
--- ------ - ---- ---- - ---- - - -----------·-
Personal Computer
Computer Language
Series

FORTRAN
Compiler
by Microsoft

First Edition <January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information ab<>ut the
system should be made to your authorize<l IBM PersonJ.I
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, ad<lress comment
to: IBM Corp., Personal Computer, P.O. Box l 328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriatl'
without incurring any obligations whatever.

© Copyright International Business Machines Corpor Jtton
1982

CONTENTS

CHAPTER 1. INTRODUCTION 1-1
Notational Conventions . . 1-4
Fortran Program Structure 1-6

Character Set 1-6
Lines 1-7
Columns . . 1-7
Initial Lines 1-7
Blanks . . . 1-8
Comment Lines 1-8
Labels 1-9
Continuation Lines 1-9
Statements 1-9
Program Units . . . 1-10
Main Program and Subprogram 1-10
Statement Ordering 1-10
Order of Statements within Program Unit 1-12

Data Types 1-13
Integer . 1-13
Real . . 1-14
Logical 1-15
Character 1-16

Expressions . . 1-18
Arithmetic Expressions 1-18
Character Expressions 1-22
Relational Expressions 1-22
Logical Expressions . 1-24
Array Element Name 1-26
Function Reference . 1-26
Precedence of Expressions 1-28
Evaluation Rules and Restrictions

for Expressions 1-28
Fortran Names 1-29

Scope of Fortran Names . . 1-29
Undeclared Fortran Names 1-31

CHAPTER 2. COMPILING A FORTRAN
PROGRAM 2-1

What You Need 2-3
Backing Up the Master Diskettes 2-4

iii

Setting Up the Diskettes: FOR 1
and FOR2 2-4

Setting Up the Diskettes: LIBRARY 2-4
Using the EDLIN Program . . 2-5

Starting the Compilation 2-7
Starting the Compiler: FORl . . . 2-7
Continuing the Compilation: FOR2 2-12
Linking 2-13
Running Your Fortran Program . 2-16
Optional FOR 1 Command Lines 2-1 7
Optional FOR2 Command Line 2-18
Compiling Using a Batch File 2-19
Compiling Large Programs 2-20

Device Identifications . . 2-23
Sample Compiler Listings . 2-24

Compiler Listing . . . 2-25
The D Column Label 2-25
The Line# Column 2-25
Additional Listing Metacommands 2-25
Compiler Messages . . 2-27
Unrecoverable Errors 2-27
Symbol Table . 2-29
The Linker Map . . . 2-34

CHAPTER 3. COMPILER MET ACOMMANDS 3-1
Overview 3-3

$DEBUG Metacommand . 3-4
$D066 Metacommand . . 3-5
$INCLUDE Metacommand 3-7
$LINESIZE Metacommand 3-9
$LIST Metacommand . . . 3-10
$NODEBUG Metacommand 3-11
$NOLIST Metacommand . . 3-12
$PAGE Metacommand . . . 3-13
$PAGESIZE Metacommand 3-14
$STORAGE Metacommand 3-15
$SUBTITLE Metacommand 3-16
$TITLE Metacommand . . . 3-17

CHAPTER 4. STATEMENTS 4-1
Control Statements 4-3

Block IF THEN ELSE . 4-4
Program Function and Subroutine Statements 4-8

Main Program . . . 4-8
Subroutines 4-8
Functions 4-9
Formal Parameters 4-9

iv

I/O Statements 4-12
Elements of I/O Statements 4-12
Input and Output Entities 4-14
Implied DO Lists 4-14

Specification Statements . . . 4-16
Arithmetic IF 4-1 7
Assignment Statements 4-19

Computational Assignment Statement 4-19
ASSIGN Statement . . . 4-21
Assigned GOTO 4-23
BACKSPACE Statement 4-25
Block IF 4-26
CALL Statement . . 4-27
CLOSE Statement 4-29
COMMON Statement 4-30
Computed GOTO 4-33
CONTINUE 4-35
DATA Statement . . 4-36
DIMENSION Statement 4-38
DO Statement 4-40
ELSE . 4-44
ELSEIF . . . 4-4 5
END 4-46
ENDFILE Statement 4-47
ENDIF 4-48
EQUIV ALEN CE Statement 4-49
EXTERNAL Statement 4-52
FUNCTION Statement 4-53
IMPLICIT Statement . 4-55
INTRINSIC Statement 4-57
Logical IF 4-58
OPEN Statement . . . 4-59

Runtime Filename Assignment 4-61
PAUSE Statement 4-64
PROGRAM Statement 4-65
READ Statement . . 4-66
RETURN Statement 4-68
REWIND Statement 4-69
SA VE Statement . . 4-70
Statement Functions 4-71
STOP Statement 4-73
SUBROUTINE Statement 4-74
Type Statement . . . 4-7 5
Unconditional GOTO 4-77
WRITE Statement 4-78

v

vi

CHAPTER S. I/O SYSTEM
Overview .. .
Records

Formatted .
Unformatted
End file

Files
File Properties
File Name ..
File Position .
Formatted, Unformatted, and Binary Files
Sequential and Direct Access Properties
Internal Files
Units
Concepts and Limitations
Explicitly Opened External, Sequential,

Formatted Files
Less Commonly Used File Operations .
Direct Files/Direct Device Association
BACKSPACE/Sequential Device Association .
BACKSPACE/Unformatted Sequential File

Association
Functions Called in 1/0 Statements .
Partial Read/Unformatted Sequential

File Association
Formatted I/O and the FORMAT

Statement
Format Specifications and the

FORMAT Statement
Repeatable Edit Descriptors .
Nonrepeatable Edit Descriptors

Input/Output List Interaction and
Format Specification

Input/Output List . .
Format Specification

Edit Descriptors
Nonrepeatable
Repeatable

Carriage Control

CHAPTER 6. INTRINSIC FUNCTIONS
Intrinsic Functions

5-1
5-4
5-5
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8
5-9

5-10
5-10

5-11
5-12
5-14
5-14

5-14
5-15

5-15

5-16

, 5-16
5-18
5-18

5-20
5-20
5-21
5-23
5-23
5-27
5-32

6-1
6-3

APPENDIX A. MESSAGES .
Compile-Time Error Messages

Front End Errors
Back End Errors
Back End User Errors .
Back End Internal Errors

File System Errors
File System Error Codes .

Other Runtime Errors
2000-2049 Memory Errors
2050-2099 Integer Arithmetic
2100-2149 Type REAL Arithmetic
2200-2249 Long Integer Arithmetic
2250-2999 Other Errors

APPENDIX B. DIFFERENCES BETWEEN IBM
FORTRAN AND ANSI FORTRAN 77

Full-Language Features .
Subscript Expressions
DO Variable Expressions
Unit 1/0 Number
Expressions in Input/Output List (iolist)
Expression in Computed GOTO
Generalized 1/0
Extensions to Standard .
Compiler Metacommands
Backslash Edit Control
End of File Intrinsic Function

APPENDIX C. THE LINKER (LINK) PROGRAM
Introduction
Files

Input Files .
Output Files
VM.TMP (Temporary File)

Definitions .
Segment .. .
Group
Class

Command Prompts
Detailed Descriptions of the Command Prompts

Object Modules [.OBJ]: ..
Run File [filename] .EXE]:
List File [NUL.MAP] :
Libraries [.LIB]:
Parameters
/DSALLOCA TION

A-3
A-4
A-4

. A-10

. A-11

. A-11

. A-12

. A-13

. A-16

. A-16

. A-16

. A-17

. A-17

. A-17

B-1
B-1
B-1
B-2
B-2
B-2
B-3
B-3
B-3
B-4
B-4
B-4

C-1
C-1
C-2
C-2
C-3
C-3
C-4
C-4
C-5
C-5
C-6
C-7
C-7
C-8
C-8
C-9

. C-10

. C-10

vii

viii

/HIGH .
/LINE .
/MAP .
/PAUSE
/STACK:size

How to Start the Linker Program
Before You Begin
Example Linker Session ..
Load Module Storage Map .
How to Determine the Absolute Address

of a Segment
Messages

APPENDIX D. LINKING OBJECT MODULES
Linking with Pascal
Linking with the MACRO Assembler

APPENDIX E. A SAMPLE SESSION

. C-11

. C-11

. C-11

. C-12

. C-12

. C-13

. C-13

. C-17

. C-21

. C-22

. C-23

D-1
D-2
D-5

E-1

GLOSSARY . Glossary- I

INDEX X-1

Pref ace

This is a reference manual for the IBM Personal
Computer Fortran language.

You should have some prior knowledge of some dialect
of Fortran. This manual is not a tutorial; rather, each
section fully explains one part of the Fortran language.
The manual is organized as follows:

• Chapter 1. "Introduction," introduces you to
notational conventions, Fortran program structures,
data types, expressions, and Fortran names.

• Chapter 2. "Compiling your Fortran Program,"
describes the mechanics of compiling, linking,
and executing your Fortran programs.

• Chapter 3. "Compiler Metacommands," describes
the compiler metacommands that process the
Fortran source text.

• Chapter 4. "Statements," describes the control,
program function and subroutine, I/O, and
specification statements. In addition, DAT A
statements are described.

• Chapter 5. "I/O System," describes the Fortran
1/0 system, including the basic Fortran I/O
concepts, and the FORMAT statement.

• Chapter 6. "Intrinsic Functions," describes the
intrinsic functions available for use in a Fortran
program.

• Appendix A. "Messages," provides a listing of
messages that the computer may send you.

ix

x

• Appendix B. "IBM Fortran and ANSI Fortran
Differences" describes how IBM Fortran differs
from the standard subset language.

• Appendix C. "The Linker (LINK) Program"
provides information so you can link your
program.

• Appendix D. "Linking Object Modules" describes
how to link object modules with various compiler
packages.

• Appendix E. "A Sample Session" shows an example
of how to enter, execute, correct, reexecute, and
run an IBM Personal Computer Fortran program.

CHAPTER 1. INTRODUCTION

Contents

Notational Conventions 1-4

Fortran Program Structure 1-6
Character Set 1-6
Lines 1-7
Columns . . 1-7
Initial Lines 1-7
Blanks . . . 1-8
Comment Lines 1-8
Labels 1-9
Continuation Lines 1-9
Statements 1-9
Program Units . . . 1-10
Main Program and Subprogram 1-10
Statement Ordering 1-10
Order of Statements within Program Unit 1-12

Data Types 1-13
Integer 1-13
Real . 1-14
Logical 1-1 5
Character 1-16

Expressions . . 1-18
Arithmetic Expressions 1-18
Character Expressions . 1-22
Relational Expressions 1-22
Logical Expressions . 1-24
Array Element Name 1-26
Function Reference . 1-26
Precedence of Expressions 1-28
Evaluation Rules and Restrictions
furExpres~om 1~8

Fortran Names . . . 1-29
Scope of Fortran Names 1-29
Undeclared Fortran Names 1-31

1-1

1-2

Your IBM Personal Computer Fortran conforms to the
Standard ANSI X3.9-1978 (FORTRAN 77) at the
subset level and is referred to as the IBM Fortran in this
manual. It also includes some features from the full
level of ANSI X3.9-1978.

You will find that your IBM Fortran has also been
enhanced to ease the conversion of existing Fortran 66
programs. For example, Fortran 66 semantics for DO
loops are a compiler option.

The IBM Personal Computer Linker allows you to
combine Fortran object modules with those of other
languages, IBM Personal Computer MACRO Assembler
and IBM Personal Computer Pascal Compiler, to
facilitate writing applications that need different
languages for different parts of your program.

The IBM Fortran consists of the Fortran compiler and
a library of object modules that make up the Fortran
run-time library. The first step in creating an executable
Fortran program is com piling its (one or more) source
modules. The object modules that result are then
linked with the Fortran run-time library, producing a
run file that can be invoked from the IBM Personal
Computer DOS.

The object modules and libraries to be linked can
include the output of the IBM Personal Computer
MACRO Assembler and the IBM Personal Computer
Pascal compiler, as well as the output of the IBM
Fortran compiler.

1-3

Notational Conventions

1-4

The notational conventions used in this manual are as
follows:

• Uppercase letters and special characters are entered
in programs as shown. (For example, CONTINUE.)

• Lowercase italic letters and words are items which
you should provide in actual statements described
in the text. Once a lowercase item is defined, it
retains its meaning for the entire discussion of the
program. (For example, PROGRAM pname.)

For example, uppercase and lowercase in formats that
describe editing of integers are denoted Iw, where w is
a nonzero, unsigned integer constant.

Thus, in an actual statement, a program might contain
I3 or 144. The formats that describe editing of real
numbers are Fw.d, where dis an unsigned integer
constant. In an actual statement, F7.4 or F22.0 are
valid. Notice that the period, as a special character, is
taken literally.

• Brackets indicate optional items. For example,
A [w] indicates that either A or A 12 is valid (as a
means of specifying a character format).

• The ellipsis (...) indicates that the optional item
preceding the ellipsis may appear more than once.

For example, the computed GOTO statement described
below indicates that the syntactic items denoted by s's
with commas separating them may be repeated any
number of times:

GOTO (s [,s] ...) [,] i

• Blanks normally have no significance in the
description of Fortran statements. The general
rules for blanks described in "Fortran Program
Structure" in this chapter govern the interpretation
of blanks.

1-5

Fortran Program Structure

Character Set

1-6

A Fortran source program consists of a sequence of
characters, consisting of:

• Letters: the 52 uppercase and lowercase letters
A through Z.

• Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

• Special characters: the remaining printable
characters of the ASCII character set.

Fortran interprets lowercase letters as uppercase letters
in all contexts except in character constants and
Hollerith fields. Thus, the following user-defined names
are all indistinguishable to the IBM Fortran system:

ABCDE abcde AbCdE aBcDe

The collating sequence for the IBM Fortran character
set is the ASCII sequence.

Lines

Columns

A Fortran source program can also be considered a
sequence of lines. Only the first 72 characters in a line
are treated as significant by the compiler. The compiler
ignores all characters after 72.

If a line is shorter than 72 characters, the compiler does
treat its length as significant (for an illustration of this,
"Character Expressions" later in this chapter, describes
character constants).

The characters in a given line fall into columns. For
example, the first character is in column 1, the second
in column 2, and so forth.

A tab character may be placed in columns 1-6 of a line
which causes the next character to be interpreted as
being in column 7. This tab will be expanded to the
appropriate number of blanks in the listing file. All
other tabs are passed as is to the listing file.

The column in which a character resides is significant
in Fortran:

Columns

1-5
6
7-72

Purpose

Statement labels and comment indicators
Continuation indicators
Source statements

Initial Lines

An initial line is any line that contains a blank or a 0 in
column 6 and is not a comment line or a metacommand
line. The first five columns of the line must either be all
blank or contain a label. With the exception of the
statement following a logical IF, Fortran statements
begin with an initial line.

1-7

Blanks

Note: A zero (0) in the continuation column on
an initial line is used to improve the readability
when continuation lines are used after the initial
line.

Example

OIF ((A.LT.O).AND.(B.LT.O)
1 .AND.(C.L T.O))
2 THEN

The blank character, with the exceptions noted below,
is not significant in a Fortran source program and may
be used to improve the readability of Fortran programs.
The exceptions are:

• Blanks within string constants

• Blanks within Hollerith fields

• A blank in column 6 distinguishes initial lines from
continuation lines

Comment Lines

1-8

Comment lines do not affect the execution of the
Fortran program in any way.

A line is treated as a comment if any one of the following
conditions is met:

• A "C" (or "c") in column 1.

• An "*"in column 1.

• The line contains all blanks.

Labels

Comment lines must be followed immediately by an
initial line or another comment line. They must not be
followed by a continuation line.

Note: Extra blank lines at the end of a Fortran
program result in a compile-time error since
Fortran interprets them as comment lines
although they are not followed by an initial line.

A statement label is a sequence of from one to five digits
that are unique in each program unit. At least one digit
must be nonzero. A label may be placed anywhere in
columns 1 through 5 of an initial line. Blanks and
leading zeros are not significant.

Continuation Lines

A continuation line is any line that is not a comment line
or a metacommand line that contains any character in
column 6 other than a blank or a 0. The first five
columns of a continuation line must be blanks.

A continuation line gives you more room to write a
statement. If the statement will not fit on a single
initial line, it may be extended to include up to nine
continuation lines.

Statements

A Fortran statement consists of an initial line and up to
nine continuation lines. The characters of the statement
are up to 660 characters found in columns 7 through 72
of these lines. The END statement must be wholly
written on an initial line and no other statement may
have an initial line that appears to be an END statement.

1-9

Program Units

Subprograms and main programs are referred to as
program units.

A subprogram begins with either a SUBROUTINE or a
FUNCTION statement and ends with an END
statement.

A main program optionally begins with a PROGRAM
statement.

The Fortran language enforces a certain ordering among
statements and lines that make up a Fortran compilation.
In general, a compilation consists of, at most, one main
program and zero or more subprograms (see Appendix
D for more information on compilation of units and
subroutines). The rules for ordering statements appear
below.

Main Program and Subprogram

A main program begins with a PROGRAM statement,
or any statement other than SUBROUTINE or
FUNCTION statement, and ends with an END
statement.

Statement Ordering

1-10

Within a program unit, whether a main program or a
subprogram, statements must appear in an order
consistent with the following rules:

1. A SUBROUTINE or FUNCTION statement, or
PROGRAM statement if present, must appear as
the first statement of the program unit.

2. FORMAT statements may appear anywhere after
the SUBROUTINE or FUNCTION statement, or
PROGRAM statement if present.

3. All specification statements must precede all
DATA statements, statement function statements,
and executable statements.

4. Within the specification statements, the IMPLICIT
statement must precede all other specification
statements.

5. All DAT A statements must appear after the
specification statements and precede all statement
function statements and executable statements.

6. All statement function statements must precede
all executable statements.

1-11

Order of Statements within Program Unit

Comment
Lines

1-12

This chart is interpreted as follows:

• Statements shown above or below other
statements must appear in the designated order.

• Comment lines or FORMAT statements may be
interspersed with other statements that appear
across from them.

PROGRAM, FUNCTION, or SUBROUTINE Statement

IMPLICIT Statements

Other Specification Statements

FORMAT
DATA Statements

Statements

Statement Function Statements

Executable Statements

END Statement

Data Types

Integer

There are four basic data types in IBM Fortran:

1) Integer

2) Real

3) Logical

4) Character

This section describes the properties of, the range of
values for, and the form of constants for each type.

The storage requirements of IBM Fortran data types for
unformatted files and random access storage are:

Type Storage (bytes)

LOGICAL 2 or 4
LOGICAL*2 2
LOGICAL*4 4
INTEGER 2 or 4
INTEGER*2 2
INTEGER*4 4
CHARACTER 1
CHARACTER *n n
REAL 4
REAL*4 4

The integer data type is a subset of the negative and
positive numbers. An integer value is an exact
representation of the corresponding integer. An integer
variable occupies two or four bytes of storage.

1-13

Real

1-14

An integer can be specified in IBM Fortran as
INTEGER *2, INTEGER *4, or INTEGER. The first
two specify, respectively, two- and four-byte integers.
The third specifies either two- or four-byte integers,
according to the setting of the $STORAGE
metacommand (the default is four by~es).

A 2-byte integer can contain any value in the range
-32767 to 32767. A 4-byte integer can contain any
value in the range -2, 14 7,483 ,64 7 to 2, 14 7 ,483 ,64 7.

Integer constants are one or more decimal digits
preceded by an optional arithmetic sign, plus (+) or
minus (-). A decimal point is not allowed in an integer
constant. The following are examples of integer
constants:

123
00000123

+123
32767

-123 0
-32768

The real data type consists of a subset of the real
numbers: the single-precision real numbers. A single­
precision real value is an approximation of the real
number desired. A single-precision real value occupies
four bytes of storage. The precision is six decimal
digits.

A real constant is either a basic real constant, a basic
real constant followed by an exponent part, or an
integer constant followed by an exponent part. For
example:

+1.000E-2
+0.01

1.E-2
100.0E-4

1 E-2
.0001 E+2

All represent the same real number: one lOOth.

Logical

The range of single-precision real values is:

3.0E-39 to 1.7E+38
1.7E+38 to -3.0E-39

(positive range)
(negative range)

A real constant consists of an optional sign followed by
an integer part, a decimal point, a fraction part, and an
optional exponent part. The integer and fraction parts
consist of one or more decimal digits, and the decimal
point is a period (.). Either the integer part or the
fraction part may be omitted, but not both. Some
sample basic real constants are:

-123.456
-123.
-.456

+123.456
+123
+.456

123.456
123.
.456

An exponent part consists of the letter "E" or "e"
followed by an optionally signed integer constant of
one or two digits. An exponent indicates that the value
preceding it is to be multiplied by 10 to the value of the
exponent part's integer. Some sample exponent parts
are:

E12 E-12 E+12 EO

The logical data type consists of the two logical values
true and false. A logical variable occupies two or four
bytes of storage.

A logical can be specified in IBM Fortran as
LOGICAL *2, LOGICAL *4, or LOGICAL. The first
two specify, respectively, two- and four-byte logicals.
The third specifies either two- or four-byte logicals
according to the setting of the $STORAGE
metacommand (default is four bytes).

1-15

Character

1-16

There are only two logical constants, .TRUE. and
.FALSE. which represent the two corresponding logical
values. The internal representation of.FALSE. is a
word of all zeros (O's), and the internal representation
of .TRUE. is a word of all zeros (O's) with a 1 in the
least significant bit. If a logical variable contains any
other bit values, its logical meaning is undefined.

The significance of a logical variable is unaffected by the
$STORAGE metacommand, which is present primarily
to allow compatibility with the ANSI requirement that
LOGICAL, REAL, and INTEGER variables be the same
size.

The character data type is a sequence of ASCII
characters. The length of a character value is equal to
the number of characters in the sequence. The length
of a particular constant or variable is fixed, and must
be between 1 and 127 characters.

A character variable occupies one byte of storage for
each character in the sequence, plus one byte if the
length is odd. Character variables are always aligned
on word boundaries. The blank character is permitted
in a character value and is significant.

A character constant is one or more characters enclosed
by a pair of apostrophes. Blank characters are
permitted in character constants. Each character counts
as one. An apostrophe within a character constant is
represented by two consecutive apostrophes without
blanks between them. The length of a character
constant is equal to the number of characters between
the apostrophes, with double apostrophes counting as
a single apostrophe character. Some sample character
constants are:

'A' ' ' 'Help'
'A very long CHARACTER constant'

The last example, '"', represents a single apostrophe, '.

Fortran permits source lines of up to 72 columns.
Shorter lines are padded to column 72 with blanks;
therefore, when a character constant extends across a
line boundary, its value is assigned as if the line was
padded with blanks to column 72 and placed before the
continuation line. Thus, the character constant:

200 CH = 'ABC
XDEF'

has a length of 63.

1-17

Expressions

Fortran has four classes of expressions:

1) Arithmetic

2) Character

3) Relational

4) Logical

Arithmetic Expressions

1-18

An arithmetic expression produces a value that is either
of type integer or real. The simplest forms of arithmetic
expressions are:

• Unsigned integer or real constant

• Integer or real variable reference

• Integer or real array element reference

• Integer or real function reference

The value of a variable reference or array element
reference must be defined for it to appear in an
arithmetic expression. Moreover, the value of an
integer variable must be defined with an arithmetic
value, rather than a statement label value previously
set in an ASSIGN statement.

Other arithmetic expressions are built up from the
above simple forms using parentheses and the arithmetic
operators as follows:

Arithmetic Operators

Operator Operation Precedence

** Exponentiation Highest

I Division Intermediate

* Multiplication Intermediate

Subtraction or Negation Lowest

+ Addition or Identity Lowest

All of the operators are binary operators, appearing
between their arithmetic expression operands. The +
and - may also be unary, preceding their operand.

Operations of equal precedence are left-associative,
except exponentiation, which is right-associative. Thus,

A/B*C

is the same as:

(A/B)*C

and:

A**B**C

is the same as:

A**(B**C).

Arithmetic expressions can be formed in the usual
mathematical sense, as in most programming languages,
except that Fortran prohibits two operators from
appearing consecutively.

1-19

1-20

Thus,

A**-B

is prohibited, although:

A**(-B)

is permissible. Note that unary minus is also of lowest
precedence so that:

-A*B

is interpreted as:

-(A*B)

Parentheses may be used in an expression to control the
associativity and the order of operation evaluation.

Integer Division

The division of two integers results in a value that is the
mathematical quotient of the two values, truncated to
an integer. Thus, 7 /3 evaluates to 2, (-7)/3 evaluates to
-2, 9/10 evaluates to 0, and 9/(-10) evaluates to 0.

Type Conversions and Result Types

When all operands of an arithmetic expression are of the
same type, the value produced by the expression is also
of that type. When the operands are of different data
types, the value produced by the expression is of a data
type determined by the rank as follows:

Arithmetic
Data Type

REAL

INTEGER*4

INTEGER*2

Rank

Highest

Intermediate

Lowest

When an operation has two arithmetic operands of
different data types, the value of the data type
produced is the data type of the highest-ranked operand.
For example, an operation on an integer and a real
element produces a value of data type real.

The data type of an expression is the data type of the
result of the last operation performed in evaluating
the expression. The data types of operations are
classified as either INTEGER *2, INTEGER *4, or
REAL.

Integer operations are performed on integer operands
only. A fraction resulting from division is truncated
in integer arithmetic, not rounded. Thus the following
example evaluates to 0, not 1.

1/4 + 1/4 + 1/4 + 1/4

Note: Memory for the type INTEGER (without
the *2 or *4 extensions) is dependent on the
usage of the $STORAGE metacommand. See
Chapter 3 for details.

Real operations are performed on real operands or
combinations of real and integer operands. When
an operation has a real and an integer operand, the
integer operand is first converted to a real data type
by giving each a fractional part equal to zero, real
arithmetic is used to evaluate the expression.

1-21

For example:

A = N/B

N is converted to a real data type and real division is
performed on N and B.

When an expression contains mixed data types, the
integer and real operations performed are evaluated in
the order of precedence of the operators. For example:

y = x * (I + J)

Integer addition is performed on I and J, the sum is
changed to a real data type and real multiplication is
performed on the result and X.

Note: IBM Fortran does not check for integer
overflow. Unpredictable results will occur if the
limits of integer values are exceeded.

Character Expressions

A character expression produces a value that is of type
character. The forms of character expressions are:

• Character constant

• Character variable reference

• Character array element reference

• Any character expression enclosed in parentheses

No operators result in character expressions.

Relational Expressions

1-22

Relational expressions compare the values of two
arithmetic or two character expressions.

An arithmetic value may not be compared with a
character value. The result of a relational expression is
of type logical.

Relational expressions can use any of the operators
shown below to compare values.

Relational Operators

Operator Representing Operation

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

All of the operators are binary characters, appearing
between their operands. For example:

A .GT. B
X .EQ. 7

The above examples are valid expressions. There is no
relative precedence or associativity among the relational
operands; therefore,

A .LT. B .NE. C:

is not valid. The above example violates the type rules
for operands. Relational expressions may only appear
within logical expressions.

1-23

Relational expressions with arithmetic operands may
have one operand of type integer and one of type real.
In this case, the integer operand is converted to type real
before the relational expression is evaluated.

Relational expressions with character operands compare
the position of their operands in the ASCII collating
sequence. An operand is less than another if it appears
earlier in the collating sequence. If operands of unequal
length are compared, the shorter operand is considered
as if it were extended to the length of the longer
operand by the addition of blanks.

Logical Expressions

1-24

A logical expression produces a value that is of type
logical. The simplest forms of logical expressions are:

• Logical constant

• Logical variable reference

• Logical array element reference

• Logical function reference

• Relational expression

Other logical expressions are built up from the above
simple forms using parentheses and the logical operators
as shown in the following chart:

Logical Operators

Operator Operation Precedence

.NOT. Negation Highest

.AND. Conjunction Intermediate

.OR. Inclusive disjunction Lowest

The AND and OR operators are binary operators,
appearing between their logical expression operands.
The NOT operator is unary, preceding its operand.
Operations of equal precedence are left-associative, for
example:

A .AND. B .AND. C

is equivalent to:

(A .AND. B) .AND. C

As an example of the precedence rules:

.NOT. A .OR. B .AND. C

is interpreted the same as:

(.NOT. A) .OR. (B .AND. C)

Two NOT operators cannot be adjacent to each other,
although:

A .AND .. NOT. B

is an example of an allowable expression with two
adjacent operators.

1-25

The meaning of the logical operators is their standard
mathematical semantics, with .OR. being "nonexclusive,"
that is,

.TRUE. .0 R. .TRUE.

evaluates to the value:

.TRUE.

Array Element Name

The array element name is used to reference one
element of an array.

arr(sub [,sub] . ..)

The arr entry is the name of an array. The sub entry is
a subscript expression.

C ASSIGN THE 4TH ELEMENT OF
C ARRAY A THE VALUE 3.8

A(4, 1, 1)=3.8

A subscript expression is an integer expression used in
selecting a specific element of an array. The number of
subscript expressions must match the number of
dimensions in the array declarator. The value of a
subscript expression must be between 1 and the upper
bound for the dimension it represents.

Function Reference

1-26

A function reference may appear in an arithmetic or
logical expression. Execution of a function reference
causes the function to be evaluated, and the resulting
value is used as an operand in the containing expression.

fname ([arg [, arg]] ...)

The fname entry is the user- or system-defined name of
an external, intrinsic, or statement function.

The arg entry is an actual argument. An actual
argument can be an arithmetic expression, an array, or
a user- or system-defined function or subroutine. Here
are some examples of function references in expressions:

1+SIN(.5)

A+B+USERFN(9)

.TRU E .. AND.BITF N(J)

VAR1/XYZ(3,A)

. See Chapter 4 for more information pertaining to formal
parameters. The number of actual arguments must be
the same as in the definition of the function, and the
corresponding types must agree.

1-27

Precedence of Expressions

When arithmetic, relational, and logical operators appear
in the same expression, their relative precedence is as
follows:

Relative Precedence of Operator Classes

Operator Precedence

Arithmetic Highest

Relational Intermediate

Logical Lowest

Evaluation Rules and Restrictions
for Expressions

1-28

Any variable, array element, or function referenced in
an expression must be defined at the time of the
reference. Integer variables must be defined with an
arithmetic value, rather than a statement label value as
set by an ASSIGN statement.

Arithmetic operations which are not mathematically
meaningful; such as dividing by 0, are prohibited. Other
prohibited operations are raising a 0-valued operand to
a 0 or negative power and raising a negative-valued
operand to a power of type real.

Fortran Nam es

A Fortran name is used to denote a variable, array,
function, or subroutine.

A Fortran name consists of an initial alphabetic
character followed by a sequence of up to five
alphanumeric characters. Blanks may appear within a
Fortran name, but have no significance.

Any valid sequence of characters can be used for any
Fortran name. There are no reserved names as in other
languages. Sequences of alphabetic characters used as
keywords by the Fortran compiler are not confused
with user-defined names.

The compiler recognizes keywords by their context and
in no way restricts the use of user-defined names. Thus,
a program can have, for example, an array named IF,
READ, or GOTO, with no error (as long as it conforms
to the rules that all arrays must obey); however, this
is not recommended.

