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LANGUAGE BINDINGS FOR GRAPHICS
FUNCTIONS TO ENABLE ONE APPLICATION
PROGRAM TO BE USED IN DIFFERENT
PROCESSING ENVIRONMENTS

This is a continuation of application Ser. No.
06/856,710 filed Apr. 28, 1986, now abandoned.

BACKGROUND OF THE INVENTION

The invention is in the field of computer graphics,
and more particularly concerns the operation of diverse
graphics processors in response to a single graphics
application program written in a certain programming
language, the response of any graphics processor af-
forded by means of a set of common language linkages
that translate the application program functions into
sets of commands and data for the processor.

As is known in the art, a graphics processor is a soft-
ware construct embracing a set of callable subroutines,
functions, or commands that provides an interface be-
tween graphics application programs written in device-
independent languages and a graphics output device
that produces graphs defined by the application pro-
grams. The graphics processor constitutes an intermedi-
ary between an application program written in a high-
level, user-comprehendible programming language and
device-dependent graphics device processors, which
respond to sets of low-level instructions. The volume by
J. Foley and A. Van Dam, entitled “Fundamentals Of
Interactive Computer Graphics,” Addison-Wesley,
1982, 1984 is instructive in the characteristics and opera-
tions of graphics processors.

In the past, the structure and operation of a graphics
processor have had to take into account the characteris-
tics of the software and hardware context within which
the processor operates. Thus, a representative graphics
processor is the graphics data display manager
(GDDM) processing subsystem designed for operation
in the main frame computer environment exemplified
by the System 370 computing system available from
IBM. The GDDM provides a graphics-output-device-
independent interface to an application programmer,
receives application language function or subroutine
calls which set processor operational conditions and
activate processor graphical primitive commands, and
operates an output device driver, which produces graph
representations corresponding to the called commands
and having attributes determined by the set conditions.

Another graphics processor is represented by the
proposed Computer Graphics Interface (CGI) Standard
X3.122 promulgated by ANSI. The Computer Graphics
Interface defines the characteristics of a graphics pro-
cessor which stands between output device-specific
drivers and output device-independent application pro-
cesses in a graphics environment. For application pro-
grams, the CGI processor performs receiving and oper-
ating functions that correspond to those of the GDDM.
However, the CGI assumes a basic set of graphics prim-
itives such as shapes, lines, and text characters, and
associates with each set of primitives a respective set of
primitive attributes such as color, line thickness, and
character type. The CGI receives the application pro-
gram graphics command and attribute information in
the form of one or more standard data objects called
“metafiles.” A metafile is a device-independent descrip-
tion of a graph or graph portion in terms of graphical
primitive elements such as lines or text and primitive
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attributes such as line color and text style. The metafiles
received by the processor cause it to operate a specified
output device driver. An IBM product, the personal
computer AT/370, has available a graphics processor
referred to as the Virtual Device Interface (VDI),
which embodies the CGI Standard.

It will be evident to those skilled in the art that the
subroutines employed by a GDDM-type processor to
transform application program statements to graphical
primitive commands and attributes differ from those of
a CGI processor. Other differences between the proces-
sors can exist. For example, although both the GDDM
and the VDI embodiments employ point coordinates in
line drawing and object positioning, the processors use
different structures to organize the data points: the
GDDM point array is organized as (xi, X2, . . . ,Xn),
(Y1,Y2: - - - »¥n), while the VDI structures its points in the
form (%1,¥1), - - - s(XmY¥n). Further distinctions include:
different character codes; different color representation
and indexing; and different forms of representation for
graphical primitive attributes.

From the standpoint of programmer efficiency, it
would be desirable to enable different graphics proces-
sors to respond uniformly to a single high-level graphics
application language program. This would permit an
application programmer to create a graphics program
using a single set of statements, which would result in
the creation of identical graphs using any one of a num-
ber of different graphics processing facilities. This prop-
erty is commonly called portability. However, to date,
application programmers must construct graphics pro-
grams that are tailored to the specific characteristics of
the graphics processing service embodied in the com-
puting facility available to the programmer. Thus, even
when the programmer employs the same graphics appli-
cation language to operate different graphic processing
services, the programmer must construct an application
program tailored to the specific graphics processor. In
this regard, then, graphics application programs are not
portable between different processing facilities, even if
expressed in the same language.

Therefore, there is an evident need for a construct
that will provide a mode of establishing linkages to any
of a variety of different graphics processors from a
single graphics application program rendered in a par-
ticular programming language.

SUMMARY OF THE INVENTION

The primary objective of this invention is, then, to
provide such linkages in the form of common language
bindings that will permit a single graphics application
program, written in a particular programming lan-
guage, to operate any one of a plurality of respectively-
constructed graphics processors.
~ The invention is expressed as a process construct for
providing a language binding linking a graphics applica-
tion interface and a graphics processor. The construct
provides for: translating application language graphics
specification data into graphics process-specific com-
mands and attributes; building command and attribute
data transfer structures for translated graphics process-
specific commands and attributes; and establishing a
command and attribute data transfer path for providing
the built data structures from the graphics application
interface to the graphics processor.

The process construct is embodied in a representative
graphics application programming language context.
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The above objects and other attendant advantages of
the invention will become clearer when the following
detailed description of the invention is read in light of
the below-described drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is an illustration of a desk top computer-based
graphics processing system in which one embodiment
of the invention is used.

FIG. 2 is an illustration of a mainframe computer-
based graphics processing system in which a second
embodiment of the invention is used.

FIG. 3 illustrates a chart to be drawn by the systems
of FIGS. 1 and 2 utilizing the invention.

FIG. 4 is a flow diagram illustrating, in one major
branch, an embodiment of the invention for use with the
system of FIG. 1 and, in the second major branch, an-
other embodiment of the invention for use with the
system of FIG. 2.

FIG. S is an illustration of the data structures and data
and command paths characteristic to the two embodi-
ments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Refer now to FIG. 1 for an understanding of a desk
top personal computer-based graphics processing sys-
tem. The system consists of a desk top processor such as
the well-known Personal Computer AT/370 available
from IBM. One or more graphics output devices such as
the device 12 can be driven by the processor 10. The
desk-top graphics processing hardware complement is
completed by a direct access storage facility (DASF)
14, such as a disk drive which is attached to the proces-
sor 10 for extended storage.

Conventionally, the processor 10 is embodied in a
desk-top processor module 17 which includes a key-
board through which user-originated application input
parameters can be entered into the graphics processing
system. The console 17 also includes a CRT display
providing a user/system interaction interface.

