

Disk Operating System Version 3.30

Technical Reference

Programming Family

--....- ------ - ------- -. ---- - - -------------,. -

First Edition (April 1987)

The following paragraph does not apply to the United Kingdom
or any country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s)
described in this publication at any time.

It is possible that this publication may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your
country. Such references or information must not be
construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Requests for copies of this publication and for technical
information about IBM products should be made to your
authorized IBM Dealer or your IBM Marketing
Representative.

© Copyright International Business Machines Corporation
1985, 1987

About This Book

Information in this book applies to DOS versions
2.10 to 3.30 unless specified in each chapter under
the heading "Version Specific Information."

111

How This Book is Organized

This Technical Reference has two sections. Section 1
contains information about DOS versions 2.10 to
3.30. Section 2 contains three chapters and one
appendix, which cover information about the DOS
utility programs that are on the DOS Utilities
diskettes. The programs that are on the Technical
Reference Utilities diskettes are DEBUG, LINK,
EXE2BIN and the Library Manager from BASIC
Compiler Version 2.00.

This book is written for the experienced DOS user,
system programmer, and application developer. The
information assumes that the reader is familiar with
the 8088 architecture.

What comes in the DOS 3.30 package?

IV

The DOS 3.30 package contains the following items:

• DOS 3.30 Technical Reference

• DOS 3.30 Technical Reference Quick Reference
card

• One 5 1/4-inch DOS 3.30 Utilities diskette

• One 3 1/2-inch DOS 3.30 Utilities diskette

Contents

Section 1

Chapter 1. DOS Technical Information 1-1
Introduction 1-3
Version Specific Information 1-3
DOS Structure 1-4

The Boot Record 1-4
Read Only Memory (ROM) BIOS
In terf ace 1-4

The DOS Program File 1-5
The Command Processor 1-5

DOS Initialization 1-7
Available DOS Functions 1-8
The Disk Transfer Area (DT A) 1-9
Error Trapping 1-10

Chapter 2. Installable Device Drivers 2-1
Introduction 2-3
Version Specific Information 2-3
Device Driver Format 2-4
Types of Devices 2-5

Character Devices 2-5
Block Devices 2-5

Device Header 2-6
Pointer to Next Device Header Field 2-6
Attribute Field 2-7
Pointer to Strategy and Interrupt

Routines 2-11
Name/Unit Field 2-11

Creating a Device Driver 2-12
Device Drivers 2-13

Installing Character Devices 2-14
Installing Block Devices 2-14

Request Header 2-16
Unit Code Field 2-16
Command Code Field 2-17

v

vi

Status Field 2-18
Device Driver Functions 2-20

INIT 2-21
MEDIA CHECK 2-23
Media Descriptor Byte 2-26
BUILD BPB (BIOS Parameter Block) 2-29
INPUT or OUTPUT 2-32
NONDESTRUCTIVE INPUT NO

WAIT 2-34
STATUS 2-35
FLUSH 2-36
OPEN or CLOSE (DOS 3.00 to 3.30) . 2-37
REMOVABLE MEDIA (DOS 3.00 to

3.30) 2-39
Generic IOCTL Request (DOS 3.20 and

3.30) 2-40
Get Logical Device (DOS 3.20 and 3.30) 2-41
Set Logical Device (DOS 3.20 and 3.30) 2-41

The CLOCK$ Device 2-42
Sample Device Driver 2-42

Chapter 3. Using Extended Screen and Keyboard
Control 3-1

Introduction 3-3
Control Sequences 3-3
Control Sequence Syntax 3-4
Cursor Control Sequences 3-6

Cursor Position 3-6
Cursor Up 3-7
Cursor Down 3-7
Cursor Forward 3-8
Cursor Backward oj. • • • • • • • •• 3-8
Horizontal and Vertical Position 3-9
Cursor Position Report 3-10
Device Status Report 3-10
Save Cursor Position 3-12
Restore Cursor Position 3-12

Erasing 3-13
Erase in Display 3-13
Erase in Line 3-13

Mode of Operation 3-13
Keyboard Key Reassignment 3-17

Chapter 4. File Management Notes 4-1
Introduction 4-3
Version Specific Information 4-3
File Management Functions 4-3
FCB Function Calls 4-5
Handle Function Calls 4-6
Special File Handles 4-8
ASCII and Binary Mode 4-9

File I/O in Binary Mode 4-10
File I/O in ASCII Mode 4-11

Number of Open Files Allowed 4-12
Restrictions on FCB Usage 4-12
Restrictions on Handle Usage 4-14
Allocating Space to a File 4-17

Chapter 5. DOS Disk Allocation 5-1
Introduction 5-3
Version Specific Information 5-3
The DOS Area 5-4
The Boot Record 5-4
File Allocation Table (FAT) 5-5

How to Use the File Allocation Table for
12 - Bit FAT Entries 5-8

How to Use the File Allocation Table for
16- Bit FAT Entries 5-9

DOS Disk Directory 5-10
Directory Entries 5-10

The Data Area 5-14

Chapter 6. DOS Interrupts and Function Calls . 6-1
Introduction 6-5
Version Specific Information 6-5
DOS Registers 6-8
Extended ASCII Codes 6-11
Interrupts 6-13

20H Program Terminate 6-13
21 H Function Request 6-14
22H Terminate Address 6-14
23H Ctrl- Break Exit Address 6-14
24H Critical Error Handler Vector ... 6-15
25H Absolute Disk Read 6-24
26H Absolute Disk Write 6-25

vii

Vlll

27H Terminate but Stay Resident 6-26
28H - 2EH Reserved for DOS 6-27
2FH MUltiplex Interrupt 6-28
30H-3FH Reserved for DOS 6-33

Function Calls 6-34
Listing of Function Calls 6-35
DOS Internal Stack 6-38
Error Return Information 6-38
ASCIIZ Strings 6-46
Network Paths 6-47
Network Access Rights 6-47
File Handles 6-48
U sing DOS Functions 6-49

OOH Program Terminate 6-51
OIH Keyboard Input 6-52
02H Display Output 6-53
03H Auxiliary Input 6-54
04H Auxiliary Output 6-55
05H Printer Output 6-56
06H Direct Console I 0 6-57
07H Direct Console Input Without Echo . 6-59
08H Console Input Without Echo 6-60
09H Print String 6-61
OAH Buffered Keyboard Input 6-62
OBH Check Standard Input Status 6-63
OCH Clear Keyboard Buffer and Invoke a

Keyboard Function 6-64
ODH Disk Reset 6-65
OEH Select Disk 6-66
OFH Open File 6-67
10H Close File 6-69
11 H Search for First Entry 6-70
12H Search for Next Entry 6-72
13H Delete File 6-74
14H Sequential Read 6-75
15H Sequential Write 6-76
16H Create File 6-77
17H Rename File 6-79
19H Current Disk 6-81
lAH Set Disk Transfer Address 6-82
1 BH Allocation Table Information 6-83
1 CH Allocation Table Information for
Specific Device 6-84

21H Random Read 6-85
22H Random Write 6-86
23H File Size 6-87
24H Set Relative Record Field 6-88
25H Set Interrupt Vector 6-89
26H Create New Program Segment 6-90
27H Random Block Read 6-91
28H Random Block Write 6-93
29H Parse Filename 6-95
2AH Get Date 6-98
2BH Set Date 6-99
2CH Get Time 6-100
2DH Set Time 6-101
2EH Set/Reset Verify Switch 6-102
2FH Get Disk Transfer Address (DTA) . 6-103
30H Get DOS Version Number 6-104
31H Terminate Process and Remain

Resident 6-105
33H Ctrl-Break Check 6-107
35H Get Vector 6-108
36H Get Disk Free Space 6-109
38H (DOS 2.10) Return Country

Dependent Information 6-110
38H (DOS 3.00 to 3.30) Get or Set

Country Dependent Information 6-112
39H Create Subdirectory (MKDIR) 6-119
3AH Remove Subdirectory (RMDIR) .. 6-120
3BH Change the Current Directory

(CHDIR) 6-121
3CH Create a File (CREAT) 6-122
3DH (DOS 2.10) Open a File 6-124
3DH (DOS 3.00 to 3.30) Open a File ... 6-126
3EH Close a File Handle 6-136
3FH Read from a File or Device 6-137
40H Write to a File or Device 6-139
41 H Delete a File from a Specified

Directory (UNLINK) 6-141
42H Move File Read Write Pointer

(LSEEK) 6-143
43H Change File Mode (CHMOD) 6-145
44H I/O Control for Devices (IOCTL) .. 6-147
45H Duplicate a File Handle (DUP) ... 6-185

IX

x

46H Force a Duplicate of a Handle
(FORCDUP) 6-186

47H Get Current Directory 6-188
48H Allocate Memory 6-190
49H Free Allocated Memory 6-192
4AH Modify Allocated Memory Blocks

(SETBLOCK) 6-193
4BH Load or Execute a Program (EXEC) 6-195
4CH Terminate a Process (EXIT) 6-200
4DH Get Return Code of a Subprocess

(WAIT) 6-201
4EH Find First Matching File (FIND

FIRST) 6-202
4FH Find Next Matching File (FIND

NEXT) 6-204
54H Get Verify Setting 6-205
56H Rename a File 6-206
57H Get/Set a File's Date and Time ... 6-208
59H (DOS 3.00 to 3.30) Get Extended
Error 6-210

5AH (DOS 3.00 to 3.30) Create Unique
File 6-213

5BH (DOS 3.00 to 3.30) Create New File 6-215
5CH (DOS 3.00 to 3.30) Lock/Unlock File
Access 6-216

5EOOH (DOS 3.10 to 3.30) Get Machine
Name 6-219

5E02H (DOS 3.10 to 3.30) Set Printer
Setup 6-221

5E03H (DOS 3.10 to 3.30) Get Printer
Setup 6-223

5F02H (DOS 3.10 to 3.30) Get
Redirection List Entry 6-225

5F03H (DOS 3.10 to 3.30) Redirect Device 6-227
5F04H (DOS 3.10 to 3.30) Cancel
Redirection 6-230

62H (DOS 3.00 to 3.30) Get Program
Segment Prefix Address 6-232

65H (DOS 3.30) Get Extended Country
Information 6-233

66H (DOS 3.30) Get/Set Global Code
Page 6-237

67H (DOS 3.30) Set Handle Count 6-239

68H (DOS 3.30) Commit File 6-240

Chapter 7. DOS Control Blocks and Work Areas 7-1
Introduction 7-3
DOS Memory Map 7-4
DOS Program Segment 7-6
Program Segment Prefix 7-10
File Control Block 7-12

Standard File Control Block 7-13
Extended File Control Block 7-16

Font Files 7-17

Chapter 8. Executing Commands from within an
Application••..... 8-1

Introduction 8-3
Invoking a Command Processor 8-3

Chapter 9. Fixed Disk Information ..••..... 9-1
Introduction 9-3
Fixed Disk Architecture 9-3
System Initialization 9-4
Boot Record Partition Table 9-6
Fixed Disk Technical Information 9-8
Extended DOS Partition 9-11
Extended DOS Partition Architecture 9-11
Extended Partition Boot Record 9-12
Extended Partition Boot Record Logical

Drive Table 9-13
Determining Fixed Disk Allocation 9-17

Chapter 10. EXE File Structure and Loading . 10-1
Introduction 10-3
.EXE File Structure 10-3
The Relocation Table 10-5

Chapter 11. DOS Memory Management •... 11-1
Introduction 11-3
Control Block 11-3

Section 2

Chapter 12. The Linker (LINK) and EXE2BIN
Programs•••.................. 12-1

xi

Introduction 12-3
Files 12-4

Input Files 12-4
Output Files 12-5
VM.TMP (Temporary File) 12-5

Definitions 12-6
Segment 12-6
Group 12-7
Class 12-7

Command Prompts 12-7
Command Prompts 12-9

Object Modules .OBJ: 12-9
Run File filename.EXE: 12-10
List File NUL.MAP: 12-10
Libraries .LIB: 12-12
Linker Parameters 12-14

How to Start the Linker Program 12-17
Before You Begin 12-17
Option 1 - Console Responses 12-17
Option 2 - Command Line 12-18
Option 3 - Automatic Responses ... 12-21

Example Linker Session 12-23
How to Determine the Absolute

Address of a Segment 12-26
Messages 12-27
EXE2BIN Command 12-28

Chapter 13. DEBUG Program 13-1
Introduction 13-3
How to Start the DEBUG Program 13-4
The DEBUG Command Parameters 13-6
The DEBUG Commands 13-15

Information Common to All DEBUG
Commands 13-15

A (Assemble) Command 13-17
C (Compare) Command 13-21
D (Dump) Command 13-22
E (Enter) Command 13-25
F (Fill) Command 13-28
G (Go) Command 13-29
H (Hexarithmetic) Command 13-32
I (Input) Command 13-33
L (Load) Command 13-34

xii

M (Move) Command 13-37
N (Name) Command 13-38
o (Output) Command 13-40
P (Proceed) Command 13-41
Q (Quit) Command 13-42
R (Register) Command 13-43
S (Search) Command 13-48
T (Trace) Command 13-49
U (Unassemble) Command 13-51
W (Write) Command 13-54

Appendix A. Using the Library Manager A-I
The Library Manager A-3

Command Line Format A-3
Operators A-6
Response File A-8
Cross-Reference Lists A-9
Library Manager Error Messages A-I0

Index X-I

Xlll

xiv

Section 1

Chapter 1. DOS Technical Information

Introduction 1-3
Version Specific Information 1-3
DOS Structure 1-4

The Boot Record 1-4
Read Only Memory (ROM) BIOS
Interface 1-4

The DOS Pro gram File 1-5
The Command Processor 1-5

DOS Initialization 1-7
Available DOS Functions 1-8
The Disk Transfer Area (DT A) 1-9
Error Trapping 1-10

1-1

1-2

Introduction

This chapter tells you about:

• DOS structure

• DOS initialization

• DOS functions

• Disk transfer area

• Error trapping

Version Specific Information

The following information in this chapter is specific
to a version of DOS:

The Command Processor: For DOS 2.10, the
transient portion of the command processor contains
the EXEC routine that loads and executes external
commands. For DOS versions 3.00 to 3.30, the
resident portion of the command processor contains
the EXEC routine.

1-3

DOS Structure

DOS consists of four components:

• The Boot Record
• The Read Only Memory BIOS Interface

(IBMBIO.COM)
• The DOS Program File (IBMDOS.COM)
• The Command Processor (COMMAND.COM)

The Boot Record

The boot record begins on track 0, sector I, side 0 of
every diskette formatted by the DOS FORMAT
command. The boot record is placed on diskettes to
produce an error message if you try to start up the
system with a nonsystem diskette in drive A. For
fixed disks, the boot record resides on the first sector
of the DOS partition. All media supported by DOS
use one sector for the boot record.

Read Only Memory (ROM) BIOS Interface

1-4

The file IBMBIO.COM is the interface module to the
Read Only Memory (ROM) BIOS. IBM Basic Input
output System IBMBIO.COM provides a low-level
interface to the ROM BIOS device routines.

The DOS Program File

The DOS program is file IBMDOS.COM. It
provides a high -level interface for user programs.
IBMDOS.COM consists of file management routines,
data blocking/deblocking for the disk routines, and a
variety of built - in functions easily accessible by user
programs.

When a user program calls these function routines,
they accept high -level information by way of
register and control block contents. For device
operations, the functions translate the requirement
into one or more calls to IBMBIO.COM to complete
the request.

The Command Processor

The command processor, COMMAND.COM,
consists of these parts:

1. A resident portion resides in memory immediately
following IBMDOS.COM and its data area. This
portion contains routines to process interrupts
22H (Terminate Address), 23H (Ctrl- Break
Handler), and 24H (Critical Error Handling), as
well as a routine to reload the transient portion if
needed. For DOS 3.00 to 3.30, this portion also
contains a routine to load and execute external
commands, such as files with extensions of .COM
or .EXE.

Note: When a program terminates, a
checksum methodology determines if the
program has caused the transient portion
to be overlaid. If the transient portion is
overlaid, it is reloaded.

All standard DOS error handling is done wi thin
this portion of COMMAND.COM. This
includes displaying error messages and
interpreting the replies of Abort, Retry, Ignore or

1-5

1-6

Fail. See the message "Disk error reading drive
x" in Appendix A of the DOS Reference.

2. An initialization portion follows the resident
portion and is given control during start - up.
This portion contains the AUTOEXEC.BAT file
processor setup routine. The initialization
portion determines the segment address at which
programs can be loaded. The initialization
portion is overlaid by the first program
COMMAND.COM loads because it's no longer
needed.

3. A transient portion is loaded at the high end of
memory. This is the command processor itself,
containing all of the internal command processors
and the batch file processor. For DOS 2.10, this
portion also contains a routine to load and
execute external commands, such as files with
extensions of .COM or .EXE.

This portion of COMMAND.COM also
produces the DOS prompt (such as A >), reads
the command from the keyboard (or batch file),
and executes the command. For external
commands, it builds a command line and issues
an EXEC function call to load and transfer
control to the program.

Chapter 6 contains detailed information describing
the conditions in effect when a program is given
control by EXEC.

DOS Initialization

The system is initialized either by a system reset or
by a power on. ROM BIOS first looks for the boot
record on drive A. If the boot record is not found,
ROM BIOS searches the active partition of the fixed
disk. If it is not found there, ROM BIOS calls ROM
BASIC. The following actions occur after a system
initialization:

1. The boot record is read into memory and given
control.

2. The boot record then checks the root directory to
assure that the first two files are IBMBIO.COM
and IBMDOS.COM. These two files must be the
first two files, and they must be in that order.

3. The boot record loads IBMBIO.COM into
memory.

4. The initialization code in IBMBIO.COM loads
IBMDOS.COM, determines equipment status,
resets the disk system, initializes the attached
devices, loads the installable device drivers, sets
the low - numbered interrupt vectors, relocates
IBMDOS.COM downward, and calls the first
byte of DOS.

5. DOS initializes its internal working tables,
initializes the interrupt vectors for interrupts 20R
through 27R, and builds a Program Segment
Prefix for COMMAND.COM at the lowest
available segment. For DOS versions 3.10 to
3.30, DOS initializes interrupt vectors for
interrupts OFR through 3FR.

6. IBMBIO.COM uses the EXEC function call to
load and start the top - level command processor.
The default command processor is
COMMAND.COM.

1-7

Available DOS Functions

1-8

DOS provides a significant number of functions to
user programs, all available through issuance of a set
of interrupt and function calls. There are routines
for keyboard input (with and without echo and
Ctrl-Break detection), console and printer output,
constructing file control blocks, memory
management, date and time functions, and a variety
of disk, directory, and file handling functions.

DOS provides two types of function calls that can be
used for file management functions. They are:

• File control block (FCB) function calls

• Extended (Handle) function calls

See Chapter 4, "File Management Notes" for a
description of FCB and Handle function calls. See
Chapter 6, "DOS Interrupts and Function Calls" for
detailed information on each individual call.

The Disk Transfer Area (DTA)

DOS uses an area in memory to contain the data for
all file reads and writes that are performed with FCB
function calls. This area in memory is called the disk
transfer area. The disk transfer area (DT A) can also
be called a buffer. This area can be at any location
within the data area of your application program and
should be set by your program.

Only one DT A can be in effect at a time, so your
program must tell DOS what memory location to use
before using any disk read or write functions. Use
function call lAH (Set Disk Transfer Address) to set
the disk transfer address. Use function call 2FH
(Get Disk Transfer Address) to get the disk transfer
address. Refer to Chapter 6, "DOS Interrupts and
Function Calls," for more information on these
function calls. Once set, DOS continues to use that
area for all disk operations until another function
call 1 AH is issued to define a new DT A. When a
program is given control by COMMAND. COM, a
default DTA large enough to hold 128 bytes is
established at 80H into the program's Program
Segment Prefix.

1-9

Error Trapping

1-10

DOS provides a method by which a program can
receive control whenever a disk or device read/write
error occurs or when a bad memory image of the file
allocation table is detected. When these errors occur,
DOS executes an interrupt 24H (Critical Error
Handler Vector), to pass control to the error handler.
The default error handler resides in
COMMAND. COM, but any program can establish
its own by setting the interrupt 24H vector to point
to the new error handler. DOS provides error
information by using the registers, and provides
Abort, Retry, Ignore or Fail support by using return
codes. See "Error Return Information" in Chapter
6, "DOS Interrupts and Function Calls," for more
information on error codes.

Chapter 2. Installable Device Drivers

Introduction 2-3
Version Specific Information 2-3
Device Driver Format 2-4
Types of Devices 2-5

Character Devices 2-5
Block Devices 2-5

Device Header 2-6
Pointer to Next Device Header Field .. 2-6
Attribute Field 2-7

Bit 15 2-8
Bit 14 2-8
Bit 13 2-9
Bit 11 2-9
Bit 6 2-9
Bit 3 2-10
Bit 2 2-10
Bits 0 and 1 2-10

Pointer to Strategy and Interrupt
Routines 2-11

Name/Unit Field 2-11
Creating a Device Driver 2-12
Device Drivers 2-13

Installing Character Devices 2-14
Installing Block Devices 2-14

Request Header 2-16
Unit Code Field 2-16
Command Code Field 2-17
Status Field 2-18

Device Driver Functions 2-20
INIT 2-21
MEDIA CHECK 2-23
Media Descriptor Byte 2-26
BUILD BPB (BIOS Parameter Block) 2-29
INPUT or OUTPUT 2-32
NONDESTRUCTIVE INPUT NO

WAIT 2-34

2-1

2-2

STATUS 2-35
FLUSH 2-36
OPEN or CLOSE (DOS 3.00 to 3.30) . 2-37
REMOVABLE MEDIA (DOS 3.00 to

3.30) 2-39
Generic IOCTL Request (DOS 3.20 and

3.30) 2-40
Get Logical Device (DOS 3.20 and 3.30) 2-41
Set Logical Device (DOS 3.20 and 3.30) 2-41

The CLOCK$ Device 2-42
Sample Device Driver 2-42

Introduction

This chapter tells you how to:

• Format a device driver

• Create a device driver

• Install a device driver

This chapter also provides information on the types
of device drivers, the request header, and the
CLOCKS device.

The DOS device interface links the device drivers
together in a chain. This allows you to add new
device drivers for optional devices to DOS.

Version Specific Information

The following information in this chapter is specific
to a version of DOS:

Attribute Field: Bit 6 (Get/Set Logical Device,
Generic IOCTL) is for use with DOS versions 3.20
and 3.30. Bit 11 (removable media) is for use with
DOS versions 3.00 to 3.30.

Command Code Field: Command code field values
13, 14, and 15 are for use with DOS versions 3.00 to
3.30. Command code 19 is only for use with DOS
versions 3.20 and 3.30.

Status Word Field: Error codes ODH, OEH, and
OFH are only returned when using DOS versions 3.00
to 3.30.

2-3

Device Driver Functions:

• DOS versions 3.00 to 3.30 support removable
media.

• The Media Check device driver function returns
"Error" as a possibility if you are using DOS
versions 3.00 to 3.30. Also for DOS 3.00 to 3.30,
Media Check returns a DWORD pointer to the
volume ID if a disk change has occurred.

• Media descriptor byte F9H for 5 1/4 inch, 15
sector media is supported by DOS versions 3.00
to 3.30.

• For DOS 3.00 to 3.30, the Input or Output
device driver function returns a DWORD pointer
to the volume identification if an invalid disk
change has occurred.

• The Open or Close device driver function is for
use with DOS versions 3.00 to 3.30.

• The Removable Media device driver function is
for use with DOS versions 3.00 to 3.30.

Device Driver Format

2-4

A device driver is a memory image file or an .EXE
file that contains all of the code needed to implement
the device. It has a special header at the front of it
that identifies the file as a device driver, defines the
strategy and interrupt entry points, and defines
various attributes of the device.

Note: For device drivers, the memory image
file must not use the ORG 100H. Because it
does not use the program segment prefix, the
device driver is simply loaded. Therefore, the
memory image file must have an origin of 0
(ORG 0 or no ORG statement).

Types of Devices

There are two basic types of devices:

• Character devices

• Block devices

Character Devices

Character devices are designed to do character I/O in
a serial manner like CON, AUX, and PRN. These
devices have names like CON, AUX, CLOCK$, and
you can open channels (handles or FCBs) to do
input and output to them. Because character devices
have only one name, they can support only one
device.

Block Devices

"' ..
"

Block devices are the "fixed disk or diskette drives"
on the system. They can do random I/O in pieces
called blocks, which are usually the physical sector
size of the disk. These devices are not named as the
character devices are, and cannot be opened directly.
Instead they are mapped by using the drive letters A,
B, C, and so forth. Block devices can have units
within them. In this way, a single block driver can
be responsible for one or more disk or diskette
drives. For example, the first block device driver can
be responsible for drives A, B, C, and D. This
means that it has four units defined and therefore
takes up four drive letters. The position of the driver
in the chain of all drivers determines the way the
drive units and drive letters correspond. For
example, if the device driver is the first block driver
in the device chain, and it defines four units, then
those units are A, B, C, and D. If the second block
driver defines three units, then those units are E, F,

2-5

and G. The limit is 26 devices with the letters A
through Z assigned to the drives.

Device Header

Field

A device driver requires a device header at the
beginning of the file. Here is what the device header
contains:

Length

Pointer to next header DWORD

Attribute WORD

Pointer to device strategy WORD
routine

Pointer to device interrupt WORD
routine

Name/unit field 8 BYTES

Pointer to Next Device Header Field

2-6

The device header field is a pointer to the device
header of the next device driver. It is a
double - word field that is set by DOS at the time
the device driver is loaded. The first word is an
offset and the second word is the segment.

If you are loading only one device driver, set the
device header field to - 1 before loading the device.
If you are loading more than one device driver, set
the first word of this device header field to the offset
of the next device driver's header. Set the device
header field of the last device driver to - 1.

Attribute Field

The attribute field is a word field that describes the
attributes of the device driver to the system. The
attributes are:

bi t 15 = 1 character device
o block device

bit 14 = 1 supports IOCTL
o doesn't support IOCTL

bit 13 For block device drivers:
= 1 non-IBM format

o IBM format
For character device drivers:
= 1 supports output-until-busy

o doesn't support output-until-busy
bit 11 = 1 supports removable media

o doesn't support removable media
bits 10-7 = 0 these bits must be off because they are

reserved by DOS
bit 6 = 1 supports Get/Set Logical Device

o doesn't support Get/Set Logical Device

Also

= 1 if the device supports Generic IOCTL
function calls

= 0 if the device doesn't support Generic
IOCTL function calls

bits 5-4 = 0 these bits must be off because they are
reserved by DOS

bit 3 = 1 current clock device
o not current clock device

bit 2 = 1 current NUL device
o not current NUL device

bit 1 = 1 current standard output device
o not current standard output device

bit 0 For character device drivers:
= 1 current standard input device

o not current standard input device

2-7

2-8

Bit 15

Bit 15 is the device type bit. Use bit 15 to tell the
system if the device driver is a block or character
device. For block device drivers, bit 15 is O. For
charcter device drivers bit 15 is 1.

Bit 14

Bit 14 is the 10CTL bit. It is used for both
character and block devices. Use bit 14 to tell DOS
whether the device driver can handle control strings
through the IOCTL function call (44H).

Note: Bit 14 affects only IOCTL calls AL = 2
through AL= 5.

If a device driver cannot process control strings, it
should set bit 14 to O. This way DOS can return an
error if an attempt is made through the 10CTL
function call to send or receive control strings to the
device. If a device can process control strings, it
should set bit 14 to 1. This way, DOS makes the
calls to the 10CTL input and output device function
to send and receive 10CTL strings.

The IOCTL functions allow data to be sent to and
from the device driver without actually doing a
normal read or write. In this way, the device driver
can use the data for its own use (for example, setting
a baud rate or stop bits, changing form lengths, and
so forth). It is up to the device driver to interpret
the information that is passed to it, but the
information must not be treated as a normal 1/0
request.

Bit 13

For block device drivers, bit 13 indicates the method
the driver uses to determine the media type. For
character device drivers, bit 13 indicates whether or
not the driver supports output-until-busy.

If a block device driver uses information in the BPB
to determine the media type, bit 13 should be set to
1. If the device driver uses the media descriptor byte
to determine the media type, bit 13 should be O.

For character device drivers, if output-until-busy is
supported, bit 13 should be set to 1. If
output-until-busy is not supported, bit 13 should be
O.

Output-until-busy is used by printer device drivers.
Output-until-busy means that the device driver will
send characters to the device if the device is ready. If
the device driver supports output-until-busy and the
device is not ready, the device driver will immediately
return an error.

Bit 11

Bit 11 is the open/close removable media bit. Use bit
11 to tell DOS if the device driver can handle
removable media.

Bit 6

Bit 6 is the Generic IOCTL bit for both character
and block device drivers. If this bit is set, the device
driver supports Generic IOCTL function calls

2-9

2-10

Bit 3

Bit 3 is the clock device bit. It is used for character
devices only. Use bit 3 to tell DOS if your character
device driver is the new CLOCK$ device.

Bit 2

Bit 2 is the NUL attribute bit. It is used for
character devices only. Use bit 2 to tell DOS if your
character device driver is a NUL device. Although
there is a NUL device attribute bit, you cannot
reassign the NUL device. This is an attribute that
exists for DOS so that DOS can tell if the NUL
device is being used.

Bits 0 and 1

For character devices, bits 0 and 1 are the standard
input/standard output bits. Use these bits to tell
DOS if your character device driver is the new
standard input or standard output device.

Pointer to Strategy and Interrupt Routines

These two fields are the pointers to the entry points
of the strategy and interrupt routines. They are
word values, so they must be in the same segment as
the device header.

Name/Unit Field

This is an 8 - byte field that contains the name of a
character device or the unit of a block device. For
character devices, the name is left - justified and the
space is filled to 8 bytes. For block devices, the
number of units can be placed in the first byte. This
is optional because DOS fills in this location with the
value returned by the driver's INIT code.

2-11

Creatin'g a Device Driver

2-12

To create a device driver that DOS can install,
perform the following:

• Create a memory image file or an .EXE file with
a device header at the start of the file.

• Originate the code (including the device header)
at 0, not at 100H.

• Set the next device header field. Refer to
"Pointer to Next Device Header Field" for more
information.

• Set the attribute field of the device header. Refer
to "Attribute Field" for more information.

• Set the entry points for the interrupt and strategy
routines.

• Fill in the name/unit field with the name of the
character device, or the unit number of the block
device.

DOS always processes installable character device
drivers before handling the default devices. So to
install a new CON device, simply name the device
CON. Be sure to set the standard input device and
standard output device bits in the attribute field on a
new CON device. The scan of the device list stops
on the first match so the installable device driver
takes precedence.

Note: Because DOS can install the driver
anywhere in memory, care must be taken in
any FAR memory references. You should not
expect that your driver will always be loaded
at the same place every time.

Device Drivers

DOS installs new device drivers dynamically at boot
time by reading and processing the DEVICE
command in the CONFIG.SYS file. For example, if
you have written a device driver called DRIVER1, to
install it put this command in the CONFIG.SYS file:

device=driverl

DOS calls a device driver at its strategy entry point
first, passing in a request header the information
describing what DOS wants the device driver to do.

The strategy routine does not perform the request
but rather queues the request or saves a pointer to
the request header. The second entry point is the
interrupt routine and is called by DOS immediately
after the strategy routine returns. The interrupt
routine is called with no parameters. Its function is
to perform the operation based on the queued
request and set up any return information.

DOS passes the pointer to the request header in
ES: BX. This structure consists of a fixed length
header (Request Header) followed by data pertinent
to the operation to be performed.

Note: It is the responsibility of the device
driver to preserve the machine state. For
example, save all registers on entry, and restore
them on exit.

The stack used by DOS has enough room on it to
save all of the registers. If more stack space is
needed, it is the device driver's responsibility to
allocate and maintain another stack.

All calls to device drivers are FAR calls. FAR
returns should be executed to return to DOS.

2-13

Installing Character Devices

One of the functions defined for each device is INIT.
This routine is called only once when the device is
installed and never again. The INIT routine returns
the following:

• A location to the first free byte of memory after
the device driver, like a terminate and stay
resident that is stored in the ending address field.
This way, the initialization code can be used once
and thrown away to save space.

• After setting the ending address field, a character
device driver can set the status word and return.

Installing Block Devices

2-14

Block devices are installed in the same way character
devices are. The difference is that block devices
return additional information. Block devices must
also return:

• The number of units for the block device. This
number determines the logical names that the
devices will have. For example, if the current
maximum logical device letter is F at the time of
the install call, and the block device driver INIT
routine returns three logical units, the logical
names of the devices are G, H, and I. The
mapping is determined by the position of the
driver in the device list and the number of units
on the device. The number of units returned by
INIT overrides the value in the name/unit field of
the device header.

• A pointer to a BPB (BIOS parameter block)
pointer array. This is a pointer to an array of n
word pointers where n is the number of units
defined. These word pointers point to BPB's.
This way, if all of the units are the same, the

entire array can point to the same BPB to save
space.

The BPB contains information pertinent to the
devices such as the sector size, the number of
sectors per allocation unit, and so forth. The
sector size in the BPB cannot be greater than the
maximum allotted size set at DOS initialization
time.

Note: This array must be protected below
the free pointer set by the return.

• The media descriptor byte. This byte is passed to
devices so that they know what parameters DOS
is currently using for a particular drive unit.

2-15

Request Header

The request header passes the information describing
what DOS wants the device driver to do.

Field Length
Length in bytes of the request BYTE
header plus any data at the
end of the request header.

Unit code. The subunit the BYTE
operation is for (minor
device). Has no meaning for
character devices.

Command code. BYTE

Status. WORD

Area reserved for DOS. 8-BYTE

Data appropriate to the Variable
operation.

Unit Code Field

The unit code field identifies which unit in a block
device driver the request is for. For example, if a
block device driver has three units defined, then the
possible values of the unit code field would be 0, I,
and 2.

2-16

Command Code Field

The command code field in the request header can
have the following values:

Code Function
o INIT
1 MEDIA CHECK (Block only, NOP for

character)
2 BUILD BPB (Block only, NOP for character)
3 IOCTL input control string (only called if

IOCTL bit is 1)
4 INPUT (read)
5 NONDESTRUCTIVE INPUT NO WAIT

(Character devices only)
6 INPUT STATUS (Character devices only)
7 INPUT FLUSH (Character devices only)
8 OUTPUT (write)
9 OUTPUT (write) with verify
10 OUTPUT STATUS (Character devices only)
11 OUTPUT FLUSH (Character devices only)
12 IOCTL output control string (only called if

IOCTL bit is 1)
13 DEVICE OPEN (only called if

OPENjCLOSEjRM bit is set)
14 DEVICE CLOSE (only called if

OPENjCLOSEjRM bit is set)
15 REMOVABLE MEDIA (only called if

OPENjCLOSEjRM bit is set and device type is
block)

19 GENERIC IOCTL REQUEST
23 GET LOGICAL DEVICE
24 SET LOGICAL DEVICE

Note: Command codes 13, 14, and 15 are for
use with DOS versions 3.00 to 3.30.
Command codes 19, 23, and 24 are only for
use with DOS versions 3.20 and 3.30.

2-17

Status Field

15

E
R
R
0
R

2-18

The status field in the request header contains:

14-10 9 8 7-0

RESERVED B D
U 0 ERROR
S N CODE
y E (bit 15

on)

The status word field is zero on entry and is set by
the driver interrupt routine on return.

Bit 15 is the error bit. If this bit is set, the low 8 bits
of the status word (7-0) indicate the error code.

Bits 14 - 10 are reserved.

Bit 9 is the busy bit. It is only set by status calls and
the removable media call. See "STATUS" and
"REMOVABLE MEDIA" in this chapter for more
information about the calls.

Bit 8 is the done bit. If it is set, it means the
operation is complete. The driver sets the done bit
to 1 when it exits.

Bits 7 - 0 are the low 8 bits of the status word. If bit
15 is set, bits 7 - 0 contain the error code. The error
codes and errors are:

Error Codes Description

00 Write protect violation

01 Unknown unit

02 Device not ready

03 Unknown command

04 CRC error

05 Bad drive request structure
length

06 Seek error

07 Unknown media

08 Sector not found

09 Printer out of paper

OA Write fault

OB Read fault

OC General failure

OD Reserved

OE Reserved

OF Invalid disk change

2-19

Device Driver Functions

2-20

All strategy routines are called with ES:BX pointing
to the request header. The interrupt routines get the
pointers to the request header from the queue the
strategy routines store them in. The command code
in the request header tells the driver which function
to perform.

Note: All DWORD pointers are stored offset
first, then segment.

The following function call parameters are described:

• INIT

• MEDIA CHECK

• BUILD BPB (BIOS Parameter Block)

• MEDIA DESCRIPTOR BYTE

• INPUT or OUTPUT

• NONDESTRUCTIVE INPUT NO WAIT

• STATUS

• FLUSH

• OPEN or CLOSE

• REMOVABLE MEDIA

• GENERIC IOCTL REQUEST

• GET LOGICAL DEVICE

• SET LOGICAL DEVICE

INIT

Command code = 0

ES:BX

Field Length

Request header 13-BYTE

Number of units (not set by BYTE
character devices)

Ending address of resident DWORD
program code

Pointer to BPB array (not set DWORD
by character devices) /pointer
to remainder of arguments

For DOS versions 3.10 to BYTE
3.30, this field contains the
drive number

The driver must do the following:

• Set the number of units (block devices only).

• Set up the pointer to the BPB array (block
devices only).

• Perform any initialization code (to modems,
printers, etc.).

• Set the ending address of the resident program
code.

• Set the status word in the request header.

2-21

2-22

To obtain information passed from CONFIG.SYS to
a device driver at INIT time, the BPB pointer field
points to a buffer containing the information passed
in CONFIG.SYS following the =. This string may
end with either a carriage return (ODH) or a linefeed
(OAH). This information is read-only. Only system
calls 01 H - OCH and 30H can be issued by the INIT
code of the driver.

The last byte parameter contains the drive letter for
the first unit of a block driver. For example, O=A,
1 =B etc.

If an INIT routine determines that it cannot set up
the device and wants to abort without using any
memory, follow this procedure.

• Set the number of units to O.

• Set the ending address offset to O.

• Set the ending address segment to the code
segment (CS).

Note: If there are multiple device drivers in a
single memory image file, the ending address
returned by the last INIT called is the one
DOS uses. It is recommended that all device
drivers in a single memory image file return the
same ending address.

MEDIA CHECK

Command code = 1

ES:BX

Field Length

Request header 13-BYTE

Media descriptor from DOS BYTE

Return BYTE

If you are using DOS 3.00 to DWORD
3.30, this call returns a pointer
to the previous volume ID (if
bit 11 = 1 and disk change is
returned)

When the command code field is 1, DOS calls
MEDIA CHECK for a drive unit and passes its
current Media Descriptor byte. See "Media
Descriptor Byte" later in this chapter for more
information about the byte. MEDIA CHECK
returns one of the following:

• Media not changed
• Media changed
• Not sure
• Error code

2-23

2-24

The driver must perform the following:

• Set the status word in the request header~

• Set the return byte:

-1 Media has been changed

o Don't know if media has been changed

1 Media has not been changed

The following method is used by the driver to
determine how to set the Return byte.

• If the media is a fixed disk (non-removable
media), set the return byte to Media has not been
changed

• If 2 seconds have not passed since last successful
access, set the return byte to Media has not been
changed

• If changeline not available, set the return byte to
Don't know if media has been changed

• If changeline is available but not active, set the
return byte to Media has not been changed

• If the media byte in the new BPB does not match
the old media byte, set the return byte to Media
has been changed

• If the current volume ID matches the previous
volume ID, set the return byte to Don't know if
me~ia has been changed.

DOS 3.00 to 3.30: If the driver has set the
removable media bit 11 of the device header attribute
word to 1 and the driver returns -1 (media changed),
the driver must set the DWORD pointer to the
previous volume identification field. If DOS
determines that the media changed is an error, DOS
generates an error OFH (Invalid Disk Change) on
behalf of the device. If the driver does not
implement volume identification support, but has bit
11 set to 1, the driver should set a pointer to the
string "NO NAME ", O.

2-25

Media Descriptor Byte

Currently the media descriptor byte has been defined
for a few media types. This byte should be identical
to the media byte if the device has the non - IBM
format bit off. These predefined values are:

Media descriptor
byte - > 1 1 1 1 1 x x x

bits -> 7 6 543 2 1 0

Bit Meaning
o 1 =2 sided
1 1 = 8 sector
2 1 = removable

3 - 7 must be set to 1

o = not 2 sided
o = not 8 sector
O=not
removable

Note: An exception to the above bit meanings
is that the media descriptor byte value of FO is
used to indicate any media types not defined.

2-26

Examples of current DOS media descriptor bytes:

Disk # sectors/ Media
Type Sides track Descriptor

Fixed disk -- -- F8R

5 1/4 inch 2 15 F9R

5 1/4 inch 1 9 FCH

5 1/4 inch 2 9 FDH

5 1/4 inch 1 8 FER

5 1/4 inch 2 8 FFR

8 inch 1 26 FER

8 inch 2 26 FDH

8 inch 2 8 FER

3 1/2 inch 2 9 F9R

3 1/2 inch 2 18 FOR

Notes:

The two media descriptor bytes that are the same
for 8 inch diskettes (FER) is not a misprint. To
determine whether you are using a single sided or
a double-sided diskette, attempt to read the
second side, and if an error occurs you can
assume the diskette is single sided.

1. Media descriptor FOR may be used for those
media types not described above.

2. These media descriptor values are provided as a
reference. Programs should not use these values.

3. DOS internal routines use information in the
BIOS parameter block (BPB) to determine the
media type of IBM formatted diskettes rather
than using these values. These media descriptor
bytes can no longer be guaranteed to indicate a
unique media type.

2-27

2-28

For 8 - inch diskettes:

FEH (IBM 3740 Format). Single sided, single
density, 128 bytes per sector, soft sectored, 4
sectors per allocation unit, 1 reserved sector, 2
FATs, 68 directory entries, 77*26 sectors.

FDH (IBM 3740 Format). Double sided, single
density, 128 bytes per sector, soft sectored, 4
sectors per allocation unit, 4 reserved sectors, 2
FATs, 68 directory entries, 77*26*2 sectors.

FEH Double sided, double density, 1024 bytes
per sector, soft sectored, 1 sector per allocation
unit, 1 reserved sector, 2 FATs, 192 directory
entries, 77*8*2 sectors.

BUILD BPB (BIOS Parameter Block)

Command code = 2

ES:BX

Field Length

Request header 13-BYTE

Media descriptor from DOS BYTE

Transfer address (buffer DWORD
address)

Pointer to BPB table DWORD

DOS calls BUILD BPB under the following two
conditions:

• If "Media Changed" is returned.

• If "Not Sure" is returned, there are no used
buffers. Used buffers are buffers with changed
data not yet written to the disk.

The driver must perform the following:

• Set the pointer to the BPB.

• Set the status word in the request header.

2-29

2-30

The device driver must determine the media type that
is currently in the unit to return the pointer to the
BPB table. In previous versions of IBMBIO, the
F AT ID byte determined the structure and layout of
the media. Since the FAT ID byte has only eight
possible values (F8 through FF), it is clear that, as
new media types are invented, the available values
will soon be exhausted. With the varying media
layouts, DOS needs to be aware of the location of
the FATs and directories before it requests to read
them.

The following paragraphs explain the new method
DOS will use to determine the media type.

The attribute word for the device driver will no
longer indicate that FAT IDs are used to determine
the media type, unless the media is formatted by a
DOS 1.00 or 1.10 system. In this case the Attribute
word indicates that the FAT ID is used.

The device driver checks the boot sector. If the boot
sector is for DOS 2.00 to 3.30, the BPB from the
boot sector is returned. If the boot sector is not for
DOS 2.00 to 3.30, the device driver reads the first
sector of the FAT to get the FAT ID. The FAT ID
is examined and the corresponding BPB is returned.

In the latter case the media was formatted by a DOS
1.00 or a 1.10 system, so the FAT ID byte is used to
determine the media type. Only two formats are
possible for diskettes formatted by a 1.00 or 1.10
system: 5 1/4-inch single-sided (FEH) and 5 1/4-inch
double sided (FFH.)

The information relating to the BPB for a particular
media is kept in the boot sector for the media. In
particular, the format of the boot sector is:

For DOS 2.10,3 BYTE near JUMP
(E9H) or for DOS 3.00 to 3.30, 2 BYTE
short JUMP (EBH) followed by a NOP
(90H)

8 BYTES OEM name and version

WORD bytes per sector

BYTE sectors per allocation unit (must
be a power of 2)

WORD reserved sectors (starting at
logical sector 0)

BYTE number of FATs

WORD number of root dir entries
(maximum allowed)

WORD number of sectors in logical
image (total sectors in media, including
boot sector, directories, etc.)

BYTE media descriptor

WORD number of sectors occupied by a
single FAT

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

The three words at the end are intended to help the
device driver understand the media. The number of
heads is useful for supporting different multihead
drives that have the same storage capacity but a
different number of surfaces. The number of hidden
sectors is useful for supporting drive partitioning
schemes.

For drivers that support volume identification and
disk change, this call should cause a new volume
identification to be read off the disk. This call
indicates that the disk has legally changed.

2-31

INPUT or OUTPUT

Command codes = 3,4,8,9, and 12

ES:BX

Field Length

Request header 13-BYTE

Media descriptor byte BYTE

Transfer address (buffer DWORD
address)

Byte/sector count WORD

Starting sector number (no WORD
meaning on character devices)

For DOS 3.00 to 3.30, pointer DWORD
to the volume identification if
error code OFH is returned

The driver must perform the following:

2-32

• Set the status word in the request header.

• Perform the requested function.

• Set the actual number of sectors (or bytes)
transferred.

Note: No error checking is performed on an
10CTL I/O call. However, the driver must set
the return sector (byte) count to the actual
number of bytes transferred.

The following applies to block device drivers:
Under certain circumstances the device driver may be
asked to do a write operation of 64K bytes that
seems to be a wrap around of the transfer address in
the device driver request packet. This arises due to
an optimization added to the write code in DOS. It
will only happen on WRITEs that are within a sector
size of 64K bytes on files that are being extended
past the current end of file. It is allowable for the
device driver to ignore the balance of the WRITE
that wraps around, if it so chooses. For example, a
WRITE of 10000H bytes worth of sectors with a
transfer address of XXXX: 1, ignores the last two
bytes.

Remember: A program that uses DOS function calls
can never request an input or output operation of
more than FFFFH bytes; therefore, a wrap around
in the transfer (buffer) segment cannot occur. It is
for this reason that you can ignore bytes that would
have wrapped around in the transfer segment.

If the driver returns an error code of OFH (Invalid
Disk Change), it must put a DWORD pointer to an
ASCIIZ string which is the correct volume
identification to ask the user to reinsert the disk.

