
•

~:-:~~~ RT Personal Computer Technology

-

Form No. SA23-1057

Foreword

IBM RT Personal Computer Technology is a
collection of papers by the developers of the
RT PC. These papers describe the innovative
aspects of the RT PC-what we set out to
build, how we built it, and how it works today.
The papers were written by technical
professionals for readers who are conversant
with the vocabulary and concepts of
computers and programming.

This book is a one-time statement by the
developers for historical and background
purposes. Although there are several
overview articles that describe how the
various components work together, the
emphasis is on the novel parts of the RT PC
system. IBM RT Personal Computer
Technology is intended to supply the reader
with an understanding of the things that make
the RT PC unique, not to provide detailed
descriptions of all of the elements of the
RT PC system.

The papers in this book are not intended to
replace IBM publications in describing the
capabilities of the system components and
how to use them. Keep in mind that the
papers are for general technical
communication purposes; they do not
represent an IBM warranty or commitment to
specific capabilities in the referenced
products.

A variety of structures and levels of detail
may exist in the papers because they were
written as technical articles by different
specialists. In order to preserve their
authenticity and vitality, the papers have not
been revised for consistency of style or
method of presentation. These papers will not
be updated to incorporate future
developments.

This book is the work of many hands, but
special acknowledgment is due to Bert Buller
of the Hardware Architecture Group for
coordinating the engineering articles, and to
Herb Michaelson, Publications Consultant, for
shaping both the book and the individuai
articles.

Frank Waters, Editor

Copyright

©Copyright International Business Machines
Corporation, 1986. Inquiries related to
permission to republish an article in full or in
part should be directed to the IBM
Corporation, IBM Austin, 854/003, 11400
Burnet Road, Austin, TX 78758.

Copies of this book, SA23-1 057, can be
obtained from the local IBM branch office.
IBM employees can order copies from
Mechanicsburg.

Cover: An IBM RT Personal Computer Model
10 with a larger and somewhat faster
ancestor in the background-an IBM System!
370 Model 158 MP.

Preface

Introducing a new architecture to the
computer marketplace is never done casually.
The cost and effort of transition from one
architecture to another must be justified by
substantial advantages. It is always tempting
to apply advances in technology to improving
the performance of existing architectures.
Ultimately, however, refinement is subject to
the law of diminishing returns. Continuing
advancement requires fundamental changes.

The hardware and software architectures that
were originally created for personal
computers had to accommodate the speed
and size constraints of the processors and
storage devices that were available at the
time. Techniques that were known to be
effective on mainframes and minicomputers
were simply too costly to implement on
personal computers. Our intent in designing
the RT PC has been to use recent
technological and architectural advances to
avoid the structural limitations of earlier
designs.

The IBM RT PC is a new synthesis of
computer concepts. It combines:

• A very fast Reduced Instruction Set 32-bit
processor for efficient execution of
programs compiled from a higher-level
language,

Ii

• a resource manager to provide virtual
machine, storage, and 1/0 functions and to
ensure data integrity and processing
continuity,

• a multitasking, multiuser operating system
that can be tailored to make the RT PC
suitable for a variety of user requirements,

• a coprocessor feature that allows users to
run programs written for the IBM PC
without interfering with the normal
operation of the RT PC,

• and a wide variety of displays, printers,
communications adapters, and processing
features,

• in a box that fits on or under a desk.

With the RT PC, the architectural
sophistication of the personal computer has
caught up with that of the mainframe.
Perhaps more important, we have laid a
foundation for more efficient exploitation of
future advances in both hardware and
software technology. The open-ended ness of
the resource manager and operating system
at all levels means that we can easily take
advantage of new applications, devices, and
communications techniques.

The development of the RT PC system has
been a mUlti-location effort. We have
incorporated architectural advances from
Yorktown Heights, technology innovations
from Burlington, graphics peripherals and
applications from Kingston, and engineering
and programming developments from Austin.
The RT PC has been the work of hundreds of
individuals, both within and outside of IBM.
The articles in this book describe some of
their contributions. I want to convey to
everyone involved my gratitude for their
efforts and my respect for their
accomplishments.

W. Frank King
Group Director of Advanced Engineering
Systems Development
Engineering Systems Products
independent Business Unit

RT Personal Computer Technology

Contents

IBM RT PC Architecture and Design Decisions

Hardware Description

Processor Card

System Memory Cards

Floating Point Accelerator

System Board and I/O Channel for the IBM RT PC
System

IBM RT PC Displays and Adapters

Use of Artificial Intelligence to Diagnose
Hardware

Manufacturing Innovations to Increase Quality
and Reduce Cost

ROMP/MMU Technology Introduction

The IBM RT PC ROMP and Memory Management
Unit Architecture

ROMP/MMU Implementation

~ : :i~~ IBM Product Design and Development

®

Engineering Systems Products

G. Glenn Henry 2

P.O. Hester, J.T. Hollaway, and F.T. May 6

D.E. Waldecker, K.G. Wilcox, J.R. Barr, 12
W.T. Glover, C.G. Wright, H. Hoffman

Ronald E. Rowland 18

Scott M. Smith 21

Sheldon L. Phelps and John D. Upton 26

Joe C. St. Clair 31

Nancy A. Burns and C. Edward Williams 35

Charles W. Bartlett, A.V. Burghart, 40
George M. Yanker

D.E. Waldecker and P.Y. Woon 44

P.O. Hester, Richard O. Simpson, 48
Albert Chang

D.E. Waldecker, C.G. Wright, 57
M.S. Schmookler, T.G. Whiteside,

R.D. Groves, C.P. Freeman, A. Torres

iii

ROMP/MMU Circuit Technology and Chip Design

Software Development Tools for ROMP

Compiling for the RT PC ROMP

Advanced Interactive Executive (AIXTM)
Operating System Structure

Restructuring the AIX User Interface

Configuration Methods for a Personal Computer
System

IBM RT PC AIX Kernel - Modifications and
Extensions

Extendable High-Level AIX User Interface

Extended File Management for AIX

The Virtual Resource Manager

Design of the IBM RT PC Virtual Memory Manager

The IBM RT PC Subroutine Linkage Convention

Implementation of a Virtual Terminal Subsystem

Use of a Coprocessor for Emulating the PC AT

Coprocessor Software Support

PC DOS Emulation in the AIX Environment

Authors

iv

Raymond A. DuPont, Ed Seewann,
Peter McCormick, Charles K. Erdelyi,

Mukesh P. Patel, P.T. Patel

Alan MacKay and Ahmed Chi bib

M.E. Hopkins

Larry Loucks

P.J. Kilpatrick and Carolyn Greene

Shirley Lerom, Lee Terrell, and Hira Advani

Larry Loucks

Tom Murphy and Dick Verburg

John M. Bissell

Thomas G. Lang, Mark S. Greenberg, and
Charles H. Sauer

J.C. O'Quin, J.T. O'Quin, Mark D. Rogers,
T.A. Smith

J.C.O'Quin

D.C. Baker, G.A. Flurry, K.D. Nguyen

John W. Irwin

Rajan Krishnamurty and Terry Mothersole

Leonard F. Brissette, Roy A. Clauson,
Jack E. Olson

66

72

76

83

88

91

96

110

114

119

126

131

134

137

142

147

149

Reader's Guide

The IBM RT Personal Computer Technology
book is divided into four parts. The first
describes the main hardware elements of the
RT PC system. The second section discusses
the RT PC's 32-bit microprocessor. The third
section covers the RT PC software and the
fourth the PC AT coprocessor and AIX's PC
DOS emulation functions.

A reader's guide, for a topical approach to
this book, is as follows:

Overview Articles
Henry
Hester et al.
Waldecker and Woon
Loucks

Major Hardware Components
Waldecker et al.
Rowland
Smith
Phelps and Upton
St. Clair

RT PC Microprocessor
Waldecker and Woon
Hester et al.
Waldecker et al.
DuPont et al.

User Interface
Kilpatrick and Greene
Lerom et al.
Murphy and Verburg
Brissette et al.

2
6

44
83

12
18
21
26
31

44
48
57
66

88
91

110
131

Operating System Modifications and
Extensions
Loucks
Loucks
Bissell
O'Quin

Virtual Resource Manager
Lang et al.
O'Quin et al.
Baker et al.
Brissette et al.

PC AT Coprocessor
Irwin
Krishnamurty and Mothersole

83
96

114
131

119
126
134
147

137
142

1

IBM RT PC Architecture and Design Decisions

G. Glenn Henry

Introduction
The architect of a new system must start by
making a series of high-level decisions about
the hardware and software structure. These
early choices shape all of the ultimate details
of the product. An understanding of the
"reasons why" is important to the person
who is trying the understand the resulting
system. In this paper, I will give a very
general overview of the structure of the RT
PC and explain the rationale for each of the
major decisions that dictated that structure.

Product Objectives
The original objective of the project that
resulted in the RT PC was to build a high­
function workstation with capabilities far
beyond those of personal computers.
Specifically required were:

• A high-performance 32-bit processor

• Large amounts of primary and secondary
storage

• High-function virtual storage capabilities

• High-function APA display devices

• A full-function, multi-tasking operating
system

• A high degree of usability

• A flexible, extendable, and open
architecture.

2

In addition to these technical objectives, there
were a number of important practical
requirements relative to producing a
successful product:

• Easy portability of existing IBM and non­
IBM applications

• Easy migration of users and their
applications and data from existing systems

• The ability to take advantage of I/O
attachments and devices used on other
systems

• Straightforward ways for other IBM and
non-IBM development areas to add and
modify system functions (Le., an "open"
system).

These challenging and, in some cases,
conflicting objectives, when combined with
available technology, shaped the system
design as described in the following sections.

System Structure
Figure 1 shows the logical structure resulting
from the objectives and design systems.

Figure 2 provides a more detailed look at the
structure of the RT PC from a physical
viewpoint. As you will see, the specifics of the
system components reflect "something old,
something new, something borrowed, and
something Blue." The RT PC includes proven
technologies and functions, innovations,

Ported Applications / New Applications

Application lEt d d 0 r : D I t x en e pera Ing PC C . ..
e~~ ?pmen I System Functions I ompatlblhty

__ .£~h~S ___ .1. _______ ..1 ________

Base Operating System

VRM

Processor and Memory PC AT Coprocessor
Management Unit

I/O Channel and Devices

Figure 1 Logical Structure of the RT PC

interfaces that are compatible with other
systems, and IBM-exclusive technology. It is
this combination of appioaches that allows
the RT PC to meet its sometimes conflicting
objectives.

I/O Channel and Devices
The I/O structure chosen for the RT PC was
basically the PC AT 16-bit I/O Channel, with
some performance improvements. This choice
makes it possible to use most of the existing
PC AT I/O attachment cards, while providing
acceptable levels of I/O performance with
native RT PC I/O devices. While providing
compatibility with the PC AT, the RT PC I/O
channel provides more usable capacity to I/O
devices, since processor RAM is not
connected to the I/O channel and the RT PC

Applications

Application Development Products

AIX Kernel

VRM

Processor

Disk

Display

MMU

System RAM

PC AT
Coprocessor

Other I/O

Figure 2 Physical Structure of the RT PC

I/O Channel Controller includes performance­
assist features such as 32-bit "assembly"
burst transfer.

Processor and MMU
The most critical choice was obviously that of
the processor and associated Memory
Management Unit (MMU). In spite of the
obvious implications of the objective to ease
migration of existing applications, we chose a
new processor-the IBM Research/OPD
Microprocessor (ROMP).

The major reasons for choosing the IBM
ROMP were:

• It provides a full 32-bit architecture,

• with high performance (approximately 2
MIPs),

• using a Reduced Instruction Set Computer
(RISC) architecture making it particularly
suitable as a target for compilers (the

preponderance of code expected to be
executed on the RT PC was anticipated to
be generated by compilers),

• on a single chip for a low-cost, high­
performance solution,

• with an associated MMU chip providing
advanced virtual storage capabilities,

• and finally, there was no vendor
microprocessor available with the full set of
these capabilities.

The IBM ROMP is a single-chip derivative of
the 801 processor project of IBM Research
and thus benefits from the processor
architecture analysis and advanced compiler
architecture design activities associated with
the 801. In addition, the IBM ROMP has
special features such as "Load Multiple" and
"Store Multiple" that extend the RISC
architecture approach to provide increased
efficiency and performance in a
microprocessor implementation.

The virtual storage functions provided by the
MMU chip are very powerful. For example,
the 32-bit processor address is extended to a
40-bit virtual address with a high­
performance, hardware-managed "inverted"
page table translation approach. This
significantly reduces the size of the page
tables for the large virtual address space
while providing very fast virtual-to-physical
address translation. Even today, I do not
know of another M M U that provides this level
of function and performance.

Virtual Resource Manager
When designing the software structure for the
RT PC, we decided to build a Virtual
Resource Manager (VRM) to control the real

hardware of the machine. The VRM presents
operating systems with a Virtual Machine
Interface (VMI) that not only conceals the
complexities of virtual memory management
and numerous I/O device types, but provides
the operating system with a significantly more
powerful set of functions than are available
on the bare machine. It is therefore not
accurate to think of the VRM as a pure
hypervisor, like VM/370. The VMI is, in effect,
a higher-level machine to which guest
operating systems can be converted. We
considered the VRM necessary because:

• The operating system base that we wanted
to use for the RT PC was not built to run
on a computer with virtual memory, did not
provide real-time I/O capabilities, and didn't
provide dynamic install and configuration
functions. We decided to provide these
important functions "under" the operating
system, as opposed to making extensive
modifications to the kernel of the existing
operating system. For example, the VRM
provides a very fast preemptive interrupt­
based I/O structure, virtual storage
management functions, and dynamic
loading and binding of I/O device drivers.
This allows, for example, the operating
system kernel to be paged and complex,
multi-tasking I/O device drivers to be
implemented.

• We wanted to achieve a higher degree of
program isolation from the hardware details
than is possible with the current personal
computer operating systems. That is, the
VRM resembles BIOS on the IBM PC, but it
provides a much higher level of hardware
independence. For example, generic device
classes are supported at the VMI, allowing
high levels of device transparency and I/O
redirection.

3

• We wanted to allow hardware coprocessors
to execute concurrently with ROMP without
making major changes to the existing base
and with minimal overhead for resource
allocation and management (see PC
Compatibility, below).

• We needed to isolate the development of
the RT PC software from changing
hardware characteristics during the
development process. While this was an
"internal" IBM requirement, the success of
the VRM in meeting this goal validates its
architecture and implementation features
relative to providing high levels of hardware
transparency to the user software.

Consistent with the objectives for a flexible
and open system, the VRM provides complete
facilities for the user to implement and install
code in the VRM. That is, the detailed
hardware structure is isolated from software
in the preponderance of cases where that is
desirable, but conversely, all hardware details
are available to user functions that require
them.

Operating System and Extensions
As the base for the RT PC's Advanced
Interactive Executive (AIX1) operating system,
we chose AT&T's UNIX2 System V3

• We
chose UNIX because it provides considerable

1 "Aix" is a trademark of International Business Machines
Corporation.

2Trademark of AT&T Bell Laboratories.

3The UNIX component of AIX was developed by IBM and
INTERACTIVE Systems Corporation. The UNIX
component is based on INTERACTIVE's IN/ix, which is
based in turn on UNIX System V, as licensed by AT&T
Bell Laboratories. (lN/ix is a registered trademark of
INTERACTIVE Systems Corporation.)

4

functional power to the individual user,
provides multi-user capabilities where needed,
is open-ended, and has a large user and
application base. We concluded that AT&T's
System V suited our purposes better than
alternative UNIXes because of the larger
number of applications that had been built to
run on that base, as well as for a variety of
practical reasons.

In choosing UNIX, however, we accepted the
need to make significant extensions and
enhancements to meet the needs of our
expected customers and target applications.
This is, of course, the classical trade-off
between choosing an existing software
system for its pragmatic characteristics
versus developing a new system with
(hopefully) fewer deficiencies but limited
applications and user familiarity. We chose to
start with UNIX and fix the deficiencies while
retaining upward compatibility for all UNIX
System V interfaces.

Some of the major enhancements made were:

• A Usability package to provide easier
access to the capabilities of the UNIX
command language and to simplify the
implementation of full-screen dialogs

• Multiple, full-screen virtual terminal support
to permit a single user to run several
interactive applications concurrently! time­
sharing the console display

• Enhanced console support including
extended ANSI 3.64 controls, color support,
sound support, and mouse support

• An indexed data management access
method that is integrated into the base
UNIX file system structure (this allows UNIX

system utility functions such as "cp" to
transparently operate on composite data
management objects consisting of an index
file and a data file)

• Extensions to exploit use of the powerful
virtual storage support; in particular,
mapped file support which allows an
application to "map" a file into a 256
megabyte virtual address space, and
access it with loads and stores, versus
reads and writes (a derivative is used by
the system to provide mapped text segment
support, allowing paging "in place").

• Enhanced signals to allow flexible
exception-condition handling

• A variety of floating point support functions

• Simplified installation and configuration
processes.

PC Compatibility
In addition to UNIX application portability, our
original objective of eaSing user and
application migration required a high level of
compatibility with the IBM PC family. This was
provided by:

• An IBM PC AT hardware coprocessor that
includes an Intel 80286 along with
associated hardware to provide a high level
of PC AT hardware compatibility

• An IBM PC DOS "shell" on the AIX
Operating System allowing DOS command
syntax and semantics to be used to invoke
AIX functions

• IBM PC compatibility modes in the RT PC
BASIC and Pascal compilers, providing IBM
PC BASIC and Pascal-compatible functions

• IBM PC diskette access utilities and access
methods.

One of our key technical decisions relative to
compatibility was to allow the PC AT
coprocessor to execute PC programs
concurrently with ROMP programs, sharing
system resources such as main storage and
the system console. This unique capability is
provided by a combination of the coprocessor
hardware card and the VRM, which manages
the allocation and sharing of resources in
such a way that the coprocessor's concurrent
execution is transparent to the operating
system and application programs. For
example, the VRM allocates the console
keyboard to either the coprocessor or the
ROMP and monitors keystrokes for a "hot
key" sequence signalling a need to switch to
the other processor. In a similar fashion,
other system resources are managed so that
the coprocessor applications seem to execute
in a virtual terminal just as the ROMP
applications do.

Application Development Facilities
For the initial release of the RT PC, we
placed a high priority on providing function to
facilitate application development. We
extended the already rich UNIX application
development support functions with:

• a host-compatible SQl data base manager
providing both an API and a full-screen
user interface,

• a FORTRAN compiler, BASIC compiler and
interpreter, and Pascal compiler (in addition
to the C compiler and assembler included in
the base operating system),

• a "net BIOS" set of facilities for access to
the I BM PC Network,

• and many base operating system
extensions: message services, shared
segment manager, etc.

The Result
We believe the design choices presented here
and the specific designs highlighted in the
following papers allow the IBM RT PC to
meet its original objectives. Further, these
directions provide the architectural and design
base for improvement with minimal disruption
as technology progresses.

5

Hardware Description

P.O. Hester, J.T. Hollaway, and F.T. May

Introduction

Design Philosophy
The IBM RT PC system hardware was
designed with the following basic philosophy
in mind.

• A new family of workstation systems should
be based on the most recent advances in
microcomputer technology.

• An architecture should be established to
ensure:

- The effective integration of a 32-bit
virtual memory microprocessor with
existing and new 8-bit and 16-bit I/O
adapters

- The effective addition of I/O devices and
adapters as technology trends progress

- The attachment of coprocessors for
compatibility and performance
enhancements

- The ability to incorporate user-installable
performance enhancements over the life
of the product

• A strong relationship should be maintained
with the IBM Personal Computers.

• The product should allow customer setup
and service.

6

• The initial product offering should clearly
demonstrate the long-range potential of the
design.

Hardware Summary
The RT PC workstations have consoles that
contain the electronics, storage devices and
power supply. They cable attach to the
display, keyboard and other optional devices
to meet the configuration requirements for the
customer's applications. The IBM RT PC is
available in two basic packages: the IBM
6150 is a floor-standing unit and the IBM
6151 is a desk-top console similar in size to
the IBM PC AT. The 6150 Model 25 provides
the maximum extendability, but most options
are available on all models.

The workstations have a wide range of
standard and optional hardware components.
Data storage is provided on 5-1/4-inch hard
disks and diskettes. A large system board is
used to package the base electronics and
card slots in each model. A number of cards
and adapters have been designed specifically
for the RT PC, and the I/O channel slots are
designed so that many existing IBM PC and
PC AT cards can also be used. Operator
input can be made with a 101-key keyboard
and an optional two-button mouse or tablet
pointing device.

In addition to the standard I/O channel slots
on the system board, there are unique slots
for each of the 32-bit system components.

The new IBM-designed ROMP 32-bit
microprocessor and its corresponding
Memory Management Unit (MMU) are
packaged on a processor card which comes
with each model. There is also a separate 32-
bit slot for an optional floating point
accelerator card. Two other dedicated slots
are provided for system memory cards.

The unique ability to execute both IBM PC
and IBM PC AT programs concurrently with
native RT PC programs is provided by an
optional coprocessor card which plugs into
one of the I/O slots. Other coprocessor
options provide for faster performance with
additional PC AT memory cards and a math
coprocessor chip.

The system memory is packaged on
1- and 2-megaoyte cards which piug into two
dedicated memory slots and provide
expansion of models up to 3 and 4
megabytes. The hardware architecture allows
for addressing up to 16 megabytes of real
memory.

A wide variety of display subsystem options is
available. In addition to existing IBM PC
displays and adapters, three new offerings
are available with monochrome and color APA
features. Also, computer-aided design
applications can be run using a serial link
adapter card attached to an IBM 5085
Graphics Workstation in a host-based
network.

Hardware Architecture
The RT PC system combines a 32-bit
microprocessor (ROMP) and Memory
Management Unit (MMU) with a standard
16-bit I/O channel. The system is partitioned
so that the 32-bit system components operate
independently from the 16-bit I/O channel.
This approach provides both high­
performance, 32-bit processing and
compatibility with standard 16-bit I/O
adapters. The RT PC hardware structure is
shown in Figure 1.

The RT PC utilizes the IBM-developed ROMP
microprocessor and corresponding MMU
packaged on a processor card which plugs
into the system board. The ROMP implements
a Reduced Instruction Set Computer (RISC)
architecture with 118 instructions, 16 32-bit
general-purpose registers, and a full 32-bit
data flow for both addresses and data. Most
register-to-register operations execute in one
170-nanosecond cycle. Performance is
typically 1.5 to 2.1 MIPs, depending on the
instruction mix.

The MMU implements a "single level store"
address translation architecture which
converts the 32-bit system address to a 40-bit
(1 terabyte) virtual address for translation.
Internal translation buffers within the MMU
convert the 40-bit virtual address to a 24-bit
(16 megabyte) real address. Hardware is also
provided in the MMU to automatically reload
the translation buffers from main memory
page tables as required. The MMU also
contains the ECC logic for system memory,
and some of the control logic for system
memory and the IPL and power-on self test
ROM.

Details of the ROMP microprocessor and
MMU architecture are described by Hester, et

32-bit system Standard PC I/O
components ~ features

I System board

RS-232 ! I
Serial*

0 ASYNC I

: RS-232
Serial* ASYNC , I

I Native I/O

Keyboard ! KBD RTC/timer
I

Speaker I SPKR DMA t---
~

I
Mouse/tablet -. Mouse Interrupts

I
Floating

L ______ -,

point I
accelerator

,
I
I

Processor
bus I

32-bit (32-bit) I
I

micro- I
processor I

I/O
~ 10CC '--- Channel t---

r- Interface Control I--
(IOCC)

Memory I
Management I
Unit I

I
Processor I
card I ,

Memory I
control ~ ,

I
I

Memory, I/O
bus , Channel
(32-bit) I (16-bit)

IPL r---- ,
ROM

I
I
I

System I
I

12MB ECC

,
memory

11 I
I

f..- ,
1MB ECC 2

I

Figure 1 RT PC System Architecture

l

I
I
I
l
I
I

Native serial ports Model 6150 only

Native I/O
Dedicated microprocessor for:

Keyboard
Mouse
Tablet

I/O bus DMA, interrupts
Real time clock, timer

Floating point card:
32081 FPA
200 KWIPS

Processor card:
170 nsec cycle
1.5 - 2 + MIPS
40-bit virtual address
24-bit real address
32-bit 10CC interface

10CC:
Generates I/O bus
Native I/O control
Address mapping logic

PC
* I/O Channel:

PC-AT
Independent from memory bus

PC 2M Bytes/sec to system memory
4M Bytes/sec to channel memory
* = Model 6150 only

AT* PC AT coprocessor card:
PC-XT Performance w/system memory

AT

AT

AT

AT

AT

0.8X PC-AT Performance w/channel memory
Concurrent operation

Memory:
23.5M Bytes/sec BW
150/300 nsec RAM
256K technology
SEC/OED ECC
Max. addressing 16MB

7

al.[1]. Chip implementation details are
described by Waldecker, et al.[2].

Both the ROMP microprocessor and the
MMU are custom designed VLSI components
using an IBM 2 micron NMOS process. Both
components are packaged in a pin grid array
package on a 36-millimeter ceramic substrate.
The ROMP contains approximately 45,000
devices on a 7.65 x 7.65 millimeter chip, with
the MMU containing approximately 62,000
devices on a 9.0 x 9.0 millimeter chip.

In addition to the ROMP and MMU, the
processor card (see Waldecker, et al. [3])
contains logic to adapt the 32-bit packet­
switching microprocessor channel to an
asynchronous 32-bit processor channel
connected to the optional floating point
accelerator card and the system board 1/0
Channel Converter (IOCC). A dedicated
memory channel is also generated from the
MMU for connection to the system memory
cards. Five IBM technology bipolar gate
arrays of approximately 300 gates each and
vendor TTL logic are used for interfacing to
the processor channel and memory channel.

Clock generation for the microprocessor,
memory management unit, and system
memory is provided on the processor card.
Independent clock generation is provided on
the system board for 1/0 channel timing. This
makes it possible for higher performance
processor cards and system memory cards to
be supported as technology permits, without
affecting 1/0 channel timing.

The optional Floating Point Accelerator (FPA)
card attaches to the 32-bit processor channel
and provides improved performance for
floating point applications. This card utilizes a
National Semiconductor NS32081 Floating
Point Unit and operates independently of the

8

ROMP. Multiple floating point register sets
are provided for rapid context switching.
Performance is approximately 200,000
Whetstone instructions per second. Various
aspects of the FPA are covered by Smith [4].

Two dedicated slots are provided for system
memory, which attaches to the processor
card through the memory channel. The
memory channel consists of an independent
40-bit data bus and 24-bit address bus. The
data bus includes 32 bits of data and 8 bits of
error correcting code (ECC). The RT PC ECC
allows automatic detection and correction of
all single-bit system memory errors, and
detection of all double-bit errors. The 24-bit
address bus is capable of addressing up to
16 megabytes of system memory.

Standard 256K RAM technology is used on
the system memory cards, with a minimal
amount of support logic. All memory timing,
control, and ECC functions are provided by
the processor card. System memory is two­
way interleaved on each memory card, with
one bank containing only even addresses and
the other bank containing only odd
addresses. This interleaving technique,
combined with 150-nanosecond access time
RAMs, provides a system memory bandwidth
of 23.5 megabytes per second (4 bytes every
170 nanoseconds). Details of the memory
cards are described by Rowland [5].

The system board contains all of the channel
conversion functions to adapt the 32-bit
ROMP Storage Channel (RSC) to a PC
AT-like 1/0 channel. 1/0 channel support
functions such as an interrupt controller, DMA
controller, and real time clock and timer are
also provided on the system board. Timings,
address assignments, interrupt assignments,
DMA assignments, and related functions of
the RT PC 1/0 channel were designed to be

as compatible as possible with the PC AT 1/0
channel. In addition, new features such as
burst and buffered DMA and shareable
interrupts were added to improve the channel
performance and usability. The IBM 6151
provides one 8-bit PC slot and five 16-bit PC
AT slots. The IBM 6150 provides two 8-bit PC
slots and six 16-bit PC AT slots. Timing and
performance of the 1/0 channel are the same
in all models. Phelps and Upton [6] discuss
various characteristics of the RT PC 1/0
channel.

In addition to the channel conversion
functions, the system board contains a
programmable translation control facility to
support accesses from adapters on the 1/0
channel to system memory. A separate
dedicated microprocessor is provided to
handle the keyboard, speaker, mouse, and
tablet interface. The IBM 6150 also includes
two built-in RS-232 serial ports with DMA
capability for attaching terminals, printers, or
other 1/0 devices.

The optional Intel 80286 based coprocessor
card plugs into an 1/0 channel slot and
provides compatibility with PC and PC AT
programs. In addition to the 80286 and
optional 80287 math coprocessor, this card
contains control logic that intercepts 80286
accesses to selected 1/0 addresses. A
combination of this logic and system software
allows sharing of system 1/0 adapters such
as displays, keyboards, and files. Alternately,
system software can program this logic to
allow direct coprocessor access to private 1/0
adapters. Appropriate mapping is also
provided by system software that allows PC
applications written for the PC monochrome
or color adapter to run on an RT PC using a
native APA display. Operation of the
coprocessor card is described by Irwin [7].

PC programs for the coprocessor can be
stored either in system memory or in
dedicated, I/O channel-attached memory.
Coprocessor performance is typically that of a
PC when executing programs in system
memory and about 80 percent that of a PC
AT when using I/O channel-attached memory.

I/O Devices
The selection of I/O devices was made by
considering technology trends, the
requirements of evolving applications, system
performance, and physical power and
packaging constraints. The generic set of
devices required for electronic workstations is
well established in the industry. There are a
number of vendors that specialize in each of
these devices and are very competitive in
advancing the state of the art in their
respective areas of the industry. The
architecture of the RT PC system allowed the
designers to select the preferred devices to
meet the anticipated marketing opportunities
as the project proceeded and the
requirements changed. A few examples are
outlined below.

Hard File Subsystem
The major decision in the selection of hard
files was to use the 5-1/4-inch form factor.
The size of the desk-top and floor-standing
consoles is most directly affected by the size
of the files. The technology was moving
toward 5-1/4-inch files even though the 8-inch
files were still improving in capacity and cost.
The main reservation in the selection of these
files was the average access time, which is in
the range of 40 milliseconds versus 25 to 30
milliseconds for 8-inch files. Transfer rates
are the same, at 5 megabits per second.
System performance work was done to
understand and compensate for this
difference.

The capacity of the files to make available in
the models also varied as the project
advanced. Files as small as 10 to 20
megabytes were seriously considered, but the
final system design point required the larger
capacities of 40 and 70 megabytes. The
combination of these larger files, and the
option to have a model with three files,
substantially expanded the range of potential
applications that can be adapted to the
product.

Another example of the flexibility of the
design approach to the file area is illustrated
by the fact that the disks and diskettes are
attached by the use of the IBM PC AT Fixed­
Disk and Diskette Drive Adapter, an existing
card in the IBM PC product family.

An external streaming tape drive and a
separate adapter card that attaches to the
RT PC I/O channel are available as an option.
The streaming tape unit provides a capacity
of 55 megabytes using a standard 1/4-inch
tape cartridge.

Display Subsystems
The display subsystem is generally the most
obvious I/O device to the users of electronic
workstations. The characteristics of the
display are described by the parameters of
size, number of picture elements (PELs), PEL
density, monochrome and color, and
front-of-screen performance. Substantial cost
differences exist among these parameters.
The applications selected by the users
determine which of these parameters affect
their choice of display subsystem. Details of
the various displays and adapters are
described by St. Clair [8].

The design decision was to offer a wide
variety of display options and ensure that the
architecture allowed for future options to be

provided as the applications evolve. The
RT PC can meet the needs of a wide variety
of users, so their display needs are expected
to be diverse.

The RT PC system provides for the
attachment of existing adapters and displays
of the IBM PC products. Specific IBM PC
displays which have been tested for
announcement are the Monochrome Display
and the Enhanced Color Display with their
respective adapters.

The new displays and adapters provide direct
processor access to a 1 024 x 512 bit map
with a display viewing area of 720 x 512
PELs. Hardware assist provides for text and
graphics alignment to the PEL level. This
design point was determined to be a good
trade-off between cost and total screen PELs
for both monochrome and color applications.

A higher function monochrome display
subsystem provides a larger viewing area of
1024 x 768 PELs and extensive hardware
assist for high-speed vector-to-raster
conversion from a vector list buffer. This
design point is also considered to be a good
trade-off between cost and total screen PELs.

A full 1024 x 1024 color display with existing
advanced computer-aided design, CAD,
applications is provided by the ability to use a
serial link adapter card to attach the RT PC
system to an IBM 5085 Graphics Workstation
in a host-based network.

Mechanical And Electrical Packaging
Two different physical packages were
selected for the RT PC system. The IBM 6151
package is very similar to the IBM PC AT
desk-top configuration. The IBM 6150 has a
floor-standing console to provide room and
power for more adapter cards and files.

