be sorted is 63K.

SORT Filter
Command

Example: In this example, the command line will read the
file UNSORT.TXT, do a reverse sort, then write
the output to file SORT. TXT:

A>SORT IR <UNSORT.TXT >SORT.TXT

In the next example, the command line causes
the output of the directory command to be
piped to the SORT filter. The SORT filter will
sort starting with column 14 (this is the column
the file size starts in), then send the output to
the console. Thus, a directory sorted by file size
will be the result:

A>DIR: SORT 1+14

10-27

Summary of Advanced DOS
Commands

10-28

The following chart is provided for quick
reference. The section called "Format Notation"
at the beginning of Chapter 6 explains the
notation used in the format of the commands.

Note: In the column labeled Type, the I
stands for Internal and the E stands for
External.

Command Type Purpose Format

CTTY I Change to an CTTY device-name
auxiliary console

EXE2BIN E Converts. EXE EXE2BIN
files to .COM [d:] [pathVilename[.ext]]
format

[d:] [path] [filename[.ext]]

FIND E Searches files for FIND
strings of text [I"] [/C] [IN]

string[[d:] [path]
l/i'lename [.ext] ...]

MORE E Displays a screen MORE
full of data

PROMPT E Set new prompt PROMPT
[prompt-text]

SET I Inserts strings SET
into the command [name=[parameter]] ,
processor s
environment

SORT E Sorts text data SORT [lR] [I+n]

Figure 4. DOS Advanced Commands

10-29

Notes:

10-30

·,il:i,', '~~f~;~ •....• ~~.;.~0;~a;i.'Am.:~.~.:T~f:~~r~ ..
''':~''';:~:'~;';'>' " L".L:.'-I. .

.,

How to Start the Linker Program 11-19
Before You Begin 11-19
Option 1 - Console Reponses 11-19
Option 2 - Command Line 11-20
Option 3 - Automatic Responses 11-22

Example Linker Session 11-25
How to Determine the Absolute

Address of a Segment 11-28

Messages 11-30

11-2

Introduction

The linker (LINK) program is a program that:

• Combines separately produced object
modules

• Searches library files for definitions of
unresolved external references

• Resolves external cross-references

• Produces a printable listing that shows the
resolution of external references and error
messages

• Produces a relocatable load module

The LINK program resides on your DOS
Supplemental Program Diskette. In this chapter,
we show you how to use LINK. You should read
all of this chapter before you start LINK.

11-3

Files

The linker processes the following input, output,
and temporary files:

Input Files

11-4

Type Default Override Produced
.ext .ext by

Object .OB] Yes Compiler!
or MACRO
!Assembler

Library .LIB Yes Compiler

Automatic (None) N/A* User
Response

Figure 5. Input files used by the linker

*N/ A - Not applicable.

lOne of the optional compiler packages available
for use with the IBM Personal Computer DOS.

Output Files

Type Default Override Used
.ext .ext by

Listing . MAP Yes User

Run .EXE No Relocatable
loader
(COMMAND.
COM)

Figure 6. Output files used by the Linker

VM. TMP (Temporary File)

LINK uses as much memory as is available to hold
the data that defines the load module being
created. If the module is too large to be processed
with the available amount of memory, the linker
may need additional memory space. If this
happens, a temporary file called VM. TMP is
created on the DOS default drive.

When the overflow to the VM. TMP file has begun,
the linker displays the following message:

VM.TMP has been created
Do not change diskeHe in drive x

If the VM. TMP file has been created on diskette,
you should not remove the diskette until LINK
ends. When LINK ends, it erases the VM.TMP file.

11-5

If the DOS default drive already has a file by the
name of VM. TMP,. it will be deleted by LINK and a
new file will be allocated; the contents of the
previous file are destroyed. Therefore, you should
avoid using VM. TMP as one of your own
filenames.

Definitions

Segment, group, and class are terms that appear in this
chapter and in some of the messages in Chapter 8.
These terms describe the underlying function of
LINK. An understanding of the concepts that
define these terms provides a basic understanding
of the way LINK works.

Segment

11-6

A segment is a contiguous area of memory up to
64K bytes in length. A segment may be located
anywhere in memory on aparagraph (16-byte)
boundary. Each of the four segment registers
defines a segment. The segments can overlap. Each
16-bit address is an offset from the beginning of a
segment. The contents of a segment are addressed
by a segment register/offset pair.

The contents of various portions of the segment
are determined when machine language is
generated.

Neither size nor location is necessarily fixed by the
compiler or assembler because this portion of the
segment may be combined at link time with other
portions forming a single segment.

A program's ultimate location in memory is
determined at load time by the relocation loader
facility provided in COMMAND. COM, based on
whether you specify the /HIGH parameter. The
/HIGH parameter is discussed later in this chapter.

Group

Class

A group is a collection of segments that fit together
within a 64K-byte segment of memory. The
segments are named to the group by the assembler
or compiler. A program may consist of one or
more groups.

The group is used for addressing segments in
memory. The various portions of segments within
the group are addressed by a segment base pointer
plus an offset. The linker checks that the object
modules of a group meet the 64K-byte constraint.

A class is a collection of segments. The naming of
segments to a class affects the order and relative
placement of segments in memory. The class name
is specified by the assembler or compiler. All
portions assigned to the same class name are
loaded into memory contiguously.

11-7

The segments are ordered within a class in the
order that the linker encounters the segments
in the object files. One class precedes another in
memory only if a segment for the first class
precedes all segments for the second class in the
input to LINK. Classes are not restricted in size.
The classes are divided into groups for addressing.

Command Prompts

11-8

After you start the linker session, you receive a
series of four prompts. You can respond to these
prompts from the keyboard, respond to these
prompts on the command line, or you can use a
special diskette file called an automatic response file to
respond to the prompts. An example of an
automatic response file is provided in this chapter.

LINK prompts you for the names of the object,
run, list, and library files. When the session is
finished, LINK returns to DOS and the DOS
prompt is displayed. If linking is unsuccessful,
LINK displays a message.

The prompts are described in order of their
appearance on the screen. Defaults are shown in
square brackets ([]) after the prompt. In the
response column of the table, square brackets
indicate optional entries. Object Modules is the
only prompt that requires a response from you.

PROMPT RESPONSES

Object Modules [.OBJ]: [d:] rPathVilename[. ext]

[+[d:] rPath lfilename[. ext]] ...

Run File [filename.EXE]: [d:] rPath] [filename [. ext]]

List File [NUL. MAP] : [d:] rPath] [fi'lename[.ext]]

Libraries [.LIB]: [d:] [[pathlfilename[.ext]]

[+[d:] [rPathlfi'lename[.ext]]] ...

Notes:

1. If you enter a filename without specifying
the drive, the default drive is assumed. If
you enter a filename without specifying
the path, the default path is assumed.
The libraries prompt is an exception­
the linker will look for the libraries on
the default drive and if not found, look
on the drive specified by the compiler.

2. You can end the linker session prior to
its normal end by pressing Ctrl-Break.

11-9

Detailed Description of the
Command Prompts

The following detailed descriptions contain
information about the responses that you can
enter to the prompts.

Object Modules [.OBJ]:

11-10

Enter one or more file locations for the object
modules to be linked. Multiple file locations must
be separated by single plus (+) signs or blanks. If
the extension is omitted from any filename, LINK
assumes the filename extension. DB]. If an object
module has a different filename extension, the
extension must be specified. Object filenames can
not begin with the @ symbol (@ is reserved for
using an automatic response file).

LINK loads segments into classes in the order
encountered.

If you specify an object module on a diskette drive,
but LINK cannot locate the file, it displays the
following prompt:

Cannot lind ru, object module
chang, dlsk,n, < hit ENTER>

If you specify an object module on a
non-removable media (like a fixed disk), the linker
session will end with the following message:

Cannot find file object module

You should insert the diskette containing the
requested module. This permits .OB] files from
several diskettes to be included. On a single-drive
system, diskette exchanging can be done safely
only ifVM.TMP has not been opened. As explained
in the discussion of the VM. TMP file earlier in this
chapter, a message will indicate if VM. TMP has
been opened.

IMPORTANT: If a VM.TMP file has been
opened on a diskette, you should not remove the
diskette containing the VM.TMP file. Remember,
once a VM. TMP file is opened on a diskette, the
diskette it resides on cannot be removed.

After a VM. TMP file has been opened, if you
specified an object module on the same disk that
VM.TMP is on and LINK cannot find it, the linker
session ends with the message:

Cannot find file object module

11-11

Run File [filename.EXE]:

The file specification you enter is created to store
the run (executable) file that results from the
LINK session. All run files receive the filename
extension .EXE, even if you specify another
extension. If you specify another extension, your
specified extension is ignored.

The default filename for the run file prompt is the
first filename specified on the object module
prompt.

You can specify just a drive letter, or a path on the
run file prompt. This changes the place where the
run file filename. EXE is placed.

List File [NUL.MAP]:

11-12

T he linker list file is sometimes called the linker
map.

The list file is not created unless you specifically
request it. You can request it by overriding the
default with a drive letter, path, orfilename[.ext]. If
you do not include a filename extension, the
default extension .MAP is used. If you do not enter
anything, the DOS reserved filename NULL
specifies that no list file will be created.

The list file contains an entry for each segment in
the input (object) modules. Each entry also shows
the offset (addressing) in the run file.

You can specify just a drive letter or a path on the
list file prompt. This changes the place where the
list file is placed.

Note: If the list file is allocated to a file on
diskette, that diskette must not be removed
until the LINK has ended.

If you specify an object module on the same
diskette drive as the diskette drive to which the list
file is allocated, and LINK cannot find the object
module, the linker session ends with the message:

Cannot find file object module

To avoid generating the list file on a diskette, you
can specify the display or printer as the list file
device. For example:

List File [NUL.MAP]: CON

If you direct the output to your display, you can
also print a copy of the output by pressing
Ctrl-PrtSc.

Libraries [.LIB]:

You may either list the file locations for your
libraries, or just press the Enter key. If you press
the Enter key, LINK defaults to the library
provided as part of the Compiler package.

11-13

11-14

The LINK program will look for the Compiler
package library on the default drive. If it cannot
find the library there, then it will look for the
library on the drive specified by the Compiler
package. For linking objects from just the MACRO
Assembler, there is no automatic default library
search.

If you answer the library prompt, you specify a list
of drive letters and fpathlfilename.ext separated by
plus signs (+) or spaces. You can enter from one to
eight library file locations. Specifying a drive letter
tells linker to look on that drive instead of
the Compiler package supplied drive for all
subsequent libraries on the library prompt. The
automatically searched library file specifications
are conceptually placed at the end of the response
to the library prompt.

LINK searches the library files in the order in
which they are listed to resolve external
references. When LINK finds the module that
defines the external symbol, the module is
processed as another object module.

If two or more libraries have the same filename,
regardless of the location, only the first library in
the list is searched.

When LINK cannot find a library file, it displays a
message like this:

Cannal find library A:I/ibrary file
Enler nlw drivi Ilnlr:

The drive that the indicated library is located on
must be entered.

The following library prompt responses may be
used:

Ubrarles [.LlB]: B:

Look for compiler. LIB on drive B.

Libraries [.LlB]: B:USERLIB

Look for USERLIB. LIB on drive Band
compiler. LIB on drive A.

Ubrarles [.LlB): A:LlBl+LlB2+B:Ll83+A:

Look for LIBl.LIB and LIB2.LIB on drive
A, LIB3.LIB on drive B, and
compiler. LIB on drive A.

Linker Parameters

At the end of any of the four linker prompts, you
may specify one or more parameters that instruct
the linker to do something differently. Only the /
and first letter of any parameter are required.

11-15

/DSALLOCATION

11-16

The /DSALLOCA TION (/D) parameter directs
LINK to load all data defined to be in DG ROUP at
the high end of the group. If the IHIGH parameter
is specified, (module loaded high), this allows any
available storage below the specifically allocated
area within DGROUP to be allocated dynamically
by your application and still be addressable by the
same data space pointer.

Note: The maximum amount of storage
which can be dynamically allocated by the
application is 64K (or the amount actually
available) minus the allocated portion of
DGROUP.

If the IDSALLOCA TION parameter is not
specified, LINK loads all data defined to be in the
group whose group name is DGROUP at the low
end of the group, beginning at an offset of O. The
only storage thus referenced by the data space
pointer should be that specifically defined as
residing in the group.

All other segments of any type in any GROUP
other than DGROUP are loaded at the low end of
their respective groups, as if the
IDSALLOCA TION parameter were not specified.

For certain compiler packages, /DSALLOCA TION
is automatically used.

/HIGH

/LINE

/MAP

The /HIG H (lH) parameter causes the loader to
place the run image as high as possible in storage.
If you specify the /HIGH parameter, you tell the
linker to cause the loader to place the run file as
high as possible without overlaying the transient
portion of COMMAND. COM, which occupies the
highest area of storage when loaded. If you do not
specify the /HIGH parameter, the linker directs
the loader to place the run file as low in memory as
possible.

The /HIGH parameter is used with the
/DSA~LOCA TION parameter.

For certain IBM Personal Computer language
processors, the /LINE (lL) parameter directs LINK
to include the line numbers and addresses of the
source statements in the input modules in the list
file.

The /MAP (/M) parameter directs LINK to list all
public (global) symbols defined in the input
modules. For each symbol, LINK lists its value and
segment-offset location in the run file. The
symbols are listed at the end of the list file.

11-17

/PAUSE

The IPAUSE (/P) parameter tells LINK to display
a message to you as follows:

About to generate. EXE file
Change disks <hit ENTER>

This message allows you to insert the diskette that
is to contain the run file.

/STACK:size

11-18

The size entry is any positive decimal value up to
65536 bytes. This value is used to override the size
of the stack that the MACRO Assembler or
compiler has provided for the load module being
created. If you specify a value greater than 0 but
less than 512, the value 5 12 is used

If you do not specify ISTACK (IS), the original
stack size provided by the MACRO Assembler or
compiler is used.

If the size of the stack is too small, the results of
execu ting the resulting load module are
unpredictable.

At least one input (object) module must contain a
stack allocation statement, unless you plan to use
the EXE2BIN program. This is automatically
provided by compilers. For the MACRO
Assembler, the source must contain a SEGMENT
command that has the combine type of STACK. If
a stack allocation statement was not provided,
LINK returns a Warning: No Stack statement
message.

How to Start the Linker Program

Before You Begin

• Make sure the files you will be using for
linking are on the appropriate disks.

• Make sure you have enough free space on
your disks to contain your files and any
generated data.

You can start the linker program by using one of
three options:

Option 1 - Console Responses

From your keyboard, enter:

LINK

The linker is loaded into memory and displays a
series of four prompts, one at a time, to which you
must enter the requested responses. (Detailed
descriptions of the responses that you can make to
the prompts are discussed in this chapter.)

If you enter a wrong response, such as an
incorrectly spelled filename, you must press
Ctrl-Break to exit LINK, then restart LINK. If the
response in error has been typed but you haven't
pressed Enter yet, you may delete the wrong
characters (on that line only).

11-19

An example of a linker session using the console
response option is provided in this chapter in the
section called "Example Linker Session."

As soon as you have entered the last filename, the
linker begins to run. If the linker finds any errors,
it displays the errors on the screen as well as in the
listing file.

Note: After any of these responses, before
pressing Enter, you may continue the
response with a comma and the answer to
what would be the next prompt, without
having to wait for that prompt. If you end any
with the semicolon (;), the remaining
responses are all assumed to be the default.
Processing begins immediately with no
further prompting.

Option 2 - Command Line

11-20

From your keyboard, enter:

LINK objlist,runfile, map file, lib list [parm] ... ;

objlist is a list of object modules separated by
spaces or plus signs (+).

runfile is the name you want to give the run file.

mapfile is the name you want to give the linker
map.

liblist is a list of the libraries to be used,
separated by plus signs (+) or spaces.

parm is an optional linker parameter. Each
parameter must begin with a slash (I).

The linker is loaded and immediately performs the
tasks indicated by the command line.

When you use this command line, the prompts
described in Option 1 are not displayed if you
specified an entry for all four files or if the
command line ends with a semicolon.

If an incomplete list is given and no semicolon is
used, the linker prompts for the remaining
unspecified files.

Each prompt displays its default, which may be
accepted by pressing the Enter key, or overridden
with an explicit filename or device name.
However, if an incomplete list is given and the
command line is terminated with a final semicolon,
the unspecified files default without further
prompting. The parms are never prompted for, but
may be added to the end of the command line or
to any file specification given in response to a
prompt.

Certain variations of this command line are
permitted.

Examples:

LINK module
The object module is MODULE.OB]. A
prompt is given, showing the default of
MODULE.EXE. After the response is
entered, a prompt is given showing the
default of NUL. MAP . After the response
is given, a prompt is displayed showing
the default extension of .LIB.

11-21

LINK module;
If the semicolon is added, no further
prompts are displayed The object
module of MODULE. OB] is linked, the
run file is put into MODULE. EXE, and
no list file is produced.

LINK module,,;
This is similar to the preceding example,
except the list file is produced in
MODULE. MAP.

LINK module"
Using the same example, but without the
semicolon, MODULE.OB] is linked, and
the run file is produced in
MODULE.EXE, but a prompt is given
with the default of MODULE. MAP.

LINK module"NUL;
No list file is produced. The run file is in
MODULE.EXE. No further prompts are
displayed.

Option 3 - Automatic Responses

11-22

It is often convenient to save responses to the
linker for use at a later time. This is especially
useful when long lists of object modules need to
be specified.

Before using this option, you must create the
automatic response file. It contains several lines of
text, each of which is the response to a linker
prompt. These responses must be in the same
order as the linker prompts that were discussed
earlier in this chapter. If desired, a long response
to the object module or libraries prompt may be
contained on several lines by using a plus sign (+)
to continue the same response onto the next line.

To specify an automatic response file, you enter a
file specification preceded by an @ symbol in place
of a prompt response or part of a prompt
response. The prompt is answered by the contents
of the diskette file. The file specification may not
be a reserved DOS filename.

From your keyboard, enter:

LINK @(d:](pathlfilenamel(ext)

Use of the filename extension is optional and may
be any name. There is no default extension.

Use of this option permits the command that starts
LINK to be entered from the keyboard or within a
batch file without requiring any response from
you.

Example

Automatic Response File - RESPI

MODA+MODB+MODC+
MODB+MODE+MODF

11-23

11-24

Automatic Response File - RESP2

runflle/p
printout

Command line

LINK @IESP1 +mymod,@RESP2;

Notes:

1. The plus sign at the end of the first line
in RESP1 causes the modules listed in the
first two lines to be considered as the
input object modules. After reading
RESP1, the linker returns to the
command line and sees +mymod, so it
includes MYMOD.OB) in the first list of
object modules as well.

2. Each of the above lines ends when you press
the Enter key.

Example Linker Session

This example shows you the type of information
that is displayed during a linker session.

Once we enter:

b:link

in response to the DOS prompt, the system
responds with the following messages and
prompts, which we answer as shown:

IBM Personal Computer Unker
Version 2.00 (C) Copyright IBM Corp. 1981, 1982, 1983

Object Modules (.OBJ]: example
Run File (EXAMPLE.EIE): /map
List File (NUL.MAP]: prn/line
Ubraries (.LlB]:

Notes:

1. By specifying / map, we get both an
alphabetic listing and a chronological
listing of public symbols.

2. By responding prn to the list file prompt,
we send our output to the printer.

3. By specifying the /LINE parameter,
LINK gives us a listing of all line
numbers for all modules. (The /LINE
parameter can generate a large amount of
output.)

4. By just pressing Enter in response to the
libraries prompt, an automatic library
search is performed.

11-25

11-26

Once LINK locates all libraries, the linker map
displays a list of segments in the relative order of
their appearance within the load module. The list
looks like this:

Start Stop Length Name Class

OOOOOH 0OO28H 0029H MAINOO CODE
0OO30H OOOF6H OOC7H ENTXOO CODE
00100H 00100H OOOOH INIXOO CODE
00100H 038D3H 37D4H FILVOO_CODE CODE
038D4H 04921H 104EH FILUOO _CODE CODE
•
•
•

074AOH 074AOH OOOOH HEAP MEMORY
074AOH 074AOH OOOOH MEMORY MEMORY
074AOH 0759FH 0100H STACK STACK
075AOH 07925H 0386H DATA DATA
07930H 082A9H 097AH CONST CONST

The information in the Start and Stop columns
shows a 2o-bit hex address of each segment
relative to location zero. Location zero is the
beginning of the load module. The addresses
displayed are not the absolute addresses of where
these segments are loaded. To find the absolute
address of where a segment is actually loaded, you
must determine where the segment listed as being
at relative zero is actually loaded; then add the
absolute address to the relative address shown in
the linker map. The procedure you use to
determine where relative zero is actually located is
discussed in this chapter, in the section called
"How to Determine the Absolute Address of a
Segment."

Now, because we specified the lMAP parameter,
the public symbols are displayed by name and by
value. For example:

Address

0492:0003H
06CO:029FH
0492:0013H
06CO:0087H
0602:000FH
•
•
•

0010:1 BCEH
0010:107EH
0010:1887H
0010:19E2H
0010:1182H

Address

0000:0001 H
0000:0010H
0000:0010H
0003:0000H
0003:0095H
•
•
•

F82B:f31 CH
F82B:f31 EH
F82B:f322H
F82B:F5B8H
F82B:F5mH

Publics by Name

ABSNOO
ABSROO
AOONOO
AOOROO
ALLHOO

WT4VOO
WTFVOO
WTIVOO
WTNVOO
WTRVOO

Publics by Value

MAIN
ENTGOO
MAINOO
BEGXOO
ENOXOO

CRCXOO
CROXOO
CESXOO
FNSUOO
OUTUOO

11-27

The addresses of the public symbols are in the
segment:offset format, showing the location relative
to zero as the beginning of the load module. In
some cases, an entry may look like this:

FBCC:EBE2H

This entry appears to be the address of a load
module that is almost one megabyte in size.
Actually, the area being referenced is relative to a
segment base that is pointing to a segment below
the relative zero beginning of the load module.
This condition produces a pointer that has
effectively gone negative. The memory map which
follows illustrates this point.

When LINK has completed, the following message
is displayed:

Program entry point at 0003:0000

How to Determine the Absolute
Address of a Segment

11-28

The linker map displays a list of segments in the
relative order of their appearance within the load
module. The information displayed shows a 20-bit
hex address of each segment relative to location
zero. The addresses that are displayed are not the
absolute addresses of where these segments are
actually located. To determine where relative zero
is actually located, we must use DEBUG. DEBUG
is described in detail in Chapter 12.

Using DEBUG,

1. Load the application. Note the segment value
in CS and the offset within that segment to
the entry point as shown in IP. The last line of
the linker map also describes this entry point,
but uses relative values, not the absolute
values shown by CS and IP.

2. Subtract the relative entry as shown at the end
of the map listing from the CS:IP value. For
example, let's say CS is at 05DC and IP is at
zero.

The linker map shows the entry point at
0100:0000. (0100 is a segment ID or
paragraph number; 0000 is the offset into that
segment.)

In this example, relative zero is located at
04DC:0000, which is 04DCO absolute.

If a program is loaded low, the relative zero
location is located at the end of the Program
Segment Prefix, in the location DS plus 100H.

11-29

Messages

11-30

All messages, except for the warning messages,
cause the LINK session to end. Therefore, after
you locate and correct a problem, you must rerun
LINK.

Messages appear both in the list file and on the
display unless you direct the list file to CON, in
which case the display messages are suppressed.

All of the linker messages are included in
Chapter 8.

Name Command 12-42

Output Command 12-44

Quit Command 12-45

Register Command 12-46

Search Command 12-53

Trace Command 12-55

Un assemble Command 12-57

Write Command 12-62

Summary of DEBUG Commands 12-67

12-2

Introduction

This chapter explains how to use the DEBUG
program.

The DEBUG program can be used to:

• Provide a controlled testing environment so
you can monitor and control the execution of
a program to be debugged. You can fix
problems in your program directly, and then
execu te the program immediately to
determine if the problems have been resolved.
You do not need to reassemble a program to
find out if your changes worked.

• Load, alter, or display any file.

• Execute object files. Object files are executable
programs in machine language format.

12-3

How to Start the DEBUG Program

12-4

To start DEBUG, enter:

DEBUG (d](path)[filename(.ext)](parm 1](parm2]

If you enterfilename, the DEBUG program loads
the specified file into memory. You may now enter
commands to alter, display, or execute the
contents of the specified file.

If you do not enter a filename, you must either
work with the present memory contents, or load
the required file into memory by using the Name
and Load commands. Then you can enter
commands to alter, display, or execute the
memory contents.

The optional parameters, parml and parm2 ,
represent the optional parameters for the named
filespec. For example,

DEBUG DlSKCOMP.COM A: B:

In this command, the A: and B: are the parameters
that DEBUG prepares for the DISKCOMP
program.

When the DEBUG program starts, the registers
and flags are set to the following values for the
program being debugged:

• The segment registers (eS, DS, ES, and SS)
are set to the bottom of free memory; that is,
the first segment after the end of the DEBUG
program.

• The Instruction Pointer (IP) is set to
hex 0100.

• The Stack Pointer (SP) is set to the end of the
segment, or the bottom of the transient
portion of the program loader, whichever is
lower. The segment size at offset 6 is reduced
by hex 100 to allow for a stack of that size.

• The remaining registers (AX, BX, ex, DX,
BP, SI, and DI) are set to zero. However, if
you start the DEBUG program with a filespec,
the ex register contains the length of the file
in bytes. If the file is greater than 64K, the
length is contained in registers BX and ex
(the high portion in BX).

• The flags are set to their cleared values. (Refer
to the Register command.)

• The default disk transfer address is set to
hex 80 in the code segment.

12-5

12-6

All of available memory is allocated; therefore, any
attempt by the loaded program to allocate
memory will faiL

Notes:

1. If a file loaded by DEBUG has an
extension of. EXE, DEBUG does the
necessary relocation and sets the segment
registers, stack pointer, and Instruction
Pointer to the values defined in the file.
The DS and ES registers, however, point
to the Program Segment Prefix at the
lowest available segment. The BX and
CX registers contain the size of the
program (smaller than the file size).

The program is loaded at the high end of
memory if the appropriate parameter was
specified when the linker created the file.
Refer to ". EXE File Structure and
Loading" in Appendix H for more
information about loading .EXE files.

2. If a file loaded by DEBUG has an
extension of . HEX, the file is assumed to
contain ASCII representation of
hexadecimal characters, and is converted
to binary while being loaded.

The DEBUG Command
Parameters

Parameter Definition

address Enter a one- or two-part designation in one
of the following formats:

• An alphabetic segment register
designation, plus an offset value, such
as:

CS:Ol00

• A segment address, plus an offset
value, such as:

481:0100

• An offset value only, such as:

100

(In this case, each command uses a
default segment.)

12-7

Parameter Definition

address Notes:
(cont)

1. In the first two formats, the colon is
required to separate the values.

2. All numeric values are hexadecimal and
may be entered as 1-4 characters.

3. The memory locations specified in
address must be valid; that is, they
must actually exist. Unpredictable
results will occur if an attempt is made
to access a nonexistent memory
location.

byte Enter a one or two character hexadecimal
value.

drive Enter a single digit (for example, 0 for drive
A or 1 for drive B) to indicate which drive
data is to be loaded from or written to.

(Refer to the Load and Write commands.)

filespec Enter a one- to three-part file specification
consisting of a drive designation, filename,
and filename extension. All three fields are
optional. However, for the Name command
to be meaningful, you should at least
specify a drive designator or a filename.

(Refer to the Name command.)

12-8

Parameter Defini tion

list Enter one or more byte and! or string
values. For example,

portaddress

E CS:100 F3 'IYZ' 804 "abed"

has five items in the list (that is, three byte
entries and two string entries having a total
of 10 bytes).

Enter a 1-4 character hexadecimal value to
specify an8- or 16-bit port address.

(Refer to the Input and Output commands.)

range Enter either of the following formats to
specify the lower and upper addresses of a
range:

• address address

For example:

CS:100 110

Note: Only an offset value is
allowed in the second address. The
addresses must be separated by a
space or comma.

12-9

Parameter Definition

range • address L value
(cont.)

where value is the number of bytes in
hexadecimal to be processed by the
command. For example:

CS:l00 L 11

Notes:

1. The limit for range is hex
10000. To specify that value
within four hexadecimal
characters, enter 0000 (or 0).

2. The memory locations
specified in range must be
valid; that is, they must
actually exist. Unpredictable
resul ts will occur if an
attempt is made to access a
non-existent memory
location.

registername Refer to the Register command.

12-10

Parameter Defini tion

sector sector Enter 1-3 character hexadecimal values to
specify:

1. The starting relative sector number

2. The number of sector numbers to be
loaded or written

In DEBUG, relative sectors are obtained by
counting the sectors on the disk surface.
The sector at track 0, sector 1, head 0 (the
first sector on the disk) is relative sector o.
The numbering continues for each sector
on that track and head, then continues with
the first sector on the next head of the
same track. When all sectors on all heads of
the track have been counted, numbering
continues with the first sector on head 0 of
the next track.

Note: This is a change from the
sector mapping used by DOS
Version 1.10.

The maximum number of sectors that can
be loaded or written with a single command
is hex 80. A sector contains 512 bytes.

(Refer to the Load and Write commands.)

12-11

Parameter Definition

string Enter characters enclosed in quotation
marks. The quotation marks can be either
single (') or double (").

The ASCII values of the characters in the
string are used as a list of byte values.

Within a string, the opposite set of quotation
marks can be used freely as characters.
However, if the same set of quotation marks
(as the delimiters) must be used within the
string, then the quotation marks must be
doubled. The doubling does not appear in
memory. For example:

1. 'This "literal" is correct'

2. 'This' 'literal' ' is correct'

3. 'This 'literal' is not correct'

4. 'This ''''literal'''' is not correct'

5. "This 'literal' is correct"

6. "This ""literal'''' is correct"

7. "This "literal" is not correct"

8. "This' 'literal' ' is not correct"

12-12

Parameter Definition

string In the second and sixth cases above, the
(cont.) word literal is enclosed in one set of

quotation marks in memory. In the fourth
and eighth cases above, the word literal is
not correct unless you really want it
enclosed in two sets of quotation marks in
memory.

value Enter a 1-4 character hexadecimal value to
specify:

• The numbers to be added and
subtracted (refer to the Hexarithmetic
command), or

• The number of instructions to be
executed by the Trace command, or

• The number of bytes a command
should operate on. (Refer to the
Dump, Fill, Move, Search, and
U nassemble commands.)

12-13

The DEBUG Commands

This section presents a detailed description of how
to use the commands to the DEBUG program.
The commands appear in alphabetical order; each
with its format and purpose. Examples are
provided where appropriate.

Information Common to
All DEBUG Commands

12-14

The following information applies to the DEBUG
commands:

• A command is a single letter, usually followed
by one or more parameters.

• Commands and parameters can be entered in
uppercase or lowercase, or a combination of
both.

• Commands and parameters may be separated
by delimiters. Delimiters are only required,
however, between two consecutive
hexadecimal values. Thus, these commands
are equivalent:

dcs:100 110
d cs:100 110
d,cs:100,110

• Press Ctrl-Break to end commands.

• Commands become effective only after you
press the Enter key.

• For commands producing a large amount of
output, you can press Ctrl-NumLock to
suspend the display to read it before it scrolls
away. Press any other character to restart the
display.

• You can use the control keys and the DOS
editing keys, described in Chapter 3, while
using the DEBUG program.

• If a syntax error is encountered, the line is
displayed with the error pointed out as
follows:

d c5:100 CS:110
error

In this case, the Dump command is expecting
the second address to contain only a
hexadecimal offset value. It finds the S, which
is not a valid hexadecimal character.

• The prompt from the DEBUG program is a
hyphen (-).

• The DEBUG program resides on your DOS
Supplemental Program diskette.

12-15

Assemble
Command

Purpose: To assemble IBM Personal Computer Macro
Assembler language statements directly into
memory.

Format: A [address]

Remarks: All numeric input to the Assemble command is
in hexadecimal. The assembly statements you
enter are assembled into memory at successive
locations, starting with the address specified in
address. If no address is specified, the statements
are assembled into the area at CS:0100, if no
previous Assemble command was used, or into
the location following the last instruction
assembled by a previous Assemble command.
When all desired statements have been entered,
press Enter when you are prompted for the next
statement, to return to the DEBUG prompt.

12-16

DEBUG responds to invalid statements by
displaying:

1\ Error

and redisplaying the current assemble address.

Assemble
Command

DEBUG supports standard 8086/8088 assembly
language syntax (and the 8087 instruction set),
with the following rules:

• All numeric values entered are hexadecimal
and can be entered as 1-4 characters.

• Prefix mnemonics must be entered in front
of the opcode to which they refer. They can
also be entered on a separate line.

• The segment override mnemonics are CS:,
DS:, ES:, and SS:.

• String manipulation mnemonics must
explicitly state the string size. For example,
MOVSW must be used to move word
strings and MOVSB must be used to move
byte strings.

• The mnemonic for the far return is RETF.

12-17

Assemble
Command

12-18

• The assembler will automatically assemble
short, near, or far jumps and calls
depending on byte displacement to the
destination address. These can be
overridden with the NEAR OR FAR prefix.
For example:

0100:0500 JMP 502 ; a 2 byte short jump
0100:0502 JMP NEAR 505 ; a 3 byte near jump
0100:0505 JMP FAR 50A ; a 5 byte far jump

The NEAR prefix can be abbreviated to
NE, but the FAR prefix cannot be
abbreviated.

• DEBUG cannot tell whether some operands
refer to a word memory location or a byte
memory location. In this case, the data type
must be explicitly stated with the prefix
"WORD PTR" or "BYTE PTR". DEBUG
will also accept the abbreviations "wo"
and "BY". For example:

NEG BYTE PTR [128]
DEC WO (SI]

Assemble
Command

• DEBUG also cannot tell whether an
operand refers to a memory location or to
an immediate operand. DEBUG uses the
common convention that operands
enclosed in square brackets refer to
memory. For example:

MOV AX,21
MOV AX,[21]

;Load AX with 21H
;Load AX with the
contents of memory
location 21 H

• Two popular pseudo-instructions have also
been included. The DB opcode will
assemble byte values directly into memory.
The DW opcode will assemble word values
directly into memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB 'THIS IS A QUOTE: " ,
DB "THIS IS A QUOTE: ' "

OW 1000,2000,3000", BACH"

• All forms of the register indirect commands
are supported. For example:

ADD B1,34[BP+2].[SI-1]
POP [BP+DI)
PUSH [SI]

12-19

Assemble
Command

• All opcode synonyms are supported. For
example:

LOOPZ 100
LOOPE 100

JA 200
JNBE 200

• For 8087 opcodes the WAIT or FW AIT
prefix must be explicitly specified. For
example:

FWAIT FAOO ST,ST(3) ;This line will assemble
a FW AIT prefix

FLO TBYTE PTR (BX] ;This line will not

Example: C>debug
-1200

12-20

0884:0200 xor ax,ax
0884:0202 mov (bx),ax
0884:0204 ret
0884:0205

Compare
Command

Purpose: Compares the contents of two blocks of
memory.

Format: C range address

Remarks: The contents of the two blocks of memory are
compared; the length of the comparison is
determined from the range. If unequal bytes are
found, their addresses and contents are
displayed, in the form:

addrl by tel byte2 addr2

where, the first half (addrl by tel) refers to the
location and contents of the mismatching
locations in range, and the second half
(byte2 addr2) refers to the byte found in address.

If you enter only an offset for the beginning
address of range, the C command assumes the
segment contained in the DS register. To specify
an ending address for range, enter it with only an
offset value.

Example: C 100L20 200

The 32 bytes of memory beginning at DS:lOO
are compared with the 32 bytes beginning at
DS:200.

12-21

Dump
Command

Purpose: Displays the contents of a portion of memory.

Format: D [address]

or

D [range]

Remarks: The dump is displayed in two parts:

12-22

1. A hexadecimal portion. Each byte is
displayed in hexadecimal.

2. An ASCII portion. The bytes are displayed
as ASCII characters. Unprintable characters
are indicated by a period (.).

With a 40-column system display format, each
line begins on an 8-byte boundary and shows 8
bytes.