DOS 3.00 to 3.30: The reference count of open
files on the disk (maintained by OPEN and CLOSE
calls) allows the driver to determine when to return
error OFH. If there are no open files (reference
count = 0) and the disk has been changed, the I/O is
all right, and error OFH is not returned. If there are
open files (reference count > 0) and the disk has
been changed, an error OFH situation may exist.

2-33

NONDESTRUCTIVE INPUT NO WAIT

Command code = 5

ES:BX

Field Length

Request header 13-BYTE

Byte read from device BYTE

2-34

The driver must perform the following:

• Return a byte from the device.

• Set the status word in the request header.

If the character device returns busy bit = 0
(characters in buffer), then the next character that
would be read is returned. This character is not
removed from the input buffer (hence the term
nondestructive input). This call allows DOS to look
ahead one input character.

STATUS
Command codes = 6 and 10

ES:BX

Field Length

Request header I3-BYTE

The driver must perform the following:

• Perform the requested function.

• Set the busy bit.

• Set the status word in the request header.

The busy bit is set as follows:

For output on character devices- if the busy bit is I
on return, a write request would wait for completion
of a current request. If the busy bit is 0, there is no
current request. Therefore, a write request would
start immediately.

For input on character devices with a buffer- if the
busy bit is 1 on return, a read request goes to the
physical device. If the busy bit is 0, there are
characters in the device buffer and a read returns
quickly. It also indicates that the user has typed
something. DOS assumes that all character devices
have a type - ahead input buffer. Devices that do
not have this buffer should always return busy = 0
so that DOS does not hang waiting for information
to be put in a buffer that does not exist.

2-35

FLUSH

Command codes = 7 and 11

ES:BX

Field Length

Request header 13-BYTE

2-36

This call tells the driver to flush (terminate) all
pending requests that it has knowledge of. Its
primary use is to flush the input queue on character
devices.

The driver must:

Set status word in the Request Header upon
return.

OPEN or CLOSE (DOS 3.00 to 3.30)

Command codes = 13 and 14

ES:BX

Field Length

Static request header 13-BYTE

These calls are designed to give the device
information about current file activity on the device
if bit 11 of the attribute word is set. On block
devices, these calls can be used to manage local
buffering. The device can keep a reference count.
Every OPEN causes the device to increment the
reference count. Every CLOSE causes the device to
decrement the reference count. When the reference
count is 0, it means there are no open files on the
device. Therefore, the device should flush buffers
inside the device that it has written to because now
the user can change the media on a removable media
drive. If the media has been changed, it is advisable
to reset the reference count to 0 without flushing the
buffers. This can be thought of as "last close causes
flush."

2-37

2-38

These calls are more useful on character devices. The
OPEN call can be used to send a device an
initialization string. On a printer, this could cause a
string to be sent that would set the the font, the page
size, etc., so that the printer would always be in a
known state at the start of an I/O stream. Similarly
the CLOSE call can be used to send a post string
(like a form feed) at the end of an I/O stream. Using
10CTL to set these pre and post strings provides a
flexible mechanism of serial I/O device stream
control.

Note: Since all processes have access to
STDIN, STDOUT, STDERR, STDAUX, and
STDPRN (handles 0,1,2,3,4), the CON, AUX,
and PRN devices are always open. IBM DOS
calls this function in response to interrupt 2lH
calls OFH, 10H, 3DH and 3EH only if file
sharing (SHARE.EXE) is loaded.

REMOVABLE MEDIA (DOS 3.00 to 3.30)

Command code = 15

ES:BX

Field Length

Static request header 13-BYTE

To use this call, set bit 11 of the attribute field to 1.
Block devices can only use this call through a
subfunction of the IOCTL function call (44H). This
call is useful because it allows a utility to know
whether it is dealing with a nonremovable media
drive or with a removable media drive. For example,
the FORMAT utility needs to know whether a drive
is removable or nonremovable because it prints
different versions of some prompts.

The information is returned in the BUSY bit of the
status word. If the busy bit is 1, the media is
nonremovable. If the busy bit is 0, the media is
removable.

Note: No error bit checking is performed. It
is assumed that this call always succeeds.

2-39

Generic IOCTL Request (DOS 3.20 and
3.30)

Command code = 19

ES:BX

Field Length

Static request header 13-BYTE

Major function BYTE

Minor function BYTE

Contents of SI WORD

Contents of DI WORD

Pointer to Generic IOCTL DWORD
request packet

2-40

The driver must:

• Support the functions described under Generic
IOCTL request

• Maintain its own track table (TrackLayout.)

DOS 3.20 and 3.30 use call AL = ODH (Generic
IOCTL request) to get or set device parameters and
to format and verify a track on a logical device.
DOS 3.30 uses call AL=OCH (Generic IOCTL
request) to implement codepage switching. The
functions supported by Generic IOCTL request are
explained in Chapter 6 under IOCTL 44H.

Get Logical Device (DOS 3.20 and 3.30)

Command code = 23

ES:BX

Field Length

Static request header I3-BYTE

Input (unit code) BYTE

Command code BYTE

Status WORD

Reserved DWORD

Set Logical Device (DOS 3.20 and 3.30)

Command code = 24

ES:BX

Field Length
Static request header I3-BYTE

Input (unit code) BYTE

Command code BYTE

Status WORD

Reserved DWORD

2-41

The CLOCK$ Device

A popular feature is a "Real Time Clock" board. To
allow this board to be integrated into the system for
TIME and DATE, there is a special device
(determined by the attribute word) which is the
CLOCK$ device. This device defines and performs
functions like any other character device (most
functions will be set done bit, reset error bit, return).
When a read or write to this device occurs, exactly 6
bytes are transferred. The first 2 bytes are a word,
which is the count of days since 1 - 1 - 80. The third
byte is minutes; the fourth is hours; the fifth 1/100 is
seconds; and the sixth is seconds. Reading the
CLOCK$ device gets the date and time, writing to it
sets the date and time.

Sample Device Driver

2-42

The Supplemental diskettes for DOS versions 3.00 to
3.20 contain a sample device driver listing called
VDISK.LST. For DOS version 3.30, the sample
device driver listing is called VDISK.ASM and it is
on the Technical Reference Utilities diskette. Use
the PRINT command to print a copy of the listing
for reference.

Chapter 3. Using Extended Screen and
Keyboard Control

Introduction 3-3
Control Sequences 3-3
Control Sequence Syntax 3-4
Cursor Control Sequences 3-6

Cursor Position 3-6
Cursor Up 3-7
Cursor Down 3-7
Cursor Forward 3-8
Cursor Backward 3-8
Horizontal and Vertical Position 3-9
Cursor Position Report 3-10
Device Status Report 3-10
Save Cursor Position 3-12
Restore Cursor Position 3-12

Erasing 3-13
Erase in Display 3-13
Erase in Line 3-13

Mode of Operation 3-13
Keyboard Key Reassignment 3-17

3-1

3-2

Introduction

This chapter explains how you can issue special
control character sequences to:

• Control the position of the cursor

• Erase text from the screen

• Set the mode of operation

• Redefine the meaning of keyboard keys

Control Sequences

The control sequences are valid if you issue them
through DOS function calls that use standard input,
standard output, or standard error output devices.
These are the function calls 0 I H, 02H, 06H, 07H,
09H,OAH, ISH, 22H, 28H and 40H.

The extended screen and keyboard control device
driver ANSI.SYS must be installed by placing the
following statement in the configuration file
CONFIG.SYS:

device = [d:][path]ansi.sys

The size of DOS in memory increases by the size of
ANSI.SYS.

3-3

Control Sequence Syntax

Each of the cursor control sequences is in the format:

ESC [parameters COMMAND

ESC The 1 - byte ASCII code for
ESC (lBH). It is not the
three characters ESC.

[The character [.

parameters The numeric values you
specify for #. The '#
represents a numeric
parameter. A numeric
parameter is an integer value
specified with ASCII
characters. If you do not
specify a parameter value, or
if you specify a value of 0, the
default value for the
parameter is used.

COMMAND An alphabetic string that
represents the command. It is
case specific.

3-4

F or example:

ESC [2; lOH

could be created using BASIC as follows:

The IBM Personal Computer Basic
Version 3.00 Copyright IBM Corp. 1981, 1984
xxx xx Bytes free

Ok
open "sample" for output as 1
Ok
print #1, CHR$(27);"[2;10H";"x row 2 col 10"
Ok
close #1
Ok

Notice that "CHR$(27)" is ESC.

3-5

Cursor Control Sequences

The following tables contain the cursor control
sequences you can use to control cursor positioning.

Cursor Position

Cursor Position Function

ESC [#;#H Moves the cursor to the

3-6

position specified by the
parameters. The first
parameter specifies the
row number and the
second parameter
specifies the column
number. The default
value is 1. If no
parameter is given, the
cursor is moved to the
home position.

This example copies the file SAMPLE from the
previous example, to CON, which places the cursor
on row 2 column 10 of the screen:

type sample

Cursor Up

Cursor Up Function

ESC [#A Moves the cursor up one
or more rows without
changing the column
position. The value of #
determines the number of
lines moved. The default
value for # is 1. This
sequence is ignored if the
cursor is already on the
top line.

Cursor Down

Cursor Down Function

ESC [#B Moves the cursor down
one or more rows
without changing the
column position. The
value of # determines the
number of lines moved.
The default value for # is
1. The sequence is
ignored if the cursor is
already on the bottom
line.

3-7

Cursor Forward

Cursor Forward

ESC [#C

Cursor Backward

Cursor Backward

ESC [#D

3-8

Function

Moves the cursor
forward one or more
columns without
changing the row
position. The value of #
determines the number of
columns moved. The
default value for # is 1.
This sequence is ignored
if the cursor is already in
the rightmost column.

Function

Moves the cursor back
one or more columns
without changing the
row position. The value
of # determines the
number of columns
moved. The default
value for # is 1. This
sequence is ignored if the
cursor is already in the
leftmost column.

Horizontal and Vertical Position

Horizontal and Vertical Function
Position

ESC [#;#f Moves the cursor to the
position specified by the
parameters. The first
parameter specifies the
line number and the
second parameter
specifies the column
number. The default
value is 1. If no
parameter is given, the
cursor is moved to the
home position.

3-9

Cursor Position Report

Cursor Position Report Function

ESC [#;#R The cursor sequence
report reports the current
cursor position through
the standard input
device. The first
parameter specifies the
current line and the
second parameter
specifies the current
column.

Device Status Report

Device Status Report Function

ESC [6n

3-10

The console driver
outputs a cursor position
report sequence on
receipt of device status
report.

Note: Do not use the Device Status Report as
part of a prompt.

The following Pascal program tells ANSI.SYS to put
the current cursor position (row and column) in the
keyboard buffer. Then the program reads the cursor
position from the keyboard buffer and displays the
cursor position on the screen.

PROGRAM dsr(INPUT,OUTPUT) i

VAR
f:FILE OF CHARi
key:CHARi

read character FUNCTION inkey:CHAR;
VAR from the }

ch:CHAR; keyboard buffer }
BEGIN

READ (f , ch) ;
inkey:=ch

END;

BEGIN
ASSIGN(f,'user')i
RESET(f) ;

WRITE(CHR(27), '[6n'); {issue a DSR }
key: =inkey; { read up to }
key:=inkeYi { first digit }
key: =inkey; { of the row }
WRITE('row ',inkey,inkey,' column ');
key: =inkeYi { skip to column}
WRITE(inkey,inkey) { write column }

END.

3-11

Save Cursor Position

Save Cursor Position Function

ESC [s The current cursor
position is saved. This
cursor position can be
restored with the restore
cursor position sequence
(see below).

Restore Cursor Position

Restore Cursor Position Function

ESC [u Restores the cursor to
the value it had when the
console driver received
the save cursor position
sequence.

3-12

Erasing

The following tables contain the control sequences
you can use to erase text from the screen.

~ Erase in Display

Erase end Display Function

ESC [21 Erases all of the screen
and the cursor goes to
the home position.

Erase in Line

Erase in Line Function

ESC [K Erases from the cursor to
the end of the line and
includes the cursor
position.

Mode of Operation

The following tables contain the control sequences
you can use to set the mode of operation.

They are:

• Set Graphics Rendition (SGR)

• Set Mode (SM)

3-13

• Reset Mode (RM)

3-14

Set Graphics
Rendition (SGR) Function

ESC [#; ... ;#m Sets the character attribute
specified by the parameters.
All following characters have
the attribute according to the
parameters until the next
occurrence of SGR.

Parameter Meaning
0 All attributes off

(normal white on
black)

I Bold on (high
intensity)

4 Underscore on
(IBM Monochrome
Display only)

5 Blink on
7 Reverse video on
8 Canceled on

(invisible)
30 Black foreground
31 Red foreground
32 Green foreground
33 Yellow foregro'und
34 Blue foreground
35 Magenta

foreground
36 Cyan foreground
37 White foreground
40 Black backgro~nd
41 Red background
42 Green backgr9und
43 Yellow background
44 Blue background
45 Magenta

background
46 Cyan background
47 White background

3-15

Set Mode (SM)
SM Function

ESC [=#h Invokes the screen width
or ESC [=h or type specified by the
or ESC [=Oh parameter.
or ESC [?7h

Parameter Meaning
0 40x25 black

and white
1 40x25 color
2 80x25 black

and white
3 80x25 color
4 320x200 color
5 320x200 black

and white
6 640x200 black

and white
7 W rap at end of

line. (Typing
past
end-of-line
results in new
line.)

Reset Mode (RM)
RM Function

ESC [=#1 Parameters are the same
or ESC [=1 as SM (Set Mode) except
or ESC [=01 that parameter 7 resets
or ESC [?71 wrap at end - of - line

mode (characters past
end - of - line are thrown
away).

3-16

Keyboard Key Reassignment

The following table contains the control sequences
you can use to redefine the meaning of keyboard
keys.

The control sequence is: Function

ESC [#;#;"'#p The first ASCII code in
or ESC ["string"p the control sequence
or ESC [#;"string";#; defines which code is

#;"string";#p being mapped. The
or any other combination remaining numbers
of strings and decimal define the sequence of
numbers ASCII codes generated

when this key is
intercepted. However, if
the first code in the
sequence is 0 (NULL)
the first and second code
make up an extended
ASCII redefinition (see
Chapter 6 for a list of
extended ASCII codes).

3-17

3-18

Here are some examples:

To execute these examples, you can either:

• Create a file that contains the following
statements and then use the TYPE command to
display the file that contains the statement.

• Execute the command at the DOS prompt.

1. Reassign the Q and q key to the A and a (and
the other way as well):

Creating a File:

ESC [65;81p
ESC [97; 113p
ESC [81; 65p
ESC [113; 97p

A becomes Q
a becomes q
Q becomes A
q becomes a

At the DOS Prompt:

prompt $e[65;81p
prompt $e[97;113p
prompt $e[81;65p
prompt $e[113;97p

A becomes Q
a becomes q
Q becomes A
q becomes a

2. Reassign the FlO key to a DIR command
followed by a c~rdage return:

Creating a File:

ESC [0; 68; "dir" ; 13p

At the DOS Prompt:

prompt $e[O; 68; "dir" ; 13p

The $e is the prompt command characters for
ESC. The 0;68 is the extended ASCII code for
the FlO key; 13 decimal is a cardage return.

3. The following example sets the prompt to display
the current directory on the top of the screen and
the current drive on the current line.

prompt $e[s$e[l i 30f$e[K$p$e[u$n$g

If the current directory is C:\FILES, and the
current drive is C, this example would display:

C:\FILES

C>

4. The following assembly language program
reassigns the FlO key to a DIR B: command
followed by a carriage return.

TITLE SETANSI.ASM - SET FlO TO STRING
FOR ANSI.SYS

CSEG SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CSEG,DS:CSEG

ORG 100H
ENTPT JMP
STRING DB

STRSIZ EQU

HANDLE EQU

SHORT START
27, , [0; 68 i DIR B:" i 13p I

iREDFINE FlO KEY
$-STRING ;LENGTH OF ABOVE

iMESSAGE
1 ;PRE-DEFINED FILE

START PROC NEAR
MOV BX,HANDLE iSTANDARD OUTPUT

iDEVICE
MOV CX,STRSIZ iGET SIZE OF ABOVE

iMESSAGE

START

MOV DX,OFFSET
STRING

MOV AH,40H

INT 21H
RET
ENDP

CSEG ENDS
END ENTPT

iPASS OFFSET STRING
iTO BE SENT
iFUNCTION="WRITE
iTO DEVICE"
iCALL DOS
iRETURN TO DOS

3-19

3-20

Chapter 4. File Management Notes

Introduction 4-3
Version Specific Information 4-3
File Management Functions 4-3
FCB Function Calls 4-5
Handle Function Calls 4-6
Special File Handles 4-8
ASCII and Binary Mode 4-9

File I/O in Binary Mode 4-10
File I/O in ASCII Mode 4-11

Number of Open Files Allowed 4-12
Restrictions on FCB Usage 4-12
Restrictions on Handle Usage 4-13
Allocating Space to a File 4-17

4-1

4-2

Introduction

This chapter tells you how to:

• Use file management functions (FCB function calls and
Handle function calls)

• Do file I/O in ASCII mode and Binary mode

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

Restrictions on FeB usage: For DOS 3.00 to 3.30, the
number of files opened using FCBs is limited, if SHARE is
loaded. The limit is set by the FCBS command in the
CONFIG.SYS file.

File Management Functions

Use DOS function calls to create, open, close, read, write,
rename, find, and erase files. There are two sets of function
calls that DOS provides for support of file management. They
are:

• File Control Block function calls (FCB function calls OFH
- 24H)

• Extended function calls (Handle function calls 39H -
62H)

4-3

Handle function calls are easier to use and more powerful than
FCB function calls. The following table compares the use of
FCB function calls to Handle function calls.

FCB Calls Handle Calls

Addresses files that Addresses files in
are only in the any directory.
current directory.

Requires that the Does not require
application program maintenance of an
main tain a file FCB. Requires a
control block to string that contains
open, create, the drive, path, and
rename, or delete a filename to open,
file. For 1/0 create, rename, or
requests, the delete a file. For
application program file 1/0 requests, the
also needs an FCB. application program

only has to
maintain a 16 - bit
word (file handle)
that is supplied by
DOS.

The only reason an application should use FCB function calls
is to maintain the ability to run under DOS version 1.10. To
do this, a program can only use function calls supplied by
DOS 1.10 (OOH - 2EH).

4-4

FCB Function Calls

FCB function calls require the use of one file control block per
open file, which is maintained by the application program and
DOS. The application program supplies a pointer to the FCB
and fills in the appropriate fields required by the specific
function call. An FCB function call can perform file
management on any valid drive on the system, but only in the
current directory of the specified drive. By using the current
block, current record, and record length fields of the FCB, you
can perform sequential I/O by using the sequential read or
write function calls. Random I/O can be performed by filling
in the random record and record length fields. See "File
Control Block" on page 7-12 for information on the FCB
structure.

Several possible uses of FCB type calls are considered
programming errors and should not be done under any
circumstances. This is to avoid problems witI\ file sharing and
compatibility. One such error occurs when a program uses the
same FCB structure to access more than one open file. By
opening a file using an FCB, doing I/O, and then replacing the
filename field in the file control block with a new filename, a
program can then open a second file using the same FCB.
This is invalid because DOS writes control information about
the file into the reserved fields of the FCB. This information
is changed when the second file is opened using the same FCB.
If the program then replaces the filename field with the
original filename and then tries to perform I/O to this file,
DOS may become confused because the control information
has been changed. An FCB should never be used to open a
second file without closing the file that is currently open. If
more than one file is to be open concurrently, separate FCBs
should be used.

4-5

A program should also never tamper with the DOS reserved
fields in th~ FCB, as the contents and structure of these fields
change in different versions of DOS. It is also good
programming practice to close all files after all I/O to a file is
done. This avoids potential file sharing problems that require
~ limit on the number of files concurrently open using FCB
function calls. A delete or a rename on a file that is currently
open is also considered an error and should not be attempted
by an application program.

A program should not close a FCB file and contihue writing to
the file. This behavior is not supported if SHARE.EXE is
loaded or the file is on a network. This behavior is never
recommended.

Handle Function Calls

The recommended method of file management is by using the
extended "handle" set of function calls. These calls are not
restricted to files in the current directory. Also, the handle set
of file management calls allow the application program to
define the type of access that other processes can have
concurrently with the same file if file sharing is loaded.

To create or open a file, the application supplies a pointer to
an ASCIIZ string giving the name and location of the file. An
ASCIIZ string contains an optional drive letter, optional path
and mandatory file specification, terminated by a byte of OOH.
The following is an example of an ASCIIZ string:

DB "a:\path\filename.ext" ,0

If the file is being created, the application program also
supplies the attribute of the file. This is a set of values that
defines if the file is read only, hidden, system, directory, or
volume label. See "DOS Disk Directory" on page 5-10 for
information on file attributes.

4-6

If the file is being opened, the program can define the sharing
and access modes that the file is opened in. The access mode
informs DOS what operations your program will perform on
this file (read - only, write- only or read/write). The sharing
mode controls the type of operations other processes may
perform concurrently on the file. A program can also control
if a child process inherits the open files of the parent. The
sharing mode field has meaning only if file sharing is loaded
when the file is opened.

To rename or delete a file, the application program simply
needs to provide a pointer to the ASCIIZ string containing the
name and location of the file and another string with the new
name if the file is being renamed.

The open or create function calls return a 16 - bit value
referred to as the file handle. To do any I/O to a file, the
program uses this handle to reference the file. Once a file is
opened, a program no longer needs to maintain the ASCIIZ
string pointing to the file, nor is there any requirement to stay
in the same directory. DOS keeps track of the location of the
file regardless of what directory is current.

Sequential I/O can be performed using the handle read (3PH)
or write (40H) function calls. The offset in the file that I/O is
performed to is automatically moved to the end of what was
just read or written. If random I/O is desired, the LSEEK
(42H) function call can be used to set the offset into the file
that the I/O is performed at.

4-7

Special File Handles

DOS sets up five special file handles for use by application
programs. These handles are:

OOOOH Standard input device (Stdin)

OOOlH Standard output device (Stdout)

0002H Standard error device (Stderr)

0003H Standard auxiliary device (Stdaux)

0004H Standard printer device (Stdprn)

These handles are predefined by DOS and can be used by any
application program. They do not need to be opened by the
program, although a program can close these handles. Stdin
should be treated as a read - only file, and Stdout and Stderr
should be treated as write only handles. Stdin and Stdout can
be redirected. All handles inherited by a process can be
redirected, but not at the command line.

These handles are very useful for doing I/O to and from the
console device. For example, you could read input from the
keyboard using the read (3FH) function call and file handle
OOOOH (Stdin), and write output to the console screen with the
write function call (40H) and file handle OOOlH (Stdout). If
you wanted an output that could not be redirected, you could
output it using file handle 0002H (Stderr). This is very useful
for error messages or prompts that a user must see in order to
act upon them.

File handles 0003H (Stdaux) and 0004H (Stdprn) can both be
read from and written to. Stdaux is typically a serial device
and stdprn is usually a parallel device.

4-8

ASCII and Binary Mode

I/O to files is done in binary mode. This means that the data
is read to or written from a file without modification.
However, DOS can also read or write to devices in ASCII
mode. In ASCII mode, DOS does some string processing and
modification to the characters read or written. The predefined
handles are in ASCII mode when initialized by DOS. All
other file handles that don't refer to devices are in binary
mode. A program can use the IOCTL (44H) function call to
set the mode that I/O is done to a device. The predefined file
handles for are all devices, so the mode can be changed from
ASCII to binary via IOCTL. Regular file handles that are not
devices are always in binary mode, and they cannot be changed
to ASCII mode.

The predefined handles Stdin (OOOOH), Stdout (000 I H), and
Stderr (0002H) are all duplicate handles. If the IOCTL
function call is used to change the mode of any of these three
handles, the mode of all three handles is changed. For
example, if IOCTL was used to change Stdout to binary mode,
then Stdin and Stderr would also be changed to binary mode.

4-9

File 1/0 in Binary Mode

When a file is read in binary mode:

• The characters I\S (Scroll lock), I\P (Print Screen), 1\ C
(Control Break) are not checked for during the read.
Therefore, no printer echo occurs if I\S or I\P are read.

• There is no echo to Stdout (OOOIH).

• Reads the number of specified bytes and returns
immediately when the last byte is received or the end of file
is reached.

• Allows no editing of the line input using the function keys
if the input is from Stdin (OOOOH).

When a file is written in binary mode:

• The characters I\S,I\P,I\C are not checked for during the
write operation. Therefore there is no printer echo.

• There is no echo to Stdout (OOOIH).

• The exact number of bytes specified are written.

• Does not caret control characters. For example, control D
is sent out as byte 04H instead of the two bytes /\ and D.

• Does not expand tabs into spaces.

4-10

File 1/0 in ASCII Mode

When a file is read in ASCII mode:

• Checks for the characters I\C,AS, and I\P.

• Returns as many characters as there are in the device input
buffer, or the number of characters requested, whichever is
less. If the number of characters requested was less than
the number of characters in the device input buffer, then
the next read will address the remaining characters in the
buffer.

• If there are no more bytes remaining in the device input
buffer, read a line (terminated with I\M) into the buffer.
This line may be edited with the function keys. The
characters returned terminate with a sequence of ODH,OAH
(AM,I\J) if the number of characters requested is sufficient
to include them. For example, if 5 characters were
requested, and only 3 were entered before the carriage
return (ODH or AM) was presented to DOS from the
console device, the 3 characters entered and ODH, and
OAH would be returned. However, if 5 characters were
requested and 7 were entered before the carriage return,
only the first 5 characters would be returned. No
ODH,OAH sequence would be returned in this case. If less
than the number of characters requested are entered when
the carriage return is received, the characters received and
the ODH,OAH would be returned. The reason the OAH
(line feed or I\J) byte is added to the returned characters is
to make devices look like text files.

• If a lAH (I\Z) is found, the input is terminated at that
point. No ODH,OAH sequence is added to the string.

• Echoing is performed.

• Tabs are expanded into spaces on echo. They are left as a
tab byte (09H) in the input buffer.

When a file is written in ASCII mode:

4-11

• The characters "S,,,P, and "C are checked for during the
write operation.

• Expands tabs to 8 - character boundaries and fills with
spaces (20H).

• Carets control characters. For example, "D is written as
two bytes, " and D.

• Bytes are output until the the number specified is output or
until a "Z is found. The number actually output is
returned to the user.

Number of Open Files Allowed

The number of files that can be open concurrently is restricted
by DOS. This number is determined by how the file is opened
or created (FCB or handle function call) and the number
specified by the FCBS and FILES commands in the
CONFIG.SYS file. The number of files allowed open by FCB
function calls and the number of files that can be opened by
handle type calls are independent of one another.

Restrictions on FeB Usage

If file sharing is not loaded using the SHARE command, there
are no restrictions on the number of files concurrently open
using FCB function calls. However, when file sharing is
loaded, the maximum number of FCB opened files is limited
by the value set by the FCBS command in the CONFIG.SYS
configuration file. For information on the FCBS command,
refer to Chapter 4 of the DOS Reference for versions 3.00 to
3.30. The FCBS command has two values that you can specify
m, n. The value for m specifies the total number of files that
can be opened by FCBs, and the value for n specifies the

4-12

number of files opened by FCBS that are protected from being
closed.

When the maximum number of FCB opens is exceeded, DOS
automatically closes the least recently used file. Any attempt
to access this file results in an interrupt 24H critical error
message, "FCB not available." If this occurs while an
application program is running, the value specified for m in the
FCBS command should be increased.

When DOS determines the least recently used file to close, it
does not include the first n files opened, therefore the first n
are protected from being closed.

4-13

Restrictions on Handle Usage

The number of file handles that can be open at one time by all
processes is determined by the FILES command in the
CONFIG.SYS file (for more information see the F1LES
command in the DOS Reference).

The default number of handles available to a single process is
twenty. In DOS 3.30, the maximum number of handles can be
increased up to 64K by using Set Handle Count (function
67H).

Each open handle is associated with a single file or device.
Several handles can reference the same file or device. this is
why the maximum handle limit exceeds the maximum value of
the FILES command in CONFIG.SYS. Each Open (function
3DH) to a file or device uses both a handle and a FILES =
entry.

The effective limit to the number of Opens a program can issue
is the the remaining handle count for that program or the
remaining FILES = entries for the system, whichever is
smaller. An Open can fail because it runs out of either handles
or FILES = entries.

As stated earlier, five handles are automaticaly setup by DOS.
This reduces the number of handles available to the program.
If a program is using additional handles when it calls another
program, the handles are passed to the new program.

4-14

The rules for relating handles to open files are listed below:

1. Each Open uses both a handle and one of the
CONFIG.SYS FILES entries.

2. Each Duplicate (function 45H) uses a handle but not a
CONFIG.SYS FILES item. A Duplicate increases the use
count of the FILES = entry for that handle.

3. Each Exec (function 4BH) duplicates open handles which
have the Inheritance flag set to zero.

4. Each Close (function 3EH) releases a handle and
decrements the use count for the FILES = entry. If the
count reaches zero, the FILES = entry is made available to
the system.

5. A Terminate a Process (function 4CH) closes all handles of
a program.

4-15

The sequence of events in the example below illustrates the
relationship between handles and FILES = entries. Assume a
FILES = 10 statement in the CONFIG.SYS file.

Action taken by
program or Programs Handles FILES
current state loaded used used

At DOS prompt just after
boot COMMAND 5 3

Start MYEDIT editor
program COMMAND 5

MYEDIT 5 3

Edit file XXX (kept open) COMMAND 5
MYEDIT 6 4

Go to DOS command line COMMAND 5
MYEDIT 6
COMMAND 6 4

TYPE file zzz COMMAND 5
MYEDIT 6
COMMAND 7 5

Exit DOS COMMAND 5
MYEDIT 6 4

File and exit MYEDIT COMMAND 5 3

Run MYDBASE program,
open 10 files COMMAND 5

Note that the 8th
open fails MYDBASE 13 10

Exit MYDBASE, closing
all files COMMAND 5 3

4-16

Allocating Space to a File

Files are not necessarily written sequentially on a disk. Space
is allocated as it is needed and the next location available on
the disk is allocated as the next location for a file being
written. Therefore, if considerable file creation and erasure
activity has taken place, newly created files may not be written
in sequential sectors. However, due to the mapping (chaining)
of file space via the File Allocation Table (FAT), and the
function calls available, any file can be used in either a
sequential or random manner.

Space is allocated in increments called clusters. Cluster size
varies from a low of one sector of disk space per cluster on a
single - sided diskette to a higher number of sectors/cluster on
other disk formats. The cluster size of a fixed disk is based on
the size of the DOS partition, and is determined when the fixed
disk is formatted with the FORMAT command. For example,
for a 10M byte fixed disk that is totally dedicated to one DOS
partition, the cluster size is equal to 8 sectors.

An application program should not concern itself with the way
that DOS allocates disk space to a file. The size of a cluster is
only important in that it determines the smallest amount of
space allocated to a file at one time. For example, a diskette
with 2 sectors per cluster and a sector size of 512 bytes would
allocate diskette space to a file in 1024 byte blocks. Therefore,
even if a file was less than one cluster long, a cluster's worth of
disk space would be allocated to the file. If more disk space is
needed, additional clusters are allocated to the file. A disk is
considered full when all the available clusters have been
allocated to files.

4-17

4-18

Chapter 5. DOS Disk Allocation

Introduction 5-3
Version Specific Information 5-3
The DOS Area 5-4
The Boot Record 5-4
File Allocation Table (FAT) 5-5

How to Use the File Allocation Table for 12 - Bit
FA TEntries 5-8

How to Use the File Allocation Table for 16 - Bit
F AT Entries 5-9

DOS Disk Directory 5-10
Directory Entries 5-10

Bytes 0-7 5-10
Bytes 8-10 5-11
Byte 11 5-11
Bytes 12-21 5-12
Bytes 22-23 5-12
Bytes 24-25 5-13
Bytes 26-27 5-13
Bytes 28-31 5-13

The Data Area 5-14

5-1

5-2

Introduction

This chapter contains the following information about DOS:

• The boot record

• The DOS file allocation table (FAT) for 12 - bit and
16-bit FATs

• The DOS disk directory

• The data area

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

DOS File Allocation Table (FAT):

• 12 - bit FATs are for use with DOS versions 2.10 and 3.00
to 3.30.

• 16- bit FATs are for use with DOS versions 3.00 to 3.30.

Also, for DOS versions 3.00 to 3.30, the File Allocation Table
indicator F9H is used to identify 15 sector - per - track
diskettes.

5-3

The DOS Area

All disks and diskettes formatted by DOS are created with a
sector size of 512 bytes. The DOS area (entire diskette for
diskettes, DOS partition for fixed disks) is formatted as
follows:

Boot record - 1 sector

First copy of file allocation
table (FAT) - v'l.riable size

Second copy of file allocation
table - same size as first copy
of FAT

Root directory - variable size

Data area

The following sections describe each of the allocated areas.

The Boot Record

The boot record resides on track 0, sector 1, side 0 of every
diskette formatted by the DOS FORMAT command. It is put
on all disks to produce an error message if you try to start up
the system with a nonsystem diskette in drive A. For fixed
disks, the boot record resides on the first sector of the DOS
partition.

5-4

File Allocation Table (FAT)

This section explains how DOS uses the file allocation table
(FAT) to convert the clusters of a file to logical sector
numbers. We recommend that system utilities use the DOS
handle function calls rather than interpreting the F AT.

The FAT is used by DOS to allocate disk space for a file, one
cluster at a time.

The FAT consists of a 12 - bit entry (1.5 bytes) for each cluster
on the disk or a 16 - bit entry (2 bytes) when a fixed disk has
more than 20740 sectors as is the case for fixed disks larger
than 10M bytes.

The first two FAT entries map a portion of the directory;
these FAT entries contain indicators of the size and format of
the disk. The FAT can be in a 12 - bit or a 16 - bit format.
DOS determines whether a disk has a 12- or 16- bit FAT by
looking at the total number of allocation units on the disk.
For all diskettes and fixed disks with DOS partitions less than
20740 sectors, the FAT uses a 12 - bit value to map a cluster.
For larger partitions, DOS uses a 16 - bit value.

The number of sectors for a disk can be determined by using
the formula:

TS=SPT * H * c.

Where:

TS is the total number of sectors on the disk.

SPT is the number of sectors-per-track or
per-cylinder.

H is the number of heads.

C is the number of cylinders.

5-5

The number of sectors for a 10MB IBM fixed disk is 20740 (17
* 4 * 305).

The second, third, and fourth (if applicable for 16- bit FATs)
bytes always contain FFFFH. The first byte is used as
follows:

Hex Value Meaning

FF Dual sided, 8 sector - per - track diskette.

FE Single sided, 8 sector - per - track diskette.

FD Dual sided, 9 sector - per - track diskette.

Fe Single sided, 9 sector - per - track diskette.

F9 Dual sided, 15 sector - per - track diskette (1.2
MB).

F9 Dual sided, 9 sector - per - track diskette (720
KB).

F8 Fixed disk.

FO Others.

The third FAT entry begins the mapping of the data area
(cluster 002).

These values are provided as a reference. Therefore, programs
should not make use of these values.

Note: DOS internal routines use information in the
BIOS parameter block (BPB) to determine the media
type of IBM formatted diskettes rather than using these
values. These media descriptor bytes can no longer be
guaranteed to indicate a unique media type.

5-6

Each entry contains 3 hexadecimal characters, (or 4 for 16- bit
FA Ts). () indicates the high - order four bit value in the case
of the 16- bit FAT entries. They can be either:

Hex Value Meaning

(0)000 if the cluster is unused and available, or

(F)FF8 - -(F)FFF

(X)XXX

to indicate the last cluster of a file, or

any other hexadecimal characters that are the
cluster number of the next cluster in the file.
The cluster number of the first cluster in the
file is kept in the file's directory entry.

The values (F)FFO - (F)FF7 are used to indicate reserved
clusters. (F)FF7 indicates a bad cluster if it is not part of an
allocation chain. (F)FF8 - (F)FFF are used as end - of - file
marks.

The file allocation table always occupies the sector or sectors
immediately following the boot record. If the FAT is larger
than 1 sector, the sectors occupy consecutive sector numbers.
Two copies of the FAT are written, one following the other,
for integrity. The FAT is read into one of the DOS buffers
whenever needed (open, allocate more space, etc.).

5-7

How to Use the File Allocation Table for
12 - Bit FAT Entries

Obtain the starting cluster of the file from the directory entry.

Now, to locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each FAT
entry is 1.5 bytes long).

2. The whole part of the product is an offset into the F AT,
pointing to the entry that maps the cluster just used. That
entry contains the cluster number of the next cluster of the
file.

3. Use a MOV instruction to move the word at the calculated
F AT offset into a register.

4. If the last cluster used was an even number, keep the
low-order 12 bits of the register; otherwise, keep the
high-order 12 bits.

5. If the resultant 12 bits are (FF8-FFF)H, no more clusters
are in the file. Otherwise, the 12 bits contain the cluster
number of the next cluster in the file.

To convert the cluster to a logical sector number (relative
sector, such as that used by INT 25H and 26H and by
DEBUG):

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors per cluster.

3. Add the logical sector number of the beginning of the data
area.

5-8

How to Use the File Allocation Table for
16- Bit FAT Entries

Obtain the starting cluster of the file from the directory entry.
Now to locate each subsequent cluster of the file:

1. Multiply the cluster number used by 2 (each FAT entry is 2
bytes long).

2. Use MOV word instruction to move the word at the
calculated FAT offset into a register.

3. If the resultant 16 bits are (FFF8-FFFF)H, no more
clusters are in the file. Otherwise, the 16 bits contain the
cluster number of the next cluster in the file.

5-9

DOS Disk Directory

The FORMAT command initially builds the root directory for
all disks. Its location (logical sector number) and the
maximum number of entries are available through the device
driver interfaces.

Directory Entries

Since directories other than the root directory are actually files,
there is no limit to the number of entries they may contain.

All directory entries are 32 bytes long, and are in the following
format (byte offsets are in decimal). The following paragraphs
describe the directory entry bytes:

Bytes 0-7

Bytes 0 through 7 represent the filename. The first byte of the
filename indicates the status of the filename. The status of a
filename can contain the following values:

OOH Filename never used. This is used to limit the length of
directory searches, for performance reasons.

05H Indicates that the first character of the filename actually
has an E5H character.

E5H Filename was used, but the file has been erased.

2EH The entry is for a directory. If the second byte is also
2EH, the cluster field contains the cluster number of this
directory's parent directory (OOOOH if the parent directory
is the root directory).

Any other character is the first character of a filename.

5-10

Bytes 8-10

These bytes indicate the filename extension.

Byte 11

This byte indicates the file's attribute. The attribute byte is
mapped as follows (values are in hexadecimal):

Note: The volume label and subdirectory bits of an
attribute cannot be changed using CHMOD.

The system files (IBMBIO.COM and IBMDOS.COM)
are marked as read - only, hidden, and system files.
Files can be marked hidden when they are created.
Also, the read-only, hidden, system, and archive
attributes may be changed through the CHMOD
function call.

OIH Indicates that the file is marked read-only. An attempt to
open the file for output using function call 3DH results in
an error code being returned. This value can be used
with other values below.

02H Indicates a hidden file. The file is excluded from normal
directory searches.

04H Indicates a system file. The file is excluded from normal
directory searches.

08H Indicates that the entry contains the volume label in the
first 11 bytes. The entry contains no other usable
information and may exist only in the root directory.

10H Indicates that the entry defines a subdirectory and is
excluded from normal directory searches.

20H Indicates an archive bit. The bit is set on whenever the
file has been written to and closed. It is used by the
BACKUP and RESTORE commands for determining
whether the file was changed since it was last backed up.
This bit can be used along with other attribute bits.

5-11

All other bits are reserved, and must be O.

Bytes 12-21

This is a reserved area by DOS.

Bytes 22-23

These bytes contain the time when the file was created or last
updated. The time is mapped in the bits as follows:

< 23 > < 22 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h m m m m m m x x x x x

Where:

hh is the binary number of hours (0-23)
mm is the binary number of minutes (0-59)
xx is the binary number of two-second increments

Note: The time is stored with the least significant byte
first.

5-12

Bytes 24-25

This area contains the date when the file was created or last
updated. The mmjddjyy are mapped in the bits as follows:

< 25 > <
15 14 13 12 11 10 9 8 7 6 5
Y Y Y Y Y Y Y m m m m

Where:

mm is 1-12
dd is 1-31
yy is 0-119 (1980-2099)

24 >
43210
d d d d d

Note: The date is stored with the least significant byte
first.

Bytes 26-27

This area contains the starting cluster number of the first
cluster in the file. The first cluster for data space on all fixed
disks and diskettes is always cluster 002. The cluster number is
stored with the least significant byte first.

Note: System programmers, see "File Allocation Table
(FAT)" for details about converting cluster numbers to
logical sector numbers.

Bytes 28-31

This area contains the file size in bytes. The first word
contains the low-order part of the size. Both words are stored
with the least significant byte first.

5-13

The Data Area

Allocation of space for a file (in the data area) is done only
when needed (it is not preallocated). The space is allocated
one cluster (unit of allocation) at a time. A cluster is always
one or more consecutive sector numbers, and all of the clusters
for a file are "chained" together in the File Allocation Table.

The clusters are arranged on disk to minimize head movement
for multisided media. All of the space on a track (or cylinder)
is allocated before moving on to the next track. This is
accomplished by using the sequential sector numbers on the
lowest-numbered head, then all the sector numbers on the next
head, and so on until all sectors on all heads of the track are
used. Then, the next sector to be used will be sector 1 on head
o of the next track.

For fixed disk, the size of the file allocation table and directory
are determined when FORMAT initializes it, and are based on
the size of the DOS partition.

5-14

For diskettes, the following table can be used:

Sides Sectorsl FAT DIR DIR Sectorsl
Track Size Sectors Entries Cluster

Sectors

1 (5 1/4) 8 1 4 64 1

2 (5 1/4) 8 1 7 112 2

1 (5 1/4) 9 2 4 64 1

2 (5 1/4) 9 2 7 112 2

2 (5 1/4) 15 7 14 224 1

2 (3 1/2) 9 3 7 112 2

2 (3 1/2) 18 9 14 224 1

Files in the data area are not necessarily written sequentially
on the disk. The data area space is allocated one cluster at a
time, skipping over clusters already allocated. The first free
cluster found is the next cluster allocated, regardless of its
physical location on the disk. This permits the most efficient
utilization of disk space because clusters made available by
erasing files can be allocated for new files. Refer back to the
description of the DOS File Allocation Table in this chapter
for more information.

5-f5

5-16

Chapter 6. DOS Interrupts and
Function Calls

Introduction 6-5
Version Specific InfOnilation 6-5
DOS Registers 6-8
Extended ASCII Codes 6-11
Interrupts 6-13

20H Program Terminate 6-13
21H Function Request 6-14
22H Terminate Address 6-14
23H Ctrl- Break Exit Address 6-14
24H Critical Error Handler Vector 6-15

Disk Errors 6-19
Handling of Invalid Responses (DOS 3.00 to

3.30) 6-20
Other Errors 6-21

25H Absolute Disk Read 6-24
26H Absolute Disk Write 6-25
27H Terminate but Stay Resident 6-26
28H - 2EH Reserved for DOS•.. 6-27
2FH Multiplex Interrupt 6-28

Function Codes 6-29
Prin t Error Codes 6-29
Example 2FH Handler 6-32
Installing the Handler 6-3 3

30H-3FH Reserved for DOS 6-33
Function Calls 6-34

Listing of Function Calls 6-35
DOS Internal Stack 6-38
Error Return Information 6-38

DOS 2.10 Error Codes 6-39
Get Extended Error (DOS 3.00 to 3.30) 6-40

ASCIIZ Strings 6-46
Network Paths 6-47
Network Access Rights 6-47
File Handles 6-48

6-1

Using DOS Functions 6-49
OOH Program Terminate 6-51
01H Keyboard Input 6-52
02H Display Output 6-53
03H Auxiliary Input 6-54
04H Auxiliary Output 6-55
05H Printer Output 6-56
06H Direct Console I 0 6-57
07H Direct Console Input Without Echo 6-59
08H Console Input Without Echo 6-60
09H Print String 6-61
OAH Buffered Keyboard Input 6-62
OBH Check Standard Input Status 6-63
OCH Clear Keyboard Buffer and Invoke a Keyboard

Function 6-64
ODH Disk Reset 6-65
OEH Select Disk 6-66
OFH Open File 6-67
10H Close File 6-69
11 H Search for First Entry 6-70
12H Search for Next Entry 6-72
13H Delete File 6-74
14H Sequential Read 6,-75
15H Sequential Write 6"76
16H Create File 6-77
17H Rename File 6"79
19H Current Disk 6-81
lAH Set Disk Transfer Address 6"82
IBH Allocation Table Information 6"83
1 CH Allocation Table Information for Specific
Device 6-84

21H Random Read 6-85
22H Random Write 6-86
23H File Size 6-87
24H Set Relative Record Field 6-88
25H Set Interrupt Vector 6-89
26H Create New Program Segment 6-90
27H Random Block Read 6-91
28H Random Block Write 6-93
29H Parse Filename 6-95
2AH Get Date 6-98
2BH Set Date 6-99
2CH Get Time 6-100

6-2

2DH Set Time 6-101
2EH Set/Reset Verify Switch 6-102
2FH Get Disk Transfer Address (DTA) 6-103
30H Get DOS Version Number 6-104
31H Terminate Process and Remain Resident 6-105
33H Ctrl-Break Check 6-107
35H Get Vector 6-108
36H Get Disk Free Space 6-109
38H (DOS 2.10) Return Country Dependent

Information 6-110
38H (DOS 3.00 to 3.30) Get or Set Country

Dependent Information 6-112
39H Create Subdirectory (MKDIR) 6-119
3AH Remove Subdirectory (RMDIR) 6-120
3BH Change the Current Directory (CHDIR) 6-121
3CH Create a File (CREAT) 6-122
3DH (DOS 2.10) Open a File 6-124
3DH (DOS 3.00 to 3.30) Open a File 6-126
3EH Close a File Handle 6-136
3FH Read from a File or Device 6-137
40H Write to a File or Device 6-139
41 H Delete a File from a Specified Directory

(UNLINK) 6-141
42H Move File Read Write Pointer (LSEEK) 6-143
43H Change File Mode (CHMOD) 6-145
44H I/O Control for Devices (IOCTL) 6-147

Get or Set Device Parameters 6-169
Read/Write Track on Logical Device 6-178
Format/Verify Track on Logical Drive

(IOCTL Write) 6-179
45H Duplicate a File Handle (DUP) 6-185
46H Force a Duplicate of a Handle (FORCDUP) . 6-186
47H Get Current Directory 6-188
48H Allocate Memory 6-190
49H Free Allocated Memory 6-192
4AH Modify Allocated Memory Blocks

(SETBLOCK) 6-193
4BH Load or Execute a Program (EXEC) 6-195
4CH Terminate a Process (EXIT) 6-200
4DH Get Return Code of a Subprocess (WAIT) .. 6-201
4EH Find First Matching File (FIND FIRST) ... 6-202
4FH Find Next Matching File (FIND NEXT) ... 6-204
54H Get Verify Setting 6-205

6-3

6-4

56H Rename a File•...... 6-206
57H Get/Set a File's Date and Time 6-208
59H (DOS 3.00 to 3.30) Get Extended Error 6-210
5AH (DOS 3.00 to 3.30) Create Unique File 6-213
5BH (DOS 3.00 to 3.30) Create New File 6-215
5CH (DOS 3.00 to 3.30) Lock/Unlock File Access 6-216
5EOOH (DOS 3.10 to 3.30) Get Machine Name ... 6-219
5E02H (DOS 3.10 to 3.30) Set Printer Setup 6-221
5E03H (DOS 3.10 to 3.30) Get Printer Setup 6-223
5F02H (DOS 3.10 to 3.30) Get Redirection List

Entry 6-225
5P03H (DOS 3.10 to 3.30) Redirect Device 6-227
5P04H (DOS 3.10 to 3.30) Cancel Redirection ... 6-230
62H (DOS 3.00 to 3.30) Get Program Segment

Prefix Address 6-232
65H (DOS 3.30) Get Extended Country Information 6-233
66H (DOS 3.30) Get/Set Global Code Page 6-237
67H (DOS 3.30) Set Handle Count 6-239
68H (DOS 3.30) Commit File 6-240

Introduction

This chapter contains:

• A list of the registers used by DOS.