The primary software structures necessary to enable
the processor 10 to perform graphics processing and
computation are an operating system (OS) 18 and one or
more application programs 19a and 194. It is understood
that the programs 194 and 195 are written in respective
graphics application programming languages such as,
for example, FORTRAN and PASCAL. As is conven-
tional, the operating system 18 includes a control pro-
gram (CP) 18a which supervises the execution of the
application programs by managing and scheduling ac-
cess to the processor resources necessary to support
program execution. A contro! program I/0O module
(CPIO) 185 orchestrates the interface between the pro-
cessor 10 and external devices such as the device 12.
Each of the application programs 19a and 195 is a series
of statements constructed by a user that form a program
for a particular application to be executed using the
resources of the processor 10. In this case, the applica-
tion programs 19a and 195 consist of graphics programs
written by a user to create graphs or charts on output
devices such as the plotter 12. Completing the graphics
processing system of FIG. 1 are a graphics processor
20, which can comprise, for example, the VDI proces-
sor described above. A graphics device driver (GR
DRVR) 22 is connected to a specific output device, in
this case, the device 12.
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In operation, the operating system 18 can receive
data and commands directly from one of the application
programs 194 or 1956 and provide resource allocation
and program connectivity directly to the graphics pro-
cessor 20. As is known, the commands and data pro-
vided to the graphics processor 20 are characteristically
graphical primitives and attributes in the form of meta-
files. As is known in the art, graphical primitives are
data structures that correspond to basic graphic figures
such as lines or shapes. Attributes are data structures
that define the characteristics of the graphical primi-
tives. In this regard, attributes include qualities such as
color, texture, and dimension.

The VDI processor 20 provides graphical primitives
and attributes to the graphic device driver. The device
driver 22 responds to the primitives and attributes by
converting them into instructions drawn from a set
specific to the device 12. ’

In order to make the application programs 194 and
195 portable from another graphics processing system
incorporating a graphics processor different than the
processor 20, graphics language bindings 24¢ and 245
are provided between the application programs 19a and
195, respectively, and the operating system 18. In this
regard each of the language bindings 24¢ and 245 con-
sists of a respective set of subroutines that provide lan-
guage-specific linkages between graphics application
programs written in the specific language and the
graphics processor 20. When used herein, the term *“lan-
guage-specific” means that a language binding is in-
tended to operate with an application program written
in a specific language. For example, a FORTRAN-
specific language binding would operate in conjunction
with application programs written in FORTRAN.

The language bindings 24a and 24b are maintained in
the DASF 14 and obtained by the operating system 18
by conventional storage access means in response to a
request entered by a user through the keyboard of the
console 17. Throughout the execution of application
programs to which the language binding is specific, the
binding will reside in the main storage of the processor
10 together with the operating system 18.

In FIG. 2 there is illustrated another graphics pro-
cessing system incorporating a mainframe computer 30,
which can comprise, for example, the IBM product
available under the name System/370. As is typical, the
mainframe computer 30 has attached to it application
input devices 32, which can comprise, for example,
workstations which utilize the resources of the com-
puter 30 in a time-shared mode to conduct concurrent
application program execution. The computer 30 also
has access to a direct access storage facility (DASF) 34
and provides graphical output data in the form of de-
vice instructions to one or more graphic output devices
such as the device 36.

The internal processing structure of the mainframe
computer 30 is conventional and includes a graphics
processor in the form of a graphics manager 40 (for
example, the GDDM processor described above),
which operates to execute graphics application pro-
grams such as the programs 41¢ and 41 to produce
graphs and charts on output devices such as the output
device 36. The structure of the GDDM is such that it
operates a plurality of device-specific device drivers
(DD1-DDN) 41a-41n. The graphics manager 40 char-
acteristically translates high-level language expressions
of graphs embodied in application programs into com-
mand and attribute signals directed to a device driver
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specified by the application program. The device driver
translates the commands and attributes into instructions
for the specific device it controls, with an operating
system 42 implementing an I/O path between the se-
lected device driver and the specific device it drives.
Commands and parameters of specific application
programs can be provided directly to the graphics man-
ager 40 to enable it to perform its command and attri-
bute conversion and device driver selection. However,

since the structural and operational characteristics of 10

the graphics manager 40 differ from corresponding
characteristics of the VDI graphics processor 20, the
application programs 41a and 41b, if provided directly
to the manager 40, must be written to call the subrou-
tines specific to the graphics manager 40. The applica-
tion program interface differences between the graphics
processors 20 and 40 mean that an application program
written, for example, to produce a specific chart em-
bodiment on the output device 36 through the facilities
of the graphics processing system of FIG. 2 cannot be
transported unaltered to the graphics processing system
of FIG. 1 and result in precisely the same chart being
produced on a similar device such as the output device
12.

To provide portability from the graphics processing
system of FIG. 1 to that of FIG. 2, graphics language
bindings 44a and 44b are also provided in the graphics
processing system of FIG. 2. As with the bindings 24a
and 24b, the mainframe system graphics language bind-

—
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ings 44c and 44b are functionally positioned between
the application programs 41a and 415, on the one hand,
and the graphics manager 40, on the other hand.

The effect of the language bindings in the systems of
FIG. 1 and the system of FIG. 2 can be understood with
reference to a chart, illustrated in FIG. 3, which forms
the exemplary basis for understanding the invention.
The graph of FIG. 3 has x and y axes, with axis labels,
graduation marks, and graduation labels; the graph has
a title, and three line plots, 46, 47, and 48, each distin-
guished by having a respective color (although not
evident on FIG. 3) and a respective point mark where
the graph changes slope. When language linkings are
installed in the systems of FIGS. 1 and 2, a single pro-
gram, written in a particular graphics programming
language, will be able to cause the production of the
F1G. 3 graph by either, or both of the systems on similar
output devices.

Referring now to Table I, a series of Fortran-type
statements are representative of a graphics application
program to draw the chart of FIG. 3. The statements
used in Table I will be understood by those skilled in the
art as being typical FORTRAN statements for estab-
lishing data objects and data attributes and for perform-
ing functions by calls to specific subroutines. In this
latter regard, the well-known RC (return code) state-
ment treats a called subroutine as a function that returns
the function parameters specified in the parentheses to
the right of the subroutine designation.

TABLE ]

200
201
202
203
204
205
206
207

208
209
210
211
212
213

214

215

216
217
218
219

221
222
223
224

226
227
228
229
230
231
232

IMPLICIT INTEGER#4 (A-Z)

INTEGER#4 DVC,DVCCHS(66),DVCINT(11)
CHARACTER#8 DVCNAM

DATA DVC /Z01F/

DATA DVCNAM /‘DISPLAY"/

DATA DVCINT /1,1,1,1,1,1,1,1,0,1,0/
INTEGER#4 LINES(3,10),LINCOL(3)

DATA LINES /8000,17000, 12000,8000, 16000,7000,

20000,12000, 24000,5000
8000,5000, 12000,6000, 16000,10000,
20000,17000, 24000,14000,
8000,10000, 12000,12000, 16000,18000,
20000,7000, 24000,9000/

DATA LINCOL /2,3,5/

INTEGER#4 AXES(6),XMARKS(4,5),YMARKS(4.4)
INTEGER#4 XLBLS(2,5),YLBLS(2,4) XTITLE(2),YTITLE(Q2)
INTEGER#4 CTITLE(2)