With an 80-column system display format, each
line begins on a 16-byte boundary and shows 16
bytes. There is a hyphen between the 8 th and
9th bytes.

Note: The first line may have fewer than 8
or 16 bytes if the starting address of the
dump is not on a boundary. In this case, the
second line of the dump begins on a
boundary.

Dump
Command

The Dump command has two format options:

Option 1

Use this option to display the contents of hex 40
bytes (40-column mode) or hex so bytes
(SO-column mode). For example:

D address

or

D

The contents are dumped starting with the
specified address.

If you do not specify an address, the D
command assumes the starting address is the
location following the last location displayed by
a previous D command. Thus, it is possible to
dump consecutive 40-byte or SO-byte areas by
entering consecutive D commands without
parameters.

If no previous D command was entered, the
location is offset hex 0100 into the segment
originally initialized in the segment registers by
DEBUG.

Note: If you enter only an offset for the
starting address, the D command assumes
the segment contained in the DS register.

12-23

Dump
Command

12-24

Option 2

Use this option to display the contents of the
specified address range. For example:

D range

. Note: If you enter only an offset for the
starting address, the D command assumes
the segment contained in the DS register. If
you specify an ending address, enter it with
only an offset value.

F or example:

o cs:l00 10C

A 40-column display format might look like this:

04BA:Ol00 42 45 52 54 41 20 54 00
BERTA T.

04BA:Ol08 20 42 4F 52 47
BORG

Enter
Command

Purpose: The Enter command has two modes of
operation:

Replaces the contents of one or more bytes,
starting at the specified address, with the
values contained in the list. (See Option 1.)

Displays and allows modification of bytes in
a sequential manner. (See Option 2.)

Format: E address [ltst]

Remarks: If you enter only an offset for the address, the E
command assumes the segment contained in the
DS register.

The Enter command has two format options:

Option 1

Use this option to place the list in memory
beginning at the specified address.

E address Itst

For example:

E ds: 1 00 F3 "xyz" 8 0

Memory locations ds:l00 through ds:l04 are
filled with the five bytes specified in the list.

12-25

Enter
Command

12-26

Option 2

Use this option to display the address and the
byte of a location, then the system waits for
your input.

F or example:

E address

Now you can take one of the following actions:

1. Enter a one or two character hexadecimal
value to replace the contents of the byte;
then take any of the next three actions:

2. Press the space bar to advance to the next
address. Its contents are displayed. If you
want to change the contents take action 1,
above.

To advance to the next byte without
changing the current byte, press the space
bar again.

3. Enter a hyphen (-) to back up to the
preceding address. A new line is displayed
with the preceding address and its contents.
If you want to change the contents take
action 1, above.

To back up one more byte without
changing the current byte, enter another
hyphen.

Enter
Command

4. Press the Enter key to end the Enter
command.

Note: Display lines can have 4 or 8 bytes
of data, depending on whether the system
display format is 40- or 80-column. Spacing
beyond an 8-byte boundary causes a new
display line, with the beginning address, to
be started.

For example:

E cs:l00

might cause this display:

04BI:Ol00 EB._

To change the contents of 04BA:0100 from
hex EB to hex 41, enter 41.

048A:Ol00 EB.41 _

To see the contents of the next three
locations, press the space bar three times.
The screen might look like this:

04BA:Ol00 EB.41 10. 00. BC._

To change the contents of the current
location (04BA:0103) from hex Be to
hex 42, enter 42.

04BA:Ol00 EB.41 10. 00. BC.42_

12-27

Enter
Command

12-28

Now, suppose you want to back up and
change the hex 10 to hex 6F. This is what
the screen would look like after entering
two hyphens and the replacement byte:

04BA:Ol00 EB.41 10. 00. BC.42·
04BA:Ol02 00.-
04BA:Ol0l 10.6F_

Press the Enter key to end the Enter
command. You will see the hyphen (-)
prompt.

Fill
Command

Purpose: Fills the memory locations in the range with the
values in the list.

Format: F range list

Remarks: If the list contains fewer bytes than the address
range, the list is used repeatedly until all the
designated memory locations are filled.

If the list contains more bytes than the address
range, the extra list items are ignored.

Note: If you enter only an offset for the
starting address of the range, the Fill
command assumes the segment contained
in the DS register.

Example: F 4BA:l00 L 5 F3 "XYI" 80

Memory locations 04BA:100 through 04BA:104
are filled with the 5 bytes specified. Remember
that the ASCII values of the list characters are
stored. Thus, locations 100-104 will contain F3
5859 5A 8D.

12-29

Go
Command

Purpose: Executes the program you are debugging.

Stops the execution when the instruction at a
specified address is reached (breakpoint), and
displays the registers, flags, and the next
instruction to be executed.

Format: G [=address] [address [address ...]]

Remarks: Program execution begins with the current
instruction, whose address is determined by the
contents of the CS and IP registers, unless
overridden by the =address parameter (the =
must be entered). If =address is specified,
program execution begins with CS:=address.

12-30

The Go command has two format options:

Option 1

Use this option to execute the program you are
debugging without breakpoints. For example:

G [=address]

This option is useful when testing program
execution with different parameters each time.
(Refer to the Name command.) Be certain the
CS:IP values are set properly before issuing the
G command, if not using =address.

Go
Command

Option 2

This option performs the same function as
Option 1 but, in addition, allows breakpoints to
be set at the specified addresses. For example:

G [=address] address
[address ...]

This method causes execution to stop at a
specified location so the system/program
environment can be examined.

You can specify up to ten breakpoints in any
order. You may wish to take advantage of this if
your program has many paths, and you want to
stop the execution no matter which path the
program takes.

The DEBUG program replaces the instruction
codes at the breakpoint addresses with an
interrupt code (hex CC). If anyone breakpoint is
reached during execution, the execution is
stopped, the registers and flags are displayed,
and all the breakpoint addresses are restored to
their original instruction codes. If no breakpoint
is reached, the instructions are not restored.

12-31

Go
Command

12-32

Notes:

1. Once a program has reached
completion (DEBUG has displayed the
"Program terminated normally"
message), it will be necessary to reload
the program before it can be executed
again.

2. Make sure that the address parameters
refer to locations that contain valid
8088 instruction codes. If you specify
an address that does not contain the
first byte valid instruction,
unpredictable results will occur.

3. The stack pointer must be valid and
have 6 bytes available for the Go
command; otherwise, unpredictable
resul ts will occur.

4. If only an offset is entered for a
breakpoint, the G command assumes
the segment contained in the CS
register.

For example:

G 102 1 EF 208

Go
Command

Execution begins with the current
instruction, whose address is the current
values of CS:IP. The =addres! parameter was
not used.

Three breakpoints are specified; assume
that the second is reached. Execution stops
before the instruction at location CS: 1 EF is
executed, the original instruction codes are
restored, all three breakpoints are removed,
the display occurs, and the Go command
ends.

Refer to the Register command for a
description of the display.

12-33

Hexari thmetic
Command

Purpose: Adds the two hexadecimal values, then subtracts
the second from the first.

Displays the sum and difference on one line.

Format: H value value

Example: H OF 8
1707

12-34

The hexadecimal sum of 000 F and 0008 is 001 7,
and their difference is 0007.

Input
Command

Purpose: Inputs and displays (in hexadecimal) one byte
from the specified port.

Format: Iportaddress

Example: 12F8
68

The single hexadecimal byte read from port
02F8 is displayed (6B).

12-35

Load
Command

Purpose: Loads a file or absolute diskette sectors into
memory.

Format L [address [drive sector sector]]

Remarks: The maximum number of sectors that can be
loaded with a single Load command is hex 80.

12-36

Note: DEBUG displays a message if a
diskette read error occurs. You can retry
the read operation by pressing F3 to
re-display the Load command. Then, press
the Enter key.

The Load command has two format options:

Option 1

Use this option to load data from the diskette
specified by drive, and place the data in memory
beginning at the specified address. For example:

L address drive sector sector

Load
Command

The data is read from the specified starting
relative sector (first sector) and continues until
the requested number of sectors is read (second
sector).

Note: If you only enter an offset for the
beginning address, the L command assumes
the segment contained in the CS register.

For example, to load data, you might enter:

L 4BA:l00 1 OF 60

The data is loaded from the diskette in drive B
and placed in memory beginning at 4BA:I00.
Hex 6D (109) consecutive sectors of data are
transferred, starting with relative sector hex of
(15) (the 16th sector on the diskette).

12-37

Load
Command

12-38

Option 2

When issued without parameters, or with only
the address parameter, use this option to load
the file whose filespec is properly formatted in
the file control block at CS:5C. For example:

L

or

L address

This condition is met by specifying the filespec
when starting the DEBUG program, or by using
the Name command.

Note: If DEBUG was started with a
filespec and subsequent Name commands
were used, you may need to enter a new
Name command for the proper filespec
before issning the Load command.

The file is loaded into memory beginning at
CS: 1 00 (or the location specified by address), and
is read from the drive specified in the filespec
(or from the default drive, if none was specified).
Note that files with extensions of .COM or .EXE
are always loaded at CS: 1 00 -- if you specified an
address, it will be ignored.

Load
Command

The BX and ex registers are set to the number
of bytes read; however, if the file being loaded
has an extension of . EXE, BX and ex are set to
the actual program size, and the file may be
loaded at the high end of memory. Refer to the
notes in "How to Start the DEBUG Program" at
the beginning of this chapter for the conditions
that are in effect when .EXE or .HEX files are
loaded.

For example:

DEBUG
-N myprog
-L

The file named myprog is loaded from the
default diskette and placed in memory
beginning at location CS:0100.

12-39

Move
Command

Purpose: Moves the contents of the memory locations
specified by range to the locations beginning at
the address specified.

Format: M range address

Remarks: Overlapping moves are always performed
without loss of data during the transfer. (The
source and destination areas share some of the
same memory locations.)

12-40

The data in the source area remains unchanged
unless overwritten by the move.

Notes:

1. If you enter only an offset for the
beginning address of the range, the M
command assumes the segment
contained in the DS register. If you
specify an ending address for the range,
enter it with only an offset value.

2. If you enter only an offset for the
address of the destination area, the M
command assumes the segment
contained in the DS register.

Move
Command

Example: M CS:l00 110 500

The 1 7 bytes of data from CS: 1 00 through
CS: 11 0 are moved to the area of memory
beginning at DS:500.

12-41

Name
Command

Purpose: The Name command has two functions:

Formats file control blocks for the first two
filespecs, at CS:5C and CS:6C. (Starting
DEBUG with a filespec also formats a file
control block at CS:5C.)

The file control blocks are set up for the
use of the Load and Write commands, and
to supply required filenames for the
program being debugged.

All specified filespecs and other parameters
are placed exactly as entered, including
delimiters, in a parameter save area at
CS:81, with CS:80 containing the number
of characters entered. Register AX is set to
indicate the validity of the drive specifiers
entered with the first two filespecs.

Format: Nfilespec [filespec. .. J

Remarks: If you start the DEBUG program without a
filespec, you must use the Name command
before a file can be loaded with the L command.

12-42

Example: DEBUG
·N myprog
·L

Name
Command

To define filespecs or other parameters required
by the program being debugged, enter:

DEBUG myprog
. N filel file2

In this example, DEBUG loads the file myprog
at CS:I00, and leaves the file control block at
CS:5C formatted with the same filespec. Then,
the Name command formats file control blocks
for/llel and/ile2 at CS:5C and CS:6C,
respectively. The file control block for myprog
is overwritten. The parameter area at CS:81
contains all characters entered after the N,
including all delimiters, and CS:80 contains the
count of those characters (hex OC).

12-43

Output
Command

Purpose: Sends the byte to the specified output port.

Format: 0 portaddress byte

Example: To send the byte value 4F to output port 2F8,
enter:

o 2F8 4F

12-44

Purpose: Ends the DEBUG program.

Format: Q

Quit
Command

Remarks: The file that you are working on in memory is
not saved by the Quit command. You must use
the Write command to save the file.

DEBUG returns to the command processor
which then issues the normal command prompt.

Example: -0
A>

12-45

Register
Command

Purpose: The Register command has three functions:

It displays the hexadecimal contents of a
single register, with the option of changing
those contents.

It displays the hexadecimal contents of all
the registers, plus the alphabetic flag
settings, and the next instruction to be
executed.

It displays the eight 2-letter alphabetic flag
settings, with the option of changing any or
all of them.

Format: R [registername]

12-46

Register
Command

Remarks: When the DEBUG program starts, the registers
and flags are set to certain values for the
program being debugged. (Refer to "How to
Start the DEBUG Program" at the beginning of
this chapter.)

Display a Single Register

The valid registernames are:

AX BP SS-
BX SI CS
CX DI IP
DX DS PC
SP ES F

Both IP and PC refer to the instruction pointer.

For example, to display the contents of a single
register, you might enter:

R AX

The system might respond with:

AX Fl E4

12-47

Register
Command

12-48

Now you may take one of two actions:

Press Enter to leave the contents
unchanged.

or

Change the contents of the AX register by
entering a 1-4 character hexadecimal value,
such as hex FFF.

AX F1E4
:FFF_

Now pressing Enter changes the contents of the
AX register to hex OFFF.

Display All Registers and Flags

To display the contents of all registers and flags
(and the next instruction to be executed), enter:

R

The system might respond with:

AX=GBm iii=GGFF Ci=OOiii DX=iii FF
SP=0390 BP=OOOO SI=005C 01=0000
0S=04 BA ES=04 BA SS=04 BA CS=04 BA
1P=011 A NV UP DI NG NZ AC PE NC
04BA:011 A CD21 INT 21

Register
Command

The first four lines display the hexadecimal
contents of the registers and the eight
alphabetic flag settings. The last line indicates
the location of the next instruction to be
executed, and its hexadecimal and unassembled
formats. This is the instruction pointed to by
CS:IP.

Note: A system with an 80-column display
shows:

1 st line - 8 registers
2nd line - 5 registers and 8 flag settings
3rd line - next instruction information

A system with a 40-column display shows:

1 st line - 4 registers
2nd line - 4 registers
3rd line - 4 registers
4th line - 1 register and 8 flag settings
5 th line - next instruction information

12-49

Register
Command

Display All Flags

There are eight flags, each with 2-letter codes to
indicate either a set condition or a clear
condition.

The flags appear in displays in the same order as
presented in the following table:

Flag Name Set. Clear

Overflow (yes/no) OV NV

Direction (decrement! incremen t) DN UP

Interrupt (enable/disable) EI DI

Sign (negative/positive) NG PL

Zero (yes/no) ZR NZ

Auxiliary carry (yes/no) AC NA

Pari ty (even! odd) PE PO

Carry (yes! no) CY NC

Figure 7. Alphabetic Flag Settings

12-50

Register
Command

To display all flags, enter:

RF

If all the flags are in a set condition, the response
is:

OV ON EI NG ZR AC PE CY-_

Now you can take one of two actions:

1. Press Enter to leave the settings unchanged.

2. Change any or all of the settings.

To change a flag, just enter its opposite code.
The opposite codes can be entered in any
order - with or without intervening spaces. For
example, to change the first, third, fifth, and
seventh flags, enter:

OV ON EI NG ZR AC PE CY - PONZDlNV

They are entered in reverse order in this
example.

Press Enter and the flags are modified as
specified, the prompt appears, and you can enter
the next command.

12-51

Register
Command

12-52

If you want to see if the new codes are in effect,
enter:

RF

The response will be:

NVDNDINGNZACPOCY-_

The first, third, fifth, and seventh flags are
changed as requested. The second, fourth, sixth,
and eighth flags are unchanged.

Note: A single flag can be changed only
once per R F command.

Search
Command

Purpose: Searches the range for the character(s) in the list.

Format: S range list

Remarks: All matches are indicated by displaying the
addresses where matches are found.

A display of the prompt (-) without an address
means that no match was found.

Note: If you enter only an offset for the
starting address of the range, the S
command assumes the segment contained
in the DS register.

12-53

Search
Command

Example: If you want to search the range of addresses
from CS: 1 00 through CS: 110 for hex 41, enter:

12-54

S CS:100 11041

If two matches are found the response might be:

041A:0104
041A:0100

If you want to search the same range of
addresses as in the previous example for a match
with the 4-byte-Iong list, enter:

S CS: 1 00 L 11 41 "AI" E

The starting addresses of all matches are listed.
If no match is found, no address is displayed.

Trace
Command

Purpose: Executes one or more instructions starting with
the instruction at CS:IP, or at =address if it is
specified. The = must be entered. One
instruction is assumed, but you can specify more
than one with value. Displays the contents of all
registers and flags after each instruction executes.
For a description of the display format, refer to
the Register command.

Format: T [=address][value]

Remarks: The display caused by the Trace command
continues until value instructions are executed.
Therefore, when tracing multiple instructions,
remember you can suspend the scrolling at any
time by pressing Ctrl-NumLock. Resume
scrolling by entering any other character.

12-55

Trace
Command

Example: T

12-56

If the IP register contains OllA, and that
location contains B40E (MOV AH,OEH), this
might be displayed:

Ax=omo BX=OOFF CX=0007 OX=Ol FF
SP==0390 BP==OOOO SI=005C 01=0000
0S=04BA ES=04BA SS=04BA C~04BA
1P=011 C NV UP DI NG NZ AC PE NC
04BA:011 C CD21 INT 21

This displays the results after the instruction at
OllA is executed, and indicates the next
instruction to be executed is the INT 21 at
location 04BA:Oll C.

T10

Sixteen instructions are executed (starting at
CS:IP). The contents of all registers and flags are
displayed after each instruction. The display
stops after the 16 th instruction has been
executed. Displays may scroll off the screen
unless you suspend the display by pressing the
Ctrl-NumLock keys.

Unassemble
Command

Purpose: Unassembles instructions (translates the
contents of memory into assembler-like
statenlents) and displays their addresses and
hexadecimal values, together with
assembler-like statements. For example, a
display might look like this:

04BA:Ol00 206472 AND [SI+72],AH
04 BA:O 1 03 FC CLD
04BA:Ol04 7665 JBE 016B

Format: U [address]

or

U [range]

12-57

Unassemble
Command

Remarks: The number of bytes unassembled depends on
your system display format (whether 40 or 80
columns), and which option you use with the
Unassemble command.

12-58

Notes:

1. In all cases, the number of bytes
unassembled and displayed may be
slightly more than either the amount
requested or the default amount. This
happens because the instructions are of
variable lengths; therefore, to
unassemble the last instruction may
include more bytes than expected.

2. Make sure that the address parameters
refer to locations containing valid 8088
instruction codes. If you specify an
address that does not contain the first
byte of a valid instruction, the display
will be erroneous.

3. If you enter only an offset for the
starting address, the U command
assumes the segment contained in the
CS register.

Unassemble
Command

The Unassemble command has two format
options:

Option 1

Use this option to either unassemble
instructions without specifying an address, or to
unassemble instructions beginning with a
specified address. For example:

U

or

U address

Sixteen bytes are unassembled with a 40-column
display. "Thirty-two" or" display; 32" bytes are
unassembled with an 80-column display.

Instructions are unassembled beginning with the
specified address.

If you do not specify an address, the U
command assumes the starting address is the
location following the last instruction
unassembled by a previous U command. Thus, it
is possible to unassemble consecutive locations,
producing continuous unassembled displays, by
entering consecutive U commands without
parameters.

12-59

Unassemble
Command

12-60

If no previous U command is entered, the
location is offset hex 0100 into the segment
originally initialized in the segment registers by
DEBUG.

Option 2

Use this option to unassemble instructions in a
specified address range. For example:

U range

All instructions in the specified address range
are unassembled, regardless of the system
display format.

Note: If you specify an ending address,
enter it with only an offset value.

For example:

U 04ba:Ol00 108

Unassemble
Command

The display response might be:

048A:Ol00 206472 AND [SI+72],AH
048A:Ol03 FC CLD
0481:0104 7665 J8E 0168
048A:Ol06 207370 AND [8P+OI+70],DH

The same display appears if you enter:

U 048A:l00 L 7

or

U 048A:100 L 8

or

U 048A:l00 L 9

12-61

Write
Command

Purpose: W rites the data being debugged to diskette.

Format: W [address [drive sector sector]]

Remarks: The maximum number of sectors that can be
written with a single Write command is hex 80.

12-62

DEBUG displays a message if a diskette write
error occurs. You can retry the write operation
by pressing F3 to redisplay the Write command,
then press the Enter key.

The Write command has two format options:

Option 1

Use this option to write data to diskette
beginning at a specified address. For example:

W address drive sector sector

Write
Command

The data beginning at the specified address is
written to the diskette in the indicated drive.
The data is written starting at the specified
starting relative sector (first sector) and
continues until the requested number of sectors
are filled (second sector).

Notes:

1. Be extremely careful when you write
data to absolute sectors because an
erroneous sector specification will
destroy whatever was o~ the diskette at
that location.

2. If only an offset is entered for the
beginning address, the W command
assumes the segment contained in the
CS register.

3. Remember, the starting sector and the
sector count are both specified in
hexadecimal.

For example:

W 1 FD 1100 A

The data beginning at CS:01FD is written to the
diskette in drive B, starting at relative sector
hex 100 (256) and continuing for hex OA (10)
sectors.

12-63

Write
Command

12-64

Option 2

This option allows you to use the Write
command without specifying parameters or only
specifying the address parameter. For example:

W

or

Waddress

When issued without parameters (or when
issued with only the address parameter), the
Write command writes the file (whose filespec is
properly formatted in the file control block at
CS:5C) to diskette.

This condition is met by specifying the filespec
when starting the DEBUG program, or by using
the Name command.

Note: If DEBUG was started with a
filespec and subsequent Name commands
were used, you may need to enter a new
Name command for the proper filespec
before issuing the Write command.

Write
Command

In addition, the BX and CX registers must be set
to the number of bytes to be written. They may
have been set properly by the DEBUG or Load
commands, but might have been changed by a
Go or Trace command. You must be certain the
BX and CX registers contain the correct values.

The file beginning at CS: 1 00, or at the location
specified by address, is written to the diskette in
the drive specified in filespec or the default
drive if none was specified.

The debugged file is written over the original
file that was loaded into memory, or into a new
file if the filename in the FCB didn't previously
exist.

Note: An error message is issued if you try
to write a file with an extension of .EXE or
.HEX. These files must be written in a
specific format that DEBUG cannot
support.

12-65

Write
Command

12-66

If you find it necessary to modify a file with
an extension of .EXE or .HEX, and the
exact locations to be modified are known,
use the following procedure:

1. RENAME the file to an extension
other than .EXE or .HEX.

2. Load the file into memory using the
DEBUG or Load command.

3. Modify the file as needed in memory,
but do not try to execute it with the
Go or Trace commands. Unpredictable
resul ts would occur.

4. Write the file back using the Write
command.

5. RENAME the file back to its correct
name.

Summary of DEBUG Commands

The following chart is provided for quick
reference.

The section called "Format Notation" in Chapter
6 explains the notation used in the format of the
following commands.

Command Purpose Format

Assemble Assembles statements A [address]

Compare Compares memory C range address

Dump Displays memory D [address]
or

D [range]

Enter Changes memory E address [ltst]

Fill Changes memory blocks F range ltst

Go Executes with optional G [=address]
breakpoints [address

[address ...]]

Hexari thmetic Hexadecimal add-subtract H value value

Figure 8 (Part 1 of2). DEBUG Commands

12-67

Command Purpose Format

Input Reads/ displays input byte I portaddress

Load Loads file or absolute L [address [drive
diskette sectors sector sector]]

Move Moves memory block M range address

Name Defines files and Nfilespec
parameters [filespec ...]

Output Sends output byte o portaddress
byte

Quit Ends DEBUG program Q

Register Displays registers/flags R [registername]

Search Searches for characters S range list

Trace Executes and displays T
[=address] [value]

Unassemble Unassembles instructions U [address]
or

U [range]

Write W rites file or absolute W [address [drive
diskette sectors sector sector]]

Figure 8 (Part 2 of2). DEBUG Commands

12-68

Notes:

13-2

Introduction

With DOS Version 2.00 you can issue special
character sequences from within your program
that can be used to control screen cursor
positioning. You can also reassign the meaning of
any key in the keyboard.

Notes:

1. The control sequences defined below are
valid only when issued through DOS
function calls 1, 2, 6, and 9, and require
the presence of the extended screen and
keyboard control device driver. This can
be accomplished by placing the
command:

DEVICE=ANSI.SYS

in your CONFIG.SYS (configuration)
file. Note that the size of DOS in
memory will be increased by the size of
the ANSI.SYS program.

2. The default value is used when no
explicit value, or a value of zero, is
specified.

3. # - Numeric Parameter. A decimal
number specified with ASCII characters.

4. In the control sequences described
below, ESC is the 1 byte code for ESC
(hex 1B), not the three characters "ESC."
For example, ESC [2;10H could be
created under DEBUG as follows:

e200 18 "[2;10H"

13-3

Cursor Control

Cursor Position

CUP Function

ESC [#;#H Moves the cursor to the position specified
by the parameters. The first parameter
specifies the line number and the second
parameter specifies the column number.
The default value is one. If no parameter is
given, the cursor is moved to the home
position.

Cursor Up

CUU Function

ESC [#A Moves the cursor up one line without
changing columns. The value of I}
determines the number of lines moved. The
default value for I} is one. This sequence is
ignored if the cursor is already on the top
line.

13-4

Cursor Down

CUD Function

ESC [#8 Moves the cursor down one line without
changing columns. The value of II
determines the number of lines moved. The
default value for II is one. The sequence is
ignored if the cursor is already on the
bottom line.

Cursor Forward

CUF Function

ESC [#C Moves the cursor forward one column
without changing lines. The value of II
determines the number of columns moved.
The default value for II is one. This
sequence is ignored if the cursor is already
in the rightmost column.

Cursor Backward

CUB Function

ESC [#0 Moves the cursor back one column without
changing lines. The value of II determines
the number of columns moved. The default
value for II is one. This sequence is
ignored if the cursor is already in the
leftmost column.

13-5

Horizontal and Vertical Position

HVP Function

ESC [#;#f Moves the cursor to the position specified
by the parameters. The first parameter
specifies the line number and the second
parameter specifies the column number.
The default value is one. If no parameter is
given, the cursor is moved to the home
position (same as CUP).

Device Status Report

DSR Function

ESC [6n The console driver will output a CPR
sequence on receipt ofDSR (see below).

Cursor Position Report

CPR Function

ESC [#;#R The CPR sequence reports the current
cursor position through the standard input
device. The first parameter specifies the
current line and the second parameter
specifies the current column.

13-6

Save Cursor Position

SCP Function

ESC[s The current cursor position is saved. This
cursor position can be restored with the
RCP sequence.

Restore Cursor Position

RCP Function

ESC [u Restores the cursor to the value it had when
the console driver received the SCP
sequence.

13-7

Erasing

Erase in Display

ED Function

ESC[2J Erases all of the screen and the cursor goes
to the home position.

Erase in Line

EL Function

ESC[k Erases from the cursor to the end of the
line and includes the cursor position.

13-8

Mode Of Operation

Set Graphics Rendition

SGR Function

ESC Sets the character attribute specified by the
[#; ... ;#m parameter(s). All following characters will

have the attribute according to the
parameter(s) until the next occurrence of
SGR.

Parameter Meaning
0 All attributes Off

(normal white on black)
1 Bold On (high intensity)
4 Underscore On

(IBM Monochrome Display only)
5 Blink On
7 Reverse video On
8 Cancelled On (invisible)
30 Black foreground
31 Red foreground
32 Green foreground
33 Yellow foreground
34 Blue foreground
35 Magenta foreground
36 Cyan foreground
37 White foreground
40 Black background
41 Red background
42 Green background
43 Yellow background
44 Blue background
45 Magenta background
46 Cyan background
47 White background

13-9

Set Mode

SM Function

ESC (=#h Invokes the screen width or type specified
or ESC (=h by the parameter.
or ESC (=Oh
or ESC (?7h Parameter Meaning

0 40x25 black and white
1 40x25 color
2 80x25 black and white
3 80x25 color
4 320x200 color
5 320x200 black and white -
6 640x200 black and white
7 wrap at end of line

(typing past end-of-line
results in new line)

Reset Mode

RM Function

ESC (=#1 Parameters are the same as SM (Set Mode)
or ESC(=I except that parameter 7 will reset wrap at
or ESC (=01 end-of-line mode (characters past end-of-line
or ESC (?71 are thrown away).

Note: The character I is a lowercase L.

13-10

Keyboard Key Reassignment

The control
sequence is Function

ESC [#;#; ... #p The first ASCII code in the control
or ESC [" string"; p sequence defines which code is being
or ESC [#;"string";#; mapped. The remaining numbers

#;"string";#p define the sequence of ASCII codes
or any other generated when this key is

combination of intercepted. However, if the first
strings and code in the sequence is zero (NUL)
decimal then the first and second code make
numbers up an extended ASCII re-definition

(see the Technical Reference manual
for a list of all the ASCII and
extended ASCII codes).

Here are some examples:

1. Reassign the Q and q key to the A and a key
(and the other way as well):

ESC [65;81 P A becomes Q
ESC [97; 113p a becomes q
ESC (81 ;65p Q becomes A
ESC [113;97p q becomes a

2. Reassign the FlO key to a DIR command
followed by a carriage return:

ESC [O;68;"dir";13p

The 0;68 is the extended ASCII code for the
FlO key. 13 decimal is a carriage return.

13-11

Notes:

13-12

MEDIA Descriptor Byte 14-21
INPUT or OUTPUT 14-23
Non Destructive Input
No Wait 14-25

STATUS 14-25
FLUSH 14-26

The CLOCK$ Device 14-26

Sample Device Driver 14-27

14-2

Introduction

The DOS Version 2.00 device interface links the
devices together in a chain. This allows new device
drivers for optional devices to be added to DOS.

Device Driver Format

A device driver is a .COM file with all of the code
in it to implement the device. In addition it has a
special header at the front of it that identifies it as
a device, defines the strategy and interrupt entry
points, and defines various attributes of the device.

Note: For device drivers, the. COM file must
not use the ORG 100H. Because it does not
use the program segment prefix, the device
driver is simply loaded; therefore, the. COM
file must have an orgin of zero (ORG 0 or no
ORG statement).

Types of Devices

There are two basic types of devices:

• Character devices

• Block devices

14-3

Character Devices

These are devices that are designed to do character
1/0 in a serial manner like CON, AUX, and PRN.
These devices have names like CON, AUX,
CLOCK$, and you can open channels (handles or
FCBs) to do input and output to them.

Note: Because character devices have only
one name, they can support only one device.

Block Devices

14-4

These devices are the "fixed disk or diskette
drives" on the system, they can do random 1/0 in
pieces called blocks (usually the physical sector
size of the disk). These devices are not named as
the character devices are, and cannot be opened
directly. Instead they are mapped via the drive
letters (A, B, C, etc.). Block devices can have units
within them. In this way, a single block driver can
be responsible for one or more disk or diskette
drives. For example, block device driver ALPHA
can be responsible for drives A, B, C and D. This
means that ALPHA has four units defined and
therefore takes up four drive letters. The way the
drive units and drive letters correspond is
determined by the position of the driver in the
chain of all drivers. For example, if device driver
ALPHA is the first block driver in the device chain,
and it has defined four units, then those units will
be A, B, C and D. If BETA is the second block
driver, and it defines three units, then those units
will be E, F and G. DOS Version 2.00 is not
limited to 16 block device units as previous
versions were. The new limit is 63, but drives are
assigned alphabetically through the collating
sequence, so after drive Z, the drive" characters"
get a little strange (like <,\ , ».

Device Header

A device header is required at the beginning of a
device driver. Here is what the Device Header
looks like:

Description Definition

Pointer to next device header DWORD

Attribute WORD

Pointer to device strategy WORD

Pointer to device interrupt WORD

Name/unit field 8 BYTES

Next Device Header Field

The pointer to the next device header field is a
double word field (offset followed by segment)
that is set by DOS at the time the device driver is
loaded. However, it is important that this field be
set to -1 prior to load time (when it is on the disk
as a .COM file) unless there is more than one
device driver in the .COM file. If there is more
than one driver in the file, the first word of the
double word pointer should be the offset of the
next driver's Device Header.

Note: If there is more than one device driver
in the. COM file, the last driver in the file
must have the pointer to next Device Header
field set to -1.

14-5

Attribute Field

14-6

The next field in the header describes to the
system the attributes of the device. They are as
follows:

bit 15 = 1 if character device
o if block device

bit 14 = 1 if IOCTL is supported
o if it is not

bit 13 = 1 if non IBM format (block only)
o if IBM format

bit 3 = 1 if current clock device
o if it is not

bit 2 = 1 if current NUL device
o if it is not

bit 1 = 1 if current standard output device
o if it is not

bit 0 = 1 if current standard input device
o if it is not

All other bits must be off.

The most important bit is bit 15, which tells the
system that it is a block or a character device. With
the exception of bits 13 and 14, the rest are for
giving character devices special treatment and
mean nothing on a block device. These special
treatment bits allow you to tell DOS that your
new device driver is the new standard input device
and standard output device (the CON device). This
can be done by setting bits 0 and 1 to 1. Similarly,
a new CLOCK$ device could be installed by
setting that attribute bit.

Although there is a NUL device attribute bit, the
NUL device cannot be reassigned. This is an attribute
that exists for DOS so it can tell if the NUL device
is being used. The non IBM format bit applies only
to block devices and affects the operation of the
Get BPB (BIOS Parameter Block) device call
(covered later in this chapter). The other bit of
interest is the IOCTL bit. This is used for both
block and character devices, and tells DOS
whether the device is able to handle control strings
(through the IOCTL system call).

If a driver cannot process control strings, it should
initially set this bit to o. This way DOS can return
an error if an attempt is made through the IOCTL
system call to send or receive control strings to the
device. A device that is able to process such
control strings should initialize this bit to 1. For
devices of this type, DOS will make the calls to the
IOCTL input and the IOCTL output device
functions to send and receive IOCTL strings.

The IOCTL functions allow data to be sent to and
from the device without actually doing a normal
read or write. In this way, the device can use the
data for its own use (like setting a baud rate, stop
bits, changing form lengths, etc.). It is up to the
device to interpret the information passed to it,
but it must not be treated as a normal VO request.

Strategy and Interrupt Routines

These two fields are the pointers to the entry
points of the strategy and interrupt routines. They
are word values, so they must be in the same
segment as the Device Header.

14-7

Name Field

This is an 8-byte field that contains the name of a
character device, or the number of units of a block
device. If it is a block device, the number of units
can be put in the first byte. This is optional,
because DOS will fill in this location with the value
returned by the driver's INIT code. (Refer.to
"Installation of Device Drivers" in this chapter.)

Creating a Device Driver

14-8

In order to create a device driver that DOS can
install, a . COM file must be created with the
Device Header at the start of the file. Remember
that for device drivers, the code should not be
originated at IOOH, but rather at o. The link field
(pointer to next Device Header) should be -1
unless there is more than one device driver in the
.COM file. The attribute field and entry points
must be set correctly.

If it is a character device, the name field should be
filled in with the name of that character device.
The name can be any legal 8-character filename.

DOS always processes installable device drivers
before handling the default devices, so to install a
new CON device, simply name the device CON
(just be sure to set the standard input device and
standard output device bits in the attribute word
on a new CON device). The scan of the device list
stops on the first match, so the installable device
dri ver takes precedence.

Note: Because DOS can install the driver
anywhere in memory, care must be taken in
any far memory references. You should not
expect that your driver will always be loaded
at the same place every time.

Installation of Device Drivers

DOS Version 2.00 allows new device drivers to be
installed dynamically at boot time by reading and
processing the device options in the CONFIG. SYS
file.

DOS calls a device driver at it's strategy entry
point first, passing in a Request Header the
information describing what DOS wants the device
driver to do.

14-9

14-10

The strategy routine does not perform the request,
but rather it enqueues the request (saves a pointer
to the Request Header). The second entry point is
the interrupt routine, and is called by DOS
immediately after the strategy routine returns. The
"interrupt" routine is called with no parameters.
Its function is to perform the operation based on
the queued request and set up any return
information.

DOS passes the pointer to the Request Header in
ES: BX. This structure consists of a fixed length
header (Request Header) followed by data
pertinent to the operation to be performed.

Note: It is the responsibility of the device
driver to preserve the machine state (for
example, save all registers on entry, and
restore them on exit).