9

The key requirements for the packaging were
set in compliance with the basic design
philosophy mentioned above. One was to
provide for the use of existing IBM PC cards,
which established minimum physical
dimensions and power requirements. File
capacity requirements to support the
addressing capabilities of the processor
dictated the need to have models that can
hold multiple files. A system board is used to
mount connectors for the various cards that
make up the base models and to provide
extra slots for options.

Equally important were the requirements to
design the product for automated
manufacturing. This included limiting the
number of separate subassemblies,
establishing a standard packaging form for
each of the subassemblies delivered to the
manufacturing line, minimal use of internal
cables for interconnections, and selection of
one standard card size for all cards. Details
of the manufacturing process are described
by Bartlett, et al.[9].

Quality And Reliability
Many design and manufacturing decisions
during RT PC development were made to
ensure a high quality and reliable product.
These included design for automation
concepts in the original design, development
of an automated manufacturing process,
component selection process, analysis of
early life failures, and automated error logging
during system run-in testing.

A diagnostic program based on an expert
system (see Burns and Williams [10]) is
provided to aid the customer in diagnosing
system problems. This program tests all
RT PC system board functions and all 110
adapter functions. Major considerations in the
development of the diagnostic program were

10

providing a user interface with simple
selection of desired tests and reporting test
results in a concise manner. These
characteristics were considered mandatory
for a machine with customer setup and
service.

Both the RT PC design and manufacturing
processes have resulted in the ability to
produce a complex workstation in high
volumes. The component selection and
qualification process, failure analYSiS, and
run-in testing allowed supporting a 12-month
warranty.

Conclusion
The RT PC system was designed to bridge
the gap between the personal computer
products introduced during the past few years
and emerging advanced 32-bit workstations
with extensive virtual memory management
facilities. These workstations will become the
basis of computing systems that have
extensive storage, display and
communications requirements to satisfy new
applications as they evolve. Specifically, the
RT PC:

• Introduces an IBM-developed, high­
performance, 32-bit RISC architecture with
virtual memory.

• Combines the new 32-bit features with a
standard PC 110 channel.

• Provides an optional PC coprocessor for
compatibility with existing PC application
programs.

The development cycle for the product was
executed during a period of continual change
in technologies and design specifications, so
an architecture was defined to provide
consistency of design decisions in this

environment. The architecture was tested on
numerous occasions and allowed for needed
design changes that preceded the initial
product announcement.

The use of an open architecture similar to the
earlier IBM PC products allows for extension
by anyone who chooses to develop hardware
attachments and applications that enhance
the features of the base machines. This
approach continues to be successful in
personal computer systems and should be
successful in the more advanced workstation­
oriented systems.

Numerous enhancement possibilities are
obvious to designers and users of this new
class of advanced product. The architecture is
capable of supporting increased memory
capacity, higher capacity files, higher
performance displays, other local area
networks, higher speed host attachments,
and other coprocessors. Enhancements
should follow as time and new technologies
allow interested companies in the computer
industry to respond to the business
opportunities.

Some enhancements may be limited by the
110 devices, or by the 110 channel
characteristics. Others may be limited by
computational speeds in the main processor,
the IBM PC AT coprocessor, or the floating
point accelerator. Performance requirements
of new applications will reveal these
constraints. Potential solutions to many
anticipated future requirements have already
been defined by the development team.

It is hoped that the decisions made during the
RT PC system development process will
survive the test of time, that the technologies
provided by the product will satisfy the needs
of developers, and that the applications built

on the product will meet the needs of users
ranging from technical professionals to office
workers.

References
1. P.O. Hester, Richard O. Simpson, Albert Chang, "The

RT PC ROMP and Memory Management Unit
Architecture," IBM RT Personal Computer Technology,
p.48.

2. D.E. Waldecker, C.G. Wright, M.S. Schmookler, T.G.
Whiteside, R.D. Groves, C.P. Freeman, A. Torres,
"ROMP/MMU Implementation," IBM RT Personal
Computer Technology, p. 57.

3. D.E. Waldecker, K.G. Wilcox, J.R. Barr, W.T. Glover,
C.G. Wright, H. Hoffman, "Processor Card," IBM RT
Personal Computer Technology, p. 12.

4. Scott M. Smith, "Floating Point Accelerator," IBM RT
Personal Computer Technology, p. 21.

5. Ronald E. Rowland, "System Memory Cards," IBM RT
Personal Computer Technology, p. 18.

6. Sheldon L. Phelps and John D. Upton, "System
Board and 1/0 Channel For The IBM RT PC System,"
IBM RT Personal Computer Technology, p. 26.

7. John W. Irwin, "Use Of a Coprocessor For Emulating
The PC AT," IBM RT Personal Computer Technology,
p.137.

8. Joe C. St. Clair, "IBM RT PC Displays and Adapters,"
IBM RT Personal Computer Technology, p. 31.

9. Charles W. Bartlett, A.V. Burghart, George M. Yanker,
"Manufacturing Innovations to Increase Quality and
Reduce Cost," IBM RT Personal Computer
Technology, p. 40.

10. Nancy A. Burns, C. Edward Williams, "Use Of
Artificial Intelligence To Diagnose Hardware," IBM RT
Personal Computer Technology, p. 35.

11

Processor Card

D.E. Waldecker, K.G. Wilcox, J.R. Barr, W.T. Glover, C.G. Wright, H. Hoffman

Introduction
The processor card provides the central
processing and memory management
functions of an IBM RT PC system. It
interfaces with memory cards [1] and I/O
hardware on the RT PC system boards [2] in
a manner which readily supports future
enhancements of memory cards or the
processor card itself. The card contains the
ROM P processor and M M U memory
management chips [3] plus support functions
including ROM and internal clock generation.

Card Functional Overview
A functional diagram for the processor card is
given in Figure 1. Logic on the card adapts
the ROMP and MMU interfaces for other
system components and develops a special
test interface [3] that supports hardware and
softvvare debug vv'ithout reiiiova: of the RO~Y1P
processor chip or any perturbation of the
physical card components.

The MMU connects to ROM and a Reference­
and-Change Array on the processor card as
well as with the interleaved memory cards.
The ROM contains programs to perform
power-on diagnostics and IPL functions for
the system. The diagnostic display indicators
are also driven by logic on the card. Failure
isolation is improved by packaging the
diagnostic ROM and the display drivers with
the processor components.

The memory-specific controls were placed
external to the MMU to improve flexibility in

12

Support
Clock processor

Clocks ~ generator ~Clocks
interface

-"-

MMU Memory data bus ROMP r--+ storage processor
controller

n
t
e

I/O
channel

r---

Address bus

L-.. Memory Data
u
P
t

convertor controller Reference/

r
e
q
u
e

Processor
ICard
I Channel

Diagnostic indicators

Figure 1 Processor Card Functional Diagram

selecting dynamic RAM and ROM modules for
optimum cost/performance characteristics in
the system. The Reference-and-Change Array
is external to the MMU due to space
limitations on the chip. (The function of the
Reference and Change Array is explained
later.)

I/O interface adapter logic was included on
the processor card to improve fault isolation

I

Memory
I address
I bus

Address change
array

~ ROM

Memory interface

r---.

Memory I
data
bus

and to enhance performance. This approach
also restricts the high frequency, repetitive
clocks to the card and minimizes
electromagnetic interference exposures for
the system.

The clock generator logic is driven by a
23.5294 MHz oscillator to provide clocks for a
170-nanosecond processor cycle time. The

timing relationship between clocks on the
card is tightly controlled by synchronizing the
clocks in FAST TTL modules.

Processor Card Interfaces
Two independent system interfaces, the
processor channel and the memory channel,
connect the processor card to the rest of an
RT PC system. A test interface is also
available for special hardware and software
debug functions.

The memory channel can connect to one or
two memory cards containing a maximum of
16 megabytes of memory. The memory cards
are described in the article by Rowland [1].

The processor channel is an asynchronous,
32-bit, bidirectional channel which connects to
the I/O Channel Controller (IOCC) on the
RT PC system board [2] and to the Floating
Point Accelerator Card [4].

Memory Interface
The memory interface logic manages an
address bus, a data bus, and control signals
permitting two memory accesses to be in
progress simultaneously. The interface
connects to both ROM and RAM and is
flexible regarding the amount of each which
may be present in a system. Memory refresh
is managed and directed to an idle memory
bank when possible, thus reducing refresh
interference.

The memory interface logic contains two IBM
bipolar gate arrays, TTL logic for memory
card interface buffering, four ROM modules,
and a 16K by 1 static RAM which is the
Reference-and-Change Array.

Two memory card slots on the system board
and a range of memory card configurations
are supported. Memory cards ranging in size

from 512K bytes to 8M bytes can be
supported by decoding four control lines (two
from each memory card slot in use). During a
memory access, the memory card capacity
indicators and several bits of the storage
address bus are used to verify that the
access is to a valid memory address.
Although the processor card accepts a one or
two memory card configuration, "slot-O" must
be used first. Also, the memory capacity of
the card in slot-O must be greater than or
equal to the memory capacity of the card in
slot-1.

The RAM on each memory card is divided
into two independent banks (an even bank
and an odd bank) for interleaving purposes.
The even bank operates on requests with an
even fullword storage address from the MMU
and the odd bank operates on the odd
address requests. All accesses to storage are
done using fullword data transfers.
!nterleaved memory improves system
performance by allowing two memory
accesses to be in progress at the same time.
(A timing diagram which shows interleaved
memory operation is included in the paper on
ROMP/MMU Implementation [3].) A separate
10-bit RAS/CAS address bus is provided for
each bank of storage. The memory card
interface consists of the two 10-bit address
buses, a 40-bit bidirectional data bus
(including 8 bits ECC), and 21 control lines.

The processor card memory interface
generates all clocks and controls needed to
operate the memory modules on the memory
cards. Four separate row address strobe
clocks are created to support the maximum
memory card configuration (Le., even bank/
slot-O, odd bank/slot-O, even bank/slot-1, and
odd bank/slot-1). Two column address strobe
clocks are provided: one for the two even
banks, and one for the two odd banks.

Enable signals are provided to control read/
write of the memory as well as the direction
of the data bus.

The MMU chip makes use of an external
array consisting of one"Reference" bit and
one "Change" bit for each page of real
storage in the system. The Reference bit
indicates if the corresponding page has been
accessed, and the Change bit indicates if the
page has been altered. This information is
used by system software for page
replacement decisions. The Reference-and­
Change Array is implemented with a 16K by 1
static RAM. The storage address bits and the
storage interface control signals from the
M M U are used to determine if a RAM access
has taken place and, if so, to set the
appropriate bits in the array. The Reference­
and-Change Array is also accessible to
system programmers via the Programmed
Input/Output (PIO) commands to the MMU.

Eight bits of data (comprising two decimal
digits) for the Diagnostic Display LED
indicators are driven by the memory interface
logic. During IPL the LED indicators are used
by software to show the hardware diagnostic
program that is either currently executing or
which has failed. In addition, the memory
interface logic automatically sets the LED
indicators to "88" if the ROMP processor
stops due to a severe error or due to a halt
command during debug.

Interface to the System Board
The design objectives of the processor card's
interface to the system board (the "processor
channel") were high performance, non-critical
timings, simple system board attachment
logic, and isolation of the processor card from
the system board. The desirability of high
performance, relaxed timing, and simple
attachment is obvious. Isolation is

13

advantageous because it limits the most time­
critical signals and clocks to the processor
card, allowing better performance. It also
allows future improvement of processor cycle
time without impact on system design. Finally,
restricting the high-speed signals to the
processor card reduces the potential for
electromagnetic radiation problems.

The interface between the processor card and
the system board is 32-bits wide, multiplexed,
and asynchronous. The address and data
transferred over the processor channel are in
the same format as when transferred over the
RSC. The processor channel has some
attributes of a general-purpose bus, but the
processor card is the sole bus master, and all
bus timing is under its control.

On the system board interface, there are two
slaves, the I/O Channel Controller (IOCC),
which develops the I/O channel, and an
optional floating point card. The processor
may access the 10CC or floating point card
using Load or Store instructions (memory­
mapped I/O) to segment 15 of the virtual or
real memory space. In addition. the 10CC may
access ~)'~tem storage through DMA.

The basic memory-mapped I/O operation
involves two types of transfer: request and
reply. All operations begin with a request, and
replies occur if the operation is a read or a
translated write. The requests and replies
may be uncoupled from each other, or they
may be attached. This is controlled by the
slave using handshaking signals. A request
consists of address and data. In response to
a request from the system processor, the
processor channel interface logic outputs
address, then asserts DATA STROBE,
changes the address to data, removes DATA
STROBE, and finally disables its data bus
drivers. Address and data are latched on the

14

170 ns

RSC cycles

RSC GXD 0
-I/O cycle I \~------------------~
-Data STB

Data bus GXD (R

-Busy / \ _---_

-RDY "---I
-Data gate \

Figure 2 Programmed I/O Cycle

positive and negative transitions of DATA
STROBE, respectively. If the slave requires a
"single envelope" cycle, it may lock the
channel by activating the BUSY line.
Otherwise, new requests may appear on the
interface. A reply to a request may occur
either within a single envelope cycle or at
some later time. When a reply !s availab!e, the
READY line is asserted. The processor card
responds with a gating signal which is used
to enable the slave's drivers onto the
interface. The basic PIO cycle is shown in
Figure 2.

The DMA cycle is managed by the processor
card. The system board makes a request, and
when able, the processor responds with
gating signals used by the system board to
gate out the address and data for the
transaction. The I/O interface logic generates
a request on the internal storage channel and
sends a reply (if required) to the system
board. Overlapping DMA requests are not
performed. The basic DMA cycle is shown in
Figure 3.

>

/

From Proc. Cd.

From Proc. Cd.

From system

From system

From Proc. Cd.

In the RT PC system, the 10CC always
causes a single envelope cycle. Accesses to
the floating point card, however, may overlap
each other or 10CC cycles.

For processor-originated I/O cycles, the
maximum transfer rate is approximately 7.8
megabytes per second. Transfers to the
system iiG channei are paced by the speed
of the I/O channel. Transfers to the floating
point card could approach the theoretical
maximum, limited primarily by the program
doing the transfer. For DMA transfers, the
interface supports a transfer rate of about 4
megabytes per second.

The I/O interface is implemented primarily
with three bipolar IBM gate arrays, with a
total of about 1000 gates.

Test Support
The processor card provides many functions
which aid in the testing of both hardware and
software in the RT PC system. These
functions are built into the ROMP chip set,

RSC cycles

RSC C£I:E)

Data bus FI \ -DMA Req.

i\ !
-DMA cycle

-ADDR gate ~I
-Data gate '\
-Data strobe

Figure 3 DMA Cycle

and are accessed by simply connecting
another computer (currently an IBM PC with
special interface card) to the processor card.

The ROMP, MMU, and clock chips were
designed to provide easy testability with
minimal external hardware. This means that
unlike many development systems, no special
emulator circuit is required and the phYSical
hardware configuration is not altered for test.
This is an especially important advantage for
card-level test, as the ROMP processor is
soldered on the card and removal is time
consuming and inconsistent with high-volume
manufacturing.

The support computer, called the ROMP
Support Processor, processes commands
typed in by the user, sends required signals
to the processor card, and displays the
internal state of the ROMP and MMU, as well
as ROM or RAM memory.

The test features can be divided into three
categories based on function provided:

D)

/

CD
(D)

I r From system

Ir- From Proc. Cd.

I

I From Proc. Cd.

~
From Proc. Cd.

From Proc. Cd.

• register display and alter
• clock control for breakpoints, etc.
• memory display and alter.

The first set of functions gives display and
alter capability for the internal registers and
control state of the ROMP. The ROMP
provides access to its internal state through
its Level-Sensitive Scan Design (LSSD) scan
strings (Le., all registers and latches are
connected as shift registers for test
purposes). By scanning data into or out of
these registers, all of the ROMP's registers
may be examined or altered. By scanning
certain data into the shift registers and
clocking the ROMP, the general-purpose
registers may be accessed. Examining the
contents of the ROMP's registers does not
interfere with what would be the normal
processor execution if the Support Processor
were not attached (other than requiring the
processor to be halted and then restarted),
and in fact provides excellent control and
visibility into the workings of the processor
card and internal chip logic.

The second set of functions provides control
of the system; stopping, starting, setting
breakpoints, and other functions. Stopping
and starting the processor card is done by
causing the clock chip to stop or start the
ROMP clocks. Breakpoints, which can be
specified as either instruction or microcode
addresses, are set up by scanning
information into the ROMP which causes it to
signal via a sync output just prior to executing
the instruction or microcode at the indicated
address. The clock chip can then stop
execution by turning off the ROMP's clocks if
a stop on compare has been selected. The
sync signal is also available as an output
from the ROMP, and is very useful as a
trigger event for a logic analyzer. Microcode
cycle or instruction stepping is performed by
clocking the ROMP for a single machine cycle
(for microcode stepping) or until its instruction
complete line goes active (for instruction
stepping). This provides very accurate
visibility into the execution sequence down to
the microcode level, if desired.

The third set of functions provides the ability
to display and alter memory and internal
MMU registers. The MMU provides a serial
port to allow memory or register reads and
writes to be performed. The serial port is
completely separate from the memory
interface, and therefore can be used whether
or not the ROMP is functional. This provides
a good starting point for system debug, since
a substantial part of the processor card logic
(MMU, ROM, and memory interface) can be
checked without the services of the ROMP.
Accesses to memory through the serial port
do not affect any outstanding memory
requests which the MMU may have previously
buffered; therefore the system may be
stopped, memory displayed, and the system
restarted with no effect on normal execution.

15

The serial port is also used to upload or
download programs between memory and PC
disk/diskette.

Physical Configuration
In addition to the ROMP and MMU modules,
the 4.5" X 13" card contains six bipolar IBM
gate arrays, TTL components (including
ROM), and various passive components such
as resistors and decoupling capacitors. There
are two 100-pin connectors-one for the
system board and the floating point
accelerator card, and a second which
connects to the memory cards. The special
test interface is via a 60-pad arrangement on
the top of the card, which is gripped by a
special connector on the ROMP Support
Processor cable. Figure 4 shows the

processor card layout. The physical card
contains four signal planes plus one ground
and one voltage plane.

Test features providing stopping plus register
and memory display/alter capability are built
into the RT PC processor card and are
extremely useful for both hardware and
software debug. The hardware debug aids
are helpful in debugging many software
problems which are time critical, branch off to
an unknown point, or result in a processor
stopped condition (e.g., closely-spaced,
multiple program checks).

Conclusion
The RT PC packaging and processor card
design approach are well suited to
responding to future technology
developments. The memory cards connect
only to the processor card memory interface,
permitting the relative timing between the
memory and processor to be easily changed
as technology improves.

r-- - - - ---- --- - --- ,---- -- ----- - - --- - - ----- - -- - -- - - - - - ---------,
I
I

U1 q 1 U2 q r-I -u-3-g"""'l1 ~ q~~---------' [§] 'rcrJ-"""'RP;::1 ==~I~I ,.....----:::::1 I Support i SO

; C

1
onnector I 0

r2I I @I] II> a: ~ 1 U4 q 1 U5 . U53 9
r-I -U-6-ct"""@J 1 U7 q@) I U8 g: @ill MMU U G ROMP EEftill I RP7 11@ill~I;::::=::;RP8;:::::::;;-;~[]!:O C1r-6 ___ -,

I U1~g m1[J@][Ji@i) M1 ~ M2 lnaon~I'~ U9 .1J, ~:,~ II~ U11~ ::. 0
@!) M4 M5, @[) """ ~ ,,_ I U13 Cj I U14 Cj I U15 Cj M3 0

r-1-U1-6-g-' 25MM lru 25MM :r-I"'::;:;;:::;'~...!ilnl---:[§[]=--§]=C33::-' (§E] [§[] [ED C37 C38 C39 r.-------~- @2] __ [@ __ 2~~ __________ -I
@TI I: -, :::! :1 U17 q 1 U18 9 1 U19 q 1 U2C 53 I U21 9 1 U22 53 ~

! 1)25 q I DI. 1 I! U26 g! U27 C! d U23 .J I U24 RPI5. r"'I .- . ';" . rI r;" .-,

~ I I @ill ~-C48-@m :IRo;,.. II ROM U28 =;IRP1~29 ~@!llJq~JlL:JI~L:JII~ I~':QI
, U3C ql r--U-31-g-' P"I -U-3-2 -q""" ,-, -U-33-C1....,: S-1~---~-C50---' S2/@[] RP17 M6 f3 M7 Ii1 M8 J;;;l..J

1 91 9 RP18 I 1 U36 q EJ EJ IQI @[] [§ill@§[]IRPI911@ii]@[IIIU34U351'-
,.....----, I U41 ?: III RP20 rem I 25 MM ~RP21 ,,:~ MM 25 MM 1 U37 q I U38 q 1 U39 9 1 U4C d, ROM ROM ~ . =:t ~

rnD @[] @I] @!!]L_S!~ ___ @D ~S4:-jlT---@[);:;;C7~O ~r-I.::;R~:;;:::::;I;;I;;(ffiJ:;::::71 J 1 U42 9 I U43 53 r-I -----:I

o
"""-U4-5-q""" 1 U46 q 1 U47 q 1 U48 q 1 U49 q 1 U5C q I U51 q d U52 CI C74 C75 RP23

I ~ ~~R~~~~~~~~~~~riT~~~

I @ID--r:fE)
nnr'nnlnnl~n~lnnlnnrlnnnnrlnnnnr'nnnnl'nnlnnlnnrlnnlnnrlnnnnrlQnn ""r'nnnnr'nnnnr'n",nnl~n~lnnlnnrlnnnnl'nnlnnr'nnlnnlnnrlnnlnnrlnnn

I
I
I

Memory interface I I/O interface

o

____________________________________ L _________________________________ --1

Figure 4 Processor Card Layout

16

The interface to the system board effectively
decouples the processor card from the
remainder of the system timing. Thus the
processor card performance can be improved
without impacting the system design.

References
1. Ronald E. Rowland "System Memory Cards," IBM RT

Personal Computer Technology, p. 18.

2. Sheldon L. Phelps and John D. Upton, "System
Board and 1/0 Channel for the IBM RT PC System,"
IBM RT Personal Computer Technology, p. 26.

3. D.E. Waldecker, C.G. Wright, M.S. Schmookler, T.G.
Whiteside, R.D. Groves, C.P. Freeman, A. Torres,
"ROMP/MMU Implementation," IBM RT Personal
Computer Technology, p. 57.

4. Scott M. Smith, "Floating Point Accelerator," IBM RT
Personal Computer Technology, p. 21.

17

System Memory Cards

Ronald E. Rowland

Introduction
Each IBM RT PC system memory card
contains two independent memory arrays and
associated support circuitry. The architecture
of these cards provides for full two-way
interleaving between the two arrays, with one
array containing only even-addressed words
and the other containing only odd-addressed
words. This on-card interleaving scheme
allows for a data word access every
170-nanosecond machine cycle while using
industry-standard 150-nanosecond dynamic
random access memories (DRAMs). Each
data word access consists of 32 data bits and
eight error correction code (ECC) bits. The
availability of four data bytes every 170
nanoseconds results in a memory interface
bandwidth of 23.5 megabytes per second.

The RT PC contains two dedicated slots for
the system memory cards. The memory chips
are packaged on 1-megabyte and 2-megabyte
memory cards which provide for system
memory configurations of 1 M bytes, 2M
bytes, 3M bytes, and 4M bytes. The 1 M-byte
interleaved ECC memory card design is
based upon 64Kx4 DRAM technology while
the 2M-byte card uses 256Kx1 DRAM
technology.

The hardware architecture allows for cards
containing up to 8M bytes of memory per
card and for a total system memory
addressing capability of 16M bytes. The use
of eight ECC bits per data word supports the
use of an error correction scheme capable of

18

correcting all single-bit errors, detecting all
double-bit errors and detecting the majority of
multiple-bit package errors. The architecture
also provides a means of automatically
identifying the characteristics of the system
memory configuration to the remainder of the
system.

Memory Card Architecture

The RT PC system memory card architecture
is shown in Figure 1. The card is divided into
two independent arrays with each array
having its own support circuitry to allow for
full two-way interleaving between the arrays.
The interleaving between the arrays is
performed on a word (32 data bit) boundary.
One array is used only for even-addressed
word references and the other is used only
for odd-addressed word references. The
interleaving function is provided on a single
memory card, allowing for a system memory
configuration utilizing only one memory card
and leaving room for memory expansion in
the other dedicated memory slot.

The processor card operates on a basic
machine cycle of 170 nanoseconds and the
processor can cycle each of the memory
arrays in two machine cycles. This translates
to a memory array cycle time of 340
nanoseconds with one memory reference
performed every array cycle. Each memory
reference gains access to 32 bits (four bytes)
of usable data. Since the two memory arrays
on the memory card are independent, the

processor card can operate them one
machine cycle out of phase with each other in
an interleaved fashion. The two-way
interleaving allows for a memory reference to
occur every machine cycle. The 4-byte data
access in combination with the two-way
interleaving results in a system memory
channel throughput rate of four bytes every
170 nanoseconds (or a 23.5 megabytes per
second bandwidth). This memory interface
performance is approximately quadrupled
over a conventional 16-bit microprocessor
system operating at 12 MHz.

The figure shows that the input signals
required to control these cards are very
similar to a standard DRAM component. The
card interface consists of 10 multiplexed
address lines (ADDR 0- 9), a Row Address
Strobe (RAS), a Column Address Strobe
(CAS), a Write Enable (WE), and a Bus Enable
(BEN) for each array on the card. The 40 data
lines (DATA 00-39) are shared by the two
arrays. Since the cards were a;ochitected to
accept various DRAM technologies, two
additional Bank Address Bit (BAB) lines and a
Refresh (REF) line were added. These
additional lines are shared between the two
arrays on the card and are only valid when
the RAS line for a given array is activated.
The BAB lines contain the same information
that the high order address lines contain
during the column address phase of the
memory cycle. This information is required at
the beginning of the cycle (during the row
address phase) for cards with multiple banks

r--- ---- - --------------,
I -
I

AD DR (0-9) EVEN) C)
0

RAS EVEN:
" v

n
t

CAS EVEN
r

WE EVEN
0

REF --'"
I

BAB (0-1)
I "----

I
I -
I X

BEN EVEN I c
I e

I i

I v
.... A

I
"

e < Data (00-39) I ~
r

A I
'---

Data (00-39)
..... I

r--

) A

I X K Data (00-39)
I c
I " ...

e
I i
I v

BEN ODD e
I r
I -I
I -

BAB (0-1) I
C

REF
0

WE ODD I n
CAS ODD t
RAS ODD I r

I

"
0 " AD DR (0-9) ODD / I /

"
...

I '----

Size, ECC, fast refresh

I

c
o
n
f

I 9
I
I
I

EVEN
memory
array

/\..

'J

ODD
memory
array

L _____________________ _

Figure 1 System Memory Card Logical Dataflow

per array so that the appropriate bank of the
array can be activated. The Refresh line is
required on these types of cards in order for
the on-card logic to refresh the entire array
(and not just one of the banks).

The RT PC system memory cards are
attached to the system processor card via the
memory channel. All controls for proper
operation of memory read, write, and refresh
cycles are provided by the processor card.
Since the memory arrays share a common
data bus (on the memory interface), the
processor card also has the responsibility to
ensure that there are no data bus usage
conflicts between the two arrays.

DRAM Technology
Due to the interleaved nature of the card,
each card must be able to supply the system
with a minimum of 80 bits (32 data bits and 8
ECC bits from each array). When using
standard 256Kx1 DRAMs in 16-pin dual inline
packages (DIPs) to achieve this minimum, the
result is 80 DRAM modules per card. Since
the physical card size is approximately 60
square inches (one side), the minimum of 80
256Kx1 DRAM DIPs is also the maximum
quantity that can be packaged on one card.
Use of this standard packaging technique
dictates a memory card capacity of two
megabytes (2MB) with 256Kx1 DRAM DIPs. If
such a card were to be implemented using
standard 64Kx1 DIPs, the resulting card
capacity would be 512 kilobytes.

Technical and marketing considerations
deemed that a 1 M-byte memory card would
be necessary for the RT PC system. Since
using 256Kx1 DRAM DIPs resulted in a card
with a minimum of 2M bytes and using 64Kx1
DRAM DIPs resulted in a card with a
maximum of 512K bytes, a new approach
was needed. Various packaging methods
which would allow doubling the quantity of
64K memory chips on the cards were
explored. These alternative techniques
included the use of surface-mounted
components (SMCs), single in-line packages
(SIPs), zigzag in-line packages (ZIPs), and

piggy-back modules. Any of these 64K DRAM
solutions to the problem would require a total
of 160 DRAM chips and the use of a non­
standard packaging technique to achieve the
desired 1 M byte capacity. The added cost
and power requirements of these approaches
made them unattractive for production.

The granularity question of how to combine
1 M byte of memory, a 32-bit data access, and
two-way interleaving on a card with 60 square
inches of surface space was resolved by
using a new version of the 256K DRAM chip.
The answer came in the form of the 64Kx4
DRAM. The 64Kx4 DRAM is a 256K DRAM
teChnology, but it is four bits wide instead of
the usual one bit wide arrangement. With the
64Kx4 DRAM the minimum requirement of 80
bits per card could now be accomplished with
only 20 DIPs and the 1 MB card could be
implemented with 40 modules (instead of the
160 required when using a 64K DRAM
technology). The 64Kx4 DRAM also provided
for a card design with varying capacities. The
quantity of DRAM components could now be
increased in increments of 20, yielding card
capacities of 512K bytes, 1 M bytes, 1.5M
bytes and 2M bytes. With the merchant
DRAM marketplace commanding a price
premium for the 64Kx4 over the 256Kx1
DRAMs, it was decided to keep the 2M byte
card deSign based on the 256Kx1 DRAM
modules rather than deSigning it to be an
expanded version of the 1 M byte card.

Automatic Memory Identification
The RT PC system memory cards provide
information to the processor card and to the
system board identifying the system memory
configuration. This identification indicates the
capacity and functional requirements of the
installed memory cards. The information is
provided on five static output lines, with three
of the five lines identifying a card capacity of

19

512K bytes, 1 M bytes, 2M bytes, 4M bytes, or
8M bytes of memory. Another identification
line indicates that the card has an increased
refresh requirement allowing the processor
card to automatically double the refresh rate.
This line was added due to the uncertainty of
the refresh requirements for future 1 M-bit
DRAM technologies.

These identification lines are basically
"hardwired" on each memory card and
provide the RT PC system with all the
information required for proper operation of
the installed system memory. This automatic
identification mechanism relieves the
customer of having to adjust any switch
settings whenever the system memory
configuration has changed.

These lines are routed to the Memory
Configuration Register (MCR) on the system
board and to the Memory Management Unit
(MMU) on the processor card. The MCR is
read by the system software to determine the
memory configuration and the MMU uses this
information for proper control of the memory.
The information and functions provided by
this mechanism include determining:

a. the amount of physical memory installed
(on a per card basis),

b. the physical address range of each card,

c. whether or not the current memory
configuration is a valid one,

d. whether or not the current memory
reference is to a valid physical location,

e. and if the memory requires a normal or a
doubled refresh rate.

20

Summary
The RT PC system memory cards achieve a
bandwidth roughly quadruple that of a PC AT.
This improvement is the result of employing a
full 32-bit data interface and utilizing two-way
interleaving. In addition to the 32 data bits,
eight ECC bits are provided for correction of
all single-bit errors and detection of most
multiple-bit errors by the system MMU. The
architecture allows for use of any of the
common DRAM technologies now in
production or envisioned over the next
several years. The automatic card­
identification features provide the system with
the capability of determining the system
memory configuration and relieve the
customer of switch setting whenever the
configuration is altered.

The cards are somewhat restrictive when
trying to maximize their memory capacity
using standard DIP type components, due to
the physical size of the cards. This limitation
can be overcome, however, by using other
packaging techniques (SMC, SIP, ZIP, etc.)
with 256K DRAMs or with the availability of
1 M-bit DRAM technologies. The performance
of the system memory interface could be
extended beyond the current 23.5 megabytes
per second limit by utilizing faster DRAMS in
conjunction with a decreased basic machine
cycle time. Other alternatives to extending the
memory interface performance include using
a different interleaving scheme, the addition
of a cache, or a combination of the above
approaches.

Floating Point Accelerator

Scott M. Smith

Introduction
The IBM RT PC Floating Point Accelerator
(FPA) is an optional feature which provides
significantly enhanced performance for
floating point, math-intensive applications. It
consists of one 4.5" x 13" circuit board which
plugs into a special slot in the RT PC system
board. The FPA is based upon the 10 MHz
National Semiconductor NS32081 Floating
Point Unit (FPU).

Since the NS32081 's hardware interface is
considerably different than the RT PC internal
bus, logic is added to adapt the part to the
RT PC. In any such non-native adapter design
there is a risk of decreasing performance.
Several features are included in the design to
minimize and compensate for the potential
performance loss. The most significant of
these are discussed in this paper. They are:
overlapped processing between the system
32-bit microprocessor (ROMP) [1] and the
FPA, use of an external register file, and
program synchronous exception handling.