DATA AXES /4000,21000, 4000,3000. 30000,3000/

DATA XMARKS /8000,3000, 8000,3300,

12000,3000, 12000,3300,
16000,3000, 16000,3300,
20000,3000, 20000,3300,
24000,3000, 24000,3300/

DATA YMARKS /4000,7000, 4300,7000,

4000,11000, 4300,11000,
4000,15000, 4300,15000,
4000,19000, 4300,19000/

DATA XLBLS /8000,2700, 12000,2700, 16000,2700, 20000,2700,

24000,2700/

DATA YLBLS /3700,7000, 3700,11000, 3700,15000, 3700,19000/
DATA XTITLE /16000,1800/

DATA YTITLE /1400,13000/

DATA CTITLE /16384,21000/

RC = VOPNWK(DVC,DVCNAM,DVCINT,DVCCHS)
CHRHGT = DVCCHS(61)*4
RC = VSLCOL(DVC,1)
RC = VPLINE(DVC,3,AXES)
DO 10,i = 1.4

RC = VPLINE(DVC,2,YMARKS(1.I))
RC = VSTCOL(DVC,1)
RC = VSTFNT(DVC,1)
RC = VSTALN(DVC,2,1,HALGN,VALGN)
RC = VGTEXT(DVC,YLBLS(1,1),YLBLS(2,1),"7000")
RC = VGTEXT(DVC,YLBLS(1,2),YLBLS(2,2),'11000%)
RC = VGTEXT(DVC,YLBLS(1,3),YLBLS(2,3).'15000")
RC = VGTEXT(DVC,YLBLS(1,4),YLBLS(2,4).'19000)
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TABLE I-continued
233 D02, 1=15
234 20 RC = VPLINE(DVC,2,YMARKS(1,I))
235 RC = VSTALN(DVC,1,2,HALGN,VALGN)
236 RC = VGTEXT(DVC,XLBLS(1,1),XLBLS(2.1),'8000")
237 RC = VGTEXT(DVC,XLBLS(1,2),XLBLS(2,2),'12000")
238 RC = VGTEXT(DVC,XLBLS(1,3),XLBLS(2,3),'16000")
239 RC = VGTEXT(DVC,XLBLS(1,4),XLBLS(2,4),'20000")
240 RC = VGTEXT(DVC,XLBLS(],5),XLBLS(2,5),'24000")
241 RC = VSTCOL(DVC,S)
242 RC = VSTFNT(DVC,7)
243 RC = VSTHGT(DVC,2*CHRHGT,CHRWID,CELWID,CELHGT)
244 RC = VSTALN(DVC,1,2,HALGN,VALGN)
245 RC = VGTEXT(DVC,XTITLE(1),XTITLE(2),'X-axis title’)
246 RC = VSTALN(DVC,1,00HALGN,VALGN)
247 RC = VSTROT(DVC,%00)
248 RC = VGTEXT(DVC,YTITLE(1),YTITLE(2),"Y -axis title”)
249 RC = VSTROT(DVC,0)
250 RC = VSTCOL(DVC,6)
251 RC = VSTFNT(DVC,15)
252 RC = VSTHGT(DVC,4*CHRHGT,CHRWID,CELWID,CELHGT)
253 RC = VSTALN(DVC,1,0,HALGN,VALGN)
254 RC = VGTEXT(DVC,CTITLE(1),CTITLE(2),'Chart Title’)
255 RC = VSMHGT(DVC,2*CHRHGT)
256 D030 1=13
257 RC = VSLCOL(DVC,LINCOL()) 258 RC

VSMCOL (DVC,LINCOL(1))

259 RC = VSMTYP(DVC,])

260 RC = VPLINE(DVC4,LINES(1,1))
261 30 RC = VPMARK(DVC,4,LINES(1,1))
262 RC = VRQCHC(DVC,]1,CHC)

263 RC = VCLSWK(DVC)

264 END

Table I draws the chart of FIG. 3 by first telling the
FORTRAN compiler to assume all undeclared vari-
ables are 4-byte integers (statement 200). Statements
201-204 define the output device upon which the FIG.
3 chart is to be produced as a variable (DVC) and spec-
ify the device as a display. Thus, the chart of FIG. 3 is
to be produced on a CRT display having an address 01F
(hexadecimal). The data declaration statement 205 es-
tablishes default values for the following attributes of
the graphical primitives to be used in drawing the FIG.
3 graph: device aspect ratio, line type, line color, line
mark type, line mark color, text font, text color, and fill
style, type, and color, in the order of the 10 right-hand
entries of the statement’s data field. Statement 207 speci-
fies the x,y coordinate pairs of the lines to be drawn on
the FIG. 3 chart, while statement 208 establishes the
respective color of each line. Chart labeling information
for the x and y axes, for the x and y axis graduation
marks, for the axis graduation labels, for the axis titles,
and for the chart title are specified in statements
209-219. Statement 220 opens the workstation on which
the application program is to be run; the output device
is identified as a display device, and the characteristic
values are returned in the variable DVCCHS. A mini-
mum height for graphics characters is saved in state-
ment 221. Statement 222 sets the line color (VSLCOL)
for the x and y axes, while statement 223 calls a polyline
subroutine (PLINE) which draws the x and y axes. Y
axis label marks are drawn by statements 224 and 225.
The alphanumeric characters comprising the gradua-
tion labels and axis title for the y axis extend from state-
ments 226 through 232. In these statements, routines for
setting specific text attributes of color, form, and align-
ment are denoted as VSTCOL, VSTFNT, and
VSTALN, respectively. Once the text attributes have
been set, the y axis labels are drawn by statements
229-232. In each of these statements the text drawing
subroutine has the mnemonic VGTEXT.
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The subroutines for drawing x axis labels and label
characters comprise statements 233-240.

The text attributes for x and y axis titles (color, form,
and height) result from statements 241-243. The x axis
title is aligned in statement 244 and drawn in statement
245. Y axis title alignment is given in statement 246,
while the text is rotated from the x axis dimension by 90
degrees by statement 247. The y axis title is written by
statement 248. The character rotation is restored to the
horizontal by statement 249. Chart title attributes result
from statements 250-253. The chart title is written by
statement 254. The point marker size for the points of
the graph lines is set via statement 255. Statements
256-261 draw the three lines of FIG. 3, each with a
respective color, which is carried over into the respec-
tive point markers. Thus, the line color and marker
color (LCOL and MCOL) are set in statements 257 and
258, respectively, the point marker style is set in state-
ment 259, and the line and mark pattern is drawn by
statements 260 and 261.

Closing out the application program for drawing the
FIG. 3 chart, statement 262 is a command to the device
driver to retain the chart on the display until any data
key on a keyboard is pressed. In this regard, it is implicit
that the device has processing means for retaining and
refreshing a complete representation of the FIG. 3 chart
as specified by the program of Table I. Such devices are
well known in the art and include some form of a re-
fresh buffer, frame buffer, or bit map. See the Foley and
Van Dam reference for a description of a raster-scanned
display and associated processor at pages 129-133. Fi-
nally, workstation termination is accomplished by state-
ments 263 and 264.

