
PC DOS 7 Technical Update

Document Number GG24-4459-00

February 1995

International Technical Support Organization
Boca Raton Center

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xiii.

First Edition (February 1995)

This edition applies to PC DOS Version 7.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 91J Building 235-2 Internal Zip 4423
901 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

IBM PC DOS 7 has been designed for all types of users who need an efficient
single tasking personal computer operating system. It incorporates many
new utilities such as anti-virus software, comprehensive backup programs,
PCMCIA support and DOS Pen extensions. Also incorporated are new
features to enhance the available memory and disk space.

This book is a technical reference, upgraded from IBM DOS 5.02 and written
for DOS programmers, who develop applications for IBM Personal
Computers or compatible systems.

The program developer should be competent on the IBM Personal Computer
and/or the Personal System/2 and should be familiar with DOS and at least
one personal computer programming language.

(381 pages)

 Copyright IBM Corp. 1995 iii

iv PC DOS 7

Contents

Abstract . i i i

Special Notices . xii i

Preface . xv
How This Document is Organized . xv
Related Publications . xvi
International Technical Support Organization Publications xvi

Chapter 1. Introduction . 1
What′s New for PC DOS 7 . 1

New, Changed or Removed PC DOS Commands and Device Drivers . . 2
New, Changed or Removed Optional Tools 4
New, Changed or Removed .INI Files . 5
New, Changed or Removed Keyboard Layouts and Code Pages 5

Minimum Hardware Configuration . 5

Chapter 2. Accessing Disks . 7
The Disk Format . 7

The Boot Record . 7
The File Allocation Table (FAT) . 10
The Disk Directory . 11
The Data Area . 12

Accessing the Disk . 12
Requesting Drive and Disk Information . 12
Reading and Writing Data Directly to the Disk 13

Chapter 3. Accessing Files with File Handles 15
Filenames . 15

File Handles . 16
Special File Handles . 16

Reading and Writing Data to a File . 17
Requesting and Specifying File Attributes 17
Accessing Subdirectories . 17
Accessing Directories . 20
Finding Files in Directories . 21
Requesting and Specifying National Language Support (NLS) 21
Controlling Network Operations . 21

Chapter 4. Accessing Files Using File Control Blocks 23
The File Control Block (FCB) . 23

 Copyright IBM Corp. 1995 v

The Extended FCB . 26
The Disk Transfer Area (DTA) . 26

Accessing Files . 27
Accessing Sequential Records . 28
Accessing Random Records . 28
Finding Files in Directories . 28

Chapter 5. Managing Device I/O . 29
Managing Display I/O . 29
Managing Keyboard I/O . 29
Managing Miscellaneous I/O . 30
Managing File System Activities . 30
Accessing the System Device Drivers′ Control Channel 31

Reading and Writing Data in Binary and ASCII Modes 32

Chapter 6. Controlling Processes . 33
Allocating Memory . 33

PC DOS 7 Memory Management . 33
The PC DOS 7 Memory Map . 34

Identifying a Program at Load Time . 36
The Program Segment . 36

Loading and Executing Overlays . 39
The Parameter Block . 39

Terminating a Program/Subprogram . 40
Loading an Overlay without Executing It . 41
Calling a Command Processor . 41
Responding to Errors . 42
Responding to a Control-Break Action . 42
Requesting and Specifying the System Date and Time 44
Requesting and Specifying the Interrupt Vectors 44

Chapter 7. Debugging a Program . 45
The DEBUG Utility . 45
Starting the DEBUG.COM Program . 45
Entering Commands at the DEBUG Prompt 46

DEBUG Command Summary . 47
The DEBUG Work Space . 48
A (Assemble) Command . 49
C (Compare) Command . 51
D (Dump) Command . 52
E (Enter) Command . 55
F (Fill) Command . 57
G (Go) Command . 58
H (Hexarithmetic) Command . 60

vi PC DOS 7

I (Input) Command . 61
L (Load) Command . 61
M (Move) Command . 64
N (Name) Command . 65
O (Output) Command . 66
P (Proceed) Command . 67
Q (Quit) Command . 68
R (Register) Command . 68
S (Search) Command . 71
T (Trace) Command . 72
U (Unassemble) Command . 74
W (Write) Command . 76
XA (EMS Allocate) Command . 79
XD (EMS Deallocate) Command . 80
XM (EMS Map) Command . 80
XS (EMS Status) Command . 81
DEBUG Error Messages . 82

Chapter 8. Writing an Installable Device Driver 85
Types of Device Drivers . 85

Character Device Drivers . 85
Block Device Drivers . 85

How PC DOS 7 Installs Device Drivers . 85
The Basic Parts of a Device Driver . 87

The Device Driver Header . 87
The Strategy Routine . 90
The Interrupt Routine . 90

How PC DOS 7 Passes a Request . 90
Responding to Requests . 92

Initialization Request . 93
Media Check Request . 94
Build BPB Request . 97
Input and Output Requests . 100
Nondestructive Input No Wait Request 101
Character Input and Output Status Requests 101
Character Input and Output Flush Requests 102
Open and Close Requests . 102
Removable Media Request . 103
Output Until Busy . 104
Generic IOCTL Request . 104
Get Logical Device Request . 104
Set Logical Device Request . 105
IOCtl Query . 105

Contents vii

Appendix A. PC DOS 7 Interrupts . 107
Interrupt 20H Program Terminate . 107
Interrupt 21H Function Request . 107
Interrupt 22H Terminate Address . 107
Interrupt 23H Ctrl-Break Exit Address . 108
Interrupt 24H Critical Error Handler Vector 108
Interrupt 25H/26H Absolute Disk Read/Write 112
Interrupt 27H Terminate but Stay Resident 114
Interrupt 28H− 2 EH Reserved for PC DOS 7 115
Interrupt 2FH Multiplex Interrupt . 115

DOSDOCK API . 118
APM Error Return Codes and Descriptions 129

Interrupt 30H-3FH Reserved for PC DOS 7 132

Appendix B. PC DOS 7 Function Calls . 133
Using PC DOS 7 Function Calls . 135

Program Code Fragments . 136
.COM Programs . 136

PC DOS 7 Registers . 136
Responding to Errors . 138

Extended Error Codes . 138
00H — Program Terminate . 142
01H — Console Input with Echo . 143
02H — Display Output . 144
03H — Auxiliary Input . 145
04H — Auxiliary Output . 146
05H — Printer Output . 147
06H — Direct Console I/O . 148
07H — Direct Console Input Without Echo 149
08H — Console Input Without Echo . 150
09H — Display String . 151
0AH — Buffered Keyboard Input . 152
0BH — Check Standard Input Status . 153
0CH — Clear Keyboard Buffer and Invoke a Keyboard Function 154
0DH — Disk Reset . 155
0EH — Select Disk . 156
0FH — Open File . 157
10H — Close File . 158
11H — Search for First Entry . 159
12H — Search for Next Entry . 161
13H — Delete File . 162
14H — Sequential Read . 163
15H — Sequential Write . 164
16H — Create File . 165

viii PC DOS 7

17H — Rename File . 166
19H — Current Disk . 167
1AH — Set Disk Transfer Address . 168
1BH — Allocation Table Information . 169
1CH — Allocation Table Information for Specific Device 170
1FH — Get Default Drive Parameter Block 171
21H — Random Read . 172
22H — Random Write . 173
23H — File Size . 175
24H — Set Relative Record Field . 176
25H — Set Interrupt Vector . 177
26H — Create New Program Segment . 178
27H — Random Block Read . 179
28H — Random Block Write . 181
29H — Parse Filename . 183
2AH — Get Date . 185
2BH — Set Date . 186
2CH — Get Time . 187
2DH — Set Time . 188
2EH — Set/Reset Verify Switch . 189
2FH — Get Disk Transfer Address (DTA) 190
30H — Get DOS Version Number . 191
31H — Terminate Process and Remain Resident 192
32H — Get Drive Parameter Block . 193
33H — Get or Set System Value . 195
34H — Get InDOS Flag Address . 197
35H — Get Interrupt Vector . 198
36H — Get Disk Free Space . 199
38H — Get or Set Country Dependent Information 201
39H — Create Subdirectory (MKDIR) . 204
3AH — Remove Subdirectory (RMDIR) . 205
3BH — Change the Current Directory (CHDIR) 206
3CH — Create a File . 207
3DH — Open a File . 208
3EH — Close a File Handle . 214
3FH — Read from a File or Device . 215
40H — Write to a File or Device . 216
41H — Delete a File from a Specified Directory (UNLINK) 218
42H — Move File Read/Write Pointer (LSEEK) 219
43H — Change File Mode (CHMOD) . 221
44H — I/O Control for Devices . 223
45H — Duplicate a File Handle (DUP) . 224
46H — Force a Duplicate of a Handle (FORCDUP) 225
47H — Get Current Directory . 226

Contents ix

48H — Allocate Memory . 227
49H — Free Allocated Memory . 228
4AH — Modify Allocated Memory Blocks (SETBLOCK) 229
4BH — Load or Execute a Program (EXEC) 230
4CH — Terminate a Process (EXIT) . 233
4DH — Get Return Code of a Subprocess (WAIT) 234
4EH — Find First Matching File (FIND FIRST) 235
4FH — Find Next Matching File (FIND NEXT) 237
50H — Set Program Segment Prefix Address 238
51H — Get Program Segment Prefix Address 239
54H — Get Verify Setting . 240
56H — Rename a File . 241
57H — Get/Set File′s Date and Time . 242
5800H — Get Allocation Strategy . 243
5801H — Set Allocation Strategy . 245
5802H — Get Upper-Memory Link . 246
5803H — Set Upper-Memory Link . 247
59H — Get Extended Error . 248
5AH — Create Unique File . 250
5BH — Create New File . 252
5CH — Lock/Unlock File Access . 253
5D0AH — Set Extended Error . 255
5E00H — Get Machine Name . 256
5E02H — Set Printer Setup . 257
5E03H — Get Printer Setup . 258
5F02H — Get Redirection List Entry . 259
5F03H — Redirect Device . 261
5F04H — Cancel Redirection . 263
62H — Get Program Segment Prefix Address 264
65H — Get Extended Country Information 265
66H — Get/Set Global Code Page . 268
67H — Set Handle Count . 269
68H — Commit File . 270
6CH — Extended Open/Create . 271

Appendix C. I/O Control for Devices (IOCtl) 273
44H — I/O Control for Devices (IOCtl) . 274

Appendix D. Expanded Memory Support 301
Function 1 — Get Status . 303
Function 2 — Get Page Frame Address . 304
Function 3 — Get Unallocated Page Count 305
Function 4 — Allocate Pages . 306
Function 5 — Map Handle Page . 307

x PC DOS 7

Function 6 — Deallocate Pages . 308
Function 7 — Get EMM Version . 309
Detecting the Expanded Memory Manager 310

Appendix E. DOS Protected Mode Services 313
Interrupt 2FH Function AX=43E0H DPMS Installation Check 314
Interrupt 31H Function AX=0100H Call Proteted-Mode Procedure 314
Interrupt 31H Function AX=0101H Call Real-Mode Procedure (RETF) . . 315
Interrupt 31H Function AX=0102H Call Real-Mode Procedure (IRET) . . 315
Interrupt 31H Function AX=0103H Call Real-Mode Interrupt Handler . . 316
Interrupt 31H Function AX=0200H Allocate Descriptors 316
Interrupt 31H Function AX=0201H Free a Descriptor 317
Interrupt 31H Function AX=0202H Create Alias Descriptor 317
Interrupt 31H Function AX=0203H Build Alias to Real-Mode Segment . . 318
Interrupt 31H Function AX=0204H Set Descriptor Base 318
Interrupt 31H Function AX=0205H Set Descriptor Limit 319
Interrupt 31H Function AX=0206H Set Descriptor Type/Attribute 319
Interrupt 31H Function AX=0207H Get Descriptor Base 319
Interrupt 31H Function AX=0300H Get Size of Largest Free Block of

Memory . 320
Interrupt 31H Function AX=0301H Allocate Block of Extended Memory . 320
Interrupt 31H Function AX=0302H Free Block of Extended Memory . . . 320
Interrupt 31H Function AX=0303H Map Linear Memory 321
Interrupt 31H Function AX=0304H Unmap Linear Memory 321
Interrupt 31H Function AX=0400H Relocate Segment to Extended

Memory . 322
Interrupt 31H DPMS Error Return Codes 323
Callup/Down Register Structure . 323

Appendix F. Task-swapping . 325
Client Initialization . 327
The Client Int 2FH Handler . 327
Responding to a Pending Session Switch 328
Responding to the Pending Creation of a New Session 329
Client Termination . 330
The Switch_Call_Back_Info Data Structure 330
The API_Info_Struc Data Structure . 331
The Win386_Startup_Info_Struc Data Structure 332
The Instance_Item_Struc Data Structure 333
The Swapper_Ver_Structure . 333

Function Descriptions . 334
Task-swapper Int 2FH Handler Functions 335
Client Int 2FH Handler Functions . 335
Build Call-out Chain . 336

Contents xi

Identify Instance Data . 338
Task-swapper Call-In Functions . 339
Get Version . 340
Test Memory Region . 341
Hook Call-out . 342
Unhook Call-out . 343
Query API Support . 344
Task-swapper Call-in Functions . 345
Create Session . 352

Appendix G. PC DOS 7 Viewer . 355
Invoking the Viewer . 355
Uses of Online Documents . 355
Creating Online Documents . 356
IBM OS/2 Functions and Tags not Supported by DOS 358

Appendix H. Miscellaneous Control Blocks 361
DPB - Disk Parameter Block Definition 361
BPB - BIOS Parameter Block Definition 362
CDS - Current Directory Structure . 363
SFT - System File Table . 364
Buffer Header - Disk I/O Buffer Header 367
Storage Header - Memory arena structure 369

Index . 371

xii PC DOS 7

Special Notices

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Stamford,
CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

AT IBM
OS/2 PC DOS 7
PC/XT PCjr
Personal Computer AT Personal Computer XT
Personal System/1 Personal System/2
PS/ValuePoint PS/1
PS/2 ThinkPad, 750P
XT

Lotus Lotus Corporation

 Copyright IBM Corp. 1995 xiii

Other trademarks are trademarks of their respective companies.

Diskette Contents

At the back of this publication is a diskette which contains the online
version of this book. The online book may be viewed with either the PC
DOS 7 VIEW or the OS/2 VIEW program.

MS-DOS, Microsoft Windows Microsoft Corporation
Intel 8088, Intel 8086, Intel 80286, Intel
80386

Intel Corporation

Stacker Stac Corporation
Central Point Backup Central Point Corporation

xiv PC DOS 7

Preface

This book is written for programmers who develop applications for IBM
Personal Computers and PC DOS 7.

The program developer should be competent on the IBM Personal Computer
and/or the Personal System/2 and should be familiar with DOS and at least
one personal computer programming language.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Introduction” provides details of the book and its usage.

• Chapter 2, “Accessing Disks” provides the necessary information and
system architecture to access disks.

• Chapter 3, “Accessing Files with File Handles” gives information on
reading, writing and managing files using file handles.

• Chapter 4, “Accessing Files Using File Control Blocks” gives information
on reading, writing and managing files using file control blocks.

• Chapter 5, “Managing Device I/O” provides information on handling
device input and output operations, for displays, keyboard and other
devices.

• Chapter 6, “Controlling Processes” details the methods used to manage
memory and control programs.

• Chapter 7, “Debugging a Program” describes the DEBUG utility program.

• Chapter 8, “Writing an Installable Device Driver” describes the
information needed to write device drivers.

• Appendix A, “PC DOS 7 Interrupts” provides information to support the
use of the PC DOS 7 interrupts.

• Appendix B, “PC DOS 7 Function Calls” details the INT 21H DOS function
calls.

• Appendix C, “I/O Control for Devices (IOCtl)” describes how to set or get
device information associated with open device handles.

• Appendix D, “Expanded Memory Support” shows the LIM functions
supported by PC DOS 7.

• Appendix E, “DOS Protected Mode Services” describes the supported
functions supported by PC DOS 7 DPMS driver.

 Copyright IBM Corp. 1995 xv

• Appendix F, “Task-swapping” details the functions found within the
user-shell.

• Appendix G, “PC DOS 7 Viewer” overviews the creation of online
viewable documents.

• Appendix H, “Miscellaneous Control Blocks” show some additional
control blocks.

Related Publications
The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this document.

• PC DOS 7 Command Reference and Error Messages, S83G-9309-00

• PC DOS 7 Keyboard and Codepage Reference, S83G-9310-00

• PC DOS 7 REXX User′s Guide and Reference, S83g-9228-01

• CID Enablement of DOS Local Area Networks, SC31-6833

• OS/2 Warp IPF Programming Guide, G25H-7110-00

• Everyday DOS, ISBN 1-56529-363-0

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications
with a brief description of each may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

To get listings of ITSO technical bulletins (redbooks) online, VNET users may
type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

xvi PC DOS 7

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755
or by faxing 1-800-284-4721. Visa and Master Cards are accepted.
Outside the USA customers should contact their IBM branch office.

Customers may order hardcopy redbooks individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order redbooks in online format on
CD-ROM collections, which contain the redbooks for multiple products.

Preface xvii

xviii PC DOS 7

Chapter 1. Introduction

This chapter provides information about this book, including the following:

• Organization of the book for quick information retrieval
• New and enhanced PC DOS 7 services
• Minimum hardware configuration.

This book is organized by logical application program development stages
necessary to develop an application program on PC DOS 7.

In addition, the book tells how to make best use of the operating system by
writing your own device driver or by using the system extensions.

Each chapter describes a particular subject. You do not need to read the
entire book to create programs or solve problems. Key topics also can be
found by referring to the index and the table of contents.

The appendixes contain reference information for quick retrieval. They
contain the entire numerical list of PC DOS 7 services, including interrupts,
function calls and device driver services.

What ′s New for PC DOS 7
PC DOS 7 includes the following new features as well as enhancements to
features in prior versions of PC DOS:

• The PC DOS Setup program includes enhancements that allow you to:

− Use a mouse device during installation.

− Use the DOSKey program immediately after installing DOS, because
the DOSKEY command-line statement is now automatically added to
your AUTOEXEC.BAT file.

− View or edit the changes Setup made to your CONFIG.SYS and
AUTOEXEC.BAT files prior to system restart. For example, if you use
another command retrieval program other than DOSKEY, you can
edit the AUTOEXEC.BAT file and delete this command-line statement
before the Setup changes become effective.

− Understand what changes were made to these system files by
reviewing comment lines added by Setup. Comment lines describe
what was added in these files or what was replaced, updated, or
deleted if upgrading your version of DOS.

 Copyright IBM Corp. 1995 1

See the installation information for a complete list of Setup
enhancements.

• RAMBoost more effectively handles multiple configurations now. The
most common questions asked about RAMBoost and RAMBoost Setup
are now included in a tips and techniques section.

• The E Editor has the following enhancements for PC DOS 7: menu
selection, mouse awareness, expanded sort capabilities, deleted record
recovery, ability to change E Editor default settings (for color, tab and
margin settings, window mode, and a new browse mode for the online F1
help.

• A new program, File Update, watches the files on up to two different two
computers to help keep files synchronized (for example, when you work
on one computer at home and one at work).

• A new documentation viewer, PC DOS Viewer, is used to read or search
online books for PC DOS information. Three online books are included
with PC DOS: a Command Reference, a REXX Reference, and Error
Messages, which includes the more common error messages.

This viewer also allows quick access to help for DOS commands, DOS
device drivers, and DOS .INI files information. In addition you can get
quick help for REXX commands or DOS error messages.

• The enhanced Advanced Power Management driver (POWER.EXE) has
added power management events.

• Support is provided for certain docking device drivers. After typing either
the DOSDOCK command for DOS or the DDPOPUP command for
Windows, these drivers are dynamically loaded when PC DOS senses the
appropriate docking devices.

• The amount of conventional memory required by PC DOS has been
reduced, allowing more memory for your applications.

• The QCONFIG command now identifies and displays additional machines,
adapters and planars.

• The BACKUP command, formally included in DOS versions prior to PC
DOS 6, has been returned as a command provided with PC DOS 7.

New, Changed or Removed PC DOS Commands and Device Drivers
The following commands and device drivers are new for PC DOS 7:

ACALC DPMS.EXE REMOVDRV STACHIGH.SYS
BROWSE DYNALOAD REPORT STACKER
CHECK FILEUP RESIZE STACWIN
CNFIGNAM HCONVERT REXX SYSINFO

2 PC DOS 7

The following commands and device drivers are enhanced for PC DOS 7:

For further information about new or enhanced DOS commands and device
drivers, type help followed by the name of the command or device driver.
Note: You must add the extension of the device driver file. For example, you
would type HELP ANSI.SYS to get online help about the ANSI.SYS device
driver.

The following commands and device drivers are no longer provided with PC
DOS 7:

• SuperStor/DS compression commands replaced by Stacker commands.

• PCMCIA Support commands replaced because of the new DOS and
Windows full-screen installation interfaces.

• Commands no longer provided by PC DOS.

• Infrequently used commands that are not being provided as part of PC
DOS 7:

− If you have a previous version of DOS installed and are upgrading
your system, these commands will not be removed during
installation.

− If you still want to use these commands and have no diskettes from
previous versions of DOS, these commands will be provided through
electronic delivery, such as bulletin board services.

If you have a licensed copy of PC DOS 6.3, you are authorized to
copy these commands to any system with a licensed copy PC DOS 7.

CONFIG PASSWD SCREATE.SYS TUNER
CRC PCM SDEFRAG UNCOMP
CREATE PCMDINST SDIR UNPACK2
DCONVERT PCMFDISK SETUP (Stacker) VIEW
DDPOPUP PCMRMAN SGROUP XDF
DOSDATA PCMSETUP SSETUP XDFCOPY
DOSDOCK PCMWIN STAC

ANSI.SYS DOSKEY HIMEM.SYS RAMBOOST
BUFFERS E (E Editor) INTERLNK RAMBOOST.EXE
DEFRAG EMM386.EXE MSCDEX RAMDRIVE.SYS
DISKCOPY FIND POWER RAMSETUP
DISPLAY.SYS HELP QCONFIG SETUP

SMARTDRV.EXE

Chapter 1. Introduction 3

SuperStor/DS
Commands No
Longer Provided

PCMCIA
Commands No
Longer Provided

Removed
Commands No
Longer Provided

Files Not Provided

DBLSPACE.SYS PCMFDD.EXE EXPAND 4201.CPI
MOUNT PCMINFO MEUTOINI 4208.CPI
RTOOL PCMMTD RECOVER COMP.COM
SSTOR PCMMTD.EXE EDLIN.EXE
SSUNCOMP WPCMINFO.CPL EPS.CPI
SSUTIL EXE2BIN.EXE
UDEOFF FASTOPEN.EXE
UDEON GRAPHICS.COM
UNMOUNT GRAPHICS.PRO

PPDS.CPI
PRINTER.SYS

New, Changed or Removed Optional Tools
The new features of, and enhancements to, the optional tools provided with
PC DOS 7 include:

• REXX Language Support has been added as the PC DOS programming
language tool of choice. REXX for DOS includes utilities and REXX
commands that have been designed to work specifically with PC DOS.

• Stacker Compression is now the optional tool that provides data
compression for your system. Stacker Compression allows you to:

− Convert any existing SuperStor/DS, DoubleSpace, or DriveSpace
compression during Stacker Setup.

− Convert any standalone version of Stacker Compression you might
already have installed.

− Make menu selections using either the Stacker DOS Toolbox or the
Stacker Windows Toolbox.

− Use data on compressed diskettes even on a computer that does not
have Stacker installed.

− Guard your data because every time you start up your system
Stacker runs AutoProtect to make sure your data is in good condition.

• PCMCIA Support now provides easier Setup procedures because of the
new DOS and Windows full-screen interfaces included with PC DOS 7.
The PCM.INI file is updated for you as you use the PCMCIA installation
program to make selections for the type of PCMCIA support you want.

• Central Point Backup has been enhanced.

• Anti-virus protection provided with PC DOS (AntiVirus or IBM AntiVirus
for Windows), has been updated to recognize and fix more viruses. If
you are using IBM AntiVirus Services, a full-service, anti-virus protection

4 PC DOS 7

offering provided separately by IBM or if you have previously purchased
the IBM AntiVirus/DOS product separately, you do not need to install the
IBM AntiVirus/DOS optional tool provided with PC DOS. For more
information about IBM AntiVirus Services, refer to the coupon provided in
the PC DOS 7 coupon booklet.

• IBM DOS Shell is now named the PC DOS Shell.

New, Changed or Removed .INI Files
The following .INI files have been added, changed or are no longer required
for PC DOS 7:

New Changed Removed

E.INI RAMBOOST.INI ADDSTOR.INI
PCM.INI DBLSPACE.INI
RAMSETUP.INI
STACKER.INI

New, Changed or Removed Keyboard Layouts and Code Pages
The following keyboards and code pages have been added or changed for
PC DOS 7:

452 keyboard
453 keyboard (provides the DIN 2137 German keyboard layout)
865 code page
912 code page
915 code page

 The United Kingdom keyboard 168 has been removed.

Type

help keyb

to see a table that summarizes all the keyboard-layout and country
code-page information.

Minimum Hardware Configuration
PC DOS 7 operates on all IBM or IBM-compatible computers with at least
512KB of conventional memory. As a minimum, you must have a computer
that has a 1.44MB-capacity, 3.5-inch diskette drive or a 1.2MB-capacity,
5.25-inch diskette drive specified as drive A. Your hard drive should have a
minimum of 6.0MB of free space to install only the DOS files and Central
Point Backup** for DOS. 18.5MB of free space is needed if you want to install
PC DOS plus all the optional tools.

Chapter 1. Introduction 5

6 PC DOS 7

Chapter 2. Accessing Disks

This chapter provides the necessary guide and system architecture
information to help you successfully complete the following tasks:

• Accessing the disk
• Requesting drive and disk information
• Reading and writing data to the disk.

The Disk Format
All disks and diskettes formatted by PC DOS 7 are created with a sector size
of 512 bytes. PC DOS 7 is formatted on a diskette or on a designated
partition of a hard disk in the following order:

PC DOS 7 Component Size

The boot record 1 sector

The first copy of the File Allocation Table (FAT) Variable

The second copy of the FAT Variable

The disk root directory Variable

The data area Variable

The Boot Record
The PC DOS 7 FORMAT command creates the boot record. For diskettes, the
boot record resides on track 0, sector 1, side 0. For hard disks, it resides at
the starting sector of the partition. Accessing any media (diskette or hard
disk) that does not have a valid boot record causes an error message.

 Copyright IBM Corp. 1995 7

The following diagram shows the layout of the DOS boot record, it is placed
on all disks to provide an error message if the user trys to start the
workstation with a non-system disk in drive A:. If the disk is a system disk
the boot record points to the first address of the operating system.

A boot record must be written on the first sector of all hard disks. A partition
table is found at the end of the boot record. The table is constructed of 16
byte entires and containing information about the partitions start and end
head, sector and cylinder positions. Also in the partition table is an boot
indicator which is used to determine if the partition is bootable, in which
case it is set to 80H. A system indicator byte is used to show the type of
operating system that owns the partition. The following diagram shows the
partition table structure and offsets:

00H 3 bytes JUMP Instruction to Executable Code

03H 8 bytes Optional OEM Name and Version

0BH 2 bytes Bytes Per Sector

0DH 1 byte Sectors Per Allocation Unit

0EH 2 bytes Reserved Sectors (Starting at 0)

10H 1 byte Number of File Allocation Tables

11H 1 byte Number of Root Directory Entries

13H 2 bytes Total Number of Sectors (if size is larger than
32MB, this value is 0 and the size is at offset
20H)

15H 1 byte Media Descriptor

16H 2 byte Number of Sectors Per FAT

18H 2 bytes Sectors Per Track

1AH 2 bytes Number of Heads

1CH 4 bytes Number of Hidden Sectors

20H 4 bytes Total Number of Sectors (See offset 13H)

24H 2 bytes Physical Drive Number

26H 1 byte Extended Boot Record Signature (29H)

27H 4 bytes Volume Serial Number

2BH 11 bytes Volume Label

36H 7 bytes File System Identifier (FAT12),(FAT16)....

8 PC DOS 7

┌────────────────┬────────┬──────────┬─────────────────────────┐
│ Offset from │ Offset │ Size │ Description │
│ start of Disk │ │ │ │
├────────────────┼────────┼──────────┼─────────────────────────┤
│ 1BEH │ 00H │ 1 byte │ Boot Indicator │
│ │ 01H │ 1 byte │ Beginning Head │
│ │ 02H │ 1 byte │ Beginning Sector │
│ │ 03H │ 1 byte │ Beginning Cylinder │
│ │ 04H │ 1 byte │ System Indicator │
│ │ 05H │ 1 byte │ Ending Head │
│ │ 06H │ 1 byte │ Ending Sector │
│ │ 07H │ 1 byte │ Ending Cylinder │
│ │ 08H │ 4 bytes │ Relative Starting Sector│
│ │ 0CH │ 4 bytes │ Number of Sectors │
├────────────────┼────────┼──────────┼─────────────────────────┤
│ 1CEH │ 00H │ 1 byte │ Boot Indicator │
│ │ 01H │ 1 byte │ Beginning Head │
│ │ 02H │ 1 byte │ Beginning Sector │
│ │ 03H │ 1 byte │ Beginning Cylinder │
│ │ 04H │ 1 byte │ System Indicator │
│ │ 05H │ 1 byte │ Ending Head │
│ │ 06H │ 1 byte │ Ending Sector │
│ │ 07H │ 1 byte │ Ending Cylinder │
│ │ 08H │ 4 bytes │ Relative Starting Sector│
│ │ 0CH │ 4 bytes │ Number of Sectors │
├────────────────┼────────┼──────────┼─────────────────────────┤
│ 1DEH │ 00H │ 1 byte │ Boot Indicator │
│ │ 01H │ 1 byte │ Beginning Head │
│ │ 02H │ 1 byte │ Beginning Sector │
│ │ 03H │ 1 byte │ Beginning Cylinder │
│ │ 04H │ 1 byte │ System Indicator │
│ │ 05H │ 1 byte │ Ending Head │
│ │ 06H │ 1 byte │ Ending Sector │
│ │ 07H │ 1 byte │ Ending Cylinder │
│ │ 08H │ 4 bytes │ Relative Starting Sector│
│ │ 0CH │ 4 bytes │ Number of Sectors │
├────────────────┼────────┼──────────┼─────────────────────────┤
│ 1EEH │ 00H │ 1 byte │ Boot Indicator │
│ │ 01H │ 1 byte │ Beginning Head │
│ │ 02H │ 1 byte │ Beginning Sector │
│ │ 03H │ 1 byte │ Beginning Cylinder │
│ │ 04H │ 1 byte │ System Indicator │
│ │ 05H │ 1 byte │ Ending Head │
│ │ 06H │ 1 byte │ Ending Sector │
│ │ 07H │ 1 byte │ Ending Cylinder │
│ │ 08H │ 4 bytes │ Relative Starting Sector│
│ │ 0CH │ 4 bytes │ Number of Sectors │
├────────────────┼────────┼──────────┼─────────────────────────┤
│ 1EFH │ │ 2 bytes │ 55AAH Signature │
└────────────────┴────────┴──────────┴─────────────────────────┘

Figure 1. Partition Table

The Boot Indicator has a value of 80H if the particular partition is bootable or
00H if the partition is not bootable.

The last entry in the partition table is the 55AAH signature and is used to
identify a valid boot record.

Chapter 2. Accessing Disks 9

The following table show some of the system indicators that may be used:

 Note

This table is by no means complete, as other manufactures use different
indicators.

00H Unknown or no partition defined

01H DOS 12 bit FAT (under 16MB)

04H DOS 16 bit FAT (less than 65,536 sectors)

05H Extended DOS partition

06H DOS partition (over 32MB)

07H OS/2 High Performance File System

The File Allocation Table (FAT)
The File Allocation Table (FAT) occupies the sectors immediately following
the boot record. If the FAT is larger than one sector, the sectors occupy
consecutive sector numbers.

The FAT keeps track of the physical location of all files on the disk. If the
FAT cannot be read because of a disk error, the contents of the files cannot
be located. For this reason, two copies of the FAT are written on the disk.

PC DOS 7 uses the FAT to allocate disk space to a file, one cluster at a time.
The FAT consists of a 12-bit entry (1.5 bytes) or a 16-bit entry (2 bytes) for
each cluster on the disk. On a hard disk, the number of sectors for each
cluster are determined by the size of the disk. PC DOS 7 determines
whether to create a 12-bit or 16-bit FAT by calculating the number of 8-sector
clusters that can occupy the space on the disk. If the number of clusters is
less than 4086, a 12-bit FAT is created. If it is greater, a 16-bit FAT is
created.

Using the following formula, you can determine the number of sectors on a
disk:

TS=SPT * H * C.

TS = the total number of sectors on the disk.
SPT = the number of sectors per track or per cylinder.
H = the number of heads.
C = the number of cylinders.

10 PC DOS 7

The number of sectors on a 10MB IBM hard disk, for example, is
20740 (17 * 4 * 305).

The first two entries in the FAT are not used to map data. They indicate the
size and format of the disk. The first byte of the FAT designates one of the
following:

The second and third bytes of the FAT contain the value FFH. The fourth
byte, used by 16-bit FATs only, contains the value FFH.

The maximum size 16-bit FAT supported by PC DOS 7 for media greater than
32KB is 64KB entries, or 128KB of space on the disk. This is an increase in
size from the IBM PC DOS 3.30 limit of 16KB entries.

Hex
Value Meaning

FF Double-sided, 8 sectors per track diskette

FE Single-sided, 8 sectors per track diskette

FD Double-sided, 9 sectors per track diskette

FC Single-sided, 9 sectors per track diskette

F9 Double-sided, 15 sectors per track diskette (1.2 MB)

F9 Double-sided, 9 sectors per track diskette (720 KB)

F9 Double-sided, eXtended Data Format (1.88 MB)

F8 Hard disk

F0 1.44MB or 2.88MB

The Disk Directory
When the FORMAT command is issued, it builds the root directory for all
disks. If the disk is formatted with the /S option, the PC DOS 7 system files
(IBMBIO.COM, IBMDOS.COM, and COMMAND.COM) are added to the disk.
The following eight formats are used for 5.25-inch diskettes and 3.5-inch
diskettes:

Sides
Sectors/
Track

FAT
Size
Sectors

DIR
Sectors

DIR
Entries

Sectors/
Cluster

1 (5.25) 8 1 4 64 1

2 (5.25) 8 1 7 112 2

1 (5.25) 9 2 4 64 1

2 (5.25) 9 2 7 112 2

2 (5.25) 15 7 14 224 1

Chapter 2. Accessing Disks 11

Sides
Sectors/
Track

FAT
Size
Sectors

DIR
Sectors

DIR
Entries

Sectors/
Cluster

2 (3.5) 9 3 7 112 2

2 (3.5) 18 9 14 224 1

2 (3.5) 36 9 15 240 2

The Data Area
Data files and subdirectories are stored in the last and largest part of a disk.
Space is allocated as it is needed, a cluster at a time. This allocation
method permits the most efficient use of disk space. As clusters become
available, space can be allocated for new files.

Accessing the Disk
Most interrupt 21H functions can be used to access a disk. Five other
functions can be used to perform disk-related activity.

Activity
Function
Number

Resetting the disk and flushing the file buffer 0DH

Selecting the default disk drive 0EH

Determine the current disk 19H

Determining the boot drive 3305H

Requesting the amount of free space on the disk 36H

Requesting Drive and Disk Information
Information on disks and drives can be requested by using the following INT
21H functions:

Activity
Function
Number

Requesting the current drive number 19H

Requesting disk allocation information about the default drive 1BH

Requesting disk allocation information about the specified drive 1CH

12 PC DOS 7

Reading and Writing Data Directly to the Disk
PC DOS 7 provides two interrupts, 25H and 26H, to read and write data to a
disk.

Activity
Interrupt
Number

Reading from specified disk sectors 25H

Writing to specified disk sectors 26H

Chapter 2. Accessing Disks 13

14 PC DOS 7

Chapter 3. Accessing Files with File Handles

The information necessary to complete the following tasks is provided in this
chapter:

• Reading and writing data to a file
• Requesting and specifying file attributes
• Accessing directories
• Searching for files in directories
• Requesting and specifying National Language Support (NLS)
• Controlling Network Operations.

PC DOS 7 provides nine functions within interrupt 21H to create, open, close
and delete a file.

Activity
Function
Number

Creating a new file or replacing an old file 3CH

Opening a file 3DH

Closing a file handle 3EH

Deleting a file 41H

Renaming a file 56H

Creating a new file with a unique name 5AH

Creating a new file 5BH

Locking and unlocking read/write access to regions of a fi le 5CH

Creating and opening a fi le with extended parameters 6CH

Filenames
To name a file, the application program supplies a pointer to an ASCIIZ
string giving the name and location of the file. A filename contains an
optional drive letter, path, or file specification terminated with a hexadecimal
0 byte. Following is an example of a filename string:

′ B:\LEVEL1\LEVEL2\FILE1′ , 0

The maximum size of a filename is 64 bytes, including the path, name and
null terminator. All function calls that accept path names accept a forward
slash (/) or backslash (\) as path separator characters.

 Copyright IBM Corp. 1995 15

File Handles
The open or create function calls return a 16-bit value called a file handle.
To perform file I/O, a program uses the file handle to reference the file.
Once a file is opened, the program no longer needs to maintain the ASCIIZ
string pointing to the file. PC DOS 7 keeps track of the location of the file,
regardless of which directory is current.

The number of file handles that can be open at one time by all processes can
be specified with the FILES command in CONFIG.SYS. There are 20 default
handles available to a single process. All handles inherited by a process
can be redirected.

Each open handle is associated with a single file or device, but several
handles can reference the same file or device. Thus, the maximum handle
limit can exceed the number specified with the FILES command.

Activity
Function
Number

Specifying an additional file handle for a file 45H

Pointing the existing file handle to another file 46H

Specifying the number of open file handles 67H

Special File Handles
PC DOS 7 provides five special file handles for use by application programs.
The handles are:

0000H Standard input device (STDIN)

0001H Standard output device (STDOUT)

0002H Standard error device (STDERR)

0003H Standard auxiliary device (STDAUX)

0004H Standard printer device (STDPRN)

File handles associated with standard devices do not need to be opened by a
program, but a program can close them. STDIN should be treated as a
read-only file. STDOUT and STDERR should be treated as write-only files.
STDIN and STDOUT can be redirected. Function calls 01H through 0CH
access the standard devices.

The standard device handles are useful for performing I/O to and from the
console device. For example, you can read input from the keyboard using
the read function call (3FH) and file handle 0000H (STDIN); you can also write

16 PC DOS 7

output to the console screen with the write function call (40H) and file handle
0001H (STDOUT).

If you want to prevent redirection of your output to STDOUT, you can send it
using file handle 0002H (STDERR). This facility also is useful for error
messages or prompts to the user.

Reading and Writing Data to a File
PC DOS 7 provides five functions to allow reading and writing to a file or
device, specifying the offset within a file at which the read or write is to
occur, and verifying the read-after-write state. The verification operation,
however, slows performance.

Activity
Function
Number

Reading from a file or device 3FH

Writing to a file or device 40H

Specifying the address (through the pointer) at which a read or write is
to occur

42H

Requesting the read-after-write state 54H

Specifying the read-after-write state 2EH

Requesting and Specifying File Attributes
While a file is being created, your program can specify certain attributes; for
example, the date and time of creation and level of access.

Activity
Function
Number

Requesting and specifying a file′s attributes 43H

Requesting and specifying a file′s date and time 57H

Accessing Subdirectories
Subdirectories, that is, directories other than the root directories, are files.
There is no limit to the number of subdirectory entries if the physical media
can accommodate them. All directory entries are 32 bytes long.

Note: Values are in hexadecimal.

Chapter 3. Accessing Files with File Handles 17

Each entry in the root directory consists of 32 bytes that are described in the
figure following:

00H ┌────────────────────────────────────┐
│ │
│ │
│ Filename │
│ │

08H ├────────────────────────────────────┤
│ Extension │
│ │

0BH ├────────────────────────────────────┤
│ File Attribute │

0CH ├────────────────────────────────────┤
│ │
│ Reserved │
│ │
│ │

16H ├────────────────────────────────────┤
│ Time created or last updated │

18H ├────────────────────────────────────┤
│ Date created or last updated │

1AH ├────────────────────────────────────┤
│ Starting Cluster │

1CH ├────────────────────────────────────┤
│ │
│ │
│ File Size (4 bytes) │
│ │

20H └────────────────────────────────────┘

The Filename
Bytes 0 through 7 represent the filename. The first byte of the filename
indicates the status of the filename. The status of a filename can contain the
following values:

00H Filename never used. To improve performance, this value is used to
limit the length of directory searches.

05H The first character of the filename has an E5H character.

E5H Filename has been used, but the file has been erased.

18 PC DOS 7

2EH The entry is for a directory. If the second byte is also 2EH, the cluster
field contains the cluster number of this directory′s parent directory.
(Cluster number 0000H is specified if the parent directory is the root
directory.)

Any other character is the first character of a filename.

Note: Byte offsets are in decimal.

.

The Filename Extension
Bytes 8 through 10 indicate the filename extension.

The File Attribute
Byte 11 indicates the file′s attribute. The attribute byte is mapped as follows:

01H Indicates a read-only file. An attempt to open the file for output using
function call 3DH or 6CH results in an error code being returned.

02H Indicates a hidden file. The file is excluded from normal directory
searches.

04H Indicates a system file. The file is excluded from normal directory
searches.

08H Indicates the entry contains the volume label in the first 11 bytes. The
entry contains no other usable information and may exist only in the
root directory.

10H Indicates the entry defines a subdirectory and is excluded from normal
directory searches.

20H Indicates an archive bit. The bit is set ON when the file has been
written to and closed. It is used by the BACKUP and RESTORE
commands for determining whether the file has been changed since it
was created or last updated. This bit can be used along with other
attribute bits.

All other bits are reserved and must be 0.

The File Creation/Last Changed Time
Bytes 22 and 23 contain the time when the file was created or last updated.
The time is mapped in the bits as follows:

< 23 > < 22 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h m m m m m m x x x x x

Where:

Chapter 3. Accessing Files with File Handles 19

hh = the binary number of hours (0-23)
mm = the binary number of minutes (0-59)
xx = the binary number of two-second increments

The time is stored with the least significant byte first.

The File Creation Date
Bytes 24 and 25 contain the date when the file was created or last updated.
The date (mm/dd/yy) is mapped in the bits as follows:

< 25 > < 24 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y y m m m m d d d d d

Where:

yy = 0 − 1 1 9 (1 9 8 0 − 2 0 9 9)
mm = 1 − 1 2
dd = 1 − 3 1

The date is stored with the least significant byte first.

The Starting Cluster Number
Bytes 26 and 27 contain the cluster number of the first cluster in the file. The
first cluster for data space on all hard disks and diskettes is cluster 002. The
cluster number is stored with the least significant byte first.

< 27 > < 26 >
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

The File Size
Bytes 28 through 31 contain the file size in bytes. The first word contains the
low-order part of the size. Both words are stored with the least significant
byte first.

Accessing Directories
PC DOS 7 provides four functions within interrupt 21H to create, identify,
change or delete directories.

Activity
Function
Number

Removing a subdirectory 3AH

Creating a subdirectory 39H

Changing to another directory 3BH

Identifying the current directory 47H

20 PC DOS 7

Finding Files in Directories
PC DOS 7 provides two functions within interrupt 21H to search for the first
matching entry and the next matching entry.

Activity
Function
Number

Searching for the first matching entry 4EH

Searching for the next matching entry 4FH

Requesting and Specifying National Language Support (NLS)
PC DOS 7 provides the following functions for NLS:

Activity
Function
Number

Specifying the current country 38H

Requesting the country dependent information 38H

Providing double-byte character set (DBCS) support 65H

Controlling Network Operations
Several PC DOS 7 function calls accept a network path as input if the IBM PC
Local Area Network support is loaded. If network access is available, further
information is noted in the ″Comments″ section under each relevant function
call in Appendix B, “PC DOS 7 Function Calls” on page 133.

A network path consists of an ASCII string containing a computer name,a
directory path, and an optional filename. The network path cannot contain a
drive specifier. The path is terminated by a byte of binary 0′s. Following is
an example:

SERVER1LEVEL1LEVEL2FILE1

Many function calls that accept an ASCIIZ string as input accept a network
path. If you want to execute function 5BH (Create a New File), for example,
you must have Read/Write/Create or Write/Create access to the directory to
be able to create a file. If you have Read Only or Write Only access and no
Create access, you cannot create a file in the directory. Two function calls
that do not accept a network path as input are Change Current Directory
(3BH) and Find First Matching File (4EH).

Chapter 3. Accessing Files with File Handles 21

The following function calls are available to control network operations:

Activity
Function
Number

Locking and unlocking read/write access to a region of a file 5CH

Writing all data from a file to a device 68H

Requesting the local computer ID 5E00H

Specifying the printer setup string 5E02H

Requesting the printer setup string 5E03H

Requesting redirection 5F02H

Attaching to a redirect device 5F03H

Canceling redirect ion 5F04H

22 PC DOS 7

Chapter 4. Accessing Files Using File Control Blocks

This chapter provides guide and system architecture information to assist in
performing the following tasks:

• Accessing files
• Accessing sequential records
• Accessing random records
• Finding files in directories

The File Control Block (FCB)
With few exceptions, a program should maintain files using File Control
Blocks (FCBs) only to run under DOS 1.10. File handles are the
recommended method for accessing files.

One FCB maintained by your program and PC DOS 7 is required for each
open file. Your program must supply a pointer to the FCB and fill in the
appropriate fields required by specific function calls.

A program should not attempt to use the reserved fields in the FCB. Bytes 0
through 15 and 32 through 36 must be set by the user program. Bytes 16
through 31 are set by PC DOS 7 and must not be changed by user programs.

An unopened FCB consists of the FCB prefix (if used), the drive number, the
filename, and the extensions appropriately specified. An open FCB is one in
which the remaining fields have been specified by the create or open
function calls.

All word fields are stored with the least significant byte first. For example, a
record length of 128 is stored as 80H at offset 14, and 00H at offset 15.
Figure 2 on page 24 gives further explanation.

 Copyright IBM Corp. 1995 23

-7 ┌───────┬────────────────────────────────────┬──────────┐
│ │ │ │ FCB
│ hex FF│ Zeros │ Attribute│ extension

0┌───────┼───────┴────────────────────────────────────┴──────────┤
│ │ │ Standard
│ Drive │ Filename (8bytes) or reserved device name │ FCB
8├───────┼───────────────────────┬───────────────┬───────────────┤
│ │ │ │ │
│ │ Filename extension │ Current block │ Record size │

 16├───────┴───────┬───────────────┼───────────────┼───────────────┤
 │ File size │ File size │ │ │
 │ (low part) │ (high part) │ Date │ │
24├───────────────┴───────────────┴───────────────┘ │
 │ │

│ Reserved for system use │
 32├───────┬───────────────┬───────────────┬───────────────────────┘

│Current│ Random record │Random record │
│record │number (low pt)│number(high pt)│
└───────┴───────────────┴───────────────┘

Figure 2. The File Control Block

Areas 16 through to 31 are filled in by DOS and must not be modified.

Other areas are filled in by the using program.

Note: Offsets are in decimal.

The FCB is formatted as follows:

Drive Number
Byte 0 represents the drive number. For example, before the file is opened,
0 equals the default drive, 1 equals drive A, and 2 equals drive B. After the
file is opened, 0 equals drive A, 1 equals drive A, and 2 equals drive B.

The actual drive number replaces the 0 when a file is opened.

Filename
Bytes 1 through 8 represent the filename, left-justified with trailing blanks. If
a reserved device name such as LPT1 is specified here, do not include the
colon.

24 PC DOS 7

Filename Extension
Bytes 9 through 11 represent the filename extension, left-justified with trailing
blanks or all blanks.

Current Block Number
Bytes 12 through 13 represent the current block number relative to the
beginning of the file, starting with 0. The 0 is set by the open function call. A
block consists of 128 records, each size specified in the logical record size
field. The current block number is used with the current record field for
sequential reads and writes.

Logical Record Size
Bytes 14 through 15 represent the logical record size in bytes. 80H is set by
the open function call. If you want to change the logical record size from
80H, you can reset the value. PC DOS 7 uses the value to determine
locations in the file for all disk reads and writes.

File Size
Bytes 16 through 19 represent file size in bytes. In this two-word field, the
first word is the low-order part of the size.

File Date
Bytes 20 through 21 represent the date the file was created or last updated.
The date (mm/dd/yy) is mapped in the bits as follows:

< 21 > < 20 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y y m m m m d d d d d

where:

yy is 0-119 (1980-2099)
mm is 1-12
dd is 1-31

Reserved
Bytes 22 through 31 are reserved.

Record Number in Block
Byte 32 represents the current relative record number (0-127) within the
current block. You must set this field before doing sequential read and write
operations to the diskette. This field is not initialized by the open function
call.

Chapter 4. Accessing Files Using File Control Blocks 25

Record Number within File
Bytes 33 through 36 represent the record number relative to the beginning of
the file, starting with 0. You must set this field before doing random read
and write operations to the diskette. This field is not initialized by the open
function call.

If the record size is less than 64 bytes, both words are used. If the record
size is more than 64 bytes, only the first 3 bytes are used. Note that if you
use the FCB at 5CH in the program segment, the last byte of the FCB
overlaps the first byte of the unformatted parameter area.

The Extended FCB
The extended FCB is used to create or search in the disk directory for files
with special attributes. The extension adds a 7-byte prefix to the FCB,
formatted as follows:

Extended FCB
FCB byte -7 contains FFH to indicate an extended FCB.

Reserved
FCB bytes -6 to -2 are reserved.

File Attribute
FCB byte -1 represents an attribute byte. Function calls 00H through 2EH are
valid for both the standard FCB and the extended FCB. If you are using an
extended FCB, the appropriate register should be set to the first byte of the
prefix, rather than the drive number field.

The Disk Transfer Area (DTA)
PC DOS 7 uses a buffer in memory, the Disk Transfer Area (DTA), to hold the
data for FCB file reads and writes. The DTA can be at any location within
the data area of your program and should be specified by your program.

Only one DTA can be in effect at a time, so your program must tell PC DOS 7
which memory location to use before issuing disk read or write functions.
When a program is given control by COMMAND.COM, a default DTA large
enough to hold 128 bytes is established at 80H in the program segment
prefix.

PC DOS 7 provides the following functions within interrupt 21H to handle DTA
activities:

26 PC DOS 7

Activity
Function
Number

Specifying the buffer address for reading and writing data in the DTA 1AH

Requesting the buffer address for reading and writing data in the DTA 2FH

Accessing Files
An FCB can identify a file on any valid drive, but only in the current directory
of the specified drive.

If SHARE has not been loaded, the number of files that can be open at a time
(using FCB function calls) is not restricted. When file sharing is loaded,
however, the maximum number of FCB opened files is limited by the value
specified in the FCBS command in CONFIG.SYS. The m value specifies the
total number of files that can be opened by FCBS.

When the maximum number of FCB opens is exceeded, PC DOS 7
automatically closes the least recently used file. Any attempt to access such
a file results in the interrupt 24H critical error message, “FCB not available.”
If this situation occurs while a program is running, the value specified for m
in the FCBS command should be increased.

Do not use the same FCB to open a second file without closing the first open
file. If more than one file is to be opened concurrently, use separate FCBs.
To avoid potential file sharing problems, close files after I/O is performed.
Close the file before trying to delete or rename an open file.

Managing files using the FCBS command can be performed using the
following function calls:

Activity
Function
Number

Opening a file 0FH

Closing a file 10H

Deleting a file 13H

Creating a file 16H

Renaming a file 17H

Requesting the file size 23H

Separating the fi lename information into its components (parsing) 29H

Chapter 4. Accessing Files Using File Control Blocks 27

Accessing Sequential Records
By using the current block, current record, and record length fields of the
FCB, you can perform sequential I/O by using the following sequential read
or write function calls within interrupt 21H:

Activity
Function
Number

Reading from a record 14H

Writing to a record 15H

Accessing Random Records
Random I/O can be performed by filling in the random record and record
length fields in the FCB and issuing the following function calls within
interrupt 21H:

Activity
Function
Number

Reading from a single record 21H

Writing to a single record 22H

Specifying the random record field in the FCB 24H

Reading from multiple records 27H

Writing to multiple records 28H

Finding Files in Directories
Using the FCB as a source, finding and changing files in directories is
performed by the following functions within interrupt 21H:

Activity
Function
Number

Searching for the first matching file entry 11H

Searching for the next matching file entry 12H

Deleting a file 13H

Creating a file 16H

Renaming a file 17H

Separating the fi lename information into its components (parsing) 29H

28 PC DOS 7

Chapter 5. Managing Device I/O

This chapter provides guide and system architecture information about the
following tasks:

• Managing display I/O
• Managing keyboard I/O
• Managing miscellaneous I/O
• Managing file system activities
• Accessing the system device drivers′ control channel.

Managing Display I/O
PC DOS 7 provides four functions within interrupt 21H that send characters or
strings of characters to the screen.

For further information on specifying character attributes, foreground and
background screen colors, and screen size using ANSI.SYS, see the PC DOS
7 User′s Guide and Reference.

Activity
Function
Number

Outputting a character to the screen, with the ability to trigger the
control-break interrupt handler

02H

Waiting until a character is input and outputting it to the screen without
the abil ity to trigger the control-break interrupt handler

06H

Outputting a string of characters in memory to the screen 09H

Outputting a string of characters in a buffer to the screen or writing the
string to a file device

40H

Managing Keyboard I/O
PC DOS 7 provides a full complement of functions within interrupt 21H that
your application program can use to manage keyboard I/O.

Activity
Function
Number

Sending input from the keyboard (with echo) to the display 01H

Receiving input directly from the keyboard, or sending output directly to
the display

06H

Receiving input directly from the keyboard without echo 07H

 Copyright IBM Corp. 1995 29

For further information on reassigning the keys using ANSI.SYS, see the PC
DOS 7 User′s Guide and Reference.

Activity
Function
Number

Receiving input from the keyboard without echo to the display with the
abil ity to trigger the control-break interrupt handler

08H

Reading characters from the keyboard to the buffer 0AH

Checking the keyboard buffer status 0BH

Clearing the keyboard buffer; specifying which function to call after
clearing the buffer

0CH

Managing Miscellaneous I/O
Three functions are available to manage miscellaneous I/O.

Activity
Function
Number

Receiving auxil iary input 03H

Sending auxil iary output 04H

Printing output 05H

Managing File System Activities
The following system activities are supported by PC DOS 7:

Activity
Function
Number

Requesting the local computer ID 5E00H

Specifying the printer setup string 5E02H

Requesting the printer setup string 5E03H

Requesting redirection l ist 5F02H

Attaching to a redirect device 5F03H

Canceling redirect ion 5F04H

Writing all data from a file to a device 68H

30 PC DOS 7

Accessing the System Device Drivers ′ Control Channel
Function 44H within interrupt 21H is a multi-purpose function for accessing
the device drivers′ control channel. Using function 44H, your application
program can request the status of a device and read and write to the I/O
control channel. The following subfunction values should be passed in AL:

Category Activity
Subfunction
Number

Requesting and specifying device
information

Requesting device information 00H

Specifying device information 01H

Reading and writing data to a
character device

Reading from a character device 02H

Writing to a character device 03H

Reading and writing data to a
block device

Reading from a block device 04H

Writing to a block device 05H

Requesting and specifying device
information

Determining whether a device
contains removable media

08H

Providing network support for
devices

Determining whether a logical
device is local or remote

09H

Determining whether a fi le handle
is local or remote

0AH

Specifying how many times (and
intervals) PC DOS 7 should try to
resolve shared fi le conflicts

0BH

Controlling I/O for fi le handles 0CH

Controlling I/O for block devices 0DH

Requesting and specifying the
logical drive

Requesting the logical drive 0EH

Specifying the logical drive 0FH

Chapter 5. Managing Device I/O 31

Reading and Writing Data in Binary and ASCII Modes
A program can use function 44H to change the mode in which data is read or
written to a device. If I/O is performed in binary mode, control values have
no meaning. If I/O is performed in ASCII mode, certain control values have
meaning. They are shown in the following table:

When a file is read in ASCII mode, it is echoed to the display and tabs are
expanded into spaces. They are left as a tab byte (09H) in the input buffer.
When a file is written in ASCII mode, tabs are expanded to 8-character
boundaries and filled with spaces (20H).

Control
Value

Keyboard
Input Meaning

03H ∧C Control Break

04H ∧D End of Task

10H ∧P Print Screen

11H ∧Q Scroll restart

13H ∧S Scroll Lock

0AH ∧J Line Feed

0DH ∧ M Carriage Return

1AH ∧ Z End-Of-File

32 PC DOS 7

Chapter 6. Controlling Processes

This chapter provides guide and system architecture information about the
following activities:

• Allocating memory
• Identifying a program at load time
• Loading and executing overlays
• Terminating a program/subprogram
• Loading an overlay without executing it
• Calling a command processor
• Responding to errors
• Responding to a control-break action
• Requesting and specifying the system date and time
• Requesting and specifying the interrupt vectors.

Allocating Memory
PC DOS 7 keeps track of allocated and available memory blocks and
provides three function calls for application programs to communicate their
memory requests.

Activity
Function
Number

Allocating memory 48H

Freeing allocated memory 49H

Changing the size of blocks of allocated memory 4AH

PC DOS 7 Memory Management
PC DOS 7 manages memory by allocating 16-byte units called paragraphs
and building a control block for each allocated block. Any allocation is 16
bytes larger than the actual request because PC DOS 7 automatically
allocates a control block to keep track of each allocated block.

When the user starts the program at the command line, COMMAND.COM
loads the executable program module into the largest unused block of
available memory and reads the file header. If there is not enough memory
available, the system returns an error code and passes control to the
program. Your program should use the SETBLOCK function call (4AH) to
reduce allocated memory to the size it needs.

 Copyright IBM Corp. 1995 33

Note: Because it is likely that the default stack supplied by PC DOS 7 lies in
the area of memory being freed, a .COM program should remember to
set up its own stack before issuing a SETBLOCK. The SETBLOCK call
frees unneeded memory which then can be used for loading
subsequent programs.

If your program requires additional memory during processing, issue function
call 48H within interrupt 21. To free memory, issue function call 49H within
interrupt 21.

The PC DOS 7 Memory Map
The following table illustrates the order in which PC DOS 7 components and
application programs are located in memory when PC DOS 7 is loaded low
and no HMA exists.

The following table illustrates the order in which the PC DOS 7 components
and application programs are located in memory when PC DOS 7 is loaded
high.

Location Use

0000:0000 Interrupt vector table

0040:0000 ROM communication area

0050:0000 PC DOS 7 communication area

0070:0000 IBMBIO.COM − PC DOS 7 interface to ROM I/O routines

XXXX:0000 IBMDOS.COM − PC DOS 7 interrupt handlers, service routines (INT 21
functions)

XXXX:0000 PC DOS 7 buffers, control areas, and installed device drivers

XXXX:0000 Resident portion of COMMAND.COM − Interrupt handlers for interrupts
22H (terminate), 23H (Ctrl-Break), 24H (critical error), and code to reload
the transient portion

XXXX:0000 External command or util ity − . COM or .EXE file

XXXX:0000 User stack for .COM files

XXXX:0000 Transient portion of COMMAND.COM

Location Use

0000:0000 Interrupt vector table

0040:0000 ROM communication area

0050:0000 PC DOS 7 communication area

0070:0000 Resident BIOS data − also including device driver headers and entry
points

XXXX:0000 PC DOS 7 data

34 PC DOS 7

Memory map addresses are in segment:offset format. For example,
0070:0000 is absolute address 00700H.