• A list of the extended ASCII codes.

• A detailed description of all the interrupts and function
calls.

Version Specific Information

The following information in this chapter is specific to a
version of DOS:

Interrupts:

DOS version 2.10 supports interrupts 20H to 27H.

DOS versions 3.00 to 3.30 support interrupts 20H to 2FH.

6-5

Function Calls:

DOS version 2.10 supports function calls OOH to 57H.

DOS version 3.00 to 3.30 supports function calls OOH to 5CH
and 62H. This includes the following function calls for DOS
3.00.

• 3DH Open File; supports file sharing
• 4408H Check if Device is Removable
• 440BH Change Sharing Retry Count
• 59H Get Extended Error
• 5AH Create Temporary File
• 5BH Create New File
• 5CH Lock/Unlock File Access
• 62H Get Program Segment Prefix Address

DOS versions 3.10 to 3.30 support function calls OOH to 62H,
which include the following new function calls for DOS 3.10.

• 4409H Check if Device is Local or Remote
• 440AH Check if Handle is Local or Remote
• 5EOOH Get Machine Name
• 5E02H Set Printer Setup
• 5E03H Get Printer Setup
• 5F02H Get Redirection List Entry
• 5F03H Redirect Device
• 5F04H Cancel Redirection

The following new function calls are supported by DOS 3.20:

• 440DH Generic IOCTL
• 440EH Get Drive Assignment
• 440FH Set Next Logical Drive Letter

The following new function calls are supported by DOS 3.30:

• 440CH Code page Switching

• 65H Get Extended Country Information

• 66H Get/Set Global Code Page

6-6

• 67H Set Handle Count

• 68H Commit File

For DOS 3.00 to 3.30, when an interrupt 24H (Critical Error
Handler Vector) occurs, bits 3 - 5 of AH indicate which error
responses are valid. Also, these versions of DOS handle
invalid responses differently than DOS 2.10. Refer to
"Handling of Invalid Responses (DOS 3.00 to 3.30)" in this
chapter for more information.

6-7

DOS Registers

DOS uses the following registers, pointers, and flags when it
executes interrupts and function calls.

Register
Definition General Registers

AX Accumulator (16 - bit)
AH Accumulator high - order byte (8 - bit)
AL Accumulator low - order byte (8 - bit)

BX Base (16 - bit)
BH Base high - order byte (8 - bit)
BL Base low - order byte (8 - bit)

CX Count (16 - bit)
CH Count high - order byte (8 - bit)
CL Count low - order byte (8 - bit)

DX Data (16 - bit)
DH Data high - order (8 - bit)
DL Data low - order (8 - bit)

Flags OF,DF,IF,TF,SF,ZF,AF,PF,CF

6-8

Register
Definition Pointers

SP Stack pointer (16 - bit)

BP Base pointer (16 - bit)

IP Instruction pOinter
(16 - bit)

Register
Definition Segment Registers

CS Code segment (16 - bit)

DS Data segment (16 - bit)

SS Stack segment (16- bit)

ES Extra segment (16 - bit)

Register
Definition Index Registers

DI Destination index
(16- bit)

SI Stack index (16 - bit)

6-9

Register numbering convention: Each register is 16 bits long
and is divided into a high and low byte. Each byte is 8 bits
long. The bits are numbered from right to left. The low byte
contains bits 0 through 7 and the high byte contains bits 8
through 15. The chart below shows the hexadecimal values
assigned to each bit.

High Byte Low Byte

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Hex 8 4 2 1 8 421 8 4 2 1 8 4 2 1
value

6-10

Extended ASCII Codes

For certain keys or key combinations that cannot be
represen ted in standard ASCII code, an extended
ASCII code is returned. The extended ASCII code is
returned as the second byte of a 2 byte string.
Therefore, if the ASCII value returned is zero,
examine the second byte to obtain the extended
ASCII code.

The following table lists the extended ASCII codes
and their meanings.

Extended Meaning
ASCII
Code

3 NUL (null character)

15 Shift tab

16-25 Alt- Q, W, E, R, T, Y,
U, I, 0, P

30-38 Alt - Z, X, C, V, B, M,
N

59-68 Function keys F 1
through FlO

71 Home

72 Cursor up

73 Page up

75 Cursor left

77 Cursor right

79 End

80 Cursor down

81 Page down

6-11

Extended Meaning
ASCII
Code
82 Insert

83 Delete

84-93 Fll-F20 (Shift FI-FIO)

94-103 F2l-F30 (Ctrl Fl-FlO)

6-12

Interrupts

If you want a program to examine or set the contents
of any interrupt vector, use the DOS function calls
(35H and 25H) provided for those purposes, and
avoid referencing the interrupt vector locations
directly.

DOS reserves interrupt types 20H to 3FH for its use.
This means absolute memory locations 80H to FFH
are reserved by DOS. The defined interrupts are as
follows with all values in hexadecimal.

20U Program Terminate

Issue interrupt 20H to exit from a program. This
vector transfers to the logic in DOS to restore the
terminate address, the Ctrl - Break address, and the
critical error exit address to the values they had on
entry to the program. All file buffers are flushed and
all handles are closed. You should close all files
changed in length (see function call10H and 3EH)
before issuing this interrupt. If the changed file is
not closed, its length, date, and time are not recorded
correctly in the directory.

For a program to pass a completion code or an error
code when terminating, it must use either function
call 4CH (Terminate a Process) or 31H (Terminate
Process and Stay Resident). These two methods are
preferred over using interrupt 20H, and the codes
returned by them can be interrogated in batch
processing. See function call 4CH for information
on the ERRORLEVEL subcommand of batch
processing.

Important: Before you issue interrupt 20H, your
program must ensure that the CS register contains
the segment address of its program segment prefix.

6-13

218 Function Request

Refer to "Function Calls" on page 6-36

228 Terminate Address

Control transfers to the address at this interrupt
location when the program terminates. This address
is copied into the program's Program Segment Prefix
at the time the segment is created. Do not issue this
interrupt directly, the EXEC function call does this
for you.

238 Ctrl - Break Exit Address

6-14

If the user enters Ctrl - Break during standard input,
standard output, standard printer, or asynchronous
communications adapter operations, an interrupt
23H is executed. If BREAK is on, the interrupt 23H
is checked on most function calls (except calls 06H
and 07H). If the user written Ctrl - Break routine
saves all registers, it may end with a
return - from - interrupt instruction (IRET) to
continue program execution. If the user- written
interrupt program returns with a long return, the
carry flag is used to determine whether the program
will be aborted or not. If the carry flag is set, the
program is aborted, otherwise execution continues (as
with a return by IRET). If the user - written
Ctrl- Break interrupt uses functions calls 09H or
OAH, then "C, carriage - return and linefeed are
output. If execution is continued with an IRET, I/O
continues from the start of the line. When the
interrupt occurs, all registers are set to the value they
had when the original function call to DOS was
made. There are no restrictions on what the
Ctrl- Break handler is allowed to do, including DOS
function calls, as long as the registers are unchanged
if IRET is used.

If the program creates a new segment and loads in a
second program, which itself changes the
Ctrl - Break address, the termination of the second
program and return to the first causes the
Ctrl- Break address to be restored to the value it
had before execution of the second program. It is
restored from the second program's Program
Segment Prefix. Do not issue this interrupt directly.

24H Critical Error Handler Vector

When a critical error occurs within DOS, control is
transferred with an interrupt 24H. On entry to the
error handler, AH will have its bit 7 = 0 (high - order
bit) if the error was a disk error (probably the most
common occurrence), bit 7 = 1 if not.

BP:SI contains the address of a Device Header
Control Block from which additional information
can be retrieved (see next page).

6-15

Error
Code

0

1

2

3

4

5

6

7

8

9

A

B

C

6-16

The registers are set up for a retry operation, and an
error code is in the lower half of the DI register with
the upper half undefined. These are the error codes:

Error Name

Attempt to write on
write - protected
diskette

Unknown unit

Drive not ready

Unknown command

Data error (CRC)

Bad request
structure length

Seek error

Unknown media
type

Sector not found

Printer out of paper

Write fault

Read fault

General failure

The user stack is in effect and contains the following
from top to bottom:

IP
es
FLAGS
AX
BX
ex
DX
SI
DI
BP
DS
ES
IP
es
FLAGS

DOS registers from issuing INT 24H

User registers at time of original
INT 21H request

From the original interrupt 21H
from the user to DOS

The registers are set such that if an IRET is executed,
DOS responds according to (AL) as follows:

(AL) = 0 ignore the error.
= 1 retry the operation.
= 2 terminate the program

through interrupt 23H.
= 3 fail the system call

that is in progress.

Note: Be careful when choosing ignore as a
response because this causes DOS to believe
that an operation has completed successfully
when actually it may not have.

6-17

6-18

To return control from the critical error handler to a
user error routine, the following should be true:

Before an INT 24H occurs:

1. The user application initialization code should
save the INT 24H vector and replace the vector
with one pointing to the user error routine.

When the INT 24H occurs:

2. When the user error routine receives control, it
should push the flag register onto the stack, and
then execute a CALL FAR to the original INT
24H vector saved in step 1.

3. DOS gives the appropriate prompt, and waits for
the user input (Abort, Retry, Fail or Ignore).
After the user input, DOS returns control to the
user error routine at the instruction following the
CALL FAR.

4. The user error routine can now do any tasks
necessary. To return to the original application
at the point the error occurred, the error routine
needs to execute an IRET instruction. Otherwise,
the user error routine should remove the IP, CS,
and Flag registers from the stack. Control can
then be passed to the desired point.

Disk Errors

If it is a hard error on disk (AH bit 7 = 0), register
AL contains the failing drive number (0 = drive A,
etc.). AH bits 0 - 2 indicate the affected disk area
and whether it was a read or write operation, as
follows:

Bit 0 = 0 if read operation,
1 if write operation

Bits 2-1 (affected disk area)
o 0 DOS area
o 1 file allocation table
1 0 directory
1 1 data area

AH bits 3 - 5 indicate which responses are valid.
They are:

Bit 3 = 0 if FAIL is not allowed
= 1 if FAIL is allowed

Bit 4 = 0 if RETRY is not allowed
= 1 if RETRY is allowed

Bit 5 = 0 if IGNORE is not allowed
= 1 if IGNORE is allowed

6-19

6-20

Handling of Invalid Responses (DOS 3.00
to 3.30)

If IGNORE is specified (AL = 0) and IGNORE is
not allowed (bit 5 = 0), make the response FAIL
(AL=3).

If RETRY is specified (AL = 1) and RETRY is not
allowed (bit 4 = 0), make the response FAIL
(AL=3).

If FAIL is specified (AL = 3) and FAIL is not
allowed (bit 3 = 0), make the response ABORT
(AL=2).

Other Errors

If AH bit 7 = 1, the error occurred on a character
device, or was the result of a bad memory image of
the FAT. The device header passed in BP:SI can be
examined to determine which case exists. If the
attribute byte high - order bit indicates a block
device, then the error was a bad F AT. Otherwise,
the error is on a character device.

If a character device is involved, the contents of AL
are unpredictable, the error code is in DI as above.

Notes:

I. Before giving this routine control for disk errors,
all DOS versions from 3.00 to 3.30 perform five
retries, except when they are actually in the F AT
or a directory entry, then, they perform three
retries.

2. For disk errors, this exit is taken only for errors
occurring during an interrupt 21H function call.
It is not used for errors during an interrupt 25H
or 26H.

3. This routine is entered in a disabled state.

4. All registers must be preserved.

6-21

6-22

5. This interrupt handler should refrain from using
DOS function calls. If necessary, it may use calls
01 H through OCR, 30H, and 59R. Use of any
other call destroys the DOS stack and leaves
DOS in an unpredictable state.

6. The interrupt handler must not change the
contents of the device header.

7. If the interrupt handler handles errors itself
rather than returning to DOS, it should restore
the application program's registers from the
stack, remove all but the last three words on the
stack, then issue an IRET. This will return to
the program immediately after the INT 2lH that
experienced the error. Note that if this is done,
DOS will be in an unstable state until a function
call higher than OCH is issued; therefore, it is not
recommended.

The use of fail and then testing the extended
error code of the INT 21 H is the recommended
way to end a critical error.

8. For DOS 3.00 to 3.30, IGNORE requests
(AL = 0) are converted to FAIL for critical errors
that occur on FAT or DIR sectors.

9. Refer to "Error Return Information" on
page 6-40 and "Extended Error Codes" on
page 6-44 for information on how to obtain
additional error information.

10. For DOS 3.10 to 3.30, IGNORE requests
(AL = 0) are converted to FAIL requests for
network critical errors (50-79).

The device header pointed to by BP:SI is formatted
as follows:

DWORD Pointer to next device
(FFFFH if last device)

WORD Attributes:
Bit 15 = 1 if character device.

= 0 if block device
If bit 15 is 1:

Bit 0 = 1 if current standard
input

Bit 1 = 1 if current standard
output

Bit 2 = 1 if current NULL
device

Bit 3 = 1 if current CLOCK
device

Bit 14 is the IOCTL bit

WORD pointer to device driver
strategy entry point

WORD pointer to device driver
interrupt entry point

8 - BYTE character device named
field for block devices. The first
byte is the number of units.

To tell if the error occurred on a block or character
device, look at bit 15 in the attribute field (WORD
at BP:SI + 4).

If the name of the character device is desired, look at
the 8 bytes starting at BP:SI + 10.

6-23

25H Absolute Disk Read

6-24

This transfers control directly to the device driver.
On return, the original flags are still on the stack
(put there by the INT instruction). This is necessary
because return information is passed back in the
current flags. Be sure to pop the stack to prevent
uncontrolled growth. The request is as follows:

(AL)

(eX)
(DX)
(DS:BX)

Drive number (for example,
O=A or 1 =B)

Number of sectors to read
Beginning logical sector number
Transfer address

The number of sectors specified is transferred
between the given drive and the transfer address.
Logical sector numbers are obtained by numbering
each sector sequentially starting from track 0, head 0,
sector 1 (logical sector 0) and continuing along the
same head, then to the next head until the last sector
on the last head of the track is counted. Thus,
logical sector 1 is track 0, head 0, sector 2; logical
sector 2 is track 0, head 0, sector 3; and so on.
Numbering then continues with sector 1 on head ° of
the next track. Note that although the sectors are
sequentially numbered (for example, sectors 2 and 3
on track ° in the example above), they may not be
physically adjacent on disk, due to interleaving.
Note that the mapping is different from that used by
DOS version 1.10 for dual- sided diskettes.

All registers except the segment registers are
destroyed by this call. If the transfer was successful,
the carry flag (CF) is zero. If the transfer was not
successful CF = 1 and (AX) indicate the error as
follows. (AL) is the DOS error code that is the same
as the error code returned in the low byte of DI
when an interrupt 24H is issued, and (AH) contains:

80H Att~chment failed to respond
40H SEEK operation failed
08H Bad CRC on diskette read
04H Requested sector not found
03H Write attempt on write-

protected diskette
02H Error other than types listed above

268 Absolute Disk Write

This vector is the counterpart of interrupt 25H
above. Except that this i~ a write, the description
above applies.

6-25

270 Terminate but Stay Resident

6-26

This vector is used by programs that are to remain
resident when COMMAND. COM regains control.

DOS function call 31 H is the preferred method to
cause a program to remain resident, because this
allows return information to be passed, and allows a
program larger than 64K to remain resident. After
initializing itself, the program must set DX to its last
address plus one relative to the program's initial DS
or ES value (the offset at which other programs can
be loaded), then execute an interrupt 27H. DOS
then considers the program as an extension of DOS,
so the program is not overlaid when other programs
are executed. This concept is very useful for loading
programs such as user - written interrupt handlers
that must remain resident.

Notes:

1. This interrupt must not be used by .EXE
programs that are loaded into the high end of
memory.

2. This interrupt restores the interrupt 22H, 23H,
and 24H vectors in the same manner as interrupt
20H. Therefore, it cannot be used to install
permanently resident Ctrl - Break or critical error
handler routines.

3. The maximum size of memory that can be made
resident by this method is 64K.

4. Memory can be more efficiently used if the block
containing a copy of the environment is
deallocated before terminating. This can be done
by loading ES with the segment contained in 2C
of the PSP, and issuing function call 49H (Free
Allocated Memory).

5. DOS function call 4CH allows the terminating
program to pass a completion (or error) code to

DOS, which can be interpreted within batch
processing (see function call 31H).

6. Terminate but stay resident programs do not
close files.

28H - 2EH Reserved for DOS

These interrupts are reserved for DOS use.

6-27

2FH Multiplex Interrupt

6-28

Interrupt 2FH is the multiplex interrupt. A general
interface is defined between two processes. It is up
to the specific application using interrupt 2FH to
define specific functions and parameters.

Every multiplex interrupt handler is assigned a
specific mUltiplex number. The multiplex number is
specified in the AH register. The specific function
that the handler is to perform is specified in the AL
register. Other parameters are placed in the other
registers, as needed. The handlers are chained into
the interrupt 2FH interrupt vector. There is no
predefined method for assigning a multiplex number
to a handler. You must just pick one. To avoid a
conflict if two applications choose the same multiplex
number, the multiplex numbers used by an
application should be patchable.

The multiplex numbers AH = 0 through AH = 7FH
are reserved for DOS. Applications should use
multiplex numbers COH through FFH.

Note: When in the chain for interrupt 2FH, if
your code calls DOS or if you execute with
interrupts enabled, your code must be
reen tran tf recursi ve.

Function Codes

AH=l

AH = 1 is the resident part of PRINT.

The following table contains the function codes that
you can specify in AL to request the resident portion
of print to perform a specific function.

Function Codes Description

0 Get installed state

1 Submit file

2 Cancel file

3 Cance all files

4 Status

5 End of status

Print Error Codes

The following table contains the error codes that are
returned from the resident portion of print.

Error Codes Description

1 Invalid function

2 File not found

3 Path not found

4 Too many open files

5 Access denied

8 Queue full

9 Busy

12 Name too long

6-29

Error Codes Description

6-30

15 Invalid drive

AL = 0 Get Installed State

This call must be defined by all interrupt 2FH
handlers. It is used by the caller of the handler to
determine if the handler is present. On entry,
AL=O, AH= 1. On return, AL contains the
installed state as follows:

AL = 0 Not installed, O.K. to install

AL = 1 Not installed, not O.K. to install

AL = FF Installed

AL = 1 Submit File

On entry, AL = 1, AH = 1, and DS:DX points to the
submit packet. A submit packet contains the level
(BYTE) and a pointer to the ASCIIZ string
(DWORD in offset segment form). The level value
for DOS 3.10 to 3.30 is O. The ASCIIZ string must
contain the drive, path, and filename of the file you
want to print. The filename cannot contain global
filename characters.

AL = 2 Cancel File

On entry, AL=2, AH= 1, and DS:DX points to the
ASCIIZ string for the print file you want to cancel.
Global filename characters are allowed in the
filename.

AL = 3 Cancel all Files

On entry, AL = 3 and AH = 1.

AL=4 Status

This call holds the jobs in the print queue so that
you can scan the queue. Issuing any other code
releases the jobs. On entry, AL=4, AH= 1. On
return, DX contains the error count. The error
count is the number of consecutive failures PRINT
had while trying to output the last character. If
there are no failures, the number is zero. DS:SI
points to the print queue. The print queue consists
of a series of filename entries. Each entry is 64 bytes
long. The first entry in the queue is the file currently
being printed. The end of the queue is marked by a
queue entry having a null as the first character.

AL = 5 End of Status

Issue this call to release the queue from call 4. On
entry, AL = 5 and AH = 1. On return, AX contains
the error codes. For information on the error codes
returned, refer to "Print Error Codes" on page 6-29.

AL = F8 - FF Reserved by DOS

AH=2

AH=2 is the resident part of ASSIGN.
The Get Installed State function
(AL = 0) is supported.

AH=10H

AH = 10H is the resident part of SHARE.
The GET Installed State function
(AL = 0) is supported.

AH=B7H

AH = B7 is the resident part of APPEND.
The Get Installed State function is
also supported.

6-31

Example 2FH Handler

MYNUM DB x ; x = The specific AH
; mUltiplex number.

INT_2F_NEXT
INT_2F:

DD ? ; Chain location

ASSUME DS:NOTHING,ES:NOTHING,SS:NOTHING

CMP
JE
JMP

MINE:

CMP
JB
IRET

OR
JNE

MOV
IRET

6-32

AH,MYNUM
MINE
INT_2F_NEXT

AL,OF8H
DO_FUNC

AL,AL

; Chain to next
;2FH Handler

IRET on reserved
functions

NON_INSTALL Non Get Installed
; State request
AL,OFFH Say ~'m here

All done

Installing the Handler

MOV
XOR
INT

AH,MYNUM
AL,AL
2FH Ask if already

installed
OR AL,AL
JZ OK INSTALL

BAD INSTALL: Handler already
installed

MOV
MOV
INT

MOV
MOV
MOV
MOV
MOV
INT

AL,2FH
AH,GET_INTERRUPT VECTOR
21H

WORD PTR INT_2F NEXT+2,ES
WORD PTR INT_2F_NEXT,BX
DX,OFFSET INT_2F
AL,2FH
AH,SET_INTERRUPT_VECTOR
21H

30H-3FH Reserved for DOS

Install my
handler

Get multiplex
vector

Set multiplex
vector

These interrupts are reserved for DOS use.

6-33

Function Calls

6-34

DOS provides a wide variety of function calls for
character device I/O, file management, memory
management, date and time functions, execution of
other programs, and others. They are grouped as
follows (call numbers are in hexadecimal):

Hex Values Meaning

0 Program terminate

l-C Traditional character device I/O

D-24 Traditional file management

25-26 Traditional nondevice functions

27-29 Traditional file management

2A-2E Traditional nondevice functions

2F-38 Extended function group

39-3B Directory group

3C-46 Extended file management group

47 Directory group

48-4B Extended memory management group

4C-4F Extended function group

54-57 Extended function group

59-5C Extended function group

5E-5F Network function group

62 Extended function group

Listing of Function Calls

OOH Program terminate
01H Keyboard input
02H Display output
03H Auxiliary input
04H Auxiliary output
05H Printer output
06H Direct console I/O
07H Direct console input without echo
08H Console input without echo
09H Print string
OAH Buffered keyboard input
OBH Check standard input status
OCH Clear keyboard buffer, invoke a keyboard

function
ODH Disk reset
OEH Select disk
OFH Open file
10H Close file
IIH Search for first entry
12H Search for next entry
13H Delete file
14H Sequential read
15H Sequential write
16H Create file
17H Rename file
18H Reserved by DOS
19H Current disk
lAH Set disk transfer address
IBH Allocation table information
lCH Allocation table information for specific device
IDH Reserved by DOS
lEH Reserved by DOS
IFH Reserved by DOS
20H Reserved by DOS
21H Random read
22H Random write
23H File size
24H Set relative record field
25H Set interrupt vector
26H Create new program segment
27H Random block read

6-35

6-36

28H Random block write
29M Parse filename
2Ao Get date
2DH Set date
2CH Get time
2DH Set time
2EH Set/reset verify switch
2FH Get disk transfer address
30H Get DOS version number
31H Terminate process and remain resident
32H Reserved by DOS
33H Ctr1-Bn~ak check
34H Reserved by DOS
35H Get vector
36H Get disk free space
37H Reserved by DOS
38H Set or get country dependent information
39H Create subdirectory (MKDIR)
3AH Remove subdirectory (RMDIR)
3DH Change current directory (CHDIR)
3CH Create a file (CREAT)
3DH Open a file
3EH Close a file handle
3FH Read from a file or device
40H W rite to a file or device
41H Delete a file from a specified directory

(U"NLINK)
42H Move file read/write pointer (tSEEK)
43H Change file mode (CHMOD)
44H I/O control for devices (IOCTL)
45H Duplicate a file handle (DUP)
46H Force a duplicate of a file handle (FORCDUP)
47H Get current directory
48H Allocate memory
49H Free allocated memory
4AH Modify allocated memory blocks

(SETBLOCK)
4DH Load or execute a program (EXEC)
4CH Terminate a process (EXIT)
4DH Get return code of a subprocess (WAIT)
4EH Find first matching file (FIND FIRST)
4FH Find next matching file
50H Reserved by DOS

51H Reserved by DOS
52H Reserved by DOS
53H Reserved by DOS
54H Get verify setting
55H Reserved by DOS
56H Rename a file
57H Get/set a file's date and time
58H Used internally by DOS
59H Get extended error
5AH Create Unique file
5BH Create new file
5eH Lock/unlock file access
5DH Reserved by DOS
5EOOH Get machine name
5E02H Set printer setup
5E03H Get printer setup
5F02H Get redirection list entry
5F03H Redirect device
5F04H Cancel redirection
60H Reserved by DOS
61H Reserved by DOS
62H Get PSP address
63H Reserved by DOS
64H Reserved by DOS
65H Get Extended Country Information
66H Get/Set Global Code Page
67H Set Handle Count
68H Commit File

6-37

DOS Internal Stack

When DOS takes control, it switches to an internal
stack. User registers are preserved unless
information is passed back to the requester as
indicated in the specific requests. The user stack
needs to be sufficient to accommodate the interrupt
system. It is recommended that the user stack be
200H in addition to the user needs.

Error Return Information

6-38

Many of the function calls return the carry flag clear
if the operation was successful. If an error condition
was encountered, the carry flag is set.

If you are using DOS version 2.10, check the error
code returned. F or a list of error codes returned by
function calls when you are using DOS 2.10, refer to
"DOS 2.10 Error Codes" in this chapter.

If you are using DOS versions 3.00 to 3.30, use the
Get Extended Error function call to return additional
information about the error. For more information,
refer to "Get Extended Error" in this chapter.

Function
Call
Number

38H

39H

3AH

3BH

3CH

3DH

3EH

3FH

40H

41H

42H

43H

DOS 2.10 Error Codes

If you are using function calls 38H - 57H with DOS
version 2.10, to check if an error has occurred, check
for the following error codes in the AX register.

Error Function Error
Codes Call Codes

2 44H 1,3,5,6

3,5 45H 4,6

3,5,15 46H 4,6

3 47H 15

3,4,5 48H 7,8

2,3,4,5,12 49H 7,9

6 4AH 7,8,9

5,6 4BH 1,2,3,5,8,10,11

5,6 4EH 2,3,18

2,3,5 4FH 18

1,6 56H 2,3,5,17

1,2,3,5 57H 1,6

6-39

6-40

Get Extended Error (DOS 3.00 to 3.30)

The Get Extended Error function call (59H) is
intended to provide a common set of error codes and
to supply more extensive information about the error
to the application. The information returned from
function call 59H, in addition to the error code, is
the error class, the locus, and the recommended
action. The error class provides information about
the error type (hardware, internal, system, etc.). The
locus provides information about the area involved
in the failure (serial device, block device, network, or
memory). The recommended action provides a
default action for programs that do not understand
the specific error code.

Programs written from now on are expected to use
the extended error support both from interrupt 24 H
hard error handlers and after any interrupt 21H
function calls.

FCB function calls report an error by returning FFH
in AL. Handle function calls report an error by
setting the carry flag and returning the error code in
AX. Interrupt 21H handle function calls for DOS
2.00 and 2.10 continue to return the error codes
1 - 18. Interrupt 24H handle function calls continue
to return error codes 0 - 12. But the application can
obtain any of the error codes listed in the extended
error codes table by issuing function call 59H.
Handle function calls, for DOS 3.00 to 3.30, can
return any of the error codes. However, it is
recommended that the function call is followed by
function call 59H to obtain the error class, the locus,
and the recommended action.

In order to create a common error table, error codes
0- 12 from interrupt 24H correspond to errorcodes
19 - 31 in the extended error codes table. When a
F AIL option is specified in the interrupt 24H error
handler, issuing function call 59H returns error code
83 (FAIL on interrupt 24H).

The Extended Error Codes are grouped as follows:

o No error
01-18 Error mappings for DOS 2.00/2.10 INT 21H

errors
19-31 Error mappings for DOS 2.00/2.10 INT 24H

errors
32 - 88 Errors for DOS 3.00 to 3.30

Note: Do not code to specific error codes. If
you encounter an extended error code you do
not recognize, perform the recommended
action. Refer to "Actions" later in this chapter
for more information.

6-41

6-42

Extended Error Codes

Many of the function calls return the carry flag clear
if the operation was successful. If an error condition
was encountered, the carry flag is set. To obtain
information about the error, such as the error class,
locus, and recommended action, issue the Get
Extended Error function call 59H.

Code Meaning
1 Invalid function number
2 File not found
3 Path not found
4 Too many open files (no handles left)
5 Access denied
6 Invalid handle
7 Memory control blocks destroyed
8 Insufficient memory
9 Invalid memory block address
10 Invalid environment
11 Invalid format
12 Invalid access code
13 Invalid data
14 Reserved
15 Invalid drive was specified
16 Attempt to remove the current directory
17 Not same device
18 No more files
19 Attempt to write on write-protected diskette
20 Unknown unit
21 Drive not ready
22 Unknown command
23 Data error (CRC)
24 Bad request structure length
25 Seek error
26 Unknown media type
27 Sector not found
28 Printer out of paper
29 Write fault
30 Read fault
31 General failure
32 Sharing violation
33 Lock violation

34 Invalid disk change
35 FCB unavailable
36 Sharing buffer overflow
37 - 49 Reserved
50 Network request not supported
51 Remote computer not listening
52 Duplicate name on network
53 Network name not found
54 Network busy
55 Network device no longer exists
56 Net BIOS command limit exceeded
57 Network adapter hardware error
58 Incorrect response from network
59 Unexpected network error
60 Incompatible remote adapter
61 Print queue full
62 Not enough space for print file
63 Prin t file was deleted
64 Network name was deleted
65 Access denied
66 Network device type incorrect
67 Network name not found
68 Network name limit exceeded
69 Net BIOS session limit exceeded
70 Temporarily paused
71 Network request not accepted
72 Print or disk redirection is paused
73 - 79 Reserved
80 File exists
81 Reserved
82 Cannot make directory entry
83 Fail on INT 24
84 Too many redirections
85 Duplicate redirection
86 Invalid password
87 Invalid parameter
88 Network data fault

6-43

6-44

Error Classes

This value provides information about the type of
error.

Value
1
2

3
4

5

6

7

8
9

10
11

12

13

Description
Out of Resource: Out of space, channels, etc.
Temporary Situation: Something that is
expected to "go away" with time. Note that
this is not an error condition, but a
"situation" such as file locked, etc.
Authorization: Permission problem.
Internal: Internal error in system software. A
situation judged to be a system software bug
rather than a user or system failure.
Hardware Failure: A serious problem not the
fault of user program.
System Failure: Serious failure of system
software. Not directly the fault of the user.
For example, configuration files missing or
wrong.
Application Program Error: Inconsistent
requests, etc.
Not Found: File/item not found.
Bad Format: File/item of invalid format, type,
or otherwise invalid or unsuitable.
Locked: File/item' interlocked.
Media: Media failure (wrong disk, CRC
error ...). Wrong disk in drive, bad spot on
media, etc.
Already Exists: Collision with existing item,
such as trying to declare a machine name that
already exists.
Unknown: Classification doesn't exist or is
inappropriate.

Actions

Note that these are recommended actions. In the
most critical cases, the application will analyze the
error codes and take specific action. These defaults
are for programs that do not understand the specific
error code.

Value
1

2

3

4

5

6
7

Description
Retry: Retry a few times, then prompt user
to determine if the program should continue
or be aborted.
Delay Retry: Retry after pause (a few times),
then prompt user to determine if the program
should continue or be aborted.
User: Ask user to reenter input. Typically, a
bad drive letter or bad filename was presented
in the system call. Naturally, if the value was
"built into" the program and not directly
keyed in by the user, then the program would
not, in fact, "ask the user to reenter input."
This action means that if the data came from
a user, the best action is to tell him to try
again.
Abort: Abort application with cleanup. The
application cannot proceed, but the system is
sufficiently healthy that the application should
try an orderly shutdown.
Immediate Exit: Abort application
immediately, skip cleanup. We do not
recommend that the application try to close
files, update indexes, but that it exit as soon
as possible.
Ignore: Ignore.
Retry After User Intervention: The user needs
to perform some action (like taking out a
diskette and putting in a different one); then
the operation should be retried.

6-45

Locus

This value provides additional information to help
locate the area involved in the failure.

Value
1
2

3
4
5

Description
Unknown: Nonspecific. Not appropriate.
Block Device: Related to random access mass
storage (disk).
Net: Related to the network.
Serial Device: Related to serial devices.
Memory: Related to random access memory.

ASCIIZ Strings

6-46

Several of the function calls accept an ASCIIZ string
as input. This consists of an ASCII string containing
an optional drive specifier, followed by a directory
path and in some cases a filename. The string is
terminated by a byte of binary zeros. For example:

B:\LEVEL1\LEVEL2\FILEl

followed by a byte of zeros.

The maximum size of an ASCIIZ string is 128 bytes,
including the drive, colon, and null terminator.

Note: All function calls that accept path
names accept a forward slash or a backslash as
a path separator character.

Network Paths

For DOS 3.10 to 3.30, several of the function calls
accept a network path as input if the IBM PC Local
Area Network is loaded. A network path consists of
an ASCII string containing a computer name,
followed by a directory path, and in some cases a
filename. The string cannot contain a drive specifier.
The string is terminated by a byte of binary zeros.
For example,

\\SERVER1\LEVEL1\LEVEL2\FILEl

All function calls that accept an ASCIIZ path as
input, also accept a network path as input. Two
function calls that do not accept a network path as
input are Change Current Directory (3BH) and Find
First Matching File (4EH).

Network Access Rights

The explanation of some function calls contains a
section under remarks called "Network Access
Rights." Any information under "Network Access
Rights" tells you the access requirements for a
directory that a computer on the network needs to be
able to execute the function call when using DOS
3.10 to 3.30. For example, suppose you want to
execute function call 5BH (Create New File). You
must have Read/Write/Create or Write/Create access
to the directory to be able to create a file. If you
have Read Only or Write Only access (no Create
access), you cannot create a file in the directory.

6-47

File Handles

6-48

The extended function calls (3CH -62H) that
supporting files or devices use an identifier known as
a "handle." When you create or open a file or device
with these calls, a 16-bit binary value is returned in
AX. This is the handle (sometimes known as a
token) that you will use in referring to the file after
it's been opened.

The following handles are predefined by DOS and
can be used by your program. You do not need to
open them before using them:

Hex Value Meaning

0000 Standard input device. Input can be
redirected.

0001 Standard output device. Output can be
redirected.

0002 Standard error output device. Output
cannot be redirected.

0003 Standard auxiliary device.

0004 Standard printer device.

U sing DOS Functions

Most of the function calls require input to be passed
to them in registers. After setting the proper register
values, the function may be used in one of these
ways:

1. Place the function number in AH and execute a
long call to offset 50H in your program segment
prefix.

2. Place the function number in AH and issue
interrupt type 21H. This is the preferred method
of using DOS function calls.

3. There is an additional mechanism provided for
preexisting program.s that were written with
different calling conventions. This method should
be avoided for all new programs. The function
number is placed in the CL register and other
registers are set according to the function
specification. Then an intrasegment call is made
to location 5 in the current code segment. That
location contains a long call to the DOS function
dispatcher. Register AX is always destroyed if
this mechanism is used; otherwise, it is the same
as normal function calls. This method is valid
only for function calls (OOH-24H).

6-49

6-50

Notes:

1. All FCB function calls do not allow invalid
characters (ODH-29H).

2. Device names cannot end in a colon (:).

3. The contents of the AX register may be altered
by any of the function calls. Even if no error
code is returned in AX, the user cannot be
guaranteed that AX is unchanged.

4. Function calls 01H through OCR use the
standard devices listed in the "File Handles"
section. Refer to "File Handles" on page 6-48
for more information.

Purpose:

On
Entry

AH

CS

On
Return

Remarks:

OOH
Program Terminate

Terminates the execution of a program.

Register
Contents

OOH

Points to PSP

Register
Contents

NONE

The terminate, Ctrl - Break, and critical error exit
addresses are restored to the values they had on entry
to the terminating program, from the values saved in
the program segment prefix. All file buffers are
flushed and the handles opened by the process are
closed. Any files that have changed in length and
not closed are not recorded properly in the directory.
Control transfers to the terminate address. This call
performs exactly the same function as interrupt 20H.
It is the program's responsibility to ensure that the
CS register contains. the segment address of its
program segment prefix control block before calling
this function.

6-51

OlH
Keyboard Input

Purpose:

On
Entry

AH

On
Return

AL

Remarks:

6-52

Waits for a character to be read at the standard
input device (unless one is ready), then echoes the
character to the standard output device and returns
the character in AL.

Register
Con~ents

OlH

Register
Contents

Character from the standard
input device

The character is checked for a Ctrl- Break. If
Ctrl- Break is detected, an interrupt 23H is executed.

Note: For function call OlH, extended ASCII
codes require two function calls. The first call
returns OOH as an indicator that the next call
will return an extended code. Refer to
"Extended ASCII Codes" in the beginning of
this chapter for a table of Extended ASCII
codes.

Purpose:

On
Entry

AH

DL

On
Return

Remarks:

02H
Display Output

Outputs the character in DL to the standard output
device.

Register
Contents

02H

Character

Register
Contents

NONE

If the character in DL is a backspace (08), the cursor
is moved left on position (nondestructive). If a
Ctrl - Break is detected after the output, an interrupt
23H is executed.

6-53

03H
Auxiliary Input

Purpose:

On
Entry

AH

On
Return

AL

Remarks:

6-54

Waits for a character from the standard auxiliary
device, then returns that character in AL.

Register
Contents

03H

Register
Contents

Character from the auxiliary
device

Auxiliary (AUX, COM1, COM2, COM3 and COM4)
support is unbuffered and noninterrupt driven.

At startup, DOS initializes the first auxiliary port to
2400 baud, no parity, one stop bit, and 8-bit word.

The auxiliary function calls (03H and 04H) do not
return status or error codes. For greater control, it is
recommended that you use the ROM BIOS routine
(interrupt 14H) or write an AUX device drivers and
use IOCTL.

Purpose:

On
Entry

AH

DL

On
Return

04H
Auxiliary Output

Outputs the character in DL to the standard
auxiliary device.

Register
Contents

04H

Character

Register
Contents

NONE

6-55

05H
Printer Output

Purpose:

On
Entry

AH

DL

On
Return

6-56

Outputs the character in DL to the standard printer
device.

Register
Contents

05H

Character

Register
Contents

NONE

Purpose:

On
Entry

AH

DL

On
Return

AL

Remarks:

068
Direct Console I 0

Waits for a character from the standard input device
if one is ready.

Register
Contents

06H

FFH, for console input
OOH-FEH, for console output

Register
Contents

See description below

If DL is FFH, AL returns with the zero flag clear
and an input character from the standard input
device if one is ready. If a character is not ready, the
zero flag will be set.

If DL is not FFH, DL is assumed to have a valid
character that is output to the standard output
device. This function does not check for Ctrl-Break,
or Ctrl-PrtSc.

Note: For function call 06H, extended ASCII
codes require two function calls. The first call
returns OOH as an indicator that the next call
will return an extended code. Refer to
"Extended ASCII Codes" in the beginning of

6-57

06H
Direct Console I 0

6-58

this chapter for a table of Extended ASCII
codes.

Purpose:

On
Entry

AH

On
Return

AL

Remarks:

07H
Direct Console Input Without Echo

Waits for a character to be read at the standard
input device (unless one is ready), then returns the
character in AL.

Register
Contents

07H

Register
Contents

Character from standard input
device

As with function call 06H, no checks are made on
the character.

6-59

08H
Console Input Without Echo

Purpose:

On
Entry

AH

On
Return

AL

Remarks:

6-60

Waits for a character to be read at the standard
input device (unless one is ready) and returns the
character in AL.

Register
Contents

08H

Register
Contents
Character from standard input
device

The character is checked for Ctrl- Break. If
Ctrl- Break is detected, an interrupt 23H is executed.

Note: For function call 08H, extended ASCII
codes require two function calls. . The first call
returns OOH as an indicator that the next call
will return an extended code. Refer to
"Extended ASCII Codes" in the beginning of
this chapter for a table of Extended ASCII
codes. .

Purpose:

On
Entry

AH

DS:DX

On
Return

Remarks:

09H
Print String

Outputs the characters in the print string to the
standard output device.

Register
Contents

09H

Pointer to the character string

Register
Contents

NONE

The character string in memory must be terminated
by a $ (24H). Each character in the string is output
to the standard output device in the same form as
function call 02H.

6-61

OAH
Buffered Keyboard Input

Purpose:

On
Entry
AH

DS:DX

On
Return

Remarks:

6-62

Reads characters from the standard input device and
places them in the buffer beginning at the third byte.

Register
Contents
OAH

Pointer to an input buffer

Register
Contents

NONE

The first byte of the input buffer specifies the
number of characters the buffer can hold. This value
cannot be zero. Reading the standard input device
and filling the buffer continues until Enter is read. If
the buffer fills to one less than the maximum number
of characters it can hold, each additional character
read is ignored and causes the bell to ring, until
Enter is read. The second byte of the buffer is set to
the number of characters received, excluding the
carriage return (ODH), which is always the last
character.

Purpose:

On
Entry

AH

On
Return

AL

Remarks:

OBH
Check Standard Input Status

Checks if there is a character available from the
standard input device.

Register
Contents

OBH

Register
Contents

FFH If the character is
available from the
standard input device

OOH If no character is
available from the
standard input device

If a character is available from the standard input
device, AL is FFH. Otherwise, AL is OOH. If a
Ctrl- Break is detected, an interrupt 23H is executed.

6-63

OCH
Clear Keyboard Buffer and Invoke a
Keyboard Function

Purpose:

On
Entry

AH

AL

On
Return

Remarks:

6-64

Clears the standard input buffer of any pretyped
characters, then executes the function call number in
AL (only OIH, 06H, 07H, 08H, and OAH are
allowed).

Register
Contents

OCH

Function number

Register
Contents

NONE

This forces the system to wait until a character is
typed.

Purpose:

On
Entry

AH

On
Return

Remarks:

ODD
Disk Reset

Writes file buffers that have been modified to the
disk.

Register
Contents

ODH

Register
Contents

NONE

It is still necessary to close all open files to correctly
update the disk directory.

6-65

OEH
Select Disk

Purpose:

On
Entry

AH

DL

On
Return

AL

Remarks:

6-66

Selects the drive specified in DL (0 = A, 1 ='B, etc.)
(if valid) as the default drive.

Register
Contents

OEH

Drive number (0 = A, 1 = B,
etc.)

Register
Contents

Total number of drives

The number of unique drive letters that can be
referenced (total of diskette and fixed disk drives) is
returned in AL. The value in AL is equal to the
value of LASTDRIVE in CONFIG.SYS or the total
number of installed devices, whichever is greater.
For DOS 3.00 to 3.30, the minimum value returned
in AL is 5. If the system has only one diskette drive,
it is counted as two to be consistent with the
philosophy of thinking of the system as having
logical drives A and B.

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

OF"
Open File

Searches the current directory for the named file and
AL returns FFH if it is not found. If it is found, AL
returns OOH and the FCB is filled as described below.

Register
Contents

OFH

Pointer to an unopened FCB

Register
Contents

OOH If file opened
FFH If file not opened

If the drive code was 0 (default drive), it is changed
to the actual drive used (1 = A, 2 = B, etc.). This
allows changing the default drive without interfering
with subsequent operations on this file. The current
block field (FCB bytes C-D) is set to zero. The size
of the record to be worked with (FCB bytes E-F) is
set to the system default of 80H. The size of the file
and the date are set in the FCB from information
obtained from the directory. You can change the
default value for the record size (FCB bytes E-F) or
set the random record size and! or current record
field. Perform these actions after the open but
before any disk operations.

6-67

OFH
Open File

6-68

The file is opened in compatibility mode. For
information on compatibility mode, refer to function
call 3DH in this chapter.

Purpose:

On
Entry

AR

DS:DX

On
Return

AL

Remarks:

Closes a file after a file write.

Register
Contents

lOR

Pointer to an opened FCB

Register
Contents

OOH If the file is found
FFH If the file is not found in

the current directory

IOU
Close File

This function call must be done on open files that
are no longer needed, and after file writes to ensure
all directory information is updated. If the file is not
found in its correct position in the current directory,
it is assumed the diskette was changed and AL
returns FFH. Otherwise, the directory is updated to
reflect the status in the FCB, the buffers for that file
are flushed, and AL returns OOH.

6-69

IlH
Search for First Entry

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

6-70

Searches for the first matching filename.

Register
Contents

IIH

Pointer to an unopened FeB

Register
Contents

OOH If matching filename
found

FFH If matching filename
was not found

The current disk directory is searched for the first
matching filename. If none are found, AL returns
FFH. For DOS 2.10, question marks (?)s are
allowed in the filename. For DOS 3.00 to 3.30,
global filename characters are allowed. If a matching
filename is found, AL returns OOH and the locations
at the disk transfer address are set as follows:

• If the FeB provided for searching was an
extended FeB, then the first byte at the disk
transfer address is set to FFH followed by 5
bytes of zeros, then the attribute byte from the
search FeB, then the drive number used (1 = A,
2 = B, etc.), then the 32 bytes of the directory
entry. Thus, the disk transfer address contains a

118
Search for First Entry

valid unopened extended FCB with the same
search attributes as the search FCB.