Note that while the topic of discussion here is
design features which improve floating pOint
accelerator performance, it is difficult to
assess the contribution of each feature to
overall system performance. That level of
analysis is beyond the scope of this paper.

Overlapped Processing between ROMP and
FPA
Before we begin the discussion which is the
subject of this section, some background
material on the ROMP's use in a floating
point environment is needed.

The ROMP itself has no explicit floating point
commands. In the base RT PC system, a
software floating point emulator provides the
floating point arithmetic capabilities. If the
customer requires improved floating pOint
performance, the optional FPA may be added
to his system. There is a compiler option
called "compatible mode" which allows the
resulting object code to run on either the
emulator or the FPA. The other option, called
"direct mode," produces code which will run
only with the FPA installed.

The FPA is attached as a memory-mapped
I/O device and its commands are encoded in
the address. Specifically, the address is
x'FFxxxxxx' where 'FF' is the FPA's channel
address and 'xxxxxx' is the FPA command.
Figure 1 shows a block diagram of the RT PC
system and how the FPA is attached to it.

In order to execute an FPA command, the
ROMP loads the command (x'FFxxxxxx') into
one of its registers. If data is to be sent as
part of the command, it is also loaded into a
ROMP register. Several ROMP instructions
are required to accomplish loading of these
registers. The instructions require a minimum

ROMP

ROMP
Storage Channel

MMU

Processor
Card
Interface

&' Processor
Card
Channel

10CC

~

~

I/O
I/O devices

channel
~

•
•
•
~

Figure 1 Attachment of Floating Point Accelerator

of 170 nanoseconds each to execute and the
memory accesses that they initiate take a
minimum of 850 nanoseconds. The command
is then sent to the FPA using a ROMP Load
or Store command. When the address and
(optional) data appear on the ROMP Storage
Channel, the Processor Card Interface

21

recognizes the FPA's address and accepts
the command. The command is then sent to
the FPA over the Processor Card Channel.
Depending upon logic delays, 115 to 188
nanoseconds elapse between the address/
command first appearing on the bus and its
being strobed to the FPA. The data (if any)
will be strobed 242 to 315 nanoseconds from
the first appearance of the address. Because
the FPU clock is 10 MHz and the ROMP
clock is asynchronous, an additional 0 to 100
nanoseconds delay is incurred due to
synchronization.

Once the command is received, a reply is
returned to the ROMP indicating successful
receipt of the command. In the case of
commands issued using ROMP Loads, the
requested data is also returned in the reply.

If the ROMP were used to drive the
NS32081 's protocol directly, several such
command/reply sequences would be required
to execute an FPA command, e.g., Floating
Add, Subtract. The ROMP cannot execute the
protocol fast enough to avoid significantly
degrading the NS32081 's performance. Logic
is therefore provided on the FPA to execute
the NS32081 's protocol while receiving only
complete floating point commands such as
Fadd, Fsub, and Fmul from the ROMP. This
logic provides the base mechanism for
overlapping ROMP and FPA operation.

If the reply is sent back to the ROMP early on
FPA commands issued by ROMP Stores, the
ROMP can continue to do other work such as
setting up the next FPA command while the
FPA executes the current command. In fact
this concept is extended in the FPA to allow it
to actually receive the next command from
the ROMP while executing the current
command.

22

ROMP Activity FPA Activity Comments

(FPA initial conditions - IDLE and No Exception on previous command)

FPA command 1 •

~Reply 1 wlo exception

I T
Non-FPA
commands

1 Command 1
execution

FPA command 2 ----1.~

T
No ROMP execution excerst Fetch

Command 1 received
and execution begun

Command 2 queued

- Re~y 2 IexceP,on Start execution of command 2

T
Non-FPA

Figure 2 Overlapped Processing Between the ROMP and the FPA

Figuie 2 illustiates how the ovei:apped
processing between the ROMP and the FPA
actually works. FPA command 1 is issued by
the ROMP (Store assumed). The FPA
receives the command, returns the reply, and
begins executing the command. In the
meantime, the ROMP upon receipt of the
reply proceeds to execute other code, in this
case preparing and issuing the next FPA
command. The FPA, still executing command
1, queues command 2. At this point the
ROMP can only issue instruction fetches to fill
its internal buffer. Once the FPA finishes
command 1, it immediately begins executing
command 2. If command 2 was issued using
a ROMP Store, the reply can be returned

immediate:y, allowing the ROMP to pioceed
as before. If the command was issued using
a ROMP Load command, the FPA must wait
for execution to complete in order to obtain
the data to be returned to the ROMP in the
reply.

The External Register File
The following table shows several key
instruction execution times for the NS32081
running with National Semiconductor's 10
MHz NS32032 microprocessor [2].

INSTRUCTION

ADD

MULTIPLY

MOVE (NO CONVERSION)

CASE

MEM-MEM
REG-REG
MEM-MEM
REG-REG
MEM-REG
REG-MEM

Several relationships among these execution
times are of interest. An ADD or MUL Single
memory-to-memory is only 0.4 IlS slower than
the register-to-register version of the
commands. An ADD or MUL Double memory­
to-memory is only 1.0 IlS slower than the
register-to-register versions. The time to load
one single precision operand into an NS32081
register is 2.6 IlS, or 2.2 IlS slower than
executing an ADD or MUL using the same
operand memory-to-memory versus register­
to-register. The time to load a register double
is 1.8 IlS slower than executing an ADD or
MUL memory-to-memory versus register-to­
register. The times to move an operand to
memory are slightly slower still.

While adds and multiplies are the most often
used floating point arithmetic operations,
loads and stores occur even more often. In
particular, at least one non-register-resident
operand is needed for most floating point
operations. Computations commonly
occurring in engineering and scientific
problems such as matrix inversion, dot
product evaluation, and polynomial evaluation
seem to have this characteristic. Fast load
and store commands are one key to the
performance of a floating point accelerator.

SINGLE
PRECISION

7.8 IlS
7.4 IlS
5.2 IlS
4.8 IlS
2.6 IlS
2.9 IlS

DOUBLE
PRECISION

8.4 IlS
7.4 IlS
7.2 IlS
6.2 IlS
2.8 IlS
3.1 IlS

By providing an external register file on the
RT PC FPA, the Floating Point Register (FPR)
single-precision write float register command
is reduced to 1.9 IlS measured at the FPA
interface. The single-precision read float
register (into ROMP register) command is
reduced to 2.2 JJS. It should be noted that the
corresponding times using the internal
registers would increase by approximately 1.5
IlS in the FPA system due to interface delays,
becoming 4.1 IlS and 4.4 IlS respectively. The
result is a savings of 2.2 IlS for both FPR
reads and writes.

Since the ROMP can transfer a maximum of
32 bits in a single bus cycle, two FPR read or
writes must be used to handle double­
precision operands. Thus, the savings is
doubled or 4.4 IlS per double-word move.
(ROMP Load and Store Multiple commands
could have been used to move double­
precision operands, but doing so did not
seem justified.)

Once the external register file logic is added,
the cost to expand the number of registers in
the file and to provide multiple register sets is
minimal. The RT PC FPA has 32 sets of 16
32-bit registers. Of the 16 registers in a set,

o

o

FPR 0

FPR 1

·
· ·

FPR 14 - status

FPR 15 - system

h

Register set
10

·
· ·

4 5

31

:h

Register
address

Register
set 0

Register
set 1

Register
set 31

8
Register
file
address
register

Figure 3 External Register File Organization and
Addressing

the last two are reserved for status and
system use, providing the user with 14 FPRs,
or six more than are provided internally by
the NS32081. A command is provided which
changes the register set pOinter and restores
the FPA status register associated with the
new register set. The register sets may be
allocated to different tasks in the same or
different jobs. For this reason, the register set
switch command (called 'Task Switch') is
executable only from the ROMP supervisor
state. Figure 3 shows the organization of the
FPA's external register file and the associated
address register.

23

A Lock command (executable only in
supervisor state) is provided which places the
FPA in a mode where it will execute only a
few special supervisor state commands in its
instruction set. This command is used when
the RT PC supervisor switches to a task
which does not use the FPA, to prevent
inadvertent alteration of another task's FPA
state.

Exception Handling
The NS32081 supports the IEEE 754 Floating
Point Standard, but requires external software
support for a fully conforming implementation.
Thus, an efficient mechanism is needed to
allow the FPA to request assistance from
software as necessary and resume normal
execution at the proper point. The ROMP
could read the FPA's status after each
command to determine if assistance is
needed. While this approach would maintain
synchronization between the ROMP program
and the FPA, it is hardly an efficient
mechanism.

The FPA uses the ROMP Program Check
mechanism to signal the ROMP when it needs
support to conform to the IEEE 754 Standard
or to report a floating point exception as
defined in the IEEE Standard, i.e., overflow,
underflow, divide by zero, invalid operand, or
inexact result. Thus, if the FPA detects a
situation in which it needs assistance, it
signals an 'Exception,' causing a ROMP
Program Check. It does not alter any of the
data registers and copies the command
needing assistance into register 15
(numbering from 0) of the active register set.
The 'FF' portion of the command is implicit
and is therefore replaced by information
(received with the command) on the ROMP
state when the command was issued. Some
of the items contained are bus read (Load) or

24

write (Store), virtual or real addressing mode,
and problem or supervisor state. The Virtual
Resource Manager (VRM) reads the FPA's
Status Register (FPASR) and finds that the
FPA caused the Program Check. The FPASR,
register 14 in a set, also contains information
indicating the reason help was requested.
VRM passes control and the contents of the
FPASR to the supporting software. This
program, called FPFPX, can read register 15
to determine what the command was. It can
also read the contents of the FPRs specified
by the command. FPFPX completes the
operation if possible and causes execution to
resume at the proper point using information
saved when the Program Check occurred.

There is, however, one problem. The section
on overlapped operation between the ROMP
and the FPA states that the reply is sent back
to the ROMP shortly after execution is begun
in order to facilitate the overlap. While some
types of exception conditions such as parity
errors and illegal commands can be detected
before the start of execution, others such as
overflow, underflow, and inexact result cannot
be until execution is complete. The problem is
solved by reporting these exception
conditions in the reply for the following FPA
command. If one of these conditions is
detected, the command which caused it is
saved as are the unaltered FPRs (0-13). The
FPASR is set to indicate the exception
condition. When the next FPA command is
received, its reply is returned immediately with
the 'Exception' line asserted. The new
command itself is discarded, but will be
reissued by the VRM after FPFPX processing
if normal processing can continue. Figure 4
shows how such an exception is reported,
how the result might be corrected, and how
normal execution is resumed.

As an example, suppose that the ROMP
issued a "Fadd short FPR1 to FPR2 into
FPR2" to the FPA (FPA command 1 in Figure
4) and that FPR1 contains a denormalized
number. The NS32081 cannot process
denormalized numbers so the FPA would
return a reply with 'Exception' asserted when
it tried to execute FPA command 2. The
FPASR would next be read by VRM. When
FPFPX is activated, it would read FPR15 and
find a valid Fadd short command. It would
then read FPR1 finding the denormalized
number. The command would be emulated in
accordance with the IEEE Standard to
produce the correct result, which would be
stored by FPFPX in FPR2. FPA command 2
would then be reissued as shown by VRM
and control returned to the active task.
Normal execution would resume.

Conclusions
Several methods for enhancing performance
in floating point accelerators have been
discussed. Overlapped processing between
the ROMP and the FPA allows each to
process at a faster rate and still maintain
synchronization with the other. The external
register file provides increased read and write
FPR performance by taking advantage of the
fact that in the NS32081 relatively little time
penalty is incurred in using externally versus
internally stored operands. Expanding the
register file to multiple register sets enhances
task switching performance. Use of the
ROMP Program Check mechanism to notify
the executing program of FPA exception
conditions provides an efficient, synchronous
exception handling mechanism.

The RT PC Floating Point Accelerator
improves system performance of the
Whetstone bench mark from approximately
12K WIPS (Whetstone Instructions Per

ROMP Activity FPA Activity Comments

(FPA initial conditions - IDLE and No Exception on previous command)

FPA command 1 •
......-Reply 1 wlo exception

T
Non-FPA I

Command 1
execution

FPA command 2 -----il.~

T
Inst fetch

1
T

Read FPA

status I
Re-execute
command 1
in FPFPX

1-

...... ..---Reply 2
with exception

I
...... ..---Reply Rd Stat

wlo exception

FPA command 2 -----il.~
(re-issued)

......-Reply 2 wlo exception

T
Command 2
execution

Receive command 1
Start execution of command 1

Command 2 queued

Return exception for command 1

Receive read status
Execute read status

ROMP Re-executes command 1 in FPFPX

Receive command 2
Start execution of command 2

Figure 4 Exception Processing between ROMP and FPA

Second) to approximately 125K WIPS in the
compatible mode and over 200K WIPS in the
direct mode.

References
1. D.E. Waldecker, C.G. Wright, M.S. Schmookler, T.G.

Whiteside, R.D. Groves, C.P. Freeman, A. Torres,
"ROMP/MMU Implementation," IBM RT Personal
Computer Technology, p. 57.

2. National Semiconductor Corporation, Series 32000
Instruction Set Reference Manual, pages 8-11 and
8-12.

25

System Board and I/O Channel for the IBM RT PC System

Sheldon L. Phelps and John D. Upton

Introduction
The IBM 6150 and 6151 system boards are
designed to efficiently support the new IBM
32-bit microprocessor (ROMP). The system
board integrates the processor card, the
system memory cards, and the I/O
subsystems. The 32-bit address and data
structures of the ROMP are translated into
the 8 and 16-bit PC and PC AT compatible
I/O channel by the Input/Output Channel
Controller (IOCC).

The partitioning of the design and some of
the major hardware divisions were governed
by the physical size of the system boards.
Other decisions were based on the size of the
system units and the cost of the item. While
the system board design was constrained by
physical size, the objective of flexibility was
met in many areas by the use of
approximately 20 Programmable Array Logic
(PAL) devices. The PALs allowed design
changes with minimal impact to the system
board layout and schedules.

This article will include information about
configurations, design features, data transfer
methods and I/O channel performance.

System Boards
There are two basic system boards for the
IBM RT PC system. The system board of the
IBM 6150 (floor-standing unit) and the system
board for the IBM 6151 (table-top unit) are
functionally the same, except the IBM 6151

26

has no RS232 serial ports and two less I/O
slots. The logic hardware design of the two
system boards is the same. This allows the
same system software to be used.

The system board contains two major groups
of logic. These are the I/O Channel
Converter/Controller (IOCC) and the I/O
Subsystem. The 10CC contains the logic that
emulates the PC I/O channel while the I/O
Subsystem incorporates the adapters and
system support functions normally found on
the IBM PC, PC XT and PC AT system
boards. Figure 1 shows a conceptual layout
of the functions on the system boards.

The 10CC is responsible for translating the
RT PC 32-bit processor channel to one
compatible with the IBM PC product family.
Much of the design of the IOCC was driven
by the need to provide features which would
enhance the system's use in mUlti-user
environments. Because of the complexity of
its logic and a very short design schedule,
much of the 10CC is implemented in
Programmable Array Logic. This design
approach resulted in a compact, flexible
design which was easy to modify as the
system design point was refined.

The 10CC function is accomplished using
three groups of logic. Together they make up
about fifty percent of all logic on the system
board. The logic groups are known as the I/O
Channel Converter, the I/O Channel Controller
and the Address Translation Controller.

The first logic partition of the 10CC is the I/O
Channel Converter. It is the function of this
logic to demultiplex the 32-bit processor
channel and generate the signals needed to
emulate the 8/16-bit PC I/O channel. An
internal 16-bit data bus is generated on which
resides the I/O Subsystem. The I/O Channel
Converter handles data width translations to
and from the 32-bit wide processor channel to
the 8/16-bit wide I/O channel data bus. The
second function of the Converter is to
implement the protection mechanism for the
I/O channel and I/O Subsystem. It does this
by selectively disallowing certain accesses to
the I/O channel and I/O subsystem. This
gives the RT PC Virtual Resource Manager
the ability to protect system resource integrity
in a multi-user configuration. The final
function of this logic partition is to report
error conditions to the ROMP and maintain
status information on the state of the system
board for use in error recovery.

The second partition of the 10CC is the I/O
Channel Controller. This is the logic that
controls the flow of data and addresses on
the I/O channel. The controller logic also sets
up the proper data alignment on the I/O
channel for each transfer. Finally, the
Controller has responsibility for the protection
of system board resources from alternate
controllers operating on the I/O channel.

The last logic partition of the 10CC is the
Address Translation Controller. This logic is
used during Direct Memory Access (DMA) to

I

I

Floating point
accelerator
socket

32-bit
Processor
Channel

I
I/O channel
converter

16-bit
internal
channel

Translation 1
Controller I

I
DMA I
Controller I

I
I/O Channel
Controller

I/O card sockets: AT

32-bit
processor
socket

I/O channel
protection

(on System Board)

I Interrupt

I Controller

I Real Time

I Clock

System Board
protection

~ B/16-bit
I/O Channel

AT AT AT

Figure 1 Block Diagram Of System Board
*Items on 6150 only.

couple the 32-bit address space of the RT PC
processor channel with the 16/24-bit address
space of the IBM PC and PC AT. In addition
to its function of coupling the two address

1

1

AT

32-bit ECC
memory card
sockets

Memory Channel

Keyboard &
locator
adapter

Dual port
serial
communications
controller*

PC AT* PC*

Keyboard
connector

Locator
connector

Port A
connector

Port B
connector

spaces, the Address Translation Controller is
also capable of relocating addresses during
the DMA transfer. This relocation is used to
specify the new destination address for the

data, the destination memory (I/O channel or
system), and in the case of system memory,
the translation mode (real or virtual).

The I/O Subsystem on the system board
provides the basic system functions found in
the IBM PC product family. This gives the
RT PC system a high level of compatibility
with preexisting PC family hardware adapters.
The I/O Subsystem resides on the Internal
Channel as shown in Figure 1. This channel is
isolated from both the processor channel and
the I/O channel.

The DMA facilities on the system board are
very similar to those found on the IBM PC
AT. Standard 8237 A DMA Controller modules
are used. The DMA controllers allow the use
of either 8-bit or 16-bit devices and support
16-bit alternate controllers. The two DMA
controllers are not cascaded together. All
channel arbitration is implemented in separate
logic to enhance performance.

In addition to the seven DMA channels of the
PC AT, the RT PC system supports an eighth
channel for the RT PC 80286 Coprocessor.
This extra channel supports a specially
modified arbitration protocol for coprocessor
applications. The special arbitration allows the
coprocessor to use the I/O channel while the
ROMP executes out of system memory. The
coprocessor will relinquish the I/O channel
whenever any other device needs to use it.

Like the PC AT, I/O channel memory refresh
is generated with special logic. This logic,
however, differs in that refresh is executed in
a burst manner. To minimize I/O channel
overhead from refresh, the system will wait
until at least five refresh cycles are required
before requesting service. The refresh logic is
capable of saving up to 16 refresh requests
between uses of the I/O channel.

27

Included on the system board is an
MC146818 Real Time Clock module. This
device maintains time for the system and also
contains system configuration information.
Keeping system configuration data in a
battery backed RAM eliminates the need for
user changeable jumpers on the system
board. In addition to saving system data and
keeping time, the module is used to generate
the system "heartbeat" timer for the ROMP.

The system board uses two 8259A
Programmable Interrupt Controllers to
implement the interrupt system. These
controllers are not cascaded. They are
connected to two separate ROMP interrupts.
This allows the ROMP early knowledge as to
the priority class of the interrupt. The interrupt
controllers are isolated from the I/O channel
by logic which allows diagnostic software to
emulate interrupts during system Power On
Self Tests.

An 8051 microprocessor is used for the
system console input devices. The logic
supports attachment of the RT PC system
keyboard and the RT PC system locating
device. The locating device interface uses a
serial RS232C-like interface protocol. This
flexibility allows the attachment of other
RS232C input devices. The speaker for the
RT PC system is mounted in the keyboard.
Besides its normal use as an audio output
device it also is used to provide audio
feedback for key depressions on the soft­
touch keyboard.

The IBM 6150 also has two Serial
Communication Ports on the system board.
These ports are implemented with a single
8530 Serial Communications Controller
module. Additional logic is provided on the
system board to support DMA transfer

28

capability and to give flexible control of the
RS232C interface signals.

Address Translation and Protection
Since the RT PC systems were designed with
multi-user capability in mind, logic was
incorporated into the system board to allow
several addressing modes and provide for
system resource protection by the operating
system software. These features are not
generally required for a single-user, stand­
alone system. Address translation is used
only during DMA operations. Two distinct
address translation modes are supported on
the system board. Each has a specific design
point and use in the RT PC system. Similarly,
there are two ways in which the adapters on
the system board are protected from
unauthorized access.

The RT PC system utilizes a 32-bit address
bus on the processor channel and yet has a
16/24-bit address bus on the I/O channel. The
coupling of these two address spaces is
handled by the Address Translation
Controller. For a Processor Input/Output (PIO)
cycle, the I/O channel is seen as one of two
16M-byte segments in the 32-bit address
space. Accessing either segment results in a
transfer cycle on the I/O channel. The result
is that the 64K-byte PC I/O address space
and the 16M-byte PC AT memory address
space are mapped into the 32-bit address
space on the processor channel.

DMA devices present a unique problem to the
system board. The DMA Controllers are
capable of generating only 16 bits of address
on their own. Thus the Address Translation
Controller must supply the remaining 8 bits if
the destination is the I/O channel and the
remaining 16 bits if the destination is system
memory. Furthermore, it must determine the
proper destination bus for the data.

Since an alternate controller operating on the
I/O channel only has access to 24 address
bits, the Address Translation Controller
provides a programmable means of allowing
access to the system memory address space.
Also, additional logic is provided to allow the
alternate controller to select real or virtual
addressing when the destination is system
memory. If desired, the Address Translation
Controller may be programmed to allow the
alternate controller to run using I/O channel
attached memory.

The heart of the Address Translation
Controller is the array of Translation Control
Words (TCWs). The TCWs are actually a 1 K
by 16-bit high-speed RAM. Each word of the
TCW is an address translation element. Half
of the TCWs are used by Page Mode to map
a 2K-byte section (a page) of system memory.
The other half is used by Region Mode to
map 32K-byte sections of system memory.
The DMA Mode Register on the system board
is used to determine which type of TCW word
will be used for a given DMA channel.

The half of the TCW entries dedicated to
Page Mode is further divided into eight
groups of 64 entries each. Each of the groups
is used to provide the address mapping for a
single DMA channel. In this way each DMA
channel is allowed to transfer up to 128K
bytes of data. The remaining half of the TCWs
is shared by all DMA channels operating in
Region Mode. In this mode, each TCW entry
maps 32K bytes of memory. Thus region
mode devices can access all of the 16M-byte
address space. The Address Translation
Controller can be set up so that some
portions of this address space are mapped to
the I/O channel-attached memory while others
are mapped to system memory.

Protection of valued system resources is the
key to a maintainable multi-user system. The
RT PC system incorporated several protection
mechanisms into the 10CC design point. Each
of these protection functions is
programmable, for greater flexibility.

First, the PC I/O channel may be protected
from access by an application program. This
protection is separate for the I/O and memory
address spaces. The operating system always
has access to the I/O channel, while
application programs may be disallowed from
accessing either the I/O map, memory map,
or both, on the I/O channel. This ensures that
the operating system has complete control
over, and always knows the state of, each
system resource. This protection helps keep
a wayward application from crashing the
whole system.

Secondly, the system board resources may
be protected from illegal access by an
alternate controller. The RT PC 80286
coprocessor is one such controller. A
programmable mechanism exists on the
system board that will selectively disallow
access to certain system board hardware
resources (DMA controllers, for example).
Three groups of system board logic can be
separately protected from access by an
intelligent device on the I/O channel. Each
group contains system resources of a
different level of importance to system
integrity. In this way the system can be
insulated from programming errors on
intelligent adapters or coprocessors.

I/O Channel Operations and Data Transfer
The I/O channel on the IBM RT PC system is
designed to be compatible with the IBM
Personal Computer family. Most adapters
designed for the IBM PC or PC AT will

operate properly on the I/O channel.
However, it must be pOinted out that they will
require the RT PC 80286 Coprocessor card to
operate them unless special programs for the
ROMP are written to drive them.

The 10CC on the RT PC system board
performs the necessary transformations
between the processor channel (IBM protocol)
and the PC AT compatible I/O channel.

Two methods of data transfer are used in the
RT PC system. They are Processor Input/
Output (PIO) and Direct Memory Access
(DMA). When PIO is the method of data
transfer, the I/O channel address is coming
from the address/data bus of the processor
channel. Addresses on the processor channel
can go to several different places. Therefore,
the 10CC will only respond to those
addresses which are being sent to it. Figure 2
shows the format of the 32-bit address on the
processor channel. Bits 0-7 of the processor
channel address select the I/O channel as the
destination of the address. Bits 8-31 are the
I/O channel address. This method of
addressing is used by ROMP to send control
information and data to the 10CC, I/O
subsystems and I/O devices.

When the addresses are gated on to the I/O
channel address bus they are sent to all of
the address lines SAO-SA 19 and LA 17 -LA23.
They are held valid for the complete I/O cycle.
Therefore, Bus Address Latch Enable (BALE)
is not driven on the I/O channel by the
system board. It will remain active throughout
the cycle.

DMA is the second method of transferring
data on the I/O channel. DMA has two modes
of operation; one method is the alternate
controller mode and the other is DMA device

Processor
card 1""'1-11-1-0X-O-O -r-I ----r-----r------.I
channel .. .
address 0 7 8 31

~~nnel I I
I/O
channel
address

select MSB LSB
I I

I I
23 0

MSB = Most significant bit
LSB = Least significant bit

Figure 2 Processor Card Channel to I/O Channel
Addressing

mode. An alternate controller is an adapter
that is capable of gaining control of the I/O
channel and driving the address and control
lines to perform data transfer. Alternate
controllers are limited to 16-bit adapters, but
can operate on any DMA channel. A DMA
device is an adapter that requires the DMA
controller on the system board to drive
address and control lines in order to perform
the data transfer. Addressing from the I/O
channel to the processor channel is handled
by a DMA controller and uses the Translation
Control Words (TCWs).

The 10CC handles data alignment as shown
in Figure 3. ROMP always uses the IBM
convention for its operations. This is shown
on the line titled "Processor card channel
data." A "WORD" on the processor channel
is 32 bits, with bit 0 being the most significant
bit and bit 31 being the least significant bit.
But a "WORD" on the I/O channel is 16 bits,
with bit 0 being the least significant bit and bit
15 being the most significant bit. This is the
convention used by the IBM PC compatible
I/O channel. For example, bytes A and Bare
the most significant bytes on the processor
channel. The bytes go through two transforms
to get to the 16-bit I/O channel. The
transforms are done in one step. They are

29

Processor
card I A B I e I D I channel
data 0 7 8 1516 2324 31

MSB t LSB

[lace I
I

1

I A B
I Intermediate step showing

reversal of 0&7 and 8&15.
7 015 8

LSB MSB

I/O
channel I B I A I Complete transform
data 15 87 0

MSB LSB

Figure 3 IOCC Data Transformations

shown in two steps for clarity. First the 10CC
transfers the bits as-is, with only the numbers
of the bits being changed. That is, bit 0 is
renumbered to bit? and bit? to bit O. The
10CC also reverses the bytes themselves.

The ROMP can direct 32-bit writes to the I/O
channel. The 10CC receives the 32 bits as
shown in Figure 3. The 10CC will then send
bytes A and B to the I/O channel for a 16-bit
device, then multiplex processor channel
bytes C and D to the 1/0 channel in the same
manner as bytes A and B (as described
above). This is done in separate I/O cycles. If
the adapter is an 8-bit device, the 10CC will
multiplex each byte A, B, C, and D separately
to the I/O channel on SOO-SO?

The RT PC system is introducing its own
versions of burst mode DMA and buffer mode
OMA. Burst mode OMA allows an alternate
controller to take several I/O channel cycles
each time it gets control of the I/O channel.
Buffer mode DMA describes an alternate
controller performing two 16-bit memory
writes to the 10CC before the 10CC writes to
system memory. System memory bandwidth
is improved because only one 32-bit write is
done rather than two 16-bit writes (see Figure

30

4). This applies to reads also. Buffer Mode
DMA is limited to use by alternate controllers.
Data transfers must begin on a double-word
boundary. Bandwidth on the I/O channel is up
to 2 megabytes per second when an adapter
is designed to transfer data using both buffer
and burst mode OMA.

Interrupt sharing is being used to solve the
problem of the limited number of interrupt
levels available on the PC I/O channel. It is
also used to resolve some conflicts (two
adapters designed to use the same level) and
to allow multiple adapters of the same type to
use a single level. The shareable interrupt
circuit is compatible with PC and PC AT.
Adapters with shareable interrupt circuits and
adapters with nonshareable interrupt circuits
can be plugged in at the same time. Only one
type can be enabled at a time on anyone
interrupt level.

Conclusion
The RT PC system boards have an IBM PC
and PC AT compatible I/O channel with a
maximum I/O channel bandwidth of 2
megabytes per second. A single system
board design was implemented for both the
IBM 6150 and the IBM 6151. Because of
packaging constraints, two I/O slots and the
two Serial Ports were removed from the
implementation of the IBM 6150. Some of the
new features of the RT PC system boards are
the facilities of the 10CC. They include
protection of the important system registers
from intelligent devices on the I/O channel
and special address alignment from the
processor channel to the I/O channel. The
10CC also includes the logic to handle all of
the data alignment and multiple cycle
requirements for the processor channel's 32-
bit data bus to the I/O channel's 8/16-bit data
bus. Also included on the system boards is
the logic and memory for OMA addressing

r Double word address boundary r Word address boundary

(XXOO) (XX10)

lace I A B I
0 7f 15 16 2324 31

I/O
channel B I A I
data 15 8 7 0

First step in Buffer Mode DMA transfer

r Double word address boundary r Word address boundary

(XXOO) (XX10)

lace I A B leD

I/O
channel
data

o 7 8 15 16 2324

•
B A

15 87 o

Second step in Buffer Mode DMA transfer

Figure 4 Buffer Mode DMA Transfer

31

through the TCWs and control of buffer and
burst mode DMA operations from the !/O
channel.

IBM RT PC Displays and Adapters

Joe C. St. Clair

Introduction
AII-points-addressable displays allow a wide
variety of applications, from windowed text
processing to graphics, to be run on a
system. However, this flexibility comes at a
price. The large number of picture elements
(pixels) that must be processed can make it
difficult to update the screen rapidly. To solve
this problem for a range of applications that
have different cost-versus-function needs, a
family of three all-points-addressable display
adapters has been designed. This family of
adapters solves the problem of updating the
display screen rapidly with a combination of
techniques. First, all three family members
use innovative bit-map memory organizations
that allow the pixels to be accessed easily.
Second, performance assistance hardware on
the cards provides help to the ROMP in
manipulating the pixels. For the two smaller
members of the family, this consists of
special data paths on the card that, among
other things, work with the system processor
to move pixels in the bit map. The largest
family member has a display command
processor that can process lists of display
commands with a minimum of help from the
ROMP. The third way that the display adapter
family solves the screen update problem is by
using a range of technologies that includes
CMOS standard cells, bipolar gate arrays,
and surface-mounted components.

The display adapter family drives three
monitors: a 12-inch black and white monitor
with a 92-Hertz interlace refresh rate

displaying 720 by 512 pixels; a 14-inch color
monitor with a 0.31 millimeter shadow mask
that has the same refresh rate and pixel
format and displays 16 colors simultaneously
out of a palette of 64 colors; and a 15-inch
black and white monitor with a 60-Hertz
non interlaced refresh rate displaying 1024 by
768 pixels. The 12-inch and 14-inch monitors
can display 25 lines of 80 characters using
the standard 9-pixel by 20-pixel character
box. With the 15-inch monitor, 38 lines of 113
characters can be displayed using the same
character box. Because the display adapters
that drive the monitors are all-points­
addressable, character boxes of any size may
be used. All three monitors provide tilt and
rotate pedestals, have an antiglare treatment,
and have equal spacing between horizontal
and vertical pixels (square pixels).

Each of the three display adapters that drive
the monitors provide the ROMP with
performance assistance hardware that allows
the bit map to be updated quickly. The entry
level display adapter is the AII-Points­
Addressable-8 (APA8). It drives the 12-inch
black and white monitor. The APA8C is a
direct extension of the APA8 to allow it to
drive a color monitor. The AII-Points­
Addressable-16 (APA 16) display adapter
drives the 15-inch black and white monitor.
The three adapters provide successively
greater levels of assistance to the
microprocessors in updating the bit map.
Each of the adapters takes up one slot in the
RT PC.

APA8 and APA8 Color Adapter Functions
The APA8 display adapter provides a single
plane of 64K bytes of memory. The color
version, the APA8C, provides four planes of
memory identical to that found on the
monochrome adapter, for a total of 256K
bytes of memory. Both cards have a unique
byte-overlapped memory organization.