The stack used by DOS will have enough
room on it to save all of the registers. If more
stack space is needed, it is the device drivers
responsibility to allocate and maintain
another stack.

All calls to device drivers are FAR calls, and
FAR returns should be executed to return to
DOS. (See "Sample Device Driver" listing at
the end of this chapter.)

Request Header

BYTE length in bytes of the
Request Header plus any data at
the end of the Request Header

BYTE unit code
The subunit the operation
is for (minor device).
Has no meaning for character
devices.

BYTE command code

WORD Status

8 BYTE area
reserved for DOS

Data appropriate to the
operation

Unit Code

The unit code field identifies which unit in your
device driver the request is for. For example, if
your device driver has 3 units defined, then the
possible values of the unit code field would be 0, 1,
and 2.

14-11

Command Code

14-12

The command code field in the Request Header
can have the following values:

Code Function

o INIT

1 MEDIA Check (Block only, NOP for
character)

2 BUILD BPB (Block only, NOP for
character)

3 IOCTL input (only called if IOCTL bit is 1)

4 INPUT (read)

5 NON-DESTRUCTIVE INPUT NO WAIT
(Character devices only)

6 INPUT STATUS (Character devices only)

7 INPUT FLUSH (Character devices only)

8 OUTPUT (write)

9 OUTPUT (write) with verify

10 OUTPUT STATUS (Character devices only)

11 OUTPUT FLUSH (Character devices only)

12 IOCTL output (only called if IOCTL bit is 1)

BUILD BPB and MEDIA CHECK

BUILD BPB and MEDIA CHECK, for block
devices only, are explained here.

DOS calls MEDIA CHECK first for a drive unit.
DOS passes it's current Media Descriptor byte (see
"Media Descriptor Byte" later in this chapter).
MEDIA CHECK returns one of the following four
results:

• Media Not Changed

• Media Changed

• Not Sure

DOS will call BUILD BPB under the following two
conditions:

• If "Media Changed" is returned

• If "N ot Sure" is returned and there are no
dirty buffers (buffers with changed data, not
yet written to disk).

Status Word

The status word in the Request Header.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I

E
R
R

.
B 0

RESERVED U 0 ERROR CODE (bit 15 on)
S N

The status word is zero on entry and is set by the
driver interrupt routine on return.

14-13

14-14

Bit 8 is the done bit. When set it means the
operation is complete. For DOS 2.00 the Driver
just sets it to one when it exits.

Bit 15 is the error bit. If it is set, then the low 8
bits of the status word indicate the error. The
errors are:

00 Write Protect Violation
01 Unknown Unit
02 Device Not Ready
03 Unknown command
04 CRC Error
05 Bad Drive Request Structure Length
06 Seek Error
07 Unknown Media
08 Sector Not Found
09 Printer Out of Paper
OA Write Fault
OB Read Fault
OC General Failure

Bit 9 is the busy bit that is set by status calls.

For output on character devices: If it is 1 on
return, a write request (if made) would wait for
completion of a current request. If it is 0, there is
no current request, and a write request (if made)
would start immediately.

For input on character devices with a buffer: If
it is 1 on return, a read request (if made) would go
to the physical device. If it is 0 on return, then
there are characters in the device buffer and a read
would return quickly, it also indicates that the user
has typed something. DOS assumes all character
devices have an input type ahead buffer. Devices
that do not have them should always return
busy = 0 so that DOS will not continuously wait
for something to get into a buffer that does not
exist.

One of the functions defined for each device is
INIT. This routine is called only once when the
device is installed and never again. There are
several things returned by the INIT routine. First,
there is a location of the first free byte of memory
after the device driver (like a terminate and stay
resident) that is stored in the ending address field.
In this manner, initialization code can be used
once and thrown away in order to save space.

After sending the ending address field, a character
device driver can set the status word and return.
While block devices are installed in the same way
as character devices, they must return additional
information. The number of units for the device
driver is returned, and this determines the logical
names that the devices will have. For example, if
the current maximum logical device letter is F at
the time of the install call, and the block device
driver INIT routine returns 3 units, then their
logical names will be G, H, and 1. This mapping is
determined by the position of the driver in the
device list, and the number of units on the device.
The number of units returned by IN IT will
override the value in the name/unit field of the
Device Header.

In addition, a pointer to a BPB (BIOS Parameter
Block) pointer array is also returned. This is a
pointer to an array of n word pointers, where n is
the number of units defined. These word pointers
point to BPBs. In this way, if all of the units are
the same, the entire array can point to the same
BPB in order to save space.

Note: This array must be protected (below
the free pointer set by the return).

14-15

The BPB (BIOS Parameter Block) contains
information pertinent to the devices like sector
size, sectors per allocation unit, etc. The sector
size in the BPB cannot be greater than the
maximum allowed (set at DOS initialization time).

The last thing that INIT of a block device must
pass back is the "media descriptor byte". This byte
means nothing to DOS, but is passed to devices so
that they know what parameters DOS is currently
using for a particular Drive-Unit.

Block devices may take several approaches; they
may be dumb or smart. A dumb device would define
a unit (and therefore a BPB) for each possible
media drive combination. Unit 0 = drive 0 single
side, unit 1 = drive 0 double side, etc. For this
approach, media descriptor bytes would mean
nothing. A smart device would allow multiple
media per unit. In this case, the BPB table
returned at INIT must define space large enough
to accommodate the largest possible media
supported (sector size in BPB must be as large as
maximum sector size that DOS is currently using).
Smart drivers will use the "media byte" to pass
information about what media is currently in a
unit.

Function Call Parameters

14-16

All strategy routines are called with ES:BX
pointing to the Request Header. The interrupt
routines get the pointers to the Request Header
from the queue the strategy routines store them
in. The command code in the Request Header tells
the driver which function to perform.

Note: All DWORD pointers are stored
offset first, then segment.

INIT

Command code=O

ES:BX

13-BYTE Request Header

BYTE number of units (not set by character
devices)

DWORD Ending Address

DWORD Pointer to BPB array
(not set by character devices)

The driver must do the following:

• Set the number of units (block devices only).

• Set up the pointer to the BPB array (block
devices only).

• Perform any initialization code (to modems,
printers, etc.).

• Set up the ending address for resident code.

• Set the status word in the Request Header.

Note: If there are multiple device drivers in
a single .COM file, the ending address
returned by the last INIT called will be the
one DOS uses. For the sake of simplicity, it is
recommended that all of the device drivers in
a single .COM file return the same ending
address.

14-17

MEDIA CHECK

Command code=l

ES:BX

13-BYTE Request Header

BYTE Media Descriptor from DOS

BYTE return information

The driver must perform the following:

• Set the return byte:
-1 Media has been changed
o Don't know if media has been changed
1 Media has not been changed

• Set the status word in the Request Header.

BUILD BPB (BIOS Parameter Block)

Command code=2

ES:BX

13-BYTE Request Header

BYTE Media Descriptor from DOS

DWORD Transfer Address (buffer address)

DWORD Pointer to BPB table

14-18

The driver must perform the following:

• Set the pointer to the BPB.

• Set the status word in the Request Header.

The driver must determine the correct media that
is currently in the unit to return the pointer to the
BPB table. The way the buffer is used (pointer
passed by DOS) is determined by the non-IBM
format bit in the attribute field of the device
header. If the bit is zero (device is IBM format
compatible) then the buffer contains the first
sector of the FAT (most importantly the FAT id
byte). The driver must not alter this buffer in this
case. If the bit is a one, then the buffer is a one
sector scratch area that can be used for anything.

If the device is IBM format compatible, then it
must be true that the first sector of the first FAT is
located at the same sector for all possible media.
This is because the FAT sector is read before the
media is actually determined.

14-19

14-20

The information relating to the BPB for a
particular media is kept in the boot sector for the
media. In particular, the format of the boot sector

. is:

3 BYTE near JUMP to boot code

8 BYTE OEM name and version

WORD bytes per sector /\

BYTE sectors per allocation unit
(must be a power of 2)

WORD reserved sectors
(starting at logical sector 0)

BYTE number of FATs
B

WORD number of root dir entries
P

(maximum allowed) B

WORD number of sectors in logical image
(total sectors in media, including
boot sector, directories, etc.)

BYTE media descriptor

WORD number of sectors occupied
by a single FAT \ V
WORD sectors per track

WORD number of heads

WORD number of hidden sectors

The three words at the end are optional. DOS does
not care about them because they are not part of
the BPB. They are intended to help the device
driver understand the media. Sectors per track may
be redundant because it can be calculated from the
total size of the disk. The number of heads is
useful for supporting different multi-head drives
that have the same storage capacity but a
different number of surfaces. The number of
hidden sectors is useful for supporting drive
partitioning schemes.

MEDIA Descriptor Byte

Currently the media descriptor byte has been
defined for a few media types:

Media descriptor
byte-> 1 1 1 1 1 x x x

76543210

Bit Meaning

o 1=2 sided O=not 2 sided
1 1 =8 sector O=not 8 sector
2 1 =removable O=not removable

3-7 must be set to 1

14-21

14-22

Examples of current DOS media descriptor bytes:

• 5 1/4" Diskettes:

hex Fe 1 sided 9 sector
hex FD 2 sided 9 sector
hex FE 1 sided 8 sector
hex FF 2 sided 8 sector

• Fixed Disks:

hex F8 (Fixed disk)

• 8" Diskettes:

Hex FE (IBM 3740 Format). Single sided,
single density, 128 bytes per sector, soft
sectored,4 sectors per allocation unit, 1
reserved sector, 2 FATs, 68 directory entries,
77*26 sectors.

Hex FD (IBM 3740 Format). Dual sided,
single density, 128 bytes per sector, soft
sectored, 4 sectors per allocation unit, 4
reserved sectors, 2 FATs, 68 directory entries,
77*26 sectors.

Hex FE. Single sided, double density, 1024
bytes per sector, soft sectored, 1 sector per
allocation unit, 1 reserved sector, 2 FATs, 192
directory entries, 77*8*2 sectors.

Note: The two MEDIA descriptor bytes that
are the same for 8" diskettes (hex FE) is not a
misprint. To establish whether a diskette is
single density or double density, a read of a
single density address mark should be made. If
an error occurs, the media is double density.

INPUT or OUTPUT

Command codes=3,4,8,9, and 12

ES:BX

13-BYTE Request Header

BYTE Media descriptor byte

DWORD transfer address (buffer address)

WORD byte/sector Count

WORD starting sector number
(no meaning on character devices)

The driver must perform the following:

• Do the requested function.

• Set the actual number of sectors (bytes)
transferred.

• Set the status word in the Request Header.

Note: No error checking is performed on an
IOCTL call. However, the driver must set the
return sector (byte) count to the correct
number transferred.

14-23

14-24

The following applies to block device drivers:

Under certain circumstances the device driver may
be asked to do a write operation of 64K bytes that
seems to be a wrap around of the transfer address in
the device driver request packet. This arises due to
an optimization added to the write code in DOS. It
will only happen on WRITEs that are within a
sector size of 64K bytes on files that are being
extended past the current end of file. It is
allowable for the device driver to ignore the
balance of the WRITE that wraps around, if it so
choses. For example, a WRITE of 10000R bytes
worth of sectors with a transfer address of xxxx: 1
could ignore the last two bytes.

Remember: A program that uses DOS function
calls can never request an input or output
operation of more than FFFFR bytes; therefore, a
wrap around in the transfer (buffer) segment
cannot occur. It is for this reason that you can
ignore bytes that would have wrapped around in
the transfer segment.

Non Destructive Input No Wait

Command code=5

ES:BX

13-BYTE Request Header

BYTE read from device

The driver must perform the following:

• Return a byte from the device.

• Set the status word in the Request Header.

This call is analagous to the console input status
call on previous versions of DOS. If the character
device returns busy bit = 0 (characters in buffer),
then the next character that would be read is
returned. This character is not removed from the
input buffer (hence the term Non Destructive
Input). This call allows DOS to look ahead one
input character.

STATUS

Command codes=6 and 10

ES:BX

I 13-BYTE Request Header

All the driver must do is perform the operation
and set the status word in the Request Header
accordingly.

14-25

FLUSH

Command codes=7 and 11

ES:BX

I 13-BYTE Request Header

This call tells the driver to flush (terminate) all
pending requests that it has knowledge of. Its
primary use is to flush the input queue on
character devices. The driver must set status word
in the Request Header upon return.

The CLOCK$ Device

14-26

A popular add on feature is a "Real Time Clock"
board. To allow these boards to be integrated into
the system for TIME and DATE, there is a special
device (determined by the attribute word) which is
the CLOCK$ device. In all respects, this device
defines and performs functions like any other
character device (most functions will be set done
bit, reset error bit, return). When a read or write
to this device occurs, exactly 6 bytes are
transferred. The first two bytes are a word which is
the count of days since 1-1-80. The third byte is
minutes, the fourth hours, the fifth 1/100 seconds,
and the sixth seconds. Reading the CLOCK$
device gets the date and time, writing to it sets the
date and time.

Sample Device Driver

; **** **
; . PROLOG •

5 ; . THIS IS AN INST~LLABLE DEVICE DRIVER FOR AN •
6 ; . IN STORAGE DISKETTE (VIRTUflU WITH 180K C~P~CITY ••
7 ; ~ * •• **** •• * **** *.**' •• ~U .. H***H***t.*
8 0000 CSEG SEGHENT PARr. PUBLIC 'COIlE"
9
10 H~CRO(S)

11
1~ STr-TUS MCRO STATE,EP.R,RC
13 IFIDN (STIITE> ,(DONE>
11 OR ES:WORD PTP. SRH_STr.JLI/IBXJ ,0100H
15 ENDIF
16 IFInN (STr-TE>,(BUSn
17 OR ES: WORD PTR SRH_STII_FLDIBXJ ,0200H
lH [NDIF
19 IFIDN (ERR) ,(ERROR)
20 OP. ES:WORD PTR SRH_STAJLDIBX),1000H
21 EHDIF
27 IFNB (Rc)
23 OR ES: WORD PTR SRH_ST~_FLDIBXJ, RC
2~ ENDIF
25 ENDH
26
27 EQUATES
28
29 ; RE~D/WR ITE
30
31 " 0000 SRH EOU 0 ;STATIC REQUEST HEADER START
32 " 0000 SRH_LEN EDU 13 ; LENGTH
33 SRH_LEN_FLD EIIU SIlH ; FIELD
34 " 0001 SRH_UCO _FLD EOU SRH+l ; UNIT CODE FIELD
35 " 0002 SRH_CCDJLD EQU SRH+2 ; COHH~ND CODE FIELD
36 " 0003 SRH_STAJLD EDU SRH+3 ; STATUS FIELD
37 " 000~ SRH-'~(ESJLD EQU SRH+5 ; RESERVED ARE~ FIELD
38
39 " OOOD liD EQU SRH+SRH_LEN ;IIEDI~ DESCRIPTOR BYTE
40 " 0001 liD_LEN Eau 1 ; LENGTH
~1 " OOOE Dl~ EQU /lD+IID_LEN ; [/ISK TRANSFER ADDRESS
12 o 0001 [lT~_LEN EOU 4 ; DTA LENGTH
n " 0012 COUHT EQU DTAH/TA_LEN ; BYTE/SECTOR COUNT
44 " 0002 COUNT _LEN EQU , LENGTH
~5 " 0014 SSN EOU COUNT +COUHT _LEN ;STr.RTIH6 S~CTOR NUHBER
16 " 0002 SSN_LEN EOU LENGTH
17 ,
18 ; /lEDIA CHECK
~9

50 " OOOE RET _BYTE EQU 1I!1+IID_LEN ; BYTE RETURNED FROII DRIVER
51
52 ; BUILl/ BPB
53 ,
5~ " 0012 BPBh_PTR Eau DTA+DTA_LEN ;rOINTER TO BPB
55 " 0004 BPBA] TR_LEN EOU 4 LENGTH
56
57 ; INIT

14-27

58
59 ·ooon
60 ~ 0001
61 • ooOE
62 ~ 0010
63 ~ 0004
64 = 0012
65 ·0014
66
67
68 0000
69
70 0000
71 = 0000
72
73 0000 FF FF FF FF
74 0004 2000
75 0006 OOEl R
76 0008 OOEC R
77 OOM 01
78 OOOB 07 [
79 ??
80
81
82
83 0012 1??1
81 0011 m?
85
86 ~ 0016
87 0016 0200
88 0018 01
89 0019 0001
90 OOlB 02
91 001C OO~O

92 001E 0168
93 0020 Fe
91 0021 0002
95
96 0023 0016 R
97
98 0025 n11
99 0027 00
100 0028 0000
101 002~ 0000
102 002C ??11????
103 = 0030
10~ 0030 03 r
105 00
106
107
108 0033 ~9 42 40 20 20 32
109 2E 30
110 003B 0200
111 0030 01
112 003E 0001

14-28

UNITS Eau
UNITS_LEN EOU
BR_MIDR_O EAU
BR_ADDU Eau

SRH+SRH_LEN
1
UNITS+UNI TUEN
BR_ADDR_0+2

BR_ADDR_LEN Eau
BPB _PTR_ OFF Eau
BPU'TR_SEG Eau

4
8R_ADDR_0+BR_ADDR_LEN
BPB_PTR_OFF +2

,
VDSK PROC FAR

ASSUIIE CS : CSEG, ES : CSEG, OS : CSEG
BEGIN:
START EOU $

SPECIAL DEVICE
NEXUEV
ATTRIBUTE
STRATEGY
IHTERRUPT
DEV_N~ME

OIl -1
ow 2000H
OW OEV _STRATEGY
OW DEV_INT
DB I
OB 7 DUP(?)

;
RH_OFF DW
RH_SEG DW
; BIOS PARMETER BLOCK
BPB EOU $

OW 512
DB 1
OW 1
DB 2
OW 61
OW 360
DB OFCH
OW 2

;
BPB]TR OW B~B
; CURRENT VIRTUAL DISK INFORMATION
TOTAL DW
VERIFY DB
START _SEC OW
VDISK_PTR DW
USER_DTA DO
BOOT _REC EOU

DB

DB

DW
DB
OW

?
$
3 OUP(O)

'IBH 2.0'

512
1
1

HEADER
; POINTER TO NEXT DEVICE
;BLOCK DEVICE (NOH-IBH FORHilTl
;POINTER TO DEVICE STRATEGY
WOINTER TO DEVICE INTERRUPT HIINDLER
; NUHBER Of BLOCK DEVICES
; 7 BYTES OF FILLER

;REOUEST HE~D~R OFFSET
; REQUEST HEADER SEGIIENT

;SECTOR sm
;SECTORS/I\LLOCIITION UNIT
i NUHBER OF RESERVElI SECTORS
; NUHBER OF FliTS
;NUHBER OF DIRECTORY ENTRIES
i TOTAL NUHBER OF SECTORS
;HEDI~ DESCRIPTOR
iNUHBER OF SECTORS OCCUPIED BY FAT

;DIOS PARAIIETER BLOCK POINTER ARRAY (I ENTR)

;TOTAL SECTORS TO TRANSFER
;VERIFY I=YES, O=NO
;STARTING SECTOR NUIIBER
;STARTING SEGHENT OF VIRTRUAL DISK
;POINTER TO CALLERS DISK TRANSFER ADDRESS
; DUHHY DOS BOOT RECORD
; 3 BYTE JUHP TO BOOT CODE (NOT BOOT ABLE>

; VENDOR I~ENTIFICA TION

;NUHBER OF BYTES IN A SECTOR
;1 SECTOR PER ALLOCATION UNIT
; 1 RESERVED SECTOR

113 0040 02 09 2 i2 FATS
IH 0041 0040 OW 64 iHUHBER OF DIRECTORY ENTRIES
US 0043 0168 OW 360 i360 TOTAL SECTORS IN I"AGE
116 0045 FC DB OFCH iTELLS DDS THIS IS A SINGLE SIDED 9 SECTOR [
117 00~6 0002 OW 2 iNUHBER OF SECTORS IN FAT
118
119 FUNCTION TABLE
120
121 00~8 FUNTAB LABEL BYTE
122 0048 0105 R DW INIT iIHITImZATIoN
In 004A 01B8 R OW "EDIUHECI(iKEDIA CHECK (BLOCK ONLY)
124 004C 01CC R OW BUILUPB iBUILD BPB
125 004E 0212 R OW IOCTUN i IOCTL INPUT
126 0050 0212 R DW INPUT iINPUT (READ)
12J 0052 0212 R DW NIUNPUT iNON_DESTRUCTIVE INPUT NO WAIT (CHAR ONLY)
128 0054 0212 R DW IN_STAT i INPUT STATUS
129 0056 0212 R OW IN_FLUSH iINPUT FLUSH
130 0059 0241 R DW OUTPUT iOUTPUT (WRITE)
131 005A 0280 R llW OUT_VERIFY i OUTPUT (WRITE> WITH VERIFY
132 OOSC 0212 R nw OUT_STAT iOUTPUT STATUS
133 005E 0212 F: DW OUT_FL,USH i OUTPUT FLUSH
134 0060 0212 R DW IOCTL_OUT i IOCTL OUTPUT
135
136 iLOCAL PROCEDURES
137 i
139 0062 IN_SAVE PROC NEAR
139 0062 26: BB 47 OE HOV AX,ES:WORD PTk DTA[BX] iSAVE C~LLERS OTA
140 0066 2E: (\3 002C R HOV CS:USER_DTA,AX
141 006A 26: 8B 47 10 MOV AX,ES:WORD PTR [ITA+2[BXJ
112 006E 2E: 113 002E R HOV CS: USER_DTA+2 ,AX
143 0072 26~ 88 47 12 HOV AX, ES: WORD PTR COUNHBX] iGH NUKBER OF SECTORS TO READ
141 0076 32 E4 XOR AH,AH
Wi 0078 2E: A3 0025 R HOV CS:TDTAL,~X iHOVE NUKBER OF SECTORS TO TOTAL
116 007C C3 RET
IH 007D IN_SAVE ENDP
118 i
H'I 007D CALC_~DDR PROC HEAR
150 0070 2E: III 0028 R MOV IIX, CS: ST flRT _SEC iGG STARTING SECTOR NU"BER
151 0081 B9 0020 KOV eX,20H il,OV 512 TO CX SEGIlENT STYLE
152 0081 F7 El KUL CX jlUlTIPL Y TO GET ACTUAL SECTOR
153 0086 2E: 88 16 002A R MOV DX, CS: VDISK_PTR iGET SEGKENT OF VIRTUAl DISK
154 008B 03 DO ADD OX/AX iADO THflT SEGKENT TO INITIAL SEGKENT
1 5~j 008D 8E DII MOV DS,DY. i SIIVE THA T AS THE ACTUI'J.. SEGKENT
156 008F 33 F6 XOR 51,51 ;IT'S ON II PARAGRAPH BOUNDARY
157 0091 2E: Al 0025 P. MOV I'lX, CS :TOTAL i TOTIIL NUKBER OF SECTORS TO READ
15S 0095 B9 0200 MOV CX,512 i BYTES PER SECTOR
159 0098 F7 El HUL CX i HUlTIPLY TO GET COpy LENGTH
160 009~ 08 CO OR ftX,ftX iCHECK FOR GREATER THAN 61K
161 009C 75 03 JNZ HOVUT
162 009E BB FFFF MOV flX,OFFFFH iHOVE IN FOR 64K
163 001'11 HOVE_IT:
161 OOAI 91 XCHG CX,AX iHOVE LEHGTH TO CX
165 00(:2 C3 RET
166 00A3 CALC_ADDR ENDP
167

14-29

168 00A3 SECTOR_REf:D PkOC NEAR
169 00A3 E8 007D R CALL CALC_ADDR iCALCULATE THE STARTING "SECTOR"
170 00A6 2E: 8E 06 002E R MOV ES,CS:USER_DTA+2 iSET DESTINATION (ES:[I!) TO POINT
171 001\8 2E: 88 3E 002C R MOV DI,CS:USER_DTA iTO CALLERS DTA
172
173 i CHECK FOR [ITfl WRAP IN CASE WE CAME THROUGH VIA VERIFY
m
175 00110 88 C7 MOV AX,DI iGET OFFSET OF DIA
176 0082 03 Cl flDD AX,CX iADD COPY LENGTH TO n
177 001l~ 73 07 JNC READ_COPY i CARRY FLAG " 0, NO WRAP
178 0086 88 FFFF /lOV AX,OFFFFH iHAX LENGTH
179 00119 2ll C7 SUB AX,DI iSUBTRflCl DrA OFFSET FROM HAX
180 0088 88 C8 HO'J CX,flX iUSE THAT flS COPY LENGTH TO AVOID WRAP
181 OOItD RE~D_CO~Y:

182 OOBD F3/ M REP HDVSB i DO THE "READ"
183 OOBF C3 RET
181 OOCO SECTOR_RE~D ENDP
185 ,
186 OOCO SECTOR_WRITE PROC NEAR
187 OOCO f8 007D R CflLL Cf:LC_flDDR iCALCUUHE STARTING "SECTOR"
188 00C3 IE PUSH OS
189 OOC~ 07 POP ES iESATABLISH ADDRESS~BILITY
190 00C5 8HE HOV DI,SI i ES: 01 POINT TO "DISK"
191 00C7 2E: BE IE 002E R /lOV IIS,CS: USEfcDrf:+2 ; OS: SI POINT TO C~LLERS DU
192 OOCC 2E: 88 36 002C R HOV SI,CS:USER_DTiI
193 ,
191 ; CHECK FOR DT~ WR~P
195
196 0001 88 C6 HOV f:X,SI ; HOVE DT f: OfFSET ro AX
197 0003 03 Cl ~DD :'IX,CX i liDO COPY LENGTH TO OFFSET
198 00D5 73 07 JNC WRITE_COPY ; CARRY FL~G " 0, NO SEGltE Nr WRIlP
199 0007 B8 FFFF HOV AX,OFFFFH ; HOVE IN Hi\X COPY LENGTH
200 OODA 2B C6 SUlI I\X,SI ;SUBTRACT DTA OFFSET FROH HAX
201 OODC 8B C8 HOV CX,AX ;USE AS NEW COpy LENGTH TO i\VOID WRAP
202 00[1[WRITl_COPY:
203 OODE F3/ M REP HOVSB ;00 THE "WRITE"
201 00£0 C3 RET
205 OOEI SECTOR_WRITE ENDP

14-30

206 PAGE
207
208 DEVICE STRATEGY
209
210 OOEI DEV _STRATEGY:
21l 00E1 2E: 8C 06 0014 R IIOV CS:RH_SEG,ES iSAVE SEGHENT OF REilUEST HEADER POINTER
212 00E6 2E: 89 IE 0012 R IIOV CS : RH_OFF ,BX i SAVE OFFSET OF
213 oon CB RET
214
215 i [t F V ICE INTERRUPT HANDLER
216 ,
21l OOEC DEV_INT:
218 i PRESERVE HACHINE STATE ON ENTRY
219 OOEC FC CLII
220 OOED IE PUSH DS
221 OOEE 06 PUSH ES
222 OOEF 50 PUSH AX
223 OOFO 53 PUSH BX
224 00F1 51 PUSH CX
225 00F2 5' PUSH OX
226 00F3 57 PUSH DI
?:'7 00F4 ~6 PUSH SI
229 ,
m i DO THE BR~NCH ~CCORDING TO THE FUNCTION PASSED
230
231 00F5 26: 8A 47 02 IIOV AL,ES: [8X)+2 i GET FUNCTION BYTE
232 00F9 DO CO ROL ~L,l iGET OFFSET INTO TABLE
233 00f'B aD 3E 00~8 R LE~ DI ,FUNT~B iGET ~DDRESS OF FUNCTION TABLE
234 OOFF 32 E4 XOR ~H,:'IH

235 0101 03 F8 ADD DI,AX
236 0103 FF 25 JHP WORD PTR[DIl
237
238 INIT
239 ,
210 0105 INlT:
2~1 0105 OE PUSH CS
242 0106 51\ POP DX i CURRENT CS TO DX
2H 0107 2E: 8D 06 021':0 R LEA ~XJCS:VDISK ;GET ADDRESS OF VIRTUAL DISK
241 OIOC BI 04 IIOV CL,1
2~5 010E D3 C8 ROR AX,CL ; DIVIDE n 16 (PARAGRAPH FORII)
2~6 0110 03 DO ADD DX,~X ;ADD TO CURRENT CS VALUE
21.7 0112 2E: 89 16 0021\ R IIOV CS: VDISK_PTR ,DX ;SAVE ~S STARTING SF.GIIENT OF VIRTU~L DISK
248 0117 B8 2DOO HOV i\X,2DOOH ; ADD 2DOOH PARAGRAPHS TO STARTING
2~9 011A 03 DO nOD DX,nx i SEGMENT OF V unUAL III SI(
250 011C 26: C7 47 OE 0000 IIOV ES :IIORD PTR BR_ADDR_OCBXJ ,0
:m 0122 26: 89 57 10 MOV ES: Bk_ADDR_I [BXJ ,DX ;HIlKE THAT THE BREAK ADDRESS
252 0126 26: C6 U OD 01 HOV ES: BYTE PTR UNITS[BXl,l iNUHBER OF DISKETTE UNITS
2S3 om 811 16 0023 R LEn DX,BPB_PTR ;GH ADDRESS OF BPB POINTER ARR~Y
251 012F 26: 89 57 12 HOV ES: BPB_PTR_OFFEBXl, DX is/\vE OFFSET IN DAHl PACKET
255 0133 26: 8C 4F 14 IIOV ES: Bf'B_PTR_SEG [!lXl, CS iSf:VE SEGIIENT IN DATA P(:CKET
256 0137 2£: 8E 06 002A R IIOV ES,CS:VDISK_PTR ;GET SfARTING SECTOR OF VIRTUAL DISK
257 013C 33 FF XOR I1I,DI iZERO OUT DI (BOOl RECORD)
258 013E SD 36 0030 R LEi\ S I, BOOT _REC i~DDRESS OF BOOT RECORD
2~V 01~2 F9 0018 IIOV CX,24
260 0145 F3/ M REP HO')S8 ;COPY 21 BYTES OF BOOT RECORD

14-31

261 0117 2E: C7 06 0028 R 0001 "DV CS:IIDRD PTR START_SEC,1
262 om 2E: C7 06 0025 R 0002 "DV CS:1I0RD PTR TOTflL,2
263 0155 E8 007D R C/ILL CALC_I'IDDR iCI'ILCULI'ITE ADDRESS OF LOGIC~L SECTOR 1
264 0158 IE PUSH DS
265 0159 07 PDP ES
266 015~ 8B FE "OV DI,SI i"OUE THt.T ADDRESS TO ES:DI
267 015C 32 CO XOR "L,IIL
268 015E F3/ AA REP STOSB iZERO OUT FAT ARE~
269 0160 C6 01 FC "OU DS:SYTE PTR [SIl,OFCH iSET THE FIRST FAT ENTRY
270 0163 C6 ~4 01 FF "OU [IS: BYTE PTR HS!], OFFH
271 0167 C6 41 02 FF "OV [lS:BYTE PTR 2[SIJ,OFFH
272 0168 a PUSH DS iSAUE POINTER TO HIT
273 016e 56 PUSH SI ON THE ST"CK
m 016D 2E : C7 06 0028 R 0003 "OU CS:1I0RD PTR STt.Rl_SEC,3
275 0174 2E: C7 06 0025 R 0002 HOV CS:WORD PTR TOTIIL,2
276 017D E8 007D R CALL Ct.LU1DDR iCALCULATE t.DDRESS OF LOGICAL SECTOR 3
277 om IE PUSH DS
278 017F 07 POP ES
279 0180 88 FE "OV DI,SI i"OVE THAT ADDRESS TO ES:DI
280 0182 5E POP SI
281 0183 IF POP DS iRESTORE ADDRESS TO FIRST FAT
282 018~ F3/ M REP HOUSB iCOPY FIRST FAT TO SECOND FAT
283 0186 2E : C7 06 0028 R 0005 "OV CS:1I0RD PTR START_SEC;5
294 0180 2E: C7 06 0025 R C004 "OV CS:1I0R[1 PTR TOTflL,4
285 019~ E8 007D R CALL CALC_ADDR iCALCUL:HE ADDR OF L.S. 5 (START OF DIR)
286 0197 32 CO XOR t.L,AL
287 0199 IE PUSH DS
288 019(: 07 POP ES i SET UP ES: DI TO POINT TO IT
289 019B 33 FF XOR DI,DI
290 om F3/ AA REP sroSB iZERO OUT DIRECTORY
291 om 2E: BE 06 0011 R "OV ES ,CS: RH_SEG ;RESTORE ES: BX TO REQUEST HEIIDER
292 01M 2E: 8B IE 0012 R HOV 8X,CS:RH_OFF
293 STI'lTUS DONE, HOERROR, 0 iSET STI'lTUS 1I0RD (DONE, NOERROR)
29~ 01t.9 26: 81 4F 03 0100 OR ES:WORD PTR SRH_STn_FUI[BXJ ,0100H
295 01~F 26: 81 iF 03 COOO OR ES:1I0RD PTR SRH_STA_FLD[BXJ ,0
2% 01BS E9 0289 R J"P EXIT
297 ,
298 i "HilA CHf.CK
299
300 0188 HEDIn_CHE.CK: i "E[lIA CHECK (BLOCK OHL Y)

301
302 SET HEDI~ NOT CHnNGED
303
3M 01B8 26: C6 47 OE 01 HOV ES:BYTE PTR RET_BYTHBXJ,1 iSTDRE IN RETURN BYTE
305 STATUS DONE, HOERROR, 0 i TURN ON THE DONE BIT
306 018D 26: 81 4F 03 0100 OR ES:WORD PTR SRH_STfl]LDrBXJ,OI00H
307 01C3 26: Bl ~F 03 0000 OR ES:IIOR!) PTR SRH_STA_FLD[BXJ ,0
308 01C9 E9 0288 R JHP EXIT
309
310 i BUILD BIOS PARMETE.R BLOCK
311
312 01CC BUILD_BPB:
313 OICC 06 PUSH ES ;SAVE SRH SEGHEHT
m 01CD 53 PUSH BX i S(:VE SRH OFFSET
315 01CE 2E : C7 06 0028 R 0000 HOV CS : 1I0RD PTR START _SEC, 0