• If the FCB provided for searching was a standard
FCB, then the first byte is set to the drive
number used (1 = A, 2 = B), and the next 32 bytes
contain the matching directory entry. Thus, the
disk transfer address contains a valid unopened
normal FCB.

Notes:

If an extended FCB is used, the following search
pattern is used:

1. If the FCB attribute byte is zero, only normal file
entries are found. Entries for volume label,
sub-directories, hidden and system files, are not
returned.

2. If the attribute field is set for hidden or system
files, or directory entries, it is to be considered as
an inclusive search. All normal file entries plus all
entries matching the specified attributes are
returned. To look at all directory entries except
the volume label, the attribute byte may be set to
hidden + system + directory (all 3 bits on).

3. If the attribute field is set for the volume label, it
is considered an exclusive search, and only the
volume label entry is returned.

The attribute bits are defined in "DOS Disk
Directory" on page 5-10.

6-71

12H
Search for Next Entry

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

6-72

Searches the current directory for the next matching
filename.

Register
Contents

12H

Pointer to an the unopened
FeB specified from the
previous Search First (11 H) or
Search Next (12H).

Register
Contents

OOH If matching filename
found

FFH If matching filename not
found

After a matching filename has been found using
function call IIH, function 12H may be called to
find the next match to an ambiguous request. For
DOS 2.10, question marks (?)s are allowed in the
filename. For DOS 3.00 to 3.30, global filename
characters are allowed.

The DT A contains information from the previous
Search First or Search Next. All of the FeB except
for the name/extension field is used to keep
information necessary for continuing the search, so

12H
Search for Next Entry

between a previous function 11 H or 12H call and
this one.

6-73

13H
Delete File

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

6-74

Deletes all current directory entries that match the
specified filename. The specified filename cannot be
read - only.

Register
Contents

13H

Pointer to an unopened FCB

Register
Contents

OOH File deleted
FFH If directory entry match

was not found

All matching current directory entries are deleted.
The global filename character "?" is allowed in the
filename. If no directory entries match, AL returns
FFH; otherwise AL returns OOH.

If the file is specified in read - only mode, the file is
not deleted.

Note: Close open files before deleting them.

Network Access Rights: Requires Create access
rights.

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

14H
Sequential Read

Loads the record addressed by the current block
(FCB bytes C-D) and the current record (FCB byte
IF) at the disk transfer address (DT A), then the
record address is incremented.

Register
Contents

14H

Pointer to an opened FCB

Register
Contents

OOH If read was successfully
completed

OIH If EOF (no data read)
02H If the read would have

caused a wrap or
overflow because the
DT A was too small (The
read was not completed.)

03H If EOF (a partial record
was read and filled out
with zeros)

The length of the record is determined by the FCB
record size field.

Network Access Rights: Requires Read access
rights.

6-75

15H
Sequential Write

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

6-76

Writes the record addressed by the current block and
record fields (size determined by the FCB record size
field) from the disk transfer address. If records are
less than the sector size, the record is buffered for an
eventual write when a sector's worth of data is
accumulated. Then the record address is
incremented.

Register
Contents

I5H

Pointer to an opened FCB

Register
Contents

OOH If write was successfully
completed

01 H If diskette is full (write
canceled)

02H If DTA too small (write
canceled)

If the file is specified in read - only mode, the
sequential write is not performed.

Network Access Rights: Requires Write access
rights.

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

160
Create File

Searches the current directory of the specified drive
for a matching entry.

Register
Contents

16H

Pointer to an unopened FeB

Register
Contents

OOH If file created (matching
entry found or empty
entry found)

FFH If file not created (full
directory or disk and no
matching directory entry)

If a matching entry is found it is reused. If no match
is found, the directory is searched for an empty
entry. If a match is found, the entry is initialized to
a zero-length file, the file is opened (see function call
OFH), and AL returns OOH.

6-77

16H
Create File

6-78

The file may be marked hidden during its creation by
using an extended FCB containing the appropriate
attribute byte.

Network Access Rights: Requires Create access
rights.

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

17H
Rename File

Changes every matching occurrence of the first
filename in the current directory of the specified
drive to the second (with the restriction that two files
cannot have the same name and extension.)

Register
Contents

17H

Pointer to a modified FCB

Register
Contents

OOH If file renamed (matching
filename found)

FFH If no matching filename
found or if an attempt to
rename an existing
filename

The modified FCB has a drive code and filename in
the usual position, and a second filename starting 6
bytes after the first (DS:DX + IlH) in what is
normally a reserved area. If "?"s appear in the
second name, then the corresponding positions in the
original name are unchanged.

6-79

17H
Rename File

6-80

If the file is specified in read - only mode, the file is
not renamed.

Network Access Rights: Requires Create access
rights.

Purpose:

On
Entry

AH

On
Return

AL

Remarks:

19H
Current Disk

Determines the current default drive.

Register
Contents
19H

Register
Contents

Current default drive (0 = A,
1 = B, etc.)

AL returns with the code of the current default drive
(0 = A, 1 = B, etc.).

6-81

IAH
Set Disk Transfer Address

Purpose:

On
Entry

AH

DS:DX

On
Return

Remarks:

6-82

Sets the disk transfer address to DS:DX.

Register
Contents

lAH

Disk transfer address

Register
Contents

NONE

The area defined by this call is from the address in
DS:DX to the end of the segment in DS. DOS does
not allow disk transfers to wrap around within the
segment, or overflow into the next segment. If you
do not set the DT A, the default DT A is offset 80H
in the program segment prefix.

Note: You can get the DT A using function
ca1l2FH.

Purpose:

On
Entry

AH

On
Return

DS:BX

DX

AL

ex

Remarks:

IBH
Allocation Table Information

Returns information about the allocation table for
the default drive.

Register
Contents

IBH

Register
Contents

Pointer to the media
descriptor byte for the default
drive

Number of allocation units

Number of sectors/allocation
unit

Size of the physical sector

For more information on DOS disk allocation, refer
to "DOS Disk Directory" on page 5-10. Also, refer
to function call 36H (Get Disk Free Space).

6-83

leH
Allocation Table Information for Specific
Device

Purpose:
Returns allocation table information for a specific
device.

On Register
Entry

AH

DL

On
Return

DS:BX

AL

DX

CX

Remarks:

6-84

Contents

lCH

Drive number

Register
Contents

Points to the media descriptor
byte of the drive specified in
DL

Number of sectors/allocation
unit

Number of allocation units

Size of the physical sector

This call is identical to call 1 BH except that, on
entry, DL contains the number of the drive that
contains the needed information (0 = default, 1 =
A, etc.). For more information on DOS disk
allocation, refer to "DOS Disk Directory" 011
page 5-10. Also, refer to function call 36H (Get
Disk Free Space).

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

21H
Random Read

Reads the record addressed by the current block and
current record fields into memory at the current disk
transfer address.

Register
Contents

21H

Pointer to an opened FCB

Register
Contents

OOH If read was successfully
completed

OlH If EOF (no data read)
02H If the read would have

caused a wrap or
overflow because the
DT A was too small (The
read was not completed.)

03H If EOF (a partial record
was read and filled out
with zeros)

The current block and current record fields are set to
agree with the random record field. Then the record
addressed by these fields is read into memory at the
current disk transfer address.

Network Access Rights: Requires Read access
rights.

6-85

22H
Random Write

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

6-86

Writes the record addressed by the current block and
current record fields from the current disk transfer
address.

Register
Contents

22H

Pointer to an opened FeB

Register
Contents

OOH If write was successfully
completed

01 H If diskette is full (write
canceled)

02H If DTA too small (write
canceled)

The current block and current record fields are set to
agree with the random record field. Then the record
addressed by these fields is written (or in the case of
records not the same as sector sizes - buffered) from
the disk transfer address.

If the file is specified in read - only mode, the
ran.dom write is not performed.

Network Access Rights: Requires Write access
rights.

Purpose:

On
Entry

AH

DS:DX

On
Return

AL

Remarks:

23H
File Size

Searches the diskette directory for an entry that
matches the specified file and sets the FCBs random
record field to the number of records in the file.

Register
Contents

23H

Pointer to an unopened FCB

Register
Contents

OOH If the directory entry is
found

FFH If the directory entry not
found

The diskette directory is searched for the matching
entry. If a matching entry is found, the random
record field is set to the number of records in the file
(in terms of the record size field rounded up). If no
matching entry is found, AL returns FFH.

Note: If you do not set the FCB record size
field before using this function, incorrect
information is returned.

6-87

24H
Set Relative Record Field

Purpose:

On
Entry

AH

DS:DX

On
Return

Remarks:

6-88

Sets the random record field to the same file address
as the current block and record fields.

Register
Contents

24H

Pointer to an opened FeB

Register
Contents

NONE

You must call this function before you perform
random read and writes, and random block read and
writes.

Purpose:

On
Entry

AH

DS:DX

AL

On
Return

Remarks:

25H
Set Interrupt Vector

Sets the interrupt vector table for the interrupt
number.

Register
Contents

25H

Address of interrupt handling
routine

Interrupt number

Register
Contents

NONE

The interrupt vector table for the interrupt number
specified in AL is set to address contained in DS:DX.
Use function call 35H (Get Vector) to obtain the
contents of the interrupt vector.

6-89

26H
Create New Program Segment

Purpose:

On
Entry

AH

DX

On
Return

Remarks:

6-90

Creates a new program segment.

Register
Contents

26H

Segment number for the new
program segment

Register
Contents

NONE

The entire lOOH area at location 0 in the current
program segment is copied into location 0 in the new
program segment. The memory size information at
location 6 in the new segment is updated and the
current termination, Ctrl-Break exit and critical error
addresses from interrupt vector table entries for
interrupts 22H, 23H, and 24H are saved in the new
program segment starting at OAH. They are restored
from this area when the program terminates.

Note: You should avoid using this call. We
recommend that you use the EXEC function
call 4BH instead.

Purpose:

On
Entry

AH

DS:DX

CX

On
Return

AL

CX

27H
Random Block Read

Reads the specified number of records (in terms of
the record size field) from the file address specified
by the random record field into the disk transfer
address.

Register
Contents

27H

Pointer to an opened FCB

Number of records to be read

Register
Contents

OOH If read was successfully
completed

OIH If BOF (no data read)
02H If the read would have

caused a wrap or
overflow because the
DT A was too small (The
read was not completed.)

03H If BOF (a partial record
was read and filled out
with zeros)

Actual number of records read

6-91

270
Random Block Read
Remarks:

6-92

The random record field and the current
block/record fields are set to address the next record
(the first record not read).

Network Access Ilights: Requires Read access
rights.

Purpose:

On
Entry

AH

DS:DX

CX

01\
Return

AL

CX

Remarks:

28H
Random Block Write

Writes the specified number of records from the disk
transfer address into the file address specified by the
random record field.

Register
Contents

28H

Pointer to an opened FCB

Number of records to be
written

Register
Contents

OOH If write was successfully
completed

OlH If diskette is full (write
canceled)

02H If DTA too small (write
canceled)

Actual number of records
written

If there is insufficient space on the disk, AL returns
OlH and no records are written. If CX is zero upon
entry, no records are written, but the file is set to the
length specified by the random record field, whether
longer or shorter than the current file size.
(Allocation units are released or allocated as
appropriate.)

6-93

280
Random Block Write

6-94

Network Access Rights: Requires Write access
rights.

Purpose:

On
Entry

AH

DS:SI

ES:DI

AL

On
Return

AL

DS:SI

ES:DI

Parses the specified filename.

Register
Contents

29H

Pointer to a command line to
parse

Pointer to a portion of
memory that will be filled
with an unopened FCB

Bit value controls parsing

Register
Contents

OOH If no global filename
characters in command
line

OIH If global filename
characters used in
command line

FFH If drive specifier invalid

Points to the first character
after the parsed filename

Points to the first byte of the
formatted FCB

29H
Parse Filename

6-95

29H
Parse Filename
Remarks:

6-96

The contents of AL are used to determine the action
to take, as shown below:

<must = 0>
bit: 7 6 5 4 3 2 1 0

If bit 0 = 1, then leading separators are scanned off
the command line at DS:SI. Otherwise, no scan-off
of leading separators takes place.

If bit 1 = 1, then the drive ID byte in the result
FCB will be set (changed) only if a drive was
specified in the command line being parsed.

If bit 2 = 1, then the filename in the FCB will be
changed only if the command line contains a
filename.

If bit 3 = 1, then the filename extension in the FCB
will be changed only if the command line contains a
filename extension.

Filename separators include the following characters
: . ; , = + plus TAB and SPACE. Filename
terminators include all of these characters plus
, <, >, :, /, /I, [,], and any control characters.

The command line is parsed for a filename of the
form djilename.ext, and if found, a corresponding
unopened FCB is created at ES:DI. If no drive
specifier is present, it is assumed to be all blanks. If
the character * appears in the filename or extension,
then it and all remaining characters in the name or
extension are set to ?

If either? or * appears in the filename or extension,
AL returns 01 H, if the drive specifier is invalid, AL
returns FFH, otherwise OOH.

29H
Parse Filename

DS:SI returns pointing to the first character after the
filename and ES:DI points to the first byte of the
formatted FeB. If no valid filename is present,
ES:DI + 1 contains a blank.

6-97

2AH
Get Date

Purpose:

On
Entry

AH

On
Return

AL

ex
DH

DL

Remarks:

6-98

Returns the day of the week, year, month and date.

Register
Contents

2AH

Register
Contents

Day of the week (0 = SUN
6= SAT)

Year (1980 - 2099)

Month (1 - 12)

Day (1 - 31)

If the time - of - day clock rolls over to the next day,
the date is adjusted accordingly, taking into account
the number of days in each month and leap years.

Purpose:

On
Entry

AH

CX

DH

DL

On
Return

AL

Remarks:

2BH
Set Date

Sets the date (also sets CMOS clock, if present).

Register
Contents

2BH

Year (1980 - 2099)

Month (1 - 12)

Day (1 - 31)

Register
Contents

OOH, if the date is valid
FFR, if the date is not valid

On entry, CX:DX must have a valid date in the same
format as returned by function call 2AH.

On return, AL returns OOR if the date is valid and
the set operation is successful. AL returns FFH if
the date is not valid.

6-99

2CH
Get Time

Purpose:

On
Entry

AH

On
Return

CH

CL

DH

DL

Remarks:

6-100

Returns the time; hours, minutes, seconds and
hundredths of seconds.

Register
Contents

2CH

Register
Contents

Hour (0 -23)

Minutes (0 - 59)

Seconds (0 - 59)

Hundredths (0 - 99)

On entry, AH contains 2CH. On return, CX:DX
contains the time - of - day. Time is actually
represented as four 8-bit binary quantities as follows.
CH has the hours (0-23), CL has minutes (0-59), DH
has seconds (0-59), DL has 1/100 seconds (0-99).
This format is readily converted to a printable form
yet can also be used for calculations, such as
subtracting one time value from another.

Purpose:

On
Entry

AH

CH

DH

CL

DL

On
Return

AL

Remarks:

2DH
Set Time

Sets the time (also sets the CMOS clock, if present).

Register
Contents

2DH

Hour (0 -23)

Seconds (0 - 59)

Minutes (0 - 59)

Hundredths (0 - 99)

Register
Contents

OOH, if the time is valid
FFH, if the time is not valid

On entry, CX:DX has time in the same format as
returned by function 2CH. On return, if any
component of the time is not valid, the set operation
is aborted and AL returns FFH. If the time is valid,
AL returns OOH.

If your system has a CMOS realtime clock, it will be
set.

6-101

2EH
Set/Reset Verify Switch

Purpose:

On
Entry

AH

AL

On
Return

Remarks:

6-102

Sets the verify switch.

Register
Contents

2EH

~OH,. to set verify off
01 H, to set verify on

Register
Contents

NONE

On entry, AL must contain 01H to turn verify on, or
OOH to turn verify off. When verify is on, DOS
performs a verify operation each time it performs a
disk write to assure proper data recording. Although
disk recording errors are very rare, this function has
been provided for applications in which you may
wish to verify the proper recording of critical data.
You can obtain the current setting of the verify
switch through function call 54H.

Note: Verification is not supported on data
written to a network disk.

Purpose:

On
Entry

AH

On
Return

ES:BX

Remarks:

2FH
Get Disk Transfer Address (DTA)

Returns the current disk transfer address.

Register
Contents

2FH

Register
Contents

The current DT A

On entry, AH contains 2FH. On return, ES:BX
contains the current Disk Transfer Address. You
can set the DTA using function call lAH.

1 c /: :

6-103

30H
Get DOS Version Number

Purpose:

On
Entry

AH

On
Return

BX

ex
AL

AH

Remarks:

6-104

Returns the DOS version number.

Register
Contents

30H

Register
Contents

OOOOH

OOOOH

Major version number

Minor version number

On entry, AH contains 30H. On return, BX and ex
are set to O. AL contains the major version number.
AH contains the minor version number. For
example, for DOS 3.10., the major version number is
03H and the minor version number is OAH. For
DOS 3.20 the major version number is 03H and the
minor version number is 14H.

Note: If AL returns a major version number
of zero, then it can be assumed that the DOS
version is pre - DOS 2.00.

31H
Terminate Process and Remain Resident

Purpose:

On
Entry

AH

AL

DX

On
Return

Remarks:

Terminates the current process and attempts to set
the initial allocation block to the memory size in
paragraphs.

Register
Contents

3tH

Return code

Memory size in paragraphs

Register
Contents

NONE

On entry, AL contains a binary return code. DX
contains the memory size value in paragraphs. This
function call does not free up any other allocation
blocks belonging to that process. Files opened by
the process are not closed when the call is executed.
The return code passed in AL is retrievable by the
parent through Wait (function call 4DH) and can be
tested through the ERRORLEVEL batch
subcommands.

Note: Memory can be more efficiently used if
the block containing a copy of the environment
is deallocated before terminating. This can be
done by loading ES with the segment

6-105

31H
Terminate Process and Remain Resident

6-106

contained in 2C of the PSP, and issuing
function call 49H (Free Allocated Memory).

Purpose:

On
Entry

AH

AL

DL

On
Return

DL

Remarks:

33H
Ctrl-Break Check

Set or get the state of BREAK (Ctrl- Break
checking).

Register
Contents

33H

OOH, to request current state
01 H, to set the current state

OOH, to set current state OFF
01H, to set current state ON

Register
Contents

The current state (OOH = OFF,
0IH=ON)

On entry, AL contains OOH to request the current
state of Ctrl-Break checking, 01H to set the state. If
setting the state, DL must contain OOH for OFF or
01H for ON. On return, if requesting the current
state, DL contains the current state (OOH = OFF,
01H = ON).

6-107

35H
Get Vector

Purpose:

On
Entry

AH

AL

On
Return

ES:BX

Remarks:

6-108

To obtain the address in an interrupt vector.

Register
Contents

35H

Interrupt number

Register
Contents

Pointer to the interrupt
handling routine.

On entry, AH contains 35H. AL contains a
hexadecimal interrupt number. On return, ES:BX
contains the CS:IP interrupt vector for the specified
interrupt. Use function call 25H (Set Interrupt
Vector) to set the interrupt vectors.

Purpose:

On
Entry

AH

DL

On
Return

BX

DX

CX

AX

Remarks:

36H
Get Disk Free Space

Returns the disk free space (available clusters,
clusters/drive, bytes/sector).

Register
Contents

36H

Drive (0 = default, 1 = A)

Register
Contents

Available clusters

Clusters/ drive

Bytes/sector

FFFFH if the drive in DL is
invalid, otherwise the number
of sectors per cluster

If the drive number in DL was valid, BX contains
the number of available allocation units (clusters),
DX contains the total number of clusters on the
drive, CX contains the number of bytes per sector,
and AX contains the number of sectors per cluster.

Note: This call returns the same information
in the same registers (except for the FAT
pointer) as the get FAT pointer call (lBH).

6-109

38H (DOS 2.10)
Return Country Dependent Information

Purpose:

On
Entry

AH

DS:DX

AL

On
Return
AX

DS:DX

Remarks:

Returns country dependent information.

Register
Contents

38H

Pointer to the 32 - byte
memory area

Equals the function code

Register
Contents
Error code if carry flag set

Country data if carry flag not
set

On entry, DS:DX points to a 32 - byte block of
memory in which returned information is passed and
AL contains a function code. In DOS 2.10, this
function code must be O. The following information
is pertinent to international applications:

WORD date/time format

BYTE ASCIIZ string currency
symbol followed by byte of zeros

6-110

380 (DOS 2.10)
Return Country Dependent Information

BYTE ASCIIZ string thousands
separator followed by byte of zeros

BYTE ASCIIZ string decimal
separator followed by byte of zeros

24 bytes Reserved

The time and date format has the following values
and meaning:

o = USA standard h:m:s mldly

1 = Europe standard h:m:s dimly

2 = Japan standard h:m:s y:m:d

6-111

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent
Information

Purpose:
Returns country dependent information.

Get Current Country

On Register
Entry Contents

AH 38H

DS:DX Pointer to the memory buffer
where the data will be
returned

AL OOH ; to get current country
information

Country code ; to get
information for countries with
a code < 255

FFH ; to get country
information for countries with
a code ~255

BX 16 bit country code; if
AL=FFH

6-112

On
Return

AX

DS:DX

BX

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent

Information

Register
Contents

Error code if carry flag set

Filled with the country
information

Coun try code

6-113

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent
Information

Set Current Country

On Register
Entry Contents

AH 38H

DS:DX FFFFH

AL Country code for countries
with a code < 255

FFH for countries with a code
~255

BX 16 - bit country code; if
AL=FFH

On Register
Return Contents

AX Error code if carry flag set

6-114

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent

Information
Country Information

WORD Binary value indicating the date format

5 BYTE currency symbol null terminated

2 BYTE thousands separator null terminated

2 BYTE decimal separator null terminated

2 BYTE date separator null terminated

2 BYTE time separator null terminated

1 BYTE binary value indicating the currency format
o = the currency symbol precedes the value,

no spaces between the symbol and value
1 = the currency symbol follows the value,

no spaces between the symbol and value
2 = the currency symbol precedes the value,

one space between the symbol and value
3 = the currency symbol follows the value,

one space between the symbol and value
4 = the currency symbol replaces the decimal separator

1 BYTE number of significant decimal digits in currency

1 BYTE time format
Bit 0 = 0 if 12 - hour clock
Bit 0 = 1 if 24 - hour clock

2 WORDS
Case map call address for codes> 7FH

2 BYTES Data list separator null terminated

5 WORDS Reserved

6-115

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent
Information

Code

The date format has the following values and
meaning:

Date

O=USA md
y

1 = Europe dm
y

2 = Japan ym

On
Entry

AL

On
Return

AL

6-116

d

Case Map Call Address: The register contents for
the case map call are:

Register
Contents

ASCII code of character to be
converted to uppercase

Register
Contents

ASCII code of the uppercase
input character

The case map call address is in a form suitable for a
FAR call indirect.

Remarks:

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent

Information

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Keyboard considerations:

For country codes other than 001 and 061, an
alternate keyboard handler should have been invoked
in the AUTOEXEC.BAT file.

When an alternate keyboard handler is invoked, the
keyboard routine is loaded into user memory starting
at the lowest portion of available user memory. The
BIOS interrupt vector that services the keyboard is
changed by the routine to redirect the CPU to the
section of user memory where the new keyboard
routine now resides. Each keyboard routine has
lookup tables that return ASCII values unique to
each language. Refer to the KEYB command in the
DOS Reference.

Once the keyboard interrupt vector is changed by the
DOS keyboard routine, the interrupt is always
serviced by the routine in read/write memory.
Return to the U.S. English keyboard format is
available by holding the Ctrl and Alt keys and
pressing F1 at the same time. This does not change
the interrrupt vector back to the BIOS location. In
this case, the interrupt is still processed by the
read/write routine, but the routine looks up the scan
codes, which will be converted to ASCII codes, in the
same manner as ROM BIOS. However,
Ctrl- Alt - FI does not return you to the U.S.

6-117

38H (DOS 3.00 to 3.30)
Get or Set Country Dependent
Information

6-118

keyboard if you are using a computer with ROM
keyboard support. Similarly, holding the Ctrl and
Alt keys and pressing F2 causes a return to the
read/write lookup tables.

Purpose:

On
Entry

AH

DS:DX

On
Return

AX

Remarks:

39H
Create Subdirectory (MKDIR)

Creates the specified directory.

Register
Contents

39H

Pointer to an ASCIIZ string

Register
Contents

Error codes if carry flag is set

On entry, DS:DX contains the address of an ASCIIZ
string with drive and directory path names. If any
member of the directory path does not exist, then the
directory path is not created. On return, a new
directory is created at the end of the specified path.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Network Access Rights: Requires Create access
rights.

6-119

3AH
Remove Subdirectory (RMDIR)

Purpose:

On
Entry

AH

DS:DX

On
Return

AX

Remarks:

6-120

Removes the specified directory.

Register
Contents

3AH

Poin ter to an ASCIIZ string

Register
Contents

Error codes if carry flag is set

On entry, DS:DX contains the address of an ASCIIZ
string with the drive and directory path names. The
specified directory is removed from the structure.
The current directory cannot be removed.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Network Access Rights: Requires Create access
rights.

3DH
Change the Current Directory (CHDIR)

Purpose:

On
Entry

AH

DS:DX

On
Return

AX

Remarks:

Changes the current directory to the specified
directory.

Register
Contents

3BH

Pointer to an ASCIIZ string

Register
Contents

Error codes if carry flag is set

On entry, DS:DX contains the address of an ASCIIZ
string with drive and directory path names. The
string is limited to 64 characters and cannot contain
a network path. If any member of the directory path
does not exist, then the directory path is not
changed. Otherwise, the current directory is set to
the ASCIIZ string.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extend~d Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

6-121

3CH
Create a File (CREAT)

Purpose:

On
Entry

AH

DS:DX

CX

On
Return
AX

Remarks:

6-122

Creates a new file or truncates an old file to zero
length in preparation for writing.

Register
Contents

3CH

Pointer to an ASCIIZ string

Attribute of the file

Register
Contents
Error codes if carry flag is set
16 - bit handle if carry flag
not set

If the file did not exist, then the file is created in the
appropriate directory and the file is given the
read/write access code. The file is opened for
read/write, the read/write pointer is set to the first
byte of the file and the handle is returned in AX.
Note that the change mode function call (43H) can
later be used to change the file's attribute.

3CH
Create a File (CREAT)

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Network Access Rights: Requires Create access
rights.

6-123

3DH (DOS 2.10)
Open a File

Purpose:

On
Entry

AH

DS:DX

AL

On
Return

AX

Remarks:

6-124

Opens the specified file.

Register
Contents

3DH

Pointer to an ASCIIZ path
name

Access Code

Register
Contents

Error codes if carry flag is set
16 - bit file handle if carry
flag not set

This call opens any normal or hidden file whose
name matches the name specified. Files that end
with a colon are not opened.

The read/write pointer is set at the first byte of the
file and the record size of the file is I byte (the
read/write pointer can be changed through function
call 42H). The returned file handle must be used for
subsequent input and output to the file. The file's
date and time can be obtained or set through call
57H, and its attribute can be obtained through call
43H.

3DH (DOS 2.10)
Open a File

Access Codes

AL = 0 File is opened for reading

AL = 1 File is opened for writing

AL = 2 File is opened for both reading and writing

6-125

3DH (DOS 3.00 to 3.30)
Open a File

Purpose:

On
Entry

AH

DS:DX

AL

On
Return

AX

Remarks:

6-126

Opens the specified file.

Register
Contents

3DH

Pointer to an ASCIIZ path
name

Open mode

Register
Contents

Error codes if carry flag is set
16 - bit file handle if carry
flag not set

The read/write pointer is set at the first byte of the
file and the record size of the file is I byte (the
read/write pointer can be changed through function
call 42H). The returned file handle must be used for
subsequent input and output to the file. The file's
date and time can be obtained or set through call
57H, and its attribute can be obtained through call
43H.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on

3DH (DOS 3.00 to 3.30)
Open a File

page 6-42 for more information on the codes
returned from function call 59H.

Network Access Rights: If the Access field (A) of
the Open mode field (AL) is equal to:

000 Requires Read access rights

001 Requires Write access rights

010 Requires Read/Write access rights

Notes:

1. This call opens any normal or hidden file whose
name matches the name specified. Files that end
with a colon are not opened.

2. When a file is closed, any sharing restrictions
placed on it by the open are canceled.

3. File sharing must be loaded for the sharing
modes to function. Refer to the SHARE
command in Chapter 7 "DOS Commands" of the
DOS Reference.

4. The file read - only attribute can be set when
creating the file using extended FCBs or
specifying the appropriate attribute in CX for the
handle creates by using the CHMOD interrupt 21
function call or the DOS A TTRIB· command.

5. If the file is inherited by the child process, all
sharing and access restrictions are also inherited.

6. If an open file handle is duplicated by either of
the DUP function calls, all sharing and access
restrictions are also duplicated.

6-127

3DH (DOS 3.00 to 3.30)
Open a File

6-128

Open Mode

The open mode is defined in AL and consists of four
bit - oriented fields. They are the:

• Inheritance flag

• Sharing mode field

• Reserved field

• Access field

The inheritance flag specifies if the opened file will
be inherited by a child process. The access field
defines what operations this process may perform on
the file. The sharing mode field defines what
operations other processes may perform on the file.

Bit Fields

The bit fields are mapped as follows:

<I> < S > <R> < A >
Open Mode bits 7 6 5 4 3 2 1 0

3DH (DOS 3.00 to 3.30)
Open a File

I Inheritance flag

If I = 0; File is inherited by child processes
If I = 1; File is private to the current process

S Sharing Mode

The file is opened as follows:

If S = 000; Compatibility mode
If S = 001; Deny Read/Write mode (Exclusive)
If S = 010; Deny Write mode
If S = 011; Deny Read mode
If S = 100; Deny None mode

Any other combinations are invalid.

When opening a file, it is important to
inform DOS what operations other processes
may perform on this file (sharing mode).
The default (compatibility mode) denies all
other computers on a network access to the
file. Perhaps it is all right for other
processes to continue to read this file while
your process is operating on the file. In this
case, you should specify Deny/Write, which
inhibits writing by other processes, but
allows reading by them.

6-129

3DH (DOS 3.00 to 3.30)
Open a File

6-130

Similarly, it is important to specify what
operations your process will perform (access
mode). The default access mode
(Read/Write) causes the open request to fail
if another process on this computer or any
other computer on a network has the file
opened with any sharing mode other than
deny none. If however, all you intended to
do is read from the file, your open will
succeed unless all other processes have
specified deny none or deny write (therefore
increasing access to the file). File sharing
requires cooperation of both sharing
processes. This cooperation is communicated
through the sharing and access mode.

R Reserved (set third bit field to 0).

A Access

The file access is assigned as follows:

If A = 000; Read access
If A = 001; Write access
If A = 010; Read/Write access

Any other combinations are invalid.

3DH (DOS 3.00 to 3.30)
Open a File

Compatibility Mode

A file is considered to be in compatibility mode if the
file is opened by:

• Any of the CREATE function calls

• An FCB function call

• A handle function call with compatibility mode
specified

A file can be opened any number of times in
compatibility mode by a single process, provided that
the file is not currently open under one of the other
four sharing modes. If the file is marked read-only,
and is currently open in Deny Write sharing mode
with Read Access, the file may be opened in
Compatibility Mode with Read Access. If the file
was successfully opened in one of the other sharing
modes and an attempt is made to open the file again
in Compatibility Mode, an interrupt 24H is
generated to signal this error. The base interrupt
24H error indicates Drive not ready, and the extended
error indicates a Sharing violation.

Sharing Modes

The sharing modes for a file opened in compatibility
mode are changed by DOS depending on the
read-only attribute of the file. This is to allow
sharing of read-only files.

6-131

3DH (DOS 3.00 to 3.30)
Open a File

Read-Only
File Opened By Access

FCB Read-Only

Handle Read Read-Only

Handle Write Error

Handle Error
Read/Write

Not Read-Only
File Opened By Access

FCB Read/Write

Handle Read Read

Handle Write Write

Handle Read/Write
Read/Write

6-132

Sharing Mode

Deny Write

Deny Write

Sharing Mode

Compatibility

Compatibility

Compatibility

Compatibility

3DH (DOS 3.00 to 3.30)
Open a File

Deny Read/Write Mode (Exclusive)

If a file is successfully opened in Deny Read/Write
mode, access to the file is exclusive. A file currently
open in this mode cannot be opened again in any
sharing mode by any process (including the current
process) until the file is closed.

Deny Write Mode

A file successfully opened in Deny Write sharing
mode, prevents any other write access opens to the
file (A = 001 or 010) until the file is closed. An
attempt to open a file in Deny Write mode is
unsuccessful if the file is currently open with a write
access.

Deny Read Mode

A file successfully opened in Deny Read sharing
mode, prevents any other read sharing access opens
to the file (A = 000 or 010) until the file is closed.
An attempt to open a file in Deny Read sharing
mode is unsuccessful if the file is currently open in
Compatibility mode or with a read access.

6-133

3DH (DOS 3.00 to 3.30)
Open a File

6-134

Deny None Mode

A file successfully opened in Deny None mode,
places no restrictions on the read/write accessibility
of the file. An attempt to open a file in Deny None
mode is unsuccessful if the file is currently open in
Compatibility mode.

Note: When accessing files that reside on a network
disk, no local buffering is done when when files are
opened in any of the following sharing modes:

• Deny Read
• Deny None

Therefore, in a network environment, Deny
Read/Write sharing mode, Compatibility sharing
mode, and Deny Write mode opens are buffered
locally.

The following sharing matrix shows the results of
opening, and subsequently attempting to reopen the
same file using all combinations of access and
sharing modes.

I
D
R 10
W

0

I

D
10 W

0

I
D

10 R

0

I
A
L 10
L

0

3DH (DOS 3.00 to 3.30)
Open a File

DRW DW DR ALL

I 10 0 I 10 0 I 10 0 I 10 0

N N N N N N N N N N N N

N N N N N N N N N N N N

N N N N N N N N N N N N

N N N y N N N N N Y N N

N N N N N N N N N Y N N

N N N N N N y N N Y N N

N N N N N N N N N N N y

N N N N N N N N N N N Y

N N N N N N N N Y N N y

N N N y y y N N N Y y y

N N N N N N N N N Y Y Y

N N N N N N y y y y y y

Y :2nd,3rd, ... open is allowed
N :2nd,3rd, ... open is denied
DRW :Deny Read/Write Mode (Exclusive)
DW :Deny Write Mode
DR :Deny Read Mode
RW :Read/Write Mode
I :Read Only Access
o :Write Only Access
I/O :Read/Write Access

6-135

3EH
Close a File Handle

Purpose:

On
Entry

AH

BX

On
Return

AX

Remarks:

6-136

Closes the specified file handle.

Register
Contents

3EH

File handle returned by open
or create

Register
Contents

Error codes if carry flag set
NONE if carry flag not set

On entry, BX contains the file handle that was
returned by "open" or "create." On return, the file is
closed, the directory is updated, and all internal
buffers for that file are flushed.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Purpose:

On
Entry

AH

BX

DS:DX

ex

On
Return

AX

Remarks:

3FH
Read from a File or Device

Transfers the specified number of bytes from a file
into a buffer location.

Register
Contents
3FH

File handle

Buffer address

Number of bytes to be read

Register
Contents

Number of bytes read
Error codes if carry flag set

On entry, BX contains the file handle. ex contains
the number of bytes to read. DS:DX contains the
buffer address. On return, AX contains the number
of bytes read.

6-137

3FH
Read from a File or Device

6-138

This function call attempts to transfer (CX) bytes
from a file into a buffer location. It is not
guaranteed that all bytes will be read. For example,
when DOS reads from the keyboard, at most one line
of text is transferred. If this read is performed from
the standard input device, the input can be
redirected. See "Redirection of Standard Input and
Output" in the DOS Reference. If the value in AX is
0, then the program has tried to read from the end of
file.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Network Access Rights: Requires Read access
rights.

Purpose:

On
Entry

AH

BX

DS:DX

CX

On
Return

AX

Remarks:

40H
Write to a File or Device

Transfers the specified number of bytes from a buffer
into a specified file.

Register
Contents
40H

File handle

Address of the data to write

Number of bytes to write

Register
Contents

Number of bytes written
Error codes if carry flag set

On entry, BX contains the file handle. ex contains
the number of bytes to write. DS:DX contains the
address of the data to write.

This function call attempts to transfer (CX) bytes
from a buffer into a file. AX returns the number of
bytes actually written. If the carry flag is not set and
this value is not the same as the number requested
(in eX), it should be considered an error (no error
code is returned, but your program can compare
these values). The usual reason for this is a full disk.
If this write is performed to the standard output
device, the output can be redirected. See

6-139

40H
Write to a File or Device

6-140

"Redirection of Standard Input and Output" in the
DOS Reference.

To truncate a file at the current position of the file
pointer, set the number of bytes (CX) to zero before
issuing the interrupt 21H. The file pointer can be
moved to the desired position by reading, writing,
and performing function call 42H (Move File
Read/Write Pointer).

If the file is read - only, the write to the file or device
is not performed.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Network Access Rights: Requires Write access
rights.

41H
Delete a File from a Specified Directory

(UNLINK)

Purpose:

On
Entry

AH

DS:DX

On
Return

AX

Remarks:

Removes a directory entry associated with a
filename.

Register
Contents

4tH

Address of an ASCIIZ string

Register
Contents

Error codes if carry flag set
NONE if carry flag not set

Global filename characters are not allowed in any
part of the ASCIIZ string. Read - only files cannot
be deleted by this call. To delete a read - only file,
you can first use call 43H to change the file's
read - only attribute to 0, then delete the file.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

6-141

41H
Delete a File from a Specified Directory
(UNLINK)

6-142

Network Access Rights: Requires Create access
rights.

420
Move File Read Write Pointer (LSEEK)

Purpose:

On
Entry

AH

CX:DX

AL

BX

On
Return

AX

DX:AX

Remarks:

Moves the read/write pointer according to the
method specified.

Register
Contents
42H

Distance (offset) to move in
bytes

Method of moving (0, 1, 2)

File handle

Register
Contents
Error codes if carry flag set I

New pointer location if carry
flag not set

On entry, AL contains a method value. BX contains
the file handle. CX:DX contains the desired offset in
bytes (CX contains the most significant part). On
return, DX:AX contains the new location of the
pointer (DX contains the most significant part).

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on

6-143

42H
Move File Read Write Pointer (LSEEK)

AL
0

1

2

6-144

page 6-42 for more information on the codes
returned from function call 59H.

This function call moves the read/write pointer
according to the following methods:

Description

The pointer is moved CX:DX
bytes (offset) from the
beginning of the file.

The pointer is moved to the
current location plus offset.

The pointer is moved to the
end-of-file plus offset. This
method can be used to
determine file's size.

Note: If an LSEEK operation is performed
on a file that resides on a network disk that is
open in either Deny Read or Deny None
sharing mode, the read/write pointer
information is adjusted on the computer where
the file actually exists. If the file is opened in
any other sharing mode, the read/write pointer
information is kept on the remote computer.

Purpose:

On
Entry

AH

DS:DX

CX

AL

On
Return

AX

CX

Remarks:

43H
Change File Mode (CHMOD)

Changes the file mode of the specified mode.

Register
Contents

43H

Pointer to an ASCIIZ path
name

Attribute

Function code

Register
Contents

Error codes if carry flag set

The file's currellt attribute; if
carry flag not set and getting
the attribute

On entry, AL contains a function code, and DS:DX
contains the address of an ASCIIZ string with the
drive, path, and filename.

If AL contains 01 H, the file's attribute is set to the
attribute in CX. See "DOS Disk Directory" on
page 5-10 for the attribute byte description. If AL is
OOH then the file's current attribute is returned in
CX.

6-145

43H
Change File Mode (CHMOD)

6-146

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Note: The volume label and subdirectory bits
of an attribute cannot be changed using
CHMOD. When setting a file's attribute, bits
3 and 4 of CX must be zero, otherwise an
error is indicated.

Network Access Rights: To change the archive bit
(AL = 20H), no access rights are required. To change
any other bit, Create access rights are required.

Purpose:

Remarks:

44H
I/O Control for Devices (IOCTL)

Sets or gets device information associated with open
device handles, or sends control strings to the device
handle or receives control strings from the device
handle.

The following function values are allowed in AL:

AL = OOH Get device information (returned in DX).

AL = 01H Set device information (determined by
DX). Currently, DR must be zero for
this call.

AL = 02H Read from character device

AL = 03H Write to character device

AL = 04H Read from block device

AL = 05H Write to block device

AL = 06H Get input status.

AL = 07H Get output status.

AL = 08H Is a particular block device changeable?

AL = 09H Is a logical device local or remote?

AL = OAH Is a handle local or remote?

AL = OBH Change sharing retry count

6-147

44H
1/0 Control for Devices (IOCTL)

AL = OCH Generic IOCTL handle request (code
page switching)

AL = ODH Block device Generic IOCTL request

AL = OEH Get logical drive

AL = OFH Set logical drive

IOCTL can be used to get information about device
channels. You can make calls on regular files, but
only function values OOH, 06H, and 07H are defined
in that case. All other calls return an "Invalid
Function" error.

Function values OOH to 08H are not supported on
network devices. Function value OBH requires the
file sharing command to be loaded (SHARE).

Calls AL = OOH and AL = OtH

PurpQse:
Sets or gets device information.

On Register
Entry Contents

AH 44H

AL ~OH - Get device information
OIH - Set device information

BX Handle

DH o for AL=OIH

DL Device information

6-148

On
Return

DX

Remarks:

44H
1/0 Control for Devices (IOCTL)

Register
Contents

Device information

The bits of DX are defined as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I

R C
E T
S R

L

I I I I I I E 8 R I I I I
S 0 I E S S S S

Reserved 0 F N S C N C C
E A L U 0 I
V R K L T N

I I I I I
y

I I I I I

ISDEV = 1 if this channel is a device.

= 0 if this channel is a disk file (bits 8-15
are 0 in this case).

Bits 8-15 of DX correspond to the upper 8
bits of the device driver Attribute word. See
chapter 2 for details.

If ISDEV = 1

BOF = 0 if end-of-file on input.

BINARY = 1 if operating in binary
mode (no checks for Ctrl-Z).

= 0 if operating in ASCII
mode (checking for Ctrl-Z as end-of-file).

ISCLK = 1 if this device is the clock
device.

6-149

44H
1/0 Control for Devices (IOCTL)

6-1S0

ISNUL = 1 if this device is the null
device.

ISCOT = 1 if this device is the console
output.

ISCIN = 1 if this device is the console
input.

CTRL = 0 if this device cannot process
control strings via calls AL = 02H,
AL = 03H, AL = 04H, and AL = OSH.

CTRL = 1 if this device can process
control strings via calls AL = 02H and
AL = 03H. Note that this bit cannot be
set by function call 44H.

If ISDEV = 0

BOF = 0 if channel has been written. Bits
O-S are the block device number for the
channel (0 = A, 1 = B, ...). Bits IS, 8-13, 4
are reserved and should not be altered.

Note: DH must be zero for call AL=OIH.

44H
1/0 Control for Devices (IOCTL)

Calls AL = 02H, AL = 03H

Purpose:

On
Entry

AH

AL

DS:DX

ex
BX

On
Return

AX

Remarks:

These two calls allow arbitrary control strings to be
sent or received from a character device.

Register
Contents

44H

02H - Read from character device
03H - Write to character device

Data or buffer

Number of bytes to read or write

Handle

Register
Contents

Number of bytes transferrred

These are the Read and Write calls for a character
device. An "Invalid Function" error is returned if
the CTRL bit is zero.

6-151

44H
1/0 Control for Devices (IOCTL)
Calls AL=04H, AL=05H

Purpose:

On
Entry

AH

AL

DS:DX

CX

BL

On
Return

AX

Remarks:

6-152

These two calls allow arbitrary control strings to be
sent or received from a block device.

Register
Contents

44H

04H - Read from block device
05H - Write to block device

Data or buffer

Number of bytes to read or
write

Drive number (0 = default,
1 =A, etc.)

Register
Contents

Number of bytes transferrred

These are the Read and Write calls for a block
device. The drive number is in BL for these calls An
"Invalid Function" error is returned if the CTRL bit
is zero. An "Access-Denied" code is returned if the
drive is invalid.

440
1/0 Control for Devices (IOCTL)

Calls AL = 06H and AL = 07H

Purpose:

On
Entry

AH

AL

BX

On
Return

AL

Remarks:

These calls allow you to check if a handle is ready
for input or output.

Register
Contents

44H

06H - Get input status
07H - Get output status

Handle

Register
Contents

For a file:
FFH until end-of-file is reached
OOH after end-of-file is reached

F or devices:
OOH - not ready
OFH..; ready

If used for a file, AL always returns FFH until
end - of - file is reached, then always returns OOR
unless the current file position is changed through
call 42H. When used for a device, AL'returns FFH
for ready or zero for not ready.

6-153

44H
1/0 Control for Devices (IOCTL)
Call AL = 08H (DOS 3.00 to 3.30)

Purpose:

On
Entry

AH

AL

BL

On
Return

AX

Remarks:

6-154

This call allows you to determine if a device can
support removable media.

Register
Contents

44H

08H - Is device removable?

Drive number (0 = default,
1 = A, 2 = B, 3 = C, etc.)

Register
Contents

OOH if device is removable
01 H if device is fixed
OFH if the value in BL is invalid

If the value returned in AX is 0, then the device is
removable. If the value is 1, then the device is fixed.
The drive number should be placed in BL. If the
value in BL is invalid, then error code OFH is
returned. For network devices, the error Invalid
function is returned.

44H
1/0 Control for Devices (IOCTL)

Call AL = 09H (DOS 3.10 to 3.30)

Purpose:

On
Entry

AH

AL

BL

On
Return

DX

Remarks:

This call allows you to determine if a logical device is
associated with a network directory.

Register
Contents

44H

09H - Is device local or
remote?

Drive number (0 = default,
1 =A, etc.)

Register
Contents

For local devices, bit 12 is O.
F or remote devices, bit 12 is
set.

On entry,

BL contains the drive number of the block device
you want to check (0 = default, 1 = A, 2 = B, and so
forth). The value returned in DX indicates whether
the device is local or remote. Bit 12 is set for remote
devices (1000H). Bit 12 is not set for local devices.
The other bits in DX are reserved. If disk
redirection is paused, the function returns with bit 12
not set.

6-155

44H
I/O Control for Devices (IOCTL)
Call AL = OAH (3.10 to 3.30)

Purpose:

On
Entry

AH

AL

BX

On
Return

DX

Remarks:

6-156

This call allows you to determine if a handle is for a
local device or a remote device across the network.