The APA8 and APA8C display adapters'
unique memory organization allows the
ROMP to access the bit map without
encountering any word boundaries. This is
done by having successive 16-bit words
overlap each other by one byte. Thus, any 16-
bit word can be written into the bit map with a
single memory operation. This memory
organization is particularly efficient when
displaying text composed of character boxes
that are the usual nine pixels wide. Without
this unique memory, half the character boxes
would bridge two words and so would require
special processing by the ROMP. With this
organization, all character images on the
screen are treated the same.

Mode bits in the control registers on the
APA8 and APA8C display adapters can be set
to configure the bit map memory so that 16-
bit words written into the bit map appear on
the screen either as two successive
horizontal bytes or with one byte atop the
other. Also, an overlay mode is available so
that new information written into the bit map
is "OR"ed with the information already there.

31

This avoids many of the read-modify-write
cycles usually needed when updating display
bit maps_

Both adapters also help the ROMP move
blocks of pixels around in the bit map and
between the main store and the bit map_ To
help move pixels within the bit map, the cards
provide a set of registers, barrel shifters, and
logic units that realign pixels within bytes.
Using this hardware assistance, the ROMP
can move and realign 16 pixels at a time by
reading from a source address and writing to
a destination address. Hardware on the card
takes care of realigning, masking and merging
the source data before writing it to the
destination. Optionally, the data can be
inverted before being written back into the bit
map. The color adapter operates on all bit
map planes simultaneously and so can
perform data moves at the same speed as
the black and white adapter even though it
must move four times as many bits. Both
adapters have an autoincrementing pOinter
that can be used to address the array when
moving blocks of data between the bit map
and system memory.

Figure 1 shows a block diagram of the APA8
monochrome display adapter. The APA8C is
identical except that it has four copies of the
bit map and logic unit. Also, the video output
passes through a look-up table before it goes
to the monitor.

These two adapters use CMOS standard cell
integrated circuits to achieve a high level of
function at a low cost and with minimum
power dissipation. Standard cell technology
occupies a place between gate arrays and
custom integrated circuits in terms of both
cost and development time. Like custom ICs,
it requires that a full set of masks be
generated for each circuit. However, the
development time and cost is considerably
less because the technique puts constraints
on the IC designer. A standard cell circuit is
built from a library of cells all having the same
height. These cells are arranged into rows
with variable spacing between the rows to
allow for wiring. The constraints on the
circuit's physical design allow automatic
placement of the cells and interconnect
wiring. The automation reduces both design
costs and turnaround time compared to

24-bit system
address

System
Address -2... 720 x 512 304 x 512 CRT

16-bit system
data/commands

bus
inter-
face

Logic
unit

inter-
face .--:L..-

Figure 1 APA 8 Display Adapter Functional Diagram

32

"Visible" "Hidden"
bit map bit map

refresh
logic

Video
out

custom ICs. However, because the cells
themselves are like small custom ICs,
typically implementing such functions as flip­
flops and multiplexers, they are smaller and
have better performance than their gate array
equivalents.

APA8 Color
On the color display adapter, a plane
protection mask register can be used to
prevent any of the four bit-map planes from
being updated. This adapter also provides a
color expansion function that allows all
unprotected planes to be written
simultaneously. When using this function, a
bit written by the system processor to a value
of "ONE" is converted into a
"FOREGROUND" pixel color before being
written into the bit map planes, and a
"ZERO" bit is converted into a
"BACKGROUND" pixel color. The
"FOREGROUND" and "BACKGROUND" pixel
colors are defined by a value written into a
control register. The color display adapter
also has a color look-up table that maps the
16 possible pixel values into the 64 possible
color values that can be displayed by the
monitor.

In order to fit the extra bit map planes and
function onto the color display adapter,
surface mount technology is used. Small
outline (SO) packages and plastic leaded chip
carriers (PLCC) are used for most of the
components on the card. These packages
take up less card area than more
conventional dual-inline-pin (DIP) packages.
The PLCC package is particularly attractive as
an alternate to 64-pin DIP packages and pin
grid arrays. Such large DIPs make inefficient
use of card space and present reliability
problems because of differences in the
thermal expansion coefficients between the
DIP and the card on which it is mounted.

PLCC packages have considerable cost
advantage over pin grid array packages.

APA 16
The APA 16 display adapter drives the 1024
by 768 pixel 1S-inch black and white monitor.
Because of the larger number of pixels this
adapter must manipulate compared to the
APA8 and APA8C adapters, it provides more
extensive hardware on the card to help the
ROMP. This additional hardware includes a
unique bit-map addressing scheme, a
command processor, and a hardware cursor.

Figure 2 is a block diagram of the APA 16.
This display adapter provides 128K bytes of
memory. The first 96K bytes of this are
scanned out to the monitor to form the image.
The remaining 32K bytes are used by the
display controller located on the card.

The bit-map addressing scheme used on the
APA16 is called a Bit Addressable,
Multidimensional Array (BAMOA). The BAMOA
memory organization allows up to 16
contiguous pixels to be accessed in a single
memory cycle along either the horizontal or
vertical screen axis and to begin at any
arbitrary pixel boundary. This BAMDA allows
vertical lines to be drawn at the same speed
as horizontal lines. It also allows tall and thin
areas, such as character boxes, to be
manipulated efficiently.

The system processor can either update the
bit map directly by writing to the BAMOA
memory, or it can load commands into a
display controller located on the adapter and
let it update the bit map. Lists of display
controller commands are executed out of the
non-displayed portion of the bit map. These
command lists may be loaded directly into the
non-displayed bit map by the system
processor or the display controller itself can

24-bit system
address

16-bit system
data/commands

System
bus
inter-
face

Logic
unit

...

BAMDA ~
address
inter-

r--l+-face

Display --control

Figure 2 APA 16 Display Adapter Functional Diagram

down-load the command list from main store.
In this mode of operation, the non-displayed
portion of the bit map acts as a cache for the
display controller and the main store is used
to hold the extended display command list.

The set of commands for the display
controller includes operations to draw lines,
manipulate blocks of pixels (BITBL T), read
from main store (DMA), and control the flow
of instructions. The coordinates for line
drawing can be in either absolute or relative
screen coordinates. The basic operations that
manipulate blocks of pixels include
rectangular area fill, copy, and merge source
area with destination area using any of
several logical operations. The copy and
merge operations can simultaneously rotate
the image (- 90°, - 180°) or mirror it about
the X or Y axis. These basic operations can
be chained together to perform more complex
BITBLTs.

CRT
1024 x 768 refresh
"Visible" bit map logic

1024 x 256 Hardware

"Hidden" bit map cursor

1024 x 40 bits
Read-only storage

......

I--

Video
out

The reads from main store can also operate
on two-dimensional arrays of bits. Blocks of
bits read from main store can replace blocks
of pixels in the bit map or they can be
merged with bit map data just as they can
when doing merge operations entirely within
the bit map. These operations can also rotate
and mirror data just as the intra-bit-map
operations can.

The flow control instructions to the display
controller include a branch, a subroutine call,
a return from subroutine, a wait for scan line
count, and several instructions that will
interrupt the ROMP under various conditions.
These flow control instructions allow the
display controller to execute complex lists of
display commands with little or no
intervention from the ROMP.

The APA 16 also provides a hardware cursor.
This is a 384-byte section of hidden bit map

33

that is displayed on the screen overlaying the
primary bit map image. It appears as a 48 by
64 pixel block with the position of the block
determined by values loaded into registers on
the card.

Like the other members of the family, this
adapter uses LSI technology to allow a high­
function display to fit onto a Single PC card.
Because of the high speeds needed on large
screen display adapters, bipolar gate arrays
are used on this card as well as CMOS gate
arrays. The display controller located on this
card is implemented as a programmable
sequencer using a bipolar gate array and
horizontal microcode. Other bipolar arrays
provide a data path for the pixels. A CMOS
gate array and video DRAMs that include an
internal address incrementer provide the
BAM DA memory.

Conclusion
This family of display adapters uses a range
of bit-map architectures, performance
assistance hardware, and technologies to
provide solutions to a spectrum of
app!!cat!ons that !nc!ude graphics and high­
function text. The two adapters that drive the
smaller monitors use byte overlapped bit map
arrays and CMOS standard cell ICs to assist
the ROMP. The color display adapter uses
surface-mount technology and provides extra
assistance to the ROMP by allowing all
planes to be manipulated simultaneously. The
adapter for the 1S-inch monitor uses CMOS
and bipolar gate arrays and video DRAMs
with address incrementers to provide
extensive performance assistance hardware.
This includes a bit-addressable, multi­
dimensional array bit map, a
microprogrammed display controller, and a
hardware cursor. All three adapters ease the
burden of the ROMP in updating the bit maps.

34

Use of Artificial Intelligence to Diagnose Hardware

Nancy A. Burns and C. Edward Williams

The Design Problem
The diagnostic software package for the IBM
RT PC is designed to provide both operators
and service representatives alike with the
ability to diagnose the hardware, isolate faulty
parts, and replace them with new parts. This
strategy provided many interesting challenges
in the design of the RT PC diagnostic system.
The program would be running on a machine
suspected of having faulty components,
controlling and analyzing the results of
hardware tests run on itself. Memory space
was limited to a minimum of 1 megabyte.
Everything necessary for bringing up the
machine and running the diagnostics should
be diskette resident. Finally, the configuration
of the machine can be complex, variable, and
expandable.

Solution
The implementation of an expert system was
chosen as the solution to the design problem
of RT PC diagnostics. Expert systems are
programs that take knowledge encoded as
rules and make conclusions on the basis of
the rules in much the same way as human
experts. Encoding knowledge in rule form is
generally easier for human experts than
programming in a high level language. In
addition, a rule base can be easily modified to
diagnose new components or even
completely different machines. This feature
should allow the same inference engine to be
used in future development efforts. Finally,
since the limits of current diagnostic
technology had been reached, expert systems

and artificial intelligence offered the
opportunity to extend the state of the art.

The General Purpose System for Inferencing
(GPSI) was chosen as a basis for the expert
system needed to meet these challenges
because of its characteristics and structure
[1]. GPSI is an expert system shell developed
at the University of Illinois under the funding
of the IBM Scientific Center in Palo Alto, CA.
It was designed for diagnostic and interpretive
applications. Written in Pascal and running on
an IBM Personal Computer, GPSI uses a rule
base which consists of a forest of trees [2].
Each tree contains a goal at its root, and
evidences needed to substantiate this goal at
its leaves. This structure reflects quite well
the complex, interrelated nature of hardware
diagnostic rules.

The original GPSI system lacked many
features necessary to the diagnostics of a
small machine. Most significantly, there was
no method of obtaining information except
through asking questions of the user.
Information found in the machine itself, such
as error logs and status words, is much more
reliable than users in isolating hardware
problems. In addition, tests can be performed
on hardware, and the results of those tests
provide a clear indication of the problem
encountered. A method of invoking these
tests and analyzing their results was
implemented.

In an effort to limit user interaction, it is
desirable to have the expert system learn the
answers to its own questions, if possible.
This required that a method be created for
indicating that a series of specific test results
is equivalent to the answer to a single
question posed to the user.

Since real memory size is limited, and
hardware configurations are variable and
volatile, a method of segmenting the
knowledge base is needed. When the expert
system concludes that a particular component
is present and needs testing, the rules
necessary for the diagnostics of that
component can be read in and used in
isolating machine faults.

Architecture
The resulting RT PC diagnostic system is
structured as illustrated in Figure 1. There are
several layers of hardware and software
which make up the system. At the lowest
level is the RT PC hardware itself, controlled
by device driver software. The hardware is
hidden from the application level by the
Virtual Resource Manager (see Lang,
Greenberg, and Sauer) which provides a
standard 110 interface to all devices and
manages the memory allocation. The
diagnostic application has its own operating
system, the Diagnostic Control Program
(DCP). The DCP is a virtual machine which
provides an AIX file system and a direct
interface to the hardware device drivers.

35

Segment Table

Page 0 XPT
Page 1 for

Segment
N

Segment N

Page 0 XPT
Segment M Page 1 for

Segment
M

Inverted Page Table

Page Frame for Segment M

Page Frame for Segment N

Figure 1 Virtual Memory Data Structures

A segment is divided up into 2048-byte virtual
pages. A virtual page can be located in real
memory or on the disk. Each segment has an
external page table (XPT) with one 4-byte
entry for each of its virtual pages. The XPT
entries for a given segment are in contiguous
virtual memory and are therefore directly
addressable. An XPT entry describes the
characteristics of its corresponding virtual
page, such as its protection characteristics
and its location on disk. The XPT is pageable.

There is a pool of external page table entries
defined in the VRM [1] segment. The size of
this pool limits the size of the virtual address
space. The XPT for each defined segment is
contained within this pool. The XPT for the
VRM segment defines each page in the VRM
segment, including the pool of XPT entries.
The subset of the VRM segment's XPT that
defines the pool of XPT entries is referred to
as the XPT of the XPT. It is not pageable.

Real memory is divided up into 2048-byte
page frames. A page frame can be thought of
as a container for a virtual page. The Inverted
Page Table (IPT) defines the virtual page that
is currently associated with each page frame.
The MMU uses the information in the IPT
when translating a virtual address into a real
address and when determining if a protection
violation has occurred[2]. The MMU will
respond with a page fault for any virtual
memory reference that cannot be translated
using the information in the IPT. The IPT
contains one 32-byte entry for each page
frame and is not pageable.

Support a Large Virtual Address Space
Virtual memory extends the power of
computer memory by expanding the number
of memory addresses that can be
represented in a system while relaxing the
limitation that all addressable memory must
be present in real memory. The address
translation hardware requires page tables
fixed in real memory to perform its function.
The size of a conventional page table is
proportional to the size of the virtual address
space, placing a practical limit on the address
space size.

Paged segmentation is a means of reducing
this overhead. It takes advantage of the
grouping of related data in virtual memory by
representing page table data separately for
each segment. This allows space savings for
short or unused segments of the address
space.

An inverted page table further expands the
range of addressability by reducing the real
memory overhead required to support a very
large virtual address space. Since an inverted
page table contains an entry for each page of
real memory, its overhead is proportional to
real rather than virtual memory size. This

makes it feasible to map a system's entire
data base using a single set of virtual
addresses (the "one-level" store). With a one­
level store each segment can be large enough
to represent an entire file or collection of
data.

This is possible because the address
translation hardware only needs the location
of pages that are present in real memory. If a
page is not present, the hardware must
detect this fact, but it does not require the
secondary storage address. The VMM does
need this information, however. Hence, the
VMM must keep this information in some data
structure that is associated with the page. In
the VRM this data structure is the external
page table. Unless this external page table is
pageable, the advantage of the inverted page
table is lost, because the pinned real memory
requirements become proportional to virtual
memory size.

Large and Sparse Segment Support
The VMM supports segments of up to 256
megabytes. The VMM defines any segment
that is one megabyte or larger to be a "large"
segment. A large segment can be totally filled
with data, assuming sufficient disk space. A
large segment may also be lightly filled with
data that is scattered throughout the
segment. This is known as a sparse segment.

The external page table for a large segment
can itself be fairly large. An XPT entry defines
2048 bytes of virtual memory. A page of XPT
entries contains 512 of the 4-byte entries and
defines 1 megabyte of virtual memory.
Therefore, 256 pages of XPT entries are
required to define a 256-megabyte segment.

Since the XPTs are pageable and reside in
virtual memory, a subset of them describe the
XPT area itself. These are the XPT of the

127

Knowledge
engineer

+
Construct

1 System checkout

I Text file

:......
Inference User

Rule file
engine interface

Data Procedure
interface

I

Standalone
utilities I f

Diagnostic control program

Virtual Resource Manager
r---------------.,
: Hardware device drivers

Hardware

Figure 1 Diagnostic System Architecture

The expert system application is the
uppermost level of software in the diagnostic
system. The system checkout shell presents
menus to the user and obtains information
about the type of testing to be performed. It
calls the inference engine as a subroutine,
passing it a list of values to be used in
controlling the inference process. The
inference engine reads in the rule base and
gathers evidence by asking questions or
running procedures. It then concludes goals

36

:

The
user

I
r

I--
Procedures

I--

I

indicating which parts, if any, are faulty, and
returns the list of concluded goals to the
system checkout program.

All rules used in the expert system are
precompiled by the CONSTRUCT program.
The output of the compilation process is two
files. One file contains the information
necessary for building the data structures to
be used during consultation sessions. The
other file contains the text for asking

questions and reporting goals. Records from
this file are read in one at a time when
needed.

The main CONSULT module consists of a
supervisor which is invoked by the system
checkout shell. It communicates with the
operating system throughout consultation
whenever new rule base segments need to be
invoked or power turned off.

The inference algorithm, which performs such
tasks as the selection of goals, the chaining
through trees, and the investigation of
evidence structures, is also contained in the
main CONSULT module. This inference
algorithm is explained in detail in the following
section.

Independent modules, bound along with the
inference engine, contain the User Interface
Routines and the Procedure Call Coordinator.
These two modules contain all machine­
dependent code. The user interface routines
provide the code necessary for formatting,
displaying, and retrieving of information to
and from the terminal screen. For the
diagnostic application, a full-screen, menu­
driven interface is impiemented.

The Procedure Call Coordinator for the
diagnostics locates the code for a particular
procedure on the diagnostic diskette and
loads this code into memory, dynamically
binding the code to provide addressability for
the expert system when so requested. In
addition, it builds input and output buffers for
parameters passed between the two modules
and manages the invocation of the procedure
on a procedure call request from the rule
base being investigated.

The Inference Process
The knowledge base which drives the
diagnostics is represented as a forest of one
or more n-ary trees. Each tree contains a goal
to be concluded or rejected at the root of that
tree. The leaves of the tree contain evidence
of several different kinds that can be acquired
by querying the user, executing external
procedures, or referencing other nodes, trees,
or subtrees. Between the root goal and the
leaf evidences are internal nodes representing
a variety of functions. AND, OR, and NOT
nodes can be used to relate evidences and
form rules of high descriptive ability. Other
types of nodes, such as the ALTERNATIVE,
WAND, PAND, IF, and the PREEMPT node,
introduce special structures used in
controlling the flow of execution. The addition
of new node types, as required by the
application, is an easy enhancement because
of the open architecture of the knowledge
base and the modularity of the code.

The consultation session of the inference
engine primarily uses backward chaining to
make conclusions. Once a potential goal is
selected, the underlying tree is traced in a
post-order traversal which prunes off
unnecessary branches and gathers any
necessary evidence. The type of evidence to
be gathered is indicated by the type of leaf
nodes on the tree. An EVIDENCE node
indicates that data should be obtained by
asking the user a specified question. An
EXTERNAL node indicates that data will be
obtained through the execution of a specified
procedure. A REFERENCE node indicates
that a (sub)structure in some other rule must
be investigated to obtain the required
information. The structure of a sample rule
tree is illustrated in Figure 2.

I
External:

interfaceJest
return_code = 0

Hypothesis:
run all tests

I
f And ~

I

Evidence:

I
External:

peripheralJest
return_code = 0

External:
device_test
return_code = 0

'yes' of
interactive_mode

Goal:
device is bad

0.6 1 0 0.2

r----- -----, ,---- -----, r---- -- ---,
I I I I I I
I I I I I I
I External: I I External: I I External: I
I interfaceJest ran I I deviceJest ran I I peripheralJest ran I
I & return_code = 0 I I & return_code = 0 I I & return_code = 0 I
I I I I I I I L ___________ J L... _________ -' L _________ J

Figure 2 Sample Rule Tree in Diagnostic Expert System

37

Each node of a rule tree has associated with
it a confidence factor. For an EVIDENCE or
an EXTERNAL node this confidence is based
on an association factor given to the node by
the knowledge engineer and the answer to
the question asked or the value returned from
the procedure. A REFERENCE node assumes
the confidence value of the structure which it
references. The confidence values of other
nodes are calculated from the confidence of
its children. The computations used for these
nodes are dependent on the type of the node.

Multiple Rule Base Segmentation
In order for expert systems to simulate the
reasoning processes of humans, they have
historically required vast amounts of
knowledge. In the past, this knowledge has
been stored in a single large knowledge base.
As a result, most expert systems run on large
computer systems and require large amounts
of memory space for holding the complete
knowledge base. This organization is

I
1 I I

Standard Standard Parallel Other
fixed-disk diskette adapter devices ...
rule base rule base rule base

I
Feature
disk
rule base

I I
Feature Advanced
diskette diskette
rule base rule base

Figure 3 Organization of Diagnostic Rule Bases

38

unacceptable for an expert system residing
and supervising hardware diagnostics on a
small machine with a variable configuration.

During the diagnostic process, the amount of
memory available for the knowledge base
was restricted to approximately 170K bytes of
memory. Therefore, it is desirable to store
only those rules relating to components
actually present and being tested in the
consulting machine. At the same time,
however, the knowledge base should not
need to be changed for any configuration. To
accomplish this goal, rules in the diagnostic
application are segmented into contextual
units. Each segment contains all rules
necessary for the diagnosis of a single
hardware component and is read into memory
only when needed.

An action can be associated with any node in
a rule base to indicate that the state of the
current rule base should be saved, and a new
rule base should be paged in. This action will
only be taken if the confidence of the current
node is evaluated to be greater than the high
threshold associated with that node. The new
ruie base is then traced until ail ruies have
been evaluated.

When all rules in the called rule base are
exhausted, the original rule base is reloaded,
and the tracing of it is resumed from the point
at which it was suspended. Answers gathered
in the called rule base and referred to in the
original rule base are passed into the original
rule base. Goals concluded in the called rule
base are appended to the list of goals
concluded in the calling rule base. Any
number of rule base calls can be made from
any rule base, and a called rule base in turn
may call another rule base.

Any evidence which is common to more than
one unit can be labelled 'GLOBAL'. This
information is copied onto a global list which
is passed between the calling rule base and
the rule base it calls. This allows information
to be passed between the individual rule
bases.

Besides its usefulness for memory
management, the rule base call has also
proven useful for other reasons. Division of
the rule base allows separating the rule base
into segments of coherent knowledge
structures. This makes rule writing and
debugging easier and results in a more
understandable rule base. Rule base calls
also allow the same rule base to be used
several times to conclude goals about similar,
yet distinct, items. For example, only one rule
base is needed for diagnosing diskette drives,
although a hardware configuration may
consist of multiple diskette drives.

Knowledge Base Features
The knowledge base used by the expert
system for diagnosing hardware problems on
an RT PC consists of multiple rule base
segments. The first rule base segment is the
master rule base. The master rule base
executes procedures to determine the
configuration of the machine and then calls
device rule base segments to test the devices
which are present. Each device rule base
segment tests one or more of the device
options. The entire diagnostic system resides
on diskette and includes all rules necessary
to test the work station in any mode.

The System Checkout program presents
menus to the user to determine the testing
environment. From the user's responses, the
diagnostic shell sets three global values
which are passed to the master rule base.

The first of these values indicates whether the
system is being run in system checkout mode
by the operator, or in advanced mode by a
service representative. If a problem is not
detected by the operator in system checkout
mode, the system can be tested in advanced
mode. Tests are longer, and there is more
interaction with the user in advanced mode. In
addition, advanced testing will often result in
a more precise list of possible failing parts.

A second global value is used to indicate
which device is selected for testing or
whether the entire system should be checked
out. If the user has an indication of where a
problem lies, they may test only the device
that is suspected.

A third global value is used to indicate that an
intermittent problem is occurring, so tests
may be run in loop mode until the problem is
found or the user wishes to quit testing. If a
machine is not tested in loop mode, then the
rule base is completely traced one time.

Goal text in the diagnostic system is in the
form of a service request number (SRN). This
SRN is a number that the customer can
report to a service organization or use
themselves to replace the faulty part. When a
hardware part is identified as bad by the
expert system, its number is returned to the
diagnostic shell which displays up to four
items in descending order of their confidence
values.

Rule Segment Design
Rule segments are designed by creating rules
of two types: control rules and resolution
rules. The control rules decide which tests are
to be executed. Execution of the hardware
tests are order dependent and influenced by
such things as the diagnostic mode or loop
mode values. The logic for control of

execution of tests was simplified when the
resolution of the failure was kept separate.

Resolution rules determine which parts are
likely to be faulty by analyzing the results of
the test units. Typically, a single goal
indicates a failing Field Replaceable Unit
(FRU). References to procedures in resolution
rules do not cause the procedures to be
executed, but allow conclusions to be made
because of tests that have previously been
run.

Separating the rule base into two types of
rules in this manner reduced the depth of the
rule trees and made the rules easier to
develop, understand, and maintain.

Conclusion
Expert systems have gained wide popularity
to a large extent because the reasoning
mechanism of the expert system is separate
from the knowledge on which the inferences
are drawn. In this way, the inference logic
becomes a general-purpose tool for use on
other problems, requiring only a new set of
codified knowledge. The use of an expert
system has allowed the creation of a
diagnostic system that diagnoses a complex
machine with a varying and complex
configuration. This system works equally well
for a naive operator or an experienced
service representative.

One of the problems which has kept inference
tools from being truly portable, both from
problem to problem and from machine to
machine, has been the dependence of the
expert system program on the idiosyncrasies
of the underlying operating system and the
requirement of vast memory resources in
current expert system technology. The use of
segmented rule bases allows the diagnostic
system to run in limited memory and have a

large and complex knowledge base. The
ability to call an unrestricted, dynamic list of
external procedures makes the capabilities of
this system almost unlimited.

Acknowledgments
We wish to thank the entire diagnostic
development team for their creativity and
persistence. This paper would not have been
written had it not been for the dedicated
technical leadership of Richard Flagg; the
efforts of Chris Iwaskiw and Roberta Starbird
on the Inference Engine; Mike McBride, Luke
Browning, and Scott Porter on the Diagnostic
Control Program; and Doug Benignus, Chuck
Cruse, and AI Laurence on the knowledge
base. We are also grateful to our managers
Jay Ashford and Niel Wiegand for their
willingness to try something new and for their
untiring support.

References
1. M.T. Harandi, "The Architecture of an Expert System

Environment," Proceedings of the Fifth International
Workshop on Expert Systems, Avignon, France, May
1985.

2. M.T. Harandi, "A Tree Based Knowledge
Representation Scheme for Diagnostic Expert
Systems." Proceedings of the 1984 Conference on
Intelligent Systems and Machines, Rochester, MN,
1984.

3. F.D. Highland, "Design of an Expert System for
Shuttle Ground Control," Master's Thesis, School of
Sciences and Technologies, University of Houston,
Clear Lake City, TX, 1985.

4. P. Nielsen, "A User's Manual for Construct and
Consult in the GPSI Environment," Department of
Computer Science, University of Illinois at Urbana­
Champaign, 1984.

39

Manufacturing Innovations to Increase Quality and Reduce Cost

Charles W. Bartlett, A.V. Burghart, George M. Yanker

The IBM RT PC 6150 and 6151 are
manufactured by a continuous flow process.
The demand for finished units, instead of the
quantities of available raw parts, paces the
assembly line. Supply and demand determine
the need for finished units and control the
manufacturing flow according to this
fluctuating need. This process minimizes
inventories of raw parts and of finished
products and, thus, reduces manufacturing
cost.

The automation of the process further
reduces cost, decreases production time, and
increases product quality. Automated
manufacturing methods give consistency and
precision to material handling, product
assembly, quality control, and data
management.

Material Handling
Automated material handling minimizes the
people and the time involved in storing parts,
in delivering parts to the assembly line, and in
moving the RT PC system units between
assembly, quality control, and packaging
stations. All objects that the material handling
system conveys are packaged and labelled
for automation.

Vendors must package and label parts
according to specifications. Each carton
contains only one type of part and one layer
of parts. All parts are arranged for robots to
pick up. A bar code label located on each

40

carton identifies the vendor providing the part,
the part number, and the engineering change
level of the part. Cartons of a part are
arranged on a standard 40 by 48 inch pallet.
Each pallet has a bar code label.

When parts arrive by truck, each pallet filled
with cartons is brought to a pal/et sizing
station. This station measures the filled pallet
to verify the pallet will fit in the flow racks,
scans and records the pallet's bar code label,
and places the pallet on a metal skid to await
storage in the flow racks.

An operator using a semiautomatic fork truck
moves the filled pallet from the metal skid to
the appropriate flow rack. All flow racks use a
first-in, first-out system. When parts are
required in the assembly line, an operator
using a semiautomatic fork truck moves a
filled pallet from the flow racks to the
depalletizing station. An operator debands the
pallet and removes the over-pack from the
pallet.

The depal/etizing robot scans the pallet bar
code to determine the size and arrangement
of cartons on the pallet. The robot then
removes the top from each carton, places
each carton in an empty plastic tote, and
places each carton top on a trash belt. The
empty pallets are returned to the flow racks
and the plastic totes containing the cartons of
parts are moved to the sizing and exception
handling station.

The sizing and exception handling station links
the bar code label on the tote with the carton
of parts and verifies that the bar code label
on the carton accurately describes the
contents of the carton. It does this by
weighing the carton and measuring the height
of the carton. If either the weight or height
does not match the part indicated by the
carton bar code label, the tote is sent to an
operator for correction. After correcting the
problem, the operator can return the tote to
the sizing and exception handling station.

Totes that pass the sizing tests move to the
stackers for storage. When parts are needed
in the assembly line, a conveyer system
moves a tote from the stackers to the
assembly line.

When a tote is emptied of aU parts, the
conveyer system moves the tote to the empty
tote verification station. This station scans the
tote bar code label and weighs the tote. If the
tote is empty, the tote returns to the
depalletizer. If the tote contains a reusable
card carton, the carton is removed and
directed to an in-house return conveyor and
the tote returns to the depalletizer. Otherwise,
the tote moves to the sizing and exception
handling station for operator disposition.

Each RT PC system unit remains in a plastic
tote while it is assembled, checked for quality,
and transported to the packaging station.
Each tote has a bar code label and is

Figure 1 The Manufacturing Area

transported through the manufacturing
process by a system of conveyors.

Product Assembly
Automation increases the efficiency of the
assembly process by reducing assembly time
and cost and increasing assembly accuracy.
Because many automated assembly

processes make certain demands on product
design, manufacturing engineers and
development engineers worked together
throughout the design process.

The engineers designed the RT PC system
units to be assembled in layers using a
"bottom up" method, a side being the

assembly "bottom". Each part fits into or
onto a previously inserted part, and where
needed, adequate space is available for a
robotic gripper. Parts snap together and are
"trapped" by other parts. (Screws are used
only where needed for grounding.) Special
features enable parts to funnel into place,
increasing alignment precision. Parts that

41

require an area that a robot can reliably grip
are designed with such an area.

Manufacturing systems monitor each robotic
manipulation. Some systems use vision
techniques to determine the placement of
parts. Other systems analyze strain gauges in
the robotic gripper to compare the actual
force required to insert a part with the
expected force. Such monitoring prevents
damage, increases assembly precision, and
thus improves product quality.

Quality Control
All RT PC system units undergo a general
quality control test, and some RT PC system
units undergo special stress tests and
communications interference tests. The
internal self-test features of the RT PC
system units, the software resident in the test
controllers, and the software designed to

Pwr supply (120V)

perform unattended testing enable the quality Screw

control testing to be automated.

The general quality control test involves a
power-on test, an operation test, and a
verification test. A unit that fails a test moves
to a repair operator. The unit is powered-on
(the power-on test) and directed to perform
repeated self tests (the operation test). The
unit runs without a keyboard or a display and
records test data on a resident diskette. A
test controller checks the test data and
repeats the operation test (the verification
test).

Several types of stress tests further monitor
quality. Short term and long term reliability
tests assess the ability of the product to
perform satisfactorily in the customer
environment. These reliability tests are
performed at an elevated temperature using
typical customer software. The elevated
temperature accelerates hardware failures.

42

Bridge

~ Processor card asm

Floating point card asm

Figure 2 An IBM RT PC System Unit

Data Management
The RT PC manufacturing process uses a
distributed computer control architecture to
integrate computer systems and to simplify
error recovery. This allows one system in the
data management network to malfunction

without affecting total network performance.
The computer systems in the data
management network perform at three
functional levels. The highest level contains
the main system, the middle level contains the
area systems, and the lowest level contains

the station systems. Figure 3 shows the
functional arrangement of the systems that
control the manufacturing process.

The manufacturing area control system, which
serves as the main system, controls the entire
manufacturing process. This system
communicates with the area systems. The
following manufacturing areas are controlled
by area systems: material handling, product
assembly, quality control, label engraving, and
product packaging. Each area system
controls the transfer of information and tracks
the status of parts, products, and station
systems within its area. Each station system
controls a specific manufacturing task.

The distribution area control system controls
the distribution of materials supplied to the
manufacturing process. This system manages
parts inventory, tracks parts and totes, and
provides data to the manufacturing area
control system. The distribution area control
system communicates with the following
station systems: stacker interface, stacker
control, flow rack control, outer loop interface,
outer loop control, depalletizer control, and
exception handling control. Thus, the
distribution area control system oversees all
workflow dealing with pallet storage,
depalletizing, sizing, and tote storage.