In order to support portability of the Table I graphics
application program between the graphics processing
systems of FIGS. 1 and 2, language bindings are pro-
vided which take into account the characteristic struc-
ture and operation of each of the graphics processors 20
and 40. This accounting is illustrated in FIG. 4, which
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represents an abstraction of a procedure for selecting a
language binding appropriate to the particular graphics
processing system as well as the operational steps imple-
mented by each of the language bindings. Thus, the type
of graphics processing system is determined in step S0.
As described above, the two representative graphics
processing systems can be differentiated on the basis of
how they define attibutes for graphical primitives mak-
ing up the representation of a graph. The left-hand exit
from step 50 leads to a language binding that assumes a
graphics processing system of the CGI type where
graphical primitives are partitioned according to a num-
ber of basic types and attributes are specified with re-
gard to the graphical primitive type. Thus, for example,
a color attribute may be set for graph text primitives
independently of the color for graph lines. On the other
hand, graphics processors of the GDDM type described
above define a current set of attibutes for the type of
graphical primitive currently being drawn and maintain
those attibutes until they are changed. Thus, if the cur-
rent color attribute is set at a particular color selection,
during the drawing of a selected graphical primitive, for
example, a line, the programmer must remember to
change the color attibute later in the application pro-
gram in order to draw, for example, text of a different
color. As described above, other differences between
the two representative graphics processors include, but
are not necessarily limited to, line-drawing coordinate
procedures, color specification and listing, and text
character specification and designation.

In FIG. 4, it is further assumed that the application
programming language is oriented toward a graphics
processor employing an attribute partitioning approach,
as does the VDI graphics processor. Thus, the FOR-
TRAN statements in Table I reference respective sub-
routines for setting line color (VSLCOL ), text color
(VSTCOL), and graph line marker color (VSMCOL).
It should be evident, however, that the inverse assump-
tion could easily be made. That is, the application lan-
guage could be based on the current attribute approach
of the GDDM graphics processor.

To further clarify the procedures of FIG. 4, the rela-
tionships between the language bindings and the respec-
tive graphics processors and related data objects are
illustrated in FIG. 5. In FIG. 5, the flow of information
begins with an application program 52 written in a
particular language, such as FORTRAN. The applica-
tion program provides the input data 54 to the respec-
tive language bindings in the form of function calls and
parameter specification (func(parml . . . parmn)), as is
done in the program of Table I. The inputs are provided
to one of the language bindings 40z or 24a.

The graphics language binding 24a provides a lan-
guage-specific linkage between the graphics function
calls of the application program 52 and the CGl-style
graphics processor 20. As is stated above, the interface
is in the form of a conventional metafile 56 which in-
cludes information in the form of a command (CMD)
relating to either the drawing of a specific graphics
primitive or to the setting of a specific graphics primi-
tive attribute. Specific values for attributes related to
the drawing of a primitive or setting of a primitive
attribute are contained in a discrete data (DATA) sec-
tion of the metafile 56. The function of the graphics
language binding 24a is to convert the functional and
parametric data provided by the application program 52
into the metafile format understood by the graphics
processor 20. To perform this conversion, the graphics
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language binding 24a includes a set of graphics function
subroutines. Each function call of the application pro-
gram 52 activates a specific one of the graphics subrou-
tines to effect the conversion to be performed by the
language binding 24a. The metafiles resulting from the
conversion are passed to the graphics processor 20; they
permit the processor 20 to control the device driver in
drawing a graphics primitive, if required by the com-
mand portiion of the metafile 56. If the metafile com-
mand is simply for attribute setting, the graphics proces-
sor 20 will set an attribute specified by the command to
the value indicated by the metafile data field. The
graphics processor 20 maintains lists of attribute group
settings 58 and 59, with each attribute group corre-
sponding to a particular set of graphical primitives. As
is known, a CGlI-style graphics processor will, in exe-
cuting a graphics primitive drawing command, cause
the device driver 22 to render the primitive with char-
acteristics determined by the values of the attributes
associated with the primitive.

The graphics language binding 44 maps precisely
the same application program statements as does the
language binding 24a. However, the language binding
44 maps the functions and parameters of the applica-
tion program 52 into a format and according to a se-
quence understood by the graphics processor 40. In this
regard, the graphics language binding 44g also includes
a group of graphics function subroutines; each function
called by the application program 52 is associated with
a respective one of the binding subroutines. The func-
tions and parameters of the application program S2 are
translated and provided to the graphics processor 40 in
a format that corresponds to a set of discrete, parallel
signal interfaces between a pair of electronics equip-
ments. In this regard, each subroutine of the binding 444
will translate the parameters of the calling function
statement together with predetermined attribute values
into attribute-setting subroutine calls to the processor
40. Each subroutine call can be likened to setting the
value of an individual signal line at the input to the
graphics processor 40. The attribute subroutine calls
cause the graphics processor 40 to access a set of pro-
cessor attribute routines 62 which set the attribute val-
ues for a device driver 64 identified in the function call
of the application program 52. Once the graphical prim-
itive attributes have been set, the subroutine of the lan-
guage binding 44a will call a graphical drawing subrou-
tine to draw the required graphical primitive. The com-
mand subroutine call to the graphics processor 40 will
cause the processor to access a set of primitive com-
mands 64 from which the proper primitive command is
selected for operating the device driver 64. Therefore,
the input sequence for the language binding 44a is: first,
set current attribute values for the graphics processor
40; and then, activate the proper graphics processor
primitive command. It should be noted that the selec-

tion of an attribute-partitioning graphics programming

language to construct the application program 52 re-
quires the provision of an attribute table, indicated by
reference numeral 68, which is maintained by the lan-
guage binding 44a. Since the attribute-partitioning lan-
guage assumes the maintenance of attribute groups,
rather than teh constant setting and resetting of current
attribute values, such a structure must be maintained in
order to accurately map attribute values set by the pro-
gram 52 into current attribute settings for the processor
40. In this regard, the attribute table 68 consists of a
conventional  linked-list of device identifiers,
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(DDC-DDCn) 682 each of which anchors an attribute
list for the identified device. The attribute list includes a
plurality of entries, (ATTR) 68b each corresponding to
a respective attribute invoked or set by the application
program 52 for the identified device. The values con-
tained in the list elements are the value settings for the
corresponding attributes.

Referring now to FIGS. 4 and 5, once the graphics
processor type has been determined in procedure block
50, the proper language binding is selected. The left-
hand exit from procedure block 50 corresponds to selec-
tion of a language binding for the CGl-style graphics
processar in which graphical attribute are partitioned
according to graphical primitive classifications. The
right-hand exit corresponds to the GDDM-style of
graphics processor wherein current attribute setting
values determine the characteristics of graphics primi-
tives drawn in response to primitive commands.