Scope of Fortran Names

The scope of a name is the range of statements in which
that name is known, or can be referenced, within a
Fortran program unit. In general, the scope of a
name is either global or local, although there are several
exceptions. A name can only be used in accordance
with a single definition within its scope. The same
name, however, can have different definitions in distinct
scopes.

1-29

1-30

A name with global scope can be used in more than one
program unit (a subroutine, function, or the main
program) and still refer to the same entity. In fact,
names with global scope can only be used as global
names in a single, consistent manner wi!hin the same
program. All subroutine, function subprogram, and
common names, as well as the program name, have
global scope. Therefore, a function subprogram cannot
have the same name as a subroutine subprogram or a
common data area. Similarly, no two function
subprograms in the same program can have the same
name.

Even though there are no reserved names, in IBM
Fortran, using certain names will conflict with those
names in the library and will cause link errors. The
following names should not be used as global names:

ABS cos ICLRER MOVESL SMULOK
ACOS COSH IDIM2 MOVESR SQRT
AINT DIM4 IDIM4 NINT2 TAN
ALOG EXP I GETER NINT4 TANH
ALOG 10 FIL LC ISIGN2 PUTCH TNSR
AMOD4 FILLSC ISIGN4 PUTS TR UADDOK
AN INT FTRANS LOCKED REAC UM460K
ASIN GETCH MOD2 SAD DOK UM UL OK
ATAN GETS TR MOD4 SIGN4 UNLOCK
ATAN2 IABS2 MOVEL SIN UTLR
CNVR IABS4 MOVER SINH

Note: In addition to the above, any six character
names ending with QQ should not be used.

The names of variables, arrays, formal parameters, and
statement functions all have local scope.

A name with local scope is only visible (known) within
a single program unit. A name with a local scope can be
used in another program unit with a different meaning,
or with a similar meaning, but the name is in no way
required to have similar meanings in a different scope.

One exception to rules about scope is the name given
to common data blocks. It is possible to refer to a
"global" common block name in the same program unit
in which an identical "local" name appears. This is
permitted because common block names are always
enclosed in slashes, such as /JUDY/, and can, therefore,
be distinguished from ordinary names by the compiler.

Another exception to the rules about scope relates to
parameters of statement functions. The scope of
statement function parameters is limited to the single
statement forming that statement function. Any
other use of those names within that statement function
is not permitted, but any other use outside that
statement function is permitted.

Undeclared Fortran Names

When a user name that has not appeared before is
encountered in an executable statement, the compiler
classifies that name from the context of its use. If the
name is used in the context of a variable, the compiler
creates an entry into the symbol table for a variable of
that name. Its type is inferred from the first letter of
its name. Variables beginning with the letters I, J, K,
L, M, or N are considered integers, while all others are
considered reals; these defaults can be overridden by
an IMPLICIT statement (see Chapter 4).

If an undeclared name is used in the context of a
function reference, a symbol table entry is created for a
function of that name. Its type will be inferred in the
same manner as for a variable.

Similarly, a symbol table en try is created for a newly
encountered name that is the target of a CALL statement.
If an entry for such a subroutine or function name exists
in the global symbol table, its attributes are coordinated
with those of the newly created symbol table entry.
If any inconsistencies are detected, such as a previously
defined subroutine name being used as a function name,
an error message is issued.

1-31

1-32

CHAPTER 2. COMPILING A FORTRAN
PROGRAM

Contents

What You Need 2-3
Backing Up the Master Diskettes 2-4
Setting Up the Diskettes: FORl and

FOR2 2-4
Setting Up the Diskettes: LIBRARY 2-4
Using the EDLIN Program 2-5

Starting the Compilation . . . 2-7
Starting the Compiler: FORl 2-7
Continuing the Compilation: FOR2 2-12
Linking 2-13
Running Your Fortran Program . 2-16
Optional FORl Command Lines 2-17
Optional FOR2 Command Line 2-18
Compiling Using a Batch File 2-19
Compiling Large Programs 2-20

Device Identifications . . 2-23

Sample Compiler Listings 2-24
Compiler Listing . . 2-25
The D Column Label 2-25
The Line# Column 2-25
Additional Listing Metacommands 2-25
Compiler Messages . . 2-27
Unrecoverable Errors 2-27
Symbol Table . 2-29
The Linker Map . . . 2-34

2-1

2-2

What You Need

To successfully compile Fortran programs on your IBM
Personal Computer, you need:

• Your Fortran package:

- Three 5-1 /4 inch master diskettes, one marked
FORl, one marked FOR2, and one marked
LIBRARY

- FORl should contain the file:

• FORl.EXE

- FOR2 contains the file:

• FOR2.EXE

- LIBRARY contains the files:

• FORTRAN.LIB
• FORTRAN.ARP (Automatic Response

File)
• LINK.EXE
• DOS Sample Batch Procedures

- This manual: the IBM Personal Computer
Fortran reference manual

• A minimum of l 28K bytes of machine-resident
storage

• Two diskette drives

• A printer (highly recommended)

• A display (an IBM Personal Computer Monochrome
Display, a monitor, or a TV with an RF modulator)

2-3

• The IBM Personal Computer Disk Operating
System (DOS) reference manual and its diskette

• One 5-1 /4 inch diskette which we will call the
scratch diskette

The first time through, you will also need:

- Three 5-1/4 inch diskettes to make backup
copies of the master diskettes

Backing Up the Master Diskettes

We strongly recommend that you back up your Fortran
master diskettes as soon as possible by making copies
of FORl, FOR2, and LIBRARY. We also recommend
that you use these copies for your day-to-day
operations, and put the master diskettes in a safe place.

Setting Up the Diskettes: FORl and FOR2

Now that you have made copies of FORl and FOR2,
you will need to copy COMMAND .COM from the DOS
diskette onto FORl and FOR2. This is because when
FORl and FOR2 are loaded, they may overwrite
COMMAND.COM in storage (COMMAND.COM is
loaded when the system is started).

COMMAND.COM will then be automatically reloaded
when either FOR 1 or FOR2 is finished executing and
is in drive A.

Setting Up the Diskettes: LIBRARY

2-4

Now that you have made a copy of the LIBRARY, you
will need to copy COMMAND.COM from the DOS
diskette onto the LIBRARY diskette. This is done for
the same reason as above. The IBM Personal Computer
Linker Version 1.10 on this diskette is an upward
compatible version of the IBM Personal Computer
Linker Version 1.00 on the DOS diskette. The linker on
your LIBRARY diskette must be used to successfully
run a Fortran program on the IBM Personal Computer.

In addition, it may be used in place of the Linker
supplied with the IBM Personal Computer DOS Version
1.00.

See "Appendix C" for full details on the IBM Personal
Computer Linker Version 1.10.

Using the EDLIN Program

You can use the Line Editor (EDLIN) which is provided
as a part of the IBM Personal Computer DOS to create,
change, and display source files or text files. Source
files are unassembled or uncompiled programs in source
language format. Text files appear in a legible format.

The EDLIN program is a line text editor that:

• Deletes, edits, inserts, and displays lines

• Searches for, deletes, replaces, and displays text

• Creates new files and saves them

• Updates old files and saves both updated and
original files

The text of files created or edited by EDLIN is divided
into lines of varying length, up to 253 characters-per­
line.

Line numbers are dynamically generated and displayed
by EDLIN during the editing process, but are not
actually present in the saved file.

2-5

2-6

When you insert lines, all line numbers following the
inserted text advance automatically by the number of
lines inserted. When you delete lines, all line numbers
following the deleted text decrease automatically by
the number of lines deleted. Consequently, line
numbers always go consecutively from 1 through n
(the last line).

Starting the Compilation

We recommend the following sequence of steps as a
general rule:

1. Format your scratch diskette. See the IBM
Personal Computer Disk Operating System (DOS)
reference manual for information about formatting.

2. Put your program onto the scratch diskette either
by copying it from the diskette it is already on, or
by creating a new program using the line editor (see
"EDLIN" in the IBM Personal Computer Disk
Operating System (DOS) reference manual).

3. Give your program the filename extension
".FOR", for Fortran.

You are now ready to compile your Fortran program.

Notes:

1. You may enter compiler commands using all
uppercase letters, all lowercase letters, or a
combination of uppercase and lowercase
letters.

2. A sample program session of the following
paragraphs is presented in "Appendix E."

Starting the Compiler: FORl

FORl is the first pass of the compiler. FOR 1 reads your
source file and checks it for syntactic correctness. It
generates two intermediate files which are stored on the
scratch diskette in the space not occupied by your source
program.

2-7

2-8

These files are called:

PASIBF.SYM - the symbol table
PASIBF.BIN - the intermediate binary code

FOR 1 also creates your source listing file. If you have a
printer with your system, you may print a copy of the
source listing to aid you in debugging.

Use these steps for the FOR 1 portion of the
compilation of your program:

1. Change the default drive (in response to the A>)
to B by entering:

B:

2. Insert the scratch diskette containing your program
into drive B.

3. Insert the FORl diskette into drive A.

4. Enter:

A:FOR1

FORl will be loaded into the computer. After a short
time, the compiler will display a heading and the
following prompt:

Source filename [.FOR] :

Notes:

1. The name shown within the brackets is the
default filename extension that your IBM
Fortran will use if you do not choose a
filename extension of your own.

2. Although your IBM Fortran will supply a
default filename extension whenever you do
not supply one, all extensions may be
overridden by explicitly specifying the
filename with the new extension.

3. The default diskette drive is the DOS default
drive; it may be explicitly overridden by
including the drive identification as part of
the filespec. Also just the drive identification
may be given when a complete default filespec
exists.

4. The PASIBF files are always created on the
DOS default drive.

Source filename is the name of the file in which you
have stored your program. For example, assuming you
responded with "myfile" to the prompt, the display
shows:

Source filename [.FOR]: myfile

It is not necessary to enter the .FOR filename extension
because the compiler automatically looks for .FOR.
After you enter your source filename, you will see this
prompt:

Object filename [MYFILE.OBJ]:

Object filename is the name you want the object
(machine-readable) file to have. If you wish to have
your object file stored under the name MYFILE.OBJ,
you can simply press the Enter key, or you may give
the file another name .OBJ. For our example, assume
we have simply pressed the Enter key:

Object filename [MYFILE.OBJ]:

2-9

2-10

The next prompt will look like this:

Source listing [NUL.LST]:

Source listing is the name you wish to give to the file
that will contain the compiled source listing. If you do
not want a listing, press the Enter key. This will give
you the default filename NUL.LST, which tells the
compiler not to create a source listing file.

For our example, assume we do want a listing file and
enter:

Source listing [NUL.LST]: myfile

Note: The compiler will add the default
extension and produce the listing file,
MYFILE.LST.

The last prompt is:

Object listing [NUL.COD]:

Object listing is the name you wish to give to the file
that will contain the disassembled object file listing. If
you do not want a listing, press the Enter key. This
will give you the default filename NUL.COD, which
tells the compiler not to create a source listing file.

For our example, assume you have entered:

Object listing [NUL.COD]: myfile

The specification of the filename extension is not
necessary because the compiler would have provided
it as the default extension and produced the file,
MYFILE.COD.

This is what the completed session would look like if
you use the filenames for the above examples.

Source filename [.FOR]: myfile
Object filename [MYFILE.OBJ]:
Source listing [NUL.LST]: myfile
Object listing [NUL.COD]: myfile

As soon as you enter the last filename, the compiler
begins its first pass through your program. If the
program contains any syntax errors, the compiler
shows the errors on the display as well as in the listing
file (see "Compiler Listing" at the end of this chapter).

Note: Before pressing Enter after any of these
responses, you may continue the response with a
comma and the answer to what would be the
next prompt; you do not have to wait for that
prompt. If you end any with a semicolon(;), the
remaining responses are all assumed to be the
default. Processing begins immediately with no
further prompting.

When it has completed its first pass, the compiler
displays a message with the number of errors it has
found. The message will look like this if you send the
source listing to a file:

Pass One No Errors Detected
10 Source Lines

If there were errors, they are shown on the display
along with one or both of these messages:

Pass One 3 Errors Detected
120 Source Lines

2-11

If the compiler has indeed found errors, you must
locate and fix those problems in your source program
and rerun FORl before you continue the compilation
with FOR2.

Note: If you have not copied COMMAND.COM
onto your FORl diskette, you will now be asked
to insert the DOS diskette.

Continuing the Compilation: FOR2

2-12

When your corrections (if any were necessary) are
completed, and you have run the corrected program
through FOR 1 again, you are ready to complete the
compilation.

FOR2 is the second pass of the Fortran compiler.
During this second pass, the compiler reads the .SYM
and .BIN files made by FOR 1 and creates the two
object files, .COD and .OBJ. This is the optimization
pass.

FOR2 creates, writes, reads, and deletes a file called
PASIBF.TMP on the DOS default drive (the
intermediate link text) as well as reading and deleting
PASIBF.SYM and PASIBF.BIN.

Some programs may compile correctly during FOR 1,
but may produce errors during FOR2. See Appendix
A, "Messages," for these errors.

Your scratch diskette with the FOR 1 files on it should
still be in diskette drive B.

Use the following steps for the FOR2 portion of the
compilation of your program:

1. Remove the FOR 1 diskette from drive A.

Linking

2. Insert the FOR2 diskette into drive A.

3. Enter:

A: FOR2

FOR2 requires no input from you. FOR2 is loaded
and after a short time starts to run. It generates
the object file and listing. When the compilation is
completed, FOR2 gives you a message similar to
this:

Code Area Size = z0116 (278)
Cons Area Size = _:;Q05E (94)
Data Area Size = 1000E (14)

Pass Two No Errors Detected.

The Code Area Size is the total number of bytes
taken up by your program (in our example, 278
bytes). Cons Area Size is the number of bytes
taken up by the constants in your program. The
Data Area Size refers to the static allocated data.
This area always starts at offset #2. All three
sizes are given in both hexadecimal and decimal.

If errors are detected during the second pass, see
Appendix A, "Messages", in this book, and
correct the errors. Then rerun FORl and FOR2,
if necessary.

We recommend that you read the IBM Personal Computer
Disk Operating System (DOS) reference manual for an
explanation of linking. Also, see "Appendix C" in this
manual.

2-13

2-14

Use the following steps for the Linker portion of the
compilations of your program.

1. Remove FOR2 from drive A.

2. Insert your copy of LIBRARY diskette into drive
A.

3. Enter:

A: link

The Linker is loaded and after a short time the
Linker displays a heading and the following
prompt:

Object Modules [.OBJ]:

Object Modules is the name of the machine­
readable file(s) created by FOR2.

As with FOR 1, the .OBJ extension is not needed
here. If you used our example names, you would
enter:

Object Modules [.OBJ]: myfile

The next prompt is:

Run File [MYFILE.EXE]:

Run File is the name you wish to give to the file
that will contain the executable (machine-readable,
relocatable) code for your program. If you wish
to have your Run File stored under the name
MYFILE.EXE, simply press the Enter key or give
the file another name, to which the IBM Personal
Computer Linker will add the filename extension
.EXE (this filename extension may not be
overridden).

For our example, assume we have just pressed the
Enter key:

Run File [MYFILE.EXE]:

The next prompt is:

List File [NU L.MAP]:

MAP file is the name you wish to give to the file
that will contain Linker printed output. If you do
not want a MAP file, press the Enter key. This will
give you the default filename NUL.MAP, which
tells the Linker not to create a MAP file.

For our example, assume we do want a MAP file
and have entered:

Map File [NUL.MAP]: myfile

The Linker adds the default extension and
produces the MAP File, MYFILE.MAP.

The next prompt is:

Libraries [.LIB]:

Libraries refers to the runtime routines needed by
IBM Fortran to run your program. All these
routines are included in FORTRAN.LIB. In IBM
Fortran as well as IBM Personal Computer Pascal,
the names of the libraries needed are supplied by
the object module. In response to this prompt,
you may press the Enter key:

Libraries [.LI Bl :

2-15

When you link a Fortran program, the Fortran
library is brought in automatically. IBM Fortran
will look by default for the library on drive A.

Here is what this sequence of prompts would look
like if you use our example filenames:

B>a:link
I BM Personal Computer Linker
Version 1.10 (C) Copyright I BM Corp 1982
0 bject Modules [.OBJ] : myfile
Run File [MYFILE.EXE]:
List File [NUL.MAP]: myfile
Libraries [.LIB]:

The linker now begins to link the program. When
linking has been completed, you have the Run
File named "myfile" stored on your scratch
diskette in drive B. We recommend that you
display the diskette directory for the scratch
diskette to confirm that the run filename is there
(it will have the .EXE filename extension). Using
our example filename, you would see
MYFILE.EXE listed in the directory.

Running Your Fortran Program

2-16

To run your program, simply enter your run filename,
without the .EXE filename extension. For example,
enter:

myfile

You may want to copy this file to another diskette
once you are sure that it does what you intended it to
do.

Optional FORl Command Lines

FOR 1 can also be run using the following command line
(substituting, of course, your filenames for the four files
shown):

FOR1 Source File,Object File,Source
List,Object List;

When you use a command line, the FOR 1 prompts
described in the above example are not displayed if an
entry for all four files are specified or if the command
line ends with a semicolon.

If an incomplete list is given and no semicolon is used,
the compiler prompts for the remaining unspecified files.
Each prompt displays its default which may be
accepted by pressing the Enter key, or overridden with
an explicit filename or device name. However, if an
incomplete list is given and the command line is
terminated with a final semicolon, the unspecified files
are defaulted without further prompting.

Certain other variations of this command line are
permitted.

Examples are as follows:

1) FOR1 module

Source is module .FOR. A prompt is given, showing the
default of module .OBJ. After the response is entered,
a prompt is given showing the default of NUL.LST.
After the response is given, a prompt is displayed showing
the default of NUL.COD.

2) FOR1 module;

2-17

If the semicolon is added, no further prompts are
displayed. The source of module.FOR is compiled; the
object is produced in module.OBJ; no listing or object
listing file is produced.

3) FOR1 module.,;

This is similar to the above example, except that the
listing is produced in module.LST.

4) FOR1 module..,;

This is similar to the preceding examples, except that
the object listing, module .COD, is also produced.

5) FOR1 module..,

Using the same example, but without the semicolon,
module.FOR is compiled, the object is produced in
module.OBJ, a listing is produced in module.LST, but
a prompt is given with the default of module.COD.

6) FOR1 module,NUL,;

No object is produced. The listing is produced in
module.LST. No object listing is produced, and no
further prompts are displayed.

Optional FOR2 Command Line

2-18

FOR2 can be made to operate as follows:

• Look for the PASIBF files on a drive other than
the default drive.

• Pause before execution to allow diskette swapping.

The command line format is:

FOR2 [drive] [Pl

The drive entry is the diskette drive where the P ASIBF
file is stored. The drive entry must be in the range of the
valid DOS drive identifications. If not, the P entry is
implied. If the drive entry is present, the following
message will be displayed:

PASIBF.SYM and PASIBF.BIN are on Drive x.

The P entry tells FO R2 to pause before starting to
execute. If the pause entry is present, the following
prompt will be displayed:

Press enter to begin Pass two:

To begin Pass two., simply press the Enter key.

Compiling Using a Batch File

See the IBM Personal Computer Disk Operating System
(DOS) reference manual for detailed description of the
Batch command facility that can be used to
automatically start the compiler.

A sample Batch command to display the listing is as
follows:

Note: In the following example, assume drive B:
has source and space for a listing, and drive A:
has DOS and the compiler.

Use EDLIN to create FORC.BA T.

1. A:MODE LPTl: 132

2. B:

3. PAUSE (Insert FORl in drive A)

2-19

4. A:FOR %1,NUL

5. TYPE %1.LST

6. ERASE % 1.LST

7. PAUSE (Insert FOR2 in drive A)

8. A:FOR2

Then enter:

FORC module

Note: Several files exist on the LIBRARY diskette
with .BAT extensions. These batch procedures are
provided as commented examples of the use of the
Batch command facility.

Com piling Large Programs

2-20

You may find that there is not enough space on the
scratch diskette to hold all the files produced by the
compiler (an out of space error message is displayed).

In this event, the tips in the following paragraphs will
aid you in compiling your program:

• You can send any of the FORl or FOR2 output
files to one of the special DOS filenames which do
not correspond to a disk file. These special
filenames or device names are described "Device
Identification" later in this chapter.

The following FORl command line sends .OBJ to
NUL (useful when debugging), .COD to NUL, and
.LSTto CON:

FOR1 myfile,NUL,CON,NUL;

• By swapping diskettes, you can maximize the
amount of space that files can occupy. The
following is the optimum configuration:

Assume the source filename is myfile and the DOS
default drive is B:. During this session, you may
be prompted to reinsert your DOS diskette.

1. Insert the FORl diskette into drive A.

2. Insert a blank formatted diskette into
drive B.

3. Enter:

A:FOR1 A:myfile,A:

4. When the listing file prompt appears, remove
the FOR 1 diskette and insert into drive A
the diskette with the source file called myfile.
Respond to the listing file prompt with a
semicolon (;).

5. When FORl has completed running, remove
the source file diskette from drive A and
insert the FOR2 diskette.

6. Enter:

A:FOR2 p

7. When FOR2 displays the prompt:

Press ENTER to begin Pass Two:

Remove FOR2 from drive A and insert a blank
formatted diskette.

8. Press Enter.

9. When FOR2 has completed running, you will
have the final object file on drive A.

2-21

2-22

10. Move the object file diskette from drive A to
drive B.

11. You may now link the object files as
previously described.

Note: Sending the .LST or .COD files to
CON or AUX would not have affected this
procedure.

Very large programs can be broken down into smaller
units or modules and compiled separately with FORl
and FOR2 (see Appendix D, in this book, for
information about how program units are constructed
and compiled separately). They can then be joined
together by the Linker to create a single run file.

Device Identifications

.FOR

If you want to override the implied DOS default
diskette drive, you can specify the device identification
for your output devices.

The device names and designated identifications (IDs)
are:

• Printer - LPTl, PRN

• Diskette drives - A:, B:

• Display/keyboard - CON (buffered output),
USER (non-buffered)

• RS-232 (serial port) - AUX, COM 1, LINE

• No output file - NUL

Note: Suspension of the computer can occur by
pressing the Ctrl and Num Lock keys. Press any
character to resume. This can be useful to
temporarily halt the display scrolling so it can be
read, when a large amount of output is being
generated.

The following diagram describes the flow of files through
a Fortran compilation:

Keyboard/Display Keyboard/Display Keyboard/Display

.OBJ .EXE
(Source file) PASIBF.BIN (Run file)

.LST .COD PASIBF.TMP
(Listing file) (Object code listing)

.MAP FORTRAN.LIB
!LINK list file)

2-23

~ Student grades management program
~

Page 1
11-09-81
00:10:59

D Line# 1 7 IBM Personal Computer FORTRAN Compiler Vl.00

Name

Nf~MES

NO STD
NCIT!3T
s

1
:-.1
3
4
5
6
7
El
9

10
11
1 '::1

13
l.4

Stitle:"Student grades management program•
$storage:2

PROGRAM grades

C Define arrays and variables

Type

DIMENSl(]l\I r:;cor·es (14, 10), tot,~d (1L'f.)
CHARACTER*5 names<14>
INTEr3ER s
CALL start<nostd,notst>
CALL getgrd(nostd,notst,names,scores)
CALL totit<nostd,notst,scores,total>
CALL report(nostd,notst,names,scores,total>
CALL rptavq(nostd,notst,scores,total)
END

OffsE-?t P Cl ass

CHAR*5
INTEGER*2
INTEGER*2
INTEGER*2

618
702
704

SCORES REAL
TOTAL REAL

~,

..::.

56:2

Compiler Listing

There are references throughout the following
explanation to the IBM Fortran Compiler
metacommands. Refer to Chapter 3 in this book for a
complete description of the metacommands.

Every page of the Fortran source listing has a header at
the top. In the upper left hand portion of the page, the
first two lines contain the user's choice of program title
and subtitle, set with the $TITLE and $SUBTITLE
metacommands, respectively. If the $TITLE or
$SUBTITLE is too long to fit on the heading line, they
are both moved directly below the header.

The first three lines in the upper right hand portion of
the page contain the page number, the date, and the
time respectively. A new page can be started with
$PAGE. The compiler name and version number appear
on the first line below the header, along with the
column labels. The compiler name and version number
line, even if split, ends above column 72 of the input
source lines. This is useful to spot lines that exceed
column 72. In addition, these lines are truncated on the
listing to show that the line is too long; therefore, part
of the line is ignored. If the linesize is decreased to the
point that the compiler name and version number can

t;J no longer fit on the line below the header, it is split in
~ half and becomes part of the header.

The D Column Label

The D column contains the current nesting level of DO
loops. It is incremented for the statement following the
DO statement and is decremented on the terminal
statement. If 2 or more DO loops share the same
terminal statement, the inner most DO level is placed on
that terminal statement. The column is empty when the
DO nest level is 0. The number in this column can be
used to find missing terminal statements. DO nest levels
greater than 9 are represented as an asterisk(*).

The Line# Column

This column contains the listing line numbers, which are
internally generated. The line number is used to identify
runtime errors if $DEBUG is on.

Additional Listing Metacommands

Several other metacommands affect the listing.
$LINESIZE:n and $PAGESIZE:n set the width and
height; and, $LIST and $NOLIST can be used to turn
the listing on or off (errors are always listed).

The metacommands themselves appear in the listing,
except for $NOLIST.

~NllldWOJ

~
N
°'

Name

NSTD
NTST

15 c Read in program parameters
SUBROUTINE start(nstd,ntst>
WRITE<*,5)

16
17
18
19
20
21
22
23
24
25

Type

5 FORMAT<'O',lOx,'Student Grades Management')
WRITE<*,6>

6 FORMAT<11x,'******* ****** **********'>
WRITECt,8)

8 FORMAT('Oinput #Students and #Grades-Use 212')
READ <*,10) nstd,ntst

10 FORMAT<2i2>
END

Offset P Class

INTEGER*2 2 *
INTEGER*2 6 *

t;J
N
......:i

~.;·:: .~:)
.... i .. 'i"
,1::

:··:·<::i .. :.. _}

:·:~:1::?

C Read in student grades
SUBROUTINE getgrd(nstd,ntst,names,scrbk)
CHARACTER*5 names<nstd)
DIMENSION scrbk(nstd,ntstl

30 DD 15 a=l,nstd
***** Error 137 -- integer variable expected

31 WRITE<*,9l ntst
";t"•''"i .. .:• .. ::. .::? FDRMAT<'OName-A5 Grade-',I2,'F5.0')
:;:;::::; F'.EP1D (;f.: ,, :·?(:•) nD.mc~!::. (,·;i. l :• (~';c: r·· bk (E•. :• j l :• j :::: 1 , n t <:; t)

34 20 FORMAT<a5,6f5.0l
35 15 CONTINUE
:~;h El\ID

l\li::\fflC! Type· Uf + <;;:.c~t:. F' Cl.:''·'"·"''·

(1 F:[:,(:11.... H::::'.ll.

Compiler Messages

A compilation with any errors cannot be used to
generate code. Errors start with a number. Errors are
listed by number in Appendix A.

Unrecoverable Errors

The compiler may find an error from which it cannot
recover. In this case, it gives the message:

"? ERROR: error message"

9Nl11dW0:)

~ Student grades management program
N
00

Page 2
11-09-81
00:10:59

D Line# 1 7 IBM Personal Computer FORTRAN Compiler Vl.00
J
NAMES
NSTD
NTST
SCRBK

37
38
39
40

1 41
1 4~ L
~
L 43
~
L 44

45

INTEGER*2 864
CHAR*5 10 *
INTEGER*2 2 *
INTEGER*2 6 *
REAL 14 *

C Make the totals
SUBROUTINE totit(nstd,ntst,scrbk,total)
DIMENSION scrbk(nstd,ntst>,total (nstd)
DO 10 i=:::l,n~;td

tot<:\l (i > =O
DD 10 j=:::1!,ntst

total (:i) ===total (i) +scrbk (i, j)

:LO CONTINUE
END

t;-J
N
\0

Symbol Table

Two types of symbol tables are included in the IBM
Fortran listing file, (1) a local symbol table is included
after each program unit and (2) a global symbol table is
included at the end of the compilation. Each symbol
table includes information for each name defined in that
program unit.

The type, offset, size, parameter or class may be given:

•

•

The type is given for variables and functions and is
one of the several available data types in IBM
Fortran.

The offset is the off set within an entity. If the
name is a variable, the offset value is the offset
within the static data area. If the name is within
a common block, the off set value is the offset
within the common block. If the name is a formal
parameter, the offset value is the offset in the stack
of the address of the actual argument. If the off set
entry is filled with asterisks, the variable was
defined but never referenced. The off sets are
defined in bytes.

•

•

The parameter (P) is either a blank or an asterisk .
The presence of an asterisk indicates the name is a
formal parameter.

The class indicates if the name is other than a
variable or if the variable is in a common block.
The class can be a function, a subroutine, common,
intrinsic, external, program, subroutine/function
parameter, or the name of a common block
surrounded by slashes.

In the global symbol table, the offset and parameter
are replaced with a size entry. This is the size of the
common block named in this compilation.

iiSlllF.IMei

~ Name
(,;.)
0

I
J
NSTD
NTST
SCRBK
TOTAL

Type Offset P Class

INTEGER*2 880
INTEGER*2 884
INTEGER*2 2 *
INTEGER*2 6 *
REAL 10 *
REAL 14 *

46 c Report student scores
47
48
49
50
51
~~
~L

53
54

SUBROUTINE report(nstd,ntst,names,scrbk,total)
CHARACTER*5 namesCnstd>
DIMENSION scrbk(nstd,ntst>,total (nstd)
WRITE<*,45)

45 FORMATC13x,'Student Test 1 Test 2 Test 3 Test 4 Test 5 Test 6')
WRITE<*,50)

50 FORMATC13x,'******* ****** ****** ****** ****** ****** ******'>
WRITEC*,52)

" ii

..0
,. ..

,,
'-'
tn

c·-~

1:'1
v•

~
-

c
·:-i

=-· :.n
!1.i

>~
·r-t

::::
r--~

E

c
Lll

r-i

:ti
GJ

r . ..0
u

:::::x
ru

.+-J

-.. o tn
r-:

L ,.., '-'

.. f • ..i
c !l!
l . .!

f.fj

=._.1
r ...

* * * * * ~:: * * * * * * * * * if)
!'···

11";
i,.::

c
···

0
+= .·-··

=-· c·-~

·r-i
··.O

.. _..
~
-

a.:
;.:

E
 r··)

!T,i
:r.

c
U

l
m

*
·:-i
~

0::
er:

0 z
'·-·'

3
LL

..
OJ

z
a

o
z

0
:+

l_
i w

 :·.:
... ;::;

L 0 -.....
D
-
O
~
O
J
w
~
~
-
N
n
~
D
-
O
~
O
J
~
W

!F.i
i.CJ

!F.i trJ
L!J

...C!
··.:.;

··J.J
... o ·..Cl -..o

···O
... o

·J.)
··.O

z

.. -..
·._ ..