Register
Contents

44H

OAH - Is handle local or
remote?

File handle

Register
Contents

For local devices, bit 15 is O.
For remote devices, bit 15 is
set.

For remote devices, bit 15 is set (8000H). The
handle should be placed in BX. Bit 15 is not set for
local devices.

44H
1/0 Control for Devices (IOCTL)

Call AL = OBH (DOS 3.00 to 3.30)

Purpose:

On
Entry

AH

AL

CX

DX

On
Return

AX

Remarks:

Controls retries on sharing and lock resource
conflicts.

Register
Contents

44H

OBH - Change sharing retry
count

Number of times to execute a
delay loop

Number of retries

Register
Contents

Error codes if carry flag is set

All sharing and lock conflicts are automatically
retried a number of times before they are returned as
a DOS error or critical error. You can select the
number of retries and the delay time between retries.
On input, CX contains the number of times to
execute a delay loop, and DX contains the number of
retries. The delay loop consists of the following
sequence:

XOR
LOOP

CX,CX
$ ispin 64K times

If this call is never issued, DOS uses delay = 1 and
retries = 3 as the defaults for CX and DX. If you
expect your application to cause sharing or lock

6-157

44H
1/0 Control for Devices (IOCTL)

conficts on locks that are in effect for a short period
of time, you may want to increase the values for ex
and DX to minimize the number of errors actually
returned to your application.

Call AL = OCH (DOS 3.30.)

6-158

This call allows a device driver to support a new set
of subfunction calls that implement code page
switching. The format for these calls is:

On Entry

AH

AL

BX

CH

CL

DS:DX

44H
1/0 Control for Devices (IOCTL)

Contents

44H - IOCTL Request

OCH - Handle Generic IOCTL
(Code page switching)

Handle - (handle of open
device)

Major codes

00 - Unknown

01 - COMx

03 - CON

05 - LPTx

Function within category code
(Minor code)

4CH = Prepare start

4DH = Prepare end

4AH = Select

6AH = Query selected

6BH = Query prepare list

Pointer to parameter block

6-159

44H
1/0 Control for Devices (IOCTL)

Remarks:

packet
pack len
packcpid
packet

Remarks:

Refresh requests the device driver to set up the device
with the most recently prepared codepage. The
refresh operation is requested by doing a prepare
start with all codepage values (prep_strt_pkcp?) set
to a -1. This operation must be followed
immediately by a prepare end.

When CL = 4AH, 4DH or 6AH the parameter block,
pointed to by DS:DX, has the following layout:

struc
dw 2
dw ?
ends

;Length of packet in bytes
;Code page ID

When CL = 4CH, the parameter block, pointed to by
DS:DX, has the following layout:

prep_strt-packet
prep_strt-pkfl
prep_strt-pklen

struc
dw 0 ;flags
dw (n+1)*2 ;byte length

;of rest

prep_strt-pkcp 1
prep_strt-pkcp2

prep_strt-pkcp?
prep_strt-packet

6-160

;of packet,not
;including this
;length field

dw n ;number of code pages
;in the following list

dw -1 ;code page one
dw -1 ;code page two

dw -1
ends

;code page n

44H
1/0 Control for Devices (IOCTL)

Notes:

1. A -1 for any prep_strt_pkcp?, tells the device
driver not to change the code page value for that
position. Any other value is a codepage to be
prepared.

2. n is the number of additional code pages specified
in the DEVICE= COMMAND in
CONFIG.SYS. See chapter 4 in the DOS 3.30
Reference for more information. The value for n
can be up to 12.

3. For cartridge-prepares set the prep_strt_pkfl field
to 1.

6-161

44H
1/0 Control for Devices (IOCTL)
Remarks:

When CL = 6AH, the parameter block, pointed to by
DS:DX, has the following layout:

query_list-packet
query_list-packet_len
hrdw_codpage_count
hrdw_codepage_1

hrdw_codepage_n
prepd_codepage_count
prepd_codepage_1

prepd_codepage_m
query_list-packet

struc
dw «n+1)+(m+1))*2

dw n
dw -1

dw -1
dw m
dw -1

dw -1
ends

Note: The device driver may return up to 12
code page values for each type of code page
(hardware or prepared) so "n" can be up to 12,
and "m" can be up to 12.

On Register
Return Contents

Carry Set if error occurs. (Issue a
flag "Get Extended Error" to get

error code.)

6-162

44H
1/0 Control for Devices (IOCTL)

Many of the function calls return the carry flag clear
if the operation was successful. If an error condition
was encountered, the carry flag is set. To obtain
information about the error, such as the error class,
locus, and recommended action, issue the Get
Extended Error function call 59H.

The list that follows contains the possible error codes
returned from Get Extended Error for code page
switching operations.

PREP ARE Start Error Codes:

Code Meaning

01 Invalid function number
27 Code page conflict (used for keyb xx mismatch)
29 Device error
22 Unknown command

PREP ARE Write Error Codes:

Code Meaning

27 Device not found in file, or code page
not found in file

29 Device error
31 File contents not a font file, or file

contents structure damaged

PREP ARE End Error Codes:

Code Meaning
19 Bad data read from font file
31 No prepare start

6-163

44H
1/0 Control for Devices (IOCTL)

6-164

SELECT Error Codes:

Code Meaning

26 Code page hot. prepared
27 Current keyb does not support this

code page
29 Device error

44H
1/0 Control for Devices (IOCTL)

QUERY Selected Error Codes:

Code Meaning

26 No code page has been selected
27 Device error

QUERY Prepared List Error Codes:

Code Meaning

26 No code pages have been selected
29 Device error

REFRESH Error Codes Returned From
PREP ARE Start For a REFRESH Request:

Code Meaning

27 Keyboard/code page conflict
29 Device error
31 Device driver does not have copy of code

page to download to device

6-165

44H
1/0 Control for Devices (IOCTL)

After a Prepare start, data defining the codepage font
is written to the driver using one or more IOCTL
write control string (AX = 4403H) calls. This is
assumed to be information to download to the
device. The stream is ended by a Prepare end. The
stream format is device specific.

If no data is written for a prepare operation, the
driver is to interpret the newly prepared code page(s)
as a hardware code page. This allows devices that
support user changeable hardware fonts (usually in
cartridges) to be supported.

Note: No prepare is needed for
hardware-defined code pages.

Call AL = ODH (DOS 3.20 and 3.30)

Purpose:

6-166

The Generic IOCTL request tells block device drivers
to perform one of the following functions:

• Get Device Parameters

• Set Device Parameters

• Read Track on a Logical Device

• Write Track on a Logical Device

• Format and Verify Track on a Logical Device

• Verify Track on a Logical Device

Remarks:

440
1/0 Control for Devices (IOCTL)

CH contains the Major code (08H for all functions)
and CL contains the minor code (function.)

6-167

44H
I/O Control for Devices (IOCTL)

The following register descriptions are valid for each
of the functions described on the previous page.

On Entry Contents

AH 44H - IOCTL Request

AL ODH - Generic IOCTL Request

BL Drive Number (0 = default, 1 = A,
etc.)

CH 08H - category code (Major code)

CL Function within Category code
(Minor code)

40H = Set device parameters

60H = Get device parameters

41H = Write track on logical
device

61 H = Read track on logical
device

42H = Format and verify track
on a logical device

62H = Verify track on a
logical device

DS:DX Pointer to parameter block

6-168

Remarks:

440
1/0 Control for Devices (IOCTL)

Get or Set Device Parameters

To Get device parameters, set CL = 60H.

To Set device parameters, set CL = 40H.

When CL = 60H or CL = 40H, the parameter
block has the following field layout:

A deviceParameters struc _.
SpecialF1.:mctions db ?
DeviceType db ?
Dev iceA.ttr ibutes dw ?
NumberOfCylinders dw ?
MediaType db ?
DeviceBPB a BPB <> -
TrackLayout a_TrackLayout
A deviceParameters ends -

<>

An explanation of each field in the parameter block
is given in the pages that follow.

6-169

44H
1/0 Control for Devices (lOCTL)

6-170

SpecialFuDctioDs Field:

This I-byte field is used to further define the Get and
Set Device Parameters functions.

For the Get Device Parameters function, bit 0 of the
SpecialFuDctioDS field has the following meaning:

Bit 0 = 1 Return the BPB that BUILD BPB
would return.
= 0 Return the default BPB for the device.

Note: All other bits must be off.

For the Set Device Parameters function bits 0, 1, and
2 of the SpecialFuDctioDs field are used.

These bits have the following meanings when CL =
40H.

Bit 0 = 1 All subsequent BUILD BPB requests
return DeviceBPB. If another Set Device
request is received with bit 0 reset, BUILD
BPB returns the actual media BPB.

= 0 Indicates that the DeviceBPB field
contains the new default BPB for this
device. If a previous Set Device request set
this bit on, the actual media BPB is
returned. Otherwise, the default BPB for
the device is returned by BUILD BPB.

44H
1/0 Control for Devices (IOCTL)

SpecialFuDctioDs field continued:

Bit 1 = 1 Ignore all fields in the Parameter Block
except the TrackLayout field.

= 0 Read all fields of the parameter block.
Bit 2 = 1 Indicates that all sectors in the track

are the same size and all sector numbers are
between 1 and n (where n is the number of
sectors in the track.)

Notes:

= 0 Indicates that all sectors in the track
may not be the same size.

1. All other bits must be reset.

2. Set bit 2 for normal track layouts. Format Track
can be more efficient if bit 2 is set.

3. Setting bits 0 and 1 at the same time is invalid
and should be considered an error.

6-171

44H
1/0 Control for Devices (IOCTL)

6-172

DeviceType Field:

A I-byte field that describes the physical device type.
Device type is not set by IOCTL but is received from
the device.

The values in this field have the following meanings:

o = 320/360 KB 5-I/4-inch
1 = 5-I/4-inch, 1.2 MB
2 = 3-1/2-inch,.720 KB
3 = 8 inch single density
4 = 8 inch double density
5 = Fixed disk
6 = Tape drive
7 = Other

DeviceAttributes Field:

A I-byte field that describes the physical attributes of
the device. Device attributes are not set by IOCTL
but are received from the device driver.

Only bits 0 and 1 of this field are used. They have
the following meanings:

Bit 0 = 1 media is not removable.
= 0 media is removable.

Bit 1 = 1 diskette changeline is supported.
= 0 diskette changeline is not supported.

Bits 2 -7 are reserved.

44H
1/0 Control for Devices (IOCTL)

NumberOfCylinders Field:

This field indicates the maximum number of
cylinders that can be supported on the physical
device, independent of the media type. The
information in this field is not set by IOCTL, but is
received from the device driver.

MediaType Field:

For multimedia drives, this field indicates which
media is expected to be in the drive.

The MediaType field is used only when the actual
media in the drive cannot otherwise be determined.
Media type is dependent on device type.

Regardless of the device type, a value of 0 represents
the default. For example, a 5-1/4-inch 1.2MB
diskette drive is a multi-media drive. The media type
is defined as follows:

o = Quad density 1.2 MB (96 tpi) diskette

1 = Double density 320/360KB (48 tpi)
diskette

The default media type for a 1.2MB drive is a quad
density 1.2 MB diskette.

6-173

440
1/0 Control for Devices (IOCTL)

6-174

DeviceBPB Field:

F or the Get Device Parameters function:

• If bit 0 of the SpecialFunctions field is set, the
device driver returns the BPB that BUILD BPB
would return.

• If bit 0 of the SpecialFunctions field is not set, the
device driver returns the default BPB for the
device.

For the Set Device Parameters function:

• If bit 0 of the SpecialFunctions field is set, the
device driver is requested to return the BPB from
this field for all subsequent BUILD BPB requests
until a Set Device Parameters request is received
with bit 0 in the SpecialFunctions field reset.

• If bit 0 is not set, the BPB contained in this field
becomes the new default BPB for the device.

448
1/0 Control for Devices (IOCTL)

The DeviceBPB field has the following format:

a_BPB struc
BytesPerSector dw ?
SectorsPerCluster db ?
ReservedSectors dw ?
NumberOfFATs db ?
RootEntries dw ?
TotalSectors dw ?
MediaDescriptor db ?
SectorsPerFAT dw ?

SectorsPerTrack dw ?
Heads dw ?
HiddenSectors dd ?
Reserved 1 dd ?
Reserved_2 db 6 dup (0)
a_BPB ends

6-175

44H
1/0 Control for Devices (IOCTL)

6-176

TrackLayout Field:

This is a variable length table indicating the expected
layout of sectors on the media track.

DOS device drivers do not keep a track layout table
for each logical device. The global track table must
be updated (via Set Device Parameters) when the
attributes of the media change.

Note: The Set Device Parameters call
(CL = 40H) modifies the track table regardless
of how bit 1 of the SpecialFunctions field is set.

For Get Device Parameters, this field is not used.
The track layout is used by subsequent Read/Write
Track, F ormat/V erify Track and Verify Track
functions.

Total

Sector

Sector

Sector

Sector

Sector

44H
1/0 Control for Devices (IOCTL)

The following example shows how this field is
formatted:

sectors-------ISectorCount dw n

l-----------ISectorNurnber_l dw lH
ISectorSize_l dw 200H

2-----------ISectorNurnber_2 dw 2H
ISectorSize_2 dw 200H

3-----------ISectorNurnber_3 dw 3H
ISectorSize_3 dw 200H

4-----------ISectorNurnber_ 4 dw 4H
ISectorSize_4 dw 200H

I
I
I

n-----------ISectorNurnber_n dw n
ISectorSize_n dw 200H

Note: All values are in hexadecimal.

The total number of sectors is indicated by the
SectorCount field. Each sector number must be
unique and in a range between 1 and n (sector
count). As shown, in the example above, the first
sector number is 1 and the last sector number is
equal to the sector count (n). If bit 2 of the
SpecialFunctions field is set, all sector sizes, which
are measured in bytes, must be the same, (See the
example).

See the description of bit 2 under the SpecialFunction
field.

Note: The DeviceType, DeviceAttributes, and
NumberOfCylinders fields should be changed
only if the physical device has been changed.

6-177

44H
I/O Control for Devices (IOCTL)

Read/Write Track on Logical Device

6-178

To read a track on a logical device, set CL = 61.

To write a track on a logical device, set CL = 41.

The parameter block has the following layout when
reading or writing a track on a logical device.

a_ReadWriteTrackPacket struc
SpecialFunctions db ?
Head dw ?
Cylinder dw ?
FirstSector dw ?
NumberOfSectors dw ?
TransferAddress dd ?
A_ReadWriteTrackPacket ends

Notes:

1. All bits in the SpecialFunctions field must be
reset.

2. The value in the FirstSector field and the
NumberOfCylinders field is zero-based. For
example, to indicate sector 9, set the value to 8.

44H
1/0 Control for Devices (IOCTL)

Format/Verify Track on Logical Drive
(IOCTL Write)

To format and verify a track, set CL = 42H.

To verify a track, set CL = 62H.

The parameter block has the following layout when
formatting a track or verifying a track on a logical
drive.

A FormatPacket struc
SpecialFunctions db ?
Head dw ?
Cylinder dw ?
A FormatPacket ends -

On entry, bit 0 of the SpecialFunctions field has the
following meanings:

Bit 0 = 1 Format status check call to determine if a
combination of number-of-tracks and
sectors-per-track is supported.

= 0 Format jVerify track call.

To determine if a combination of number-of-tracks
and sectors- per-track is supported, a Set Device
Parameters call must be issued with the correct BPB
for that combination before issuing the Format
Status call. The device driver can then return the
correct code to indicate what is supported.

The values returned in the SpecialFunctions field for
a Format Status Check call are:

o = This function is supported by the
ROM BIOS. The specified combination of
number-of-tracks and sectors-per-track is

6-179

44H
1/0 Control for Devices (IOCTL)

6-180

allowed for the diskette drive.

1 = This function is llot supported by
the ROM BIOS.

2 = This function is supported by the
ROM BIOS. The specified combination of
number-of-tracks and sectors-per-track is
not allowed for the diskette drive.

3 = This function is supported by the
ROM BIOS, but ROM BIOS cannot determine
if the numbers-of-tracks and
sectors-per-track are allowed because
the diskette drive is empty.

44H
110 Control for Devices (IOCTL)

To format a track:

1. Issue the Set Device Parameters function call.

2. Issue the Format Status Check function call to
validate the number-of-tracks and
sectors-per-track combination. Ignore the result
if the value returned is 1, because the ROM BIOS
does not support this function.

3. Issue the Format/Verify Track function call with
the SpecialFunctions bit 0 reset for each track on
the medium.

6-181

44H
1/0 Control for Devices (IOCTL)
Call AL = OEH (DOS 3.20 and 3.30)

Purpose:

On
Entry

AH

AL

BL

On
Return

AL

AX

Remarks:

6-182

This call allows the device driver to determine if
more than one logical drive is assigned to a block
device. When this call is issued, a drive number is
passed in BL on input.

Register
Contents

44H

OEH

Drive number (0 = default,
1 =A, etc.)

Register
Contents

(0 = only one letter assigned
to this block device, otherwise
1 = A, 2 = B, 3 = C, etc.)

Error code if carry flag set

If the block device has more than one logical drive
letter assigned to it, on output a drive number
corresponding to the last drive letter that was used to
reference the device is returned in AL. If only one
drive letter is assigned to the device, 0 is returned in
AL by this call.

448
1/0 Control for Devices (IOCTL)

Call AL = OFH (DOS 3.20 and 3.30)

Purpose:

On
Entry

AH

AL

BL

On
Exit

AL

AX

Remarks:

This call requests the device driver to set the next
logical drive letter that will be used to reference a
block device.

Register
Contents

44H

OFH

Drive number

Register
Contents

o = Only one drive letter
assigned to the block device
(otherwise, 1 = A, 2 = B, etc.)

Error code if carry set

When copying diskettes on a drive whose physical
drive number has more than one logical drive letter
assigned to it (for example, copying on a single drive
system) DOS issues diskette swap prompts to tell you
which logical drive letter is currently referencing the
physical drive number. As the drive changes from
source to target, DOS issues the message:

"Insert diskette for drive X: and strike any
key when ready."

It is possible to avoid this message by issuing call AL
= OFH (Set Logical Drive).

6-183

44H
1/0 Control for Devices (IOCTL)

\

6-184

To avoid the DOS diskette swap message, set BL to
the drive number that corresponds to the drive letter
that will be referenced in the next I/O request.

Note: You can determine the last logical
drive letter assigned to the physical drive
number by issuing call AL = OEH.

Because any block device can have logical drives, this
call should be issued before all I/O operations
involving more than one drive letter; otherwise, the
DOS message may be issued.

Purpose:

On
Entry

AH

BX

On
Return

AX

Remarks:

45H
Duplicate a File Handle (DUP)

Returns a new file handle for an open file that refers
to the same file at the same position.

Register
Contents

45H

File handle

Register
Contents

New file handle if carry flag not set
Error codes if carry flag set

On entry, BX contains the file handle. On return,
AX contains the returned file handle.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Note: If you move the read/write pointer of
either handle by a read, write, or LSEEK
function call, the pointer for the other handle
is also changed.

6-185

46H
Force a Duplicate of a Handle
(FORCDUP)

Purpose:

On
Entry

AH

BX

ex

On
Return

AX

Remarks:

6-186

Forces the handle in ex to refer to the same file at
the same position as the handle in BX.

Register
Contents

46H

Existing file handle

Second file handle

Register
Contents

Error codes if carry flag set
None if carry flag not set

On entry, BX contains the file handle. ex contains
a second file handle. On return, the CX file handle
refers to the same file at the same position as the BX
file handle. If the ex file nandle was an open file,
then it is closed first. If you move the read/write
pointer of either handle, the pointer for the other
handle is also changed.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on

460
Force a Duplicate of a Handle

(FORCDUP)
page 6-42 for more information on the codes
returned from function call 59H.

6-187

47H
Get Current Directory

Purpose:

On
Entry

AH

DS:SI

DL

On
Return

DS:SI

AX

Remarks:

6-188

Places the full path name (starting from the root
directory) of the current directory for the specified
drive in the area pointed to by DS:SI.

Register
Contents

47H

Pointer to a 64-byte user
memory area

Drive number (0 = default,
1 = A, etc.)

Register
Contents

Filled out with full path name
from the root if carry is not
set

Error codes if carry flag is set

The drive letter is not part of the returned string.
The string does not begin with a backslash and is
terminated by a byte containing OOH.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on

47H
Get Current Directory

page 6-42 for more information on the codes
returned from function call 59H.

6-189

48H
Allocate Memory

Purpose:

On
Entry

AH

BX

On
Return

AX:O

AX

BX

Remarks:

6-190

Allocates the requested number of paragraphs of
memory.

Register
Contents
48H

Number of paragraphs of
memory requested

Register
Contents

Points to the allocated
memory block

Error codes if carry set

Size of the largest block of
memory available (in
paragraphs) if the allocation
fails

On entry, BX contains the number of paragraphs
requested. On return, AX:O points to the allocated
memory block. If the allocation fails, BX returns the
size of the largest block of memory available in
paragraphs.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on

48H
Allocate Memory

page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

6-191

49H
Free Allocated Memory

Purpose:

On
Entry

AH

ES

On
Return

AX

Remarks:

6-192

Frees the specified allocated memory.

Register
Contents

49H

Segment of the block to be
returned

Register
Contents

Error codes if carry flag set
NONE if carry flag not set

On entry, ES contains the segment of the block to be
returned to the system pool. On return, the block of
memory is returned to the system pool.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on
page 6-42 for more information on the codes
returned from function call 59H.

Purpose:

On
Entry

AH

ES

BX

On
Return
AX

BX

Remarks:

4AH
Modify Allocated Memory Blocks

(SETBLOCK)

Modifies allocated memory blocks to contain the new
specified block size.

Register
Contents
4AH

Segment of the block

Contains the new requested
block size in paragraphs

Register
Contents
Error codes if carry flag set
None if carry flag not set

Maximum poolsize possible if
the call fails on a "grow
request" if carry flag is set

DOS attempts to "grow" or "shrink" the specified
block.

Error codes are returned in AX. Issue function call
59H "Get Extended Error" for additional
information about the error class, suggested action,
and locus. Refer to "Error Return Information" on
page 6-38 and "Extended Error Codes" on

6-193

4AH
Modify Allocated Memory Blocks
(SETBLOCK)

6-194

page 6-42 for more information on the codes
returned from function call 59H.

4BH
Load or Execute a Program (EXEC)

Purpose:

On
Entry

AH

DS:DX

ES:BX

AL

On
Return

AX

Remarks:

Allows a program to load another program into
memory and optionally begins execution of it.

Register
Contents

4BH

Points to the ASCIIZ string
with the drive, path, and
filename to be loaded

Points to a parameter block
for the load

Function value (see
description)

Register
Contents

Error codes if carry flag set
NONE if carry flag not set

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

6-195

4BH
Load or Execute a Program (EXEC)

The following function values are allowed in AL:

Function Description
Value
OOR Load and execute the program. A program

segment prefix is established for the program;
and the terminate and control - break addresses
are set to the instruction after the EXEC
system call.

Note: When control is returned, all
registers are changed, including the stack.
You must restore SS, SP, and any other
required registers before proceeding.

03R Load, do not create the program segment
prefix, and do not begin execution. This is
useful in loading program overlays.

6-196

4BH
Load or Execute a Program (EXEC)

For each of these values, the block pointed to by
ES:BX has the following format:

AL = OOH Load/execute program

WORD segment address of
environment string to be
passed

DWORD pointer to command
line to be placed at PSP + 80H

DWORD points to default
FCB to be passed at
PSP+5CH

DWORD pointer to default
FCB to be passed at
PSP+6CH

Note: The DWORD pointers are in offset
segment form.

AL = 03H Load overlay

WORD segment address
where file will be loaded

WORD relocation factor to be
applied to the image

6-197

4BH
Load or Execute a Program (EXEC)

All open files of a process are duplicated in the newly
created process after an EXEC, except if the file was
opened with the inheritance bit set to 1. This means
that the parent process has control over the meanings
of standard input, output, auxiliary, and printer
devices. The parent could, for example, write a series
of records to a file, open the file as standard input,
open a listing file as standard output, and then
execute a sort program that takes its input from
standard input and writes to standard output.

Also inherited (or copied from the parent) is an
"environment." This is a block of text strings (less
than 32K bytes total) that convey various
configuration parameters. The following is the
format of the environment (always on a paragraph
boundary):

Byte ASCIIZ string 1

Byte ASCIIZ string 2

Byte ASCIIZ string n

Byte of zero

6-198

Typically the environment strings have the form:

parameter = value

Following the byte of zero in the environment, is a
WORD that indicates the number of other strings
following. Following this is a copy of the DS:DX
filename passed to the child process. F or example,
the string VERIFY = ON could be passed. A zero
value of the environment address causes the newly
created process to inherit the parent's environment
unchanged. The segment address of the environment

4BH
Load or Execute a Program (EXEC)

is placed at offset 2CH of the program segment
prefix for the program being invoked.

Errors codes are returned in AX. Refer to "Error
Return Information" on page 6-38 and "Extended
Error Codes" on page 6-42 for more information on
the codes returned.

Notes:

1. When your program received control, all
available memory was allocated to it. You must
free some memory (see call 4AH) before EXEC
can load the program you are invoking.
Normally, you would shrink down to the
minimum amount of memory you need, and free
the rest.

2. The EXEC call uses the loader portion of
COMMAND. COM to perform the loading.

6-199

4CH
Terminate a Process (EXIT)

Purpose:

On
Entry

AH

AL

On
Return

Remarks:

6-200

Terminates the current process and transfers control
to the invoking process.

Register
Contents

4CH

Return code

Register
Contents

NONE

In addition, a return code can be sent. The return
code can be interrogated by the batch subcommands
IF and ERRORLEVEL and by the wait function call
4DH. All files opened by this process are closed.

Purpose:

On
Entry

AH

On
Return

AX

Remarks:

4DH
Get Return Code of a Subprocess

(WAIT)

Gets the return code specified by another process
either through function call 4CH or function call
31H. It returns the Exit code only once.

Register
Contents

4DH

Register
Contents

Return code

The low byte of the exit code contains the
information sent by the exiting routine. The high
byte of the exit code can contain:

• OOH - for normal termination

• 01H - for termination by Ctrl-Break

• 02H - for termination as a result of a critical
device error

• 03H - for termination by call 31H

6-201

4EH
Find First Matching File (FIND FIRST)

Purpose:

On
Entry

AH

DS:DX

CX

On
Return

AX

Remarks:

6-202

Finds the first filename that matches the specified file
specification.

Register
Contents

4EH

Pointer to an ASCIIZ string
containing the drive, path,
and filename of the file to be
found

Attribute used in searching for
the file

Register
Contents

Error codes if carry flag set

The filename in DS:DX can contain global filename
characters. The ASCIIZ string cannot contain a
network path. See function call 11 H for a
description of how the attribute bits are used for
searches.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more

4EH
Find First Matching File (FIND FIRST)

information on the codes returned from function call
59H.

If a file is found that matches the specified drive,
path, and filename and attribute, the current DT A is
filled in as follows:

21 bytes - reserved for DOS use on subsequent
find next calls

1 byte - file's attribute

2 bytes - file's time

2 bytes - file's date

2 bytes - low word of file size

2 bytes - high word of file size

13 bytes - name and extension of file found,
followed by a byte of zeros. All blanks are
removed from the name and extension, and if an
extension is present, it is preceded by a period.
Thus, the name returned appears just as you
would enter it as a command parameter, such as
TREE. COM followed by a byte of zeros.

6-203

4FH
Find Next Matching File (FIND NEXT)

Purpose:

On
Entry

AH

DTA

On
Return

AX

Remarks:

6-204

Finds the next directory entry matching the name
that was specified on the previous Find First or Find
Next function call.

Register
Contents

4FH

Contains the information
from a previous Find First or
Find Next call (4EH, 4FH)

Register
Contents

Error codes if carry flag set

If a matching file is found, the DT A is set as
described in call 4EH. If no tnore matching files are
found, an error code is returned.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Purpose:

On
Entry

AR

On
Return

AL

Remarks:

54H
Get Verify Setting

Returns the value of the verify flag.

Register
Contents

54R

Register
Contents

Current verify flag value
OOR, if verify is off
01 H, if verify is on

On return, AL returns OOR if verify is OFF, OIR if
verify is ON. Note that the verify switch can be set
through call 2EH.

6-205

56H
Rename a File

Purpose:

On
Entry

AH

DS:DX

ES:DI

On
Return

AX

Remarks:

6-206

Renames the specified file.

Register
Contents

56H

Pointer to an ASCIIZ string
containing the drive, path,
and filename of the file to be
renamed

Pointer to an ASCIIZ string
containing the new path and
filename

Register
Contents
Error codes if carry flag set
NONE if carry flag not set

If a drive is used in the ASCIIZ string, it must be the
same as the drive specified or implied in the first
string. The directory paths need not be the same,
allowing a file to be moved to another directory and
renamed in the process. Global filename characters
are not allowed in the filename.

56"
Rename a File

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Network Access Rights: Requires Create access
rights.

6-207

57H Get/Set a File's Date and Time

Purpose:

On
Entry

AH

AL

BX

CX

DX

On
Return

AX

DX

CX

Remarks:

6-208

Gets or sets a file's date and time.

Register
Contents

57H

OOH, get date and time
01 H, set date and time

File handle

Time to be set if AL = OIH

Date to be set if AL = OIR

Register
Contents

Error codes if carry flag set

If getting date, the date is
from the handle's internal
table

If getting time, the time is
from the handle's internal
table

The date and time formats are the same as those for
the directory entry described in Chapter 5 of this
book.

57H Get/Set a File's Date and Time
Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

6-209

59H (DOS 3.00 to 3.30)
Get Extended Error

Purpose:

On
Entry

AH

BX

On
Return

AX

BH

BL

CH

Remarks:

6-210

Returns additional error information, such as the
error class, locus, and recommended action.

Register
Contents

59H

OOOOH (version 0, for 3.00 to
3.30)

Register
Contents

Extended error

Error class

Suggested action

Locus

This function call returns the error class, locus, and
recommended action, in addition to the return code.
Use this function call from:

• Interrupt 24H error handlers

• Interrupt 21H function calls that return an error
in the carry bit

• FCB function calls that return FFH

59H (DOS 3.00 to 3.30)
Get Extended Error

On return, the registers contents of DX, SI, DI, ES,
CL, and DS are destroyed.

6-211

59H (DOS 3.00 to 3.30)
Get Extended Error

6-212

Error Return in Carry Bit

For function calls that indicate an error by setting
the carry flag, the correct method for performing
function call 59H is:

1. Load up registers.

2. Issue interrupt 21H.

3. Continue operation, if carry not set.

4. Disregard the error code and issue function.call
59H to obtain additional information.

5. Use the value in BL to determine the suggested
action to take.

Error Status in AL

For function calls that indicate an error by setting
AL to FFH, the correct method for performing
function call 59H is:

1. Load up registers.

2. Issue interrupt 21H.

3. Continue operation, if error is not reported in
AL.

4. Disregard the error code and issue function call
59H to obtain additional information.

5. Use the action in BL to determine the suggested
action to take.

Purpose:

On
Entry

AH

DS:DX

CX

On
Return

AX

DS:DX

Remarks:

5AH (DOS 3.00 to 3.30)
Create Unique File

Generates a unique filename, and creates that file in
the specified directory.

Register
Contents

SAH

Pointer to ASCIIZ path
ending with a backslash (\)

Attribute

Register
Contents

Error codes if carry flag is set

ASCIIZ path with the
filename of the new file
appended

On entry, AH contains SAR. If no error has
occurred, then the file is opened in compatibility
mode with Read/Write access, the read/write pointer
is set at the first byte of the file and AX contains the
file handle and the filename is appended to the path
specified in DS:DX.

This function call generates a unique name and
attempts to create a new file in the specified
directory. If the file already exists in the directory,
then another unique name is generated and the
process is repeated. Programs that need temporary

6-213

SAH (DOS 3.00 to 3.30)
Create Unique File

6-214

files should use this function call to generate unique
filenames.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Note: The file created using this function call
is not automatically deleted at program
termination.

Network Access Rights: Requires Create access
rights.

Purpose:

On
Entry

AH

DS:DX

CX

On
Return

AX

Remarks:

5BH (DOS 3.00 to 3.30)
Create New File

Creates a new file.

Register
Contents

5BH

Pointer an ASCIIZ path name

File attributes

Register
Contents

Error codes if carry flag set
Handle if carry flag not set

This function call is identical to function call 3CH
(Create) with the exception that it will fail if the
filename already exists. The file is created in
compatibility mode for reading and writing and the
read/write pointer is set at the first byte of the file.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Network Access Rights: Requires Create access
rights.

6-215

5CH (DOS 3.00 to 3.30)
Lock/Unlock File Access

Purpose:

On
Entry

AH

AL

BX

CX

DX

SI

DI

On
Return

AX

Remarks:

6-216

Locks or unlocks a range of bytes in an opened file.

Register
Contents

5CH

OOH, to lock
01 H, to unlock

File handle

Offset high

Offset low

Length high

Length low

Register
Contents

Error codes if carry flag is set

The Lock/Unlock function calls should only be used
when a file is opened using the Deny Read or Deny
N one sharing modes. These modes do no local
buffering of data when accessing files on a network
disk.

5CH (DOS 3.00 to 3.30)
Lock/Unlock File Access

AL = OOH Lock

Provides a simple mechanism for excluding other
processes read/write access to regions of the file. If
another process attempts to read or write in such a
region, its system call is retried the number of times
specified with the system retry count set by IOCTL.
If after those retries no success occurs, a general
failure error is generated signaling the condition.
The number of retries, as w~l1 as the length of time
between retries, can be changed using function call
440BH (IOCTL Change Sharing Retry Count). The
recommended action is to issue function call 59H to
get the error code in addition to the error class,
locus, and recommended action. The locked regions
can be anywhere in the logical file. Locking beyond
end - of - file is not an error. It is expected that the
time in which regions are locked will be short.
Duplicating the handle duplicates access to the
locked regions. Access to the locked regions is not
duplicated across the EXEC system call. Exiting
with a file open and having issued locks on that file
has undefined results. Programs that m~y be aborted
using INT 23H or INT /24 H should trap these and
release the locks before exiting. The proper method
for using locks is not to rely on being 4enied read or
write access, but attempting to lock the region
desired and examining the error code.

AL = 01H Unlock

Unlock releases the lock issued in the lock system
call. The region specified must be exactly the same
as the region specified in the previous lock. Closing
a file with locks still in force has undefined results.
Exiting with a file open and having issued locks on
that file has undefined results. Programs that may
be aborted using INT 23H or INT 24H should trap
these and release the lock before exiting. The proper
method for using locks is not to rely on being denied

6-217

SCH (DOS 3.00 to 3.30)
Lock/Unlock File Access

6-218

read or write access, but attempting to lock the
region desired and examining the error code.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Purpose:

On
Entry

AX

DS:DX

On
Return

DS:DX

CH

CL

AX

Remarks:

5EOOH (DOS 3.10 to 3.30)
Get Machine Name

Returns the character identifier of the local
computer.

Register
Contents

5EOOH

Pointer to the memory buffer
where the ASCIIZ computer
name is returned

Register
Contents

Filled with the ASCIIZ
computer name

N arne/number indicator flag
o = name not defined

not 0 = name/number defined

NETBIOS name number for
the name

Error codes if carry flag is set

Get Machine Name returns the text of the current
computer name to the caller. The computer name is
a 15 - character byte string padded with spaces and
followed by a OOH byte. If the computer name was
never set, register CH is returned with OOH and the
value in the CL register is invalid. The IBM PC

6-219

5EOOH (DOS 3.10 to 3.30)
Get Machine N arne

6-220

Local Area Network Program must be loaded for the
function call to execute properly.

Purpose:

On
Entry

AX

BX

CX

DS:SI

On
Return

AX

Remarks:

5E02H (DOS 3.10 to 3.30)
Set Printer Setup

Specifies an initial string for printer files.

Register
Contents

5E02H

Redirection list index

Length of setup string
(maximum length is 64 bytes)

Pointer to printer setup buffer

Register
Contents

Error codes if carry flag is set

The string specified is put 'in front of all files destined
for a particular network printer. Printer Setup
allows multiple users of a single printer to specify
their own mode of operation for the printer. BX is
set to the same index that is used in function call
5F02H (Get Redirection List Entry). An error code
is returned if print redirection is paused or if the
IBM PC Local Area Network Program is not loaded.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more

6-221

5E02H (DOS 3.10 to 3.30)
Set Printer Setup

6-222

information on the codes returned from function call
59H.

IMPORTANT: The redirection index value may
change if function call 5F03H (Redirect Device) or
function call 5F04H (Cancel Redirection) is issued
between the time the redirection list is scanned and
function call 5E02H (Set printer setup) is issued.
Therefore, we recommend that you issue Set Printer
Setup immediately after you issue "Get Redirection
List."

Purpose:

On
Entry

AX

BX

ES:DI

On
Return

AX

CX

ES:DI

Remarks:

5E03H (DOS 3.10 to 3.30)
Get Printer Setup

Returns the printer setup string for printer files.

Register
Contents

5E03H
Redirection list index

Pointer to printer setup buffer
(maximum length is 64 bytes)

Register
Contents

Error codes if carry flag is set

Length of data returned

Filled with the printer setup
string

This function call returns the printer setup string
which was specified using the function call 5E02H
(Set Printer Setup). The setup string is attached to
all files destined for a particular printer. The value
in BX is set to the same Entry). Error code 1 (invalid
function number) is returned if the IBM PC Local
Area Network is not loaded.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38

6-223

5E03H (DOS 3.10 to 3.30)
Get Printer Setup

6-224

and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

IMPORTANT: The redirection index value may
change if function call 5F03H (Redirect Device) or
function call 5F04H (Cancel Redirection) is issued
between the time the redirection list is scanned and
function call 5E03H (Get printer setup) is issued.
Therefore, we recommend that you issue "Get printer
setup" immediately after you issue "Get redirection
list. "

Purpose:

On
Entry

AX

BX

DS:DI

ES:DI

On
Return

AX

BH

BL

CX

DX

BP

DS:SI

ES:DI

5F02H (DOS 3.10 to 3.30)
Get Redirection List Entry

Returns nonlocal network assignments.

Register
Contents

5F02H

Redirection index (zero-based)

Pointer to a 128 - byte buffer
address of the local device
name

Pointer to a 128 - byte buffer
address of network name

Register
Contents

Error codes if carry flag is set

Device status flag
Bi t 0 = 0 if device is valid

0= 1 if device is not valid
Bi ts 1-7 are reserved

Device type

Stored parm value

Destroyed

Destroyed

ASCIIZ local device name

ASCIIZ network name

6-225

5F02H (DOS 3.10 to 3.30)
Get Redirection List Entry
Remarks:

6-226

The Get Redirection List Entry function call returns
the list of network redirections that were created
through function call 5F03H (Redirect Device).
Each call returns one redirection, so BX should be
incremented by 1 each time to step through the list.
The contents of the list may change between calls.
The end-of-list is detected by error code 18 (no more
files). Error code 1 (Invalid function number) is
returned if the IBM PC Local Area Network
Program is not loaded.

If either disk or print redirection is paused, the
function is not affected.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Purpose:

On
Entry

AX

BL

CX

DS:SI

ES:DI

On
Return

AX

Remarks:

5F03H (DOS 3.10 to 3.30)
Redirect Device

Causes a Redirector /Server connection to be made.

Register
Contents

5F03H

Device type

03 Printer device
04 File device

Value to save for caller

Source ASCIIZ device name

Destination ASCIIZ network
path with password

Register
Contents

Error codes if carry flag is set

This call is the interface that defines the current
directories for the network and defines redirection of
network printers.

• If BL = 03, the source specifies a printer, the
destination specifies a network path, and the CX
register has a word that DOS maintains for the
programmer. For compatibility with the IBM
PC Local Area Network Program, CX should be
set to O. Values other than 0 are reserved for the

6-227

5F03H (DOS 3.10 to 3.30)
Redirect Device

6-228

IBM PC Local Area Network Program. This
word may be retrieved through function call
5F02H (Get Redirection LIst). All output
destined for the specified printer is buffered and
sent to the remote printer spool for that device.
The printers are redirected at the INT 17H level.

The source string must be PRN , LPTl, LPT2,
or LPT3, each ended with a OOH. The
destination string inust point to a network name
string of the following' form:

[\ \computername\ {shortnamejprintdevice}]

The destination string must be ended with a OOH.

The ASCIIZ password (0 to 8 characters) for
access to the remote device should immediately
follow the network string. The password must
end with a OOH. A null (zero length) password is
considered to be no password.

• If BL = 4; the source specifies a drive letter and
colon ended with OOH, the destination specifies a
network path ended with OOH, and the CX
register has a word that DOS maintains for the
programmer. For compatibility with the IBM
PC Local Area Network Program, CX should be
set to OOH. Values other than OOH are reserved
for the IBM PC Local Area Network Program.
The value may be retrieved through function call
5F02H (Get Redirection List). If the source was
a drive letter, the association is made between the
drive letter and the network path. All subsequent
references to the drive letter are translated to
references to the network path. If the source is
an empty string, the system attempts to grant
access to the destination with the specified
password without redirecting any device.

5F03H (DOS 3.10 to 3.30)
Redirect Device

The ASCIIZ password for access to the remote
path should immediately follow the network
string. A null (zero length) password ended with
OOH is considered to be no password.

Error codes are returned in AX. Issue function
call 59H Get Extended Error for additional
information about the error class, suggested
action, and locus. Refer to "Error Return
Information" on page 6-38 and "Extended Error
Codes" on page 6-42 for more information on
the codes returned from function call 59H.

Notes:

1. Devices redirected through this function call are
not displayed by the NET USE command.

2. An error is returned if you try to redirect a file
device while disk redirection is paused, or if you
try to redirect a printer while print redirection is
paused.

3. Only the application that redirects a device can
get access to that device. No other application
running under TopView can get access to that
device.

4. An application running under TopView can only
cancel a redirection that it created. It cannot
cancel a redirection created by another
application running under Top View.

6-229

5F04H (DOS 3.10 to 3.30)
Cancel Redirection

Purpose:

On
Entry

AX

DS:SI

On
Return

AX

Remarks:

6-230

Cancels a previous redirection.

Register
Contents

5F04H

ASCIIZ device name or path

Register
Contents

Error codes if carry flag is set

The redirection created by the Redirect Device
function call (5F03H) is removed through the Cancel
Redirection call. If the buffer points to a drive letter
and the drive is associated with a network name, the
association is terminated and the drive is restored to
its physical meaning. If the buffer points to PRN,
LPTl, LPT2, or LPT3, and the device has an
association with a network device, the association is
terminated and the device is restored to its physical
meaning. If the buffer points to a network path
ended with OOH and a password ended with OOH,
then the association between the local machine and
the network directory is terminated.

An error is returned if you try to cancel a redirected
file device while disk redirection is paused, or if you
try to cancel a redirected printer while print
redirection is paused. Error code 1 (Invalid function

5F04H (DOS 3.10 to 3.30)
Cancel Redirection

number) is returned if the IBM PC Local Area
Network Program is not loaded.

Error codes are returned in AX. Issue function call
59H Get Extended Error for additional information
about the error class, suggested action, and locus.
Refer to "Error Return Information" on page 6-38
and "Extended Error Codes" on page 6-42 for more
information on the codes returned from function call
59H.

Note: An application running under TopView
can only cancel a redirection that it created. It
cannot cancel a redirection created by another
application running under TopView.

6-231

620 (DOS 3.00 to 3.30)
Get Program Segment Prefix Address

Purpose:

On
Entry

AH

On
Return
BX

Remarks:

6-232

Returns the program prefix address.

Register
Contents

62H

Register
Contents
Segment address of the
currently executing process

The internal PSP address for the currently executing
process is returned in BX.

650 (DOS 3.30) Get Extended Country
Information

Purpose:

On
Entry

AH

AL

BX

DX

CX

ES:DI

On
Return

ES:DI

Remarks:

Returns extended country information

Register
Contents

65H

ID value of information of
interest (1, 2, 4, 5, or 6)

Code page of interest
(-1 = active CON device)

Country ID for which
information is returned
(default is -1)

Amount of data to return

Buffer where country
information is returned

Register
Contents

Extended country information
table

On entry, DX contains the ID of the country for
which the extended information is needed. AL
contains the ID value for the country.

• If the country code and code page do not match,
or either or both are invalid, an error code of 2
(file not found) is returned in AX.

6-233

650 (DOS 3.30) Get Extended Country
Information

• The size requested in CX must be 5 or greater. If
it is less than 5, an error code of 1 is returned in
AX.

• If the amount of information returned is greater
than the size requested in CX, it is truncated and
no error is returned in AX.

The following tables show what information is
returned for each valid country Info id value:

Country Information Size

Info id = 01 1 byte

size (38 or less) 2 bytes

Country id 2 bytes

Code page 2 bytes

Date format 2 bytes

Currency symbol 5 bytes

1000 separator 2 bytes

Decimal separator 2 bytes

Date separator 2 bytes

Time separator 2 bytes

Currency format flags 1 byte

Digi ts in currency 1 byte

Time format 1 byte

Monocase routine entry 4 bytes
point

Data list separator 2 bytes

Zeros 10 bytes

Note: For further information on the country
information, see function call 38H for DOS
3.00 to 3.30.

6-234

65H (DOS 3.30) Get Extended Country
Information

Uppercase Table Size

Info id = 02 1 byte

Doubleword pointer to 4 bytes
uppercase table

File name Uppercase Table Size

Info id = 04 1 byte

Doubleword pointer to 4 bytes
filename uppercase table

The uppercase table and the filename uppercase
tables are 130 bytes long consisting of a length field
(2 bytes) followed by 128 uppercase values for the
upper 128 ASCII characters. They have the
following layout:

• bytes 0 and 1 = size of table

• bytes 2 - 129 = list of uppercase values

The following formula can be used to determine the
address of an uppercase equivalent for a lowercase
character (ASCII_in) in the uppercase table or the
filename uppercase table.

ASCII_in -(256-table_len)+
table_start

address of ASCII_out
Where:

ASCII in character to be generated

table_len length of list of uppercase
values (2 bytes)

6-235

65H (DOS 3.30) Get Extended Country
Information

table_start = starting address of uppercase
table (4 bytes)

ASCII_out = uppercase value for ASCII_in

Collate
Size

If the value of ASCIl_in is equal to or greater than
(256-table_len) there is an uppercase equivalent for
ASCII_in in the table. If it is lower than
(256-table_len) no uppercase equivalent exists in the
table.

Table

Info id = 06 1 byte

Doubleword pointer to 4 bytes
collating sequence

6-236

The collate table is 258 bytes long, consisting of a
length field (two bytes) followed by 256 ASCII
values, in the appropriate order.