Note: The VDISK header is placed at the start of the HMA as a precaution
because most INT 15 allocations respect VDISK headers.

The PC DOS 7 Communication Area is used as follows:

0050:0000 Print screen status flag store

0 Print screen not active or successful print screen operation

1 Print screen in progress

255 Error encountered during print screen operation

0050:0001 Used by BASICA

0050:0004 Single-drive mode status byte

0 Diskette for drive A was last used

1 Diskette for drive B was last used

0050:0010—0021 Used by BASICA

0050:0022—002F Used by PC DOS 7 for diskette initialization

0050:0030—0033 Used by MODE command.

All other locations within the 256 bytes beginning at 0050:0000 are reserved
for PC DOS 7 use.

Location Use

XXXX:0000 PC DOS 7 installable device drivers and data structures that are
allocated by SYSINIT

FFFF:0010 VDISK header (see note below)

FFFF:0030 IBMBIO

XXXX:XXXX IBMDOS

Chapter 6. Control l ing Processes 35

Identifying a Program at Load Time
PC DOS 7 provides two function calls for application programs to specify and
identify themselves at load time:

Activity
Function
Number

Creating the means for PC DOS 7 to identify a program at load time
through the program segment prefix (PSP)

26H

Requesting how PC DOS 7 identified a program at load time 62H

The Program Segment
When you enter an external command or call a program with the EXEC
function call (4BH), PC DOS 7 determines the lowest available address in
memory and assigns it to the program. That area of memory is called the
program segment. At offset 0 within the program segment, PC DOS 7 builds
a program segment prefix control block. When an EXEC is issued, PC DOS 7
loads the program at offset 100H and gives it control. See Figure 3 on
page 37 for an illustration of the program segment prefix.

36 PC DOS 7

┌───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │
├───────┴───────┼───────┴───────┼───────┴───────┴───────┴───────┤
│ INT │ Top of │ │
│ 20H │ memory │ Reserved │
├───────┬───────┼───────┬───────┼───────┬───────┬───────┬───────┤
│ 8 │ 9 │ A │ B │ C │ D │ E │ F │
├───────┴───────┼───────┴───────┼───────┴───────┼───────┴───────┤
│ │ Terminate │ Terminate │ Ctrl-break │
│ Reserved │ address │ address │ exit address │
│ │ IP │ CS │ IP │
├───────┬───────┼───────┬───────┼───────┬───────┼───────┬───────┤
│ 10 │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │
├───────┴───────┼───────┴───────┴───────┴───────┼───────┴───────┤
│ Ctrl-break │ Critical error │ │
│ exit address │ exit address │ Reserved │
│ CS │ IP CS │ │
├───────────────┴───────────────┬───────┬───────┼───────┬───────┤
│ 18 to 2B │ 2C │ 2D │ 2E │ 2F │
├───────────────────────────────┼───────┴───────┼───────┴───────┤
│ │ Environment │ │
│ Reserved │ pointer │ Reserved │
├───────────────────────────────┴───────────────┴───────────────┤
│ 30 to 4F │
├───┤
│ Reserved │
├───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ 50 │ 51 │ 52 │ 53 │ 54 │ 55 │ 56 │ 57 │
├───────┴───────┼───────┴───────┴───────┴───────┴───────┴───────┤
│ DOS call │ Reserved │
├───────┬───────┼───────┬───────┬───────┬───────┬───────┬───────┤
│ 58 │ 59 │ 5A │ 5B │ 5C │ 5D │ 5E │ 5F │
├───────┴───────┴───────┴───────┼───────┴───────┴───────┴───────┤
│ Reserved │ Unopened Standard FCB1 │
├───────┬───────┬───────┬───────┼───────┬───────┬───────┬───────┤
│ 60 │ 61 │ 62 │ 63 │ 64 │ 65 │ 66 │ 67 │
├───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│ Unopened Standard FCB1 (continued) │
├───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ 68 │ 69 │ 6A │ 6B │ 6C │ 6D │ 6E │ 6F │
├───────┴───────┴───────┴───────┼───────┴───────┴───────┴───────┤
│ Unopened Standard FCB1 │ Unopened Standard FCB2 │
│ (continued) │ │
├───────┬───────┬───────┬───────┼───────┬───────┬───────┬───────┤
│ 70 │ 71 │ 72 │ 73 │ 74 │ 75 │ 76 │ 77 │
├───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│ Unopened Standard FCB2 (continued) │
├───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ 78 │ 79 │ 7A │ 7B │ 7C │ 7D │ 7E │ 7F │
├───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│ Unopened Standard FCB2 (continued) │
├───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ 80 │ 81 │ 82 │ 83 │ 84 │ 85 │ 86 │ 87 │
├───────┼───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│ Param │ Command parameters ┴
│ Length│ starting with leading blanks ┬
├───────┼───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ F8 │ F9 │ FA │ FB │ FC │ FD │ FE │ FF │
├───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┤
┴ │
┬ Command parameters │
└───┘

Figure 3. The Program Segment Prefix

Chapter 6. Control l ing Processes 37

The program segment prefix′s first segment of available memory is in
paragraph form; that is, 1000H represents 64KB. The word at offset 6
contains the number of bytes available in the segment.

Offset 2CH contains the environment′s paragraph address.

Offset 50H contains code to invoke the PC DOS 7 function dispatcher. By
placing the desired function number in AH, a program can issue a long call
to PSP+50H to invoke a PC DOS 7 function rather than issuing an interrupt
21H.

The default disk transfer address is set to 80H.

An unformatted parameter area at 81H contains all the characters entered
after the command name, including leading and imbedded delimiters, with
80H set to the number of characters. I f the <, >, or | parameters were
entered on the command line, they and the filenames associated with them
will not appear in this area because redirection of standard input and output
is transparent to applications.

For .COM files, offset 6 (one word) contains the number of bytes available in
the segment.

Register AX contains the drive specifiers entered with the first two
parameters as follows:

AL=FFH if the first parameter contained an invalid drive specifier
(otherwise AL=00H).
AH=FFH if the second parameter contained an invalid drive specifier
(otherwise AH=00H).

In .EXE programs DS and ES registers are set to point to the program
segment and CS, IP, SS, and SP registers are set to the values passed by the
Linker.

In .COM programs all four segment registers contain the segment address of
the initial allocation block, starting with the program segment prefix control
block. The instruction pointer (IP) is set to 100H. The SP register is set to
the end of the program′s segment. The segment size at offset 6 is rounded
down to the paragraph size.

38 PC DOS 7

Loading and Executing Overlays
Your program can use the 4BH function call to load optional overlays.
Function 4BH, value 0, loads and executes a program with overlays.
Function 4BH, value 3, loads an overlay without executing it.

If your program calls an overlay, the EXEC call assumes the calling program
has already allocated memory for the overlay. The request to load an
overlay does not verify that the calling program owns the memory into which
the overlay is to be loaded. An overlay loaded into memory not allocated to
it can damage the PC DOS 7 memory management control blocks. This will
not be evident until PC DOS 7 needs to use its series of control blocks.

If a memory allocation error is returned, the problem must be corrected and
the system restarted. Overlays should not issue SETBLOCK calls because
they do not own the memory in which they operate. The memory is
controlled by the calling program.

The Parameter Block
When your program calls a subprogram using the EXEC call (4BH), it can
pass a parameter block which provides the subprogram with the following:

• The environment string
• A command line which permits it to act like another command processor
• File control blocks at 5C and 6C in the program segment prefix

(optional).

The Environment String
The environment passed from the calling program is a copy of its
environment. The segment address of the passed environment is contained
at offset 2CH in the program segment prefix.

The environment is a series of ASCII strings totaling less than 32KB in the
form:

NAME=parameter

Note: NAME= is always in uppercase.

Each string is terminated by a byte of 0′s. The complete series of strings is
terminated by another byte of 0′s. Another ASCII string containing the word
count and an ASCIIZ string containing the executable program′s drive, path,
filename, and extension follow the series of environment strings.

The environment built by the command processor and passed to all called
programs contains a COMSPEC= string, the last PATH, APPEND and

Chapter 6. Control l ing Processes 39

PROMPT commands issued, and any environment strings specified with the
SET command.

The Command Line
Your program must create a command line which will be transferred to the
subprogram.

The File Control Blocks
If your program is using files based on file handles, the file control blocks are
of no concern. If your program is using file control blocks, and either 5CH or
6CH contain a pathname, the corresponding FCB will contain only a valid
drive number. The filename field will not be valid.

Terminating a Program/Subprogram
PC DOS 7 provides four functions and two interrupts to terminate programs.
It also provides an interrupt to permit your program to specify where control
is to be passed upon termination.

Interrupt 20H terminates a program. Interrupt 27H terminates a program with
a specified portion remaining in memory. Interrupt 22H specifies where
control is to be passed upon program termination.

When a subprogram terminates, control is returned to the calling program.
Before terminating, the calling program must return to the system the
memory it allocated to the subprogram. When the calling program
terminates, control is returned to PC DOS 7. PC DOS 7 does a CHECKSUM
to determine if the transient portion of COMMAND.COM has been modified.
If it has, PC DOS 7 reloads COMMAND.COM based on the path specified in
the environment.

The program returns from executing in one of the following methods:

• By a jump to offset 0 in the program segment prefix
• By issuing an INT 20H
• By issuing an INT 21H with register AH=00H or 4CH

Activity
Function
Number

Terminating a program 00H

Terminating a program with a specified portion remaining in memory 31H

Terminating a program and passing control to the calling process 4CH

Determining how a process ended 4DH

40 PC DOS 7

• By calling location 50H in the program segment prefix with AH=00H or
4CH.

Using INT 21H is the preferred method. All programs must ensure that the
CS register contains the segment address of the program segment prefix
when terminating using any of the preceding methods except call 4CH.

All of the preceding methods return control to the program that issued the
EXEC. During the process, interrupt vectors 22H, 23H, and 24H (terminate,
Ctrl-Break, and critical error exit addresses) are restored from the values
saved in the program segment prefix of the terminating program. Control is
then given to the terminating address.

Loading an Overlay without Executing It
If AL=3 is specified within function call 4BH, no program segment prefix is
built, and DOS assumes the calling program has allocated memory for the
overlay. The calling program should provide memory in one of two ways:

• Provide enough memory for the overlay when it issues the SETBLOCK
call (4AH)

• Free adequate memory with the 49H call.

When DOS receives an AL=3 request, the system assumes that the
requested memory is owned by the calling program. As in subprograms, an
overlay can be loaded into memory not allocated to it and damage the series
of DOS memory management control blocks.

Programs loaded with AL=3 should not issue the SETBLOCK call (4AH)
because the memory in which they operate is owned by the calling process,
not the overlay. Before terminating, the calling program must return to the
system the memory it allocated to the overlay. When the calling program
terminates, control is returned to DOS.

Calling a Command Processor
To call a command processor, you must do the following:

• Assure that adequate free memory is available to contain the second
copy of the command processor and the command it is to execute. Issue
function call 4AH to shrink allocated memory to your current
requirement. Issue function call 48H with BX=FFFFH. The return is
available memory.

• Build a parameter string for the secondary command processor in the
form:

Chapter 6. Control l ing Processes 41

1 byte = length of parameter string
xx by te = parameter string
1 byte = 0DH (carriage return)

For example, the following assembly statement builds the string to
execute a DISKCOPY command:

DB 19, ″ /C C:DISKCOPY A: B:″ , 13

• Use the EXEC function call (4BH, function value 0) to execute the
secondary copy of the command processor. The COMSPEC =
parameter in the environment passed at PSP+2CH identifies the drive,
directory, and command processor name. Remember to set offset 2 in
the EXEC control block to point to the parameter string.

Responding to Errors
When a PC DOS 7 function cannot be performed (indicating a critical error
situation) control is transferred to interrupt 24H. Function 59H provides
additional information on the error condition.

Handle function calls report an error by setting the carry flag and returning
the error code in AX. FCB function calls report an error by returning FFH in
AL.

The Extended Error function call (59H) provides a common set of error codes
and specific error information such as error classification, location, and
recommended action. In most critical cases, applications can analyze the
error code and take specific action. Recommended actions are intended for
programs that do not understand the error codes. Programs can take
advantage of extended error support both from interrupt 24H critical error
handlers and after issuing interrupt 21H function calls. Do not code to
specific error codes.

Activity Number

Responding to a critical error situation Interrupt 24H

Requesting additional error information and suggested action Function 59H

Responding to a Control-Break Action
Interrupt 23H is issued if a Ctrl-Break occurs during standard I/O. Function
calls 09H and 0AH can be used if there is a ∧C, carriage return and line feed
produced as output.

42 PC DOS 7

If a Ctrl-Break is entered during standard input, standard output, standard
printer, or asynchronous communications adapter operations, an INT 23H is
executed. If BREAK is on, INT 23H is checked on most function calls, except
06H and 07H.

The user-written Ctrl-Break routine can use function calls 09H, 0AH, and 0DH
to respond to the Ctrl-Break action by having ^C, carriage return, and line
feed produced as output. ASCII codes 0DH and 0AH represent carriage
return and line feed, respectively. If the Ctrl-Break routine saves all
registers, it may end with an IRET (return from interrupt) instruction to
continue program execution. If the routine returns with a long return, the
carry flag is used to determine whether or not to stop execution. If the carry
flag is not set, execution continues, as with an IRET.

There are no restrictions on what the Ctrl-Break handler is allowed to do,
providing the registers are unchanged if IRET is used.

Activity Function
Number

Displaying str ing 09H

Buffering keyboard input 0AH

Responding to a control-break action 23H

Chapter 6. Control l ing Processes 43

Requesting and Specifying the System Date and Time
The following functions get or set the system date and time:

Activity
Function
Number

Requesting the system date 2AH

Specifying the system date 2BH

Requesting the system time 2CH

Specifying the system time 2DH

Requesting and Specifying the Interrupt Vectors
A program can create and change the contents of the interrupt vectors, the
4-byte addresses of the routines in memory that service hardware and
software interrupts. On exit, the program must reset the interrupt vectors to
where they were pointing originally.

If you want a program to examine or specify the contents of an interrupt
vector, use PC DOS 7 function calls 35H and 25H and avoid referencing the
interrupt vector locations directly.

Activity
Function
Number

Specifying the interrupt vector value 25H

Requesting the interrupt vector value 35H

44 PC DOS 7

Chapter 7. Debugging a Program

This chapter describes how to use the DEBUG.COM program that is shipped
as part of PC DOS 7 to identify and fix problems in your programs.

 Warning

Use of the DEBUG program should not be undertaken lightly, the utility
has the power to alter code, always ensure that you take a backup copy
of the code that you will be using debug on.

The DEBUG Utility
DEBUG provides a controlled testing environment that enables you to
monitor the execution of a program. You can make changes directly to a
.COM or an .EXE file and execute the file immediately to determine whether
your changes fixed a problem. You do not need to reassemble source code
files first. DEBUG allows you to load, alter, or display any file and to execute
object files as well.

Starting the DEBUG.COM Program
To start DEBUG, enter information in the following format:

DEBUG [[drive:] [path]filename [testfile-parameters]]

You can enter just the DEBUG command, or you can include a file
specification. The parameters parm1 and parm2 represent input and output
specifications of the program you are debugging. For example, suppose you
wanted to monitor the execution of the PC DOS 7 DISKCOMP utility. You
enter:

DEBUG DISKCOMP.COM A: B:

The DEBUG program loads DISKCOMP into memory and displays the DEBUG
prompt:

-

The hyphen (-) tells you DEBUG is ready to accept commands to alter,
display, or execute the contents of the program in memory.

 Copyright IBM Corp. 1995 45

If you enter just DEBUG without a file specification, you can either work with
the present memory contents or you can load a required file into memory
using the DEBUG Name and Load commands.

Entering Commands at the DEBUG Prompt
A DEBUG command consists of a single letter, usually followed by one or
more parameters. For example, the Name command is entered at the
DEBUG prompt as a single letter followed by a file specification:

-N MYPROG

A command and its parameters can be entered in uppercase, lowercase, or
a combination of both. The command and its parameters can be separated
by delimiters; however, delimiters are only required between two
consecutive hexadecimal values. Thus, the following Dump commands are
equivalent:

dcs:100 110
d cs:100 110
d,cs:100,110

A command is activated only after you press the Enter key. If you want to
terminate a command and return to the DEBUG prompt, simultaneously
press the Ctrl and Break keys.

For commands producing a large amount of output, you can simultaneously
press the Ctrl and Num Lock keys (or Pause key if available) to suspend the
display and then press any key to restart the display, or you can redirect the
command ′s output to a file.

When DEBUG encounters a syntax error in a line, it displays the line with the
error identified as follows:

d cs:100 CS:100
^error 110

In this example, the Dump command expects the second address to contain
only a hexadecimal offset value. It finds the S, which is not a hexadecimal
character.

46 PC DOS 7

DEBUG Command Summary
The table below lists the DEBUG commands and describes the debugging
operations you can perform with them. Complete format descriptions and
examples for each command can be found starting on page 49.

Command Task Description

A (Assemble) Assemble IBM Macro Assembler statements directly into
memory.

C (Compare) Compare the contents of two blocks of memory.

D (Dump) Dump the contents of a portion of memory to the display or
redirect it to a file.

E (Enter) Make changes to bytes in memory.

F (Fill) Fill a range of memory with byte values.

G (Go) Execute the program in memory from one address to the
breakpoint address and then display the next instruction.

H (Hex) Add and subtract two hexadecimal values and display the
results.

I (Input) Display the input in the first byte next to the port.

L (Load) Load the contents of absolute disk sectors or a file specified
by the Name command into memory.

M (Move) Copy the contents of a block of memory to another location.

N (Name) Set up file control blocks and file specification information for
Load and Write commands.

O (Output) Send a byte to an output port.

P (Proceed) Execute a subroutine call, loop instruction, interrupt, or repeat
string instruction and return control to DEBUG at the next
instruction.

Q (Quit) End the DEBUG session without saving the debugged program.

R (Register) Display the contents of registers and the settings of flags.

S (Search) Search a range of memory for characters.

T (Trace) Execute one or more instructions in your program and display
the contents of registers and flags after each instruction.

U (Unassemble) Translate the contents of memory into Assembler-l ike
statements, displaying their addresses and hexadecimal
values.

W (Write) Write the debugged program to absolute disk sectors or to the
original fi le loaded with DEBUG.

XA (Allocate) Allocate a specified number of expanded memory pages to an
EMS handle.

XD (Deallocate) Deallocate an EMS handle.

XM (Map) Map an EMS logical page to an EMS physical page from an
EMS handle.

XS (Status) Display the status of expanded memory.

Chapter 7. Debugging a Program 47

The DEBUG Work Space
When the DEBUG program starts, the registers and flags are set to the
following values for the program being debugged:

• The segment registers (CS, DS, ES, and SS) are set to the bottom of free
memory; that is, the first segment after the end of the DEBUG program.

• The Instruction Pointer (IP) is set to hex 0100.
• The Stack Pointer (SP) is set to the end of the segment, or the bottom of

the transient portion of the program loader, whichever is lower. The
segment size at offset 6 is reduced by hex 100 to allow for a stack that
size.

• The remaining registers (AX, BX, CX, DX, BP, SI, and DI) are set to 0.
However, if you start the DEBUG program with a file specification, the CX
register contains the length of the file in bytes. If the file is greater than
64KB, the length is contained in registers BX and CX (the high portion in
BX).

• The initial state of the flags is:

NV UP EI PL NZ NA PO NC

• The default disk transfer address is set to hex 80 in the code segment.

All of available memory is allocated. At this point, the loaded program is
unable to allocate memory.

.EXE Files
If a file loaded by DEBUG has an extension of .EXE, DEBUG does the
necessary relocation and sets the segment registers, stack pointer, and
instruction pointer to the values defined in the file. The DS and ES registers,
however, point to the program segment prefix at the lowest available
segment. The BX and CX registers contain the size of the program that is
smaller than the file size.

The program is loaded at the high end of memory if the appropriate
parameter was specified when the linker created the file.

.HEX Files
If a file loaded by DEBUG has an extension of .HEX, the file is assumed to be
in INTEL hex format, and is converted to executable form while being loaded.

48 PC DOS 7

A (Assemble) Command

Purpose
Assembles macro assembler language statements directly into memory.

Format
A [address]

Parameters
address Use any of the following formats:

• A segment register plus an offset, such as CS:0100
• A segment address plus an offset, such as 4BA:0100
• An offset only, such as 100. In this case, the default

segment is used.

Comments
All numeric input to the Assemble command is in hexadecimal. The
assembly statements you enter are assembled into memory at successive
locations, starting with the address specified in address. If no address is
specified, the statements are assembled into the area at CS:0100, if no
previous Assemble command was used, or into the location following the last
instruction assembled by a previous Assemble command. After all desired
statements have been entered, press the Enter key when you are prompted
for the next statement to return to the DEBUG prompt.

DEBUG responds to invalid statements by displaying:

∧error

and re-displaying the current assemble address.

DEBUG supports standard 8086/8088 assembly language syntax (and the 8087
instruction set), with the following rules:

• All numeric values entered are hexadecimal and can be entered as 1
through 4 characters.

• Prefix mnemonics are entered in front of the opcode to which they refer.
They can also be entered on a separate line.

• The segment override mnemonics are CS:, DS:, ES:, and SS:.

Chapter 7. Debugging a Program 49

• String manipulation mnemonics must specify the string size. For
example, MOVSW must be used to move word strings and MOVSB must
be used to move byte strings.

• The mnemonic for the far return is RETF.

• The assembler will automatically assemble short, near, or far jumps and
calls depending on byte displacement to the destination address. These
can be overridden with the NEAR or FAR prefix. For example:

0100:0500 JMP 502 ; a 2 byte short jump
0100:0502 JMP NEAR 505 ; a 3 byte near jump
0100:0505 JMP FAR 50A ; a 5 byte far jump

The NEAR prefix can be abbreviated to NE, but the FAR prefix cannot be
abbreviated.

• DEBUG cannot tell whether some operands refer to a word memory
location or a byte memory location. In this case, the data type must be
explicitly stated with the prefix WORD PTR or BYTE PTR. DEBUG will also
accept the abbreviations WO and BY. For example:

NEG BYTE PTR [128]
DEC WO [SI]

• DEBUG also cannot tell whether an operand refers to a memory location
or to an immediate operand. DEBUG uses the common convention that
operands enclosed in square brackets refer to memory. For example:

MOV AX,21 ; Load AX with 21H
MOV AX,[21] ; Load AX with the contents of memory location 21H

• Two popular pseudo-instructions have also been included. The DB
opcode assembles byte values directly into memory. The DW opcode
assembles word values directly into memory. For example:

DB 1,2,3,4,″THIS IS AN EXAMPLE″
DB ′ THIS IS A QUOTE: ″ ′
DB ″THIS IS AN APOSTROPHE:′ ″

DW 1000,2000,3000,″BACH:″

• All forms of the register indirect commands are supported. For example:

ADD BX,34[BP+2] [SI-1]
POP [BP+DI]
PUSH [SI]

• All opcode synonyms are supported. For example:

50 PC DOS 7

LOOPZ 100
LOOPE 100

JA 200
JNBE 200

• For numeric co-processor opcodes the WAIT or FWAIT prefix must be
explicitly specified. For example:

FWAIT FADD ST,ST(3) ;This line will assemble a FWAIT prefix

FLD TBYTE PTR [BX] ;This line will not

Examples

C>debug
-a200
08B4:0200 xor ax,ax
08B4:0202 mov [bx],ax
08B4:0204 ret
08B4:0205

C (Compare) Command

Purpose
Compares the contents of two blocks of memory.

Format
C range address

Parameters
range Either of these two formats:

• An address followed by an offset, such as CS:100 110.
• An address followed by L value, where value is the number

of hexadecimal bytes to be processed. For example, CS:100
L 10.

The limit for range is hexadecimal 10000 or decimal 64KB. To
specify a range of 64KB within 4 hexadecimal characters, enter
0000 or 0 for value.

Chapter 7. Debugging a Program 51

address Any of these three formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

Comments
The contents of the two blocks of memory are compared; the length of the
comparison is determined from the range. If unequal bytes are found, their
addresses and contents are displayed, in the form:

addr1 byte1 byte2 addr2

where, the first half (addr1 byte1) refers to the location and contents of the
mismatching locations in range, and the second half (byte2 addr2) refers to
the byte found in address.

If you enter only an offset for the beginning address of range, the C
command assumes the segment contained in the DS register. To specify an
ending address for range, enter it with only an offset value.

Examples
C 100 L20 200

The 32 bytes (hex 20) of memory beginning at DS:100 are compared with the
32 bytes beginning at DS:200. L20 is the range.

D (Dump) Command

Purpose
Displays the contents of a portion of memory.

Format
D [address]

or

D [range]

52 PC DOS 7

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

range Either of these two formats:

• An address followed by an offset, such as CS:100 110.
• An address followed by L value, where value is the number

of hexadecimal bytes to be processed. For example, CS:100
L 10.

The limit for range is hexadecimal 10000 or decimal 64K bytes.
To specify a range of 64K bytes within 4 hexadecimal
characters, enter 0000 or 0 for value.

Comments
The dump is displayed in two parts:

 1. A hexadecimal portion. Each byte is displayed in hexadecimal.

 2. An ASCII portion. The bytes are displayed as ASCII characters.
Unprintable characters (ASCII 0 to 31 and 127 to 255) are indicated by a
period.

With a 40-column system display format, each line begins on an 8-byte
boundary and shows 8 bytes.

With an 80-column system display format, each line begins on a 16-byte
boundary and shows 16 bytes. There is a hyphen between the 8th and 9th
bytes.

Note: The first line may have fewer than 8 or 16 bytes if the starting address
of the dump is not on a boundary. In this case, the second line of the
dump begins on a boundary.

The Dump command has two format options.

Option 1

Use this option to display the contents of hex 40 bytes (40-column mode) or
hex 80 bytes (80-column mode). For example:

Chapter 7. Debugging a Program 53

D address

or

D

The contents are dumped starting with the specified address.

If you do not specify an address, the D command assumes the starting
address is the location following the last location displayed by a previous D
command. Thus, it is possible to dump consecutive 40-byte or 80-byte areas
by entering consecutive D commands without parameters.

If no previous D command was entered, the location is offset hex 100 into the
segment originally initialized in the segment registers by DEBUG.

Note: If you enter only an offset for the starting address, the D command
assumes the segment contained in the DS register.

Option 2

Use this option to display the contents of the specified address range. For
example:

D range

Note: If you enter only an offset for the starting address, the D command
assumes the segment contained in the DS register. If you specify an
ending address, enter it with only an offset value.

For example:

D cs:100 10C

A 40-column display format might look like this:

04BA:0100 42 45 52 54 41 20 54 00
BERTA T.

04BA:0108 20 42 4F 52 47
BORG

54 PC DOS 7

E (Enter) Command

Purpose
• Replaces the contents of one or more bytes, starting at the specified

address, with the values contained in the list (see Option 1).

• Displays and allows modification of bytes in a sequential manner (see
Option 2).

Format
E address [l ist]

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

list A string of byte values. If you include a character string,
enclose the characters in single or double quotation marks. To
specify a quotation mark as a character within the string when it
is also used to delimit the string, type it twice.

″These ″″quotes″″ are correct.″
′ This one′ ′ s okay, too.′

Comments
If you enter only an offset for the address, the E command assumes the
segment contained in the DS register.

The Enter command has two format options.

Option 1

Use this option to place the list in memory beginning at the specified
address.

E address list

For example:

E ds:100 F3 ″xyz″ 8D

Chapter 7. Debugging a Program 55

Memory locations ds:100 through ds:104 are filled with the 5 bytes specified
in the list.

Option 2

Use this option to display the address and the byte of a location, then the
system waits for your input.

For example:

E address

Enter a 1- or 2-character hexadecimal value to replace the contents of the
byte; then take any one of the following actions:

 1. Press the space bar to advance to the next address. Its contents are
displayed. If you want to change the contents take option 1, above.

To advance to the next byte without changing the current byte, press the
space bar again.

 2. Enter a hyphen to back up to the preceding address. A new line is
displayed with the preceding address and its contents. If you want to
change the contents, take option 1, above.

To back up one more byte without changing the current byte, enter
another hyphen.

 3. Press the Enter key to end the Enter command.

Note: Display lines can have 4 or 8 bytes of data, depending on whether the
system display format is 40- or 80-column. Spacing beyond an 8-byte
boundary causes a new display line, with the beginning address, to be
started.

For example:

E cs:100

might cause this display:

04BA:0100 EB.

To change the contents of 04BA:0100 from hex EB to hex 41, enter 41.

04BA:0100 EB.41

To see the contents of the next three locations, press the space bar three
times. The screen might look like this:

04BA:0100 EB.41 10. 00. BC.

56 PC DOS 7

To change the contents of the current location (04BA:0103) from hex BC to
hex 42, enter 42.

04BA:0100 EB.41 10. 00. BC.42

Now, suppose you want to back up and change the hex 10 to hex 6F. This is
what the screen looks like after entering two hyphens and the replacement
byte:

04BA:0100 EB.41 10.00. BC.42-
04BA:0102 00.-
04BA:0101 10.6F

Press the Enter key to end the Enter command. The hyphen prompt will
appear.

F (Fill) Command

Purpose
Fills the memory locations in the range with the values in the list.

Format
F range list

Parameters
range Either of these two formats:

• An address followed by an offset, such as CS:100 110
• An address followed by L value, where value is the number

of hexadecimal bytes to be processed. For example, CS:100
L 10.

The limit for range is hexadecimal 10000 or decimal 64K bytes.
To specify a range of 64K bytes within 4 hexadecimal
characters, enter 0000 or 0 for value.

list A string of byte values. If you include a character string,
enclose the characters in single or double quotation marks. To
specify a quotation mark as a character within the string when it
is also used to delimit the string, type it twice.

″These ″″quotes″″ are correct.″
′ This one′ ′ s okay, too.′

Chapter 7. Debugging a Program 57

Comments
If the list contains fewer bytes than the address range, the list is used
repeatedly until all the designated memory locations are filled.

If the list contains more bytes than the address range, the extra list items are
ignored.

Note: If you enter only an offset for the starting address of the range, the Fill
command assumes the segment contained in the DS register.

Examples
F 4BA:100 L 5 F3 ″XYZ″ 8D

Memory locations 04BA:100 through 04BA:104 are filled with the 5 bytes
specified. Remember that the ASCII values of the list characters are stored.
Thus, locations 100-104 will contain F3 58 59 5A 8D.

G (Go) Command

Purpose
Executes the program you are debugging.

Stops the execution when the instruction at a specified address is reached
(breakpoint), and displays the registers, flags, and the next instruction to be
executed.

Format
G [= address] [address [address...]]

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

58 PC DOS 7

Comments
Program execution begins with the current instruction, whose address is
determined by the contents of the CS and IP registers, unless overridden by
t h e = address parameter (the = must be entered). I f = address is specified,
program execution begins with CS:=address.

The Go command has two format options.

Option 1

Use this option to execute the program you are debugging without
breakpoints. For example:

G [=address]

This option is useful when testing program execution with different
parameters each time. (Refer to the Name command.) Be certain the CS:IP
values are set properly before issuing the G command, if not using
= address.

Option 2

This option performs the same function as Option 1 but, in addition, allows
breakpoints to be set at the specified addresses. For example:

G [=address] address
[address...]

This method causes execution to stop at a specified location so the system
or program environment can be examined.

You can specify up to ten breakpoints in any order. You may wish to take
advantage of this if your program has many paths, and you want to stop the
execution no matter which path the program takes.

The DEBUG program replaces the instruction codes at the breakpoint
addresses with an interrupt code (hex CC). If any one breakpoint is reached
during execution, the execution is stopped, the registers and flags are
displayed, and all the breakpoint addresses are restored to their original
instruction codes. If no breakpoint is reached, the instructions are not
restored.

Chapter 7. Debugging a Program 59

Notes:

 1. Once a program has reached completion (DEBUG has displayed the
“Program terminated normally” message), you must reload the program
before it can be executed again.

 2. Make sure that the address parameters refer to locations that contain
valid 8086/8088 instruction codes. If you specify an address that does not
contain valid instruction in the first byte, unpredictable results occur.

 3. The stack pointer must be valid and have 6 bytes available for the Go
command, otherwise, unpredictable results occur.

 4. If only an offset is entered for a breakpoint, the G command assumes the
segment contained in the CS register.

 5. Do not set breakpoints at instructions in read-only memory (ROM BIOS
or ROM BASIC).

For example:

G 102 1EF 208

Be careful not to set a breakpoint between a segment override indication
(such as ES; alone on a line), and the instruction that the override qualifies.

Execution begins with the current instruction, whose address is the current
values of CS:IP. T h e = address parameter was not used.

Three breakpoints are specified; assume that the second is reached.
Execution stops before the instruction at location CS:1EF is executed, the
original instruction codes are restored, all three breakpoints are removed,
the display occurs, and the Go command ends.

Refer to the Register command for a description of the display.

H (Hexarithmetic) Command

Purpose
Adds the two hexadecimal values, then subtracts the second from the first.
Displays the sum and difference on one line.

60 PC DOS 7

Format
H value value

Examples
H 0F 8
0017 0007

The hexadecimal sum of 000F and 0008 is 0017, and their difference is 0007.

I (Input) Command

Purpose
Inputs and displays (in hexadecimal) 1 byte from the specified port.

Format
I portaddress

Parameters
portaddress A 1− 4 character hexadecimal value specifying an 8- or 16-bit

port address.

Examples
I 2F8
6B

The single hexadecimal byte read from port 02F8 is displayed (6B).

L (Load) Command

Purpose
Loads a file or absolute disk sectors into memory.

Chapter 7. Debugging a Program 61

Format
L [address [drive sector sector]]

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

drive A decimal number that indicates a particular drive. For
example, drive A is 0, drive B is 1, and so on.

sector 1− 3 character hexadecimal values that specify the starting
relative sector number and the number of sectors to be loaded
or written.

Note: Relative sector numbers are obtained by counting the
sectors on the disk surface. The first sector on the disk
is at track 0, sector 1, head 0, and is relative sector 0.
The numbering continues for each sector on that track
and head, then continues with the first sector on the next
head of the same track. When all sectors on all heads of
the track have been counted, numbering continues with
the first sector on head 0 of the next track.

Comments
The maximum number of sectors that can be loaded with a single Load
command is hex 80. A sector contains 512 bytes.

Note: DEBUG displays a message if a disk read error occurs. You can retry
the read operation by pressing the F3 key to re-display the Load
command. Then press the Enter key.

The Load command has two format options.

Option 1

Use this option to load data from the disk specified by drive and place the
data in memory beginning at the specified address. For example:

L address drive sector sector

The data is read from the specified starting relative sector (first sector) and
continues until the requested number of sectors is read (second sector).

62 PC DOS 7

Note: If you only enter an offset for the beginning address, the L command
assumes the segment contained in the CS register.

For example, to load data, you might enter:

L DS:100 1 0F 6D

The data is loaded from the diskette in drive B and placed in memory
beginning at DS:100. Consecutive sectors of data are transferred, 6DH (109),
starting with relative sector hex 0F (15) (the 16th sector on the diskette).

Note: Option 1 cannot be used if the drive specified is a network drive.

Option 2

When issued without parameters, or with only the address parameter, use
this option to load the file whose file specification is at CS:80. For example:

L

or

L address

This condition is met by specifying the file name when starting the DEBUG
program, or by using the Name command.

Note: If DEBUG was started with a file specification and subsequent Name
commands were used, you may need to enter a new Name command
for the proper file specification before issuing the Load command.

The file is loaded into memory beginning at CS:100 (or the location specified
by address), and is read from the drive specified in the file specification, or
from the default drive, if none was specified. Note that files with extensions
of .COM or .EXE are always loaded at CS:100. If you specified an address, it
is ignored.

The BX and CX registers are set to the number of bytes read; however, if the
file being loaded has an extension of .EXE, the BX and CX registers are set
to the actual program size. The file may be loaded at the high end of
memory. Refer to “The DEBUG Work Space” on page 48 for the conditions
that are in effect when .EXE or .HEX files are loaded.

For example:

DEBUG
-N myprog
-L
-

Chapter 7. Debugging a Program 63

The file named myprog is loaded from the default directory and placed in
memory beginning at location CS:0100.

M (Move) Command

Purpose
Moves the contents of the memory locations specified by range to the
locations beginning at the address specified.

Format
M range address

Parameters
range Either of these two formats:

• An address followed by an offset, such as CS:100 110.
• An address followed by L value, where value is the number

of hexadecimal bytes to be processed. For example, CS:100
L 10.

The limit for range is hexadecimal 10000 or decimal 64KB. To
specify a range of 64KB within 4 hexadecimal characters, enter
0000 or 0 for value.

address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

Comments
Overlapping moves are always performed without loss of data during the
transfer. (The source and destination areas share some of the same
memory locations.)

The data in the source area remains unchanged unless overwritten by the
move.

64 PC DOS 7

Notes:

 1. If you enter only an offset for the beginning address of the range, the M
command assumes the segment contained in the DS register. If you
specify an ending address for the range, enter it with only an offset
value.

 2. If you enter only an offset for the address of the destination area, the M
command assumes the segment contained in the DS register.

Examples
M CS:100 L10 500

The 17 bytes of data from CS:100 through CS:110 are moved to the area of
memory beginning at DS:500.

N (Name) Command

Purpose
• Formats file control blocks for the first two file specifications, at CS:5C

and CS:6C. (Starting DEBUG with a file specification also formats a file
control block at CS:5C.)

The file control blocks are set up for the Load and Write commands and
to supply required file names for the program being debugged.

• All file specifications and other parameters, including delimiters, are
placed exactly as entered in a parameter save area at CS:81, with CS:80
containing the number of characters entered. Register AX is set to
indicate the validity of the drive specifiers entered with the first two file
specifications.

Format
N [d:] [path]filename [.ext]

Comments
If you start the DEBUG program without a file specification, you must use the
Name command before a file can be loaded with the L command.

Chapter 7. Debugging a Program 65

Examples
DEBUG
-N myprog
-L
-

To define file specifications or other parameters required by the program
being debugged, enter:

DEBUG myprog
-N file1 file2
-

In this example, DEBUG loads the file myprog at CS:100, and leaves the file
control block at CS:5C formatted with the same file specification. Then, the
Name command formats file control blocks for file1 and file2 at CS:5C and
CS:6C, respectively. The file control block for myprog is overwritten. The
parameter area at CS:81 contains all characters entered after the N,
including all delimiters, and CS:80 contains the count of those characters
(hex 0C).

O (Output) Command

Purpose
Sends the byte to the specified output port.

Format
O portaddress byte

Parameters
portaddress A 1− 4 character hexadecimal value specifying an 8- or 16-bit

port address.

Examples
To send the byte value 4F to output port 2F8, enter:

O 2F8 4F

66 PC DOS 7

P (Proceed) Command

Purpose
Causes the execution of a subroutine call, a loop instruction, an interrupt, or
a repeat string instruction to stop at the next instruction.

Format
P[= a d d r e s s] [value]

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

value A 1− 4 character hexadecimal value, specifying the number of
instructions to execute.

Comments
When at a subroutine call, a loop instruction, an interrupt, or a repeat string
instruction, issue the Proceed command to execute the instruction (perform
the entire function), and return control at the next instruction. The Proceed
command has the same syntax as the Trace command. Specifying P0 is the
same as specifying T0.

Examples
If the following instructions are executed:

0100 CALL 1000
0103 JC 2000
...
1000 XOR AX,AX
...
1XXX RET

And if CS:IP was pointing to the CALL 1000 instruction, typing P causes the
execution of the subroutine and returns control to DEBUG at the JC
instruction.

Chapter 7. Debugging a Program 67

Q (Quit) Command

Purpose
Ends the DEBUG program.

Format
Q

Comments
The file that you are working on in memory is not saved by the Quit
command. You must use the Write command to save the file.

DEBUG returns to the command processor which then issues the normal
command prompt.

Examples
-Q
A>

R (Register) Command

Purpose
The Register command has the following three functions:

• Displays the hexadecimal contents of a single register with the option of
changing those contents

• Displays the hexadecimal contents of all the registers, plus the
alphabetic flag settings, and the next instruction to be executed

• Displays the eight 2-letter alphabetic flag settings with the option of
changing any or all of them.

Format
R [registername]

68 PC DOS 7

Parameters
registername The valid names are:

 AX SP CS IP
 BX BP DS F
 CX SI ES
 DX DI SS

IP refers to the instruction pointer, and F refers to the flags
register.

Comments
When the DEBUG program starts, the registers and flags are set to certain
values for the program being debugged. (Refer to “The DEBUG Work Space”
on page 48.)

Display a Single Register

To display the contents of a single register, enter the register name:

R AX

The system might respond with:

AX F1E4
:

Now you can take one of two actions: press the Enter key to leave the
contents unchanged, or change the contents of the AX register by entering a
1-4 character hexadecimal value, such as hex FFF.

AX F1E4
:FFF

Now, pressing the Enter key changes the contents of the AX register to hex
0FFF.

Display All Registers and Flags

To display the contents of all registers and flags and the next instruction to
be executed, type:

R

The system responds:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000 SI=005C DI=0000
DS=3D5B ES=3D5B SS=3D5B CS=3D5B IP=011A NV UP EI PL NZ NA PO NC
3D5B:011A CD21 INT 21

Chapter 7. Debugging a Program 69

The first four lines display the hexadecimal contents of the registers and the
eight alphabetic flag settings. The last line indicates the location of the next
instruction to be executed and its hexadecimal and unassembled formats.
This is the instruction pointed to by CS:IP.

A system with an 80-column display shows:

1st line - 8 registers
2nd line - 5 registers and 8 flag settings
3rd line - next instruction information

A system with a 40-column display shows:

1st line - 4 registers
2nd line - 4 registers
3rd line - 4 registers
4th line - 1 register and 8 flag settings
5th line - next instruction information

Display All Flags
There are eight flags, each with two-letter codes to indicate either a set
condition or a clear condition. The flags appear in displays in the order
shown in the following table:

To display all flags, enter:

R F

If all the flags are in a set condition, the response is:

OV DN EI NG ZR AC PE CY -

Now you can either press the Enter key to leave the settings unchanged or
change any or all of the settings.

Flag Name Set Clear

Overf low (yes/no) OV NV

Direction (decrease/increase) DN UP

Interrupt (enable/disable) EI DI

Sign (negative/posit ive) NG PL

Zero (yes/no) ZR NZ

Auxil iary carry (yes/no) AC NA

Pari ty (even/odd) PE PO

Carry (yes/no) CY NC

70 PC DOS 7

To change a flag, just enter its opposite code. The opposite codes can be
entered in any order with or without intervening spaces. For example, to
change the first, third, fifth, and seventh flags, enter:

OV DN EI NG ZR AC PE CY - PONZDINV

The changes in this example are entered in reverse order.

Press the Enter key and the flags are modified as specified, the prompt
appears, and you can enter the next command.

If you want to see if the new codes are in effect, enter:

R F

The response is:

NV DN DI NG NZ AC PO CY -

The first, third, fifth, and seventh flags are changed as requested. The
second, fourth, sixth, and eighth flags are unchanged. A single flag can be
changed only once for each R F command.

S (Search) Command

Purpose
Searches the range for the character(s) in the list.

Format
S range list

range Either of these two formats:

• An address followed by an offset, such as CS:100 110.
• An address followed by L value, where value is the number

of hexadecimal bytes to be processed. For example, CS:100
L 10.

The limit for range is hexadecimal 10000 or decimal 64KB. To
specify a range of 64KB within 4 hexadecimal characters, enter
0000 or 0 for value.

list A string of byte values. If you include a character string,
enclose the characters in single or double quotation marks. To
specify a quotation mark as a character within the string when it
is also used to delimit the string, type it twice.

Chapter 7. Debugging a Program 71

″These ″″quotes″″ are correct.″
′ This one′ ′ s okay, too.′

Comments
All matches are indicated by displaying the addresses where matches are
found.

A display of the prompt without an address means that no match was found.

Note: If you enter only an offset for the starting address of the range, the S
command assumes the segment contained in the DS register.

Examples
If you want to search the range of addresses from CS:100 through CS:110 for
hex 41, type:

S CS:100 110 41

If two matches are found the response might be:

04BA:0104
04BA:010D

If you want to search the same range of addresses for a match with the
4-byte list (41 ″AB″ E), enter:

S CS:100 L 11 41 ″AB″ E

The starting addresses of all matches are listed. If no match is found, no
address is displayed.

T (Trace) Command

Purpose
Executes one or more instructions starting with the instruction at CS:IP, or at
= address, if it is specified. The = must be entered. One instruction is

assumed, but you can specify more than one with value. This command
displays the contents of all registers and flags after each instruction
executes. For a description of the display format, refer to the Register
command.

72 PC DOS 7

Format
T [= address] [value]

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

value A 1− 4 character hexadecimal value, specifying the number of
instructions to execute.

Comments
The display caused by the Trace command continues until value instructions
are executed. Therefore, when tracing multiple instructions, remember you
can suspend the scrolling at any time by pressing the Ctrl and the NumLock
keys together, or the Pause key. Resume scrolling by entering any other
character.

Notes:

 1. The Trace command disables all hardware interrupts before executing
the user instruction, and then re-enables the interrupts when the trap
interrupt occurs following the execution of the instruction.

 2. TRACE should not be used with any steps that change the contents of the
8259 interrupt mask (ports 20 and 21).

 3. If you trace an INT3 instruction, the breakpoint is set at the INT3 location.

Examples
T

If the IP register contains 011A, and that location contains B40E (MOV
AH,0EH), this may be displayed:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000 SI=005C DI=0000
DS=3D5B ES=3D5B SS=3D5B CS=3D5B IP=011C NV UP EI PL NZ NA PO NC
3D5B:011C CD21 INT 21

This displays the results after the instruction at 011A is executed, and
indicates the next instruction to be executed is the INT 21 at location
04BA:011C.

T 10

Chapter 7. Debugging a Program 73

Sixteen instructions are executed (starting at CS:IP). The contents of all
registers and flags are displayed after each instruction. The display stops
after the 16th instruction has been executed. Displays may scroll off the
screen unless you suspend the display by simultaneously pressing the Ctrl
and NumLock keys, or the Pause key.

U (Unassemble) Command

Purpose
Unassembles instructions (that is, translates the contents of memory into
assembler-like statements) and displays their addresses and hexadecimal
values, together with assembler-like statements. For example, a display
might look like this:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 FC CLD
04BA:0104 7665 JBE 016B

Format
U [address]

or

U [range]

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

range Either of these two formats:

• An address followed by an offset, such as CS:100 110.
• An address followed by L value, where value is the number

of hexadecimal bytes to be processed. For example, CS:100
L 10.

The limit for range is hexadecimal 10000 or decimal 64KB. To
specify a range of 64KB within 4 hexadecimal characters, enter
0000 or 0 for value.

74 PC DOS 7

Comments
The number of bytes to be unassembled depends on your system display
format (40 or 80 columns), and which option you use with the Unassemble
command.

Notes:

 1. In all cases, the number of bytes unassembled and displayed may be
slightly more than either the amount requested or the default amount.
This happens because the length of the instructions vary. Therefore,
unassembling the last instruction may result in more bytes than
expected.

 2. Make sure that the address parameters refer to locations containing valid
8086/8088 instruction codes. If you specify an address that does not
contain the first byte of a valid instruction, the display will be incorrect.

 3. If you enter only an offset for the starting address, the U command
assumes the segment contained in the CS register.

The Unassemble command has the following two format options:

Option 1

Use this option to either unassemble instructions without specifying an
address, or to unassemble instructions beginning with a specified address.
For example:

U

or

U address

Sixteen bytes are unassembled with a 40-column display. Thirty-two bytes
are unassembled in 80-column mode.

Instructions are unassembled beginning with the specified address.

If you do not specify an address, the U command assumes the starting
address is the location following the last instruction unassembled by a
previous U command. Thus, it is possible to unassemble consecutive
locations, producing continuous unassembled displays, by entering
consecutive U commands without parameters.

If no previous U command is entered, the location is offset hex 0100 into the
segment originally initialized in the segment registers by DEBUG.

Chapter 7. Debugging a Program 75

Option 2

Use this option to unassemble instructions in a specified address range. For
example:

U range

All instructions in the specified address range are unassembled, regardless
of the system display format.

Note: If you specify an ending address, enter it with only an offset value.

For example:

U 04ba:0100 108

The display response may be:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 FC CLD
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

The same display appears if you enter:

U 04BA:100 L 7

or

U 04BA:100 L 8

or

U 04BA:100 L 9

W (Write) Command

Purpose
Writes the data being debugged to disk.

Format
W [address [drive sector sector]]

76 PC DOS 7

Parameters
address Any of the following formats:

• A segment register plus an offset, such as CS:0100.
• A segment address plus an offset, such as 4BA:0100.
• An offset only, such as 100. In this case, the default

segment is used.

drive A decimal number that indicates a particular drive. For
example, drive A is 0, drive B is 1, and so on.

sector 1− 3 character hexadecimal values that specify the starting
relative sector number and the number of sectors to be loaded
or written.

Note: Relative sector numbers are obtained by counting the
sectors on the disk surface. The first sector on the disk
is at track 0, sector 1, head 0, and is relative sector 0.
The numbering continues for each sector on that track
and head, then continues with the first sector on the next
head of the same track. When all sectors on all heads of
the track have been counted, numbering continues with
the first sector on head 0 of the next track.

Comments
No more than hex 80 sectors can be written with a single Write command. A
sector contains 512 bytes.

DEBUG displays a message if a disk write error occurs. You can retry the
write operation by pressing the F3 key to re-display the Write command, then
press the Enter key.

The Write command has two format options.

Option 1

Use this option to write data to disk beginning at a specified address. For
example:

W address drive sector sector

The data beginning at the specified address is written to the disk in the
indicated drive. The data is written starting at the specified starting relative
sector (first sector) and continues until the requested number of sectors are
filled (second sector).

Chapter 7. Debugging a Program 77

Notes:

 1. Be extremely careful when you write data to absolute sectors because an
erroneous sector specification destroys whatever was on the disk at that
location.

 2. If only an offset is entered for the beginning address, the W command
assumes the segment is contained in the CS register.

 3. Remember, the starting sector and the sector count are both specified in
hexadecimal.

 4. Option 1 cannot be used if the specified drive is a network drive.

For example:

W 1FD 1 100 A

The data beginning at CS:01FD is written to the diskette in drive B, starting at
relative sector hex 100 (256) and continuing for hex 0A (10) sectors.

Option 2

This option permits you to use the WRITE command without specifying
parameters or specifying only the address parameter. For example:

W

or

W address

When issued as shown above, the Write command writes the file (whose file
specification is at CS:80) to disk.

This condition is met by specifying the file when starting the DEBUG
program, or by using the Name command.

Note: If DEBUG was started with a file specification and subsequent Name
commands were used, you may need to enter a new Name command
for the proper file specification before issuing the Write command.

In addition, the BX and CX registers must be set to the number of bytes to be
written. They may have been set properly by the DEBUG or Load
commands, but were changed by a Go or Trace command. You must be
certain the BX and CX registers contain the correct values.

The file beginning at CS:100, or at the location specified by address, is
written to the diskette in the drive included in the file specification or the
default drive if no drive was specified.

78 PC DOS 7

The debugged file is written over the original file that was loaded into
memory, or into a new file if the file name in the FCB didn′ t previously exist.

Note: An error message is issued if you try to write a file with an extension
of .EXE or .HEX. These files are written in a specific format that
DEBUG cannot support.

If you find it necessary to modify a file with an extension of .EXE or .HEX, and
the exact locations to be modified are known, use the following procedure:

 1. RENAME the file to an extension other than .EXE or .HEX.

 2. Load the file into memory using the DEBUG or Load command.

 3. Modify the file as needed in memory, but do not try to execute it with the
Go or Trace commands. Unpredictable results would occur.

 4. Write the file back using the Write command.

 5. RENAME the file to its correct name.

XA (EMS Allocate) Command

Purpose
Allocates a specified number of expanded memory pages to a handle.

Format
XA count

Comments
The count indicates the number of 16K pages to allocate. If the amount of
expanded memory identified by count is available, a message is displayed,
indicating that a handle has been created. The XS (EMS Status) command
can be used to display the number of expanded memory pages that are
available.

Examples
To allocate two EMS pages, enter:

XA 2

If two pages of memory are available, a message like this is displayed:

Handle created = 000E

Chapter 7. Debugging a Program 79

XD (EMS Deallocate) Command

Purpose
Deallocates a handle.

Format
XD handle

Comments
The handle identifies the number of the handle to be deallocated. If the
number is valid, a message is displayed, indicating the handle has been
deallocated. The XS (EMS Status) command can be used to display the
handles currently being used.

Examples
To deallocate a handle when you have only one allocated, you can enter:

XD 000E

If the handle deallocation is successful, you receive a message like this:

Handle 000E deallocated.

XM (EMS Map) Command

Purpose
Maps an EMS logical page to an EMS physical page from an EMS handle.

Format
XM lpage ppage handle

Comments
The lpage specifies the number of the handle′s logical page that is to be
mapped. The ppage is the number of the physical page to be mapped to.
The handle is the EMS allocated label used to reference a group of logical
pages. If syntax items are valid, a message is displayed indicating that the
logical page has been mapped to the physical page.

80 PC DOS 7

Examples
To map a logical page to a physical page using handle 0001, you can enter:

XM 1 0 1

If the mapping is successful, you receive this message:

Logical page 01 mapped to physical page 00.

XS (EMS Status) Command

Purpose
Displays the status of expanded memory.

Format
XS

Comments
The following expanded memory information is displayed:

Handle %1 has %2 pages allocated

...
Physical page %1 = Frame segment %2

...
%1 of a total %2 EMS pages have been allocated
%1 of a total %2 EMS handles have been allocated

Examples
A line is displayed for each handle allocated with its associated logical page
count.

Chapter 7. Debugging a Program 81

DEBUG Error Messages
The following error messages are produced by the DEBUG utility:

Access denied The result of attempting to Write (W) to
a read-only file.

Disk error reading drive %1 An invalid parameter was entered on
the Load (L) command or an error
occurred on issuing the Load (L)
command.

Disk error writing drive %1 An invalid parameter was entered on
the Write (W) command or an error
occurred on issuing the Write (W)
command.

EMS hardware/software failure The result of an EMS command. Tells
the user EMS is not functioning
properly.

EMS not installed The result of an EMS command. Tells
user EMS is not installed.

∧ Error Points to the offending operand in an
error condition.

Error in EXE or HEX file The EXE or HEX file are in error.

EXE and HEX files cannot be written A file in EXE or HEX format cannot be
written to a disk.

EXEC failure The execution of the requested file
failed.

File creation error The result of attempting to Write (W) to
a system or hidden file.

File not found Issued from the Load (L) command
when a file is not found for loading.

Free pages exceeded The result of an EMS command. Tells
the user that the request has exceeded
the amount of free EMS pages
available.

Handle not found The result of an EMS command. Tells
the user an EMS handle was not found.

Incorrect DOS version Incorrect version of DEBUG for the DOS
version running.

82 PC DOS 7

Insufficient memory Not enough memory to Load (L) the
specified file.

Insufficient space on disk Out of disk space for a Write (W)
command.

Invalid drive specification The drive referenced by the Name (N)
and Load (L) command is invalid; that
is, it does not exist.

Logical Page out of range The result of an EMS command. Tells
the user that the logical page requested
is not in the range of possible pages.

Missing or invalid EMS parameter The result of an EMS command. Tells
the user a missing or invalid parameter
was entered.

No free handles The result of an EMS command. Tells
the user that there are no more EMS
handles available for allocation.

Parameter error The result of an EMS command. Tells
the user that an EMS parameter is in
error.

Physical Page out of range The result of an EMS command. Tells
the user that the physical page
requested is not in the range of
possible pages.

Program terminated normally An Interrupt 20H has been encountered,
signalling program termination.

Total pages exceeded The result of an EMS command. Tells
the user that the total EMS pages have
been exceeded.

Write (W) error, no destination defined Attempt to Write (W) to a file that has
not yet been Named (N).

Write protect error writing drive %1 A Write (W) to a write-protected disk
caused an error.

Writing %1 bytes Reports the number of bytes written to
a file when the Write (W) command is
issued.

Chapter 7. Debugging a Program 83

84 PC DOS 7

Chapter 8. Writing an Installable Device Driver

This chapter provides guide and system architecture information to support
successful creation of an installable device driver.

Types of Device Drivers
A device driver is a memory image file or an .EXE file that contains the code
needed to implement a device. DOS allows two types of device drivers to be
installed:

• Character device drivers
• Block device drivers.

Character Device Drivers
Character device drivers perform character I/O in a serial manner and have
names such as CON, AUX, CLOCK$. You can open handles or FCBs to
perform input and output to character devices. Because character device
drivers have only one name, they support only one device.

Block Device Drivers
Block device drivers are the hard disk or diskette drives on the system.
They perform random I/O in pieces called blocks, which are usually the
physical sector size of the disk. Block devices are not named as character
devices are and you cannot open them. Instead they are mapped using the
drive letters such as A, B, and C.

A single block device driver can be responsible for one or more disk or
diskette drives. For example, the first block device driver in the device chain
may define four units such as A, B, C, and D. The second device driver may
define three units: E, F, and G. The limit is 26 devices with the letters A
through Z assigned to drives. The position of the driver in the chain
determines the way in which the drive units and drive letters correspond.

How PC DOS 7 Installs Device Drivers
PC DOS 7 installs device drivers at startup time by reading and processing
the DEVICE command in CONFIG.SYS. For example, if you have written a
device driver called DRIVER1, include the following command in
CONFIG.SYS:

device=driver1

 Copyright IBM Corp. 1995 85

In PC DOS 7 a new command DYNALOAD has been added to allow you to
dynamically load device drivers from the command line. The following is an
example of this:

C:>DYNALOAD ANSI.SYS

The PC DOS 7 device interface links device drivers together in a chain,
permitting you to add device drivers for optional devices.

Each device must be initialized. The device driver′s initialization interrupt
routine is called once when the device is installed. The initialization routine
returns the location in memory of the ending address of the device driver.
After setting the ending address field, a character device driver sets the
status word and returns.

PC DOS 7 processes installed character device drivers before handling
default devices. To have PC DOS 7 install a new CON device (for example,
in the device driver header′s Name/Unit field) name the device CON and set
the standard input device and standard output device bits in the attribute
field. Because PC DOS 7 installs drivers anywhere in memory, care must be
taken in any references to locations not in the segment. Your driver will not
always be loaded at the same memory location each time.

Block devices are installed in the same manner as character devices, above.
Block devices return additional information such as the number of units.
This number identifies the devices′ logical names. For example, if the
current maximum logical device letter is F at the time of the install call, and
the block device driver initialization routine returns three logical units, the
logical names of the devices are G, H, and I. The mapping is determined by
the position of the driver in the device list and the number of units associated
with the device. The number of units returned by INIT overrides the value in
the name/unit field of the device header.

A block device also returns a pointer to a BIOS parameter block (BPB) array.
This is a pointer to an array of n word pointers, where n is the number of
units defined. If all the units are the same, the array is able to point to the
same BIOS parameter block, thus saving space. The array must be
protected below the ending address pointer set by the return.

The BPB contains information pertinent to the devices such as the sector
size and the number of sectors per allocation unit. The sector size in the
BPB cannot be greater than the maximum allowed size set by PC DOS 7
initialization.

A block device returns the media descriptor byte passed to devices to report
which parameters PC DOS 7 is using for a particular drive unit.