._
.

f."·~
r·-~

*
*
 *

z
z
_

U
J

LLl
:E:
(
[

I
-
:
~
 z

2-31

~ Student grades management program
VJ
N

Page 3
11-09-81
00:10:59

D Line# 1 7 IBM Personal Computer FORTRAN Compiler Vl.00
NSTD
NTST
SCRBK
TOTAL

1
:l

INTEGER*:2 2 *
INTEl3ER*2 6 *
REf~L 14 *
REAL 18 *

70
71 c Report averages
72
y:::;;

74
7~.i

76
Tl
78
79
80
B 1
82
83
8'~

85

SUBROUTINE rptavg(nstd,ntst,scrbk,total>
DIMENSION scrbkCnstd,ntstJ,total (nstd>

110 WRITE<*,65)
65 FORMAT<'0',30x,'Class Average')

WRITE<*,90)
90 FORMATC31x,'*************'>

tscrbk 0-=0
DO 40 i=l,nstd

tscrbk=tscrbk+total (i)
40 CONTINUE

carg=tscrbk/Cnstd*ntst>
WRITE<*,95) carg

95 FORMATC'0',35x,f6.2>
END

N
I w

w

N;,:imt.·:~ Typ('·?

CARG REAL
I INTEGER*2
NSTD INTEGER*2
NTST INTEGER*2
SCRBK REAL
TOTAL REAL
TSCRBK REAL

l\lamE·?

GETGRD
GRADES
REPORT
RPTAVG
START
TOT IT

TypE·

0 f + s:; <·:·? t P C l ,:,\ s:. ~::;

:1.1.44
:l.:1.40

~~ *
6 *

10 *
:I. .lj. *

l l :~!;f_:;

~;~~ i :;·:~ E·:.\ CJ. E~s::.•::;

SUBROUTINE
PROGRAM
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

Pt:\ s~:; Cin f.?. 3 Errors Detected
85 Source Lines

~NI11dWO.J

The Linker Map

Low

512 { Bytes

High
(of Program
File)

The following diagram illustrates how the link map is
translated during execution time:

Low

DOS DOS
Relative Relative

Fortran zero Fortran zero

Program Program

Heap Heap
Stack i
Data

Available
memory

Const

t
relocated to Stack

top of memory
Data

Executable file ~ Const Top of
at link time

2-34

memory

At execution time

Note: At execution time:

1. The code segment: off sets are correct relative to
zero (load point of program just above DOS).

2. The data and constant references use the map
offsets relative to the DS register, not the segment
value displayed in the maps.

CHAPTER 3.
COMPILER MET A COMMANDS

Contents

Overview 3-3

$DEBUG Metacommand 3-4

$D066 Metacommand 3-5

$INCLUDE Metacommand 3-7

$LINESIZE Metacommand

$LIST Metacommand . . . 3-10 .
$NODEBUG Metacommand 3-11

$NOLIST Metacommand 3-12

$PAGE Metacommand 3-13

$PAGESIZE Metacommand 3-14

$STORAGE Metacommand 3-15

$SUBTITLE Metacommand 3-16

$TITLE Metacommand . . . 3-17

3-1

3-2

Overview

This chapter describes the compiler metacommands that
process your Fortran source text.

Compiler metacommands direct the Fortran compiler
to process Fortran source text in particular ways, as
described below. They may be intermixed with Fortran
source text within a Fortran source program; however,
they are not part of the Fortran 77 language.

Any line of input to the Fortran compiler that begins
with a $ in column 1 is interpreted as a compiler
metacommand and must conform to one of the formats
described in the following paragraphs. A compiler
metacommand must fit on a single source line;
continuation lines are not permitted. Also, embedded
blanks are not permitted in metacommand lines except
for literals.

3-3

$DEBUG
Metacommand

Purpose: $DEBUG directs that all subsequent arithmetic
operations are tested for division by 0, causes source file
line numbers to be reported when a runtime error occurs
and causes assigned GOTO label lists to be checked.

Format: $DEBUG

Remarks: A run-time error is generated if such a condition is
detected.

This metacommand can appear anywhere in a program
and will be in effect until a $NODEBUG metacommand
is encountered.

The default value of the $DEBUG/$NODEBUG pair of
metacommands is $DEBUG.

Example: $DEBUG

3-4

C This program segment contains debug code
X=1
Y=O
Z=X/Y

$NO DEBUG
C Now debug code is not generated

X=2*4
Y=O
Z=X/Y

$D066
Metacommand

Purpose: $D066 allows DO statements to recognize Fortran 66
semantics.

Format: $D066

Remarks: $D066 must precede the first declaration or executable
statement of the source file in which it occurs.

The Fortran 66 semantics are as follows. First, all DO
statements are executed at least once. Second, extended
range is permitted; that is, control may transfer in and
out of the syntactic body of a DO statement.

The range of the DO statement is thereby extended to
logically include any statement that may be executed
between a DO statement and its ending statement.
However, the transfer of control into the range of a DO
statement prior to the execution of the DO statement
or following the final execution of its ending statement
is invalid.

If a program does not contain a D066 metacommand,
the default is to Fortran 77 semantics, as follows:

• DO statements may be executed zero times, if the
initial control variable value exceeds the final
control variable value (or the corresponding
condition for a DO statement with negative
increment).

• Extended range is invalid; that is, control may not
transfer in and out of the syntactic body of a DO
statement.

3-5

$0066
Metacommand

Example: $D066

3-6

C The following loop is executed once because
C of the D066 metacommand

COUNT=O
DO 10 1=2,1

•
•
•

COUNT=COUNT+1
•

10 Continue
WRITE(*,20)COUNT

20 FORMAT(' ',F10.1)
END

$INCLUDE
Metacommand

Purpose: $INCLUDE directs the compiler to proceed as though
the specified source file were inserted in text at the
point of INCLUDE. At the end of the included file, the
compiler resumes processing the original source file at
the line following INCLUDE.

Format: $1NCLUDE:'filespec'

Remarks: The filespec entry is a valid file specification as
described for the Disk Operating System (DOS).

INCLUDE metacommands can be nested as deeply as
the storage on your system allows. INCLUDE
metacommands are particularly useful in ensuring that
several modules use the same declaration for a
COMMON block.

3-7

$INCLUDE
Metacommand

Example: REAL (X100),LARGE

3-8

COMMON /SHARED/ N, X, J, LARGE

These Fortran source statements are contained in the
diskette file COMMON .FOR and may be included in
the file below during compilation with $INCLUDE.

$1NCLUDE:'COMMON.FOR'
READ(*, 100) N,(X_(l),1=1,N)

100 FORMAT(l3,100(F10.5))
CALL MAX
WRITE(*, 100) N, LARGE

110 FORMAT(1X,13,F10.5)
STOP
END

SUBROUTINE MAX
$1NCLUDE:'COMMON.FOR'

LARGE=X(1)
J=1
IF(N.E0.1) GO TO 7
DO 6 1=2,N

IF(X(i).LE.LARGE) GO TO 6
LARGE=X(i)
J=I

6 CONTINUE
RETURN
END

$LINESIZE
Metacommand

Purpose: $LINESIZE metacommand directs subsequent pages of
the listing to be formatted n characters wide.

Format: $LINESIZE:n

Remarks: Then entry can be any positive integer between 40 and
132.

If a program does not contain a LINESIZE
metacommand, a default line size of 80 characters is
assumed.

3-9

$LIST
Metacommand

Purpose: $LIST turns on the generation of the listing file.

Format: $LIST

Remarks: This metacommand can appear anywhere in a program
and will be in effect until a $NOLIST metacommand is
encountered.

3-10

The default value of the $LIST/$NOLIST pair of
metacommands is $LIST.

$NODEBUG
Metacommand

Purpose: $NODEBUG turns off DEBUG, removing checks for
division by 0, assigned GOTO label lists and causes
source file line number not to be reported when a
runtime error occurs.

Format: $NODEBUG

Remarks: The metacommand can appear anywhere in a program
and will be in effect until a $DEBUG metacommand is
encountered.

The default value of the $DEBUG/$NODEBUG pair of
metacommands is $DEBUG.

3-11

$NO LIST
Metacommand

Purpose: $NOLIST turns off the generation of the listing file.

Fonnat: $NOLIST

Remarks: This metacommand can appear anywhere in a program
and will be in effect until a $LIST metacommand is
encountered.

3-12

The default value of the $LIST /$NOLIST pair of
metacommands is $LIST.

$PAGE
Metacommand

Purpose: $PAGE starts a new page of the listing.

Format: $PAGE

Remarks: If the first character of a line of source text is the
ASCII form feed character (CONTROL-L), the form
feed is treated as equivalent to the occurrence of a
PAGE metacommand at that point.

3-13

$PAGESIZE
Metacommand

Purpose: $PAGESIZE metacommand directs subsequent pages
of the listing to be formatted n lines high.

Format: $PAGESIZE:n

Remarks: The n en try can be any positive integer between 15 and
32,767.

3-14

If a program does not contain a $PAGESIZE
metacommand, a default page size of 66 lines is
assumed.

$STORAGE
Metacommand

Purpose: $STORAGE directs that all variables declared in the
source file as INTEGER or LOGICAL are allocated n
bytes of storage. STORAGE does not affect the
allocation of storage for variables declared with an
explicit length specification, for example, as
INTEGER*n or LOGICAL*n. If several files of a source
program are linked together, you should be particularly
careful that the various program units allocate storage
consistently for variables (such as actual and formal
parameters) referred to in more than one module.

Format: $STORAGE:n

Remarks: Then entry is either 2 or 4.

This metacommand must precede the first declaration
or executable statement of the source file in which it
occurs.

If a program does not contain a $STORAGE
metacommand, a default allocation of four bytes is
used.

Notes:

1. Specifying the $STORAGE:2 metacommand
will increase the speed of your program. Also,
it will decrease the size of your PASIBF files.

2. The default results in INTEGER, LOGICAL,
and REAL variables being given the same
amount of storage.

3-15

$SUBTITLE
Metacommand

Purpose: $SUBTITLE directs subsequent pages of the listing to
be headed with the specified title, until overridden by
another SUBTITLE metacommand.

Format: $SUBTITLE:'subtitle'

Remarks: The subtitle entry can be any valid character constant
of length 0 through 40.

3-16

If a program does not contain a SUBTITLE
metacommand, the null string is used as a subtitle.

This command must appear on the first line of the
source file for the SUBTITLE to appear on the first
page.

$TITLE
Metacommand

Purpose: $TITLE directs subsequent pages of the listing to be
headed with the specified title, until overridden by
another TITLE metacommand.

Format: $TITLE:'title'

Remarks: The title entry can be any valid character constant of
length 0 through 40.

If a program does not contain a TITLE metacommand,
the null string is used as a title.

This command must appear on the first line of the
source file for the TITLE to appear on the first page.

3-17

3-18

CHAPTER 4. STATEMENTS

Contents

Control Statements 4-3
Block IF THEN ELSE 4-4

Program Function and Subroutine Statements 4-8
Main Program . . . 4-8
Subroutines 4-8
Functions 4-9
Formal Parameters 4-9

I/O Statements 4-12
Elements of I/O Statements 4-12
Input and Output Entities 4-14
Implied DO Lists 4-14

Specification Statements . . . 4-16
Arithmetic IF 4-1 7
Assignment Statements 4-19

Computational Assignment Statement 4-19
ASSIGN Statement . . . 4-21
Assigned GOTO 4-23
BACKSPACE Statement 4-25
Block IF 4-26
CALL Statement . . 4-27
CLOSE Statement 4-29
COMMON Statement 4-30
Computed GOTO . . 4-33
CONTINUE 4-35
DATA Statement . . 4-36
DIMENSION Statement 4-38
DO Statement 4-40
ELSE . 4-44
ELSEIF 4-4 5
END 4-46
ENDFILE Statement 4-4 7
ENDIF 4-48
EQUIVALENCE Statement 4-49
EXTERNAL Statement 4-52
FUNCTION Statement 4-53
IMPLICIT Statement . 4-55
INTRINSIC Statement 4-57

4-1

4-2

Logical IF
OPEN Statement

Runtime Filename Assignment
PAUSE Statement
PROGRAM Statement
READ Statement . .
RETURN Statement
REWIND Statement
SA VE Statement . .
Statement Functions
STOP Statement . .
SUBROUTINE Statement
Type Statement . . .
Unconditional GOTO
WRITE Statement

4-58
4-59
4-61
4-64
4-65
4-66
4-68
4-69
4-70
4-71
4-73
4-74
4-75
4-77
4-78

Control Statements

Control statements control the order of execution of
statements in IBM Fortran. The control statements are
as follows:

• Arithmetic IF

• Assignment

• Assigned GOTO

• Block IF

• CALL

• Computed GOTO

• CONTINUE

• DO

• ELSE

• ELSE IF

• END

• END IF

• Logical IF

• PAUSE

4-3

• RETURN

• STOP

• Unconditional GOTO

Block IF THEN ELSE

4-4

The Block IF, ELSEIF, ELSE, and ENDIF are described
in this chapter. These statements are new to Fortran
and are intended to improve the readability and structure
of Fortran programs. As an overview of these
subsections, the following three code examples
illustrate the basic concepts.

Note: Transfer of control into an IF block from
outside that block is not permitted.

Example 1

Simple Block IF that skips a group of statements if the
expression is false:

IF(I.LT.lO)THEN
• • Some statements executed only if I.LT. I 0

•
END IF

Example 2

Block IF with a series of ELSEIF statements:

IF(J.GT.lOOO)THEN
•

• Some statements executed only if J .GT. I 000

•
ELSEIF(J.GT. lOO)THEN

•
• Some statements executed only if

• J.GT.100 and J.LE.1000
ELSEIF(J.GT. IO)THEN

•
• Some statements executed only if

• J.GT.10 and J.LE.1000 and J.LE.100
ELSE
•

END IF

Example 3

• Some statements executed only if none of
• above conditions are true

Illustrates that the constructs can be nested and that an
ELSE statement can follow a block IF without
intervening ELSEIF statements (indentation solely to
enhance readability):

4-5

4-6

IF(l.LT.lOO)THEN

•

•
• Some statements executed only if I.LT. I 00
•

IF(J.LT.lO)THEN
•

• Some statements executed only if
• I.LT.100 and J.LT.10

END IF

• Some statements executed only if LL T. l 00
•

ELSE
•

•

•Some statements executed only if I.GE. I 00
•
If (J.LT. lO)THEN
•

• Some statements executed only if
• I.GE.100 and J.LT.10

END IF

• Some statements executed only if I.GE. I 00
•

END IF

To understand in detail the block IF and associated
statements, the concept of an IF-level is introduced.

For any statement, its IF-level is:

nl -n2

The n 1 entry is the number of block IF statements
from the beginning of the program unit that the
statement is in, up to and including that statement.

The n2 entry of a statement is the number of ENDIF
statements from the beginning of the program unit, up
to, but not including, that statement.

The IF-level of every statement must be greater than or
equal to 0 and the IF-level of every block IF, ELSEIF,
ELSE, and ENDIF must be greater than 0. Finally, the
IF-level of every END statement must be 0. The IF-level
defines the nesting rules for the block IF and associated
statements and defines the extent of IF, ELSE IF, and
ELSE blocks.

Example:

C THE NEXT STATEMENT HAS AN IF-LEVEL (0-0)
CHARACTER CH1*5,CH2*6

C THE IF-LEVEL OF THE NEXT 3 STATEMENTS IS (1-0)
IF(K.GT.P) THEN

CH1='KERRY'
CH2='SAYERS'

C THE IF-LEVEL OF THE NEXT 3 STATEMENTS IS (2-0)
IF(K.LT.P) THEN

CH1='PAUL'
CH2='SAYERS'

ENDIF
ENDIF

4-7

Program Function and Subroutine
Statements

These statements are:

• FUNCTION

• PROGRAM

• Statement Function

• SUBROUTINE

Main Program

A main program is any program unit that does not have a
FUNCTION or SUBROUTINE statement as its first
statement. In addition, it may have a PROGRAM
statement as its first statement. The execution of a
program always begins with the first executable
statement in the main program. Consequently, there
must be precisely one main program in every executable
program.

Subroutines

4-8

A subroutine begins with a SUBROUTINE statement
and ends with the first subsequent END statement. It
can contain any statement other than a PROGRAM
statement, SUBROUTINE statement, or FUNCTION
statement. A subroutine is a program unit that can be
called from other program units by a CALL statement.
When invoked, it performs the set of actions defined
by its executable statements, and then returns control
to the statement immediately following the statement
that called it. A subroutine does not directly return a
value, although values can be passed back to the calling
program unit via parameters or common variables.

Functions

A function is ref erred to in an expression and returns a
value that is used in the computation of that expression.
There are three kinds of functions: external, intrinsic,
and statement.

Formal Parameters

This subsection discusses the relationship between
formal and actual arguments in a function or subroutine
call. A formal parameter is the name by which the
actual argument is known within the function or
subroutine, and an actual argument is the specific
variable, expression, array, and so forth, passed to the
procedure in question at any specific calling location.

Actual arguments pass values by reference into and out
of procedures. The number of actual arguments must
be the same as formal parameters, and the corresponding
types must agree.

Upon entry to a subroutine or function, the actual
arguments are associated with the formal arguments,
much as an EQUIVALENCE statement associates two
or more arrays or variables, and COMMON statements
in two or more program units associate lists of variables.

4-9

4-10

This association remains in effect until execution of the
subroutine or function is terminated. Thus, assigning
a value to a formal parameter during execution of a
subroutine or function may alter the value of the
corresponding actual argument.

If an actual argument is a constant, function reference,
or an expression other than a simple variable, assigning
a value to the corresponding formal parameter is not
permitted, and can have some strange side effects. In
particular, assigning a value to a fomrnl parameter of
type character, when the actual argument is a literal,
can produce unpredictable results.

If an actual argument is an expression, it is evaluated
immediately before the association of formal parameters
and actual arguments. If an actual argument is an array
element, its subscript expression is evaluated immediately
before the association, and remains constant throughout
the execution of the procedure, even if it contains
variables that are redefined during the execution of the
procedure. A formal parameter that is a variable can be
associated with an actual argument that is a variable, an
array element, or an expression.

A formal parameter that is an array can be associated
with an actual argument that is an array or an array
element. The number and size of dimensions in a
formal parameter may be different than those of the
actual argument, but any reference to the formal array
must be within the limits of the storage sequence in the
actual array. While a reference to an element outside
these bounds is not detected as an error in a running
Fortran program, the results are unpredictable.

A formal parameter can also be the name of an external
procedure, function, or intrinsic function. The actual
argument must appear in an EXTERNAL or INTRINSIC
statement in the program unit in which the procedure or
function reference is made.

The names of intrinsic functions for type conversion
(INT, IFIX, IDINT, FLOAT, REAL, ICHAR, CHAR),
lexical relationship (LGE, LGT, LLE, LLT), for
choosing the largest or smallest value (MAXO, AMAXl,
AMAXO, MAXI, MINO, AMINI, MINI) and EOF must
not be used as actual arguments.

4-11

1/0 Statements

The I/O statements are as follows:

• BACKSPACE

• CLOSE

• ENDFILE

• OPEN

• READ

• REWIND

• WRITE

In addition, an I/O intrinsic function, EOF(u) (see
Chapter 6), returns a logical value indicating whether
the file associated with the unit specifier (u) passed to
it is at the end of the file.

Elements of 1/0 Statements

4-12

The various I/O statements take certain arguments that
specify sources and destinations of data transfer, as
well as other functions of the I/O operation. The
abbreviations used in this subsection are the unit
specifier (u), format specifier (j), and input/output
list (iolist) are as follows:

The unit specifier (u) can take one of these forms in an
I/O statement:

• *-refers to the keyboard/display

• Integer expression-refers to an external file with a
unit number equal to the value of the expression
(* is unit number 0).

• Name of a character variable or character array
element-refers to the internal file specified by the
value of the variable or array element.

The format specifier,/, can take one of these forms in
an I/O statement:

• Statement label-refers to a FORMAT statement
labeled by that statement label.

• Integer variable name-refers to a FORMAT label
assigned to that integer variable using the ASSIGN
statement.

• Character expression-the format specified is the
current value of the character expression provided
as the format specifier.

The input/output list, iolist, specifies the entities whose
values are transferred by READ and WRITE statements.
An iolist, a possibly empty list, consists of input or
output entities and implied DO lists, separated by
commas.

4-13

Input and Output Entities

An input entity can be specified in the iolist of a READ
statement and an output entity in the iolist of a WRITE
statement. An entity is either a variable name, an array
element name, or an array name. An array name is a
means of specifying all of the elements of the array in
storage sequence order.

An output entity can also be any other expression not
beginning with the character "(", to distinguish implied
DO lists from expressions.

The expression:

(A+B)*(C+D)

must be written as:

+(A+B)*(C+D)

to distinguish it from an implied DO list. Extra code is
not generated for the (+).

Implied DO Lists

4-14

Implied DO lists can be specified as items in the I/O list
of READ and WRITE statements and have the form:

(iolist, i = e1, e2 [, eJ])

The iolist entry includes implied DO lists. The i, el,
e2, e3 entries are as defined for the DO statement. That
is, i is an integer variable, el, e2, and e3 are integer
expressions and, if i is INTEGER*2, then el, e2, and
e3 must be INTEGER*2.

In a READ statement, the DO variable i (or an associated
entity) must not appear as an input list item in the
embedded iolist, but may have been read in the same
READ statement outside of the implied DO list. The
embedded iolist is effectively repeated for each iteration
of i with appropriate substitution of values for the DO
variable i. In the case of nested implied DO loops, the
innermost (most deeply nested) loop is always executed
fastest.

Example:

INTEGER ARRAY (3,2)
C READ VALUES FOR A 3 BY 2 ARRAY FROM THE
C CONSOLE IN ROW MAJOR ORDER.

READ (*.200) ((ARRAY (l,J).J=1,2),1=1,3)
200 FORMAT(61)

WRITE(*,300) ((ARRAY(l,J),J=1,2).1=1,3)
300 FORMAT(' ',612)

END

4-15

Specification Statements

4-16

Specification statements in IBM Fortran define the
attributes of user-defined variable, array, and function
names. They are nonexecutable.

There are eight kinds of specification statements:

• COMMON

• DIMENSION

• EQUIV ALEN CE

• EXTERNAL

• IMPLICIT

• INTRINSIC

• SAVE

• TYPE

Specification statements must precede all executable
statements in a program unit. All of them except
IMPLICIT may appear in any order within a program
unit. IMPLICIT statements must precede all other
specification statements in a program unit.

Arithmetic IF

Purpose: The arithmetic IF statement causes evaluation of the
expression and selection of a label based on the value
of the expression.

Format: IF (e) sl, s2, s3

Remarks: Thee entry is an integer or real expression.

The sl, s2, s3 entries are statement labels of
executable statements found in the same program unit
as the arithmetic IF statement.

The same statement label may appear more than once
among the three labels:

• Label sl is selected if the value of e is less than 0.

• Label s2 if the value of e equals 0.

• Label s3 if the value of e exceeds 0.

The next statement executed is the statement labeled
by the selected label. Jumping into a DO, IF, ELSEIF,
or ELSE block from outside the block is not permitted.
(A special feature, extended range DO loops, permits
jumping into a DO block. See the D066 metacommand
in Chapter 3 for more information.)

4-17

Arithmetic IF

Example: C EXAMPLE OF ARITHMETIC IF
WRITE {*,90)

4-18

90 FORMAT (' ENTER TEST SCORE:')
READ (*,100) I

100 FORMAT (13)
IF (1-75) 10,20,30

10 WRITE {*,500)
STOP

20 WRITE {*,510)
STOP

30 WRITE (*,520)
STOP

500 FORMAT (' YOU FAILED')
510 FORMAT (' YOU JUST PASSED')
520 FORMAT (' YOU PASSED JUST FINE')

END

Assignment Statements

An assignment statement assigns a value to a variable or
an array element. There are two basic kinds of
assignment statements: computational and label.

Computational Assignment Statement

Purpose: A computational assignment statement evaluates the
expression and assigns the resulting value to the variable
or array element appearing on the left.

Fonnat: var = expr

Remarks: The var entry is a variable or array element name. The
expr entry is an expression.

The type of the variable or array element and the
expression must be compatible. They must both be
either numeric, logical, or character, in which case the
assignment statement is called an arithmetic, logical, or
character assignment statement.

If the types of the elements of an arithmetic assignment
statement are not identical, automatic conversion of the
value of the expression to the type of the variable is
done.

4-19

Assignment Statements

4-20

The conversion rules are given in the table below.

Integer
Element (V)

Real
Element (V)

Integer
Expression (E)

Assign E to V

Append fraction
(.0) to E and
assign to V

Real
Expression (E)

Truncate E to
integer and assign
to V

Assign E to V

If the length of the expression does not match the size
of the variable in a character assignment statement, it is
adjusted so that it does. If the expression is shorter, it
is padded with enough blanks on the right to make the
sizes equal before the assignment takes place. If the
expression is longer, characters on the right are
truncated to make the sizes the same.

Logical expressions of any size can be assigned to
logical variables of any size without effect on the value
of the expression.

Note: INTEGER*2 and INTEGER*4 are treated
the same, except that INTEGER*4 may be assigned
in accordance with its range of values. Note also
that INTEGER*4 expressions may not be
assigned to INTEGER*2 variables.

ASSIGN
Statement

Purpose: The ASSIGN statement assigns the value of a format or
statement label to an integer variable.

Format: ASSIGN label TO var

Remarks: The label entry is a format label or statement label. The
var entry is an integer variable.

Execution of an ASSIGN statement sets the integer
variable to the value of the label. The label can be
either a format or a statement label, and it must appear
in the same program unit as the ASSIGN statement.
When used in an assigned GOTO statement, a variable
must currently have the value of a statement label.
When used as a format specifier in an input/output
statement, a variable must have the value of a format
statement label. The ASSIGN statement is the only
way to assign the value of a label to a variable.

Note: The "value" of a label is not necessarily the
same as the label number.

For example, the value of LABEL in:

ASSIGN 400 TO LABEL

is not necessarily 400.

4-21

ASSIGN
Statement

Example:

4-22

Also note that this makes the variable undefined as an
integer and it cannot be used in an arithmetic expression
until it has been redefined (by an assignment or READ
statement) as such.

ASSIGN 10 TO INSERT
GOTO INSERT
•
• •

10 PAUSE 'INSERT YOUR DISKETTE'

Assigned GOTO

Purpose: The assigned GOTO statement causes the next statement
executed to be the statement labeled by the label last
assigned to i.

Fonnat: GOTO [[,] (s [, s] ...)]

Remarks: The i entry is an integer variable name.

The s entry is a statement label of an executable
statement found in the same program unit as the assigned
GOTO statement.

The same statement label may appear repeatedly in the
list of labels. When the assigned GOTO statement is
executed, i must have been assigned the label of an
executable statement found in the same program unit as
the assigned GOTO statement. If the optional list of
labels is present and $DEBUG is on, a runtime error is
generated if the label last assigned to i is not among
those listed. Jumping into a DO, IF, ELSEIF, or ELSE
block from outside the block is not permitted. (A
special feature, extended range DO loops, permits
jumping into a DO block. See the $D066 metacommand
in Chapter 3 for more information.)

4-23

Assigned GOTO

Example: C EXAMPLE OF ASSIGNED GOTO
ASSIGN 10 TO CHECK

4-24

5 GOTO CHECK (10,20,40)
10 IF(IDV.NE.O) THEN

ELSE

ASSIGN 20 TO CHECK
GOTO 5

STOP 'Divisor is zero'
ENDIF

20 WRITE(*,50) TOP/IDV
50 FORMAT(1X,' 0.uotient is ',F10.5)

•
• •

40 CONTINUE

BACKSPACE
Statement

Purpose: BACKSPACE causes the file connected to the specified
unit to be positioned before the preceding record.

Format: BACKSPACE u

Remarks: The u entry is a unit specifier (see "Elements of 1/0
Statements" in this chapter). It is required and must
not be an internal unit specifier.

When BACKSPACE is used with Unformatted/
Sequential files, the file is backed up by only one byte.
When taking advantage of this limitation, the BINARY
filemode should be used.

Note: See "Concepts and Limitations" in
Chapter 5 for detailed information.

If there is no preceding record, the file position is not
changed.

Note: If the preceding record is the end of file
record, the file becomes positioned before the end
of file record. If the file position is in the middle
of the record, BACKSPACE positions to the start
of that record.

4-25

Block IF

Purpose: The block IF statement causes the expression e to be
evaluated. If it evaluates to true and there is at least
one statement in the IF block, the next statement
executed is the first statement of the IF block.

Format: IF (e) THEN

Remarks: The e entry is a logical expression.

4-26

The IF block associated with this block IF statement
consists of all the executable statements, possibly none,
that appear following this statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF statement
that has the same IF-level as this block IF statement
(the IF-level defines the notion of "matching" ELSEIF,
ELSE, or ENDIF).

The ENDIF statement is the next statement to be
executed after the last statement in the IF block (at the
same IF-level as this block IF statement). If the
expression in this block IF statement evaluates to true
and the IF block has no executable statements, the
next statement executed is the next ENDIF statement
at the same IF-level as the block IF statement. If the
expression evaluates to false, the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the block IF
statement. See "Block IF THEN ELSE" under
"CONTROL STATEMENTS" in this chapter.

Transfer of control into an IF block from outside that
block is not permitted.

f

CALL
Statement

Purpose: A subroutine is executed by issuing a CALL statement
in another program unit which references that
subroutine.

Format: CALL sname [(arg [, arg] ...)]

Remarks: The sname entry is the user-defined name of a
subroutine.

The arg entry is an actual argument.

An actual argument may be either an expression or the
name of an array. The actual arguments in the CALL
statement must agree in type and number with the
corresponding formal parameters specified in the
SUBROUTINE statement of the referenced subroutine.
If there are no arguments in the SUBROUTINE
statement, then a CALL statement referencing that
subroutine must not have any actual arguments, but
may optionally have a pair of parentheses following
the name of the subroutine. Note that a formal
parameter can be used as an actual argument in another
subprogram call.

Execution of a CALL statement proceeds as follows. All
arguments that are expressions are evaluated. All actual
arguments are associated with their corresponding
formal parameters, and the body of the specified
subroutine is executed. Control is returned to the
statement following the CALL statement upon exiting
the subroutine, by executing either a RETURN
statement or an END statement in that subroutine.

4-27

CALL
Statement

A subroutine can be called from any program unit.
Recursive subroutine calls, however, are not permitted
in IBM Fortran. That is, a subroutine cannot call itself
directly, nor can it call another subroutine that results
in that subroutine being called again before it returns
control to its caller.

Example: C EXAMPLE OF CALL STATEMENT

4-28

c

IF (IERR .NE. O) CALL ERROR(IERR)
END

SUBROUTINE ERROR(IERRNO)
WRITE (*, 200) IERRNO

200 FORMAT(1X, 'ERROR', 15, 'DETECTED')
END

CLOSE
Statement

Purpose: CLOSE disconnects the unit specified and prevents
subsequent 1/0 from being directed to that unit (unless
the same unit number is reopened, possibly bound to a
different file or device).

Format: CLOSE(u [,ST ATUS=st])

Remarks: The u entry is a unit specifier (see "Elements of 1/0
Statements" previously described. It is required, and
must appear as the first argument. It must not be an
internal unit specifier.

The st entry is 'KEEP' or 'DELETE', an optional
argument that applies only to files opened 'NEW'. The
default is 'KEEP'. This option is a character constant.
Files are discarded if ST ATUS='DELETE' is specified.
Normal termination of a Fortran program
automatically closes all open files as if CLOSE with
STATUS='KEEP' was specified. CLOSE for unit 0 has
no effect, since the CLOSE operation is not meaningful
for keyboard and display.