66H (DOS 3.30) Get/Set Global Code
Page

Purpose:

On
Entry

AH

AL

On
Return

AX

BX

DX

On
Entry

AH

AL

This function changes the code page for the current
country.

Register
Contents

66H

01 - Get Global Code Page

Register
Contents

Error code if carry flag set.

Active code page (currently set
by user)

System code page (active code
page at boot time)

Register
Contents

66H

02 - Set Global Code Page

6-237

66H (DOS 3.30) Get/Set Global Code
Page

On
Return

AX

Remarks:

6-238

Register
Contents

Error code if carry set.

DOS moves the new code page data from the
COUNTRY.SYS file to a resident country buffer
area. DOS uses the new code page to perform a
Select to all attached devices that are set up for code
page swicthing (have a code page switching device
driver specified in CONFIG.SYS). If any device fails
to be selected, an error code of 65 is returned in AX.
The code page must be recognizable by the the
current country and DOS must be able to open and
read from the country information file, otherwise, the
carry flag will be set on return and AX will contain
02 (file not found).

Notes:

1. The only way to change the code page used by
the current country is to reboot the system with a
different CONFIG.SYS.

2. NLSFUNC must be installed to use this function
call, and all the devices must be prepared in order
for the Select function to be successful.

67H (DOS 3.30) Set Handle Count

Purpose:

On
Entry

AX

BX

On
Return

AX

Remarks:

Permits more than 20 open files per process.

Register
Contents

67H

Number of open handles
allowed

Register
Contents

Error code if carry set.

The maximum number of file handles allowed for
this interrupt is 64K. If the the specified number of
allowable handles is less than the current number
allowed, the specified number will only become
current after all the handles above the number being
specified have been closed. If the specified number is
less than 20, the number is assumed to be 20. Values
of up to 255 will be allowed in the CONFIG.SYS
command FILES =. Data base applications can
use this function to reduce the need to swap handles.

You must release memory for DOS to contain the
extended handle list. You can do this by using the
SET BLOCK (4AH) function call.

6-239

68H (DOS 3.30) Commit File

Purpose:

On
Entry

AX

On
Return
BX

Remarks:

6-240

This function call causes all buffered data for a file
to be written to the device. This function can be used
instead of the close-open sequence.

Register
Contents

68H

Register
Contents
File handle

Commit File provides a faster and more secure
method of committing data in multi-user
environments such as the IBM PC Local Area
Network.

Chapter 7. DOS Control Blocks and
Work Areas

Introduction 7-3
DOS Memory Map 7-4
DOS Program Segment 7-6
Program Segment Prefix 7-10
File Control Block 7 -12

Standard File Control Block 7-13
Extended File Control Block 7-16

Font Files 7-17

7-1

7-2

Introduction

This chapter contains:

• A description of the locations and usage of the
DOS memory map.

• A detailed description and diagram of the
program segment prefix.

• A detailed description and diagram of the file
control block (standard and extended).

7-3

DOS Memory Map

Location Usage

0000:0000 Interrupt vector table

0040:0000 ROM communication area

0050:0000 DOS communication area

XXXX:OOOO IBMBIO.COM - DOS
interface to ROM I/O routines

XXXX:OOOO IBMDOS.COM - DOS
interrupt handlers, service
routines (INT 21 functions)

DOS buffers, control areas,
and installed device drivers

XXXX:OOOO Resident portion of
COMMAND. COM -
Interrupt handlers for
interrupts 22H (terminate),
23H (Ctrl-Break), 24H
(critical error), and code to
reload the transient portion

XXXX:OOOO External command or utility
- (.COM or .EXE file)

XXXX:OOOO User stack for .COM files

XXXX:OOOO Transient portion of
COMMAND.COM

7-4

Notes:

1. Memory map addresses are in segment:offset
format. For example, 0070:0000 is absolute
address 0700H.

2. The DOS Communication Area is used as
follows:

0050:0000 Print screen status flag store

o Print screen not active or
successful print screen operation

1 Print screen in progress

255 Error encountered during print
screen operation

0050:0001 Used by BASIC

0050:0004 Single-drive mode status byte

o Diskette for drive A was last
used

1 Diskette for drive B was last
used

0050:0010-0021 Used by BASIC

0050:0022-002F Used by DOS for diskette
initialization

0050:0030-0033 Used by MODE command

All other locations within the 256 bytes beginning
at 0050:0000 are reserved for DOS use.

3. User memory is allocated from the lowest end of
available memory that will satisfy the request for
memory.

7-5

DOS Program Segment

7-6

When you enter an external command, or call a
program through the EXEC function call, DOS
determines the lowest available address to use as the
start of available memory for the program being
started. This area is called the Program Segment.

At offset 0 within the Program Segment, DOS builds
the Program Segment Prefix control block. EXEC
loads the program at offset 100H and gives it
control.

The program returns from EXEC by a jump to offset
o in the Program Segment Prefix, by issuing an INT
20H, by issuing an INT 21H with register AH = OOH
or 4CH, or by calling location SOH in the Program
Segment Prefix with AH = OOH or 4CH.

Note: It is the responsibility of all programs
to ensure that the CS register contains the
segment address of the Program Segment
Prefix when terminating using any of these
methods except call 4CH.

All of these methods result in returning to the
program that issued the EXEC. During this
returning process, interrupt vectors 22H, 23H, and
24H (terminate, Ctrl-Break, and critical error exit
addresses) are restored from the values saved in the
Program Segment Prefix of the terminating program.
Control is then given to the terminate address.

When a program receives control, the following
conditions are in effect:

For all programs:

• The segment address of the passed environment is
contained at offset 2CH in the Program Segment
Prefix.

The environment is a series of ASCII strings
(totaling less than 32K bytes) in the form:

NAME = parameter

Each string is terminated by a byte of zeros, and
the entire set of strings is terminated by another
byte of zeros. Following the byte of zeros that
terminates the set of environment strings is a set
of initial arguments passed to a program that
contains a word count followed by an ASCIIZ
string. The ASCIIZ string contains the drive,
path, andfilename{.ext} of the executable
program. Programs may use this area to
determine where the program was loaded from.
The environment built by the command processor
(and passed to all programs it invokes) contains a
COMSPEC= string at a minimum (the
parameter on COM SPEC is the path used by
DOS to locate COMMAND. COM on disk). The
last PATH and PROMPT commands issued will
also be in the environment, along with any
environment strings entered through the SET
command. See Chapter 7 of the DOS Reference
for more information on the PATH and
PROMPT commands.

The environment that you are passed is actually a
copy of the invoking process environment. If
your application uses a "terminate and stay
resident" concept, you should be aware that the
copy of the environment passed to you is static.
That is, it will not change even if subsequent
SET, PATH, or PROMPT commands are issued.

7-7

7-8

• Offset 50H in the Program Segment Prefix
contains code to invoke the DOS function
dispatcher. Thus, by placing the desired function
number in AH, a program can issue a long call to
PSP + 50H to invoke a DOS function, rather than
issuing an interrupt type 21H.

• Disk transfer address (DT A) is set to 80H
(default DTA in the Program Segment Prefix).

• File control blocks at 5CH and 6CH are
formatted from the first two parameters entered
when the command was invoked. Note that if
either parameter contained a path name, then the
corresponding FCB will contain only a valid
drive number. The filename field will not be
valid.

• An unformatted parameter area at 8lH contains
all the characters entered after the command
name (including leading and imbedded
delimiters), with 80H set to the number of
characters. If the <, >, or : parameters were
entered on the command line, they (and the
filenames associated with them) will not appear
in this area, because redirection of standard input
and output is transparent to applications.

• For .COM files, offset 6 (one word) contains the
number of bytes available in the segment.

• Register AX reflects the validity of drive
specifiers entered with the first two parameters as
follows:

AL= FFH if the first parameter contained an
invalid drive specifier (otherwise AL = OOH)

AH = FFH if the second parameter contained
an invalid drive specifier (otherwise
AH=OOH)

For .EXE programs:

• DS and ES registers are set to point to the
Program Segment Prefix.

• CS, IP, SS, and SP registers are set to the values
passed by the Linker.

For .COM programs:

• All four segment registers contain the segment
a4dress of the initial ~llocation block, that starts
with the Program Segment Prefix control block.

• All of us~r memory is allocated to the program.
If the program wishes to invoke another program
through the EXEC function call, it must first free
some memory through the Setblock (4AH)
function call, to provide space for the program
being invoked.

• The Instruction Pointer (lP) is set to lOOH.

• SP register is set to the end of the program's
segment. The segment size at offset 6 is rounded
down to the paragraph size.

• A word of zeros is placed on the top of the stack.

The Program Segment Prefix (with offsets in
hexadecimal) is formatted as follows.

7-9

Program Segment Prefix

0 1 2 I 3 4 I 5 6 I 7

INT Top of Reserved
20H memory

8 9 A I B C D E I F

Terminate Terminate Ctrl-break
Reserved address address exit address

IP CS IP

10 11 12 I 13 14 l 15 16 J 17

Crtl-break Critical error
exit address exit address Reserved

CS IP CS

18 19 < 2A I 2B 2C I 2D 2E I 2F

Reserved

3D to 4F

Reserved

50 51 52 I 53 54 I 55 56 I 57

DOS call Reserved

58 59 5A I 5B 5C I 50 5E I 5F

Reserved Unopened Standard
FCB1

60 61 62 I 63 64 I 65 66 I 67

Unopened Standard FCB1 (cont)

68 69 6A I 6B 6C I 60 6E I 6F

FCB1 (cont) Unopened Standard FCB2

70 71 72 I 73 74 I 75 76 I 77

Unopened Standard FCB2(cont)

78 79 7A I 7B 7C I 70 7E I 7F

Unopened Standard FCB2 (cont)

80 81 82 I 83 84 I 85 86 I 87

,.~ Parm Command parameters ,,:;
-~ length starting with leading blanks

F8 F9 FA I FB FC I FO FE I FF

Command parameters

7-10

1. First segment of available memory is in segment
(paragraph) form (for example, 1000H would
represent 64K).

2. The word at offset 6 contains the number of
bytes available in the segment.

3. Offset 2CH contains the segment address of the
environment.

4. Programs must not alter any part of the PSP
below offset 5CH.

Dos 3,3

3. J PJI

7-11

-.....l
I

N

0

8

16

24

32

-7 oj --------~--~--------~

Drive

Current
record

hex FF Zeros

Filename (8bytes) or Reserved device name

Filename extension

Random record
number (low part)

Curent block

Random record
number (high part)

(offsets are in decimal)

Unshaded areas must be filled in by the using program.

Shaded areas are filled in by DOS and must not be modified.

Attribute

Record size

FCB
extension

Standard
FCB

~ ..,..
.~

~
o
= ~ .. o
t= o
~
~

Standard File Control Block

The standard file control block (FCB) is defined as
follows, with the offsets in decimal:

Byte Function

o Drive number. For example,

Before open: 0 - default drive

1 - drive A

2 - drive B

etc.

After open: o - drive A

1 - drive A

2 - drive B

etc.

o is replaced by the actual drive number
during open.

1-8 Filename, left-justified with trailing blanks. If
a reserved device name is placed here (such as
LPT1), do not include the optional colon.

9-11 Filename extension, left-justified with trailing
blanks (can be all blanks).

12-13 Current block number relative to the
beginning of the file, starting with 0 (set to 0
by the open function call). A block consists
of 128 records, each of the size specified in
the logical record size field. The current
block number is used with the current record
field (below) for sequential reads and writes.

7-13

7-14

14-15 Logical record size in bytes. Set to 80H by
the open function call. If this is not correct,
you must set the value because DOS uses it to
determine the proper locations in the file for
all disk reads and writes.

16-19 File size in bytes. In this 2-word field, the
first word is the low-order part of the size.

20-21 Date the file was created or last updated. The
mm/dd/yy are mapped in the bits as follows:

< 21 > < 20 >

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Y Y Y Y Y Y Y m m m m d d d d d

where:

mm is 1-12
dd is 1-31
yy is 0-119 (1980-2099)

22-31 Reserved for system use.

32 Current relative record number (0-127) within
the current block. (See above.) You must set
this field before doing sequential read/write
operations to the diskette. This field is not
initialized by the open function call.

33-36 Relative record number relative to the
beginning of the file, starting with O. You
must set this field before doing random
read/write operations to the diskette. This
field is not initialized by the open function call.

If the record size is less than 64 bytes, both
words are used. Otherwise, only the first 3
bytes are used. Note that if you use the File
Control Block at 5CH in the program segment,
the last byte of the FCB overlaps the first byte
of the unformatted parameter area.

Notes:

1. An unopened FCB consists of the FCB prefix (if
used), drive number, and filename/extensions
properly filled in. An open FCB is one in which
the remaining fields have been filled in by the
Create or Open function calls.

2. Bytes 0-15 and 32-36 must be set by the user
program. Bytes 16-31 are set by DOS and must
not be changed by user programs.

3. All word fields are stored with the least
significant byte first. F or example, a record
length of 128 is stored as 80H at offset 14, and
OOH at offset 15.

7-15

Extended File Control Block

7-16

The extended File Control Block is used to create or
search for files in the disk directory th~t have special
attributes.

It adds a 7-byte prefix to the FCB, formatted as
follows:

Byte

FCB-7

Function

Flag byte containing FFH to
indicate an extended FCB.

FCB-6 to FCB-2 Reserved.

FCB-l Attribute byte. See "DOS Disk
Directory" on page 5-10 of this
book for the attribute bit
definitions. Also refer to function
call I1H (search first) for details on
using the attribute bits during
directory searches. This function is
present to allow applications to
define their own files as hidden (and
thereby exclude them from
directory searches), and to allow
selective directory searches.

Any reference in the DOS Function Calls (refer to
Chapter 6 of this book) to an FCB, whether opened
or unopened, may use either a normal or extended
FCB. If you @,re using an extended FCB, the
appropriate register should be set to the first byte of
the prefix, rather than the drive-number field.

Font Files

head:

Code page images are contained in font files. There
are two display font files (EGA.CPI and LCD.CPI),
and two printer font files (4201.CPI and 5202.CPI).
These font files contain the character images of the
code pages, which can be down loaded to the device,
if it has a code page switching device driver entry in
CONFIG.SYS

Font files have the following layout:

db Offh,"font "ifile tag(7 characters)
db 8 dup(O) ireserved

dw 1 inumber of pointers in header,
ishould be 1 for DOS 3.30

db 1 itype of info pointer,
ishould be 1 for DOS 3.30

dw offset info,O idisplacement of info from
istart of file (2 words)

info:

dw 1 inumber of code page entries

cphead:
dw len_cphead

dw 0, 0

dw 1

isize of this code
ipage entry header
;pointer to header
;of next code page entry
;(0, ° for last header)
idevice type,

db "EGA
i1 = display 2 = printer
;device sub type id (8 bytes)
iname of font file

dw
dw
dw

; (EGA, LCD, 4201 or 5202)
999 icode page id
3 dup (0) ; reserved
offset dathead,O ;pointer to fonts

; (two word value)
len_cphead equ ($-cphead)

dathead:

dw 1 ;reserved (must be 1)

7-17

dw 3
dw len_data

;font data

;number of fonts
;length of following

The layout of the data portion of a font file is
depends on whether the device is a display or a
printer. The next three examples show the font data
layouts for displays and printers.

Font data for displays:

db

db
dw

16, 8

0,0
256

;character box size
;(rows, columns)
;aspect ratio (unused)
;number of characters

pixel description for all 256
characters within the code page

fnthead_14:
db 14, 8
db 0, 0
dw 256

;character box size
;aspect ratio (unused)
;number of characters

pixel description for all 256
characters within the code page

db 8, 8 ;character box size

7-18

db
dw

0, 0
256

;aspect ratio (unused)
;number of characters

pixel description for all 256
characters within the code page

Font data for Proprinter with RAM font loading
option.

dw 1 ;selection type:
;1=4201, 2=5202

dw 12 ;total number of bytes in
;the control sequences

db 5,27 , "I" , 0 , 2 7 , "6" ; def ine hardware code page
; (max length of 31)

db 5,27,"1",4,27,"6" ;define downloadable code
;page
; (max length of 31)

Character description for download to printer,
see Proprinter Technical Reference for details

7-19

7-20

Font data for Quietwriter III

dw 2

dw 12

;selection type:
;1=4201, 2=5202
;total number of
;bytes in the control
; sequences

db 27,"[","T",5,0,0,0,1,181,0,27,"6"
;select active
;code page 437
; (rnax length of 31)

Character description for download to
printer, see Quietwriter III Technical
Reference for details.

Chapter 8. Executing Commands from
within an Application

Introduction 8-3
Invoking a Command Processor 8-3

8-1

8-2

Introduction

Application programs may invoke a secondary copy
of the command processor . Your program may pass
a DOS command as a parameter that the secondary
command processor will execute as though it had
been entered from the standard input device.

Invoking a Command Processor

The procedure is:

1. Assure that adequate free memory (l7K bytes for
DOS versions 2.10 and 3.20, and 23K bytes for
DOS versions 3.10 to 3.30) exists to contain the
second copy of the command processor and the
command it is to execute. This is accomplished
by executing function call 4AH to shrink memory
allocated to that of your current requirements.
Next, execute function call 48H with
BX = FFFFH. This returns with the amount of
memory available.

2. Build a parameter string for the secondary
command processor in the form:

1 byte = length of parameter string
xx byte = parameter string
1 byte = ODH (carriage return)

For example, the assembly statement below
would build the string to cause execution of a
DISKCOPY command:

DB 19, "/C C:DISKCOPY A: B:" , 13

8-3

8-4

3. Use the EXEC function call (4BH, function value
0) to cause execution of the secondary copy of
the command processor (the drive, directory, and
name of the command processor can be gotten
from the COM SPEC = parameter in the
environment passed to you at PSP + 2CH).
Remember to set offset 2 of the EXEC control
block to point to the string built above.

Chapter 9. Fixed Disk Information

Introduction 9-3
Fixed Disk Architecture 9-3
System Initialization 9-4
Boot Record Partition Table 9-6
Fixed Disk Technical Information 9-8
Extended DOS Partition 9-11
Extended DOS Partition Architecture 9-11
Extended Partition Boot Record ~...... 9-12
Extended Partition Boot Record Logical

Drive Table 9-13
Determining Fixed Disk Allocation 9-17

9-1

9-2

Introduction

The IBM Personal Computer Fixed Disk Support
Architecture has been designed to meet the following
objectives:

• Allow multiple operating systems to utilize the
fixed disk without the need to backup/restore
when changing operating systems.

• Allow a user-selected operating system to be
started from the fixed disk.

Fixed Disk Architecture

The architecture is defined as follows:

• In order to share the fixed disk among operating
systems, the disk may be logically divided into 1
to 4 partitions. The space within a given
partition is contiguous, and can be dedicated to a
specific operating system. Each operating system
may "own" one or more partitions. The number
and sizes of the partitions is user-selectable
through a fixed disk utility program. The DOS
utility is FDISK.COM. The partition
information is kept in a partition table that is
imbedded in the master fixed disk boot record on
the first sector of the disk.

• Any operating system must consider its partition
to be an entire disk, and must ensure that its
functions and utilities do not access other
partitions on the disk.

9-3

• Each partition can contain a boot record oli its
first sector, and any other programs or data that
you choose-including a copy of an. operating
system. For example, the DOS FORMAT
command may be used to format (and place a
copy of DOS in) the DOS partition in the same
manner that a diskette is formatted. With the
DOS FDISK utility, you may designate a
partition as "bootable" (active) - the master fixed
disk boot record causes that partition's boot
record to receive control when the system is
started or restarted.

System Initialization

9-4

The System initialization (or system boot) sequence is
as follows:

1. System initialization first attempts to load an
operating system from diskette drive A. If the
drive is not ready or a read error occurs, it then
attempts to read a master fixed disk boot record
from the first sector of the first fixed disk on the
system. If unsuccessful, or if no fixed disk is
present, it invokes ROM BASIC.

2. lf successful, the master fixed disk boot record is
given control and it examines the partition table
imbedded within it. If one of the entries
indicates a "bootable" (active) partition, its boot
record is read (from the partition's first sector)
and given control.

3. If none of the partitions is bootable, ROM
BASIC is invoked.

4. If any of the boot indicators are invalid, or if
more than one indicator is marked as bootable,
the message Invalid partition table is displayed
and the system enters an enabled loop. You may
then insert a system diskette in drive A and use
system reset to restart from diskette.

5. If the partition's boot record cannot be
successfully read within five retries due to read
errors, the message Error loading operating system
appears and the system enters an enabled loop.

6. If the partition's boot record does not contain a
valid "signature," the message Missing operating
system appears, and the system enters an enabled
loop. See "Boot Record Partition Table" on
page 9-6 for complete information about the
boot record.

Note: When changing the size or location of
any partition, you must ensure that all existing
data on the disk has been backed up (the
partitioning process will "lose track" of the
previous partition boundaries.)

9-5

Boot Record Partition Table

9-6

A fixed disk boot record must be written on the first
sector of all fixed disks or logical drives within an
extended partition and contains:

1. Code to load and give control to the boot record
for one of four possible operating systems.

2. A partition table at the end of the boot record.
Each table entry is 16-bytes long, and contains
the starting and ending cylinder, sector, and head
for each of four possible partitions, as well as the
number of sectors preceding the partition and the
number of sectors occupied by the partition. The
"boot indicator" byte is used by the boot record
to determine if one of the partitions contains a
loadable operating system. FDISK initialization
utilities mark a user-selected partition as
"bootable" by placing a value of 80H in the
corresponding partition's boot indicator (setting
all other partition's indicators to 0 at the same
time). The presence of the 80H tells the standard
boot routine to load the sector whose location is
contained in the following 3 bytes. That sector is
the actual boot record for the selected operating
system, and it is responsible for the remainder of
the system's loading process (as it is from
diskette). All boot records are loaded at absolute
address O:7COO.

The partition table with its offsets into the boot
record is:

OHs Purpose Head Sector Cylinder

1 BE Partition 1 begin boot ind H S CYL

1 C2 Partition 1 end syst ind H S CYL

1 C6 Partition 1 rei sect Low word High word

1 CA Partition 1 # sects Low word High word

1CE Partition 2 begin boot ind H S CYL

1 D2 Partition 2 end systind H S CYL

1 D6 Partition 2 rei sect Low word High word

1 DA Partition 2 # sects Low word High word

1 DE Partition 3 begin boot ind H S CYL

1 E2 Partition 3 end systind H S CYL

1 E6 Partition 3 rei sect Low word High word

1 EA Partition 3 # sects Low word High word

1EE Partition 4 begin boot ind H S CYL

1 F2 Partition 4 end syst ind H S CYL

1 F6 Partition 4 rei sect Low word High word

1FA Partition 4 # sects Low word High word

1FE Signature

\

9-7

Fixed Disk Technical Information

9-8

Boot Indicator (Boot Ind): The boot indicator byte
must contain 0 for a non-bootable partition, or 80H
for a bootable partition. Only one partition can be
marked bootable.

System Indicator (Sys Ind): The "syst ind" field
contains an indicator of the operating system that
"owns" the partition or points to the extended
partition.

The system indicators for DOS are:

OOH - unknown (unspecified)

OIH - PrimaryDOS 12- bit FAT

04H - Primary DOS 16- bit FAT

aSH - Extended DOS

Cylinder (CYL) and Sector (S): The I-byte fields
labelled CYL contain the low-order 8 bits of the
cylinder number-the high order 2 bits are in the high
order 2 bits of the S (sector) field. This corresponds
with ROM BIOS interrupt 13H (Disk I/O)
requirements, to allow for a la-bit cylinder number.

The fields are ordered in such a manner that only
two MOV instructions are required to properly set
up the DX and ex registers for a ROM BIOS call to
load the appropriate boot record (fixed disk booting
is only possible from the first fixed disk on a system,
whose BIOS drive number (80H) corresponds to the
boot indicator byte).

All partitions are allocated in cylinder multiples and
begin on sector 1, head O.

EXCEPTION: The partition that is allocated at the
beginning of the disk should start at cylinder 0, head
1, sector 1, to leave room for the disk's master boot
record and other information used to define the fixed
disk type on that system. An operating system
should not use any data space on cylinder 0, head °
of a fixed disk.

Relative Sector (Rei Sect>: The number of sectors
preceding each partition on the disk is kept in the
4-byte field labelled "reI sect." This value is
obtained by counting the sectors beginning with
cylinder 0, sector 1, head ° of the disk, and
incrementing the sector, head, and then track values
up to the beginning of the partition. Thus, if the
disk has 17 sectors per track and 4 heads, and the
second partition begins at cylinder 1, sector 1, head
0, the partition's starting relative sector is 68
(decimal}-there were 17 sectors on each of 4 heads
on 1 track allocated ahead of it. The field is stored
with the least significant word' first.

Number of Sectors (# Sects): The number of
sectors allocated to the partition is kept in the "# of
sects" field. This is a 4-byte field stored least
significant word first.

Signature: The last 2 bytes of the boot record
(55AAH) are used as a signature to identify a valid
boot record. Both this record and the partition boot
records are required to contain the signature at offset
IFEH.

The master disk boot record invokes ROM BASIC if
no indicator byte reflects a "bootable" system.

When a partition's boot record is given control, it is
passed its partition table entry address in the DS:SI
registers.

System programmers designing a utility to
initialize/manage a fixed disk must provide the
following functions at a minimum:

9-9

9-10

1. Write the master disk boot record/partition table
to the disk's first sector to initialize it.

2. Perform partitioning of the disk-that is, create or
update partition table information (all fields for
the partition) when the user wishes to create a
partition. This may be limited to creating a
partition for only one type of operating system,
but must allow repartitioning the entire disk, or
adding a partition without interfering with
existing partitions (user's choice).

3. Provide a means for marking a user-specified
partition as bootable, and resetting the bootable
indicator bytes for all other partitions at the same
time.

4. Such utilities should not change or move any
partition information that belongs to another
operating system.

Extended DOS Partition

The extended DOS partition is a new partition type
intended to allow future DOS expansion on a large
fixed DASD. The extended partition will be
indicated by a system indicator byte of 05H in the
partition table of the Master Boot Record. This
partition is not bootable, and programs that can set
bootable partitions (such as DOS FDISK) should
not allow the partition to be marked as bootable.

The extended DOS partition can only be created if a
primary DOS partition already exists on a bootable
drive. A primary DOS partition is a partition with a
system id byte of 01H or 04H. If the drive is not
bootable, then an extended DOS partition may be
created without having a primary DOS partition.

The extended DOS Partition starts and ends on a
cylinder boundary.

Extended DOS Partition Architecture

The extended DOS Partition is a collection of
extended volumes that are linked together by a
pointer in the extended volume's extended boot
record. An extended volume consists of an extended
boot record and one logical block device.

An extended volume created within the extended
DOS partition can be any size from 1 cylinder long
up to the maximum available contiguous space in the
extended DOS partition. However, in DOS 3.30 an
extended volume cannot be larger than 32 MB due to
the limitations of the F AT file system. All extended
volumes must start and end on a cylinder boundary.
An extended volume will correspond to an image of
a physical disk. The extended boot record

9-11

corresponds to the master boot record at the
beginning of an actual physical disk, and the logical
block device corresponds to the DOS partition that is
pointed to by the master boot record.

Therefore, the logical block device begins with a
normal DOS boot sector if it is a DOS logical block
device (syst ind = OIH or 04H). This logical block
device must start on a track boundary and follows
the extended boot record on the physical disk. The
logical block device and the extended volume both
end on the same cylinder boundary.

Extended Partition Boot Record

9-12

Each extended volume contains an extended boot
record in the first' sector of the disk location assigned
to it. This boot record contains the 55AAH
signature id byte. This allows programs that look at
the extended (master) boot record to be compatible.
This boot record also contains a logical drive table
which can contain only two types of entries. The
boot code js not critical because the devices are not
considered bootable. It IS suggested that the boot
code simply output a message indicating an
unbootable partition if it is executed.

The boot record for the extended DOS partition is
similar to the master boot record. The primary
differences are that the boot record for the extended
partition contains' a drive table instead of a partition
table, and a system indicator value of 05H points to
the next logical drive rather than to another extended
partition.

Extended Partition Boot Record Logical
Drive Table

The logical drive table portion of the extended boot
record is the same as the partition table structure in
the master boot record. This structure has four
entries of 16 bytes each. The system indicator byte
must be filled in for all 4 entries with one of the
following values:

OOH - No space allocated in this entry.

OlH - DOS partition with 12-bit FAT

04H - DOS partition with 16-bit FAT

05H - Maps out area assigned to the next
extended volume and serves as a pointer
to the next extended boot record.

06H - Reserved for future use.

If the system indicator byte is 0, the values in that
partition table entry should be zeros.

The drive start and end fields (C,H,S) should be
filled in for any of the 4 logical drive entries in an
extended boot record that have one of the above
system id bytes. This allows a program such as
FDISK to determine the allocated space in the
extended DOS partition, and allows the device
drivers to determine the physical DASD area that
belongs to it.

The drive start and end fields (C,H,S) for the
partition entry that points to the logical block device
(system id 01H, 04H, or 06H) map out the physical
boundaries of the logical block device, and they are
offset relative to the bginning of the extended boot
record that the entry resides in. The drive start and

9-13

9-14

end fields (C,H,S) for the drive entry that points to
the next extended volume (system id OSH) map out
the physical boundaries of the next extended volume
and they are relative to the beginning of the entire
physical disk.

The relative sector and number of sector fields will
be set up differently depending on which system id
byte is used. If 01 H, 04 H, or 06H are in the system
id field for that drive entry (pointer to the logical
block device), the relative sector field should be set
up as an offset from (and including) the start of the
extended boot record for the associated extended
volume. The number of sectors (size) field will be
filled in with the size of the created logical block
device area (or in other words, the number of
sectors mapped out by the start and stop
cylinder/track/sector fields). The size of the extended
volume can be calculated by adding the relative
sector field and the sector size field of the associated
extended boot record.

If the system id byte is OSH, the relative sector field
is offset (of the NEXT extended volume) in sectors
from the start of the entire extended DOS partition.
The number of sectors field is not used in this field,
and should be filled with OOH's.

This architecture allows only one logical block device
to be defined per extended boot record. Therefore, a
maximum of only two partition entries at a time will
be used in each extended boot record: an entry with
system id byte of 01H, 04H, or 06H and an entry
with a system id of OSH, which is the pointer to the
next extended volume. Although only two entries
can be used, a program installing these devices
should not assume that the first two entries will be
the non-zero entries.

The last two bytes of the extended boot record
(SSAAH) are used as a signature to identify a valid
boot record. Both this record and the logical drive

boot records are required to contain the signature at
offset 1 FEH.

9-15

The logical drive table with its offsets into the boot
record is:

Ofts Purpose Head Sector Cylinder

1 BE Drive begin boot ind H S CYL

1 C2 Drive end syst ind H S CYL

1 C6 Drive rei sect Low word High word

1 CA Drive # sects Low word High word

1CE Drive begin boot ind H S CYL

1 D2 Drive end syst ind H S CYL

1 D6 Drive rei sect Low word High word

1 DA Drive # sects Low word High word

1 DE Drive begin boot ind H S CYL

1 E2 Drive end syst ind H S CYL

1 E6 Drive rei sect Low word High word

1 EA Drive # sects Low word High word

1 EE Drive begin boot ind H S CYL

1 F2 Drive end syst ind H S CYL

1 F6 Drive rei sect Low word High word

1 FA Drive # sects Low word High word

1 FE Signature

9-16

Determining Fixed Disk Allocation

DOS determines disk allocation using the following
formula:

D * BPD
TS - RS -

BPS
SPF ---------------------------

BPS * SPC
CF + ---------------

BPC

The parameters are:

TS The count of the total sectors on the disk.
RS The number of sectors at the beginning of the

disk that are reserved for the boot record.
DOS reserves 1 sector.

D The number of directory entries in the root
directory. Refer to "DOS Disk Directory"
in chapter 5 for more information

BPD The number of bytes per directory entry.
BPB is always 32.

BPS The number of bytes per logical sector.
Typically, BPS is 512, but you can specify a
different value using VDISK.

CF The number of FATs per disk. For most disks
CF is 2. For VDISK CF is 1.

SPF The number of sectors per FAT. The
maximum value for SPF is 64.

SPC The number of sectors per allocation unit.
BPC The number of bytes per FAT entry. BPC is

1.5 for l2-bit FATs and 2 for 16-bit
FATS.

9-18

Chapter 10. EXE File Structure and
Loading

Introduction 10-3
.EXE File Structure 10-3
The Relocation Table 10-5

10-1

10-2

Introduction

This chapter contains information on:

• The .EXE file structure

• The relocation table

.EXE File Structure

The .EXE files produced by the Linker program
consist of two parts:

• Control and relocation information

• The load module itself

The control and relocation information, which is
described below, is at the beginning of the file in an
area known as the header. The load module
immediately follows the header. The load module
begins in the memory image of the module
constructed by the Linker.

The header is formatted as follows:

Note: Use the value at hex offset 18 - 19 to
located the first entry in the relocation table.

Hex Offset Contents

00-01 4DH, 5AH-This is the Link program's
signature to mark the file as a valid .EXE
file.

02-03 Length of image mod 512 (remainder after
dividing the load module image size by
512).

04-05 Size of the file in 512-byte increments
(pages), including the header.

06-07 Number of relocation table items .

08-09 Size of the header in 16-byte increments
(paragraphs). This is used to locate the
beginning of the load module in the file.

OA-OB Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

OC-OD Maximum number of 16-byte paragraphs
required above the end of the loaded
program.

OE-OF Displacement in paragraphs of stack
segment within load module.

10-11 Offset to be in the SP register when the
module is given control.

12-13 Word checksum-negative sum of all the
words in the file, ignoring overflow.

14-15 Offset to be in the IP register when the
module is given control.

16-17 Displacement in paragraphs of code
segment within load module.

18-19 Displacement in bytes of the first relocation
item within the file.

lA-IB Overlay number (0 for resident part of the
program).

10-4

The Relocation Table

The word at 18H locates the first entry in the
relocation table. The relocation table is made up of
a variable number of relocation items. The number
of items is contained at offset 06-07. The relocation
item contains two fields, a 2-byte offset value,
followed by a 2-byte segment value. These two fields
represent the displacement into the load module of a
word which requires modification before the module
is given control. This process is called relocation and
is accomplished as follows:

1. A program segment prefix is built following the
resident portion of the program that is
performing the load operation.

2. The formatted part of the header is read into
memory (its size is at offset 08-09).

3. The load module size is determined by
subtracting the header size from the file size.
Offsets 04-05 and 08-09 can be used for this
calculation. The actual size is downward
adjusted based on the contents of offsets 02-03.
Note that all files created by Link programs prior
to version 1.10 always placed a value of 4 at that
location, regardless of actual program size.
Therefore, we recommend that this field be
ignored if it contains a value of 4. Based on the
setting of the high/low loader switch, an
appropriate segment is determined at which to
load the load module. This segment is called the
start segment.

4. The load module is read into memory beginning
at the start segment.

Note: The relocation table is an
unordered list of relocation items. The first
relocation item is the one that has the
lowest offset in the file.

10-5

10-6

5. The relocation table items are read into a work
area (one or more at a time).

6. Each relocation table item segment value is added
to the start segment value. This calculated
segment, in conjunction with the relocation item
offset value, points to a word in the load module
to which is added the start segment value. The
result is placed back into the word in the load
module.

7. Once all relocation items have been processed, the
SS and SP registers are set from the values in the
header and the start segment value is added to
SS. The ES and DS registers are set to the
segment address of the program segment prefix.
The start segment value is added to the header
CS register value. The result, along with the
header IP value, is used to give the module
control.

Chapter 11. DOS Memory Management

Introduction 11-3
Control Block 11-3

11-1

11-2

Introduction

DOS keeps track of allocated and available memory
blocks, and provides three function calls for
application programs to communicate their memory
needs to DOS. These calls are 48H to allocate a
memory block, 49H to free a previously allocated
memory block, and 4AH (SETBLOCK) to change
the size of an allocated memory block.

Control Block

DOS manages memory as follows:

DOS builds a control block for each block of
memory, whether free or allocated. For example, if a
program issues an "allocate," DOS locates a block of
free memory that satisfies the request, and· will
"carve" the requested memory out of that block.
The requesting program is passed the location of the
first byte of the block that was allocated for it-a
memory management control block, describing the
allocated block, has been built for the allocated
block and a second memory management control
block describes the amount of space left in the
original free block of memory. When you do a
setblock to shrink an allocated block, DOS builds a
memory management control block for the area
being freed, and adds it to the chain of control
blocks. Thus, any program that changes memory
that is not allocated to it, stands a chance of
destroying a DOS memory management control
block. This causes unpredictable results that don't
show up until an activity is performed where DOS
uses its chain of control blocks (the normal result is a
memory allocation error, for which the only
corrective action is to restart the system).

11-3

11-4

When a program (command or application program)
is to be loaded, DOS uses the EXEC function call
(4BR) to perform the loading. This is the same
function call that is available to application programs
for loading other programs. This function call has 2
options,

• Function 0, to load and execute a program (this
is what the command processor uses to load and
execute external commands).

• Function 3, to load ail overlay (program) without
execu ting it.

Although both functions perform their loading in the
same way (relocation is performed for .EXE files),
their handling of memory management is different.

Function 0: For function 0 to load and execute a
program, EXEC first allocates the largest available
block of memory (the new program's PSP will be at
offset 0 in that memory block). Then EXEC loads
the program. Thus, in most cases, the new program
440wns" all of the memory from its PSP to the
highest end of memory, including the memory
occupied by the transient part of
COMMAND.COM. If the program were to issue its
own EXEC function call to load and execute another
program, the request would fail because no available
memory exists to load the new program into.

Note: Far .EXE programs, the amount of
memory allocated is the size of the program's
memory image plus the value in the MAX
ALLOC field of the file's header (offset OCR,
if that much memory is available. If not,
EXEC allocates the size of the program's
memory image plus the value in the MIN
ALLOC field in the header (offset OAR).
These fields are set by the Linker.

A well - behaved program uses the SETBLOCK
function call when it receives control, to shrink its

allocated memory block down to the size it really
needs. A .COM program should remember to set up
its own stack before doing the SETBLOCK, since it
is likely that the default stack supplied by DOS lies
in the area of memory being freed. This frees
unneeded memory, which can then be used for
loading subsequent programs.

If the program requires additional memory during
processing, it can obtain the memory using the
allocate function call and later free it using the free
memory function call.

When a program loaded using EXEC function 0
exits, its initial allocation block (the block beginning
with its PSP) is automatically freed before the calling
program regains control. It is the responsibility of
all programs to free any memory they allocate,
before exiting to the calling program.

Function 3: For function 3, to load an overlay, no
PSP is built, and EXEC assumes the calling program
has already allocated memory to load the new
program into-it will not allocate memory for it.
Thus, the calling program should either allow for the
loading of overlays when it determines the amount of
memory to keep when issuing the SETBLOCK call,
or should initially free as much memory as possible.
The calling program should then allocate a block
(based on the size of the program to be loaded) to
hold the program that will be loaded using the "load
overlay" call. Note that "load overlay" does not
check to see if the calling program actually owns the
memory block it has been instructed to load into-it
assumes the calling program has followed the rules.
If the calling program does not own the memory into
which the overlay is being loaded, there is a chance
that the program being loaded will overlay one of the
control blocks that DOS uses to keep track of
memory blocks.

Programs loaded using function 3 should not issue
any SETBLOCK calls, since they don't own the

11-5

11-6

memory they are operating in (the memory is owned
by the calling program).

Because programs loaded using function 3 are given
control directly by (and return control directly to)
the calling program with no DOS intervention, no
memory is automatically freed when the called
program exits-it is up to the calling program to
determine the disposition of the memory that had
been occupied by the exiting program. Note that if
the exiting program had itself allocated any memory,
it is responsible for freeing that memory before
exiting.

Section 2

Chapter 12. The Linker (LINK) and
EXE2BIN Programs

Introduction 12-3
Files 12-4

Input Files 12-4
Output Files ;.................. 12-5
VM.TMP (Temporary File) 12-5

Definitions 12-6
Segment 12-6
Group 12-7
Class 12-7

Command Prompts 12-7
Command Prompts 12-9

Object Modules .OBJ: 12-9
Run File filename.EXE: 12-10
List File NUL.MAP: 12-10
Libraries .LIB: 12-12
Linker Parameters 12-14

/DSALLOCATION 12-14
/HIGH 12-15
/LINE 12-15
/MAP 12-15
/PAUSE 12-15
/STACK:size 12-16
/X 12-16
/0 12-17

How to Start the Linker Program 12-17
Before You Begin 12-17
Option 1 - Console Responses 12-17
Option 2 - Command Line 12-18
Option 3 - Automatic Responses ... 12-21

Example Linker Session 12-23
How to Determine the Absolute
Address of a Segment 12-26

Messages 12-27
EXE2BIN Command 12-28

12-1

12-2

Introduction

The linker (LINK) program:

• Combines separately produced object modules

• Searches library files for definitions of unresolved
external references

• Resolves external cross-references

• Produces a printable listing that shows the
resolution of external references and error
messages

• Produces a relocatable load module.

The LINK program resides on your DOS Utilities
Program Diskette. This chapter shows you how to
use LINK. Read all of this chapter before you start
LINK.

12-3

Files

The linker processes input, output, and temporary
files.

Input Files

Input Files Used by the Linker

Type Default Override Produced by
.ext .ext

Object OBJ Yes Compiler l or MACRO
Assembler

Library LIB Yes Compiler and user

Automatic (None) NjA* User
Response

12-4

*N/A - Not applicable.

lOne of the optional compiler packages available for use with
the IBM Personal Computer DOS.

Output Files

Output Files Created by the Linker

Type Default Override Used by
.ext .ext

Listing .MAP Yes User

Run .EXE No Relocatable loader
(COMMAND.COM)~

VM.TMP (Temporary File)

LINK uses as much memory as is available to hold
the data that defines the load module being created.
If the module is too large to be processed with the
available amount of memory, the linker may need
additional memory space. If this happens, a
temporary file called VM.TMP is created on the
DOS default drive.

When the overflow to the VM.TMP file has begun,
the linker displays the following message:

VM.TMP has been created
Do not change diskette in drive x

If the VM. TMP file has been created on diskette,
you should not remove the diskette until LINK ends.
When LINK ends, it erases the VM.TMP file.

If the DOS default drive already has a file by the
name of VM. TMP, it is deleted by LINK and a new
file is allocated; the contents of the previous file are
destroyed. Therefore, you should avoid using
VM. TMP as one of your own file names.

12-5

Definitions

Segment, group, and class are terms that appear in
this chapter and in some of the messages in
Appendix A of the DOS Reference These terms
describe the underlying function of LINK.

Segment

12-6

A segment is a contiguous area of memory up to 64K
bytes in length. A segment may be located anywhere
in memory on a paragraph (16-byte) boundary. Each
of the four segment registers defines a segment. The
segments can overlap. The contents of a segment are
addressed by a segment register/offset pair.

The contents of various portions of the segment are
determined when machine language is generated.

Neither size nor location is necessarily fixed by the
compiler or assembler because this portion of the
segment may be combined at link time with other
portions forming a single segment.

A program's ultimate location in memory is
determined at load time by the relocation loader
facility provided in COMMAND. COM, based on
whether you specified the /HIGH parameter. The
/HIGH parameter is discussed later in this chapter.

Group

Class

A group is a collection of segments that fit together
within a 64K byte segment of memory. The
segments are named to the group by the assembler or
compiler. A program may consist of one or more
groups.

The group is used for addressing segments in
memory. The various portions of segments within
the group are addressed by a segment base pointer
plus an offset.

A class is a collection of segments. The naming of
segments to a class affects the order and relative
placement of segments in memory. The class name is
specified by the assembler or compiler. All portions
assigned to the same class name are loaded into
memory contiguously.

The segments are ordered within a class in the order
that the linker encounters the segments in the object
files. One class precedes another in memory only if a
segment for the first class precedes all segments for
the second class in the input to LINK. Classes are
not restricted in size.

Command Prompts

After you start the linker session, you receive a series
of four prompts. You can respond to these prompts
from the keyboard, on the command line, or by
using a special diskette file called an automatic
response file. An example of an automatic response
file is provided in this chapter.

12-7

LINK prompts you for the names of the object, run,
list, and library files. When the session is finished,
LINK returns to DOS and the DOS prompt is
displayed. If linking is unsuccessful, LINK displays
a message.

The prompts are described in order of their
appearance on the screen. Defaults are shown in
square brackets ([]) after the prompt. In the
response column of the table, square brackets
indicate optional entries. Object Modules is the only
prompt that requires a response from you.

PROMPT RESPONSE

Object Modules .OBJ: [d:] [path]filename[.ext]

[+ . [d:][path]filename
[.ext]]. ..

Run File filename.EXE : [d:] [path] [filename[.ext]]

List File NUL.MAP [d:] [path] [filename[.ext]]

Libraries .LIB [d:] [[path]filename[.ext]]

[+ . [d:][[path]filename
[.ext]]]. ..

Notes:

12-8

1. If you enter a file name without specifying the
drive, the default drive is assumed. If you enter a
file name without specifying the path, the default
path is assumed. The libraries prompt is an
exception - the linker will look for the libraries
on the default drive and if not found, look on the
drive specified by the compiler.

2. You can end the linker session prior to its normal
end by pressing Ctrl - Break.

Command Prompts

The following descriptions contain information about
the responses that you can enter to the prompts.

Object Modules .OBJ :
Enter one or more file locations for the object
modules to be linked. Multiple file locations must be
separated by single plus (+) signs or blanks. If the
extension is omitted from any file name, LINK
assumes the file name extension .OBJ. If an object
module has a different file name extension, the
extension must be specified. Object file names can
not begin with the @ symbol (@ is reserved for
using an automatic response file).

LINK loads segments ip.to classes in the orqer in
which they are encountered.

If you specify an object module on a diskette drive,
but LINK cannot loc~te the file, it displays the
fol~owing prompt:

Cannot find file object module
change diskette <press ENTER>

If you specify an object module on a nqn-removable
media (like a fixed disk), the linker session ends with
the following message:

Cannot find file object module

You should insert the diskette containing the
requested module. This permits .OBJ files from
several diskettes to be included. On a single ... drive
system, diskette exchanging can be done safely only if
VM.TMP has not been opened. As explained in the
discussion of the VM.TMP file earlier in this chapter,
a message will indicate if VM. TMP has been opened.

12-9

Important: If a VM.TMP file has been opened on a
diskette, you should not remove the diskette
containing the VM.TMP file.

After a VM. TMP file has been opened, if you
specified an object module on the same disk that
VM. TMP is on and LINK cannot find it, the linker
session ends with the message:

Cannot find file object module

Run File filename.EXE:

The file specification you enter is created to store the
run (executable) file that results from the LINK
session. All run files receive the file name extension
.EXE, even if you specify another extension. If you
specify another extension, it is ignored.