14-32

316 0105 2E: C7 06 0025 R 0001 HOV CS:WORD PfR TOTAL,I
317 01DC £8 007D R CALL C~LC_ADDR i CALCULATE ADDRESS OF FIRST SECTOR
318 01DF OE PUSH CS
31Y OlEO 07 PDP ES
320 om 8D 3E 0016 R LB DI,BPB iADDRESS OF BIDS PARAHETER BLOCK
321 01E5 83 C6 OB ~DD 51,11 iADD 11 TO 51
322 01E8 B9 OOOD HOV CX,13 iLEMGTH OF BPB
32J 01EB F3/ M REP HOVSB
321 01E9 58 POP BX iRESTORE OFFSET OF SRH
32S o lEE 07 POP ES i RESTORE SEGHENT OF SRH
326 om 8D 16 0016 R LB DX,BPB iGET BPB :'lRR~Y POIHTER
327 01n 26: 89 57 12 HOV ES : BPBA_PTR[BY,l ,DY. i SAVE PTR TO BPB T ~BLE
328 01F7 26: 8C 1F 11 HOV ES: BPBA_PTR+2[BXl ,CS
329 01FB 26: 89 57 OE HOV ES :DT~[BY.l ,DX i OFFSET OF SECTOR BUFFER
330 om 26: 8C 1F 10 HOV ES: DTM2[BXl ,CS
331 STATUS [lONE, NOERROR, 0
332 0203 26: 81 1F 03 0100 DR ES:WORD PTR SRH_SH_FL[I[BXl,0100H
333 0209 26: 81 4F 03 0000 OR ES:IIORD PTR SRH_STr._FLlI[BX1,O
33~ 020F EB 77 90 JHP EXIT
335
336 ; THE FOLLOIIH!G EHTRIES ARE FOR NOT SUI-PORTED BY THIS DEVICE
337
338 0212 10CTL_IN:
m 0212 IOCR_OUT:
3~0 0212 ND_I~PUT: iNON_DESTRUCTIVE INPUT ~O WMT (CH~R ONLY>
311 0212 HUTnT: ;INPUT STi\TUS
3'~2 0212 IN_FLUSH: ; INPUT FLUSH
343 0212 OUl_ST~T: i OUTPUT smus
~~~ 0212 OUT_flUSH: i OUTPUT FLUSH 
315 , 
3~6 ; DISK REA[I 
347 
3~U 0212 INPU1: 
3~9 0212 E8 0062 R CALL IN_SAVE ;CALL THE INITIAL SAVE ROUTINE 
350 0215 26 88 47 11 HOV ~X ,ES: IIORD PTR SSN[BXl ;SET STARTING SECTOR NUHBER 
351 0219 2E A3 0028 R HOV CS : START _SEC ,~X ;SAVE STARTING SECTOR NUHBER 
352 0210 26 88 17 12 HOV AX,ES:WORD PTR COUNHBXl 
353 0221 2E A3 0025 R HOV CS:TOT~L,AX ; SAVE TOTAL SECTORS TO TRANSFER 
354 0225 E8 00n3 R C~LL SECTOUEAD ;READ IN THAT HANY SECTORS 
355 0228 2E: 8B IE 0012 R HOV DX, CS: RH_OFF ;RESTORE ES: BX AS REQUEST HEADER POINTER 
356 0220 2E: 8E 06 0014 R HOV ES ,CS: RH_SEG 
357 SlWIS IIONE I NOERROR I 0 ; SET STATUS WORD (DONE I NOERROR) 
359 0232 26: B1 4F 03 0100 OR ES:WORD PTR SRH_STi\JLD[BX1,010OH 
359 0238 26: 81 ~F 03 0000 OR ES: WORD PTR SRH_STA_FUI[BX1,O 
360 onE ED ~8 90 JHP EXIT 
361 
362 i DISK WRITE 
363 
36~ 0241 OUTPUT: ;OUTPUT (WRITE) 
365 0241 E8 0062 R CALL IN_SAVE 
31,6 0244 26 8D ~7 14 HOV AX,ES: WOR[I PTR SSN[BXl i GET STARTING SECTOR NUHBER 
367 024R 2E A3 0028 R HOV CS:START_SEC,AX iSET 
36R 024C 26 88 ~7 12 HOV AX,ES:WOR[I PTR COUNHBXl 
369 0250 2E ~3 0025 R HOV CS:TOlAL,IIX iSAVE TOll'lL SECTORS TO WRITE 
370 0254 E8 OOCO R CALL SECTOR_WRITE ;I/RITE OUT THOSE SECTORS 

14-33 



371 0257 2E: 8[4 IE 0012 R MOV [4X I CS: RH_OFF iRESTORE ES:BY. AS REQUEST HEADER POIHTER 
372 025C 2E: 8E 06 0014 R HOV ES/CS :RH_SEG 
373 0261 2E: 80 3E 0027 R 00 CHP CS:BYTE PTR VERIFY,O i WRITE VERIFY SET 
371 0267 74 08 JZ NO_VERIFY iNO, NO IIRITE VERIFY 
375 0269 2E: C6 06 0027 R 00 HOV CS: BYTE PTR VERIFY, 0 iRESET VERIFY IHDIC/\TOR 
376 026F EB Al JHP INPUT i READ THOSE SECTORS BACK IN 
377 0271 HO_VERIFY: 
378 STIITUS [lONE, NOERROR ,0 i SET DONE, NO ERROR III ST ~ TUS WORD 
379 0271 26: 81 '.F 03 0100 OR ES:I/ORD PTR SRH_ST~_FlD[BX]/OIOOH 
380 0277 26: 81 J!F 03 0000 OR ES : WORD fTR SRH_STfl]lD[BX] ,0 
3RI 0270 E8 09 90 JHP EXIT 
382 0280 OUT _VERIFY : iOUTPUT (WRITE> WITH VERIFY 
393 0280 2E: C6 06 0027 R 01 HOV CS:BYTE PIR VERIFY,I iSET THE ')ERIFY Fl:'lG 
38~ 0286 ED B9 JHP OUTPUT i 8R/\NCH TO OUTPUT ROUTINE 
385 i 
3116 i COMMON EXIT 
387 , 
3811 0288 EXIT: 
389 0288 5E POP SI i RESTORE All OF THE REGISTERS 
390 0289 5F POP 01 
391 028f. 5/\ POP [IX 
392 028B 59 POP CX 
393 028C 58 POP (IX 
394 0280 58 POP AX 
395 028E 07 POP ES 
396 028F IF POP OS 
397 0290 ell RET 
398 0291 LO]: 
399 i H~CRO TO ~LIGN THE VIRTU~l DISK ON ~ PARAGRflPH BOUNDARY 
100 if ($-START> HOD 16 
'.01 02AO ORG ($-STARTl+16-«$-START) HOD 16) 
402 ~ndif 

403 ~ 02M VDISK Eau 
404 02110 VDSK EHDP 
'.05 02AO csm ENDS 
406 END BEGIN 

14-34 





Appendix E. DOS Control Blocks 
and Work Areas ......................... E-1 

DOS Memory Map ................... E-1 
DOS Program Segment ............... E- 3 
Program Segment Prefix.............. E-8 
File Control Block ................... E-10 

Standard File Control Block ...... E-11 
Extended File Control Block E-14 

Appendix F. Executing Commands 
from Within an Application... . . . . . . .. . . F-1 

Appendix G. Fixed Disk Information .... G-1 
Fixed Disk Architecture .............. G-1 
System Initialization ................. G-2 
Boot Record/Partition Table ......... G-4 
Technical Information ............... G-6 

Appendix H. EXE File Structure 
and Loading ........................... H-1 

Appendix I. Running Compilers 
and Assemblers ......................... 1-1 

Using Compilers and Assemblers 
with Fixed Disk ..................... 1-1 

Exceptions ........................... 1-3 

Appendix J. Running the Pascal 
Compiler ............................... J-1 

Using Pascal Hex Patch 
with Fixed Disk ..................... J-1 

A-ii 



Appendix K. Considerations for 
Using Applications .................... . 

Accounting Package by BPI 
Systems, Inc. . ..................... . 

Accounting Packages Version 1.00 by 
Peachtree Software, Inc. . .......... . 

Accounting Packages Version 1.10 by 
Peachtree Software, Inc. . .......... . 

Arithmetic Games 1 and 2 ........... . 
Asynchronous Communications 
Support Version 1.00 .............. . 

The Procedure ................. . 
Asynchronous Communications 

Support Version 2.00 .............. . 
The Procedure ................. . 

EasyWriter Version 1.10 ............ . 
Fact Track ......................... . 
PFS:File ........................... . 

Using PFS:File with the 
IBM Fixed Disk ............... . 

Storing a PFS:File on the 
Fixed Disk .................... . 

Copying PFS:File to the 
Fixed Disk .................... . 

Error Conditions ............... . 
Running the PFS:File Program 
from a Fixed Disk ............. . 

Changing Settings When Using 
the Fixed Disk ................ . 

K-l 

K-3 

K-3 

K-3 
K-4 

K-5 
K-5 

K-7 
K-8 

K-I0 
K-12 
K-14 

K-14 

K-14 

K-15 
K-16 

K-17 

K-IT 

A- iii 



A-iv 

PFS:Report ......................... K-18 
Using PFS:Report with the IBM 
Fixed Disk ..................... K-18 

Storing a PFS:File on the 
Fixed Disk ..................... K-18 

Copying PFS: Report to the 
Fixed Disk ..................... K-19 

Error Conditions ................ K-20 
Running the PFS:Report Program 
from a Fixed Disk .............. K-21 

Changing Settings When Using the 
Fixed Disk ...................•. K-21 

The Dow Jones Reporter 
Version 1.00 ....................... K-22 

SNA 3270 Emulation and RJE Support 
Version 1.00 ....................... K-23 

The Procedure .................. K-23 
Typing Tutor ........................ K-25 
VisiCalc Version 1.10 by VisiCorp ..... K-26 

Putting DOS 2.00 on Your 
Program Diskette .............. K-26 

3101 Emulator Version 1.00 .......... K-28 
The Procedure .................. K-28 



Appendix A. DOS Version 2.00 
Enhancements 

The information in this appendix is divided into 
two categories----'-those topics that apply to all 
users, and those topics that apply to system 
programmers or application developers. In each 
case, a brief description of the feature or change is 
offered, and you are referred to another section of 
the book for further details. 

F or All Users 

DOS Version 2.00 incorporates the following new 
and changed features: 

• Special characters. The characters <, >, , and 
now have special meanings to DOS, and can 
no longer be used in filenames. If you have 
files whose names contain any of these 
characters, they should be renamed (using 
your old version of DOS) before attempting to 
use them with DOS Version 2.00. 

• Configuration file. You can create a file of 
special commands that DOS will read each 
time it starts up. The commands allow you to 
specify the number of disk buffers DOS 
should use, the names of device drivers, and 
additional information concerning DOS 
operation. Please refer to "Configuring Your 
System" in Chapter 5 (Section 1) for 
additional information. 

A-I 



A-2 

• Support for one or more fixed disk devices. The disk 
can be divided into multiple partitions, each 
usable by a different operating system. You 
can start (boot) your operating system from 
the fixed disk, and utility programs included 
to perform disk initialization, backup, and 
restore functions. If you have a fixed disk, 
please read the "Preparing Your Fixed Disk" 
information in Chapter 4 for setup 
instructions and the BACKUP and RESTORE 
commands in Chapter 6 for their respective 
functions. 

• Support for increased diskette capacity. Beginning 
with DOS Version 2.00, DOS formats 
diskettes at 9 sectors per track, which 
increases capacity from 163840 to 184320 
characters of information for single-sided 
diskettes, and from 327680 to 368640 
characters for dual-sided diskettes. The 
smaller capacity diskettes created by DOS 
Version 1.00 or DOS Version 1.10 (8 sectors 
per track) are also usable with DOS Version 
2.00. You do not need to reformat them. 
Please see the FORMAT and DISKCOPY 
commands in Chapter 6 for more information. 

• Multiple disk buffers. A disk buffer is an area of 
user memory that DOS reserves at startup and 
is used for performing disk and diskette 
operations. DOS normally allocates two disk 
buffers at start-up time. Some users, however, 
will find that certain applications, such as data 
base applications, may run faster if DOS has 
more buffers available to it. DOS Version 
2.00 allows you to specify the number of 
buffers that DOS should reserve at start-up 
time. Please refer to "Configuring Your 
System" in Chapter 9 for instructions on 
specifying additional buffers. 



• Tree-Structured Directories. This new feature 
allows you to place related groups of files in 
their own directories-all on the same disk. 
The individual directories are isolated from 
each other, giving the appearance of separate 
disks. Therefore, a search for a file in a given 
directory will not "see" files in other 
directories on the same disk. 

Each directory, beginning with the normal 
system directory (called the root directory) may 
contain special entries naming other 
directories on the same disk. These other 
directories, in turn, may contain entries for 
even more directories, and so on. When 
viewed in a logical order beginning with the 
root directory, the directory structure appears 
much like a diagram of a family tree-thus the 
term tree-structured directories. 

You may add or remove directories, copy files 
from one directory to another, instruct DOS 
to look in a specific directory to locate a file, 
etc. For complete details, please refer to 
Chapter 5 "Using Tree-Structured 
Directories" . 

• Disk Volume Labels. This feature allows you to 
specify a unique volume label (up to 11 
characters) at the time you format a disk. The 
volume label is placed in the root directory, 
and is included in the displays produced by 
the DIR, CHKDSK, and TREE commands. 
Please refer to the FORMAT command for 
further information. 

A-3 



A-4 

• Extended DOS screen and keyboard control. This 
feature allows you to issue special character 
sequences from within your program that 
DOS will use for screen cursor positioning 
and color, and further allows you to assign the 
meaning of any key on the keyboard. For 
example, you may assign the character string 
"DIR A:" to the FlO key so that simply 
pressing the FlO key has the same result as 
entering the DIR A: command. Please refer to 
"Using Extended Screen and Keyboard 
Control" in Chapter 13, and "Configuring 
Your System" in Chapter 9 for more detailed 
information. 

• Redirection of Standard Input and Output. This 
feature applies to all DOS programs that read 
from the keyboard or write to the screen (the 
standard input and output devices). By using 
the special characters < (for input) and> (for 
output), you can cause a program to receive 
its input from a source other than the 
keyboard, or to direct its output to a 
destination other than the screen. For 
example, the command: 

DIR A:> DIRLIST 

causes the directory listing from drive A to be 
placed in a file named DIRLIST on the default 
drive. Device names can also be used. For 
example, the command: 

DIR A:>PRN 

causes the directory listing to appear on the 
printer instead of the screen. Please refer to 
"Redirection of Standard Input and Output" 
in Chapter 10 for further information. 



• Piping of standard input and output. This feature 
allows the standard output of one program to 
be used as the standard input to another. DOS 
acts as a "pipeline" to direct the output of the 
first program to the input of the second­
thus, the term "piping." For further 
information and an example of its use, please 
refer to "Piping of Standard Input and 
Output" in Chapter 10. 

New Commands 

The following new commands have been added to 
DOS Version 2.00. Please consult the command 
descriptions in Chapter 6 and Chapter 10 for 
further details and examples of their use. 

ASSIGN 

Allows you to reassign drive letters so that a 
request for a given drive can be routed to a 
different drive. 

BACKUP 

Backs up one or more files from a fixed disk to 
diskettes. 



A-6 

BREAK 

Allows you to specify when DOS should check for 
a Ctrl- Break being entered at the keyboard. 
Normally, DOS only performs this check during 
screen, keyboard, printer, or auxiliary device 
operation. With this command, you can instruct 
DOS to check for Ctrl-Break whenever a program 
requests DOS to perform any function (such as 
disk operations). In this way, it is possible to 
"break out" of a program that performs few or 
no screen or keyboard operations (such as a 
compiler). 

CLS 

Clears the screen when used from a batch file or 
the keyboard. 

CTTY 

Allows you to define a different primary console, 
so that a remote terminal device can be used in 
place of the standard screen and keyboard. This 
command also reverses this assignment, to restore 
the keyboard and screen as the standard input and 
output devices. 

ECHO, IF, FOR, SHIFT, GOTO 

New sub commands provided to extend the 
flexibility of batch processing. 



FDISK 

Initializes and configures a fixed disk. 

Note: This command must be used before 
you use your fixed disk for the first time. 
Please refer to Chapter 4 " Preparing Your 
Fixed Disk". 

GRAPHICS 

Allows the Shift-PrtSc keys (display screen 
contents on printer) to print the image of a 
graphics display screen. 

MKDIR, RMDIR and CHDIR 

Create, remove, and inform DOS to use a 
directory other than the system directory. 

PATH 

Allows you to specify one or more paths of 
directory names that DOS will search if the 
command you have issued was not found in the 
current directory. They allow conditional 
execution of commands within a batch file by 
causing DOS to check for specified conditions. 

PRINT 

Prints a queue (list) of files on the system printer 
while you are using the system for other work. 

A-7 



A-8 

PROMPT 

Allows you to change the system prompt to a 
desired string. 

RECOVER 

Recovers a specific file that cannot be copied or 
otherwise used because of a defective spot on the 
disk that prevents the file from being read. This 
command also recovers multiple files when the 
directory has been damaged. 

RESTORE· 

Restores one or more files from a diskette to a 
fixed disk. 

SET 

Allows you to enter keywords and parameters into 
a DOS" environment" that is accessible by 
commands and applications. 

TREE 

Displays the entire directory structure of the 
specified disk. 

VER 

Displays the DOS version number on the screen. 



VERIFY 

Instructs DOS to perform a verify operation (or to 
stop performing the verify) each time data is 
written to disk, until a new verify command is 
issued to turn the verify feature off. The verify 
operation increases assurance that the data was 
properly recorded on disk (that is, it can be read 
without error). 

VOL 

Displays the volume label of the disk in the 
specified drive. 

Enhanced Commands 

The following commands, that existed in DOS 
Version 1.10, have been enhanced for DOS 
Version 2.00. For more detailed information, 
please consult the individual command 
descriptions in Chapter 6 and Chapter 10. 

CHKDSK 

Supports the fixed disk, the new and old diskette 
formats, and analyzes all directories on the 
volume. It also enables you to create files 
containing all sectors that were found to be 
allocated but were not associated with a file, so 
that you can recover "lost" data. An important 
feature is that, unlike Version 1.10 CHKDSK, it 
will take no corrective action on the disk being 
analyzed unless instructed to do so. 

A-9 



A-to 

COMP 

The file compare utility now allows multiple files 
to be compared. For example, you can compare all 
of the files on one disk with their counterparts on 
another disk. Also, COMP no longer prompts you 
to insert diskettes before comparing. 

DEBUG 

Now contains a command allowing you to enter 
assembly language statements that are assembled 
directly into memory. 

DIR 

Now displays the volume identification of the 
specified disk and clearly identifies entries that 
contain the names of other directories. It also 
displays the amount of available space left on the 
disk. 

DISKCOPY and DISKCOMP 

Support the new 9-sector-per-track diskette 
format. 

EDLIN 

The line editor contains several new subcommands 
for more flexible management of source data. 
They include commands to copy and move lines, 
and to merge the contents of another file. The 
Replace and Search commands have been changed 
to begin their search at the current line plus one. 



ERASE 

Now requires you to press the Enter key after 
entering the YIN response to the 

Are you sure (YIN)? 

message that appears when you instruct DOS 
to erase all of the files on a volume. This is 
intended to prevent accidental erasure of all files 
from the larger capacity devices supported by DOS 
Version 2.00. 

FORMAT 

Now formats diskettes at 9 sectors per track (in 
DOS 1.00 and 1.10 diskettes were formatted at 8 
sectors per track), allowing each new diskette to 
hold more data. It also allows you to specify a 
volume identification that is recorded in the disk's 
directory. Support for initialiZing a fixed disk is 
also included. 

LPT2:, LPT3:, and COM2: 

Now recognized as valid device names by DOS, 
and can be used in place of filenames. 

A-II 



For Programmers 

A-12 

• DOS Version 2.00 includes the ability to 
install your own device drivers for character 
or block-oriented devices. Please refer to 
Chapter 14 "Installable Device Drivers" for 
more details. 

• Three changes were made to internal 
functions that cause different results from 
those obtained on DOS Version 1.10: 

1. The function call (hex 1B) that 
previously returned a pointer to the file 
allocation table now returns a pointer to 
only the table's identification byte, for 
purposes of de terming the disk type. All 
applications that use call hex I B to 
obtain the file allocation table should be 
changed to use interrupt hex 25 to read 
the file allocation table directly from the 
disk. The file allocation table always 
begins at logical sector 1, and its size can 
be determined from the information 
returned by call hex 36. We recommend 
that you avoid using calls hex IB and 
hex IC. 

2. The mapping of logical sectors on dual 
sided diskettes has been rearranged to 
facilitate program loading and to improve 
system performance. 

This change allows DEBUG to load an 
entire file with a single L command. 

Applications that use interrupts hex 25 
and hex 26 on multi-sided disks or 
diskettes may require modification to 
operate properly on DOS Version 2.00. 
Please see the description of Int 25 in 
Appendix D. 



3. Additional bits have been defined in the 
file attribute byte of the DOS disk 
directory. Programs that depended upon 
the file attribute byte being equal to zero 
if a file was not a hidden or system file 
may not work correctly. (See Appendix C 
for the definition of the new attribute 
bits.) 

• A new set of function calls has been made 
available to provide a wide variety of services. 
We suggest that systems programmers and 
application developers review all of Appendix 
D for details on these new functions. 

A-13 



Notes: 

A-14 



Appendix B. DOS Technical 
Information 

Appendixes B-K are intended to supply 
technically oriented users with information about 
the structure, facilities, and program interfaces of 
DOS. It is assumed that the reader is familiar with 
the 8088 architecture, interrupt mechanism, and 
instruction set. 

DOS Structure 

DOS consists of the following four components: 

1. The boot record resides on track 0, sector 1, 
side 0 of every disk formatted by the 
FORMAT command. It is put on all disks in 
order to produce an error message if you try 
to start up the system with a non-DOS 
diskette in drive A. For fixed disks, it resides 
on the first sector (sector 1, head 0) of the 
first cylinder of the DOS partition. 

2. The Read-Only Memory (ROM) BIOS 
interface module (file IBMBIO.COM) 
provides a low-level interface to the ROM 
BIOS device routines. 

B-1 



3. The DOS program itself (file IBMDOS.COM) 
provides a high-level interface for user 
programs. It consists of file management 
routines, data blocking/deblocking for the 
disk routines, and a variety of built-in 
functions easily accessible by user programs. 
(Refer to Appendix D.) 

When these function routines are invoked by 
a user program, they accept high-level 
information via register and control block 
contents, then (for device operations) 
translate the requirement into one or more 
calls to IBMBIO to complete the request. 

4. The command processor, COMMAND. COM. 

DOS Initialization 

B-2 

When the system is started (either System Reset or 
power ON with the DOS diskette in drive A), the 
boot record is read into memory and given 
control. It checks the directory to assure that the 
first two files listed are IBMBIO.COM and 
IBMDOS.COM, in that order. (An error message is 
issued if not.) These two files are then read into 
memory. (IBMBIO.COM must be the first file in 
the directory, and its sectors must be contiguous.) 

The initialization code in IBMBIO.COM 
determines equipment status, resets the disk 
system, initializes the attached devices, causes 
device drivers to be loaded, and sets the 
low-numbered interrupt vectors. It then relocates 
IBMDOS.COM downward and calls the first byte 
of DOS. 



As in IBMBIO.COM, offset 0 in DOS contains a 
jump to its initialization code, which will later be 
overlaid by a data area and the command 
processor. DOS initializes its internal working 
tables, initializes interrupt vectors for interrupts 
hex 20 through hex 27 and builds a Program 
Segment Prefix (see Appendix E) for 
COMMAND. COM at the lowest available segment, 
then returns to IBMBIO.COM. 

The last remaining task of initialization is for 
IBMBIO.COM to load COMMAND. COM at the 
location set up by DOS initialization. 
IBMBIO.COM then passes control to the first byte 
of COMMAND. 

The Command Processor 

The command processor supplied with DOS (file 
COMMAND.COM) consists of four distinctly 
separate parts: 

• A resident portion resides in memory 
immediately following IBMDOS. COM and its 
data area. This portion contains routines to 
process interrupt types hex 22 (terminate 
address), hex 23 (CTRL-BREAK handler), and 
hex 24 (critical error handling), as well as a 
routine to reload the transient portion if 
needed. (When a program terminates, a 
checksum methodology determines if the 
program had caused the transient portion to 
be overlaid. If so, it is reloaded.) Note that all 
standard DOS error handling is done within 
this portion of COMMAND. This includes 
displaying error messages and interpreting the 
reply of Abort, Retry, or Ignore. (See message 
Disk error reading drive x under 
"Device Error Message" at the beginning of 
Chapter 8.) 

B-3 



B-4 

• An initialization portion follows the resident 
portion and is given control during startup. 
This section contains the AUTOEXEC file 
processor setup routine. The initialization 
portion determines the segment address at 
which programs can be loaded. It is overlaid 
by the first program COMMAND loads 
because it's no longer needed. 

• A transient portion is loaded at the high end 
of memory. This is (portion 3) the command 
processor itself, containing all of the internal 
command processors, the batch file processor, 
and (portion 4) a routine to load and execute 
external commands (files with filename 
extensions of .COM or .EXE). This "loader" is 
at the highest end of memory, and is invoked 
by the EXEC function call to load programs. 

Portion 3 of COMMAND produces the system 
prompt (such as A», reads the command 
from the keyboard (or batch file) and causes it 
to be executed. For external commands, it 
builds a command line and issues an EXEC 
function call to load and transfer control to 
the program. 

Appendix E contains detailed information 
describing the conditions in effect when a program 
is given control by EXEC. 



Available DOS Functions 

DOS provides a significant number of functions to 
user programs, all available through issuance of a 
set of interrupt codes. There are routines for 
keyboard input (with and without echo and 
Ctrl-Break detection), console and printer output, 
constructing file control blocks, memory 
management, date and time functions, and a 
variety of disk, directory, and file handling 
functions. See "DOS Interrupts and Function 
Calls" in Appendix D for detailed information. 

File Management Notes 

Through the INT 21 (function call) mechanism, 
DOS provides methods to create, read, write, 
rename, and erase files. Files are not necessarily 
written sequentially on disk-space is allocated as 
it is needed, and the first location available on the 
disk is allocated as the next location for a file 
being written. Therefore, if considerable file 
creation and erasure activity has taken place, newly 
created files will probably not be written in 
sequential sectors. 

However, due to the mapping (chaining) of file 
space via the File Allocation Table, and the 
function calls available, any file can be used in 
either a sequential or random manner. 

B-5 



There are two sets of function calls that support 
file management. The new, extended set of calls is 
the preferred method (functions 39 through 57). 
Through these calls, sequential and random file 
accesses are simpler than using the traditional 
(FCB oriented) set of calls. The FCB calls continue 
to function as in the past: By using the current 
block and current record fields of the FCB, and the 
sequential disk read or write functions, you can 
make the file appear sequential-DOS will do the 
calculations necessary to locate the proper sectors 
on the disk. On the other hand, by using the 
random record field, and random disk functions, 
you can cause any record in the file to be accessed 
directly-again, DOS will locate the correct sectors 
on the disk for you. 

Space is allocated in increments called clusters. For 
single sided diskettes, this unit of allocation is one 
sector; for dual sided diskettes, each cluster is two 
consecutive sectors in length. The cluster size of a 
fixed disk is determined at FORMAT time, and is 
based on the size of the DOS partition. 

The Disk Transfer Area (DTA) 

B-6 

The Disk Transfer Area (also commonly called 
buffer) is the memory area DOS will use to contain 
the data for all file reads and writes that are 
performed with the traditional (FCB) set of 
function calls. This area can be at any location 
within memory, and should be set by your 
program. (See function call hex lA.) 



Only one DTA can be in effect at a time, so it is 
the program's responsibility to inform DOS what 
memory location to use before using any disk read 
or write functions. Once set, DOS continues to use 
that area for all disk operations until another 
function call hex 1A is issued to define a new DTA. 
When a program is given control by COMMAND, 
a default DTA has already been established at 
hex 80 into the program's Program Segment 
Prefix, large enough to hold 128 bytes. 

When using the extended file management 
function calls, you specify a buffer address when 
you issue the read or write call. There is no need to 
set a DT A address. 

Error Trapping 

DOS provides a method by which a program can 
receive control whenever a disk or device 
read/write error occurs, or when a bad memory 
image of the file allocation table is detected. When 
these events occur, DOS executes an INT hex 24 
to pass control to the error handler. The default 
error handler resides in COMMAND.COM, but 
any program can establish its own by setting the 
INT hex 24 vector to point to the new error 
handler. DOS provides error information via the 
registers and provides Abort, Retry, or Ignore 
support via return codes. (Refer to Appendix D 
"DOS Interrupts and Function Calls".) 

B-7 



Notes: 

B-8 



Appendix C. DOS Disk Allocation 

All disk and diskettes formatted by DOS are 
created with a sector size of 512 bytes. The DOS 
area (entire diskette for diskettes, DOS partition 
for fixed disks) is formatted as follows: 

Boot record - variable size 

First copy of file allocation 
table - variable size 

Second copy of file allocation 
table - variable size 

Root directory - variable size 

Data area 

Allocation of space for a file (in the data area) is 
done only when needed (it is not pre-allocated). 
The space is allocated one cluster (unit of 
allocation) at a time. A cluster is always one or 
more consecutive sectors, and all of the clusters 
for a file are" chained" together in the File 
Allocation Table. 

C-l 



# 
Sides 

1 
2 
1 
2 

C2 

The clusters are arranged on disk to minimize head 
movement for multi-sided media. All of the space 
on a track (or cylinder) is allocated before moving 
on to the next track. This is accomplished by using 
the sequential sectors on the lowest-numbered 
head, then all the sectors on the next head, and so 
on until all sectors on all heads of the track are 
used. Then, the next sector to be used will be 
sector 1 on head 0 of the next track. 

For fixed disk, the size of the file allocation table 
and directory are determined when FORMAT 
initializes it, and are based on the size of the DOS 
partition. 

For diskettes, the following table can be used: 

Sectors/ FAT size Dir Dir Sectors/ 
Track Sectors Sectors Entries Cluster 

8 1 4 64 1 
8 1 7 112 2 
9 2 4 64 1 

9 2 7 112 2 

Files in the data area are not necessarily written 
sequentially on the disk. The data area space is 
allocated one cluster at a time, skipping over 
clusters already allocated. The first free cluster 
found will be the next cluster allocated, regardless 
of its physical location on the disk. This permits 
the most efficient utilization of disk space because 
clusters made available by erasing files can be 
allocated for new files. (Refer to the description of 
the "DOS File Allocation Table".) 



DOS Disk Directory 

FORMAT initially builds the root directory for all 
disks. Its location (logical sector number) and the 
maximum number of entries are available through 
the device driver interfaces. 

Since directories other than the root directory are 
actually files, there is no limit to the number of 
entries they may contain. Sub-directories can be 
read as data files, using an extended FeB with the 
appropriate attribute byte. 

All directory entries are 32 bytes in length, and are 
in the following format (byte offsets are in 
decimal): 

0-7 Filename. The first byte of this field 
indicates its status. 

hex 00 Never been used. This is used to 
limit the length of directory 
searches, for performance 
reasons. 

hex E5 Was used, but the file has been 
erased 

hex 2 E The entry is for a directory. If 
the second byte is also hex 2 E, 
then the cluster field contains 
the cluster number of this 
directory's parent directory (hex 
0000 if the parent directory is 
the root directory). 

Any other character is the first character 
of a filename. 

C-3 



C-4 

8-10 Filename extension. 

11 File attribute. The attribute byte is 
mapped as follows (values are in 
hexadecimal) : 

01 File is marked read-only. An attempt 
to open the file for output using 
function call hex 3 D results in an 
error code being returned. This 
value can be used along with other 
values below. 

02 Hidden file. The file is excluded 
from normal directory searches. 

04 System file. The file is excluded 
from normal directory searches. 

08 The entry contains the volume label 
in the first 11 bytes. The entry 
contains no other usable 
information, and may exist only in 
the root directory. 

10 The entry defines a sub-directory, 
and is excluded from normal 
directory searches. 

20 Archive bit. The bit is set on 
whenever the file has been written to 
and closed. It is used by 
backup/ restore functions of the 
FDISK utility for determining 
whether or not the file was changed 
since it was last backed up. This bit 
can be used along with other 
attribute bits. 



12-21 

22-23 

24-25 

Note: The system files (IBMBIO.COM 
and IBMDOS.COM) are marked as read 
only, hidden, and system files. Files can 
be marked hidden when they are created. 
Also, the read-only, hidden, system, and 
archive attributes may be changed 
through the CHMOD function call. 

Reserved. 

Time the file was created or last updated. 
The time is mapped in the bits as follows: 

< hh > < mm > < xx > 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

where: 

hh is the binary number of hours (0-23) 
mm is the binary number of minutes 

(0-59) 
xx is the binary number of two-second 

increments 

Date the file was created or last updated. 
The mm/ddlyy are mapped in the bits as 
follows: 

< 25 > < 24 > 
15 14 1 3 12 11 10 9' 8 7 6 5 4 3 2 1 0 
Y Y Y Y Y Y ymmmmddddd 

where: 

mm is 1-12 
dd is 1-31 
yy is 0-119 (1980-2099) 

C-5 



26-27 

28-31 

Starting cluster; the relative cluster 
number of the first cluster in the file. 

Note that the first cluster for data space 
on all fixed disks and diskettes is always 
cluster 002. 

The cluster number is stored with the 
least significant byte first. 

Note: System programmers, see 
"DOS File Allocation Table" for 
details about converting cluster 
numbers to logical sector numbers. 

File size in bytes. The first word contains 
the low-order part of the size. Both words 
are stored with the least significant byte 
first. 

DOS File Allocation Table 

C6 

This information is presented for the benefit of 
system programmers who wish to develop device 
drivers. It explains how DOS uses the File 
Allocation Table to convert the clusters of a file to 
logical sector numbers. The driver is then 
responsible for locating the logical sector on disk. 
We wish to emphasize that this information should 
not be used for any other purpose. We 
recommend that system utilities use the DOS file 
management function calls rather than 
interpreting the FAT. 



The File Allocation Table (FAT) is used by DOS to 
allocate disk space for a file, one cluster at a time. 

The FAT consists of a 12-bit entry (1.5 bytes) for 
each cluster on the disk. 

Note that the first two FAT entries map a portion 
of the directory; these FAT entries contain 
indicators of the size and format of the disk. 

The second and third bytes always contain hex 
FFFF. The first byte is used as follows: 

Hex Value Meaning 

FF Dual sided, 8 sector- per- track 
diskette. 

FE Single sided, 8 sector-per-track 
diskette. 

FD Dual sided, 9 sector-per-track 
diskette. 

Fe Single sided, 9 sector-per-track 
diskette. 

F8 Fixed disk 

The third FAT entry begins the mapping of the 
data area (cluster 002). 

C-7 



C-8 

Each entry contains three hexadecimal characters, 
either: 

000 

FFs-FFF 

xxx 

if the cluster is unused and available, 
or 

to indicate the last cluster of a file, 
or 

any other hexadecimal characters 
that are the cluster number of the 
next cluster in the file. The cluster 
number of the first cluster in the file 
is kept in the file's directory entry. 

Note: The values FFO-FF7 are 
used to indicate reserved 
clusters (FF7 indicates a bad 
cluster if it is not part of an 
allocation chain), and FFS-FFF 
are used as end-of-file marks. 

The File Allocation Table always begins on logical 
sector 1 (second actual sector on a diskette or in a 
fixed disk partition), following the boot record. If 
larger than 1 sector, the sectors are contiguous. 
Two copies of the FAT are written, one following 
the other, for integrity. The FAT is read into one 
of the DOS buffers whenever needed (open, 
allocate more space, etc.), and that buffer is given 
a high priority to keep it in memory as long as 
possible, for performance reasons. 



How to Use the File Allocation Table 

Obtain the starting cluster of the file from the 