Example: C Close the file opened in OPEN example,
C discarding the file.

CLOSE(7 ,STATUS='DELETE')

4-29

COMMON
Statement

Purpose: A COMMON statement provides a method of sharing
storage between two or more program units. Such
program units can share the same data without passing
it as arguments.

Format: COMMON [/cname/] nlist[,/cname/nlist] . ..

Remarks: The cname entry is a common block name. If cname
is omitted, then the blank common block is specified.

4-30

The nlist entry is a comma-separated list of variable
names, array names, and array declarators. Formal
parameter names and function names cannot appear in
a COMMON statement.

In each COMMON statement, all variables and arrays
appearing in each nlist following a common block
name cname are declared to be in that common block.
If the first cname is omitted, all elements appearing in
the first nlist are specified to be in the blank common
block.

Any common block name can appear more than once
in COMMON statements in the same program unit.
All elements in all nlists for the same common block
are allocated in that common storage area in the order
they appear in the COMMON statement.

COMMON
Statement

All elements in a single common area must be either all
or none of type character. Furthermore, if two program
units refer to the same named common block containing
character data, the association of character variables of
different length is not permitted. Two variables are said
to be associated if they refer to the same actual storage.

The size of a common block is equal to the number of
bytes of storage required to hold all elements in that
common block. If the same named common block is
ref erred to by several distinct program units, the
common blocks must be of the same length and the
blocks are juxtaposed at their lowest address. Blank
common blocks, however, can have different lengths in
different program units. The maximum length may
occur in any program unit.

4-31

COMMON
Statement

Example: C EXAMPLE OF BLANK ANO NAMED COMMONS
PROGRAM MYPROG

4-32

COMMON I, J, X, K(10)
COMMON /MYCOM/ A(J)
1=1
CALL MYSUB
•
•
•
END

SUBROUTINE MYSUB
COMMON IOTHER, JOTHER, XOTHER, K(10)
COMMON /MYCOM/ A(J)
IF (IOTHER.NE.1) STOP 'Something"s wrong'
•
• •
END

Computed GOTO

Purpose: The Computed GOTO causes the next statement
executed to be the one labeled by the ith label in the
list of labels.

Format: GOTO (s [, s] ...) [,]

Remarks: The s entry is a statement label of an executable
statement found in the same program unit as the
computed GOTO statement.

The i entry is an integer expression.

The same statement label may appear repeatedly in the
list of labels.

The effect of the computed GOTO statement is as
follows. Suppose that there are n labels in the list of
labels. If i is out of range, i< 1, or z>n, then the
computed GOTO statement acts as if it were a
CONTINUE statement; otherwise the next statement
executed is the one labeled by the ith label in the list of
labels. Jumping into a DO, IF, ELSEIF, or ELSE block
from outside the block is not permitted. (A special
feature, extended range DO loops, permits jumping
into a DO block. See the $D066 metacommand in
Chapter 3 for more information.)

4-33

Computed GOTO

Example: C EXAMPLE OF COMPUTED GOTO
I = 1

10

20

30

4-34

GOTO (10, 20, 30) I
•
• •
STOP '1=1'
• • •
STOP '1=2'
•
•
•
STOP '1=3'

CONTINUE

Purpose: The primary use for the CONTINUE statement is a
convenient statement to label, particularly as the
ending statement in a DO loop.

Format: CONTINUE

Remarks: The execution of a CONTINUE statement has no
effect.

Example: C EXAMPLE OF CONTINUE STATEMENT
D 0 10, I = 1, 10
IAR RAY(I) = 0

10 CONTINUE

4-35

DATA
Statement

Purpose: The DATA statement assigns initial values to variables.
A DATA statement is a nonexecutable statement. If
present, it must appear after all specification statements
and prior to any statement function statements or
executable statements.

Fonnat: DATA nlist / clist / [, nlist I clist /] ...

Remarks: The nlist entry is a list of variable, array element, or
array names.

4-36

The clist entry is a list of constants, or constants
preceded by an integer constant repeat factor and an
asterisk, such as:

5*3.14159 J*'Help' 100*0

A repeat factor followed by a constant is the equivalent
of a list of all constants of that constant's value
repeated a number of times equal to the repeat constant.

You must have the same number of values in each clist
as you have variables or array elements in the
corresponding nlist. The appearance of an array in an
nlist is the equivalent to a list of all elements in that
array in storage sequence order. Array elements must be
indexed only by constant subscripts.

DATA
Statement

The type of each noncharacter element in a clist must
be the same as the type of the corresponding variable
or array element in the accompanying nlist. Each
character element in a clist must correspond to a
character variable or array element in the nlist, and must
have a length that is less than or equal to the length of
that variable or array element. If the length of the
constant is shorter, it is extended to the length of the
variable by adding blank characters to the right.

Only local variables and array elements can appear in a
DATA statement. Formal parameters, variables in
common, and function names cannot be assigned initial
values with a DATA statement.

Example: REAL A(3),B(9,6),LIST(4)*2
DATA A/14.1,3.6,2.81/
DATA B/54*0.01/,LIST(l)/2.1/
WRITE(*,'(1 X,F4.1)')B

•
•
•

4-37

DIMENSION
Statement

Purpose: A DIMENSION statement specifies the maximum
values of an array variable subscripts and allocates
storage accordingly.

Format: DIMENSION name(d[,d[,d]])[,name(d[,d[,d]])] ...

Remarks: An array declarator is of the form:

4-38

name(d[,d[,d]])

The name entry is the user-defined name of the array.
The d entry is a dimension declarator.

The number of dimensions in the array is the number of
dimension declarators in the array declarator. The
maximum number of dimensions is three. A dimension
declarator can be:

• An unsigned integer constant.

• A user name corresponding to a nonarray integer
formal parameter.

• An asterisk.

A dimension declarator specifies the upper bound of the
dimension. The lower bound is always one.

DIMENSION
Statement

If a dimension declarator is an integer constant, then
the array has the corresponding number of elements in
that dimension. An array has a constant size if all of its
dimensions are specified by integer constants.

If a dimension declarator is an integer argument, then
that dimension is defined to be of a size equal to the
initial value of the integer argument upon entry to the
subprogram unit at execution time. In such a case, the
array is called an adjustable-sized array.

If the dimension declarator is an asterisk, the array is
an assumed-sized array and the upper bound of that
dimension is not specified.

All adjustable- and assumed-sized arrays must also be
formal parameters to the program unit in which they
appear. Also, an assumed-size dimension declarator
may only appear as the last dimension in an array
declarator.

The order of array elements in storage is column­
major order, that is, the leftmost subscript changes
most rapidly in a storage sequential reference to all
array elements.

Example: DIMENSION A(10,2).X(J)
DIMENSION BIG(100,100)

4-39

DO
Statement

Purpose: The DO statement causes repetitive evaluation of
statements following the DO through and including the
ending statement.

Format: DO s i=el, e2 [, e3]

Remarks: The s entry is a statement label of an executable
statement. The i entry is an integer variable. The el,
e2, e3 entries are integer expressions.

4-40

The label must follow this DO statement and be
contained in the same program unit. The statement
labeled bys is called the ending statement of the DO
loop. It must not be an unconditional GOTO, assigned
GOTO, arithmetic IF, block IF, ELSEIF, ELSE,
ENDIF, RETURN, STOP, END, or DO statement. If
the ending statement is a logical IF, it may contain
any executable statement except those not permitted
inside a logical IF statement.

A DO loop has a "range" beginning with the statement
that follows the DO statement and ending with (and
including) the ending statement of the DO loop.

If a DO statement appears in the range of another DO
loop, its range must be entirely contained within the
range of the enclosing DO loop, although the loops may
share the ending statement.

DO
Statement

If a DO statement appears within an IF, ELSEIF, or
ELSE block, the range of the associated DO loop must
be entirely contained in the particular block.

If a block IF statement appears within the range of a
DO loop, its associated ENDIF statement must also
appear within the range of that DO loop.

The DO variable, i, may not be assigned in any way by
the statements within the range of the DO loop
associated with it. Jumping into the range of a DO
loop from outside its range is not permitted. (However,
there is a special feature, added for compatibility with
earlier versions of Fortran, that permits "extended
range" DO loops. See the $D066 metacommand in
Chapter 3 for more information.)

The execution of a DO statement causes the following
steps:

1. The expressions el, e2, and e3 are evaluated. If e3
is not present, it is as if e3 evaluated to 1 (e3 must
not evaluate to 0 and e2 should not evaluate to the
largest integer value).

2. The DO variable, i, is set to the value of el.

Note: The prohibition on assigning
INTEGER*4 values to INTEGER*2 variables
applies here. Therefore, if i is INTEGER*2,
el, e2, and e3 (if it exists) must also be
expressions of type INTEGER*2.

4-41

DO
Statement

4-42

3. The iteration count for the loop is:

MAXO(((e2-el+e3)/e3),0)

which may be 0 if either:

el> e2 and e3>0

or:

el< e2 and e3<0

Note: However if the $D066 metacommand
is in effect, the iteration count is at least l.

4. The iteration count is tested, and if it exceeds 0,
the statements in the range of the DO loop are
executed.

Following the execution of the ending statement of a
DO loop, the following steps occur:

l. The value of the DO variable, i, is incremented by
the value of e3 that was computed when the DO
statement was executed.

2. The iteration count is decremented by 1.

DO
Statement

3. The iteration count is tested, and if it exceeds 0,
the statements in the range of the DO loop are
executed again.

The value of the DO variable is well-defined regardless
of whether the DO loop exists because the iteration
count becomes 0 or because of a transfer of control out
of the DO loop or RETURN statement.

An example of the final value of a DO variable:

Example: C THIS PROGRAM FRAGMENT DISPLAYS THE NUMBERS
C 1 TO 11 ON THE SCREEN

DO 200 1=1,10
200 WRITE(*,'(15)')1

WRITE(*,'(15)')1

C EXAMPLE OF DO STATEMENT
C INITIALIZE A 20-ELEMENT REAL ARRAY

DIMENSION ARRAY(20)
DO 1 I = 1, 20

1 ARRAY(I) = 0.0
C PERFORM A FUNCTION 11 TIMES

DO 2 I = -30, -60, -3
J = 1/3
J = -9 - J
ARRAY(J) = rJIYFUNC(I)

2 CONTINUE

4-43

ELSE

Purpose: An ELSE statement is used to associate an else block
with an IF or ELSEIF statement.

Format: ELSE

Remarks: The ELSE block associated with an ELSE statement
consists of all of the executable statements, possibly
none, that follow the ELSE statement up to, but not
including, the next ENDIF statement that has the same
IF-level as this ELSE statement. The "matching" ENDIF
statement must appear before any intervening ELSE or
ELSEIF statements of the same IF-level.

The execution of an ELSE statement has no effect.

Transfer of control into an ELSE block from outside
that block is not permitted.

Example: IF (IHRS.LE.40) THEN

4-44

WAGES=IHRS*RATE
ELSE

IOVT=IHRS-40
WAG ES=(40. *RATE)+(I OVT*1.5*RATE)

ENDIF

ELSE IF

Purpose: The ELSEIF statement causes evaluation of the
expression. If its value is true and there is at least one
statement in the ELSEIF block, the next statement
executed is the first statement of the ELSEIF block.

Fonnat: ELSEIF (e) THEN

Remarks: Thee entry is a logical expression.

The ELSEIF block associated with an ELSEIF
statement consists of all the executable statements,
possibly none, that follow up to the next ELSEIF,
ELSE, or ENDIF statement that has the same
IF-level as this ELSEIF statement.

Following the execution of the last statement in the
ELSEIF block, the next statement to be executed is
the next ENDIF statement at the same IF-level as this
ELSEIF statement. If the expression in this ELSEIF
statement evaluates to true and the ELSEIF block has
no executable statements, the next statement executed
is the next ENDIF statement at the same IF-level as
the ELSEIF statement. If the expression evaluates to
false, the next statement executed is the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-level
as the ELSEIF statement. See "Block IF THEN ELSE"
under "CONTROL STATEMENTS" in this chapter.

4-45

END

Purpose: The END statement indicates to the compiler that it has
reached the end of a program unit.

Format: END

Remarks: Unlike other statements, an END statement must
wholly appear on an initial line and contain no
continuation lines. No other Fortran statement, such
as the ENDIF statement, may have an initial line that
appears to be an END statement.

The END statement in a subprogram has the same effect
as a RETURN statement. In the main program, it
terminates execution of the program. The END
statement must appear as the last statement in every
program unit.

Example: C EXAMPLE OF END STATEMENT

4-46

C END STATEMENT MUST BE LAST STATEMENT
C IN A PROGRAM

PROGRAM MYPROG
WRITE(*,'(22H IBM PERSONAL COMPUTER)')
END

END FILE
Statement

Purpose: ENDFILE "writes" an end of file record as the next
record of the file connected to the specified unit.

Format: ENDFILE u

Remarks: The u entry is a unit specifier (see "Elements of 1/0
Statements" in this chapter). It is required and must
not be an internal unit specifier.

The file is then positioned after the end of file record,
so further sequential data transfer is prohibited until
either a BACKSPACE or REWIND is executed.

Note: BACKSPACE is not supported for direct
files. If you attempt to use BACKSPACE with
direct files, this statement is ignored.

4-47

END IF

Purpose: An ENDIF statement is required to "match" every
block IF statement in a program unit in order to specify
which statements are in a particular block IF statement.

Format: ENDIF

Remarks: The execution of an ENDIF statement has no effect.

4-48

See "Block IF THEN ELSE" under "CONTROL
STATEMENTS" in this chapter.

EQUIVALENCE
Statement

Purpose: An EQUIVALENCE statement specifies that two or
more variables or arrays are to share the same storage.
If the shared elements are of different types, the
EQUIV ALEN CE does not cause any kind of
automatic type conversion.

Format: EQUIVALENCE (nlist) [, (nlist)] . ..

Remarks: The (nlist) entry is a list of at least two elements:
variable names, array names, or array element names.
Formal parameters may not appear in an
EQUIVALENCE statement. Subscripts must be within
the bounds of the array they index.

nlist: :=element ,element [,element] ...

An EQUIVALENCE statement specifies that the
storage sequences of the elements that appear in the list
nlist have the same first storage location. Two or more
variables are said to be associated if they refer to the
same actual storage. Thus, an EQUIVALENCE
statement causes its list of variables to become
associated. An element of type character can only be
associated with another element of type character
with the same length. If an array name appears in an
EQUIVALENCE statement, it refers to the first
element of the array.

4-49

EQUNALENCE
Statement

Restrictions on EQUIVALENCE Statements

An EQUIVALENCE statement cannot specify that the
same storage location is to appear more than once, such
as:

Example: C THIS IS AN ERROR
REAL R,S(10)
EQUIVALENCE (R,S(1)),(R,S(5))

This forces the variable R to appear in two distinct
storage locations. Furthermore, an EQUIVALENCE
statement cannot specify that consecutive array elements
are not stored in sequential order. For example, the
following is not permitted.

Example: C THIS IS ANOTHER ERROR
REAL R(10),S(10)

4-50

EQUIV AL ENCE (R(1),S(1)),(R(5).S(6))

When EQUIVALENCE statements and COMMON
statements are used together, several further
restrictions apply. An EQUIVALENCE statement
cannot cause storage in two different common blocks
to become equivalenced. An EQUIVALENCE
statement can extend a common block by adding
storage elements following the common block, but not
preceding the common block. Note that extending a
named common block by an EQUIV ALEN CE
statement must not cause its length to be different
from the length of the named common in other
program units. For example, the following is not
permitted because it extends the common block by
adding storage preceding the start of the block.

EQUIVALENCE
Statement

Example: C THIS IS A MORE SUBTLE ERROR
COMMON /ABCDE/ R(10)
REAL S(10)
EQUIVALENCE (R(1).S(10))

C EXAMPLE OF EQUIVALENCE STATEMENT
CHARACTER*10 NAME, FIRST, MIDDLE, LAST
DIMENSION NAME(60). FIRST(20),

1 MIDDLE(20), LAST(20)
EQUIVALENCE (NAME(1), FIRST(1)),

1 (NAIVIE(21),MIDDLE(1)).
2 (NAME(41), LAST(1))
NAME(1)='JOE'
IF (NAME(1).NE.FIRST(1)) STOP

'SOMETHING"S WRONG'

4-51

EXTERNAL
Statement

Purpose: An EXTERNAL statement identifies a user-defined
name as an external subroutine or function.

Format: EXTERNAL name [,name] ...

Remarks: The name entry is the name of an external subroutine
or function.

Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure.
Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic function name
appears in an EXTERNAL statement, then that name
becomes the name of an external procedure, and the
corresponding intrinsic function can no longer be called
from that program unit. A user name can only appear
once in an EXTERNAL statement in a given program
unit.

In the IBM Personal Computer MACRO Assembler and
the IBM Personal Computer Pascal Compiler the term
EXTERNAL (or EXTERN) declares th.at an object is
defined outside the current unit of compilation or
assembly. This is not necessary in IBM Fortran since,
in accord with the standard Fortran practice, any
object referred to but not defined in a compilation
unit is assumed to be defined externally. Therefore,
in Fortran, EXTERNAL is only needed to specify that
a particular user-defined subroutine or function is to
be used as a procedural parameter.

Example: C EXAMPLE OF EXTERNAL STATEMENT
EXTERNAL MYFUNC, MYSUB

4-52

C MYFUNC AND MYSUB ARE PARAMETERS TO CALC
CALL CALC (MYFUNC, MYSUB)

FUNCTION
Statement

Purpose: The FUNCTION statement identifies a program unit as
a function and supplies its type, name, and formal
parameter.

Format: [type] FUNCTION /name ([fparm [,fparm] ...])

Remarks: The type entry is INTEGER, REAL, or LOGICAL.

The /name entry is the user-defined name of the function.

The fparm entry is a formal parameter name.

The /name entry is a global name, and it is also local to
the function it names. If type is not present in the
FUNCTION statement, the function's type is
determined by default and by any subsequent IMPLICIT •
or type statements that would determine the type of
an ordinary variable. If type is present, then the
function name cannot appear in any additional type
statements. An external function cannot be of type
CHARACTER. The list of argument names defines the
number and, with any subsequent IMPLICIT, type, or
DIMENSION statements, the type of arguments to that
subroutine. Neither argument names nor /name can
appear in COMMON, DAT A, EQUIV ALEN CE, or
INTRINSIC statements.

4-53

FUNCTION
Statement

The function name must appear as a variable in the
program unit defining the function. Every execution
of that function must assign a value to that variable.
The final value of this variable, upon execution of a
RETURN or an END statement, defines the value of
the function. After being defined, the value of this
variable can be referenced in an expression, exactly
as any other variable. An external function may
return values in addition to the value of the function
by assignment to one or more of its formal parameters.

A function can be called from any program unit.
Recursive function calls, however, are not permitted
in IBM Fortran. That is, a function cannot call itself
directly, nor can it call another function that results
in that function being called again before it returns
control to its caller.

Example: C EXAMPLE OF A FUNCTION REFERENCE.

4-54

C REEDCH IS A FUNCTION THAT READS A
C CHARACTER FROM THE CONSOLE AND
C RETURNS THAT CHARACTER IN THE
C PARAMETER CH.

CHARACTER CH
DATA CH /'{'/
IF(REEDCH(CH) .GT.64)

+ WRITE(*,'(" ",A)') CH
END

FUNCTION REEDCH(CHR)
IMPLICIT INTEGER(R)
CHARACTER CHR
READ(*,'(A)') CH R
REEDCH=ICHAR(CH R)
END

IMPLICIT
Statement

Purpose: An IMPLICIT statement defines the default type for
user-declared names.

Format: IMPLICIT type(a[,a] ...)[,type(a[,a] .. .)] ...

Remarks: The type entry is one of the types described in
Chapter 1.

The a entry is either a single letter or a range of letters.
A range of letters is indicated by the first and last
letters in the range, separated by a minus sign. For a
range, the letters must be in alphabetical order.

An IMPLICIT statement defines the type and size for
all user-defined names that begin with the letter or
letters that appear in the specification. An IMPLICIT
statement applies only to the program unit in which it
appears. IMPLICIT statements do not change the type
of any intrinsic functions.

Notes:

1. Either 2 or 4 bytes are used. The default is
4, but may be set explicitly to either 2 or 4
with the $STORAGE metacommand.

2. CHARACTER and CHARACTER* 1 are
synonyms.

4-55

IMPLICIT
Statement

3. If n is odd, then n + 1 bytes of storage are
used. (See Type Statement.)

4. REAL and REAL*4 are synonyms.

IMPLICIT types can be overridden or confirmed for any
specific user name by the appearance of that name in a
subsequent type statement. An explicit type in a
FUNCTION statement also takes priority over an
IMPLICIT statement. If the type in question is a
character type, the length of the user name is also
overridden by a later type definition.

A program unit can have more than one IMPLICIT
statement, but all IMPLICIT statements must precede
all other specification statements in that program unit.
The same letter cannot be defined more than once in
an IMPLICIT statement in the same program unit.

Example: C EXAMPLE 0 F IMPLICIT STATEMENT
IMPLICIT INTEGER (A-B)
IMPLICIT CHARACTER*10 (N)
AGE = 11
NAME = 'RENEE'

4-56

INTRINSIC
Statement

Purpose: An INTRINSIC statement declares that a name is an
intrinsic function.

Format: INTRINSIC name [,name] . ..

Remarks: The name entry is an intrinsic function name. Each
name may appear once in an INTRINSIC statement.
It cannot appear in an EXTERNAL statement. All
names used in an INTRINSIC statement must be
system-defined INTRINSIC functions. For a list of
these functions, see Chapter 6.

The names of in tri11sic functions for type conversion
(INT, IFIX, IDINT, FLOAT, REAL, ICHAR, CHAR),
lexical relationship (LGE, LGT, LLE, LLT), for
choosing the largest or smallest value (MAXO, AMAX I,
AMAXO, MAXI, MINO, AMINI, MINI) and EOF must
not be used as actual arguments.

Example: C EXAMPLE OF INTRINSIC STATEMENT
INTRINSIC SIN, COSIN

C SIN AND COSIN ARE PARAMETERS TO CALC2
X = CALC2 (SIN, COSIN)

4-57

Logical IF

Purpose: The logical IF statement causes the logical expression to
be evaluated and, if the value of that expression is true,
then the st statement is executed.

Format: IF (e) st

Remarks: Thee entry is a logical expression. The st entry is any
executable statement except a DO, block IF, ELSEIF,
ELSE, ENDIF, END, or another logical IF statement.
If the expression evaluates to false, the st statement is
not executed and the execution sequence continues
as if a CONTINUE statement were encountered.

Example: C EXAMPLE OF LOGICAL IF
IF (I .EQ. 0) J = 2
IF (X .GT. 2.3) GOTO 100

100 CONTINUE

4-58

OPEN
Statement

Purpose: The OPEN statement binds a unit number with an
external device or file on an external device by
specifying its filename.

Format: OPEN(u,FILE=fname[,STATUS=st] [,ACCESS=ac]
[,FORM=fm] [,RECL=r 1])

Remarks: The u entry is a unit specifier (see "Elements of 1/0
Statements" previously described). It is required, and
must appear as the first argument. It must not be an
internal unit specifier.

The /name entry is a character expression. It is required,
and must appear as the second argument. If a blank is
specified, the filename can be specified at runtime. See
"Runtime Filename Assignment" in this section.

All arguments after /name are optional and can appear
in any order. These options are character constants
with optional trailing blanks (except RECL=).

The st entry is 'OLD' (the default) or 'NEW'. 'OLD'
is for reading or writing existing files. 'NEW' is for
writing new files.

The ac entry is 'SEQUENTIAL' (the default) or
'DIRECT'.

4-59

OPEN
Statement

The fm entry is 'FORMATTED' (the default),
'UNFORMATTED', or 'BINARY'.

The r 1 entry is the record length, an integer expression.
This argument to OPEN is for direct access files only,
for which it is required.

Binding unit 0 to a file has no effect. Unit 0 is
permanently connected to the keyboard and display.
If the file is to be direct, the RECL=r 1 option
specifies the length of the records in that file.

If an OPEN of a currently open unit is executed, it
functions as if a CLOSE and then an OPEN is executed.
If the filename in the FILE parameter is the blank
filename, the file system will attempt to get the filename
at runtime. The filename may also be specified on the
command line.

Example: EXAMPLE PROGRAM FRAGMENT 1

4-60

C PROMPT USER FOR A FILE NAME.
WRITE(*,'(A)')'SPECIFY OUTPUT FILE NAME-'

C PRESUME THAT fname IS SPECIFIED TO BE
C CHARACTER*64. READ THE FILE NAME FROM THE
C KEYBOARD.

READ(*,'(A)') fname
C OPEN THE FILE AS FORMATTED SEQUENTIAL AS
C UNIT 7.

OPEN(7,F IL E=fname,ACC ESS='SEQU ENTIA L ',
STATUS='NEW')

I

OPEN
Statement

EXAMPLE PROGRAM FRAGMENT 2

C OPEN AN EXISTING FILE
C CALLED DATAJ.TEXT AS UNIT 3.

OPEN(J,FI LE='DATAJ.TXT')

Runtime Filename Assignment

Often it is desirable to supply your application with a
filename for an OPEN statement at runtime instead of
coding it directly in your program. This can be done in
IBM Fortran by supplying a filename of all blanks on
the FILE= parameter of the OPEN statement. Example:

INTEGER UNITNO
CHARACTER*1 FNAME
DATA FNAME/' '/

C Open units 5 through 7.
DO 10 1=5.7

OPEN(l,FILE=' ')
10 CONTINUE
C Obtain the unit number and then perform the
C OPEN

WRITE(*,20)
20 FORMAT(1X.'Enter the Unit number: ')

READ(*.'(BN,16)') UNITNO
OPEN (UN ITNO,FI LE=FNAME)
END

When the OPEN statement is executed, the Fortran
runtime system will see the blank filename and attempt
to obtain the actual name of the DOS file or device to
be opened.

4-61

OPEN
Statement

4-62

The Fortran runtime system will attempt to obtain the
DOS filespec as follows:

• Look on the command line of the run file where
the blank filename has been coded. Take a DOS
filespec from the command line for each OPEN as
it is executed. The filespecs on the command line
must be separated by blanks if more than one
appears on the line.

B>files user prn con info.dat
Enter the Unit number:

300

• When the filespecs on the command line are
exhausted, prompt the user for the filespec. The
message:

Filename missing or invalid - try again!

will be displayed if the command line is empty.
The prompt

Unit #####?

where##### is the unit number that needs to be
supplied with a filename. Just respond to the
prompt with a DOS filespec and the OPEN will be
performed on that filename.

B>files
File name missing or empty - try again!
UNIT 5? user
UNIT 6? prn
UNIT 7? con

Enter the Unit number:
-12

UNIT -12? info.dat

OPEN
Statement

• Specifying extra filespecs on the command line has
no effect.

B>files user prn con info.dat extra1 .fil extra2.fil
Enter the Unit number:

30

Note: Because the filespecs are obtained as the
OPENs are executed, you must know the order in
which the OPENs are executed, to be able to
place all the filespecs on the command line
correctly.

4-63

PAUSE
Statement

Purpose: The PAUSE statement causes the program to be
suspended until the Enter key is pressed on the
keyboard.

Format: PAUSE [n]

Remarks: Then entry is either a character constant or a string of
not more than five digits.

The argument, n, if present, is displayed as part of the
prompt requesting input from the keyboard. If n is not
present, then "PAUSE" and the prompt message is
displayed. To continue execution of the program,
press the Enter key. Execution resumes as if a
CONTINUE statement was executed.

Example: C EXAMPLE OF PAUSE STATEMENT
IF (IWARN .Ell. O) GOTO 300
PAUSE 'WARNING: IWARN IS NONZERO'

300 CONTINUE

4-64

PROGRAM
Statement

Purpose: The PROGRAM statement identifies a program unit as
a main program and names the program unit.

Format: PROGRAM pname

Remarks: The pname entry is a user-defined name that is the name
of the main program.

The pname entry is a global name. Therefore, it cannot
be the same as that of another external procedure or
common block. (It is also a local name to the main
program, and must not conflict with any local name in
the main program.) The PROGRAM statement may
only appear as the first statement of a main program.

Example: PROGRAM PAYROL
INTEGER JOEPAY,TAX,OT
DIMENSION RATE(4,69)

•
•
•

END

4-65

READ
Statement

Purpose: The READ statement sets the items in iolist (assuming
that no end of file or error condition occurs).

Format: READ(u [,[] [,REC=rn] [,END=sl]
[,ERR=s])iolist

Remarks: The u entry is a unit specifier (see "Elements of 1/0
Statements" in this chapter.) It is required, and must
appear as the first argument.

4-66

The f entry is required for formatted read as the second
argument, and must not be used for unformatted read.

The rn entry is specified for direct access only,
otherwise an error results. It is a positive integer
expression. It sets the current position to record
number rn. If REC=rn is omitted for a direct access
file, reading continues sequentially from the current
position in the files.

The sl entry is an optional statement label. If it is not
present, reading the end of the file results in a runtime
error. If it is present, encountering an end of file
condition results in the transfer to the executable
statement labeled sl, which must be in the same
program unit as the READ statement.

READ
Statement

The s entry is an optional statement label. If it is not
present, 1/0 errors result in runtime errors. If it is
present, 1/0 errors cause control to transfer to the
executable statement labeled s. If the read is internal,
the character variable or character array element
specified is the source of the input, otherwise the
external unit is the source.

Example: C NEED A TWO DIMENSIONAL ARRAY FOR THE
C EXAMPLE.

DIMENSION IA(10,20)
C READ IN THE BOUNDS FOR THE ARRAY. THESE
C BOUNDS SHOULD BE LESS THAN 10 AND 20
C RESPECTIVELY. THEN READ IN THE ARRAY IN
C NESTED IMPLIED DO LISTS WITH INPUT FORMAT OF
C 8 COLUMNS OF WIDTH 5 EACH.

READ(J,990) I L,JL,((IA(l.J),J=1,JL),1=1,I L)
990 FORMAT(215/,(200l5))

4-67

RETURN
Statement

Purpose: A RETURN statement causes return of control to the
calling program unit. It may appear only in a function
or subroutine.

Format: RETURN

Remarks: Execution of a RETURN statement terminates the
execution of the enclosing subroutine or function. If
the RETURN statement is in a function, then the value
of that function is equal to the current value of the
variable with the same name as the function. Execution
of an END statement in a function or subroutine is
equivalent to execution of a RETURN statement.

Example: C EXAMPLE OF RETURN STATEMENT

4-68

C THIS SUBROUTINE LOOPS UNTIL THE USER
C TYPES 'Y' TO THE KEYBOARD

SUBROUTINE LOOP
CHARACTER IN

c
10 READ(*, '(Al)') IN

IF (IN .EQ. 'Y') RETURN
GOTO 10
RETURN
END

REWIND
Statement

Purpose: Execution of a REWIND statement causes the file
associated with the specified unit to be positioned at
its initial point.

Format: REWIND u

Remarks: The u entry is a unit specifier (see "Elements of I/O
Statements" in this chapter). It is required and must
not be an internal unit specifier.

4-69

SAVE
Statement

Purpose: A SAVE statement retains the definition of a common
block after the return from a procedure that defines
that common block.

Format: SAVE /name/ [,/name/] ...

Remarks: The name entry is the name of a common block. Within
a subroutine or function, a common block that was
specified in a SA VE statement does not become
undefined upon exit from the subroutine or function.