86 PC DOS 7

The Basic Parts of a Device Driver
A device driver is a memory image file or an .EXE file containing the code
needed to implement a device. All PC DOS 7 installable device drivers have
these things in common:

• A device driver header, which identifies the device to PC DOS 7 and
defines the strategy and interrupt entry points. Since a device driver is
simply loaded and does not use a program segment prefix, the device
header must be located at physical location 0 of the device driver (ORG 0
or no ORG statement).

• A strategy routine, which saves a pointer to the Request Header.
• The interrupt routines, which perform the requested operation.

The Device Driver Header
A device driver requires a device header containing the following:

Field Length

Pointer to next device header DWORD

Attribute WORD

Pointer to device strategy routine WORD

Pointer to device interrupt routine WORD

Name/unit f ield 8 BYTES

Pointer to Next Device Header
The device driver header is a pointer to the device header of the next device
driver. It is a doubleword field set by PC DOS 7 at the time the device driver
is loaded. The first word is an offset and the second word is the segment.

If you are loading only one device driver, set the device header field to -1
before loading the device. If you are loading more than one device driver,
set the first word of the device header field to the offset of the next device
driver ′s header. Set the device header field of the last device driver to -1.

Attribute Field
The attribute field identifies the device to PC DOS 7.

Chapter 8. Writing an Installable Device Driver 87

Bit 15
Bit 15 identifies whether the device is a block device or a character device.
If bit 15 is set to 0, this indicates a block device. Setting bit 15 to 1 indicates
a character device. Note how the setting of bit 15 affects the interpretation of
the setting of the bits below.

Bit 14
Bit 14, for both character and block devices, tells PC DOS 7 whether the
device driver can handle control strings through IOCtl 44H, AL=2 through
A L = 5 . Set bit 14 to 1 if control strings can be processed. IOCtl subfunctions
permit the device driver to interpret the information passed to it, such as
setting a baud rate or changing form lengths, without performing standard
reads and writes. Set bit 14 to 0 if control strings cannot be processed. PC
DOS 7 will return an error if an IOCtl is issued to send or receive control
strings and bit 14 is set to 0.

Bit 13
Bit 13 is used for both block and character devices. For block devices, set bit
13 to 0 if the media is an IBM format. Set bit 13 to 1 if the media is a
non-IBM format. For character devices, set bit 13 to 0 if the driver supports
output-until-busy. Set bit 13 to 1 if it does not.

With the support of output-until-busy, the device driver will send characters
to the device if the device is ready. If the device is not ready, the device
driver will immediately return an error.

Bit 12
Bit 12 is reserved.

Bit 11
Set bit 11 if the device driver can handle removable media. This bit is called
the open/close removable media bit.

Bits 10 − 8
Bits 10 through 8 are reserved.

Bit 7
For DOS 5.0 and later versions, set bit 7 to 1 to indicate that a device driver
supports Query IOCtl. If this bit is set, the driver can be called with function
19H (with a standard Generic IOCtl request packet).

88 PC DOS 7

Bit 6
Bit 6 is the generic IOCtl bit for both character and block device drivers. If
this bit is set to 1, the device driver supports generic IOCtl function calls.
Setting this bit to 1 also indicates support of the Get/Set Logical Drive
function for a block device driver.

Bits 5 and 4
Bits 5 and 4 are reserved.

Bit 3
Set bit 3 to 1 if the character device is a clock device; set bit 3 to 0 if it is not.

Bit 2
Set bit 2 to 1 if the character device is the NUL device; set bit 2 to 0 if it is
not. Setting the bit tells PC DOS 7 whether the NUL device is being used.
The NUL device cannot be reassigned.

Bit 1
If bit 15 is set to 1 for a character device, set bit 1 to 1 to indicate that the
character device is the current standard output device. If bit 15 is set to 0 for
a block device, set bit 1 to 1 to indicate support for 32-bit sector numbers;
otherwise, 16-bit sector number support is assumed.

Bit 0
Set bit 0 to 1 if the character device is the current standard input device; set
bit 0 to 0 if it is not the current standard input device.

Pointers to Strategy and Interrupt Routines
When PC DOS 7 passes a request to a device driver, it calls the device driver
twice. These two fields point to the first and second entry points: the
strategy routine and the interrupt routine. The fields are word values, so
they must be in the same segment as the device header.

Name/Unit Field
These 8-byte fields identify a character device by name or a block device by
unit. A character device name is left-justified followed by spaces, if
necessary. For block devices, although PC DOS 7 automatically fills in this
field with the value of number of units returned by INIT call, you may choose
to place the number of units in the first place.

Chapter 8. Writing an Installable Device Driver 89

The Strategy Routine
PC DOS 7 calls a device driver at the strategy routine at first, passing in a
request packet the information describing what PC DOS 7 wants the device
driver to do.

The strategy routine does not perform the request but queues the request or
saves a pointer to the request packet.

The Interrupt Routine
PC DOS 7 calls the device driver′s interrupt routine with no parameters
immediately after the strategy routine returns. An interrupt routine ′s function
is to perform the operation based on the queued request, process any data
in the request packet, and set up information being returned to PC DOS 7.

It is the responsibility of the device driver to preserve the system state. For
example, the device driver must save all registers on entry and restore them
on exit. The stack maintained by PC DOS 7 is used to save all registers. If
more stack space is needed, it is the device driver′s responsibility to allocate
and maintain an additional stack.

All calls to device drivers are FAR calls. FAR returns should be executed to
return to PC DOS 7.

How PC DOS 7 Passes a Request
PC DOS 7 passes a pointer in ES:BX to the request packet. The packet
consists of a request header that contains information common to all
requests, followed by data pertinent to the request being made.

The structure of the request header is shown below.

Field Length

Length of the request header and subsequent data BYTE

Unit code for block devices only BYTE

Command code BYTE

Status WORD

Reserved 8-BYTE

Data VARIABLE

90 PC DOS 7

Length Field
The length field identifies the length of the request header and subsequent
data in bytes.

Unit Code Field
The unit code field identifies the requesting unit in a block device driver. If a
block device driver has three units defined, for example, the possible values
for the unit code field are 0, 1, or 2.

Command Code Field
The command code identifies the request. See “Responding to Requests” on
page 92 for a list of command code values and request descriptions.

Status Field
The status word field is zero on entry and is set by the driver interrupt
routine on return.

Bit 15
Bit 15 is the error bit. If bit 15 is set to 1, the low order 8 bits of the status
word (7-0) indicate the error code.

Bits 14 − 1 0
Bits 14 through 10 are reserved.

Bit 9
Bit 9 is the busy bit. As a response to status request call, character device
drivers can set the busy bit to indicate whether or not a device is ready to
perform input and output requests. Block device drivers can set the busy bit
to indicate removable or nonremovable media. See “Character Input and
Output Status Requests” on page 101 and “Removable Media Request” on
page 103 for more information about the calls.

Bit 8
Bit 8 is the done bit. If set, the operation is complete. The driver sets the
done bit to 1 when it exits.

Bits 7 − 0
Bits 7 through 0 are the low order 8 bits of the status word. If bit 15 is set,
bits 7 through 0 contain the error codes. The error codes and errors are:

Codes Meaning
00 Write protect violation
01 Unknown unit
02 Device not ready

Chapter 8. Writing an Installable Device Driver 91

03 Unknown command
04 CRC error
05 Bad drive request structure length
06 Seek error
07 Unknown media
08 Sector not found
09 Printer out of paper
0A Write fault
0B Read fault
0C General failure
0D Reserved
0E Reserved
0F Invalid disk change

Responding to Requests
Each request packet that is passed to the device driver contains a command
code value in the request header to tell the driver which function to perform.
The following table contains the PC DOS 7 device interface command code
values and the functions to be performed when these values are passed with
data. Note that some of these functions are specific to either a block device
or a character device.

Following this table are detailed descriptions of request data structures and
what the interrupt routines are expected to do. Some of these descriptions
pertain to more than one command code.

Command
Code

Request
Description

Device
Type

0 Initialization Both

1 Media check Block

2 Bui ld BPB Block

3 IOCtl input (called only if bit 14 of attribute is set to 1) Both

4 Input (read) Both

5 Nondestructive input no wait Character

6 Input status Character

7 Input flush Character

8 Output (write) Both

9 Output (write with verify) Block

10 (0AH) Output status Character

11 (0BH) Output flush Character

92 PC DOS 7

Command
Code

Request
Description

Device
Type

12 (0CH) IOCtl output (called only if bit 14 of attribute is set to
1)

Character

13 (0DH) Device open (called only if bit 11 of attribute is set to
1)

Both

14 (0EH) Device close (called only if bit 11 of attribute is set to
1)

Both

15 (0FH) Removable media (called only if bit 11 of attribute is
set to 1)

Block

16 (10H) Output until busy character Both

19 (13H) Generic IOCtl Request (called only if bit 6 of attribute
is set to 1)

Block

23 (17H) Get logical device (called only if bit 6 of attribute is
set to 1)

Block

24 (18H) Set logical device (called only if bit 6 of attribute is
set to 1)

Block

25 (19H) IOCtl Query (called only if bit 7 of attribute is set to
1)

Both

Initialization Request
Command Code = 0

The driver must do the following:

• Set the number of units (block devices only).
• Set up the pointer to the BPB array (block devices only).
• Perform any initialization code (to modems, printers, and others).
• Set the ending address of the resident program code.
• Set the status word in the request header.

To obtain information passed from CONFIG.SYS to a device driver at
initialization time, the BPB pointer field points to a buffer containing the
information passed in CONFIG.SYS following the =. This string may end

Field Length

Request header 13 − BYTE

 Number of units (not set by character devices) BYTE

Ending address of resident program code DWORD

Pointer to BPB array (not set by character devices) pointer to remainder
of arguments

DWORD

Drive number BYTE

CONFIG.SYS Error Message control flag WORD

Chapter 8. Writing an Installable Device Driver 93

with either a carriage return (0DH) or a linefeed (0AH). This information is
read-only. Only system calls 01H− 0 CH and 30H can be issued by the
initialization code of the driver.

The last byte parameter contains the drive letter for the first unit of a block
driver. For example, 0=A, 1=B and so forth.

If an initialization routine determines that it cannot set up the device and
wants to terminate without using any memory, use the following procedure:

• Set the number of units to 0.
• Set the ending address offset to 0.
• Set the ending address segment to the code segment (CS).

For DOS 5.0 support; when loading device drivers into UMBs (Upper Memory
Blocks), PC DOS 7 sets the maximum address that is available to the device
driver in the INIT request packet. This is stored in the ending address field
before the device′s INIT function is called. The value is the normalized
address of the top of the memory block that is allocated to the driver. This is
done before devices complete initialization so memory requirements can be
checked against the amount of space available. If there is not enough space
for a device′s code and data requirements, they will fail to load.

Block device drivers must account for the space needed for a Disk
Parameter Block per unit supported. The amount of space needed for a
block device driver is:

(end address) - (number of units * DPB size)

If there are multiple device drivers in a single memory image file, the ending
address returned by the last initialization called is the one PC DOS 7 uses.
IBM recommends that all device drivers in a single memory image file return
the same ending address.

If initialization of your device driver fails, and you want the system to display
the Error in Config.Sys line # error message, set the CONFIG.SYS error
message control flag to a non-zero value.

Media Check Request
Command code = 1

Field Length

Request header 13 − BYTE

Media descriptor from PC DOS 7 BYTE

94 PC DOS 7

When the command code field is 1, PC DOS 7 calls Media Check for a drive
unit and passes its current Media Descriptor byte. See “Media Descriptor
Byte.” Media Check returns one of the following:

• Media not changed
• Media changed
• Not sure
• Error code.

The driver must perform the following:

• Set the status word in the request header.
• Set the return byte to:

-1 for “media changed”
0 for “not sure”
1 for “media not changed.”

The driver uses the following method to determine how to set the return byte:

• If the media is nonremovable (a hard disk), set the return byte to 1.
• If less than 2 seconds since last successful access, set the return byte to

1.
• If changeline not available, set the return byte to 0.
• If changeline is available but not active, set the return byte to 1.
• If the media byte in the new BPB does not match the old media byte, set

the return byte to -1.
• If the current volume ID matches the previous volume ID, or if the serial

number matches the previous serial number, set the return byte to 0.

Field Length

Return BYTE

A pointer to the previous volume ID (if bit 11 = 1 and disk change is
returned)

DWORD

Media Descriptor Byte
Currently the media descriptor byte has been defined for some media types.
This byte should be identical to the media byte if the device has the non-IBM
format bit off. These predefined values are:

Media descriptor
byte — > 1 1 1 1 1 x x x
bits — > 7 6 5 4 3 2 1 0

Chapter 8. Writing an Installable Device Driver 95

Note: An exception to the above is the media descriptor byte value of F0,
which is used to indicate any media types not defined, and F9, which
is used for 5.25-inch media with 2 sides and 15 sectors/tracks.

Examples of current PC DOS 7 media descriptor bytes:

To determine whether you are using a single-sided or a double-sided
diskette, attempt to read the second side. If an error occurs, you may
assume the diskette is single-sided. Media descriptor F0H may be used for
those media types not described earlier. Programs should not use the media
descriptor values to distinguish media. PC DOS 7 internal routines use
information in the BIOS parameter block (BPB) to determine the media type
of IBM-formatted diskettes. These media descriptor bytes do not necessarily
indicate a unique media type.

For 8-inch diskettes:

Bit Meaning

0 1=2-s ided 0 = n o t 2-sided

1 1 = 8 sector 0=not 8 sector

2 1= removab le 0 = n o t removable

3− 7 must be set to
1

Disk
Type

#
Sides

Sectors/
Track

Media
Descriptor

hard disk -- -- F8H

5.25 inch 2 15 F9H

5.25 inch 1 9 FCH

5.25 inch 2 9 FDH

5.25 inch 1 8 FEH

5.25 inch 2 8 FFH

8 inch 1 26 FEH

8 inch 2 26 FDH

8 inch 2 8 FEH

3.5 inch 2 9 F9H

3.5 inch 2 18 F0H

3.5 inch 2 36 F0H

3.5 inch Read/Write Optical 1 25 F0H

96 PC DOS 7

• FEH (IBM 3740 Format) — Single-sided, single-density, 128 bytes per
sector, soft-sectored, 4 sectors per allocation unit, 1 reserved sector, 2
FATs, 68 directory entries, 77*26 sectors.

• FDH (IBM 3740 Format) — Double-sided, single-density, 128 bytes per
sector, soft-sectored, 4 sectors per allocation unit, 4 reserved sectors, 2
FATs, 68 directory entries, 77*26*2 sectors.

• FEH — Double-sided, double-density, 1024 bytes per sector, soft sectored,
1 sector per allocation unit, 1 reserved sector, 2 FATs, 192 directory
entries, 77*8*2 sectors.

Build BPB Request
Command Code = 2

PC DOS 7 calls Build BPB (BIOS Parameter Block) under the following two
conditions:

• If “Media Changed” is returned
• If “Not Sure” is returned, there are no used buffers. Used buffers are

buffers with changed data not yet written to the disk.

The driver must do the following:

• Set the pointer to the BPB
• Set the status word in the request header.

The device driver must determine the media type that is in the unit to return
the pointer to the BPB table. In previous versions of IBMBIO, the FAT ID byte
determined the structure and layout of the media. The FAT ID byte has only
eight possible values (F8 through FF), so, as new media types are invented,
the available values will soon be exhausted. With the varying media layouts,
PC DOS 7 needs to be aware of the location of the FATs and directories
before it asks to read them.

The following paragraphs explain the method PC DOS 7 uses to determine
the media type.

Field Length

Request header 13 − BYTE

Media descriptor from PC DOS 7 BYTE

Transfer address (buffer address) DWORD

Pointer to BPB table DWORD

Chapter 8. Writing an Installable Device Driver 97

The information relating to the BPB for a particular media is kept in the boot
sector for the media. The following is a summary of the format of the boot
sector.

The BPB information contained in the boot sector starts with the Bytes per
Sector entry. The last three words are intended to help the device driver
identify the media. The number of heads is useful for supporting different
multihead drives with the same storage capacity but a different number of
surfaces. The number of hidden sectors is useful for supporting drive
partitioning schemes.

For drivers that support volume identification and disk change, this call
causes a new volume identification to be read from the disk. This call
indicates that the disk has changed in a permissible manner.

To handle the partition that is bigger than 32MB, or one that starts beyond or
crosses the 32MB boundary, PC DOS 7 defines an extended BPB structure.
Depending on the size of the media, you can use either the existing BPB or
the extended one, which contains an additional DWORD field to indicate the
size of the partition in sectors.

Bit 1 of the attribute field in the block device driver header indicates whether
the device can process 32-bit sector numbers. Set bit 1 to indicate 32-bit
support.

Field Length

A 2-byte short JMP instruction (EBH), followed by a NOP instruction
(90H).

WORD

Product name and version 8 BYTES

Bytes per sector; must be power of 2 WORD

Sectors per allocation unit; must be power of 2 BYTE

Reserved sectors starting at logical sector 0 WORD

Number of FATs BYTE

Maximum number of root directory entries WORD

Total number of sectors in media including the boot sector, FAT areas,
and directories

WORD

Media descriptor BYTE

Number of sectors occupied by a FAT WORD

Sectors per track WORD

Number of heads WORD

Number of hidden sectors WORD

98 PC DOS 7

The extended BPB is a superset of the traditional BPB structure. To achieve
the maximum compatibility between this structure and that of the traditional
BPB, PC DOS 7 uses the following rules:

• If the number of hidden sectors plus the total number of sectors in the
media is greater than 64KB, use the 32-bit total number of sectors in the
media entry (DWORD).

• Otherwise, use the Total number of sectors in the media entry (WORD).

A boot record exists at the beginning of each disk partition and each
extended PC DOS 7 partition volume. PC DOS 7 automatically creates the
extended boot record. The format of the extended boot record is:

Field Length

Bytes per sector WORD

Sectors per allocation unit BYTE

Reserved sectors starting at logical sector 0 WORD

Number of FATs — 0 if not a FAT system BYTE

Maximum number of root directory entries WORD

Total number of sectors in the media. This field is used to define a
partition that is less than 32MB. Setting this field to 0 indicates to use
the total (32-bit) number of sectors in the media below.

WORD

Media descriptor BYTE

Number of sectors occupied by a FAT WORD

Sectors per track WORD

Number of heads WORD

Number of hidden sectors DWORD

Total (32-bit) number of sectors in the media. This field is used to define
a partition that is greater than 32MB, or one that crosses the 32MB
boundary.

DWORD

Field Length

A 2-byte short JMP instruction (EBH) followed by a NOP instruction
(90H).

WORD

Product name and version 8 BYTES

Extended BPB 25 BYTES

Physical drive number BYTE

Reserved BYTE

Extended boot record signature BYTE

Volume serial number DWORD

Volume label 11 BYTES

Reserved 8 BYTES

Chapter 8. Writing an Installable Device Driver 99

Note: The value of Extended boot record signature is 29H. The value of the
physical drive number is always 0H or 80H.

On all requests to extended drivers with a sector number in their request
headers, the sector number is a DWORD. The standard PC DOS 7 block
device drivers set the attribute bit 1 for 32-bit support.

For each call to a device driver, PC DOS 7 checks to see if the starting sector
number passed in the request can be supported by the device driver. If this
value is greater than 64K for an old-style device driver, PC DOS 7 returns an
unknown media (07H) device driver error.

Input and Output Requests
Command Codes = 3, 4, 8, 9, 12 (0CH)

The PC DOS 7 Input/Output request structure can process 32-bit sector
numbers, providing support for media of more than 4 billion sectors.

The driver must do the following:

• Set the status word in the request header
• Perform the requested function
• Set the actual number of sectors or bytes transferred.

No error checking is performed on an IOCtl call. However, the driver must
set the return sector or byte count to the actual number of bytes transferred.

Under certain circumstances the block device driver may be asked to do a
WRITE operation of 64KB that seems to be a wraparound of the transfer
address in the device driver request packet. It will only happen on WRITEs
that are within a sector size of 64KB on files that are being extended past the
current end of file. The block device driver is allowed to ignore the balance

Field Length

Request header 13 − BYTE

Media descriptor byte BYTE

Transfer address (buffer address) DWORD

Byte/sector count WORD

Starting sector number (If -1, use DWORD starting sector number. This
entry has no meaning for a character device.)

WORD

For DOS 3.0 to PC DOS 7, pointer to the volume identification if error
code 0FH is returned

DWORD

Starting 32-bit sector number. (Use this entry to the block device driver
with the attribute bit 1 set.)

DWORD

100 PC DOS 7

of the WRITE that wraps around. For example, a WRITE of 10000H bytes of
sectors with a transfer address of XXXX:1 ignores the last two bytes.

Remember that a program using PC DOS 7 function calls cannot request an
input or output operation of more than FFFFH bytes because a wrap around
in the transfer buffer segment would occur. Bytes will be ignored that would
have wrapped around in the transfer segment.

If the driver returns an error code of 0FH (Invalid Disk Change), it must
provide a DWORD pointer to an ASCIIZ string identifying the correct volume
ID and the system prompts the user to reinsert the disk.

The reference count of open files on the disk maintained by OPEN and
CLOSE calls allows the driver to determine when to return error 0FH. If there
are no open files (reference count=0) and the disk has been changed, the
I/O is valid, and error 0FH is not returned. If there are open files (reference
count > 0) and the disk has been changed, an error 0FH situation may exist.
PC DOS 7 IBMDOS.COM will request an OPEN or CLOSE function only if
SHARE is loaded.

Nondestructive Input No Wait Request
Command Code = 5

The driver must do the following:

• Return a byte from the device.
• Set the status word in the request header.

If the character device returns busy bit = 0, meaning there are characters in
buffer, the next character that would be read is returned. This character is
not removed from the input buffer (that is, nondestructive input). This call
allows PC DOS 7 to look ahead one input character.

Field Length

Request header 13-BYTE

Byte read from device BYTE

Character Input and Output Status Requests
Command Codes = 6, 10 (0AH)

Field Length

Request header 13-BYTE

Chapter 8. Writing an Installable Device Driver 101

The driver must do the following:

• Perform the requested function.
• Set the busy bit.
• Set the status word in the request header.

The busy bit is set differently for output and input.

Output on Character Devices
If the busy bit is 1 on return, a write request would wait for completion of a
current request. If the busy bit is 0, no request is waiting or running.
Therefore, a write request would start immediately.

Input on Character Devices with a Buffer
If the busy bit is 1 on return, a read request goes to the physical device. If
the busy bit is 0, characters are in the device buffer and a read returns
quickly. This also indicates that the user has typed something. PC DOS 7
assumes that all character devices have a type-ahead input buffer. Devices
that do not have this buffer should always return busy = 0 so that PC DOS 7
does not loop endlessly, waiting for information to be put in a buffer that
does not exist.

Character Input and Output Flush Requests
Command Codes = 7, 11 (0BH)

This call tells the driver to flush (terminate) all pending requests of which it
has knowledge. Its primary use is to flush the input queue on character
devices.

The driver must set the status word in the Request Header upon return.

Field Length

Request header 13-BYTE

Open and Close Requests
Command Codes = 13 (0DH), 14 (0EH)

These calls are designed to give the device information about current file
activity on the device if bit 11 of the attribute word is set.

Field Length

Request header 13-BYTE

102 PC DOS 7

On block devices, these calls can be used to manage local buffering. The
device can keep a reference count. Every OPEN increases the reference
count. Every CLOSE decreases the device reference count. When the
reference count is 0, there are no open files on the device. Therefore, the
device should flush buffers inside the device to which it has written because
the user can change the media on a removable media drive. If the media
has been changed, reset the reference count to 0 without flushing the buffers.

These calls are more useful on character devices. The OPEN call can send a
device an initialization string. On a printer, the call can send a string to set
the font or the page size so the printer is always in a known state at the start
of an I/O stream.

Similarly, the CLOSE call can send a post string, such as a form feed, at the
end of an I/O stream.

Using IOCtl to set the preliminary and ending strings provides a flexible
mechanism for serial I/O device stream control.

Removable Media Request
Command Code = 15 (0FH)

To use this call, set bit 11 of the attribute field to 1. Block devices can use
this call only by way of a subfunction of the IOCtl function call (44H).

This call is useful because it notifies a utility if it is dealing with a removable
or nonremovable media drive. For example, the FORMAT utility needs to
know whether a drive is removable or nonremovable because it displays
different versions of some prompts.

The information is returned in the busy bit of the status word. If the busy bit
is 1, the media is nonremovable. If the busy bit is 0, the media is removable.

No error bit checking is performed. It is assumed that this call always
succeeds.

Field Length

Request header 13-BYTE

Chapter 8. Writing an Installable Device Driver 103

Output Until Busy
Command Code = 16 (10H)

The driver must set the status in the request header. The actual bytes are
transferred in the byte count word.

This function transfers data from the specified memory buffer to a device
until it is busy. It is called only if bit 13 of the device attribute word is set in
the device header. This function is not in error if it returns with the number
of bytes transferred less than the number of bytes requested.

Field Length

Request header 13-BYTE

Transfer Address Dword

Byte Count Word

Generic IOCTL Request
Command Code = 19 (13H)

The driver must:

• Support the functions described under Generic IOCtl request
• Maintain its own track table (TrackLayout).

See Appendix C, “I/O Control for Devices (IOCtl)” on page 273 for a
description of the functions provided by generic IOCtl requests.

Field Length

Request header 13-BYTE

Major function BYTE

Minor function BYTE

Contents of SI WORD

Contents of DI WORD

Pointer to Generic IOCTL request packet DWORD

Get Logical Device Request
Command Code = 23 (17H)

Field Length

Request header length (see note below) BYTE

Input (unit code) BYTE

104 PC DOS 7

Upon return, the unit code is the last unit referenced or zero and the status
word is updated.

Field Length

Command code BYTE

Status WORD

Reserved 8 BYTES

Set Logical Device Request
Command Code = 24 (18H)

Upon return, the status word is updated.

Note: Length value includes the length byte itself.

Field Length

Request header length (see note below) BYTE

Input (unit code) BYTE

Command code BYTE

Status WORD

Reserved 8 BYTES

IOCtl Query
Command Code = 25 (19H)

The driver must:

• Support the functions described under Generic IOCtl request
• Maintain its own track table (TrackLayout).

A driver indicates that it supports Query IOCtl by setting bit 7 of the device
attribute word. If this bit is set, the driver can be called, with function 19H,

Field Length

Request header 13-BYTE

Major function BYTE

Minor function BYTE

Contents of SI WORD

Contents of DI WORD

Pointer to Generic IOCtl request packet DWORD

Chapter 8. Writing an Installable Device Driver 105

with a standard Generic IOCtl request packet. If it is not set, the driver will
never receive Query IOCtl calls.

The driver should check the category code and function number in the
request packet and return a no error signal if it can handle the call. If the
driver cannot handle the call, it should return the Unknown Command error
code (error code 3). Usually, a program that wants to use Generic IOCtl calls
beyond those in DOS 3.2 will call Query IOCtlHandle or Query IOCtlDevice
first. Then it will determine if the particular call is supported, and finally call
the actual function.

See Appendix C, “I/O Control for Devices (IOCtl)” on page 273 for a
description of the functions provided by generic IOCtl requests.

106 PC DOS 7

Appendix A. PC DOS 7 Interrupts

This chapter contains information to support use of the PC DOS 7 interrupts.

PC DOS 7 reserves interrupt types 20H to 3FH for its use. Absolute memory
locations 80H to FFH are reserved by PC DOS 7. All interrupt values are in
hexadecimal.

Interrupt 20H Program Terminate
Issue interrupt 20H to exit from a program. This vector transfers to the logic
in PC DOS 7 to restore the terminate address, the Ctrl-Break address, and
the critical error exit address to the values they had on entry to the program.
All file buffers are flushed and all handles are closed. You should close all
files changed in length (see function call 10H and 3EH) before issuing this
interrupt. If the changed file is not closed, its length, date, and time are not
recorded correctly in the directory.

For a program to pass a completion code or an error code when terminating,
it must use either function call 4CH (Terminate a Process) or 31H (Terminate
Process and Stay Resident). These two methods are preferred over using
interrupt 20H, and the codes returned by them can be interrogated in batch
processing. See function call 4CH for information on the ERRORLEVEL
subcommand of batch processing.

Important: Before you issue interrupt 20H, your program must ensure that the
CS register contains the segment address of its program segment prefix.

Interrupt 21H Function Request
Refer to each function call issued within 21H in Appendix B, “PC DOS 7
Function Calls” on page 133.

Interrupt 22H Terminate Address
Control transfers to the address at this interrupt location when the program
terminates. This address is copied into the program′s Program Segment
Prefix at the time the segment is created. You should not issue this
interrupt; the EXEC function call does this for you.

 Copyright IBM Corp. 1995 107

Interrupt 23H Ctrl-Break Exit Address
If the user presses the Ctrl and Break keys during standard input, standard
output, standard printer, or asynchronous communications adapter
operations, an interrupt 23H is executed. If BREAK is on, the interrupt 23H is
checked on most function calls (except calls 06H and 07H). If the user-written
Ctrl-Break routine saves all registers, it may end with a return-from-interrupt
instruction (IRET) to continue program execution.

If the user-written interrupt program returns with a long return, the carry flag
is used to determine whether the program will be ended. If the carry flag is
set, the program is ended, otherwise execution continues (as with a return by
IRET).

If the user-written Ctrl-Break interrupt uses function calls 09H or 0AH, then
∧C, carriage-return and linefeed are output. If execution is continued with an
IRET, I/O continues from the start of the line.

When the interrupt occurs, all registers are set to the value they had when
the original function call to PC DOS 7 was made. There are no restrictions
on what the Ctrl-Break handler is allowed to do, including PC DOS 7 function
calls, as long as the registers are unchanged if IRET is used.

When the program creates a new segment and loads in a second program it
changes the Ctrl-Break address. The termination of the second program and
return to the first causes the Ctrl-Break address to be restored to the value it
had before execution of the second program. It is restored from the second
program ′s Program Segment Prefix. You should not issue this interrupt.

Interrupt 24H Critical Error Handler Vector
A critical error is returned when a DOS function cannot be performed. This
error is frequently caused by a hardware condition, such as the printer being
out of paper, a diskette drive door open, or a diskette out of space. When a
critical error occurs within PC DOS 7, control is transferred with an interrupt
24H. On entry to the error handler, AH will have its bit 7=0 (high-order bit) if
the error was a disk error (the most common occurrence), bit 7=1 if it was
not.

BP:SI contains the address of a Device Header Control Block from which
additional information can be retrieved. See page 112.

108 PC DOS 7

The registers are set up for a retry operation, and an error code is in the
lower half of the DI register with the upper half undefined. The error codes
follow:

Error Code Meaning
0 Attempt to write on write-protected diskette
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data error (CRC)
5 Bad request structure length
6 Seek error
7 Unknown media type
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure

The user stack is in effect and contains the following from top to bottom:

IP PC DOS 7 registers from issuing INT 24H
CS
FLAGS
AX User registers at time of original
BX INT 21H request
CX
DX
SI
DI
BP
DS
ES
IP From the original interrupt 21H
CS from the user to PC DOS 7
FLAGS

The registers are set such that if an IRET is executed, PC DOS 7 responds
according to (AL) as follows:

(AL) = 0 ignore the error.
= 1 retry the operation.
= 2 terminate the program

through interrupt 22H.
= 3 fail the system call

in progress.

Appendix A. PC DOS 7 Interrupts 109

Note: Be careful when choosing ignore as a response because this causes
PC DOS 7 to believe that an operation has completed successfully
when it may not have.

To return control from the critical error handler to a user error routine, the
following should occur:

Before an INT 24H occurs:

 1. The user application initialization code should save the INT 24H vector
and replace the vector with one pointing to the user error routine.

When the INT 24H occurs:

 2. When the user error routine receives control, it should push the flag
register onto the stack, and then execute a CALL FAR to the original INT
24H vector saved in step 1.

 3. PC DOS 7 gives the appropriate prompt, and waits for the user input
(Abort, Retry, Fail or Ignore). After the user input, PC DOS 7 returns
control to the user error routine at the instruction following the CALL
FAR.

 4. The user error routine can now do any tasks necessary. To return to the
original application at the point the error occurred, the error routine
needs to execute an IRET instruction. Otherwise, the user error routine
should remove the IP, CS, and Flag registers from the stack. Control can
then be passed to the desired point.

Disk Errors
If it is a hard error on disk (AH bit 7=0), register AL contains the failing drive
number (0 = drive A, and so on). AH bits 0− 2 indicate the affected disk
area and whether it was a read or write operation, as follows:

Bit 0=0 if read operation,
1 if write operation

Bits 2-1 (affected disk area)
0 0 PC DOS 7 area
0 1 file allocation table
1 0 directory
1 1 data area

AH bits 3− 5 indicate which responses are valid. They are:

Bit 3=0 if FAIL is not allowed
=1 if FAIL is allowed

Bit 4=0 if RETRY is not allowed
=1 if RETRY is allowed

Bit 5=0 if IGNORE is not allowed

110 PC DOS 7

=1 if IGNORE is allowed

Handling of Invalid Responses
If IGNORE is specified (AL=0) and IGNORE is not allowed (bit 5=0), make
the response FAIL (AL=3).

If RETRY is specified (AL=1) and RETRY is not allowed (bit 4=0), make the
response FAIL (AL=3).

If FAIL is specified (AL=3) and FAIL is not allowed (bit 3=0), make the
response END (AL=2).

Other Errors
If AH bit 7=1, the error occurred on a character device, or was the result of
a bad memory image of the FAT. The device header passed in BP:SI can be
examined to determine which case exists. If the attribute byte high-order bit
indicates a block device, then the error was a bad FAT. Otherwise, the error
is on a character device.

If a character device is involved, the contents of AL are unpredictable and
the error code is in DI as above.

Notes:

 1. Retry five times before giving this routine control for disk errors. When
the errors are in the FAT or a directory, retry three times.

 2. For disk errors, this exit is taken only for errors occurring during an
interrupt 21H function call. It is not used for errors during an interrupt
25H or 26H.

 3. This routine is entered in a disabled state.

 4. All registers must be preserved.

 5. This interrupt handler should refrain from using PC DOS 7 function calls.
If necessary, it may use calls 01H through 0CH, 30H, and 59H. Use of any
other call destroys the PC DOS 7 stack and leaves PC DOS 7 in an
unpredictable state.

 6. The interrupt handler must not change the contents of the device header.

 7. If the interrupt handler handles errors itself rather than returning to PC
DOS 7, it should restore the application program′s registers from the
stack, remove all but the last three words on the stack, then issue an
IRET. This will return to the program immediately after the INT 21H that
experienced the error. Note that if this is done, PC DOS 7 will be in an
unstable state until a function call higher than 0CH is issued; therefore, it
is not recommended.

Appendix A. PC DOS 7 Interrupts 111

The recommended way to end a critical error is to use FAIL and then test
the extended error code of the INT 21H.

 8. IGNORE requests (A L = 0) are converted to FAIL for critical errors that
occur on FAT or DIR sectors.

 9. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for information on how to obtain additional error
information.

10. For PC DOS 7, IGNORE requests (AL=0) are converted to FAIL requests
for certain critical errors (50− 7 9) .

The device header pointed to by BP:SI is formatted as follows:

To tell if the error occurred on a block or character device, look at bit 15 in
the attribute field (WORD at BP:SI +4).

If the name of the character device is desired, look at the eight bytes starting
at BP:SI +10.

DWORD Pointer to next device (FFFFH if last device)

WORD Attributes:

Bit 15 = 1 i f character device
= 0 i f block device

If bit 15 is 1:
Bit 0 = 1 if current standard input
Bit 1 = 1 if current standard output
Bit 2 = 1 if current NULL device
Bit 3 = 1 if current CLOCK device

Bit 14 is the IOCtl bit

WORD pointer to device driver strategy entry point.

WORD pointer to device driver interrupt entry point.

8-BYTE character device named field for block devices. The first byte is the number of
units.

Interrupt 25H/26H Absolute Disk Read/Write
Interrupt vectors 25H and 26H transfer control to the device driver. They
have been extended to allow direct access to media greater than 32MB in
size. Their use of the CX register is what distinguishes them from the
conventional 25H and 26H interrupts. Note that if the conventional format
parameters are used in an attempt to access media greater than 32MB, an
error code of 0207H is returned in AX.

The request for extended 25H or 26H is:

112 PC DOS 7

MOV AL,DRIVE ; Drive number to process
; 0 = A
; 1 = B
; 2 = C . . .

MOV BX,SEG PACKET ; Parameter list
MOV DS,BX ;
MOV BX,OFFSET PACKET ;
MOV CX,-1 ; Indicates extended format
INT 25H or 26H ; Issue request to PC DOS 7
POP AX ; Discard stack word
JC ERROR ; Error code returned in AX

PACKET LABEL BYTE ; Control packet
DD RBA ; RBA of first sector

; (0 origin)
DW COUNT ; Number of sectors to I/O
DD BUFFER ; Data buffer

On return, the original flags are still on the stack (put there by the INT
instruction). This is necessary because return information is passed back in
the current flags. Be sure to pop the stack to prevent uncontrolled growth.

Warning: If disk I/O handled by this interrupt exceeds the limit imposed by
the 64KB direct memory access boundary, unpredictable results can occur.
We recommend you carefully check the sector size and the number of
sectors to be read or written to before issuing this call.

The number of sectors specified is transferred between the given drive and
the transfer address. Logical sector numbers (LSN) are obtained by
numbering each sector sequentially starting from track 0, head 0, sector 1
(logical sector 0) and continuing along the same head, then to the next head
until the last sector on the last head of the track is counted. Thus, logical
sector 1 is track 0, head 0, sector 2; logical sector 2 is track 0, head 0, sector
3; and so on. Numbering continues with sector 1 on head 0 of the next track.
Note that although the sectors are sequentially numbered (for example,
sectors 2 and 3 on track 0 in the example above), they may not be physically
adjacent on the disk, because of interleaving. Note that the mapping is
different from that used by DOS version 1.10 for double-sided diskettes.

All registers except the segment registers are destroyed by this call. If the
transfer was successful, the carry flag (CF) is 0. If the transfer was not
successful CF=1 and (AX) indicate the error as follows. (AL) is the PC DOS
7 error code that is the same as the error code returned in the low byte of DI
when an interrupt 24H is issued, and (AH) contains:

Appendix A. PC DOS 7 Interrupts 113

80H Attachment failed to respond
40H SEEK operation failed
08H Bad CRC on diskette read
04H Requested sector not found
03H Write attempt on write-protected diskette
02H Error other than types listed above

Warning: Before issuing this interrupt to removable media, the media in the
drive must be established correctly. This can be accomplished by issuing
either an INT 21H Generic IOCTL (AH=44H), with a request to return the BPB
that BUILD BPB returns; or an INT 21H Get Current Directory (AH=47H).

Interrupt 27H Terminate but Stay Resident
This vector is used by programs that are to remain resident when
COMMAND.COM regains control.

PC DOS 7 function call 31H is the preferred method to cause a program to
remain resident, because this allows return information to be passed. It
allows a program larger than 64KB to remain resident. After initializing
itself, the program must set DX to its last address plus one, relative to the
program ′s initial DS or ES value (the offset at which other programs can be
loaded), and then execute an interrupt 27H. PC DOS 7 then considers the
program as an extension of itself, so the program is not overlaid when other
programs are executed. This concept is useful for loading programs such as
user-written interrupt handlers that must remain resident.

Notes:

 1. This interrupt must not be used by .EXE programs that are loaded into
the high end of memory.

 2. This interrupt restores the interrupt 22H, 23H, and 24H vectors in the
same manner as interrupt 20H. Therefore, it cannot be used to install
permanently resident Ctrl-Break or critical error handler routines.

 3. The maximum size of memory that can be made resident by this method
is 64KB.

 4. Memory can be used more efficiently if the block containing a copy of the
environment is deallocated before terminating. This can be done by
loading ES with the segment contained in 2C of the PSP, and issuing
function call 49H (Free Allocated Memory).

 5. PC DOS 7 function call 4CH allows the terminating program to pass a
completion (or error) code to PC DOS 7, which can be interpreted within
batch processing (see function call 31H).

114 PC DOS 7

 6. Terminate-but-stay-resident function calls do not automatically close files.

Interrupt 28H − 2 EH Reserved for PC DOS 7
These interrupts are reserved for PC DOS 7 use.

Interrupt 2FH Multiplex Interrupt
Interrupt 2FH is the multiplex interrupt. A general interface is defined
between two processes. The specific application using interrupt 2FH defines
specific functions and parameters.

Every multiplex interrupt handler is assigned a specific multiplex number.
The multiplex number is specified in the AH register. The specific function
that the handler is to perform is specified in the AL register. Other
parameters are placed in the other registers, as needed. The handlers are
chained into the interrupt 2FH interrupt vector. There is no defined method
for assigning a multiplex number to a handler. You must pick one. To avoid
a conflict if two applications choose the same multiplex number, the
multiplex numbers used by an application should be patchable.

The multiplex numbers AH=00H through BFH are reserved for PC DOS 7.
Applications should use multiplex numbers C0H through FFH.

Note: When in the chain for interrupt 2FH, if your code calls PC DOS 7 or if
you execute with interrupts enabled, your code must be reentrant and
recursive.

Interrupt 2FH Function AH=01H PRINT.COM Function Installed
State
The following table contains the function codes that you can specify in AL to
request the resident portion of print to perform a specific function:

Function
Codes (in AL) Description

0 Get installed state

1 Submit fi le

2 Cancel fi le

3 Cancel all files

4 Status

5 End of status

Appendix A. PC DOS 7 Interrupts 115

Print Error Codes
The following table contains the error codes that are returned from the
resident portion of print. (Carry flag is set.)

A L = 0 Get Installed State

This call must be defined by all interrupt 2FH handlers. It is used by the
caller of the handler to determine if the handler is present. On entry, AL=0,
A H = 1 . On return, AL contains the installed state as follows:

A L = 0 Not installed, permissible to install

A L = 1 Not installed, not permissible to install

A L = F F Installed

A L = 1 Submit File

On entry, AL=1, AH=1, and DS:DX points to the submit packet. A submit
packet contains the level (BYTE) and a pointer to the ASCIIZ string (DWORD
in offset segment form). The level value for PC DOS 7 is 0. The ASCIIZ
string must contain the drive, path, and filename of the file you want to print.
The filename cannot contain global filename characters.

A L = 2 Cancel File

On entry, AL=2, AH=1, and DS:DX points to the ASCIIZ string for the print
file you want to cancel. Global filename characters are allowed in the
filename.

A L = 3 Cancel all Files

On entry, AL=3 and AH=1.

Error
Codes (in AX) Description

1 Invalid function

2 File not found

3 Path not found

4 Too many open files

5 Access denied

6 Queue full

9 Busy

12 Name too long

15 Invalid dr ive

116 PC DOS 7

A L = 4 Status

This call holds the jobs in the print queue so that you can scan the queue.
Issuing any other code releases the jobs. On entry, AL=4, AH=1. On
return, DX contains the error count. The error count is the number of
consecutive failures PRINT had while trying to output the last character. If
there are no failures, the number is 0. DS:SI points to the print queue. The
print queue consists of a series of filename entries. Each entry is 64 bytes
long. The first entry in the queue is the file currently being printed. The end
of the queue is marked by a queue entry having a null as the first character.

A L = 5 End of Status

Issue this call to release the queue from call 4. On entry, AL=5 and AH=1.
On return, AX contains the error codes. For information on the error codes
returned, refer to “Print Error Codes” on page 116.

A L = F 8 − FF Reserved by PC DOS 7

Interrupt 2FH Function AH=06H Get ASSIGN.COM Installed
State
(AL=0) is supported.

Interrupt 2FH Function AH=10H Get SHARE.EXE Installed State
AH=10H is the resident part of SHARE. The Get Installed State function
(AL=0) is supported.

Interrupt 2FH Function AX=1680H DOS Idle Call
Many applications execute busy loops. This is usually while the application
waits for the user to type something or to respond in some way. Informing
the operating system that the application is idle offers some benefits:

• Power-management software can make decisions about how to conserve
energy on the system.

• Multitasking software can save time by not giving CPU cycles to tasks
that are idle.

This API (applications program interface) should be used by all PC DOS 7
applications to indicate when they are idle. To prevent halting the system,
applications should check the Int 2FH vector to see that it is not zero before
issuing the first idle call. If the API is supported in the environment you are
in, the Int 2FH will return with AL=0; otherwise, it will return with AL
unchanged (80H). Applications are not usually interested in the return value.

Appendix A. PC DOS 7 Interrupts 117

This API is non blocking. This means an application′s execution would
continue after issuing this API. Your program should contain an idle loop
that re-issues this interrupt if the application stays in the idle state.

DOSDOCK API
In order to provide communication between the PC DOS 7 docking support
programs some new multiplex interrupt functions are being defined in PC
DOS 7. The following API′s are defined and used for docking support in PC
DOS 7.

Interrupt 2FH Function 2000H - Check DOSDOCK Installation
This function is being defined to allow a caller to determine if the DOSDOCK
program is resident.

Called with:
AX = 2000H

Returns:
AL = 00H DOSDOCK program not installed
AL = FFH DOSDOCK program resident

Interrupt 2FH Function 2001H - Get Docking Event
This function allows the caller to determine if a docking event has occured.
An application can use this interrupt to determine if a docking event has
occured rather than poll the PnP Bios. After making this call the event flag is
reset to 0.

Called with:
AX = 2001H

Returns:
AL = 00H No Event
AL = 01H Docking Event Occured
AL = 21H Undocking Event Occured

Interrupt 2FH Function 2002H - Get Current Dock Status
This function returns the current dock state (docked or undocked). An
application can use this interrupt to determine the current dock state of the
machine. This flag is modified when a docking event occurs to the new dock
state.

Called with:
AX = 2002H

Returns:
AL = 00H Machine is not Docked
AL = 01H Machine is Docked

118 PC DOS 7

Interrupt 2FH Function AX=43E0H DOS Protected Mode
Services Check
Please refer to Appendix E, “DOS Protected Mode Services” on page 313 for
details of this function call along with the Interrupt 31H calls to the DPMS
driver.

Appendix A. PC DOS 7 Interrupts 119

Interrupt 2FH Advanced Power Management Driver
All power management functions are accessed through subfunctions of
interrupt 2FH, function 54H and 53H. The following table lists the
subfunctions. In all calls, undefined bits are reserved and should be set to 0.

The following INT 2Fh APIs (Application Program Interfaces) are defined for
DOS APM driver (POWER.EXE) which is APM 1.0 compliant.

The DOS INT 2Fh APIs for APM driver (POWER.EXE) that is 1.1 compliant do
not exist from the APM Committee (Microsoft and Intel). The intent of this
document is to propose a standard for APM driver (POWER.EXE 1.01), INT
2Fh APIs that can utilize APM 1.1 BIOS functionality. The following are the
DOS INT 2Fh APIs that are proposed as a standard for APM driver.

 The intent of these API′s is to give POWER.EXE control over specific unit
device, thus resulting in a greater savings to the system unit battery life as
compared to an application coded to the POWER.EXE 1.0 API ′s.

INT 2F
Function

Description

5400 Detect POWER.EXE

5401 Get or set power status

5402 Get or set idle detection strategy

5403 Get or set power saving level

5481 Get idle statistics

5482 Get or set APM polling frequency

INT 2F
Function

Description

530C PM Event First Phase Broadcast

5404 Get Device Power State

5405 Set Device Power State

5406 Enable/Disable device power state

5407 Engage/Disengage power management

Interrupt 2FH Function AX=530BH PM Event Broadcast
ENTRY:

AX 530BH
BX 0001h ; System standby request

0002h ; System suspend request
0003h ; Normal Resume notification
0004h ; Critical Resume notification
0005h ; Battery low notification

120 PC DOS 7

* 0006h ; Power Status Change Notification (1.1)
* 0007h ; Update Time Notification (1.1)
* 0008h ; Critical System Suspend Notification (1.1)
* 0009h ; User System Standby Request Notification (1.1)
* 000Ah ; User System Suspend Request Notification (1.1)
* 000Bh ; System Standby Resume Notification (1.1)

EXIT:
BH 80h ; An application has rejected the

system standby or request.
0 ; Otherwise

POWER polls the APM firmware periodically for messages. These messages
are sent to all applicable APM applications. The broadcasted message is an
INT 2FH, function 530BH. When POWER polls the APM firmware and detects
a request to switch to the system standby or suspend states, the POWER
device driver broadcasts this message and waits for this interrupt to return.
Handlers of this interrupt can reject these two request. When a request is
rejected by setting BH=80H, POWER sends a state change message to the
APM firmware. The APM firmware might still change power states in a
critical power situation.

An application that receives a system or standby request might choose to
reject it if the application is in a critical section of code. In some other
cases, it will prepare for suspend by saving its state and then passing on the
request. Any handler of this message must pass it down the INT 2FH chain
(even when rejecting the request). This notifies the other handlers of the
request. Even when a request has been rejected, APM might still choose to
enter the suspend state (particularly in a critical low power situation).

The three notifications (normal resume, critical resume, and battery low) also
might cause applications to respond.

All undefined bits are reserved and should be ignored until they are defined.

Note: This interrupt is provided only for passing on information. It is sent
during a timer tick. So, processing this interrupt should be as fast as
possible. Applications in a critical state should reject this call and
should not attempt to do any maintenance work that results in an
inordinate delay during the interrupt. Calling DOS or ROM bios
functions is not allowed.

Appendix A. PC DOS 7 Interrupts 121

Interrupt 2FH Function AH=530CH PM Event First Phase
Broadcast (1.1)
ENTRY:

AX 530CH
BX 0001h ; System_Standby_OK

0002h ; System_Suspend_OK
0009h ; User_System_Standby_OK
000Ah ; User_System_Suspend_OK

EXIT:
BH 80h ; An application has rejected the request

0 ; Otherwise

1.1 compliant:

The PM Event First Phase Broadcast (INT 2Fh, AX = 530Ch) API is defined
for POWER.EXE 1.01 that broadcasts first phase PM events for the two phase
protocol. The following definition allows consistency to the PM events
defined at INT 15h level.

Accessing POWER.EXE Controls

Detect POWER.EXE
ENTRY:

AX 5400H

EXIT:

AX 5400H ;If POWER.EXE is not installed
Version number ;If POWER.EXE is installed

BH 50H ;ASCII “P” character
BL 4DH ;ASCII “M” character

This call must be made before any calls are made to other APIs. This is
done to ensure that calls to POWER are only made when the driver is
present.

Get or Set Power Status
ENTRY:

AX 5401H ;Get or set power status
BH 0 ;Get power status

 1 ;Set power status
BL Bit 0 ;POWER.EXE power management

;switch (0=off, 1=on)
Bit 1 ;APM firmware power management

;switch (0=off, 1=on)

122 PC DOS 7

Bits 2-7 ;Reserved (set to 0)

EXIT:

AX 0 ;Operation successful
02H ;ERROR_PM_ALREADY_CONNECTED
03H ;ERROR_PM_NOT_CONNECTED
87H ;ERROR_PM_INVALID_PARAMETER

BL ;Current power status
BH ;Power status before call

This function allows selection among any of the combinations of software and
hardware power management ON or OFF, as follows:

• POWER=0, APM=0 - Function for all power management is disabled.
This is equivalent to POWER OFF.

• POWER=0, APM=1 - Power management at the software level is
disabled. Software idle detection and APM event broadcast to
applications are disabled. APM firmware power management is enabled.
This is equivalent to POWER STD.

• POWER=1, APM=1 - This is true advanced power management.
Bidirectional communication between POWER.EXE and the APM firmware
is established. POWER.EXE will send CPU_IDLE messages while the
APM firmware is posting power events to be read and broadcasted by
POWER.EXE. This is equivalent to POWER ADV.

If there is no APM firmware, APM=1 is ignored

Get or Set Idle Detection Strategy
ENTRY:

AX 5402H ;Get or set idle detection strategy
BH 0 ;Get current strategy

 1 ;Set current strategy
BL Bit 0 ;Use INT 16H function 1/11

;(keyboard idle)
Bit 1 ;Use INT 28H (DOS idle)
Bit 2 ;Use INT 2FH function 1680

;(application)
Bit 3 ;Use INT 2AH
Bits 4-7 ;Reserved

EXIT:

BX ;Current savings level (1-8)

Appendix A. PC DOS 7 Interrupts 123

Interrupt 2FH triggers as soon as it is received. Interrupts 16H and 28H are
monitored over a period of time. The interrupt (16H or 28H) that occurs most
often is the one used to trigger idles.

An entry value of 0FFH in BL enables all strategies. A value of 0 disables
idle detection through these interrupts (but broadcast of PM events is
enabled). Use get or set power status to enable or disable power
management.

Get or Set POWER Saving Level
ENTRY:

AX 5403H ;Get or set power saving level
BX 0 ;Get current saving level

1-8 ;Set saving level to given number

EXIT:

AX 0 ;Operation successful
BX ;Current saving level

There are 8 different defined power saving levels (1-8). Level 1 is the level
where the least power savings are realized. Level 8 is the highest. The
default POWER device driver defines ADV:MAX as level 7, ADV:REG as level
6, and ADV:MIN as level 3. This API controls two parameters:

• The BaseLineMax for the INT 16H idle detection
• The spread of INT 16H timings over the current BaseLine (noise)

The following table shows the current assignments for each level:

Level Base Line % Noise/spread %

1 222 12.5

2 250 25

3 285 37.5

4 333 50

5 400 62.5

6 500 75

7 750 87.5

8 1000 100

124 PC DOS 7

Get Device Power State (1.1)
ENTRY:

AX 5404h
BX Power Device ID

0001h ; All devices power managed by APM BIOS
01xxh ; Display
02xxh ; Secondary Storage
03xxh ; Parallel Ports
04xxh ; Serial Ports
05xxh ; Network Adapters
06xxh ; PCMCIA Sockets
E000h - EFFFh

; OEM defined device IDs
All other values reserved where xxh = unit number (0 based)

EXIT:
AX 0 ; Operation successful

03h ; ERROR_PM_NOT_CONNECTED
** 04h ; ERROR_PM_NOT_ENGAGED
** 05h ; ERROR_PM_NOT_ENABLED
** 06h ; ERROR_PM_INVALID_DEVICE_ID
CX ; device power state

Note: ** - New error code for POWER.EXE driver.

The following INT 2Fh API returns the power state for the system or device
specified in the power device ID. The power state value returned when the
power device ID specified indicates ″all devices power managed by the APM
BIOS″ or ″all devices in a class″ is defined only when that power device ID
has been used in a call to Set Device Power State (INT 2Fh, AX = 5405). In
the case where the power device ID has not been used in a call to Set
Device Power State, the function will be unsuccessful and will return error
code 06 (ERROR_PM_INVALID_DEVICE_ID).

Set Device Power State (1.1)
ENTRY:

AX 5405h
BX Power Device ID

0001h ; All devices power managed by APM BIOS
01xxh ; Display
02xxh ; Secondary Storage
03xxh ; Parallel Ports
04xxh ; Serial Ports
05xxh ; Network Adapters
06xxh ; PCMCIA Sockets
E000h - EFFFh

Appendix A. PC DOS 7 Interrupts 125

; OEM defined device IDs
All other values reserved where xxh = unit number (0 based)

CX Device Power State
00h ; APM Enabled
01h ; Standby
02h ; Suspend
03h ; Off

EXIT:
AX 0 ; Operation successful

03h ; ERROR_PM_NOT_CONNECTED
** 04h ; ERROR_PM_NOT_ENGAGED
** 05h ; ERROR_PM_NOT_ENABLED
** 06h ; ERROR_PM_INVALID_DEVICE_ID

87h ; ERROR_PM_INVALID_PARAMETER

Note: ** - New error code for POWER.EXE driver.

The following INT 2Fh API sets the system or device specified in the power
device ID into the requested power state.

Enable/Disable device power state (1.1)
ENTRY:

AX 5406h
BX Power Device ID

0001h ; All devices power managed by APM BIOS
01xxh ; Display
02xxh ; Secondary Storage
03xxh ; Parallel Ports
04xxh ; Serial Ports
05xxh ; Network Adapters
06xxh ; PCMCIA Sockets
E000h - EFFFh

; OEM defined device IDs
All other values reserved where xxh = unit number (0 based)

CX 0000h ; Disable device power state
0001h ; Enable device power state

EXIT:
AX 0 ; Operation successful

03h ; ERROR_PM_NOT_CONNECTED
** 04h ; ERROR_PM_NOT_ENGAGED
** 05h ; ERROR_PM_NOT_ENABLED
** 06h ; ERROR_PM_INVALID_DEVICE_ID

87h ; ERROR_PM_INVALID_PARAMETER

Note: ** - New error code for POWER.EXE driver.

126 PC DOS 7

The following INT 2Fh API will enable or disable power management for a
specified device. When disabled the APM BIOS does not automatically
power manage the device.

Engage/Disengage power management (1.1)
ENTRY:

AX 5407h
BX Power Device ID

0001h ; All devices power managed by APM BIOS
01xxh ; Display
02xxh ; Secondary Storage
03xxh ; Parallel Ports
04xxh ; Serial Ports
05xxh ; Network Adapters
06xxh ; PCMCIA Sockets
E000h - EFFFh

; OEM defined device IDs
All other values reserved where xxh = unit number (0 based)

CX 0000h ; Disengage power management
0001h ; Engage power management

EXIT:
AX 0 ; Operation successful

03h ; ERROR_PM_NOT_CONNECTED
** 05h ; ERROR_PM_NOT_ENABLED
** 06h ; ERROR_PM_INVALID_DEVICE_ID

87h ; ERROR_PM_INVALID_PARAMETER

Note: ** - New error code for POWER.EXE 1.01 driver.

The following INT 2Fh API will engage/disengage power management of the
system or device. When disengaged, the APM BIOS automatically power
manages the system or device.

Get Statistics
ENTRY:

AX 5481H ;Get statistics
DS:SI ;Point to buffer for statistics
BX 0 ;Get idle detection statistics

1 ;Get APM statistics
CX 1CH ;Buffer size in bytes

EXIT:

AX 0 ;Operation successful

Appendix A. PC DOS 7 Interrupts 127

71H ;ERROR_PM_BUFFER_TOO_SMALL
87H ;ERROR_PM_INVALID_PARAMETER

This function returns either a structure detailing the efficiency and strategy of
power usage or a count of APM resumes. The following structures are the
idle detection and APM statistics blocks.

STAT_INFO struc ;Idle detection statistics
CPU_ON_TIME dd ? ;Total time CPU is active

;(TIMER TICS)
CPU_IDLE_TIME dd ? ;Total time CPU is idle

;(TIMER TICS)
TOTAL_IDLE_CALLS dd ? ;

 TOTAL_APP_IDLE dd ? ;Total count DO_IDLE
;executed through INT 2FH

TOTAL_DOS_YIELD dd ? ;Total count DO_IDLE
;executed through INT 28H

 TOTAL_KEY_IDLE dd ? ;Total count DO_IDLE
;executed through INT 16H

 TOTAL_DOS_IDLE dd ? ;Total count DO_IDLE
;executed through INT 2AH

STAT_INFO ends

APM_STATS struc ;APM statistics
RESUME_COUNT dw ? ;Total number of resumes

;since last APM_ENABLE
APM_STATS ends

The CPU_ON_TIME value does not include timer ticks which occur while idle
detection in POWER is disabled.

Get or Set APM Polling Period
ENTRY:

AX 5482H ;Get or set APM polling period
BX 0 ;Get APM polling period

non zero ;Set APM polling period. Value
;equals polling period to set

EXIT:

AX 0 ;Operation successful

BX ;Current APM polling period

This function sets or returns the period at which POWER polls the APM
firmware for PM events. The value is the number of timer ticks between
polls.

128 PC DOS 7

APM Error Return Codes and Descriptions
The error codes that are defined for POWER.EXE device driver for APM 1.0
are as follows.