directory entry. 

Now, to locate each subsequent cluster of the file: 

1. Multiply the cluster number just used by 1.5 
(each FAT entry is 1.5 bytes long). 

2. The whole part of the product is an offset into 
the FAT, pointing to the entry that maps the 
cluster just used. That entry contains the 
cluster number of the next cluster of the file. 

3. Use a MOV instruction to move the word at 
the calculated FAT offset into a register. 

4. If the last cluster used was an even number, 
keep the low-order 12 bits of the register; 
otherwise, keep the high-order 12 bits. 

5. If the resultant 12 bits are hex FF8-FFF, there 
are no more clusters in the file. Otherwise, 
the 12 bits contain the cluster number of the 
next cluster in the file. 

To convert the cluster to a logical sector number 
(relative sector, such as that used by INT 25 and 
26 and by DEBUG): 

1. Subtract 2 from the cluster number. 

2. Multiply the result by the number of sectors 
per cluster. 

3. Add the logical sector number of the 
beginning of the data area. 

C-9 



Notes: 

C-IO 



Appendix D. DOS Interrupts and 
Function Calls 

Interrupts 

Note: We recommend that a program 
wishing to examine or set the contents of any 
interrupt vector use the DOS function calls 
(hex 35 and hex 25) provided for those 
purposes, and avoid referencing the interrupt 
vector locations directly. 

DOS reserves interrupt types hex 20 to hex 3F for 
its use. This means absolute memory locations 
hex 80 to hex FF are reserved by DOS. The 
defined interrupts are as follows with all values in 
hexadecimal. 

20 Program terminate. Issuing Interrupt 
hex 20 is the traditional way to exit from 
a program. This vector transfers to the 
logic in DOS for restoration of the 
terminate, Ctrl-Break, and critical error 
exit addreses to the values they had on 
entry to the program. All file buffers are 
flushed. All files changed in length should 
be closed (see function call hex 10 and 
hex 3E) prior to issuing this interrupt. If 
the changed file is not closed, its length, 
date, and time are not recorded correctly 
in the directory. 

0.1 



D-2 

In order for a program to pass a 
completion (or error) code when 
terminating, it must use either function 
call hex 4C (exit) or hex 31 (terminate 
and stay resident). These two new 
methods are preferred over using 
interrupt hex 20, and the codes returned 
by them can be interrogated in batch 
processing (see ERRORLEVEL 
subcommand of batch processing). 

Important: Every program must ensure 
that the CS register contains the segment 
address of its Program Segment Prefix 
control block prior to issuing interrupt 
hex 20. 

21 Function request. Refer to "Function 
Calls" in this appendix. 

22 Terminate address. The address found at 
this interrupt location is the address to 
which control transfers when the 
program terminates. This address is 
copied into the program's Program 
Segment Prefix at the time the segment 
is created. If a program wishes to execute 
a second program it must set the 
terminate address prior to issuing the 
EXEC function call to execute the new 
program. Otherwise, when the second 
program executes, its termination would 
cause transfer to its host's termination 
address. This address, as well as the 
Ctrl-Break address below, may be set via 
DOS function call hex 25. Do not issue 
this interrupt directly. 



23 Ctrl-Break exit address. If the user enters 
Ctrl-Break during screen, printer, or 
asynchronous communications adapter 
operations, an interrupt type hex 23 is 
executed. (If BREAK is on, the interrupt 
hex 23 is issued on any function call.) If 
the Ctrl-Break routine saves all registers, 
it may end with a return-from-interrupt 
instruction (IRET) to continue program 
execution. If the program returns with a 
long return, the carry flag is used to 
determine whether the program will be 

.aborted or not; if the carry flag is set, it 
will be aborted, otherwise execution 
will continue (as with a return by IRET). 
If the Ctrl-Break interrupts functions 
9 or 10, buffered I/O, then /\ C, 
carriage-return, and linefeed are output. 
If execution is then continued with an 
IRET, I/O continues from the start of the 
line. When the interrupt occurs, all 
registers are set to the value they had 
when the original function call to DOS 
was made. There are no restrictions on 
what the Ctrl-Break handler is allowed to 
do, including DOS function calls, as long 
as the registers are unchanged if IRET 
is used. 

If the program creates a new segment and 
loads in a second program which itself 
changes the Ctrl-Break address, the 
termination of the second program and 
return to the first causes the Ctrl-Break 
address to be restored to the value it had 
before execution of the second program. 
(I t is restored from the second program's 
Program Segment Prefix.) 

D-3 



D-4 

24 Critical error handler vector. When a 
critical error occurs within DOS, control 
is transferred with an interrupt 24H. On 
entry to the error handler, AH will have 
its bit 7=0 (high-order bit) if the error 
was a disk error (probably the most 
common occurrence), bit 7=1 if not. 

BP:SI contains the address of a Device 
Header Control Block from which 
additional information can be retrieved 
(see below). 

.. 
The registers will be set up for a retry 
operation, and an error code will be in 
the lower half of the DI register with the 
upper half undefined. These are the error 
codes: 

Error Code Description 

o Attempt to write on 
write-protected diskette 

1 Unknown unit 
2 Drive not ready 
3 Unknown command 
4 Data error (CRC) 
5 Bad request structure 

length 
6 Seek error 
7 Unknown media type 
8 Sector not found 
9 Printer out of paper 
A Write fault 
B Read fault 
C General failure 



The user stack will be in effect (the first 
item described below is at the top of the 
stack), and will contain the following 
from top to bottom: 

IP 
CS 
FLAGS 

AX 
BX 
ex 
DX 
SI 
DI 
BP 
DS 
ES 

IP 
es 
FLAGS 

DOS registers from issuing 
INT hex 24 

User registers at time of original 
INT hex 21 request 

From the original interrupt 
hex 21 from the user to DOS 

The registers are set such that if an IRET 
is executed, DOS will respond according 
to (AL) as follows: 

(AL)=O ignore the error. 

=1 retry the operation. 

=2 terminate the program through 
interrupt hex 23. 

D-5 



Disk Errors 

If it is a hard error on disk (AH bit 7=0), register 
AL contains the failing drive number (0 = drive A, 
etc.); AH bits 0-2 indicate the affected disk area 
and whether it was a read or write operation, as 
follows: 

Bit 0=0 if read operation, 
1 if write operation 

Bits 2-1 (affected disk area) 

o 0 DOS area (system files) 
o 1 file allocation table 
1 0 directory 
1 J data area 

Other Errors 

D-6 

If AH bit 7=1, then the error occurred on a 
character device, or was the result of a bad 
memory image of the FAT. The device header 
passed in BP: SI can be examined to determine 
which case exists. If the attribute byte high order 
bit indicates a block device, then the error was a 
bad FAT. Otherwise, the error is on a character 
device. 

If a character device, the contents of AL are 
unpredictable, the error code is in DI as above. 



Notes: 

1. Before giving this routine control for 
disk errors, DOS performs five retries. 

2. For disk errors, this exit is taken only for 
errors occurring during an interrupt hex 
21 function call. It is not used for errors 
during an interrupt hex 25 or hex 26. 

3. This routine is entered in a disabled state. 

4. The SS, SP, DS, ES, BX, ex, and DX 
registers must be preserved. 

5. This interrupt handler should refrain 
from using DOS function calls. If 
necessary, it may use calls 1 through 12. 
Use of any other call will destroy the 
DOS stack and will leave DOS in an 
unpredictable state. 

6. The interrupt handler must not change 
the contents of the device header. 

7. If the interrupt handler will handle errors 
itself rather than returning to DOS, it 
should restore the application program's 
registers from the stack, remove all but 
the last 3 words on the stack, then issue 
an IRET. This will return to the program 
immediately after the INT 21 that 
experienced the error. Note that if this is 
done, DOS will be in an unstable state 
until a function call higher than 12 is 
issued. 

D-7 



D-8 

The device header pointed to by BP:SI is 
formatted as follows: 

DWORD Pointer to next device 
(FFFF if last device) 

WORD Attributes 
Bit 15 = 1 if character device, 0 if block 
ifbit 15 is 1 

Bit 0 = 1 if Current standard input 
Bit 1 = 1 if Current standard output 
Bit 2 = 1 if Current NUL device 
Bit 3 = 1 if Current CLOCK device 

Bit 14 is the IOCTL bit 

WORD Pointer to Device driver strategy 
entry point 

WORD Pointer to Device driver interrupt 
entry point 

8-BYTE character device named field 
for block devices the first byte is 
the number of units 

To tell if the error occurred on a block or 
character device you must look at bit 15 
in the attribute field (WORD at 
BP:SI+4). 

If the name of the character device is 
desired, look at the eight bytes starting 
at BP:SI+10. 



25 Absolute disk read. This transfers 
control directly to the DOS BIOS. Upon 
return, the original flags are still on the 
stack (put there by the INT instruction). 
This is necessary because return 
information is passed back in the current 
flags. Be sure to pop the stack to prevent 
uncontrolled growth. The request is as 
follows: 

(AL) 

(eX) 
(DX) 

(DS:BX) 

Drive number (for example, 
O=A or l=B) 
Number of sectors to read 
Beginning logical sector 
number 
Transfer address 

The number of sectors specified are 
transferred between the given drive and 
the transfer address. Logical sector numbers 
are obtained by numbering each sector 
sequentially starting from track 0, head 0, 
sector 1 (logical sector 0) and continuing 
along the same head, then to the next 
head until the last sector on the last head 
of the track is counted. Thus, logical 
sector 1 is track 0, head 0, sector 2; 
logical sector 2 is track 0, head 0, sector 
3; and so on. Numbering then continues 
with sector 1 on head ° of the next track. 
Note that although the sectors are 
sequentially numbered (for example, 
sectors 2 and 3 on track ° in the example 
above), they may not be physically 
adjacent on disk, due to interleaving. 
Note that the mapping is different from 
that used by DOS Version 1.10 for 
dual-sided diskettes. 

D-9 



D-IO 

All registers except the segment registers 
are destroyed by this call. If the transfer 
was successful the carry flag (CF) will be 
zero. If the transfer was not successful 
CF=l and (AX) will indicate the error as 
follows. (AL) is the DOS error code that 
is the same as the error code returned in 
the low byte of DI when an INT hex 24 is 
issued, and (AH) will contain: 

hex 80 

hex 40 
hex 20 
hex 10 
hex 08 
hex 04 
hex03 

hex 02 
hex 00 

Attachment failed to 
respond 
SEEK operation failed 
Controller failure 
Bad CRC on diskette read 
DMA overrun on operation 
Requested sector not found 
Write attempt on 
write-protected diskette 
Address mark not found 
Error other than types 
listed above 

26 Absolute disk write. This vector is the 
counterpart of interrupt 25 above. 
Except for the fact that this is a write, the 
description above applies. 

27 Terminate but stay resident. This vector 
is used by programs that are to remain 
resident when COMMAND regains 
control. This is the traditional method 
for DOS programs to remain resident 
upon termination. 



A new DOS function call has been 
established that allows the terminating 
program to pass a completion (or error) 
code to DOS, that can be interpreted 
within batch processing (see function call 
hex 31). After initialiZing itself, the 
program must set DX to its last address 
plus one in the segment in which it is 
executing (the offset at which other 
programs can be loaded), then execute an 
INT 27 H. DOS then considers the 
program as an extension of DOS, so the 
program is not overlaid when other 
programs are executed. This concept is 
very useful for loading programs such as 
user-written interrupt handlers that must 
remain resident. 

Notes: 

1. This interrupt must not be used 
by .EXE programs which are 
loaded into the high end of 
memory. 

2. This interrupt restores the 
interrupt 22, 23, and 24 vectors 
in the same manner as INT 20. 
Therefore, it can not be used to 
install permanently resident 
Ctrl-Break or Critical Error 
Handler routines. 

3. The maximum size of memory 
that can be made resident by 
this method is 64K. You can use 
call hex 31 to make a larger 
program resident. 

D-l1 



28 Used internally by DOS. 

29-2E Reserved for DOS. 

2F Used internally by DOS. 

30-3 F Reserved for DOS. 

Function Calls 

D-12 

DOS provides a wide variety of function calls for 
character device VO, file management, memory 
management, date and time functions, execution 
of other programs, and others. They are grouped 
as follows (call numbers are in hexadecimal): 

0-12 Traditional character device VO 

12-24 Traditional file management 

25-26 Traditional non-device functions 

27-29 Traditional file management 

2A-2E Traditional non-device functions 

2F-38 Extended function group 

39-3B Directory group 

3C-46 Extended file management group 



47 Directory group 

4S-4B Extended memory management group 

4C-4F Extended function group 

54-57 Extended function group 

Functions 2 F through 57 are new for DOS Version 
2.00. Where similar functions exist in both this 
group and the group of traditional calls, we 
recommend using the new calls. They have been 
defined with simpler interfaces and provide more 
powerful functions than their traditional 
counterparts. However, if you use these new 
function calls your program cannot be run on DOS 
Versions 1.00 or 1.10. 

When DOS takes control, it switches to an internal 
stack. User registers are preserved unless 
information is passed back to the requester as 
indicated in the specific requests. The user stack 
needs to be sufficient to accommodate the 
interrupt system. It is recommended that it be 
hex so in addition to the user needs. 

D-13 



Error Return Table 

D-14 

Many of the new function calls return the carry 
flag clear if the operation was successful. If an 
error condition was encountered, the carry flag is 
set, and AX contains one of the following binary 
error return codes: 

Code Condition 

1 Invalid function number 
2 File not found 
3 Path not found 
4 Too many open files (no handles left) 
5 Access denied 
6 Invalid handle 
7 Memory control blocks destroyed 
8 Insufficient memory 
9 Invalid memory block address 

10 Invalid environment 
11 Invalid format 
12 Invalid access code 
13 Invalid data 
15 Invalid drive was specified 
16 Attempted to remove the current directory 
17 Not same device 
18 No more files 

Several of the calls accept an ASCIZ string as 
input. This consists of an ASCII string containing 
an optional drive specifier, followed by a directory 
path, and in some cases a filename. The string is 
terminated by a byte of binary zeros. For example: 

B:\ LEVELl\ LEVEL2\FI LEl 

followed by a byte of zeros. 

Note: All calls that accept path names will 
accept a forward slash or a backslash as a path 
separator character. 



The new calls supporting files or devices use an 
identifier known as a "handle." When you create 
or open a file or device with the new calls, a 16-bit 
binary value is returned in AX. This is the 
"handle" (sometimes known as a token) that you 
will use in referring to the file after it's been 
opened. 

The following handles are pre-defined by DOS and 
can be used by your program. You do not need to 
open them before using them: 

0000 

0001 

0002 

0003 

0004 

Standard input device. Input can be 
redirected. 

Standard output device. Output can be 
redirected. 

Standard error output device. Output 
cannot be redirected. 

Standard auxiliary device. 

Standard printer device. 

D-15 



Invoking DOS Functions 

D-16 

Most of the function calls require input to be 
passed to them in registers. After setting the 
proper register values, the function may be 
invoked in one of these ways: 

1. Place the function number in AH and execute 
a long call to offset hex 50 in your Program 
Segment Prefix. Note that programs using 
this method will not operate correctly on 
DOS Verisons 1.00 and 1.10. 

2. Place the function number in AH and issue 
interrupt type hex 21. 

3. There is an additional mechanism provided 
for pre-existing programs that were written 
with different calling conventions. This 
method should be avoided for all new 
programs. The function number is placed in 
the CL register and other registers are set 
according to the function specification. Then 
an intrasegment call is made to location 5 in 
the current code segment. That location 
contains a long call to the DOS function 
dispatcher. Register AX is always destroyed if 
this mechanism is used; otherwise, it is the 
same as normal function calls. This method is 
valid only for function calls 0-24 
(hexadecimal) . 



The functions are as follows with all values in 
hexadecimal. 

o Program terminate. The terminate, 
Ctrl-Break, and critical error exit addresses 
are restored to the values they had on entry to 
the terminating program, from the values 
saved in the Program Segment Prefix. All file 
buffers are flushed, but any files which have 
been changed in length but not closed will not 
be recorded properly in the directory. Control 
transfers to the terminate address. This call 
performs exactly the same function as INT 
20H. It is the program's responsibility to 
ensure that the CS register contains the 
segment address of its Program Segment 
Prefix control block prior to calling this 
function. 

Note: Calls hex 1 through hex C use the 
standard devices listed at the end of the 
"Error Return Table" in this chapter. 

1 Keyboard input. Waits for a character to be 
read at the standard input device (unless one 
is ready), then echoes the character to the 
standard output device and returns it in AL. 
The character is checked for a Ctrl-Break. If 
Ctrl-Break is detected, an interrupt hex 23 is 
executed. 

Note: For functions 1, 6, 7, and 8, 
extended ASCII codes will require two 
function calls. (See the IBM Personal 
Computer BASIC manual for a 
description of the extended ASCII 
codes.) The first call returns 00 as an 
indicator that the next call will return an 
extended code. 

D-17 



D-18 

2 Display output. The character in DL is output 
to the standard output device. The backspace 
character results in moving the cursor left one 
position, writing a space at this position and 
remaining there. If a Ctrl-Break is detected 
after the output, an interrupt hex 23 is 
executed. 

3 Auxiliary (Asynchronous Communications 
Adapter) input. Waits for a character from the 
standard auxiliary device, then returns that 
character in AL. 

Notes: 

1. Auxiliary (AUX, COM1, COM2) 
support is unbuffered and 
non-interrupt driven. 

2. At startup, DOS initializes the first 
auxiliary port to 2400 baud, no 
parity, one stop bit, and 8-bit word. 

3. The auxiliary function calls (3 and 4) 
do not return status or error codes. 
For greater control, it is 
recommended that the ROM BIOS 
routine (INT hex 14) be used. 

4 Auxiliary (Asynchronous Communications 
Adapter) output. The character in DL is 
output to the standard auxiliary device. 

5 Printer output. The character in DL is output 
to the standard printer device. 

6 Direct console I/O. If DL is hex FF, AL 
returns with the zero flag clear and an input 
character from the standard input device if 
one is ready. If a character is not ready, the 



zero flag will be set. If DL is not hex FF, then 
DL is assumed to have a valid character that is 
output to the standard output device. This 
function does not check for Ctrl-Break, or 
Ctrl-PrtSc. 

7 Direct console input without echo. Waits for 
a character to be read at the standard input 
device (unless one is ready), then returns the 
character in AL. As with function 6, no checks 
are made on the character. 

8 Console input without echo. This function is 
identical to function 1, except the key is not 
echoed. 

9 Print string. On entry, DS:DX must point to a 
character string in memory terminated by a $ 
(hex 24). Each character in the string will be 
output to the standard output device in the 
same form as function 2. 

A Buffered keyboard input. On entry, DS:DX 
point to an input buffer. The first byte must 
not be zero and specifies the number of 
characters the buffer can hold. Characters are 
read from the standard input device and 
placed in the buffer beginning at the third 
byte. Reading the standard input device and 
filling the buffer continues until Enter is read. 
If the buffer fills to one less than the 
maximum number of characters it can hold, 
then each additional character read is ignored 
and causes the bell to ring, until Enter is read. 
The second byte of the buffer is set to the 
number of characters received, excluding the 
carriage return (hex OD), which is always the 
last character. Editing of this buffer is 
described in Chapter 3. 

D-19 



D-20 

B Check standard input status. If a character is 
available from the standard input device, AL 
will be hex FF. Otherwise, AL will be 00. If 
a Ctrl-Break is detected, an interrupt type 
hex 23 is executed. 

C Clear standard input buffer and invoke a 
standard input function. Clear the standard 
input buffer of any pre-typed characters, then 
execute the function number in AL (only 1, 6, 
7, 8, and A are allowed). This forces the 
system to wait until a character is typed. 

D Disk reset. Flushes all file buffers. Files 
changed in size but not closed are not 
properly recorded in the disk directory. This 
function need not be called before a diskette 
change if all files written have been closed. 

E Select disk. The drive specified in DL (O=A, 
l=B, etc.) is selected (if valid) as the default 
drive. The number of drives (total of diskette 
and fixed disk drives) is returned in AL. If the 
system has only one diskette drive, it will be 
counted as two to be consistent with the 
philosophy of thinking of the system as 
having logical drives A and B. BIOS 
equipment determination (INT IlH) can be 
used as an alternative method, returning the 
actual number of physical diskette drives. 



F Open file. On entry, DS:DX point to a 
current unopened file control block (FCB). 
The directory is searched for the named file 
and AL returns hex FF if it is not found. If it is 
found, AL returns 00 and the FCB is filled as 
follows: 

If the drive code was 0 (default drive), it is 
changed to the actual drive used (l=A, 2=B, 
etc.). This allows changing the default drive 
without interfering with subsequent 
operations on this file. The current block field 
(FCB bytes C-D) is set to zero. The size of the 
record to be worked with (FCB bytes E-F) is 
set to the system default of hex 80. The size 
of the file and the date are set in the FCB 
from information obtained from the 
directory. 

It is your responsibility to set the record size 
(FCB bytes E-F) to the size you wish to think 
of the file in terms of, if the default hex 80 is 
insufficient. It is also your responsibility to set 
the random record field and/or current record 
field. These actions should be done after open 
but before any disk operations are requested. 

10 Close file. This function must be called after 
file writes to ensure all directory information 
is updated. On entry, DS:DX point to an 
opened FCB. The current disk directory is 
searched and if the file is found, its position is 
compared with that kept in the FCB. If the 
file is not found in its correct position in the 
current directory, it is assumed the diskette 
was changed and AL returns hex FF. 
Otherwise, the directory is updated to reflect 
the status in the FCB and AL returns 00. 

D-21 



D-22 

11 Search for the first entry. On entry, DS:DX 
point to an unopened FCB. The current disk 
directory is searched for the first matching 
filename (name could have "?"s indicating any 
letter matches) and if none are found, AL 
returns hex FF. Otherwise, AL returns 00 and 
the locations at the disk transfer address are 
set as follows: 

If the FCB provided for searching was an 
extended FCB, then the first byte at the 
disk transfer address is set to hex FF, 
followed by five bytes of zeros, then the 
attribute byte from the search FCB, then 
the drive number used (l=A, 2=B, etc.), 
then the 32 bytes of the directory entry. 
Thus, the disk transfer address contains a 
valid unopened extended FCB with the 
same search attributes as the search FCB. 

If the FCB provided for searching was a 
normal FCB, then the first byte is set to the 
drive number used (l=A, 2=B), and the next 
32 bytes contain the matching directory entry. 
Thus, the disk transfer address contains a valid 
unopened normal FCB. 

Notes: 

If an extended FCB is used, the 
following search pattern is used: 

1. If the FCB attribute byte is zero, 
only normal file entries are found. 
Entries for volume label, 
sub-directories, hidden and system 
files, will not be returned. 



2. If the attribute field is set for hidden 
or system files, or directory entries, 
it is to be considered as an inclusive 
search. All normal file entries plus all 
entries matching the specified 
attributes are returned. To look at 
all directory entries except the 
volume label, the attribute byte may 
be set to hidden + system + directory 
(all 3 bits on). 

3. If the attribute field is set for the 
volume label, it is considered an 
exclusive search, and only the volume 
label entry is returned. 

The attribute bits are defined in the "DOS 
Disk Directory" section of Appendix C. 

12 Search for the next entry. After function 11 
has been called and found a match, function 
12 may be called to find the next match to an 
ambiguous request (?s in the search filename). 
Both inputs and outputs are the same as 
function 11. The reserved area of the FCB 
keeps information necessary for continuing 
the search, so no disk operations may be 
performed with this FCB between a previous 
function 11 or 12 call and this one. 

13 Delete file. On entry, DS:DX point to an 
unopened FCB. All matching current 
directory entries are deleted. If no directory 
entries match, AL returns hex FF, otherwise 
AL returns 00. 

D-23 



D-24 

14 Sequential read. On entry, DS:DX point to an 
opened FCB. The record addressed by the 
current block (FCB bytes C-D) and the 
current record (FCB byte 1 F) is loaded at the 
disk transfer address, then the record address 
is incremented. (The length of the record is 
determined by the FCB record size field.) If 
end-of-file is encountered, AL returns either 
01 or 03. A return of 01 indicates no data in 
the record; 03 indicates a partial record is read 
and filled out with zeros. A return of 02 
means there was not enough space in the disk 
transfer segment to read one record, so the 
transfer was ended. AL returns 00 if the 
transfer was completed successfully. 

15 Sequential write. On entry, DS:DX point to 
an opened FCB. The record addressed by the 
current block and current record fields (size 
determined by the FCB record size field) is 
written from the disk transfer address (or, in 
the case of records less than sector sizes, is 
buffered up for an eventual write when a 
sector's worth of data is accumulated). The 
record address is then incremented. If the 
diskette is full, AL returns 01. A return of 02 
means there was not enough space in the disk 
transfer segment to write one record, so the 
transfer was ended. AL returns 00 if the 
transfer was completed successfully. 



16 Create file. On entry, DS:DX point to an 
unopened FCB. The current disk directory is 
searched for a matching entry, and if found, it 
is re-used. If no match was found, the 
directory is searched for an empty entry, and 
AL returns FF if none is found. Otherwise, the 
entry is initialized to a zero-length file, the file 
is opened (see function F), and AL returns 00. 

The file may be marked hidden during its 
creation by using an extended FCB containing 
the appropriate attribute byte. 

17 Rename file. On entry, DS:DX point to a 
modified FCB which has a drive code and a 
file name in the usual position, and a second 
file name starting 6 bytes after the first 
(DS:DX+hex 11) in what is normally a 
reserved area. Every matching occurrence of 
the first name in the current directory is 
changed to the second (with the restriction 
that two files cannot have the same name and 
extension). If "?"s appear in the second name, 
then the corresponding positions in the 
original name will be unchanged. AL returns 
FF if no match was found or if an attempt was 
made to rename to a filename that already 
existed, otherwise 00. 

18 Used internally by DOS. 

D-25 



D-26 

19 Current disk. AL returns with the code of the 
current default drive (O=A, I=B, etc.). ' 

lA Set disk transfer address. The disk transfer 
address is set to DS:DX. DOS does not allow 
disk transfers to wrap around within the 
segment, or overflow into the next segment. 

1 B Allocation table information. On return, 
DS:BX point to a byte containing the FAT 
identification byte for the default drive, DX 
has the number of allocation units, AL has the 
number of sectors per allocation unit, and CX 
has the size of the physical sector. 

Note: Beginning with DOS Version 
2.00, this call no longer returns the 
address of a complete File Allocation 
Table, because the FAT's are no longer 
kept resident in memory. 

1 C Allocation table information for specific 
drive. This call is identical to call hex 1 B 
except that on entry, DL contains the number 
of the drive from which the information 
should be gotten (0 = default, 1= A, etc.). 

ID Used internally by DOS. 

IE Used internally by DOS. 

1 F Used internally by DOS. 

20 Used internally by DOS. 



21 Random read. On entry, DS:DX point to an 
opened FeB. The current block and current 
record fields are set to agree with the random 
record field, then the record addressed by 
these fields is read into memory at the current 
disk transfer address. If end-of-file is 
encountered, AL returns either 01 or 03. If 01 
is returned, no more data is available. If 03 is 
returned, a partial record is available filled out 
with zeros. A return of 02 means there was 
not enough space in the disk transfer segment 
to read one record, so the transfer was ended. 
AL returns 00 if the transfer was completed 
successfully. 

22 Random write. On entry, DS:DX point to an 
opened FeB. The current block and current 
record fields are set to agree with the random 
record field, then the record addressed by 
these fields is written (or in the case of records 
not the same as sector sizes - buffered) from 
the disk transfer address. If the diskette is full 
AL returns 01. A return of 02 means there was 
not enough space in the disk transfer segment 
to write one record; so, the transfer was 
ended. AL returns 00 if the transfer was 
completed successfully. 

23 File size. On entry, DS:DX point to an 
unopened FeB. The diskette directory is 
searched for the first matching entry and if 
none is found, AL returns FF. Otherwise, the 
random record field is set to the number of 
records in the file (in terms of the record size 
field rounded up) and AL returns 00. 

Note: Be sure to set the FeB record 
size field before using this function call; 
otherwise, erroneous information will be 
returned. 

D-27 



D-28 

24 Set random record field. On entry, DS:DX 
point to an opened FCB. This function sets 
the random record field to the same file 
address as the current block and record fields. 

25 Set interrupt vector. The interrupt vector 
table for the interrupt type specified in AL is 
set to the 4-byte address contained in DS: DX. 
Note that the original contents of the 
interrupt vector can be obtained through call 
hex 35. 

26 Create a new program segment. On entry, DX 
has a segment number at which to set up a 
new program segment. The entire hex 100 
area at location zero in the current program 
segment is copied into location zero in the 
new program segment. The memory size 
information at location 6 in the new segment 
is updated and the current termination, 
Ctrl-Break exit and critical error addresses 
from interrupt vector table entries for 
interrupt types 22, 23, and 24 are saved in the 
new program segment starting at hex OA. 
They are restored from this area when the 
program terminates. 

Note: Use of this call should be 
avoided, now that DOS contains the 
EXEC function call (hex 4B). 



27 Random block read. On entry, DS:DX point 
to an opened FeB, and ex contains a record 
count that must not be zero. The specified 
number of records (in terms of the record size 
field) are read from the file address specified 
by the random record field into the disk 
transfer address. If end-of-file is reached 
before all records have been read, AL returns 
either 01 or 03. A return of 01 indicates 
end-of-file and the last record is complete. A 
return of 03 indicates the last record is a 
partial record. If wrap-around above address 
hex FFFF in the disk transfer segment would 
have occurred, as many records as possible are 
read and AL returns 02. If all records are read 
successfully, AL returns 00. In any case, ex 
returns with the actual number of records 
read, and the random record field and the 
current block! record fields are set to address 
the next record (the first record not read). 

28 Random block write. Essentially the same as 
function 27 above, except for writing and a 
write-protect check. If there is insufficient 
space on the disk, AL returns Oland no 
records are written. If ex is zero upon entry, 
no records are written, but the file is set to 
the length specified by the random record 
field, whether longer or shorter than the 
current file size. (Allocation units are released 
or allocated as appropriate.) 

D-29 



D-30 

29 Parse filename. On entry, DS:SI point to a 
command line to parse, and ES:DI point to a 
portion of memory to be filled with an 
unopened FCB. The contents of AL are used 
to determine the action to take, as shown 
below: 

<ignored> 
bit: 7 6 5 4 3 2 1 0 

If bit 0 = 1, then leading separators are 
scanned off the command line at DS: SI. 
Otherwise, no scan-off of leading separators 
takes place. 

If bit 1 = 1, then the drive ID byte in the result 
FCB will be set (changed) only if a drive was 
specified in the command line being parsed. 

If bit 2 = 1, then the filename in the FCB will 
be changed only if the command line contains 
a filename. 

If bit 3 = 1, then the filename extension in the 
FCB will be changed only if the command line 
contains ,a filename extension. 

Filename separators include the following 
characters: . ;, = + plus TAB and SPACE. 
Filename terminators include all of these 
characters plus \, <, >, I , /, ", [, ], and any 
control characters. 

The command line is parsed for a filename of 
the form d: filename. ext, and if found, a 
corresponding unopened FCB is created at 
ES:DI. If no drive specifier is present, the 
default drive is assumed. If no extension is 
present, it is assumed to be all blanks. If the 
character * appears in the filename or 
extension, then it and all remaining characters 
in the name or extension are set to ? . 



If either? or * appears in the filename or 
extension, AL returns 01; if the drive specifier 
is invalid AL returns FF; otherwise 00. 

DS:SI will return pointing to the first 
character after the filename and ES:DI will 
point to the first byte of the formatted FCB. 
If no valid filename is present, ES:DI+1 will 
contain a blank. 

Note: This call is not useful for 
command lines containing path names. 

2A Get date. Returns date in CX:DX. CX has 
the year (1980-2099 in binary), DR has the 
month (1-Jan, 2-Feb, etc.) and DL has the day. 
If the time-of-day clock rolls over to the next 
day, the date is adjusted accordingly, taking 
into account the number of days in each 
month and leap years. 

2B Set date. On entry, CX:DX must have a valid 
date in the same format as returned by 
function 2A, above. If the date is indeed valid 
and the set operation is successful, AL returns 
00. If the date is not valid, AL returns FF. 

2C Get time. Returns with time-of-day in 
CX:DX. Time is actually represented as four 
8-bit binary quantities as follows. CR has the 
hours (0-23), CL has minutes (0-59), DR has 
seconds (0-59), DL has 1/100 seconds (0-99). 
This format is readily converted to a printable 
form yet can also be used for calculations, 
such as subtracting one time value from 
another. 

2D Set time. On entry, CX:DX has time in the 
same format as returned by function 2C, 