Note: Because all common blocks are statically
allocated in the IBM Fortran, all common blocks
are automatically saved, therefore, the SA VE
statement has no effect.

Example: C EXAMPLE OF SAVE STATEMENT
COMMON/MYCOM/l,J,K
SAVE /MYCOM/

4-70

Statement Functions

Purpose: A statement function identifies a user-defined function
in one statement. It is similar in form to an assignment
statement. A statement function may appear only after
specification statements and before any executable
statements in the program unit.

Format:

A statement function is not classified as an executable
statement, because it is not executed until referenced.
The body of a statement function serves to define the
meaning of the function. It is executed, as any other
function, by the execution of a function reference.

[name (f parm [, f parm] ...) ex pr

Remarks: The [name entry is the user-defined name of the
statement function.

The fparm entry is a formal parameter name.

The expr entry is an expression.

The type of the expr must be assignment compatible
with the type of the statement function name. The list
of formal parameter names serves to define the number
and type of arguments to the statement function. The
scope of formal argument names is the statement
function.

4-71

Statement Functions

Therefore, formal parameter names can be used as
other user-defined names in the rest of the program unit
enclosing the statement function definition. The name
of the statement function, however, is local to the
enclosing program unit, and must not be used otherwise
(except as the name of a common block, or as the name
of a formal parameter to another statement function).
The type of all such uses, however, must be the same.
If a formal parameter name is the same as another local
name, then a reference to that name within the
statement function defining it always refers to the
formal parameter, never to the other usage.

Within the expression expr, references to variables,
formal parameters, other functions, array elements, and
constants are permitted. Statement function references,
however, must refer to statement functions defined
prior to the statement function in which they appear.
Statement functions cannot be called recursively, either
directly or indirectly.

A statement function may be referenced only in the
program unit in which it is defined. The name of a
statement function cannot appear in any specification
statement, except in a type statement which may not
define that name as an array, and in a COMMON
statement as the name of a common block. A statement
function cannot be of type character.

Example: C EXAMPLE OF STATEMENT FUNCTION STATEMENT
DIMENSION X(10)

c

4-72

ADD(J, K) = J + K

DO 1, 1=1, 10
X(I) = ADD(l*10,1+2)
CONTINUE

STOP
Statement

Purpose: The STOP statement causes the program to terminate.
The argument, n, if present, is displayed upon
termination.

Format: STOP [n]

Remarks: The n entry is either a character constant or a string of
not more than five digits. If n is not present, the
following message appears:

Stop - Program terminated.

If n is present, then n is displayed.

Example: C EXAMPLE OF STOP STATEMENT
IF (IERROR .EQ. 0) GOTO 200
STOP 'ERROR DETECTED'

200 CONTINUE

4-73

SUBROUTINE
Statement

Purpose: The SUBROUTINE statement identifies a program unit
as a subroutine, names the program unit, and identifies
the formal parameters to that subroutine.

Format: SUBROUTINE sname [(fparm [, fparm ...)]

Remarks: The sname entry is the user-defined name of the
subroutine.

The fparm entry is the user-defined name of a formal
parameter. sname is a global name (and it is also local
to the subroutine it names). The list of formal
parameter names defines the number and, with any
subsequent IMPLICIT, type, or DIMENSION
statements, the type of actual arguments to that
subroutine. Formal parameter names cannot appear
in COMMON, DATA, EQUIVALENCE, or INTRINSIC
statements. A subroutine may return values by
assignment to one or more of its formal parameters.

Example: SUBROUTINE CONVRT (RAD.DEG)
DEG=RAD*180.0/3.14159
RETURN
END

4-74

Type
Statement

Purpose: A type statement specifies the type of user-defined
names. A type statement can confirm or override the
implicit type of a name. A type statement can also
specify dimension information.

Format: type v [,v] . ..

Remarks: The type entry is one of the data types (see "DAT A
TYPES" in Chapter 1).

A user name for a variable, array, external function, or
statement function may appear in a type statement.
Such an appearance defines the type of that name for
the entire program unit. Within a program unit, a
name can have its type explicitly specified by a type
statement only once. The name of a subroutine or
main program cannot appear in a type statement. The
v entry is the symbolic name of a variable, array,
function, function subprogram, or an array declarator.

The following rules apply to a type declaration:

1. A type declaration statement must precede all
executable statements.

2. The data type of a symbolic name can be declared
only once.

4-75

Type
Statement

3. A type declaration statement cannot be labeled.

4. A type declaration statement can be used to
declare an array by appending an array declarator
to an array name.

The v entry can be followed by a data type length
specifier of the form *n, where n is one of the acceptable
lengths for the data type being declared. Such a
specification overrides the length attribute that the
statement implies, and assigns a new length to the
specified item. If both a data-type length specifier
and an array declarator are specified, the data type
length specifier goes last. Examples of type
declaration statements are:

Example: C EXAMPLE OF TYPE STATEMENTS

4-76

CHARACTER NAME*10, CITY*80, CH
INTEGER COUNT, MATRIX(4,4), SUM
REAL MAN,IABS
LOGICAL SWITCH
INTEGER*2 Q, M12*4, IVEC(10)*4

Unconditional GOTO

Purpose: The Unconditional GOTO statement causes the next
statement executed to be the statement labeled s.

Format: GOTO s

Remarks: The sentry is a statement label of an executable
statement found in the same program unit as the GOTO
statement. Jumping into a DO, IF, ELSEIF, or ELSE
block from outside the block is not permitted. (A
special feature, extended range DO loops, permits
jumping into a DO block. See the $D066 metacommand
in Chapter 3 for more information.)

Example: C EXAMPLE OF UNCONDITIONAL GOTO
COUNT=O
DO 10 1=1,10

COUNT=COUNT+l
IF (COUNT.GE.10) GO TO 20

10 CONTINUE
20 WRITE(*,100) COUNT

STOP
100 FORMAT (1X,'COUNT=',F10)

END

4-77

WRITE
Statement

Purpose: The WRITE statement transfers the iolist items to the
unit specified.

Format: WRITE(u[,fl [,ERR=s] [,REC=rn])iolist

Remarks: The u entry is a unit specifier (see "Elements of 1/0
Statement" previously described). It is required, and
must appear as the first argument.

The f entry is required for formatted write as the
second argument, and must not be used for unformatted
write.

The sentry is an optional statement label. If it is not
present, '1/0 errors result in runtime errors. If it is
present, 1/0 errors cause control to transfer to the
executable statement labeled s.

The rn entry is specified for direct access only,
otherwise an error results. It is a positive integer
expression. It positions to record number rn for this
WRITE. If REC=rn is omitted for a direct access file,
writing continues from the current position in the file.

If the write is internal, the character variable or
character array element specified is the destination of
the output, otherwise the external unit is the
destination.

Example: EXAMPLE 1 PROGRAM FRAGMENT

4-78

C DISPLAY MESSAGE: "ONE = 1, TWO = 2,
C THREE = 3" ON THE DISPLAY, NOT DOING
C THINGS IN THE SIMPLEST WAY

WRITE(*,980)'0NE=', 1, 1+1 ,'ee=',+(1+1+1)
980 FO RMAT(A,12',TWO=', 1X,11,',THR',A,l1)

WRITE
Statement

EXAMPLE 2 PROGRAM FRAGMENT

C DECLARE THE DATA AREAS
CHARACTER*15 ITEM(10)
REAL COST(1 O)
INTEGER MIN,MAX,VOLUME(10)

C OPEN THE FILES
OPEN(6,FI LE='PRN')
OPEN(1,FILE='INVENTRY.DAT',STATUS='NEW',

FORM=' UNFORMATTED')
C READ IN THE DATA FROM THE KEYBOARD

DO 10 1=1,10
WRITE(*, 110)1

110 FORMAT(' ENTER ITEM #',12,': '\)
READ(*, 100) ITEM(I)

100 FORMAT(A)
WRITE(*,210) ITEM(I)

210 FORMAT(' ENTER COST AND VOLUME FOR ',A)
READ(*,200) COST(l),VOLUME(I)
IF (COST(I) .ECl. 0.0) GO TO 20

200 FORMAT(BN,F10.2,110)
C WRITE THE DATA TO AN UNFORMATTED FILE

WRITE (1) ITEM(l),COST(l),VO LUME(I)
10 CONTINUE
20 l=l-1
C FIND THE MIN AND MAX OF THE DATA

MIN=VOLUME(1)
MAX=VOLUME(1)
DO 30 J=2,I

IF (VOLUME(J) .GT. MAX) MAX=VOLUME(J)
IF (VOLUME(J) .LT. MIN) MIN=VOLUME(J)

30 CONTINUE
{ C REPORT THE RESULTS TO THE PRINTER

WRITE (6,220)
220 FO RMAT('1 ITEM',22X,'COST',9X,'VO LUME',6X,'INVENTO RY')

WRITE(6,230)

4-79

WRITE
Statement

230 FO AMAT('+',' ____ ',22X,' ____ ',9X,' ______ ',6X,' _________ ')
DO 40 J=1,I

WRITE (6,400) ITEM(J) ,COST(J), VO LUM E(J),COST(J)*VO L UME(J)
40 CONTINUE
400 FO RMAT(1X,A,5X,F10.2,5X,110,5X,F10.2)

WRITE(6,600) MIN,MAX
600 OFORMAT('OVOLUME MAXIMUM = ',110,

1 I,' VOLUME MINIMUM = ',110)
END

4-80

CHAPTER 5. 1/0 SYSTEM

Contents

Overview

Records .
Formatted
Unformatted
End file

5-4

5-5
5-5
5-5
5-5

Files 5-6
File Properties 5-6
File Name . . 5-7
File Position . 5-7
Formatted, Unformatted, and Binary Files 5-8
Sequential and Direct Access Properties 5-8
Internal Files 5-9
Units 5-10
Concepts and Limitations 5-10
Explicitly Opened External, Sequential,

Formatted Files 5-11
Less Commonly Used File Operations . 5-12
Direct Files/Direct Device Association 5-14
BACK SPACE/Sequential Device Association . 5-14
BACKSPACE/Unformatted Sequential File

Association 5-14
Functions Called in 1/0 Statements . 5-15
Partial Read/Unformatted Sequential

File Association 5-15

Formatted 1/0 and the FORMAT
Statement

Format Specifications and the
FORMAT Statement

Repeatable Edit Descriptors .
Nonrepeatable Edit Descriptors

5-16

5-16
5-18
5-18

5-1

5-2

Input/Output List Interaction and
Format Specification

Input/Output List . .
Format Specification

Edit Descriptors
Nonrepeatable
Repeatable

Carriage Control

5-20
5-20
5-21

5-23
5-23
5-27

5-32

This chapter describes the Fortran 1/0 system, including
the basic Fortran 1/0 concepts, statements, and the
FORMAT statement.

The major subsections of this section are:

• Overview-Provides an overview of the Fortran file
system. Defines the basic concepts of 1/0 records,
1/0 units, and the various kinds of file access
available.

• Concepts and Limitations-Relates the definitions
made in the Overview to accomplishing various
tasks using the most common forms of files and
1/0 statements. Gives a complete program
illustrating them. There is a general discussion of
1/0 system limitations.

• FORMATTED 1/0 and the FORMAT Statement.

5-3

Overview

5-4

You need to be familiar with the terms and concepts
related to the structure of the Fortran 1/0 system to
understand the 1/0 statements.

Records

The building block of the Fortran file system is the
record. A record is a sequence of characters or values.
There are three kinds of records:

l) Formatted

2) Unformatted

3) Endfile

Formatted

Formatted records are sequences of characters
terminated by the carriage return-linefeed. Formatted
records are interpreted on input consistently with the
way the IBM Personal Computer DOS interprets
characters. They are useful when the source data is to
be read by a user or used as input to another program.
Formatted records must be used with the Formatted
1/0 statements. They are the most common type of
record and are required when writing or reading to or
from the display /keyboard or printer.

Unformatted

End file

Unformatted records are sequences of values, with no
system alteration or interpretation; no physical
representation exists for the end of record. They are
used when it is desired to store or retrieve information
without the need for editing or user intervention.

The Fortran file system simulates a virtual endfile
record after the last record in a file, although there is no
corresponding real record.

5-5

Files

A file is a sequence of records. Files are either external
or internal.

An external file is a file on a device or a device itself.
An internal file is a character variable that serves as the
source or destination of some 1/0 action. From this
point on, both internal Fortran files and the files
known to DOS are referred to simply as files, with
context determining meaning. (The OPEN statement
provides the linkage between the two notions of files
and, in most cases, the ambiguity disappears after
opening a file, when the two notions coincide.)

File Properties

A Fortran file has these properties:

• Name

• Position

• Formatted, unformatted, or binary

• Sequential or direct access

5-6

File Name

A file can have a name. If present, a name is a character
string identical to the name by which it is known to
DOS (see the IBM Personal Computer DOS reference
manual for more information on filename structures).
The filename may also be blank which allows
specifying the filename at runtime. See the OPEN
statement in Chapter 4.

In addition to the IBM Personal Computer DOS
filenames, the following two special filenames exist:

• USER (non-buffered display/keyboard I/0)

• LINE (non-buffered RS-232 1/0)

See "Device Identifications" in Chapter 2.

File Position

The position property of a file is usually set by the
previous 1/0 operation. A file has an initial point,
terminal point, current record, preceding record, and
next record.

It is possible to be between records in a file, in which
case the next record is the successor to the previous
record and there is no current record.

Opening a sequential file for writing, positions the file
at its beginning and discards all old data in the file. The
file position after sequential writes is at the end of the
file, but not beyond the endfile record. Executing the
ENDFILE statement positions the file beyond the
endfile record, as does a READ statement executed at
the end of the file (but not beyond the endfile record).
Reading an endfile record can be detected by the user
using the END= option in a READ statement.

5-7

Formatted, Unformatted, and Binary Files

An external file is opened as either formatted,
unformatted, or binary. All internal files are formatted.
Formatted files consist entirely of formatted records.
Unformatted and binary files consist entirely of
unformatted records.

Sequential and Direct Access Properties

5-8

An external file is opened as either sequential or direct.

Sequential files contain records with order determined
by the order in which the records were written (the
normal sequential order). These files must not be read
or written using the REC= option which specifies a
position for direct access 1/0. DOS attempts to
extend sequential access files if a record is written
beyond the old terminating file boundary; the success
of this depends on the existence of room on the
physical device.

Direct access files can be read or written in any order
(they are random access files).

Records are numbered sequentially, with the first
record numbered 1. All records have the same length,
specified when the file is opened, and each record has
a unique record number, specified when the record is
written.

It is possible to write the records out of order,
including, for example, writing record 9, 5, and 11 in
that order without writing the records in between. It is
not possible to delete a record once written, but a
record can be overwritten with a new value. Direct
access files must reside on diskette. The values of
records never written are undefined.

Internal Files

Internal files provide a mechanism for using the
formatting capabilities of the 1/0 system to convert
values to and from their external character
representations, within the Fortran internal storage
structures. That is, reading a character variable may be
done to convert the character values into numeric,
logical, or character values and writing a character
variable allows values to be converted into their
(external) character representation.

Special Properties

An internal file is a character variable or character
array element. The file has exactly one record, which
has the same length as the character variable or
character array element. If less than the entire record
is written, the remaining portion of the record is filled
with blanks. The file position is always at the beginning
of the file prior to the 1/0 statement execution. Only
formatted, sequential 1/0 is permitted to internal files
and only the 1/0 statements READ and WRITE may
specify an internal unit.

C EXAMPLE OF INTERNAL FILE 1/0
CHARACTER*11 A,B
DATA A /'1.234-86.45'/
READ(A,2) X,Y

2 FORMAT(F5.3,F6.2)
Z=X+Y
WRITE(B,'(F6.2)')Z
WR ITE(*,'(1 X,F6.2)')Z
END

5-9

Units

A unit is a means of referring to a file. A unit specified
in an 1/0 statement is either an external unit or an
internal file specifier. An external unit specifier is
either an integer expression or the character *, which
stands for the display (for writing) and the keyboard
(for reading). In most cases, an external unit specifier
value is bound to a physical device (or file resident
on the device) by name using the OPEN statement.
Once this binding of value to system file name occurs,
Fortran 1/0 statements specify the unit number as a
means of referring to the appropriate external entity.
Once opened, the external unit specifier value is
uniquely associated with a particular external entity
until an explicit CLOSE. The only exception to these
binding rules is that the unit value 0 is permanently
associated with the keyboard for reading and the
display for writing and no explicit OPEN is necessary.
The character * is interpreted by the Fortran file
system as specifying unit 0. An internal file specifier
is a character variable or character array element
that directly specifies an internal file.

Concepts and Limitations

5-10

Fortran provides a rich combination of possible file
structures. However, two kinds of files suffice for most
applications: * files, and explicitly opened external,
sequential, formatted files.

An asterisk (*)file represents the keyboard and display:
a sequential, formatted file, also known as unit 0. This
particular unit has the special properties that an entire
line, terminated by the Enter key, must be entered
when reading from it, and the backspace and Escape
keys familiar to the IBM Personal Computer user serve
their normal functions.

Explicitly Opened External, Sequential,
Formatted Files

These files are bound to a system file by name in an
OPEN statement.

Example

This example program uses the two kinds of files
discussed above for reading and writing. The I/O
statements are explained in detail in the following
subsection. Copy a file with three columns of
integers, each 7 columns wide, from a file whose
name is input by you to another file named
OUT.TEXT, reversing the positions of the first and
second columns.

5-11

PROGRAM COLSWP
CHARACTER*64 FNAME

C Prompt to the display by writing to *.
WRITE(*,900)

900 FORMAT(' INPUT FILE NAME - ')
C Read the file name from the keyboard by
C reading from *.

READ(*,910) FNAME
910 FORMAT(A)
C Use unit 3 for input; any unit number except
C 0 will do.

OPEN(J,FILE=FNAME)
C Use unit 4 for output; any unit number except
C 0 and 3 will do.

OPEN(4,FILE='O UT.TXT',STATUS='NEW')
C Read and write until end of file.
100 READ(J,920,EN D=200)1,J,K

WRITE(4,920)J,l,K
920 FORMAT(317)

GOTO 100
200 WRITE(*,910)' Done'

END

Less Commonly Used File Operations

5-12

The less commonly used file structures are appropriate
for certain classes of applications. A very general
indication of the intended usages for them follows.
If the 1/0 is to be random access (direct), such as in
maintaining a data base, direct access files are
probably necessary.

If the data is to be written and read by IBM Fortran,
unformatted files are perhaps more efficient in speed.
The combination of direct and unformatted is ideal for
a data base to be created, maintained, and accessed
exclusively by IBM Fortran. If the data must be
transferred without any system interpretation,
especially if all 256 possible byte values are to be
transferred, unformatted 1/0 is necessary. Internal
files are not 1/0 in the conventional sense but rather
provide certain character string operations and
conversions within a standard mechanism. A file
opened in IBM Fortran is either "old" or "new" but
there is no concept of "opened for reading" as
distinguished from "opened for writing."

Therefore, you can open "old" (existing) files and
write to them, with the effect of overwriting them.
Similarly, you can alternately write to and read from
the same file (providing that you avoid reading beyond
the end of the file, or reading unwritten records in a
direct file). A write to a sequential file effectively
deletes any records that existed beyond the newly
written record. Normally, when a device (such as the
keyboard or printer) is opened as a file, it makes no
difference whether it is opened as "old" or "new."
With disk files, however, opening "new" creates a new
file. If that file is closed or if the program terminates
without doing a CLOSE on that file, a permanent
file is created with the name given when the file
was opened. If a previous file existed with the same
name, it is deleted.

5-13

Direct Files/Direct Device Association

There are two kinds of devices: sequential and direct.
The files associated with sequential devices are streams
of characters, with no explicit motion allowed except
reading and/or writing. The keyboard, display, and
printer are examples of sequential devices. Direct
devices have the additional operation of seeking a
specific location. They can be accessed either
sequentially or randomly, and thus can support direct
files. The Fortran 1/0 system does not allow direct
files on sequential devices.

BACKSPACE/Sequential Device Association

The IBM Fortran 1/0 system does not allow backspacing
a file on a sequential device such as keyboard, display or
printer.

BACKSPACE/Unformatted Sequential
File Association

5-14

Record boundaries are not indicated in an unformatted
sequential file; therefore, BACKSPACE on such files is
defined as backing up by one byte. Direct files contain
records of fixed, specified length, so it is possible to
backspace by records on direct unformatted files.

Functions Called in 1/0 Statements

During execution of any 1/0 statement, evaluation of an
expression may cause a function to be called. That
function call must not cause any 1/0 statement to be
executed.

Partial Read/Unformatted Sequential
File Association

Record boundaries are not indicated in an unformatted
sequential file; therefore, a read of a record which reads
only part of the record will not position the file at the
beginning of the next record. The binary file should be
used when taking advantage of this limitation. Binary
files define BACKSPACE as backing up l byte.

5-15

Formatted 1/0 and the FORMAT
Statement

Format Specifications and the
FORMAT Statement

5-16

If a READ or WRITE statement specifies a format, it
is considered a formatted, rather than an unformatted
I/O statement. Such a format can be specified in one
of three ways, as explained in "Elements of I/O
Statements" in Chapter 4. There are several ways to
refer to FORMAT statements and one is an immediate
format in the form of a character expression containing
the format itself. The following four examples are all
valid and equivalent means of specifying a format:

1) WRITE (*,990) l,J,K
990 FORMAT(1 X,215,13)

2) ASSIGN 990 TO IFMT
990 FORMAT(' ',215,13)

WRITE(*,IFMT) l,J,K

3) WRITE(* ,'(16,15,13)') l,J,K

4) CHARACTER*B FMTCH
FMTCH = '(1 H ,215,13)'
WRITE(*,FMTCH)l,J,K

The format specification itself must begin with "(",
possibly following initial blank characters, and end with
a matching ")". Characters beyond the matching ")"
are ignored.

FORMAT statements must be labeled, and like all
nonexecutable statements, may not be the target of a
branching operation.

Between the initial "(" and terminating ")" is a list of
items, separated by commas, each of which is one of:

[r] ed

ned

[r] fs

repeatable edit descriptors.

nonrepeatable edit descriptors.

a nested format specification. At most,
three levels of nested parentheses are
permitted within the outermost level.

The r entry is an optionally present, nonzero, unsigned,
integer constant called a repeat specification.

The comma separating two list items may be omitted
if the resulting format specification is still unambiguous,
such as after a P edit descriptor or before or after the
/ edit descriptor.

5-17

Repeatable Edit Descriptors

The repeatable edit descriptors, described below, are:

Iw
Fw.d
Ew.d
Ew.dEe
Lw
A
Aw

The I, F, E, L, A entries indicate the manner of editing.

Thew and e entries are nonzero, unsigned, integer
constants.

The d entry is an unsigned integer constant.

Nonrepeatable Edit Descriptors

The nonrepeatable edit descriptors are as follows:

S-18

'xxxx'

nH.xxxx

nX

I

\

kP

BN

BZ

character constants of any length (see
special rules below).

another means of specifying character
constants (see rules below).

denotes positional editing

denotes slash editing

denotes backslash editing

denotes scale factor

denotes blank interpretation

denotes blank interpretation

The ', H, X, /, ? , P, BN, BZ entries indicate the manner
of editing.

The x entry is any ASCII character.

The n entry is a nonzero, unsigned, integer constant.

The k entry is an optionally signed integer constant.

S-19

Input/Output List Interaction and
Format Specification

Input/Output List

5-20

If an iolist contains at least one item, at least one
repeatable edit descriptor must exist in the format
specification. In particular, the empty edit specification,
(), can be used only if no items are specified in the
iolist (in which case the only action caused by the I/O
statement is the implicit record-skipping action
associated with formats).

Each item in the iolist is associated with a repeatable
edit descriptor during the I/O statement execution in
turn. In contrast, the remaining format control items
interact directly with the record and do not become
associated with items in the iolist.

The items in a format specification are interpreted from
left to right. Repeatable edit descriptors act as if they
were present r times (if omitted, r is treated as a repeat
factor of 1). Similarly, a nested format specification is
treated as if its items appeared r times.

Format Specification

The formatted 1/0 process proceeds as follows. The
"format controller" scans the format items in the order
indicated above. When a repeatable edit descriptor is
encountered either:

• A corresponding item appears in the iolist, in
which case the item and the edit descriptor are
associated and 1/0 of that item proceeds under
format control of the edit descriptor.

• No corresponding item appears in the iolist, in
which case the "format controller" terminates
1/0.

If the format controller encounters the matching final
")" of the format specification and there are no further
items in the iolist, the "format controller" terminates
1/0. If, however, there are further items in the iolist,
the file is positioned at the beginning of the next record
and the "format controller" continues by rescanning
the format starting at the beginning of the format
specification terminated by the last preceding right
parenthesis.

If there is no such preceding right parenthesis, the
"format controller" rescans the format from the
beginning. Within the portion of the format rescanned,
there must be at least one repeatable edit descriptor.

5-21

5-22

If the rescan of the format specification begins with a
repeated nested format specification, the repeat factor
indicates the number of times to repeat that nested
format specification. The rescan does not change the
previously set scale factor or BN or BZ blank control
in effect. When the "format controller" terminates,
the remaining characters of an input record are skipped
or an end of record is written on output, except as
noted under "Edit Descriptor" below.

Edit Descriptors

Nonrepeatable

Apostrophe Editing.

The apostrophe edit descriptor ('xxxx') has the form of
a character constant. Embedded blanks are significant
and double 'are interpreted as a single' within a character
constant. Apostrophe editing cannot be used for input
(READ) as it causes the character constant to be
transmitted to the output unit. For an example, see
"H (Hollerith Editing)" below.

H (Hollerith Editing).

The nH edit descriptor causes the following n characters,
with blanks counted as significant, to be transmitted
to the output unit. Hollerith editing cannot be used for
input (READ).

S-23

5-24

EXAMPLES OF APOSTROPHE AND HOLLERITH
EDITING

C Each write outputs characters between the
C slashes: /ABC'DEF/

WRITE (*,970)
970 FORMAT ('ABC"DEF')

WRITE (* ,'(" ABC""D EF")')
WRITE (*,'(1X,7HABC"DEF)')
WRITE (*,960)

960 FORMAT (8HABC'DEF)

X (Positional Editing).

On input (READ), the nX edit descriptor causes the file
position to advance n characters, thus the next n
characters are skipped. On output (WRITE), the nX
edit descriptor causes n blanks to be written, providing
that further writing to the record occurs; otherwise,
the nX descriptor results in no operation.

I (Slash Editing).

The slash indicates the end of data transfer on the
current record. On input, the file is positioned to the
beginning of the next record. On output, an end of
record is written and the file is positioned to write on
the beginning of the next record.

\ (Backslash Editing).

Normally when the "format controller" terminates,
the end of data transmission on the current record
occurs. If the last edit descriptor encountered by the
"format controller" is I, this automatic end of record is
inhibited. This allows subsequent 1/0 statements to
continue reading (or writing) out of (or into) the same
record. The most common use for this mechanism is
to prompt to the display and read a response off the
same line as in:

WRITE (*,'(A\)') ' Input an integer -+ '

READ (*,'(BN,16)') I

The \ edit descriptor does not inhibit the automatic
end of record generated when reading from the * unit.
Input from the keyboard must always be terminated
by the Enter key. This permits the backspace and the
Control-X keys to function properly.

P (Scale Factor Editing).

The P edit descriptor sets the scale factor for subsequent
F and E edit descriptors until another kP edit descriptor
is encountered. At the start of each 1/0 statement, the
scale factor is initialized to 0. The scale factor affects
format editing in the following ways:

• On input, with F and E editing, providing that no
explicit exponent exists in the field, and F output
editing, the externally represented number equals
the internally represented number multiplied by
lO**k.

5-25

5-26

• On input, with F and E editing, the scale factor
has no effect if there is an explicit exponent in the
input field.

• On output, with E editing, the real part of the
quantity is output multiplied by l O**k and the
exponent is reduced by k (effectively altering the
column position of the decimal point but not the
value output).

BN and BZ (Blank Interpretation).

These edit descriptors specify the interpretation of
blanks in numeric input fields. The default, BZ, is
set at the start of each 1/0 statement. This makes
blanks, other than leading blanks, identical to zeros.
If a BN edit descriptor is processed by the "format
controller," blanks in subsequent input fields are
ignored unless, and until, a BZ edit descriptor is
processed. The effect of ignoring blanks is to take all
the nonblank characters in the input field, and treat
them as if they were right-justified in the field with
the number of leading blanks equal to the number of
ignored blanks. For instance, the following READ
statement accepts the characters shown between
the slashes as the value 123 (where <er> indicates
pressing the Enter key):

READ(*,100) I
100 FORMAT (BN,16)

/123 <er>/,
/123 456<cr>/,
I 123<cr>/.

The BN edit descriptor, in conjunction with the infinite
blank padding at the end of formatted records, makes
interactive input very convenient.

Repeatable

I, F, and E (Numeric Editing).

The I, F, and E edit descriptors are used for 1/0 of
integer and real data. The following general rules apply
to all three of them:

• On input, leading blanks are not significant. Other
blanks are interpreted differently depending on the
BN or BZ flag in effect, but all blank fields always
become the value 0. Plus signs are optional.

• On input, with F and E editing, an explicit decimal
point appearing in the input field overrides the
edit descriptor specification of the decimal point
position.

• On output, the characters generated are right­
justified in the field with padding by leading
blanks if necessary.

• On output, if the number of characters produced
exceeds the field width or the exponent exceeds
its specified width, the entire field is filled with
asterisks.

5-27

5-28

I (futeger Editing).

The edit descriptor lw must be associated with an iolist
item of type integer. The field is w characters wide.
On input, an optional sign may appear in the field.

F (Real Editing).

The edit descriptor Fw .d must be associated with an
iolist item of type real. The field is w characters wide,
with a fractional part d digits wide. The input field
begins with an optional sign followed by a string of
digits optionally containing a decimal point. If the
decimal point is present, it overrides the d specified
in the edit descriptor; otherwise the rightmost d digits
of the string are interpreted as following the decimal
point (with leading blanks converted to zeros if
necessary). Following this is an optional exponent
which is either:

• +(plus) or - (minus) followed by an integer,

• E followed by zero or more blanks followed by
an optional sign followed by an integer.

The output field occupies w digits, d of which fall
beyond the decimal point and the value output is
controlled both by the iolist item and the current
scale factor. The output value is rounded rather than
truncated.

E (Real Editing).

An E edit descriptor takes either the form Ew .d or
Ew .dEe. In either case the field is w characters wide.
The e has no effect on input. The input field for an E
edit descriptor is identical to that described by an F
edit descriptor with the same w and d. The form of
the output field depends on the scale factor (set by
the P edit descriptor) in effect. For a scale factor of
0, the output field is a minus sign (if necessary),
followed by a decimal point, followed by a string of
digits, followed by an exponent field for exponent
exp, of one of the following forms:

Ew.d -99 <=exp<= 99

Ew.d -999 <=exp<= 999

-((lO**e) - 1) <=
Ew.dEe exp

<= (lO**e) -1

E followed by plus
or minus followed
by the two-digit
exponent.

Plus or minus
followed by the
three-digit
exponent.

E followed by plus
or minus followed
by e digits which are
the exponent with
possible leading
zeros.