02h ; ERROR_PM_ALREADY_CONNECTED
03h ; ERROR_PM_NOT_CONNECTED
71h ; ERROR_PM_BUFFER_TOO_SMALL
87h ; ERROR_PM_INVALID_PARAMETER

The following new error codes are defined for the POWER.EXE 1.01 device
driver to utilize APM 1.1 BIOS functionality.

04h ; ERROR_PM_NOT_ENGAGED
05h ; ERROR_PM_NOT_ENABLED
06h ; ERROR_PM_INVALID_DEVICE_ID
07h ; ERROR_PM_DEVIDNOTSET

Interrupt 2FH Function AH=0B7H Get APPEND.EXE Installed
State
AH=B7H is the resident part of APPEND. The Get Installed State function
(AL=0) is supported.

AL=2 is the Get APPEND version. This call is for distinguishing between the
PC LAN APPEND and the DOS APPEND. On return, if AX=FFFFH then the
DOS APPEND is loaded.

AL=4 is the Get APPEND Path Pointer (DOS APPEND only). On return ES:DI
points to the currently active APPEND path.

AL=6 is the Get APPEND Function State (DOS APPEND only).

BX is returned with bits set indicating if APPEND is currently enabled and
what functions are in effect.

Note: The functions in effect do not change whether or not APPEND is
disabled.

AL=7 Set function state (DOS APPEND
only)

Bit Function in effect if bit is on

0 APPEND enabled

13 /PATH

14 /E

15 /X

Appendix A. PC DOS 7 Interrupts 129

On input BX is the new setting for all functions.
The suggested procedure is to get the current function
state, turn on or turn off the desired bits, then
use this call to set the function state.

AL=11H Set Return Found Name State (DOS APPEND
only)

On request AL=17, a process system state flag is set. If this flag is set, then
on the next ASCIIZ 3DH, 43H or 6CH function call within Interrupt 21H that
APPEND processes, APPEND returns the name it finds to the application
filename buffer. This name may be different from the one the application
offered. The application must provide enough space for the found name.
After APPEND has processed an Interrupt 21H, it resets the Return Found
Name state. The following is an example of this process.

MOV AH,0B7H ; Indicate APPEND
MOV AL,0 ; Get installed state
INT 2FH
CMP AL,0 ; APPEND installed?
JE NOT_INSTALLED

MOV AH,0B7H ; Indicate APPEND
MOV AL,2 ; Get APPEND version
INT 2FH
CMP AX,-1 ; DOS version?

PC_LAN_APPEND ; AX<> -1 means PC LAN
JNE APPEND

; The following functions are valid only if PC DOS 7 APPEND

MOV AH,0B7H ; Indicate APPEND
MOV AL,4 ; Get APPEND path pointer
INT 2FH

; ES:DI = address of APPEND path
; (Buffer is 128 characters long)

MOV AH,0B7H ; Indicate APPEND
MOV AL,6 ; Get function state
INT 2FH

; BX = function state
; 8000H = /X is on
; 4000H = /E is on
; 2000H = /PATH is on
; 0001H = APPEND enabled
; If off, similar to null

130 PC DOS 7

; APPEND path
; Set on by any non-status
; occurrence of APPEND

MOV AH,0B7H ; Indicate APPEND
MOV AL,7 ; Set function state
MOV BX,state ; New state
INT 2FH

MOV AH,0B7H ; Indicate APPEND
MOV AL,11H ; Set Return Found

; Name state
INT 2FH

Example 2FH Handler
MYNUM DB X ; X = The specific AH

; multiplex number.
INT 2F NEXT DD ? ; Chain location
INT 2F:

ASSUME DS:NOTHING,ES:NOTHING,SS:NOTHING

CMP AH,MYNUM
JE MINE
JMP INT 2F NEXT ; Chain to next

; 2FH Handler

MINE:

CMP AL,0F8H
JB DO FUNC
IRET ; IRET on reserved

; functions

DO FUNC:

OR AL,AL
JNE NON INSTALL ; Non Get Installed

; State request
MOV AL,0FFH ; Say I′ m here
IRET ; All done

NON INSTALL:
...

Appendix A. PC DOS 7 Interrupts 131

Installing the Handler
The following example contains the functions necessary to install a handler:

MOV AH,MYNUM
XOR AL,AL
INT 2FH ; Ask if already

; installed
OR AL,AL
JZ OK INSTALL

BAD INSTALL: ; Handler already installed

OK INSTALL: ; Install my
; handler

MOV AL,2FH
MOV AH,GET INTERRUPT VECTOR
INT 21H ; Get multiplex

; vector
MOV WORD PTR INT 2F NEXT+2,ES
MOV WORD PTR INT 2F NEXT,BX
MOV DX,OFFSET INT 2F
MOV AL,2FH
MOV AH,SET INTERRUPT VECTOR
INT 21H ; Set multiplex

; vector
...

Interrupt 30H-3FH Reserved for PC DOS 7
These interrupts are reserved for PC DOS 7 use.

132 PC DOS 7

Appendix B. PC DOS 7 Function Calls

Number Function Name
00H Program terminate
01H Console input with echo
02H Display output
03H Auxiliary input
04H Auxiliary output
05H Printer output
06H Direct console I/O
07H Direct console input without echo
08H Console input without echo
09H Display string
0AH Buffered keyboard input
0BH Check standard input status
0CH Clear keyboard buffer, invoke a keyboard function
0DH Disk reset
0EH Select disk
0FH Open file
10H Close file
11H Search for first entry
12H Search for next entry
13H Delete file
14H Sequential read
15H Sequential write
16H Create file
17H Rename file
18H Reserved by PC DOS 7
19H Current disk
1AH Set disk transfer address
1BH Allocation table information
1CH Allocation table information for specific device
1DH Reserved by PC DOS 7
1EH Reserved by PC DOS 7
1FH Get Default Drive Parameter Block
20H Reserved by PC DOS 7
21H Random read
22H Random write
23H File size
24H Set relative record field
25H Set interrupt vector
26H Create new program segment
27H Random block read

 Copyright IBM Corp. 1995 133

28H Random block write
29H Parse filename
2AH Get date
2BH Set date
2CH Get time
2DH Set time
2EH Set or reset verify switch
2FH Get disk transfer address
30H Get PC DOS 7 version number
31H Terminate process and remain resident
32H Get Drive Parameter Block
33H Get or Set system value
34H Get InDOS Flag Address
35H Get interrupt vector
36H Get disk free space
37H Reserved by PC DOS 7
38H Get or set country dependent information
39H Create subdirectory (MKDIR)
3AH Remove subdirectory (RMDIR)
3BH Change current directory (CHDIR)
3CH Create a file (CREAT)
3DH Open a file
3EH Close a file handle
3FH Read from a file or device
40H Write to a file or device
41H Delete a file from a specified directory (UNLINK)
42H Move file read/write pointer (LSEEK)
43H Change file mode (CHMOD)
44H I/O control for devices (IOCtl)
45H Duplicate a file handle (DUP)
46H Force a duplicate of a file handle (FORCDUP)
47H Get current directory
48H Allocate memory
49H Free allocated memory
4AH Modify allocated memory blocks (SETBLOCK)
4BH Load or execute a program (EXEC)
4CH Terminate a process (EXIT)
4DH Get return code of a subprocess (WAIT)
4EH Find first matching file (FIND FIRST)
4FH Find next matching file (FIND NEXT)
50H Set Program Segment Prefix Address
51H Get Program Segment Prefix Address
52H Reserved by PC DOS 7
53H Reserved by PC DOS 7

134 PC DOS 7

54H Get verify setting
55H Reserved by PC DOS 7
56H Rename a file
57H Get or set a file′s date and time
5800H Get Allocation Strategy
5801H Set Allocation Strategy
5802H Get Upper-Memory Link
5803H Set Upper-Memory Link
59H Get extended error
5AH Create unique file
5BH Create new file
5CH Lock or unlock file access
5D0AH Set Extended Error
5E00H Get machine name
5E02H Set printer setup
5E03H Get printer setup
5F02H Get redirection list entry
5F03H Redirect device
5F04H Cancel redirection
60H Reserved by PC DOS 7
61H Reserved by PC DOS 7
62H Get PSP address
63H Reserved by PC DOS 7
64H Reserved by PC DOS 7
65H Get extended country information
66H Get or set global code page
67H Set handle count
68H Commit file
69H Reserved by PC DOS 7
6AH Reserved by PC DOS 7
6BH Reserved by PC DOS 7
6CH Extended open or create

Using PC DOS 7 Function Calls
Most function calls require input to be passed to them in registers. After
setting the appropriate register values, issue the function calls in either of
the following ways:

• The preferred method is to place the function number in AH and issue
interrupt 21H.

• Place the function number in AH and execute a call to offset 50H in your
program segment prefix.

Appendix B. PC DOS 7 Function Calls 135

Program Code Fragments
In each of the function call descriptions in this chapter, the input, output and
method of use are described using a small program code fragment. These
fragments are written in IBM PC Assembler Language.

.COM Programs
The descriptions assume that the program is an .EXE, not a .COM program.
If a .COM program is desired, do not include either of the following
instructions:

MOV ES,SEG —
or
MOV DS,SEG —

Notes:

 1. Some FCB function calls do not permit invalid characters (0DH− 2 9 H).

 2. Device names cannot end in a colon.

 3. The contents of the AX register can be altered by any of the function
calls. Even though no error code is returned in AX, it is possible that AX
has been changed.

PC DOS 7 Registers
PC DOS 7 uses the following registers, pointers, and flags when executing
interrupts and function calls:

Register
Definition

General
Registers

AX
AH
AL

Accumulator (16-bit)
Accumulator high-order byte (8-bit)
Accumulator low-order byte (8-bit)

BX
B H
BL

Base (16-bit)
Base high-order byte (8-bit)
Base low-order byte (8-bit)

CX
CH
CL

Count (16-bit)
Count high-order byte (8-bit)
Count low-order byte (8-bit)

DX
DH
DL

Data (16-bit)
Data high-order (8-bit)
Data low-order (8-bit)

Flags OF,DF,IF,TF,SF,ZF,AF,PF,CF

136 PC DOS 7

Register
Definition Pointers

SP Stack pointer (16-bit)

BP Base pointer (16-bit)

IP Instruction pointer (16-bit)

Register
Definition

Segment
Registers

CS Code segment (16-bit)

DS Data segment (16-bit)

SS Stack segment (16-bit)

ES Extra segment (16-bit)

Register
Definition

Index
Registers

DI Destination index (16-bit)

SI Source index (16-bit)

Register Numbering Convention
Each register is 16 bits long and is divided into a high and low byte. Each
byte is 8 bits long. The bits are numbered from right to left. The low byte
contains bits 0 through 7 and the high byte contains bits 8 through 15. The
chart below shows the hexadecimal values assigned to each bit.

High Byte Low Byte

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Hex value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

PC DOS 7 Internal Stack
When PC DOS 7 gains control, it switches to an internal stack. User
registers are preserved unless information is passed back to the requester
as indicated in the specific requests. The user stack needs to be sufficient to
accommodate the interrupt system. It is recommended that the user stack
be 200H in addition to what the user needs.

Appendix B. PC DOS 7 Function Calls 137

Responding to Errors
Handle function calls report an error by setting the carry flag and returning
the error code in AX. FCB function calls report an error by returning FFH in
AL.

Extended error support (59H) provides a common set of error codes and
specific error information such as error classification, location, and
recommended action. In most critical cases, applications can analyze the
error code and take specific action. Recommended actions are intended for
programs that do not understand the error codes. Programs can take
advantage of extended error support both from interrupt 24H critical error
handlers and after issuing interrupt 21H function calls. Do not code to
specific error codes.

Extended Error Codes
Hexadecimal
Code

Decimal
Code Meaning

01H 1 Invalid function number
02H 2 File not found
03H 3 Path not found
04H 4 Too many open files (no handles left)
05H 5 Access denied
06H 6 Invalid handle
07H 7 Memory control blocks destroyed
08H 8 Insufficient memory
09H 9 Invalid memory block address
0AH 10 Invalid environment
0BH 11 Invalid format
0CH 12 Invalid access code
0DH 13 Invalid data
0EH 14 Reserved
0FH 15 Invalid drive was specified
10H 16 Attempt to remove the current directory
11H 17 Not same device
12H 18 No more fi les
13H 19 Attempt to write on write-protected diskette
14H 20 Unknown unit
15H 21 Drive not ready
16H 22 Unknown command
17H 23 Cyclic redundancy check (CRC) — part of diskette is

bad
18H 24 Bad request structure length
19H 25 Seek er ror
1AH 26 Unknown media type
1BH 27 Sector not found
1CH 28 Printer out of paper
1DH 29 Write fault
1EH 30 Read fault
1FH 31 General fai lure
20H 32 Sharing violation

138 PC DOS 7

Hexadecimal
Code

Decimal
Code Meaning

21H 33 Lock violation
22H 34 Invalid disk change
23H 35 FCB unavailable
24H 36 Sharing buffer overflow
25H 37 Reserved by PC DOS 7
26H 38 Unable to complete file operation
27H− 3 1 H 39− 4 9 Reserved by PC DOS 7
32H 50 Network request not supported
33H 51 Remote computer not listening
34H 52 Duplicate name on network
35H 53 Network path not found
36H 54 Network busy
37H 55 Network device no longer exists
38H 56 NETBIOS command limit exceeded
39H 57 System error; NETBIOS error
3AH 58 Incorrect response from network
3BH 59 Unexpected network error
3CH 60 Incompatible remote adapter
3DH 61 Print queue full
3EH 62 Not enough space for print file
3FH 63 Print fi le was cancelled
40H 64 Network name was deleted
41H 65 Access denied
42H 66 Network device type incorrect
43H 67 Network name not found
44H 68 Network name limit exceeded
45H 69 NETBIOS session limit exceeded
46H 70 Sharing temporari ly paused
47H 71 Network request not accepted
48H 72 Print or disk redirection is paused
49H− 4 FH 73− 7 9 Reserved
50H 80 File exists
51H 81 Reserved
52H 82 Cannot make directory entry
53H 83 Fail on INT 24
54H 84 Too many redirections
55H 85 Duplicate redirection
56H 86 Invalid password
57H 87 Invalid parameter
58H 88 Network data fault
59H 89 Function not supported by network
5AH 90 Required system component not installed

Error Classes
Hexadecimal
Value

Decimal
Value Description

01H 1 Out of Resource: Example: out of space or channels.
02H 2 Temporary Situation: Something expected to disappear

with time. This is not an error condition, but a
temporary situation such as a locked file.

03H 3 Authorization: Permission problem.

Appendix B. PC DOS 7 Function Calls 139

Hexadecimal
Value

Decimal
Value Description

04H 4 Internal: Internal error in system software. Probable
problem with system software rather than a user or
system failure.

05H 5 Hardware Failure: A serious problem not the fault of
user program.

06H 6 System Failure: Serious failure of system software not
the fault of the user, such as missing or incorrect
configuration fi les.

07H 7 Application Program Error: Inconsistent requests.
08H 8 Not Found: File or item not found. Inconsistent

requests.
09H 9 Bad Format: File or value in invalid format or type;

unsuitable.
0AH 10 Locked: Locked file or item.
0BH 11 Media: Media failure such as incorrect disk, CRC error,

or defective media.
0CH 12 Already Exists: Duplication error, such as declaring a

machine name that already exists.
0DH 13 Unknown: Classification does not exist or is

inappropriate.

Actions
Hexadecimal
Code

Decimal
Code Description

01H 1 Retry: Retry a few times, then prompt user to
determine if the program should continue or be
terminated.

02H 2 Delay Retry: Retry several times after pause, then
prompt user to determine if the program should
continue or be terminated.

03H 3 User: If the input was entered by a user, advise
reentry. The error, however, may have occurred in the
program itself, such as a bad drive letter or bad
filename specification.

04H 4 Abort: Abort application with cleanup. The application
cannot proceed, but the system is in an orderly state
and it is safe to stop the application.

05H 5 Immediate Exit: Stop application immediately without
clearing registers. Do not use the application to close
files or update indexes, but exit as soon as possible.

06H 6 Ignore: Ignore.
07H 7 Retry After User Intervention: The user needs to

perform some action such as removing a diskette and
inserting a different one. Then retry the operation.

140 PC DOS 7

Locus (Location)
Hexadecimal
Value

Decimal
Value Description

01H 1 Unknown: Not specific; not appropriate.
02H 2 Block Device: Related to random access mass disk

storage.
03H 3 Net: Related to the network.
04H 4 Serial Device: Related to serial devices.
05H 5 Memory: Related to random access memory.

Appendix B. PC DOS 7 Function Calls 141

00H — Program Terminate

Purpose
Stops the execution of a program.

Examples
MOV AH,00H ; Function Call — Terminate Program
INT 21H ; Issue request to DOS

 ; No return

Comments
The terminate, Ctrl-Break, and critical error exit addresses are restored to
the values they had on entry to the terminating program, from the values
saved in the program segment prefix. All file buffers are flushed and the
handles opened by the process are closed. Any files that have changed in
length and not closed are not recorded properly in the directory. Control
transfers to the terminate address. This call performs exactly the same
function as interrupt 20H. It is the program′s responsibility to ensure that the
CS register contains the segment address of its program segment prefix
control block before calling this function.

Function 4CH — Terminate a Process is the preferred method for ending a
program.

142 PC DOS 7

01H — Console Input with Echo

Purpose
Waits for a character to be read at the standard input device (unless one is
ready), then echoes the character to the standard output device and returns
the character in AL.

Examples
MOV AH,01H ; Function Call — keyboard input
INT 21H ; Issue request to DOS
MOV Char,AL ; Save character
CMP AL,0 ; Extended character ?
JNE Normal Char ; No!
MOV AH,01H ; Function Call — keyboard input
INT 21H ; Issue request to DOS
MOV ExtChar,AL ; Save extended character

 Normal Char:

Character LABEL WORD ; Complete character
Char DB ? ; Character buffer
ExtChar DB ? ; Character buffer

Comments
The character is checked for a Ctrl-Break. If Ctrl-Break is detected, an
interrupt 23H is executed.

For function call 01H, extended ASCII codes require two function calls. The
first call returns 00H as an indicator that the next call will return an extended
code.

Appendix B. PC DOS 7 Function Calls 143

02H — Display Output

Purpose
Outputs the character in DL to the standard output device.

Examples
MOV AH,02H ; Function Call — Display Output
MOV DL,Char ; Get character to display
INT 21H ; Issue request to DOS

CHAR DB ? ; Character buffer

Comments
If the character in DL is a backspace (08), the cursor is moved left one
position (nondestructive). If a Ctrl-Break is detected after the output, an
interrupt 23H is executed.

144 PC DOS 7

03H — Auxiliary Input

Purpose
Waits for a character from the standard auxiliary device, then returns that
character in AL.

Examples
MOV AH,03H ; Function Call — Auxiliary Input
INT 21H ; Issue request to DOS
MOV Char,AL ; Save character

CHAR DB ? ; Character buffer

Comments
Auxiliary (AUX) support is unbuffered and noninterrupt driven.

At startup, PC DOS 7 initializes the first auxiliary port to 2400 baud, no parity,
one-stop bit, and 8-bit word.

The auxiliary function calls (03H and 04H) do not return status or error codes.
For greater control, you should use the ROM BIOS routine (interrupt 14H) or
write an AUX device driver and use IOCtl.

Appendix B. PC DOS 7 Function Calls 145

04H — Auxiliary Output

Purpose
Outputs the character in DL to the standard auxiliary device.

Examples
MOV AH,04H ; Function Call — Auxiliary Output

MOV DL,Char ; Get character to output
INT 21H ; Issue request to DOS

; Nothing returned

CHAR DB ? ; Character buffer

Comments
If the character in DL is a backspace (08), the cursor is moved left one
position (nondestructive). If a Ctrl-Break is detected after the output, an
interrupt 23H is executed.

146 PC DOS 7

05H — Printer Output

Purpose
Outputs the character in DL to the standard printer device.

Examples
MOV AH,05H ; Function Call — Printer Output
MOV DL,Char ; Get character to output
INT 21H ; Issue request to DOS

; Nothing returned

CHAR DB ? ; Character buffer

Appendix B. PC DOS 7 Function Calls 147

06H — Direct Console I/O

Purpose
Gets a character from the standard input device if one is ready, or outputs a
character to the standard output device.

Examples
In loop:
MOV AH,06H ; Function Call — Direct Console I/O
MOV DL,-1 ; 0FFH for input
INT 21H ; Issue request to DOS
JZ In loop ; No character yet on input
MOV Char,AL ; Save character
CMP AL,0 ; Extended Character ?
JNE Normal Char ; No!
MOV AH,07H ; Function Call — Keyboard Input
INT 21H ; Issue request to DOS
MOV ExtChar,AL ; Save extended character

 Normal Char:

or

MOV AH,06H ; Function Call — Direct Console I/O
MOV DL,Char ; Output character to display (not 0FFH)
INT 21H ; Issue request to DOS

Character LABEL WORD ; Complete character
Char DB ? ; Character buffer
ExtChar DB ? ; Character buffer

Comments
If DL is FFH, AL returns with the 0 flag clear and an input character from the
standard input device, if one is ready. If a character is not ready, the 0 flag
will be set.

If DL is not FFH, DL is assumed to have a valid character that is output to the
standard output device. This function does not check for Ctrl-Break, or
Ctrl-PrtSc.

For function call 06H, extended ASCII codes require two function calls. The
first call returns 00H as an indicator that the next call will return an extended
code.

148 PC DOS 7

07H — Direct Console Input Without Echo

Purpose
Waits for a character to be read at the standard input device (unless one is
ready), then returns the character in AL.

Examples
MOV AH,07H ; Function Call — Direct Console Input (no echo)
INT 21H ; Issue request to DOS
MOV Char,AL ; Save character
CMP AL,0 ; Extended character ?
JNE Normal Char ; No!
MOV AH,07H ; Function Call — Direct Console Input (no echo)
INT 21H ; Issue request to DOS
MOV ExtChar,AL ; Save extended character

Normal Char:

Character LABEL WORD ; Complete character
Char DB ? ; Character buffer
ExtChar DB ? ; Character buffer

Comments
As with function call 06H, no checks are made on the character.

For function call 07H, extended ASCII codes require two function calls. The
first call returns 00H as an indicator that the next call will return an extended
code.

Appendix B. PC DOS 7 Function Calls 149

08H — Console Input Without Echo

Purpose
Waits for a character to be read at the standard input device (unless one is
ready) and returns the character in AL.

Examples

 MOV AH,08H ; Function Call — Console Input (no echo)
 INT 21H ; Issue request to DOS
 MOV Char,AL ; Save character
 CMP AL,0 ; Extended character ?
 JNE Normal Char; No!
 MOV AH,08H ; Function Call — Console Input (no echo)
 INT 21H ; Issue request to DOS
 MOV ExtChar,AL ; Save extended character
Normal Char:

 Character LABEL WORD ; Complete character
 Char DB ? ; Character buffer
 ExtChar DB ? ; Character buffer

Comments
The character is checked for Ctrl-Break. If Ctrl-Break is detected, an
interrupt 23H is executed.

For function call 08H, extended ASCII codes require two function calls. The
first call returns 00H as an indicator that the next call will return an extended
code.

150 PC DOS 7

09H — Display S tring

Purpose
Sends the characters in the string to the standard output device.

Examples
MOV AX,SEG String
 MOV DS,AX ;Set DS:DX to string
 MOV DX,OFFSET String
 MOV AH,09H ;Function Call - Display String
 INT 21H ;Issue request to DOS

String DB ″This string ends at the first Dollar″
DB 0DH,0AH
DB ″$″

Comments
The character string in memory must be terminated by a $ (24H). Each
character in the string is output to the standard output device in the same
form as function call 02H.

ASCII codes 0DH and 0AH represent carriage return and line feed,
respectively.

Appendix B. PC DOS 7 Function Calls 151

0AH — Buffered Keyboard Input

Purpose
Reads characters from the standard input device and places them in the
buffer beginning at the third byte.

Examples
MOV AX,SEG Buffer
 MOV DS,AX ;Set DS:DX to return Buffer
 MOV DX,OFFSET Buffer
 MOV AH,0AH ;Function Call-Buffered

;Keyboard Input
 INT 21H ;Issue request to DOS

Buffer DB 128 ; Max length of input
CurLen DB ? ; Number of characters input

; (excludes Return (0DH))
 CurText DB 128 DUP(?) ; Up to 128 characters allowed

Comments
The first byte of the input buffer specifies the number of characters the buffer
can hold. This value cannot be 0. Reading the standard input device and
filling the buffer continues until Enter is read. If the buffer fills to one less
than the maximum number of characters it can hold, each additional
character read is ignored and causes the bell to ring, until Enter is read. The
second byte of the buffer is set to the number of characters received,
excluding the carriage return (0DH), which is always the last character.

152 PC DOS 7

0BH — Check Standard Input Status

Purpose
Checks if there is a character available from the standard input device.

Examples
 In LOOP:

MOV AH,0BH ; Function Call — Check Input
INT 21H ; Issue request to DOS
CMP AL,-1 ; 0FFH indicates character available
JNE In LOOP

Comments
If a character is available from the STDIN device, AL is FFH. Otherwise, AL
is undefined. If a Ctrl-Break is detected, an interrupt 23H is executed.

Appendix B. PC DOS 7 Function Calls 153

0CH — Clear Keyboard Buffer and Invoke a Keyboard Function

Purpose
Clears the standard input device of any characters, then executes the
function call number in AL.

Examples
MOV AH,0CH ; Function Call — Clear keyboard &

; Invoke function
MOV AL,Function ; Function Call to execute

; (only 01H, 06H, 07H, 08H, and 0AH are allowed).
INT 21H ; Issue request to DOS

; Output depends on Function Call selected

154 PC DOS 7

0DH — Disk Reset

Purpose
Writes to the disk file buffers that have been modified. All buffers are then
made available for reuse.

Examples
MOV AH,0DH ; Function Call — Disk Reset
INT 21H ; Issue request to DOS

; No return

Comments
It is necessary to close or commit all open files to correctly update the disk
directory.

Appendix B. PC DOS 7 Function Calls 155

0EH — Select Disk

Purpose
Selects the drive specified in DL (0=A, 1=B, etc.) (if valid) as the default
drive.

Examples
MOV AH,0EH ; Function Call — Select Disk
MOV DL,Drive ; Drive to select (0=A:, 1=B:, ...)
INT 21H ; Issue request to DOS
MOV LastDrive,AL : Save max drive number (1=A:, 2=B:, ...)
MOV AH,19H ; Function Call — Get Current Disk
INT 21H ; Issue request to DOS
CMP AL,DL ; Selected drive = requested
JNE Error ; No, Error!

Drive DB ; New Drive to select
LastDrive DB ; Highest Valid Drive

Comments
The total number of unique drive letters, including diskette and hard disk
drives, that can be referenced is returned in AL. The value in AL is equal to
the value of LASTDRIVE in CONFIG.SYS or the total number of installed
devices, whichever is greater. For PC DOS 7 5 is the minimum value
returned in AL. If the system has only one diskette drive, it is counted as two
to be consistent with the philosophy of thinking of the system as having
logical drives A and B.

156 PC DOS 7

0FH — Open File

Purpose
Searches the current directory for the named file and AL returns FFH if it is
not found. If the named file is found, AL returns 00H and the FCB is filled as
described below.

Examples
 MOV AX,SEG FCB ;Address FCB Parameter Block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,0FH ;Function Call-FCB Open
 INT 21H ;Issue request to DOS

FCB LABEL BYTE
Drive DB 0 ; Drive (0=Current, 1=A, 2=B, ...)
FName DB ″FILENAME″ ; File Name (blank padded)
Ext DB ″EXT″ ; File Extension (blank padded)

DB 25 DUP(0) ; Filled in by PC DOS 7

Comments
AL is 00H if the file is opened.

AL is FFH if the file was not opened.

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

If the drive code was 0 (default drive), it is changed to the actual drive used
(1=A, 2=B, and so on). This allows changing the default drive without
interfering with subsequent operations on this file. The current block field
(FCB bytes C-D) is set to 0. The size of the record to be worked with (FCB
bytes E-F) is set to the system default of 80H. The size of the file and the
date are set in the FCB from information obtained from the directory. You
can change the default value for the record size (FCB bytes E-F) or set the
random record size and/or current record field. Perform these actions after
the open, but before any disk operations.

The file is opened in compatibility mode. For information on compatibility
mode, refer to function call 3DH.

Appendix B. PC DOS 7 Function Calls 157

10H — Close File

Purpose
Closes a file.

Examples
 MOV AX,SEG FCB ; Address FCB Parameter Block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,10H ; Function Call-FCB Close
 INT 21H ; Issue request to DOS
 CMP AL,0 ; File Closed?
 JNE Error ; No, Error!

 FCB LABEL BYTE
; Contents set by previous operations

Comments
AL is 00H if the file is closed.

AL is FFH if the file was not closed.

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

This function call must be executed on open files after file writes, and we
highly recommend that it be used on all files. If the file is not found in its
correct position in the current directory, it is assumed the disk was changed
and AL returns FFH. Otherwise, the directory is updated to reflect the status
in the FCB, the buffers for that file are flushed, and AL returns 00H.

158 PC DOS 7

11H — Search for First Entry

Purpose
Searches the current directory for the first matching filename.

Examples
 MOV AX,SEG DTA ; Address Buffer for found file
 MOV DS,AX ; information
 MOV DX,OFFSET DTA
 MOV AH,1AH ; Function Call-Set DTA address
 INT 21H ; Issue request to DOS
 MOV AX,SEG FCB ; Address FCB parameter block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,11H ; Function Call-FCB search first
 INT 21H ; Issue request to DOS
 CMP AL,0 ; File found?
 JNE Error ; No, Error!

 FCB LABEL BYTE
 Fdrive DB 0 ; Drive (0=Current, 1=A, 2=B, ...)
Fname DB ″FILENAME″ ; File name (blank padded, may use ?)
Fext DB ″EXT″ ; File extension (blank padded, may use ?)

DB 25 DUP(0) ; Filled in by DOS

DTA LABEL BYTE
 Ddrive DB ? ; Drive
Dname DB ″????????″ ; File Name (blank padded)
Dext DB ″???″ ; File Extension (blank padded)

DB 25 DUP(0) ; Filled in by PC DOS 7

Comments
AL is 00H if the file is found.

AL is FFH if the file was not found.

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

The current disk directory is searched for the first matching filename. If none
is found, AL returns FFH. Global filename characters are allowed in the

Appendix B. PC DOS 7 Function Calls 159

filename and extension. If a matching filename is found, AL returns 00H and
the locations at the disk transfer address are set as follows:

• If the FCB provided for searching was an extended FCB, the first byte at
the disk transfer address is set to FFH followed by 5 bytes of 0, then the
attribute byte from the search FCB, then the drive number used (1=A,
2=B, etc.), then the 32 bytes of the directory entry. Thus, the disk
transfer address contains a valid unopened extended FCB with the same
search attributes as the search FCB.

• If the FCB provided for searching was a standard FCB, then the first byte
is set to the drive number used (1=A, 2=B), and the next 32 bytes
contain the matching directory entry. Thus, the disk transfer address
contains a valid unopened normal FCB.

Note: If an extended FCB is used, the following search pattern is used:

 1. If the attribute is 0, only normal file entries are found. Entries for
volume label, sub-directories, hidden and system files, are not
returned.

 2. If the attribute field is set for hidden or system files, or directory
entries, it is an inclusive search. All normal file entries, plus all
entries matching the specified attributes, are returned. To look at
all directory entries except the volume label, the attribute byte
may be set to hidden + system + directory (all 3 bits on).

 3. If the attribute field is set for the volume label, it is considered an
exclusive search, and only the volume label entry is returned.

160 PC DOS 7

12H — Search for Next Entry

Purpose
Searches the current directory for the next matching filename.

Examples
MOV AX,SEG DTA ; Address Buffer for found file
MOV DS,AX ; Information
MOV DX,OFFSET DTA
MOV AH,1AH ; Function Call-Set DTA address
INT 21H ; Issue request to DOS
MOV AX,SEG FCB ; Address FCB Parameter Block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,12H ; Function Call-FCB Search Next
INT 21H ; Issue request to DOS
CMP AL,0 ; File found?
JNE Error ; No, Error!

FCB LABEL BYTE
; As set by FCB Search First

DTA LABEL BYTE
Drive DB ? ; Drive
Fname DB ″????????″ ; File Name (blank padded)
Ext DB ″???″ ; File Extension (blank padded)

DB 25 DUP(0) ; Filled in by PC DOS 7

Comments
AL is 00H if the file is found. AL is FFH if the file was not found. Use
Function Call 59H (Get Extended Error) to determine the actual error
condition.

After a matching filename has been found using function call 11H, function
12H may be called to find the next match to an ambiguous request.

The DTA contains information from the previous Search First or Search Next.
All of the FCB, except for the name/extension field, is used to keep
information necessary for continuing the search, so no disk operations may
be performed if this FCB is between a previous function 11H or 12H call and
this one.

Appendix B. PC DOS 7 Function Calls 161

13H — Delete File

Purpose
Deletes all current directory entries that match the specified filename. The
specified filename cannot be read-only.

Examples
 MOV AX,SEG FCB ;Address FCB Parameter Block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,13H ;Function Call-FCB Delete File
 INT 21H ;Issue request to DOS
 CMP AL,0 ;File(s) Deleted?
 JNE Error ;No, Error!

 FCB LABEL BYTE
 Drive DB 0 ; Drive
FName DB Filename ; File Name (blank padded, may use ?)
Ext DB Ext ; File Extension (blank padded, may use ?)

DB 25 DUP(0) ; Filled in by DOS

Comments
AL is 00H if the file is found.

AL is FFH if the file was not found.

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

All matching current directory entries are deleted. The global filename
character “?” is allowed in the filename or extension. If no directory entries
match, AL returns FFH; otherwise AL returns 00H.

If the file is specified in read-only mode, the file is not deleted.

Note: Close open files before deleting them.

Network Access Rights: Requires Create access rights.

162 PC DOS 7

14H — Sequential Read

Purpose
Loads the record addressed by the current block (FCB bytes C-D) and the
current record (FCB byte 1F) at the disk transfer address (DTA), then the
record address is increased.

Examples
 MOV AX,SEG DTA ;Address Data buffer
 MOV DS,AX
 MOV DX,OFFSET DTA
 MOV AH,1AH ;Function call Set DTA Address
 INT 21H ;Issue request to DOS
 MOV AX,SEG FCB ;Address FCB Parameter Block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,14H ;Function Call-FCB Sequential Read
 INT 21H ;Issue request to DOS
 CMP AL,0 ;Data Read?
 JNE Error ;No, Error!

 FCB LABEL BYTE
; Set by previous open
DTA LABEL BYTE

DB ?Dup(0) ;I/O buffer

Comments
AL is 00H if the read was successful.

AL is 01H if the file was at End of File (EOF).

AL is 02H if the read would have caused a wrap or overflow because the DTA
was too small (the read was not completed).

AL is 03H if EOF (a partial record was read and filled out with 0s).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition. The length of the record is determined by the FCB record size
field.

Network Access Rights: Requires Read access rights.

Appendix B. PC DOS 7 Function Calls 163

15H — Sequential Write

Purpose
Writes the record addressed by the current block and record fields (size
determined by the FCB record size field) from the disk transfer address. If
records are less than the sector size, the record is buffered for an eventual
write when a sector′s worth of data is accumulated. Then the record
address is increased.

Examples

MOV AX,SEG DTA ;Address Data buffer
MOV DS,AX
MOV DX,OFFSET DTA
MOV AH,1AH ;Function Set DTA Address
INT 21H ;Issue request to DOS
MOV AX,SEG FCB ;Address FCB Parameter Block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,15H ;Function Call-FCB Sequential Write
INT 21H ;Issue request to DOS
CMP AL,0 ;Data Written?
JNE Error ;No, Error!

FCB LABEL BYTE
; Set by previous open
DTA LABEL BYTE

DB ?Dup(0) ;I/O buffer

Comments
AL is 00H if the write was successful.

AL is 01H if the disk or diskette is full (write cancelled).

AL is 02H if the write would have caused a wrap or overflow because the
DTA was too small (write cancelled).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition. If the file is specified in read-only mode, the sequential write is
not performed and 01H is returned in AL.

Network Access Rights: Requires Write access rights.

164 PC DOS 7

16H — Create File

Purpose
Creates a new file.

Examples
 MOV AX,SEG FCB ;Address FCB parameter block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,16H ;Function Call-FCB create file
 INT 21H ;Issue request to DOS
 CMP AL,0 ;File created and opened?
 JNE Error ;No, Error!

 FCB LABEL BYTE
 Fdrive DB 0 ; Drive (0=Current, 1=A, 2=B, ...)
 Fname DB ″FILENAME″ ; File name (blank padded)
 Fext DB ″EXT″ ; File extension (blank padded)

DB 25 DUP(0) ; Filled in by DOS

Comments
AL is 00H if the file is created and opened.

AL is FFH if the file was not created (normally a full directory or disk full).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

If a matching entry is found it is reused. If no match is found, the directory is
searched for an empty entry. If a match is found, the entry is initialized to a
0-length file, the file is opened (see function call 0FH), and AL returns 00H.

The file may be marked hidden during its creation by using an extended FCB
containing the appropriate attribute byte.

Network Access Rights: Requires Create access rights.

Appendix B. PC DOS 7 Function Calls 165

17H — Rename File

Purpose
Changes every matching occurrence of the first filename in the current
directory of the specified drive to the second, with the restriction that two
files cannot have the same name and extension.

Examples
 MOV AX,SEG FCB ;Address FCB Parameter Block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,17H ;Function Call-FCB Rename File
 INT 21H ;Issue request to DOS
 CMP AL,0 ;File(s) Renamed?
 JNE Error ;No, Error!

FCB LABEL BYTE
Fdrive DB 0 ; Drive (0=Current, 1=A, 2=B, ...)
Fname DB ″FILENAME″ ; File Name (blank padded, may use ?)
Fext DB ″EXT″ ; File Extension (blank padded, may use ?)

DB 5 DUP(0) ; Reserved
 NewName DB ″FILENAME″ ; New File Name (blank padded, may use ?)
NewExt DB ″EXT″ ; New File Extension (blank padded, may use ?)

DB 7 DUP(0) ; Reserved

Comments
AL is 00H if the file or files were renamed.

AL is FFH if a file in the current directory did not match or the new name
already exists.

Use Function Call 59H (Get Extended Error) to determine the actual error
condition. The modified FCB has a drive code and filename in the usual
position, and a second filename on the sixth byte after the first (DS:DX+11H)
in what is normally a reserved area.

If “?”s appear in the second name, the corresponding positions in the
original name are unchanged.

If the file is specified in read-only mode, the file is not renamed.

Network Access Rights: Requires Create access rights.

166 PC DOS 7

19H — Current Disk

Purpose
Returns the current default drive.

Examples
MOV AH,19H ; Function Call — Get Current Disk
INT 21H ; Issue request to DOS
MOV Disk,AL ; Save Current Disk

Disk DB ? ; Current Disk code (0=A:, 1=B:, ...)

Comments
AL returns with the code of the current default drive (0=A, 1=B, and others).

Appendix B. PC DOS 7 Function Calls 167

1AH — Set Disk Tr ansfer Address

Purpose
Sets the disk transfer address to DS:DX.

Examples
MOV AX,SEG DTA ;Address Buffer
MOV DS,AX
MOV DX,OFFSET DTA
 MOV AH,1AH ;Function Call-Set DTA address
 INT 21H ;Issue request to DOS

DTA LABEL BYTE ; Data Buffer

Comments
The area defined by this call is from the address in DS:DX to the end of the
segment in DS. PC DOS 7 does not allow disk transfers to wrap around
within the segment, or overflow into the next segment. If you do not set the
DTA, the default DTA is offset 80H in the program segment prefix. To get the
DTA, issue function call 2FH.

168 PC DOS 7

1BH — Allocation Table Information

Purpose
Returns information about the allocation table for the default drive.

Examples

MOV AH,1BH ; Function Call — Allocation Table
; Information

INT 21H ; Issue request to DOS
MOV NumAllocUnits,DX ; Save Number of Allocation Units
MOV NumSectsAllocUnit,AL ; Save Number of Sectors/Allocation Unit
MOV SectSize,CX ; Save of Sector Size
MOV WORD PTR MediaType@+0,BX; Save Pointer to Media Type Byte
MOV WORD PTR MediaType@+2,DS

NumAllocUnits DW ? ; Number of Allocation Units on Current Drive
NumSectsAllocUnit DB ? ; Number Sectors in an Allocation Unit
SectSize DW ? ; Sector Size
MediaType@ DD ? ; Pointer to Media Type byte

Comments
Refer to function call 36H (Get Disk Free Space).

Appendix B. PC DOS 7 Function Calls 169

1CH — Allocation Table Information for Specific Device

Purpose
Returns allocation table information for a specific device.

Examples
 MOV AH,1CH ; Function Call —

; Allocation Table Information
 MOV DL,Drive ; Drive requested (0=current,

; 1=A:, ...)
 INT 21H ; Issue request to DOS
 MOV NumAllocUnits,DX ; Save Number of Allocation Units
 MOV NumSectsAllocUnit,AL ; Save Number of Sectors/Allocation Unit
 MOV SectSize,CX ; Save of Sector Size
 MOV WORD PTR MediaType@+0,BX ; Save Pointer to Media Type Byte
 MOV WORD PTR MediaType@+2,DS

Drive DB ; drive number to get info for
NumAllocUnits DW ? ; Number of Allocation Units

; on specified drive
NumSectsAllocUnit DB ? ; Number Sectors in an

; Allocation Unit
SectSize DW ? ; Sector Size
MediaType@ DD ? ; Pointer to Media Type byte

Comments
This call is the same as call 1BH, except that on entry DL contains the
number of the drive that contains the needed information (0 = default, 1 =
A, and so forth). For more information on PC DOS 7 disk allocation, refer to
“The Disk Directory” on page 11. Also, refer to function call 36H (Get Disk
Free Space).

170 PC DOS 7

1FH — Get Default Drive Parameter Block

Purpose
Retrieves the drive parameter block for the default drive.

Examples
MOV AH,1FH ; Function Call — Get Default DPB
INT 21H ; Issue request to DOS

CMP AL,0FFH ;
JZ Error ;

MOV WORD PTR [DEFAULT_DPB],BX
MOV WORD PTR [DEFAULT_DPB+2],DS

DPB STRUCT
dpbDrive DB ? ; Drive Number (0=A, 1=B...)
dpbUnit DB ? ; Unit Number for Driver
dpbSectorSize DW ? ; Sector Size in Bytes
dpbClusterMask DB ? ; Sectors per Cluster

 dpbClusterShift DB ? ; Sectors per Cluster - power of 2
dpbFirstFAT DW ? ; First Sector Containing FAT
dpbFATCount DB ? ; Number of FATs
dpbRootEntries DW ? ; Number of Root Directory Entries
dpbFirstSector DW ? ; First Sector of First Cluster
dpbMaxCluster DW ? ; Number of Clusters on Drive + 1
dpbFATSize DW ? ; Number of Sectors Occupied by FAT
dpbDirSector DW ? ; First Sector of Directory
dpbDriverAddr DD ? ; Address of the Device Driver
dpbMedia DB ? ; Media Descriptor Byte
dpbFirstAccess DB ? ; Indicates Access to the Drive
dpbNextDPB DD ? ; Address of Next Drive Parameter Block
dpbNextFree DW ? ; Last Allocated Cluster
dpbFreeCnt DW ? ; Count of Free Clusters

DPB

Comments
If AL contains zero then DS:BX (segment/offset registers) point to the DPB
structure that will contain the drive parameters. If the default drive is for
some reason invalid or a disk error occurs then AL will contain 0FFH.

Appendix B. PC DOS 7 Function Calls 171

21H — Random Read

Purpose
Reads the record addressed by the current block and current record fields
into memory at the current disk transfer address.

Examples
;Set up FCB

MOV AX,SEG DTA ;Address Data buffer
MOV DS,AX
MOV DX,OFFSET DTA
MOV AH,1AH ;Function Set DTA Address
INT 21H ;Issue request to DOS
MOV AX,SEG FCB ;Address FCB Parameter Block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,21H ;Function Call-FCB Random Read
INT 21H ;Issue request to DOS

 CMP AL,0 ;Data Read?
 JNE Error ;No, Error!

FCB LABEL BYTE
; Set by previous open
; DTA label byte

Comments
AL is 00H if the read was successful.

AL is 01H if the file was at End of File (EOF) (no data read).

AL is 02H if the read would have caused a wrap or overflow because the DTA
was too small (the read was not completed).

AL is 03H if EOF (a partial record was read and filled out with 0′s).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition. The current block and current record fields are set to agree with
the random record field. The record addressed by these fields is read into
memory at the current disk transfer address. For information on record size
see Chapter 4, “Accessing Files Using File Control Blocks” on page 23.

Note: Function 24H must be called before using this function.

Network Access Rights: Requires Read access rights.

172 PC DOS 7

22H — Random Write

Purpose
Writes the record addressed by the current block and current record fields
from the current disk transfer address.

Examples
;Set up FCB

MOV AX,SEG FCB ;Address FCB parameter block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,24H ;Function Call—FCB Set

;Relative record field
INT 21H ;Issue request to DOS
MOV AX,SEG DTA ;Address data buffer
MOV DS,AX
MOV DX,OFFSET DTA
MOV AH,1AH ;Function Set DTA address
INT 21H ;Issue request to DOS
MOV AX,SEG FCB ;Address FCB parameter block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,22H ;Function Call-FCB random writers
INT 21H ;Issue request to DOS
CMP AL,0 ;Data written?
JNE Error ;No, error!

FCB LABEL BYTE
; Set by previous open
DTA LABEL BYTE

Comments
AL is 00H if the write was successful.

AL is 01H if the write or diskette is full (write cancelled).

AL is 02H if the read would have caused a wrap or overflow because the DTA
was too small (write cancelled).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

Appendix B. PC DOS 7 Function Calls 173

The current block and current record fields are set to agree with the random
record field. Then the record addressed by these fields is written (or in the
case of records not the same as sector sizes — buffered) from the disk
transfer address.

If the file is specified in read-only mode, the random write is not performed.

Network Access Rights: Requires Write access rights.

174 PC DOS 7

23H — File Size

Purpose
Searches the current directory for an entry that matches the specified file
and sets the FCBs random record field to the number of records in the file.

Examples
MOV AX,SEG FCB ; Address FCB parameter block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,23H ; Function Call-FCB file size
INT 21H ; Issue request to DOS
CMP AL,0 ; File found?
JNE Error ; No, error!

FCB LABEL BYTE
Drive DB 0 ; Drive (0=Current, 1=A, 2=B, ...)
Name DB ″FILENAME″ ; File name (blank padded)
Ext DB ″EXT″ ; File extension (blank padded)

DB 25 DUP(0) ; Filled in by DOS

Comments
AL is 00H if the file exists.

AL is FFH if the file was not created (normally a full directory or disk full).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

The directory is searched for the matching entry. If a matching entry is
found, the random record field is set to the number of records in the file (in
terms of the record size field rounded up). If no matching entry is found, AL
returns FFH.

Note: If you do not set the FCB record size field before using this function,
incorrect information is returned.

Appendix B. PC DOS 7 Function Calls 175

24H — Set Relative Record Field

Purpose
Sets the random record field to the same file address as the current block
and record fields.

Examples
 MOV AX,SEG FCB ;Address FCB parameter block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,24H ;Function Call—FCB set

;Relative record field
 INT 21H ;Issue request to DOS

 FCB LABEL BYTE
; Set by previous open

Comments
You must call this function before you perform random reads and writes, and
random block reads and writes.

176 PC DOS 7

25H — Set Interrupt Vector

Purpose
Sets the interrupt vector table for the interrupt number.

Examples
 MOV AX,SEG Handler ;Address new handler
 MOV DS,AX
 MOV DX,OFFSET Handler
 MOV AH,25H ;Function Call − Set Interrupt

;Vector
 MOV AL,Vector
 INT 21H ;Issue request to DOS

Vector DB ? ;Number of vector to be replaced
Handler: ;Code to process interrupt

Comments
The interrupt vector table for the interrupt number specified in AL is set to
address contained in DS:DX. Use function call 35H (Get Interrupt Vector) to
obtain the contents of the interrupt vector.

Appendix B. PC DOS 7 Function Calls 177

26H — Create New Program Segment

Purpose
Creates a new program segment.

Examples
MOV AH,26H ; Function Call — Create Program

; Segment
MOV DX,SEG PSP ; Segment address to create new PSP
INT 21H ; Issue request to DOS

PSP LABEL BYTE ; Area to fill in
DB 100H DUP(0)

Comments
The entire 100H area at location 0 in the current program segment is copied
into location 0 in the new program segment. The memory size information at
location 6 in the new segment is updated and the current termination,
Ctrl-Break exit and critical error addresses from interrupt vector table entries
for interrupts 22H, 23H, and 24H are saved in the new program segment
starting at 0AH. They are restored from this area when the program ends.

Note: The EXEC function call 4BH provides a more complete service.
Therefore, you should use the EXEC 4BH and avoid using this call.

178 PC DOS 7

27H — Random Block Read

Purpose
Reads the specified number of records (in terms of the record size field) from
the file address specified by the random record field into the disk transfer
address.

Examples
;Set up disk transfer address

 MOV AX,SEG DTA ;Address data buffer
 MOV DS,AX
 MOV DX,OFFSET DTA
 MOV AH,1AH ;Function set DTA address
 INT 21H ;Issue request to DOS

 MOV AX,SEG FCB ;Address FCB parameter block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV AH,24H ;Function Call — FCB Set

;Relative Record Field
 INT 21H ;Issue request to DOS
 MOV AX,SEG FCB ;Address FCB parameter block
 MOV DS,AX
 MOV DX,OFFSET FCB
 MOV CX,Records to read ;number of records to read
 MOV AH,27H ;Function Call − FCB random block read
 INT 21H ;Issue request to DOS
 CMP AL,0 ;Data read?
 JNE Error ;No, error!

FCB LABEL BYTE
; Set by previous open
DTA LABEL BYTE

DB ?Dup(0) ;I/O buffer
Records to read DW ?

Appendix B. PC DOS 7 Function Calls 179

Comments
AL is 00H if the read was successful.

AL is 01H if the file was at End of File (EOF) (no data read).

AL is 02H if the read would have caused a wrap or overflow because the DTA
was too small (the read was not completed).

AL is 03H if EOF (a partial record was read and filled out with zeros).

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

The random record field and the current block/record fields are set to
address the next record (the first record not read).

Note: Function 24H must be called before using this function.

Network Access Rights: Requires Read access rights.

180 PC DOS 7

28H — Random Block Write

Purpose
Writes the specified number of records from the disk transfer address into
the file address specified by the random record field.

Examples
;Set up disk transfer address

MOV AX,SEG DTA ;Address data buffer
MOV DS,AX
MOV DX,OFFSET DTA
MOV AH,1AH ;Function set DTA address
INT 21H ;Issue request to DOS

MOV AX,SEG FCB ;Address FCB parameter block
MOV DS,AX
MOV DX,OFFSET FCB
MOV AH,24H ;Function Call—FCB set

;Relative record field
INT 21H ;Issue request to DOS

MOV AX,SEG FCB ;Address FCB parameter block
MOV DS,AX
MOV DX,OFFSET FCB
MOV CX,Records to write ;Number of records to write
MOV AH,28H ;Function Call − FCB Random Block write
INT 21H ;Issue request to DOS
CMP AL,0 ;Data written?
JNE Error ;No, error!

DTA LABEL BYTE

 DB ?DUP(0) ; I/O Buffer

Comments
AL is 00H if the write was successful.

AL is 01H if the disk or diskette is full (write cancelled).

AL is 02H if the write would have caused a wrap or overflow because the
DTA was too small (write cancelled).

Appendix B. PC DOS 7 Function Calls 181

Use Function Call 59H (Get Extended Error) to determine the actual error
condition.

If there is insufficient space on the disk, AL returns 01H and no records are
written. If CX is 0 upon entry, no records are written, but the file is set to the
length specified by the random record field, whether longer or shorter than
the current file size. (Allocation units are released or allocated as
appropriate.)

Note: Function call 24H must be called before using this function.

Network Access Rights: Requires Write access rights.

182 PC DOS 7

29H — Parse Filename

Purpose
Parses the specified filename.

Examples
MOV AX,SEG CmdBuf
MOV DS,AX ;Address command string
MOV SI,OFFSET CmdBuf
MOV AX,SEG FCB
MOV ES,AX ;Address FCB Parameter Block
MOV DI,OFFSET FCB
MOV AH,29H ;Function Call - FCB Parse Filename
MOV AL,OPTIONS ;Set desired action
INT 21H ;Issue request to DOS

CMP AL,-1 ;Drive valid?
JE Error ;No, Error!

CmdBuf LABEL BYTE
DB ″ a:file.ext ″,0DH

FCB LABEL BYTE
; Created in a pre-open state based on input found.
Options DB ? ;parsing options

Comments
The contents of AL are used to determine the action to take, as shown below:

< m u s t = 0 >
bit: 7 6 5 4 3 2 1 0

If bit 0 = 1, leading separators are scanned off the command line at DS:SI.
Otherwise, no scan-off of leading separators takes place.

If bit 1 = 1, the drive ID byte in the FCB will be set (changed) only if a drive
was specified in the command line being parsed.

If bit 2 = 1, the filename in the FCB will be changed only if the command line
contains a filename.

If bit 3 = 1, the filename extension in the FCB will be changed only if the
command line contains a filename extension.

Appendix B. PC DOS 7 Function Calls 183

Filename separators include the following characters:

: . : , = + along with TAB and SPACE. Filename terminators include all of
these characters plus , < , > , | , /, ″, [,], and any control characters.

Output:

AL is 00H if no global characters (? or *) were found in the Command String.

AL is 01H if global characters (? or *) were found in the Command String.

AL is FFH if the drive specified is invalid.

The command line is parsed for a filename of the form d:filename.ext, and if
found, a corresponding unopened FCB is created at ES:DI. If no drive
specifier is present, it is assumed to be all blanks. If the character * appears
in the filename or extension, it and all remaining characters in the name or
extension are set to ?.

DS:SI returns pointing to the first character after the filename and ES:DI
points to the first byte of the formatted FCB. If no valid filename is present,
ES:DI+1 contains a blank.

184 PC DOS 7

2AH — Get Date

Purpose
Returns the day of the week, the year, month and date.

Examples
MOV AH,2AH ; Function Call — Get Date
INT 21H ; Issue request to DOS
MOV DayofWeek,AL ; Save Day of the Week
MOV Year,CX ; Save Year
MOV Month,DH ; Save Month
MOV Day,DL ; Save Day

DayofWeek DB ? ; 0=Sunday, ... 6=Saturday
Year DW ? ; 1980 to 2099
Month DB ? ; 1 to 12
Day DB ? ; 1 to 31

Comments
If the time-of-day clock rolls over to the next day, the date is adjusted
accordingly, taking into account the number of days in each month and leap
years.

Appendix B. PC DOS 7 Function Calls 185

2BH — Set Date

Purpose
Sets the date (also sets CMOS clock, if present).

Examples

MOV AH,2BH ; Function Call — Set Date
MOV CX,Year ; Set Year
MOV DH,Month ; Set Month
MOV DL,Day ; Set Day
INT 21H ; Issue request to DOS
CMP AL,0 ; Valid Date?
JNE Error ; No!

Year DW ? ; 1980 to 2099
Month DB ? ; 1 to 12
Day DB ? ; 1 to 31

Comments
AL is 00H if the date is valid and the operation is successful.

AL is FFH if the date is not valid.

On entry, CX:DX must have a valid date in the same format as returned by
function call 2AH.

On return, AL returns 00H if the date is valid and the set operation is
successful. AL returns FFH if the date is not valid.

186 PC DOS 7

2CH — Get Time

Purpose
Returns the time; hours, minutes, seconds and hundredths of seconds.

Examples

MOV AH,2CH ; Function Call —
; Get Time

INT 21H ; Issue request to DOS
MOV Hour,CH ; Save Hour
MOV Minute,CL ; Save Minute
MOV Second,DH ; Save Second
MOV Hundredth,DL ; Save Partial Second

Hour DB ? ; 0 to 23
Minute DB ? ; 0 to 59
Second DB ? ; 0 to 59
Hundredth DB ? ; 0 to 99

Comments
On entry, AH contains 2CH. On return, CX:DX contains the time-of-day. Time
is actually represented as four 8-bit binary quantities as follows:

CH Hours (0− 2 3)
CL Minutes (0− 5 9)
DH Seconds (0− 5 9)
DL 1/100 seconds (0− 9 9) .

This format is readily converted to a printable form yet can also be used for
calculations, such as subtracting one time value from another.

Appendix B. PC DOS 7 Function Calls 187

2DH — Set Time

Purpose
Sets the time (also sets the CMOS clock, if present).

Examples
MOV AH,2DH ; Function Call — Set Time
MOV CH,Hour ; Set Hour
MOV CL,Minute ; Set Minute
MOV DH,Second ; Set Second
MOV DL,Hundredth ; Set Partial Second
INT 21H ; Issue request to DOS
CMP AL,0 ; Valid Time?
JNE Error ; No!

Hour DB ? ; 0 to 23
Minute DB ? ; 0 to 59
Second DB ? ; 0 to 59
Hundredth DB ? ; 0 to 99

Comments
AL is 00H if the time is valid.

AL is FFH if the time is not valid.

On entry, CX:DX has time in the same format as returned by function 2CH.
On return, if any component of the time is not valid, the set operation is
cancelled and AL returns FFH. If the time is valid, AL returns 00H.

If your system has a CMOS realtime clock, it will be set.

188 PC DOS 7

2EH — Set/Reset Verify Switch

Purpose
Sets the verify switch.

Examples
; To set VERIFY=OFF

MOV AH,2EH ; Function Call — Set
; VERIFY

MOV AL,0 ; Set OFF
INT 21H ; Issue request to DOS

; To set VERIFY=ON

MOV AH,2EH ; Function Call — Set
; VERIFY

MOV AL,1 ; Set ON
INT 21H ; Issue request to DOS

Comments
On entry, AL must contain 01H to turn verify on, or 00H to turn verify off.
When verify is on, PC DOS 7 performs a verify operation each time it
performs a disk write to assure proper data recording. Although disk
recording errors are very rare, this function has been provided for
applications in which you may wish to verify the proper recording of critical
data. You can obtain the current setting of the verify switch through function
call 54H.

Note: Verification is not supported on data written to a network disk.

Appendix B. PC DOS 7 Function Calls 189

2FH — Get Disk Transfer Address (DTA)

Purpose
Returns the current disk transfer address.

Examples
MOV AH,2FH ; Function Call — Get

; DTA Address
INT 21H ; Issue request to DOS
MOV WORD PTR DTA@+0,BX ; Save Address
MOV WORD PTR DTA@+2,ES

DTA@ DD ? ; DTA Buffer

Comments
On entry, AH contains 2FH. On return, ES:BX contains the current Disk
Transfer Address. You can set the DTA using function call 1AH.

190 PC DOS 7

30H — Get DOS Version Number

Purpose
Returns the DOS version number.

Examples
PUSH CX ; CX destroyed in call
PUSH BX
MOV AH,30H ; Function Call — Get PC DOS 7

; Version
INT 21H ; Issue request to DOS
MOV MajorVersion,AL ; Save Version
MOV MinorVersion,AH
MOV DOS_Running_From,BH ;
POP BX
POP CX

MajorVersion DB ? ; X of X.YY
MinorVersion DB ? ; YY of X.YY
DOS_Running_From DB ? ; 0 = DOS not running in ROM
DOS_Running_From DB ? ; 8 = DOS running in ROM

Comments
On entry, AH contains 30H. On return, CX is set to 0. AL contains the major
version number. AH contains the minor version number. BH contains 8 or 0
for DOS running or not running in ROM.