The assembly module control system and the
assembly conveyer control system work
together to direct the assembly process. As
the manufacturing area control system sends
build requests to the assembly module control
system, the assembly module control system
checks the status of each assembly station
and sends instructions to the assembly
stations. The assembly conveyer control
system directs the parts totes, the RT PC
system unit totes, and the empty totes
through the system of conveyers in the

build information
tus

Tier 1

Transfer
Track sta

Manufacturing
area control
system

1

-- ------------------ ------ ---
Tier 2 It ~ If ~

Distribution Assembly Test Laser engraver Packaging
area control module control area control control area control
system system system system system

L

--- --------- ---- ----- ----- ----- --
Tier 3

Physical
process
flow

+
Flow
racks

t
Parts

1
~ De-palletizer Stackers

Figure 3 The Data Management Systems Hierarchy

~

assembly area. The assembly conveyer
control system also sends information about
each system unit being assembled to the
manufacturing area control system.

As assembled units enter the quality control
area, the manufacturing area control system
sends product profiles to the test area control
system. The test area control system tracks
each product through the test cycles by
communicating with the following test station
systems: rework control, run-in control, test
conveyer control, screen test, and verify test.
Upon the successful completion of the quality
tests, the test area control system conveys
the results to the manufacturing area control
system and routes the units to the laser
serializing area.

The laser engraver control system directs the
engraving of serial numbers, verifies the

~

Assembly ~ Test ~

It

Engraver ~

~

Packaging

t
Finished
product

accuracy and quality of the engraving, and
sends the results to the manufacturing area
control system. Units leaving the engraving
area are ready to be packaged and shipped.

The packaging area control system directs the
packaging process and notifies the
manufacturing area control system of boxes
being released to outside distributors. The
packaging area contains the following station
systems: modicon monitor station, packing
station #1, packing station #2, and palletizing
station.

43

ROMP/MMU Technology Introduction

D.E. Waldecker and P.Y. Woon

The ROMP/PL.8 project was initiated by the
IBM Office Products Division (OPD) in mid-
1977 in Austin. OPD architects were
motivated to develop a high-performance
microprocessor which could be efficiently
programmed using a high-level language. The
"801 Project" at IBM Research in Yorktown
Heights, New York had many of the same
goals. (This project is described by George
Radin in [1] and [2].) It was decided to take
the 801 architecture and modify it as
appropriate for OPD objectives. This
cooperative effort became known as the
Research - OPO - MicroProcessor and was
given the acronym ROMP.

ROMP/801 Objectives
Objectives of both the 801 and ROMP
projects were to provide high performance,
Reduced Instruction Set Computer (RiSe)
architectures which were especially well­
suited as the target for an advanced,
optimizing compiler (the PL.8 compiler). The
RISC architectures are characterized by use
of general-purpose registers, use of only
Load and Store instructions for referencing
memory, and execution of most instructions in
a single processor cycle. The PL.8 compiler
was under development at IBM Research in
Yorktown Heights in conjunction with the 801
project. The goal of the PL.8 compiler was to
produce code which is almost as efficient as
code developed in assembly language.
Attention was given to ensure that both the
801 and ROMP machines were good compiler
targets. Instruction set definition was driven

44

by compiler requirements as opposed to
performance on bench marks or optimization
for a particular software kernel.

The ROMP definition was influenced by many
factors. Maintaining a strong relationship with
the 801 activities in Research was important
in order to take advantage of compiler
advances which continued throughout the
development phase. Cost was a key
consideration and influenced both architecture
and technology selection. Storage economy
was a main factor that led to differences
between the ROMP and the 801 instruction
sets. A technology goal was to fit the
processor (ROMP) and the Memory
Management Unit (MMU) on a single chip
each. Another goal was to fully exercise the
Burlington Silicon Gate Process (SGP)
technology while maintaining chip sizes that
would produce reasonable manufacturing
yields.

An initial TTL model of the ROMP was
operational in Austin at the end of 1978.
Differences between this first ROMP and the
current chip were driven by technology and,
to a greater extent, by changes in the
Research 801 definition. The original
machines performed 24-bit arithmetic and had
both 16- and 32-bit instructions. The 801
evolved to 32-bit arithmetic and addressing
and the ROMP followed this lead, primarily
because the need for a 32-bit address was
recognized and maintaining the desired PL.8

compiler compatibility required that this
change be made to both machines.

ROMP /801 Differences
Although the 801 and ROMP have a common
heritage, some important differences exist
between the two. The 801 assumed the use
of two cache memories, one for instructions
and one for data. A requirement for caches
was not incorporated into the ROMP design
for cost and complexity reasons. Since the
ROMP can execute an instruction almost
every processor cycle, an efficient memory
interface capable of high bandwidth was a
requirement. Two key features of the ROMP
design which greatly reduce memory
bandwidth limitations are: the Instruction
Prefetch Buffer and the use of 16-bit, in
addition to 32-bit, instructions. The ROMP
contains a 16-byte instruction pretetcn buffer
which practically guarantees that all
sequentially accessed instructions are
available for execution when they are needed.

The 801 migrated to all 32-bit instructions
while the ROMP maintained both 16- and 32-
bit instructions. The judicious use of 16-bit
instructions decreases memory code space
and allows more code per real-page frame in
a virtual memory system, resulting in fewer
page faults and improved system
performance. More importantly, the shorter
average instruction length of the ROMP
decreases the memory bandwidth required for
instruction fetches. For example, an
instruction mix containing 30% Load and

Store instructions (which require 32 bits of
memory reference each for data) would
require 41.6 bits of memory bandwidth per
instruction if all instructions are 32 bits long.
The same instruction mix executed in the
ROMP, where the average instruction length
(weighted average of 16- and 32-bit
instructions) is about 20 bits (2.5 bytes), only
requires an average of 29.6 bits for each
instruction. This is a reduction in memory
bandwidth requirement of almost 30% per
instruction for the ROMP over a design which
contains only 32-bit instructions. Since
memory bandwidth is usually the
performance-limiting factor, a 30% reduction
in the bandwidth requirement will certainly
improve performance in a non-cache system.

It must be recognized that a machine with all
32-bit instructions should do more "work" for
each instruction executed than a machine
with some instructions that can only be
executed in a 16-bit format. That is, an
equivalent MIP (Million Instructions Processed
per second) rate for a machine with only 32-
bit instructions should represent more
processing capability than the same MIP rate
for a machine with both 16- and 32-bit
instructions. One of the limitations of 16-bit
instructions is the limited number of bits
available to specify operation codes,
registers, displacements, etc. This limitation is
one of the reasons that the 801 uses 32-bit
instructions exclusively. Use of only 32-bit
instructions permits the register specification
fields to contain the 5 bits required to select
one of 32 general-purpose registers (GPRs).
The limit of 16 registers for the ROMP results
in only a modest increase in Load and Ston-:
frequency, since the PL.8 compiler perform',
an efficient register optimization. A primary
motivation for having 32 registers is efficient
emulation of other architectures which have

16 general-purpose registers (Le., System!
370). The ROMP does an excellent job of
emulating other machines which have a more
limited register set. The 801 is significantly
better at 370 emulation. Aside from emulation,
the use of all 32-bit instructions is estimated
to make the 801 MIP rate about 15% to 20%
more powerful than the ROMP MIP rate. That
is, software path lengths for 801 programs
are about 15% to 20% shorter than they are
for equivalent ROMP programs.

The use of both 16- and 32-bit instructions
adds some design complexity. Instruction
handling and decoding must account for
instruction location on both 16- and 32-bit
boundaries. The 16-byte Instruction Buffer
and its management also adds complexity.
However, studies have shown that the 16-
byte Instruction Buffer provides about the
same performance advantage as a 256-byte
instruction cache, with a significant savings in
the silicon required for implementation.

The design point chosen for the ROMP is well
suited for a microprocessor VLSI design.
Good performance is achieved with readily
available memories and the silicon area
requirements are a good fit for our SGP
technology. The ROMP's dual 16- and 32-bit
instruction format provides about a 10% net
performance advantage over an equivalent
801 microprocessor in non-cache systems.

Compiler Development for ROMP & 801
The PL.8 compiler was initially developed for
the 801 project in Research as part of the
exploration of the interaction of computer
architecture, system deSign, programming
language, and compiler techniques. The
adaptation of this compiler to the ROMP
architecture was done in Austin. A single
compiler was maintained with the addition of

another "backend" for the ROMP. This
involved a complex working relationship
between Research and Austin. This excellent
relationship has continued over the years with
enhancements and modifications being made
by both groups. The compiler is currently
owned by Austin with enhancements being
made by both groups.

The PL.8 compiler currently supports three
source languages, Pascal, C, and PL.8, a PL!I
variant designed to be suitable for generation
of efficient object code for systems
programming. Object code is produced for the
801, ROMP, System!370, and MC68000.

The ROMP PL.8 compiler development
influenced the deSign of the ROMP
instructions in a number of significant ways.
The goal of program storage (byte) efficiency
caused the following modifications to be
made:

1. Short (16 bits) forms of several
instructions were introduced to provide
for the special case of an immediate
operand with value less than 16. For
example, Add Immediate, Subtract
Immediate, Compare Immediate, and Load
Immediate were provided.

2. A short-form relative jump instruction was
added with maximum displacement of
plus or minus 256 bytes.

3. The long (32-bit) Branch instructions were
defined to be relative rather than absolute
in order to reduce the storage necessary
for relocation information from modules.

4. A Load Character instruction was added
in order to handle character data with
fewer bytes.

45

In addition, Load Multiple and Store
Multiple instructions were provided to
improve the speed of subroutine linkage.

The resultant ROMP architecture proved to
require about 30% fewer bytes than B01 for a
selected set of bench marks.

In addition, the ROMP instruction set design
includes only instructions which can be used
effectively by the compiler. The ROMP does
not contain complex instructions and
addressing modes which a compiler finds
difficult to generate. The ROMP does not
have complex loop closing instructions which
require several free registers in order to
operate. It does not contain instructions like
repeat, rotate, and edit-instructions which
are not primitives for PL.B constructs.
Register allocation is simplified by the
requirement that variables be loaded into
registers before being operated upon.

The PL.B compiler employs state-of-the-art
compiler technology [3] utilizing several
independent advances in the theory of
compiler design. John Cocke and Fran Allen
[4] published a procedure of data flow
analysis-a technique fOi analyzing the
interval of execution over which a variable is
used, and using that information for
optimization and assignment of variables to
registers. The technique allows efficient use
of registers and enhances the reliability of
generated code.

The compiler's scheduling algorithms make
use of the data flow analysis results to
produce a program which takes advantage of
the pipelined implementation of the ROMP.
Since only Load and Store operations
reference memory, the compiler can very
effectively intersperse memory references and

46

register-to-register (RR) operations in the
instruction stream so that processing of the
RR operation can overlap the memory
reference. The compiler also makes effective
use of the Branch with Execute instruction.
This instruction allows execution of an
instruction following the Branch while the
branch target instruction is being fetched.
This overlap of instruction execution with the
fetching of the new instruction stream results
in better CPU utilization.

In addition the PL.B compiler uses LALR
parser generator [5] techniques. Syntax­
directed translation enables the compiler to
associate the intermediate code generation
directly with the syntactic structure of the
source language. Furthermore, it uses a map­
coloring algorithm from topology for register
allocation [6]. Most programs of reasonable
size color in 16 GPR without spilling. 32 GPR
would reduce spilling on larger programs but
would require 5 bits for register specification
which would require 32-bit instructions. The
trade-off was made in favor of the use of 16-
bit instructions (with the 25% to 30%
performance advantage) at the performance
detriment of large programs,

The compiler incorporates the primary
theoretical advances in compiler design
achieved over the past decade. The proof of
the theory lies in its effectiveness. The
approach of developing the language and the
instruction set as a joint effort has paid off in
language efficiency and in ease of code
generation. Benchmarks have shown that the
compiler generates code that approaches the
performance and storage requirements of
assembly code produced by a good hand
coder. These results are a testimony to the
success of the design approach and the
compiler technology used.

Silicon Technology
As stated earlier, the initial ROMP TTL
Prototype was operational in Austin at the
end of '7B. The success of this Prototype in
demonstrating the B01 concepts applied to
the ROMP, motivated us to proceed with a
ROMP VLSI design. In early '79, the IBM
General Technology Division in Burlington,
Vermont was interested in applying their SGP
(Silicon Gate Process) technology to a logic
part (as opposed to a memory part). One of
their objectives for such a project was that
the logic part selected should be complex
enough to stress the technology ground rules.
The ROMP appeared to fit the requirements
for a "technology-proving" development. It
contains a custom register file, ROM, custom
logic in data registers, multiplexers, and the
ALU, Off-Chip Drivers and Receivers, plus
random logic designed with a master image
approach.

The division of design tasks between Austin
and Burlington was a rather complex
arrangement. Austin was responsible for the
Functional Specification and logic design.
Burlington was responsible for the final chip
layout but many macros and iarge portions of
the chip were deSigned in Austin. Austin
performed the logic simulation and also built a
nodal model of the ROMP chip to verify
functionality. Burlington designed the memory
for this model and also wrote many of the
Architectural Verifications Programs (AVPs)
used to test the model, drive the logiC
Simulation, and ultimately test the chip
functionally. Manufacturing test patterns were
generated in Austin but special test patterns
to resolve unique problems early in the
program were generated in Burlington.

Early ROMP parts did indeed stress the
technology. We were required to change the

design several times as technology ground
rules evolved. Changes were made to
improve yields and chip reliability well after
we had achieved functional parts. As we
progressed, the chip was also made smaller.
The initial pass was 8.35 mm square and the
final version is 7.65 mm square.

Projected performance of the ROMP chip was
significantly improved over time. Initial
projections were for a cycle in the 250 - 300-
nanosecond range. As we gained more data
and modified the design to eliminate critical
paths, the projections were reduced to the
200 - 250-nanosecond range. We also
projected that 50% of the functional parts
could be selected to execute at a 170-
nanosecond cycle. The design which is in
manufacture has virtually no fall-out of
functional parts due to selection for 170-
nanosecond operation. The typical ROMP will
run at about a 135-nanosecond cycle. System
considerations of memory and i/O interfacing,
system clock skews, voltage variations, and
tester tolerances limit our CPU cycle from
being faster than 170 nanoseconds.

MMU Memory Management
The MMU is a 9 mm square SGP chip which
performs the RT PC system memory
management function.

The MMU chip used the same technology and
design approach as ROMP. Since the ROMP
had served as the vehicle to solidify the
technology and design methods, the MMU
design was more straightforward in many
respects. However, the MMU functional
requirements resulted in a larger chip than
the ROMP. The MMU definition was initiated
in late '81. The basis for the functional
definition was System/38 and work done at
Research on memory management
approaches consistent with the 801

architecture. Some of the more prominent
features are use of inverted page tables to
minimize memory page table space, special
segments to provide protection with 128-byte
resolution, and ability to accomodate variable
speed memories.

Favorable experience with ROMP logic
simulation convinced us that there was no
need to build a TTL nodal model of the MMU
chip. However, in order to support early
RT PC prototypes, a three-card TTL
equivalent of the MMU function was
developed. The early prototypes were
completed in early '83. When MMU chips
were received in late '83, the three-card TTL
version was replaced by less than one-half
card containing the VLSI MMU.

Summary
The ROMP project is an excellent example of
several IBM divisions at different sites
working together to produce a successful
program. The project ultimately resulted in the
RT PC product design by the Engineering
Systems Products group in Austin. It
embodied the 801 RISC / PL.8 compiler
concepts developed in IBM Research and
served as an important vehicle to mature the
Silicon Gate Process (SGP) technology of the
IBM General Technology Division.

The close relationship of the PL.8 compiler
development and the hardware design is a
rare occurrence and, we believe, was one of
the key elements in achieving an excellent
and balanced design.

References
1. George Radin, "The 801 Minicomputer," in ACM,

0-89791-066-4 82/03/0039

2. George Radin, "The 801 Minicomputer," IBM Journal
of Research & Development, 27, pp. 237-246, May
1983.

3. Marc Auslander and Martin Hopkins, "An Overview of
the PL.8 Compiler," in ACM, 0-89791-074-5/82/006/
0022.

4. F.E. Allen and J.A. Cocke, "A Program Data Flow
Analysis Procedure," in CACM, 19,3 (March 1976).

5. W.R. La Londe, "An Efficient LALR Parser
Generator," University of Toronto, Technical Report
CSRG-2 (April 1971).

6. Gregory J. Chaitin, Marc A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and Peter
W. Markstein, "Register Allocation via Coloring,"
Computer Languages, 6, No.1, pp. 47-57, 1981.

47

The IBM RT PC ROMP and Memory Management Unit Architecture

P.O. Hester, Richard O. Simpson, Albert Chang

Introduction
This paper describes the ROMP
microprocessor and companion Memory
Management Unit (MMU) used in the IBM
RT PC. The ROMP and MMU grew out of
IBM's requirements in the late 1970s for a
modern microprocessor for use in office
equipment and small computers. Several
major goals were identified at the start of the
project.

• High-Level Language Programming. With
software costs rising, it was decided that
almost all programming for the new
processor should be done in a high-level
language because of its greater efficiency
of programming. This meant that a good
compiler was needed in conjunction with
the processor. lr: fact, an excellent co~p!!er
was needed-one that would produce the
tightest possible object code, to reduce the
size of ROM and RAM storage required for
office machines.

• Addressability. Sixteen-bit computers are
limited to addressing 64K bytes or words
unless some additional hardware, such as
segment registers, is introduced in the
addressing path. The difficulty of handling
objects larger than 64K even with segment
registers led to the decision to make the
ROMP an all 32-bit machine, with 32-bit
registers, 32-bit addresses, and 32-bit data
quantities.

48

The ROMP and MMU have segment
registers, but they are used for different
purposes than in typical 16-bit computers.
Each segment can span 256 megabytes;
the segment registers are used to provide
addressability to a number of different
objects rather than to extend addressability
beyond the first 64K bytes of an object.

• Two Chips. For cost reasons the number of
VLSI chips in a small system must be
minimized. Existing technology did not allow
functions as complex as the ROMP and
MMU to be combined into a single chip, so
one chip was used for the processor and
one for the Memory Management Unit. The
split is about even; the two chips are of
comparable complexity (the MMU is
somevvhat !arger than the ROMP)

• High Perfor~ance with Inexpensive
Memory. The 801 minicomputer [1], a
Reduced Instruction Set Computer (RISC)
then under development at the IBM Thomas
J. Watson Research Center in Yorktown
Heights, New York, had exceptionally high
performance. However, much of its
performance depends on its two caches,
which can deliver an instruction word and a
data word on each CPU cycle. Since such
caches were prohibitively costly for small
systems, pipelining techniques normally
found in larger machines were adapted to
the ROMP so that useful work could be
done during the (comparatively) long time
needed for memory operations. The

techniques include asynchronous
prefetching and partial decoding of
instructions, a packet-switched channel
between the ROMP and the MMU,
execution of instructions beyond a "load"
until the loaded data is actually needed, and
delayed branches which overlap the
execution of another instruction with the
fetching of the branch target.

• Virtual Memory. This requirement was
identified later than the others, after it was
realized that the ROMP had the potential of
being used in much more elaborate
systems than just office machines. The
virtual addressing mechanism provides 240

bytes of virtual addressability and supports
real memory sizes of up to 16 megabytes.
It uses concepts from the System/38 r21,
and additionally provides a means of
controlling access to sections of virtual
memory smaller than a page for assistance
in database locking schemes.

The PL.8 compiler [3], which was developed
at IBM Research in conjunction with the 801
architecture, offered the potential of
generating extremely efficient code for a
machine which matched its paradigm of a
computer. Thus, the ROMP programming
model and instruction set are derived from
the 801 processor for which the PL.8
compiler was originally designed, but the
ROMP is designed for greater byte efficiency
(the programs are smaller) than the 801. That
the ROMP instruction set is a good target for

a compiler is demonstrated by the fact that
the PL.8 compiler generates code that is
within about 10% of the size of good hand
code.

Together, the ROMP and MMU implement a
system with the following major
characteristics:

• A large uniformly-addressed virtual memory
(240 bytes)

• A large number of general-purpose
registers (16)

• A simple, uniform instruction set with most
instructions executing in a single cycle.

As with other RISC designs [4, 5], the ROMP
instruction set performs all operations on data
within general registers; the only memory
operations provided are Load and Store. The
compiler "pipelines" the Load operations by
separating them from the use of the loaded
data as far as possible.

Although most ROMP instructions execute in
only one cycle, additional cycles are taken
when it is necessary to wait for data to be
returned from memory for Loads and
Branches. As a result, the ROMP takes about
three cycles on the average for each
instruction. At the cycle time of 170
nanoseconds used in the RT PC, the ROMP
runs at about 2 MIPs.

Details of the ROMP and MMU architecture
are described in the following sections.

ROMP Processor
The RT PC ROMP processor was designed
to:

• Provide an architected address and data
width of 32 bits

• Provide an efficient target for an optimizing
compiler

• Support virtual memory

• Provide system integrity through separate
user and supervisor states

• Provide improved error detection and
reporting facilities

• Provide high performance with low-cost
memory.

The first requirement dictated an architecture
providing both 32-bit address and data
quantities. As a result, it was decided that all
registers and computations would support 32-
bit quantities. However, the architecture
provides for specific support of 8-bit and 16-
bit quantities in addition to 32-bit quantities.

The ROMP processor architecture was
defined with the assumption that most
software would be developed in a high-level
language. At this same time, an optimizing
compiler was being developed at IBM
Research which supported a variant of the
PL/I programming language. A joint study was
conducted to evaluate this compiler and the
architectural requirements to take advantage
of the compiler optimization techniques. This
study indicated the need for a large number
(16 or 32) of 32-bit general-purpose registers,
and an instruction set closely matched to the
compiler intermediate language. Specifics of
the resulting instruction set are provided later
in this paper.

During the architecture definition, it became
clear that systems using processors of this
class must provide virtual memory. In order to
support virtual memory, precise interrupts
were defined for the ROMP so that the cause
of a page fault can be identified easily. All
instructions are restartable; an instruction
causing a page fault can simply be re­
executed after the fault is resolved. This sort
of virtual memory support is common on
mainframes and some minicomputers, but
had not appeared in a microprocessor prior
to the design of the ROMP.

The need to provide protection of user
programs and isolation of control program
functions resulted in the definition of separate
user and supervisor states. Only instructions
which cannot be used to affect system
integrity are valid in user state. Instructions
associated with control program functions are
valid in supervisor state only.

In order to guarantee data integrity, certain
requirements and facilities are provided for
error detection and reporting, including:

• Parity checking on all external buses

• Bus timeout detection

• Non-maskable hardware error detection
interrupts.

Good system performance with low-cost
memory was an early requirement. Although
cache memories were considered, they were
quickly discarded due to their cost and
complexity. A compromise was made
between cost and performance that resulted
in the decoupling of memory operations from
CPU operations, and in the definition of an

49

innovative high bandwidth packet switching
storage channel that supports multiple
outstanding operations. The MMU was
designed to allow overlap of the address
translation process with memory access. The
MMU also supports two-way interleaved
memory which provides a throughput of one
memory operation every CPU cycle.

Programming Model
The ROMP provides 16 32-bit General
Purpose Registers (GPRs) that can be used
for either address or data quantities. There
are no restrictions on which registers can be
used for addresses or data. Figure 1 shows
the 16 GPRs.

Note that the 16 GPRs are also grouped in
eight pairs. These pairs (0-1, 2-3, etc.) are
used with the paired shift instructions to
provide nondestructive shift capability. Details
of the paired shifts are provided in the
instruction set section of this paper.

A 32-bit register quantity can be treated as
either a full 32-bit quantity, two 16-bit
quantities. or four 8-bit quantities. Instructions
are provided to manipulate data in any of
these forms.

In addition to the 16 32-bit GPRs, a separate
set of System Control Registers (SCRs) is
provided. The SCRs include the following:

• Three registers associated with a 32-bit
system timer facility

• The Multiplier Quotient (MQ) register used
with the multiply and divide step
instructions

50

o
1

2

3

4

5

6

7

8

9

1

10

1

12

13

14

15

o

o 8

Upper-half

CO I C1

16 24

Register

I Lower-half

I C2 I

31

31

C3

Word

Half-word

Char/Byte

Figure 1 General-Purpose Registers

• The Machine Check Status (MCS) and
Program Check Status (PCS) which are
used to report hardware errors and
software errors and exceptions respectively

• The Interrupt Request Buffer (IRB) used for
posting interrupts

• The 32-bit Instruction Address Register
(lAR)

The Interrupt Control Status (ICS) register
used for controlling interrupts and interrupt
levels, address translation, memory protect,
and other miscellaneous control functions

• The Condition Status (CS) which contains
the condition code bits.

Instruction Set
The ROMP is generally a two-address
architecture, with both 2- and 4-byte
instructions of seven formats as shown in
Figure 2. The various formats provide an
opcode field, register fields (RA, RB, and RC)
and an immediate field (I, JI, BI, and SA). RA,
RB, and RC are each 4-bit fields which
specify one of the 16 GPRs.

Although most ROMP instructions are two­
address, the X format provides three register
addresses. In all other formats, the RB and
RC fields specify the source registers, with
RB also specifying the destination register. A
single instruction called Compute Address
Short (CAS) is implemented in the X format,
where the contents of registers RS and RC
are added together and the sum placed in

0 4 8 12 16 31

I OP I RA RB RC X format

I OP I I RB RC D short format

OP RB RC D format

OP RB RC R format

OP Ici N J JI format

OP RB I BI BI format

OP BA BA format

OP-CODE RB • RC •

Figure 2 Instruction Formats

register RA. Extensive studies indicated the
need for a three-address add instruction for
address computations so that both source
register quantities could be preserved.

The various instruction formats were defined
so that the opcode and two register fields
(RB and RC) are always in the same bit
positions within each instruction format. This
allows these fields to be used as defaults to
unconditionally control fetching of instruction
microcode and register operands without
instruction pre-decoding. This is necessary to
support a goal of single-cycle execution of
each instruction. Note that in certain formats
(JI, BI, BA for example) one or both register
fields are not used. However, these fields are
still used to fetch register operands. During
the execute phase of instruction processing, a
decision is made to use the immediate
information rather than the register quantities.
Since this decision is not made until the
execute phase, the register information can
be fetched by default and later discarded with
no undesirable results. This approach is
required to achieve the goal of single-cycle
instruction execution, without creating
implementation constraints.

During the definition of the ROMP instruction
set, several studies were conducted to
determine the frequency of use of each
proposed instruction. These studies indicated
that certain instructions (Increment, Immediate
Shift, Short Branch, Loads and Stores with
small displacements, etc.) were very heavily
used. Some of these were defined as 2-byte
instructions in order to achieve the desired
byte efficiency and to reduce the memory
bandwidth requirements of the processor to
less than one word per cycle. Four-byte
versions of certain of the 2-byte instructions
were also defined for completeness that
allowed a 16-bit immediate field instead of the

4-bit immediate field provided by the 2-byte
format. Several evaluations were made
trading off the byte efficiency of the 2-byte
instructions versus their limited displacement
capability. The final instruction set definition
included 79 2-byte instructions and 39 4-byte
instructions. Ongoing analysis of compiler­
generated code indicates an average
instruction length of 2.4 to 2.7 bytes,
indicating good use of the 2-byte formats.

In certain formats (X, D Short, and JI) a 4-bit
opcode is used. Opcodes were chosen so
that these particular formats could be easily
determined with a minimum of pre-decoding.

The ROMP provides a total of 118
instructions in the following ten classes:

Number of
Instruction Class Instructions

1, Memory Access 17
2. Address Computation 8
3. Branch and Jump 16
4. Traps 3
5. Moves and Inserts 13
6. Arithmetic 21
7. Logical 16
8. Shift 15
9. System Control 7

10. Input and Output 2
Total 118

The Memory Access instructions permit
loading and storing data between the 16
GPRs and main memory. These instructions
support four types of data:

• 8-bit (character) quantities
• 16-bit (halfword) quantities
• 16-bit algebraic (sign extended halfword)

quantities
• 32-bit (fullword) quantities.

Load and Store Multiple instructions are also
included in this class that permit loading or
storing of from one to 16 of the GPRs to
memory. A test and set instruction is also
provided for multiprocessor synchronization.

All Memory Access instructions compute the
effective memory address as the sum of a
GPR contents plus an immediate field
specified in the instruction (base +
displacement addressing). Two-byte memory
access instructions provide a 4-bit immediate
field, with 4-byte instructions providing a
16-bit immediate field.

The Memory Access instructions operate only
between memory and one or more GPRs. No
memory-to-memory operations are provided.
The architecture allows instruction execution
to continue beyond a load instruction if
subsequent instructions do not use the load
data. This increases system performance by
overlapping memory access with subsequent
instruction execution.

Address Computation instructions are
provided which compute memory addresses
without changing the condition codes. These
instructions include a three-address add
instruction (Compute Address Short),
Increment, Decrement, and 2- and 4-byte
instructions which permit loading a GPR with
a 4-bit or 16-bit immediate value respectively.
Separate Compute Address Lower and
Compute Address Upper instructions are
provided to load a 16-bit immediate value into
either the lower half or upper half of a GPR.
Two Address Computation instructions are
provided specifically to aid in the emulation of
16-bit architectures. They allow computing a
16-bit quantity that replaces the low-order 16
bits of a GPR without altering the upper 16
bits.

51

Standard Branch and Jump instructions are
provided for decision making. Two-byte Jump
instructions are provided that provide a
relative range of plus or minus 254 bytes.
Four-byte Branch instructions provide a range
of up to plus or minus 1 megabyte. A group
of Branch and Link (SAL) instructions is also
provided for subroutine linkage.

A delayed branch (called "Branch with
Execute") is provided to allow overlap of the
branch target fetch with execution of one
instruction following the branch (called the
subject instruction). Execution of the subject
occurs in parallel with fetching of the target
instruction, thereby eliminating dead cycles
that would normally occur during fetching of
the target instruction.

Three Trap instructions are provided for run­
time address checking. These instructions
compare a register quantity against a limit,
and cause a program check interrupt if the
limit is exceeded.

The Move and Insert class of instructions
support testing the value of any bit in a GPR,
and the movement of any of the four 1-byte
fields in a GPR. A Move instruction is
provided that allows moving anyone of the
32 bits in a GPR to a test bit in the condition
status register, with a corresponding
instruction that moves the test bit value to
any of the 32 bits in a GPR. A series of Move
Character instructions are included that move
any of the four 1-byte fields in a GPR to
another 1-byte field in a GPR.

The Arithmetic class supports standard Add
and Subtract operations in both single and
extended precision modes. Other instructions
in this class include Absolute Value, Ones and
Twos Complement, Compare, and Sign

52

Extend. Also, Multiply Step and Divide Step
instructions are provided. The Multiply Step
instruction produces a 2-bit result per step,
and can be used to construct variable length
multiply operations. The Divide Step
instruction produces a single bit result per
step, and can be used to construct variable
length divide operations.

The Logical class provides AND, OR, XOR,
and negation operations using two register
quantities or one register and an immediate
value. A group of Set and Clear Bit
instructions is also included in this class that
allows any bit in any GPR to be set to one or
zero.

The Shift class provides Algebraic Shift Right,
Shift Right, Shift Left, and left and right paired
shifts. Shift amounts from D to 31 bits can be
specified as either an immediate quantity in
the instruction, or as an indirect amount using
the value in a GPR. The concept of paired
shifts was introduced to provide non­
destructive shifts that shift a specified GPR a
given amount, and place the result in a
different register (the "twin" of the source
register) without altering the source register.
The twin of a given register is determined by
complementing the low-order bit of the
register number (Le., the twin of register 4 is
5, the twin of 11 is 1 D, etc.).

Instructions in the System Control class are
generally privileged instructions that are valid
only in supervisor state. Included in this class
are instructions that move GPRs to and from
SCRs, set and clear SCR bits, Load Program
Status, and Wait for interrupt. Also included is
a non privileged Supervisor Call instruction.

Two instructions that load and store GPRs to
I/O devices are included in the Input and
Output class. These instructions are normally
used to access control registers in the MMU
or other system elements.

Interrupt Facility
The ROM P implements a priority-based
interrupt scheme supporting seven external
interrupt levels. In addition, two error
reporting interrupt levels are also provided.
The program check level is used for reporting
software errors and exceptions such as page
fault, protection violations, and attempted
execution of a reserved opcode. The machine
check level is used to report hardware
failures such as bus parity errors,
uncorrectable memory ECC errors, and bus
timeouts.

The interrupt facility includes old and new
program status words (PSWs) similar to those
of System/37D. Each PSW pair contains the
IAR, condition status, and interrupt control
information. Hardware automatically performs
a PSW swap when an interrupt occurs. GPRs
are not automatically saved by hardware, with
system software using a Store Multiple
instruction to save required GPRs. A Load
Program Status (LPS) instruction is provided
that automatically restores the machine state
from the old PSW once interrupt servicing is
complete.