With respect to the left-hand exit, representative of
the procedure followed by the language bindings 24a
and 245, the metafile object needed for exchanging
information between the language binding and the
graphics processor 20 is abstracted as a data structrue in
step 70. Following this, the procedure accepts the re-
turn code function calls of the application program 52
and processes them individually in sequence. Each
function call includes a return code statement having
the form illustrated by reference numeral 54 in FIG. 5.
Initially, in step 72, each function call is inspected to
determine whether a parameter conversion must be
made. For example, if the text characters are specified
in the application program 52 as being EBCDIC char-
acters, the characters must be converted to ASCII to
satisfy the requirements of the VDI Graphics Proces-
sor. If required, the conversion is performed and the
function routine passes to step 74. In step 74, the called
function is translated to the corresponding metafile
command format, following which, in step 76, the pa-
rameters are converted to attribute values according to
the data format required by the metafile structure. In
step 78, the function subroutine builds a specific meta-
file data structure with the translated command and
attribute values. In step 80, the routine dispatches the
built metafile to the graphics processor, together with
the address of the graphics output device upon which a
graph according to the application program 52 is being
produced. When the metafile is transferred to the
graphics processor 20, the language binding function
routine provides a return to the application program 52
with the specified return codes set.

As shown in the right-hand leg of the FIG. 4 proce-
dure, the language binding such as 40a responds to the
application program 52 by first building a device attri-
bute list for entry into the attribute table 68 of FIG. 5.
The attribute list is indexed by the identification of the
output device upon which the graph of the application
program is to be produced. Initially, the default values
established for the attributes (in statement 205 of Table
1, for example) are entered into the attribute list for the
identified device. Following the building of and initial
entry into the attribute list, the language binding is
prepared to accept the sequence of function calls mak-
ing up the application program 52. As each function call
1s provided to the language binding, the call parameters
are inspected to determine whether parameter conver-
sion must be performed. In this regard, the GDDM-
type graphics processor 40 operates in response to real
number values, while the CGI-style graphics processor
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20 operates on integer-valued numbers. Since the appli-
cation program 52 favors the CGI form of representa-
tion, each parameter must be converted from its integer
to its real value in step 84. Next, the attribute value and
primitive command structure appropriate to the graph-
ics processor 40 must be established for each function
called by the application program. In this regard, the
language binding in step 86 translates the parameters
received with the function call into attribute values of
the form recognized by the graphics processor 40. Next,
the attribute list for the identified graphics output de-
vice is accessed in step 88. If the current application
program statement requires setting an attribute, the
attribute value is set in the appropriate place in the
attribute list. If the application program statement was
used only to set an attribute, as opposed to drawing text
or a symbol or line, the procedure will return to the
application program with the appropriate return code
settings after step 88. On the other hand, if the applica-
tion program statement requires drawing a portion of a
chart, the procedure will enter step 90. In step 90, the
language binding calls the necessary attribute-setting
subroutines of the graphics processor 40. Each of the
attribute-setting subroutines is provided with the value
to which the attribute affected by the called subroutine
is to be set. Following attribute setting, the language
binding, in step 92, will call the primitive command
subroutine of the graphics processor 40 that is necessary
to draw the required primitive or primitives. If re-
quired, the language binding subroutine will translate
the function into a series of primitive commands in
order to accomplish the required function. For exam-
ple, if the function call in the application program is
appropriate for drawing a set of lines, such as axes, the
invoked language binding function routine will call the
graphics processor primitive command for line draw-
ing. To draw one or more lines, the language binding
must call the primitive command to establish the cur-
rent point and then call the line-drawing primitive com-
mand to draw the line segments. Once the required
drawing task is completed, the language binding fol-
lows appropriate return procedures and obtains the next
function call of the application program.

Referring once again to Table I, each of the language
bindings consists of a set of callable functions or subrou-
tines. Each graphics RC statement in Table I invokes a
specific function in a language binding which translates
the statement, and the attribute parameters in the state-
ment’s parameter field into a command and attribute
data tailored to the characteristics of a grahics proces-
sor. Each binding thus maps the following representa-
tive generic functions called in the application program
to a specific subroutine; VSLCOL (set line color),
VPLINE (draw a polyline); VSTCOL (set text color);
VSTFNT (set text font); VSTALN (set text alignment);
VGTEXT (write text); VSTHGT (set text height);
VSTROT (set text baseline rotation); VSMHGT (set
line marker size); VSMCOL (set mark color);
VSMTYP (set mark type) and VPMARK (draw poly-
mark). It is to be understood that these are only repre-
sentative of a great number of generic graphics func-
tions that can be called by an application program and
supported by corresponding language binding function
routines.

Refer now to Tables II-V which provide specific
representations of function routines included in the
language binding 24a. The representative function rou-
tines are explained in light of specific graphics function
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calls in the graphics application program of Table I. It
is to be noted that the entries in Tables II-V are in a
pseudo-code which is not compilable, but which is
nonetheless representative of coding functions used to
build the language binding, and which is easily trans-
lated by those skilled in the art into compilable state-
ments.

It is assumed for the sake of the following illustration
that the language binding statements of Tables II-V are
directed to the support of graphics functions performed
in a desk-top graphics processing system such as would
be based upon the AT/370 desk-top computer available
from IBM. In this regard, the graphics functions in such
a desk top computing system are performed by convert-
ing the graphics primitive associated with a function
called by the graphics application program of Table I
into its corresponding graphics processor metafile com-
mand. For the purposes of the VDI graphics processor
example (which embodies the CGI Standard), the meta-
file data structure is represented by the statements
300-303 of Table II.

TABLE II
300 Variables
301 metafile = structure
302 command:integer
303 values:array([l..n} of integer

Statements 300-303 are well-understood declaration
statements which establish the definition of a metafile
data structure that contains: a command in integer form,
constituting the graphics primitive command corre-
sponding to a graphics primitive function to be per-
formed and an array of integer values corresponding to
the graphics primitive data establishing the attribute
values in the metafile.

The specific language binding function routines of
Tables II-V correspond to the procedures invoked by
the graphics language binding 244 in response to spe-
cific function calls in the graphics application program
of Table 1. The function calls selected for the following
examples are those in statements 222, 223, and 229. In
explaining the language binding embodiment for each
statement, it is presumed that the graphics processor 20
has available in storage indexed attribute lists providing
an attribute value or characteristc for a particular index
value. Thus, there will be respective attribute list entries
for line type, line color, graph marker type, graph
marker color, graph text font type, graph text color, fill
style, fill type, an fill color. It should be evident that
since there are no filled characters in the FIG. 3 graph,
the last three attribute lists will not be accessed. How-
ever, the open workstation statement (220) requires an
index value to be established for each attribute. As
stated above, the initial values of these attributes and
also an aspect ratio attribute are set by statement 205 to
initial values. These initial values can be changed
through the program, and, in fact the line type, line
color, marker type, marker color, text font, and text
color values are all changed from their initial setting. It
is understood that the VOPNWK call (statement 220)
activates an appropriate language binding function rou-
tine to enter the default values into the appropriate
attribute group setting lists maintained by the graphics
processor 20.