5-29

5-30

The form Ew .d must not be used if the absolute value
of the exponent to be printed exceeds 999.

The scale factor controls the decimal normalization of
the printed E field. If the scale factor, k, is in the range
-d <k <= 0, then the output field contains exactly -k
leading zeros after the decimal point and d + k
significant digits after this. If 0 <k < d + 2, then the
output field contains exactly k significant digits to the
left of the decimal point and d - k - 1 places after the
decimal point. Other values of k are errors.

L (Logical Editing)

The edit descriptor Lw indicates that the field is w
characters wide. The iolist element associated with an
L edit descriptor must be of type logical. On input, the
field consists of optional blanks, followed by an optional
decimal point, followed by T (for TRUE) or F (for
FALSE). Any further characters in the field are ignored,
but accepted on input, so that TRUE and FALSE are
valid inputs. On output, w - 1 blanks are followed by
either T or F as appropriate.

A (Character Editing)

The forms of the A edit descriptor are A or Aw, in
which the former acquires an implied field width, w,
from the number of characters in the iolist item with
which it is associated. The iolist item must be of type
character if it is to be associated with an A or Aw
edit descriptor. On input, if w exceeds or equals the
number of characters in the iolist element, the rightmost
characters of the input field are used as the input
characters; otherwise the input characters are left­
justified in the input iolist item and trailing blanks are
provided. On output, if w exceeds the characters
produced by the iolist item, leading blanks are provided;
otherwise, the leftmost w characters of the item are
output.

5-31

Carriage Control

5-32

The first character of every record transferred to the
printer or display is not printed. Instead, it is interpreted
as a carriage control character. The IBM Fortran 1/0
system recognizes certain characters as carriage control
characters. These characters and their effects are as
follows:

Giaracter

space

0

+(plus)

Effect

Advances one line

Advances two lines

Advances to top of next page

Does not advance (allows
overprinting)

Any character other than those listed above is treated
as a space and is deleted from the print line.

Note: If you accidentally omit the carriage
control character, the first character of the record
is not printed.

CHAPTER 6. INTRINSIC FUNCTIONS

Contents

Intrinsic Functions 6-3

6-1

6-2

Intrinsic Functions

..

An intrinsic function is predefined by the Fortran
compiler and available for use in a Fortran program. The
table below gives the name, definition, number of
parameters, and type of the intrinsic functions available
in IBM Fortran 77. An IMPLICIT statement does not
alter the type of an intrinsic function. For those
intrinsic functions that allow several types of arguments,
all arguments in a single reference must be of the same
type.

An intrinsic function name can appear in an INTRINSIC
statement, but only those intrinsic functions listed in the
table below may do so. An intrinsic function name also
can appear in a type statement, but only if the type is
the same as the standard type of that intrinsic function.

Arguments to certain intrinsic functions are limited by
the definition of the function being computed. For
example, the logarithm of a negative number is
mathematically undefined, and therefore not permitted.

In the table below all angles are expressed in radians.
All arguments in an intrinsic function reference must be
of the same type. X and Y are real, I and J integer, and
C, C 1, and C2 character values. Footnotes indicated by
(n), listed in the definition column, refer to the notes
at the end of the table .

6-3

Name Defmition Argument Function

INT(X) Conversion to Real Integer
integer (I)

IFIX(X) Conversion to Real Integer
integer (1)

REAL(I) Conversion to Integer Real
real (2)

FLOAT(I) Conversion to Integer Real
real (2)

ICHAR(C) Con version to Character Integer
integer (3)

CHAR(I) Conversion to
character

Integer Character

AINT(X) Truncation to Real Real
real

ANINT(X) Rounding to real Real Real
whole number (1)

NINT(X) Rounding to Real Integer
integer (1)

IABS(I) Integer absolute Integer Integer

ABS(X) Real absolute Real Real

MOD(I,J) Integer Integer Integer
remainder (1)

AMOD(X,Y) Real remainder (1) Real Real

6-4

Name Definition Argument Function

ISIGN(I,J) Integer transfer Integer Integer

SIGN(X,Y) Real transfer Real Real

IDIM(I,J) Integer Integer Integer
difference (4)

DIM(X,Y) Real difference (4) Real Real

MAXO(l,J , ...) Integer Integer Integer
maximum

AMAXl(X,Y, ...) Real maximum Real Real
AMAXO(l,J , ...) Real maximum Integer Real

MAXl(X,Y, ...) Integer maximum Real Integer

MINO(I,J , ...) Integer minimum Integer Integer

AMINl(X,Y, ...) Real minimum Real Real

AMINO(l,J, ...) Real minimum Integer Real
MINl(X,Y, ...) Integer minimum Real Integer

SQRT(X) Square root Real Real

EXP(X) Real e raised to Real Real
power

6-5

Name Definition Argument Function

ALOG(X) Natural logarithm Real Real
of real argument

ALOGlO(X) Common Real Real
logarithm of real
argument

SIN(X) Real sine Real Real

COSIN(X) Real cosine Real Real

TAN(X) Real tangent Real Real

ASIN(X) Real arc sine Real Real

ACOS(X) Real arc cosine Real Real

ATAN(X) Real arc tangent Real Real

ATAN2(X/Y) Real arc tangent Real Real
of X/Y

SINH(X) Real hyperbolic Real Real
sine

COSH(X) Real hyperbolic Real Real
cosine

TANH(X) Real hyperbolic Real Real
tangent

6-6

Name

LGE(Cl,C2)

LGT(Cl,C2)

LLE(Cl,C2)

LLT(Cl,C2)

EOF(I)

Definition Argument Function

First argument Character Logical
greater than or
equal to second (6)

First argument Character Logical
greater than
second (5)

First argument Character Logical
less than or equal
to second (5)

First argument Character Logical
less than second (5)

Integer end of Integer Logical
file (6)

Notes:

1. For X of type real, if X> = 0, then INT(X) is
the largest integer not greater than X, and if
X < 0, then INT(X) is the most negative
integer not less than X. IFIX(X) is the same
as INT(X).

2. For I of type integer, REAL(I) is as much
precision of the significant part of I as a real
value can contain. FLOAT(I) is the same as
REAL(I).

6-7

6-8

3. ICHAR converts a character value into an
integer value. The integer value of a character
is the ASCII internal representation of that
character, and is in the range 0 to 255. For
any two characters, Cl and C2, (Cl .LE. C2)
is true if and only if (ICHAR(C 1) .LE.
ICHAR(C2)) is true.

4. IDIM and DIM are defined as the actual
difference if that number is positive and 0
otherwise.

5. LGE(Cl ,C2) returns the value true if Cl =
C2 or if C 1 follows C2 in the ASCII calla ting
sequence; otherwise it returns false.
LGT(C l ,C2) returns true if Cl follows C2 in
the ASCII collating sequence; otherwise it
returns false. LLE(C l ,C2) returns true if C 1
= C2 or if C 1 precedes C2 in the ASCII
collating sequence; otherwise it returns false.
LLT(C l ,C2) returns true if Cl precedes C2
in the ASCII collating sequence; otherwise it
returns false. The operands of LGE, LGT,
LLE, and LLT must be of the same length.

6. EOF(I) returns the value true if the unit
specified by its argument is at or past the end
of file record; otherwise it returns false. The
value of I must correspond to an open file, or
to 0 which indicates the display or keyboard
device.

APPENDIXES

Contents

APPENDIX A. MESSAGES
Compile-Time Error Messages

Front End Errors
Back End Errors
Back End User Errors .
Back End Internal Errors

File System Errors
File System Error Codes .

Other Runtime Errors
2000-2049 Memory Errors
2050-2099 Integer Arithmetic
2100-2149 Type REAL Arithmetic
2200-2249 Long Integer Arithmetic
2250-2999 Other Errors

APPENDIX B. DIFFERENCES BETWEEN IBM
FORTRAN AND ANSI FORTRAN 77

Full-Language Features .
Subscript Expressions
DO Variable Expressions
Unit I/O Number
Expressions in Input/Output List (iolist)
Expression in Computed GOTO
Generalized I/O
Extensions to Standard .
Compiler Metacommands
Backslash Edit Control
End of File Intrinsic Function

APPENDIX C. THE LINKER (LINK) PROGRAM
Introduction
Files

Input Files .
Output Files
VM.TMP (Temporary File)

A-3
A-4
A-4

. A-10

. A-11

. A-11

. A-12

. A-13

. A-16

. A-16

. A-16

. A-17

. A-17

. A-17

B-1
B-1
B-1
B-2
B-2
B-2
B-3
B-3
B-3
B-4
B-4
B-4

C-1
C-1
C-2
C-2
C-3
C-3

A-1

A-2

Definitions .
Segment
Group .
Class ..

Command Prompts
Detailed Descriptions of the Command Prompts

Object Modules [.OBJ]: ..
Run File [filename] .EXE]:
List File [NUL.MAP]:
Libraries [.LIB] :
Parameters
/DSALLOCA TION
/HIGH .
/LINE
/MAP
/PAUSE ...
/ST ACK :size

How to Start the Linker Program
Before You Begin
Example Linker Session ..
Load Module Storage Map .
How to Determine the Absolute Address

of a Segment
Messages

APPENDIX D. LINKING OBJECT MODULES
Linking with Pascal
Linking with the MACRO Assembler

APPENDIX E. A SAMPLE SESSION

C-4
C-4
C-5
C-5
C-6
C-7
C-7
C-8
C-8
C-9

. C-10

. C-10

. C-11

. C-11

. C-11

. C-12

. C-12

. C-13

. C-13

. C-17

. C-21

. C-22

. C-23

D-1
D-2
D-5

E-1

GLOSSARY . Glossary-1

INDEX X-1

APPENDIX A. MESSAGES

Error conditions may be undetected, detected by the
compiler, or detected by the runtime system. This
appendix gives error messages and codes for errors
detected by the compiler and runtime system. Compiler
errors are divided into front end (FORl) errors and
back end (FOR2) errors; runtime errors are divided into
file system errors and all other errors.

A-3

Compile-Time Error Messages

Front End Errors

A-4

Front end error messages include a number as well as a
message. The front end recovers from most errors, but
a few are called "panic" errors. These panic errors also
give the message:

? ERROR: error message

Where error message can be:

• Filename error in file [name - Syntax error in
filename

• Device full error in file [name - Diskette full

• File not found error in file fname - Cannot find
file

• Stack Overflow - Compiler out of storage

• No room in heap - Compiler out of storage

• Out of memory

• Real Math Overflow

Note: The !name entry is the name of the file in
error.

In these cases it may be difficult to locate the error
because line numbers are not given. The last line
compiled can be located by directing the listing file to
USER (see "Device Identification" in Chapter 2).

The error message "Internal error" refers to ap internal
consistency check which failed; no matLer what source
program is compiled, there should not be a way to get
one of these messages.

1 Fatal error reading source block.
2 Nonnumeric characters in label field.
3 Too many continuation lines.

No more than nine continuation lines allowed
for each initial line.

4 Fatal end of file encountered.
Unexpected end of file encountered while
reading source file, for example: END
statement missing, extra line(s) after END.

5 Labeled continuation line.
6 Missing field on $ compiler metacommand.
7 Cannot open file.
8 Unrecognizable metacommand.
9 Input file invalid format.

10 Too many nested include files.
11 Integer constant overflow.
12 Real constant error.

Incorrect representation of real constant.
13 Too many digits in constant.
14 Identifier too long.
15 Character con st ant not closed.

Closing apostrophe not found for character
constant, for example: missing closing
apostrophe, character constant extends past
column 72.

16 Zero length character constant.
Zero length character constants not allowed.

17 Invalid character in input.
Character is not acceptable outside of
Hollerith string or character constant.

18 Integer constant expected.
19 Label expected.
20 Label error.
21 Type expected, for example: in IMPLICIT

statement.
22 Integer constant expected.
23 Extra characters at end of statement.

Characters encountered after expected end of
line.

24 "(" expected.
25 Letter already used in IMPLICIT.
26 ")" expected.
27 Letter expected.
28 Identifier expected.
29 Dimension(s) expected.

A-5

A-<>

30 Array already dimensioned.
31 Too many dimensions.
32 Incompatible arguments.
33 Identifier already has type.
34 Identifier already declared.
35 INTRINSIC FUNCTION not allowed here.

This INTRINSIC FUNCTION not allowed as
an argument.

36 Identifier must be a variable.
37 Identifier must be a variable or the current

FUNCTION.
38 "/" expected.
39 Named COMMON block already saved.
40 Variable already appears in a COMMON.
41 Variables in two different COMMON blocks.
42 Number of subscripts conflicts with

declaration.
43 Subscript out of range.
44 Forces two calls to the same location.

One name cannot reference more than one
call.

45 Forces location in negative direction.
EQUIV ALEN CE extends COMMON block
in negative direction.

46 Forces location conflict.
47 Statement number expected.
48 CHARACTER and numeric items in same

COMMON block.
49 CHARACTER and noncharacter item conflict.
50 Invalid symbol in expression.
51 SUBROUTINE name in expression.
52 INTEGER or REAL expected.
53 INTEGER, REAL or CHARACTER expected.
54 Types not compatible.
55 LOGICAL expression expected.
56 Too many subscripts.
57 Too few subscripts.
58 Variable expected.
59 "="expected.
60 Size of CHARACTER items must agree.
61 Assignment types do not match.
62 SUBROUTINE name expected.
63 Dummy parameter not allowed.

Formal parameter not allowed in COMMON
statement.

64 Dummy parameter not allowed.
Formal parameter not allowed in
EQUIVALENCE statement.

65 Assumed size declarations only for dummy
arrays.

66 Adjustable size declarations only for dummy
arrays.

67 Assumed size must be last dimension.
68 Adjustable bound must be parameter or in

COMMON.
69 Adjustable bound must be simple integer

variable.
70 More than one main program.
71 Size of named COMMON must agree.
72 Dummy arguments not allowed.

Formal parameters not allowed in DATA
statement.

73 COMMON variables not allowed.
COMMON variables not allowed in DATA
statement.

74 SUBROUTINE, FUNCTION, or INTRINSIC
names not allowed.

75 Subscript out of range.
76 Repeat count must be >=I.
77 Constant expected.
78 Type conflict.
79 Number of variables does not match.
80 Label not allowed.
81 No such INTRINSIC FUNCTION.
82 INTRINSIC FUNCTION type conflict.
83 Letter expected.
84 FUNCTION type conflict with previous call.
85 SUBROUTINE/FUNCTION already defined.
87 Argument type conflict.
88 SUBROUTINE/FUNCTION conflict with

previous use.
89 Unrecognizable statement.
90 CHARACTER FUNCTION not allowed.
91 Missing END statement.
93 Fewer actual arguments than dummy

arguments in call.
94 More actual arguments than dummy arguments

in call.
95 Argument type conflict.
96 SUBROUTINE/FUNCTION not defined.
98 CHARACTER size invalid.

A-7

A-8

100 Statement order.
Statement out of order.

101 Unrecognizable statement.
102 Jump into block not allowed.

Jump into IF, ELSEIF, or ELSE block not
allowed. Jump into DO block not allowed
without $D066 metacommand specified.

103 Label already used for FORMAT.
104 Label already defined.
105 Jump to format not allowed.
106 DO statement not allowed here.
107 DO label must follow DO statement.
108 ENDIF not allowed here.
109 Matching IF missing.
110 Improperly nested DO block in IF block.
111 ELSEIF not allowed here.
112 Matching IF missing.
113 Improperly nested DO or ELSE block.
114 "(" expected.
115 ")"expected.
116 THEN expected.
117 Logical expression expected.
118 ELSE not allowed here.
119 Matching IF missing.
120 GOTO not allowed here.
121 GOTO not allowed here.
122 Block IF not allowed here.
123 Logical IF not allowed here.
124 Arithmetic IF not allowed here.
125 "," expected.
126 Expression of wrong type.
127 RETURN not allowed here.
128 STOP not allowed here.
129 END not allowed here.
131 Label not defined.
132 DO or IF block not terminated.
133 FORMAT not allowed here.
134 FORMAT label already referenced.
135 FORMAT label missing.
136 Identifier expected.
137 Integer variable expected.
138 TO expected.
139 Integer expression expected.
140 ASSIGN statement missing.
141 Unrecognizable character constant.
142 Character constant expected.

143 Integer expression expected.
144 STATUS option expected.
145 Character expression not allowed.

Expression of wrong type, character expression
expected.

146 FILE= missing.
147 RECL= already defined.
148 Integer expression expected.
149 Unrecognizable option.
150 RECL= missing.
151 Adjustable arrays not allowed here.

Adjustable arrays not allowed as 1/0 list
elements.

152 End of statement encountered in implied DO,
expressions beginning with "(" not allowed as
1/0 list elements.

153 Variable required as control for implied DO.
154 Expressions not allowed in 1/0 list.

Expressions not allowed in 1/0 list of a READ
statement.

155 REC= option already defined.
156 Integer expression expected.
157 END= not allowed here.
158 END= already defined.
159 Unrecognizable 1/0 unit.
160 Unrecognizable format in 1/0.
161 Options expected after ",".
162 Unrecognizable 1/0 list element.
163 FORMAT not found.
164 ASSIGN missing.
165 Label already used as FORMAT.
166 Integer variable expected.
167 Label defined more than once as FORMAT.
203 CHARACTER FUNCTION not allowed.
406 Unit zero must be formatted and sequential.
407 ERR= already defined.
408 Too many labels.

Too many labels specified in arithmetic IF.
409 Invalid size for this type.
411 Integer type conflict.
415 DIMENSION too big.
420 Invalid FUNCTION call.

A-9

421 Invalid INTRINSIC FUNCTION.
The names of intrinsic functions for type
conversion, lexical relationship, and for
choosing the largest or smallest value must not
be used as actual arguments.

501 Unrecognizable character.
502 Blank not allowed in metacommand.
503 Metacommand not allowed here.
504 Size already defined.
601 Out of range.
701 CHARACTER type expected.
703 Internal error.
705 Internal error.
706 In tern al error.
708 Internal error.
709 CHARACTER type not expected.
710 In tern al error.
711 Internal error.
713 Long integer conversion error.

Back End Errors

A-10

There are two kinds of errors given by the back end
(optimizer and code generator): user errors and internal
errors. There are very few user errors; all are concerned
with limitations that cannot be detected by the front
end.

A large number of internal consistency checks are done
in the back end, but naturally these should always be
correct and never give an internal error. Both user and
internal back end errors cause an immediate stop. Both
give an error number and approximate listing line
number.

Back End User Errors

1. Attempt to divide by zero. For example:
A DIV 0.

2. Overflow during integer constant folding. For
example: (Maximum+ A+ Integer).

3. Expression too complex/Too many internal labels.
Try breaking up expression with intermediate
value assigns.

Back End Internal Errors

These errors have the format:

*** Internal Error NNN

NNN is the internal error number, which ranges from 1
to 999. There is little that can be done when an internal
error occurs, except report it to your authorized IBM
Personal Computer dealer. Perhaps try changes to the
program near the line where the error occurred.

A-11

File System Errors

A-12

Errors caught at runtime can be divided into file system
errors and all other errors. File system errors will be
described first. File system error codes range from 1000
to 1999. Codes from 1000 to 1299 are for IBM Fortran
file system errors. These errors are given below:

File system errors all have the format:

error type error in file filename

followed by the error code.

The error type field is one of the following:

Operation
Filename
Device full
File not found
File not open
Data format
Line too long

File System Error Codes

1000 Write error when writing end of file.
1002 Filename extension with more than 3 characters.
1003 Error during creation of new file (disk/directory

full).
1004 Error during open of existing file (file not found).
1005 Filename with zero or more than 8 characters.
1007 Total filename length over 21 characters.
1008 Write error when advancing to next record.
1009 File too big (over 65,535 logical sectors).
1010 Write error when seeking to direct record.
1011 Attempt to open a random file to a non-disk

1012

1013

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1215

1216
1217
1218
1219
1220

device.
Forward space or backspace on a non-disk
device.
Disk or directory full error during forward space
or back space.
Format missing final")".
Sign not expected in input.
Sign not followed by digit in input.
Digit expected in input.
Missing N or Z after B in format.
Unexpected character in format.
Zero repetition factor in format not allowed.
Integer expected for w field in format.
Positive integer required for w field in format.
"." expected in format.
Integer expected for d field in format.
Integer expected for e field in format.
Positive integer required fore field in format.
Positive integer required for w field in A format.
Hollerith field in format must not appear for
reading.
Hollerith field in format requires repetition
factor.
X field in format requires repetition factor.
P field in format requires repetition factor.
Integer appears before + or - in format.
Integer expected after + or - in format.
P format expected after signed repetition factor
in format.

1221 Maximum nesting level for formats exceeded.
1222 ")"has repetition factor in format.
1223 Integer followed by"," invalid in format.

A-13

A-14

1224 "." is invalid format control character.
1225 Character constant must not appear in format

for reading.
1226 Character constant in format must not be

repeated.
1227 "/"in format must not be repeated.
1228 "?"in format must not be repeated.
1229 BN or BZ format control must not be repeated.
1230 Attempt to perform 1/0 on unknown unit

number, for example, OPEN statement missing
or never executed.

1231 Formatted 1/0 attempted on file opened as
unformatted.

1232 Format fails to begin with"(".
1233 I format expected for integer read.
1234 For E format expected for real read.
1235 Two"." characters in formatted real read.
1236 Digit expected in formatted real read.
1237 L format expected for logical read.
1238 Blank logical field.
1239 Tor F expected in logical read.
1240 A format expected for character read.
1241 I format expected for integer write.
1242 w field in F format not greater than d field+ 1.
1243 Scale factor out of range of d field in E format.
1244 E or F format expected for real write.
1245 L format expected for logical write.
1246 A format expected for character write.
1247 Attempt to do unformatted 1/0 to a unit

opened as formatted.
1251 Integer overflow on input.
1252 Not enough input to satisfy IOlist/format, for

example, specifying an i 10 format and only
inputting 5 characters.

1253 Too many bytes written to direct access unit
record.

1255 Attempt to do external 1/0 on a unit beyond
end of file record.

1256 Attempt to position a unit for direct access on a
nonpositive record number.

1257 Attempt to do direct access to a unit opened as
sequential.

1258 Unable to seek to file position.
1260 Attempt to backspace unit connected to printer

or keyboard/display.

1264 Attempt to do unformatted I/Oto internal unit.
1265 Attempt to put more than one record into

internal unit.
1266 Attempt to write more characters to internal unit

than its length.
1267 EOF called on unknown unit.
1268 Dynamic file allocation limit exceeded.
1270 Console I/O error.
1271 EOF function called on printer or keyboard/

display.
1272 File operation attempted after error encountered

on previous operation.
1273 Keyboard buffer overflow: too many bytes

written to keyboard input record (must be less
than 132).

1274 Error while reading long integer.
Specifying $STORAGE:2 will cause a more
specific error to occur.

1275 Error while writing long integer.
Specifying $STORAGE:2 will cause a more
specific error to occur.

1297 Integer variable not currently assigned a format
label.

1298 End of file encountered on read with no END=
option.

1299 Integer variable not ASSIGNed a label used in
assigned GOTO.

A-15

Other Runtime Errors

Non-file system error codes range from 2000 to 2999.
In some cases metacommands control whether errors are
checked; in other cases they are always checked. The
metacommand controlling a check, if any, is given in
the list below:

2000-2049 Memory Errors

The heap is the storage area that the IBM Fortran system
uses to allocate storage dynamically. Since the stack and
the heap grow toward each other, these errors are all
related, for example, a stack overflow can cause a "Heap
Is Invalid" error.

2000 Overflow.
While calling a procedure or function, the
stack ran out of storage space.

2001 No Room In Heap.
While attempting to get dynamic storage, not
enough room was found in the heap for a
new variable. Always caught.

2002 Heap Is Invalid.
While attempting to get dynamic storage, the
allocation algorithm discovered the heap
structure is wrong. Always caught.

2050-2099 Integer Arithmetic

A-16

2052 Signed Divide By Zero.
INTEGER value divided by zero; check if
$DEBUG.

2054 Signed Math Overflow.
INTEGER result outside maximum range;
check if $DEBUG.

2084 Integer zero to Negative Power; always
checked.

2100-2149 Type REAL Arithmetic

2100 REAL Divide By Zero.
REAL value divided by zero; always checked.

2101 REAL Math Overflow.
REAL value too large for representation; always
checked.

2102 SIN Or COS Argument Range.
SIN or COS function argument is too large to get
a meaningful result.

2103 EXP Argument Range.
EXP function in which argument is too large for
result to fit in representation.

2104 SQRT Of Negative Argument.
Square root function on argument<zero; always
caught.

2105 LN of Non-Positive Argument.
Natural log function on argument<=zero; always
caught.

2106 TRUNC/ROUND Argument Range.
Converting a REAL outside the range of
INTEGER; always caught.

2131 Tangent Argument Too Small.
Tangent function argument so small result
invalid; always caught.

2132 ARCSIN Or ARCCOS Of REAL> 1.0.
ARCSIN or ARCCOS argument greater than one;
always caught.

2133 Negative Real To Real Power.
Attempt to raise a negative real to a real power;
always caught.

2134 Real Zero to Negative Power; always checked.

2200-2249 Long Integer Arithmetic

2200 Long Integer Divided by Zero; always checked.
2201 Long Integer Math Overflow; always checked.
2234 Long Integer Zero to Negative Power; always

checked.

2250-2999 Other Errors

2451 Assigned GOTO Label Not In List.

A-17

A-18

APPENDIX B. DIFFERENCES BETWEEN
IBM FORTRAN AND ANSI FORTRAN 77

This appendix describes how IBM Fortran differs from
the standard subset language. The standard defines two
levels, full Fortran and subset Fortran. IBM Fortran is
a superset of the latter. The differences between IBM
Fortran and the standard subset Fortran fall into two
general categories: full-language features, and extensions
to standard.

Full-Language Features

Several features from the full-language are included in
this implementation. In all cases, a program written
to comply with the subset restrictions compiles and
executes properly, since the full-language properly
includes the subset constructs.

Subscript Expressions

The subset does not allow function calls or array
element references in subscript expressions, but the
full-language and this implementation do.

B-1

DO Variable Expressions

The subset restricts expressions that define the limits
of a DO statement, but the full-language does not. IBM
Fortran also allows full integer expressions in DO
statement limit computations. Similarly, arbitrary
integer expressions are allowed in implied DO loops
associated with READ and WRITE statements.

Unit 1/0 Number

IBM Fortran allows an I/0 unit to be specified by an
integer expression, as does the full-language.

Expressions in Input/Output List (iolist)

B-2

The subset does not allow expressions to appear in an
1/0 list whereas the full-language does allow
expressions in the 1/0 list of WRITE statements. IBM
Fortran allows expressions in the I/0 list of a WRITE
statement, provided that they do not begin with an
initial left parenthesis.

Note: The expression (A+B)*(C+D) can be
specified in an output list as +(A+B)*(C+D).
Doing so does not generate any extra code to
evaluate the leading+.

Expression in Computed GOTO

IBM Fortran allows an expression for the value of a
computed GOTO, consistent with the full, rather than
the subset, language.

Generalized 1/0

IBM Fortran allows both sequential and direct access
files to be either formatted or unformatted. The subset
language restricts direct access files to be unformatted
and sequential to be formatted. IBM Fortran also
contains an augmented OPEN statement that takes
additional parameters not included in the subset. There
is also a form of the CLOSE statement, which is not
included in the subset. ~/O is described in more detail
in Chapters 4 and 5. The READ and WRITE statements
allow the optional ERR parameter.

Extensions to Standard

The implemented language has several minor extensions
to the full-language standard. These are compiler
metacommands, backslash edit control, and end of file
intrinsic function.

B-3

Compiler Metacommands

Compiler metacommands were added to allow the
programmer to communicate certain information to the
compiler. An additional kind of line, called a compiler
metacommand line, has been added. It is characterized
by a dollar sign, $,appearing in column 1. A compiler
metacommand line may appear any place that a comment
line can appear, although certain metacommands are
restricted to appear in certain places. A compiler
metacommand line is used to convey certain compile­
time information to the IBM Fortran system about the
nature of the current compilation.

Backslash Edit Control

The edit control character can be used in formats to
inhibit the normal advancement to the next record
associated with the completion of a READ or a WRITE
statement. This is particularly useful when prompting
to an interactive device, such as the display, so that a
response can be on the same line as the prompt.

End of File Intrinsic Function

B-4

An intrinsic function, EOF, is provided. The function
accepts a unit specifier as an argument.

APPENDIX C. THE LINKER (LINK)
PROGRAM

Introduction

The Linker (LINK) program is a program that:

• Combines separately produced object modules.

• Searches library files for definitions of unresolved
external references.

• Resolves external cross-references.

• Produces a printable listing that shows the
resolution of external references and error
messages.

• Produces a relocatable load module.

You will learn how to start LINK at the end of this
appendix. You should read all of this appendix before
you start LINK.

C-1

Files

The linker processes the following input, output, and
temporary files:

Input Files

C-2

Type Default Override Produced
.ext .ext by

Object .OBJ Yes Compiler (1)
or MACRO
Assembler

Library .LIB Yes Compiler

Automatic (none) N/A (2) User
Response

Notes:

1. One of the optional compiler packages available
for use with the IBM Personal Computer DOS.

2. N/A - Not applicable.

Output Files

Type Default Override Used
.ext .ext by

Listing .MAP Yes User

Run .EXE No Relocatable loader
(COMMAND.COM)

VM.TMP (Temporary File)

LINK uses as much storage as is available to hold the data
that defines the load module being created. If the
module is too large to be processed with the available
amount of storage, the linker will need additional storage
space. If this happens, a temporary diskette file called
VM.TMP is created on the DOS default drive.

A message is displayed to indicate when the overflow to
diskette has begun. Once this temporary file is created,
you should not remove the diskette until LINK ends.
When LINK ends, the VM.TMP file is deleted.

If the DOS default drive already has a file by the name
of VM.TMP, it will be deleted by LINK and a new file
will be allocated. The contents of the previous file is
destroyed; therefore, you should avoid using VM.TMP
as one of your own filenames.

C-3

Definitions

Segment

C-4

Segment, group, and class are terms that appear in this
appendix and in some of the messages at the end of
this appendix. These terms describe the underlying
function of LINK. An understanding of the concepts
that define these terms provides a basic understanding
of the way LINK works.

A segment is a contiguous area of storage up to 64K
bytes in length. A segment may be located anywhere
in storage on a paragraph (16-byte) boundary. Each of
the four segment registers defines a segment. The
segments can overlap. Each 16-bit address is an offset
from the beginning of a segment. The contents of a
segment are addressed by a segment register/offset pair.

The contents of various portions of the segment are
determined when machine language is generated.

Neither size nor location is necessarily fixed by the
machine language generator, because this portion of the
segment may be combined at link time with other
portions forming a single segment.

; Group

Class

A program's ultimate location in storage is determined
at load time by the relocation loader facility provided
in COMMAND.COM, based on your response to the
Load Low parameter. The Load Low parameter will
be discussed in this appendix.

A group is a collection of segments that fit together
within a 64K-byte segment of storage. The segments
are named to the group by the assembler or compiler.
A program may consist of one or more groups.

The group is used for addressing segments in storage.
The various portions of segments within the group are
addressed by a segment base pointer plus an off set.
The linker checks that the object modules of a group
meet the 64K-byte constraint.