If AL returns a major version number of 0, you can assume that the DOS
version is pre-DOS 2.00.

Use function call 33H AL=6 (Get or Set System Value) to get the true version
number.

Appendix B. PC DOS 7 Function Calls 191

31H — Terminate Process and Remain Resident

Purpose
Terminates the current process and attempts to set the initial allocation block
to the memory size in paragraphs.

Examples
MOV AH,31H ; Function Call — Terminate

; and Keep Process
MOV AL,RetCode ; Set value of ERRORLEVEL
MOV DX,MySize ; Set my program and data size
INT 21H ; Issue request to DOS
INT 20H ; Be safe if on DOS Version 1.X

RetCode DB ? ; Value to return to my EXEC′ er
MySize DW ? ; Size of my code and data

; (in paragraphs)

Comments
On entry, AL contains a binary return code. DX contains the memory size
value in paragraphs. This function call does not free up any other allocation
blocks belonging to that process. Files opened by the process are not closed
when the call is executed. The return code passed in AL is retrievable by
the parent through Wait (function call 4DH) and can be tested through the
ERRORLEVEL batch subcommands.

Memory is used efficiently if the block containing a copy of the environment
is deallocated before terminating. This can be done by loading ES with the
segment contained in 2C of the PSP, and issuing function call 49H (Free
Allocated Memory). The five standard handles, 0000 through 0004, should be
closed before exiting.

192 PC DOS 7

32H — Get Drive Parameter Block

Purpose
Retrieves the drive parameter block for the specified drive.

Examples
MOV DL,DRIVE_NUM ; Drive Number (0=Default, 1=A, 2=B...)
MOV AH,32H ; Function Call — Get DPB
INT 21H ; Issue request to DOS

CMP AL,0FFH ;
JZ Error ;

MOV WORD PTR [SPECIFIED_DPB],BX
MOV WORD PTR [SPECIFIED_DPB+2],DS

DPB STRUCT
dpbDrive DB ? ; Drive Number (0=A, 1=B...)
dpbUnit DB ? ; Unit Number for Driver
dpbSectorSize DW ? ; Sector Size in Bytes
dpbClusterMask DB ? ; Sectors per Cluster

 dpbClusterShift DB ? ; Sectors per Cluster - power of 2
dpbFirstFAT DW ? ; First Sector Containing FAT
dpbFATCount DB ? ; Number of FATs
dpbRootEntries DW ? ; Number of Root Directory Entries
dpbFirstSector DW ? ; First Sector of First Cluster
dpbMaxCluster DW ? ; Number of Clusters on Drive + 1
dpbFATSize DW ? ; Number of Sectors Occupied by FAT
dpbDirSector DW ? ; First Sector of Directory
dpbDriverAddr DD ? ; Address of the Device Driver
dpbMedia DB ? ; Media Descriptor Byte
dpbFirstAccess DB ? ; Indicates Access to the Drive
dpbNextDPB DD ? ; Address of Next Drive Parameter Block
dpbNextFree DW ? ; Last Allocated Cluster
dpbFreeCnt DW ? ; Count of Free Clusters

DPB

Appendix B. PC DOS 7 Function Calls 193

Comments
If AL contains zero then DS:BX (segment/offset registers) point to the DPB
structure that will contain the drive parameters. If the specified drive is for
some reason invalid or a disk error occurs then AL will contain 0FFH.

194 PC DOS 7

33H — Get or Set System Value

Purpose
Set or get the state of System Values such as BREAK (Ctrl-Break checking).

Examples
; To check BREAK state

MOV AH,33H ; Function Call — Get/Set
; System value

MOV AL,0 ; Do Get BREAK
INT 21H ; Issue request to DOS
MOV BREAK,DL ; Save state (00=OFF, 01H=ON)

; To set BREAK=OFF

MOV AH,33H ; Function Call — Get/Set
; System value

MOV AL,1 ; Do Set BREAK
MOV DL,0 ; Set OFF
INT 21H ; Issue request to DOS

; To set BREAK=ON

MOV AH,33H ; Function Call — Get/Set
; System Value

MOV AL,1 ; Do Set BREAK
MOV DL,1 ; Set ON
INT 21H ; Issue request to DOS

; To get the Boot Drive

MOV AH,33H ; Function Call — Get/Set
; System Value

MOV AL,5 ; Do Get Boot Drive
INT 21H ; Issue request to DOS
MOV Drive,DL ; Save boot drive

; To get the True Version Number

MOV AH,33H ; Function Call — Get/Set
; System Value

MOV AL,6 ; Get True Version
INT 21H ; Issue request to DOS
MOV MajorVersion,BL

Appendix B. PC DOS 7 Function Calls 195

MOV MinorVersion,BH
MOV Rev_Level,DL
MOV DOS_Flags,DH

BREAK DB ? ; Current BREAK state (0=OFF, 1=ON)
Drive DB ? ; PC DOS 7 boot drive (1=A, 2=B, ...)

 MajorVersion DB ? ; True Version X of X.YY
 MinorVersion DB ? ; YY of X.YY
Rev_Level DB ? ; The lower three bits indicates the

; revision number. All other bits
; are reserved and set to 0.

DOS_Flags DB ? ; Bits 0 - 2 Reserved.
; Bit 3 When set to 1, DOS is
; running from ROM.
; Bit 4 When set to 1, DOS is
; running from HMA.
; Bits 5 - 7 Reserved.

196 PC DOS 7

34H — Get InDOS Flag Address

Purpose
Returns the address of the PC DOS 7 InDOS flag. The InDOS flag shows the
current state of Interrupt 21H processing.

Examples
MOV AH,34H ; Function Call — Get InDOS Flag Address
INT 21H ; Issue request to DOS

MOV InDOS,BYTE PTR ES:[BX]

Comments
While PC DOS 7 is processing one of the Interrupt 21H functions, the value of
the InDOS flag will be nonzero.

The ES:BX (segment/offset) register pair will contain the InDOS flag address.

Appendix B. PC DOS 7 Function Calls 197

35H — Get Interrupt Vector

Purpose
To obtain the address in an interrupt vector.

Examples
MOV AH,35H ; Function Call —

; Set Interrupt Vector
MOV AL,Vector ; Vector to get (0 to 255)
INT 21H ; Issue request to DOS
MOV WORD PTR OldVect+0,BX
MOV WORD PTR OldVect+2,ES

OldVect DD ? ; Previous vector contents
Vector DB ? ; Vector number to get

Comments
On return, ES:BX contains the CS:IP interrupt vector for the specified
interrupt. Use function call 25H (Set Interrupt Vector) to set the interrupt
vectors.

198 PC DOS 7

36H — Get Disk Free Space

Purpose
Returns the disk free space (available clusters, clusters/drive, bytes/sector).

Examples
MOV AH,36H ; Function Call —

; Get disk free space
MOV DL,Drive ; Drive to query

; (0=current, 1=A:,
; 2=B:, ...)

INT 21H ; Issue request to DOS
CMP AX,-1 ; Error?
JE Error ; Yes
MOV SectAU,AX ; Save allocation unit

; Size
MOV AvailAU,BX ; Save free allocation

; Units
MOV SectSize,CX ; Save sector size
MOV TotalAU,DX ; Save disk size

MOV AX,SectSize ; Calculate allocation
; Unit size

MUL SectAU
MOV CX,AX ; CX = bytes/AU
MOV AX,TotalAU ; Calculate total space
MUL CX
MOV WORD PTR TotalBytes+0,AX ; Save it
MOV WORD PTR TotalBytes+2,DX
MOV AX,AvailAU ; Calculate free space
MUL CX
MOV WORD PTR FreeBytes+0,AX ; Save it
MOV WORD PTR FreeBytes+2,DX

SectAU DW ? ; Sectors in an
; Allocation unit

AvailAU DW ? ; Free allocation units
SectSize DW ? ; Bytes in a sector
TotalAU DW ? ; Number of allocation

; Units on DL disk
TotalBytes DD ? ; Disk size in bytes
FreeBytes DD ? ; Free space in bytes
Drive DD ? ; Drive number to get info for

Appendix B. PC DOS 7 Function Calls 199

Comments
If the drive number in DL was valid, BX contains the number of available
allocation units, DX contains the total number of allocation units on the drive,
CX contains the number of bytes per sector, and AX contains the number of
sectors for each allocation unit.

200 PC DOS 7

38H — Get or Set Country Dependent Information

Purpose
Sets the Active Country or returns country dependent information.

Examples
; To set the Current Country

MOV AH,38H ; Function Call — Get/Set
; Country Information

MOV AL,CountryID ; Country ID (-1 if >= 255)
MOV BX,CountryIDX ; Country ID (if AL=-1)
MOV DX,-1 ; Indicate set country code
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

; To get Country Information

MOV AX,SEG Buffer
MOV DS,AX
MOV DX,OFFSET Buffer
MOV AH,38H
MOV AL,CountryID ; Country ID (-1 if >= 255)

; (0 to get current country)
MOV BX,CountryIDX ; Country ID (if AL=-1)

INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV CountryCode,BX ; Save current Country Code

CountryCode DW ? ; Current country code

CountryIDX DW ? ; Extended country code for input

Buffer LABEL WORD ; Country information (see format below)
CountryID DB ? ; Country code for input

Appendix B. PC DOS 7 Function Calls 201

Country Information

DateFormat DW ? ; Date Format:
; 0 = m d y order
; 1 = d m y order
; 2 = y m d order

$Symbol DB ″????″,0 ; Currency Symbol
; example: ″DM″ ,0 ,? , ?

Sep1000 DB ″?″,0 ; Thousands Separator
; example: ″ , ″ ,0

Sep1 DB ″?″,0 ; Fractions Separator
; example: ″ . ″ ,0

SepDate DB ″?″,0 ; Date Separator
; example: ″ /″ ,0

SepTime DB ″?″,0 ; Time Separator
; example: ″ :″ ,0

$Format DB ? ; Currency Format:
; 0 = currency symbol, value
; 1 = value, currency symbol
; 2 = currency symbol, space, value
; 3 = value, space, currency symbol
; 4 = currency symbol is decimal separator

SigDigits DB ? ; Number of Significant Digits in Currency
TimeFormat DB ? ; Time Format:

; 0 = 12 hour clock
; 1 = 24 hour clock

 UpperCaseAL@ DD ? ; Address of Routine to Upper Case AL
; Only for values >=80H

SepData DB ″?″,0 ; Data List Separator
; example: ″ , ″ ,0

Reserved DW 5 DUP(?) ; Reserved for future

Comments
The date format has the following values and meaning:

Code Date
0=USA m d y
1=Europe d m y
2=Japan y m d

Case Map Call Address: The register contents for the case map call are:

On
Entry

Register
Contents

AL ASCII code of character to be converted to uppercase

202 PC DOS 7

The case map call address is in a form suitable for a FAR call indirect.

On
Return

Register
Contents

AL ASCII code of the uppercase input character

Results
Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Function Call 65H (Get Extended Country Information) returns more
country information and is preferred.

Setting the Current County Code by using this function call is not
recommended. The user can set it by placing a COUNTRY command in the
CONFIG.SYS file. The Country Code set by the user should not be changed.
The NLSFUNC PC DOS 7 extension must be installed to change the Current
Country.

Appendix B. PC DOS 7 Function Calls 203

39H — Create Subdirectory (MKDIR)

Purpose
Creates the specified directory.

Examples
MOV AX,SEG DName ;Directory Name
MOV DS,AX
MOV DX,OFFSET DName
 MOV AH,39H ;Function-Make a directory
 INT 21H ;Issue request to DOS
 JC Error

 DName DB ″?? .. ??″,0 ; ASCIIZ Name
; Example:
; ″c:\dir″,0

Comments
On entry, DS:DX contains the address of an ASCIIZ string with drive and
directory path names. All directory levels other than the last one in the
name must exist before using this function. Only one directory level at a
time can be created with this function. The maximum length of the ASCIIZ
string is 64 characters.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Network Access Rights: Requires Create access rights.

204 PC DOS 7

3AH — Remove Subdirectory (RMDIR)

Purpose
Removes the specified directory.

Examples
MOV AX,SEG DName ;Directory name
MOV DS,AX
MOV DX,OFFSET DName
MOV AH,3AH ;Function-Remove directory
 INT 21H ;Issue request to DOS
 JC Error

 DName DB ″?? .. ??″,0 ; ASCIIZ Name
; example: ″c:\dir″,0

Comments
On entry, DS:DX contains the address of an ASCIIZ string with the drive and
directory path names. The specified directory is removed from the structure.
The current directory or a directory with files in it cannot be removed.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Network Access Rights: Requires Create access rights.

Appendix B. PC DOS 7 Function Calls 205

3BH — Change the Current Directory (CHDIR)

Purpose
Changes the current directory to the specified directory.

Examples
MOV AX,SEG DName ;Directory name
MOV DS,AX
MOV DX,OFFSET DName
 MOV AH,3BH ;Function — Change directory
 INT 21H ;Issue request to DOS
 JC Error

 DName DB ″?? .. ??″,0 ; ASCIIZ Name
; example: ″c:\dir″,0

Comments
On entry, DS:DX contains the address of an ASCIIZ string with drive and
directory path names. The string is limited to 64 characters and cannot
contain a network path. If any member of the directory path does not exist,
the directory path is not changed. Otherwise, the current directory is set to
the ASCIIZ string.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

206 PC DOS 7

3CH — Create a File

Purpose
Creates a new file or shortens an old file to 0 length in preparation for
writing.

Examples
MOV AX,SEG FName ;File name
MOV DS,AX
MOV DX,OFFSET FName
MOV AH,3CH ;Function — Create a File
MOV CX,Attribute ; Attribute of the file

; Allowed values
; 0001H=Read only
; 0002H=Hidden
; 0004H=System
; 0008H=Volume label

INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Handle,AX ; Save file handle for

FName DB ″?? .. ??″,0 ; ASCIIZ Name
; example: ″c:\dir\file.ext″,0

Handle DW ? ; File handle
Attribute DW ? ; Attributes for directory entry

Comments
If the file did not exist, the file is created in the appropriate directory and the
file is given the read/write access code. The file is opened for read/write,
the read/write pointer is set to the first byte of the file and the handle is
returned in AX. Note that function call 43H (Change File Mode) can be used
later to change the attribute of the file.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

This function does not replace an existing volume label. You must delete the
existing volume label before issuing this call.

Network Access Rights: Requires Create access rights.

Appendix B. PC DOS 7 Function Calls 207

3DH — Open a File

Purpose
Opens the specified file.

Examples
 MOV AX,SEG FName ; File name
 MOV DS,AX
 MOV DX,OFFSET FName
 MOV AH,3DH ; Function — Open a File
 MOV AL,OpenMode
 INT 21H ; Issue request to DOS
 JC Error ; Error code in AX
 MOV Handle,AX ; Save file handle for following operations

FName DB ″?? .. ??″,0 ; ASCIIZ Name
; example: ″c:\dir\file.ext″,0

Handle DW ? ; File Handle
OpenMode DB ? ; Open mode

Comments
The read/write pointer is set at the first byte of the file and the record size of
the file is 1 byte. The read/write pointer can be changed with function call
42H. The returned file handle must be used for subsequent input and output
to the file. The file′s date and time can be obtained or set through call 57H,
and its attribute can be obtained through call 43H.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Notes:

 1. This call opens any normal or hidden file whose name matches the name
specified.

 2. Device names cannot end in a colon.

 3. When a file is closed, any sharing restrictions placed on it by the open
are canceled.

 4. File sharing must be loaded, or the file must be a network file for the
sharing modes to function. Refer to the SHARE command.

208 PC DOS 7

 5. The file read-only attribute can be set when creating the file using
extended FCBs or specifying the appropriate attribute in CX and using
the CHMOD interrupt 21H function call or the PC DOS 7 ATTRIB
command.

 6. If the file is inherited by the subordinate process, all sharing and access
restrictions are also inherited.

 7. If an open file handle is duplicated by either of the DUP function calls, all
sharing and access restrictions are also duplicated.

Open Mode

The open mode is defined in AL and consists of four bit-oriented fields:

Inheritance flag Specifies if the opened file is inherited by a
subordinate process.

Sharing mode field Defines which operations other processes can perform
on the file.

Reserved field
Access field Defines which operations the current process can

perform on the file.

Bit Fields

The bit fields are mapped as follows:

<I> < S > <R> < A >
 Open Mode bits 7 6 5 4 3 2 1 0

I Inheritance flag

If I = 0; File is inherited by subordinate processes.
If I = 1; File is private to the current process.

S Sharing Mode

The file is opened as follows:

S = 000 — Compatibility mode
S = 001 — DenyRead/Write mode (exclusive)
S = 010 — DenyWrite mode
S = 011 — DenyRead mode
S = 100 — DenyNone mode

Any other combinations are invalid.

When opening a file, you must inform PC DOS 7 which operations
any other processes, in sharing mode, can perform on the file.

Appendix B. PC DOS 7 Function Calls 209

The default, compatibility mode, denies all other computers in a
network access to the file. If other processes can continue to read
the file while your process is operating on it, specify DenyWrite.
DenyWrite prohibits writing by other processes, but allows reading.

Similarly, you must specify which operations, or access modes, your
process can perform. The default access mode, ReadWrite, causes
the open request to fail if another process on the computer or any
other computer on a network has the file opened with any sharing
mode other than DenyNone. If you intend to read from the file only,
your Open will succeed unless all other processes have specified
DenyNone or DenyWrite. File sharing requires cooperation of both
sharing processes.

R Reserved (set this bit field to 0).

A Access

The file access is assigned as follows:

If A = 000; Read access
If A = 001; Write access
If A = 010; Read/Write access

Any other combinations are invalid.

Network Access Rights: If the Access field (A) of the Open mode field (AL) is
equal to:

000 Requires Read access rights

001 Requires Write access rights

010 Requires Read/Write access rights

Compatibility Mode

A file is considered to be in compatibility mode if the file is opened by:

• Any of the CREATE function calls
• An FCB function call
• A handle function call with compatibility mode specified.

A file can be opened any number of times in compatibility mode by a single
process, provided that the file is not currently open under one of the other
four sharing modes. If the file is marked read-only, and is open in DenyWrite
sharing mode with Read Access, the file may be opened in Compatibility
Mode with Read Access. If the file was successfully opened in one of the
other sharing modes and an attempt is made to open the file again in
Compatibility Mode, an interrupt 24H is generated to signal this error. The

210 PC DOS 7

base interrupt 24H error indicates Drive not ready, and the extended error
indicates a Sharing violation.

Sharing Modes

The sharing modes for a file opened in compatibility mode are changed by
PC DOS 7 depending on the read-only attribute of the file. This allows
sharing of read-only files.

DenyRead/Write Mode (Exclusive)

If a file is successfully opened in DenyRead/Write mode, access to the file is
exclusive. A file currently open in this mode cannot be opened again in any
sharing mode by any process (including the current process) until the file is
closed.

DenyWrite Mode

A file successfully opened in DenyWrite sharing mode prevents any other
write access opens to the file (A = 001 or 010) until the file is closed. An
attempt to open a file in DenyWrite mode is unsuccessful if the file is open
with a write access.

DenyRead Mode

A file successfully opened in DenyRead sharing mode prevents any other
read sharing access opens to the file (A = 000 or 010) until the file is closed.
An attempt to open a file in DenyRead sharing mode is unsuccessful if the
file is open in Compatibility mode or with a read access.

File Opened By
Read-Only
Access Sharing Mode

FCB Read-Only DenyWrite

Handle Read Read-Only DenyWrite

Handle Write Error -----

Handle Read or Write Error -----

File Opened By
Not Read-Only
Access Sharing Mode

FCB Read/Write Compatibi l i ty

Handle Read Read Compatibi l i ty

Handle Write Write Compatibi l i ty

Handle Read or Write Read or Write Compatibi l i ty

Appendix B. PC DOS 7 Function Calls 211

DenyNone Mode

A file successfully opened in DenyNone mode places no restrictions on the
read/write accessibility of the file. An attempt to open a file in DenyNone
mode is unsuccessful if the file is open in Compatibility mode.

When accessing files that reside on a network disk, no local buffering is done
when files are opened in any of the following sharing modes:

• DenyRead
• DenyNone.

Therefore, in a network environment, DenyRead/Write sharing mode,
Compatibility sharing mode, and DenyWrite mode opens are buffered locally.

212 PC DOS 7

The following sharing matrix shows the results of opening, and subsequently
attempting to reopen the same file using all combinations of access and
sharing modes:

┌──────────────┬──────────────┬──────────────┬──────────────┐
│ DRW │ DW │ DR │ ALL │
├────┬────┬────┼────┬────┬────┼────┬────┬────┼────┬────┬────┤
│ I │ IO │ O │ I │ IO │ O │ I │ IO │ O │ I │ IO │ O │

┌───┬────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ I │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │
│ D ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ R │ IO │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │
│ W ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ O │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │
├───┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ I │ N │ N │ N │ Y │ N │ N │ N │ N │ N │ Y │ N │ N │
│ ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ D │ IO │ N │ N │ N │ N │ N │ N │ N │ N │ N │ Y │ N │ N │
│ W ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ O │ N │ N │ N │ N │ N │ N │ Y │ N │ N │ Y │ N │ N │
├───┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ I │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ Y │
│ ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ D │ IO │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ N │ Y │
│ R ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ O │ N │ N │ N │ N │ N │ N │ N │ N │ Y │ N │ N │ Y │
├───┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ I │ N │ N │ N │ Y │ Y │ Y │ N │ N │ N │ Y │ Y │ Y │
│ A ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ L │ IO │ N │ N │ N │ N │ N │ N │ N │ N │ N │ Y │ Y │ Y │
│ L ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│ │ O │ N │ N │ N │ N │ N │ N │ Y │ Y │ Y │ Y │ Y │ Y │
└───┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

Y :2nd,3rd,...open is allowed
N :2nd,3rd,...open is denied
DRW :DenyRead/Write Mode (Exclusive)
DW :DenyWrite Mode
DR :DenyRead Mode
ALL :Read/Write Mode
I :Read Only Access
O :Write Only Access
IO :Read/Write Access

Appendix B. PC DOS 7 Function Calls 213

3EH — Close a File Handle

Purpose
Closes the specified file handle.

Examples
MOV AH,3EH ; Function Call —

; Close a Handle
MOV BX,Handle
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Handle DW ? ; File Handle (from Open / Create)

Comments
On entry, BX contains the file handle that was returned by Open or Create.
On return, the file is closed, the directory is updated, and all internal buffers
for that file are flushed.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

214 PC DOS 7

3FH — Read from a File or Device

Purpose
Transfers the specified number of bytes from a file into a buffer location.

Examples
 MOV AX,SEG Buffer ; Address data buffer
 MOV DS,AX
 MOV DX,OFFSET Buffer
 MOV AH,3FH ; Function — Read from a file
 MOV BX,Handle
 MOV CX,BufSize ; Buffer size
 INT 21H ; Issue request to DOS
 JC Error ; Error code in AX
 CMP AX,0 ; At End Of File?
 JE EOF ; Yes!
 MOV SizeRead,AX ; Save Amount Read

N EQU 512 ; Typical buffer size
Handle DW ? ; File Handle (from Open /Create)
BufSize DW N ; Buffer Size, N is
Buffer DB N DUP(?) ; Data Buffer
SizeRead DW ? ; Amount of Data in Buffer

Comments
On entry, BX contains the file handle. CX contains the number of bytes to
read. DS:DX contains the buffer address. On return, AX contains the
number of bytes read.

This function call attempts to transfer (CX) bytes from a file into a buffer
location. It is not guaranteed that all bytes will be read. For example, when
PC DOS 7 reads from the keyboard, at most one line of text is transferred. If
this read is performed from the standard input device, the input can be
redirected. If the value in AX is 0, then the program has tried to read from
the end of file.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Network Access Rights: Requires Read access rights.

Appendix B. PC DOS 7 Function Calls 215

40H — Write to a File or Device

Purpose
Transfers the specified number of bytes from a buffer into a specified file.

Examples
MOV AX,SEG Buffer ;Data Buffer
MOV DS,AX
MOV DX,OFFSET Buffer
MOV CX,BufSize
 MOV AH,40H ;Function-Write to a File
 MOV BX,Handle
 MOV DX,OFFSET Buffer
 INT 21H ; Issue request to DOS
 JC Error ; Error code in AX
 CMP AX,CX ; Disk Full?
 JB FullDisk ; Yes!

N EQU 512 ; Typical buffer size
Handle DW ? ; File Handle (from Open / Create)
BufSize DW N ; Buffer Size
Buffer DB N DUP(?) ; Data Buffer

Comments
On entry, BX contains the file handle. CX contains the number of bytes to
write. DS:DX contains the address of the data to write.

This function call attempts to transfer (CX) bytes from a buffer into a file. AX
returns the number of bytes actually written. If the carry flag is not set and
this value is not the same as the number requested (in CX), it should be
considered an error. Although no error code is returned, your program can
compare these values. Normally, the reason for the error is a full disk. If
this write is performed to the standard output device, the output can be
redirected.

To truncate a file at the current position of the file pointer, set the number of
bytes (CX) to 0 before issuing the interrupt 21H. The file pointer can be
moved to the desired position by reading, writing, and performing function
call 42H, (Move File Read/Write Pointer.)

If the file is read-only, the write to the file or device is not performed.

216 PC DOS 7

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Network Access Rights: Requires Write access rights.

Appendix B. PC DOS 7 Function Calls 217

41H — Delete a File from a Specified Directory (UNLINK)

Purpose
Removes a directory entry associated with a filename.

Examples
MOV AX,SEG FName ; File Name
MOV DS,AX
MOV DX,OFFSET FName
MOV AH,41H ; Function-Delete a File
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

 FName DB ″?? .. ??″,0 ; ASCIIZ Name
; example: ″c:\dir\File.ext″,0

Comments
Global filename characters are not allowed in any part of the ASCIIZ string.
Read-only files cannot be deleted by this call. To delete a read-only file, you
can first use call 43H to change the file′s read-only attribute to 0, then delete
the file.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Network Access Rights: Requires Create access rights.

218 PC DOS 7

42H — Move File Read/Write Pointer (LSEEK)

Purpose
Moves the read/write pointer according to the method specified.

Examples
MOV AH,42H ; Function Call —

; Move Read/Write Pointer
MOV AL,Method ; Method of Positioning:

; 0 = From Beginning of File
; (BOF)
; 1 = From Current Position
; 2 = From End of File (EOF)

MOV BX,Handle ; Select File
MOV DX,WORD PTR Position+0 ; New Position = Position + METHOD
MOV CX,WORD PTR Position+2
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV WORD PTR Position+0,AX ; Set new File Position
MOV WORD PTR Position+2,DX

Handle DW ? ; File Handle (from Open /
; Create)

Position DD ? ; File Offset (may be
; negative)

Method DB ?

Comments
On entry, AL contains a method value. BX contains the file handle. CX:DX
contains the desired offset in bytes with CX containing the most significant
part. On return, DX:AX contains the new location of the pointer with DX
containing the most significant part if the carry flag is not set.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

This function call moves the read/write pointer according to the following
methods:

Appendix B. PC DOS 7 Function Calls 219

Note: If an LSEEK operation is performed on a file that resides on a network
disk that is open in either DenyRead or DenyNone sharing mode, the
read/write pointer information is adjusted on the computer where the
file actually exists. If the file is opened in any other sharing mode, the
read/write pointer information is kept on the remote computer.

AL Description

0 The pointer is moved CX:DX bytes (offset) from the beginning of the file.

1 The pointer is moved to the current location plus offset.

2 The pointer is moved to the end-of-file plus offset. This method can be
used to determine file′s size.

220 PC DOS 7

43H — Change File Mode (CHMOD)

Purpose
Changes the file mode of the specified file.

Examples
; To Get Attributes

MOV AX,SEG FName ;File Name
MOV DS,AX
MOV DX,OFFSET FName ;DS:DX points to ASCIIZ path name
MOV AL,0 ;Indicate get
MOV AH,43H ;Function-Change File Mode
INT 21H ;Issue request to DOS
JC Error ;Error code in AX
MOV Attribute,CX ;Save Attribute

; To Set Attributes

MOV AX,SEG FName ;File Name
MOV DS,AX
MOV DX,OFFSET FName ;DS:DX points to ASCIIZ path name
MOV AL,1 ;Indicate set
MOV AH,43H ;Function-Change File Mode
MOV CX,Attribute ;Set Attribute
INT 21H ;Issue request to DOS
JC Error ;Error code in AX

Fname DB 64 Dup (0) ;ASCIIZ Name
; example: ″c:\dir\File.ext″,0

Attribute DW ? ;File Attribute
; example: 0001H to set Read-Only

Comments
On entry, AL contains a function code, and DS:DX contains the address of an
ASCIIZ string with the drive, path, and filename.

If AL contains 01H, the file′s attribute is set to the attribute in CX. See “The
Disk Directory” on page 11 for the attribute byte description. If AL is 00H the
file′s current attribute is returned in CX.

Appendix B. PC DOS 7 Function Calls 221

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Note: Only the Archive (20H), Read-Only (01H), System (04H) and Hidden
(02H) bits can be changed. All other bits of CX must be 0, otherwise,
an error may be indicated.

Network Access Rights: To change the archive bit (AL=20H), no access
rights are required. To change any other bit, Create access rights are
required.

222 PC DOS 7

44H — I/O Control for Devices

Purpose
Sets or gets device information associated with open device handles, or
sends control strings to the device handle or receives control strings from
the device handle.

See Appendix C, “I/O Control for Devices (IOCtl)” on page 273 for full details
on this function call.

AL = 00H Get device information (returned in DX).
AL = 01H Set device information (determined by DX). DH must be 0 for

this call.
AL = 02H Read from character device
AL = 03H Write to character device
AL = 04H Read from block device
AL = 05H Write to block device
AL = 06H Get input status
AL = 07H Get output status
AL = 08H Determine if a particular block device is removable
AL = 09H Determine if a logical device is local or remote
AL = 0AH Determine if a handle is local or remote
AL = 0BH Change sharing retry count
AL = 0CH Issue handle generic IOCtl request
AL = 0DH Issue block device generic IOCtl request
AL = 0EH Get logical drive
AL = 0FH Set logical drive
AL = 10H QueryIOCtlHandle
AL = 11H QueryIOCtlDevice

Appendix B. PC DOS 7 Function Calls 223

45H — Duplicate a File Handle (DUP)

Purpose
Returns a new file handle for an open file that refers to the same file at the
same position.

Examples
MOV AH,45H ; Function Call —

; Duplicate a Handle
MOV BX,Handle ; Select File
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV NewHandle,AX ; Save New Handle

Handle DW ? ; File Handle (from Open / Create)
NewHandle DW ? ; File Handle that duplicates Handle

Comments
On entry, BX contains the file handle. On return, AX contains the returned
file handle.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Note: If you move the read/write pointer of either handle by a read, write, or
LSEEK function call, the pointer for the other handle is also changed.

224 PC DOS 7

46H — Force a Duplicate of a Handle (FORCDUP)

Purpose
Forces the handle in CX to refer to the same file at the same position as the
handle in BX.

Examples
MOV AH,46H ; Function Call —

; Force Duplicate a Handle
MOV BX,Handle ; Select file
MOV CX,NewHandle ; Select new definition of File
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Handle DW ? ; File Handle (from Open/Create)
NewHandle DW ? ; File Handle that duplicates Handle

Comments
On entry, BX contains the file handle. CX contains a second file handle. On
return, the CX file handle refers to the same file at the same position as the
BX file handle. If the CX file handle was an open file, it is closed first. If you
move the read/write pointer of either handle, the pointer for the other handle
is also changed.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Appendix B. PC DOS 7 Function Calls 225

47H — Get Current Directory

Purpose
Places the full path name (starting from the root directory) of the current
directory for the specified drive in the area pointed to by DS:SI.

Examples
MOV AX,SEG DName ; Directory Name Buffer
MOV DS,AX
MOV SI,OFFSET DName ; OS:SI points to buffer
MOV DL,Drive ; Select Drive
MOV AH,47H ; Function-Get Current Dir
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Drive DB ? ; Drive (0=current, 1=A:, 2=b:, ...)
DName DB 64 DUP(?) ; ASCIIZ Directory Name Returned

; example: ″dir1\dir2″,0

Comments
The drive letter is not part of the returned string. The string does not begin
with a backslash and is terminated by a byte containing 00H.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

226 PC DOS 7

48H — Allocate Memory
Allocates the requested number of paragraphs of memory.

Examples
MOV AH,48H ; Function Call —

; Allocate Memory
MOV BX,Paragraphs ; Paragraphs Desired
INT 21H ; Issue request to DOS
JNC Done
MOV AH,48H ; Function Call —

; Allocate memory
; BX set to largest available memory

INT 21H ; Issue request to DOS
Done:

MOV BlockSeg,AX ; Save BlockSeg of memory
MOV Paragraphs,BX

Paragraphs DW ? ; Size requested in paragraphs
; (Bytes allocated is 16 * Paragraphs)

BlockSeg DW ? ; BlockSeg address of allocated memory

Comments
On entry, BX contains the number of paragraphs requested. On return, AX:0
points to the allocated memory block. If the allocation fails, BX returns the
size of the largest block of memory available in paragraphs.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Appendix B. PC DOS 7 Function Calls 227

49H — Free Allocated Memory

Purpose
Frees the specified allocated memory.

Examples
MOV AH,49H ; Function Call — Free Memory
MOV ES,BlockSeg ; Set address to free
INT 21H ; Issue request to DOS
JC Error

BlockSeg DW ? ; BlockSeg address of allocated memory

Comments
On entry, ES contains the segment of the block to be returned to the system
pool. On return, the block of memory is returned to the system pool.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

228 PC DOS 7

4AH — Modify Allocated Memory Blocks (SETBLOCK)

Purpose
Modifies allocated memory blocks to contain the new specified block size.

Examples
MOV AH,4AH ; Function Call —

; Modify Allocated Memory; allocate memory
MOV ES,BlockSeg ; Set address to free
MOV BX,BlockSize ; New size (may be larger or smaller)
INT 21H ; Issue request to DOS
JNC Done
MOV AH,4AH ; Function Call —

; Allocate memory
; BX set to largest available Size

INT 21H ; Issue request to DOS
Done:

MOV Size,BX

BlockSeg DW ? ; Segment address of allocated memory
BlockSize DW ? ; Size requested in paragraphs

; (Bytes allocated is 16 * Size)

Comments
Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Note: This call is often used to set the size of a program before using
function call 31H (Terminate Process and Remain Resident). Use the
program segment prefix. This value can be obtained using function
call 62H (Get Program Segment Prefix Address). Another use is to
release memory to prepare for using function call 4BH (Load or
Execute a Program).

Appendix B. PC DOS 7 Function Calls 229

4BH — Load or Execute a Program (EXEC)

Purpose
Allows a program to load another program into memory and may choose to
begin execution of it.

Examples
; To Execute a Program

MOV AH,4BH ; Function Call — Execute a Program
MOV AL,0 ; Indicate execute program
MOV CX,SEG Parms ; Program parameters
MOV ES,CX
MOV BX,OFFSET Parms : ES:BX points to parameter block
MOV CX,SEG PName ; Program name
MOV DS,CX
MOV DX,OFFSET PName ; DS:DX points to program name
MOV WORD PTR StackSave+0,SP ; Save stack pointer
MOV WORD PTR StackSave+2,SS
INT 21H ; Issue request to DOS

 JC Error ; Error code in AX
; Note: All Registers (except CS:IP) Destroyed

; Program Runs here

CLI ; Protect from stack usage
MOV SS,WORD PTR StackSave+2 ; Restore stack pointer
MOV SP,WORD PTR StackSave+0
STI ; Enable interrupts
MOV AH,4DH ; Function Call — Get Return Code
INT 21H ; Issue request to DOS
MOV RetCode,AX ; Save return code

; To Load an Overlay
MOV AH,4BH ; Function Call — Execute a Program
MOV AL,3 ; Indicate load overlay
MOV CX,SEG OParms ; Overlay parameters
MOV ES,CX
MOV BX,OFFSET OParms ; ES:BX points to parameter block
MOV CX,SEG PName ; Overlay name
MOV DS,CX
MOV DX,OFFSET PName ; DS:DX points to overlay filename
INT 21H ; Issue request to DOS

 JC Error ; Error code in AX

230 PC DOS 7

PName DB 64 Dup (0) ; ASCIIZ Name

; example: ″c:\dir\File.ext″,0
Parms LABEL WORD ; Program parameters
Env@ DW ? ; Environment segment address

; Value of 0000H indicates copy EXEC′ ers
; Environment

Cmd@ DD ? ; Command line address
FCB1@ DD ? ; FCB Image to set to New PSP+5CH
FCB2@ DD ? ; FCB Image to set to New PSP+6CH

 StackSave DD ? ; Stack pointer save area
RetCode DW ? ; Program return code

; (see function code 4DH for more information)
OParms LABEL WORD ; Overlay parameters
Load@ DW ? ; Overlay load segment address

 RelocFactor DW ? ; Relocation factor to apply (for .EXE files)

Comments
Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

The following function values are allowed in AL:

Only the first 20 file handles are duplicated in the newly created process
after an EXEC, unless the file was opened with the inheritance bit set to 1.
This means that the parent process has control over the meanings of
standard input, output, auxiliary, and printer devices. The parent could, for
example, write a series of records to a file, open the file as standard input,
open a listing file as standard output, and then execute a sort program that
takes its input from standard input and writes to standard output.

Function
Value Description

00H Load and execute the program. A program segment prefix is
established for the program; terminate and Ctrl-Break addresses are set
to the instruction after the EXEC system call.

Note: When control is returned, all registers are changed, including the
stack. You must restore SS, SP, and any other required registers
before proceeding.

03H Load, do not create the program segment prefix, and do not begin
execution. This is useful in loading program overlays.

Appendix B. PC DOS 7 Function Calls 231

Also inherited (or copied from the parent) is an “environment.” This is a
block of text strings (less than 32KB total) that conveys various configuration
parameters. The following is the format of the environment (always on a
paragraph boundary):

Typically the environment strings have the form:

parameter = value

Following the byte of 0 in the environment is a WORD that indicates the
number of other strings following. Following this is a copy of the DS:DX
filename passed to the child process. For example, the string VERIFY=ON
could be passed. A 0 value of the environment address causes the newly
created process to inherit the original environment unchanged. The segment
address of the environment is placed at offset 2CH of the program segment
prefix for the program being invoked.

Errors codes are returned in AX. Refer to “Responding to Errors” on
page 138 and “Extended Error Codes” on page 138 for more information on
the codes returned.

Note: When your program received control, all available memory was
allocated to it. You must free some memory (see call 4AH) before
EXEC can load the program you are invoking. Normally, you would
shrink down to the minimum amount of memory you need, and free
the rest.

Byte ASCIIZ string 1

Byte ASCIIZ string 2

...

Byte ASCIIZ string n

Byte of 0

232 PC DOS 7

4CH — Terminate a Process (EXIT)

Purpose
Terminates the current process and transfers control to the invoking process.

Examples
MOV AH,4CH ; Function Call — Terminate a Process
MOV AL,ErrorCode ; Set ERRORLEVEL
INT 21H ; Issue request to DOS
INT 20H ; Be safe if running on PC/DOS 1.1

ErrorCode DB ? ; Error Code (sets ERRORLEVEL if EXEC′ ed
; by COMMAND.COM)

Comments
In addition, a return code can be sent. The return code can be interrogated
by the batch subcommands IF and ERRORLEVEL and by the wait function call
4DH. All files opened by this process are closed.

Appendix B. PC DOS 7 Function Calls 233

4DH — Get Return Code of a Subprocess (WAIT)

Purpose
Gets the return code specified by another process either through function
call 4CH or function call 31H. It returns the Exit code only once.

Examples
MOV AH,4DH ; Function Call — Get Return Code
INT 21H ; Issue request to DOS
MOV RetCode,AX ; Save return code

RetCode LABEL WORD ; Program return code
ExitCode DB ? ; ERRORLEVEL value
ExitType DB ? ; Method used to exit (AH):

; 00H — for normal termination
; 01H — for termination by Ctrl-Break
; 02H — for termination as a result
; of a critical device error
; 03H — for termination by call 31H

Comments
The low byte of the exit code contains the information sent by the exiting
routine.

234 PC DOS 7

4EH — Find First Matching File (FIND FIRST)

Purpose
Finds the first filename that matches the specified file specification.

Examples
MOV AH,1AH ; Function Call — Set DTA Address
MOV CX,SEG DTA ; Address buffer for found file
MOV DS,CX
MOV DX,OFFSET DTA
INT 21H ; Issue request to DOS
MOV AH,4EH ; Function Call — ASCIIZ Find First
MOV CX,SEG FName ; Directory or filename
MOV DS,CX
MOV DX,OFFSET FName ; DS:DX points to ASCII filename
MOV CX,Attribute ; Set Match Attribute
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

DTA LABEL BYTE ; Find return information
DB 21 DUP(0) ; Reserved for PC DOS 7 to continue find

FileAttr DB ? ; Matched files attribute low byte
FileTime DW ? ; File time
FileDate DW ? ; File date
FileSize DD ? ; File size
FileNameExt DB ″????????.???″,0 ; Filename and extension

FName DB 64 DUP (0) ; ASCIIZ Name
; example: ″c:\dir*.*″,0

Attribute DW ? ; Select files attribute
; Combination of following:
; 0001H=Read only
; 0002H=Hidden
; 0004H=System
; 0008H=Volume label
; 0010H=Directory
; 0040H=Reserved
; 0080H=Reserved

Appendix B. PC DOS 7 Function Calls 235

Notes:

 1. If the attribute is 0, only normal file entries are found. Entries for volume
label, subdirectories, hidden files, and system files are not returned.

 2. If the attribute field is set for hidden files, or system files, or directory
entries, it is to be considered as an inclusive search. All normal file
entries plus all entries matching the specified attributes are returned. To
look at all directory entries except the volume label, the attribute byte
may be set to hidden + system + directory (all 3 bits on).

Comments
The filename in DS:DX can contain global filename characters. The ASCIIZ
string cannot contain a network path. See function call 11H (Search for First
Entry) for a description of how the attribute bits are used for searches.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

Note: The name and extension of file found is returned as an ASCIIZ string.
All blanks are removed from the name and extension, and, if an
extension is present, it is preceded by a period.

236 PC DOS 7

4FH — Find Next Matching File (FIND NEXT)

Purpose
Finds the next directory entry matching the name that was specified on the
previous Find First or Find Next function call.

Examples
MOV AH,1AH ; Function Call — Set DTA Address
MOV CX,SEG DTA ; Address buffer for found file
MOV DS,CX
MOV DX,OFFSET DTA
INT 21H ; Issue request to DOS
MOV AH,4FH ; Function Call — Find next
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

DTA LABEL BYTE ″ ; Find Return Information
DB 21 DUP(0) ″ ; Reserved for DOS to Continue Find

″ ; Set by Find First or Previous Find Next
FileAttr DB ? ″ ; Matched Files Attribute Low Byte
FileTime DW ? ″ ; File Time
FileDate DW ? ″ ; File Date
FileSize DD ? ″ ; File Size
FileNameExt DB ″????????.???″,0 ; File Name and Extension

Comments
If a matching file is found, the DTA is set as described in call 4EH (Find First
Matching File (FIND FIRST)). If no more matching files are found, an error
code is returned.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location.

Appendix B. PC DOS 7 Function Calls 237

50H — Set Program Segment Prefix Address

Purpose
Sets the segment address of the current programs, program segment prefix.

Examples
MOV BX,SEGMENT_PSP ; Segment Address of New PSP
MOV AH,50H ; Function Call — Set PSP Address
INT 21H ; Issue request to DOS

; No Return

SEGMENT_PSP DW ? ; Segment Address of PSP

238 PC DOS 7

51H — Get Program Segment Prefix Address

Purpose
Returns the segment address of the currently executing programs, program
segment prefix.

Examples
MOV AH,51H ; Function Call — Get PSP Address
INT 21H ; Issue request to DOS
JC Error ; Error Code in AX

MOV SEGMENT_PSP,BX ; Save PSP Address

SEGMENT_PSP DW ? ; Segment Address of PSP

Comments
This function is identical to Interrupt 21H function 62H.

Appendix B. PC DOS 7 Function Calls 239

54H — Get Verify Setting

Purpose
Returns the value of the verify flag.

Examples

MOV AH,54H ; Function Call — Get VERIFY Setting
INT 21H ; Issue request to DOS
MOV VERIFY,AL ; Save VERIFY State

 VERIFY DB ? ; VERIFY State:
; 0 = OFF
; 1 = ON

Comments
On return, AL returns 00H if verify is OFF, 01H if verify is ON. Note that the
verify switch can be set through call 2EH (Set/Reset Verify Switch).

240 PC DOS 7

56H — Rename a File

Purpose
Renames the specified file.

Examples

MOV AH,56H ; Function Call — ASCIIZ Rename File
MOV CX,SEG FName ; File Name
MOV DS,CX
MOV DX,OFFSET FName ; DS:DX points to original name
MOV CX,SEG NewName ; New File Name
MOV ES,CX
MOV DI,OFFSET NewName ; ES:DI points to rename
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

FName DB 64 DUP (0) ; ASCIIZ Name
; example: ″c:\dir\abc.lst″,0

NewName DB 64 DUP (0) ; ASCIIZ Name
; example: ″\dir\xyz.lst″,0

Comments
If a drive is used in the NewName string, it must be the same as the drive
specified or implied in the Name string. The directory paths need not be the
same, allowing a file to be moved to another directory and renamed in the
process. Directory names can be changed but not moved. Global filename
characters are not allowed in the filename.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

Network Access Rights: Requires Create access rights.

Appendix B. PC DOS 7 Function Calls 241

57H — Get/Set File ′s Date and Time

Purpose
Gets or sets a file′s date and time.

Examples
; To Get a File′ s Date and Time

MOV AH,57H ; Function Call — Get/Set Date and Time
MOV AL,0 ; Indicate get
MOV BX,Handle ; Select file
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV FileTime,CX ; Save Time
MOV FileDate,DX ; Save Date

; To Set a File′ s Date and Time

MOV AH,57H ; Function Call — Get/Set Date and Time
MOV AL,1 ; Indicate Set
MOV BX,Handle ; Select file+
MOV CX,FileTime ; Set Time
MOV DX,FileDate ; Set Date
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Handle DW ? ; File Handle (from Open / Create)
FileTime DW ? ; File Time
FileDate DW ? ; File Date

Comments
The date and time formats are the same as those for the directory entry
described in Chapter 5 of this book.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

242 PC DOS 7

5800H — Get Allocation Strategy

Purpose
Returns the scheme in which PC DOS 7 uses to allocate memory.

Examples
MOV AH,5800H ; Function Call — Get Allocation Strategy
INT 21H ; Issue request to DOS

JC Error
MOV STRATEGY,AX ; Save Allocation Strategy

STRATEGY DW ? ; Allocation Strategy

Comments
The following table describes the allocation strategies returned values:

Table 1 (Page 1 of 2). Allocation Strategies

Value Description

FIRST_FIT_LOW 0000H Search conventional memory for an
available block having the lowest
address. This is also the default
strategy.

BEST_FIT_LOW 0001H Search conventional memory for an
available block that closely matches
the requested size.

LAST_FIT_LOW 0002H Search conventional memory for an
available block at the highest address.

FIRST_FIT_HIGH 0080H Search the upper-memory area for an
available block at the lowest address.
If no block is found then the search
continues in the conventional memory.

BEST_FIT_HIGH 0081H Search the upper-memory area for an
available block that closely matches
the requested size. If no block is found
then the search continues in the
conventional memory.

LAST_FIT_HIGH 0082H Search the upper-memory area for an
available block at the highest address.
If no block is found then the search
continues in the conventional memory.

Appendix B. PC DOS 7 Function Calls 243

Table 1 (Page 2 of 2). Allocation Strategies

Value Description

FIRST_FIT_HIGHONLY 0040H Search the upper-memory area for an
available block at the lowest address.

BEST_FIT_HIGHONLY 0041H Search the upper-memory area for an
available block that closely matches
the requested size.

LAST_FIT_HIGHONLY 0042H Search the upper-memory area for an
available block at the highest address.

244 PC DOS 7

5801H — Set Allocation Strategy

Purpose
Sets the scheme by which PC DOS 7 uses to allocate memory.

Examples
MOV BX,STRATEGY ; Allocation Strategy
MOV AH,5801H ; Function Call — Set Allocation Strategy
INT 21H ; Issue request to DOS

JC Error

STRATEGY DW ? ; Allocation Strategy

Comments
The strategy used is the same as described in the table on Table 1 on
page 243.

After the function is called the carry flag will be clear if it has been
successfull. If the carry flag is set the AX register contains an error, which
could be 0001H, indicating that the strategy is not one of the ones specified.

Appendix B. PC DOS 7 Function Calls 245

5802H — Get Upper-Memory Link

Purpose
Specifies whether programs can allocate memory from the upper-memory
area.

Examples
MOV AH,5802H ; Function Call — Get Upper-Mem Link
INT 21H ; Issue request to DOS

MOV UM_LINK,AX ; Save Upper-Memory Link Information

UM_LINK DB ? ; Upper-Memory Linked

; 1 = Linked
; 0 = Not Linked

Comments

246 PC DOS 7

5803H — Set Upper-Memory Link

Purpose
Allows you to link or unlink the upper-memory area. If linked, a program
may allocate memory from the upper-memory area.

Examples
MOV BX,UM_LINK ; Set Upper-Memory Link Information
MOV AH,5802H ; Function Call — Set Upper-Mem Link
INT 21H ; Issue request to DOS
JC Error ; AX contains the error value

; 0001H ERROR_INVALID_FUNCTION
; 0007H ERROR_ARENA_TRASHED

UM_LINK DB ? ; Upper-Memory Linked

; 1 = Link Upper-Memory Area
; 0 = Unlink Upper-Memory Area

Comments
The return of the 0001H error (ERROR_INVALID_FUNCTION) could indicate
that PC DOS 7 has been loaded without DOS=UMB being specified in the
CONFIG.SYS file.

Appendix B. PC DOS 7 Function Calls 247

59H — Get Extended Error

Purpose
Returns additional error information, such as the error class, location, and
recommended action.

Examples

PUSH DX ; Save Registers
PUSH SI
PUSH DI
PUSH ES
PUSH DS
MOV AH,59H ; Function Call — Get Extended Error
MOV BX,0 ; Version 0 information
INT 21H ; Issue request to DOS
POP DS ; Restore registers
POP ES
POP DI
POP SI
POP DX
MOV ExtError,AX ; Save error code
MOV ErrorClass,BH ; Save error class
MOV ErrorAction,BL ; Save error action
MOV ErrorLocation,CH; Save error location

ExtError DW ? ; DOS extended error
ErrorClass DB ? ; Class of error
ErrorAction DB ? ; Suggested action
ErrorLocation DB ? ; System area effected

Comments
This function call returns the error class, location, and recommended action,
in addition to the return code. Use this function call from:

• Interrupt 24H error handlers
• Interrupt 21H function calls that return an error in the carry bit
• FCB function calls that return FFH.

248 PC DOS 7

On return, the registers contents of DX, SI, DI, ES, CL, and DS are destroyed.

Error Return in Carry Bit

For function calls that indicate an error by setting the carry flag, the correct
method for performing function call 59H is:

• Load registers.
• Issue interrupt 21H.
• Continue operation, if carry not set.
• Disregard the error code and issue function call 59H to obtain additional

information.
• Use the value in BL to determine the suggested action to take.

Error Status in AL

For function calls that indicate an error by setting AL to FFH, the correct
method for performing function call 59H is:

• Load registers.
• Issue interrupt 21H.
• Continue operation, if error is not reported in AL.
• Disregard the error code and issue function call 59H to obtain additional

information.
• Use the value in BL to determine the suggested action to take.

Appendix B. PC DOS 7 Function Calls 249

5AH — Create Unique File

Purpose
Generates a unique filename, and creates that file in the specified directory.

Examples

MOV AH,5AH ; Function Call — Create a
; Unique File

MOV CX,SEG DirName ; Directory name
MOV DS,CX
MOV DX,OFFSET DirName
MOV CX,Attribute ; File attribute
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Handle,AX ; Save file handle for following

; Operations

DirName DB ″?? .. ??\″,0 ; ASCIIZ name
DB ″????????.???″

; example in : ″c:\dir\″,0
; example out: ″c:\dir\file″,0

Handle DW ? ; File handle
Attribute DW ? ; Select file′ s attribute

Comments
On entry, AH contains 5AH. If no error has occurred, the file is opened in
compatibility mode with Read/Write access. The read/write pointer is set at
the first byte of the file and AX contains the file handle and the filename is
appended to the path specified in DS:DX.

This function call generates a unique name and attempts to create a new file
in the specified directory. If the file already exists in the directory, then
another unique name is generated and the process is repeated. Programs
that need temporary files should use this function call to generate unique
filenames.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error

250 PC DOS 7

Codes” on page 138 for more information on the codes returned from
function call 59H.

Note: The file created using this function call is not automatically deleted at
program termination.

Network Access Rights: Requires Create access rights.

Appendix B. PC DOS 7 Function Calls 251

5BH — Create New File

Purpose
Creates a new file.

Examples

MOV AH,5BH ; Function Call — Create a New File
MOV CX,SEG FName ; File Name
MOV DS,CX
MOV DX,OFFSET FName
MOV CX,Attribute
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Handle,AX ; Save File Handle for following operations

FName DB 64 DUP (0) ; ASCIIZ Name
; example: ″c:\dir\file″,0

Handle DW ? ; File Handle
Attribute DW ? ; Select File′ s Attribute

Comments
This function call is the same as function call 3CH (Create), except it will fail
if the filename already exists. The file is created in compatibility mode for
reading and writing and the read/write pointer is set at the first byte of the
file.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

Network Access Rights: Requires Create access rights.

252 PC DOS 7

5CH — Lock/Unlock File Access

Purpose
Locks or unlocks a single range of bytes in an opened file. This function call
provides database services that are useful in maintaining database integrity
in a network environment.

Examples
; To Lock a Single Range

MOV AH,5CH ; Function Call —
; Access Lock/Unlock File

MOV AL,0 ; Indicate lock
MOV BX,Handle ; Select file
MOV DX,WORD PTR Position+0 ; Set position
MOV CX,WORD PTR Position+2
MOV DI,WORD PTR Llength+0 ; Set length
MOV SI,WORD PTR Llength+2
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

; To Unlock a Single Range

MOV AH,5CH ; Function Call —
; Lock/Unlock File Access

MOV AL,1 ; Indicate unlock
MOV BX,Handle ; Select file
MOV DX,WORD PTR Position+0 ; Set position
MOV CX,WORD PTR Position+2
MOV DI,WORD PTR Llength+0 ; Set length
MOV SI,WORD PTR Llength+2
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Handle DW ? ; File Handle
Position DD ? ; Start of Range
Llength DD ? ; Length of Range

Appendix B. PC DOS 7 Function Calls 253

Comments
The Lock/Unlock function calls should only be used when a file is opened
using the DenyRead or DenyNone sharing modes. These modes do no local
buffering of data when accessing files on a network disk.

AL = 00H Lock
Lock provides a simple mechanism for excluding other processes′ read/write
access to regions of the file. If another process attempts to read or write in
such a region, its system call is retried the number of times specified with
the system retry count set by IOCTL. If, after those retries, no success
occurs, a general failure error is generated, signaling the condition. The
number of retries, as well as the length of time between retries, can be
changed using function call 440BH (IOCTL Change Sharing Retry Count).

The recommended action is to issue function call 59H (Get Extended Error) to
get the error code, in addition to the error class, location, and recommended
action. The locked regions can be anywhere in the logical file. Locking
beyond end-of-file is not an error. It is expected that the time in which
regions are locked will be short. Duplicating the handle duplicates access to
the locked regions. Access to the locked regions is not duplicated across the
EXEC system call. Exiting with a file open and having issued locks on that
file has undefined results.

Programs that may be cancelled using INT 23H or INT 24H should trap these
interrupts and release the locks before exiting from the program. The proper
method for using locks is not to rely on being denied read or write access,
but to attempt to lock the region desired and examining the error code.

AL = 01H Unlock
Unlock releases the lock issued in the lock system call. The region specified
must be exactly the same as the region specified in the previous lock.
Closing a file with locks still in force has undefined results. Exiting with a file
open and having issued locks on that file has undefined results.

Programs that may be abended using INT 23H or INT 24H should trap these
interrupts and release the lock before exiting from the program. The proper
method for using locks is not to rely on being denied read or write access
but rather attempting to lock the region desired and examining the error
code.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

254 PC DOS 7

5D0AH — Set Extended Error

Purpose
This function sets the error class, location suggested action and other
information that will be returned by the next call to function 59H Get
Extended Error.

Examples
MOV DX, SEG ERROR_INFO
MOV DS,DX
MOV DX, OFFSET ERROR_INFO

MOV AH,5D0AH ; Function Call — Set Extended Error
INT 21H ; Issue request to DOS

ERROR_INFO STRUC

ExtendedErr DW ? ; Extended Error Code
ErrorClass DB ? ; Error Class
ErrorAction DB ? ; Suggested Action
ErrorLoc DB ? ; Location of Error
errCL DB ? ; CL Register
errDX DW ? ; DX Register
errSI DW ? ; SI Register
errDI DW ? ; DI Register
errDS DW ? ; DS Register
errES DW ? ; ES Register
errReserved DW ? ; Reserved Word
errUID DW ? ; USER ID
errPID DW ? ; Program ID

Comments
Please refer to “Responding to Errors” on page 138 for details of the
possible values that may be used in the ERROR_INFO structure.

Appendix B. PC DOS 7 Function Calls 255

5E00H — Get Machine Name

Purpose
Returns the character identifier of the local computer.

Examples

MOV AX,SEG CNAME ; Name buffer
MOV DS,AX
MOV DX OFFSET CNAME
MOV AX,5E00H ; Function Call —

; Get Machine Name
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV NameFlag,CH ; Save name number indicator
MOV NameID,CL ; Save NETBIOS name number

CName DB ″???????????????″,0 ; ASCIIZ computer name
NameFlag DB ? ; 0 = Name is not set

; 1 = Name is set
NameID DB ? ; NETBIOS name number

Comments
Get Machine Name returns the text of the current computer name to the
caller. The computer name is a 15-character byte string padded with spaces
and followed by a 00H byte. If the computer name was never set, register
CH is returned with 00H and the value in the CL register is invalid. The IBM
PC Local Area Network Services program must be loaded for the function
call to execute properly.

256 PC DOS 7

5E02H — Set Printer Setup

Purpose
Specifies an initial string for printer files.

Examples
MOV AX,5E02H ; Function Call —

; Set Printer Setup
MOV BX,Index ; Redirection List Index
MOV CX,size ; String size
MOV SI,SEG String ; String Buffer
MOV DS,SI
MOV SI,OFFSET String
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Index DW ? ; Redirection List Index
Size DW N ; String size (Maximum 64)
String DB N DUP(?) ; Printer Setup String

Comments
The string specified is put in front of all files destined for a particular network
printer. Set Printer Setup allows multiple users of a single printer to specify
their own mode of operation for the printer. BX is set to the same index that
is used in function call 5F02H (Get Redirection List Entry). An error code is
returned if print redirection is paused or if the IBM PC Local Area Network
Services program is not loaded.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H. IMPORTANT: The redirection index value may change if
function call 5F03H (Redirect Device) or function call 5F04H (Cancel
Redirection) is issued between the time the redirection list is scanned and
the function call 5E02H (Set Printer Setup) is issued. Therefore, we
recommend that you issue Set Printer Setup immediately after you issue
“Get Redirection List .”