TABLE IlI

304 Function Vslcol (parml:inieger,parm2:integer :integer
305 Constants
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TABLE Ill-continued

306 set_line_color = 16#5082

307 Variables

308 device_address:defined parm!

309 color—index:defined parm2

310 Begin

3n metafile.command = set_line_color

312 metafile.values[1] = color__index

313 Vslcol = CP._graphics_write(device _address,metafile)
314 Return

315 End

Turning now to statement 222 of the graphics appli-
cation program, Table III provides the set of function
routine steps necessary to execute the setting of the line
color attribute to an index value of 1 for the output
device identified by the DVC data field. The function
called is VSLCOL and its input parameters PARMI
and PARM2 are the device address (DVC) and the
desired color index setting, respectively. For reference,
the VSL.COL functional subroutine is defined in state-
ment 304. In statements 305 and 306, the metafile com-
mand for setting line color is declared as a hexadecimal
value. The address of the device driver controlling the
specified output device and the color index value are
defined as the function parameters by statements
307-309. The function routine begins in step 310 by
inserting the set line color command and color index
value into the metafile command and data fields, respec-
tively. Next, a language binding subroutine for passing
the metafile to the graphics processor 20 addressed for
output to the graphics device is summoned in step 313.
Return is made to the application program in step 314
and the set line color function routine is ended in step
315.

Turning now to the program statement 223, Table IV
constitutes a language binding procedure to link the
program to the graphics processor 20. As stated above,
statement 223 is used by the programmer to draw the x
and y axes in the FIG. 3 chart.

TABLE 1V

330 Function Vpline(parm1l:integer,parm2:integer,
parm3:array[l..n,1..2] of integer)integer

331  Constants

332 output_polyline = 16#403F

333 Variables

334 device_address:defined parm1

335 point_count:defined parm2

336 coordinates:defined parm3

337 Begin

338 metafile.command = output_polyline

339 metafile.values{l] = 4*point_.count

340 For i = 1 to point_count

341 Forj=1t02

342 metafile.values[(2*(i— 1))+ j+ 1] = coordinates[i,j]

343 End

344 End

345 Vpline = CP_graphics_write(device__address,metafile)

346 Return

347 End

Table IV provides a function routine for drawing a
polyline (VPLINE) on the addressed device, with the
polyline consisting of two segments as defined by three
XY coordiinate pairs. The axes parameteer in the
VPLINE statement gives the point coordinate data
defined in statement 212 of Table I. The function of
Table IV is named and defined by statement 330. The
constant value defining the polyline drawing command
is set in statements 331 and 332. Statements 333-336
define the variables used in the graphics processor sub-
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routine and associate those values with the parameters
delivered with the VPLINE statement. The defined
metaflle structure is filled with a line-drawing command
and coordinate values between which the axes are to be
drawn by statements 337-343. Statement 345 calls the
graphics processor subroutine for passing to the graph-
ics processor 20 the structured metafile containing the
command and data for drawing the axes on the ad-
dressed device. It should be noted that the line color
attribute defining the color in which the axes are to be
drawn has been set by the language binding procedure
of Table 11, corresponding to the function call of state-
ment 222 in Table L

Table V is representative of a language binding func-
tion routine for executing a text drawing function. In
this case, the text drawing function is the one in the
Table I statement numbered 229. The purpose of state-
ment 229 is to place the graduation value ““7,000” at the
appropriate position adjacent the y axis of FIG. 3.

TABLE V

380 Function Vgtext(parmlinteger,parm2:array[l1..2] of
integer,parm3:string):integer

381 Constants

382 output__graphic_.text = 16#411F

383 Variables

384 device_address:defined parm!

385 coordinates:defined parm2

386 ebcdic_string:defined parm3

387 ascii_string:string

388 Begin

389 ascii_string = ebcdic__to_ascii (ebcdic_string)

390 If ((Length(ascii_string) mod 2) > O then

ascil_string = ascii_string + Chr (0)

391 metafile.command = output__graphic__text

392 metafile.values[1] = Length(ascii_string) + 8

393 metafile.values[2] = coordinates[1]

394 metafile.values[3] = coordinates|2]

395 metafile.values{4] = 0

396 metafile.values[5] = Length(ebedic_string)

357 Fori = 1 to Length(ascii__string) by 2

metafile[i+5] = Val(Substr(ascii__string,i,2))

398 End

399 Vgtext = CP__graphics__write(device__address,metafile)

400 Return

401  End

In Table V, statement 380 links the language binding
routine to the VGTEXT function call and accepts as
input parameters the device address (PARM1), the x,y
coordinates locating the text (PARM2), and the string
of EBCDIC characters defining the text (PARM3). It
should be noted that the text block to be drawn is also
affected by the VSTALN statement (statement 228)
which sets the alignment relationship of text characters
on the graph. Recall, too, that a text rotation attribute
has been set to a default setting in statement 205 of
Table I; this establishes the rotational correspondence
of text characters with respect to a horizontal baseline
on the graph. Steps 381 and 382 establish the text writ-
ing command that is understood by the graphics proces-
sor 20. Steps 383-386 associate metafile parameters with
the parameters PARMI1-PARM3. An ASCII variable is
defined as a string in statement 387. Conversion of the
EBCDIC character string to an ASCII character string
is accomplished in steps 390 and 391. The established
metafile data structure is filled with command and data
values in steps 392-398 with the graphic text production
command being placed in the metafile in step 391. The
length of the metafiile data is set as the first metafile
value. The x and y coordinates are the second and third
metafile data values, respectively. The length of the
string is given in statement 396 and statements 397-399

10

20

25

30

35

45

50

55

60

65

16

place the ASCII representation of the string into the
metafile. Statement 399 calls a routine that passes the
structured metafile to the graphics processor.

With regard now to the right-hand branch of the
procedure of FIG. 4, Tables VI-IX provide representa-
tive function routines for the language binding 40a of
FIG. 5 that are appropriate to link statements of the
graphics application program 52 to the graphics man-
ager 40, exemplified by the GDDM graphics processor
described above.

TABLE VI
500 Variables
501 attributes = structure
502 next..attribute__pointer:—attributes
503 device_.address:integer
504 gddm__device_id:integer
505 line_style:integer
506 line__color:integer
507 line__width:integer
508 text__color:integer
509 text_height:integer
510 text_aspect_ratio:real
511 text__horiz__alignment:integer
512 text_vert__alignment:integer
513 sin_text_rotation_angle:real
514 cos—text_rotation__angle:real
515 symbol_set__id:integer
516 color_map:array{1..16] of integer
517 base__attribute__pointer:—attributes
518 current__attribute__pointer:—attributes
519 Constants
520 line_type_map:array(l..6] of integer
521 text—cell__scale_factor:real

In Table VI, the variables making up an attribute
structure are declared in statements 501 and 503-516.
The attribute structure is rendered in linked-list form by
the current, next, and base attribute pointers. The base
attribute pointer is the list anchor, the current attribute
pointer is the address of the list element currently being
inspected, and the next attribute pointer is the address of
the next element in the list following the one currently
being inspected. Constants are defined in statements
519-521.