A class is a collection of segments. The naming of
segments to a class affects the order and relative
placement of segments in storage. The class name is
specified by the assembler or compiler. All portions
assigned to the same class name are loaded into storage
contiguously.

The segments are ordered within a class in the order
that the linker encounters the segments in the object
files. One class precedes another in storage only if a
segment for the first class precedes all segments for the
second class in the input to LINK. Classes are not
restricted in size. The classes will be divided into
groups for addressing.

C-5

Command Prompts

C-6

Prompt

After you start the linker session, you receive a series
of four prompts. You can respond to these prompts
from the keyboard, respond to these prompts on the
command line, or you can use a special diskette file that
is called an automatic response file to respond to the
prompts. An example of an automatic response file is
provided in this appendix. Refer to "How to Start the
Linker Program" in this appendix for information on
how to start the linker session.

LINK prompts you for the names of object, run, list, and
library files. When the session is finished, LINK returns
to DOS. The DOS prompt is displayed when LINK has
finished. If the LINK is unsuccessful, LINK will display
a message.

The prompts are described in their order of appearance
on the display. The default is shown in square brackets
([]),in the response column.

Responses

Object Modules[.OBJ]: filespec I [+filespec2 . ..]

Run File [filename] .EXE]: filespec

List File [NUL.MAP] : [filespec]

Libraries [.LIB] : [filespecl [+filespec2 . ..]]

Notes:

l. If you enter a filespec without specifying the
drive, the default drive is assumed. The
library prompt has a variation to this.

2. You can end the linker session prior to its
normal end by pressing Ctrl-Break.

Detailed Descriptions of the
Command Prompts

The following detailed descriptions contain information
about the responses that you can enter to the prompts.

Object Modules [.OBJ] :

Enter one or more filespecs for the object modules to be
linked. If the extension is omitted, LINK assumes the
filename extension .OBJ. If an object module has
another filename extension, the extension must also be
specified. Object filenames may not begin with the@
symbol.

Filespecs must be separated by single plus (+) signs or
blanks.

LINK loads segments into classes in the order
encountered.

If you specify an object module, but LINK cannot
locate the file, a prompt requests you to insert the
diskette containing the specific module. This permits
.OBJ files from several diskettes to be included.

On a single-drive system, diskette exchanging can be
done safely only if VM.TMP has not been opened.
A message will indicate if VM.TMP has been opened.
The VM.TMP file is discussed in this appendix.

IMPORTANT: If a VM.TMP file has been opened, you
should not remove the diskette containing the VM.TMP
file. Remember, once a VM.TMP file is opened, the
diskette it resides on cannot be removed.

If a VM.TMP file has been opened and the linker is
unable to locate an object module on the same drive as
VM.TMP has been allocated, the linker session will end.

C-7

Run File [filename I .EXE] :

The filespec you enter is created to store the Run
(executable) file that results from the LINK session. All
Run files receive the filename extension .EXE, even if
you specify an extension. If you specify an extension,
your specified extension is ignored.

The default filename for the runfile prompt is the first
filename specified on the object module prompt.

List File [NUL.MAP]:

C-8

The List file will not be created unless you specifically
request it. This can be done by overriding the default
with a filespec or a drive ID. If the linker is unable to
locate an object module on the same drive as the list
file has been allocated, the linker session will end.

The List file contains an entry for each segment in the
input (object) modules. Each entry also shows the
offset (addressing) in the Run file.

The DOS reserved filename NUL with the default
extension .MAP is used if you do not enter a filespec.

Note: If the List file is allocated to a diskette, it
must not be removed until the LINK has ended.

To avoid generating the .MAP file on a diskette,
you can specify the display as the List file
device. For example

List File [NUL.MAP]: CON

If you direct the output to your display, you can
also print a copy of the output by pressing the
Ctrl-PrtSc keys.

;

Libraries [.LIB] :

The valid responses are either listing a combination of
library filespecs and drive identification, or pressing the
Enter key. If you just press the Enter key, LINK
defaults to the library provided as part of the Compiler
package. The Compiler package also provides the
location of the library. For linking objects from just
the MACRO Assembler, there is no automatic default
library search.

When LINK attempts to reference a library file and
cannot find it, a prompt requests you to enter the drive
identifier containing the library.

If you answer the library prompt, you may specify a
list of drive IDs and filespecs separated by plus signs (+)
or spaces. A drive ID tells the linker where to look for
all subsequent libraries on the library prompt. The
automatically searched library filespecs are conceptually
placed at the end of the response to the library prompt.

When linking an object module produced by the IBM
Personal Computer Fortran Compiler which looks for
the library FORTRAN.LIB on drive A, the following
library prompt responses may be used:

Libraries [.LIB] :B:

Look for FORTRAN.LIB on drive B.

Libraries [.LIB] :B:USERLIB

Look for USERLIB.LIB on drive Band FORTRAN.LIB
on drive A.

Libraries [.LIB] :A:+USER LIB 1+USERLIB2+B:+USE RLIBJ+A:

Look for USERLIBI.LIB and USERLIB2.LIB on drive
A, USERLIB3.LIB on drive B, and FORTRAN.LIB on
drive A.

C-9

You can enter from 1-8 library filespecs. The filespecs
must be separated by plus signs or spaces.

LINK searches the library files in the order they are
listed to resolve external references. When it finds the
module that defines the external symbol, the module is
processed as another object module.

If two or more libraries have the same filename and
filename extension regardless of the location, only the
first library in the search order is searched.

Parameters

At the end of any of the four linker prompts, you may
specify one or more parameters that instructs the linker
to do something differently. Only the / and first letter
of any parameter is required.

/DSALLOCATION

C-10

The /DSALLOCA TION parameter directs LINK to
load all data defined to be in DGROUP at the high-end
of the group. If the /HIGH parameter is specified
(module loaded high), this allows any available storage
below the specifically allocated area within DGROUP
to be allocated dynamically by your application and
still be addressable by the same data space pointer.

Note: The maximum amount of storage which
can be dynamically allocated by the application
will be 64K (or the amount actually available)
minus the allocated portion of DGROUP.

If the /DSALLOCATION parameter is not specified,
LINK will load all data defined to be in the group whose
group name is DGROUP, at the low-end of the group,
beginning at an offset of 0. The only storage thus
referenced by the data space pointer should be only
that specifically defined as residing in the group.

;

/HIGH

/LINE

/MAP

All other segments of any type in any GROUP other
than DGROUP will be loaded at the low-end of their
respective groups, as if the /DSALLOCA TION
parameter is not specified.

For certain compiler packages, DSALLOCA TION is
automatically used.

The /HIGH parameter directs LINK to cause the loader
to place the Run image as high as possible in storage. If
you specify the /HIGH parameter, this directs the
linker to cause the loader to place the Run file as high
as possible without overlaying the transient portion of
COMMAND.COM, which occupies the highest area of
storage when loaded. If you do not specify the /HIGH
parameter, the linker will direct the loader to place the
Run file as low in memory as possible.

The /HIGH parameter is used with the
/DSALLOCATION parameter.

For certain IBM Personal Computer language processors,
the /LINE parameter directs LINK to include the line
numbers and addresses of the source statements in the
input modules in the List file.

The /MAP parameter directs LINK to list all public
(global) symbols defined in the input modules. For
each symbol, LINK lists its value and segment-offset
location in the Run file. The symbols are listed at the
end of the List file.

C-11

/PAUSE

The /PA USE parameter tells LINK to display a message
to you. This message will request you to insert the
diskette that is to receive the Run file.

/ST ACK :size

C-12

The size entry is any positive decimal value up to
65536 bytes. If you do not use the /STACK, you
specify that the original stack size provided by the
assembler or compiler is to be used.

If you specify a value greater than 0 but less than 512,
the value 512 is used. This value is used to override
the size of the stack that the assembler or compiler
has provided for the load module being created.

If the size of the stack is too small, the results of
executing the resulting load module are unpredictable.

A1 !~:ast one input (object) module must contain a stack
allocation statement. This is automatically provided
by compilers. For the assembler, the source must
contain a SEGMENT command that has the combine
type of ST ACK. If a stack allocation statement was
not provided, LINK returns the following message:

Warning: No Stack statement

How to Start the Linker Program

Before You Begin

• Make sure the files you will be using for the LINK
are on the appropriate diskettes.

• Make sure you have enough free space on your
diskettes to contain your files and any generated
data.

You can start the linker program by using one of two
options:

Option 1 - Console Responses

From your keyboard, enter:

LINK

The linker is loaded into storage and displays a series
of four prompts, one at a time, to which you must enter
the requested responses. (Detailed descriptions of the
responses that you can make to the prompts are
discussed in this appendix in the section called
"Command prompts.")

If you enter an erroneous response, such as the wrong
filespec or an incorrectly spelled filespec, you must
press Ctrl-Break to exit LINK, then you must restart
LINK. If the response in error has been typed but not
entered, you may delete the erroneous characters, for
that line only.

An example of a linker session, using the display
response option, is provided in this appendix in the
section called "Example Linker Session."

C-13

C-14

As soon as you have entered the last filename, the
linker will begin to run. If the linker finds any errors,
it will display the errors as well as in the listing file.

Note: After any of these responses, before pressing
Enter, you may continue the response with a
comma and the answer to what would be the next
prompt without having to wait for that prompt.
If you end any with the semicolon(;), the remaining
responses are all assumed to be the default.
Processing begins immediately with no further
prompting.

Option 2 - Command Line

From your keyboard, enter:

LINK objlist,runfile,mapfile,liblist/parms;

Your linker is loaded and immediately performs the
tasks indicated by the command field as shown in the
above example.

When you use this command line, the prompts
described in Option 1 will not be displayed if an entry
for all four files are specified or if the command line
ends with a semicolon.

If an incomplete list is given and no semicolon is used, the
linker will prompt for the remaining unspecified files.
The /parms will never be prompted for, but may be
added to the end of the command line or to any file
specification given in response to a prompt. Each prompt
will display its default which may be accepted by
pressing the Enter key, or overridden with an explicit
filename or device name. However, if an incomplete list
is given and the command line is terminated with a final
semicolon, the unspecified files will be defaulted without
further prompting.

Certain other variations of this command line are
permitted.

;

Examples:

1) LINK module

Object module is module.OBJ. A prompt is given,
showing the default of module.EXE. After the response
is entered, a prompt is given showing the default of
NUL.MAP. After the response is given, a prompt is
displayed showing the default of .LIB.

2) LINK module;

If the semicolon is added, no further prompts are
displayed. The object module of module.OBJ is linked,
the runfile will be put into module.EXE; no listfile is
produced.

3) LINK module,,;

This is similar to the above example, except the listfile
is produced in module.MAP.

4) LINK module.,

Using the same example, but without the semicolon,
module.OBJ is linked, the runfile is produced in
module.EXE, but a prompt is given with the default of
module.MAP.

5) LINK module,.NUL;

No listfile is produced. The runfile is in module.EXE.
No further prompts are displayed.

Option 3 - Automatic Responses

From your keyboard, enter:

LINK @filespec

It is often convenient to save responses to the linker
for use at a later time. This is very convenient when
long lists of object modules need to be specified.

C-15

C-16

For this option, you enter a filespec preceded by an@
symbol in place of a prompt response or part -0f a
prompt response. The prompt is answered by the
contents of the diskette file. The filespec may not be
a reserved DOS filename.

Before using this option, you must create the Automatic
Response File. It contains several lines of text, each
of which is the response to a linker prompt. These
responses must be in the same order as the linker
prompts that were discussed earlier in this appendix.
If desired, a long response to the object module or
libraries prompt may be contained across several lines
by using a plus sign (+) to continue the same response
onto the next line.

Use of the filename extension is optional and may be
any name. There is no default extension.

Use of this option permits the command that starts
LINK to be entered from the keyboard or within a
batch file without requiring any response from you.

Automatic Response File - Respl

MODA+MODB+MODC

MODD+MODE+MODF

Automatic Response File - Resp2

Runfile/P
Printout

Command line

LINK @Resp1+mymod,@Resp2:

Notes:

1. In this example, the use of the plus sign
causes the modules listed in the first two lines
and any module entered by the user on the
command line in response to the object
module prompts to be considered as the input
object modules.

2. Each of the above lines ends when you press
the Enter key.

Example Linker Session

This example shows you the type of information that is
displayed during a linker session.

Once you enter

A>b:link

the system responds with the following messages:

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982
Object Modules [.OBJ]: example
Run File [EXAMPLE.EXE]: example/map
List File [NU L.MAP] : pm/line
Libraries [.LIB]:

Notes:

1. By responding prn to the List file prompt,
we sent our output to the printer.

2. By just pressing Enter in response to the
Libraries prompt, an automatic library search
is performed.

3. By specifying the /MAP parameter, we get
both an alphabetic listing and a chronological
listing of public symbols.

C-17

C-18

4. By specifying the /LINE parameter, LINK
gives us a listing of all line numbers for all
modules. (The /LINE parameter can
generate a large amount of output.)

If LINK cannot locate a library on the specified
drive, the following message is displayed:

cannot find library A:FORTRAN.LIB
enter new drive letter:

The drive that the indicated library is located on
must be entered.

Once LINK locates all libraries, the Linker MAP
displays a list of segments in the relative order of their
appearance within the load module. The list looks like
this:

Start Stop Length Name Class

OOOOOH 00028H 0029H MAINQQ CODE
OOOJOH OOOF6H OOC7H ENTXQQ CODE
00100H 00100H OOOOH INIXQQ CODE
00100H 038DJH 37D4H FILVQQ CODE CODE
038D4H 04921H 104EH FILUQQ_CODE CODE
• •
•
074AOH 074AOH OOOOH HEAP MEMORY
074AOH 074AOH OOOOH MEMORY MEMORY
074AOH 0759FH 0100H STACK STACK
075AOH 07925H 0386H DATA DATA
07930H 082A9H 097AH CONST CONST

The information in the Start and Stop columns shows a
20-bit hex address of each segment relative to location
zero. Location zero is the beginning of the load module.
The addresses displayed are not the absolute addresses
of where these segments are loaded. To find the
absolute address of where a segment is actually loaded,
you must determine where the segment listed as being
at relative zero is actually loaded; then add the absolute
address to the relative address shown in the .MAP listing.
The procedure you use to det~rmine where relative zero
is actually located is discussed in this appendix, in the
section called "How to Determine the Absolute Address
of a Segment."

Now, because we specified the /MAP parameter, the
public symbols are displayed by name and by value. For
example:

Address Publics by Name

0492:0003H ABSNQQ
06CD:029FH ABSRQQ
0492:00A3H ADDNQQ
06CD:0087H ADDRQQ
0602:000FH ALLHQQ
•
•
•
0010:1BCEH WT4VQQ
0010:1D7EH WTFVQQ
0010:1887H WTIVQQ
0010:19E2H WTNVQQ
0010: 11 B2H WTRVQQ

Address Publics by Value

0000:0001 H MAIN
0000:001 OH ENTGQQ
0000: 001 OH MAINQQ
OOOJ:OOOOH BEGXQQ
0003:0095H ENDXQQ
•
•
•
F82B:F31CH CRCXQQ
F82B:F31 EH CRDXQQ
F82B:F322H CESXQQ
F82B: F5B8H FNSUQQ
F82B: F5EOH OUTUQQ

The addresses of the public symbols are also in the
segment offset format, showing the location relative to
zero as the beginning of the load module. In some
cases, an entry may look like this:

F8CC:EBE2H

C-19

C-20

This entry appears to be the address of a load module
that is almost one megabyte in size. Actually, the area
being referenced is relative to a segment base that is
pointing to a segment below the relative zero beginning
of the load module. This condition produces a pointer
that has effectively gone negative. See the chart at the
end of this appendix. When LINK has completed, the
following message is displayed:

Program entry point at 0003:0000

Load Module Storage Map

Data Segment
Base

64K Segment

Data elements have
large offsets from
the data segment

' bases

Low Memory

1----- - -

Data Area

Code

High Memory

Relative to the load
_module, this

location is below
zero, or negative

,... ___ Relative Zero

Load Module

C-21

How to Determine the Absolute Address
of a Segment

C-22

The Linker MAP displays a list of segments in the
relative order of their appearance within the load
module. The information displayed shows a 20-bit hex
address of each segment relative to location zero. The
addresses that are displayed are not the absolute
addresses of where these segments are actually located.
To determine where relative zero is actually located, we
must use $DEBUG. $DEBUG is discussed in Chapter 6.

Using $DEBUG,

1. Load the application.

Note the segment value in CS and the offset within
that segment to the entry point as shown in IP.
The last line of the Linker MAP also describes this
entry point, but uses relative values, not the
absolute values shown by CS and IP.

2. Subtract the relative entry as shown at the end of
the .MAP listing from the CS IP value. For
example, let's say CS is at OSDC and IP is at zero.

The Linker MAP shows the entry point at
0100 0000. (0100 is a segment ID or paragraph
number; 0000 is the offset into that segment.)

In this example, relative zero is located at
04DC 0000, which is 04DCO absolute.

If a program is loaded low, the relative zero
location is located at the end of the Program
Segment Prefix, or in the value in DS plus 1 OOH.

Messages

All messages, except for the warning messages, cause
the LINK session to end. Therefore, after you locate
and correct a problem, you must rerun LINK.

Messages will appear both in the list file and on the
display unless you have directed the list file to CON in
which case the display messages are suppressed.

A complete list of messages are as follows:

About to generate .EXE file

Change diskettes, press any key.

An internal failure has occurred

Report this problem to your authorized IBM Personal
Computer Dealer.

Attempt to access data outside of segment bounds

The object module is probably bad.

Bad numeric parameter

An invalid number was found on the /ST ACK parameter.

Cannot find file filename

Change diskettes, press any key.

This error is unrecoverable if either VM.TMP or the list
file has been opened to the diskette where the object
cannot be located.

C-23

C-24

Cannot find library library name

Enter new drive letter.

Cannot open overlay

Cannot open temporary file

The directory is full.

DUP record too complex

A problem exists in an object module created from an
assembler source program. A single DUP requires 1024
bytes before expansion.

Fixup offset exceeds field width

A machine language processor instruction refers to an
address with a NEAR attribute instead of a FAR
attribute.

fuvalid format file

A library is in error.

fuvalid object module

Object module(s) incorrectly formed or incomplete (as
when the language processor was stopped in the middle).

fuvalid switch

The linker found an invalid parameter on the Command
line or on a prompt.

Out of space on list file

;

Out of space on run file

Out of space on VM.TMP

No more diskette space remains to expand the VM.TMP
file.

Program size exceeds capacity of linker

The load module is too big for processing.

Segment size exceeds 64K

Attempted to combine identically named segments which
resulted in segment requirement of greater than 64K.
64K-bytes is the addressing limit.

Stack size exceeds 64K

A number greater than 65536 was found on the /STACK
parameter.

Symbol defined more than once

The linker found two or more modules that define a
single symbol name.

Symbol table capacity exceeded

The limit is about 30K. Use shorter and/or fewer names.

There was/were number errors detected

Too many libraries specified

The limit is 8 libraries.

C-25

C-26

Too many external symbols in one module

The limit is 256 external symbols per module.

Too many groups

The limit is 10 including DGROUP.

Too many public symbols in one module

The limit is 1024 public symbols.

Too many segments or classes

The limit is 256 (segments and classes taken together).

Too many overlays

The limit is 64.

Unexpected end-of-file on library

Unexpected end-of-file on VM. TMP

The diskette containing VM.TMP has been removed.

VM. TMP is an illegal file name and has been ignored

VM.TMP cannot be used for object file name.

APPENDIX D. LINKING OBJECT
MODULES

You may find it useful to compile parts of a Fortran
program separately. This may be necessary when not
enough diskette space or storage is available to the
compiler. An IBM Fortran compilation consists of one
or more program units. Thus, you may place parts of
your source program in separate files, compile them
separately, and link them together using the IBM
Personal Computer Linker.

Object modules produced by the IBM Personal Computer
Fortran Compiler may be linked with those produced
by the IBM Personal Computer Pascal Compiler and the
IBM Personal Computer MACRO Assembler. This
appendix describes how to link:

• An IBM Personal Computer Pascal subroutine with
an IBM Personal Computer Fortran main program.

• An IBM Personal Computer Fortran subroutine
with an IBM Personal Computer Pascal main
program.

• An assembler subroutine with an IBM Personal
Computer Fortran main program.

D-1

IBM Fortran passes all parameters by reference. That
is, the address of an actual argument is passed to the
subroutine not the value. When a call is made to a
subroutine from IBM Fortran, the segment base and
the offset of the actual arguments are pushed on the
stack in a left to right order. A long call is then done
to the subroutine. This type of parameter passing is
done for all types of parameters and the subroutine
must know exactly what the address on the stack points
to in order to handle it correctly. When complete
arrays are passed, the start address of the array is
passed. When externals or intrinsics (procedural
parameters) are passed, a zero (0) and a DS offset are
pushed and point to a 4-byte code segment base and
offset pair of the item passed.

Linking with Pascal

D-2

It is easy to link IBM Fortran with the IBM Personal
Computer Pascal. IBM Fortran pass-by-reference
parameters are known to the IBM Personal Computer
Pascal as VARS parameters. The following relationship
exists between the data types for the two languages:

IBM Fortran

INTEGER*2
INTEGER*4
LOGICAL*2
LOGICAL*4
CHARACTER*n
REAL
REAL*4

Notes:

IBM Pascal

INTEGER
NONE
NONE (See Note 1)
NONE
STRING(n)
REAL
REAL

1. IBM Fortran LOGICAL*2 variables may be
referenced in IBM Personal Computer Pascal
with the INTEGER type.

'

2. When 1/0 is to be done in a subroutine which
is not in the same compiler language as the
main program, a call must be made to the file
system initialization routine of the language in
which the subroutine was written before any 1/0
in the subroutine can be done. These routines
reside in the file system units of the respective
language. Normally a call is automatically done,
but when a main program for that language does
not exist, the call to the routine is not made.

Initialization routine names

The following routines do not have parameters and the
call is made in the main program or the subroutine:

• IBM Fortran - INIVQQ

• IBM Pascal - INIFQQ

The following main program and subroutine
demonstrates combining IBM Fortran and IBM Pascal:

An IBM Fortran Main Program:

$STORAGE:2
CHARACTER*B ts
INTRINSIC sin
EXTERNAL sub1

C INITIALIZE THE IBM PASCAL FILE SYSTEM
CALL INIFQQ

CALL PASCAL (1,ts,result,.TRUE.,sin)
WRITE(*,100) ts,result
CALL PASCAL (2,ts,result,.FALSE.,sub1)
WRITE(*,110) ts,result

100 F 0 RMAT(1 x,'Time is: ',a8,' Sin(.5) = ',f10.5)
110 FORMAT(1x,'date is: ',a8,' sub1(.5) = ',f10.5)

END

REAL FUNCTION sub1 (parm)
REAL parm
sub 1 = cos(parm)+5
END

D-3

D-4

An I BM Personal Computer Pascal Subroutine

MODULE pasmodule;
PROCEDURE date(VAR s:STRING); EXTERN;
PROCEDURE time(VAR s:STRING); EXTERN;

TYPE
string8=STR ING (8);

PROCEDURE pascal (VARS code:INTEGER;VARS
line:STRINGB;VARS num:REAL;
VARS switch:INTEGER;FUNCTION
func(VARS i: REAL): REAL);

VAR s:string8;
parm:REAL;

BEGIN
{Get the code and perform the requested function}
IF code=1 then

BEGIN
time(s);
line:=s;

END
ELSE

IF code=2 TH EN
BEGIN

date(s);
line:=s;

END
ELSE

writeln('lnvalid code');
{Make the call to the passed in procedure}
parm:=0.5;
num:=func(parm);
{Examine the logical variable}
IF switch=1 THEN

WRITELN('true')

ELSE

END;
END.

IF switch=O THEN
WRITE L N ('false')

ELSE
writeln('Error in logical variable')

When the two programs are linked together using the
IBM Personal Computer Linker, the final run file will
call the procedure PASCAL twice, returning the results
as indicated in the logic of the program.

Note: When linking IBM Personal Computer
Pascal V 1.00 with IBM Personal Computer
Fortran Vl .00, it is important that the linker
search the IBM Fortran library first. This can be
done by placing all object modules produced by
IBM Fortran before those produced by IBM
Personal Computer Pascal in response to the
"Object module" prompt of the linker.

You may also explicitly supply the names of the
libraries in the linker "Libraries" and place the
IBM Fortran library first. In addition, the linker
will report PPMUQQ as being defined more than
once when IBM Fortran and IBM Pascal are linked
successfully. (Ignore the message.)

Linking with the MACRO Assembler

It is useful to call an assembler language routine
compiled with the IBM Personal Computer MACRO
Assembler to communicate with the IBM Personal
Computer DOS or the Basic Input Output System
(BIOS). Other machine level facilities may also be
accessed in this way.

When a call is made to a subroutine, the area on the
stack used to communicate between the calling program
and the subroutine is termed the frame. The stack is
growing down so as parameters are pushed the stack
pointer (SP) decreases.

D-5

D-6

The layout of the frame is as follows:

Low address

Optionally, this area can be used for
temporary data

A saved copy of the callers BP

A 4-byte return address pushed by the
CALL instruction

Addresses of the parameters pushed by
the caller. These are segment base/
offset pairs.

High address

Note: The stack grows from the high address to
the low address.

When your assembler language subroutine receives
control from the IBM Fortran, the parameters and the
return address are on the stack and the SP points to the
first byte of the 4-byte return address. At this point,
you should push BP so that it can later be restored for
the caller. If you are using the stack as a temporary
data area, you should adjust the SP downward as to
leave room for this data. You at this point set BP to
SP so your BP points to the first byte at the bottom
of the frame. This is very useful in accessing the
information on the stack.

The following points should be noted:

• The far procedure must be contained within a
code segment.

• The name of the far procedure must be identified
as public.

• A group statement must be included to group the
DATA segment with the group DGROUP.

• You should assume CS points to your code
segment and DS, ES, and SS point to DGROUP.

• You must save and restore the callers BP and SP.
The callers CS and IP are restored by the RET
instruction. If you alter the caller's DS you must
restore it also.

The following IBM Fortran program calls an IBM
Personal Computer MACRO Assembler subroutine
which obtains the time from the IBM Personal
Computer DOS.

The IBM Fortran main program is as follows:

$STORAGE:2
INTEGER A,B,HOURS,MINS,SECS,HSECS
CALL TIMER(A,B)
HOURS=A/256
MINS=MOD(A,256)
SECS=B/256
HSECS=MOD(B,256)
WRITE(*, 10)HOURS,MINS,SECS,HSECS

10 FORMAT(1x,'THE TIME IS: ',i2,':',i2':',i2,'.',i2)
END

D-7

FRAME
SAVEBP
SAVERET
B

A

'
FRAME

'
CSEG
DGROUP

TIMER

'
TIMER
CSEG

D-8

The IBM Personal Computer MACRO Assembler
subroutine is as follows:

STRUC
DW ? ;SAVE AREA FOR CALLER'S BP
DD ? ;RETURN ADDRESS FOR FAR RETURN
DD ? ;ADDRESS OF WORD WHERE HOUR

AND MINUTE ARE TO BE PLACED
DD ? ;ADDRESS OF WORD WHERE SECS

AND HUNDREDS ARE TO BE PLACED
ENDS

SEGMENT 'CODE'
GROUP DATA
ASSUME CS:CSEG,DS: D G RO UP,ES: D G RO UP,SS: D GROUP
PROC FAR
PUBLIC TIMER
PUSH BP ;SAVE CALLER'S BP
MOV BP,SP ;SET FRAME BASE
MOV AH,2CH ;REQUEST THE TIME FUNCTION
INT 21H ;CALL (INTERRUPT) DOS
LES BX,[BP] +A ;GET THE ADDR OF 1ST PARM
MOV ES: [BX].CX ;PUT HOURS & MIN INTO 1ST

PARM
LES BX,[BP] +B ;GET THE ADDR OF 2ND PARM
MOV ES: [BX] ,DX ;PUT SECS AND HUNDREDS

INTO 2ND PARM
POP BP ;RESTORE CALLER'S BP
RET 8 ;FAR RETURN, FREE 8 BYTES

OR PARMS, RESTORE THE SP
ENDP
ENDS
END

APPENDIX E. A SAMPLE SESSION

E-1

t;ri ru+:E1•1
N

The fallowing sample session illusrates the use

?'1 >l::::EM of the IBM Personal Computer FORTRAN Compiler to compile, debug and

() >F~E:M execute an application program. The intermixed REMs and

r.1 >F~EM PAUSEs are for documentation purposes only.

() >
A >F~EM The DOS diskette is in drive A

1:1 >F~Ei"'I Make the DOS default drive 8

(.'~ >B::

B>PAUSE -- Insert into drive B, an unformatted diskette, the scratch diskette
Strike a key when ready ... d
B>REM -- Format the new diskette

B>a:format
Insert new diskette for drive B:
and strike any key when ready

,__
0

:..L
.

·:-i

;._
.....
.....

z ··
>-L 0

u

..c c

:+-,-,
'-'

>··

.··· ..

.,.-;

en
,...,
'-'
L .-. ~

..c
-~ ..)

CL
0

0
+

.'

..0
·;-

!

;n
..

>··.

,__
.....
'-'

cu

o·:

-.:
::_

i

E

,__
..µ

er:

+·
-·

'-'
*

.,....;
-:--i

··-··

L
til

:Tj
u:

Q
i

L

LJ

·+

1
:'1

:.::

f1J
:--:

:r_
:Tj

iJ
-P

::':
_;...i

:.;,i
:.;..:

i::;
L

-4-!
+

:
tn

.+J
U'!

..;...;
U1

:r. c
:r.

u

-
. ._ ..

c

Q
i

3:
~:;

a
:

GJ
·,....;

-.--:
C-·i

r-·~1 r.::t
LCJ

··.O
;...... OJ er·· '·-·'-.

iiiZ
*

..
~
 E

-3

~ 12:
~ 13:

14:
15:
16:
17:
18:
19:
20:
21 =
:·?:·~·:·'. ::

~:~: :2:; :

:24:
:·2~:j:

::'?l:> ::
:·:·:·7·:
28::
~::'. <7,.i:

CALL reportCnostd,notst,names,scores,totall
CALL rptavg(nostd,natst,scores,total)
END

C Read in program parameters
SUBROUTINE startCnstd,ntst)
WRITEC*,5>

5 FDRMATC'0',10x,'Student Grades Management')
WRITEC*,6>

6 FORMAT<11x,'******* ****** **********'>
WRITEC*,B>

8 FDRMATC'Olnput #Students and #Grades-Use 212')
READ <*,10l nstd,ntst

10 FORMATC2i2>
END

C Read in student grades
SUBROUTINE getgrd(nstd,ntst,names,scrbkl
CHARACTER*5 names(nstdl
DIMENSION scrbk(nstd,ntst>

30: DD 15 a=l,nstd
31: WRITE<*,9> ntst
32: 9 FORMATC'OName-A5 Grade-',I2,'F5.0'l
33: READC*,20) names(al, (scrbk(a,jl,j=l,ntst)
34: 20 FORMATCa5,6f5.0)
::y:_::.;: :l '.':'.; CUNT I NUE
::~:6:: END

:Tj
-·

•• j • ..!
+=

0
U

i

:r ... _ ..

..µ
.......

tn
+.l

..µ
Ul

r.: +=
::-.

L
.