above. If any component of the time is not 
valid, the set operation is aborted and AL 
returns FF. If the time is valid, AL returns 00. 

D-31 



D-32 

2E Set/reset verify switch. On entry, DL must 
contain 0, and AL must contain 1 to turn 
verify on, or 0 to turn verify off. When on, 
DOS will perform a verify operation each 
time it performs a diskette write to assure 
proper data recording. Although disk . 
recording errors are very rare, this function 
has been provided for those user applications 
in which you may wish to verify the proper 
recording of critical data. Note that the 
current setting of the verify switch can be 
obtained through call hex 54. 

2F Get DTA. On return, ES:BX contains the 
current DTA transfer address. 

30 Get DOS version number. On return, AL 
contains the major version number. AH 
contains the minor version number. 

Note: If AL returns zero, it can be 
assumed that it is a pre-DOS Version 
2.00 system. 

31 Terminates process and remain resident 
(KEEP process). On entry, AL contains a 
binary exit code. DX contains the memory 
size value in paragraphs. This function call 
terminates the current process and attempts 
to set the initial allocation block to the 
number of paragraphs in DX. It will not free 
up any other allocation blocks belonging to 
that process. The exit code passed in AL is 
retrievable by the parent through Wait 
(function call hex 4DO) and can be tested 
through the ERRORLEVEL batch 
sub commands. 



32 Used internally by DOS. 

33 Ctrl-Break check. On entry, AL contains 00 
to request the current state of control-break 
checking, 01 to set the state. If setting the 
state, DL must contain 00 for OFF or 01 for 
ON. DL returns the current state (00 = OFF, 
01 = ON). 

34 Used internally by DOS. 

35 Get vector. On entry, AL contains a 
hexadecimal interrupt number. The CS:IP 
interrupt vector for the specified interrupt is 
returned in ES:BX. Note that interrupt 
vectors can be set through call hex 25. 

36 Get disk free space. On entry, DL contains a 
drive: 0 = default, 1 = A, etc. On return, AX 
returns FFFF if the drive number was invalid. 
Otherwise, BX contains the number of 
available allocation units (clusters), DX 
contains the total number of clusters on the 
drive, CX contains the number of bytes per 
sector, and AX contains the number of sectors 
per cluster. 

Note: This call returns t~e same 
information in the same registers (except 
for the FAT pointer) as the get FAT 
pointer call (hex 1 B) did in previous 
versions of DOS. 

3 7 Used internally by DOS. 

D-33 



D-34 

38 Return country dependent information 
(international). On entry, DS:DX points to a 
32-byte block of memory in which returned 
information is passed and AL contains a 
function code. In DOS 2.00, this function 
code must be zero. The following information 
is pertinent to international applications: 
I I 

I WORD Date/time format I 
f-----------4 
I BYTE ASCIIZ string I 
I currency symbol I 
~ollowed by ~te of zer~ ~ 
I BYTE ASCIIZ string I 
I thousands separator I 
+-,ollowed by ~te of zeros-l 

I BYTE ASCIIZ string decimal I 
I separator I 
I followed by byte of zeros I 
+-----------4 
I 24 bytes I 
I Reserved I 
L-----------L., 

The date and time format has the following 
values and meaning: 

° = USA standard h:m:s mldly 

1 = Europe standard h:m:s dimly 

2 = Japan standard h:m:s d:m:y 

39 Create a sub-directory (MKDIR). On entry, 
DS:DX contains the address of an ASCIIZ 
string with drive and directory path names. If 
any member of the directory path does not 
exist, then the directory path is not changed. 
On return, a new directory is created at the 
end of the specified path. Error returns are 3 
and 5 (refer to error return table). 



3A Remove a directory entry (RMDIR). On 
entry, DS: DX contains the address of an 
ASCIIZ string with the drive and directory 
path names. The specified directory is 
removed from the structure. The current 
directory cannot be removed. Error returns 
are 3 and 5 (refer to error return table). Note 
tha t code 5 is returned if the specified 
directory is not empty. 

3B Change the current directory (CHDIR). On 
entry, DS: DX contains the address of an 
ASCIIZ string with drive and directory path 
names. If any member of the directory path 
does not exist, then the directory path is not 
changed. Otherwise, the current directory is 
set to the ASCIIZ string. Error return is 3 
(refer to the error return table). 

3C Create a file (CREA1). On entry, DS:DX 
contains the address of an ASCIIZ string with 
the drive, path, and filename. CX contains the 
attribute of the file. This function call creates 
a new file or truncates an old file to zero 
length in preparation for writing. If the file 
did not exist, then the file is created in the 
appropriate directory and the file is given the 
read/write access code. The file is opened for 
read/write, and the handle is returned in AX. 
Error returns are 3, 4, and 5 (refer to the error 
return table). If an error code of 5 is returned, 
either the directory was full or a file by the 
same name exists and is marked read-only. 
Note that the change mode function call 
(hex 43) can later be used to change the file's 
attribute. 

D-35 



D-36 

3D Open a file. On entry, DS:DX contains the 
address of an ASCIIZ string with the drive, 
path, and filenames. AL contains the access 
code. On return, AX contains an error code or 
a 16-bit file handle associated with the file. 
The following values are a1.lowed for the 
access code: 

o = file is opened for reading. 

1 = file is opened for writing. 

2 = file is opened for both reading 
and writing. 

The read/write pointer is set at the first byte 
of the file and the record size of the file is 
1 byte (the read/write pointer can be changed 
through function call hex 42). The returned 
file handle must be used for subsequent input 
and output to the file. The file's date and time 
can be obtained or set through call hex 57, 
and its attribute can be obtained through call 
hex 43. Error returns are 2,4, 5, and 12 (refer 
to the error return table). 

Note: This call will open any normal or 
hidden file whose name matches the 
name specified. 

3E Close a file handle. On entry, BX contains the 
file handle that was returned by "open." On 
return, the file will be· closed and all internal 
buffers are flushed. Error return is 6 (refer to 
the error return table). 



3F Read from a file or device. On entry, BX 
contains the file handle. CX contains the 
number of bytes to read. DS:DX contains the 
buffer address. On return, AX contains the 
number of bytes read. If the value is zero, 
then the program has tried to read from the 
end of file. This function call transfers (CX) 
bytes from a file into a buffer location. It is 
not guaranteed that all bytes will be read For 
example, reading from the keyboard will read 
at most one line of text. If this read is 
performed from the standard input device, the 
input can be redirected (see "Redirection of 
Standard Input and Output" in Chapter 10). 
Error returns are 5 and 6 (refer to the error 
return table). 

40 Write to a file or device. On entry, BX 
contains the file handle. CX contains the 
number of bytes to write. DS: DX contains the 
address of the data to write. Write transfers 
(CX) bytes from a buffer into a file. AX 
returns the number of bytes actually written. 
If this value is not the same as the number 
requested, it should be considered an error 
(no error code is returned, but your program 
can compare these values). The usual reason 
for this is a full disk. If this write is performed 
to the standard output device, the output can 
be redirected (see" Redirection of Standard 
Input and Output" in Chapter 10). Error 
returns are 5 and 6 (refer to the error return 
table). 

D-37 



D-38 

41 Delete a file from a specified directory 
(Unlink). On entry, DS:DX contains the 
address of an ASCIIZ string with a drive, path, 
and filename. Global filename characters are 
not allowed in any part of the string. This 
function call removes a directory en try 
associated with a filename. Read-only files 
cannot be deleted by this call. To delete one 
of these files, you can first use call hex 43 to 
change the file's attribute to 0, then delete the 
file. Error returns are 2 and 5 (refer to the 
error return table). 

42 Move file read/write pointer (Lseek). On 
entry, AL contains a method value. BX 
contains the file handle. CX:DX contains the 
desired offset in bytes (CX contains the most 
significant part). On return, DX:AX contains 
the new location of the pointer (DX contains 
the most significant part). 

It moves the read/write pointer according to 
the following methods: 

AL 0 = The pointer is moved to offset 
(CX:DX) bytes from the 
beginning of the file. 

AL 1 = The pointer is moved to the 
current location plus offset. 

AL 2 = The pointer is moved to the 
end-of-file plus offset. This 
method can be used to determine 
file's size. 

Error returns are 1 and 6 (refer to the error 
return table). 



43 Change file mode (CRMOD). On en try, AL 
contains a function code, and DS:DX contains 
the address of an ASCIIZ string with the drive, 
path, and filename. If AL contains 01 then the 
file will be set to the attribute in CX. (See 
"DOS Disk Directory" in Appendix C for the 
attribute byte description.) If AL is 0 then the 
file's current attribute will be returned in CX. 
Error returns are 2, 3, and 5 (refer to the error 
return table). 

44 I/O control for devices (IOCTL). On entry, 
AL contains the function value. BX contains 
the file handle. On return, AX contains the 
number of bytes transferred for functions 2, 
3, 4, and 5 or status (00 = not ready, FF = 
ready) for functions 6 and 7, or an error code. 
Use IOCTL to Set or Get device information 
associated with open device handle, or 
send/receive control strings to the device 
handle. The following function values are 
allowed in AL: 

0= Get device information (returned in 
DX). 

1 = Set device information (determined 
by DX). Currently, DR must be zero 
for this call. 

2 = Read CX number of bytes into 
DS:DX from device control channel. 

3 = Write CX number of bytes from 
DS:DX to device control channel. 

4 = Same as 2, but use drive number in 
BL (0 = default, 1 = A, etc.). 

D-39 



BIT 

D-40 

5 = Same as 3, but use drive number in 
BL (0 = default, 1 = A, etc.). 

6 = Get input status. 

7 = Get output status. 

IOCTL can be used to get infornlation about 
device channels. You can make calls on 
regular files, but only function values 0, 6, and 
7 are defined in that case. All other calls 
return an "invalid function" error. 

Calls AL=O and AL=l. The bits of DX are 
defined as follows: 

R Ic I 
E IT I 
S IR I 

I L I 
Reserved 

IIIEIRIRIIIIIIII 
IS ,0 IA IE ,SIS ,SIS 
ID FIWIS CIN1CIC 

E I I IL U 0 I 
IVI IKILITIN 

ISDEV = 1 if this channel is a device. 
o if this channel is a disk file 

(bits 8-15 = 0 in this case). 

If ISDEV= 1 
EOF = 0 if end-of-file on input. 
BIN = 1 if operating in binary mode 

(no checks for Ctrl-Z). 
= 0 if operating in ASCII mode 

(checking for Ctrl- Z as 
end-of-file). 

ISCLK = 1 if this device is the clock 
device. 

ISNUL = 1 if this device is the null 
device. 



ISCOT = 1 if this device is the console 
output. 

ISCIN = 1 if this device is the console 
input. 

CTRL = 0 if this device cannot process 
control strings via calls AL=2 
andAL=3. 

CTRL = 1 if this device can process 
control strings via calls AL=2 
and AL=3. Note that this bit 
can not be set by function call 
hex 44. 

If ISDEV = 0 
EOF = 0 if channel has been written. 

Bits 0-5 are the block device 
number for the channel 
(0 = A, 1 = B, ... ). 

Bits 15, 8-13,4 are reserved and should not be 
altered. 

Note: DR must be zero for call AL=l. 

Calls AL=2, AL=3, AL=4, AL=5. These four 
calls allow arbitrary control strings to be sent 
or received from a character device. The Call 
syntax is the same as the Read and Write calls, 
except for calls 4 and 5 which accept a drive 
number in BL instead of a handle in BX. An 
"invalid function" error is returned if the 
CTRL bit is zero. An "access-denied" code is 
returned by calls 4 and 5 if the drive is invalid. 
Error returns are 1, 6, and 1 3 (refer to the 
error return table). 

D-41 



D-42 

Calls 6 and 7. These calls allow you to check if 
a file handle is ready for input or output. If 
used for a file, AL always returns FF until 
end-of-file is reached, then always returns. 00 
unless the current file position is changed 
through call hex 42. When used for a device, 
AL returns FF for ready or zero for not ready. 

45 Duplicate a file handle (DUP). On entry, BX 
contains the file handle. On return, AX 
contains the returned file handle. This 
function call takes an opened file handle and 
returns a new file handle that refers to the 
same file at the same position. Error returns 
are 4 and 6 (refer to the error return table). 

Note: If you move the read/write 
pointer of either handle, the pointer for 
the other handle will also be changed. 

! 
46 Force a duplicate of a handle (DUP). On I 

entry, BX contains the file handle. ex I 
contains a second file handle. On return,.' the 
ex file handle will refer to the same stream as 
the BX file handle. If the ex file handle was 
an open file, then it is closed first. Error 
return is 6 (refer to the error return table). 

Note: If you move the read/write 
pointer of either handle, the pointer for 
the other handle will also be changed. 



47 Get Current directory. On entry, DL contains 
a drive number (0 = default, 1 = A, etc.) and 
DS: SI point to a 64-byte area of user memory. 
The full path name (starting from the root 
directory) of the current directory for the 
specified drive is placed in the area pointed to 
by DS: SI. Note that the drive letter will not 
be part of the returned string. The string will 
not begin with a backslash and will be 
terminated by a byte containing hex 00. The 
error returned is 15. 

48 Allocate memory. On entry, BX contains the 
number of paragraphs requested On return, 
AX:O points to the allocated memory block. If 
the allocation fails, BX will return the size of 
the largest block of memory available in 
paragraphs. Error returns are 7 and 8 (refer to 
the error return table). 

49 Free allocated memory. On entry, ES contains 
the segment of the block being returned. On 
return, a block of memory is returned to the 
system pool that was allocated by call hex 48. 
Error returns are 7 and 9 (refer to the error 
return table). 

4A SETBLOCK-Modify allocated memory blocks. 
On entry, ES contains the segment of the 
block. BX contains the new requested block 
size in paragraphs. DOS will attempt to 
"grow" or" shrink" the specified block. If the 
call fails on a grow request, then on return, 
BX contains the maximum block size 
possible. Error returns are 7, 8, and 9 (refer to 
the error return table). 

D-43 



D-44 

4B Load or execute a program (EXEC). This 
function call allows a program to load another 
program into memory and (default) begin 
execution of it. DS:DX points to the ASCIIZ 
string with drive, path, and filename of the 
file to be loaded. ES:BX points to a parameter 
block for the load and AL contains a function 
value. The following function values are 
allowed: 

o = Load and execute the program. A 
program segment prefix is established 
for the program and the terminate 
and control-break addresses are set 
to the instruction after the EXEC 
system call. 

Note: When control is returned, all 
registers are changed including the 
stack. You must restore SS, SP and 
any other required registers before 
proceeding. 

3 = Load, do not create the program 
segment prefix, and do not begin 
execution. This is useful in loading 
program overlays. 



For each of these values, the block pointed to 
by ES: BX has the following format: 

AL = 0 Load/execute program 

WORD segment address of environment 
string to be passed 

DWORD pointer to command line to be 
placed at PSP+ Boh 

DWORD points to default FCB to be 
passed at PSP+ 5 Ch 

DWORD pointer to default FCB to be 
passed at PSP+ 6Ch 

AL = 3 Load overlay 

WORD segment address where file will be 
loaded 

WORD relocation factor to be applied to 
the image 

D-45 



D-46 

Note that all open files of a process are 
duplicated in the newly created process after 
an EXEC. This is extremely powerful; the 
parent process has control over the meanings 
of standard input, output, auxiliary, and 
printer devices. The parent could, for 
example, write a series of records to a file, 
open the file as standard input, open a listing 
file as standard output, and then execute a 
sort program that takes its input from 
standard input and writes to standard output. 

Also inherited (or copied from the parent) is 
an "environment." This is a block of text 
strings (less than 32K bytes total) that convey 
various configuration parameters. The 
following is the format of the environment 
(always on a paragraph boundary): 

Byte ASCIIZ string 1 

Byte ASCIIZ string 2 

Byte ASCIIZ string n 

Byte of zero 



Typically the environment strings have the 
form: 

parameter=value 

For example, the string VERIFY=ON could 
be passed. A zero value of the environment 
address will cause the newly created process to 
inherit the parent's environment unchanged. 
The segment address of the environment is 
placed at offset hex 2C of the Program 
Segment Prefix for the program being 
invoked. Error returns are 1, 2, 5, 8, 10, and 
11 (refer to the error return table). 

Notes: 

1. When your program received control, all 
of available memory was allocated to it. 
You must free some memory (see call 
hex 4A) before EXEC can load the 
program you are invoking. Normally, you 
would shrink down to the minimum 
amount of memory you need, and free 
the rest. 

2. The EXEC call uses the loader portion of 
COMMAND.COM (at the high end of 
memory) to perform the loading. If your 
program has overlaid the loader, this call 
will attempt to re-Ioad the loader, thus 
destroying the contents of the last 1536 
bytes of memory. If you have used the 
"Allocate Memory" call to allocate all 
of memory and the loader has been 
overlaid, the EXEC call will return an 
error due to insufficient memory to load 
the loader. 

D-47 



D-48 

4C Terminate a process (Exit). On entry, AL 
contains a binary return code. This function 
call will terminate the current process, 
transferring control to the invoking process. 
In addition, a return code can be sent. The 
return code can be interrogated by the batch 
subcommands IF and ERRORLEVEL and by 
the wait function call (4D). All files open at 
the time are closed. 

4D Retrieve the return code of a sub-process 
(Wait). This function call returns the Exit 
code specified by another process (via call 
hex 4C or call hex 31) in AX. It returns the 
Exit code only once. The low byte of this code 
is that sent by the exiting routine. The high 
byte is zero for normal termination, 01 if 
terminated by Crtl-Break, 02 if terminated as 
the result of a critical device error, or 03 if 
terminated by function call hex 31. 



4E Find first matching file (FIND FIRS1). On 
input, DS: DX points to an ASCIIZ string 
containing the drive, path, and filename of the 
file to be found. The filename portion can 
contain global filename characters. CX 
contains the attribute to be used in searching 
for the file. See function call hex 11 for a 
description of how the attribute bits are used 
for searches. If a file is found that matches the 
specified drive, path, and filename and 
attribute, the current DTA will be filled in as 
follows: 

21 bytes - reserved for DOS use on 
subsequent find next calls 

1 byte - attribute found 

2 bytes - file's time 

2 bytes - file's date 

2 bytes - low word of file size 

2 bytes - high word of file size 

13 bytes - name and extension of file 
found, followed by a byte of zeros. All 
blanks are removed from the name and 
extension, and if an extension is present, 
it is preceded by a period. Thus, the 
name returned appears just as you would 
enter it as a command parameter. Such 
as, TREE. COM followed by a byte of 
zeros. Error returns are 2 and 18 (refer to 
the error return table). 

D-49 



D-50 

4F Find next matching file. On input, the 
current DTA must contain the information 
that was filled in by a previous Find First call 
(hex 4E). No other input is required. This call 
will find the next directory entry matching the 
name that was specified on the previous Find 
First call. If a matching file is found, the 
current DTA will be set as described in call 
hex 4E. If no more matching files are found, 
error code 18 is returned (refer to the error 
return table). 

50 Used internally by DOS. 

51 Used internally by DOS. 

52 Used internally by DOS. 

53 Used internally by DOS. 

54 Get verify state. On return, AL returns 00 if 
verify is OFF, 01 if verify is ON. Note that the 
verify switch can be set through call hex 2E. 

55 Used internally by DOS. 

56 Rename a file. On input, DS:DX points to an 
ASCIIZ string containing the drive, path, and 
filename of the file to be renamed. ES: DI 
points to an ASCIIZ string containing the 
path and filename to which the file is to be 
renamed. If a drive is used in this string, it 
must be the same as the drive specified or 
implied in the first string. The directory paths 
need not be the same, allowing a file to be 
moved to another directory and renamed in 
the process. Error returns are 3, 5, and 1 7 
(refer to the error return table). 



57 Get/Set a file's date and time. On input, AL 
contains 00 or 01. BX contains a file handle. If 
AL=OO on entry, DX and CX will return the 
date and time from the handle's internal table, 
respectively. If AL=01 on entry, the handle's 
date and time will be set to the date and time 
in DX and CX, respectively. The date and 
time formats are the same as those for the 
directory entry described in Appendix C, 
except that when passed in registers, the bytes 
are reversed (that is, DR contains the low 
order portion of the date, etc.). Error returns 
are 1 and 6 (refer to the error return table). 

D-51 



Notes: 

D-52 



Appendix E. DOS Control Blocks 
and Work Areas 

DOS Memory Map 

0000:0000 Interrupt vector table 

0040:0000 ROM communication area 

0050:0000 DOS communication area 

xxxX:oooo IBMBIO.COM - DOS interface to 
ROM I/O routines 

XXXX:OOOO IBMDOS.COM - DOS interrupt 
handlers, service routines (INT 21 
functions) 

DOS buffers, control areas, and installed 
device drivers 

XXXX:OOOO Resident portion of COMMAND. COM 
- Interrupt handlers for interrupts 
hex 22 (terminate), hex 23 (Ctrl-Break), 
hex 24 (critical error), and code to 
reload the transient portion. 

XXXX:OOOO External command or utility - (.COM 
or .EXE file) 

XXXX:oooo User stack for .COM files (256 bytes) 

XXXX:oooo Transient portion of COMMAND. COM 
- Command interpreter, internal 
commands, batch processor, external 
command loader. 

E-l 



E-2 

Notes: 

1. Memory map addresses are in 
segment: offset format. For example, 
0070:0000 is absolute address hex 0700. 

2. The DOS Communication Area is used as 
follows: 

0050:0000 Print screen status flag store 

o Print screen not active 
or successful print 
screen operation 

1 Print screen in 
progress 

255 Error encountered 
during print screen 
operation 

0050:0001 Used by BASIC 

0050:0004 Single-drive mode status 
byte 

o Diskette for drive A 
was last used 

1 Diskette for drive B 
was last used 

0050:0010 - 0021 Used by BASIC 

0050:0022 - 002F Used by DOS for 
diskette initialization 

0050:0030 - 0033 Used by MODE 
command 



All other locations within the 256 bytes 
beginning at 0050:0000 are reserved for 
DOS use. 

3. User memory is allocated from the lowest 
end of available memory that will satisfy 
the request for memory. 

DOS Program Segment 

When you enter an external command, or invoke a 
program through the EXEC function call, DOS 
determines the lowest available address to use as 
the start of available memory for the program 
being invoked. This area is called the Program 
Segment (it must not be moved). 

At offset 0 within the Program Segment, DOS 
builds the Program Segment Prefix control block. 
(See below.) EXEC loads the program at offset 
hex 100 and gives it control. 

The program returns from EXEC by a jump to 
offset 0 in the Program Segment Prefix, by issuing 
an INT 20, by issuing an INT 21 with register 
AH=O or hex 4C, or by calling location hex 50 in 
the Program Segment Prefix with AH=O or 
hex 4C. 

Note: It is the responsibility of all programs 
to ensure that the CS register contains the 
segment address of the Program Segment 
Prefix when terminating via any of these 
methods except call hex 4C. 

E-3 



E-4 

All four methods result in transferring control to 
the resident portion of COMMAND. COM 
(function call hex 4C allows the terminating 
process to pass a return code). All of these 
methods result in turning to the program that 
issued the EXEC. During this returning process, 
interrupt vectors hex 22, hex 23, and hex 24 
(terminate, Ctrl-Break, and critical error exit 
addresses) are restored from the values saved in 
the Program Segment Prefix of the terminating 
program. Control is then given to the terminate 
address. If this is a program returning to 
COMMAND, control transfers to its transient 
portion. If a batch file was in process, it is 
continued; otherwise, COMMAND issues the 
system prorript and waits for the next command to 
be entered from the keyboard. 

When a program receives control, the following 
conditions are in effect: 

For all programs: 

• The segment address of the passed 
environment is contained at offset hex 2C in 
the Program Segment Prefix. 

The environment is a ,series of ASCII strings 
(totaling less than 32K) in the form: 

NAME=parameter 



Each string is terminated by a byte of zeros, 
and the entire set of strings is terminated by 
another byte of zeros. The environment built 
by the command processor (and passed to all 
programs it invokes) will contain a 
COMSPEC= string at a minimum (the 
parameter on COMSPEC is the path used by 
DOS to locate COMMAND.COM on disk). 
The last PATH and PROMPT commands 
issued will also be in the environment, along 
with any environment strings entered through 
the SET command (see Chapter 10). 

The environment that you are passed is 
actually a copy of the invoking process 
environment. If your application uses a 
"terminate and stay resident" concept, you 
should be aware that the copy of the 
environment passed to you is static. That is, it 
will not change even if subsequent SET, 
PATH, or PROMPT commands are issued. 

• Offset hex 50 in the Program Segment Prefix 
contains code to invoke the DOS function 
dispatcher. Thus, by placing the desired 
function number in AH, a program can issue a 
long call to PSP+ 50 to invoke a DOS 
function, rather than issuing an interrupt type 
hex 21. 

• Disk transfer address (DT A) is set to hex 80 
(default DTA in the Program Segment 
Prefix). 

• File control blocks at hex 5C and hex 6C are 
formatted from the first two parameters 
entered when the command was invoked. 
Note that if either parameter contained a path 
name, then the corresponding FCB will 
contain only a valid drive number. The 
filename field will not be valid. 

E-5 



E-6 

• An Unformatted parameter area at hex 81 
contains all the characters entered after the 
command name (including leading and 
imbedded delimiters), with hex 80 set to the 
number of characters. If the <, >, or : 
parameters were entered on the command 
line, they (and the filenames associated with 
them) will not appear in this area, because 
redirection of standard input and output is 
transparent to applications. 

• Offset 6 (one word) contains the number of 
bytes available in the segment. 

• Register AX reflects the validity of drive 
specifiers entered with the first two 
parameters as follows: 

AL=FF if the first parameter contained 
an invalid drive specifier (otherwise 
AL=OO) 

AH=FF if the second parameter 
contained an invalid drive specifier 
(otherwise AH=OO) 

For .EXE programs: 

• DS and ES registers are set to point to the 
Program Segment Prefix. 

• CS, IP, SS, and SP registers are set to the 
values passed by the linker. 



For .COM programs: 

• All four segment registers contain the 
segment address of the initial allocation 
block, that starts with the Program Segment 
Prefix control block. 

• All of user memory is allocated to the 
program. If the program wishes to invoke 
another program through the EXEC function 
call, it must first free some memory through 
the Setblock (hex 4A) function call, to 
provide space for the program being invoked. 

• The Instruction Pointer (IP) is set to hex 100. 

• SP register is set to the end of the program's 
segment. The segment size at offset 6 is 
reduced by hex 100 to allow for a stack of that 
size. 

• A word of zeros is placed on the top of the 
stack. 

The Program Segment Prefix (with offsets in 
hexadecimal) is formatted as follows. 

E-7 



Program Seg,ment Prefix 

E-8 

(offsets in hex) 
O~------------~------------------Top of Long call to 

INT hex 20 memory Reserved DOS function dis-
1 patcher (5 bytes)2 

8~------4-----~------~----~~~ 
CTRL-BREAK 

10 CTRL- BREAK 
exit address 
(CS) 

Terminate address exit address 
(lP,CS) (lP) 

CRITICAL ERROR 
exit address 
(lP, CS) 

Used by DOS 
2C ,... ____ _ 

I Note 31 

Formatted Parameter Area 1 
formatted as standard unopened FCB 

6C

I 
Formatted Parameter Area 2 
formatted as standard unopened FCB 
(overlaid if FCB at hex 5C is opened) 

80~------------------------------~ 

.... Unformatted parameter area ... 
~ (default disk transfer area) ~ 

100 ,"----______ ---JJ 



1. First segment of available memory is in 
segment (paragraph) form (for example, hex 
1000 would represent 64K). 

2. The word at offset 6 contains the number of 
bytes available in the segment. 

3. Offset hex 2C contains the segment address of 
the environment. 

4. Programs must not alter any part of the PSP 
below offset hex 5 C. 

E-9 



~ 
u 
0 
~ 

~ 
~ 

0 
4-4 
~ 

d 
0 

U 
Q) 
~ .... 
~ 

-7r--T------------r---, 
I hex FF I Zeros I Attribute I FCxtB . . - e enslon 

O'~-------+------~------------------------------------~~----~ 

Drive Filename (8 bytes) or Reserved device name 

81~-------+--------------------------------------,-------------~ 

16 

24 

32 
Current 
record 

Filename extension Current block 

Random record 
number (low part) 

Random record 
number (high part) 

(Offsets are in decimaQ 

Unshaded areas must be filled in by the using program. 

Shaded areas are filled in by ODS and must not be modified. 

Record size 

Standard 
FCB 

o 
~ 

~ 



Standard File Control Block 

The standard file control block (FCB) is defined as 
follows, with the offsets in decimal: 

Byte Function 

o Drive number. For example, 

1-8 

9-11 

12-13 

Before open: 0 - default drive 
1 - drive A 
2 - drive B 
etc. 

After open: 1 - drive A 
2 - drive B 
etc. 

A 0 is replaced by the actual drive 
number during open. 

Filename, left-justified with trailing 
blanks. If a reserved device name is 
placed here (such as LPTl), do not 
include the optional colon. 

Filename extension, left- justified with 
trailing blanks (can be all blanks). 

Current block number relative to the 
beginning of the file, starting with zero 
(set to zero by the open function call). A 
block consists of 128 records, each of the 
size specified in the logical record size 
field. The current block number is used 
with the current record field (below) for 
sequential reads and writes. 

E-l1 



E-12 

14-15 

16-19 

20-21 

Logical record size in bytes. Set to hex 80 
by the open function call. If this is not 
correct, you must set the value because 
DOS uses it to determine the proper 
locations in the file for all disk reads and 
writes. 

File size in bytes. In this 2-word field, the 
first word is the low-order part of the 
size. 

Date the file was created or last updated. 
The mm/ dd/ yy are mapped in the bits as 
follows: 

< 21 > < 20 > 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Y Y Y Y Y Y ymmmmddddd 

22-31 

32 

where: 

mm is 1-12 
dd is 1-31 
yy is 0-119 (1980-2099) 

Reserved for system use. 

Current relative record number (0-127) 
within the current block. (See above.) 
You must set this field before doing 
sequential read/write operations to the 
diskette. (This field is not initialized by 
the open function call.) 



33-36 Relative record number relative to the 
beginning of the file, starting with zero. 
You must set this field before doing 
random read/write operations to the 
diskette. (This field is not initialized by 
the open function call.) 

If the record size is less than 64 bytes, 
both words are used. Otherwise, only the 
first three bytes are used. Note that if 
you use the File Control Block at hex 5 C 
in the program segment, the last byte of 
the FCB overlaps the first byte of the 
unformatted parameter area. 

Notes: 

1. An unopened FCB consists of the 
FCB prefix (if used), drive number, 
and filename/ extensions properly 
filled in. An open FCB is one in 
which the remaining fields have been 
filled in by the Create or Open 
function calls. 

2. Bytes 0-15 and 32-36 must be set by 
the user program. Bytes 16-31 are 
set by DOS and must not be changed 
by user programs. 

3. All word fields are stored with the 
least significant byte first. For 
example, a record length of 128 is 
stored as hex 80 at offset 14, and 
hex 00 at offset 15. 

E-13 



Extended File Control Block 

E-14 

The extended File Control Block is used to create 
or search for files in the disk directory that have 
special attributes. 

It adds a 7 -byte prefix to the FCB, formatted as 
follows: 

Byte Function 

FCB-7 Flag byte containing hex FF to 
indicate an extended FCB. 

FCB-6 to FCB-2 Reserved. 

FCB-l Attribute byte. See "DOS Disk 
Directory" in Appendix C for 
attribute bit definitions. Also 
refer to function call hex 11 
(search first) for details on using 
the attribute bits during 
directory searches. This 
function is present to allow 
applications to define their own 
files as hidden (and thereby 
exclude them from directory 
searches), and to allow selective 
directory ~earches. 

Any references in the DOS Function Calls (refer to 
Appendix D) to an FCB, whether opened or 
unopened, may use either a normal or extended 
FCB. If using an extended FCB, the appropriate 
register should be set to the first byte of the 
prefix, rather than the drive-number field. 



Appendix F. Executing 
Commands from 
Within an Application 

Beginning with DOS Version 2.00, application 
programs may invoke a secondary copy of the 
command processor. Your program may pass a 
DOS command as a parameter, that the secondary 
command processor will execute as though it had 
been entered from the standard input device. The 
procedure is: 

1. Assure that adequate free memory (17K) 
exists to contain the second copy of the 
command processor and the command it is to 
execute. 

2. Build a parameter string for the secondary 
command processor in the form: 

1 byte = length of parameter string 
xx byte = parameter string 
1 byte = hex OD (carriage return) 

For example, the assembly statement below 
would build the string to cause execution of a 
DISKCOPY command: 

DB 17,"\C DISKCOPY A: B:", 13 

F-l 



F-2 

3. Use the EXEC function call (hex 4B, function 
value 0) to cause execution of the secondary 
copy of the command processor (the drive, 
directory and name of the command 
processor can be gotten from the 
COMSPEC=parameter in the environment 
passed to you at PSP+ hex 2C). Remember to 
set offset 2 of the EXEC control block to 
point to the parameter string built above. 

Refer to Chapter 10, "Advanced Commands" for 
additional information about invoking a second 
copy of the command processor. 



Appendix G. Fixed Disk 
Information 

The IBM Personal Computer Fixed Disk Support 
Architecture has been designed to meet the 
following objectives: 

• Allow multiple operating systems to utilize 
the fixed disk without the need to 
dump/restore when changing operating 
systems. 

• Allow a user-selected operating system to be 
started from the fixed disk. 

Fixed Disk Architecture 

The architecture is defined as follows: 

• In order to share the fixed disk among 
operating systems, the disk may be logically 
divided into 1 to 4 "partitions." The space 
within a given partition is contiguous, and can 
be dedicated to a specific operating system. 
Each operating system may" own" only one 
partition. The number and sizes of the 
partitions is user-selectable through a fixed 
disk utility program. (The DOS utility is 
FDISK.COM.) The partition information is 
kept in a partition table that is imbedded in 