Memory Management Unit
The MMU combines the functions of virtual
addressing support and memory control.
From the system point of view, it translates
virtual addresses to real addresses,
implements the memory protection model,
performs "lock-bit" processing (explained
below), and provides interrupts to the ROMP
for exceptional conditions such as page
faults.

As a memory controller, the MMU is
responsible for the hardware-level control of
up to 16M bytes of RAM and ROM. Separate
controls are provided for RAM and ROM that
support different speed memories and allow
interleaving of RAM for improved memory
bandwidth. Internal logic is provided to
support Error Correcting Code (ECC) for RAM
and parity for ROM. The MMU also provides
control signals for the external Reference­
and-Change Array (R/C).

The support for ECC on the RAM is new in
the microprocessor field and is a reflection of
the large memory sizes expected to be used
with the ROMP. The lockbit mechanism
provides a sub-page-Ievel protection and
locking mechanism and is new with the MMU.

Virtual Address Translation
Figure 3 shows the memory model which the
MMU implements. When the ROMP is
opeiating in Real mode (Translate bit in
Interrupt Control Status off), the MMU
functions simply as a hardware memory
controller. In this mode, up to 16M bytes of
real memory can be addressed. When the
ROMP is in Translate mode (Translate bit in
ICS on), the MMU translates each address
from the ROMP from virtual to real and then
uses the real address to access the memory
arrays. Memory access from adapters on the
I/O Channel is also supported by the MMU,
with a control bit for each access indicating
whether the access is real or translated.

Program virtual addresses generated by the
ROMP are 32 bits. These are expanded in the
MMU to 40 bits by using the high-order 4 bits
of the program virtual address to select one
of 16 Segment Registers (SRs), and then
concatenating the 12-bit Segment Identifier
(SID) contained within the SR to the remaining

256M-byte 00000000

OFFFFFFF

256M-byte 10000000

1FFFFFFF

20000000

EFFFFFFF

256M-bytes FOOOOOOO

FFFFFFFF

~I..

Program 32-bit
virtual addressing

232 bytes

256M-byte segment

256M-byte segment

256M bytes
memory-mapped
I/O

Figure 3 Storage Model

I;:

Segment
registers

SID = 12 bits

o

2

3

-
E

F 0-

To
memory­
mapped
I/O

:;-.

28 bits of the .incoming address. To the
executing program, memory appears to be 4
gigabytes of virtual memory broken into 16
segments of 256M bytes each.

The largest addressable entity is normally the
256M-byte segment, but system software can
construct larger objects by (for example)
assigning consecutively-numbered SIDs to
adjacent SRs, creating an object whose
maximum size is any multiple of 256M bytes
up to 4 gigabytes. Objects larger than 4
gigabytes will require special techniques.

000.0000000

OOO.FFFFFFF

001.0000000

001.FFFFFFF

002.0000000

F 002.FFFFFF

003.0000000

F FFD.FFFFFF

FFE.OOOOOO 0

F FFE.FFFFFF

FFF.OOOOOOO

FFF.FFFFFF F

L..

Long-form 40-bit
virtual addressing

240 bytes

256M-byte segment

256M-byte segment

256M-byte segment

256M-byte segment

256M-byte segment

:"'

000000

Real memory

224 bytes

Up to 16M bytes

FFFFFFL......-____ ~

The Segment Registers reside in the MMU,
and can be read and written from the ROMP
by supervisor-state programs, using I/O
instructions. Each SR contains the following:

• Segment Present bit
• ROMP Access Protect bit
• I/O Access Protect bit
• 12-bit Segment I D
• Special Segment bit
• Key bit.

53

Because the virtual addresses generated by
programs are only 32 bits long, while
translation is performed on 40-bit virtual
addresses, each program is restricted to
~ddressing only those segments supplied to it
(I.e., SIDs loaded into SRs) by the operating
system. Segments can be shared between
processes by placing the same SID value into
an SR for each process (not necessarily the
same SR).

The 40-bit virtual addresses are translated to
real by looking them up in an Inverted Page
Table (IPT) as shown in Figure 4. The table is
"inverted" because it contains one entry for
e~ch real memory page rather than one per
virtual page. Thus a fixed proportion of real
memory is required for the IPT regardless of
the number of processes or virtual segments
suPP?rte.d. To t.ranslate an address, a hashing
fu~ctlon IS applied to the virtual page number
(high-order part of the 40-bit virtual address,
less the byte offset) to obtain an index to the
Ha.sh Anchor T~ble (HAT). Each HAT entry
POints to a chain of IPT entries with the same
hash value. A linear search of the hash chain
yields the IPT entry (and thus the real page
number) which corresponds to the original 40-
bit virtual address. If no such entry is found,
then the virtual page is not mapped and a
page fault interrupt is taken.

The hashing technique results in chains which
are typically short-between one and two
entries. Even so, translating a virtual address
using only the HAT and IPT would require
several memory accesses for each
translation. In order to eliminate most of the
IPT searches, the MMU maintains a cache of
recently-translated addresses in a Translate
Look-aside Buffer (TLB). The TLB is two-way
set-associative, with 32 entries. If the required
entry is in the TLB, then the M M U can
complete its translation in one cycle. If a TLB

54

Virtual
address I Hash anchor

I table

....

Inverted page table

Virtual address Chain

.--tl ~r­
! t=J! 'J L-DJ l

.~------:. 1;--..::1:,

Figure 4 Hash Anchor Table and Inverted Page
Table (Conceptual)

"miss" occurs, then the MMU automatically
searches the I PT and reloads the least
recently used entry for the appropriate
congruence class. This typically adds 8 to 11
cycles to the translation time. An IPT "miss"
is a page fault.

The M~U provides functions for use by
supervisor-state software which cause
selected entries in the TLB to be purged and
thus reloaded from the IPT the next time they
are needed. Such purging is required at
certain times to keep the TLB contents
synchronized with changes to the I PT.
Purging c~n be done for an individual page,
for an entire segment, or for the entire TLB. A
task switch by itself does not require that any
of t.he TLB be purged; only the segment
registers need be loaded. A "load real
address" function is also provided for
supervisor-state software to allow determining
t~e real address corresponding to a given
virtual address.

Memory Protection
Several functions performed by the MMU
combine to provide memory protection for
programs running with address translation on.

In order for the MMU to respond to a virtual
address at all, the Segment Present bit in the
appropriate SR must be set. This feature is
used not only for protection, but to provide
memory-mapped I/O by arranging for the
address range covered by one or more SRs
to be ignored by the M M U but responded to
by the I/O Channel Controller.

For SRs which have the Segment Present bit
set, access through the MMU is controlled by
the settings of the ROMP Access Protect and
I/O Access Protect bits. A segment register
can thus be aSSigned to the ROMP
processor, to I/O devices via the I/O channel
controller, to both, or to neither.

For virtual accesses which are allowed by the
control bits described above, one of two
types of memory protection is applied. Which
one to use is determined by the Special
Segment bit in the SR. If this bit is 0, then a
key ~atching scheme adapted from System/
370 IS used. Processes are given key 0 or
key 1 access to segments via the Key bit in
ea~h SR. Individual pages have 2-bit keys in
their IPT (and thus TLB) entries. The types of
access allowed are definArl h\l +ho fnlln\Alinn __ -1 ".1'-' IVtlV •• It.~

table:

Page Key Type of page

00 Key 0 fetch-protected

01 Key 0 read/write

10 Public read/write

11 Public read-only

If the Special Segment bit in the SR is 1, then
a finer granularity of protection is applied.
Each page is considered to be made up of 16
"lines" of 128 bytes each (with 2K-byte
pages) or 256 bytes each (with 4K-byte
pages). Access to a particular line within a
page is controlled by the value of a "Iockbit"
associated with each line. Each IPT (and TLB)
entry contains 16 lockbits for each page, a
"write" bit that determines how the lockbits
are interpreted, and an 8-bit Transaction
Identifier (TID). In addition, the MMU contains
a Current TID register which is loaded by the
operating system when a process is
dispatched. Access to the lines within pages
of "special segments" is determined by the
following table:

Current TID Write
compared to Bit in
TID in IPT IPT

Equal 1

Equal 0

Not Equal

SR Key

0
1

0
1

0
1

0
1

Lockbit value
for

selected line

1
0

1
0

Load

Yes
No

Yes
Yes

Yes
Yes

Yes
Yes

Store

Yes
No

Yes
No

Yes
Yes

No
No

Access permitted

Load Store

Yes Yes
Yes No

Yes No
No No

No No

Use of the Special Segment facilities allows
interprocess locking of items smaller than
pages. Interrupts caused by disallowed
accesses can be used to grant locks, to
cause processes to wait, or to indicate actual
protection violations.

Conclusions
Together, the ROMP and MMU provide many
of the characteristics of a mainframe
computer-large virtual memory, 32-bit
addressing and data flow, high
performance-while requiring only a few
chips to implement. The Reduced Instruction
Set Computer concept allows the hardware
architecture to be relatively simple, while the
combination of ROMP and MMU hardware
and modern system software can produce a
very powerful computer system which is small
enough to reside on a desk top.

The realm of personal computers need not be
restricted to those applications which can fit
on 8- or 16-bit machines with limited
addressability and CPU speed. Programs
typically considered mainframe applications
can take advantage of the addressability,
virtual memory, and speed of the ROMP.

55

References
1. George Radin, "The 801 Minicomputer," Proc. of

Symposium on Architectural Support for Programming
Languages and Operating Systems, Palo Alto, CA,
March 1-3, 1982. Published in ACM SIGARCH
Computer Architecture News Vol. 10, No.2, March
1982. Also published in IBM Journal of Research and
Development Vol. 27, pp. 237-246 (1983).

2. G.G. Henry, "Introduction to IBM System/38
ArChitecture," IBM System/38 Technical
Developments, IBM Corporation, Atlanta, GA, 1978.

3. M. Auslander and M.E. Hopkins, "An Overview of the
PL.8 compiler," Proc. of the SigPlan '82 Symposium
on Compiler Writing, Boston, MA, June 23-25, 1982.

4. J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T.
Gross, F. Baskett, and J. Gill, "MIPS: A
Microprocessor Architecture", Proc. of the SigMicro
15th Annual Microprogramming Workshop, 1982.

5. D.A. Patterson, "Reduced Instruction Set
Computers", CACM 28, 1 (January 1985).

56

ROMP/MMU Implementation

D.E. Waldecker, C.G. Wright, M.S. Schmookler, T.G. Whiteside, R.D. Groves, C.P. Freeman, A. Torres

The IBM RT PC central processor and
memory management functions are
implemented in the ROMP and MMU chips.
These VLSI parts are manufactured by the
IBM General Technology Division in
Burlington, Vermont and are contained on the
RT PC processor card. The technology is
discussed by Dupont et al.[1]. See also
Waldecker et al.[2] for a description of the
RT PC processor card. The basic challenge in
the ROMP/MMU functional design was to
organize the chips and interfaces to execute
one instruction every 170-nanosecond
processor cycle, except for a few types of
instructions. This execution rate is maintained
with relatively slow memory by interleaving
memory accesses (see also Rowland [3]).
ECC checking is performed on each memory
access without impacting the ability to
execute an instruction every cycle. Functional
highlights of the ROMP and MMU chips, as
well as their interaction and the logic design
process used, are presented in this article.

The ROMP chip fetches and executes
instructions. It also manages instruction flow
for interrupts, program checks, and machine
checks. The MMU accepts memory requests
from the ROMP or from I/O, translates
memory addresses from virtual to real,
manages memory page faults, performs
memory access authorization checking, and
interfaces to the RT PC system memory
cards. Both parts contain checking to
generate machine checks and program
checks in case of parity errors, invalid

instruction operation codes, invalid real­
memory addresses, and time-out conditions
caused by non-response of a system element.

ROMP-MMU Interconnection
The ROMP and MMU chips are connected via
a high-performance channel. The ability of the
ROMP RISC architecture to execute an
instruction almost every CPU cycle highlights
the need for this channel to support high
bandwidth. Two primary considerations for a
high-performance memory interface are: 1)
the ability to support a high transfer rate, and
2) low latency on replies to requests.

The ROMP Storage Channel (RSC) is a
packet-switched, 32-bit channel designed to
match the pipelined operation of the ROMP
processor. Its most distinctive aspect is the
ability to support overl,apping of memory
accesses. Memory reads are split into two
distinct actions, a request and a reply, and
multiple outstanding requests are allowed. An
address packet and a data packet can be
transmitted each 170-nanosecond processor
cycle, giving a channel bandwidth of 23.5M
bytes per second.

Address and data transfers on the RSC are
done on a synchronous basis. The 170-
nanosecond CPU cycle is divided into two
transfer periods. The first half of each CPU
cycle is dedicated to address transfers and
the second half to data transfers. The
address cycle and the data cycle each have
independent arbitration since the address

transfer and the data transfer may be for
independent operations. Independent
acknowledgment is also provided for the
address and data cycles. A transfer may not
be accepted if the recipient is "busy" or if the
recipient detected a parity error on the
transfer. The acknowledgment sequence will
indicate these conditions and the source will
re-send the address or data in the case of
"busy" or "error." Data replies from memory
or I/O have priority over data being sent to
memory or I/O. This priority is necessary to
prevent potential overflow of the buffering
available in the receiving device. The ROMP
takes advantage of the system memory
interleave capability in two areas. First, it
prefetches instructions and is capable of
sending out four instruction fetch requests
before requiring a reply. Because channel
bandwidth is inherently greater than
necessary for instruction execution, the
4-word prefetch buffer is usually at least
partially full, providing some immunity to
interference from program data references
and DMA traffic.

Secondly, for data references to memory or
I/O the ROMP allows two outstanding
requests. Program execution is stopped only
if the data being referenced is required to
continue. Instructions following a Load are
executed in parallel with the actual memory
reference unless they require the data being
fetched by the Load instruction. The PL.8
compiler places Load instructions in the
instruction stream as far ahead of the

57

instruction using the data as it possibly can.
Also, Load data is placed into the ROMP
register file through a dedicated port to
eliminate interference.

Of course, the M M U and memory must also
support fully overlapped operation if the
performance potential is to be achieved. In
fact, the MMU can simultaneously be
processing two memory requests while the
result of a third is being transmitted to the
ROMP. The memory in the RT PC system is
implemented as two interleaved 32-bit wide
banks, allowing overlapped operation. The RT
PC system memory card design supports
interleaved operation on a single memory
card.

Management of requests and replies on the
RSC is accomplished by having a unique tag
accompany each request and each reply.
Whenever the ROMP issues a memory
request, it sends a unique 5-bit tag with the
request. The MMU remembers the tag and
returns it with the requested data or
instruction. The tag received with each reply
allows the ROMP to handle the received data
or instruction correctly. The same tagged
approach is used for requests from the
ROMP to the I/O or from I/O to the MMU.

It can be seen that ROMP instruction
execution is relatively "decoupled" from
memory requests. Instructions are prefetched
and the ROMP usually has about two
instructions in its prefetch buffer. Instruction
execution is not suspended on Stores. That
is, after the ROMP sends the address and
data to the MMU, it is free to continue
executing instructions. If the compiler is
successful in plaCing Loads "upstream" in
the program, the ROMP also need not wait
for requested data in order to continue
execution. In the current implementation of

58

Instruction
address

Storage channel

Memory address

MMU
activity

ROMP
activity

<---->

< >
I Translate

I Memory access

Figure 1 ROMP/MMU Instruction Execution Flow

Register
operand
fetch

Control
word
fetch

the ROMP, the execution overlap of Loads
and Stores is suspended when operating with
virtual addresses, but overlap continues for
instruction fetches. The ROMP generally
requires 60% to 70% of the RSC bandwidth
to support its inherent performance. The
remainder of the RSC/Memory bandwidth is
available for I/O DMA traffic. Even though
DMA traffic may interfere with ROMP memory
requests, the decoupled nature of the ROMP
and memory can permit such interference
without performance degradation in many
cases. That is, in many cases it does not
matter if a ROMP instruction fetch or a data
load is delayed a cycle. Of course, as I/O
traffic causes the RSC usage to approach

Instr.
execution

Result
storeback

100%
, ROMP performance starts to be

degraded linearly by increased I/O activity.

Figure 1 shows the typical operations
required to execute a single ROMP
instruction. The sequence begins with the
fetching of an instruction from memory. The
request is sent from the ROMP and accepted
by the MMU one-half cycle later. The MMU
translates the address, uses the result to
address memory, checks the returning data
for ECC errors, and latches the result. The 2-
cycle memory access time includes address
translation, address and data buffering, and
ECC error detection. Error correction is not
included in this time, however. (If an error is

detected, the reply to the ROMP is cancelled
and retransmitted to the ROMP on a
subsequent cycle. This practice reduces the
impact of ECC on access time when no error
is detected from 80 nanoseconds to about 30
nanoseconds.) After access, this instruction is
returned to the ROMP, and is latched into the
instruction prefetch buffer. Following latching
of the instruction, a three-cycle process
occurs. First, the ROMP extracts the opcode,
register addresses, and any immediate
operand. The opcode is used to address a
small microcode ROM and the register
addresses reference two independent read
ports in the register file. At the end of this
cycle, register and immediate operands and
control information have all been latched. The
following cycle, operands are manipulated in
the ALU according to the control information,
with the result being latched at the end of the
cycle. In the third cycle the result of the
operation is stored back into the register file.

Although there are several cycles in the
complete instruction sequence, the process is
overlapped to a high degree. Figure 2 shows
how the sequence described above would be
overlapped for three identical instructions.
Shown are three 32-bit instructions which
execute in one cycle each.

Rapid response (Le., low latency) to memory
requests is most important for instruction
fetches which directly follow a branch-taken
execution. The contents of the instruction
prefetch buffer must be discarded in this
case. Although latency of starting the new
instruction stream is fixed, the ROMP reduces
its impact by implementing a "Branch with
Execute" instruction. This Branch form is
designed to keep the CPU busy with
instruction execution while the contents of the
Branch address is being fetched from
memory.

Instruction
address

Storage ® ® ®® ® channel

Memory address <A1 ~A2 ~A3

Translate I A11

Memory A access

Memory B access

ECC

Reply latch

ROMP

Instr. prefetch buffer #1

Instr. prefetch buffer #2

Instr. prefetch buffer #3

Instr. prefetch buffer #4

I
IA21

A1

A2

I R11

<

Register operand fetch & control word fetch

ALU input latches

Instruction execution

Result storeback to register

IA31

I

>
A3

IR21

~

Figure 2 Timing Example --- Three 32 Bit Instructions

<

The following sections highlight some internal
functions performed by the ROMP and MMU
chips as well as the logic design and
verification process used.

ROMP Chip
The ROMP chip is a pipelined processor
capable of executing a new instruction every
cycle. While one instruction is being executed,
the next instruction can be decoded, and
following instructions can be fetched from
memory and buffered. A one-cycle execution
rate is prevented when either an instruction
requiring multiple execution cycles is
executed, or a hold-off occurs (Le., when the
processor waits for an instruction or data
from memory). Most instructions take only

I R31

~

11

@

>

>
< >

< >

12 13

11 12 13

11 12 i3

11 12 13

one cycle, but Store and I/O Write
instructions each take two cycles. The ROMP
instruction set is described in Hester,
Simpson, and Chang [4].

The ROMP processor is partially
microprogrammed. It uses ROM for control
during the execution cycles, but hardwired
control logic is used for instruction
prefetching and for memory data requests,
since those operations are usually overlapped
with the execution of other instructions.
Figure 3 shows a block diagram of the ROMP
processor data flow.

59

Instruction Fetching
The instruction fetch area includes the
Instruction Prefetch Buffers (IPBs), the IPB
Multiplexer (MUX), and the Instruction
Address Register (IAR) and its incrementers.
Four I PBs are provided to keep the processor
supplied with instructions. Instructions are

code

Microcode
ROM
256 x 34

Destination ADDR

~
~ecute con""

prefetched whenever an IPB is available and
there is no other request for use of the RSC.
Every cycle, each I PB that is waiting for an
instruction ingates the data from the RSC.
During the following cycle, the tag associated
with that data is examined to determine if it
was addressed to any of the IPBs. If so, then

ALU
write
ADDR

RS read

RC read

RSC write ADDR

Immediate field

RSC
write
data

24 x 32
4-port
register file

S out A out

ALU write data

Hardware
SCRs

I I

~----------------~----------------~--~RSC

Figure 3 ROMP Data Flow

60

that IPB will hold its contents until that
instruction word is gated by the M UX to the
decode circuits.

The IAR, which in many systems is called a
Program Counter, is included among the
hardware System Control Registers (SCRs) in
the diagram, and has two incrementers. One
is used to update the IAR after each
instruction is executed, while the other is
used to calculate the address of the next
instruction to be prefetched.

Execution Unit
The execution unit includes the register file,
the AI and BI latches, the ALU and shifter,
and the ALU output latch. It also includes the
MQ register and the Condition Status register,
which are both SCRs. To support a one-cycle
execution rate, a 4-port register file is used.
The register file is a RAM containing the 16
general registers, some of the SCRs, and
other registers which hold temporary values
during the execution of some of the
operations. Two of the ports of the register
file are used to read two operands
simultaneously into the AI and BI latches.
Another port is used to write the result back
from the ALU output latch, and the fourth port
is used to write data from memory or I/O.
Data is written into the register file during the
first half of a cycle, and read out during the
second half of a cycle. Therefore, if the same
word is addressed by both a read port and a
write port, the new data will be read out. The
ALU is used for the execution of all arithmetic
and logical instructions, and for address
calculations when executing Load, Store, I/O
and Branch instructions. The addresses are
sent to the RSC request area. For Branches
that are taken, the address is also placed in
the IAR. During the second execution cycle of

Store and I/O Write instructions, the
execution unit sends the data to the RSC
request area.

A bypass is provided which allows the ALU
output to be gated directly into either the AI
latch or the BI latch. This bypass is used
when the result from one execution cycle is
needed during the next execution cycle. The
bypass is activated by circuits which compare
both read port addresses of the register file
with the address that will be used for the
result write port during the following cycle.

RSC Interface
The RSC interface consists of the request
area and the receive area. The request area
arbitrates for use of the RSC and it receives
the acknowledgment signals after requests
are sent. It also has buffer registers for two
addresses and tags for requests to memory
and I/O. It has one buffer register for
outgoing data, and it aligns the data for byte
and half-word Store and I/O Write
instructions. Instruction addresses arising
from successful Branches come from the
execution unit, while instruction addresses
which are in sequence come from the IAR
prefetch incrementer. Requests will be re-sent
if the acknowledgment signals indicate either
a busy condition or a parity error.

The RSC receive area contains buffer
registers for one incoming data word and tag.
Each cycle, they capture whatever data word
and tag is on the RSC. The data word is also
gated into each I PB for which an instruction
fetch request has been made. During the
following cycle, the tag is examined to
determine if the word is addressed to the
ROMP, and if so, whether it is an instruction
or data. If it is an instruction, the tag will also
identify which I PB has been assigned to it. If

it is data, the tag will point to one of two
descriptors which will control the alignment by
the formatter and store it into the proper
location in the register file. The RSC receive
area also checks the parity of the data word
and sends back the proper acknowledgment
signals on the RSC.

Control Unit
The control unit includes the microcode ROM,
the Control Register (C Reg), the instruction
decoders, and the ROM and register file
address latches and control circuits. It also
includes circuits for detecting and handling
interrupts, machine checks, and program
checks, as well as the SCRs associated with
these events.

The ROM contains 256 control words of 34
bits each. It owes its small size to several
factors. The reduced instruction set contains
fewer than 128 instructions and most require
only one execution cycle. The control words
are needed only for the execution cycles of
the instructions, since instruction prefetching
is controlled by hardwired circuits, and the
last control word of each instruction controls
the decoding of the next instruction.
Therefore, nearly half of the words are
available for other operations, which include
Program Status Word (PSW) swaps for
interrupts, System Timer updating, and
Power-on-Reset (POR) initialization. The
initialization routine checks many of the
internal facilities, including the Register File,
ALU, and RSC, and goes into an endless loop
if an error is detected. Another POR will
cause it to try the initialization again.

Several techniques were used to keep the
length of the control words short. Each word
contains several encoded fields, with each
field controlling a separate function or group

of signals. Four different formats are used, so
that some fields have different interpretations
for each of the formats. The four formats are:

• ALU - Used for arithmetic and logical
operations

• Shift - Used for shift and byte move
operations

• Channel - Used for address calculations
and RSC requests

• Control - Used for microcode branching
and miscellaneous operations.

Use of a separate format for microcode
branching eliminates having an address field
in every control word. Since nearly all
instructions use only one or two control
words, microcode branching is seldom
needed.

The control words are fetched from the ROM
into the C Reg during the cycle prior to the
one when they are executed. During the last
execution cycle of any instruction, the next
instruction is selected from one of the IPBs
by the MUX and decoded. This decode cycle
is used to simultaneously fetch a control word
from the ROM and fetch the two operands
from the register file into the AI and BI
latches. The operation code is taken directly
from the output of the MUX and used as the
ROM address. This puts nearly all of the first
control words into the upper half of the ROM.
If additional words are needed, the ROM
address is usually just incremented and
switched to the lower half of the ROM. The
control signals are obtained by decoding the
outputs from the C Reg. Also during the
decode cycle, the register address for the
result, called the destination address, is put

61

into a two-stage pipeline to be used two
cycles later for storing the result from the
ALU output latch into the register file.

System Control and Support Processor
Facilities
The system control facility includes an SCR
that controls the processor mode, the types
of interrupts that are enabled, and interrupt
priority. It has an SCR for buffering interrupt
requests, and a System Timer facility for real
time applications. There is also an SCR for
identifying program check and machine check
errors. With this, the ROMP can recover from
most software and intermittent hardware
errors.

The ROM P is a Level-Sensitive Scan Design
(LSSD) processor which allows the internal
registers and latches to be reconfigured as
serial shift registers. A support processor,
such as a PC, can then be used to examine
and alter the internal state for system or
program debugging. With other facilities, the
processor can be stopped at a specified
instruction or microcode address, or single
stepped so that the state can be examined
after each instruction, The processor can also
be reset and initialized.

MMU Chip
The M M U implements the memory
management features described in Hester,
Simpson, and Chang[4] with a number of
innovations. This article will focus on a few of
these innovations. Figure 4, showing the
MMU data flow, is included for reference.
Refer to O'Quin et al.[5] for a software
perspective of the M M U.

Translation Look-aside Buffer
Automatic hardware reload is included for
Translation Look-aside Buffer (TLB) entries
when virtual addresses are not present there.

62

IRSC

Address + Latch

l 1 T
Auxiliary

SEG REG TLBO TLB1 processor

~\
0

l(:5\
serial Common
port front

end
ADDR ADDR RPN1 RPNO
TAGO TAG 1

/',
15

o

15

V"-Control
~ADDRtag registers I\.

'" I L1 I Address ~ t ,
I L2 J Latch

Real

STG ',/7 CTL Translate CTL

A --.. ECC
Data (40)) Parity

.... w Interleaved
A .. Load real

Master mode K Reload) Purge
Refresh Page fault

A ~ RASMODE
'II r

Reload
Control " ROM /

'" .. RAM

Figure 4 MMU Data Flow

Memory management units that depend on
processor intervention are much slower due
to the overhead in passing control to the
processor which must then save and restore
registers and return control to the memory
management unit in addition to the page table
memory lookup function. Figure 5 illustrates
the significant performance advantage
afforded by hardware TLB reloads as a
function of the TLB hit ratio (the ratio of
accesses without reload to total accesses).

MMU Memory Interface
Another key MMU feature is a flexible
memory interface capable of supporting a

I Compare I Compare I

! f
~ MUX I

t
l MUX J

+
Storage address

wide variety of ROM and RAM. Memory
interleaving for maximum bandwidth and error
correction or parity checking are among the
options supported by the hardware. External
logic supplies all timing-critical memory
controls to allow attachment of widely varying
classes of memory. The interface employs a
simple handshaking scheme that allows
attachment of different access time memories
to the MMU in a manner that overlaps data
transfers with the dynamic RAM precharge.
See also Waldecker et al.[2] and Rowland [3].

The flexibility built into the memory interface
was not achieved without difficulties. For

E 2.0 L_-----------:7
f
f
e 1.5
c
t
i 1.0
v
e
M 0.5
I
P
S

Hardware VS. software
TLB miss handling

0.0 ,I......I..L....L.L...&....o....J

0.970 0.975 0.980 0.985 0.990 0.995 1.000

TLB hit ratio
Assumptions:

Base ROMP speed = 2.0 MIPS
Average instruction length = 2.5 bytes

Figure 5 Hardware versus Software TLB Performance
Handling

example, provisions for specifying RAM and
ROM ranges in software created a "chicken
or the egg" dilemma of how to run this range­
setting software without the ranges being set.
This led to the invention of "master mode" in
which the MMU will accept any memory
request before the range registers are
initialized. If the first request after IPL is a
memory read (such as a ROMP initial IAR
fetch), this and all subsequent requests are
directed to ROM until master mode is
disabled by initializing the ROM and RAM
range registers. The logic level on one of the
pins at power-on determines whether master
mode is effective to allow using more than
one MMU on the RSG.

With any VLSI design, pins are always at a
premium and generally force tradeoffs in
performance. The MMU 24-bit memory
address was implemented by multiplexing low
and high address bits without incurring a
performance penalty. The low order address
bits are quickly passed through from the RSG
and latched externally, in parallel with the

address translation for the upper address
bits. Thus pins are saved with no
performance impact.

Many memory interfaces "hang" when an
out-of-range address elicits no response from
the memory controller. The MMU solves this
problem with a special "Address Recognized"
signal that is used to communicate invalid
address conditions without machine error
conditions.

Hidden refresh for dynamic RAMs is another
MMU implementation feature. By performing
refreshes to idle banks when possible,
refresh interference is typically reduced by 50
percent.

Error Correction
The MMU provides an efficiently pipelined
EGG function that separates error checking
from error correction. Data transfer is done in
parallel with the checking phase and is not
delayed in the normal case (i.e., when no
error is detected). If an error does occur, the
data transfer is cancelled and extra time is
allowed to complete correction. Thus, only
accesses with errors are penalized by the
extra cycle required for correction.

Logic Design Process
The ROMP logic design proceeded in parallel
with the logic-circuit library definition and the
SGP manufacturing process evolution in
Burlington. The potential for significant
changes required having flexible and
automated tools for performance tuning,
simulation, hardware verification, chip test
generation, and chip problem isolation. The
physical process is described in Dupont et
al.[1].

Design Process
Figure 6 shows the general design flow used
in the design of the ROMP and MMU.

Each logic designer simulated his logic
macros interactively followed by full-chip
simulation using the AUSSIM simulator. The
full-chip simulation was driven by test
programs written to cover as many variations
of functional operation as we could
reasonably exercise. New test programs were
continually added as 'problems were
discovered or new test conditions were
identified. The same test programs were also
used to test the nodal model as well as chip
hardware when it arrived. (The nodal model

~
Logic Test program
design generation

1
t ,

Macro/chip Nodal -simulation model

+
........... Performance

tuning

+
'---

Chip physical
design

+
Build
wafers

1
f t

TPG ---.. Test Funct. test
wafers/modules system

Figure 6 Design Flow

63

was a TTL equivalent of the ROMP chip and
is discussed later in this article.)

Performance optimization was performed by
using design automation tools which identified
long paths which were then corrected by a
combination of logic and physical design
changes.

Manufacturing test was driven by test
patterns generated in the design process.
Failure isolation to areas of the chip was
provided by test procedures and special
programs written to analyze test results and
identify sections of likely failure.

Early parts from Burlington with a potential
for working were brought to Austin and
functionally tested in our nodal model test
bed by replacing the CPU portion of the
model with the ROMP Chip.

Performance Tuning
Early in the ROMP design, the need to
estimate path cfelays automatically was
recognized by Austin logic designers faced
with thousands of nets to manage. To meet
this need, a timing analysis too! was
developed to estimate latch-to-Iatch paths
based on block rise and fall delays. Block
delay requirements were specified by the
logic designer, and the physical designers
adjusted the block power levels based on
loading and wiring capacitance to meet the
specified values. If the requested delay values
could not be met, the logic designers would
modify the design to improve the problem
paths and the process would iterate.

Design Verification
The potential for significant changes led us to
pursue two independent design verification
methods - a nodal model and software
simulation. A nodal model of the chip was

64

built by automatically converting our SGP
circuit library to TTL equivalent circuits.
(Nodal means that every SGP signal was
duplicated in the TTL design.) Simulation was
performed using the Austin Interactive
Simulator (AUSSIM).

After all of the logic macros were simulated
individually, they were connected together
and chip simulation was performed. High level
simulation models were written for embedded
arrays and for support logic to simulate a
system environment. Architecture Verification
Programs (AVPs) written in ROMP assembler
language were used to test the functions
described in our functional specification.
Figure 7 shows the interconnection of
external high-level simulation models with the
ROM P low-level logic. The master and slave
behaviorals simulate additional RSC traffic.
The AVPs were loaded into our array model
and executed by the ROMP. The first AVPs
were written in Burlington, and Austin created
more as they were required. The ROMP AVPs
grew to over 400 and required eight CPU
days to run on a 3081.