..µ
-·

;.n
+

:
c

~fl

O
L

+
J
._

.

~
'
 ;-

-

-~ . ..:

L u

.. p

i.fl
+

:
..µ

!!

::-.
·:-!

:-;
L

··-··
0

!-
!

w
 i..L

.
.
.

~

-~.)
.
.

G.i

L
..i

L

.
.

0 L u i,:!

... :. . ..:

u
;._:

=-

tn
tn u

:....
!...... +=

u--:i
....

*
U

i
~
~

w

* ~~7

.µ

*7
n

.;;.,;
QJ

~::-

* * *

.._..
,.-..

.D

.....

.. -..
·-:-

l}J
:-

c··~
:ti
~Li-:!

c * ··-··

en

>

=::I

u.: :.,.<

_,
..;...:
{fj

~·· ..

E
-5

* * * * * =-· .. -..

.......

·.-i

0 :r. [··i

·r
i

·..Q

.. _ ..
:
~
-

lfi

Ll1
~<

C-·4
:r .

._
.

1-­
r··...

-:-i u-:! -:-..: w
 :::r

=-·
r··~:

=-·
ii

r--
z: :..:..:

*
*

.,...;H
Q

:'.-
·

:-
C
L
1
~
Z

LLl
(I LLl c::

3
LL

H

t-
:E: t-

0
)

r-z .. -..
0

.::.:
~

LJ

U~l
··-··

O::
CD

!Ti,.-.,
..µ

T
I

0 +=
.+-!

Ln
:-. c

..:::::
··-··

..0
:--:

L
l1)

u
+

;
i.fl

0
:r.+=

..µ
!:'.

:.n .. -..

u
c

c
+

:
. ._..

!Si
en c
>· .. _ ..
~..:::::

..µ
..0

C
L

!:...
L

U

tn

:.n .. -..

L

* * * * *

+

+=
tn

U1
+,.!

c
!!

t1
'1

:.::

* ·.~ .. ·
u u-:1

.......
f·')

:;..... o··· ·._.·
:._.=

!i
L

LLl
U

H

·~

w

:J

i:'! *
:.n z

+.!
<C

..o
·-·

.+-!
;._,:

i~
w

<.I

E
~
~

0:::
u

!=1
:.n

L
!

:...:_
+

:
:--i

o···

u
/ *

r·.4
r-·~·

1=t'
!.CJ ·-.o

!'"··· OJ o-·· ·
=

-:--: c··i r··::

i:::t tn ... o ;..... en n...
=._.:

-:-{
c--~

r··~i
~
 u-:i

··.O
-
0
-
0
-
0
-
0
-
0
-
0
-
0
~
~
~
~
~
~
~
~
~
~
~
0
0
G
O
O
O
O
O
O
w
O
O

E
-6

>··

'-'
G.i

OJ

..µ
:T,i

0

CO
OJ i

~

0'·
:::::

::::::

f··~:
¢

C'·~
C"·.i

L 8 c c
·:-i

. .µ

G.l
c

··...:..

c

+= !.f!
·:-i

LL
.,.

[!
;rj

_
i,_

8

L

;:_

.......
GJ

0--·

.;-;

0..
0..

t:
L

.

[!
-·

·r.
.
.
 L

l
_

j
·-·

'
c

·
~

·:-i

n:1
.:::

GJ
QJ

.:.-·
+=

D

..

·M

.
.
.
.

·:-i

en
ili

o
u.i

c
G

J+=
a.1+

:
L

L
·:-:

U

U

:....:
~

G.i
L

Q.l

,.· ..
li

:+-

;·
,-,
'-'

<
I

:::I

c

·._ ..
~ .·
:·.:

·:-i

L
,_
0 ;_

w

i:
j

:
.:

* * * * *
E

-7

.,...,
'+

c
•:-!

1
J

LLl

0
-P

u r;:;
..0

0 L 0 L L !l!

-P

0

.··· ..

E
-8

,_
0

!l!
1+

:-:
·
~

L
0..

O'= c

T
I

1
J

.+-!
+

:
tn

1
:1

c
c

Ii
!!

r,:i
.,...,

0
0

Q

P

.

..µ
..µ

1.n
lfi

..µ
..µ

c
c

Ir'.
:r.

~

-i-i

I!
H

·r-;

·r;

:r.
:r.

..0
..0

L

L

u
u

i;1
lfi

lfl
!.f!

Ill
(Ll

E

t:
r;;

([!

c
c

*
*

·-0
··U

:-1-
I
~
-

... o ·..O

x
;.::

tf1
l.!1

•
•

-:-w
f

i--
~

<L
<L

z: f
0:::

w...
,-,
:_

: -·
Li...

LL

'-.!J

......
c

t··)
[..)

lrJ
ill

;IIL
L

l*

*
*

*

iL
,-,
,_.
LL

c L

_.·· ..

f."·~
L

!Ii
ill

iJ'"-

.,..., 0..
C

L
E

L

0

0
CJ

L
i

L
L

0:::
!l!

>
·O

..µ

0.. LL
:J

0
o

._
f
_

J
w

w
w

:1

E

o u
u:

ru
E

-
c
r
C

T
:

!Tj
!Tj

c
c

:-
-
i-

.-
c

c
·:-!

·r-l

!Tj
:

I
i]J

!l!
.+-=

.. ;..J
C

r-:

-
i

tr!
U1

Ci':""""':·:-;·~
·=

-i
·r-!'

~

U"i
1
+
'
+
:
-
i
~

L
L

.

0
Qi

Ci
l}J

+.i
GJ

+
1

1~-
LL.

·r-!
u

u
u

u
U

1
L

!liL
U

.!
!U

E

L
:J

·:-:
_.

·:-:
.······iI!lli0

..0
0

..0

iI;
H

:.':·

Cf'J
C

!
iJ

.i
0

,-, '-'

0..

:""·.!
1

.-:

0:::
,-,
:_

:

LL .. · ..
ili

D

c ,,
.......

0 .·•·· ..

0
-!·)

''
'-'

..j...l

Ju

u u

-:-!
,...;

-:-i
';'""'"f-:-'!

OJ
CD

iJJ
O:i

O:J

!li
>

 c
·
~

-
..L

.
Lf!

LL
>··

4..:
L

[l
ili

.I::.
U1

~

c
L

....:
>··
G.!

LLl
L

......
il!

..·· ..
+-'

..
X

i
rs;

i~

··.O
··.CJ

.•

·-~:1
·-·
~

·,_.•
·-·

··-·'
~

::p;
~

1li
Q;

G.i
N

r-~

N

·...-i
•
•

"'"""'

co en en

:_:
0

:::!
C

J
L

l
1:21

u G.!

:-:
'-'
z

,,..> ••

0
+.!

U.!

''
~
·

:-:
'-'

E
-9

~ B>dir
I

; EDLIN CDl"'I
B(:if:::
r::·up
CiB,J

2392 08-04-81
2496 11-09-81
2496 11-09-81
3592 11-09-81

GRADES
GRADES
GRADES

B>REM -- Now its Link time

B>PAUSE -- Insert the LIBRARY diskette in drive A
Strike a key when ready ..
B>a:link

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

Object Modules [.OBJJ
Run File CGRADES.EXEJ
list File ENUL.MAPJ
Libraries E.LIBJ :

q1'-i:3.dE-'r:;:.

,....;
..
~

:"Y
-1

OJ co

:,;_1

!
i

~

·"":-.
o··.

.-. -· -·
:

:

:-:"":
~

..

:.;_1

·-·
~

~

:. -~
··.O

···U

c···
O

 .. ·
::-..
·-

-
~

¢
'"

-~
!.'·4

C'·-i

:;-
...:::...

C
t

<
I

·-·
·-

iii LL

!J -
rs1

E

"
-

.:.::.::.. w

Ll.1
:...:....;

. .
.
.

;
~

-, ...
1

J
<I -

--
: .. ~

..
l
~
 - :-··

L
t

~:w
CQ

LiJ
;:.:i ·-

.,....,
en o ... -· -· -:-!
.,....,

~

.. [i
._ .. _.
·-.o

LLl
><
LLl

·-LLl
;::;
:::r
cc
CJ

co
o··· '

-
r
i

..

,-.. :
''
o··· :-:

.· . _,
:...:...:

1
_

i

f..fj
LrJ
_,
:...:.,

er.::
::.J

E

0 u er=

.··· ..

+.= *
,-*
0.J *
E

 *
ill *
u:

~::.
~
=

:.:.; *
,..-

~:;.

:(! *
E

 *
;:'1

 *
:.:1

Q.i
"*£--

w

~
7

~
 *

L
~;~

l
~
 *

..µ
-:t::.

c
-
~

GJ *
~
 *

:_
:

~::.

''
..,.... *
en

~E-

-, ::
t"··)

i...l..

'·-·'

:._:
·._ ..

:::
-:--!

-:....:....:
··-·'

u:
E

N

rn

~

...
.L

E
-11

c:
c:

0--·
=

LrJ

O-··
irJ

LL
~

f·· -.
:·

;
.

1
!ll

u--:1
Q

j

-
G

J
D

:1;

rrJ
L

,_
f..:J

f.:J
co
!"'-..

W
l

Lll
:::I

(
[

>··.
ili

c
GJ

;:::
c

E

!T.i
rr:

ru
z

Q

z
E

-1 2

!~i)

f··)

r
..JJ

[°·~

~

G.!
>

ili
+

'
,.,,

' .
Lfl

r.-~:
LL

iJ'"·
f<: o ...

r ... =

LD
Ct··

LL
r.-:1

· .. o * *
..µ *
tn *
lJJ

~
~

!---*
~rt

~!!-

*
..;_.! *
tn *
(iJ *
i-

*

..µ *
U'! *
l]j *
~
*

8
*

i-

.,..~

C·~ * .;.~

..L.! *
lfi

~==-
ili *
~

~f-

.,..., *
c, c· c, c· c,

*
C

'C
·C

·C
·C

·
..µ *

;(
::

:;
::

:;
i.n *

:::::
O

J
f."·~

0--·
Lf1

ru *
::::: r

:::t o-·· o ...
t-

.;.--;:.
~

+
' *

c *
ill *
D

*

:i *
..µ *
U

)
-!JE-

iJj
·
~

''
! -

·:
_ ..

f·· '
CP *

.... ' -
·-·

·-
rt! """

8
.;,:.;.

'
*::

._.:
i'· ..

0-·
r--... -

Cf;
7.=E-

-
w

 -?.:~
:._

.I
:-Y

-1
::±,-

:·?'·· o· ..
!Tj *

=..:~1

>
 *

.,....;
'

.;,;:.
CD

>...

<
I

.,,~
ru

-:::::-
.,,~

"·:-
.ji:::-

~

..f-i *
<

I *
:~1·1
:_

:J

c *
>·· ru

:::
.:t:"::-

i.li *
'-

>

.,...;
tn *

T
I ""~

N

,...
GJ

::::
G.!

tn
~;;.

....,
7.'.f.-

lli
rt

..µ
:U

0
:Tj

~;;.

..µ
.;,;:.

z
:--:

:.!.!
!-:;

i-")
,.....; *

en *
f
)
 *

:_
:

E
-13

E-14

GLOSSARY

actual argument: The information passed to a procedure
by a caller.

allocate: To assign a resource for use in performing a
specific task.

ASCII: American National Standard Code for
Information Interchange. The standard code, using a
coded character set consisting of seven-bit coded
characters (8 bits including the parity bit). The ASCII
set consists of control and graphic characters.

ASM: A filename extension that identifies a source file
for the IBM Personal Computer MACRO Assembler.

AUX: The device identification for the asynchronous
communication adapter port (serial port).

basic real constant: A real number (sign optional) that
does not have an exponent part.

byte: Eight bits, enough storage for one character.

COD: A filename extension that identifies a
disassembled object listing file produced by a compiler.

code: A set of rules specifying the manner in which
data may be represented in a discrete form. A set of
instructions that specifies the manner in which data is
to be manipulated.

COMl: The device identification for the asynchronous
communication adapter port (serial port).

CON: The device identification for the display/keyboard.

Glossary 1

Glossary 2

constant: A data item of non-varying fixed value.

debug: To detect, trace, and correct errors in a computer
program.

default: A value, attribute, or option that is assumed
when none has been specified by the user.

diskette drive A, B: The device identification for the
diskette drives. Used in front of any filename
specification.

DOS: Disk Operating System.

dummy argument: The name that is given to the
information received by a procedure from a caller.
(See formal parameter.)

edit: To create or modify the contents of a source
program or document. For example, to insert, delete,
change, rearrange, or copy lines.

editor: A computer program that processes commands
to enter lines into a source program or document or to
modify them.

EDLIN: The text editor of DOS which can be used to
create, modify, and display files.

endfile record: The Fortran file system simulates a
virtual endfile record after the last record in a file,
although there is no corresponding real record.

EXE: A filename extension that identifies a relocatable
executable file.

expression: A source language combination of one or
more arithmetic or logical operations and operands
often represented by a combination of terms possibly
within paired parentheses.

filename: The filename consists of one-to-eight
characters. It may be immediately followed by a
filename extension.

filename extension: The optional filename extension
consists of a period (.) and from one-to-three characters.
It is used to identify the type of the file.

filespec: A 3-part file specification consisting of an
optional diskette drive identification, a required
filename, and an optional filename extension.

file control block: A table which resides in the heap
containing updated information pertaining to an
opened file, which the file system uses for accurate
and correct handling of that file.

FOR: A filename extension that identifies a Fortran
source file.

formal parameter: The name that is given to the
information received by a procedure from a caller.
(See dummy argument.)

formatted record: Formatted records are sequences
of characters terminated by the carriage return-linefeed.
Formatted records are interpreted on input consistently
with the way the IBM Personal Computer DOS
interprets characters. They are useful when the source
data is to be read by a user or used as input to another
program. Formatted records must be used with the
formatted I/O statements. They are the most common
type of record and are required when writing or reading
to or from the display /keyboard or printer.

Fortran Compiler, IBM Personal Computer: A
computer program that translates a source program
written in the Fortran language to object code.

heap: An area of storage used for dynamic space
allocation such as file control blocks.

LINE: The device identification for the asynchronous
communication adapter port (serial port).

Linker, IBM Personal Computer: That part of the Disk
Operating System used to create one load module from
one or more independently translated object modules
by resolving cross references among the modules.

Glossary 3

listing file: A file, which can be printed or displayed,
which lists the source code statements and errors.

LST: A filename extension that identifies a printable
listing file produced by a compiler or assembler.

LPTl: The device identification for the line printer.

MAP: A filename extension that identifies the printable
listing file produced by the IBM Personal Computer
Linker.

MACRO Assembler, IBM Personal Computer: A
computer program that translates a source program
written in assembler language into object code.

NUL: The device identification for a non-existent
device. As an input device, immediate end-of-file is
generated. As an output device, write operations are
simulated but data is not written.

OBJ: A filename extension that identifies the
relocatable object file.

object code: Output from a language translator, which
is itself executable machine code or is suitable for
processing to produce executable machine code.

object module: A program umt, which is the output
of a language translator, and which is suitable for input
to the Linker.

PAS: A filename extension that identifies a Pascal
source file.

PASIBF.SYM/PASIBF.BIN: The intermediate binary
files passed between the front end (FOR 1) and the
back end (FOR2) of the IBM Fortran Compiler.

Pascal Compiler, IBM Personal Computer: A computer
program that translates a source program written in the
Pascal language to object code.

Glossary 4

;

PRN: The device identification for the line printer.

procedure: A function, statement function or subroutine.

source module: The source statements that constitute
the input to a language translator.

stack: An area in storage that stores temporary register
information and returns addresses of subroutines.

stack pointer (SP): A register that provides the current
location of the stack.

symbol: A method of referring to a resource of the
computer; a representation of something by
relationship, association, or convention.

truncate: To delete or omit a trailing portion of a string
of items.

unformatted record: An unformatted record is a
sequence of values, with no system alteration or
interpretation; no physical representation exists for the
end of record. They are used when it is desired to store
or retrieve information without the need for editing or
user intervention.

USER: The device identification for the non-buffered
display /keyboard.

user defined name: Any name that the user defines or
redefines. Names that may be redefined are names
such as intrinsic functions, statement functions, variable
names; and so forth.

user name: Any name that the user references.

variable: A data item that can assume any of a given
set of values.

word: Two bytes.

Glossary S

Glossary 6

INDEX

A
absolute segment address C-22
ANSI FORTRAN 77 B-1
arithmetic expressions 1-18
arithmetic IF 4-3, 4-17
array declarator 4-39
array element name 1-26
assembler, MACRO C-2
ASSIGN statement 4-21
assigned GOTO 4-3
assigned GOTO

statement 4-23
assignment 4-3
assignment statement 4-19
assignment statement,

computational 4-19
Automatic Response File C-15

B
back end errors A-1 0
backing up FORl, FOR2,

and LIBRARY 2-4
backslash edit control B-4
BACKSPACE 4-25
BACKSPACE statement 4-25
blanks 1-8
block IF 4-3
block IF statement 4-26
boundary C-4

; paragraph C-4

c
CALL 4-3
CALL statement 4-28

carriage control 5-32
character 1-16
character expressions 1-22
character set 1-6
class C-5
CLOSE statement 4-29
columns 1-7
command lines, optional

FORI 2-17
command prompts, LINK C-6
comment lines 1-8
common statement 4-31
compilation steps,

FORl 2-8
compilation steps,

FOR2 2-12
compilation, getting

started 2-7
compile-time error

messages A-4
Compiler A-4, C-2
compiler listing 2-24
compile metacommands 3-3,

B-4
compiling Fortran, what you

need 2-3
compiling large programs 2-20
computational assignment

statement 4-19
computed GOTO 4-3
computed GOTO

statement 4-33
continuation lines 1-9
CONTINUE 4-3
CONTINUE statement 4-35
continuing the compilation:

FOR2 2-12
control, carriage 5-32
control statements 4-3

X-1

control statements (continued)
arithmetic IF 4-1 7
assigned GOTO 4-23
assignment 4-19
block IF 4-26
CALL 4-28
computed GOTO 4-33, B-3
CONTINUE 4-35
DO 4-40
ELSE 4-44
ELSEIF 4-45
END 4-46
ENDIF 4-48
logical IF 4-58
PAUSE 4-64
RETURN 4-68
STOP 4-73
unconditional GOTO 4-77

conversions, type 1-20
Ctrl-Break keys C-6, C-13

LINK C-13
Ctrl-Num Lock 2-23
Ctrl-PrtSc keys C-8

D

DATA statement 4-36
data types 1-13

character 1-13
integer 1-13
logical 1-13
real 1-13

DEBUG metacommand 3-4
declarator, array 4-39
declarator, dimension 4-39
default

filename C-8
filename extension 2-8
prompts C-6

device identifications 2-23
diskette drives 2-23
line printer 2-23

DGROUP C-10
dimension declarator 4-38

X-2

dimension statement 4-38
diskette drive ID 2-23
diskette, LIBRARY setup 2-4
diskettes, FORl and FOR2

setup 2-4
diskette scratch 2-4, 2-7
division, integer 1-20
DO 4-3
DO statement 4-40
DO variable expressions B-2
D066 metacommand 3-5
DSALLOCA TION

parameter C-10

E

edit descriptors
nonrepeatable 5-23
repeatable 5-18

editing 2-5
EDLIN program 2-5
element name, array 1-26
ELSE 4-3
ELSE statement 4-44
ELSEIF 4-3
ELSEIF statement 4-45
END 4-3
END statement 4-46
end of file B-4
ENDFILE statement 4-4 7
ENDIF 4-3
ENDIF statement 4-48
EQUIV ALEN CE

statement 4-49
errors, FOR 1 2-11
errors, FOR2 2-13
evaluation rules 1-28
EXE filename extension C-8

.EXE C-8
expressions 1-18

arithmetic 1-18
character 1-18
logical 1-18
relational 1-18

expressions, arithmetic 1-18
.expressions, precedence of 1-28
extensions to standard B-3
external statement 4-52

F
file operations 5-12

less commonly used 5-1 2
file position 5-7
file properties 5-6
file system errors A-12
files 5-6
files, internal 5-9
formal parameters 4-9
format specification 5-21
FORMAT statement 5-16
formatted 1/0 5-16
Fortran and ANSI Fortran

77 differences
compiler metacommands B-4
DO variable expressions B-2
extensions to standard B-3
input/output list B-2
subscript expressions B-1

Fortran names 1-29
Fortran names, scope of 1-29
Fortran names,

undeclared 1-31
Fortran program structure 1-6
Fortran statement 1-9
Fortran, running a

program 2-16
Fortran, what you need to

compile a program 2-3
FORl, compilation steps 2-8
FORl, errors 2-11, A-3
FORl, starting the

compiler 2-7
FOR2, compilation steps 2-12
FOR2, continuing the

compilation 2-12
errors 2-12
FOR2 compilation

steps 2-12

FOR2, errors 2-13, A-3
FOR2, optional command

line 2-18
FOR2 2-18

front end errors A-4
full-language features B-1
FUNCTION statement 4-53
functions 4-8, 4-9
functions, intrinsic 6-3

G

generalized 1/0 B-3
group C-5

H
HIGH parameter C-10, C-11
high storage C-10

I

I/O statements 4-12
BACKSPACE 4-25
CLOSE 4-29
ENDFILE 4-47
OPEN 4-59
READ 4-66
REWIND 4-69
WRITE 4-78

1/0 system
files 5-6
overview 5-4
records 5-5

1/0, formatted 5-16
IBM Fortran 1-3
identifications, device 2-23

diskette drives 2-23
LINE (non-buffered) 2-23
line printer 2-23
USER (non-buffered) 2-23

implicit statement 4-55
implied DO lists 4-14

X-3

INCLUDE metacommand 3-7
initial lines 1-7
input entities 4-14
input files C-2
input/output list 5-20, B-2
integer 1-13
integer division 1-20
internal files 5-9

concepts 5-10
limitations 5-10
special properties 5-9
units 5-10

intrinsic functions 6-3
intrinsic statement 4-57
introduction 1-3

L

label, statement 1-9
large programs,

compilation 2-20
Libraries 2-1 5
Libraries prompt 2-15, C-6,

C-9
LINE parameter C-1 1
Line printer - LPTl 2-19
line printer ID 2-19
lines, comment 1-8
LINESIZE metacommand 3-9
LINK 2-14, C-2

automatic response C-2
example session C-1 7
how to start C-13
input C-2
library C-2
listing C-3
object C-2
output C-3
run C-3

LINK command prompts 2-14,
C-6

linker files C-2
Linker program C-1
linker, automatic response

file C-15, C-16

X-4

Linker, example session C-1 7
linking 2-13

libraries 2-15
object modules D-1
MACRO assembler D-5
Pascal D-2

LIST metacommand 3-10
List File prompt 2-15, C-6,

C-8
listing, compiler 2-24
load module C-21
load module storage map C-21
logical 1-1 5
logical expressions 1-24
logical IF 4-3
logical IF statement 4-58

M
MACRO Assembler C-2, D-5
main program 1-10, 4-8
MAP filename extension C-8

.MAP C-8
MAP parameter C-11
messages

compile-time error A-4
file system error A-1 2

messages, LINK C-23
meta commands

DEBUG 3-4
D066 3-5
INCLUDE 3-7
LINESIZE 3-9
LIST 3-10
NODEBUG 3-11
NOLIST 3-12
PAGE 3-13
PAGESIZE 3-14
STORAGE 3-15
SUBTITLE 3-16
TITLE 3-17

metacommands, compiler 3-3

N

names, Fortran 1-29
NODEBUG metacommand 3-11
NOLIST metacommand 3-12

0
OBJ filename extension 2-14,

C-7
.OBJ C-7

object filename 2-9
object listing 2-10

errors 2-11
Object Modules prompt 2-14,

C-6, C-7
linking D-1

OPEN statement 4-59
optional FORl command

lines 2-17
optional FOR2 command

line 2-18
ordering, statement 1-10
outputentities 4-14
output files C-3

p

PAGE metacommand 3-13
PAGESIZE

metacommand 3-14
paragraph boundary C-4
parameters 4-9
Pascal Linking D-2
PAUSE 4-3
PAUSE parameter C-12
PAUSE statement 4-64
plus sign - LINK command

character C-16
position, file 5-7
precedence of expressions 1-28
printer (LPTl) 2-23
PROGRAM statement 4-65
program structure, Fortran 1-6

program units 1-10
program, EDLIN 2-5
program, main 1-10, 4-8
program, source 1-6
programs 4-8
prompts

FORl 3-8
LINK 2-14,C-6

properties, file 5-6
public symbols C-19

R
READ statement 4-66
real 1-14
records 5-5
relational expressions 1-22
relative zero C-21
relocatable loader C-3
repeatable edit descriptors 5-18
restrictions for expressions 1-28
result types 1-20
RETURN 4-4
RETURN statement 4-68
REWIND statement 4-69
RS-232 2-23
Run File prompt C-6, C-8
running Fortran 2-16

s
sample compiler listing 2-24
sample session E-2
save statement 4-70
scratch diskette 2-7
segment C-4, C-7
session, sample E-2
set, character 1-6
setting up FORl and FOR2

diskettes 2-4
setting up the LIBRARY

diskette 2-4
source filename 2-8
source listing 2-1 0

X-5

source listing file 2-10
source program 1-6
specification statements 4-16

common 4-30
dimension 4-38
external 4-52
implicit 4-55
intrinsic 4-57
save 4-70
type 4-75

specification, format 5-21
stack allocation statement C-12
ST ACK parameter C-12
starting LINK C-13
starting the compilation 2-7
starting the compiler:

FORl 2-7
compiler filenames 2-8

object filename 2-9
object listing 2-10
source filename 2-8
source listing 2-10

optional command
lines 2-17

statement function 4-8
statement functions 4-71
statement label 1-9
statement ordering 1-10
statement, Fortran 1-9
statement, type 4-7 5
statements

arithmetic IF 4-17
assigned GOTO 4-23
assignment 4-19
block IF 4-26
CALL 4-28
CLOSE 4-29
common 4-30
computed GOTO 4-33
CONTINUE 4-35
DATA 4-36
dimension 4-38
DO 4-40
ELSE 4-44
ELSEIF 4-45
END 4-46

X-6

END FILE 4-4 7
ENDIF 4-48
EQUIV ALEN CE 4-49
external 4-52
FUNCTION 4-53
implicit 4-55
intrinsic 4-57
logical IF 4-58
OPEN 4-59
PAUSE 4-67
PROGRAM 4-65
READ 4-66
RETURN 4-68
REWIND 4-69
save 4-70
statement functions 4-71
STOP 4-73
SUBROUTINE 4-74
type 4-75
unconditional GOTO 4-77
WRITE 4-78

STOP 4-4
STOP statement 4-73
storage C-10

high C-10
low C-10

STORAGE metacommand 3-15
subprogram 1-10
SUBROUTINE statement 4-74
subroutines 4-8
subscript expressions B-1
SUBTITLE metacommand 3-16
symbols C-19

public C-19
system, I/O 5-3

T
temporary file, VM.TMP C-3,

C-7
TITLE metacommand 3-1 7
type conversions 1-20
type statement 4-7 5
types, result 1-20

u
unconditional GOTO 4-4
unconditional GOTO

statement 4-77
undeclared Fortran names 1-31
unit I/O number B-2

, units, program 1-10

v
VM.TMP temporary file C-3,

C-7

w
what you need to compile

Fortran 2-3
prerequisites 2-3
scratch diskette 2-4, 2-7

WRITE statement 4-78

X-7

X-8

--- ------ ----- ---- - ---- - ------------·-
Product Comment Form

FOR TRAN Compiler
by Microsoft

The Personal Computer
Computer Language Series

6172284

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

Comments:

If you wish a reply, provide your name and address in this
space.

Name ____________________ _

Address ___________________ _

City _________ _ State---------
Zip Code ______ _

111111
NOP
NEC
IF r.

II\
UNITE -BUSINESS REPLY MAIL --r FIRST CLASS BOCA RATON, FLORIDA 33432 -PERMIT NO. 123 --POSTAGE WILL BE PAID BY ADDRESSEE ---IBM PERSONAL COMPUTER -SALES & SERVICE --P.O. BOX 1328-C -BOCA RATON, FLORIDA 33432 -

•• (""'- ••••••••••••••••••••••••••••••• ·~,;~ 0P0I~~ .••••.•.•••••.••••••.•.•.•••

--- ------ - ---- ---- - ---- - - ---==-= ':' =

Product Comment Form

FORTRAN Compiler
by Microsoft

The Personal Computer
Computer Language Series

6172284

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

Comments:

If you wish a reply, provide your name and address in this
space.

Name ____________________ _

Address ____________________ _

City State ________ _

Zip Code ______ _

111111
NOP
NECI
IF N

IN
UNITE -BUSINESS REPLY MAIL --r -FIRST CLASS PERMIT NO. 123 BOCA RATON. FLORIDA 33432 --POSTAGE WILL BE PAID BY ADDRESSEE ---IBM PERSONAL COMPUTER -SALES & SERVICE --P.O. BOX 1328-C -BOCA RATON, FLORIDA 33432 -

.. ,,...... ·a·J;~ ·~I~~ ••••••••••••••••••••••••••••

i

--- ------ ----- ---- - ---- - - ------- ----·-
Product Comment Form

FORTRAN Compiler
by Microsoft

The Personal Computer
Computer Language Series

6172284

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

Comments:

If you wish a reply, provide your name and address in this
space.

Name

Address

City State

Zip Code

111111

BUSINESS REPLY MAIL r"__FIR_sT_c_L_As_s _PE_RM_IT_N_o_. 1_2J_e_oc_A_R_AT_oN_, _FL_oR_io_A_33-43_2 _ ___,

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

NOP
NECI
IF M

IN
UNITE

· · ·r' ········a·,~~ ·~I~~····························

l

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MAY ALSO HA VE OTHER RIGHTS
WHICH VARY FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

Hmff\Tl. IB:\I wan ant' th(' di,kl'lll'('I 01
t<l"('lil'(') on which th(' program i' lur­
ni,JH'd, to b(' ln·l' hom ddt•t ''in matt·riab
and workman,hip und('r n01mal ll"' 101 a
period of nin('I\ ('JOI da)' from th(' datl' ol
d('li\'l·n to \ 011 '" t'Yidt·11< ('d b) a top\ of
yo111 rneipt.

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive
remedy shall be:

I. th(' !('pla<t'ml·nt of am di,kt'llt'l'J 01
t<t'"'ll('i'J not llll't'ting IB:\I·, "Limit('d
\\'ananl\" and \\·hich 1' J('llll!l('d to
IB:\I 01 an a111horit('d IB:\I PFRSOt\'AL
C:Oi\IPl 'TFR d('al('r with a cop\ of \Olli
rt'C('ipt. OJ

2. ii IB:\I or th(' d('ak1 i' unabk todcli\l'I a
r('plan·nH·nt di,kt'llt'('J 01 t ""''llt'(.,I
which i' hrt· of ddt·c" in malt'! iaJ, 01
\\·orkman,hip,)OU ma\ terminal(· thi'
.\gJ('('llH'lll In r('lt1rning th(' program
and your morn·\ "·ill b(' rdundt'd.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAC.;ES,
INCLUDING ANY LOST PROFITS,
LOST SA VIN GS OR OTHER
INCIDENT AL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME ST A TES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENT AL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to

sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---- - - ------- -----·-'
International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6172284

Printed in United States of America