Appendix B. PC DOS 7 Function Calls 257

5E03H — Get Printer Setup

Purpose
Returns the printer setup string for printer files.

Examples

MOV AX,5E03H ; Function Call —
; Get Printer Setup

MOV BX,Index ; Redirection List Index
MOV CX,SEG String ; String Buffer
MOV ES,CX
MOV DI,OFFSET String
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Ssize, CX ; Save String size

Index DW ? ; Redirection List Index
Ssize DW ? ; String size
String DB 64 DUP(?) ; Printer Setup String

Comments
This function call returns the printer setup string which was specified using
the function call 5E02H (Set Printer Setup). The setup string is attached to all
files destined for a particular printer. The value in BX is set to the same
index issued in function call 5F02H (Get Redirection List). Error code 1
(invalid function number) is returned if the IBM PC Local Area Network
Services is not loaded.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

IMPORTANT: The redirection index value may change if function call 5F03H
(Redirect Device) or function call 5F04H (Cancel Redirection) is issued
between the time the redirection list is scanned and the function call 5E03H
(Get Printer Setup) is issued. Therefore, we recommend that you issue “Get
Printer Setup” immediately after you issue “Get Redirection List.”

258 PC DOS 7

5F02H — Get Redirection List Entry

Purpose
Returns nonlocal network assignments.

Examples

MOV BX,0 ; Start at beginning of list
Get_Loop: ; Get next entry

MOV Index,BX ; Redirection list index
MOV AX,5F02H ; Function Call —

; Get redirection list entry
MOV SI,SEG device ; ″PRN″ is possible
MOV DS,SI
MOV SI,OFFSET device ; DS:SI points to local name
MOV DI,SEG info
MOV ES,DI
MOV DI,OFFSET inf ; ES:DI points to buffer address of network name
PUSH BX
PUSH DX ; Save registers
PUSH BP
INT 21H ; Issue request to DOS
POP BP ; Restore registers
POP DX

 JC CheckEnd ; Error code in AX
MOV Status,BH ; Save status
MOV Type,BL ; Save type
MOV UserParm,CX ; Save user parameter
POP BX
INC BX ; Set to next entry
JMP Get_Loop

CheckEnd:
POP BX ; Balance state
CMP AX,18 ; End of list?
JNE Error ; No!

Index DW ? ; Redirection list index (0 based)
Device DB 128 DUP(?) ; ASCIIZ device name

; example: ″LPT1″,0
; ″A:″,0

Status DB ? ; Device status
; Bit 0=0 : Device is OK

Appendix B. PC DOS 7 Function Calls 259

; Bit 0=1 : Device in Error
; Bit 7-1 reserved

UserParm DW ? ; User parameter
Type DB ? ; Device type

; 3 = NET USE device
; 4 = NET USE drive

Info DB 128 DUP(?) ; NET USE network path
; example: ″\\MYNODE\CDRIVE″,0

Comments
The Get Redirection List Entry function call returns the list of network
redirections that were created through function call 5F03H (Redirect Device).
Each call returns one redirection, so BX should be increased by one each
time to step through the list. The contents of the list may change between
calls. The end-of-list is detected by error code 18 (no more files). Error code
1 (invalid function number) is returned if the IBM PC Local Area Network
Services program and IFSFUNC are not loaded.

If either disk or print redirection is paused, the function is not effected.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

260 PC DOS 7

5F03H — Redirect Device

Purpose
Causes a Redirector/Server connection to be made.

Examples
MOV AX,5F03H ; Function Call —

; Redirect Device
MOV SI,SEG Device ; Device Buffer
MOV DS,SI
MOV SI,OFFSET Device
MOV DI,SEG Net Path info ; Information Buffer
MOV ES,DI
MOV DI,OFFSET Net Path
MOV BL,Type ; Set Type
MOV CX,UserParm ; Set User Parameter
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Device DB ″ ″ , 0 ; ASCIIZ Device Name
; example: ″LPT1″,0
; ″A:″,0

UserParm DW ? ; User Parameter
Type DB ? ; Device Type

; 3 = NET USE Device
; 4 = NET USE Drive

Net Path DB 128 DUP(0)

Comments
This call defines the current directories for the network and defines
redirection of network printers.

• If BL = 03, the source specifies a printer, the destination specifies a
network path, and the CX register has a word that PC DOS 7 maintains
for the programmer. For compatibility with the IBM PC Local Area
Network Services program, CX should be set to 0. Values other than 0
are reserved for the IBM PC Local Area Network Services program. This
word may be retrieved through function call 5F02H (Get Redirection List).
All output destined for the specified printer is buffered and sent to the
remote printer spool for that device. The printers are redirected at the
INT 17H level.

Appendix B. PC DOS 7 Function Calls 261

The source string must be PRN , LPT1 , LPT2, or LPT3 each ended with a
00H. The destination string must point to a network name string of the
following form:

[computername{shortname∨printdevice}]

The destination string must be ended with a 00H.

The ASCIIZ password (0 to 8 characters) for access to the remote device
should immediately follow the network string. The password must end
with a 00H. A null (0 length) password is considered to be no password.

• If BL = 4, the source specifies a drive letter and colon ending with 00H,
the destination specifies a network path ending with 00H, and the CX
register has a word that DOS maintains for the programmer. For
compatibility with the IBM PC Local Area Network Services program, CX
should be set to 00H. Values other than 00H are reserved for the IBM PC
Local Area Network Services program. The value may be retrieved
through function call 5F02H (Get Redirection List). If the source was a
drive letter, the association is made between the drive letter and the
network path. All subsequent references to the drive letter are translated
to references to the network path. If the source is an empty string, the
system attempts to grant access to the destination with the specified
password without redirecting any device.

The ASCIIZ password for access to the remote path should immediately
follow the network string. A null (0 length) password ended with 00H is
considered to be no password.

Error codes are returned in AX. Issue function call 59H for additional
information about the error class, suggested action, and location. Refer
to “Responding to Errors” on page 138 and “Extended Error Codes” on
page 138 for more information on the codes returned from function call
59H (Get Extended Error) .

Notes:

 1. Devices redirected through this function call are not displayed by the NET
USE command.

 2. An error is returned if you try to redirect a drive while disk redirection is
paused, or if you try to redirect a printer while print redirection is
paused.

262 PC DOS 7

5F04H — Cancel Redirection

Purpose
Cancels a previous redirection.

Examples

MOV AX,5F04H ; Function Call —
; Cancel redirection

MOV SI,SEG Device ; Device buffer
MOV DS,SI
MOV SI,OFFSET Device
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Device DB ″ ″ , 0 ; ASCIIZ Device Name
; example: ″LPT1″,0
; ″A:″,0
; ″\\Computer\Path″,0

Comments
The redirection created by the Redirect Device function call (5F03H) is
removed through the Cancel Redirection call. If the buffer points to a drive
letter and the drive is associated with a network name, the association is
ended and the drive is restored to its physical meaning. If the buffer points
to PRN, LPT1, LPT2, or LPT3, and the device has an association with a
network device, the association is terminated and the device is restored to
its physical meaning. If the buffer points to a network path ending with 00H
and a password ending with 00H, the association between the local machine
and the network directory is terminated.

An error is returned if you try to cancel a redirected file device while disk
redirection is paused, or if you try to cancel a redirected printer while print
redirection is paused. Error code 1 (invalid function number) is returned if
the IBM PC Local Area Network Services program is not loaded.

Error codes are returned in AX. Issue function call 59H (Get Extended Error)
for additional information about the error class, suggested action, and
location. Refer to “Responding to Errors” on page 138 and “Extended Error
Codes” on page 138 for more information on the codes returned from
function call 59H.

Appendix B. PC DOS 7 Function Calls 263

62H — Get Program Segment Prefix Address

Purpose
Returns the program prefix address.

Examples

MOV AH,62H ; Function Call —
; Get Program Segment Prefix Address

INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV PSPSeg,BX ; Save PSP address

PSPSeg DW ? ; Segment address of my PSP

Comments
The internal PSP address for the currently executing process is returned in
BX.

264 PC DOS 7

65H — Get Extended Country Information

Purpose
Returns extended country information.

Examples
; To get information

MOV AH,65H ; Function Call —
; Get extended country information

MOV AL,InfoID ; Data/function requested
; (1, 2, 4, 6 or 7).

MOV BX,CodePage ; Set desired code page
; (-1=current, Set by function call 6602H).

MOV CX,SizeBuffer ; Maximum data to return
; (must be >= 5)

MOV DX,CountryID ; Set desired Country ID
; (-1=current, set by function call 38H).

MOV DI,SEG Buffer ; Information return buffer
MOV ES,DI
MOV DI,OFFSET Buffer
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Buffer LABEL BYTE
; Format depends on AL value
; AL=1 : Extended Country Information

InfoID DB ? ; Type of info to get
CIinfoSize DW ? ; amount of data that follows

; (limited by CX input)
CountryID DW ? ; Selected CountryID
CodePage DW ? ; Selected Code Page
; See function call 38H, Country Information, for the format of the

remainder of this buffer

; AL=2 : Upper Case Table
DB 2 ; Indicates Upper Case Table

UpperCase@ DD ? ; Address of Upper Case Table

; AL=4 : File Upper Case Table

Appendix B. PC DOS 7 Function Calls 265

DB 4 ; Indicates File Upper Case Table
UpperCase@ DD ? ; Address of File Upper Case Table

; AL=6 : Collating Table
DB 6 ; Indicates Collate Table

Collate@ DD ? ; Address of Collate Table

; AL=7 : DBCS Vector Table
DB 7 ; Indicates DBCS Vector Table

DBCS@ DD ? ; Address of DBCS Vector Table

Comments
On entry, DX contains the ID of the country for which the extended
information is needed. AL contains the ID value for the country.

• If the country code and code page do not match, or if either one or both
are invalid, an error code of 2 (file not found) is returned in AX.

• The size requested in CX must be 5 or greater. If it is less than 5, an
error code of 1 is returned in AX.

• If the amount of information returned is greater than the size requested
in CX, it is ended and no error is returned in AX.

Note: For further information on the country information, see function call
38H (Get or Set Country Dependent Information).

The NLSFUNC DOS extension must be installed to get information for
countries other than the Current Country.

The uppercase table and the filename uppercase tables are 130 bytes long,
consisting of a length field (2 bytes), followed by 128 uppercase values for the
upper 128 ASCII characters. They have the following layout:

Tsize DW 128 ; Table Size
Table DB 128 DUP(?) ; Upper case versions of 80H to FFH

The following formula can be used to determine the address of an uppercase
equivalent for a lowercase character (ASCII in) in the uppercase table or the
filename uppercase table.

Examples
ASCII in -(256-table len)+table start= address of ASCII out

Where

266 PC DOS 7

ASCII in = character to be generated

table len = length of list of uppercase
values (2 bytes)

table start = starting address of uppercase
table (4 bytes)

ASCII out = uppercase value for ASCII in

If the value of ASCII in is equal to or greater than (256-table len), there is an
uppercase equivalent for ASCII in in the table. If it is lower than
(256-table len), no uppercase equivalent exists in the table.

The collate table is 258 bytes long, consisting of a length field (2 bytes)
followed by 256 ASCII values, in the appropriate order. It has the following
layout:

Tsize DW 256 ; Table Size
Table DB 256 DUP(?) ; Sort Weights for 00H to FFH

The DBCS vector is variable in length, consisting of a length field (two bytes)
followed by one or more pairs of bytes in ascending order. It has the
following layout:

Tsize DW Nx2 ;List size
1 DB Start,end ;DBCS vector 1
2 DB Start,end ;DBCS vector 2
:
N DB Start,end ;DBCS vector n

DB 0,0 ;End marker

Appendix B. PC DOS 7 Function Calls 267

66H — Get/Set Global Code Page

Purpose
This function gets or sets the code page for the current country.

MOV AX,6601H ; Function Call —
; Get Global Code Page

INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV GlobalCP,BX ; Save Global Code Page
MOV SystemCP,DX ; Save DOS System Code Page

or

MOV AX,6602H ; Function Call —
; Set Global Code Page

MOV BX,GlobalCP ; New Global Code Page
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

GlobalCP DW ? ; Current Code Page of DOS Country Information
SystemCP DW ? ; Code Page of DOS messages

; Often the default Code Page for the
; current country

Comments
PC DOS 7 moves the new code page data from the COUNTRY.SYS file to a
resident country buffer area. PC DOS 7 uses the new code page to perform
a Select to all attached devices that are set up for code page switching, (that
is, have a code page switching device driver specified in CONFIG.SYS). If
any device fails to be selected, an error code of 65 is returned in AX. The
code page must be recognizable by the current country, and PC DOS 7 must
be able to open and read from the country information file. Otherwise, the
carry flag will be set on return and AX will contain 02 (file not found).

Note: NLSFUNC must be installed to use this function call, and all the
devices must be prepared in order for the Select function to be
successful.

268 PC DOS 7

67H — Set Handle Count

Purpose
Permits more than 20 open files per process.

Examples
EntryPoint:

MOV AH,62H ; Function Call —
; Get PSP Address

INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV ES,BX ; Set Segment
MOV AH,4AH ; Function Call —

; Set Memory Block Size
MOV BX,paragraphs ; Set Size
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV AH,67H ; Function Call - Set Handle Count
MOV BX,NewHandles ; Set new handle count
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

NewHandles DW ? ; Number of Handles needed
; by this PC DOS 7 process

ListSize EQU (Endofprogram - EntryPoint) ; Number of bytes
Paragraphs EQU (ListSize / 10H) ; Number of paragraphs
End_of_program LABEL BYTE ; Last used position for

; this program

Comments
The maximum number of file handles allowed for this interrupt is 64KB. If
the the specified number of allowable handles is less than the current
number allowed, the specified number will become current only after all the
handles above the specified number have been closed. If the specified
number is less than 20, the number is assumed to be 20. Data base
applications can use this function to reduce the need to swap handles.

You must release memory for PC DOS 7 to contain the extended handle list.
You can do this by using the SET BLOCK (4AH) function call.

Appendix B. PC DOS 7 Function Calls 269

68H — Commit File

Purpose
Causes all buffered data for a file to be written to the device. This function
can be used instead of a close-open sequence.

Examples
MOV AH,68H ; Function Call — Commit File
MOV BX,Handle ; Select file
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Handle DW ? ; Handle from previous Open or Create

Comments
Commit File provides a faster and more secure method of committing data in
multi-user environments such as the IBM PC Local Area Network Services.

270 PC DOS 7

6CH — Extended Open/Create

Purpose
Optionally opens and creates a file.

Examples
MOV AH,6CH ; Extended open
MOV AL,0 ; Reserved
MOV BX,MODE ; Open mode

; Format : 0WF00000ISSS0AAA
; AAA=Access code 0=Read
; 1=Write
; 2=Read/Write
; SSS=Sharing mode 0=Compatibility
; 1=DenyRead/Write
; 2=DenyWrite
; 3=DenyRead
; 4=DenyNone
; I 0=Pass handle to child, 1=No inherit
; F 0=INT 24H, 1=Return error
; on this open and any I/O to this handle
; W 0=No commit, 1=Auto-Commit on write

MOV CX,ATTR ; Create attribute (ignored if open)
MOV DX,FLAG ; Function control, Format=0000000NNNNEEEE

; NNNN=Does not exist action
; 0=Fail, 1=Create
; EEEE=Exists action
; 0=Fail, 1=Open, 2=Replace/Open

MOV SI,SEG file name ; Name to open or create
MOV DS,SI
MOV SI,OFFSET file name
INT 21H
JC ERROR

; AX=Handle
; CX=Action taken code
; 1=File Opened
; 2=File Created/Opened
; 3=File Replaced/Opened

Mode DW ? ; Open mode bit

; Definitions
Attr DW ? ; File attributes
Flag DW ? ; Function definition
File name 64 DUP (0)

Appendix B. PC DOS 7 Function Calls 271

Comments
Function 6CH combines the functions currently available with OPEN, CREATE
and a CREATE NEW.

If F is 1, the critical error handler (Interrupt 24) is disabled for the handle
returned by Extended Open. Any I/O issued to this handle will never
generate the critical error but only the extended error.

If F is 0, no actions are taken.

If W is 1, any disk write using the handle returned by Extended Open will
accompany with a commit call (see Interrupt 21H (AL=68H)).

If W is 0, no actions are taken.

272 PC DOS 7

Appendix C. I/O Control for Devices (IOCtl)

Purpose
Sets or gets device information associated with open device handles, or
sends control strings to the device handle or receives control strings from
the device handle.

Comments
The following function values are allowed in AL:

AL = 00H Get device information (returned in DX).
AL = 01H Set device information (determined by DX). DH must be 0 for

this call.
AL = 02H Read from character device
AL = 03H Write to character device
AL = 04H Read from block device
AL = 05H Write to block device
AL = 06H Get input status
AL = 07H Get output status
AL = 08H Determine if a particular block device is removable
AL = 09H Determine if a logical device is local or remote
AL = 0AH Determine if a handle is local or remote
AL = 0BH Change sharing retry count
AL = 0CH Issue handle generic IOCtl request
AL = 0DH Issue block device generic IOCtl request
AL = 0EH Get logical drive
AL = 0FH Set logical drive
AL = 10H QueryIOCtlHandle
AL = 11H QueryIOCtlDevice

IOCtl can be used to get information about devices. You can make calls on
regular files, but only function values 00H, 06H, and 07H are defined in that
case. All other calls return an Invalid Function error.

Function values 00H to 08H are not supported on network devices. Function
value 0BH requires the file sharing command to be loaded (SHARE).

Many of the function calls return the carry flag clear if the operation was
successful. If an error condition was encountered, the carry flag is set; AX
contains an extended error code. (See “Extended Error Codes” on page 138
in Appendix B for an explanation). An explanation of the error codes for call
440CH can be located beginning on page 284 in this chapter. Information

 Copyright IBM Corp. 1995 273

about the error, such as the error class, location, and recommended action,
is obtained by issuing the 59H (Get Extended Error) function call.

44H —
I/O Control for Devices (IOCtl)

Calls AL=00H and AL=01H

Purpose
These two calls set or get device information.

Examples

; To Get Device Information

MOV AH,44H ; Function Call — IOCtl
MOV AL,0 ; Indicate get device information
MOV BX,Handle ; Select device
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV DevInfo,DX ; Save device information

; To Set Device Information

MOV AH,44H ; Function Call — IOCtl
MOV AL,1 ; Indicate set device information
MOV BX,Handle ; Select device
MOV DX,DevInfo ; Device information to set
XOR DH,DH ; All DH bits must be off
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

DevInfo DW ? ; Device information
Handle DW ? ; Handle to open device

274 PC DOS 7

Comments
The bits of DevInfo are defined as follows:

│15│14│13│12│11│10│ 9│ 8│ 7│ 6│ 5│ 4│ 3│ 2│ 1│ 0│
 ─┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼─
│R │ C│ │ I│ E│ B│ R│ I│ I│ I│ I│
│E │ T│ │ S│ O│ I│ E│ S│ S│ S│ S│
│S │ R│ Reserved │ D│ F│ N│ S│ C│ N│ C│ C│

 │ │ L│ │ E│ │ A│ │ L│ U│ O│ I│
 │ │ │ │ V│ │ R│ │ K│ L│ T│ N│
 │ │ │ │ │ │ Y│ │ │ │ │ │
─┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼─

ISDEV = 1 if this channel is a device.

= 0 if this channel is a disk file (bits 8 through 15 are 0 in this case).

Bits 8 through 15 of DX correspond to the upper 8 bits of the device
driver attribute word.

If ISDEV = 1

EOF = 0 if end-of-file on input.

BINARY = 1 if operating in binary mode
(no checks for Ctrl-Z).

= 0 if operating in ASCII mode

(checking for Ctrl-Z as

end-of-file).

ISCLK = 1 if this device is the clock device.

ISNUL = 1 if this device is the null device.

ISCOT = 1 if this device is the console output.

ISCIN = 1 if this device is the console input.

CTRL = 0 if this device cannot process control
str ings via cal ls AL=02H, AL=03H, AL=04H, and AL=05H.

CTRL = 1 if this device can process control
strings via calls AL=02H and AL=03H.
Note that this bit cannot be set by
function call 44H.

If ISDEV = 0

EOF = 0 if channel has been written. Bits 0-5 are the block device
number for the channel (0 = A, 1 = B, ...). Bits 15, 8-13, 4 are
reserved and should not be altered.

Appendix C. I/O Control for Devices (IOCtl) 275

Note: DH must be 0 for call AL=01H.

Calls AL=02H, AL=03H

Purpose
These two calls allow control strings to be sent or received from a character
device.

Examples

; To Read a Control String from a Character Device

MOV AH,44H ; Function Call — IOCtl
MOV AL,2 ; Indicate IOCtl read
MOV BX,Handle ; Select device
MOV CX,SIZE Buffer ; Set size to read
MOV DI,SEG Buffer ; Address I/O buffer
MOV DS,DI
MOV DX,OFFSET Buffer ; DS:DX points to I/O buffer
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Count,AX ; Save data read count

 ; To Write a Control String to a Character Device

MOV AH,44H ; Function Call — IOCtl
MOV AL,3 ; Indicate IOCtl write
MOV BX,Handle ; Select device
MOV CX,SIZE Buffer ; Set size to write
MOV DI,SEG Buffer ; Address I/O buffer
MOV DS,DI
MOV DX,OFFSET Buffer ; DS:DX points to I/O buffer
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Count,A X ; Save data written count

 Handle DW ? ; Handle to open device
 Buffer DB N DUP(?) ; I/O buffer
 Count DW ? ; Actual I/O data transfer count

276 PC DOS 7

Comments
These are the Read and Write calls for a character device. An Invalid
Function error is returned if the CTRL bit is 0.

Calls AL=04H, AL=05H

Purpose
These two calls allow arbitrary control strings to be sent or received from a
block device.

Examples

; To Read a Control String from a Block Device

MOV AH,44H ; Function Call — IOCtl
MOV AL,4 ; Indicate IOCtl read
MOV BL,Drive ; Select drive
MOV CX,SIZE Buffer ; Set Size to read
MOV DI,SEG Buffer ; Address I/O buffer
MOV DS,DI
MOV DX,OFFSET Buffer ; DS:DX points to I/O buffer
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Count,AX ; Save data read count

; To Write a Control String to a Block Device

MOV AH,44H ; Function Call — IOCtl
MOV AL,5 ; Indicate IOCtl write
MOV BL,Drive ; Select drive
MOV CX,SIZE Buffer ; Set Size to write
MOV DI,SEG Buffer ; Address I/O buffer
MOV DS,DI
MOV DX,OFFSET Buffer ; DS:DX points to I/O buffer
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Count,AX ; Save data written count

Drive DB ? ; Drive (0=current, 1=A:, 2=B:, ...)
Buffer DB N DUP(?) ; I/O buffer
Count DW ? ; Actual I/O data transfer count

Appendix C. I/O Control for Devices (IOCtl) 277

Comments
These are the Read and Write calls for a block device. The drive number is
in BL for these calls. An Invalid Function error is returned if the CTRL bit is
0. An “Access-Denied” code is returned if the drive is invalid. The following
control strings are defined for block device drivers that support media lock or
unlock, and eject:

 ; Buffer to read drive status (use with IOCtl Read AL=04)

LockStatus STRUC
Status_Read db 6 ;Status Read Control block code
Status_Bits dd ? ;Drive status
LockStatus ENDS

The Status_Bits on return, are interrupted as follows:

Bit 0 0 Door closed
1 Door open

Bit 1 0 Door locked
1 Door unlocked

Bits 2-31 0 Reserved (all zeros)

; Buffer to lock or unlock drive (use with IOCtl Write AL=05H)

LockCommand STRUC
Lock_Unlock db 1 ;Lock or unlock Control Block Code
Cmd_Code db ? ;0 for unlock, 1 for lock
LockCommand ENDS

; Buffer to eject media (use with IOCtl Write AL=05H)

EjectCommand STRUC
Eject db 0 ;Eject Control Block Code
EjectCommand Ends

Calls AL=06H and AL=07H

Purpose
These calls allow you to check if a handle is ready for input or output.

278 PC DOS 7

Examples
; To Get Input Device Status

MOV AH,44H ; Function Call — IOCtl
MOV AL,6 ; Indicate IOCtl input status
MOV BX,Handle ; Select device
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Status,AL ; Save status

; To Get Output Device Status

MOV AH,44H ; Function Call — IOCtl
MOV AL,7 ; Indicate IOCtl output status
MOV BX,Handle ; Select device
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Status,AL ; Save status

Handle DW ? ; Handle to open device
Status DB ? ; Status

; for a file:
; 00H = At End of File
; FFH = Not at End of File
; for a device:
; 00H = Not ready
; FFH = Ready

Comments
If used for a file, AL always returns F2H until end-of-file is reached, then
always returns 00H unless the current file position is changed through call
42H. When used for a device, AL returns FFH for ready or 0 for not ready.

Call AL=08H

Purpose
This call allows you to determine if a device can support removable media.

Appendix C. I/O Control for Devices (IOCtl) 279

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,8 ; Indicate IOCtl is removable
MOV BL,Drive ; Select drive
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
MOV Dtype,AX ; Save type

Drive DB ? ; Drive (0=current, 1=A:, 2=B:, ...)
Dtype DW ? ; Drive type

; 0 = Drive is removable
; 1 = Drive is fixed
; 0FH = Drive not valid

Comments
If the value returned in AX is 0, the device is removable. If the value is 1, the
device is fixed. The drive number should be placed in BL. If the value in BL
is invalid, an ″Access-Denied″ is returned. For network devices, the error
Invalid Function is returned.

Call AL=09H

Purpose
This call allows you to determine if a logical device is associated with a
network directory.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,9 ; Indicate IOCtl is remote drive
MOV BL,Drive ; Select drive
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
TEST DX,1000H ; See if local/remote
JNZ Is_Remote ; Drive is remote

Drive DB ? ; Drive (0=current, 1=A:, 2=B:, ...)

280 PC DOS 7

Comments
On entry, BL contains the drive number of the block device you want to
check (0=default, 1=A, 2=B, and so forth). The value returned in DX
indicates whether the device is local or remote. Bit 12 is set for remote
devices (1000H). Bit 12 is not set for local devices. The other bits in DX are
reserved. If disk redirection is paused, the function returns with bit 12 not
set.

Call AL=0AH

Purpose
This call allows you to determine if a handle is for a local device or a remote
device across the network.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,0AH ; Indicate IOCtl is remote handle
MOV BX,Handle ; Select device/file
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
TEST DX,8000H ; See if local/remote
JNZ Is_Remote ; Drive is remote

Handle DW ? ; Handle to open file or device

Comments
For remote devices, bit 15 is set (8000H). The handle should be placed in BX.
Bit 15 is not set for local devices.

Call AL=0BH

Purpose
This call controls retries on sharing and lock resource conflicts.

Appendix C. I/O Control for Devices (IOCtl) 281

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,0BH ; Indicate IOCtl set retry counts
MOV CX,NumLoops ; Set number of loops
MOV DX,NumRetries ; Set number of retries
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

NumLoops DW ? ; Number of times to execute loop below
NumRetries DW ? ; Number of times to retry on error

Comments
All sharing and lock conflicts are automatically retried a number of times
before they are returned as a PC DOS 7 error or critical error. You can
select the number of retries and the delay time between retries. On input,
CX contains the number of times to execute a delay loop, and DX contains
the number of retries. The delay loop consists of the following sequence:

XOR CX,CX
LOOP $;spin 64K times

If this call is not issued, PC DOS 7 uses delay=1 and retries=3 as the
defaults for CX and DX. If you expect your application to cause sharing or
lock conflicts on locks that are in effect for a short period of time, you may
want to increase the values for CX and DX to minimize the number of errors
actually returned to your application.

Call AL = 0CH

Purpose
This generic IOCtl function uses an open device handle to request a device
driver to perform code page switching or to get/set device information.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,0CH ; Indicate file handle generic IOCtl request
MOV BX,Handle ; Select device/file
MOV CH,Category ; Set device type
MOV CL,Function ; Set function
MOV DI,SEG Packet ; Address subfunction parameter packet

282 PC DOS 7

MOV DS,DI
MOV DX,OFFSET Packet ; DS:DX points to parameter packet
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Handle DW ? ; Handle to open file or device
Category DB ? ; Type of Device

; 0 - Unknown (if device type not known)
; 1 - a COMx device
; 3 - CON
; 5 - a LPTx device

Function DB ? ; Function within category
; For category 3 & 5:
; 4CH = Prepare start
; 4DH = Prepare end
; 4AH = Select (Set) code page
; 6AH = Query (Get) selected code page
; 6BH = Query prepare list
; For Category 3:
; 5FH = Set display information
; 7FH = Get display information

Prepare Start: When CL=4CH, the parameter block, pointed to by DS:DX,
has the following layout:

Packet Label Word
PS_PACKET STRUC ; Prepare start packet
PS_FLAGS DW 0 ; Control flags

; Bit 0 = 0 : Download prepare
; BIT 0 = 1 : Cartridge prepare
; Others reserved (set to 0)

PS_LENGTH DW (n+1)*2 ; Length of rest of packet in bytes
PS_NUMCP DW n ; Number of code pages
PS_CP1 DW ? ; Code page 1

.

.

.

.
PS_CPn DW ? ; Code page n
PS_PACKET ENDS

Appendix C. I/O Control for Devices (IOCtl) 283

Notes:

 1. Setting any PS CPn to -1 tells the device driver not to change the code
page value for that position. Any other value is a code page to be
prepared.

 2. n is the number of additional code pages specified in the DEVICE=
command in CONFIG.SYS. The value for n can be up to 12.

 3. For cartridge-prepares set the PS FLAGS field to 1.

A Prepare Start request begins the preparation of a code page. It is followed
by writing data defining the code page font to the device driver using one or
more IOCtl write control string calls (AX=4403H). It is assumed that this
information will be downloaded to the device. The stream is ended by a
Prepare End. The format of the stream is device dependent.

If the information is lost (due to a system failure or power-off), you do not
have to rewrite the prepared code page. Requesting a ″refresh″ operation
by issuing a Prepare Start to the device driver with all code page values
(PS CPn) set to a negative one (-1), restores the most recently prepared
code page information to the device. You must follow this operation
immediately with a Prepare End.

If no data is written for a prepare operation, the driver interprets the newly
prepared code page(s) as a hardware code page. This allows devices that
support user changeable hardware fonts (usually in cartridges) to be
supported.

No prepare is needed for hardware-defined code pages.

Prepare Start Error Codes

Code Meaning
01 Invalid function number
22 Unknown command
27 Code page conflict (used for KEYBxx mismatch)
29 Device error
31 Device driver does not have copy of code page to download to

device

Write Error Codes

Code Meaning
27 Device not found in file, or code page not found in file
29 Device error
31 File contents not a font file, or file contents structure damaged

284 PC DOS 7

Prepare End: When CL=4DH the parameter block, pointed to by DS:DX, has
the following layout:

Packet Label Word
PE_PACKET STRUC ; Prepare end packet
PE_LENGTH DW 2 ; Length of packet in bytes
PE_RESV1 DW 0 ; (Reserved, must be 0)
PE_PACKET ENDS

Prepare End Error Codes

Code Meaning
19 Bad data read from font file
31 No prepare start

Select/Query Selected Code Page: When CL=4AH or 6AH the parameter
block, pointed to by DS:DX, has the following layout:

PACKET LABEL WORD
 CP PACKET STRUC ; Select/Query Selected packet
 CP LENGTH DW 2+(n+1)*2 ; Length of packet in bytes
 CP CPID DW ? ; Code page ID
 CP VECTOR1 DB ?,? ; DBCS vector1

.

.

.
CP VECTORn DB ?,? ; DBCS Vectorn

DB 0,0 ; End marker
CP PACKET ENDS

Select/Query Selected Code Page also includes the DBCS environment
vector. Some device drivers may support only the code page value. As a
result, you must check the returned length when using this call to determine
if the DBCS information is present. Only the drivers supplied with the Asian
version of PC DOS 7 provide this support.

Select Code Page Error Codes

Code Meaning
26 Code page not prepared
27 Current keyboard does not support this code page
29 Device error

Query Selected Code Page Error Codes

Code Meaning
26 No code page has been selected
27 Device error

Appendix C. I/O Control for Devices (IOCtl) 285

Query Prepared List: When CL=6BH, the parameter block, pointed to by
DS:DX, has the following layout:

PACKET LABEL WORD
QL_PACKET STRUC ; Query list packet
QL_LENGTH DW((m+1)+(n+1))*2 ; Length of packet in bytes
QL_NUMHWCP DW n ; Number of hardware code pages
QL_HWCP1 DW ? ; Hardware code page 1

.

.

.

.
QL_HWCPn DW ? ; Hardware code page n
QL_NUMCP DW n ; Number of prepared code pages
QL_CP1 DW ? ; Prepared code page 1

.

.

.

.
QL_CPm DW ? ; Prepared code page n
QL_PACKET ENDS

Note: The device driver may return up to 12 code page values for each type
of code page (hardware or prepared) so n can be up to 12, and m can
be up to 12.

Query Prepared List Error Codes

Code Meaning
26 No code pages have been selected
29 Device error

Get/Set Display Information: When CL=5FH or 7FH, the parameter block,
pointed to by DS:DX, has the following layout:

VP_PACKET STRUC ; Video parameters packet
VP_LEVEL DB 0 ; Requested info level (set to 0 before IOCtl

; Call)
VP_RESV1 DB 0 ; (Reserved, must be 0)
VP_LENGTH DW 14 ; Length of rest of packet in bytes
VP_FLAGS DW 0 ; Control flags

; Bit 0 = 0 : Intense colors
; Bit 0 = 1 : Blink
; Others reserved (set to 0)

VP_MODE DB ? ; Video mode
; 1 = Text
; 2 = APA
; Others reserved

VP_RESV2 DB 0 ; (Reserved. must be 0)

286 PC DOS 7

VP_COLORS DW ? ; Number of colors (Mono=0)
VP_WIDTH DW ? ; Display width in pixels (APA mode only)
VP_LENGTH DW ? ; Display length in pixels (APA mode only)
VP_COLS DW ? ; Display width in characters
VP_ROWS DW ? ; Display length in characters

VP_PACKET ENDS

Call AL = 0DH

Purpose
This generic IOCtl function requests a block device driver to perform one of
the following subfunctions:

• Get device parameters
• Set device parameters
• Read track on logical device
• Write track on logical device
• Format and verify track on logical device
• Verify track on logical device
• Get access flag status
• Set access flag status.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,0DH ; Indicate Block Device Generic IOCtl
MOV BL,Drive ; Select Device/File
MOV CH,Category ; Set Device Type
MOV CL,Function ; Set Function
MOV DS,SEG Packet ; Address Subfunction Parameter Packet
MOV DX,OFFSET Packet
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Drive DB ? ; Drive (0=current, 1=A:, 2=B:, ...)
Category DB ? ; Type of Device

; 8 - Block Device
Function DB ? ; Function within Category

; For Category 8:
; 40H = Set device parameters
; 60H = Get device parameters
; 41H = Write track on logical device
; 61H = Read track on logical device

Appendix C. I/O Control for Devices (IOCtl) 287

; 42H = Format and verify track on
; logical device
; 62H = Verify track on logical device
; 47H = Set access flag
; 67H = Get access flag
; 68H = Get media type

Note: Functions 43H through 46H and functions 63H through 66H are
reserved for the system.

Comments
CH contains the major code (08H for all functions) and CL contains the minor
code (function).

Get or Set Device Parameters
To Get Device Parameters, set CL = 60H.

To Set Device Parameters, set CL = 40H.

When CL = 60H or CL = 40H, the parameter block has the following field
layout:

Packet Label Byte
 A deviceParameters STRUC
 SpecialFunctions DB ?
 DeviceType DB ?
 DeviceAttributes DW ?
 NumberOfCylinders DW ?
 MediaType DB ?
 DeviceBPB a BPB <>
 TrackLayout a TrackLayout <>
 A deviceParameters ends

An explanation of each field in the parameter block is given in the pages that
follow.

SpecialFunctions Field
This 1-byte field is used to further define the Get and Set Device Parameters
functions.

For the Get Device Parameters function, bit 0 of the SpecialFunctions field
has the following meaning:

Bit 0 =1 Return the BPB that BUILD BPB would return.
=0 Return the default BPB for the device.

Note: All other bits must be off.

288 PC DOS 7

For the Set Device Parameters function bits 0, 1, and 2 of the
SpecialFunctions field are used.

These bits have the following meanings when CL = 40H.

Bit 0 =1 All subsequent BUILD BPB requests return DeviceBPB . If
another Set Device request is received with bit 0 reset, BUILD BPB
returns the actual media BPB.
=0 Indicates that the DeviceBPB field contains the new default
BPB for this device. If a previous Set Device request set this bit
on, the actual media BPB is returned. Otherwise, the default BPB
for the device is returned by BUILD BPB.

Bit 1 =1 Ignore all fields in the Parameter Block except the TrackLayout
field.
=0 Read all fields of the parameter block.

Bit 2 =1 Indicates that all sectors in the track are the same size and all
sector numbers are between 1 and n (where n is the number of
sectors in the track.)
=0 Indicates that all sectors in the track may not be the same size.

Notes:

 1. All other bits must be reset.

 2. Set bit 2 for normal track layouts. Format Track can be more efficient if
bit 2 is set.

 3. Setting bits 0 and 1 at the same time is invalid and should be considered
an error.

DeviceType Field
This 1-byte field describes the physical device type. Device type is not set by
IOCtl but is received from the device.

The values in this field have the following meanings:

0 = 320/360 KB 5.25 inch
1 = 5.25 inch, 1.2 MB
2 = 3.5 inch, 720 KB
3 = 8-inch single-density
4 = 8-inch double-density
5 = Hard d isk
6 = Tape dr ive
7 = 3.5 inch, 1.44 MB
8 = Read/Write Optical devices
9 = 3.5 inch, 2.88 MB

Appendix C. I/O Control for Devices (IOCtl) 289

DeviceAttributes Field
A 1-word field that describes the physical attributes of the device. Device
attributes are not set by IOCtl but are received from the device driver.

Only bits 0 and 1 of this field are used. They have the following meanings:

Bit 0 =1 media is not removable.
=0 media is removable.

Bit 1 =1 diskette changeline is supported.
=0 diskette changeline is not supported.

Bits 2 − 1 5 are reserved.

NumberOfCylinders Field
This field indicates the maximum number of cylinders supported on the
physical device, independent of the media type. The information in this field
is not set by IOCtl, but is received from the device driver.

MediaType Field
For multimedia drives, this field indicates which media is expected to be in
the drive. This field is only meaningful for Set Device Parameters (CL =
40H) subfunction.

The MediaType field is used only when the actual media in the drive cannot
otherwise be determined. Media type is dependent on device type.

Regardless of the device type, a value of 0 represents the default. For
example, a 5.25-inch 1.2MB diskette drive is a multimedia drive. The media
type is defined as follows:

0 = Quad density 1.2 MB (96 tpi) diskette

1 = Double density 320/360KB (48 tpi) diskette

The default media type for a 1.2MB drive is a quad density 1.2 MB diskette.

DeviceBPB Field
For the Get Device Parameters function:

• If bit 0 of the SpecialFunctions field is set, the device driver returns the
BPB that BUILD BPB would return.

• If bit 0 of the SpecialFunctions field is not set, the device driver returns
the default BPB for the device.

For the Set Device Parameters function:

290 PC DOS 7

• If bit 0 of the SpecialFunctions field is set, the device driver is requested
to return the BPB from this field for all subsequent BUILD BPB requests
until a Set Device Parameters request is received with bit 0 in the
SpecialFunctions field reset.

• If bit 0 is not set, the BPB contained in this field becomes the new default
BPB for the device.

The DeviceBPB field has the following format:

a BPB STRUC
BytesPerSector DW ?
SectorsPerCluster DB ?
ReservedSectors DW ?
NumberOfFATs DB ?
RootEntries DW ?
TotalSectors DW ?
MediaDescriptor DB ?
SectorsPerFAT DW ?
;
SectorsPerTrack DW ?
Heads DW ?
HiddenSectors DD ?
BigTotalSectors DD ?
Reserved DB 6 Dup (0)
a BPB ENDS

TrackLayout Field
This is a variable length table indicating the expected layout of sectors on
the media track.

PC DOS 7 device drivers do not keep a track layout table for each logical
device. The global track table must be updated (by the Set Device
Parameters subfunction) when the attributes of the media change.

Note: The Set Device Parameters subfunction (CL=40H) modifies the track
table regardless of how bit 1 of the SpecialFunctions field is set.

For Get Device Parameters, this field is not used. The track layout is used by
subsequent Read/Write Track, Format/Verify Track and Verify Track
functions.

The following example shows how this field is formatted:

Appendix C. I/O Control for Devices (IOCtl) 291

Total sectors-------|SectorCount DW n

 Sector 1-----------|SectorNumber 1 DW 1H
|SectorSize 1 DW 200H

 Sector 2-----------|SectorNumber 2 DW 2H
|SectorSize 2 DW 200H

 Sector 3-----------|SectorNumber 3 DW 3H
|SectorSize 3 DW 200H

 Sector 4-----------|SectorNumber 4 DW 4H
|SectorSize 4 DW 200H

|
|
|

 Sector n-----------|SectorNumber n DW n
|SectorSize n DW 200H

Note: All values are in hexadecimal.

The total number of sectors is indicated by the SectorCount field. Each sector
number must be unique and in a range between 1 and n (sector count). As
shown in the example above, the first sector number is 1 and the last sector
number is equal to the sector count (n). If bit 2 of the SpecialFunctions field
is set, all sector sizes, which are measured in bytes, must be the same.
See the description of bit 2 under the SpecialFunction field.

Note: The DeviceType , DeviceAttributes , and NumberOfSectors fields should
be changed only if the physical device has been changed.

Read/Write Track on Logical Device
To read a track on a logical device, set CL = 61H.

To write a track on a logical device, set CL = 41H.

The parameter block has the following layout when reading or writing a track
on a logical device.

Packet LABEL BYTE
 a ReadWriteTrackPacket STRUC
 SpecialFunctions DB ?
 Head DW ?
 Cylinder DW ?
 FirstSector DW ?
 NumberOfSectors DW ?
 TransferAddress DD ?

292 PC DOS 7

 A ReadWriteTrackPacket ENDS

Notes:

 1. All bits in the SpecialFunctions field must be reset.

 2. The value in the FirstSector field and the NumberOfCylinders field is
0-based. For example, to indicate sector 9, set the value to 8.

Format/Verify Track on Logical Drive (IOCtl Write)
To format and verify a track, set CL = 42H.

To verify a track, set CL = 62H.

The parameter block has the following layout when formatting a track or
verifying a track on a logical drive.

PACKET LABEL BYTE
 A FormatPacket STRUC
 SpecialFunctions DB ?
 Head DW ?
 Cylinder DW ?
 A FormatPacket ENDS

On entry, bit 0 of the SpecialFunctions field has the following meanings:

Bit 0 = 1 Format status check call to determine if a
combination of number-of-tracks and
sectors-per-track is supported.

= 0 Format /Verify track call.

To determine if a combination of number-of-tracks and sectors- per-track is
supported, a Set Device Parameters call must be issued with the correct BPB
for that combination before issuing the Format Status call. The device driver
can then return the correct code to indicate what is supported. The value
returned in the SpecialFunctions field for a Format Status Check call are:

0 = This function is supported by the
ROM BIOS. The specified combination of
number-of-tracks and sectors-per-track is
allowed for the diskette drive.

1 = This function is not supported by
the ROM BIOS.

Appendix C. I/O Control for Devices (IOCtl) 293

2 = This function is supported by the
ROM BIOS. The specified combination of
number-of-tracks and sectors-per-track is
not allowed for the diskette drive.

3 = This function is supported by the
ROM BIOS, but ROM BIOS cannot determine
if the numbers-of-tracks and
sectors-per-track are allowed because
the diskette drive is empty.

 To format a track:

 1. Issue the Set Device Parameters function call.

 2. Issue the Format Status Check function call to validate the
number-of-tracks and sectors-per-track combination. Ignore the result if
the value returned is 1, because the ROM BIOS does not support this
function.

 3. Issue the Format/Verify Track function call with the SpecialFunctions bit 0
reset for each track on the medium.

Get/Set AccessFlag Status
To get the access flag status of a hard disk, set CL=67H.

To set the access flag status of a hard disk, set CL=47H.

The parameter block has the following layout when getting or setting the
access flag status of a hard disk:

PACKET LABEL BYTE
a DiskAccess Control STRUC
SpecialFunctions DB 0
DiskAccess Flag DB ? ; 0 = Disallow disk access

; Other value = allow disk access
a DiskAccess Control ENDS

If the media has not been formatted or has an invalid boot record, the system
will not allow disk I/O for the media. This ensures data integrity of fixed
media. Since formatting a media is a special activity, and is needed to
perform disk I/O for unformatted media, additional functions to control the
disk access flag are necessary. A format utility should issue ″Set the access
flag status (CL=47H)″ with DiskAccess Flag = non-zero value to access the
unformatted media. When every format operation is a success, leave the
access flag status as it is to allow further disk I/O from general users. If

294 PC DOS 7

format fails, issue ″Set the access flag status (CL = 47H)″ with
DiskAccess Flag = zero in order to block further media access. To get the
current status of the system disk access flag, issue ″Get the access flag
status (CL = 67H)″. If DiskAccess Flag = zero, disk I/O is not allowed for
the media.

Get/Set Media ID
To get the media ID, set CL=66H.

To set the media ID, set CL=46H.

The parameter block has the following layout when getting and setting the
media ID:

PACKET LABEL BYTE
Media_ID_Packet STRUC
 Info_Level DW 0 ; Information level,

; currently always 0
 Serial DD ? ; Volume serial number
 Label DB 11 dup (′ ′) ; Volume label from

; boot record
 File_Sys_Type DB 8 dup (′ ′) ; File system type
 Media_ID_Packet ENDS

Get Media ID copies the information from the boot record into the
Media_ID_Packet. Set Media ID copies the information from the
Media_ID_Packet to the boot record. If the disk does not contain a valid
BPB, or the signature field is missing, then no action is taken, and both
functions return Unknown Media (error code 7).

Get Media Type (PC DOS 7)
To get the media type, set CL=68H.

The parameter block has the following layout:

PACKET LABEL BYTE
Media_Type_Packet STRUC
 Default DB ? ; 1 if media is equal or equivalent

; to the capacity of the drive.
; 0 if media is less than
; the capacity of the drive.

 Media_Type DB ? ; Media Type:
; 2 for 720KB 3.5-inch 80-track floppy
; 7 for 1.44MB 3.5-inch 80-track floppy
; 9 for 2.88MB 3.5-inch 80-track floppy

 Reserved_1 DB ? ; Reserved
 Reserved_2 DD ? ; Reserved

Appendix C. I/O Control for Devices (IOCtl) 295

Media_Type_Packet ENDS ?

Comments
If carry is set, then the error return code is in AX. Otherwise, carry is
cleared.

Call AL = 0EH Get Logical Drive Map

Purpose
This call allows the device driver to determine if more than one logical drive
is assigned to a block device. When this call is issued, a drive number is
passed in BL on input.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,0EH ; Indicate Logical Drive Check
MOV BL,Drive ; Select Drive
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
CMP AL,0 ; Only one drive letter for this device?
JE Single_Drive ; Yes!
MOV ActiveDrive,AL ; Save Active Drive info

Drive DB ? ; Drive (0=current, 1=A:, 2=B:, ...)
ActiveDrive DB ? ; Current drive letter for this device

; (1=A:, 2=B:, ...)

Comments
If the block device has more than one logical drive letter assigned to it, on
output a drive number corresponding to the last drive letter that was used to
reference the device is returned in AL. If only one drive letter is assigned to
the device, 0 is returned in AL by this call.

296 PC DOS 7

Call AL = 0FH Set Logical Drive Map

Purpose
This call requests the device driver to change the next logical drive letter
that will be used to reference a block device.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,0FH ; Indicate Set Logical Drive
MOV BL,Drive ; Set Drive
INT 21H ; Issue request to DOS
JC Error ; Error code in AX
CMP AL,0 ; Only one drive letter for this device?
JE Single_Drive ; Yes!
MOV ActiveDrive,AL ; Save Active Drive info

; (should be the same as BL in)

Drive DB ? ; Drive (0=current, 1=A:, 2=B:, ...)
ActiveDrive DB ? ; Current drive letter for this device

; (1=A:, 2=B:, ...)

Comments
When copying diskettes on a drive whose physical drive number has more
than one logical drive letter assigned to it (for example, copying on a single
drive system), PC DOS 7 issues diskette swap prompts to tell you which
logical drive letter is currently referencing the physical drive number. As the
drive changes from source to target, PC DOS 7 issues the message: Insert
diskette for drive X: and strike any key when ready.

It is possible to avoid this message by issuing call AL = 0FH (Set Logical
Drive).

To avoid the PC DOS 7 diskette swap message, set BL to the drive number
that corresponds to the drive letter that will be referenced in the next I/O
request.

Note: You can determine the last logical drive letter assigned to the physical
drive number by issuing call AL = 0EH.

Appendix C. I/O Control for Devices (IOCtl) 297

Because any block device can have logical drives, this call should be issued
before all I/O operations involving more than one drive letter; otherwise, the
PC DOS 7 message may be issued.

Call AL = 10H Query IOCTL Handle

Purpose
QueryIOCtlHandle accepts a device handle and determines whether a
specific IOCtl capability is supported by the device.

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,10H ;
MOV BX,handle ; Select device/file
MOV CH,category ; Category function
MOV CL,function ; Packet filled in for function

; to be tested
MOV DX,offset packet
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Comments
Category, function, and parameter block are filled in as they would be for the
function whose presence is being checked for.

Upon exit, if carry is set, the error code in AL will be 1 for “Function not
supported.” If carry is not set, then AX = 0.

This function call is supported by DOS 5.0 device drivers.

Call AL = 11H Query IOCTL Device

Purpose
QueryIOCtlDevice accepts a drive number and determines whether a specific
IOCtl capability is supported by the drive.

298 PC DOS 7

Examples

MOV AH,44H ; Function Call — IOCtl
MOV AL,11H ;
MOV BL,drive ; Select drive
MOV CH,category ; Category function
MOV CL,function ; Packet filled in for function

; to be tested
MOV DX,offset packet
INT 21H ; Issue request to DOS
JC Error ; Error code in AX

Comments
Category, function, and parameter block are filled in as they would be for the
function whose presence is being checked for.

Upon exit, if carry is set, the error code in AL will be 1 for “Function not
supported.” If carry is not set, then AX = 0.

This function call is supported by DOS 5.0 device drivers.

Appendix C. I/O Control for Devices (IOCtl) 299

300 PC DOS 7

Appendix D. Expanded Memory Support

Expanded memory is memory addressable through a combination of an
Expanded Memory Specification (EMS) device driver and an EMS-capable
hardware adapter or via a 386 memory manager.

The table below lists the Lotus/Intel/Microsoft (LIM) Expanded Memory
Manager Specification Version 4.0 functions.

LIM
Function

INT 67H Interface Description

1 AH = 40H Basic Get status
2 AH = 41H Basic Get page frame address
3 AH = 42H Basic Get unallocated page count
4 AH = 43H Basic Allocate pages
5 AH = 44H Basic Map/unmap handle page
6 AH = 45H Basic Deallocate pages
7 AH = 46H Basic Get EMM version
8 AH = 47H Advanced Save page map
9 AH = 48H Advanced Restore page map
10 Reserved
11 Reserved
12 AH = 4BH Advanced Get EMM Handle count
13 AH = 4CH Advanced Get EMM Handle pages
14 AH = 4DH Advanced Get all EMM handle pages
15 AH = 4EH Advanced Get/Set page map
16 AH = 4FH Advanced Get/Set partial page map
17 AH = 50H Advanced Map/Unmap multiple handle pages
18 AH = 51H Advanced Reallocate pages
19 AH = 52H Advanced Get/Set handle attributes
20 AH = 53H Advanced Get/Set handle name
21 AH = 54H Advanced Get handle directory
22 AH = 55H Advanced Alter page map and jump
23 AH = 56H Advanced Alter page map and call
24 AH = 57H Advanced Move/Exchange memory region
25 AH = 58H Advanced Get mappable physical address

array
26 AH = 59H Advanced Get expanded memory hardware

information
27 AH = 5AH Advanced Allocate new pages
28 AH = 5BH Advanced Alternate page map register set
29 AH = 5CH Advanced Prepare expanded memory

hardware for warm boot
30 AH = 5DH Advanced Enable/Disable Operating System

Environment function set

 Copyright IBM Corp. 1995 301

The following pages only outline the basic functions of the Expanded Memory
Specification, these functions being the ones useful to application
developers.

For information on the advanced functions, more detailed information and
guidelines on the use of these calls, refer to the Expanded Memory
Specification published by Lotus/Intel/Microsoft.

302 PC DOS 7

Function 1 — Get Status

Purpose
This function returns the status that tells you whether the EMM386 is present
and if the hardware is working correctly. This function does not require a
previously opened EMM handle.

Examples

MOV AH, 40H ; Function to Get Status
INT 67H ; Call Interrupt 67H
OR AH, AH
JNZ error_handler

Comments
A return code of 0 in the AH register is for a successful call. The following is
a list of other possible codes.

AH Description

00H The memory manager is loaded and the hardware is working.
80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
84H The function code passed to the EMM is not defined.

Appendix D. Expanded Memory Support 303

Function 2 — Get Page Frame Address

Purpose
This function informs your program where the page frame is located. It
returns the segment portion of the page frame address in the BX register.
This function does not require a previously opened EMM handle.

Examples
MOV AH, 41H ; Get Page Frame Address function
INT 67H ; Call interrupt 67H
OR AH, AH
JNZ error_handler

MOV Page_Segment, BX

Page_Segment DW ? ; Page Segment Address

Comments
A return code of 0 in the AH register is for a successful call. The following is
a list of other possible codes.

The BX register contains the segment address of the page frame. The value
in BX has no significance if AH is not equal to 0.

AH Description

00H The memory manager is loaded and the hardware is working.
80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
84H The function code passed to the EMM is not defined.

304 PC DOS 7

Function 3 — Get Unallocated Page Count

Purpose
This function informs your program the number of unallocated pages and the
total number of pages in expanded memory. This function does not require a
previously opened EMM handle.

Examples
MOV AH,42H ; Get Unallocated Page count
INT 67h ; Call Interrupt 67H
OR AH,AH
JNZ error_handler

MOV UNAllocated_Pages,BX ; Store UnAllocated pages
MOV Total_Pages,DX ; Store Total Pages

UnAllocated_Pages DW ? ; Number of Unallocated Pages
Total_Pages DW ? ; Total Number of Pages

Comments
A return code of 0 in the AH register is for a successful call. The following is
a list of other possible codes.

The BX register has the following meaning:

The DX register if not equal to 0 contains the total number of pages in
expanded memory.

AH Description

00H The memory manager is loaded and the hardware is working.
80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
84H The function code passed to the EMM is not defined.

BX Description

00H All pages in expanded memory have already been allocated.
None are currently available for expanded memory.

< > 00H The number of pages that are currently available.

Appendix D. Expanded Memory Support 305

Function 4 — Allocate Pages

Purpose
This function allocates the number of pages your program requests and
assigns a unique EMM handle to these pages. The EMM handle ″owns″
these pages until your program later deallocates them.

Examples
MOV AH,43H ; Allocated Pages Function
MOV BX,Number_Pages ; Number of Pages to Allocate
INT 67H ; Call Interrupt 67H
OR AH,AH
JNZ error_handler

MOV EMM_Handle, DX ; Store EMM Handle

Number_Pages DW ? ; Number of Pages to Allocate
EMM_Handle DW ? ; EMM Handle

Comments
The status is returned in register AH and has the following meanings:

The DX register contains a unique EMM handle. The program must use this
EMM handle (as a parameter) in any subsequent function calls that map or
deallocate expanded memory.

AH Description

00H The manager has allocated the pages to an assigned EMM
handle.

80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
84H The function code passed to the EMM is not defined.
85H All of the EMM handles are being used.
87H There is not enough expanded memory pages to satisfy your

program ′s request.
88H There is not enough unallocated pages to satisfy your

program ′s request.
89H Can not allocate zero pages.

306 PC DOS 7

Function 5 — Map Handle Page

Purpose
This function lets your program access the information stored in a logical
page at a physical page within the page frame.

Examples
MOV DX,EMM_Handle ; Previously Opened EMM Handle

; (Function 4 - Allocate Pages)
MOV BX,Logical_Page ; Logical Page in the Physical

; Page Within the Page Frame
; Range is 0 to total pages
; allocated to a Handle -1

MOV AL,Physical_Page ; Range is 0 to 3
MOV AH,44H ; function to Map Handle Page
INT 67H ; Call Interrupt 67H
OR AH, AH
JNZ error_handler

Comments
The function returns one of the following status codes:

AH Description

00H The manager has mapped the page. The page is now ready to
be accessed.

80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
83H Invalid EMM handle specified.
84H The function code passed to the EMM is not defined.
8AH The logical page is out of range of the logical pages which are

allocated to this EMM handle.
8BH The physical page at which the logical page was supposed to be

mapped is out of the range of physical pages.

Appendix D. Expanded Memory Support 307

Function 6 — Deallocate Pages

Purpose
This function deallocates the pages currently allocated to an EMM handle.
After your program invokes this function, other application programs can use
these pages.

 Warning

Your program should invoke this function before it exits to DOS. If it does
not, other programs may not use these pages or their handle.

Examples
MOV DX, EMM_handle ; Previously Opened EMM Handle

; (Function 4 - Allocate Pages)
MOV AH, 45h ; Deallocate Pages Function
INT 67h ; Call Interrupt 67H
OR AH, AH
JNZ error_handler

Comments
The following status is returned in the AH register:

AH Description

00H The manager has deallocated the pages previously allocated to
the EMM handle.

80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
83H Invalid EMM handle specified.
84H The function code passed to the EMM is not defined.
86H The EMM detected a ″save″ or ″restore″ page mapping context

error (FUNCTION 8 or 9). There is a page mapping register
state in the ″save area″ for the EMM handle specified. Save
Page Map (FUNCTION 8) placed it there and it has not been
removed by a subsequent Restore Page Map (FUNCTION 9).

You need to restore the contents of the page mapping register
before you deallocate the EMM handle ′s page(s).

308 PC DOS 7

Function 7 — Get EMM Version

Purpose
This function returns the version number of the Expanded Memory Manager
software.

Examples
MOV AH,46H
INT 67H
OR AH,AH
JNZ error_handler

MOV EMM_Version,AL ; Store Version Information

Comments
The function returns one of the following status values:

The AL register contains the Expanded Memory Manager′s version number
in Binary Coded Decimal. The upper four bits in the AL register contain the
integer digit (3.x) of the version number. The lower four bits in the AL
register contain the fractional digit of (x.2) version number. The value
contained in AL has no importance if AH is not equal to 0.

AH Description

00H The manager is present in the system and the hardware is
working correctly.

80H The manager detected a problem in the EMM software.
81H The manager detected a problem in the expanded memory

hardware.
84H The function code passed to the EMM is not defined.

Appendix D. Expanded Memory Support 309

Detecting the Expanded Memory Manager
In this brief section we show an example of how you may detect the
presence of an installed Expanded Memory Manager. The first method uses
the DOS INT 21H function 3DH (Open a File), which is used to open a file or
device.

The EMM driver is opened using its name EMMXXXX0, if the open is
successful, it means that either an EMM driver is installed or that a file
named EMMXXXX0 exists on the default drive and directory. The latter case
is unlikely, but you should check for the possibility. This is done by using
DOS INT 21H function 44H, subfunction 07H (IOCtl, Get Output Status). The
handle returned from the Open File function is used with the IOCtl, Get
Output Status - this subfunction checks the output status of a device that is
associated with a handle. If the return of this subfunction is 00H, then the
device is actually a disk file and EMM is not installed or available. If the
return is FFH then the opened handle is associated with a Expanded Memory
Manager.