the master fixed disk boot record on the first 
sector of the disk. 

G-l 



• Any operating system must consider its 
partition to be an entire disk, and must ensure 
that its functions and utilities do not access 
other partitions on the disk. 

• Each partition can contain a boot record on 
its first sector, and any other programs or data 
that you choose-including a copy of an 
operating system. For example, the DOS 
FORMAT command may be used to format 
(and place a copy of DOS in) the DOS 
partition, in the same manner that a diskette 
is formatted. With the FDISK utility, you 
may deSignate a partition as "bootable" 
(active)-:-the master fixed disk boot record 
will cause that partition's boot record to 
receive control when the system is started or 
restarted. 

System Initialization 

G-2 

The System initialization (or system boot) 
sequence is as follows: 

1. System initialization first attempts to load an 
operating system from diskette drive A. If the 
drive is not ready or a read error occurs, it 
then attempts to read a master fixed disk boot 
record from the first sector of the first fixed 
disk on the system. If unsuccessful, or if no 
fixed disk is present, it invokes ROM BASIC. 

2. If successful, the master fixed disk boot 
record is given control and it examines the 
partition table imbedded within it. If one of 
the entries indicates a "bootable" (active) 
partition, its boot record is read (from the 
partition's first sector) and given control. 



3. If none of the partitions is bootable, ROM 
BASIC is invoked. 

4. If any of the boot indicators is invalid, or if 
more than one indicator is marked as 
bootable, the message Invalid partition 
table is displayed and the system enters an 
enabled loop. You may then insert a system 
diskette in drive A and use system reset to 
restart from diskette. 

5. If the partition's boot record can't be 
successfully read within 5 retries due to read 
errors, the message Error loading operating 
system appears and the system enters an 
enabled loop. 

6. If the partition's boot record does not contain 
a valid" signature" (see" Boot 
Record/Partition Table"), the message 
Missing operating system appears, and the 
system enters an enabled loop. 

Note: When changing the size or location of 
any partition, you must ensure that all 
existing data on the disk has been backed up 
(the partitioning process will" lose track" of 
the previous partition boundaries). 

G-3 



Boot Record/Partition Table 

G-4 

A fixed disk boot record must be written on the 
first sector of all fixed disks, and contains: 

1. Code to load (and give control to) the boot 
record for 1 of 4 possible operating systems. 

2. A partition table at the end of the boot 
record. Each table entry is 16 bytes long, and 
contains the starting and ending cylinder, 
sector and head for each of 4 possible 
partitions, as well as the number of sectors 
preceding the partition and the number of 
sectors 9ccupied by the partition. The "boot 
indicator" byte is used by the boot record to 
determine if one of the partitions contains a 
loadable operating system. FDISK 
initialization utilities mark a user-selected 
partition as "bootable" by placing a value of 
hex 80 in the corresponding partition's boot 
indicator (setting all other partitions' 
indicators to zero at the same time.) The 
presence of the hex 80 tells the standard boot 
routine to load the sector whose location is 
contained in the following 3 bytes. That 
sector will be the actual boot record for the 
selected operating system, and it will be 
responsible for the remainder of the system's 
loading process (as it is from diskette). All 
boot records are loaded at absolute address 
0:7COO. 



The partition table (with its offsets into the 
boot record) is as follows: 

Offs Purpose Head Sector Cylinder 

1 BE Partition 1 begin boot ind H S CYL 

1 C2 Partition 1 end syst ind H S CYL 

1 C6 Partition 1 rei sect Low word High word 

1 CA Partition 1 # sects Low word High word 

1 CE Partition 2 begin boot ind H S CYL 

1 02 Partition 2 end syst ind H S CYL 

1 06 Partition 2 rei sect Low word High word 

1 OA Partition 2 # sects Low word High word 

1 OE Partition 3 begin boot ind H S CYL 

1 E2 Partition 3 end syst ind H S CYL 

1 E6 Partition 3 rei sect Low word High word 

1 EA Partition 3 # sects Low word High word 

1 EE Partition 4 begin boot ind H S CYL 

1 F2 Partition 4 end syst ind H S CYL 

1 F6 Partition 4 rei sect Low word High word 

1 FA Partition'4 # sects Low word High word 

1 FE Signature hex 55 hex AA 

G-5 



Technical Information 

G-6 

When shipped by IBM, the 10-megabyte fixed 
disks are formatted with 512-byte sectors at an 
interleave factor of 6 (17 sectors per track, 4 "heads 
per cylinder). They contain no data or boot 
records. 

The boot indicator byte must contain 0 for a 
non-bootable partition, or hex 80 for a bootable 
partition. Only one partition can be marked 
bootable. 

The "syst ind" field contains an indicator of the 
operating system that" owns" the partition. Each 
operating system can "own" only one partition. 

The system indicators are: 

hex 00 - unknown (unspecified) 
hex 01 - DOS 

The I-byte fields labelled "CYL" contain the 
low-order 8 bits of the cylinder number-the high 
order 2 bits are in the high order 2 bits of the "S" 
(sector) field. This corresponds with ROM BIOS 
Interrupt hex 13 (disk I/O) requirements, to allow 
for a 10-bit cylinder number. 

The fields are ordered in such a manner that only 2 
MOV instructions are required to properly set up 
the DX and CX registers for a ROM BIOS call to 
load the appropriate boot record (fixed disk 
booting is only possible from the first fixed disk 
on a system, whose BIOS drive number (hex 80) 
corresponds to the boot indicator byte.) 



All partitions are allocated in cylinder multiples 
and begin on sector 1, head 0. EXCEPTION: the 
partition which is allocated at the beginning of the 
disk starts at sector 2, to account for the disk's 
master boot record. 

The number of sectors preceding each partition on 
the disk is kept in the 4-byte field labelled "reI 
sect." This value is obtained by counting the 
sectors beginning with cylinder 0, sector 1, head ° 
of the disk, and incrementing the sector, head and 
then track values up to the beginning of the 
partition. Thus, if the disk has 17 sectors per track 
and 4 heads, and the second partition begins at 
cylinder 1, sector 1, head 0, the partition's starting 
relative sector is 68 (decimal)-there were 17 
sectors on each of 4 heads on 1 track allocated 
ahead of it. The field is stored with the least 
significant word first. 

The number of sectors allocated to the partition is 
kept in the"# of sects" field. This is a 4-byte field 
stored least significant word first. 

The last 2 bytes of the boot record (hex 55AA) are 
used as a signature to identify a valid boot record. 
Both this record and the partition boot records 
are required to contain the signature at offset 
hex 1FE. 

The Master disk boot record will invoke ROM 
BASIC if no indicator byte reflects a "bootable" 
system. 

When a partition's boot record is given control, it 
is passed its partition table entry address in the 
DS: SI registers. 

G-7 



G-8 

System programmers designing a utility to 
initialize/manage a fixed disk must provide the 
following functions at a minimum: 

1. Write the master disk boot record/partition 
table to the disk's first sector to initialize it. 

2. Perform partitioning of the disk-that is, 
create or update partition table information 
(all fields for the partition) when the user 
wishes to create a partition. This may be 
limited to creating a partition for only one 
type of operating system, but must allow 
repartitioning the entire disk, or adding a 
partition without interfering with existing 
partitions (user's choice). 

3. Provide a means for marking a user-specified 
partition as bootable, and resetting the 
bootable indicator bytes for all other 
partitions at the same time. 



Appendix H. EXE File Structure 
and Loading 

The . EXE files produced by the Linker program 
consist of two parts: 

• Control and relocation information 

• The load module itself 

The control and relocation information, which is 
described below, is at the beginning of the file in 
an area known as the header. The load module 
immediately follows the header. The load module 
begins on a sector boundary and is the memory 
image of the module constructed by the linker. 

The header is formatted as follows: 

Hex Offset Contents 

00-01 Hex 4D, hex 5A-This is the LINK 
program's signature to mark the file as a valid 
.EXE file. 

02-03 Length of image mod 512 (remainder after 
dividing the load module image size by 
512). 

04-05 Size of the file in 512-byte increments 
(pages), including the header. 

06-07 Number of relocation table items that 
follow the formatted portion of the header. 

08-09 Size of the header in 16-byte increments 
(paragraphs). This is used to locate the 
beginning of the load module in the file. 

H-l 



Hex Offset Contents 

OA-OB Minimum number of 16-byte paragraphs 
required above the end of the loaded 
program. 

OC-OD Maximum number of 16-byte paragraphs 
required above the end of the loaded 
program. 

OE-OF Offset of stack segment in load module (in 
segment form). 

10-11 Value to be in the SP register when the 
module is given control. 

12-13 Word checksum - negative sum of all the 
words in the file, ignoring overflow. 

14-15 Value to be in the IP register when the 
module is given control. 

16-17 Offset of code segment within load module 
(in segment form). 

18-19 Offset of the first relocation item within the 
file. 

lA-IB Overlay number (0 for resident part of the 
program). 

H-2 



The relocation table follows the formatted area 
just described. The relocation table is made up of a 
variable number of relocation items. The number 
of items is contained at offset 06-07. The 
relocation item contains two fields-a 2-byte offset 
value, followed by a 2-byte segment value. These 
two fields contain the offset into the load module 
of a word which requires modification before the 
module is given control. This process is called 
relocation and is accomplished as follows: 

1. A Program Segment Prefix is built following 
the resident portion of the program that is 
performing the load operation. 

2. The formatted part of the header is read into 
memory (it's size is at offset 08-09). 

3. The load module size is determined by 
subtracting the header size from the file size. 
Offsets 04-05 and 08-09 can be used for this 
calculation. The actual size is downward 
adjusted based on the contents of offsets 
02-03. Note that all files created by 
pre-release 1.10 LINK programs always placed 
a value of 4 at that location, regardless of 
actual program size. Therefore, we 
recommend that this field be ignored if it 
contains a value of 4. Based on the setting of 
the high/low loader switch, an appropriate 
segment is determined at which to load the 
load module. This segment is called the start 
segment. 

4. The load module is read into memory 
beginning at the start segment. 

5. The relocation table items are read into a 
work area (one or more at a time). 

H-3 



H-4 

6. Each relocation table item segment value is 
added to the start segment value. This 
calculated segment, in conjunction with the 
relocation item offset value, points to a word 
in the load module to which is added the start 
segment value. The result is placed back into 
the word in the load module. 

7. Once all relocation items have been 
processed, the SS and SP registers are set 
from the values in the header and the start 
segment value is added to SS. The ES and DS 
registers are set to the segment address of the 
Program Segment Prefix. The start segment 
value is added to the header CS register value. 
The result, along with the header IP value, is 
used to give the module control. 



Appendix I. Running Compilers 
and Assemblers 

Using Compilers and Assemblers With 
Fixed Disk 

The following is a summary of how to run the IBM 
Personal Computer compilers and the IBM 
Personal Computer Macro Assembler with the 
Disk Operating System (DOS) Version 2.00. For 
the purposes of this appendix, the word compile will 
also refer to assemble. 

1. Make sure to back up your original language 
diskettes using the techniques described 
within this book and/ or the respective 
language books. 

2. Make sure all source code you will compile is 
in the current directory of your disk. 

3. Most of the language processors may be 
located in any directory at compile time (see 
exception list at the end of this appendix). 

4. When Compiling you should use the 
command lines as described in your language 
book. You can modify the drive specifier in 
the command line to indicate the location of 
the particular language processor. 

1-1 



1-2 

5. When Linking, use the IBM Personal 
Computer Linker, Version 2.00, provided 
with DOS Version 2.00 diskette. The 
instructions within this book and your 
language book will provide the necessary 
information for linking. 

6. When running a program (.BAT, .COM, or a 
.EXE file) it is not always necessary for that 
program to be in the current directory (see 
the PATH command in Chapter 6 of this 
book). However, if the program requires 
another file at runtime; such as a data file or a 
Common Runtime Module, then those files 
must be in the current directory at runtime. 

7. It is possible for COMMAND. COM to be 
overwritten in memory. Therefore, it is 
usually helpful to have a copy of 
COMMAND.COM in the root directory of the 
drive from which DOS was started. 



Exceptions 

• All IBM Personal Computer Language 
Products: 

All files accessed by your program must 
be in the current directory at runtime. 

Any Common Runtime Module used by 
your program must be in the current 
directory at runtime. 

• IBM Personal Computer BASIC Compiler: 

BASRUN.EXE, if used at runtime, must 
be in the current directory. 

• IBM Personal Computer COBOL Compiler: 

COBOL. COM and its overlays must be in 
the current directory at compile time. 

To compile, you must use the command 
line and indicate the drive location of the 
overlays with the Ie parameter. 

COBRUN.EXE must be in the current 
directory at runtime. 

• IBM Personal Computer Pascal Compiler: 

Pascal requires a hex update (see "Pascal 
Hex Patch" in Appendix]) in order to 
run this compiler from a drive other than 
drive A. 

PASKEY must be in the current 
directory at compile time. 

1-3 



Notes: 

1-4 



Appendix]. Running the Pascal 
Compiler 

Using Pascal Hex Patch 
With Fixed Disk 

The IBM Personal Computer Pascal Compiler t.OO 
requires that a special file called PASKEY be in the 
current directory on diskette drive A. The 
following hex update can be used so that the 
Pascal compiler will look on the default drive for 
this PASKEY file. 

The following describes how to update your PASt 
diskette. Follow the instructions carefully. If you 
make a mistake don't panic. Just start again. 

To update your PASt diskette, you need a blank 
formatted diskette. Put your DOS diskette in 
diskette drive A and the blank formatted diskette 
in diskette drive B. You must use the DOS 
DISKCOPY command to make an exact copy of 
your PASt diskette. 

}-1 



J-2 

After the DISKCOPY program is started and you 
see the message Strike any key when ready, insert 
the ORIGINAL copy of the Pascal PASt diskette 
in diskette drive A. It must be the diskette from 
your IBM Personal Computer Pascal Compiler 
package or an exact copy of it. Anything else will 
not work. After you insert the diskettes, press the 
Spacebar to start the disk copy: 

A>OISKCOPY A: I: 

Insert source diskette in drive A: 

Insert target diskette in drive I: 

Strike any ~ey when ready 

Copy another (Y/N)?N 

Place your DOS diskette back in diskette drive B. 
You now have an exact copy of your Pascal PASt 
diskette in diskette drive B. You can now apply the 
update to the PASt diskette with the DOS 
DEBUG program on the DOS diskette. 

The DEBUG program prompt is "-." All the things 
that you type are after the "-." 

When you are responding to the "-" prompt, you 
must press the Enter key. Note that the xxxx in the 
data displayed line will be filled with the 
appropriate memory addresses: 

A>OEIUG 
-LOS: 100 1 A5 1 
-DDS: 177 LA 
xxxx:0177 41-3A 5041 5341455920 
xxxx:0180 20 

A: PASKEY 



If you do not see the above line of data after the 
"DDS: t77 LA" command then you did something 
wrong and you should start again. You can start 
again by typing Q followed by Enter. This returns 
you to DOS: 

-EDS: 177 'PASKEY , 
-WDS: 100 1 A5 1 
-0 

(Remember to enter the two blanks after 
PASKEY.) 

You are now back in DOS; you should now 
recreate your working PASt diskette from the 
updated diskette and mark both diskettes so you 
know which are the updated ones. The PASt.EXE 
file on the updated PASt diskette will now look 
for the PASKEY file in the current directory on 
the default drive. 

)-3 



Notes: 

'J-4 



Appendix K. Considerations for 
Using Applications 

If you have any of the following applications, 
please refer to the appropriate section in this 
appendix for additional information about using 
these applications with DOS 2.00: 

• Accounting Packages by BPI Systems, Inc. 

• Accounting Packages Version 1.00 by 
Peachtree Software, Inc. 

• Accounting Packages Version 1.10 by 
Peachtree Software, Inc. 

• Arithmetic Games 1 and 2 

• Asynchronous Communications Support 
Version 1.00 

• Asynchronous Communications Support 
Version 2.00 

• EasyWriter Version 1.10 

• Fact Track 

• PFS:File 

• PFS: Report 

K-l 



K-2 

• SNA 3270 Emulation and RJE Support 
Version 1.00 

• The Dow Jones Reporter Version 1.00 

• Typing Tutor 

• VisiCalc Version 1.10 

• 3101 Emulator Version 1.00 



Accoun ting Packages by 
BPI Systems, Inc. 

These packages are designed for, and should be 
used only with DOS 1.00 or DOS 1.10. You should 
not use these applications 'with DOS 2.00. 

Accounting Packages Version 1.00 by 
Peachtree Software, Inc. 

These packages are designed for, and should be 
used only with DOS 1.00 or DOS 1.1 o. You should 
not use these applications with DOS 2.00. 

Accoun ting Packages Version 1.10 by 
Peachtree Software, Inc. 

These packages are designed, to be used with either 
DOS 1.10 or DOS 2.00. If you use these packages 
with DOS 2.00 on a diskette-only system, you 
must have 128K bytes memory and 320K byte 
diskette drives in order to accommodate the larger 
size of DOS 2.00 and BASIC 2.00. 

The Accounting Packages Version 1.10 by 
Peachtree Software, Inc. include functions 
allowing both programs and data files to reside on 
the IBM Personal Computer fixed disk. When 
using the fixed disk, these packages require 
DOS2.00 and 128K bytes of memory. 

Data files created using Accounting Packages 
Version 1.00 by Peachtree Software, Inc. may be 
used with the Version 1.10 packages. 

K-3 



Arithmetic Games 1 and 2 

K-4 

When using the arithmetic games with DOS 2.00, 
you must have a minimum of 96K bytes of 
memory. In addition, if you have a single-drive 
IBM Personal Computer, you should use the 
single-drive setup procedure. 



Asynchronous Communications 
Support Version 1.00 

To use this application with DOS 2.00 you must 
have a minimum of 96K bytes of memory. 

To install this application in a subdirectory on a 
fixed disk, use the following procedure. This 
procedure assumes the following: 

• The name of the subdirectory is ASYNC. 

• The fixed disk is the default drive. 

• The fixed disk drive is drive C. 

• The root directory of the fixed drive contains 
DOS 2.00. 

The Procedure 

1. Insert the Asynchronous Communications 
Support diskette in drive A. 

2. Enter the following commands in order to 
create the subdirectory ASYNC and to copy 
the files from drive A to drive C: 

MD \ASYNC 
Create the subdirectory 

CD \ASYNC 
Operate from it 

COpy A:*.* C:\ASYNC 
Copy all files on the application diskette 

COPY C:\BASIC.COM C:\ASYNC 
Copy BASIC. COM to the subdirectory 

ERASE UPDATE. BAT 
Not needed 

ERASE MESSAGE 
Not needed 

K-5 



K-6 

3. You must now patch TERMINAL. BAS by 
doing the following: 

BASIC 
Run BASIC 

LOAD "TERMINAL.BAS 
Load the program to be patched 

115 DEF SEG=&H1300 
Patch 1 

117 D$(1)="C:":D$(2)="A:" 
Patch 2 

210IDSEG=&H1300 
Patch 3 

SAVE "TERMINAL.BAS" 
Save the patched program 

SYSTEM 
Leave BASIC and return to DOS 2.00 

4. You may now run the Asynchronous 
Communications Support program by doing 
the following: 

CD \ASYNC 
Operate from the subdirectory 

AUTO EXEC 
Run the program 

CD \ 
Return to the root directory 

Notes: 

1. The use of the subdirectory name of 
ASYNC is an example only. You may use 
any name you wish. 



2. All file transfers will be to and from the 
files in the subdirectory unless the 
printer is the destination. 

3. This program tests the length of a 
filespec, and does not accept 
subdirectory names as part of a filespec. 

4. You may rename AUTOEXEC.BAT if 
you choose. 

Asynchronous Communications Support 
Version 2.00 

To use this application with DOS 2.00 you must 
have a minimum of 96K bytes of memory. 

To install this application in a subdirectory on a 
fixed disk, use the following procedure. This 
procedure assumes the following: 

• The name of the subdirectory is ASYNC. 

• The fixed disk is the default drive. 

• The fixed disk drive is drive C. 

• The root directory of the fixed drive contains 
DOS 2.00. 

K-7 



The Procedure 

K-8 

1. Insert the Asynchronous Communications 
Support diskette into drive A. 

2. Enter the following commands in order to 
create the subdirectory ASYNC and to copy 
the files from drive A to drive C: 

MD \ASYNC 
Create the subdirectory 

CD \ASYNC 
Operate from it 

COpy A:*.* C:\ASYNC 
Copy all files on the application diskette 

COpy C:\BASIC.COM C:\ASYNC 
Copy BASIC. COM to the subdirectory 

ERASE UPDA TE.BA T 
Not needed 

ERASE MESSAGE 
Not needed 

3. You may now run the Asynchronous 
Communications Support program by doing 
the following: 

CD \ASYNC 
Operate from the subdirectory 

AUTO EXEC 
Run the program 

CD \ 
Return to the root directory 



4. You may run the file conversion program, 
FILECONV, by doing the following: 

CD \ASYNC 
Operate from the subdirectory 

FILECONV 
Run the FILECONV program 

CD \ 
Return to the root directory 

Notes: 

1. The use of the subdirectory name of 
ASYNC is an example only. You may use 
any name you wish. 

2. All file transfers will be to and from the 
files in the subdirectory unless the 
printer is the destination. 

3. This program tests the length of a 
filespec, and does not accept 
subdirectory names as part of a filespec. 

4. You may rename AUTOEXEC.BAT if 
you choose. 

K-9 



EasyWriter Version 1.10 

K-I0 

To use EasyWriter Version 1.10 with DOS 2.00 
it is recommended your IBM Personal Computer 
have a minimum of 128K bytes of memory. 

To copy DOS 2.00 to your EasyWriter program 
diskette, use the following procedure: 

1. Follow the instructions in the "Startup" 
section of your EasyWriter manual for 
copying DOS to your EasyWriter program 
diskette. While copying DOS 2.00 to the 
program diskette, you may see the message: 

INSUFFICIENT DISK SPACE (or) 

SECTOR NOT FOUND ERROR WRITING DRIVE B 
ABORT, RETRY, IGNORE? 

If you see the second message above, enter I 
(for ignore). 

Note: For a system with a fixed disk, 
follow the instructions for copying DOS 
2.00 to your EasyWriter program 
diskette for a one-drive system. 

Due to insufficient diskette space, the DOS 2.00 
FORMAT.COM utility was not transferred to your 
EasyWriter diskette. To use the FORMAT.COM 
utility, insert the DOS 2.00 diskette in drive A and 
a blank diskette in drive B. Then type: 
FORMAT B: and press the enter key. This will 
format the diskette in drive B. 

2. EasyWriter 1.10 recognizes drive A and 
drive B as the drives to read or write from for 
EasyWriter files. Because the fixed drive is 
initially defined as drive C, you must reassign 
its name to be drive B. Enter: 

ASSIGN B=C 



3. You can have your fixed disk automatically 
assigned to be drive B every time you load 
your EasyWriter program. Use the following 
procedure to do this: 

a. Copy DOS 2.00 onto your EasyWriter 
program diskette following the 
instructions given above. 

b. Start DOS 2.00 from the fixed disk. The 
DOS prompt C> should appear. 

c. Put your EasyWriter program diskette 
into drive A. 

d. Enter COPY ASSIGN. COM A: 

e. Enter COpy CON A:AUTOEXEC.BAT 

f. Enter DATE 

g. Enter TIME 

h. Enter ASSIGN B=C 

i. Enter EW 

j. Enter ASSIGN 

k. Press the F6 key. Now press the Enter 
key. 

The fixed disk can now be used to store and 
read your EasyW riter data files. Every time 
you load your EasyWriter program the fixed 
disk will automatically be assigned as drive B. 

K-ll 



Fact Track 

K-12 

To use Fact Track with DOS 2.00 you need 96K 
bytes of memory. 

If you have DOS 1.10, you should use it to follow 
one of the setup procedures documented in the 
Fact Track user manual. The setup procedure 
copies the necessary DOS programs onto the Fact 
Track program diskette. From then on, start the 
Fact Track program diskette in drive A. 

If you have only DOS 2.00, and if you have an IBM 
Personal Computer with one or two disk drives, 
you should start up DOS in drive A. Enter the date 
and time as requested. When the system responds: 

A> 

you enter: 

BASleA 

When the system responds: 

OK 

remove the DOS diskette from drive A and insert 
the Fact Track diskette into drive A and close the 
door. 

Enter: 

RUN "COLOR 

Do this every time you want to run the Fact Track 
program. 



If you have DOS 2.00, but do not have DOS 1.10, 
and an IBM Personal Computer with a fixed disk 
that contains DOS or BASICA, you should start up 
DOS from the fixed disk. Enter the date and time 
as requested. When the system responds: 

C> 

put the Fact Track program diskette in drive A and 
close the door. 

You enter: 

A: 

When the system responds: 

A> 

you enter: 

C: BASICA COLOR 

Do this every time you want to r~n the Fact Track 
program. 

K-13 



PFS:File 

To use PFS:File with DOS 2.00 you need a 
minimum of 128K bytes of memory. 

Follow the instructions in Part 1 of the 
Introduction "Getting Ready to Use File." Use 
your DOS 2.00 diskette whenever the instructions 
ask for the DOS diskette. 

Using PFS:File with the IBM Fixed Disk 

You can use PFS: File with the IBM fixed disk in 
two different ways. First, you can store your files 
on the fixed disk, thus allowing larger files to be 
stored, and faster access to forms in the stored 
files. Second, you can copy the PFS:File program 
to the fixed disk and then load it from there. This 
allows you to load the program faster, without 
using the program diskette. 

Storing a PFS:File on the Fixed Disk 

K-14 

You can store a PFS: File on the fixed disk 
provided you include the drive identifier for the 
fixed disk as part of the file name. If you specify 
the fixed disk drive as the default drive, then it is 
not necessary to include the drive identifier as part 
of the file name. 



Copying PFS:File to the Fixed Disk 

Follow these steps to copy the PFS:File program 
to the fixed disk: 

1. Insert the DOS 2.00 diskette into drive A and 
turn on your IBM Personal Computer. Enter 
the date and time when the computer asks 
you to do so. 

2. When the DOS prompt appears, remove the 
DOS 2.00 diskette and replace it with the 
PFS:File program diskette. 

3. Follow the instructions in Appendix D of the 
PFS:File manual called "Setting Up a Serial 
Printer and the Work Drive" to run the setup 
program. Change the work drive name to the 
drive name of your fixed disk. For example, if 
your fixed drive is drive C, then the work 
drive item on the setup menu should be 
drive C. 

4. If you have a serial printer, enter the correct 
values for the other items on the setup menu. 

5. Press the FI0 key to complete the setup 
program. Then enter FTRANS in response to 
the DOS prompt. 

The in use lights will come on alternately as the 
program is copied from the diskette to the fixed 
disk. The copy is placed in the current directory. 
The DOS prompt reappears when the copy is 
complete. 

If you have more than one fixed disk, the copy will 
be made to the drive whose name is last in the 
alphabet. For example, if two drives are named C 
and D, the copy will automatically be made to 
drive D. 

K-15 



Error Conditions 

The following error conditions might occur during 
the copy procedure. 

Message Explanation Corrective Action 

CAN'T COpy Your program Try the copy 
PROG RAM FILE diskette has been procedure with 

damaged. the backup copy 
of the program 
diskette. 

Your fixed disk is Copy to diskette 
il!lproperly any files on the 
formatted. fixed disk. Then 

reformat the fixed 
disk, and try the 
copy procedure 
again. 

CAN'T CREATE Your root level If you have 
PROGRAM FILE directory is full. unnecessary files 

in the root level 
directory, delete 
them and start the 
copy procedure 
again. 

NAME ERROR Possible DOS Reload DOS 2.00 
error. and start the copy 

procedure again. 

WRONG Cannot find the Make sure that 
VERSION fixed disk. your fixed disk is 

properly 
connected, and 
that you are using 
DOS 2.00. 

K-16 



Running the PFS:File Program from a 
Fixed Disk 

To run the PFS:File program from a fixed disk, 
make sure that you have followed the instructions 
under "Copying PFS:File to the Fixed Disk." Then 
in response to the DOS prompt, type and enter 
the drive identifier for the fixed disk followed by 
the name of the program. For example, to run the 
File program from drive C, enter C: FILE. If the 
default drive is C, you need only enter FILE in 
response to the DOS prompt. 

Changing Settings When Using the Fixed Disk 

To change the work drive or the information 
stored for your serial printer after copying the 
PFS:File program to the fixed disk, you need to 
insert the PFS: File program diskette into drive A 
and run the setup program from that diskette. Use 
the COpy command to copy the file named 
IBMSETUP. PFS from the diskette in drive A to 
the fixed disk. 

K-17 



PFS: Rep,ort 

To use PFS: Report with DOS 2.00 you must have 
a minimum of 128K bytes of memory, and you 
should do the following: 

1. Copy the sample file called STAFF, which is 
on the Report program diskette, to a blank 
formatted diskette or to a fixed disk. See 
"Formatting Diskettes" and "Copying a File" 
in Appendix C of the PFS: Report manual. 

2. Erase the STAFF file from the Report 
program diskette using the ERASE command 
of DOS 2.00. 

3. Now follow the instructions in Part 1 of the 
Introduction in the PFS: Report manual 
"Getting Ready to Use Report." Use your 
DOS 2.00 diskette when the instructions ask 
for the DOS diskette. 

Using PFS:Report with the IBM Fixed Disk 

You can use PFS:Report with the IBM fixed disk 
in two different ways. First, you can store your 
files on the fixed disk, thus allowing larger files to 
be stored, and faster access to forms in the stored 
files. Second, you can copy the PFS: Report 
program to the fixed disk and then load it from 
there. This allows you to load the program faster, 
without using the program diskette. 

Storing a PFS:File on the Fixed Disk 

K-18 

You can store a PFS:File on the fixed disk 
provided you include the drive identifier for the 
fixed disk as part of the file name. If you specify 
the fixed disk drive as the default drive, then it is 
not necessary to include the drive identifier as part 
of the file name. 



Copying PFS:Report to the Fixed Disk 

Follow these steps to copy the PFS:Report 
program to the fixed disk: 

1. Insert the DOS 2.00 diskette into drive A and 
turn on your IBM Personal Computer. Enter 
the date and time when the computer asks 
you to do so. 

2. When the DOS prompt appears, remove the 
DOS 2.00 diskette and replace it with the 
PFS:Report program diskette. 

3. Follow the instructions in Appendix D of the 
PFS:Report manual called "Setting Up a 
Serial Printer and the Work Drive" to run the 
setup program. Change the work drive name 
to the drive name of your fixed disk. For 
example, if your fixed drive is drive C, then 
the work drive item on the setup menu should 
be drive C. 

4. If you have a serial printer, enter the correct 
values for the other items on the setup menu. 

5. Press the FlO key to complete the setup 
program. Then enter RTRANS in response to 
the DOS prompt. 

The in use lights will come on alternately as 
the program is copied from the diskette to the 
fixed disk. The copy is placed in the current 
directory. The DOS prompt reappears when 
the copy is complete. 

If you have more than one fixed disk, the 
copy will be made to drive whose name is last 
in the alphabet. For example, if two drives are 
named C and D, the copy will automatically 
be made to drive D. 

K-19 



Error Conditions 

The following error conditions might occur during 
the copy procedure. 

Message Explanation Corrective Action 

CAN'T COpy Your program Try the copy 
PROGRAM FILE diskette has been procedure with 

damaged. the backup copy 
of the program 
diskette. 

Your fixed disk is Copy to diskette 
improperly any files on the 
formatted. (also fixed disk. Then 
applies to the reformat the fixed 
CREATE disk, and try the 
message) copy procedure 

again. 

CAN'T CREATE Your current If you have 
PROGRAM FILE directory is full. unnecessary files 

in the current 
directory, delete 
them and start the 
copy procedure 
again. 

l'JAME ERROR Possible DOS Reload DOS 2.00 
error. and start the copy 

procedure again. 

WRONG Cannot find the Make sure that 
VERSION fixed disk. your fixed disk is 

properly 
connected, and 
that you are using 
DOS 2.00. 

K-20 



Running the PFS:Report Program from a 
Fixed Disk 

To run the PFS:Report program from a fixed disk, 
make sure that you have followed the instructions 
under "Copying PFS:Report to the Fixed Disk" 
(make sure the current directory contains PFS). 
Then in response to the DOS prompt, enter the 
drive identifier for the fixed disk followed by the 
name of the program. For example, to run the 
Report program from drive C, enter: C:REPORT. 
If the default drive is C, you need only type and 
enter REPORT in response to the DOS prompt. 

Changing Settings When Using 
the Fixed Disk 

To change the work drive or the information 
stored for your serial printer after copying the 
PFS:Report program to the fixed disk, you need to 
insert the PFS:Report program diskette into 
drive A and run the setup program from that 
diskette. Use the COpy command to copy the file 
named IBMSETUP.PFS from the diskette in drive 
A to the fixed disk. 

K-21 



The Dow Jones Reporter Version 1.00 

K-22 

The Dow Jones Reporter Version 1.00 directs data 
to be saved only on diskette drive A. In addition, 
the program diskette is copy protected, and you 
cannot install the program on a fixed disk. 

Dow Jones is a registered trademark of the Dow 
J ones Company, Inc. 



SNA 3270 Emulation and RJE Support 
Version 1.00 

To use SNA 3270 Emulation and RJE Support 
Version 1.00 with DOS 2.00 you need a minimum 
of128K bytes memory. 

To install this application in a subdirectory, SNA, 
on a fixed disk, use the procedure described 
below, which assumes the following: 

• The fixed disk is drive C. 

• The fixed disk drive is the default drive. 

• The root directory in the fixed disk contains 
DOS 2.00. 

The Procedure 

1. Insert the SNA program diskette into diskette 
drive A. 

2. Edit the files 3270COPY.BAT and 
SRJECOPY.BAT to change all drive B 
references to drive C. 

K-23 



K-24 

3. Enter the following commands to create the 
subdirectory, SNA, and to copy the needed 
files from drive A to drive C. 

MD \SNA 
Create the subdirectory 

CS \SNA 
Operate from it 

A:3270COPY 
Copy required files 

A:SRJECOPY 
Copy required files 

COpy C\BASIC.COM C:\SNA 
Copy a needed file 

4. You may now run the SNA program by 
entering the following commands: 

CD \SNA 
Operate from the SNA subdirectory 

programname 
Enter the correct program name as 
specified in the SNA manual in response 
to the DOS prompt 

CD \ 
Return to the root directory 

Notes: 

1. The use of the subdirectory name 
SNA is as an example only. You may 
use any name you wish. 

2. All file transfers for SRJE are to and 
from files in the SNA subdirectory. 

3. The SNA program does not accept 
subdirectory names as part of a 
filespec. 



Typing Tutor 

To use Typing Tutor with DOS 2.00 it is 
recommended that your IBM Personal Computer 
have at least a minimum of 64K bytes memory. If 
you have a single diskette drive system, you should 
use the single drive setup procedure. 

K-25 



VisiCalc Version 1.10 by VisiCorp. 

To use VisiCalc Version 1.10 with DOS 2.00 it is 