The default file name for the run file prompt is the
first file name specified on the object module prompt.

You can specify just a drive letter, or a path on the
run file prompt. This changes the place where the run
file filename.EXE is placed.

List File NUL.MAP:

12-10

The linker list file is sometimes called the linker map.

The list file contains an entry for each segment in the
input (object) modules. Each entry also shows the
offset (addressing) in the run file.

The list file is not created unless you specifically
request it. You can request it by overriding the
default with a drive letter, path, or filename[.ext]. If
you do not include a file name extension, the default
extension .MAP is used. If you do not enter
anything, the DOS reserved file name NUL specifies
that no list file is created.

You can specify just a drive letter or a path on the
list file prompt. This changes the place where the list
file is placed.

Important: If the list file is allocated to a file on
diskette, that diskette must not be removed until the
LINK has ended.

Note: There is one exception. If IP is
specified, the diskette containing the list file
may be removed while the .EXE file is being
written. The linker prompts you to put back
the diskette containing the list file when it
finishes writing the .EXE file.

If you specify an object module on the same diskette
drive as the diskette drive to which the list file is
allocated, and LINK cannot find the object module,
the linker session ends with the message:

Cannot find file object module

To avoid generating the list file on a diskette, you
can specify the display or printer as the list file
device. For example:

List File [NUL.MAP]: CON

If you direct the output to your display, you can also
print a copy of the output by pressing Ctrl-PrtSc.

12-11

Libraries .LIB:

12-12

You may either list the file locations for your
libraries, or just press the Enter key. If you press the
Enter key, LINK defaults to the library provided as
part of the Compiler package.

The LINK program looks for the Compiler package
library on the default drive. If it cannot find the
library there, it looks for the library on the drive
specified by the Compiler package. For linking
objects from just the MACRO Assembler, there is no
automatic default library search.

If you answer the library prompt, you specify a list
of drive letters and [path]filename.ext separated by
plus signs (+) or spaces. You can enter from 1 to 16
library file locations. Specifying a drive letter tells
linker to look on that drive instead of the Compiler
package supplied drive for all subsequent libraries on
the library prompt. The automatically searched
library file specifications are conceptually placed at
the end of the response to the library prompt.

LINK searches the library files in the order they are
listed to resolve external references. When LINK
finds the module that defines the external symbol,
the module is processed as another object module.

If two or more libraries have the same file name,
regardless of the location, only the first library in the
list is searched.

When LINK cannot find a library file, it displays a
message like this:

Cannot find library A: library file
Enter new drive letter:

The drive that the indicated library is located on
must be entered.

The following library prompt responses may be used:

Libraries [.LIB]: B:

Look for compiler. LIB on drive B.

Libraries [.LIB]: B:USERLIB

Look for USERLIB.LIB on drive Band
compiler.LIB on drive A.

Libraries [.LIB]: A:LIBI + LIB2 + B:LIB3 + A:

Look for LIB1.LIB and LIB2.LIB on drive
A, LIB3.LIB on drive B, and compiler. LIB
on drive A.

12-13

Linker Parameters

12-14

At the end of any of the four linker prompts, you
may specify one or more parameters that instruct the
linker to do something differently. Only the I and
first letter of any parameter are required.

IDSALLOCATION

The jDSALLOCA TION (jD) parameter directs
LINK to load all data defined to be in DGROUP at
the high end of the group. If the jHIGH parameter
is specified, (module loaded high), any available
storage below the specifically allocated area within
DGROUP is allocated dynamically by your
application. It still is addressable by the same data
space pointer.

Note: The maximum amount of storage
which can be dynamically allocated by the
application is 64K-bytes (or the amount
actually available) minus the allocated portion
ofDGROUP.

If the jDSALLOCATION parameter is not specified,
LINK loads all data defined to be in the group
whose group name is DGROUP at the low end of
the group, beginning at an offset of o. The only
storage thus referenced by the data space pointer
should be that specifically defined as residing in the
group.

All other segments of any type in any GROUP other
than DGROUP are loaded at the low end of their
respective groups, as if the jDSALLOCA TION
parameter were not specified.

For certain compiler packages, jDSALLOCATION
is automatically used.

!HIGH

The /HIGH (lH) parameter causes the loader to
place the run image as high as possible in storage. If
you specify the /HIGH parameter, you tell the linker
to cause the loader to place the run file as high as
possible without overlaying the transient portion of
COMMAND.COM, which occupies the highest area
of storage when loaded. If you do not specify the
/HIGH parameter, the linker directs the loader to
place the run file as low in memory as possible.

The /HIGH parameter is used with the
/DSALLOCATION parameter.

!LINE

For certain IBM Personal Computer language
processors, the /LINE (lL) parameter directs LINK
to include the line numbers and addresses of the
source statements in the input modules in the list file.

!MAP

The /MAP (1M) parameter directs LINK to list all
public (global) symbols defined in the input modules.
For each symbol, LINK lists its value and
segment-offset location in the run file. The symbols
are listed at the end of the list file.

!PAUSE

The /PAUSE (lP) parameter tells LINK to display a
message to you as follows:

About to generate .EXE file
Change diskette in drive X: and press <ENTER>

This message allows you to insert the diskette that is
to contain the run file.

12-15

12-16

ISTACK:size

The size entry is any positive decimal value up to
65536 bytes. This value is used to override the size
of the stack that the MACRO Assembler or compiler
has provided for the load module being created. If
the size of the stack is too small, the results of
executing the resulting load module are
unpredictable.

If you do not specify /ST ACK (IS), the original stack
size provided by the MACRO Assembler or compiler
is used. This parameter can be used to reduce the
stack size provided by the application only if the
original stack has uninitialized data. In any case, it
may increase the stack up to the 64K limit.

If the stack size is an odd number, either on the /S
parameter or in the application's definition of the
stack, LINK subtracts 1 to force the stack words to
be on an even boundary for better efficiency when
running on the 80286 processor.

At least one input (object) module must contain a
stack allocation statement, unless you plan to use the
EXE2BIN program. The stack allocation is
automatically provided by compilers. For the
MACRO Assembler, the source must contain a
SEGMENT command that has the combine type of
ST ACK. If a stack allocation statement was not
provided, LINK returns the message Warning: No
Stack statement.

IX
Use the IX parameter at runtime to adjust the total
number of segments that an .EXE file can contain.
You can vary the limit from 0 to 1024 segments.
The default is 256 segments. This limit represents the
number of distinct segments from all sources (object
files and libraries) that the .EXE may contain.

Although the limit on the total number of segments
may be set as high as 1024, the limit on the total
number of segments that are not absolute segments is
1000. For a definition of absolute segments, see the
assembler manual.

10
To link object modules created by version 1 of the
Pascal compiler or version 1 of the FORTRAN
compiler using the 2.30 linker, specify the /0 (old)
switch.

How to Start the Linker Program

Before You Begin

• Make sure the files you use for linking are on the
appropriate disks.

• Make sure you have enough free space on your
disks to contain your files and any generated
data. . .

You can start the linker program by using one of
three options:

Option 1 - Console Responses

From your keyboard, type:

LINK

The linker is loaded into memory and displays a
series of four prompts, one at a time, to which you
must enter the requested responses. (Detailed

12-17

descriptions of the responses that you can make to
the prompts are discussed in this chapter.)

If you enter a wrong response, such as an incorrectly
spelled file name, you must press Ctrl-Break to exit
LINK, then restart LINK. If the response in error
has been typed but you haven't pressed Enter yet,
you can delete the wrong characters (on that line
only).

An example of a linker session using the console
response option is provided in this chapter in the
section called "How to Start the Linker Program."

As soon as you have entered the last file name, the
linker begins to run. If the linker finds any errors, it
displays the errors on the screen as well as in the
listing file.

Note: After any of these responses, before
pressing Enter, you can continue the response
with a comma and the answer to what would
be the next prompt, without having to wait for
that prompt. If you end any response with the
semicolon (;), the remaining responses are all
assumed to be the default. Processing begins
immediately with no further prompting.

Option 2 - Command Line

12-18

From your keyboard, type:

LINK objlist,runfile,mapfile,liblist [parmJ ... ;

objlist is a list of object modules separated by plus
signs (+) or spaces.

runfile is the name you want to give the run file.

mapfile is the name you want to give the linker map.

liblist is a list of the libraries to be used, separated
by plus signs (+) or spaces.

parm is an optional linker parameter. Each
parameter must begin with a slash (j).

The linker is loaded and immediately performs the
tasks indicated by the command line.

When you use this command line, the prompts
described in Option 1 are not displayed if you
specified an entry for all four files or if the command
line ends with a semicolon.

If an incomplete list is given and no semicolon is
used, the linker prompts for the remaining
unspecified files.

Each prompt displays its default, which is accepted
by pressing the Enter key, or overridden with an
explicit file name or device name. However, if an
incomplete list is given and the command line is
terminated with a final semicolon, the unspecified
files default without further prompting. The parms
are never prompted for, but may be added to the end
of the command line or to any file specification given
in response to a prompt.

Certain variations of this command line are
permitted.

Examples:

LINK module
The object module is MODULE.OBJ. A
prompt is given, showing the default of
MODULE.EXE. After the response is
entered, a prompt is given showing the
default of NUL.MAP. After the response
is given, a prompt is displayed showing the
default extension of .LIB.

12-19

12-20

LINK module;
If the semicolon is aqded, no further
prompts are displayed. The object module
of MODULE.OBJ is linked, the run file is
put into MODULE.EXE, and no list file is
produced.

LINK module,,;
This is similar to the prece4ing example,
except the list file is produced in
MODULE.MAP.

LINK module"
Using the sam~ example, but without the
semicolon, MQDULE.OaJ is linked, and
the run file is produced in
MODULE.EXE, but a prompt is given
with the default of MODULE. MAP.

LINK module"NUL;
No list fil~ is produced. The run file is in
MODULE.EXE. No further prompts are
displayed.

Option 3 - Automatic Responses

It is often convenient to save responses to the linker
for use at a later time. This is especially useful when
long lists of object modules need to be specified.

Before using this option, you must create the
automatic response file. It contains several lines of
text, each of which is the response to a linker
prompt. These responses must be in the same order
as the linker prompts that were discussed earlier in
this chapter. If desired, a long response to the object
module or libraries prompt may be contained on
several lines by using a plus sign (+) to continue the
same response onto the next line.

To specify an automatic response file, you enter a file
specification preceded by an @ symbol in place of a
prompt response or part of a prompt response. The
prompt is answered by the contents of the diskette
file. The file specification cannot be a reserved DOS
file name.

From your keyboard, type:

LINK @[d:][path]filename[.ext]

Use of the file name extension is optional and can be
any name. There is no default extension.

Use of this option permits the command that starts
LINK to be entered from the keyboard or within a
batch file without requiring any response from you.

12-21

12-22

Example

Automatic Response File - RESPl

MODA+MODB+MODC+
MODD+MODE+MODF

Automatic Response File - RESP2

runfile/p
printout

Command line

LINK @RESP1+mymod,@RESP2;

Notes:

1. The plus sign at the end of the first line in
RESP1 causes the modules listed in the first two
lines to be considered as the input object
modules. After reading RESP 1, the linker
returns to the command line and sees + mymod,
so it includes MYMOD.OBJ in the first list of
object modules as well.

2. Each of the above lines ends when you press the
Enter key.

Example Linker Session

This example shows you the type of information that
is displayed during a linker session.

When you type:

b:link

at the DOS prompt, the system responds with the
following messages and prompts, which you answer
as shown:

The IBM Personal Computer Linker
Version 2.40 (C) Copyright International
Business Machines Corp. 1981, 1985
(C) Copyright Microsoft Corp. 1981, 1985

Object Modules [.OBJ]: example
Run File [EXAMPLE.EXE]: /map
List File [NUL.MAP]: prn/line
Libraries [. LIB]:

Notes:

1. By specifying /map, you get both an alphabetic
and a chronological listing of public symbols.

2. By responding pro to the list file prompt, you
send your output to the printer.

3. By specifying the /LINE parameter, LINK gives
a listing of all line numbers for all modules. (The
/LINE parameter can generate a large amount of
output.)

4. By pressing Enter in response to the libraries
prompt, an automatic library search is performed.

12-23

12-24

Once LINK locates all libraries, the linker map
displays a list of segments in the relative order of
their appearance within the load module. The list
looks like this:

Start Stop Length

~~~~~H ~~~28H ~~29H 
~~~3~H ~~~F6H ~~C7H 
~~l~~H ~~l~~H ~~~~H
~~l~~H ~38D3H 37D4H
~38D4H ~4921H 1~4EH

~74A~H ~74A~H ~~~~H
~74A~H ~74A~H ~~~~H
~74A~H ~759FH ~l~~H
~75A~H ~7925H ~386H
~793~H ~82A9H ~97AH

Name

MAINQQ
ENTXQQ
INIXQQ

FILVQQ_CODE
FILUQQ_CODE

HEAP
MEMORY
STACK

DATA
CONST

Class

CODE
CODE
CODE

CODE
CODE

MEMORY
MEMORY
STACK
DATA
CONST

The information in the Start and Stop columns
shows a 20-bit hex address of each segment relative
to location zero. Location zero is the beginning of
the load module. The addresses displayed are not
the absolute addresses of where these segments are
loaded. To find the absolute address of a segment,
you must determine where the segment listed as being
at relative zero is actually loaded; then add the
absolute address to the relative address shown in the
linker map. The procedure used to determine where
relative zero is actually located is discussed in this
chapter, in the section called "How to Determine the
Absolute Address of a Segment."

Because you specified the /MAP parameter, the
public symbols are displayed by name and by value.
F or example:

Address

,0492:,0,0,03H
,06CD:,029FH
,0492:,0,0A3H
,06CD: ,0,08 7H
,06,02: ,0,0,0FH

,0 ,01,0 : 1BCEH
,0,01,0: 1D7EH
,0,01,0: l887H
,0,01,0: 19E2H
,0,01,0: 11B2H

Address

,0,0,0,0:,0,0,01H
,0,0,0,0:,0,01,0H
,0,0,0,0:,0,01,0H
,0,0,0 3:,0,0,0,0H
,0,0,03: ,0,095H

F82B:F31CH
F82B:F31EH
F82B:F322H
F82B:F5B8H
F82B:F5E,0H

Publics by Name

ABSNQQ
ABSRQQ
ADDNQQ
ADDRQQ
ALLHQQ

WT4VQQ
WTFVQQ
WTIVQQ
WTNVQQ
WTRVQQ

Publics

MAIN
ENTGQQ
MAINQQ
BEGXQQ
ENDXQQ

CRCXQQ
CRDXQQ
CESXQQ
FNSUQQ
OUTUQQ

by Value

12-25

The addresses of the public symbols are in the
segment:offset format, showing the location relative
to zero as the beginning of the load module. In
some cases, an entry may look like this:

F8CC:EBE2H

This entry appears to be the address of a load
module that is almost 1 megabyte in size. Actually,
the area being referenced is relative to a segment base
that is pointing to a segment below the relative zero
beginning of the load module. This condition
produces a pointer that has effectively gone negative.
The memory map on the 'previous page illustrates
this point.

When LINK has completed, the following message is
displayed:

Program entry point at ~~~3:~~~~

How to Determine the Absolute Address of a
Segment

12-26

The linker map displays a list of segments in the
relative order of their appearance within the load
module. The information displayed shows a 20-bit
hex address of each segment relative to location zero.
The addresses displayed are not the absolute
addresses where these segments are located. To
determine where relative zero is actually located, you
must use DEBUG, which is described in detail in
Chapter 13.

Using DEBUG,

1. Load the application. Note the segment value in
CS and the offset within that segment to the
entry point as shown in IP. The last line of the
linker map also describes this entry point, but

uses relative values, not the absolute values
shown by CS and IP.

2. Subtract the relative entry as shown at the end of
the map listing from the CS:IP value. For
example, let's say CS is at 05DC and IP is at
zero.

The linker map shows the entry point at
0100:0000. (0100 is a segment ID or paragraph
number; 0000 is the offset into that segment.)

In this example, relative zero is located at
04DC:OOOO, which is 04DCO absolute.

If a program is loaded low, the relative zero location
is located at the end of the Program Segment Prefix,
in the location DS plus 100H.

Messages

All messages, except for the warning messages, cause
the LINK session to end. Therefore, after you locate
and correct a problem, you must rerun LINK.

Messages appear both in the list file and on the
display unless you direct the list file to CON, in
which case the display messages are suppressed.

All of the linker messages are included in Appendix
A of the DOS Reference.

12-27

EXE2BIN Command

Purpose:

Format:

Type:

Remarks:

12-28

Converts .EXE files to .COM or .BIN files.

[d:][path]EXE2BIN [d:][path]filename[.ext]
[d:] [path] [filename[.ext]]

Internal External

Specify the parameters:

[d:][path] before EXE2BIN to specify the drive
specifier and path that contains the EXE2BIN
command file.

[d:][path][filename][.ext] to specify the input file. If
you do not specify:

Ed:] the default drive is assumed

[path] the current directory is assumed

[.ext] .EXE is assumed

[d:][path]filename[.ext] to specify the output file. If
you do not specify:

Ed:] the drive of the input file is assumed

[path] the current directory is assumed

filename the input file name is assumed

[.ext] .BIN is assumed

The input file is converted to .COM file format
(memory image of the program) and placed in the
output file.

The input must be in valid .EXE format as produced
by the Linker. The resident, or actual code and data,
part of the file must be less than 64K. There must
be no STACK segment.

Two kinds of conversions are possible, depending on
the specified initial CS:IP:

• If CS:IP is not specified in the program (the
.EXE file contains 0:0), a pure binary conversion
is assumed. If segment fixups are necessary (the
program contains instructions requiring segment
relocation), you are prompted for the fixup value.
This value is the absolute segment at which the
program is to be loaded.

In this case, the resultant program is usable only
when loaded at the absolute memory address
specified by a user application. The DOS
command processor will not be capable of
properly loading the program.

• If CS:IP is specified as 0000: 100H, it is assumed
that the file is to be run as a .COM file, with the
location pointer set at 100H by the assembler
statement ORG. No segment fixups are allowed,
as .COM files must be segment relocatable.
Further information is available in Chapter 7 ,of
this book. Once the conversion is complete, you
may rename the resultant file to a .COM
extension. Then the command processor is
capable of loading and executing the program in
the same manner as the .COM programs supplied
on your DOS diskette.

If CS:IP does not meet one of these criteria, or if it
meets the .COM file criterion but has segment fixups,
the following message is displayed:

12-29

12-30

File cannot be converted

This message is also displayed if the file is not a valid
.EXE file.

The following piece of assembler code will cause a
segment fixup because the SEG operator is used
(either explicitly or implicitly).

syrnboll db
syrnbo12 db
symbo13 db

lIe:\filenarnell,O
SEG symboll ;explicit use of SEG
symboll ;irnplicit use of SEG

The following piece of assembler code will cause a
segment fixup because a segment name is used as an
immediate field of an instruction.

rnyseg SEGMENT PUBLIC

MOV datal,rnseg ;causes fixup

To produce standard .COM files with the assembler,
you must both use the assembler statement ORG to
set the location pointer of the file at 100R and
specify the first location as the start address. (This is
done in the' END statement.) Also, the program
must not use references that are defined only in other
segments. For example, with the IBM Personal
Computer MACRO Assembler:

ORG l,0,0H
START:

END START

PVP"HlTl,J ~13,,~AI3" nn "n"~ n{'\~ '1 'l{\ T Tt~l~t~I3"
.L.J.LJrrrrr,.L.J .. LI...&..J.1., ... \..1.""'.., '-'.1..1. Jv1. LJ,""U -..1.JV '-11..1..1.1;,

diskette.

Chapter 13. DEBUG Program

Introduction 13-3
How to Start the DEBUG Program 13-4
The DEBUG Command Parameters 13-6
The DEBUG Commands 13-15

Information Common to All DEBUG
Commands 13-15

A (Assemble) Command 13-17
C (Compare) Command 13-21
D (Dump) Command 13-22
E (Enter) Command 13-25
F (Fill) Command 13-28
G (Go) Command 13-29
H (Hexarithmetic) Command 13-32
I (Input) Command 13-33
L (Load) Command 13-34
M (Move) Command 13-37
N (Name) Command 13-38
o (Output) Command 13-40
P (Proceed) Command 13-41
Q (Quit) Command 13-42
R (Register) Command 13-43
S (Search) Command 13-48
T (Trace) Command 13-49
U (Unassemble) Command 13-51
W (Write) Command 13-54

13-1

13-2

Introduction

This chapter explains how to use the DEBUG
program.

The DEBUG program can be used to:

• Provide a controlled testing environment so you
can monitor and control the execution of a
program to be debugged. You can fix problems
in a program directly, and then execute the
program immediately to determine if the
problems have been resolved. You do not need
to reassemble a program to find out if your
changes worked.

• Load, alter, or display any file.

• Execute object files. Object files are executable
programs in machine language format.

13-3

How to Start the DEBUG Program

13-4

To start DEBUG, type:

DEBUG [d:][path][filename[.ext]][parmI][parm2]

If you enter filename, the DEBUG program loads the
specified file into memory. You may now type
commands to alter, display, or execute the contents
of the specified file.

If you do not enter a file name, you must either work
with the present memory contents, or load the
required file into memory by using the Name and
Load commands. Then you can type commands to
alter, display, or execute the memory contents.

The optional parameters, parmI and parm2, represent
the optional parameters for the named filespec. For
example,

DEBUG DISKCOMP.COM A: B:

In this command, the A: and B: are the parameters
that DEBUG prepares for the DISKCOMP program.

When the DEBUG program starts, the registers and
flags are set to the following values for the program
being debugged:

• The segment registers (CS, DS, ES, and SS) are
set to the bottom of free memory; that is, the
first segment after the end of the DEBUG
program.

• The Instruction Pointer (lP) is set to hex 0100.

• The Stack Pointer (SP) is set to the end of the
segment, or the bottom of the transient portion
of the program loader, whichever is lower. The
segment size at offset 6 is reduced by hex 100 to
allow for a stack that size.

• The remaining registers (AX, BX, CX, DX, BP,
SI, and DI) are set to zero. However, if you start
the DEBUG program with a filespec, the CX
register contains the length of the file in bytes. If
the file is greater than 64 K, the length is
contained in registers BX and CX (the high
portion in BX).

• The initial state of the flags is:

NV UP EI PL NZ NA PO NC

• The default disk transfer address is set to hex 80
in the code segment.

All of available memory is allocated; therefore, any
attempt by the loaded program to allocate memory
fails.

Notes:

1. If a file loaded by DEBUG has an extension of
.EXE, DEBUG does the necessary relocation and
sets the segment registers, stack pointer, and
Instruction Pointer to the values defined in the
file. The DS and ES registers, however, point to
the Program Segment Prefix at the lowest
available segment. The BX and CX registers
contain the size of the program (smaller than the
file size).

The program is loaded at the high end of
memory if the appropriate parameter was
specified when the linker created the file. Refer
to ".EXE File Structure and Loading" in Chapter
10 of this book for more information about
loading .EXE files.

2. If a file loaded by DEBUG has an extension of
.HEX, the file is assumed to be in INTEL hex
format, and is converted to executable form while
being loaded.

13-5

The DEBUG Command Parameters

Parameter Definition

address Enter a one- or two-part designation in
one of the following formats:

• An alphabetic segment register
designation, plus an offset value, such
as:

CS:0100

• A segment address, plus an offset
value, such as:

4BA:0100

• An offset value only, such as:

11'11'1
IVV

(In this case, each command uses a
default segment.)

Note:

1. In the first two formats, the colon is
required to separate the values.

13-6

Parameter Definition

address 2. All numeric values are hexadecimal
and may be entered as 1-4
characters.

3. The memory locations specified in
address must be valid; that is, they
must actually exist. Unpredictable
results occur if an attempt is made
to access a nonexistent memory
location.

byte Enter a 1 or 2 character hexadecimal
value.

drive Enter I or 2 digits (for example, 0 for
drive A or 1 for drive B) to indicate
which drive data is to be loaded from or
written to.

(Refer to the Load and Write
commands.)

13-7

Parameter

filespec

list

13-8

Definition

Enter a one- to three-part file
specification consisting of a drive
designation, file name, and file name
extension. All three fields are optional.
However, for the Name command to be
meaningful, you should at least specify a
drive designator or a file name.

(Refer to the Name command.)

Enter 1 or more byte and/or string
values. For example,

F3 "XYZ' 8D 4 "abed"

has five items in the list (that is, three
byte entries and two string entries having
a total of 10 bytes).

Parameter

portaddress

Definition

Enter a 1-4 character hexadecimal value
to specify an 8- or 16-bit port address.

(Refer to the Input and Output
commands.)

Enter either of the following formats to
specify the lower and upper addresses of
a range:

• address address

For example:

CS:100 110

Note: Only an offset value is allowed in
the second address. The addresses must
be separated by a space or comma.

13-9

Parameter Definition

range

range • address L value

where value is the number of bytes in
hexadecimal to be processed by the
command. F or example:

CS:IOO L 11

Notes:

1. The limit for range is hex 10000, so
the sum of value and the offset part
of address cannot exceed 64K bytes.
To specify a value of 64K bytes
within four hexadecimal characters,
enter 0000 (or 0).

2. The memory locations specified in
range must be valid; that is, they
must actually exist. Unpredictable
results will occur if an attempt is
made to access a non-existent
memory location.

13-10

Parameter

registername

sector sector

Definiti()n

Refer to the Register command.

Enter 1-3 character hexadecimal values to
specify:

1. The starting relative sector number

2. The number of sector numbers to be
loaded or written

In DEBUG, relative sectors are obtained
by counting the sectors on the disk
surface. The sector at track 0, sector 1,
head 0 (the first sector on the disk) is
relative sector O. The numbering
continues for each sector on that track
and head, then continues with the first
sector on the next head of the same
track. When all sectors on all heads of
the track have been counted, numbering
continues with the first sector on head 0
of the next track.

Note: This is a change from the sector
mapping used by DOS Version 1.10.

The maximum number of sectors that can
be loaded or written with a single
command is hex 80. A sector contains
512 bytes.

(Refer to the Load and Write
commands.)

13-11

Parameter

string

13-12

Definition

Enter characters enclosed in quotation
marks. The quotation marks can be
either single (') or double (" ").

The ASCII values of the characters in the
string are used as a list of byte values.

Within a string, the opposite set of
quotation marks can be used freely as
characters. However, if the same set of
quotation marks (as the delimiters) must
be used within the string, then the
quotation marks must be doubled. The
doubling does not appear in memory.
F or example:

1. 'This "literal" is correct'

2. 'This' 'literal' , is correct'

3. 'This 'literal' is not correct'

4. 'This "'literal'" is not correct'

5. "This 'literal' is correct"

6. "This "'literal''' is correct"

7. "This "literal" is not correct"

8. "This' 'literal' , is not correct"

Parameter Definition

string In the second and sixth cases above, the
word literal is enclosed in one set of
quotation marks in memory. In the
fourth and eighth cases above, the word
literal is not correct unless you really
want it enclosed in two sets of quotation
marks in memory.

13-13

Parameter Definition

value Enter a 1-4 character hexadecimal value
to specify:

• The numbers to be added and
subtracted (refer to the Hexarithmetic
command), or

• The number of instructions to be
executed by the Trace command, or

• The number of bytes a command
should operate on. (Refer to the
Trace, Proceed, and Hexarithmetic
commands.)

13-14

The DEBUG Commands

This section presents a detailed description of how to
use the commands to the DEBUG program. The
commands appear in alphabetic order; each with its
format and purpose. Examples are provided where
appropriate.

Information Common to All DEBUG
Commands

The following information applies to the DEBUG
commands:

• A command is a single letter, usually followed by
one or more parameters.

• Commands and parameters can be entered in
uppercase or lowercase, or a combination of
both.

• Commands and parameters may be separated by
delimiters. Delimiters are only required, however,
between two consecutive hexadecimal values.
Thus, these commands are equivalent:

dcs:l,0,0 11,0
d cs:l,0,0 11,0
d, cs: 1,0,0,11,0

• Press Ctrl-Break to end commands.

• Commands become effective only after you press
the Enter key.

• For commands producing a large amount of
output, you can press Ctrl-Num Lock to suspend
the display to read it before it scrolls away. Press
any other character to restart the display.

13-15

13-16

• You can use the control keys and the DOS
editing keys, described in Chapter 2 of the DOS
User's Guide while using the DEBUG program.

• If a syntax error is encountered, the line is
displayed with the error pointed out as follows:

d cs:~,0,0 CS:ll,0
I\error

In this case, the Dump command is expecting the
second address to contain only a hexadecimal
offset value. It finds the S, which is not a valid
hexadecimal character.

• The prompt from the DEBUG program is a
hyphen (-).

• The DEBUG program resides on your Technical
Reference Utilities diskette.

Purpose:

Format:

Remarks:

A (Assemble) Command

To assemble IBM Personal Computer Macro
Assembler language statements directly into memory.

A [address]

All numeric input to the Assemble command is in
hexadecimal. The assembly statements you enter are
assembled into memory at successive locations,
starting with the address specified in address. If no
address is specified, the statements are assembled into
the area at CS:OIOO, if no previous Assemble
command was used, or into the location following
the last instruction assembled by a previous Assemble
command. When all desired statements have been
entered, press Enter when you are prompted for the
next statement to return to the DEBUG prompt.

DEBUG responds to invalid statements by
displaying:

",error

and redisplaying the current assemble address.

DEBUG supports standard 8086/8088 assembly
language syntax (and the 8087 instruction set), with
the following rules:

• All numeric values entered are hexadecimal and
can be entered as 1-4 characters.

• Prefix mnemonics must be entered in front of the
opcode to which they refer. They can also be
entered on a separate line.

13-17

A (Assemble) Command

13-18

• The segment override mnemonics are cS:, DS:,
ES:, and SS:.

• String manipulation mnemonics must explicitly
state the string size. For example, MOVSW must
be used to move word strings and MOVSB must
be used to move byte strings.

• The mnemonic for the far return is RETF.

• The assembler will automatically assemble short,
near, or far jumps and calls depending on byte
displacement to the destination address. These
can be overridden with the NEAR OR FAR
prefix. For example:

rjlW:rt1J/ JMP r:f/2 ; a 2 byte short jump

rjlW:rjr:f/2 JMP NEAR r:f/5 ;a 3 byte near jump

rjlW:(fJ.l5 JMP FAR r:f/A ;a 5 byte far jump

The NEAR prefix can be abbreviated to NE, but
the FAR prefix cannot be abbreviated.

• DEBUG cannot tell whether some operands refer
to a word memory location or a byte memory
location. In this case, the data type must be
explicitly stated with the prefix WORD PTR or
BYTE PTR. DEBUG will also accept the
abbreviations WO and BY. For example:

NEG BYTE PTR [128]

DEC WO [SI]

• DEBUG also cannot tell whether an operand
refers to a memory location or to an immediate
operand. DEBUG uses the common convention
that operands enclosed in square brackets refer to
memory. For example:

A (Assemble) Command
MOV AX,21 ;Load AX with 21H
MOV AX, [21] ; Load AX with the

contents of
memory location
21H

• Two popular pseudo-instructions have also been
included. The DB opcode assembles byte values
directly into memory. The DW opcode assembles
word values directly into memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB "THIS IS A QUOTE: '"
DB "THIS IS A QUOTE:'"

DW 1ft)fJft), 2ft)fJft), 3ft)ft)ft): ", BACH:"

• All forms of the register indirect commands are
supported. For example:

ADD BX,34[BP+2][SI-1]
POP [BP+DI]
PUSH [SI]

• All opcode synonyms are supported. For
example:

LOOPZ 1ft) fJ
LOOPE 1ft)ft)

JA 2fJfJ
JNBE 2fJfJ

13-19

A (Assemble) Command

Example:

13-20

• For 8087 opcodes the WAIT or FW AIT prefix
must be explicitly specified. For example:

FWAIT FADD ST,ST(3)

FLD TBYTE PTR [BX]

C > debug -a2f/J.1J
p8B4:92f/J.1J xor ax,ax
p8B4:9292 mov [bx],ax
p8B4:9294 ret
p8B4:9295

;This line will
;assernble a
;FWAIT prefix
;This line will
;not

Purpose:

Format:

Remarks:

Example:

C (Compare) Command

Compares the contents of two blocks of memory.

C range address

The contents of the two blocks of memory are
compared; the length of the comparison is
determined from the range. If unequal bytes are
found, their addresses and contents are displayed, in
the form:

addr1 by tel byte2 addr2

where, the first half (addrl by tel) refers to the
location and contents of the mismatching locations in
range, and the second half (byte2 addr2) refers to
the byte found in address.

If you enter only an offset for the beginning address
of range, the C command assumes the segment
contained in the DS register. To specify an ending
address for range, enter it with only an offset value.

C 100 L20 200

The 32 bytes (hex 20) of memory beginning at
DS: 100 are compared with the 32 bytes beginning at
DS:200. L20 is the range.

13-21

D (Dump) Command

Purpose:

Format:

Remarks:

13-22

Displays the contents of a portion of memory.

D [address]

or

D [range]

The dump is displayed in two parts:

1. A hexadecimal portion. Each byte is displayed in
hexadecimal.

2. An ASCII portion. The bytes are displayed as
ASCII characters. Unprintable characters
(ASCII ~ to 31 and 127 to 255) are indicated by a
period.

With a 40-column system display format, each line
begins on an 8-byte boundary and shows 8 bytes.

With an 80-column system display format, each line
begins on a 16-byte boundary and shows 16 bytes.
There is a hyphen between the 8th and 9th bytes.

Note: The first line may have fewer than 8 or 16
bytes if the starting address of the dump is not on a
boundary. In this case, the second line of the dump
begins on a boundary.

D (Dump) Command
The Dump command has two format options:

Option 1

Use this option to display the contents of hex 40
bytes (40-column mode) or hex 80 bytes (80-column
mode). For example:

D address

or

D

The contents are dumped starting with the specified
address.

If you do not specify an address, the D command
assumes the starting address is the location following
the last location displayed by a previous D
command. Thus, it is possible to dump consecutive
40-byte or 80-byte areas by entering consecutive D
commands without parameters.

If no previous D command was entered, the location
is offset hex 100 into the segment originally
initialized in the segment registers by DEBUG.

Note: If you enter only an offset for the starting
address, the b command assumes the segment
contained in the DS register.

13-23

D (Dump) Command

13-24

Option 2

Use this option to display the contents of the
specified address range. For example:

D range

Note: If you enter only an offset for the starting
address, the D command assumes the segment
contained in the DS register. If you specify an
ending address, enter it with only an offset value.

For example:

D cs:lOO lOC

A 40-column display format might look like this:

~4BA:~1~~ 42 45 52 54 41 2~ 54 ~~
BERTA T.

~4BA:~1~8 2~ 42 4F 52 47
BORG

Purpose:

Format:

Remarks:

E (Enter) Command

The Enter command has two modes of operation:

• Replaces the contents of one or more bytes,
starting at the specified address, with the values
contained in the list (see Option 1).

• Displays and allows modification of bytes in a
sequential manner (see Option 2).

E address [list]

If you enter only an offset for the address, the E
command assumes the segment contained in the DS
register.

The Enter command has two format options:

Option 1

Use this option to place the list in memory beginning
at the specified address.

E address list

For example:

E ds:lj)j) F3 "xyz" 8D

Memory locations ds: 100 through ds: 104 are filled
with the 5 bytes specified in the list.

Option 2

Use this option to display the address and the byte
of a location, then the system waits for your input.

13-25

E (Enter) Command

13-26

For example:

E address

Enter a 1- or 2-character hexadecimal value to
replace the contents of the byte; then take any of the
next three actions:

1. Press the space bar to advance to the next
address. Its contents are displayed. If you want
to change the contents take option 1, above.

To advance to the next byte without changing the
current byte, press the space bar again.

2. Enter a hyphen to back up to the preceding
address. A new line is displayed with the
preceding address and its contents. If you want
to change the contents, take option 1, above.

To back up one more byte without changing the
current byte, enter another hyphen.

3. Press the Enter key to end the Enter command.

Note: Display lines can have 4 or 8 bytes of data,
depending on whether the system display format is
40- or 80-column. Spacing beyond an 8-byte
boundary causes a new display line, with the
beginning address, to be started.

E (Enter) Command
For example:

E cs: 1,0,0

might cause this display:

,04BA:,01,0,0 EB._

To change the contents of 04BA:OIOO from hex EB
to hex 41, enter 41.

,04BA:,01,0,0 EB.41_

To see the contents of the next three locations, press
the space bar three times. The screen might look like
this:

,04BA:,01,0,0 EB.41 1,0. ,0,0. BC.

To change the contents of the current location
(04BA:OI03) from hex Be to hex 42, enter 42.

,04BA:,01,0,0 EB.41 1,0. ,0,0. BC.42

Now, suppose you want to back up and change the
hex 10 to hex 6F. This is what the screen would
look like after entering two hyphens and the
replacement byte:

,04BA:,01,0,0 EB.41 1,0.,0,0. BC.42-
,04BA:,01,02 ,0,0.-
,04BA:,01,01 1,0.6F_

Press the Enter key to end the Enter command. You
will see the hyphen prompt.

13-27

F (Fill) Command

Purpose:

Format:

Fills the memory locations in the range with the
values in the list.

F range list

Remarks: .

Example:

13-28

If the list contains fewer bytes than the address
range, the list is used repeatedly until all the
designated memory locations are filled.

If the list contains more bytes than the address
range, the extra list items are ignored.

Note: If you enter only an offset for the starting
address of the range, the Fill command assumes the
segment contained in the DS register.

F 4BA:I00 L 5 F3 "XYZ" 8D

Memory locations 04BA:I00 through 04BA:I04 are
filled with the 5 bytes specified. Remember that the
ASCII values of the list characters are stored. Thus,
locations 100-104 will contain F3 58 59 5A 8D.

Purpose:

Format:

Remarks:

G (Go) Command

Executes the program you are debugging.

Stops the execution when the instruction at a
specified address is reached (breakpoint), and
displays the registers, flags, and the next instruction
to be executed.

G [= address] [address [address ...]]

Program execution begins with the current
instruction, whose address is determined by the
contents of the CS and IP registers, unless overridden
by the = address parameter (the = must be entered).
If = address is specified, program execution begins
with CS: = address.

The Go command has two format options:

Option 1

Use this option to execute the program you are
debugging without breakpoints. For example:

G [=address]

This option is useful when testing program execution
with different parameters each time. (Refer to the
Name command.) Be certain the CS:IP values are
set properly before issuing the G command, if not
using = address.

13-29

G (Go) Command

13-30

Option 2

This option performs the same function as Option 1
but, in addition, allows breakpoints to be set at the
specified addresses. For example:

G [=addressJ address
[address ... J

This method causes execution to stop at a specified
location so the system/program environment can be
examined.

You can specify up to ten breakpoints in any order.
You may wish to take advantage of this if your
program has many paths, and you want to stop the
execution no matter which path the program takes.

The DEBUG program replaces the instruction codes
at the breakpoint addresses with an interrupt code
(hex CC). If anyone breakpoint is reached during
execution, the execution is stopped, the registers and
flags are displayed, and all the breakpoint addresses
are restored to their original instruction codes. If no
breakpoint is reached, the instructions are not
restored.

Notes:

1. Once a program has reached completion
(DEBUG has displayed the "Program terminated
normally" message), it is necessary to reload the
program before it can be executed again.

2. Make sure that the address parameters refer to
locations that contain valid 8088 instruction
codes. If you specify an address that does not
contain the first byte valid instruction,
unpredictable results occur.

G (Go) Command
3. The stack pointer must be valid and have 6 bytes

available for the Go command; otherwise,
unpredictable results occur.

4. If only an offset is entered for a breakpoint, the
G command assumes the segment contained in
the CS register.

5. Do not set breakpoints at instructions in
read-only memory (ROM BIOS or ROM
BASIC).

For example:

G 1,02 1EF 2,08

Be careful not to set a breakpoint between a segment
override indication (such as ES; alone on a line), and
the instruction that the override qualifies.

Execution begins with the current instruction, whose
address is the current values of CS:IP. The = address
parameter was not used.

Three breakpoints are specified; assume that the
second is reached. Execution stops before the
instruction at location CS: 1 EF is executed, the
original instruction codes are restored, all three
breakpoints are removed, the display occurs, and the
Go command ends.

Refer to the Register command for a description of
the display.

13-31

H (Hex arithmetic) Command

Purpose:

Format:

Example:

13-32

Adds the two hexadecimal values, then subtracts the
second from the first.

Displays the sum and difference on one line.

H value value

H OF 8
17 07

The hexadecimal sum of OOOF and 0008 is 0017, and
their difference is 0007.

Purpose:

Format:

Example:

I (Input) Command

Inputs and displays (in hexadecimal) 1 byte from the
specified port.

I portaddress

I 2F8
6B

The single hexadecimal byte read from port 02F8 is
displayed (6B).

13-33

L (Load) Command

Purpose:

Format:

Remarks:

13-34

Loads a file or absolute disk sectors into memory.

L [address[drive sector sector]]

The maximum number of sectors that can be loaded
with a single Load command is hex 80.

Note: DEBUG displays a message if a disk read
error occurs. You can retry the read operation by
pressing F3 to re-display the Load command. Then,
press the Enter key.

The Load command has two format options:

Option 1

Use this option to load data from the disk specified
by drive and place the data in memory beginning at
the specified address. For example:

L address drive sector sector

The data is read from the specified starting relative
sector (first sector) and continues until the requested
number of sectors is read (second sector).

Note: If you only enter an offset for the beginning
address, the L command assumes the segment
contained in the CS register.

For example, to load data, you might enter:

L OS:l~~ 1 ~F 60

L (Load) Command
The data is loaded from the diskette in drive Band
placed in memory beginning at DS: 100. 6DH (109)
consecutive sectors of data are transferred, starting
with relative sector hex OF (15) (the 16th sector on
the diskette).

Note: Option 1 cannot be used if the drive specified
is a network drive.

Option 2

When issued without parameters, or with only the
address parameter, use this option to load the file
whose filespec is at CS:80. For example:

L

or

L address

This condition is met by specifying the filespec when
starting the DEBUG program, or by using the Name
command.

Note: If DEBUG was started with a filespec and
subsequent Name commands were used, you may
need to enter a new Name command for the proper
filespec before issuing the Load command.

The file is loaded into memory beginning at CS: 100
(or the location specified by address), and is read
from the drive specified in the filespec (or from the
default drive, if none was specified). Note that files
with extensions of .COM or .EXE are always loaded
at CS: 100. If you specified an address, it is ignored.

13-35

L (Load) Command

13-36

The BX and ex registers are set to the number of
bytes read; however, if the file being loaded has an
extension of .EXE, BX and ex are set to the actual
program size. The file may be loaded at the high end
of memory. Refer to the notes in "How to Start the
DEBUG Program" at the beginning of this chapter
for the conditions that are in effect when .EXE or
.HEX files are loaded.

F or example:

DEBUG
-N rnyprog
-L

The file named myprog is loaded from the default
diskette and placed in memory beginning at location
eS:0100.

Purpose:

Format:

Remarks:

Example:

M (Move) Command

Moves the contents of the memory locations specified
by range to the locations beginning at the address
specified.

M range address

Overlapping moves are always performed without
loss of data during the transfer. (The source and
destination areas share some of the same memory
locations.)

The data in the source area remains unchanged
unless overwritten by the move.

Notes:

1. If you enter only an offset for the beginning
address of the range, the M command assumes
the segment contained in ,the DS register. If you
specify an ending address for the range, enter it
with only an offset value.

2. If you enter only an offset for the address of the
destination area, the M command assumes the
segment contained in the DS register.

M CS:l~~ ll~ 5~~

The 17 bytes of data from CS: 100 through CS: 110
are moved to the area of memory beginning at
DS:500.

13-37

N (Name) Command

Purpose:

Format:

Remarks:

13-38

The Name command has two functions:

• Formats file control blocks for the first two
filespecs, at cs: 5C and CS:6C. (Starting
DEBUG with a filespec also formats a file
control block at CS:5C.)

The file control blocks are set up for the use of
the Load and Write 'commands and to supply
required file names for the program being
debugged.

• All specified filespecs and other parameters are
placed exactly as entered, including delimiters, in
a parameter save area at CS:81, with CS:80
containing the number of characters entered.
Register AX is set to indicate the validity of the
drive specifiers entered with the first two
filespecs.

N [d:][path]filename[.ext]

If you start the DEBUG program without a filespec,
you must use the Name command before a file can
be loaded with the L command.

Example:

N (Name) Command

DEBUG
-N myprog
-L

To define filespecs or other parameters required by
the program being debugged, enter:

DEBUG myprog
-N filel file2

In this example, DEBUG loads the file myprog at
CS: 100, and leaves the file control block at CS:5C
formatted with the same filespec. Then, the Name
command formats file control blocks for filel and
file2 at CS:5C and CS:6C, respectively. The file
control block for myprog is overwritten. The
parameter area at CS:81 contains all characters
entered after the N, including all delimiters, and
CS:80 contains the count of those characters (hex
OC).

13-39

o (Output) Command

Purpose:
Sends the byte to the specified output port.

Format:
o port address byte

Example:
To send the byte value 4F to output port 2F8, enter:

o 2F8 4F

13-40

Purpose:

Format:

Remarks:

Example:

P (Proceed) Command

Causes the execution of a subroutine call, a loop
instruction, an interrupt, or a repeat string
instruction to stop at the next instruction.

P[= address] [value]

When at a subroutine call, a loop instruction, an
interrupt, or a repeat string instruction, issue the
Proceed command to execute the instruction (as an
atomic operation), and return control at the next
instruction. The Proceed command has the same
syntax as the Trace command. Specifying PO, is the
same as specifying TO.

If the following instructions are executed:

0100
0103

1000

CALL
JC

XOR

1XXX RET

1000
2000

AX,AX

And CS:IP was pointing to the CALL 1000
instruction, typing P causes the execution of the
subroutine and returns control to DEBUG at the JC
instruction.

13-41

Q (Quit) Command

Purpose:

Format:

Remarks:

Example:

13-42

Ends the DEBUG program.

Q

The file that you are working on in memory is not
saved by the Quit command. You must use the
Write command to save the file.

DEBUG returns to the cQmmand processor which
then issues the normal command prompt.

-Q
A>

Purpose:

Format:

Remarks:

R (Register) Command

The Register command has three functions:

• Displays the hexadecimal contents of a single
register with the option of changing those
contents.

• Displays the hexadecimal contents of all the
registers, plus the alphabetic flag settings, and the
next instruction to be executed.

• Displays the eight 2-letter alphabetic flag settings
with the option of changing any or all of them.

R [registername]

When the DEBUG program starts, the registers and
flags are set to certain values for the program being
debugged. (Refer to "How to Start the DEBUG
Program" at the beginning of this chapter.)