The following is an example of using the above technique:

Examples
EMM_Device_Name DB ″EMMXXXX0″

PUSH DS
PUSH CS
POP DS
MOV AH,3DH ; Open File Function Call
MOV DX,EMM_Device_Name ; Set ASCII Name in DX
MOV AL, 0H ; Open file in read only mode
INT 21H ; Call Interrupt 21H
JC Open_Device_Error

MOV EMM_Handle,AX ; Save file handle

MOV DX, Buffer ;
MOV BX, EMM_Handle
MOV CX, 0H ;
MOV AX,44H ; IOCtl function 44H
MOV AL,07H ; Subfunction 07 Get Output Status
INT 21H ; Call Interrupt 21H

MOV Status,AX

MOV BX,EMM_Handle ;

310 PC DOS 7

MOV AH,3EH ; Close File Handle
INT 21H ; Call Interrupt 21H

The second method of detecting the Expanded Memory Manager is by using
the address that may be found in the 67H interrupt vector. The 67H interrupt
is of course the one used by the EMM driver, this interrupt 67H vector
contains the address location of the driver. By normal convention the
memory location at an offset of 0AH in the EMM drivers code segment
contains the device driver name, EMMXXXX0 (in our case). If the name is
present at the location specified then the EMM driver is installed.

The following is an example of using the above technique:

Examples
EMM_Device_name DB ″EMMXXXX0″

MOV AH,35H ; Get Interrupt vector
MOV AL,67H ; EMM Interrupt number
INT 21H ; Call Interrupt 21H

MOV DI,0AH ; Segment is in ES, set the
; offset in DI

LEA SI, EMM_Device_Name
; Offset of EMM name in SI

MOV CX,08 ; EMM String Name size in CX
CLD ; Compare the names for a match
REPE
CMPSB
JNE Error_Exit

Appendix D. Expanded Memory Support 311

312 PC DOS 7

Appendix E. DOS Protected Mode Services

The following section describes the DOS Protected Mode Services (DPMS)
driver that is provided along with PC DOS 7. The driver is written by Novell**
and is used by the Stacker** compression driver.

The DPMS driver makes its services available to DPMS clients via interrupts
2FH and 31H. In this section are briefly described the 2FH Multiplex Interrupt
call that are provided if the DPMS driver is installed and the Interrupt 31H
calls.

For more detailed information please refer to the DOS Protected Mode
Services specifications from Novell.

Interrupt Function Description

2FH AX=43E0H DPMS Installation Check

31H AX=0100H Call Protected-Mode Procedure

31H AX=0101H Call Real-Mode Procedure (RETF)

31H AX=0102H Call Real-Mode Procedure (IRET)

31H AX=0103H Call Real-Mode Interrupt Handler

31H AX=0200H Allocate Descriptors

31H AX=0201H Free a Descriptor

31H AX=0202H Create Alias Descriptor

31H AX=0203H Build Alias to Real-Mode Segment

31H AX=0204H Set Descriptor Base

31H AX=0205H Set Descriptor Limit

31H AX=0206H Set Descriptor Type/Attribute

31H AX=0207H Get Descriptor Base

31H AX=0300H Get Size of Largest Free Block of Memory

31H AX=0301H Allocate Block of Extended Memory

31H AX=0302H Free Block of Extended Memory

31H AX=0303H Map Linear Memory

31H AX=0304H Unmap Linear Memory

31H AX=0400H Relocate Segment to Extended Memory

 Copyright IBM Corp. 1995 313

Interrupt 2FH Function AX=43E0H DPMS Installation Check

Purpose
This call is used to determine if the DPMS driver is installed and returns
information about the driver.

MOV AX,43E0H ; DPMS Installation Check
INT 2FH ; Call DOS 2F Interrupt

On Exit AX = 0000h if installed

ES:BX -> Registration Structure

Format of registration structure:

Offset Size Description
00h DWORD real-mode API entry point
04h DWORD 16-bit protected-mode API entry point

 08h 8 BYTEs reserved (0)
 10h 8 BYTEs blank-padded server OEM name
18h WORD flags

bit 0: fast processor reset available (286 only)
bits 1-15 reserved (undefined)

 1Ah 2 BYTEs DPMS version (major,minor)
1Ch BYTE CPU type (02h = 286, 03h = 386 or higher)

Interrupt 31H Function AX=0100H Call Proteted-Mode Procedure
AX = 0100h call protected-mode procedure
CX = number of words of stack to copy
ES:DI -> callup/down register structure

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Callup/Down Register Structure” on page 323 for details of the
callup/down structure.

See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

314 PC DOS 7

Interrupt 31H Function AX=0101H Call Real-Mode Procedure (RETF)
AX = 0101h call real-mode procedure (RETF return)
CX = number of words of stack to copy
ES:DI -> callup/down register structure

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Callup/Down Register Structure” on page 323 for details of the
callup/down structure.

See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0102H Call Real-Mode Procedure (IRET)
AX = 0102h call real-mode procedure (IRET return)
CX = number of words of stack to copy
ES:DI -> callup/down register structure

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Callup/Down Register Structure” on page 323 for details of the
callup/down structure.

See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Appendix E. DOS Protected Mode Services 315

Interrupt 31H Function AX=0103H Call Real-Mode Interrupt Handler

Purpose
This function call transfers control to the address specified by the real-mode
interrupt vector.

AX = 0103h call real-mode interrupt handler
BL = interrupt number
CX = number of words of stack to copy
ES:DI -> callup/down register structure

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Callup/Down Register Structure” on page 323 for details of the
callup/down structure.

See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0200H Allocate Descriptors

Purpose
This function allocates one or more descriptors in the task′s local descriptor
table. The descriptors allocated must be initialized by the application.

AX = 0200h allocate descriptors
CX = number of descriptors to allocate

Return
CF clear if successful

AX = first descriptor allocated
CF set on error

AX = error code

316 PC DOS 7

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0201H Free a Descriptor

Purpose
Frees a previously allocated descriptor.

AX = 0201h free a descriptor
BX = descriptor

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0202H Create Alias Descriptor

Purpose
Creates a new descriptor that has the same base and limit as the specified
descriptor.

AX = 0202h create alias descriptor
BX = descriptor

Return
CF clear if successful

AX = alias descriptor
CF set on error

AX = error code

Appendix E. DOS Protected Mode Services 317

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0203H Build Alias to Real-Mode Segment

Purpose
AX = 0203h build alias to real-mode segment
BX = descriptor
CX = real-mode segment

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0204H Set Descriptor Base
AX = 0204h set descriptor base
BX = descriptor
CX:DX = base address

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

318 PC DOS 7

Interrupt 31H Function AX=0205H Set Descriptor Limit
AX = 0205h set descriptor limit
BX = descriptor
CX = limit

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0206H Set Descriptor Type/Attribute
AX = 0206h set descriptor type/attribute
BX = descriptor
CL = type
CH = attribute

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0207H Get Descriptor Base
AX = 0207h get descriptor base
BX = descriptor

Return
CF clear if successful
CX:DX = base address
CF set on error

AX = error code

Appendix E. DOS Protected Mode Services 319

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0300H Get Size of Largest Free Block of
Memory

AX = 0300h get size of largest free block of memory

Return
CF clear if successful

BX:CX = size
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0301H Allocate Block of Extended Memory
AX = 0301h allocate block of extended memory
BX:CX = size

Return
CF clear if successful

BX:CX = base address
SI:DI = handle

CF set on error
AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0302H Free Block of Extended Memory
AX = 0302h free block of extended memory
SI:DI = handle

Return
CF clear if successful
CF set on error

320 PC DOS 7

AX = error code (see below)

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0303H Map Linear Memory
AX = 0303h map linear memory
ES:[DI] = DDS

Return
CF clear if successful

BX:CX = base address
SI:DI = handle

CF set on error
AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Interrupt 31H Function AX=0304H Unmap Linear Memory
AX = 0304h unmap linear memory
SI:DI = handle

Return
CF clear if successful
CF set on error

AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

Appendix E. DOS Protected Mode Services 321

Interrupt 31H Function AX=0400H Relocate Segment to Extended
Memory

AX = 0400h relocate segment to extended memory
ES:SI = base address
CX = limit
BL = type
BH = attribute
DX = selector or 0000h

Return: CF clear if successful
AX = selector
BX:CX = new base address
SI:DI = handle

CF set on error
AX = error code

Comments
See “Interrupt 31H DPMS Error Return Codes” on page 323 for possible
error return codes.

322 PC DOS 7

Interrupt 31H DPMS Error Return Codes

Table 2. DPMS Error Return Codes

AX Description

8000H General error
8001H Unsupported function
8011H Descriptor unavailable
8012H Linear memory unavailable
8013H Physical memory unavailable
8021H Invalid value
8022h Invalid selector
8023H Invalid handle

Callup/Down Register Structure
The following is the format for the callup/down register structure that is used
with interrupt 31H, function calls 0100H, 0101H, 0102H and 0103H.

Offset Size Description
00H DWORD EDI
04H DWORD ESI
08H DWORD EBP

 0CH 4 BYTEs Reserved (0)
 10H DWORD EBX
 14H DWORD EDX
 18H DWORD ECX
 20H DWORD EAX
 24H DWORD EIP
28H WORD CS

 2AH 2 BYTEs Reserved (0)
 2CH DWORD EFLAGS
 30H DWORD ESP
34H WORD SS

 36H 2 BYTEs Reserved (0)
38H WORD ES

 3AH 2 BYTEs Reserved (0)
3CH WORD DS

 3EH 2 BYTEs Reserved (0)
40H WORD FS

 42H 2 BYTEs Reserved (0)
44H WORD GS

 46H 2 BYTEs Reserved (0)

Appendix E. DOS Protected Mode Services 323

324 PC DOS 7

Appendix F. Task-swapping

The user-shell introduced with DOS 5.0 provides a task-swapper function.
With it the user can switch from one application to another without
terminating either application. When a user starts a new program, the
task-swapper suspends the currently-active program (in this case, the
session-manager program) saves the contents of all registers, and writes the
contents of the program memory to disk or to where “SET TEMP=” is
specified. A new session is then created by the loading and executing of the
new program. (A session is a program that is executed directly by the
task-swapper and runs independently of other sessions.) The task-swapper
remains active, normally monitoring the keyboard for a predefined key
sequence. When the user presses the key sequence, the task-swapper
suspends and saves the current session and transfers control to the formerly
suspended session. It reads the memory contents of another suspended
session into system memory, sets up the registers with the saved values,
and transfers control to the formerly suspended session.

Most application programs can be suspended without problems. Because
they execute synchronously, they can be interrupted in mid-execution and
restarted (if the task-swapper properly saves and restores the state of the
system that was in effect when it suspended the program). Some types of
programs cannot operate safely with a task-swapper. For example:

• Some terminate-stay-resident (TSR) programs. (These are
memory-resident programs that are executed asynchronously.) That is,
they execute and take control of the system independently of the
foreground program, the main program in control of the system. A
network utility which performs tasks ″in the background″ while the
foreground application is inactive is an example of this type of program.
If a program with an outstanding network read request is suspended and
replaced with another program, the network utility can copy the
requested data into the second program ′s context. This data can
overwrite code or data used by the second program, causing a system
malfunction.

• Some types of mainframe communications software. Mainframe
communication software is normally communicating with software on
another system.

• Software that maintains separate data for each process running on the
system (a process is any program running within a session). One
example of this type of software is a network redirector which traps DOS
function calls to provide access to a simulated drive, but which does not
use internal data structures maintained by DOS. While a task-swapper

 Copyright IBM Corp. 1995 325

might adjust these data structures during a session switch, a redirector
which does not rely on these tables must be able to maintain this
information by itself. Consequently, the redirector must be notified of a
session switch and must be able to prevent or delay the switch until it
can handle the switch properly.

The DOS task-swapping protocol gives this type of software the ability to
coexist with task-swappers that conform to the protocol. The protocol
specifies a standard method of communication between the task-swapper
and other software on the system, and gives software that would be
adversely affected by a session switch the opportunity to control the timing of
a switch or to prevent it altogether. Finally, the protocol provides a standard
method for task-swappers to cooperate with each other, minimizing the
problems that would result when competing task-swappers exist on the
system simultaneously. Programs which conform to the DOS Task-swapping
Protocol can coexist safely with the task-swappers incorporated in DOS 5.0
and later, and in future versions of Windows** running in real and standard
modes.

Windows running in 386 enhanced mode is a preemptive, multitasking
system. For this reason, it has a different set of requirements than swappers
that do not support multitasking.

To be ″safe″ in both task-swapping and multitasking environments, clients
and task-swappers must support both types of environments. This appendix
describes the requirements for safe operation in a task-swapping
environment. However, programs that are to run safely in a multitasking
environment must also use the Windows 386 enhanced mode Int 2FH
interface and are likely to require a specialized Windows 386 enhanced mode
virtual device. These programs may need also to maintain separate instance
data for task-swapper sessions and for virtual devices.

For more information on the Windows 386 enhanced mode virtual devices
and the Int 2FH interface, see the Microsoft Windows Device Driver Kit Virtual
Device Adaptation Guide.

The DOS task-swapping protocol specifies a standard method for
task-swappers and other programs so they can cooperate with each other.
Task-swappers and other types of programs exist in a client/server
relationship in which the task-swapper is the server and other programs act
as clients. This chapter uses the term client to refer to a program that
conforms to this protocol and is not a task-swapper. As noted above, most

** Windows is a trademark of the Microsoft Corporation.

326 PC DOS 7

task-swappers work by suspending one session, moving that session to a
disk or to extended or expanded memory, and then loading another
application in the same address space. However, in most systems there are
other areas of memory, such as memory occupied by DOS, device drivers,
and TSR utilities that are not swapped. In nearly every case, the programs
that occupy this memory were started before the task-swapper, and are
running and accessible regardless of which application the task-swapper has
loaded into system memory. These type programs are referred to as global
software. Memory that remains unchanged through task switches is called
global memory. Local memory, on the other hand, is memory associated
with a session spawned by the task-swapper. When the task-swapper swaps
the session, this memory is swapped to disk or to extended or expanded
memory.

Client Initialization
One of the first responsibilities of the task-swapper is to add itself to the
chain of Int 2FH handlers by calling the Get Interrupt Vector Int 21H function
(AH = 35H) and the Set Interrupt Vector Int 21H function (AH = 25H). After a
client program has installed itself in the interrupt chain, it must determine
whether a task-swapper is already present by calling the Detect swapper Int
2FH call-in function. If a task-swapper is present, the function returns with
the call-in address of the task-swapper in ES:DI. Using the call-in address in
ES:DI, the client must call the Hook Call-Out call-in function to allow the
task-swapper to add the client′s call-out function handler address to the
chain of call-out handlers it is maintaining for the session in which the client
is running.

The Client Int 2FH Handler
The task-swapper issues an Int 2FH to call two client functions, the Build
Call-Out Chain function and the Identify Instance Data function. Both of these
functions are called by the task-swapper to build a linked list of data
structures. Depending on the function, each structure identifies a particular
client′s call-out function handler address or a client ′s instance data. In
general, the client Int 2FH handler performs the following tasks to add its
structure to the list:

 1. The Int 2FH handler determines whether AX contains a value identifying a
task-swapper call-out function. If not, it transfers control to the previous
Int 2FH handler with a far jump.

 2. If AX identifies a task-swapper call-out function, the Int 2FH handler
pushes the flags and makes a far call to the previous Int 2FH handler.

Appendix F. Task-swapping 327

 3. When the call returns, the Int 2FH handler places the value in ES:BX (the
address of the previous handler′s data structure) in the appropriate field
of the client′s data structure.

 4. The Int 2FH handler places the address of the client′s own data structure
in ES:BX and returns from the interrupt. The specific actions taken by the
Int 2FH handler and the data structure used depends on the particular Int
2FH call-out function.

Responding to a Pending Session Switch
Most clients must be able to prevent a session switch from occurring when
the client or other software is in an unstable state during which a session
switch could result in the loss or corruption of data.

A task-swapper calls two call-out functions before performing a session
switch. The Query Suspend function provides notification to affected clients
that the task-swapper is preparing to suspend the currently active session.
When a client receives a call to this function, it can either perform whatever
operations are required and then allow the session switch to proceed, or it
can prevent the session switch altogether.

The task-swapper calls the Suspend Session call-out function of each client if
no client fails the Query Suspend call. Since interrupts were enabled while
the task-swapper was making the Query Suspend call, the system state could
have changed after a given client had received the call. The Suspend
Session call provides clients one last opportunity to prevent the session
switch. Since the task-swapper calls this function with interrupts disabled,
the system state is guaranteed not to change following the Suspend Session
call until the session switch takes place. For this reason interrupts must
remain disabled until all clients have returned from the call. Also, a client
must not issue software interrupts or use calls that might enable interrupts.
The client can only return zero in AX to permit the session switch or one to
prevent the session switch. All other registers must be preserved.

A client must not fail a Query Suspend or Suspend Session call because an
asynchronous API is being executed without first determining that the
applications program interface (API) is not being handled by more competent
software. The client determines this by calling the Query API Support call-in
function.

If any client fails the Query Suspend or Suspend Session calls, all clients in
the entry-point chain called by the task-swapper may receive a Session
Active call for the session that was to be suspended. For this reason it is
possible to receive a Session Active call for a session that has not been
suspended or activated. Clients can safely ignore these calls.

328 PC DOS 7

If no client fails the Suspend Session call, the task-swapper replaces the
current interrupt vector table with a saved copy before enabling interrupts.
The saved copy represents the global state present when the task-swapper
was first started. This guarantees that interrupt handlers local to the session
being suspended are not called until the session is resumed.

Between the Suspend Session call and the next Activate Session call
interrupts are enabled intermittently and global software can receive
interrupts during this time. Global clients must not assume the contents of
any nonglobal memory between Suspend Session and Activate Session calls.

The task-swapper calls the Activate Session call-out function of affected
clients to notify them that a task is about to be resumed. It then calls the
Session Active function when the previously suspended session has been
loaded into memory (including its local memory and interrupt vector table)
and interrupts have been enabled.

Responding to the Pending Creation of a New Session
Just as a client can prevent a session switch, a client also can prevent the
task-swapper from creating a new session. Before creating the new session,
the task-swapper calls the Create Session call-out function. A client can take
the appropriate action to prepare for the new session (for example, allocating
additional memory to hold information for the session) and then permit the
task-swapper to create the new session. Or the client can fail the Create
Session call to block the new session from being created. A client would
prevent a new session from being created, for example, if it maintained
session-data in a fixed-length buffer that was too full to accommodate
another session.

If any client fails the Create Session call, the task-swapper calls the Destroy
Session function of some or all clients. The Destroy Session function notifies
client programs that the session ID passed with the Create Session call is no
longer valid. Since the task-swapper may call all clients or only those clients
that had received the Create Session call, it is possible to receive a Destroy
Session call for a session that has not been created or activated. Clients can
safely ignore this Destroy Session call.

If no client fails the Create Session call, the task-swapper usually suspends
the current session and then calls the Activate Session function by using a
flag set to notify clients that the new session is about to take control. This
gives clients the opportunity to take whatever action is required to prepare
for the new session. The task-swapper then calls the Session Active (again
with a flag set) to notify clients that the new session has been started.
However, because some session managers (such as Windows) permit the

Appendix F. Task-swapping 329

user to start a session in an inactive state, the Activate Session and Session
Active calls might not occur immediately after the Create Session call. Other
sessions might also be activated and suspended before the newly created
session becomes active for the first time, if at all.

Client Termination
Before terminating, a client must perform two tasks:

• It must call the Unhook Call-Out call-in function. This removes its call-out
function handler from the chain of local call-out handlers maintained by
the task-swapper.

• The client must remove its Int 2FH handler from the chain of Int 2FH
handlers by calling the Set Interrupt Vector Int 21H function (AH = 25H),
replacing the Int 2FH interrupt vector with the address of the previous Int
2FH handler (saved when the client was initialized).

The Switch_Call_Back_Info Data Structure
Every client must maintain a Switch_Call_Back_Info (SCBI) data structure.
The client supplies this structure to the task-swapper when calling or
responding to several different functions. The SCBI structure contains
information about the entry point of the client′s call-out function handler and
a pointer to a list of API_Info_Struc data structures. These structures specify
the types of asynchronous API which the client supports and the level of
support it is able to provide. The Switch_Call_Back_Info data structure is
defined as follows:

Switch_Call_Back_Info STRUC
SCBI_Next dd ? ; address of next structure in chain
SCBI_Entry_Pt dd ? ; address of notification function handler
SCBI_Reserved dd ?
SCBI_API_Ptr dd ?

Switch_Call_Back_Info ENDS

The Switch_Call_Back_Info structure contains the following fields:

• SCBI_Next − This 32-bit value contains a pointer to the next structure in
the client chain. A task-swapper calls the Build Call-Out Chain Int 2FH
call-out function to build this chain.

• SCBI_Entry_Pt − This 32-bit value contains a pointer to the entry point of
the client′s call-out function handler.

• SCBI_Reserved − This 32-bit value is reserved for use by the
task-swapper.

330 PC DOS 7

• SCBI_API_Ptr − This 32-bit value contains a segment:offset pointer to a
zero-terminated list of API_Info_Struc data structures. These structures
specify the type of support the client provides for various asynchronous
APIs.

The API_Info_Struc Data Structure
The API_Info_Struc (AIS) data structure contains information about the level
of support that a client provides to a particular type of asynchronous API.
The API_Info_Struc structure is defined as follows:

API_Info_Struc STRUC

AIS_Length dw 10
AIS_API dw ?
AIS_Major_Ver dw ?
AIS_Minor_Ver dw ?
AIS_Support_Level dw ?

API_Info_Struc ENDS

The API_Info_Struc data structure contains the following fields:

 1. AIS_Length − This 16-bit value specifies the length of the AIS data
structure.

 2. AIS_API − This 16-bit value specifies the ID of the asynchronous API
supported by the client. The following values are defined:

API_NETBIOS equ 1 ; NETBIOS

API_8022 equ 2 ; 802.2

API_TCPIP equ 3 ; TCP/IP

API_LANMAN equ 4 ; LAN Manager named pipes

API_IPX equ 5 ; NetWare IPX

• AIS_Major_Ver − This 16-bit value specifies the highest major version of
the API for which the client provides the level of support specified by the
AIS_Support_Level field. For example, if the highest version of the API
supported by the client at the specified level is 3.10, this field would be
set to 3h.

• AIS_Minor_Ver − This 16-bit value specifies the highest minor version of
the API for which the client provides the specified level of support. For

Appendix F. Task-swapping 331

example, if the highest version of the API supported by the client at the
specified level is 3.10, this field would be set to Ah.

• AIS_Support_Level − This 16-bit value specifies the level of support
provided by the client for the particular version of the API. The range
and significance of values in this field depends upon the particular API.
The following definitions are used for NETBIOS:

− Minimal support. The client prevents a session switch after the
application has executed any asynchronous API, even after the
request has been completed.

− API-level support. The client tracks asynchronous requests that are
outstanding and prevents task switches at those times. The client
allows task switches after all outstanding asynchronous requests
have completed.

− swapper compatibility. The API provider allows switches to occur
even when asynchronous requests are outstanding. However, this
might be limited by such factors as buffer size, and some requests
might fail.

− Seamless compatibility. The API provider always allows session
switches to occur, and this never causes loss of data.

The Win386_Startup_Info_Struc Data Structure
The Win386_Startup_Info_Struc data structure is defined as follows:

Win386_Startup_Info_Struc STRUC

SIS_Version db 3,0 ; ignored
SIS_Next_Dev_Ptr dd ? ; Ptr to previous handler′ s

; Win386_Startup_Info_Struc
SIS_Virt_Dev_File_Ptr dd 0 ; ignored
SIS_Reference_Data dd ? ; ignored
SIS_Instance_Data_Ptr dd ? ; Ptr to IIS structures

Win386_Startup_Info_Struc ENDS

The Win386_Startup_Info_Struc is the same structure used to respond to the
Microsoft Windows startup Int 2FH function. However, the DOS task-swapper
uses only the SIS_Next_Dev_File_Ptr and SIS_Instance_Data_Ptr fields. (For
information on the other fields, see the Microsoft Windows Device Driver Kit
Virtual Device Adaptation Guide.)

The Win386_Startup_Info_Struc data structure contains the following fields:

• SIS_Version − This two-byte field is not used.

332 PC DOS 7

• SIS_Next_Dev_Ptr − This 32-bit value contains a segment:offset pointer
to the next structure in the client chain. See below for more information
about how this chain is constructed.

• SIS_Virt_Dev_File_Ptr − This 32-bit field is not used.

• SIS_Reference_Data − This 32-bit field is not used.

• SIS_Instance_Data_Ptr − This 32-bit value contains a segment:offset
pointer to a list of Instance_Item_Struc data structures. Each structure
describes one contiguous block of instance data. The list is terminated
by a 32-bit zero value.

The Instance_Item_Struc Data Structure
The Instance_Item_Struc data structure is defined as follows:

Instance_Item_Struc STRUC

IIS_Ptr dd ?
IIS_Size dw ?

Instance_Item_Struc ENDS

The Instance_Item_Struc structure contains the following fields:

• IIS_Ptr − This 32-bit value contains a segment:offset pointer to the first
byte of the block of instance data. IIS_Size − This 16-bit value specifies
the size, in bytes, of the block of instance data.

The Swapper_Ver_Structure
The following shows the definition of the Swapper_Ver_Struc data structure:

Swapper_Ver_Struc STRUC

SVS_API_Major dw ?
SVS_API_Minor dw ?
SVS_Product_Major dw ?
SVS_Product_Minor dw ?
SVS_swapper_ID dw ?
SVS_Flags dw ?
SVS_Name_Ptr dd ?
SVS_Prev_Swapper dd ?

Swapper_Ver_Struc ENDS

The Swapper_Ver_Struc contains the following fields:

Appendix F. Task-swapping 333

• SVS_API_Major − This 16-bit value specifies the highest major version of
the Task-swapping Protocol that the swapper supports. For example, if
the highest version of the protocol supported by the client at the
specified level is 3.10, this field would be set to AH. The current version
is 1.0.

• SVS_API_Minor − This 16-bit value specifies the highest minor version
of the Task-swapping Protocol that the swapper supports. For example, if
the highest version of the protocol supported by the task-swapper is 3.10,
this field would be set to AH. The current version is 1.0.

• SVS_Product_Major − This 16-bit value specifies the major version of the
task-swapper, in the same format as SVS_API_Major.

• SVS_Product_Minor − This 16-bit value specifies the minor version of the
task-swapper, in the same format as SVS_API_Minor.

• SVS_Swapper_ID − This 16-bit field specifies, in its low-order four bits,
the swapper ID value obtained from the Allocate swapper ID function.

• SVS_Flags − This 16-bit field contains a bit-array of 16 bits used as flags.
In this version of the Task-swapping Protocol, only bit 0 is used. If the
swapper is currently disabled, bit 0 is set. Otherwise, bit 0 is clear.

• SVS_Name_Ptr − This 32-bit value contains a segment:offset pointer to a
zero-terminated ASCII string that identifies the task-swapper (for
example, ″DOS Shell Task-swapper″).

• SVS_Prev_Swapper − This 32-bit value contains the address (in
segment:offset form) of the previously loaded swapper′s call-out function
entry point that is returned by the Detect swapper Int 2FH task-swapper
function.

Function Descriptions
This section describes the Int 2FH handler functions, task-swapper call-out
functions, and task-swapper call-in functions that comprise the DOS
Task-swapping Protocol. The function descriptions are grouped according to
these categories. Within each category the function descriptions are
described in numeric order. Each function description is headed by the
name of the function followed by a brief description of the function and the
required conditions at the entry and exit of the function. Optional comments
appear following the entry and exit information.

Note: All registers not used by these functions must be preserved.

334 PC DOS 7

Task-swapper Int 2FH Handler Functions
Currently there is one Int 2FH function for the task-swapper. It is specified
below:

Detect Swapper (Function 4B02H)
A client calls the Detect Swapper Int 2FH function to determine if a
task-swapper is currently running and to obtain the address of its call-in (to
the task-swapper) function entry point.

Example:

MOV AX,04B02H ;Detect presence of a task-swapper
XOR BX,BX ;Required for future extensibility
XOR DI,DI
MOV ES,DI
INT 2FH

;
;Save call-out address to the current task-swapper
;

MOV WORD PTR OUT_TO_SWAPPER+0, DI
MOV WORD PTR OUT_TO_SWAPPER+2, ES

OUT_TO_SWAPPER DD 0 ; Call-out address to the current
task-swapper

All other registers are preserved.

Comments

A non-NULL pointer returned in ES:DI indicates the presence of a
task-swapper. AX is returned with zero for future extensibility and the carry
flag is clear.

Clients call this function during initialization and take the appropriate action if
a swapper is detected.

Client Int 2FH Handler Functions
A client that is in full compliance with this protocol must contain an Int 2FH
handler that can properly respond to the Build Call-Out Chain function
(4B01H) from the task-swapper. In addition, it must also respond to the
Identify Instance Data function (4B05H) if the client maintains data for each
session. The following sections describe these functions.

Appendix F. Task-swapping 335

Build Call-out Chain
This Client Int 2FH Handler function links a client′s call-out function entry
point to a chain of client call-out entry points on the swapper.

On Entry:
; Respond to Call_Out function from task-swapper

cmp ax,04b01h ;Build Chain Call-in function?
jnz Pass_Function_On
test Bit_flag,00000001b
jnz Pass_Function_On
;
;ES:BX = 0:0 for future extensibility
;CX:DX = call-in address of the calling task-swapper
;

pushf
call far Prev_Int2f_Handler
;ES:BX = 0:0 if the first client loaded in memory

;
mov offset SCBI_Next,bx
mov offset SCBI_Next+2,es

Back_to_swapper:

or Bit_flag,1 ;We′ ve been here
mov bx,offset Swap_Call_Back_Info
mov es,cs
;
;All other registers must be preserved.
;

iret

Pass_Function_On:
;

jmp far Prev_Int2f_Handler

Bit_flag db 0 ; bit 1 = 0 if not called by swapper
; = 1 if called by the swapper

Comments

ES:BX = 0:0 if you are first client loaded in-memory

336 PC DOS 7

A task-swapper calls this function to create a linked list of the call-out
function entry points of all global clients, clients running in the current
session, and of information about the asynchronous APIs supported by each
client. When the function returns, ES:BX contains a pointer to the client′s
SCBI data structure containing this information.

Swap_Call_Back_Info STRUC

SCBI_Next dd ? ;pointer to next structure in list
SCBI_Entry_Pt dd ? ;CS:IP of entry point procedure
SCBI_Reserved dd ? ;used by the swapper
SCBI_API_Ptr dd ? ;pointer to list of API structures

Swap_Call_Back_Info ENDS

For a description of the SCBI data structure, see “The Switch_Call_Back_Info
Data Structure” on page 330 in this manual for a description of this structure.

When a client receives an Int 2FH, it checks AX to determine whether the Int
2FH is calling a Client Int 2FH Handler function. If not, the client passes
control to the previous Int 2FH handler using a far jump. If it is, the Client Int
2FH Handler routine immediately pushes the flags and call the previous Int
2FH vector using a far call. It does not modify any registers before making
the call.

When the call returns, ES:BX will contain the address of the previous client′s
SCBI data structure (or 0:0 if the current client was the first loaded into
memory). Whether or not ES:BX is 0:0, the value in ES:BX is placed in the
SCBI_Next field of the client′s SCBI data structure. The client then places the
address of its SCBI data structure into ES:BX and then returns from the
interrupt.

When the call returns to the calling task-swapper, ES:BX points to the SCBI
data structure of the last client loaded into memory. As a result, the SCBI
data structures of the most recently loaded clients appear near the head of
the chain. Consequently, the most recently loaded clients will be called
before clients that were loaded earlier. This would allow, for example, an
application with outstanding asynchronous requests to cancel the request
when a session swap is about to occur before the network is queried. If the
calls were to occur in the reverse order, the network might block the session
swap because of the outstanding asynchronous requests.

At the entry to the Build Call-in Chain function, CX:DX contains the call-in
function entry point of the calling task-swapper. A client can call this routine,
with arguments specifying the function to be performed, while it is handling

Appendix F. Task-swapping 337

the Int 2FH call. However, the address passed in the Int 2FH call may not be
the same address made available in later call-out function calls.

Identify Instance Data
This Client Int 2FH Handler function identifies instance data maintained by
the client. For example:

On Entry:
; Respond to Call_Out function from task-swapper for Instance Data

cmp ax,04b05h ;Build Chain Call-in function?
jnz Pass_Function_On
;
;ES:BX = 0:0 for future extensibility
;CX:DX = call-in address of the calling task-swapper
;Calls to DOS can be made

;Make call to previous client′ s Win386_Startup_Info_Struc
; data structure
;

pushf
call far Prev_Int2f_Handler

mov offset SIS_Next_Dev_Ptr,BX
mov offset SIS_Next_Dev_Ptr+2,ES

Back_to_swapper:
;
;Provide Win386_Startup_Info_Struc data structure address
;

mov bx,offset Win386_Startup_Info_Struc
push cs
pop
iret ;All other registers must be preserved

Pass_Function_On:
jmp far Prev_Int2f_Handler ;to previous Int 2FH handler

Win386_Startup_Info_Struc STRUC

SIS_Version db 3,0 ; ignored
SIS_Next_Dev_Ptr dd ? ; Ptr to previous handler′ s

; Win386_Startup_Info_Struc
SIS_Virt_Dev_File_Ptr dd 0 ; ignored

338 PC DOS 7

SIS_Reference_Data dd ? ; ignored
SIS_Instance_Data_Ptr dd ? ; Ptr to IIS structures

Win386_Startup_Info_Struc ENDS

Comments

A task-swapper calls this function to create a linked list of instance data
blocks of all clients running on the system.

When a client receives an Int 2FH, it checks AX to determine whether the Int
2FH is calling a Client Int 2FH Handler function. If it is not, the client passes
control to the previous Int 2FH handler by using a far jump. If it is, the client
Int 2FH handler routine immediately pushes the flags and call the previous
Int 2FH vector using a far call. It does not modify any registers before making
the call.

When the call returns, ES:BX will contain the address of the previous client′s
Win386_Startup_Info_Struc data structure (or 0:0 if the current client was the
first loaded into memory). Whether or not ES:BX is 0:0, the value in ES:BX is
placed in the SIS_Next_Dev_Ptr field of the client′s Win386_Startup_Info_Struc
data structure. The client then places the address of its
Win386_Startup_Info_Struc data structure into ES:BX and returns from the
interrupt.

When the call returns to the calling task-swapper, ES:BX points to the
Win386_Startup_Info_Struc data structure of the last client loaded into
memory.

Task-swapper Call-In Functions
The DOS task-swapper is in full compliance with this protocol and contains a
call-in function entry point that can properly respond to the following seven
functions:

• Get Version (Function 0H)

• Test Memory Region (Function 1H)

• Hook Call-out (Function 4H)

• Unhook Call-out (Function 5H)

• Query API Support (Function 6H)

The following sections describe these functions.

Appendix F. Task-swapping 339

Note: All task-swapper call-in functions return with the carry flag clear. If a
call-in function returns with the carry flag set, the function is not
implemented by the receiving task-swapper.

Get Version
This task-swapper call-in function identifies the current task-swapper, its
version number, and the level of the task-swapping Protocol that it supports.

For Example:

MOV AX,0 ;Get Version call to the task-swapper
CLI ;Interrupts disabled
CALL OUT_TO_SWAPPER ;From Detect swapper Int 2FH, AX=4b02h

;
;AX = 0 for future extensibility
;All other registers are preserved.
;
;Save address of the swapper′ s Version
; Data structure
;

MOV SWAPPER_VER_STRUC_PTR+0,BX
MOV SWAPPER_VER_STRUC_PTR+2,ES

SWAPPER_VER_STRUC_PTR DD 0

Comments

The following shows the definition of the Swapper_Ver_Struc data structure.

Swapper_Ver_Struc STRUC

SVS_API_Major dw ?
SVS_API_Minor dw ?
SVS_Product_Major dw ?
SVS_Product_Minor dw ?
SVS_Swapper_ID dw ?
SVS_Flags dw ?
SVS_Name_Ptr dd ?
SVS_Prev_Swapper dd ?

Swapper_Ver_Struc ENDS

For a description of the Swapper_Ver_Struc data structure, see “The
Swapper_Ver_Structure” on page 333 in this manual.

340 PC DOS 7

Test Memory Region
This task-swapper call-in function is used to identify global or local memory
locations to the current session. Memory that is global is not replaced when
a task-swap occurs.

For Example:

MOV AX,1 ;Test memory region call-out to the
; task-swapper

MOV DI,OFFSET BUFFER ;Address of buffer to be tested
MOV ES,SEG_BUFFER ;ES is the buffer′ s segment address
MOV CX,BUFFER_LENGTH ;Length of buffer in bytes (0 to 65535)

; where 0 indicates 64K bytes (65536)
CLI ;Interrupts disabled
CALL OUT_TO_SWAPPER ;Obtained from Detect Swapper

; Int 2FH, AX=4b02h
;
;Carry flag is clear

MOV REGION_LOCATION,AX
;AX = 0, Buffer is in global memory
;AX = 1, Buffer is partially in global
; and partially in local memory
;AX = 2, Buffer is in local memory
;
;All other bits are reserved and must be 0
;All other registers are preserved.

Comments

If the buffer to be tested is longer than 64K bytes, more than one call is
required to test the entire region. The determination whether memory is
global or local is performed by the current task-swapper. Clients check the
status of memory following each Query Suspend or Session Active call to
determine whether the memory is global or local to the task-swapper
performing the session swap.

Global software can use this function to identify asynchronous calls coming
from another layer of global software. In these cases, the global software
would not have to take special action when a session swap occurs because
the calling application′s buffer and callback address would be accessible
regardless of which session is currently running.

A memory-resident utility also could use this function to determine whether it
is running locally within a session. For example, a communication
application could temporarily shut down before being suspended. If the

Appendix F. Task-swapping 341

application were running globally, however, that action that would not be
necessary because the application would not be affected by a session swap.

Hook Call-out
This call-in function adds the address of the calling client′s call-out function
handler to the task-swapper ′s call-out chain.

For Example:

MOV AX,4 ;Call-out to swapper to add this client′ s
; Call-out address

MOV DI,OFFSET SWAP_CALL_BACK_INFO
;

MOV ES,CS ;Swap_Call_Back_Info (SCBI)
; data structure
;Interrupts are enabled.
;Calls to DOS can be made.

CALL OUT_TO_SWAPPER ;Obtained from Detect swapper
; Int 2FH, AX=4b02h
;
;Carry flag is clear.
;
;AX = 0 for future extensibility
;
;All other registers are preserved

Note: The client is not expected to fill in the SCBI_Next field for this
structure. See “The Switch_Call_Back_Info Data Structure” on
page 330 in this manual for more information.

Comments

During initialization a client calls the Detect swapper task-swapper Int 2FH
function. If this call indicates that a task-swapper is running, the client calls
the Hook Call-out call-in function of the task-swapper to add its own call-out
handler to the task-swapper ′s call-out chain. Although some task-swappers
create a call-out chain before every task-swapper event by calling the Build
Call-out Chain Int 2FH function, other task-swappers generate this list only
when initializing. These task-swappers keep a separate chain for each
session. Each time the task-swapper creates a new session, it gives the
session a copy of the global chain that was generated when the
task-swapper initialized. (Alternatively, the task-swapper can keep a single
global chain and a separate local chain for each session.) After the session
is created, a client that runs locally within that session must explicitly add its

342 PC DOS 7

call-out handler address to the local chain by calling the Hook Call-out call-in
function.

A client must explicitly unhook itself from the call-out chain before
terminating. The Unhook Call-out task-swapper call-in function unhooks a
client from the task-swapper′s call-out chain.

Unhook Call-out
This call-in function removes the address of the calling client′s call-out
function handler from the task-swapper ′s call-out chain.

For Example:

MOV AX,5 ;Call-in to swapper to remove
; this client′ s call-out address
;

MOV DI,OFFSET SWAP_CALL_BACK_INFO
MOV ES,CS ;Swap_Call_Back_Info (SCBI)

; data structure
;Interrupts are enabled.
;Calls to DOS can be made.

CALL OUT_TO_SWAPPER ;Obtained from Detect swapper
;Int 2FH, AX=4b02h
;
;Carry flag is clear.
;
;AX = 0 for future extensibility
;
;All other registers are preserved

See “The Switch_Call_Back_Info Data Structure” on page 330 in this manual
for more information.

Comments

During initialization, a client calls the Detect swapper task-swapper Int 2FH
function. If this call indicates that a task-swapper is running, the client calls
the Hook Call-out call-in function of the task-swapper to add its own call-out
handler to the task-swapper ′s call-out chain. Then, before terminating, a
client must explicitly call the Unhook Call-out function to remove itself from
the call-out chain.

Appendix F. Task-swapping 343

Query API Support
This call-out function tells a client if it should control session swapping to
handle a particular asynchronous API.

For Example:

MOV AX,6 ;Call-out to swapper for most capable
; API handler

MOV BX,ID ;ID value of the asynchronous API
;API_NETBIOS equ 1
;API_8022 equ 2
;API_TCPIP equ 3
;API_LANMAN equ 4
;API_IPX equ 5

CALL OUT_TO_SWAPPER ;Obtained from Detect swapper Int 2FH,
; AX=4b02h

MOV BEST_API_SUPPORTER+0,BX
MOV BEST_API_SUPPORTER+2,ES

;Carry flag is clear.
;AX = 0 for future extensibility
;All other registers are preserved

API_Info_Struc STRUC

AIS_Length dw ? ;length of the structure
AIS_API dw ? ;the API ID value
AIS_Major_Ver dw ? ;major version of API spec
AIS_Minor_Ver dw ? ;minor version of the API spec
AIS_Support_Level dw ? ;support level

API_Info_Struc ENDS

Note: See “The API_Info_Struc Data Structure” on page 331 in this manual
for more information and the description of the AIS_API field.

Comments

This function determines which client will control session swapping (with
regard to a particular asynchronous API). When a client is processing a
Query Suspend or a Suspend Session call-out function, but before it prevents

344 PC DOS 7

the session swap because of the state of an asynchronous API, it must first
call the Query API Support call-in function to determine if it is the most
competent client to handle the API. If it is, it prevents the session swap. If it
is not the most competent client it does not prevent the session swap, relying
instead on the more competent client to prevent the session swap, if
necessary.

Every asynchronous API is assigned an ID value. Several levels of support
are defined and indicated by a numeric value. Clients that can allow session
swapping under more circumstances have a higher level of support than
other clients.

Client programs maintain information about the asynchronous APIs they
support and the level of support provided to each. It is in a list of
API_Info_Struc data structures. A client provides a pointer to the beginning
of this list in its Swap_Call_Back_Info (SCBI) data structure. See “The
API_Info_Struc Data Structure” on page 331 in this manual for a full
description of the API_Info_Struc structure. See “The Switch_Call_Back_Info
Data Structure” on page 330 in this manual for more information on the SCBI
data structure.

This function identifies the client most competent to support a specific API by
returning the address of the API_Info_Struc data structure of the most
competent client. The most competent client is the client that supports the
highest version of the API. If two or more clients support the same highest
version, the most competent client is the one that provides the highest level
of support for that version.

If the calling client determines that the API_Info_Struc address returned by
this function is the same as its own API_Info_Struc, the client prevents the
session swap.

Task-swapper Call-in Functions
A client that is in compliance with this protocol contains a call-out function
entry point that can properly respond to any of eight functions:

• Init swapper (Function 0)

• Query Suspend (Function 1)

• Suspend Session (Function 2)

• Activate Session (Function 3)

• Session Active (Function 4)

• Create Session (Function 5)

Appendix F. Task-swapping 345

• Destroy Session (Function 6)

• Swapper Exit (Function 7)

A client is not required to implement any particular function and can respond
to any of these function calls by returning control to the calling task-swapper.
The following sections describe these functions.

Init swapper
This task-swapper call-out function notifies client programs that a new
task-swapper is being initialized.

For Example:

CMP AX,0 ;Init swapper call?
;ES:DI = the call-out address to the
; calling task-swapper.
;Interrupts are enabled.
;Calls to DOS can be made.

;The task-swapper can safely load, nonzero value
; indicates that the task-swapper should not load.

MOV AX,OKAY_TO_SWAP

RET ;Return to task-swapper

OKAY_TO_SWAP DB O ;Flag to indicate if its okay to swap away

Comments

Because it is not necessarily the task-swapper that calls this function, clients
should not assume that the call-out address passed in ES:DI will be the same
address passed with subsequent call-in functions. This address can be
NULL.

A session-manager application or environment that supports session
swapping must call this function when it is initialized. A global client that
needs to take special action to coexist with a task-swapper does so when it
receives this call. The call-in entry point provided in ES:DI must be able to
respond to the Get Version call-in function.

Typically, an application that invokes and controls the task-swapper calls the
Init swapper call-out function (rather than the task-swapper itself). For

346 PC DOS 7

example, the DOS 5.0 Shell calls the Init swapper call-out function during its
initialization, before it starts the DOS task-swapper that actually performs the
session swapping. If any client fails the Init swapper call (that is, returns
with a nonzero value in AX), the Shell disables its task-swapping option.
Other task-swapping applications may terminate if a client fails this function.
If any client fails the Init swapper call-out function call, all clients may receive
a call to the swapper Exit call-out function, including the client that failed the
Init swapper call. As a result clients can receive a swapper Exit call without
first receiving a corresponding swapper Init call. Clients can ignore this
swapper Exit call.

Query Suspend
This call-out function to client programs notifies them that the task-swapper
is preparing to perform a session swap.

For Example:

CMP AX,1 ;Query Suspend check from the task-swapper
JA CHECK_NEXT_FUNCTION
CMP BX,OUR_SESSION_ID ;BX has the current session ID

;Interrupts are enabled
;Calls to DOS can be made
;ES:DI = The call-out address of the calling task-swapper

MOV AX,SWAP_FLAG
CMP AX,0
JE RETURN_TO_CALLER

;Determine that the API is not being handled by another,
; more competent client

MOV AX,6 ;Call-out to swapper for most capable
; API handler

MOV BX,ID ;ID value of the asynchronous API
CALL OUT_TO_SWAPPER

;Does the most capable client have the same address as this client?

CMP OFFSET API_INFO_STRUC,BX

JNE OTHER_CLIENT_TO_HANDLE
MOV AX,1
JMP RETURN_TO_CALLER

OTHER_CLIENT_TO_HANDLE:

Appendix F. Task-swapping 347

XOR AX,AX

RETURN_TO_CALLER:
RET

SWAP_FLAG DB 0 ;0 if a session swap can be performed safely
;1 if the client cannot safely handle a session
; swap. All other values are reserved
;
;All other registers must be preserved.

CHECK_NEXT_FUNCTION:

Comments

A task-swapper calls this function when a session swap has been requested.
The client can prevent the session swap, or it can perform any operation
needed to allow the swap before returning.

A global client can use the current session ID to identify the session that will
be suspended when the session swap occurs. It can use this ID to maintain
information about the session when it is suspended and to restore the
information when the session is resumed. The session ID is an arbitrary
value provided by the task-swapper; the values are not necessarily
sequential and values may be reused after a session is destroyed. A client
can call the Test Memory Region task-swapper function to determine
whether specific code or data in memory will be affected by the session
swap and determine whether to allow the session swap. For example, a
network redirector could run through a chain of outstanding request
descriptors and, using the Test Memory Region function, check to see if any
of the buffers or call-back addresses are located in local memory. If any are
in local memory, the redirector could prevent the session swap or invoke
special code to handle the case.

Before a client prevents a session swap because of the state of an
asynchronous API, it calls the Query API Support call-in function to ensure
that the API is not being handled by another, more competent client. If any
client fails the Query Suspend function call, all clients may receive a call to
the Session Active call-out function, including the client that failed the Query
Suspend call. As a result, clients can receive a Session Active call without
first receiving a corresponding Query Suspend or Suspend Session call.
Clients can ignore this Session Active call.

348 PC DOS 7

Suspend Session
This call-out function notifies clients that a session swap is about to take
place. This is the last opportunity provided to a client to prevent the session
swap.

For Example:

CMP AX,2 ;Suspend Session notification?
JA CHECK_NEXT_FUNCTION ;
CMP BX,OUR_SESSION_ID ;BX has the current session ID

;ES:DI = The call-out address of the calling task-swapper
;Interrupts are disabled

MOV AX,SWAP_FLAG
CMP AX,0
JE RETURN_TO_CALLER

;Determine that the API is not being handled by another,
; more competent client

MOV AX,6 ;Call-out to swapper
MOV BX,ID ;ID value of the asynchronous API
CALL OUT_TO_SWAPPER
CMP OFFSET API_INFO_STRUC,BX

;Does the most capable client have the same address as this client?

JNE OTHER_CLIENT_TO_HANDLE
MOV AX,1
JMP RETURN_TO_CALLER

OTHER_CLIENT_TO_HANDLE:
XOR AX,AX

RETURN_TO_CALLER:
RET

SWAP_FLAG DB 0 ;Equals 0 if a session swap can be performed safely
;Equals 1 if the client cannot safely handle a session
; swap. All other values are reserved
;
;All other registers must be preserved.

CHECK_NEXT_FUNCTION:

Appendix F. Task-swapping 349

Comments

If no client fails the Query Suspend function call, the task-swapper disables
interrupts and calls the Suspend Session call-out function. This provides
clients with a final chance to prevent the session swap. Clients cannot issue
any software interrupts or make any calls that might enable interrupts.

If all clients return with zero in AX, the task-swapper replaces the current
interrupt vector table with a saved copy before enabling interrupts. The
saved copy represents the global state present when the task-swapper first
started. This guarantees that interrupt handlers local to the session being
suspended will not be called after the Suspend Session call returns to the
task-swapper and before the next session is activated. Local software
cannot receive interrupts between the Suspend Session call and the Activate
Session call. This ensures that local software cannot gain control on a
hardware interrupt and make a call into global software before the global
software receives the ID of the resumed session. However, global clients
can receive interrupts after the Suspend Session call and before the next
Activate Session call. During this period, global software should not assume
the contents of nonglobal memory. The Test Memory Region task-swapper
call-out function tests a block of memory to determine whether it is local or
global.

Before a client prevents a session swap because of the state of an
asynchronous API, it calls the Query API Support call-out function to ensure
that the API is not being handled by another, more competent client. If any
client fails the Suspend Session call-in function call, all clients may receive a
call to the Session Active call-in function, including the client that failed the
Suspend Session call. As a result clients can receive a Session Active call
without first receiving a corresponding Query Suspend or Suspend Session
call. Clients can ignore this Session Active call.

Activate Session
This call-out function notifies clients that a session is about to become active.
If the session is a previously-suspended session, it has been reinstalled in
memory and includes its local memory and interrupt-vector table. However,
interrupts are disabled and must remain disabled.

For Example:

CMP AX,3 ;Activate Session call-in

;Interrupts are disabled and must remain disabled.
;Calls to DOS cannot be made

JA CHECK_NEXT_FUNCTION

350 PC DOS 7

TEST CX,0 ;If Bit 0 is set, indicates a new session

; if not set, session was previously
; suspended and is now being resumed.

JNZ TRACK_SESSION_IDS ;If global client update list

;ES:DI = The call-out address of the calling task-swapper.

XOR AX,AX ;for future extensibility

RET ;All other registers are preserved.

TRACK_SESSION_IDS:
MOV [LIST_INDEX],BX ;BX = ID of session being activated
INC LIST_INDEX
INC LIST_INDEX
RET

CHECK_NEXT_FUNCTION:

Comments

Although interrupts may have been enabled at times while the session
memory was being swapped (and global software may have continued to
receive interrupts), no interrupts could have been received by local software.
However, after the interrupt-vector table of the new session has been loaded
it is possible that a hardware interrupt will occur as soon as interrupts are
enabled. If interrupts were not disabled when the call is made, local
software could receive the interrupt and make a call to global software.
However, that software might not be able to handle it correctly because it
had not received the new session ID. If this is a newly-created session being
activated for the first time, the Activate Session call will be preceded by a
Create Session call-out function call.

Session Active
This call-out function notifies clients that a session has become active. If the
session is a previously-suspended session, it has been reinstalled in memory
and includes its local memory and interrupt vector table.

For Example:

CMP AX,4 ;Session Active call-in function
;Interrupts are enabled
;Calls to DOS can be made

JA CHECK_NEXT_FUNCTION

Appendix F. Task-swapping 351

;ES:DI = call-out address of the calling task-swapper.

TEST CX,0 ;If Bit 0 is set, indicates a new session
; if not set, session was previously
; suspended and is now being resumed.

JNZ TRACK_SESSION_IDS ;If global client update list

XOR AX,AX ;for future extensibility

RET ;All other registers are preserved.

TRACK_SESSION_IDS:
MOV [LIST_INDEX],BX ;BX = ID of session being activated
INC LIST_INDEX
INC LIST_INDEX
XOR AX,AX ;for future extensibility
RET

CHECK_NEXT_FUNCTION:

Comments

If any client fails a Query Suspend or Suspend Session call-out function call,
all clients may receive a call to the Session Active call-out function, including
the client that failed the Suspend Session call. As a result clients can
receive a Session Active call without first receiving a corresponding Query
Suspend or Suspend Session call. Clients can ignore this Session Active
call.

Create Session
This call-out function notifies clients that the task-swapper is about to create
a new session.

For Example:

CMP AX,5 ;Create Session call-in function
;Interrupts are enabled
;Calls to DOS can be made

JA CHECK_NEXT_FUNCTION

;ES:DI = call-out address of the calling task-swapper.
;BX = The session ID of the new session.

MOV AX,CREATE_SESSION_FLAG
RET

352 PC DOS 7

CREATE_SESSION_FLAG DB 0 ;=0 New Session can be created
;=1 Client cannot handle a new session
; All other values are reserved

Comments

When a new session is going to be created the task-swapper issues the
Create Session function enabling a client to prevent the session from being
created. For example, global software that keeps information for each
session in a fixed-length data structure can fail the call if the structure does
not have enough room for another session. The newly-created session may
not be activated immediately, and other sessions can be created, destroyed
and swapped before the new session becomes active. If any client fails the
Create Session call-in function call, all clients may receive a call to the
Destroy Session call-in function, including the client that failed the Create
Session call. As a result, clients can receive a Destroy Session call without
first receiving a corresponding Create Session call. Clients can ignore this
Destroy Session call.

Destroy Session
This function notifies clients that the task-swapper is destroying a session.

For Example:

CMP AX,6 ;Destroy Session call-in function?
;Interrupts are enabled
;Calls to DOS can be made

JA CHECK_NEXT_FUNCTION

;ES:DI = call-out address of the calling task-swapper
;BX = The session ID of the session being destroyed

XOR AX,AX ;For future extensibility
RET

;All other registers are preserved.

Comments

A task-swapper calls the Destroy Session call-out function when a session is
being destroyed. Typically this will occur when the application in the current
session exits. However, the session manager that controls the task-swapper
also can provide a way for the user to terminate a session while the
application is still running or is suspended. As a result, the session being

Appendix F. Task-swapping 353

destroyed is not necessarily the current session. If any client fails the Create
Session call-in function call, all clients may receive a call to the Destroy
Session call-in function, including the client that failed the Create Session
call. As a result, clients can receive a Destroy Session call without first
receiving a corresponding Create Session call. Clients can ignore this
Destroy Session call.

Swapper Exit
This call-in function notifies global clients that the task-swapper is no longer
active.

For Example:

CMP AX,7 ;Notification task-swapper no longer active?
;Interrupts are enabled
;Calls to DOS can be made

JA OUT_OF_FUNCTIONS

;ES:DI = The call-out address of the calling task-swapper.

TEST OTHER_SWAPPER_PRESENT,BX ;Other swapper present?
XOR AX,AX ;AX = 0 for future extensibility
RET

OTHER_SWAPPER_PRESENT EQU 00000001B

; Bit 1 is set if no other active swappers
; Bit 1 is not set if at least one task-swapper
; remains after the calling task-swapper exits
;All other bits are reserved and must be 0

OUT_OF_FUNCTIONS:

Comments

A task-swapper calls this function when it is no longer active as a
task-swapper. This allows global software that performs extra processing to
disable that processing and to coexist with the task-swapper.

This function can be called by software that invokes the actual task-swapper
rather than by the task-swapper itself. For this reason the call-in address
specified in ES:DI may differ from addresses passed with other call-out
functions and may be NULL.

354 PC DOS 7

Appendix G. PC DOS 7 Viewer

The PC DOS Viewer that is included in PC DOS 7 is an online publication
viewer facility. It allows the user to search for, view and print information in
online books created by the IBM OS/2 Information Presentation Facility
Compiler (IPFC). The books must have an extension of .INF and be in the IPF
format. The PC DOS viewer supports a subset of the OS/2 IPF tags.

There are online books supplied with PC DOS 7, they are:

• PC DOS Command Reference (CMDREF.INF)

• REXX Information (DOSREXX.INF)

• PC DOS Error Message (DOSERROR.INF)

Invoking the Viewer
The PC DOS Viewer is invoked in one of two ways:

 1. Command Line

VIEW

Launches the Viewer. A list of .INF files found in the same directory
as VIEW.EXE is displayed for the user to choose a book.

VIEW BOOKNAME

Launches the Viewer and opens the specified book at the Table of
Contents.

Note: If the specified book is not in either the current directory or the
same directory VIEW.EXE is in, a path must be specified.

 2. PC DOS 7.0 Tools Group in Windows

Double click on the desired book icon to launch the Viewer and open the
desired book at the Table of Contents.

Uses of Online Documents
The uses of online document′s are many and various. For the application
developer, the use of online documents is a boost in productivity, no longer
does the developer need to create code to display the help text or the links
from subject to subject or even the string search utilities - this all becomes
part of the online document structure once it has been compiled. The final
result becomes searchable via the PC DOS viewer and allows for instant

 Copyright IBM Corp. 1995 355

access from the search results to the referenced page. All of this provides a
more consistent way of viewing help to the end-user.

As another example of the online document ′s use, an administrator may
provide the user with reference manuals for their particular company - this
results in portable and quicker access to information.

The high use of online information is very true for the OS/2 world, where
most products shipped also have some form of online help or information
with them - this provided via the use of the Information Presentation Facility.

Creating Online Documents
The information that you wish to view via the PC DOS viewer must be
prepared and compiled. The Information Presentation Facility compiler is
supplied with the OS/2 developers tool kit and only runs under OS/2. For
additional information regarding the IPF compiler please refer to the OS/2
Tool kit documentation. The current OS/2 IPF manual is OS/2 Warp IPF
Programming Guide, this is referenced in the preface section of this book.

To prepare your source files so that they may be recognized by the IPF
compiler, requires certain tags to be coded into the source file. The
following briefly describes the process of creating a viewable online
document.

The following is a simple example of using a single source file, that uses a
limited number of tags, which will produce a usable online document:

:userdoc.
:docprof.
 :title.Online Example
 :h1.Introduction
 :p.This is the introduction chapter to the rest of the document.
 :euserdoc.

The :userdoc. tag is always the first item in the source file. It identifies the
beginning of the IPF file. This tag is a signal to the IPF compiler to begin
translating the tagged file. The :euserdoc. is used to signal the end of the
tagged document.

Place the :docprof. (document profile) tag at the beginning of your source file
after the :userdoc. tag and before any heading definitions. Use the toc (table
of contents) attribute on the :docprof. tag to control the heading levels
displayed in the Content window. For example, if you want only heading
levels 1 and 2 to appear, the tagging is:

356 PC DOS 7

:docprof toc=12.