Graphics functions in a mainframe graphics process-
ing system, such as the system of FIG. 2 employing a
GDDM-type graphics processor, are performed by
calling one or mroe GDDM graphics primitive func-
tions. These functions are documented in the IBM
GDDM Base Programming Reference for Release for
(Publication No. SC32-0101). Since GDDM-type
graphics processors do not partition graphics attributes
by primitive group classification, but have only the
concept of current attributes, the primitive group attri-
butes set in the Table I program must be saved in the
linked list described above and established in Table VI.
Because the GDDM-type processors support multiple
output devices, the variables applicable to a graph pro-
duced on a particular output device are kept in a list
identified by the address of the device with which it is
associated.

Refer now to Table VII, which describes a procedure
for implementing the VSLCOL function call of applica-
tion program as exemplified by statement 222.

TABLE VII
530 Function Vslcol(parml:integer,parm2:integer):integer
531 Variables
532 device__address:defined parm1
533 color_index:defined parm2
534 Begin
535 current._attribute__pointer = Locate_attribute list
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TABLE VIl-continued

(device_address)

536 current_attribute__pointer—line__color = color_index
537 Vslcol = 0

538 Return

539 End

In Table VII, the VSLCOL function is named and
characterized in statement 530. The inputs of the func-
tion call are defined as the device address (PARM1) and
the color attribute for the VDI-type graphics processor
based on graphical primitive partitioning. The proce-
dure consists essentially of a first step of locating the
attribute list for the requested device, and a second step
of saving the new line color index at the corresponding
list element in the located attribute list. In this regard,
step 1 is accomplished by statement 535 and step 2 by
statement 536. The return code is set in statement 537
and the return to the application program is effected in
statements 538 and 539.

The function routine for the line drawing call exem-
plified by (statement 223) is given in Table VIIL

TABLE VIII

550 Function Vpline(parml:integer,parm2:integer,
parm3:array[1..n,1..2] of integer):integer

551  Variables

552 device..address:defined parml

553 point__count:defined parm2

554 coordinates:defined parm3

555 x-coordinates:array(1..n] of real

556 y-coordinates:array[1..n] of real

557 Begin

558 Fori = 1 to point_count

559 x-coordinates[i] = Integer__to_real (coordinates[i,1])

560 y-coordinates[i] = Integer_to_real (coordinates[i,2])

561 End

562 current_attribute__pointer = Locate_.attribute list

(device_address)
563 GSLW(current-attribute__pointer—line_width)
564 GSCOL(color_map(current_attribute__pointer—
line__color))
565 GSLT(line_type_map(current_attribute__pointer—
line__type))

566 GSMOVE(x-coordinates{1],y-coordinates[1])

567 If point_count = 1 then

568 GSPLNE(point__count,x-coordinates[1},y-coordinates[1])

569 Else

570 GSPLNE(point_count,x-coordinates|[2],y-coordinates[2])

571 Vpline = 0

572 Return

573 End

For the GDDM graphics processor 40 the line draw-
ing command requires setting line width, line color, line
type, and line coordinate attributes. These parameters
are either obtained from the attribute list 64 which con-
tains a default value or are set in the parameter field of
a function call statement. In this regard, the function
call parameters are the device address (PARMI1), the
line point count (PARM?2), and the x, y coordinates of
the axes. These parametric associations are all made in
statements 551-556. Statements 558-560 convert the
integer values of the x, y coordinates in the function call
parameter field to real coordinates and reorder them as
required by the processor 40. Statement 562 locates the
attribute list and statements 563-566 set the current
attributes of line width, line color, and line type for the
graphics processor 40. In the well-known GDDM sys-
tem, these attribute function calls are denoted as
GSLW, GSCOL, and GSLT, respectively. It is noted
that statements 564 and 565 also translate the color
index and line style from their VDI to their GDDM
representations. Statement 566 sets up the access line-
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drawing procedure by referencing the procedure to the
first set of x, y coordinates. Then, statements 567-570
draw the axes using the converted coordinates. State-
ment 571 sets the return code for the called function and
statements 572 and 573 return program execution to the
Table I program.

A representative text-drawing function routine by
statement 229 of Table I is supported by the linkage
procedure of Table IX.

TABLE IX

509 Function Vgtext (parml:integer, parm2:array[1..2] of

integer, parm3:string):integer

591  Constants

592 gddm-vector_.mode = 3

593  Variables

594 device_address:defined parm]

595 coordinates:array{1..2] of defined parm2

596 ebcdic_string:defined parm3

597 text_location:array{1..2] of real

598 text__box._x:array[1..4] of real

599 text._box_y:array[1..4} of real

600 text_—cell _height,text__cell _width:real

601  Begin

602 Fori= 1to2

603 text__location[i}= Integer__to_.real (coordinates[i])

604 End

605 current._attribute__pointer = Locate-attribute
list (device_address)

606 GSCM(gddm_vector_mode)

607 GSCS(curfent_attribute...pointer—symbol_set__id)

608 text_cell__height = text_cell_scale__factor*Integer_
to_real(current_attribute__pointer—text_height)

609 text__cell_width = text_aspect__ratio*text_cell_height

610 GSCB(1ext_cell_width,text_.cell__height)

611 GSCA(current_attribute__pointer—cos__text_rotation_
angle, current__attribute__pointer—sin__text_
rotation__angle)

612 GSQTB(Length(ebcdic_string),ebedic__string,4,text—

box._x, text_box_y)

613 text_location{1} = text_location|1]—(Integer__to__real
(current__attribute__pointer—text__horiz__alignment)
*((text_box_x[4] —text_box_x[2])/2)) - Integer__
to_real(current_attribute__pointer—text__vert._.
allignment)*((text_box_x[1] —text_box_x[2]/2))

614 text..location[2] = text_location[2] - (Integer__to_real
(current_attribute.__pointer—text_horiz__allignment)*
((text_box...y[4] — text_box_y[21]/2))-(Integer_
to_real (color..map current_attribute__pointer—text_—
vert__allignment)*)
((text_box_y[1]—text__box_y[2]/2))

615 GSCOL(current_attribute._pointer—text_color)

616 GSCHAR (text_location[1],text_location[2},Length
(ebcdic__string.ebedic_string)

617 Vgtext = 0

618 Return

619 End

The parameters provided to the procedure of Table
IX include the device address (PARM1), the coordi-
nates defining the location of the text (PARM2), and the
EBCDIC character string defining the text (PARM3).
With regard to the coordinates locating the text, it
should be noted that as with the example of Table V for
the graphics processor 20, text location is also deter-
mined by the values for text alignment (VSTALN) and
rotation (VSTROT). Reference to Table I will inform
that statement 228 will have resulted in a change in
setting of text alignment for the case of the y axis gradu-
ation labels, while the text rotation parameter will have
its default value.