Display a Single Register

The valid registernames are:

AX
BX
CX
DX
SP

BP
SI
DI
DS
ES

SS
CS
IP
PC
F

Both IP and PC refer to the instruction pointer.

13-43

R (Register) Command

13-44

For example, to display the contents of a single
register, you might enter:

R AX

The system might respond with:

AX F1E4

Now you may take one of two actions:

• Press Enter to leave the contents unchanged.

or

• Change the contents of the AX register by
entering a 1-4 character hexadecimal value, such
as hex FFF.

AX F1E4
:FFF

Now pressing Enter changes the contents of the AX
register to hex OFFF.

Display All Registers and Flags

To display the contents of all registers and flags (and
the next instruction to be executed), type:

R

The system might respond with:

AX=~E~~ BX=~~FF CX=~~~7 DX=~lFF
SP=~39D BP=~~~~ SI=~~5C DI=~~~~
DS=~4BA ES=~4BA SS=~4BA CS=~4BA
IP=~11A NV UP DI NG NZ AC PE NC
~4BA:~11A CD21 INT 21

R (Register) Command
The first four lines display the hexadecimal contents
of the registers and the eight alphabetic flag settings.
The last line indicates the location of the next
instruction to be executed, and its hexadecimal and
un assembled formats. This is the instruction pointed
to by CS:IP.

Note: A system with an 80-column display shows:

1 st line - 8 registers

2nd line - 5 registers and 8 flag settings

3rd line - next instruction information

A system with a 40-column display shows:

1 st line - 4 registers

2nd line - 4 registers

3rd line - 4 registers

4th line - 1 register and 8 flag settings

5th line - next instruction information

Display All Flags

There are eight flags, each with 2-letter codes to
indicate either a set condition or a clear condition.

The flags appear in displays in the same order as
presented in the following table:

13-45

R (Register) Command

Alphabetic Flag Settings

Flag Name Set Clear

Overflow (yes/no) ov NV

Direction (decrement/increment) DN UP

Interrupt (enable/disable) EI DI

Sign (negative/positive) NG PL

Zero (yes/no) ZR NZ

Auxiliary carry (yes/no) AC NA

Parity (even/odd) PE PO

Carry (yes/no) CY NC

To display all flags, enter:

R F

If all the flags are in a set condition, the response is:

OV DN EI NG ZR AC PE CY -

Now you can take one of two actions:

• Press Enter to leave the settings unchanged.

• Change any or all of the settings.

13-46

R (Register) Command
To change a flag, just enter its opposite code. The
opposite codes can be entered in any order with or
without intervening spaces. For example, to change
the first, third, fifth, and seventh flags, enter:

OV DN EI NG ZR AC PE CY - PONZDINV

They are entered in reverse order in this example.

Press Enter and the flags are modified as specified,
the prompt appears, and you can enter the next
command.

If you want to see if the new codes are in effect,
enter:

R F

The response is:

NV DN DI NG NZ AC PO CY -

The first, third, fifth, and seventh flags are changed
as requested. The second, fourth, sixth, and eighth
flags are unchanged.

Note: A single flag can be changed only once per R
F command.

13-47

S (Search) Command

Purpose:

Format:

Remarks:

Example:

13-48

Searches the range for the character(s) in the list.

S range list

All matches are indicated by displaying the addresses
where matches are found.

A display of the prompt without an address means
that no match was found.

Note: If you enter only an offset for the starting
address of the range, the S command assumes the
segment contained in the DS register.

If you want to search the range of addresses from
CS:I00 through CS:II0 for hex 41, type:

S CS:1,0,0 11,0 41

If two matches are found the response might be:

,04BA:,01,04
,04BA:,01,0D

If you want to search the same range of addresses for
a match with the 4-byte list (41 "AB" E), enter:

S C S : 1,0,0 L 11 41 "AB " E

The starting addresses of all matches are listed. If no
match is found, no address is displayed.

Purpose:

Format:

Remarks:

T (Trace) Command

Executes one or more instructions starting with the
instruction at CS:IP, or at = address if it is specified.
The = must be entered. One instruction is assumed,
but you can specify more than one with value.
Displays the contents of all registers and flags after
each instruction executes. For a description of the
display format, refer to the Register command.

T [= address] [value]

The display caused by the Trace command continues
until value instructions are executed. Therefore,
when tracing multiple instructions, remember you
can suspend the scrolling at any time by pressing
Ctrl-NumLock. Resume scrolling by entering any
other character.

Notes:

1. The Trace command disables all hardware
interrupts before executing the user instruction,
and then reenables the interrupts when the trap
interrupt occurs following the execution of the
instruction.

2. TRACE should not be used with any steps that
change the contents of the 8259 interrupt mask
(ports 20 and 21).

3. If you trace an INT3 instruction, the breakpoint
is set at the INT3 location.

13-49

T (Trace) Command
Example:

13-50

T

If the IP register contains 011A, and that location
contains B40E (MOV AH,OEH), this might be
displayed:

AX=~E~~ BX=~~FF CX=~~~7 DX=~lFF
SP=~39D BP=~~~~ SI=~~5C D1=~~~~
DS=~4BA ES=~4BA SS=~4BA CS=~4BA
1P=~llC NV UP 01 NG NZ AC PE NC
~4BA:~11C CD21 INT 21

This displays the results after the instruction at 011A
is executed, and indicates the next instruction to be
executed is the INT 21 at location 04BA:011C.

T 10

Sixteen instructions are executed (starting at CS:IP).
The contents of all registers and flags are displayed
after each instruction. The display stops after the
16th instruction has been executed. Displays may
scroll off the screen unless you suspend the display
by pressing the Ctrl-NumLock keys.

Purpose:

Format:

Remarks:

U (Un assemble) Command

Unassembles instructions (translates the contents of
memory into assembler-like statements) and displays
their addresses and hexadecimal values, together with
assembler-like statements. For example, a display
might look like this:

,04BA: ;)1,0,0
,04BA:,01,03
,04BA:,01,04

U [address]

or

U [range]

2,06472
FC
7665

AND [SI+72] ,AH
CLD
JBE ,016B

The number of bytes unassembled depends on your
system display format (40 or 80 columns), and which
option you use with the Unassemble command.

Notes:

1. In all cases, the number of bytes unassembled
and displayed may be slightly more than either
the amount requested or the default amount.
This happens because the instructions are of
variable lengths; therefore, unassembling the last
instruction may result in more bytes than
expected.

2. Make sure that the address parameters refer to
locations containing valid 8088 instruction codes.
If you specify an address that does not contain
the first byte of a valid instruction, the display
will be incorrect.

13-51

U (Unassemhle) Command

13-52

3. If you enter only an offset for the starting
address, the U command assumes the segment
contained in the CS register.

The Unassemble command has two format options:

Option 1

Use this option to either unassemble instructions
without specifying an address, or to un assemble
instructions beginning with a specified address. For
example:

u

or

U address

Sixteen bytes are unassembled with a 40-column
display. Thirty-two bytes are unassembled while in
80-column mode.

Instructions are unassembled beginning with the
specified address.

If you do not specify an address, the U command
assumes the starting address is the location following
the last instruction unassembled by a previous U
command. Thus, it is possible to unassemble
consecutive locations, producing continuous
unassembled displays, by entering consecutive U
commands without parameters.

If no previous U command is entered, the location is
offset hex 0100 into the segment originally initialized
in the segment registers by DEBUG.

U (Unassemhle) Command
Option 2

Use this option to unassemble instructions in a
specified address range. F or example:

U range

All instructions in the specified address range are
unassembled, regardless of the system display format.

Note: If you specify an ending address, enter it with
only an offset value.

For example:

u j)4ba:j)1j)j) Ij)8

The display response might be:

j)4BA:,01j)j)
j)4BA:j)1j)3
j)4BA:j)1j)4
j)4BA:j)1j)6

2j)6472
FC
7665
2j)737j)

AND [SI+72],AH
CLD
JBE j)16B
AND [BP+DI+7 j)], DH

The same display appears if you enter:

U j)4BA:lj)j) L 7

or

U j)4BA:lj)j) L 8

or

U j)4BA: Ij)j) L 9

13-53

W (Write) Command

Purpose:

Format:

Remarks:

13-54

Writes the data being debugged to disk.

W [address [drive sector sector]]

The maximum number of sectors that can be written
with a single Write command is hex 80.

DEBUG displays a message if a disk write error
occurs. You can retry the write operation by
pressing F3 to redisplay the Write command, then
press the Enter key.

The Write command has two format options:

Option 1

Use this option to write data to disk beginning at a
specified address. For example:

W address drive sector sector

The data beginning at the specified address is written
to the disk in the indicated drive. The data is written
starting at the specified starting relative sector (first
sector) and continues until the requested number of
sectors are filled (second sector).

Notes:

1. Be extremely careful when you write data to
absolute sectors because an erroneous sector
specification destroys whatever was on the disk at
that location.

W (Write) Command
2. If only an offset is entered for the beginning

address, the W command assumes the segment
contained in the CS register.

3. Remember, the starting sector and the sector
count are both specified in hexadecimal.

4. Option 1 cannot be used if the drive specified is a
network drive.

For example:

w IFD 1 If)f) A

The data beginning at CS:OIFD is written to the
diskette in drive B, starting at relative sector hex 100
(256) and continuing for hex OA (10) sectors.

Option 2

This option allows you to use the Write command
without specifying parameters or only specifying the
address parameter. For example:

w

or

W address

When issued as shown above, the Write command
writes the file (whose filespec is at CS:80) to disk.

This condition is met by specifying the filespec when
starting the DEBUG program, or by using the Name
command.

Note: If DEBUG was started with a filespec and
subsequent Name commands were used, you may
need to enter a new Name command for the proper
filespec before issuing the Write command.

13-55

W (Write) Command

13-56

In addition, the BX and CX registers must be set to
the number of bytes to be written. They may have
been set properly by the DEBUG or Load
commands, but might have been changed by a Go or
Trace command. You must be certain the BX and
CX registers contain the correct values.

The file beginning at CS: 100, or at the location
specified by address, is written to the diskette in the
drive specified in filespec or the default drive if none
was specified.

The debugged file is written over the original file that
was loaded into memory, or into a new file if the file
name in the FCB didn't previously exist.

Note: An error message is issued if you try to write
a file with an extension of .EXE or .HEX. These files
must be written in a specific format that DEBUG
cannot support.

If you find it necessary to modify a file with an
extension of .EXE or .HEX, and the exact locations
to be modified are known, use the following
procedure:

W (Write) Command
1. RENAME the file to an extension other than

.EXE or .HEX.

2. Load the file into memory using the DEBUG or
Load command.

3. Modify the file as needed in memory, but do not
try to execute it with the Go or Trace commands.
Unpredictable results would occur.

4. Write the file back using the Write command.

5. RENAME the file to its correct name.

13-57

13-58

Appendix A. Using the Library
Manager

The Library Manager A-3
Command Line Format A-3
Operators A-6
Response File A-8
Cross-Reference Lists A-9
Library Manager Error Messages A-IO

Irrecoverable Errors A-IO
Recoverable Errors. A-13

A-I

A-2

The Library Manager

The IBM Library Manager allows you to construct
and edit object module libraries. Object files and
other library files can be added to a library and
object modules can be removed and erased from a
library.

Command Line Format
The format of the command line is:

LIB [library-file [pagesize] operations
[,[list-file]][,[newlib]][;]]

library-file is the name of a library file.

pagesize is an optional switch of the form,

l/pagesize:N" or "/p:N"

where N equals:

16, 32, 64, 128, 256, or 512.

By default, libraries under IBM DOS are
always multiples of 512 byte blocks.
Object modules always start at the
beginning of a new block. A block is
also called a page. If the size of the
object module is less than a block, the
rest of the block is filled with null bytes.

When you specify the pagesize in the
command line, the library being created
or modified contains N byte pages.

The size of the library that you are
creating or modifying can increase when
you specify larger pagesize values.
However, the time it takes to link the

A-3

A-4

library decreases when you use larger
pagesizes.

The default value for the pagesize switch
is 512 if the library file is being created,
or the current pagesize if the library file
is being modified.

Note: Version 2.40 of the Linker
is included with this version of
DOS. Previous versions of the
Linker cannot recognize pagesizes
less than 512. Therefore, you
should always use the latest
version of the Linker.

operations is a list of operations to perform. This
list contains an operator plus the name
of the file you are adding. The default is
an empty list; no changes occur. See
"Operators," later in this section, for a
description of the operators.

list-file is a file name where a cross reference
listing will be placed. No default
extensions are used.

newlib

The default for Llist-file] is no list file; a
cross-reference is not generated. You are
asked for this entry if it is left empty.

defines the name of a library file to be
created with the changes specified by the
operations. The default is the same name
as the library file. If you use the default,
the original file is renamed to have the
extension ".BAK" instead of ".LIB".

The command line can be broken by a carriage
return at any point. You are asked for the
remaining parts of the command line. If a semicolon
ends any field after the library file name, the

remaining fields take on their default values. If you
just specify LIB, you are asked for all entries.

Note: You can have a device identification
before any of the entries that you specify in the
command line.

A-5

Operators

A-6

The operators recognized by the Library Manager
are:

+ Add the contents of an object file or a
library file.

*

Erase an object module.

Remove an object module into a file whose
name is the specified module name plus the
extension ".OBJ".

These individual operators can be combined to
perform more complex operations. For example:

-+

-*

Replace an object module with the
contents of the object file of the same
name (plus ".OBJ").

Remove an object module and at the same
time erase it.

Many operations may be performed at once. If you
want to specify operations on more than one line,
follow your last operation with an '&' and a carriage
return.

The operations are performed in the following order:

1. Erasures and removals

2. Additions

Erasures and removals are performed in the order in
which the specified object modules occur in the
library. Additions are performed in the order that
you specified.

Examples:

To add the file TEST .OBJ to the library BASIC.LIB
without producing a cross-reference, type:

LIB BASIC.LIB+TEST.OBJi

Note that the following is the same as the preceding
example:

LIB BASIC+TESTi

Extensions are optional, and they default to .OBJ if
omitted. If you are using a library file that is in the
operations list, you must specify the .LIB extension.

To erase TEST from BASIC. LIB, type:

LIB BASIC-TEST;

To replace TEST in the library with a newer version,
type:

LIB BASIC-+TESTi

Note that the following also have the same effect:

LIB BASIC-TEST+TEST.OBJ;

LIB BASIC+TEST-TEST;

If you want to make the same change, but put the
changes in a new library called BASNEW.LIB, any
of the following work:

LIB BASIC-+TEST"BASNEW

LIB BASIC-TEST+TEST"BASNEW

LIB BASIC+TEST-TEST"BASNEW

A-7

If you want to create a library of object modules,
type:

LIB MYSUBS+FILE1.OBJ+FILE2.0BJ+ ... +FILEN.OBJ.

You are asked for the listing file.

Response File

A-8

You can place all of your responses to the prompts
in a response file. The Library Manager is instructed
to read the responses from the response file by the
following:

LIB @RESP.TXT

where RESP. TXT is the file name containing the
responses.

Note: RESP. TXT was chosen as an example.
Any valid DOS file name can be used.

Cross-Reference Lists

Two types of cross-references are generated:

• Alphabetic list

• Object module list.

The alphabetic list contains the public symbol
followed by the object file. For example, the
cross-reference for BASCOM20.LIB contains:

$SWPA SWAP $SWPB SWAP
$SWPC SWAP $SWPD SWAP

The second list contains the object file "SWAP", the
offset value, and the code and data size in
hexadecimal.

SWAP Offset: 2197~H Code and data size: 4FH
$SWPA $SWPB &SWPC &SWPD

A-9

Library Manager Error Messages

A-IO

Irrecoverable Errors

MESSAGE:

aborted by user

alignment factor too small

cannot create new library

cannot open indirect file

cannot open VM.TMP

cannot read . from VM

cannot rename old library

cannot reopen library

cannot write to VM

command syntax error

PROBABLE
CAUSE:

You did not
want to create
library

Li brary larger
than
(pagesize)*64KB

Directory full or
name bad

Response file
does not exist

Directory full

A problem in the
Library Manager

Bad file name

A problem in the
Library Manager

Diskette full

Typographical
error

error writing to cross reference file Diskette or fixed
disk full

MESSAGE:

error writing to new library

fetch: not allocated

free: not allocated

insufficient memory

internal failure

invalid file name extension

invalid library

invalid library name extension

invalid object module •..

mark: not allocated

no more virtual memory

PROBABLE
CAUSE:

Diskette or fixed
disk full

A problem in the
Library Manager

A problem in the
Library Manager

Not enough
memory for
Library Manager

A pro blem in the
Library Manager

Extension
specified is not
.OBJ or .LIB

File is not a
library file

Name does not
end in .LIB

Corrupt object
module

A problem in the
Library Manager

Too many public
symbols

A-II

A-12

MESSAGE:

syntax error

syntax error (bad file spec)

syntax error (bad input)

syntax error (switch name expected)

syntax error (switch value expected)

too many symbols

PROBABLE
CAUSE:

Typographical
error

Typo specifying
file name

Illegal character
in input

Name not found
after 'I'

Illegal character
after ':'

Too many public
symbols

unexpected EOF on command input Unexpected BOF
on response file

unknown switch

write to extract file failed

write to library file failed

Unknown name
after' /'

Diskette or fixed
disk full

Diskette or fixed
disk full

Recoverable Errors.

MESSAGE:

cannot create extract file ..•

cannot create listing ...

extension illegal-file ignored

invalid format ... ; file ignored

invalid library header

module not in library; ignored

page size too small-ignored

PROBABLE
CAUSE:

Directory full

Bad file name or
directory full

Extension is not
.LIB or .OBJ

Input file is not
an object or
library

Input file is not a
library

Module to
extract or delete
does not exist

Value of page
size switch is less
than 16

A-13

A-14

Index

I Special Characters I
. COM filename
extension 1-6, 1-7

.COM programs 7-9

.EXE file structure 10-3

.EXE filename
extension 1-6, 1-7, 7-6

.EXE files, load 10-3

.EXE programs 7-9

.COM file format 12-29
- (DEBUG prompt) 13-16

DEBUG 13-16
/S option 5-13

abort program 1-10
absolute address of a
segment 12-26
. how to determine 12-26

absolute disk, interrupt
read 6-24
write 6-25

absolute sector 13-54
absolute track/sector,
calculate 5-13

AC flag set condition 13-46
access rights, network 6-47
actions, error recovery 6-45
adding hexadecimal
values 13-32

address DEBUG
parameter 13-7

address terminate
interrupt 6-14

address, disk transfer 13-5
address, program segment
prefix 6-232

AH register 6-34
allocate memory 6-190
allocated memory blocks,
modify 6-193

allocated memory,
free 6-192

allocating diskette space 5-5
allocating file space 4-17
allocation table
information 6-83

allocation table information,
specific device 6-84

allocation, diskette 5-4
ANSI.SYS 3-3
APPEND 6-31
application, executing
commands within your 8-3

area for DOS 5-4
ASCII characters 13-22
ASCII codes, extended 6-11
ASCII mode 4-9
ASCII mode, file I/O 4-11
ASCII representation 13-5
ASCII values 13-13
ASCIIZ string 6-46
Assemble command 13-17
assembler 12-4
attribute byte 7-16
attribute field 2-7
attribute field bits

clock device 2-10
device type 2-8

X-I

format 2-9
Generic 10CTL
request 2-10

Get/Set Logical
Device 2-10

10CTL 2-8
NUL 2-10
removable media 2-9
standard input 2-10
standard output 2-10

attribute, file 5-11
AUTOEXEC file 1-6
automatic responses 12-21

linker 12-21
Auxiliary Asynchronous
Communications
Adapter 6-54

auxiliary carry flag 13-46
auxiliary input 6-54
auxiliary output 6-54, 6-55
available functions,
DOS 1-8

AX register 6-17, 6-49, 13-4

base pointer 6-9
base register 6-8
batch file processor 1-6
binary mode 4-9
binary mode, file I/O 4-10
BIOS 6-24
BIOS interface module 1-4
BIOS parameter block 2-29
bit fields 6-128
block devices 2-5
block devices, installing 2-14
block number, current 7-13
block read, random 6-85
block write, random 6-86,
6-93

X-2

blocking/ de-blocking,
data 1-5

boot record 1-4, 5-4
boot sector format 2-31
boundary, paragraph 12-6
boundary, 16-byte 13-22
boundary, 8-byte 13-22
BP register 6-17, 13-4
BPB, BIOS parameter
block 2-15

breakpoint 13-29
buffer 1-9
buffered standard input 6-62
buffers, file 6-13
BUILD BPB function call
parameter 2-29

built-in functions 1-4
busy bit 2-18
BX register 6-17, 13-4, 13-36
byte contents

display 13-25
fill 13-28
replace 13-25

byte DEBUG
parameter 13-8

byte, attribute 7-16
byte, flag 7-16

calculate absolute cluster 5-8
calculate absolute
track/sector 5-13

calls, function 6-34
cancel redirection 6-230
carry flag 13-46
change current
directory 6-121

change file mode 6-145
character devices 2-5

character devices,
installing 2-14

check keyboard status 6-63
check, ctrl-break 6-107
checksum methodology 1-5
CL register 6-49
class 12-7
clear condition 13-45
clear keyboard buffer 6-64
clock device bit 2-10
CLOCK$ device 2-42
close a file handle 6-136
close file 6-69
CLOSE function call
parameter 2-3 7

cluster number, relative 5-13
cluster, calculate 5-8
cluster, locate next 5-7, 5-8
cluster, starting 5-13
clusters 5-15
code segment 6-9
codes, 8088
instruction 13-30

command code 2-17
command processor 1-5
command processor portions

initialization 1-6
resident 1-5
transient 1-6

command prompt,
DEBUG 13-15

command prompts 12-7
example session 12-23
messages 12-27
starting 12-17

command prompts,
linker 12-8

COMMAND.COM 5-13,
7-6

COMMAND.COM 13-4
communications adapter,
auxiliary
asynchronous 6-54

Compare command 13-21
comparing memory 13-21
compatibility mode 6-131
components of DOS 1-4
console I/O, direct 6-57
console input without
echo 6-60

console/keyboard
routines 1-8

control blocks 7-3
control keys 13-15
control screen cursor 3-3
control sequences 3-3
control, for device I/O 6-147
count register 6-8
country dependent
information 6-110,6-112

create a file 6-122
create file 6-77
create subdirectory 6-119
create unique file 6-213
creating a device driver 2-12
critical error handler 1-5
critical error handler
vector 6-15

cross-reference list, library
manager A-9

CS register 6-13, 6-17, 7-6,
7-9, 13-4, 13-29, 13-31,
13~34, 13-52, 13-55

Ctrl-Break 12-8
ctrl-break check 6-107
Ctrl-Break handler 1-5
Ctrl-Break keys 13-15
Ctrl-Num Lock keys 13-15
Ctrl- Break exit address
interrupt 6-14

current block number 7-13
current directory,
change 6-1.21

current directory, get 6-188
current disk 6-81

X-3

current relative record
number 7-14

cursor backward 3-8
cursor control 3-6
cursor control sequences

cursor backward 3-8
cursor down 3-7
cursor forward 3-8
cursor position 3-6
cursor position
report 3-10

cursor up 3-7
device status report 3-10
erase in display 3-13
erase in line 3-13
horizontal position 3-9
keyboard key
reassignment 3-17

reset mode 3-16
restore cursor
position 3-12

save cursor position 3-12
set graphics
rendition 3-15

set mode 3-16
vertical position 3-9

cursor up 3-7
CXregister 6-17,13-4,13-5,

13-36, 13-56
CY flag set condition 13-46

data area 5-14
data
blocking/de-blocking 1-5

data register 6-8
data segment 6-9
date

get 6-98

X-4

set 6-99
date file created or
updated 7-14

de-blocking/blocking,
data 1-5

DEBUG command
parameters 13-6

DEBUG 13-6
testing with
different 13-29

DEBUG program
A (Assemble) 13-17
C (Compare) 13-21
command
parameters 13-6

commands 13-15
common
information 13-15

D (Dump) 13-22
E (Enter) 13-25
ending 13-42
F (Fill) 13-28
G (Go) 13-29
H (Hexarithmetic) 13-32
how to start 13-4
I (Input) 13-33
L (Load) 13-34
M (Move) 13-37
N (Name) 13-38
o (Output) 13-40
P (Proceed) 13-41
prompt 13-16
Q (Quit) 13-42
R (Register) 13-43
S (Search) 13-48
T (Trace) 13-49
U (Unassemble) 13-51
W (Write) 13-54
what it does 13-3

default disk transfer
address 13-5

default segment 13-7
defective tracks 5-13

delete a file from a
directory 6-141

delete file 6-74
delimiters 13-15
deny none mode 6-134
deny read mode 6-133
deny read/write mode 6-133
destination area 13-37
destination index 6-9
device driver functions

BUILD BPB 2-29
CLOSE 2-37
FLUSH 2-36
generic 10CTL
request 2-40

get logical device 2-41
INIT 2-21
INPUT 2-32
MEDIA CHECK 2-23
MEDIA
DESCRIPTOR 2-26

NONDESTRUCTIVE
INPUT 2-34

OPEN 2-37
OUTPUT 2-32
REMOVABLE
MEDIA 2-39

STATUS 2-35
ste logical device 2-41

device driver, creating 2-12
device driver, sample
listing 2-42

device drivers, DOS
clockS device 2-42
creating 2-12
device header 2-6
format 2-4
installing 2-13
request header 2-16
sample listing 2-42
status word 2-18
types 2-5

device drivers,
installing 2-13

device field, next 2-6
device header 2-6
device header fields

attribute 2-7
interrupt routine 2-11
name/unit 2-11
next device header 2-6
strategy routine 2-11

device parameters 6-169
device status report 3-10
device type bit 2-8
device, I/O control 6-147
device, read from 6-137
device, write to 6-139
devices, types of 2-5
DGROUP 12-14
D I flag clear
condition 13-46

DI register 6-16,6-17, 13-4
direct console I/O 6-57
direct console input without
echo 6-59

direction flag 13-46
directory en tries

file attribute 5-11
file creation date 5-13
file creation time 5-12
file extension 5-11
file size 5-13
filename 5-10

directory searches 5-11
directory, change 6-121
directory, get current 6-188
disk

current 6-81
error handling 1-5
errors 6-19
free space 6-109
read, absolute 6-24
reset 6-65
select 6-66

X-5

write, absolute 6-25
disk transfer address 7-7,

13-5
disk transfer address,
set 6-82

disk transfer area (DTA) 1-9
diskette

allocating space 5-5
allocation 5-3
defective tracks 5-13
directory 5-10
handling routines 1-8

display instructions 13-51
display output 6-14, 6-53
displaying memory 13-22
DN flag set condition 13-46
done bit 2-18
DOS

area 5-4
available functions 1-8
control blocks 7-3
data area 5-14
disk allocation 5-3
diskette directory 5-10
flags 6-8
function calls 6-34
general registers 6-8
index registers 6-9
initialization 1-7
interrupts 6-13
memory map 7-3
pointer 6-9
program segment 7-6
registers 6-8
segment registers 6-9
structure 1-4
technical information 1-3
work areas 7 -3

DOS components
boot record 1-4
command processor 1-5
DOS program file 1-5
read only memory 1-4

X-6

DOS environment 7-7
DOS function calls, see
function calls also

Get Global Code
Page 6-237

DOS interrupts, see interrupts
function request 6-14

DOS program file 1-5
DOS registers 6-8
DOS registers, see registers,
DOS

drive DEBUG
parameter 13-8

DS register 6-17, 7-9, 13-4,
13-5, 13-25, 13-28, 13-37

jDSALLOCATION linker
parameter 12-14

DTA (disk transfer area) 1-9
Dump command 13-22
duplicate a file handle 6-185
DX register 6-17,13-4

editing keys 13-15
using DEBUG 13-15

EI flag set condition 13-46
end -of-file mark 5-7
Enter command 13-25

display byte
contents 13-25

display flags 13-44
disp1ay registers 13-44

entries, search for 6-70
environment, DOS 7-7
erase control sequences

erase in display 3-13
erase in line 3-13

erase in display control
sequence 3-13

erase in line control
sequence 3-13

erasing control
sequences 3-13

error bit 2-18
error classes 6-44
error codes

interrupt 24H 6-15
error codes, interupt
2FH 6-29

error codes, status
word 2-19

error handler 1-10
error handling

critical 1-5
disk 1-5

error messages, library
manager A-I 0

error return
information 6-38

error trapping 1-10
error, syntax 13-15
errors, disk 6-19
ES register 6-17, 7-9, 13-4,

13-5
EXE file name
extension 13-5, 13-36, 13-57

EXEC, load or execute a
program 6-195

execute a program,
EXEC 6-195

execute instructions 13-49
execute program 13-29
executing commands within
an application 8-3

EXE2BIN
COMMAND 12-28

EXE2BIN 12-28
EXIT, terminate a
process 6-200

extended ASCII codes 6-11
extended error codes 6-42

extended file control
block 7-16

extended function calls 4-3
extended, 59H 6-42
extension

.COM 1-6, 1-7

.EXE 1-6, 1-7, 7-6

.EXE 13-5, 13-36, 13-57

. EXE file name
extension 12-10

.HEX 13-5, 13-36, 13-57

.MAP 12-10

.OBJ 12-9
external commands 1-6
extra segment 6-9

F AT (see File Allocation
Table)

FCB 7-15
FCB (see File Control Block)
FCB function calls 4-3, 4-5
FCB restrictions 4-12
field name 2-11
field, attribute 2-7
file

attribute 5-11
change mode 6-145
close 6-69
create 6-77, 6-122
date created or
updated 7-14

delete 6-74
find first matching
file 6-202

find next matching
file 6-204

hidden 5-10, 6-77, 7-16
move read/write
pointer 6-143

X-7

object 13-3
open 6-67, 6-124, 6-126
rename 6-79
size 6-87
system 7-16

file access,
lock/unlock 6-216

File Allocation Table
(FAT) 5-5

file allocation table, how to
use 5-8

file buffers 6-13
File Control Block
(FCB) 7-12, 13-38

file control block function
calls 4-3

file control block,
extended 7 -16

file handle 4-7, 6-48
file handle, closing 6-136
file handle, duplicate 6-185
file handles 6-48

standard auxiliary
device 4-8

standard error device 4-8
standard input device 4-8
standard output
device 4-8

standard printer
device 4-8

file I/O
ASCII mode 4-11
binary mode 4-10

file management
functions 4-3

file sectors
file size 7-14
file structure, .EXE 10-3
file, allocating space 4-17
file, read from 6-137
file, write to 6-139
filename

in directory 5-11

X-8

in file control block 7-13
filename extension

.COM 1-6, 1-7

.EXE 1-6, 1-7, 7-6

.EXE 13-5, 13-36, 13-57

.EXE file name
extension 12-10

.HEX 13-5, 13-36, 13-57

.MAP 12-10

.OBJ 12-9
in directory 5-11
in file control block 7 -13
separators 6-96
terminators 6-96

filename, parse 6-95
filespec DEBUG
parameter 13-9

Fill command 13-28
find first matching file 6-202
FIND FIRST, find first
matching file 6-202

find next matching file 6-204
FIND NEXT, find next
matching file 6-204

fixups, segment 12-29
flag byte 7-16
flag values 13-43
flags 6-8, 13-4
flags, display 13-44
FL USH function call
parameter 2-36

font files 7-17
files, font 7-17

EGA.CPI 7-17
LCD.CPI 7-17
4201.CPI 7-17

format bit 2-9
FORMAT command 5-10
format, device drivers 2-4
free allocated memory 6-192
function call 31 H 6-26
function calls

allocate memory 6-190

allocation table
information 6-83

allocation table
information for specific
device 6-84

auxiliary input 6-54
auxiliary output 6-55
buffered keyboard
input 6-62

cancel redirection 6-230
change current
directory 6-121

change file mode 6-145
check standard input
status 6-63

clear keyboard buffer and
invoke a keyboard
function 6-64

close a file handle 6-136
close file 6-69
Commit File 6-240
console input without
echo 6-60

create a file 6-122
create file 6-77
create new file 6-215
create new program
segment 6-90

create subdirectory 6-119
create unique file 6-213
ctrl-break check 6-107
current disk 6-81
delete a file from a
directory 6-141

delete file 6-74
direct console I/O 6-57
direct console input
without echo 6-59

disk reset 6-65
display output 6-53
duplicate a file
handle 6-185

FCB function calls 4-5

file size 6-87
find first matching
file 6-202

find next matching
file 6-204

force a duplicate
handle 6-186

free allocated
memory 6-192

get a return code of a
subprocess 6-201

get current
directory 6-188

get date 6-98
get disk free space 6-109
get disk transfer
address 6-103

get DOS version
number 6-104

get extended error 6-210
get machine name 6-219
get or set country
dependent
information 6-112

get printer setup 6-223
get program segment
prefix address 6-232

get redirection list
entry 6-225

get time 6-100
get vector 6-108
get verify setting 6-205
get/set file's date and
time 6-208

handle function calls 4-6
I/O control for
devices 6-147

keyboard input 6-52
load or execute a
program 6-195

lock/unlock file
access 6-216

X-9

modify allocated memory
blocks 6-193

move file read/write
pointer 6-143

open a file 6-124, 6-126
open file 6-67
parse filename 6-95
print string 6-61
printer output 6-56
program terminate 6-51
random block read 6-91
random block write 6-93
random read 6-85
random write 6-86
read from a file or
device 6-137

redirect device 6-227
remove
subdirectory 6-120

rename a file 6-206
rename file 6-79
return country dependent
information 6-110

search for first entry 6-70
search for next entry 6-72
select disk 6-66
sequential read 6-75
sequential write 6-76
set date 6-99
set disk transfer
address 6-82

Set Global Code
Page 6-237

Set Handle Count 6-239
set interrupt vector 6-89
set printer setup 6-221
set relative record
field 6-88

set time 6-101
set/ reset verify
switch 6-102

terminate a process 6-200

X-IO

terminate process and
remain resident 6-105

write to a file or
device 6-139

function calls, INT21
function codes, interrupt
2FH 6-29

function request
interrupt 6-14

functions, available
DOS 1-8

functions, built-in 1-4
functions, device
drivers 2-20

F3 key 13-34

general registers 6-8
generic IOCTL request
function call
parameter 2-40

get
country dependent
information 6-112

current directory 6-188
date 6-98
disk free space 6-109
disk transfer
address 6-103

DOS version
number 6-104

get machine name 6-219
printer setup 6-223
program segment prefix
address 6-232

redirection list
entry 6-225

time 6-100
vector 6-108
verify setting 6-205

get a file's date and
time 6-208

get device parameters 6-169
get extended error, function
call 6-210

get logical device function call
parameter 2-41

get logical drive 6-182
get or set country (DOS 3.00
to 3.30) 6-112

Go command 13-29, 13-56
group 12-7

handle
duplicate 6-185
file 6-48
force a duplicate 6-186
function calls 4-3
restrictions on usage 4-14
standard 4-8

handle function calls 4-6
handle, file 6-48
handle, force a
duplicate 6-186

header 10-3
HEX file name
extension 13-5, 13-36, 13-57

Hexarithmetic
command 13-32

hidden files 5-10,6-77,7-16
HIGH linker parameter 12-6
high memory 1-6, 12-14,

13-5
high/low loader switch 10-5
horizontal position 3-9

I/O control for devices 6-147
IBMBIO.COM 1-7,5-13
IBMDOS.COM 1-7,5-13
index register 6-9
IN IT function call
parameter 2-21.

initialization portIon of
command processor 1-6

initializing DOS 1-7
Input command 13-33
input files 12-4

linker 12-4
INPUT function call
parameter 2-32

input, auxiliary 6-?4
installing block deVIces 2-14
installing character
devices 2-14

installing device drivers 2-13
instruction codes,
8088 13-30

instruction pointer 6-9
Instruction Pointer (IP) 13-4
instructions

display 13-51
execute 13-49
unassemble 13-51
variable length 13-51

INT 24H 1-10
interface module,
IBMBIO.COM 1-4

internal command
processors 1-6

interrupt codes 13-30
interrupt flag 13-46
interrupt routines 2-11
interrupt vectors 1-7
interrupt, set 6-89
interrupts, DOS

absolute disk read 6-24

X-l1

absolute disk write 6-25
critical error handler
vector 6-16

ctrl-break exit
address 6-14

function request 6-14
multiplex 6-28
program terminate 6-13
terminate address 6-14
terminate but stay
residen t 6-26

INT21, function calls 6-34
invoke keyboard
function 6-64

invoking DOS
functions 6-49

IOCTL bit 2-8
IOCTLfunction call
44H 6-147

generic IOCTL
request 6-166

format and verify track
on a logical
device 6-166

get device
parameters 6-166

read track on a logical
device 6-166

set device
parameters 6-166

verify track on a logical
device 6-166

write track on logical
device 6-166

IP (Instruction Pointer) 13-4
IP register 6-17 7-9 13-29

13-43 '"
IRET 6-14
Irrecoverable errors, library
manager A-I 0

X-12

keyboard function . ' Invoke 6-64
keyboard input 6-52
keyboard input,
buffered 6-62

keyboard reassignment 3-17
keyboard status, check 6-63
keys, control 13-15
keys, DOS editing 13-15
keys, reassign 3-17

library manager A-3
command line
format A-3

cross-reference list A-9
error messages A-I0
operators A-6
response file A-8

library manager command
line format A-3

library manager
cross-reference list A-9

library manager error
messages A-I 0

library manager
operators A-6

library manager response
file A-8

LINE 12-15
linefeed 6-14
LINK

See command prompts
linker 12-8
linker command line

command line 12-18
linker 12-18

linker files
automatic response 12-4,

12-21
input 12-4
library 12-4, 12-12
listing 12-4, 12-10
object 12-4, 12-9
output 12-4
run 12-4, 12-10

linker parameters 12-14
/DSALLOCATION 12-14
/HIGH 12-15
/LINE 12-15
/MAP 12-15
/PAUSE 12-15
/STACK 12-16

linker prompts 12-9
list DEBUG parameter 13-9
load a program,
EXEC 6-195

Load command 13-34, 13-56
load module 12-16, 12-26
loading . EXE files 10-3
loading programs 12-28
locate next cluster 5-7, 5-8
lock file access 6-216
10 gical record size 7 -14
logical sector numbers 6-24

/MAP linker
parameter 12-15

MAP extension 12-10
MEDIA CHECK function
call parameter 2-23

media descriptor byte 2-26
memory

allocating 6-190
freeing allocated 6-192

high 1-6, 12-14, 12-15,
13-5

image file 2-4
low 12-15
map, DOS 7-3
modify blocks 6-193

memory map
messages, linker 12-27
mode of operation control
sequences

reset mode 3-16
set graphics
rendition 3-15

set mode 3-16
modify allocated memory
blocks 6-193

MOV instruction 5-8
Move command 13-37
move file read/write
pointer 6-143

mulitplex interrupt 6-28

NA flag clear
condition 13-46

Name command 13-35,
13-38

name/unit field 2-11
NC flag set condition 13-46
network access rights 6-47
new file, creating 6-215
next device 2-6
next en try, search 6-72
NG flag set condition 13-46
nondestructive input function
call parameter 2-34

NUL bit 2-10
NV flag clear
condition 13-46

X-13

NZ flag clear
condition 13-46

OBJ extension 12-9
object files 13-3 .
object modules 12-9

in response to linker
prompt 12-9

open a file using
handles 6-124, 6-126

open file using FCBs 6-67
OPEN function call
parameter 2-3 7

open mode 6-128
output

auxiliary 6-55
display 6-53
printer 6-56
routines 1-8

Output command 13-40
output files 12-5

linker 12-5
OUTPUT function call
parameter 2-32

output, display 6-14
OV flag set condition 13-46
overflow flag 13-46

pagesize A -3
paragraph boundary 12-6
parameter block 6-169

DeviceAttributes
field 6-169

X-14

DeviceBPB field 6-169
DeviceType field 6-169
MediaType field 6-169
NumberOfCylinders
field 6-169

SpecialFunctions
field 6-169

TrackLayout field 6-169
parameters 12-14
parameters, DEBUG 13-6

DEBUG 13-6
parameters, linker 12-14
parity flag 13-46
parse filename 6-95
PAUSE parameter 12-15
PC register 13-43
PE flag set condition 13-46
PL flag clear
condition 13-46

PO flag clear
condition 13-46

pointers 6-9
portaddress DEBUG
parameter 13-10

predefined handles 6-48
print string 6-61
printer output 6-56
printer output routines 1-8
printer setup 6-221, 6-223
Proceed command 13-41
program execution,
stop 13-29

program segment
create new 6-90
DOS 7-6

Program Segment Prefix 1-9,
7-9, 7-10, 13-5

program terminate 6-51
program terminate
interrupt 6-13

public symbols 12-25

Quit command 13-42
quotation marks 13-13

random block read 6-91
random block write 6-93
random read 6-85
random record field ,
set 6-88

random write 6-86
range DEBUG
parameter 13-11

read from a file or
device 6-137

read only 1-4
r~ad only memory (ROM)
Interface 1-4

read track on a logical
device 6-178

read, random 6-85
read, random block 6-91
read, sequential 6-75
reassign keys 3-17
record number, relative 7 -14
record size, logical 7-14
recoverable errors, library
manager A -13

redirect device 6-227
redirection list entry 6-225
Register command 13-43
registername DEBUG
parameter 13-12

registernames, valid 13-43
registers, display 13-44
registers, DOS

AH 6-8
AL 6-8

AX 6-8
base 6-8
base pointer 6-9
HH 6-8
BL 6-8
BX 6-8
CH 6-8
CL 6-8
code segment 6-9
count 6-8
CX 6-8
data 6-8
data segment 6-9
destination index 6-9
DH 6-8
DL 6-8
DX 6-8
extra segment 6-9
general registers 6-8
index 6-9
instruction pointer 6-9
pointers 6-9
segment register 6-9
stack index 6-9
stack pointer 6-9
stack segment 6-9

relative cluster number 5-13
relative record number 7 -14
relative sector number 13-12
relative zero 12-25
relocatable loader 12-4
relocation 10-5
removable media bit 2-9
removable media function call
parameter 2-39

remove subdirectory 6-120
rename a file 6-206
RENAME command 13-57
rename file 6-79
replace byte contents 13-25
request header 2-16

command code 2-17
status word 2-18

X-15

unit code 2-16
reset mode, control
sequence 3-16

reset, disk 6-65
reset, system 1-7
resident portion of command
processor 1-5

response file, library
manager A-8

restore cursor position 3-12
restriction on FCB
usage 4-12

restriction on handle
usage 4-14

return country dependent
information 6-110

ROM (read only
memory) 1-4

ROM BIOS interface
module 1-4

ROM BIOS routine 6-54
routines

console/keyboard 1-8
device 1-4
diskette handling 1-8
keyboard input 1-8
output 1-8
printer output 1-8
ROM BIOS 6-54
time function 1-8

routines,
strategy/interrupt 2-11

run file 12-10

sample device driver
listing 2-42

save area, parameter 7-8
save cursor position 3-12
saving diskette space 12-28

X-16

screen cursor control 3-6
Search command 13-48
search for entries 6-70
search, next entry 6-72
sector DEBUG
parameter 13-12

sector number,
relative 13-12

sector numbers, logical 6-24
sector, absolute 13-54
sectors 13-12
segment 12-6, 12-9
segment address 7-7
SEGMENT command 12-16
segment fixups 12-29
segment register 6-9
segment registers 13-4, 13-52
segment, create new
program 6-90

segment, default 13-7
segment, start 10-5
segments, class 12-7
select disk 6-66
separators, filename 6-96
sequential read 6-75
sequential write 6-76
set

country dependent
information 6-112

date 6-99
Global Code Page 6-237
Handle count 6-239
interrupt 6-89
printer setup 6-221
random record field 6-88
time 6-101
verify switch 6-102

set a file's date and
time 6-208

set condition 13-45
set device parameters 6-169
set disk transfer
address 6-82

set graphics rendition, control
sequence 3-15

set logical device function call
parameter 2-41

set logical drive 6-183
set mode, control
sequence 3-16

setup, printer 6-221, 6-223
sharing modes 6-131
SI register 6-17, 13-4
sign flag 13-46
single-drive system 6-66
size, file 6-87, 7-14
source area 13-37
SP (Stack Pointer) 13-4
SP register 7-9
space allocation 5-3
specific device allocation table
information 6-84

SS register 7-9, 13-4
stack allocation
statement 12-16

stack index 6-9
/ST ACK linker parameter
stack pointer 6-9
Stack Pointer (SP) 13-4
stack segment 6-9
stack space 1-7
stack, user 6-17
standard file handles 4-8
standard input bit 2-10
standard output bit 2-10
start segment 10-5
starting cluster 5-13
starting DEBUG 13-4
starting the linker 12-17
static environment 7-7
STATUS function call
parameter 2-35

status word 2-18
status word bits

busy 2-18
done 2-18

error 2-18
error code 2-19

stop pro gram
execution 13-29

strategy routines 2-11
string DEBUG
parameter 13-13

strings, ASCIIZ 6-46
structure, DOS 1-4
subdirectory, create 6-119
subdirectory, remove 6-120
switch, high/low loader 10-5
symbols 12-21

in automatic response
file 12-21

symbols, global and
public 12-15

syntax error 13-15
system file 7 -16
system prompt 1-6
system reset 1-7

technical information,
DOS 1-3

terminate a process 6-200
terminate address
interrupt 6-14

terminate but stay
resident 1-5, 6-105

terminate but stay resident
interrupt 6-26

terminate process and stay
resident 6-105

terminate program 6-51
terminate program
interrupt 6-14

terminators, filename 6-96
time

get 6-100

X-17

set 6-101
time function routines 1-8
Trace command 13-49

13-56 '
track/sector, calculate
absolute 5-13

tracks, defective 5-13
transfer address, disk 7 -7
transient portion 1-6
types of devices

block 2-5
character 2-5

Unassemble command 13-51
unassemble
instructions 13-51

unique file, create 6-213
unit code 2-16
unlock file access 6-216
unprintable characters 13-22
UP flag clear
condition 13-46

user stack 6-17
using DOS functions 6-49

value 13-14
variable length
instructions 13-51

verify switch 6-102
vertical position 3-9

X-18

WAIT, get a return code of a
subprocess 6-201

return code of a
subprocess 6-201

work areas 7-3
wrap around 2-33
Write command 13-54
write to a file or
device 6-139

write track on a logical
device 6-178

write, random 6-86
write, random block 6-93
write, sequential 6-76

zero flag 13-46
ZR flag set condition 13-46

I Numerics I

2FH multiplex interrupt
error codes 6-29
function codes 6-29

5F02H (DOS 3.10 to
3.30) 6-225

© IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation
P.O. Box 1328-W
Boca Raton,
Florida 33429-1328

Printed in the
United States of America

80X0945

--------- -------- - ---- - - ----------_ .-