If no toc= value is specified, heading level 1 through 3 appear in the
Contents window.

Not to be confused with window titles, the text string specified with a :title.
tag is placed into the title bar of an on-line document. When the online
document is displayed, the title appears on the title line of the main window.
The tagging looks like this:

:title.Endangered Mammals

The maximum length of a title string specified with a :title. tag is 47
characters, including spaces and blanks.

The title tag provides a name for the online document, but is also used for
titles of Help windows. The title appears in the title bar of the main window.
You usually place the title tag after the :docprof. tag.

Every file must start with a :h1. (chapter heading) tag. Heading level
sequences must not skip a level in the heading hierarchy. For example, you
cannot have a heading level 1 tag (:h1.) followed by a heading level 3 tag
(:h3.).

You must have at least one paragraph tag (:p.) and associated text to
display a window. The following shows an IPF example source file:

.*
:userdoc.
 :title.Endangered Mammals
 :h1 res=001.The Manatee
 .*
 :p.
 The manatee has a broad flat tail and two flipper
 like forelegs. There are no back legs.
 The manatee′ s large upper lip is split in two and
 can be used like fingers to place food into the
 mouth. Bristly hair protrudes from its lips,
 and almost buried in its hide are small eyes, with
 which it can barely see.
 .*
 :euserdoc.

It is a good idea to give your source file the extension of IPF, so that it may
be distinguished from other files. The IPF compiler however, will append this
extension if you do not specify a file extension when compiling. The
following is the syntax that the IPF compiler will accept:

Appendix G. PC DOS 7 Viewer 357

IPFC filename [/INF] [/S] [/X] [/W] [> messageoutputfilename]

where:

filename Specifies the name of your IPF source file or base file. If you do
not give a file-name extension, the IPF compiler uses .IPF by
default. If your file has a file-name extension other than IPF,
include that file-name extension in the command line.

/INF Compiles the source file as an online document. If this parameter
is not included, the default is to compile the source file as a help
library, whose extension is .HLP.

/S Suppresses the performance of the Search function. This
parameter increases compression of compiled data by about 10%
to further reduce the storage it requires.

/X Generates and displays a cross-reference list.

/Wn Generates and displays a list of error messages. The n indicates
the level of error messages you want to receive. Values you can
specify for n are 1, 2, or 3. For more information, see Interpreting
IPFC Error Messages, that is supplied with the OS/2 tool kit.

messageoutputfilename Specifies the name of the file where error and cross
reference messages are sent. If you do not specify this
parameter, messages generated by /X and /Wn are sent to the
display screen.

The IPF compiler is run from an OS/2 command line, as in the following
example:

C:>IPFC MYFILE.IPF /INF

Files that may be viewed with either the PC DOS viewer or the OS/2 viewer,
need to have the /INF option specified. This file is portable across both
operating systems but, the following section describes functions and tags
which should not be used if the online document is to be used with the PC
DOS viewer.

IBM OS/2 Functions and Tags not Supported by DOS
The following major functions are not currently supported by the PC DOS
Viewer:

• Bookmarks

• Viewed Pages

• Libraries

358 PC DOS 7

• Graphics and hypergraphics

• Hyperlinks between books

• Launching of tutorials/applications

• Customized windows/controls

All tags and all tag options may not be supported by the PC DOS Viewer.
The following table describes the tags supported by DOS and any limitations,
if applicable.

Tag End Tag Exceptions (if any)

.br

.*

. im

:caution. :ecaution.

:cgraphic. :ecgraphic.

:color.

:dl. :edl.

:docprof. Only the toc= attr ibute is supported

:fig. :efig.

:figcap.

:fn. :efn.

:h1. - :h6. Only the following attributes are supported:
res=, id=, name=, toc=, nosearch and h ide

:hp1. - :hp9. :ehp1. -
:ehp9.

hpx, where x = 1, 2, 3, 5, 6 or 7 will result in
the string being displayed in the default font.
Italicized strings will be enclosed in quotation
marks.

:i1. - :i2. Only the following attributes are supported:
i d= , roo ts= , so r t key= and re f i d=

:isyn.

:li.

:link. :elink. Only the following attributes are supported:
re f type= and re f type=fn

:ln

:lp

:note.

:nt. :ent.

Appendix G. PC DOS 7 Viewer 359

Again, please be aware that additional information may be found in the OS/2
tool kit publications.

Tag End Tag Exceptions (if any)

:ol. :eol.

:p.

:parml. :eparml.

:pd.

:pt.

:rm.

:sl. :esl.

:table. :etable.

:title.

:ul. :eul.

:userdoc. :euserdoc.

:warning. :ewarning.

:xmp. :exmp.

360 PC DOS 7

Appendix H. Miscellaneous Control Blocks

This section identifies the structure and content of some control blocks
referenced throughout this document.

DPB - Disk Parameter Block Definition
DPB structure:

dpb STRUC
dpb_drive DB ? ; Logical drive # assoc with DPB (A=0,B=1,...)
dpb_UNIT DB ? ; Driver unit number of DPB
dpb_sector_size DW ? ; Size of physical sector in bytes

 dpb_cluster_mask DB ? ; Sectors/cluster - 1
dpb_cluster_shift DB ? ; Log2 of sectors/cluster
dpb_first_FAT DW ? ; Starting record of FATs
dpb_FAT_count DB ? ; Number of FATs for this drive

 dpb_root_entries DW ? ; Number of directory entries
 dpb_first_sector DW ? ; First sector of first cluster

dpb_max_cluster DW ? ; Number of clusters on drive + 1
dpb_FAT_size DW ? ; Number of records occupied by FAT
dpb_dir_sector DW ? ; Starting record of directory
dpb_driver_addr DD ? ; Pointer to driver
dpb_media DB ? ; Media byte

 dpb_first_access DB ? ; This is initialized to -1 to force a media
; check the first time this DPB is used

dpb_next_dpb DD ? ; Pointer to next Drive parameter block
dpb_next_free DW ? ; Cluster # of last allocated cluster
dpb_free_cnt DW ? ; Count of free clusters, -1 if unknown

dpb ENDS

DPBSIZ EQU SIZE dpb ; Size of the structure in bytes

DSKSIZ = dpb_max_cluster ; Size of disk (temp used during init only)

 Copyright IBM Corp. 1995 361

BPB - BIOS Parameter Block Definition
This structure is used to build a full DPB.

BPBLOCK STRUC
BPSECSZ DW ? ; SIZE IN BYTES OF PHYSICAL SECTOR
BPCLUS DB ? ; SECTORS/ALLOC UNIT
BPRES DW ? ; NUMBER OF RESERVED SECTORS
BPFTCNT DB ? ; NUMBER OF FATS
BPDRCNT DW ? ; NUMBER OF DIRECTORY ENTRIES
BPSCCNT DW ? ; TOTAL NUMBER OF SECTORS
BPMEDIA DB ? ; MEDIA DESCRIPTOR BYTE
BPFTSEC DW ? ; NUMBER OF SECTORS TAKEN UP BY ONE FAT

BPBLOCK ENDS

A_BPB STRUC
BPB_BYTESPERSECTOR DW ?
BPB_SECTORSPERCLUSTER DB ?
BPB_RESERVEDSECTORS DW ?
BPB_NUMBEROFFATS DB ?
BPB_ROOTENTRIES DW ?
BPB_TOTALSECTORS DW ?
BPB_MEDIADESCRIPTOR DB ?
BPB_SECTORSPERFAT DW ?
BPB_SECTORSPERTRACK DW ?
BPB_HEADS DW ?
BPB_HIDDENSECTORS DW ?

DW ?
BPB_BIGTOTALSECTORS DW ?

DW ?
DB 6 DUP(?)

A_BPB ENDS

362 PC DOS 7

CDS - Current Directory Structure
CDS items are used by the internal routines to store cluster numbers and
network identifiers for each logical drive. The ID field is used dually, both as
net ID and for a cluster number for local devices. In the case of local
devices, the cluster number will be -1 if there is a potential of the disk being
changed or if the path must be recracked. The END field is the location of
the end of the definition.

DIRSTRLEN EQU 64+3 ; Max length in bytes of directory strings
TEMPLEN EQU DIRSTRLEN*2

curdir_list STRUC
curdir_text DB DIRSTRLEN DUP (?) ; text of assignment and curdir

 curdir_flags DW ? ; various flags
curdir_devptr DD ? ; local pointer to DPB or net device
curdir_ID DW ? ; cluster of current dir (net ID)

DW ?
curdir_user_word DW ?
curdir_end DW ? ; end of assignment
curdir_type DB ? ; IFS drive (2=ifs, 4=netuse)
curdir_ifs_hdr DD ? ; Ptr to File System Header
curdir_fsda DB 2 DUP (?) ; File System Dependent Data Area

curdir_list ENDS

curdirLen EQU Size curdir_list ; Needed for
; ASM87 which doesn′ t allow
; Size directive as a macro
; argument

 curdir_netID EQU DWORD PTR curdir_ID

 ;Flag word masks
 curdir_isnet EQU 1000000000000000B
 curdir_isifs EQU 1000000000000000B ; DOS 4.0
 curdir_inuse EQU 0100000000000000B
 curdir_splice EQU 0010000000000000B
 curdir_local EQU 0001000000000000B

Purpose:
Maps drive letter to physical device and provide a way to keep track of each
directory for each drive.

Appendix H. Miscellaneous Control Blocks 363

SFT - System File Table
System File Table structures:

SF STRUC
SFLink DD ?
SFCount DW ? ; number of entries
SFTable DW ? ; beginning of array of the following

SF ENDS

 ; system file table entry
sf_entry STRUC
 sf_ref_count DW ? ; number of processes sharing entry

; if FCB then ref count
sf_mode DW ? ; mode of access or high bit on if FCB
sf_attr DB ? ; attribute of file
sf_flags DW ? ;Bits 8-15

; Bit 15 = 1 if remote file
; = 0 if local file or device
; Bit 14 = 1 if date/time is not to be
; set from clock at CLOSE. Set by
; FILETIMES and FCB_CLOSE. Reset by
; other reseters of the dirty bit
; (WRITE)
; Bit 13 = Pipe bit (reserved)
; Bits 0-7 (old FCB_devid bits)
; If remote file or local file, bit
; 6=0 if dirty Device ID number, bits
; 0-5 if local file.
; bit 7=0 for local file, bit 7
; =1 for local I/O device
; If local I/O device, bit 6=0 if EOF (input)
; Bit 5=1 if Raw mode
; Bit 0=1 if console input device
; Bit 1=1 if console output device
; Bit 2=1 if null device
; Bit 3=1 if clock device

sf_devptr DD ? ; Points to DPB if local file, points
; to device header if local device,
; points to net device header if remote

sf_firclus DW ? ; First cluster of file (bit 15 = 0)
sf_time DW ? ; Time associated with file
sf_date DW ? ; Date associated with file
sf_size DD ? ; Size associated with file
sf_position DD ? ; Read/Write pointer or LRU count for FCBs

 ; Starting here, the next 7 bytes may be used by the file system to store an ID
sf_cluspos DW ? ; Position of last cluster accessed
sf_dirsec DD ? ; Sector number of directory sector for this fil
sf_dirpos DB ? ; Offset of this entry in the above

 ; End of 7 bytes of file-system specific info.
sf_name DB 11 DUP (?) ; 11 character name that is in the

; directory entry. This is used by
; close to detect file deleted and
; disk changed errors.

364 PC DOS 7

 ; SHARING INFO
sf_chain DD ? ; link to next SF
sf_UID DW ?
sf_PID DW ?
sf_MFT DW ?
sf_lstclus DW ? ; Last cluster accessed
sf_IFS_HDR DD ?

sf_entry ENDS
sf_fsda EQU BYTE PTR sf_cluspos ;DOS 4.0

 sf_serial_ID EQU WORD PTR sf_firclus ;DOS 4.0
sf_netid EQU BYTE PTR sf_cluspos
sf_OpenAge EQU WORD PTR sf_position+2
sf_LRU EQU WORD PTR sf_position
sf_default_number EQU 5h

 ; Note that we need to mark an SFT as being busy for OPEN/CREATE. This is
 ; because an INT 24 may prevent us from ′ freeing′ it. We mark this as such
 ; by placing a -1 in the ref_count field.

sf_busy EQU -1
 ; mode mask for FCB detection

sf_isfcb EQU 1000000000000000B
 ; Flag word masks

sf_isnet EQU 1000000000000000B
sf_close_nodate EQU 0100000000000000B
sf_pipe EQU 0010000000000000B
sf_no_inherit EQU 0001000000000000B
sf_net_spool EQU 0000100000000000B
Handle_Fail_I24 EQU 0000000100000000B ;BIT 8 - DISK FULL I24 ERROR

 ; Local file/device flag masks
devid_file_clean EQU 40h ; true if file and not written
devid_file_mask_drive EQU 3Fh ; mask for drive number
devid_device EQU 80h ; true if a device
devid_device_EOF EQU 40h ; true if end of file reached
devid_device_raw EQU 20h ; true if in raw mode

 devid_device_special EQU 10h ; true if special device
devid_device_clock EQU 08h ; true if clock device
devid_device_null EQU 04h ; true if null device

 devid_device_con_out EQU 02h ; true if console output
devid_device_con_in EQU 01h ; true if consle input

Appendix H. Miscellaneous Control Blocks 365

 ; structure of devid field as returned by IOCTL is:
; BIT 7 6 5 4 3 2 1 0
; │---│---│---│---│---│---│---│---│
 ; │ I │ E │ R │ S │ I │ I │ I │ I │
 ; │ S │ O │ A │ P │ S │ S │ S │ S │
 ; │ D │ F │ W │ E │ C │ N │ C │ C │
 ; │ E │ │ │ C │ L │ U │ O │ I │
 ; │ V │ │ │ L │ K │ L │ T │ N │
 ; │---│---│---│---│---│---│---│---│
 ; ISDEV = 1 if this channel is a device
 ; = 0 if this channel is a disk file
 ; If ISDEV = 1
 ; EOF = 0 if End Of File on input
 ; RAW = 1 if this device is in Raw mode
 ; = 0 if this device is cooked
 ; ISCLK = 1 if this device is the clock device
 ; ISNUL = 1 if this device is the null device
 ; ISCOT = 1 if this device is the console output
 ; ISCIN = 1 if this device is the console input
 ; If ISDEV = 0
 ; EOF = 0 if channel has been written
; Bits 0-5 are the block device number for
 ; the channel (0 = A, 1 = B, ...)

devid_ISDEV EQU 80h
devid_EOF EQU 40h
devid_RAW EQU 20h
devid_SPECIAL EQU 10H
devid_ISCLK EQU 08h
devid_ISNUL EQU 04h
devid_ISCOT EQU 02h
devid_ISCIN EQU 01h
devid_block_dev EQU 1Fh ; mask for block device number

366 PC DOS 7

Buffer Header - Disk I/O Buffer Header
Field definition for I/O buffer information:

BUFFINFO STRUC
buf_next DW ? ; Pointer to next buffer in list
buf_prev DW ? ; Pointer to prev buffer in list
buf_ID DB ? ; Drive of buffer (bit 7 = 0)

; SFT table index (bit 7 = 1)
; = FFH if buffer free

buf_flags DB ? ; Bit 7 = 1 if Remote file buffer
; = 0 if Local device buffer
; Bit 6 = 1 if buffer dirty
; Bit 5 = Reserved
; Bit 4 = Search bit (bit 7 = 1)
; Bit 3 = 1 if buffer is DATA
; Bit 2 = 1 if buffer is DIR
; Bit 1 = 1 if buffer is FAT
; Bit 0 = Reserved

buf_sector DD ? ; Sector number of buffer (bit 7 = 0)
 ; The next two items are often refed as a word (bit 7 = 0)

buf_wrtcnt DB ? ; For FAT sectors, # times sector written out
buf_wrtcntinc DW ? ; ″ ″ ″ , # sectors between each write
buf_DPB DD ? ; Pointer to drive parameters
buf_fill DW ? ; How full buffer is (bit 7 = 1)

 buf_reserved DB ? ; make DWORD boundary for 386
BUFFINFO ENDS

buf_offset EQU DWORD PTR buf_sector
;For bit 7 = 1, this is the byte
;offset of the start of the buffer in
;the file pointed to by buf_ID. Thus
;the buffer starts at location
;buf_offset in the file and contains
;buf_fill bytes.

BUFINSIZ EQU SIZE BUFFINFO
; Size of structure in bytes

buf_Free EQU 0FFh ; buf_id of free buffer

 ;Flag byte masks
buf_isnet EQU 10000000B
buf_dirty EQU 01000000B

 ;***
buf_visit EQU 00100000B

 ;***
buf_snbuf EQU 00010000B

buf_isDATA EQU 00001000B
buf_isDIR EQU 00000100B
buf_isFAT EQU 00000010B
buf_type_0 EQU 11110001B ; AND sets type to ″none″

buf_NetID EQU BUFINSIZ

 ;
 ; Buffer Hash Entry Structure
 ;

BUFFER_HASH_ENTRY STRUC ; DOS 4.0
 EMS_PAGE_NUM DW -1 ; logical page number for EMS handle

Appendix H. Miscellaneous Control Blocks 367

BUFFER_BUCKET DD ? ; pointer to buffers
DIRTY_COUNT DB 0 ; number of dirty buffers
BUFFER_RESERVED DB 0 ; reserved
BUFFER_HASH_ENTRY ENDS

MaxBuffinBucket EQU 15 ; Max number of buffers per bucket
MaxBucketinPage EQU 2 ; Max number of buckets per 16kb page

368 PC DOS 7

Storage Header - Memory arena structure

 ; arena item
 ;
arena STRUC

arena_signature DB ? ; 4D for valid item, 5A for last item
arena_owner DW ? ; owner of arena item
arena_size DW ? ; size in paragraphs of item
arena_reserved DB 3 DUP(?) ; reserved
arena_name DB 8 DUP(?) ; owner file name

arena ENDS

arena_owner_system EQU 0 ; free block indication
arena_signature_normal EQU 4Dh ; valid signature, not end of arena
arena_signature_end EQU 5Ah ; valid signature, last block in arena

Appendix H. Miscellaneous Control Blocks 369

370 PC DOS 7

Index

Special Characters
/INF 358

Numerics
32MB, media greater than 112
8086/8088 code rules 49

A
absolute disk read/write (INT 25H/26H) 112
AC flag set condition 70
Access, Lock/Unlock File 253
Accessing POWER.EXE Controls 122
accessing the disk 7
accumulator register 136
address (INT 22H), terminate 107
address (INT 23H), Ctrl − Break exit 108
address, default disk transfer 38
address, memory map 34
Address, Set Disk Transfer 168
AL function values 273
allocate command, EMS 79
Allocate Memory 227
Allocated Memory Blocks (SETBLOCK),

Modify 229
Allocated Memory, Free 228
Allocation Table Information 169
Allocation Table Information for Specific

Device 170
APM Error Return Codes 129
APPEND 129
application swapping 325
arena structure, Memory 369
ASCII in Dump command 53
ASCII mode, I/O in 32
ASCIIZ filename string 15
Assemble command 49
Assembler Language, IBM PC 136
attribute field 87
attribute, fi le 17

auxiliary carry flag 70
Auxil iary Input 145
Auxil iary Output 146

B
base pointer 137
base register 136
binary mode, I/O in 32
BIOS parameter block (BPB) 86, 97
BIOS Parameter Block Definition 362
bit fields 209
Block Definition, BIOS Parameter 362
Block Definition, Disk Parameter 361
block device driver 85

BIOS parameter block (BPB) array 86
drive letters 85
input/output request 100
installing a block device 86
installing a character device 86
media descriptor byte 86
random I/O 85

Block Read, Random 179
Block Write, Random 181
block, parameter 39
Blocks, Control 361
blocks, memory 33
book, organization of this 1
boot record 7
boot record, extended BPB 99
boot sector format of BPB 98
BP (base pointer) 137
BPB 362
BPB (see BIOS parameter block)
Buffer Header 367
buffer memory (disk transfer area) 26
Buffered Keyboard Input 152
build BPB request 97

boot sector format 98
extended boot record 99
extended BPB structure 98
media type 98

 Copyright IBM Corp. 1995 371

busy bit 91
byte, media descriptor 95
bytes in a request header 90
bytes in directory entry 17

C
CALL FAR 110
calls for code page switching 282
calls, using PC DOS 7 function 135
Callup/Down Register Structure 323
cancel all files 116
cancel file 116
Cancel Redirection 263
carry flag 70
CDS 363
Change Current Directory (CHDIR) 206
Change File Mode (CHMOD) 221
character device driver 85

installing a new CON device 86
output request 102
terminating the input queue 102
type-ahead input buffer 102

character input/output flush request 102
character input/output status 101
Check DOSDOCK Installation 118
Check Standard Input Status 153
check, ctrl-break 195
Check, DOS Protected Mode Services 119
CHECKSUM 40
clear condition of flag 70
Clear Keyboard Buffer and Invoke a Keyboard

Function 154
clock device bit 89
Close a File Handle 214
CLOSE call 103
Close File 158
cluster number, first 20
cluster, sectors per 10
Code of a Subprocess (WAIT), Get a

Return 234
code page switching 282
Code Page, Get/Set Global 268
code segment 137
code, interrupt 2FH function 115
codes (INT 24H). error 109

Codes, APM Error Return 129
Codes, DPMS Error Return 323
codes, extended error 138
COM files 11
COM programs 136
command code 91
command files from /S format option 11
command l ine 40
command processor 41
COMMAND.COM 11, 33
Commit File 270
communication area 34
Compare command 51
compatibi l i ty mode 210
computer name 256
CONFIG.SYS 93
Console I/O, Direct 148
Console Input with Echo 143
Console Input without Echo 150
control block 33
Control Blocks 361
Control for Devices, I/O 223, 273
control strings 88
control values, I/O 32
control-break routine 42
count register 136
Country Dependent Information, Get or Set 201
Country Information, Get Extended 265
Create a File 207
Create File 165
Create New File 252
Create Subdirectory (MKDIR) 204
Create Unique File 250
Creating Online documents 356
critical error handler vector (INT 24H) 108

CALL FAR 110
device header format 112
disk error 110
error codes 109
FAIL request 112
hardware error 108
IGNORE request 112
ignore response 110
IRET execution 109

crit ical error situation 42
CS register 137

372 PC DOS 7

ctrl-break checking 195
Ctrl-Break routine 42
Ctrl − Break exit address (INT 23H) 108
Current Directory Structure 363
Current Directory, Get 226
Current Disk 167
Current Dock Status, Get 118
CY flag set condition 70

D
data area 12
data files, storage of 12
data register 136
data segment 137
Date and Time, Get/Set File′s 242
date in a directory structure 20
Date, Get 185
Date, Set 186
date, system 44
DBCS vector 267, 285
deallocate command, EMS 80
DEBUG.COM utility 45
Definition, BIOS Parameter Block 362
Definition, Disk Parameter Block 361
Delete a File from a Specified Directory

(UNLINK) 218
Delete File 162
denynone mode 212
DenyRead mode 211
DenyRead/Write mode 211
DenyWrite mode 211
descriptor byte, media 95
destination index 137
detect POWER.EXE 122
Detecting the Expanded Memory Manager 310
device driver control channel 31
device driver header 87

attribute field 87
clock device bit 89
control strings 88
definition of 87
format of 87
input device, standard 89
IOCtl bit 88
name/unit f ield 89
next device header field 87

device driver header (continued)
NUL device 89
open/close removable media bit 88
output device, standard 89
pointer to interrupt routine 89
pointer to strategy routine 89

device driver, EMS 301
device file handle, standard 16
device header format (INT 24H) 112
device, local or remote 281
Device, Redirect 261
DeviceAttributes field 290
DeviceBPB field 290
Devices, I/O Control for 223, 273
DeviceType field 289
DI flag clear condition 70
DI register 137
direct access to media 112
Direct Console I/O 148
Direct Console Input without Echo 149
direction flag 70
Directory (CHDIR), Change Current 206
Directory Structure, Current 363
Directory, Get Current 226
directory, root 11
disk accessing 7
disk format 7

boot record 7
data area 12
disk directory 11
file allocation table (FAT) 10
root directory 11

Disk Free Space, Get 199
Disk I/O Buffer Header 367
disk I/O warning 113
Disk Parameter Block Definition 361
Disk Reset 155
Disk Transfer Address (DTA), Get 190
Disk Transfer Address, Set 168
disk transfer area (DTA) 26
Disk, Current 167
Disk, Select 156
DISKCOMP utility 45
Display Output 144
Display String 151
DN flag set condition 70

Index 373

Docking Event, Get 118
done bit 91
DOS Protected Mode Services Check 119
DOSDOCK API 118
DOSDOCK Installation, Check 118
double quotation (“) 55
DPB 361
DPB Structure 171, 193
DPMS

Allocate Block of Extended Memory 320
Allocate Descriptors 316
Build Alias to Real-Mode Segment 318
Call Protected-Mode Procedure 314
Call Real-Mode Procedure (IRET) 315
Call Real-Mode Procedure (RETF) 315
Call Real-Mode Procedure Interrupt

Handler 316
Create Alias Descriptor 317
Free a Descriptor 317
Free Block of Extended Memory 320
Get Descriptor Base 319
Get Size of Largest Free Block of

Memory 320
Installation Check 314
Map Linear Memory 321
Relocate Segment to Extended Memory 322
Set Descriptor Base 318
Set Descriptor Limit 319
Set Descriptor Type/Attribute 319
Unmap Linear Memory 321

DPMS Error Return Codes 323
DS register 137
DTA (see disk transfer area)
Dump command 52
Duplicate a File Handle (DUP) 224
DYNALOAD 86

E
Echo, Console Input with 143
Echo, Console Input without 150
Echo, Direct Console Input without 149
EI flag set condition 70
ejecting media from drive control strings 278
EMM

Allocate Pages 306
Deallocate Pages 308

EMM (continued)
Get EMM Version 309
Get Page Frame Address 304
Get Status 303
Get Unallocated Page Count 305
Map Handle Page 307

EMM Version, Get 309
EMS (see expanded memory specification)
EMS-capable hardware adapter 301
enable/disable device power state (1.1) 126
end of status 117
engage/disengage power management

(1.1) 127
Enter command 55
Entry, Search for First 159
Entry, Search for Next 161
environment string, subprogram 39
error bit 91
error code information 138
error codes, status word 91
error handler vector (INT 24H), critical 108
Error Return Codes, APM 129
Error Return Codes, DPMS 323
Error, Extended 248
ES register 137
EXE extension, DEBUG 48
EXE programs 38
Execute a Program (EXEC), Load or 230
executing a subprogram 39
exit program 107
Expanded Memory Manager, Detecting 310
expanded memory specification (EMS) 301
extended 25H or 26H 112
extended BPB structure 98
Extended Country Information, Get 265
extended error codes 138
Extended Error, Get 248
extended file control block 26
Extended Open/Create 271
extra segment 137

F
FAIL request 112
failures, print 117
FAR prefix, DEBUG 50

374 PC DOS 7

FAT (see file allocation table)
FCB (see file control block)
FCBS command 27
field in parameter block 288
fields in device header 87
File (FIND FIRST), Find First Matching 235
File (FIND NEXT), Find Next Matching 237
File Access, Lock/Unlock 253
file allocation table (FAT) 10
file attribute 17
file control block (FCB) 23

extended 26
format 24
logical record size 25
opened file 23
record number 25
reserved fields 23
unopened file 23

file control block structure 23
File Handle (DUP), Duplicate a 224
File Handle, Close a 214
file handles 16
file sharing using SHARE command 27
File Size 175
file system activities 30
File Table, System 364
File′s Date and Time, Get/Set 242
file, cancel 116
File, Close 158
File, Commit 270
File, Create 165
File, Create New 252
File, Create Unique 250
File, Delete 162
File, Open 157
File, Open a 208
File, Rename 166
File, Rename a 241
file, submit 116
Filename, Parse 183
FILES command 16
files, cancel all 116
files, physical location of 10
Fill command 57
Find First Matching File (FIND FIRST) 235
Find Next Matching File (FIND NEXT) 237

first block device driver 85
First Matching File (FIND FIRST), Find 235
flags 136
flags in register command 70
flags, display 69
flush function call parameter 102
Force a Duplicate of a Handle (FORCDUP) 225
format option, /S 11
format/verify a track 293
fragments, program code 136
Free Allocated Memory 228
function calls, using PC DOS 7 135
function code, interrupt 2FH 115
function dispatcher, PC DOS 7 38
function request (INT 21H) 107

G
general registers, list of 136
generic IOCtl request 287

format/verify a track 293
get device parameters 288
read track on a logical device 292
set device parameters 288
verify a track 293
write track on a logical device 292

Get a Return Code of a Subprocess (WAIT) 234
Get Allocation Strategy 243
Get Current Directory 226
Get Current Dock Status 118
Get Date 185
Get Default DPB 171
get device information 274
get device parameters 288
Get Device Power State (1.1) 125
Get Disk Free Space 199
Get Disk Transfer Address (DTA) 190
Get Docking Event 118
Get DPB 193
Get Extended Country Information 265
Get Extended Error 248
Get InDOS Flag Address 197
get installed state 116
Get Interrupt Vector 198
get logical device function call 104
Get Machine Name 256

Index 375

get or set APM polling period 128
Get or Set Country Dependent Information 201
get or set idle detection strategy 123
get or set POWER saving level 124
get or set power status 122
Get or Set System Value 195
Get PC DOS 7 Version Number 191
Get Printer Setup 258
Get Program Segment Prefix Address 264
Get PSP Address 239
Get Redirection List Entry 259
get statistics 127
Get Time 187
Get Upper-Memory Link 246
Get Verify Setting 240
Get/Set File′s Date and Time 242
Get/Set Global Code Page 268
Global Code Page, Get/Set 268
Go command 58

H
Handle (FORCDUP), Force a Duplicate of a 225
Handle Count, Set 269
handle is local or remote 281
handler vector (INT 24H), critical error 108
handler, installing a 132
handles, file 16
hard error on disk 110
header, device driver 87

attribute field 87
clock device bit 89
control strings 88
definition of 87
format of 87
input device, standard 89
IOCtl bit 88
name/unit f ield 89
next device header field 87
NUL device 89
open/close removable media bit 88
output device, standard 89
pointer to interrupt routine 89
pointer to strategy routine 89

HEX extension, DEBUG 48
hexadecimal in Dump command 53

Hexarithmetic command 60

I
I/O Buffer Header, Disk 367
I/O Control for Devices (IOCtl) 273

AL function values 273
block device, read/write to a 277
character device, read/write to a 276
code page switching 282
description of 273
device is local or remote 280
generic IOCtl request 287

format/verify a track 293
get device parameters 288
read track on a logical device 292
set device parameters 288
verify a track 293
write track on a logical device 292

get device information 274
handle is local or remote 281
input device status 278
lock conflicts 281
logical drive check 296
media lock or unlock, and eject 278
output device status 278
query device 298
query handle 298
removable media determination 279
set device information 274
set logical drive 297
sharing and lock conflict retries 281

IBM PC Assembler Language 136
IBMBIO.COM 11
IBMDOS.COM 11
ignore response 110
index register 137
INF 355
initialization request 93
initializing a device driver 86
input bit, standard 89
Input command 61
Input Status, Check Standard 153
Input, Auxiliary 145
input/output request 100
installed state, get 116

376 PC DOS 7

install ing device drivers 85
installing the handler 132
instruction pointer 137
INT21 function call 135
internal stack 137
interrupt 21H, issuing 135
Interrupt 2FH Function AH=54H POWER.EXE

control 120
interrupt 2FH function AX-530BH PM event

broadcast 120
interrupt 2FH function AX-530CH PM event first

phase broadcast 122
interrupt f lag 70
interrupt routines 90

build BPB request 97
character input/output flush request 102
character input/output status requests 101
command code value 92
generic IOCtl request 104
get logical device request 104
initialization request 93
input/output request 100
IOCtl query 105
media check request 94
media descriptor byte 95
nondestructive input request 101
open or close request 102
removable media request 103
request data structures 92
request header 90
set logical device request 105

Interrupt Vector, Get 198
Interrupt Vector, Set 177
invalid responses 111
IOCtl (see I/O Control for Devices)
IOCtl bit 88
IOCtl query 105
IOCtl request, generic 104
IP (instruction pointer) 137
IPF 355
IPF compiler 356
IPFC 355
IRET (return-from-interrupt instruction) 108

K
Keyboard Buffer and Invoke a Keyboard

Function, Clear 154
Keyboard Input, Buffered 152

L
LAN (see local area network)
LIM (see Lotus/Intel/Microsoft)
LIM specification 301
List Entry, Get Redirection 259
Load command 61
Load or Execute a Program (EXEC) 230
load time, identify program at 36
loading a subprogram 39
loading an overlay 41
loading data using DEBUG 62
local area network (LAN) 21
local device, handle is 281
local or remote device 280
location of files on disk 10
lock conflicts 281
Lock/Unlock File Access 253
locking media drive control strings 278
logical device function call, get/set 104
logical drive check 296
logical record size 25
logical sector numbers (LSN) 113
Lotus/Intel/Microsoft (LIM) 301
LSN (see logical sector numbers)

M
Machine Name, Get 256
map command, EMS 80
media >32MB 112
media determination, removable 279
media warning, removable 114
MediaType field 290
Memory arena structure 369
memory blocks 33
Memory Blocks (SETBLOCK), Modify

Allocated 229
memory buffer (disk transfer area) 26
memory map address 34

communication area 34

Index 377

memory supported by PC DOS 7 301
Memory, Allocate 227
Memory, Free Allocated 228
Mode (CHMOD), Change File 221
Modify Allocated Memory Blocks

(SETBLOCK) 229
Move command 64
Move File Read Write Pointer (LSEEK) 219
multiplex (INT 2FH) 115

APPEND 129
install a handler 132
interrupt 2FH function code 115
print error codes 116

N
NA flag clear condition 70
name a file 15
Name command 65
Name, Get Machine 256
name/unit f ield 89
NAME=parameter 39
National Language Support (NLS) 21
NC flag set condition 70
NEAR prefix, DEBUG 50
network path 21
network redirection 260
NewName string 241
next device header 87
Next Entry, Search for 161
Next Matching File (FIND NEXT), Find 237
NG flag set condition 70
NLS (see National Language Support)
NLSFUNC DOS extension 266
nondestructive input request 101
NUL device 89
numbering convention, register 137
NumberOfCylinders field 290
NV flag clear condition 70
NZ flag clear condition 70

O
Open a File 208
Open a File, matrix of 213
OPEN call 103

Open File 157
open mode 209
Open/Create, Extended 271
opened file control block 23
OS/2 Toolkit 356
output bit, standard 89
Output command 66
Output, Auxiliary 146
Output, Display 144
Output, Printer 147
output/input request 100
OV flag set condition 70
overflow flag 70
overlay, loading an 41

P
paragraphs of memory 33
Parameter Block Definition, BIOS 362
Parameter Block Definition, Disk 361
parameter block to subprogram 39
parameter block, field in 288
parity flag 70
Parse Filename 183
parsing 27
path, network 21
PC DOS 7 format command 7
PC DOS 7 function dispatcher 38
PC DOS 7 organization of book 1
PC DOS 7 registers, see registers, PC DOS 7
PC DOS 7 system files 11
PC DOS 7 Version Number, Get 191
PC DOS 7 Viewer 355
PC DOS 7, hardware required 5
PE flag set condition 70
physical location of files 10
PL flag clear condition 70
PM event broadcast, interrupt 2FH function

AX-530BH 120
PM event first phase broadcast, interrupt 2FH

function AX-530CH 122
PO flag clear condition 70
pointer to next device header field 87
pointer to strategy/interrupt routines 89
pointers, list of 137
POWER.EXE control, Interrupt 2FH Function

A H = 5 4 H 120

378 PC DOS 7

Prefix Address, Get Program Segment 264
prefix structure, program segment 36
print error codes 116
print failures 117
print, resident part of 115
Printer Output 147
Printer Setup, Get 258
Printer Setup, Set 257
Proceed command 67
Process (EXIT), Terminate a 233
processor, calling a command 41
Program (EXEC), Load or Execute a 230
program (INT 20H), terminate 107
program code fragments 136
program remain resident 114
program segment 36
program segment prefix 38
Program Segment Prefix Address, Get 264
program segment prefix structure 36
Program Segment, Create New 178
Program Terminate 142

Q
Quit command 68

R
Random Block Read 179
Random Block Write 181
Random Read 172
Random Write 173
re-displaying Load command 62
Read from a File or Device 215
read track on a logical device 292
Read Write Pointer (LSEEK), Move 219
Read, Random 172
Read, Random Block 179
Read, Sequential 163
read/write (INT 25H/26H), absolute disk 112
Record Field, Set Relative 176
record number 25
Redirect Device 261
Redirection List Entry, Get 259
Redirection, Cancel 263
redirection, network 260

reduce allocated memory 33
Register command 68

changing a flag 70
list of flag settings 70

Register Structure, Callup/Down 323
registers, display 69
remain resident, program 114
remote device, handle is 281
remote or local device 280
removable media determination 279
removable media warning 114
Remove Subdirectory (RMDIR) 205
Rename a File 241
Rename File 166
reopen a file (matrix) 213
request header 90

busy bit 91
command code field 91
done bit 91
error codes, status word 91
status field 91
unit code field 91

reserved fields in file control block 23
Reset, Disk 155
resident (INT 27H), terminate but stay 114
resident part of print 115
responding to errors 138
response, ignore 110
responses, invalid 111
Return Code of a Subprocess (WAIT), Get 234
Return Codes, APM Error 129
Return Codes, DPMS Error 323
return from interrupt (IRET) 43
return-from-interrupt instruction (IRET) 108
ROM BIOS routine 145
ROM communication area 34
root directory 11
routines, pointer to strategy/interrupt 89

S
S format option 11
save area, parameter 38
save mode of device driver 90
Search command 71
Search for First Entry 159

Index 379

Search for Next Entry 161
search in disk directory 26
sector sequence on formatted disk 7
sector size 7
Segment Prefix Address, Get Program 264
segment prefix, program 38
segment register 137
Segment, Create New Program 178
Select Disk 156
separators, fi lename 183
Sequential Read 163
Sequential Write 164
Services Check, DOS Protected Mode 119
Set Allocation Strategy 245
set condition of flag 70
Set Date 186
set device information 274
set device parameters 288
set device power state (1.1) 125
Set Disk Transfer Address 168
Set Extended Error 255
Set Handle Count 269
set logical device function call 105
set logical drive 297
Set Printer Setup 257
Set PSP Address 238
Set Relative Record Field 176
Set Time 188
Set Upper-Memory Link 247
Set/Reset Verify Switch 189
Setting, Get Verify 240
SFT 364
sharing and lock conflicts 281
sharing mode 209
SI register 137
sign flag 70
single block device driver 85
single quotation (‘) 55
Size, File 175
size, logical record 25
source index 137
SP (stack pointer) 137
SP register 38
SpecialFunctions field 288
SS register 137
stack, internal 137

stack, user 109
standard device file handle 16
standard input bit 89
standard output bit 89
starting a device driver 86
starting DEBUG 45
static environment 38
status 117
status command, EMS 81
status field 91
status function call parameter 101
status word error codes 91
status, end of 117
Status, Get Current Dock 118
STDAUX 16
STDERR 16
STDIN 16
STDOUT 16
STDPRN 16
Storage Header 369
String, Display 151
string, NewName 241
 string, subprogram environment 39
Structure, Current Directory 363
structure, Memory arena 369
structure, program segment prefix 36
subdirectories, location of 12
Subdirectory (MKDIR), Create 204
Subdirectory (RMDIR), Remove 205
subdirectory entries 17
subfunction calls for code page switching 282
submit fi le 116
Subprocess (WAIT), Get a Return Code of

a 234
support of expanded memory 301
swapping, application 325
swapping, task 325
Switch, Set/Reset Verify 189
system date and time 44
System File Table 364
System Value, Get or Set 195

T
Table, System File 364
task-swapping 325

activate session 350

380 PC DOS 7

task-swapping (continued)
API info struc data structure 331
build call-out chain 336
client initialization 327
client int 2FH handler 327
client int 2FH handler functions 335
client termination 330
client, the term 326
create session 352
destroy session 353
detect swapper (function 4B02H) 335
Function Descriptions 334
get version 340
hook call-out 342
identify instance data 338
init swapper 346
instance item struc data structure 333
mainframe communications software 325
pending creation of a new session 329
pending session switch 328
protocol 326
query API support 344
query suspend 347
session active 351
suspend session 349
swapper exit 354
swapper ver structure 333
switch call back info data structure 330
task-swapper call-in functions 339, 345
task-swapper Int 2FH handler functions 335
test memory region 341
TSR programs 325
unhook call-out 343
Win386 startup info struc data structure 332
with Windows 326

terminate (INT 20H), program 107
Terminate a Process (EXIT) 233
terminate address (INT 22H) 107
terminate but stay resident (INT 27H) 114
Terminate Process and Remain Resident 192
Terminate, Program 142
terminating the input queue 102
terminators, f i lename 183
time in a directory structure 19
Time, Get 187
Time, Get/Set File′s Date and 242

Time, Set 188
time, system 44
Toolkit, OS/2 356
Trace command 72
track, format/verify a 293
TrackLayout field 291
Transfer Address, Set Disk 168
transfer area, disk 26

U
UMB support 94
Unassemble command 74
unit code field 91
unit field 89
unlocking media drive control strings 278
unopened file control block 23
UP flag clear condition 70
user stack 109
using PC DOS 7 function calls 135
utility, DEBUG.COM 45
utility, DISKCOMP 45

V
values in a command code 91
vector (INT 24H), critical error handler 108
vector table 34
Vector, Get Interrupt 198
Vector, Set Interrupt 177
vectors, requesting and specifying the

interrupt 44
verify a track 293
Verify Setting, Get 240
Verify Switch, Set/Reset 189

W
word fields in device header 87
wraparound 100
Write command 76
Write to a File or Device 216
write track on a logical device 292
Write, Random 173
Write, Random Block 181
Write, Sequential 164

Index 381

Z
zero flag 70
ZR flag set condition 70

382 PC DOS 7

IBML 

Printed in U.S.A.

GG24-4459-00

	PC DOS 7 Technical Update
	Abstract
	Contents
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications

	Chapter 1. Introduction
	What¢ s New for PC DOS 7
	New, Changed or Removed PC DOS Commands and Device Drivers
	New, Changed or Removed Optional Tools
	New, Changed or Removed .INI Files
	New, Changed or Removed Keyboard Layouts and Code Pages
	Minimum Hardware Configuration

	Chapter 2. Accessing Disks
	The Disk Format
	The Boot Record
	The File Allocation Table (FAT)
	The Disk Directory
	The Data Area
	Accessing the Disk
	Requesting Drive and Disk Information
	Reading and Writing Data Directly to the Disk

	Chapter 3. Accessing Files with File Handles
	Filenames
	File Handles
	Special File Handles
	Reading and Writing Data to a File
	Requesting and Specifying File Attributes
	Accessing Subdirectories
	Accessing Directories
	Finding Files in Directories
	Requesting and Specifying National Language Support (NLS)
	Controlling Network Operations

	Chapter 4. Accessing Files Using File Control Blocks
	The File Control Block (FCB)
	The Extended FCB
	The Disk Transfer Area (DTA)
	Accessing Files
	Accessing Sequential Records
	Accessing Random Records
	Finding Files in Directories

	Chapter 5. Managing Device I/ O
	Managing Display I/ O
	Managing Keyboard I/ O
	Managing Miscellaneous I/ O
	Managing File System Activities
	Accessing the System Device Drivers¢ Control Channel
	Reading and Writing Data in Binary and ASCII Modes

	Chapter 6. Controlling Processes
	Allocating Memory
	PC DOS 7 Memory Management
	The PC DOS 7 Memory Map
	Identifying a Program at Load Time
	The Program Segment
	Loading and Executing Overlays
	The Parameter Block
	Terminating a Program/ Subprogram
	Loading an Overlay without Executing It
	Calling a Command Processor
	Responding to Errors
	Responding to a Control- Break Action
	Requesting and Specifying the System Date and Time
	Requesting and Specifying the Interrupt Vectors

	Chapter 7. Debugging a Program
	The DEBUG Utility
	Starting the DEBUG. COM Program
	Entering Commands at the DEBUG Prompt
	DEBUG Command Summary
	The DEBUG Work Space
	A (Assemble) Command
	Purpose
	Format
	Parameters
	Comments
	Examples
	C (Compare) Command
	Purpose
	Format
	Parameters
	Comments
	Examples
	D (Dump) Command
	Purpose
	Format
	Parameters
	Comments
	E (Enter) Command
	Purpose
	Format
	Parameters
	Comments
	F (Fill) Command
	Purpose
	Format
	Parameters
	Comments
	Examples
	G (Go) Command
	Purpose
	Format
	Parameters
	Comments
	H (Hexarithmetic) Command
	Purpose
	Format
	Examples
	I (Input) Command
	Purpose
	Format
	Parameters
	Examples
	L (Load) Command
	Purpose
	Format
	Parameters
	Comments
	M (Move) Command
	Purpose
	Format
	Parameters
	Comments
	Examples
	N (Name) Command
	Purpose
	Format
	Comments
	Examples
	O (Output) Command
	Purpose
	Format
	Parameters
	Examples
	P (Proceed) Command
	Purpose
	Format
	Parameters
	Comments
	Examples
	Q (Quit) Command
	Purpose
	Format
	Comments
	Examples
	R (Register) Command
	Purpose
	Format
	Parameters
	Comments
	S (Search) Command
	Purpose
	Format
	Comments
	Examples
	T (Trace) Command
	Purpose
	Format
	Parameters
	Comments
	Examples
	U (Unassemble) Command
	Purpose
	Format
	Parameters
	Comments
	W (Write) Command
	Purpose
	Format
	Parameters
	Comments
	XA (EMS Allocate) Command
	Purpose
	Format
	Comments
	Examples
	XD (EMS Deallocate) Command
	Purpose
	Format
	Comments
	Examples
	XM (EMS Map) Command
	Purpose
	Format
	Comments
	Examples
	XS (EMS Status) Command
	Purpose
	Format
	Comments
	Examples
	DEBUG Error Messages

	Chapter 8. Writing an Installable Device Driver
	Types of Device Drivers
	Character Device Drivers
	Block Device Drivers
	How PC DOS 7 Installs Device Drivers
	The Basic Parts of a Device Driver
	The Device Driver Header
	The Strategy Routine
	The Interrupt Routine
	How PC DOS 7 Passes a Request
	Responding to Requests
	Initialization Request
	Media Check Request
	Build BPB Request
	Input and Output Requests
	Nondestructive Input No Wait Request
	Character Input and Output Status Requests
	Character Input and Output Flush Requests
	Open and Close Requests
	Removable Media Request
	Output Until Busy
	Generic IOCTL Request
	Get Logical Device Request
	Set Logical Device Request
	IOCtl Query

	Appendix A. PC DOS 7 Interrupts
	Interrupt 20H Program Terminate
	Interrupt 21H Function Request
	Interrupt 22H Terminate Address
	Interrupt 23H Ctrl- Break Exit Address
	Interrupt 24H Critical Error Handler Vector
	Interrupt 25H/ 26H Absolute Disk Read/ Write
	Interrupt 27H Terminate but Stay Resident
	Interrupt 28H- EH Reserved for PC DOS 7
	Interrupt 2FH Multiplex Interrupt
	DOSDOCK API
	APM Error Return Codes and Descriptions
	Interrupt 30H- 3FH Reserved for PC DOS 7

	Appendix B. PC DOS 7 Function Calls
	Using PC DOS 7 Function Calls
	Program Code Fragments
	COM Programs
	PC DOS 7 Registers
	Responding to Errors
	Extended Error Codes
	H Program Terminate
	Purpose
	Examples
	Comments
	H Console Input with Echo
	Purpose
	Examples
	Comments
	H Display Output
	Purpose
	Examples
	Comments
	H Auxiliary Input
	Purpose
	Examples
	Comments
	H Auxiliary Output
	Purpose
	Examples
	Comments
	H Printer Output
	Purpose
	Examples
	H Direct Console I/ O
	Purpose
	Examples
	Comments
	H Direct Console Input Without Echo
	Purpose
	Examples
	Comments
	H Console Input Without Echo
	Purpose
	Examples
	Comments
	H Display String
	Purpose
	Examples
	Comments
	AH Buffered Keyboard Input
	Purpose
	Examples
	Comments
	BH Check Standard Input Status
	Purpose
	Examples
	Comments
	CH Clear Keyboard Buffer and Invoke a Keyboard Function
	Purpose
	Examples
	DH Disk Reset
	Purpose
	Examples
	Comments
	EH Select Disk
	Purpose
	Examples
	Comments
	FH Open File
	Purpose
	Examples
	Comments
	H Close File
	Purpose
	Examples
	Comments
	H Search for First Entry
	Purpose
	Examples
	Comments
	H Search for Next Entry
	Purpose
	Examples
	Comments
	H Delete File
	Purpose
	Examples
	Comments
	H Sequential Read
	Purpose
	Examples
	Comments
	H Sequential Write
	Purpose
	Examples
	Comments
	H Create File
	Purpose
	Examples
	Comments
	H Rename File
	Purpose
	Examples
	Comments
	H Current Disk
	Purpose
	Examples
	Comments
	AH Set Disk Transfer Address
	Purpose
	Examples
	Comments
	BH Allocation Table Information
	Purpose
	Examples
	Comments
	CH Allocation Table Information for Specific Device
	Purpose
	Examples
	Comments
	FH Get Default Drive Parameter Block
	Purpose
	Examples
	Comments
	H Random Read
	Purpose
	Examples
	Comments
	H Random Write
	Purpose
	Examples
	Comments
	H File Size
	Purpose
	Examples
	Comments
	H Set Relative Record Field
	Purpose
	Examples
	Comments
	H Set Interrupt Vector
	Purpose
	Examples
	Comments
	H Create New Program Segment
	Purpose
	Examples
	Comments
	H Random Block Read
	Purpose
	Examples
	Comments
	H Random Block Write
	Purpose
	Examples
	Comments
	H Parse Filename
	Purpose
	Examples
	Comments
	AH Get Date
	Purpose
	Examples
	Comments
	BH Set Date
	Purpose
	Examples
	Comments
	CH Get Time
	Purpose
	Examples
	Comments
	DH Set Time
	Purpose
	Examples
	Comments
	EH Set/Reset Verify Switch
	Purpose
	Examples
	Comments
	FH Get Disk Transfer Address (DTA)
	Purpose
	Examples
	Comments
	H Get DOS Version Number
	Purpose
	Examples
	Comments
	H Terminate Process and Remain Resident
	Purpose
	Examples
	Comments
	H Get Drive Parameter Block
	Purpose
	Examples
	Comments
	H Get or Set System Value
	Purpose
	Examples
	H Get InDOS Flag Address
	Purpose
	Examples
	Comments
	H Get Interrupt Vector
	Purpose
	Examples
	Comments
	H Get Disk Free Space
	Purpose
	Examples
	Comments
	H Get or Set Country Dependent Information
	Purpose
	Examples
	Comments
	Results
	H Create Subdirectory (MKDIR)
	Purpose
	Examples
	Comments
	AH Remove Subdirectory (RMDIR)
	Purpose
	Examples
	Comments
	BH Change the Current Directory (CHDIR)
	Purpose
	Examples
	Comments
	CH Create a File
	Purpose
	Examples
	Comments
	DH Open a File
	Purpose
	Examples
	Comments
	EH Close a File Handle
	Purpose
	Examples
	Comments
	FH Read from a File or Device
	Purpose
	Examples
	Comments
	H Write to a File or Device
	Purpose
	Examples
	Comments
	H Delete a File from a Specified Directory (UNLINK)
	Purpose
	Examples
	Comments
	H Move File Read/ Write Pointer (LSEEK)
	Purpose
	Examples
	Comments
	H Change File Mode (CHMOD)
	Purpose
	Examples
	Comments
	H I/O Control for Devices
	Purpose
	H Duplicate a File Handle (DUP)
	Purpose
	Examples
	Comments
	H Force a Duplicate of a Handle (FORCDUP)
	Purpose
	Examples
	Comments
	H Get Current Directory
	Purpose
	Examples
	Comments
	H Allocate Memory
	Examples
	Comments
	H Free Allocated Memory
	Purpose
	Examples
	Comments
	AH Modify Allocated Memory Blocks (SETBLOCK)
	Purpose
	Examples
	Comments
	BH Load or Execute a Program (EXEC)
	Purpose
	Examples
	Comments
	CH Terminate a Process (EXIT)
	Purpose
	Examples
	Comments
	DH Get Return Code of a Subprocess (WAIT)
	Purpose
	Examples
	Comments
	EH Find First Matching File (FIND FIRST)
	Purpose
	Examples
	Comments
	FH Find Next Matching File (FIND NEXT)
	Purpose
	Examples
	Comments
	H Set Program Segment Prefix Address
	Purpose
	Examples
	H Get Program Segment Prefix Address
	Purpose
	Examples
	Comments
	H Get Verify Setting
	Purpose
	Examples
	Comments
	H Rename a File
	Purpose
	Examples
	Comments
	H Get/Set File¢ s Date and Time
	Purpose
	Examples
	Comments
	H Get Allocation Strategy
	Purpose
	Examples
	Comments
	H Set Allocation Strategy
	Purpose
	Examples
	Comments
	H Get Upper- Memory Link
	Purpose
	Examples
	Comments
	H Set Upper- Memory Link
	Purpose
	Examples
	Comments
	H Get Extended Error
	Purpose
	Examples
	Comments
	AH Create Unique File
	Purpose
	Examples
	Comments
	BH Create New File
	Purpose
	Examples
	Comments
	CH Lock/Unlock File Access
	Purpose
	Examples
	Comments
	D0AH Set Extended Error
	Purpose
	Examples
	Comments
	E00H Get Machine Name
	Purpose
	Examples
	Comments
	E02H Set Printer Setup
	Purpose
	Examples
	Comments
	E03H Get Printer Setup
	Purpose
	Examples
	Comments
	F02H Get Redirection List Entry
	Purpose
	Examples
	Comments
	F03H Redirect Device
	Purpose
	Examples
	Comments
	F04H Cancel Redirection
	Purpose
	Examples
	Comments
	H Get Program Segment Prefix Address
	Purpose
	Examples
	Comments
	H Get Extended Country Information
	Purpose
	Examples
	Comments
	Examples
	H Get/Set Global Code Page
	Purpose
	Comments
	H Set Handle Count
	Purpose
	Examples
	Comments
	H Commit File
	Purpose
	Examples
	Comments
	CH Extended Open/ Create
	Purpose
	Examples
	Comments

	Appendix C. I/O Control for Devices (IOCtl)
	Purpose
	Comments
	H
	I/ O Control for Devices (IOCtl)
	Calls AL= 00H and AL= 01H
	Purpose
	Examples
	Comments
	Calls AL= 02H, AL= 03H
	Purpose
	Examples
	Comments
	Calls AL= 04H, AL= 05H
	Purpose
	Examples
	Comments
	Calls AL= 06H and AL= 07H
	Purpose
	Examples
	Comments
	Call AL= 08H
	Purpose
	Examples
	Comments
	Call AL= 09H
	Purpose
	Examples
	Comments
	Call AL= 0AH
	Purpose
	Examples
	Comments
	Call AL= 0BH
	Purpose
	Examples
	Comments
	Call AL = 0CH
	Purpose
	Examples
	Call AL = 0DH
	Purpose
	Examples
	Comments
	Call AL = 0EH Get Logical Drive Map
	Purpose
	Examples
	Comments
	Call AL = 0FH Set Logical Drive Map
	Purpose
	Examples
	Comments
	Call AL = 10H Query IOCTL Handle
	Purpose
	Examples
	Comments
	Call AL = 11H Query IOCTL Device
	Purpose
	Examples
	Comments

	Appendix D. Expanded Memory Support
	Function 1 Get Status
	Purpose
	Examples
	Comments
	Function 2 Get Page Frame Address
	Purpose
	Examples
	Comments
	Function 3 Get Unallocated Page Count
	Purpose
	Examples
	Comments
	Function 4 Allocate Pages
	Purpose
	Examples
	Comments
	Function 5 Map Handle Page
	Purpose
	Examples
	Comments
	Function 6 Deallocate Pages
	Purpose
	Examples
	Comments
	Function 7 Get EMM Version
	Purpose
	Examples
	Comments
	Detecting the Expanded Memory Manager
	Examples

	Appendix E. DOS Protected Mode Services
	Interrupt 2FH Function AX= 43E0H DPMS Installation Check
	Purpose
	Interrupt 31H Function AX= 0100H Call Proteted- Mode Procedure
	Comments
	Interrupt 31H Function AX= 0101H Call Real- Mode Procedure (RETF)
	Comments
	Interrupt 31H Function AX= 0102H Call Real- Mode Procedure (IRET)
	Comments
	Interrupt 31H Function AX= 0103H Call Real- Mode Interrupt Handler
	Purpose
	Comments
	Interrupt 31H Function AX= 0200H Allocate Descriptors
	Purpose
	Comments
	Interrupt 31H Function AX= 0201H Free a Descriptor
	Purpose
	Comments
	Interrupt 31H Function AX= 0202H Create Alias Descriptor
	Purpose
	Comments
	Interrupt 31H Function AX= 0203H Build Alias to Real- Mode Segment
	Purpose
	Comments
	Interrupt 31H Function AX= 0204H Set Descriptor Base
	Comments
	Interrupt 31H Function AX= 0205H Set Descriptor Limit
	Comments
	Interrupt 31H Function AX= 0206H Set Descriptor Type/ Attribute
	Comments
	Interrupt 31H Function AX= 0207H Get Descriptor Base
	Comments
	Interrupt 31H Function AX= 0300H Get Size of Largest Free Block of
	Memory
	Comments
	Interrupt 31H Function AX= 0301H Allocate Block of Extended Memory
	Comments
	Interrupt 31H Function AX= 0302H Free Block of Extended Memory
	Comments
	Interrupt 31H Function AX= 0303H Map Linear Memory
	Comments
	Interrupt 31H Function AX= 0304H Unmap Linear Memory
	Comments
	Interrupt 31H Function AX= 0400H Relocate Segment to Extended
	Memory
	Comments
	Interrupt 31H DPMS Error Return Codes
	Callup/ Down Register Structure

	Appendix F. Task-swapping
	Client Initialization
	The Client Int 2FH Handler
	Responding to a Pending Session Switch
	Responding to the Pending Creation of a New Session
	Client Termination
	The Switch_ Call_ Back_ Info Data Structure
	The API_ Info_ Struc Data Structure
	The Win386_ Startup_ Info_ Struc Data Structure
	The Instance_ Item_ Struc Data Structure
	The Swapper_ Ver_ Structure
	Function Descriptions
	Task- swapper Int 2FH Handler Functions
	Client Int 2FH Handler Functions
	Build Call- out Chain
	Identify Instance Data
	Task- swapper Call- In Functions
	Get Version
	Test Memory Region
	Hook Call- out
	Unhook Call- out
	Query API Support
	Task- swapper Call- in Functions
	Create Session

	Appendix G. PC DOS 7 Viewer
	Invoking the Viewer
	Uses of Online Documents
	Creating Online Documents
	IBM OS/ 2 Functions and Tags not Supported by DOS

	Appendix H. Miscellaneous Control Blocks
	DPB - Disk Parameter Block Definition
	BPB - BIOS Parameter Block Definition
	CDS - Current Directory Structure
	SFT - System File Table
	Buffer Header - Disk I/ O Buffer Header
	Storage Header - Memory arena structure

	Index
	Special Characters
	Numerics B
	A
	C
	D
	E
	F
	G
	I
	H
	K
	L
	M
	N P
	O
	Q
	R
	S
	T
	U
	V
	W
	Z