The other variables defined for the text drawing func-
tion include: the text location as an array of real num-
bers, the computed extent of the text on the screen as a
two-dimensional array of real numbers, and the text cell
height and width as real numbers.
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Finally, it should be noted that the GDDM instantia-
tion of the graphics processor 40 includes a2 multi-mode
generator for text drawing. When drawing text, a
GDDM graphics processor can draw text characters as
images or as vectors. In this case, in order to provide the
programmer with the ability to directly scale the size of
the text by the well-known boxing or extent technique
(see Foley and Van Dam, pp. 375-376), the vector
mode of character generation is invoked by setting the
vector mode in statement 592.

To support the vector mode of character generation,
the point coordinate values in the parameter field of the
calling function are converted to real values by state-
ments 602-604. Next, the attribute list for the requested
device is obtained by means of statement 605. In state-
ment 606, the vector character drawing mode of the
graphics processor is set so that the character size,
alignment, and rotation values set in the application
program of Table I can be used. Next, the current attri-
bute list is accessed in steps 607 and 608 to select a
character font (symbol set) and text height. In step 609,
the text cell width is derived by multiplying the text cell
height set in statement 608 by a predetermined text
aspect ratio. The text cell width and height attributes
are set for the processor in statement 610. In statement
611, the current attribute list is accessed to obtain base
line rotation values necessary to correctly align the y
axis label being drawn. Statements 612-614 perform
horizontal and vertical alignment of the label being
currently drawn, and statement 615 accesses the current
attribute list to set the color of the text being drawn. In
statement 616, the graphics processor command which
causes the driver to draw the current label at the loca-
tion and with the attributes previously defined is called.
Statement 617 sets the return code and statements 618
and 619 return program control to the application pro-
gram of Table L.

Although the language binding examples described
hereinabove are based upon use of VS FORTRAN as
the graphics application programming language, it will
be evident to those skilled in the art that language bind-
ings can also be constructed for interfacing graphics
application programs written in other languages such as
Pascal, and Assembler H. Furthermore, it will be evi-
dent that language bindings can be provided for inter-
preted user languages such as the REXX (restructured
extended executor) language available in the IBM soft-
ware product denoted as VMSP-3 (virtual machine/-
system product-3). The REXX language can be used for
developing applications quickly by using instructions
which translate easily to functions or routines expressed
in other high-level languages such as FORTRAN.

Finally, although language binding function routines
are described only for setting line color, drawing lines,
and drawing text, it will be understood by those skilled
in the art that other functional routines can be con-
structed for setting any graphical attribute or executing
any graphics drawing function within the capabilities of
the graphics processor linked by a language binding to
an application program.

Obviously, many other modifications and variations
of this invention are possible in light of these teachings.
Therefore, it is to be understood that within the scope
of the appended claims, the invention may be practiced
in forms other than those specifically described.

I claim:

1. A linkage system for providing a set of bindings
which enable a graphics application program written in
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a predetermined program language to be executed in
one or the other of two different graphical processor
environments independent of the programming lan-
guage, comprising

a graphics output device;

a graphics application process means for providing a
series of user language-specific process statements
defining a graph;

a graphics process means responsive to graphics com-
mands and graphics attributes for producing device
signals corresponding to said graph;

a graphics output device driver connected to said
graphics process means and to said graphics output
device and responsive to said device signals for
producing said graph on said graphics output de-
vice;

a graphics language binding means in communication
with said graphics application process means in one
or the other of said two different graphical proces-
sor environments for translating said process state-
ments into said graphics commands and graphics
attributes;

a transfer structure means in said graphics language
binding means for building a data transfer struc-
ture; and

a transfer process means in said graphics language
binding means for transferring said graphics com-
mands and graphics attributes from said language
binding means to said graphics process means in
one or the other of said two different graphical
processor environments, said graphics attributes
being transferred in said data transfer structure.

2. The linkage system of claim 1 wherein said graph-
ics process means in one of said two different graphical
processor environments recognizes two or more graphi-
cal primitive groups and maintains separate respective
sets of graphics attributes, each set of graphics attributes
including attributes of a respective graphical primitive
group.

3. The linkage system of claim 2 wherein said data
transfer structure in one of said two different graphical
processor environments is a metafile.

4. The linkage system of claim 2 wherein said transfer
process means in one of said two different graphical
processor environments includes a message-passing
procedure.

5. The linkage system of claim 1 wherein said graph-
ics process means in one of said two different graphical
processor environments maintains a current value for
one or more graphics attributes and responds through
appropriate protocals to a translated graphics command
by producing device signals corresponding to a prede-
termined graphical primitive having graphics attributes
determined by said value.

6. The linkage system of claim 5 wherein said graph-
ics process means in one of said two different graphical
processor environments includes attribute process
means for setting said value and primitive command
means for setting device signals corresponding to
graphics primitives and said data transfer structure in
one of said two different graphical processor environ-
ments includes one or more program calls for activating
said attribute process means and for activating said
primitive command means.

7. The linkage system of claim 6 wherein said transfer
Process means in one of said two different graphical
processor environments includes a function subroutine
having said program calls.
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8. A computer programming device for providing
portability of a graphics application program written in
one programming language between two different
graphical processors each having a different graphics
interface connected to a peripheral device driver for a
peripheral graphics unit such as a printer, plotter, dis-
play, including
first transfer means in communication with a first
graphics interface for providing a command and
data path to a first graphical processor wherein
graphical primitives are partitioned according to
basic types and attributes are specified with regard
to such basic types;
second transfer means in communication with a sec-
ond graphics interface for providing a transforma-
tion of signals to a second graphical processor
wherein a current set of attributes are defined for
the type of graphical primitive currently being
drawn and such attributes are maintained until
changed; and
language binding means for receiving function calls
and parameter specifications generated by the
graphics application program-and converting them
either into a suitable format for transfer in a data
transfer structure via said first transfer means to
said first graphics interface or alternatively into a
different format and sequence using attribute set-
ting subroutines and primitive command subrou-
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tines for transfer via said second transfer means to
said second graphics interface, and wherein said
first and second graphical processors are indepen-
dent of any programming language.

9. The computer programming device of claim 8
wherein said one programming language is taken from a
group consisting of Fortran, Pascal, Assembler H, Basic
C, and REXX.

10. The computer programming device of claim 8
wherein said first graphics interface conforms to an
industry standard identified as CGI (Computer Graph-
ics Interface).

11. The computer programming device of claim 8
wherein said second graphics interface conforms to the
Graphics Data Display Manager (GDDM) standard.

12. The computer programming device of claim 8
wherein said second graphical processor is incorpo-
rated as part of a mainframe-type computer system.

13. The computer programming device of claim 8
wherein said first graphical processor is incorporated as
part of a PC-type desktop computer system.

14. The computer programming device of claim 8
wherein other differences between said first graphical
processor and said second graphical processor include
line drawing coordinate procedures, color specification
and listing, and text character specification and designa-

tion.
* * * * *