The nodal model helped us discover various
subtle design bugs not found in logic
simulation. The model was quite large,
containing 14 boards of logic with an average
of 280 TTL modules each. CPU support
functions, including the memory, an I/O test
board, and a test processor interface were
part of the model. Debug of these areas
permitted rapid functional test of newly­
received chips replacing the CPU portion of
the model with the ROMP chip.

Manufacturing Test Generation
A manufacturing test is performed on each
chip on a wafer to determine which chips
should receive further processing. Testers
capable of probing over a hundred pads

ROMP RSC Memory/
Array MMU -

logic model model

I I
Master Slave AVPs
model model

Figure 7 Design Verification

simultaneously and automatically applying
hundreds of test patterns are used to perform
this testing. To determine in manufacturing
which chips in a wafer are defect free, test
patterns are applied to each chip. As the
number of circuits on a chip increases, the
number of test patterns required to test all
possible defects increases dramatically. The
large number of circuits (>50,000) in the
ROMP and MMU necessitated generating test
data automatically. Tp do that, all latches in
the ROMP and MMU were made Level
Sensitive Scan Design (LSSD) latches. LSSD
latches can be transformed into Shift
Reaisters called scanstrinas which allow test -..., - - - - - - - - - . - w

data to be shifted into and out of the chip by
appropriate clocking. This approach supports
automated testing by shifting in test data and
then shifting out the test results. The tester
compares test results with correct results
previously generated during test preparation.
Figure 8 and Figure 9 show the test results
for the ROMP and MMU.

Chip Defect Isolation
Chip defect isolation involves quickly pin­
pointing which of the 50,000 plus devices on
a chip are defective.

Failure diagnosis started out as a laborious
manual process of listing the most likely
failing signals or circuits whenever a failure

ROMP Test Pattern Generation

Number of scanstrings

Longest scan string

Number of CPU hours to generate

Test coverage on random logic

Test coverage on OCDs

Test coverage on RAM

Test coverage on ROM

5

157 latches

76 hours (3081)

98.6%

100 %

100 %

100 %

Figure 8 ROMP Test Pattern Generation

MMU Test Pattern Generation

Number of scanstrings

Longest scanstring

Number of CPU hours to generate

Test coverage on random logic

Test coverage on OCDs

Test coverage on RAMs

Figure 9 Design Verification

6

169 latches

15 hours (3081)

99.4 %

100 %

100 %

was detected. The process was improved by
using the AUSSIM simulator to resimulate the
failing test patterns to reduce the list of
possible defects. Later the process was
improved further with a program that analyzes
all possible defects that could cause a failure,
and filters all but the most likely causes. This
program proved very successful in accurately
pin-pointing defects.

Bench-test setups for probing directly on
Signal lines which were only microns wide
helped find defective circuits.

State-of-the-art tools such as lasers for
cutting shorted nets and voltage contrast
tools for observing chip behavior were used
to pin-point and repair defects isolated with
the diagnostic program.

Chips which passed all manufacturing tests in
Burlington were next tested in the Austin
maufacturing card test by having the
processor card execute a comprehensive set
of test software. Discovery of defective parts
on the processor card is infrequent,
demonstrating the effectiveness of our chip
test methods.

Conclusions
The organization of the ROMP and MMU
chips, together with the design tools which
were used, have resulted in a high­
performance and flexible processor complex
for the RT PC family. The 32-bit RISC CPU
(ROMP) is designed to execute an instruction
every cycle and the memory system is
capable of supporting this high execution
rate. The high memory bandwidth requirement
of the ROMP is satisfied by the combination
of a packet-switched ROMP-MMU interface
(RSC), interleaved memory accesses, and a
pipelined MMU design for address translation
and ECC. The MMU memory management
chip contains performance enhancing features
such as automatic hardware TLB miss
handling, hidden refresh, and ECC error
handling.

The design and test tools evolved during our
design have been used to design other chips
with greater device counts and the diagnostic
tool has grown in importance and usage for
resolution of chip defects.

References
1. Raymond A. Dupont, Ed Seewan, Peter McCormick,

Charles K. Erdelyi, Mukesh P. Patel, P.T. Patel,
"ROMP/MMU Circuit Technology and Chip Design,"
IBM RT Personal Computer Technology, p. 66.

2. D.E. Waldecker, K.G. Wilcox, J.R. Barr, W.T. Glover,
C.G. Wright, H. Hoffman, "Processor Card," IBM RT
Personal Computer Technology, p. 12.

3. Ronald E. Rowland, "System Memory Cards," IBM RT
Personal Computer Technology, p. 18.

4. P.D. Hester, Richard O. Simpson, Albert Chang, "The
RT PC ROMP and Memory Management Unit
Architecture," IBM RT Personal Computer Technology,
p.48.

5. J.C. O'Quin, J.T. O'Quin, Mark D. Rogers, T.A. Smith,
"Design of the IBM RT PC Virtual Memory Manager,"
IBM RT Personal Computer Technology, p. 126.

65

ROMP /MMU Circuit Technology and Chip Design

Raymond A. DuPont, Ed Seewann, Peter McCormick, Charles K. Erdelyi, Mukesh P. Patel, P.T. Patel

Introduction
A VLSI design of a 32-bit 801-based RISC
microprocessor [1,2,3] was a significant
challenge in the late seventies. The
semiconductor processes that were then fully
developed did not provide the necessary
density or performance capability for a one­
chip implementation of the entire processor
function. The 2-micron silicon gate NMOS
technology under development in Burlington
[4] appeared to offer the higher packing
density and the lower power circuits required
in the low-cost system environment. The
circuit challenge was to use this new
technology to design a 200-nanosecond,
single-chip, 32-bit microprocessor at low
enough power to satisfy cooling and reliability
constraints.

Many additionai chaiienges faced the design
team throughout the chip development The
chip architecture, device process, and all the
design tools used to develop the chip were
new. Even with the early device models that
were provided to the circuit designers, it was
predicted that the chip powers would exceed
those necessary for the desired cooling and
reliability. For this reason, an investigation
into the circuit power/performance was
undertaken to find a solution to the on-chip
power. This investigation led to the
exploration of power supply voltages lower
than the customary 5 volts, the analysis of
circuit design parameters associated with
lower voltage, and generation of a lower

66

voltage from the standard 5-volt supply in the
system.

In addition to the circuit challenge, the design
methodology was developed as the chip was
designed. The available design techniques of
master slice (gate arrays) and master image
(standard cell) were widely used but neither
would provide the necessary density or
performance. A fully custom design would
have been too costly for a non-commercial
chip with volumes less than the normal break­
even point. The best design technique was to
use custom circuits in high-leverage data flow
areas and master image in control (random
logic) areas.

Circuit Technology

Base Circuit Technoiogy
The base circuit technology consists of
standard NMOS FET pull-down devices with a
depletion mode pull-up device as shown in
Figure 1.

When this circuit must drive a large load
capacitance, a buffer stage is added. In a
buffered circuit the pull-down devices are
enhancement type, however the pull-up
devices can be either enhancement or
depletion type. Figure 2a/2b shows the two
types of buffered ("push-pull") circuits.
Because of its lower power dissipation, the
enhancement push-pull circuit was chosen for
general use, even though the up-level it

Out

1N1o-1

Figure 1 Depletion Load Circuit

provides is a threshold below the supply
voltage. The depletion push-pull circuit is
used only in areas where a higher up-level is
required. As a general design practice, push­
pull circuits were used primarily to drive
global wiring.

A circuit analysis indicated that the minimum
power/delay product of the circuit shown in
Figure 1 occurred at a power supply voltage
(Vh) of 3 volts. Since 3.4 volts is used by
some technologies, the compromise was
made to use this value. While the lower
voltage provides a significant leverage in
many circuits, there are some that perform
more optimally at 5 volts. Typically, these
were circuits with low capacitance loading in
which gate capacitances comprised most of
the net loading. These circuits were kept at 5
volts. Figure 3 shows how the 5-volt, 3.4-volt
and push-pull circuits might be optimally

Figure 2a Enhancement Push-pull

Figure 2b Depletion Push-pull

applied as a function of the wiring
capacitance.

Out

Out

In order to provide an adequate noise margin
for the transfer of 3-volt signals, the size of
the active input devices was double that
which would have been used in a 5-volt
circuit. This did not have a significant impact
on circuit density since the circuits were used
primarily in wiring limited areas.

The 3.4-volt supply was not readily available
in the system and it had to be generated from
the available 5-volt supply. This was done
using an on-chip regulator to drive the base
of an external PNP power Darlington. The
voltage differential is dropped across the PN P

Td (ns)

10

8

6

4

2

Figure 3

I
I
I
I
I
I
I
10.5 mW/circuit
I fanout = 3
I
I
I

0.2 0.4 0.6 0.8 1.0 1.2 C wire
(pF)

Circuit delay (Td) as a function of wiring
capacitance

transistor and regulated by the on-chip
regulator.

Off-Chip Drivers
Off-chip driving presented several challenging
problems. The delay of many of the off-chip
drivers was in the critical paths, requiring
delay to be kept at a minimum. Since the
capacitance loads are quite large (in the
range of 25 to 75 pF), faster switching
requires substantial currents. When off-chip
drivers switch simultaneously, the peak
currents algebraically add and cause
substantial shift in the ground or power
supply nets, especially in 32-bit designs. This
shift can disturb the internal circuits. In order
to prevent this, only 12 drivers are connected
to a pair of power and ground pads. In
addition, the 3.4-volt power supply is used to
power the final driver stage. This gives an
improvement in the performance as well as a
reduction in the switching currents.

Custom Circuit Design
The combination of a two-level metal silicon
gate enhancement / depletion NMOS
technology and the 32-bit RiSe architecture
made custom design an attractive alternative
for the repetitive logic elements in the data
flow. This was particularly evident for the on­
chip storage elements which included a 24-
word x 32-bit four-port, simultaneous read­
write register file implementation of the
microprocessor general-purpose registers, a
RAM implementation of the two-way
associative Table Look-aside Buffer on the
address translation chip, as well as numerous
18- and 36-bit multi port data-selector
registers used throughout the design of both
chips.

Whereas the RAM cell was implemented with
a standard six-device symmetrical cell, the
register file cell was implemented using an
eight-device asymmetrical cell as shown in
Figure 4. In this cell, the read devices 5 and 6
are made small relative to device 4 to prevent
inadvertent destructive read out. The write
devices 7 and 8 are made large compared to
the current sourcing capabilities of devices 1
and 2 to guarantee writing.

IN 0 Out 0

IN 1 Out 1

Write 1 WL

Figure 4 Eight-Device Register File Cell

67

Transfer devices were also employed to
provide area and performance improvements
in the design of the data registers. A circuit
schematic of a typical latch stage of a data
register is shown in Figure 5. The slave latch
of this master-slave latch pair, as shown, is
composed of nine individual devices. Devices
1 and 2 form an output buffer stage to drive
large capacitance loads. Transfer device F,
when connected to the buffer output,
performs a polarity hold function and device
G, when connected to the output of the
previous stage, performs an LSSD (Level

Vdd Vdd Vdd

Read wordline

L2 clock
Hold

T # = Q buffer n
* = Q buffer n-1

Shift

T 312

Figure 5 Data Register Bit Cell

68

Sensitive Scan Design, [4]) shift function. The
input transfer devices, together with the input
capacitance of device 9, comprise a master
latch in which the capacitance of terminal 312
acts as a storage element. The additional
input devices form a data-selector or
multiplexer function allowing different word
inputs to be selected.

Custom design of these respective data
storage elements using transfer devices to
their natural advantage significantly reduced
chip area, improved performance and lowered
chip power. In addition, the use of standard
predesigned functional blocks, such as
registers, facilitated and standardized the
logic for these components, reduced data
entry and simulation time and finally formed
the nucleus of the "bit stack" data flow
physical design image for both chips.

In addition to these custom circuits, other
specialized circuits were used where they
provided an advantage. These circuits include
ROM, multiplexers, parity and ECC, ALU,
incrementers and comparators. These circuits
were manually designed as required.

Custom Physical Chip Design
During the physical chip design, five levels of
hierarchy were defined. These consisted of
the chip, super macro, macro, circuit and
transistor. The use of hierarchical design
methodology allows the design to proceed in
two areas in parallel, these being the macro
and global areas. This reduces the chip
design turnaround time and permits the
design of reusable macros. This hierarchical
top-down approach proceeds in three steps.
The first step is the chip floor planning, the
second is the macro design, and the third the
global design and verification.

Floor planning is done in conjunction with the
high-level logic definition and determines the
optimum size, aspect ratio and placement of
each macro and input/output on the chip
image with appropriate space left for global
wiring. An abbreviated version of the chip
floor plan for the CPU chip is shown in Figure
6. The floor plan is broken into three areas:
1) data flow stacks, 2) random (control) logic
form master image (standard cell) and 3)
mixed random logic and data flow.

After completion of the chip floor plan the
macro design can begin. This is done in two
steps. The custom bit-stack macros are done
first when the logic data flow is defined, and
the master image macros are completed as
the control logic is frozen.

Chip

~ S Rsupermacro

I I ~ Macros

! !! ! liilililili.!

D
Super macro

~ ilNrF
I
III
III

Master image Mixed Custom

Figure 6 Abbreviated Chip Floor Plan

Data Flow Bit Stacks
A data flow stack is a predefined bus
structure to coordinate macro-to-macro
communications along predefined wiring
channels. The primary characteristic of the
macros placed in the bit stack is their bit-slice
nature. The macros are designed in a 1 X N
configuration, 1 bit in height and N bits wide.
Typical macros in the data flow stack are data
registers, multiplexers, register file, ALU,
shifter, rotators, parity functions and off-chip
data bus structures. The macros are then
placed in the vertical stack, aligning the bits
from macro to macro.

For both the processor and memory
management chips the data flow stacks were
designed for seven 36-bit data buses across
the horizontal cross section as shown in
Figure 7. The data bus wiring flows vertically
and the control signals flow horizontally. By
integrating the data bus with the circuits, both
meta! layers are fully utilized, reducing chip
area, as circuits can be placed under the
wiring. The minimum distance between inputs
and outputs can be obtained by efficient wire
packing of the data buses, reducing wiring
capacitances and improving chip
performance. Another advantage of bit-stack
design is that it allows reuse of general­
purpose macros such as multiplexers, parity
checkers, data registers, etc. These macros
can be predesigned to fit into this structure,
thereby preserving the custom advantages
while keeping the design time and resource at
a minimum.

Master Image Design
The control logic structures are implemented
using a master image (standard cell)
approach. The circuit library is predefined and
consists of 200 combinations of AND, OR,
NAND, NOR, OAI, AOI, XOR and latches.
Each of these books has five different

~

Control
signals

(2)

• Macro output
x Macro input

x

x
x

~

x

~

x

x

T T
I

x x
I

~ ~

T
I
~
,
I

x ~

t
Data
flow

Figure 7 Data Flow Bit Stack

x

N

~

Control
signals

powering levels to obtain a wide range of
power performance for each circuit.
Appropriate push-pull drivers were also
provided to drive the global wires that leave
the macro boundary.

The circuits in the control logic macros are
automatically placed and wired. This permits
the control iogic to be designed late in the
design cycle, similar to a PLA approach but
with the advantage of having control of path
performance. The basic layout for a typical
master image macro is shown in Figure 8.
The circuits are of a fixed height, but have a
variable width depending on the function.
There are variable wiring bay widths between
the circuits for interconnection. Once the
circuit bays and wiring bays are defined,
placement and wiring programs, based on
those described by Donze et al.[5], complete
the design of the macro. The power-tuning
option permits each circuit to be powered up

Wiring bays

~ l

Circuit columns Circuit books

Figure 8 Control Logic Image

or down after placement and wiring are
complete. The chip critical paths can then be
power-tuned late in the design cycle to
improve overall chip performance and the
over-powered nets can be adjusted to reduce
on-chip power dissipation.

Global Design
After chip floor planning is complete as
described above, the global chip design is
defined at a high level. The actual macro
input/output positions are required for the
global chip wiring. These are defined for the
data flow stacks early in the design process
and the control logic macro input/output pins
are fixed prior to their design. With this
information, both the macro and global chip
designs can proceed in parallel. Capacitance
values are continually fed back for
performance estimation and verification
during the global design phase.

Design Verification
In a complex VLSI design, one of the keys to
success of the design is the ability to verify
the process ground rules and logic-to-physical
correspondence. Due to the complexity of the
process and the subsequent lengthy

69

processing times, it is imperative that the
design be fully functional on the first pass.
This is achieved through a very extensive
checking methodology. In order to contain the
data volumes, the macro designs are
individually checked for both logical-to­
physical correspondence and process ground
rules. This data is then suppressed and the
same checks are repeated at the global level.
The macro level logical-to-physical checks are
done down to the device level, while the
global checks are done only to the macro
level. In addition to the above key checks,
other verification is done on the chip
performance, DC power drops and power
busing, as well as manual audits.

Conclusions
Both the process and the circuit technology
were selected to achieve the design of a high­
performance, 32-bit, 801-based RISC
processor and memory management unit at
reasonable system cost. The use of the lower
voltage circuits reduced on-chip power and
improved circuit performance. To provide an
economical power supply for the lower level
of supply voltage, an on-chip voltage
regulator was used, Innovative custom
designs significantly improved the overall
processor performance and provided a more
efficient use of silicon. The hierarchical design
method reduced the overall design time by
permitting more than one area of chip design
to proceed in parallel. The separation of data
flow and random logic permitted the custom
circuits to be employed for high-leverage
repetitive logic and standard cell design for
the control logic, where fast design
turnaround time is required. In addition, the
use of the data flow concepts permitted a
highly-bused architecture to be implemented
in a small chip area. Many of the design
concepts described in this paper are unique
to the IBM design environment as opposed to

70

the commercial environment where large
numbers of chips will be built and every last
bit of silicon must be used. Some trade-offs
have been made between silicon area and
design turnaround time, where automatic
tools are effective.

Finally, the successful combination of all the
design techniques permitted a complex and
highly bused architecture to be implemented,
providing the major logic components to the
system in only two chips.

Photomicrographs of the two chips are shown
in Figures 9a and 9b.

Acknowledgments
The circuit and physical design of the
processor and memory management chips
reflects the contribution of many designers in
both Austin and Burlington. Their efforts are
gratefully acknowledged.

References
1. George Radin, "The 801 Minicomputer", IBM Journal

of Research and Development, 27, 237-246, May 1983.

2. George Radin, "The 801 Minicomputer", ACM,

3. D.E. Waldecker. C.G. Wright, M.S. Schmookler, T.G.
Whiteside, R.D. Groves, C.P. Freeman, A. Torres,
"ROMP/MMU Implementation," IBM RT Personal
Computer Technology, p. 57.

4. E.B. Eichelberger and T.W. Williams, "A Logic Design
Structure for LSI Testing", Proc. 14th Design
Automation Conference, June 1977, 77ch1216-1 c,
pp.462-468.

5. R. Donze, J. Sanders, M. Jenkins, G. Sporzynski,
"PHILO - A VLSI Design System", ACM IEEE 19th
Design Automation Conference, June 1982.

6. R. Bechade, M. Concannon, C. Erdelyi, W. Hoffman,
"A Comparison of Mixed Gate Array and Custom IC
Design Methods", 1984 ISSCC Digest of Technical
Papers, February 1984.

7. P. McCormick, M. Lang, "Hierarchical Design
Methodologies, A VLSI Necessity", Advances in CAD
for VLSI, vol. 6, Design Methodologies, 1985 (in
press).

8. 1MB Corporation installed user program document
SH20-1118-0, "Advanced Statistical Analysis Program
(ASTAP), Program Reference Manual", Program
Number: 5796-PBH.

Figure 9a Processor Chip Figure 9b Memory Management Chip

71

Software Development Tools for ROMP

Alan MacKay and Ahmed Chi bib

Introduction
Traditionally, a microprocessor is designed
with minimal interaction between the
hardware and software engineers. The
resulting architecture often contains many
complex instructions and addressing modes
well suited for the assembly programmer.
However, such instructions are seldom
utilized by compilers due to their complexity.

This paper describes a set of tools used to
assist the hardware engineers in designing,
refining and verifying the architecture of a
Reduced Instruction Set Computer (RISC) [1]
to be a suitable target for optimizing
compilers. This IBM System/370-based tools
package consists mainly of an optimizing
compiler, a binder, a fast simulator, and a
host of execs, utilities and libraries. We
should point out that these are internal IBM
tools and are not part of the software
available for the IBM RT PC.

Compiler Tailoring
The ROMP processor architecture [2] and
compiler design was a cooperative effort
performed by software and hardware
engineers in Austin and Yorktown. It was one
of few projects where compiler technology
influenced many hardware decisions and vice
versa. The ROMP instruction set was tailored
for speed and space efficiency of the
generated code without sacrificing the
function of the processor itself. By the same
token, the PL.8 compiler [3,4,5] took
advantage of such hardware features [6,7] as

72

the execute form of Branches which perform
the next ("subject") instruction in parallel with
the branch, or the overlapping of a Load
instruction with the execution of another
instruction that doesn't require the result of
the Load. This was accomplished by having a
scheduling mechanism in the compiler that
analyzes each basic block of generated code
and rearranges the instructions to facilitate
such an overlap.

In the spirit of the RISC architecture, certain
high-level functions on the ROMP, such as
multiply, divide, and storage-to-storage move
operations, are implemented with subroutines
rather than microcode. On the assumption
that only one shared copy of these routines
will exist, the subroutines, which are called
Run-Time Routines are hand tailored and
highly specialized for speed efficiency without
regard to space.

Most languages, regardless of their level,
make use of subroutines to implement
primitives and data abstractions. The PL.8
compiler takes advantage of the ROMP
architecture by providing an efficient
subroutine linkage and parameter passing
mechanism. In passing parameters, the first
four are loaded into predetermined registers.
The invoked procedure may use those
registers without ever having to copy them
into storage.

Another aspect of subroutine linkage is the
procedure's prologue and epilogue. The PL.8

compiler assumes that certain registers (RO­
R5) are killed (scratch registers) by a CALL.
The compiler, therefore, uses those registers
first to avoid saving and restoring any of the
CALLer's registers. However, if more
registers are needed, they are used in
descending order (R15-R6). This is
particularly important because the STM (Store
Multiple) instruction always saves from the
register specified through register 15.

After the initial ROMP design was completed,
a few opcode points remained available. To
make the best use of them, a statistical
gathering feature was added to the compiler
to collect information on the frequency of
instructions and their operand's value. After
numerous bench marks had been compiled,
those opcode pOints were assigned to the
short form (2 bytes) of severa! instructions.

The short-form instructions included memory
"Loads" and "Stores". They have a
maximum displacement field of 15 units,
where the unit is a byte, half-word, or word
depending on the particular instruction. The
PL.8 compiler tries to maximize the use of
these short-form instructions by arranging the
program's data so that the small and most
frequently used variables are mapped closest
to the base address, without regard to the
order in which they were declared in the
program.

Because the compiler was deSigned as a
state-of-the-art compiler, particular attention

was not paid to the resources required for
compilation. Thus, the compiler demands a
significant amount of computer resources.

Program Binder
Data integrity and early error detection have
always been elusive goals in programming.
Hardware engineers provided us with
protection keys and supervisor state, while
language designers raised the level of the
source languages. In the PL.8 compiler, as in
some other compilers, run-time checking was
introduced to protect the programmer from
obvious errors like indexing out of an array
bound, or beyond the end of a string. The
ROMP instruction set has trap instructions
that allow such run-time checking to be
implemented at a very low cost in both space
and execution (approximately 100/0). However,
a compile time option is provided to eliminate
checking code generation.

In addition to run-time checking code, the
P~.8 language requires the declaration of all
external procedures along with the
description of their arguments. This insures
that the data types of the actual parameters
specified on a procedure call actually match
those parameters specified on the procedure
definition. Moreover, the PL.8 compiler
generates symbol cards in the text deck for
both the entry declaration and the subroutine
definition. This allows the binder [8] to
perform type checking at bind time for
separate compilations.

Design and Use of Simulator
As the ROMP version of the compiler was
being developed, it was necessary to ensure
that the code being generated was correct
This was at a time when the hardware des~gl
was not yet complete, and it would be at least
a year before a prototype of the ROMP
processor would be available. It would be

even longer before models would be available
in sufficient quantities to allow general
availability to programmers. In order to allow
early testing of the compiler, a simulator for
the ROMP was implemented to run on 370.

The simulator allowed verification that the
code generated by the compiler was correct
and complete. This gave the software and
hardware engineers more confidence that the
architecture changes to the ROMP were
needed and could be used by the compiler.
The knowledge that the code generated by
the compiler was correct allowed errors in the
first prototype hardware to be identified and
corrected without going through the tedious
determination of hardware or software fault.

A primary factor in the usability of the
simulator was its fast execution. This is
accomplished by what we term
"compulation." Compulation is a simulation
technique of translating the simulated
instruction into a sequence of native
instructions. These "compiled" sequences of
native instructions are kept for subsequent re­
execution of that simulated instruction. Each
256 bytes of the simulated ROMP memory is
mapped into 4K-byte areas of 370 memory.
These 4K-byte areas are divided into "cells"
of 32 bytes, each cell corresponding to a half­
word of ROMP memory. These cells hold the
370 instructions to simulate the corresponding
ROMP instruction. The 4K-byte areas are
reusable; more available 4K-byte areas
results in more ROMP code maintained in its
"compiled" form. Each cell is initialized as a
branch to a routine to "compile" a ROMP
instruction. All simulation execution is a
branch from one cell to another. If the cell
contains a compiled instruction, that ROMP
instruction is simulated. Otherwise, the
corresponding ROMP instruction is compiled

into the 370 instructions which are then
executed. For example, the ROMP instruction:

cas r5,r6,r9

will expand into the following 370 instructions:

r1,disp_r6(b}
al r1,disPJ9(b}
st r1,disp_r5(b}
bct time,continue
bal ric,end

The Load instruction gets the contents of the
simulated ROMP register 6 into a 370
register. The Add Logical gets the contents of
ROMP register 9 and adds it to what is in
register 6. The Store then sets ROMP register
5 to its new value of register 6 plus register
9. The Branch on Count instruction
decrements the number of ROMP instructions
left to be executed before halting execution,
and then branches to the next simulation
instructions. If the number of instructions
goes to zero, the Branch and Link instruction
branches to the code that re-materializes the
ROMP condition codes, program counter, and
other system information before returning to
the user interface.

This "compulation" requires additional
overhead when an instruction is executed for
the first time, but most work done by
computers is done by looping, so that a
significant amount of time is spent re­
executing the same instruction, without any
further decoding of the ROMP instruction.

Another factor in the simulator that allows
very fast execution is that the condition code
bits for the ROMP are not calculated until
needed, e.g., until a bit is tested by a
conditional branch or the simulation is
stopped and control is returned to the

73

command processor for interaction with the
user. As part of the simulation of instructions
that modify a condition status bit, the
operation and operands are saved. Then,
when a bit is tested by a conditional branch
just that bi~ is reconstructed for use by the '
branch. This re-materialization of the needed
condition code bits provides a performance
benefit because the 370 condition codes do
not have to be remapped into the ROMP
condition codes which take many 370
instructions. It can also be observed that the
condition codes set as a by-product of
instruction execution are seldom used, and
then usually only a single one of the
conditions will be tested.

These simulation techniques allow execution
of large amounts of ROMP code at very low
cost on the 370. The first time cost of
"compiling" the ROMP instruction is on the
order of 100 370 instructions. But once the
ROMP instruction has been "compiled", the
execution time is only 5 to 1 0 370 instructions
executed per ROMP instruction simulated.

Code Development Support
The availabiiity of good software tOOlS IS often
as important as the processor itself. The
R~MP was ~o exception. The PL.8 compiler
which compiles three different languages
(PL.8, Pascal, and C) and produces code for
four different machines (370, ROMP, M68000,
and 801) (see Figure 1), along with a fast
simulator, binder, and a host of other tools
provided an excellent code development '
environment that was to show the advantages
of the ROMP over other microprocessors.

The presence of a compiler from the
beginning of the processor design allowed
most of the code written for the ROMP
processor to be in a high-level language. This

74

C PL.8
source 1 C ~ource 1 (Pascal

source 1
, , ,

PL.8 optimizing compiler

, , , ,

ROMP S/370 S801 M68000

Figure 1 Three Source Languages, Four Target
Machines

was especially valuable when early processor
samples were received. One sample of the
processor had a defective register 2, which is
the function return value register and first
paramete~ register. Within a couple of days,
the co~pller was changed and all applications
recompiled to not use register 2. If a
significant amount of assembler code existed
such flexibility would not have been POSSible.'

Using the 370, backend programs cou!d be
written in any of the three ianguages
supported by the PL.8 compiler. They were
then compiled, modified, and tested natively
on 370, taking advantage of all the VM tools
long before the ROMP processor was '
availabl~ (see Figure 2). Once a program was
tested, It could then be simulated on the
ROMP fast simulator, or executed on the
ROM P model itself when the model became
available.

Tools are also important in measuring the
p~rf~~mance of a microprocessor. When only
primitive tools are available, bench marks are
coded in assembly language, and bytes and

S/370

Link edit

Execute
on
S/370

Text
editor

Execute
on
ROMP

ROMP

Link edit

Figure 2 Code Development Process

Simulate
on
S/370

cycles are counted manually to produce
summarized results that are often
qu~st!onable at best, due to the difficulty in
verifYing that a given program does in fact
perform the specified function. However,
much easier procedures existed for ROMP.
Since we were confident that the PL.8-
generated ROMP code was comparable to
the best handcode, all coding was done in a
HLL. Compilation and testing was all done on
370. The compiler listings provided us with
code and data size information, while the
simulator gave us the cycle count. The
co~~ariso.n res~lts, though almost always
positive, did at times highlight some

inefficiencies in the hardware architecture,
and/or the compiler-generated code, which
were then corrected.

Conclusions
The unique design and early availability of the
ROMP simulator allowed development and
extensive testing of tools such as the PL.8
compiler and application prototype code
before any hardware was available. The
hardware and software engineers designing
the ROMP processor together produced a
full-function, general processor without
unnecessary complex instructions that would
be unused by software and expensive to
implement in hardware. The presence of a
compiler from the beginning of the processor
design allowed most of the code for the
ROMP processor to be written in a high level
language. The VRM [9] was mostly written in
PL.8. When some assembler code was
required for performance, the PL.8 compiler­
generated code was used as the starting
program for hand tuning.

References
1. D.A. Patterson, "RISC-1: A Reduced Instruction Set

VLSI Computer," Proceedings of the Eighth Annual
Symposium on Computer Architecture, May 1981.

2. D.E. Waldecker and P.Y. Woon, "ROMP/MMU
Technology Introduction," IBM RT Personal Computer
Technology, p. 44.

3. M. Auslander and M.E. Hopkins, "An Overview of the
PL.8 Compiler," Proceedings of the SIGPLAN '82
Symposium on Compiler Writing, Boston, MA. June
23-25, 1982.

4. M.E. Hopkins, "A PL.8 Overview," Paper to be
published.

5. M.E. Hopkins, "Compiling for the RT PC ROMP," IBM
RT Personal Computer Technology, p. 76.

6. P.O. Hester, Richard O. Simpson, Albert Chang. "The
RT PC ROMP and Memory Management Unit
ArChitecture," IBM RT Personal Computer Technology,
p.48.

7. George Radin. "The 801 Minicomputer." Proceedings
of Symposium on Architectural Support for
Programming Languages and Operating Systems, Palo
Alto, California, March 1-3, 1982

8. G.J. Chaitin and C.C. Hoagland, "A Compiler Output
Format and Its Binder and Loader," Paper to be
published.

9. Thomas G. Lang, Mark S. Greenberg, and Charles H.
Sauer, "The Virtual Resource Manager," IBM RT
Personal Computer Technology, p. 119.

75

Compiling for the RT PC ROMP

M.E. Hopkins

Introduction
The IBM RT PC ROMP architecture is
relatively low level and simple. A natural
consequence is that the primitive instructions
should execute rapidly on most
implementations. Does the choice of such a
low level interface make sense given that
almost all programming today is, or should
be, done in a high level language? Could
compiler writers do a better job if the CPU
was somewhat more elaborate, with
additional functions tailored to the constructs
commonly found in high-level languages? Of
course it is clear that code can be generated
for any execution model. Examples of
execution models are register transfer, stack,
and storage-to-storage. Unlike human coders,
compilers will tirelessly and accurately
generate long sequences of code to map one
model of a language onto a machine with
another model. The hard task is to obtain
efficient code for a particular machine.

Which style of machine is best? Our
preference for a machine like the ROMP is
based partly on fundamental engineering
constraints and partly on our ability to use
well understood compilation techniques to
obtain high quality code. An example of a
fundamental engineering constraint is that
operations that are internal to the CPU, such
as register-to-register add, run faster than
instructions that reference storage, even on
machines with caches. (The fact that some
machines slow down basic arithmetic to
memory reference speed should not concern

76

us.) Examples of compilation techniques will
be given later. We also have a certain bias to
simple hardware solutions. Part of this is
aesthetic, but we also have a suspicion
grounded on experience that the next
language just may not match the complex
operation which is built into an elaborate
architecture.