recommended that your IBM Personal Computer 
have a minimum of 128K bytes of memory. The 
following are procedures to put DOS 2.00 on your 
VisiCalc program diskette, and to make your 
program diskette self starting for fixed disk. These 
procedures assume the following: 

• You have at least one diskette drive and one 
fixed disk. 

• You are familiar with loading DOS 2.00 from 
your fixed disk. 

• You are aware that VisiCalc supports a 
maximum of two secondary storage devices. 
Only one of these two devices may be 
accessible during operations. 

Putting DOS 2.00 on Your Program Diskette 

K-26 

Follow these steps to put DOS 2.00 on your 
VisiCalc program diskette and to make that 
diskette self starting: 

1. Start DOS 2.00. You should see the DOS 
promptC>. 

2. Remove the write protect tab from the 
VisiCalc program diskette. 

3. Place the program diskette into drive A. 

4. Enter COpy COMMAND. COM A: 

5. Enter SYS A: 



6. Enter COpy ASSIGN. COM A: 

7. Enter COpy CON A:AUTOEXEC.BAT 

s. Enter DATE 

9. Enter TIME 

10. Enter ASSIGN B=C (or any other drive 
designator) 

11. Type VCSO (space) (press F6) (enter) 

12. ASSIGN 

13. Remove the program diskette and replace the 
write protect tab on your program diskette. 

The fixed disk can now be used to store and 
retrieve your VisiCalc data files. Every time you 
load your VisiCalc program the fixed disk will be 
assigned as drive B. 

K-27 



3101 Emulator Version 1.00 

To use the 3101 Emulator Version 1.00 with DOS 
2.00 requires a minimum of 96K bytes memory. 

Use the procedure described below to install the 
3101 Emulator in a subdirectory, EM3101, on the 
fixed disk. The procedure assumes the following: 

• The fixed disk is drive C. 

• The fixed disk is the default drive. 

The Procedure 

K-28 

1. Insert the 3101 Emulator program diskette 
into drive A. 

2. Enter the following commands to create the 
subdirectory, EM31 01, and to copy the 
needed files from drive A to drive C: 

MD \EM3101 
Create the subdirectory 

CD \EM3101 
Operate from it 

COpy A:*.* C:\EM3101 
Copy all files on the 3101 Emulator 
program diskette 

ERASE COPYFILS.BA T 
Not needed 

ERASE AUTOEXEC.BAT 
Not needed 

CD \ 
Return to root directory 



3. You may now run the 3101 Emulator by 
entering the following commands: 

CD \EM3101 
Operate from the EM3101 subdirectory 

IBM3101 
Run the 3101 Emulator program 

CD \ 
Return to the root directory 

4. You may run the file conversion program, 
FILECONV, by entering the following 
commands: 

CD \EM3101 
Operate from the EM3101 subdirectory 

FILECONV 
Run the file conversion program 

CD \ 
Return to the root directory 

Notes: 

1. The use of the subdirectory name 
EM3101 is as an example only. You may 
use any name you wish. 

2. All file transfers will be to and from files 
in the EM3101 subdirectory. 

3. The 3101 Emulator does not accept 
subdirectory names as part of a filespec. 

K-29 



Notes: 

K-30 



Index 

Special Characters 

. - period 7-8,7-18 

.COM file format 10-13 
\ backslash 2-30, 2-39 
~ backspace key 2- 34 
+ (plus sign) 

in automatic response 
file 11-23 

in response to linker 
prompt 11-23 

$ $ $ - filename 
extension 7-4 

* - asterisk 2-41 
* - EDLIN prompt 2-41, 

7-5, 7-10 
* - global filename 
character 6-14 

* character, using 2-18 
- (DEBUG prompt) 12-15 
~key 2-33,2-40 
/P parameter 6-83 
/S option C-5 
/V parameter 6-43 
/W parameter 6-83 
/1 parameter 6-94 
/1 parameter, 
DISKCOMP 6-91 

/8 parameter, 
DISKCOMP 6-91 

% (percent sign) 6- 33 
? - global filename 
character 6-14 

? character 2-18, 6-14 
# - pound sign 7-7 
@ character 2-48 
@ symbol (linker) 
= equal sign 6-8 

A 
A> prompt 6-1 7 
abort program B-5 
abort read/write 
operation 8-4 

about diskettes 1-7 
absolute disk read D-9 
absolute disk write D-10 
absolute diskette 
sectors B-2 

absolute sector 12-63 
absolute segment 
address E-7 

how to determine 11-28 
absolute track/sector, 
calcula te C-5 

AC flag set 
condition 12-50 

access, random B-5 
accessing a file 9-9 
adding hexadecimal 
values 12-34 

address - DEBUG 
parameter 12-7 

X-1 



address terminate 
interrupt D-2 

address, disk transfer 12-5 
AH register D-16 
allocating disk space B-5 

allocating space B-5 
allocating diskette 
space C-6 

allocation table 
information D-26 

allocation, diskette C-1 
allocation C-1, C-2 

analyze 
diskettes 6-100 
status report 6-54 
the directory 6-54-
the File Allocation 
Table 6-54 

Append Lines 
Command 7-12, 7-46 

applications, 
random/sequential 9-6 

architecture, 8088 B-1 
ASCII characters 12-22 
ASCII codes, 

extended D-17 
ASCII representation 12-6 
ASCII values 12-12 
Assemble Command 12-16 
assembler 11-4 
ASSIGN (Drive) 
Command 6-21 

ASSIGN command 6-147 
ASSIGN drive 
command 6-21 

asterisk 
EDLIN prompt 2-41, 
7-5,7-10 

X-2 

global filename 
character 6-14 

Asynchronous 
Communications Adapter 
6-109, 6-113, 6-114 

attribute byte E-11 
attribute field 14-6 
attribute, file C-4 
AUTO EXEC file B-4 
AUTOEXEC.BA T 

file 6-31,6-81 
automatic program 
execution 1-16 

automatic response file 
linker 11-23 

A UX - reserved device 
name 6-13 

Auxiliary Asynchronous 
Communications 
Adapter D-18 

auxiliary carry flag 12-50 
auxiliary input D-18 
auxiliary output D-18 
available functions, 
DOS B-5 

AX register 12-5, D-10, 
D-16 

B 
backslash (\) 2-33, 2-43 
backing up a diskette 3-10 
backing up DOS 1-6 
backing-up one file 3-18 
backspace key ( 4---) 2- 34 



BACKUP (Fixed Disk) 
Command 6-24 

BACKUP command 6-24, 
6-147 

backup diskette 6-92 
back up 6-92 

backup file, edit 7-6 
backup more than one 

file 3-29 
BAK filename 
extension 7-6, 7-21, 7-34 

.BAK 7-6,7-21,7-34 
BASIC Program 
Editor 2-35 

BAT filename 
extension 6-28 

Batch Commands 6-28 
batch file 6-28, 6-48, 

6-49, 6-136, 6-146 
.BAT 6-28 
change 6-48 
enter 6-136 

batch file processor B-4 
batch processing 6-28 
BIOS D-9 
BIOS interface 
module B-1 

BIOS Parameter 
Block 14-16 

block devices 14-4 
block number, 
current E-ll 

block read, random D-29 
block write, random D-29 

size D-27 
blocking/deblocking, 
data B-1 

boot record program B-1, 
B-2 

boundary, paragraph 11-6 
boundary,8-byte 12-22 
boundary, 16-byte 12-22 
BP register 12-5, D-6 
BPB, what is 14-16 
brackets, square 6-8 
BREAK (Control Break) 
Command 6-50 

Break command 6-50, 
6-147 

Break key 2-25 
breakpoint 12-30 
buffer, input 2-35 
buffer, what is a 9-5 
buffered standard 
input D-19 

BUFFERS command 9-4 
buffers, file D-l 
built-in functions B-1 
BX register 12-5,12-39, 
D-7 

byte - DEBUG 
parameter 12-8 

byte contents 
display 12-25 
fill 12-29 
replace 12-25 

byte, attribute E-ll 
byte, flag E-ll 
bytes, about 1-11 

c 
calculate absolute 
cluster C-9 

calculate absolute 
track/ sector C-5 

calls, function D-13 

X-3 



carry flag 12-50 
chaining file sectors B-5 
change a filename 3-3 7 
change console, 
CTTY 10-11 

change date 6-80 
change diskettes 6-48 
change filenames 6-127 
change time 6-136 
changing active 
partition 4-19 

changing the current 
directory 5 -12 

character devices 14-4 
CHDIR (Change Directory) 
Command 6-52 

CHDIR command 6-37, 
6-147 

check for control 
break 6-50 

check keyboard 
status D-19 

checksum 
methodology B-3 

CHKDSK (Check Disk) 
Command 6-54 

CHKDSK command 6-54, 
6-147 

CL register D-16 
class 11-7 
clear condition 12-50 
clear screen 6-58 
close file D-20 

close D-20 
CLS (Clear Screen) 
Command 6-42 

CLS command 6-147 
cluster number, 
relative C-6 

cluster, calculate C-9 

X-4 

cluster, locate next C-8, 
C-9 

cluster, starting C-6 
clusters B-6, C-2 

directory C-3 
codes, error D-5 
codes, 8088 
instruction 12-32 

colon 6-8 
Color/Graphics Monitor 
Adapter 6-109 

COM filename 
extension 6-4, B- 3 

.COM B-3 

.EXE B-4 
COM programs E-5 
comma 6-8 
command line 

linker 11-20 
command parameters 

DEBUG 12-7 
DOS 6-9 
EDLIN 7-7 

command processor B- 3 
command processor, 
resident portion of B-3 

command prompt, 
DEBUG 12-14 

command prompts, 
linker 11-8 

COMMAND.COM 6-100, 
12-4, B-3, C-5, E-3 

commands 
DEBUG 12-15 
DOS 6-17 
EDLIN 7-9 

commands for 
directories 5-11 

commands, end 6-19 
commands, enhanced A-9 



commands, new A-5 
commands, summary of 

DEBUG 12-67 
DOS 6-146, 10-28 
EDLIN 6-36 

Communications 
Adapter 6-113 

Communications Adapter, 
Auxiliary 
Asynchronous D-18 

COMP (Compare Files) 
Command 6-59 

COMP command 6-59, 
6-66,6-147 

Compare Command 12-21 
comparing diskettes 6-68 

comparing 6-90 
comparing files 6-59 
comparing memory 12-21 
compilers, using fixed 
disk I-I 

computer, size of your 9-7 
CO M 1 - reserved device 
name 6-13 

CO N - reserved name for 
console/keyboard 6-13 

concatenation 6-65,6-74 
console I/O, direct D-19 
console/keyboard 6-13 
console/keyboard 
routines B-3 

control blocks E-l 
control keys 2-29,6-19, 

7-10, 12-15 
control screen cursor 13-4 
copying your DOS 
diskettes 1-6 

copy a file to another 
diskette 3-22 

copy a file to same 
diskette 3-20 

copy and combine 
files 6-74 

COpy command 6-28, 
6-65, 6-92, 6-96, 6-148 

Copy Lines 
Command 7-13,7-46 

copy more than one 
file 3-29 

copy with different 
filename 6-71 

copy with same 
filename 6-69 

copying diskettes 6-94 
copying 6-94 

copying files 6-65 
correcting input lines 2- 35 
create DOS partition 4-15 
create file D-21 

create D-23 
creating a .BAT file 6-28 
creating a batch file 6- 32 
creating a device 
driver 14-8 

creating a new file 7-21 
creating a 
sub-directory 5 -11 

critical error handler B- 3 
critical error handler 
vector D-4 

critical error handling B- 3 
CS register 12-5, 12-30, 

12-32,12-37,12-58, 
12-63, D-2, D-5, E-3, E-6 

Ctrl key 2- 30 
Ctrl-Break 11-9 
CTRL-BREAK exit 
address B-3, D-3 

X-5 



CTRL-BREAK 
handler B-3 

Ctrl-Break keys 2-25, 
2-30,6-19,6-29,6-47, 
7-10, 7-18, 7-23, 12-14 

Ctrl-Enter keys 2- 30 
Ctrl-Num Lock keys 2-27, 
6-15,7-10,12-15 

Ctrl-PrtSc keys 2-28, 
6-107 

Ctrl-Z character 6-75 
Ctrl-Z keys 6-29 
CTTY command 10-11, 

10-29 
CTTY (Change Console) 
Command 10-11 

current block 
number E-11 

current directory, changing 
or displaying 5-12 

current directory, what 
is 5-6 

current disk D-26 
current relative record 
number E-12 

cursor control 1 3-4 
CX register 12-5, 12-6, 

12-39, D-7 
CY flag set 
condition 12-50 

D 

d: 
default 6-9 
parameter 6-9 

data blocking/ 
deblocking B-1 

X-6 

DATE Command 6-80, 
6-148 

change 6-80 
enter 6-80 

date file created or 
updated E-12 

deblocking/blocking, 
data B-1 

DEBUG commands 
Assemble 12-16 
Compare 12-21 
Dump 12-22 
Enter 12-25 
Fill 12-29 
Go 12-30 
Hexarithmetic 12-34 
Input 12-35 
Load 12-36 
Move 12-40 
Name 12-42 
Output 12-44 
Quit 12-45 
Register 12-46 
Search 12-5 3 
Trace 12-55 
Unassemble 12-57 
Write 12-62 

DEBUG program 
command 
parameters 12-7 

commands 12-14 
common information 

12-14 
ending 12-45 
how to start 12-4 
prompt 12-15 
summary of 
commands 12-67 

what it does 12-3 



default disk transfer 
address 12-5 

default drive 
linker 11-9 
parameter 6-9 

default drive, specifying 
the 2-12 

default segment 12-7 
defective tracks 6-100 
DEL Command 6-82 
Del key 2-36, 2-38 
delete DOS partition 4-12 
delete file D-2 2 

delete D-23 
Delete Lines 

Command 7-14,6-46 
deleting a directory 5-12 
deleting a file 6-62 
deleting DOS 
partition 4-20 

deleting files 6-98 
delimiters -6-18, 7-9, 12-14 
destination area 12-40 
device driver, 
creating 14-8 

device drivers 14-3 
device drivers, 

installation 14-9 
device error messages 8- 3 
device field, next 14-5 
device header 14-5 
device names, 
reserved 6-13, 6-18, 6-71 

device redirection 10-4 
devices, types of 14-3 
DGROUP 11-16 
D I flag clear 
condition 12-50 

DI register 12-5, D-5 

DIR (Directory) 
Command 6-83 

DIR command 6-12, 6-83, 
6-102, 6-148 

direct console I/O D-19 
direction flag 12-50 
director, analyze 6-54 
directory entries, 
listing 6-83 

directory path format 6-10 
filenames 6-11 

directory search, 
PATH 6-117 

directory searches C- 3 
indirectory C-4 

directory structure, 
displaying 5-12 

directory types, how they 
work 5-5 

directory, display 6-138 
directory, make 6-107 
directory, remove 6-134 
disk 

current D-26 
reset D-20 
select D-20 

disk error handling B-2 
disk errors D-7 
disk read, absolute D-9 
disk transfer address 12-5, 
E-5 

disk transfer address, 
set D-26 

Disk Transfer Area 
(DTA) B-6 

disk write, absolute D-10 
DISKCOMP (Compare 
Diskette) Command 6-90 

X-7 



DISKCOMP 
command 6-90, 6-96, 
6-148 

DISKCOPY (Copy 
Diskette) Command 6-94 

DISKCOPY command 
6-90, 6-94, 6-148 

diskette and drive 
compatibility 1-14 

diskette compatibility 1-14 
diskette write-protect 
notch 1-12 

diskette, about your 1-7 
diskette, copy a file to 
another 3-22 

diskette, copy a file to 
same 3-20 

diskette, finding what's 
on a 3-30 

diskette, getting ready 3-4 
diskette, protecting your 
original 3-11 

diskette, remove a file 3-41 
diskettes, backing up 
DOS 1-6 

display 
byte contents 12-26 
flags 12-48 
lines 7-27 
registers 12-48 
remarks 6-49 

display contents of 
directory 6-138 

Display DOS version 
number 6-143 

display instructions 12-57 
display output D-18 
display partition data 4-22 
display screen, 
shifting 3-44 

X-8 

display what's in a file 3- 34 
displaying directory 
structure 5-12 

displaying memory 12-22 
displaying the current 
directory 5-12 

divide-by-zero B-1 
DN flag set 
condition 12-50 

DOS 
available functions B-5 
command 
parameters 6-9 

control blocks E-l 
disk allocation C-l 
diskette directory C- 3 
editing keys 2-35 
how to start 2- 3 
Initialization B-2 
memory map E-l 
program segment E- 3 
structure B-1 
technical 
information B-1 

work areas E-l 
DOS commands 

ASSIGN 6-21 
BACKUP 6-24 
Ba tch processing 6-28 
BREAK 6-50 
CHDIR 6-52 
CHKDSK 6-54 
CLS 6-58 
common 
information 6-17 

COMP 6-59 
COpy 6-65 
CTTY command 10-11 
DATE 6-80 
DEL 6-82 



DIR 6-83 
DISKCOMP 6-90 
DISKCOPY 6-94 
ERASE 6-98 
EXE2BIN 
command 10-13 

external 6-6 
FIND Filter 
command 10-16 

FORMAT 6-108 
GRAPHICS 6-106 
internal 6-6 
MKDIR command 6-107 
MODE 6-109 
MORE Filter 10-18 
PATH 6-117 
PAUSE 6-47 
PRINT Command 6-120 
PROMPT 10-19 
RECOVER 
Command 6-126 

REM 6-49 
RENAME 
(or REN) 6-129 

RESTORE 6-131 
RMDIR 6-134 
SET command 10-12 
SORT Filter 10-26 
summary of 6-146, 

10-27 
SYS 6-135 
TIME 6-136 
TYPE 6-147 
types of 6-6 
VER Command 6-143 
VERIFY 
Command 6-143 

VOL COp:1mand 6-145 

DOS commands, advanced 
CTTY command 10-11 
EXE2BIN 
command 10-13 

FIND Filter . 
command 10-16 

MORE Filter 
command 10-18 

SET command 10-22 
SORT Filter 
command 10-26 

DOS diskette, about 
your iii 

DOS editing keys 
entering DOS 
commands 6-1 7 

examples using 2-40 
using DEBUG 12-14 
using EDLIN 7-9 

DOS enhancements A-I 
DOS environment E-4 
DOS features A-I 
DOS filters 10-7 
DOS partition 

changing active 4-19 
creating 4-15 
deleting 4-20 
display data 4-22 

DOS version number, 
display 6-143 

DOS, backing up your 
diskettes 1-6 

DOS, giving a 
command 3-3 

DOS, how to start 2-3 
DOS, setting up the 
partition 4-8 

DOS, when it starts 4-5 

X-9 



drive 6-9 
directory path 6-10 

drive - DEBUG 
parameter 12-8 

drive compatibility 1-14 
drive letters, fixed disk 4-4 
drive specifier, what 
is 2-17 

drive, assign new 6-21 
drive, default 2-12 
DS register 12-5, 12-6, 

12-24, 12-29, 12-40, D-5, 
E-6 

/DSALLOCA TION linker 
parameter 11-16 

DTA (Disk Transfer 
Area) B-5 

dual-sided diskettes 1-8 
dummy device 6-13 
dummy parameters 6-32, 
6-34 

ECHO 6-35 
Dump command 12-22, 

12-67 
DX register 12-5, D-5 

E 

ECHO 
Subcommand 6-35,6-146 

edit 
backup file 7-4 
existing file 7-4 
partial file 7-12 

Edit Line Command 7-18, 
7-46 

editing a new file 7-5 

X-to 

editing keys 2-35, 6-19, 
7-9, 12-15 

editing template 2-35 
EDLIN 

Append Lines 7-12 
command 
parameters 7-7 

commands 7-9 
common 
information 7-9 

compared to DOS 
editing keys 2-35 

Copy Lines 7-1 3 
crea ting a batch 
file 6-22 

Delete Lines 7-14 
Edit Line 7-18 
End Edit 7-21 
how to start 7-4 
Insert Lines 7-23 
List Lines 7-27 
Move Lines 7- 32 
Page command 7-33 
program 7-3 
prompt 7-4 
Quit Edit 7-34 
Replace Text 6- 35 
Search Text 6-39 
Transfer Lines 6-44 
used with DOS editing 
keys 2-35 

W rite Lines 6-45 
EDLIN commands, 
summary of 7-46 

EDLIN prompt 2-41 
EDLIN, how to start 2-41 
EDLIN, how to stop 2-52 
EI flag set condition 12-50 



ellipsis 6-8 
emptying the 
template 2-49 

End Edit command 7-5, 
7-21,7-46 

end-of-file 6-7 5 
end-of-file mark C-7 
ending commands 6-19 
enhanced commands A-8 
enhancements, DOS A-I 
Enter command 12-25, 

12-67 
enter date 6-80 
Enter key 2-27,2-32,6-13, 

7-9 
enter time 6-136 
entries, search for D-22 
environment, DOS E-4 
environment, set 10-21 
equal sign (=) 6-8 
ERASE Command 6-98, 
6-149 

erasing files 6-98 
erasing 6-98 

error codes D-4 
error handler B-7 
error handling 

critical B- 3 
disk B-3 

error message, device 8- 3 
error messages 8- 3 
error return table D-14 
error trapping B-5 
error, recover from 8-6 
error, syntax 12-15 
ES register 12-5, 12-6, 
D-5, E-6 

Esc key 2-33,2-36,2-39, 
7-18 

EXE file structure H-l 

EXE filename 
extension 6-7, 11-12, 
12-6,12-39,12-66, B-4 

.EXE 12-6,12-39, E-3 
EXE files, load H-l 
EXE programs E-6 
execute instructions 12-55 
execute program 12-30 
executing a .BA T file 6- 34 
executing commands 
within an application F-l 

EXE2BIN 
command 10-13, 10-28 

existing file, edit 7-4 
$$$ 7-22 

ext 6-12 
extended file control 
block E-14 

extensions 6-12 
characters, valid 6-12 

external commands 6-6, 
B-4 

.COM 6-7 

.EXE 6-7 

F 
FAT (see File Allocation 
Table) 

allocating space C-6 
FCB E-ll 
FCB (see File Control 
Block) 

FDISK command 4-6, 
4-13 

features and differences of 
DOS A-I 

field name 14-8 
field, attribute 14-6 

X-It 



File Allocation Table 
(FAT) B-5, C-6 

file allocation table, how to 
use C-8 

file buffers D-1 
File Control Block 
(FCB) 12-42, B-4, E-11 

in file control 
block E-11 

file control block, 
extended E-14 

File Management B-5 
file sectors 

chaining B-5 
mapping B-5 

file size E-9 
file specifications 2-16 
file structure, .EXE H··1 
file, backing-up one 3-18 
file, copy more than 
one 3-29 

file, display what's in 3-34 
file, editing a new 7 -5 
filename characters, 
global 6-14 

filename, change a 3-37 
filename, parse D- 30 
filenames 

characters, valid 6-11 
indirectory C-4 
in file control 
block E-11 

length of 6-11 
renaming 6-129 

files/filenames, 
what are 2-12 

files, list all 6-84 
files, list selected 6-86 
files, number opened 9-10 
filespec 6-12 

X-12 

filespec - DEBUG 
parameter 12-8 

Fill command 12-29, 
12-67 

Filter commands filtering 
data 10-7 

FIND Filter 
command 10-16 

First Asynchronous 
Communications Adapter 
port 6-13 

fixed disk drive letters 4-5 
fixed disk 
partitioning 4-8 

Fixed Disk Setup 
Program 4-12 

fixed disk, backup 6-19 
fixed disk, preparing 
your 4-3, 4-5 

fixed disk, restore 6-131 
fixed disk, select next 
drive 4-23 

fixed disk, start 4-12 
fixed disk, using compilers 
and macro assembler 1-1 

fixups, segment 10-13 
flag byte E-11 
flag values 12-47 
flags 12-5 
flags, display 12-48 
FOR Subcommand 6-37, 
6-146 

FOR 6-37 
FORMAT Command 6-100 
6-149, C-3 

hidden C-3 
format notation 6-5 
FORMAT status 
report 6-103 



format, device drivers 14- 3 
FORMAT, how to use 3-4 
formatting your 
diskettes 1-7 

fragmented diskettes 6-96 
fragmented files 6-70 

fragmented 6-70 
function call 
parameters 14-16 

function calls D-12 
functions, available 
DOS B-3 

functions, built-in B-1 
F1 key 2-37,2-45,2-49 
F2 key 2-37,2-45,2-46, 
2-50,7-19 

F3 key 2-38, 2-43, 2-44, 
2-46,12-47,2-49, 
7-19, 12-36 

F4 key 2-38, 2-47 
F5 key 2-38,2-47, 
2-49,7-20 

F6 key 6-10,6-24,6-52, 
6-29 

G 
generating line 

numbers 7-3 
get 

date D-31 
time D-31 

getting a diskette 
ready 3-4 

giving DOS a 
command 3-3 

global filename characters 
* 6-15 
? 6-14 
examples using 6-15 
in command name 6-19 
in COPY 6-68 
in DIR 6-84 
in ERASE 6-98 
in RENAME 6-129 

global filename characters, 
using 2-18, 3-43 

Go command 12-30, 12-67 
GOTO 
Subcommand 6- 38, 6-146 

GOTO 6-38 
GRAPHICS (Screen Print) 
Command 6-106 

GRAPHICS 
command 6-106,6-149 

group 11-7 

H 
header H-1 
helps and hints 3-46 
HEX filename 
extension 12-6, 12-39, 
12-65 

.EXE 12-65 

.HEX 12-6, 12-39, 
12-65 

Hexari thmetic 
command 12- 34, 12-67 

hidden files 6-55,6-102, 
C-4, D-25, E-14 

attribute C-4 
hidden D-25 

X-13 



HIGH 11-17 
HIGH linker 
parameter 11-7 

high memory 11-16, 12-6, 
B-3 

how directories work 5-3 
how to use tree-structured 
directories 5 -3 

I 

IBMBIO.COM 6-83, 6-99, 
6-102, B-1, B-2, C-5 

IBMDOS.COM 6-83,6-99, 
6-102, B-1, B-2, C-5 

id=bat.Batch commands 
IF Subcommand 6-40, 
6-146 

IF 6-31 
initialization, DOS B-2 
initialize 

analyze 6-100 
diskettes 6-100 
initialize 6-100 

initializing the 
asynchronous 
adapter 6-113 

input buffer 2-35 
Input command 12- 35, 

12-68 
input files 

linker 11-4 
input, auxiliary D-18 
Ins key 2- 39, 2-50, 12-51 
Insert Lines 
Command 7-23,7-46 

insert mode 2-50,2-57, 
7-23 

X-14 

inserting characters 2-50 
inserting lines 7-4 
installation of device 
drivers 14-9 

instruction codes, 
8088 12-32 

Instruction Pointer 
(IP) 12-5 

instruction set, 8088 B-1 
instructions 

display 12-57 
execute 12-55 
unassemble 12-57 

INT hex 24 B-7 
INT 21 B-5 

random B-5 
sectors B-5 
sequential B-5 

interface module, 
BIOS B-1 

in ternal command 
processors B- 3 

internal commands 6-6 
interrupt codes 12- 31 
interrupt flag 12-50 
interrupt hex 20 D-1 
interrupt hex 22 B- 3, D-2 
interrupt hex 23 B-3, D-3 
interrupt hex 24 D-4 
interrupt hex 25 D-9 
interrupt hex 26 D-10 
interrupt hex 27 D-I0 
interrupt mechanism, 
8088 B-1 

interrupt routines 14-7 
interrupt vectors B- 3 
interrupt, set D-28 
interrupts D-1 



invoking one batch file 
from another 6-29 

IP (Instruction 
Pointer) 12-5 

IP register 12-30 12-47 , , 
D-5, E-6 

IRET D-3 

K 

keyboard 6-1 3 
keyboard input D-17 
keyboard input, 
buffered D-19 

keys, control 2-27 6-9 , , 
7-10,12-15 

keys, DOS editing 2-35, 
6-15,7-9,12-15 

keys, reassign 1 3-11 
keywords 6-8 

L 

LINE 11-17 
line - EDLIN 
parameter 7 -7 

Line Editor Program 2- 35, 
2-40, 7-3 

line numbers 7-4 
lines, renumber 7-19, 7-23 
LINK 

See linker (LINK) 
program 

linker (LINK) program 
command line 11-20 
command prompts 11-8 
example session 11-25 
messages 11- 30 
starting 11-19 

linker files 

automatic response 11-4, 
11-22 

input 11-4 
library 11-4, 11-13 
listing 11-5, 11-12 
object 11-4, 11-10 
output 11-5 
run 11-5, 11-12 

linker parameters 11-15 
/DSALLOCATION 

11-16 
/HIGH 11-17 
/LINE 11-17 
/MAP 11-17 
/PAUSE 11-18 
/STACK 11-18 

linker prompts 11-10 
list - DEBUG 
parameter 12-9 

list all files 6-84 
list diskette files 3- 30 
List Lines Command 7-27, 

7-46 
list one file 3- 32 
list selected files 6-86 
listing data lines 7-33 
listing directory 
entries 6-14,6-83 

Load command 12-36, 
12-68 

load module 11-28 
loading . EXE files H-l 
loading DOS 2-3 
loading programs 10-9 
loading standard device 
drivers 9-8 

locate next cluster C-7, C-8 
logical record size E-12 
logical sector 
numbers D-9 

LPTI - reserved name for 
printer 6-13 

X-15 



M 

macro assembler, using 
fixed disk I-I 

make directory, 
MKDIR 6-80 

/MAP linker 
parameter 11-1 7 

MAP extension 11-12 
.MAP 11-12 

mapping file sectors B-4 
memory 

high 11-16, 12-6, B-3 
low 11-16 

memory management 
routine B-4 

memory status report 6- 39 
memory, loading files 
into 7-4 

EDLIN 7-4 
messages 8- 3 
messages, linker 11-30 
MKDIR (Make Directory) 
Command 6-80 

MKDIR command 6-80, 
6-114 

MODE Command 6-82, 
6-114 

MORE Filter 
command 10-18 

MOV instruction C-8 
Move command 12-40, 

12-68 
Move Lines 
Command 7-32,7-46 

X-16 

N 
n - EDLIN parameter 7-8 
NA flag clear 
condition 12-50 

Name command 12-42, 
12-68 

name field 14-8 
NC flag set 
condition 12-50 

new commands A-5 
next device field 14-5 
NG flag set 
condition 12-50 

notation, format 6-8 
notch, write protect 1-10 
NUL: - reserved device 
name 6-13 

numbers, line 7-3,7-15 
NV flag clear 
condition 12-50 

NZ flag clear 
condition 12-50 

o 
OB] extension 11-10 

.OB] 11-10 
object files 12-3 

object 12-3 
object modules 11-10 
object program files 6-142 

object program 6-142 
text 6-142 



open file D-21 
operating systems, more 
than one· 4-12 

opera tion, suspend 
system 2-28,6-47 

optional remarks, PAUSE 
command 6-47 

Output command 12-44, 
12-68 

output files, 
linker 11-5 

output, auxiliary D-18 
output, display D-18 
OV flag set 
condition 12-50 

overflow flag 12-50 

p 

Page Command 7-33,7-46 
paragraph boundary 11-6 
parallel printer to 
Asynchronous 
Communications 
Adapter 6-116 

parameters 
DEBUG 12-7 
DOS 6-9 
dummy 6-33 
EDLIN 7-6 
testing with 
different 12-30 

parameters, function 
call 14-16 

parameters, Linker 11-15 

parity flag 12-43 
parse filename D-30 
partial file, edit 7-12 
partition setup 4-8 
partition, display data 4-22 
partitioning your fixed 
disk 4-12 

Pascal hex patch J-l 
PASKEY, see Pascal hex 
patch J-l 

PAS 1, update your 
diskette J-l 

PATH (Set 
Search Directory) 
Command 6-11 7 

PAUSE 8-7,11-18 
PAUSE subcommand 6-47 
PC register 12-47 
PE flag set condition 12-50 
percent sign (%) 6-33 
period (.) 7-8, 7-18 
physical append 6-77 
Piping standard I/O 10-6 
piping, what is 10-6 
PL flag clear 
condition 12-50 

plus sign 
in automatic response 
file 11-23 

in response to linker 
prompt 11-10 

PO flag clear 
condition 12-50 

pointer to next 
device 14-8 

portaddress - DEBUG 
parameter 12-9 

X-17 



pound sign (#) 7-9 
prepare diskettes 6-100 

preparing 6-100 
preparing fixed disk 4-6 
preparing your fixed 
disk 4-6 

PRINT Command 6-120 
6-150 ' 

print displayed output 2-28 
print screen output 2-27 
print string D-19 
printer 2-27,6-13,6-109 
printer output D-18 
printing graphics 6-106 
PRN - reserved name for 
printer 6-13 

program execution, 
automatic 1-16 

program execution, 
stop 12-30 

program segment 
create new D-28 
DOS E-3 

Program Segment Prefix 
12-6, B-2, B-5, E-5, E-7 

program terminate D-17 
PROMPT Command 

10-19, 10-29 
protect notch 1-12 
protecting your original 
diskette 3-11 

protocol parameters 6-114 
public symbols 11-25 
punctuation 6-8 

X-IS 

Q 
question mark 6-8 
Quit command 12-45, 

12-68 
Quit Edit Command 7-34 
7-46 ' 

quotation marks 12-12 

R 
random access B-5 
random block read B-5, 
D-29 

random block write B-5, 
D-29 

random read D-27 
random record field 
set D-28 

random write D-27 
random/sequential 
applications 9-6 

, 

range - DEBUG 
parameter 12-9, 12-10 

Read-Only Memory 
(ROM) B-1 

read/write requests 9-5 
read, random D-27 
read, random block D-29 
read, sequential D-24 
reassign keys 13-11 
record number , 

relative E-13 



record size, logical E-12 
recording format, 
. diskette 6-100 

defective tracks 6-100 
RECOVER Command 
6-115 

recover from error 8-6 
redirection of I/O 
devices 10-4 

Register command 12-46, 
12-68 

registername - DEBUG 
parameter 12-10 

registernames, valid 12-47 
registers, display 12-48 
relative cluster number C-6 
relative record 
number E-13 

relative sector 
number 12-11 

relative zero 11-26 
relocatable loader 11-5 
relocation H -3 
remarks, display 6-49 
remarks, PAUSE 
subcommand 6-47 

remove a file from 
diskette 3-41 

remove directory, 
RMDIR 6-134 

removing a file 3-41 
REN command 6-129 
RENAME (or REN) 
Command 6-129 

RENAME command 6-129, 
6-151 

rename file D-25 
renumber lines 7-19,7-23 
replace byte 
contents 12-25 

replace standard 
device 9-8 

Replace Text Command 
7-35,7-46 

replacing characters 2-23, 
2-50 

reserved device names 
6-1 3, 6-18, 6-72 

reset, disk D-20 
reset, system B-2 
resident portion of 
command processor B- 3 

responses to the system 8-6 
RESTORE (Fixed Disk) 
Command 6-131 

RESTORE command 
6-1 3 1, 6-15 1 

retry read/write 
operation 8-6 

RMDIR (Remove Directory) 
Command 6-134 

RMDIR command 6-134, 
6-151 

ROM (Read-Only 
Memory) B-1 

ROM BIOS routine D-18 
root directory, 
what is 5·-5 

routines 
device B-1 
diskette handling B- 3 
keyboard input B- 3 

X-19 



memory 
management B-4 

output B-3 
printer output B- 3 
ROM BIOS D-18 

routines, 
strategy/interrupt 14-7 

run file 11-12 

s 
saving diskette 
space 10-13 

screen 6-13 
screen cursor control. 13-4 
screen display 

restart 2-27 
suspend 2-27 

screen output, print 2-27 
screen print, 
graphics 6-106 

screen shifting 3-44 
screen, clear CLS 6-58 
Search Command 12-53, 

12-68 
search directory, 
PATH 6~117 

search for entries D-22 
Search Text 
Command 6-40,6-50 

sector - DEBUG 
parameter 12-11 

sector number, 
relative 12-11 

sector numbers, 
logical D-9 

sector, absolute 12-63 

X-20 

sectors 6-95, 12-11 
sectors, about 1-8 
sectors, file B-4 
segment 11-6 
segment address E-7 
SEGMENT 
command 11-8 

segment fixups 10-9 
segment registers 12-5, 

12-60 
segment, create new 
program D-28 

segment, default 12-7 
segment, start H-3 
segments, class 11-8 
select disk D-20 
selecting fixed disk drive, 
next 4-23 

semicolon delimiter 6-18 
separators, filename D- 30 

separators D-30 
terminators D-30 

sequential read D-24 
sequential write D-24 
set 

date D-31 
interrupt D-28 
random record 
field D-28 

time D-31 
verify switch D-32 

SET (Set Environment) 
Command 10-22 

SET Command 10-22, 
10-28 

set condition 12-50 
set system prompt 
command 10-22 



setting up the DOS 
partition 4-8 

Shift PrtSc keys 2-30 
SHIFT Subcommand 6-45, 
6-146 

SHIFT 6-45 
shifting display 
screen 3-39 

SI register 12-5, D-5 
sign flag 12-50 
single diskette-drive 
systems 1-14 

single-drive system 6-92, 
6-95 

fragmented 6-95 
single-sided diskettes 1-8 
slashes 6-8 
SORT Filter 
Command 10-26 

source area 12-40 
source drive 6-1 7 
source files 7-3 

source 7-3 
SP (Stack Pointer) 12-5 
SP register E-5, E-6 
space allocation B-6, C-l 
space delimiter 6-8 
special characters 6-14 
specifying a drive 6-9 
specifying the default 
drive 2-12 

specifying the path to a 
file 5-7 

square brackets 6-8 
SS register 12-5, E-6 
stack allocation 
statement 11-18 

/ST ACK linker 
parameter 11-18 

Stack Pointer (SP) 12-5 
stack, user D-5 
standard I/O device 
redirection 10-4 

standard I/O, piping 10-6 
start segment H -3 
starting cluster C-5 
starting DEBUG 12-4 
starting DOS 2-3 

computer power off 2-4 
methods 2-3 

starting EDLIN 7-4 
starting the linker 11-19 
static environment E-4 
status report 6-54 
stop program 
execution 12-30 

strategy routines 14-7 
string - DEBUG 
parameter 12-12 

string - EDLIN 
parameter 7-8 

structure, DOS B-1 
sub-directory, creating 
a 5-11 

sub-directory, what is 5-5 
summing files 6-78 
suspend screen 
output 2-27 

suspend system 
operation 2-25, 2-28, 
6-47 

switch, high/low 
loader H-3 

symbols, global and 
public 11-17 

syntax error 12-15 
SYS (System) 
Command 6-135 

X-21 



SYS command 6-135, 
6-151 

system configuration 
commands 9- 3 

system devices 6-1 3 
system file E-ll 
system files, transfer 6-135 
system prompt 6-17, B- 3 
system prompt command, 
set 10-19 

system prompt, command 
is complete 6-17 

system reset B-2 

T 
target drive 6-19 
technical information, 
DOS B-1 

template 2- 3 5 
temporary file, 
VM.TMP 11-5 

terminate address 
interrupt D-2 

terminate but stay 
resident B-3 

terminate commands 6-19 
terminate program D-17 
terminate program 
interrupt D- 3 

terminators, filename D-30 
text files 6-141,7-3 

text 7- 3 
TIME Command 6-136, 

6-151 
time, change 6-136 
Trace command 12-55, 

12-68 
track/sector, calculate 
absolute C-5 

X-22 

tracks, about 1-10 
tracks, defective 6-100, 
C-5 

recording format 6-100 
transfer address, disk E-5 
Transfer Lines 
Command 7-44,7-46 

transfer system files 6-135 
transient portion of 
command processor B- 3 

TREE (Display Directory) 
Command 6-138 

TREE 6-138 
TREE command 6-138, 

6-151 
tree-structured directories, 
how to use 5-3 

TYPE Command 6-141, 
6-151 

displaying contents 
of 6-141 

types of DOS 
commands 6-4 

u 
Unassemble 
command 12-57, 12-68 

unassemble 
instructions 12-57 

unprintable 
characters 12-2 2 

UP flag clear 
condition 12-50 

user stack D-5 
using fixed disk 4-12 
using global filename 
characters 2-18, 3-43 



v 
value, DEBUG 
parameter 12-1 3 

variable length 
instructions 12-58 

VER (Version) 
Command 6-143 

VER Command 6-143, 
6-152 

VERIFY Command 6-143, 
6-152 

verify switch D-28 
VM.TMP temporary 
file 11-5 

VOL (Volume) 
Command 6-145 

VOL command 6-152 
VOLUME Command 6-145 

w 
where DOS looks for 
commands and batch 
files 5-7 

work areas E-1 
DOS E-1 

Write command 12-62, 
12-68, 15-22 

Write Lines 
Command 7-45,7-46 

write-protect notch 1-12 
write, random D-27 
write, random block D-29 
write, sequential D-24 

z 
zero flag 12-50 
ZR flag set 
condition 12-50 

X-23 



Notes: 

X-24 



--- ------ --------- ----- -- ----------_.- The Personal Computer 

Reader's Comment Form 

DOS 6936752 

Your comments assist us in improving the usefulness of 
our publication; they are an important part of the input 
used for revisions. 

IBM may use and distribute any of the information you 
supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, 
continue to use the information you supply. 

Please do not use this form for technical questions 
regarding the IBM Personal Computer or programs for 
the IBM Personal Computer, or for requests for 
additional publications; this only delays the response. 
Instead, direct your inquiries or request to your 
Authorized IBM Personal Computer Dealer. 

Comments: 



111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM PERSONAL COMPUTER 
SALES & SERVICE 
P.O. BOX 1328-C 
BOCA RATON, FLORIDA 33432 

aJalj PIO.:! 

aldelS lOU op aseald 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

adel 



Continued from inside front cover 

SHOULD THE PROGRAM PROVE 
DEFECTIVE, YOU (AND NOT IBM OR 
AN AUTHORIZED PERSONAL 
COMPUTER DEALER) ASSUME THE 
ENTIRE COST OF ALL NECESSARY 
SERVICING, REPAIR OR 
CORRECTION. 

SOME STATES DO NOT ALLOW THE 
EXCLUSION OF IMPLIED 
WARRANTIES, SO THE ABOVE 
EXCLUSION MAY NOT APPLY TO 
YOu. THIS WARRANTY GIVES YOU 
SPECIFIC LEGAL RIGHTS AND YOU 
MAY ALSO HAVE OTHER RIGHTS 
WHICH VARY FROM STATE TO 
STATE. 

IBM does not warrant that the functions 
contained in the program will meet your 
requirements or that the operation of the 
program will be uninterrupted or error 
free. 

However, IBM warrants the diskette( s) or 
cassette(s) on which the program is fur­
nished, to be free from defects in materials 
and workmanship under normal use for a 
period of ninety (90) days from the date of 
delivery to you as evidenced by a copy of 
your receipt. 

LIMITATIONS OF REMEDIES 

IBM's entire liability and your exclusive 
remedy shall be: 

1. the replacement of any diskette( s) or 
cassette(s) not meeting IBM's "Limited 
Warranty" and which is returned to IBM 
or an authorized IBM PERSONAL 
COMPUTER dealer with a copy of your 
receipt, or 

2. if IBM or the dealer is unable to deliver a 
replacement diskette( s) or cassette( s) 
which is free of defects in materials or 
workmanship, you may terminate this 
Agreement by returning the program 
and your money will be refunded. 

IN NO EVENT WILL IBM BE LIABLE 
TO YOU FOR ANY DAMAGES, 
INCLUDING ANY LOST PROFITS, 
LOST SAVINGS OR OTHER 
INCIDENTAL OR CONSEQUENTIAL 
DAMAGES ARISING OUT OF THE 
USE OR INABILITY TO USE SUCH 
PROGRAM EVEN IF IBM OR AN 
AUTHORIZED IBM PERSONAL 
COMPUTER DEALER HAS BEEN 
ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES, OR FOR ANY 
CLAIM BY ANY OTHER PARTY. 

SOME STATES DO NOT ALLOW THE 
LIMITATION OR EXCLUSION OF 
LIABILITY FOR INCIDENTAL OR 
CONSEQUENTIAL DAMAGES SO 
THE ABOVE LIMITATION OR 
EXCLUSION MAY NOT APPLY TO 
YOU. 

GENERAL 

You may not sublicense, assign or 
transfer the license or the program 
except as expressly provided in this 
Agreement. Any attempt otherwise to 
sublicense, assign or transfer any of the 
rights, duties or obligations hereunder is 
void. 

This Agreement will be governed by the 
laws of the State of Florida. 

Should you have any questions 
concerning this Agreement, you may 
contact IBM by writing to IBM Personal 
Computer, Sales and Service, P. O. Box 
1328-W, Boca Raton, Florida 33432. 

YOU ACKNOWLEDGE THAT YOU 
HAVE READ THIS AGREEMENT, 
UNDERSTAND IT AND AGREE TO 
BE BOUND BY ITS TERMS AND 
CONDITIONS. YOU FURTHER 
AGREE THAT IT IS THE COMPLETE 
AND EXCLUSIVE STATEMENT OF 
THE AGREEMENT BETWEEN US 
WHICH SUPERSEDES ANY 
PROPOSAL OR PRIOR AGREEMENT, 
ORAL OR WRITTEN, AND ANY 
OTHER COMMUNICATIONS 
BETWEEN US RELATING TO THE 
SUBJECT MATTER OF THIS 
AGREEMENT. 



--- ------- ----- ---- ----- - - -----------_.-
® 

International Business Machines Corporation 

P.O. Box 1328-W 
Boca Raton, Florida 33432 

6936752 
Printed in United States of America 