The discussions that follow are based on the
Pl,8 compiler, which accepts source
programs written in C, Pascal and Pl,8, a
systems dialect of PL/I. A description of the
compiler is given in Auslander and
Hopkins[1]. Pl,8 produces optimized object
code for System/370 and MC68000 as well as
ROMP and the 801 minicomputer [2]. The
compiler largely relies on global optimization
and register allocation to produce good object
code, The VRM and various ROMP tools
were developed using Pl,8. Originally, the
compiler was an experimental vehicle used to
build software for the 801 minicomputer, but
in recent years it has been used in a number
of internal IBM projects. It is not presently
available to customers.

Hardware/Software Cooperation
Both hardware and software affect system
performance. The compiler writer must accept
his share of the responsibility. The ROM P
architecture divides the task in ways that lead
to better performance without excessive
burden on either hardware or software. A few
examples will indicate how responsibility is
shared.

One of the more expensive operations on
many computers is branching. As long as
instruction execution proceeds sequentially it
is possible to prefetch and decode
instructions ahead of their actual execution.
This overlapping is usually termed pipelining.
When a branch is encountered a new
instruction stream must be found.
Conditionality and computed branch targets
complicate the decisions that must be made
in hardware. Very-high-performance machines
do prefetch on multiple paths and retain
branch history tables to avoid "flushing the
pipe." Most one-chip processors simply
accept expensive branches as a fact of life.
The ROMP solution is to define a family of
execute branches that perform the next
("subject") instruction in parallel with the
branch. Implementing this facility only
complicates the hardware a little, It thus
becomes the responsibility of the compiler to
produce execute branches. Through most of
compilation, the compiler only deals with
branches in the familiar non-execute format.
At one point a scheduling process is run
which rearranges code between labels and
branches. (This unit is termed a basic block.)
One of the goals of scheduling is to place an
instruction that could become the subject of
an execute branch just in front of the branch.
(The main constraint is that the branch cannot
depend on the result of the subject
instruction.) Other optimizations are unaware
of the compilation of execute branches. Final
assembly then looks at the instruction that
precedes every branch and flips the pair if it

is valid to convert a normal to an execute
branch. Branches tend to constitute over 20%
of all instructions executed. Even if only half
of all branches can be transformed to the
execute form, a modest increase in hardware
and compiler complexity has resulted in the
effect of a 10% reduction in the path length or
number of instructions executed.

A similar situation exists with loads. Loads
tend to take substantially more time than
register-to-register (RR) ops, but it is possible
for the hardware (in Real mode) to overlap
the load with execution of the following
instruction if the next instruction does not
require the result of the load. The scheduling
process also rearranges code to facilitate
such overlap. If loads constitute 15% or 20%
of all executions, it is easy to see that
another 10% or greater reduction in effective
path length may be achieved here. Notice that
a machine that bundles the fetch of an
operand from memory with a computation
cannot easily overlap fetching with some
other function.

Of course the object code that comes from
such a compiler looks strange. In some
sense, you are seeing the equivalent of the
internal state of a very costly high­
performance pipelined processor. Writing
optimal assembly language code requires
some care on the ROMP. It is rather like
microcoding. However, on the ROMP the
process is systematic, if tedious, making it
fortunate that most programming is done in a
high-level language.

Compilation Strategies
The most important optimizations performed
by the PL.8 compiler are probably moving
code out of loops, the elimination of
redundant computations (commoning), and

register allocation. The ROMP makes these
operations easier and more profitable.

Let us examine these optimizations in the
light of machine models and how they
evaluate expressions:

• Stack computation

• Memory-to-memory

• Memory-to-register

• Register-to-register

Consider the source code fragment:

x = a + b;
(a few statements, which destroy x, leaving
a and b)
y = a + b;

If the iecomputation of a + b is to be
avoided on the stack machine, an explicit
copy in storage must be made and then the
value must be refetched from storage when
assigning to y. The trouble with this strategy
is that "remembering" is very costly. On the
ROMP an RR Add costs one cycle, while
Loads and Stores take between three and
five cycles depending on whether the machine
is in real or virtual mode and whether or not it
is possible to overlap another instruction with
the load. Unless an operation is very
expensive, it is often as efficient to recompute
as to "remember" on a stack machine. On a
memory-to-memory machine one must often
pay for an explicit copy as in the following
code for a hypothetical memory-to-memory
machine:

temp = a + b
x = temp

y = temp

The added storage references may well make
commoning counterproductive. We shall say
no more about the stack or memory model.
Whatever their virtues for simplifying
compilation, they seem to guarantee more
storage references and thus worse
performance than the other two models.

The storage-to-memory model is shared by
370 and MC68000. At first glance a 370-type
approach seems attractive.

x = a + b; L R1, a
A R1,b
ST R1, x

y = a + b; ST R1, Y

On the ROMP we get:

x = a + b; L R 1, a
L R2, b
CAS R3, R1, R2 Add
ST R3, x

y = a + b; ST R3,y

The ROMP takes one more instruction. (It
does have some opportunities to obtain
overlap on the Loads by inserting unrelated
instructions, but let us ignore that benefit). If
the example is changed slightly to:

x = a + b;
Y = a - b;

77

We then get on 370:

x = a + b; L R1, a
A R1, b
ST R1, b

y a - b; L R1, a
S R1, b
ST R1, Y

After the first statement, neither a nor bare
available and they are the operands of the
next statement. On the ROMP, both are
available and so there is no need for an
expensive refetch. Of course we can turn the
370 into a ROMP-style, register-to-register
machine. The problem is that the 370 Add .
instruction destroys one of its operands, while
CAS, an Add that doesn't set the condition
code on the ROMP, is three-address. The
PL.8 compiler goes to considerable effort to
give 370 code the benefits .of both the.
storage-to-register and reglster-to-reglste~
approaches. It is not clear that the effort IS
worth it. On some 370 models, two Loads
and an Add Register may be as fast as Load,
Add from Storage. In any case there are
relatively few storage-to=register
computational operations in a typic~1 ,
snapshot of 370 execution. One tYPical mix
shows the following most frequently-executed
storage-to-register ops.

78

Instruction

C: compare
N:and
AL:add logical
CL:compare logical
A:add
S:subtract
O:or
CH:compare half
AH:add half
SH:subtract half
MH:multiply half

% of
execution

1.74
1.26
1.07

.44

.39

.37

.36

.33

.24

.10

.07

If all such ops are included, the percentage, of
executions is less than 6.5%. Modest as this
figure is, it overstates the advantage to be
gained from memory-to-register ~ps, .as many
of these instructions are addreSSing literals.
On the ROMP they would be immediate ops.
In light of frequency of usage, potential
performance improvement, hardwar~ , ,
requirements and compiler comple.xlty It IS
hard to believe that storage-to-reglster ops
are cost effective.

..,..J • _ .a. 1-..- :"""""""'~""'-I!"'t""".... ,,:.a.L-.. The i6au6i may IIOL uo IIlltJl o;:);:)ou VVILII

optimizing a + b, and would be corre~t if the
only benefit of optimization was a rewnte of
the user's program at the source level. Th~
most potent effects of an optimizin,g .c0m~ller
are derived from reducing the administrative
code used to implement high-level constructs.
Consider what it takes to implement the
following code fragment in PL.8.

1 a
2b
2 c (0:10),

3d
3e
3 f

x = e(i);

static ext,
integer,

integer,
integer,
char (16);

The reference to e(i) includes the following
factors:

• The address of the structure a

• The displacement of e within a

• i times the stride of c.

In PL.8 and Pascal, subscript range testing is
normally done even on production code. Thus
there is also a trap to ensure that the value of
i is between zero and ten. The fetch of e(i)
may be commoned or moved out of a loop,
but there are many other opportunities for
optimization. The load of the address
constant to locate the structure need not be
repeated when a reference is made to b.
Storing into d(i) requires no additional
instructions. Programs are filled with
opportunities to reuse portions of this
administrative type code. The higher the level
of the machine, the less chance there will be
for reuse, as one factor may change.

An example of this phenomenon is in
subscript computations. As the ROMP does
not have a built-in multiply instruction, the
compiler generates a series of shifts, adds
and subtracts when the stride is a constant.
Thus a multiply by 24 is implemented as:

shiftl(i, 4) + shiftl(i, 3)

If somewhere else in the program there is a
multiply of i by 8 or 16, one of the Shi~ts
already used to compute i*24 will suffice. By
systematically exploiting the many small ,
opportunities for optimization that occur In

real programs, the PL.8 compiler can produce
programs that execute very rapidly on the
ROMP.

It is now necessary to discuss register
allocation. So far we have tacitly assumed
that there would be enough registers to hold
all the intermediate results which optimization
creates. A large number of registers require,
not only more hardware, but more bits in the
instruction to name the particular register.
Compiler studies showed that, while 32
registers were beneficial, 16 were a
reasonable compromise. A PL.8-type compiler
approach would probably not be very
effective with substantially fewer than 16
registers. The code would tend to look like
the memory-to-memory model of computation.
The PL.8 compiler uses a graph coloring
algorithm [3] to assign the infinite number of
symbolic registers used during optimization to
the 16 available on the ROM P, but other
methods can be used.

It is particularly important that a machine not
restrict the register allocation by typing
registers or otherwise constraining their use.
Implicit usage is also undesirable. Even the
ROMP has some minor problems here, but
they are easily overcome. Register 0 cannot
be used as a base because the CPU
assumes this means the value zero. The
register allocation phase of the compiler
overcomes this problem by introducing an
interference in the coloring graph. Each
symbolic register used as a base interferes
with real register zero; thus, the compiler will
not assign such a symbolic register to RO.
Branch and Link implicitly uses R15. This was
chosen by the compiler writers to match the
proposed linkage conventions. The most
bothersome constraint is paired shifts. Normal
shifts on the ROMP are of the form:

Shift RA, shift amount

The value to be shifted is in RA and is
returned to the same register. If only this form

of instruction were available, implementing a
multiply by an arbitrary constant using shifts
and adds would often require intermediate
copies. Rather than introduce a 4-byte
nondestructive shift instruction, the paired
shift was introduced. Every register has a
twin whose name is obtained by
complementing the lOW bit of the name (e.g.,
the twin of R2 is R3 and vice versa). The PL.8
register allocator handles this in the following
manner. The internal form of the program
used by optimization has shifts with separate
target, source and shift count fields. Prior to
register coloring an attempt is made to
coalesce the source and target. If this fails,
an attempt is made to coalesce the source
and target onto a particular pair of real
registers. Other cases, which seem to be
rare, result in an extra load register.

On machines like the 370 there are a plethora
of problems associated with registers:

• The 370 really has fewer than 16 registers
because at least one must be reserved for
program addressability.

• The fact that integer multiply destroys a
pair of registers introduces complications.

• The PL.8 compiler has never really
exploited 370 instructions that use register
pairs such as the loop closing BXLE op and
double length shifts. (We are not alone in
not using BXLE. It has a frequency of less
than .01 % on most execution samples.)

• The fact that some arithmetic and logical
instructions work on less than a full word is
a constant problem. It takes a lot of special
analysis to decide when a short op can be
used.

While the ROMP does have some minor
irregularities in its register scheme, it is a
substantial improvement on our past
architectures, resulting in few problems for an
optimizing compiler whose goal is to retain
many available quantities in registers.

Checking and Linkage
In recent years programming languages have
attempted to guard against programming
errors and raise the level of the source
language. The ROMP instruction set supports
both.

The trap instructions provide an economic
method to test for unusual or erroneous
conditions during execution. Pascal and PL.8
both customarily run in production with
checking enabled. However, it is possible to
eliminate these checks. By having separate
checking ops and then optimizing code, the
compiler writer can ensure that the
correctness criteria of a wide variety of
languages are efficiently enforced.

The efficient implementation of a language
like C, in which primitives are coded as basic
functions, clearly depends on linkage.
However, higher level languages which
implement data abstractions also depend on
the subroutine mechanisms. In implementing
procedure call, the ROMP convention is to
load the first four parameters into registers.
The invoked procedure may then use them in
place or copy them into other registers. The
important point is that they seldom need to be
copied into storage, an expensive operation.
Longer parameter lists must be put in
storage, but these are relatively infrequent.
This strategy is much more efficient than the
traditional 370 or UNIX type linkage, which
passes parameters in storage. When invoking
a procedure, it is not normally necessary to
load its address. System routines such as

79

multiply or the primitive storage allocator are
kept in low memory and the 24-bit absolute
branch can be used to access them. Relative
branching within a bound module, which is as
large as a megabyte, is also possible with a
single instruction. On entry to a procedure it
is merely necessary to do a Store Multiple to
save any registers that will be used and bump
the stack pointer. Stack overflow is normally
caught by an attempt to reference a protected
page. (For procedures with large stack frames
an explicit check is made.) Exit from a
procedure consists of loading the return value
in a register, restoring the saved registers
and executing a branch register.

In practice, there are many variations on this
theme, depending on the language, system
conventions, and the user's program. For
example, in Figure 1 we see the object code
for a function that performs the typical C
storage-to-storage move. Because it is able
to work entirely out of registers that are, by
convention, not saved over a call, it has no
prologue and an epilogue that consists of a
branch register. As source programs and
languages become more complex, procedure
call overhead \A'/i!! increase, but the compiler
writer can always choose the minimum code
sequence for the task at hand. One
interesting consequence of the MMU relocate
is that, given inverted page tables, many
systems will want to allocate a very large
contiguous stack when a process is created.
There is no reason to maintain the stack in
disjoint sections, as the mere existence of
address space does not degrade performance
as is the case with conventional page tables.

High-Level Functions
High-level functions on the ROMP are
implemented with subroutines rather than
microcode. The most obvious examples are

80

/* move to a byte of zeros. * /
move (t, s)
char *t, *s;

while (*t+ +
return;

*s + +);

Object Code for ROMP

2: 000000
5: 000000
5: 000000 Les 4003
5: 000002 INC 9131
5: 000004 INC 9121
5: 000006 CIS 9400
5: 000008 BNBX 89AF FFFC
5: OOOOOC STC DE02 FFFF
7: 000010 BNBR E88F

Figure 1 Example

1.6:
PDEF

LCS rO, $MEMORY+*s (r~;)
INC r3,r3,1
INC r2,r2,1
CIS cr-,rO!!,O
BFX cr,b26/eq,%6
STC rO, $MEMORY+H-1 (r2)
BFR 24,r-15

multiply, divide and storage-to-storage move.
On 370 instruction traces, move constitutes
about 2% of all executions, making it, by far,
the most important complex instruction. It
tends to consume close to 10% of the
execution time. On large 370 machines 2
bytes are moved per cycle. (A cycle is taken
to mean the time for a minimum op such as a
register add.) For aligned moves, the ROMP
can achieve close to this rate by means of an
"unrolled" loop. For unaligned moves, a
carefully handcrafted subroutine has been
written. It uses ops which are of otherwise
marginal utility, such as MCxx. There are
even some compensations for not having the
370 MVC op. The ROMP move subroutine
has been tailored to make moves of
overlapped data nondestructive, thus
satisfying the PL.8 rule. Once again we note
that high-level instructions never quite do
what they are supposed to do, but lOW-level
ops can be specialized to the specific
requirements.

The various versions of multiply on 370
constitute about .1 % of all instructions
executed. High-performance 370 machines

tend to have a very expensive multiplier. Low­
end machines implement the multiply
instruction with a microcode operator that is
the functional equivalent of the ROMP
Multiply Step instruction. It is hard to see how
the ROMP solution results in significantly
worse performance. Sometimes there may be
better performance. Constant multiplies can
be done with adds and shifts. Some
applications may not require a full 32-bit
multiply. If the multiplier is only 12 bits long,
then it is possible to get a product with six
rather than 16 multiply step instructions. Once
again the basic instruction set permits the
user or compiler writer to do exactly what he
wants with great efficiency rather than
depending on the foresight of some computer
architects. (Those of us who participated in
the development of the ROMP architecture
are constantly grateful that we did not
enshrine our more exotic requirements in
silicon.)

One of the sadder sequences of code is to
see a divide by two in a binary search or
heap sort implemented with a divide rather
than a shift instruction. Even on high­
performance machines, divide can take
almost ten times a shift. That is a big loss of
performance in a loop that is likely to be very
important. This doesn't occur because
compiler writers are unaware that a right shift
can sometimes replace a divide by a power of
two. The problem is negative numbers as
dividends. (- 1)/2 is 0 on 370. - 1 shifted
right one bit is still - 1. The substitution of a
shift for a divide only works for positive
dividends. For the PL.8 language we decided
to implement a true twos complement divide
subroutine using the Euclidean algorithm that
rounds down rather than toward O. Thus
replacing divides with shifts gives the same
result. In this case a lOW-level instruction set

gave us a new view of source language
semantics. We simply implemented the divide
subroutine that we wanted rather than
accepting built-in semantics.

The ROMP does have Load and Store
Multiple ops. It would be possible to get along
without them. However, this is one case
where a high-level instruction improves
performance. This is because they permit the
CPU to send one address to the memory
subsystem and then do a series of Loads or
Stores without the interference of fetching a
series of instructions and sending effective
addresses to the memory subsystem.

The ROMP approach to implementing high­
level function frees the compiler writer and
user from the tyranny of instruction sets
without giving up any significant performance.
Furthermore, the engineer can concentrate on
making Load, Store and Branch run wei\.
Here is the frequency of execution of the top
ten instructions in a typical snapshot of 370
execution.

Instruction

BC:Branch Condition
L:Load
TM:Test Under Mask
ST:Store
LR: Load Register
LA:Load Address
LTR:Test Register
BCR:Branch Register
MVC:Move Characters
LH:Load Half Word

% of
Executions

20.2
15.5

6.1
5.9
4.7
4.0
3.8
2.9
2.1
1.8

Together these constitute 67% of all
instructions executed. Clearly the vast
majority of the over two hundred 370
instructions occur a good deal less than 1 %

of the time. Most of the above have direct
counterparts in the ROMP instruction set.
Other than move, it is hard to think of any
370 instruction which might have improved
ROMP performance if it had been
implemented.

Code Size and Path Length
The 801 minicomputer was designed to have
the shortest possible path length, and code
size was sacrificed to achieve this. This is
highly appropriate on a machine with a cache.
In a machine with a storage hierarchy, most
of the faults come from referencing data.
Doubling the size of the code only marginally
increases the number of faults. However, the
ROMP does not have a cache. In order to
multiplex the 32-bit memory channel with
instructions and data, it helps to have short
instructions.

For this reason the ROMP has short forms of
many commonly occurring full-function
instructions. In addition, a compromise was
made such that, of the register-to-register
operations, only CAS, the form of add that
does not set the condition register, is fully
three-address. Shifts have the paired form
while subtract and the logical ops destroy one
operand. This is a compromise. Add occurs
so frequently that a 16-bit, three-address
format has a big benefit. There are not
enough code pOints to have all the other RR
instructions in 16-bit, nondestructive format.
Because the register allocator was able to
coalesce operands most of the time, a 16-bit,
two-operand format was chosen for the other
RR ops. Similar reasoning led us to have
short-form increment and decrement
instructions.

All in all, the ROMP is surprisingly space
efficient without undue performance loss. The

average length of a ROMP instruction varies
from application to application, but is usually
well under 3 bytes. In some cases, the ROMP
does require an added instruction but it is
relatively infrequent and an easy decision for
the compiler.

Details
A number of small details contribute to
making the ROMP a good target for
compilers.

• Condition codes tend to be an awkward
match for many systematic methods of
compilation. In the ROMP, those
instructions that set the relational bits of the
condition register set them in the same way
as a compare with zero. This permits the
compiler to eliminate al\ compares with zero
that are preceded by an instruction that
sets the same register as the register
comparand. It is also important to not set
the condition register on Load, Store, or the
basic Adds that compute addresseS:. This
permits code to be inserted, or rearranged
without worrying about the conditio~
register. The condition register test bit
provides an efficient means to move and
compare arbitrary bits even when their
position in a word must be computed at run
time. This makes it very efficient to
implement packed arrays of bits and
Pascal-type sets.

• Load instructions that fetch bytes and half­
words from storage either set the
remainder of the register to zero or fill it
with sign bits. This makes it easier to treat
partial words as algebraic or logical
quantities. On 370 one of the most common
idioms is a subtract of a register from itself
followed by an insert character. LC does
the entire job on the ROMP.

81

• The Load and Store Multiple instructions
can be used to do block moves or zero
large areas in an efficient manner.

• Sometimes constant data will not fit into the
ROMP 16-bit immediate field. Instructions
are provided that treat the immediate field
as a left-justified quantity. It is thus possible
to follow either of two strategies. Use two
ops if either the upper or lower form is
insufficient. The alternative is to
manufacture the constant in a register,
which requires two instructions, but then
the constant may be reused many times by
short, fast RR ops.

Other Methodologies
Not all source languages will be implemented
with optimizing compilers like PL.8.

Where high-quality object code is not crucial it
may pay to have a very fast compiler that
produces mediocre object code. A number of
features make this a reasonably easy task.
Even code from a very naive compiler is quite
compact. The large number of general­
purpose registers means it is easy to reuse
vaiues over shon stretches. The iarge
displacement means one can reserve large
areas for intermediate results without fearing
overflow. High-level function can be invoked
via subroutines with a reasonable in-line
overhead. Finally, code can be addressed and
constants can always be manufactured on­
the-fly without establishing or maintaining
addressability to code segments and a literal
pool as is required on 370.

Another method of implementation is
interpretation. The ROMP is a very good
interpreter. This should not surprise us as it
is really a general-purpose micro engine.

82

Conclusion
The ROMP architecture provides the high­
level language compiler writer with the right
set of implementation primitives. Its strength
is the ability to combine the basic operations
in new ways suited to the task at hand. In
Figure 1 we have an example of how a
common idiom in C is efficiently implemented.
It is hard to see how the most specialized
instruction could improve very much on this.
After all, there will have to be a fetch and
store, as well as a test and bumps for each
character moved. A high-level instruction
would be further complicated by
considerations of crossing page boundaries,
running too long, etc. If we build in this
instruction we are tailoring the machine to C;
other languages such as Pascal, ADA,
FORTRAN and COBOL that do not share the
C convention that character strings are
terminated with a zero, will find the op
useless. However, even C may not find this
the best strategy for character movement all
the time. Large buffers should not be moved
1 byte at a time. Then there are other idioms
in C, for searching tables, scanning input
forward and backward, looking for other
characters and an infinite number of other
tasks. Is each of these to be a special op?
Will the compiler have to look for complicated
patterns trying to match a complex function to
a complex instruction? The ROMP permits the
compiler writer to combine primitives to
efficiently solve the particular problem at hand
for a wide variety of source languages.

As the programming community moves
toward languages that are more powerful
than C it becomes even more urgent to rely
on basic constructs. Only the simplest
languages can be based on complex, high­
level messages. Thousands of hieroglyphics

are much less powerful than an alphabet of
twenty-odd characters. Fast, primitive
operations will be required to efficiently
implement the high level languages of the
future.

References
1. M. Auslander and M.E. Hopkins, "An Overview of the

PL.8 compiler," Proc. of the Sigplan '82 Symposium
on Compiler Writing, Boston, MA, June 23-25, 1982.

2. George Radin, "The 801 Minicomputer," Proc. of
Symposium on Architectural Support for Programming
Languages and Operating Systems, Palo Alto,
California, March 1-3, 1982.

3. Gregory J. Chaitin, Marc A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and Peter
W. Markstein, "Register Allocation via Coloring,"
Computer Languages, Vol 6, No 1,1981,47-57.

Advanced Interactive Executive (AIXTM) Operating System Structure

Larry Loucks

Introduction
When we set out to design the IBM RT PC
system, we realized that the RT PC needed a
full-function operating system with the ability
to support continuously-running applications.
In the increasingly interconnected world of
advanced microcomputers, it is no longer
acceptable to dedicate the computer to a
single application. There must always be an
operating system presence to respond to
external requests.

Obviously, an architect who sets out to build
a "disciplined" environment, also takes on
the responsibility for making that environment
functionally complete and flexible enough to
satisfy the full range of applications. We took
a three-level approach to the problem: make
the built-in functions powerful enough to
satisfy most applications, provide controlled
access to the hardware interfaces for
occasions when the built-in functions aren't
sufficient, and make the operating system
open-ended enough to allow for extensions to
cover situations such as new types of
devices.

We wanted to give users the widest possible
choice of applications to run on the RT PC,
so we provided ways of moving applications
from the IBM Personal Computer, other UNIX
environments, and IBM mainframes into the
RT PC environment. At the same time, we
wanted to give those applications the
maximum possible benefit from the
capabilities of the advanced hardware, so we

incorporated into the Advanced Interactive
Executive (AIX) an application development
environment suitable for many existing higher
level language programs, as well as the ability
to process most PC DOS commands and
data.

The AIX operating system kernel was derived
from AT&T's UNIX System V. In light of our
requirements for application diversity,
operating system stability, and exploitation of
the RT PC's advanced hardware features, we
felt that the best approach was to provide
enhancements below, within, and above the
karnaL This lad to the software structure
shown in Figure 1. The Virtual Resource
Manager (VRM) [1] controls the real hardware
and provides a stable, high-level machine
interface to the advanced hardware features
and devices. The kernel received
corresponding enhancements to use the
services of the VRM and to provide essential
additional facilities. The application
development extensions above the kernel
were integrated into the existing operating
system structure. In some cases, the
extensions were packaged and priced
separately, but they are designed to operate
as integral parts of the operating system after
they have been installed.

Because we were dealing with a new
hardware architecture and with large
quantities of new and modified software in
the system, we felt that special efforts were
required to ensure excellent performance. We

adopted a policy of continuous performance
assessment of the operating system, starting
with the earliest availability of hardware and
software. The performance group had to
develop new tools and procedures to assess
the performance of the system while it was
still immature, but the results of that effort are
visible in the performance of the completed
product.

Although the VRM and the AIX kernel have
been "tuned" for each other, we have not
precluded the ability to run other operating
systems in the VRM virtual machines.
Similar!y, the techniques we used to virtualize
existing types of devices would work for new
device types as well. Both the VRM and the
kernel are deliberately open-ended, to allow
the straightforward addition of new functions
and device support.

Creating the Right Environment for the AIX
Kernel
The existing structure of the AIX kernel was
not well suited to exploiting the advanced
features of the RT PC hardware. Rather than
making major changes to the architecture of
the kernel, we built the VRM to provide a
more comprehensive real-time execution
environment (see Lang, et al.[1]). This
environment includes multiple preemptable
processes, process creation and priority
control, dynamiC run-time binding of code,
direct control of virtual memory, millisecond­
level timer control, multiple preemptable
interrupt levels, and an efficient interprocess

83

Application Program(s)

Communications Usability

Data Management SQL/RT Data Base

S
E
R
V
I
C
E
S

Enhanced Terminal Support Command Processing

(Kernel Interface) K
1--- ----- - .,...----- ---

Enhanced: Local Terminal Support - G;neric Dev-;e Dri~r;- - E
R A

I
X

Virtual Storage
File System
Config.uration

(Virtual Machine Interface)
1--- --- -- - --r---- - -- ---.--- --

Virtual I/O Minidisk Virtual Communications
Memory Device Manager Terminal
Manager Manager Manager

RT PC Hardware

Figure 1 Overall Structure of AIX Operating System

communication mechanism for main and
interrupt-level processes. The VRM scjware
uses these features to control the ROMP
processor, Memory Management Unit (MMU),
and I/O hardware, and provides the kernel
with interfaces to these functions.

The key to the ability of A!X to support
muitiple simultaneous interactive appiications
is the virtual terminal (see Baker, et al.[2]). A
virtual terminal is a virtual counterpart of the
real RT PC display(s), keyboard, and mouse.
Each application initially gets a single virtual
terminal to work with. The application can
request creation of additional virtual terminals
at will. The virtual terminals time share the
use of the real displays and input devices. A
virtual terminal can function as either a
simulated ASCII terminal or a high-function
terminal equivalent in power to the real
hardware. The simulated ASCII terminal
resembles a typical "glass TTY," enhanced
with functions to control sound, multiple fonts,
and color. Advanced applications can use the

84

r-----
Coprocessor
Services

N
E
L

V
R
M

high-function terminal to obtain controlled
access to all of the functions of the real
display. Most of the basic operating system
functions - kernel, command processing,
and usability - make use of the simulated
ASCII terminal, so that their functions are
available on real ASCII terminals as well.

The ROMP/MMU virtual memory architecture,
in combination with the VRM, gives the RT
PC a demand-paged virtual memory of one
terabyte, consisting of 4096 256-megabyte
segments. The VRM performs page fault
handling and manages the allocation of real
memory, paging space, and virtual storage
segments (see O'Quin, et al.[3]). It provides
the AIX kernel with interfaces to control these
functions and to respond to a page fault by
dispatching another process. The VRM can
also map memory pages within a given
segment onto disk file blocks, creating a
"single-level store" that makes DASD and
memory equivalent.

The VRM provides the operating system with
an extensive, queued or synchronous
interface to the I/O devices, insulating the
kernel from the details of specific devices and
the management of shared devices. The
correct device handler is selected on the
basis of the currently-installed hardware or
the configuration files and is dynamically
bound into the VRM. The devices that the
application sees are generic devices such as
generalized fixed-disk drives ("mini-disks") or
RS232C ports. In those cases where the
generic devices are not appropriate, or where
the real time capabilities of the VRM
environment are needed by the application,
the user or a third-party programmer can
write C or Assembler language code to
implement the necessary function, and can
dynamically add that code to the VRM while
the VRM is running (i.e., without re-IPL).

Problem determination in system or user­
added code is supported by VRM
serviceability facilities that include trace
capabilities, dumps, and a debugger.

The VRM supports the PC AT coprocessor
option as though it were another, rather
speciaiized, virtual machine (see Krishnamurty
and Mothersole[4]). The coprocessor runs
concurrently with the execution of programs
in the ROMP, but it only has access to the
keyboard, locator, and display when the
coprocessor virtual terminal is the "active"
virtual terminal, that is, when it has control of
the display. The input from the keyboard and
locator are presented to the coprocessor as
though they had been produced by the
corresponding PC AT devices. If no display
has been dedicated to the coprocessor, the
display interface emulates a PC display on
the system display. The VRM manages the
shared system resources to ensure that the

ROMP and coprocessor operate
cooperatively.

The VRM resides on a minidisk of its own in
a standard AIX file system. Installation and
space management on that minidisk are
performed with standard AIX utilities.

Building a Firm AIX Base
The structure of the AIX kernel has been
modified to allow it to operate in a VRM
execution environment (see Loucks [5]). New
device drivers for devices such as disk,
diskette, tape, and asynch were written to use
the device interfaces of the VRM. The device­
driver interfaces have been extended to allow
dynamic binding of a driver to a VRM driver.

The kernel has been enhanced to use the
VRM virtual memory services. The kernel now
provides a demand-paged virtual memory
system that fully supports the 1024-gigabyte
address space. The kernel occupies one (256-
megabyte) segment. Each process is
allocated three segments: one for program
text, one for data, and one for the stack.
Additional segments can be obtained for use
with private or shared data, or for mapped
files. The VRM map page service is used at
run time to dynamically map the program text
and initialized data, as well as to provide the
application with the ability to map a user file
into a virtual memory segment. This provides
the effect of a "single-level store." The kernel
uses VRM page fault information to control
process dispatching, as well as allowing the
kernel itself to be paged.

Historically, UNIX-based data base programs
have used only the low-level disk 1/0 services
of the kernel because the standard UNIX file
system lacked several key features necessary
to support them. This resulted in data base
programs that were not integrated with the

system, unique sets of utility commands to be
learned, and a general increase in the
complexity of the system. We wanted to
provide an integrated environment, so the
kernel file system services were extended to
provide the necessary facilities to allow us to
add data management and relational data
base support that is built on top of the file
system (see Bissell[6]). The enhancements
included the ability to perform space
management within a file, buffer cache
synchronization on a file basis, and file and
record-level locking.

The complex multi-process applications that
we envisioned being run on the RT PC
required more robust interprocess control
facilities, so the signal (asynchronous event
notification) package has been superceded by
a new package that provides for more signals
and cures a number of race conditions that
were inherent in the original package. The
standard Signa! package remains available for
compatibility with existing application
programs.

The local terminal (displays, keyboard, and
mouse) now has two modes. To allow
existing applications to run unchanged and
new character-oriented applications to use
the RT PC facilities fully, we extended the
ASCII character-oriented terminal model via
private escape codes in the data stream and
a new set of 10CTLs to access features such
as fonts, character sets, color, sound, and
mouse input. For applications that need the
APA capabilities of the displays, or more
direct communication with the keyboard and
mouse, we developed a new mode for the
terminal driver that makes the full capabilities
of the console hardware available in a
controlled manner. The application selects the
mode in which it will use the virtual terminal.

Because we expected RT PC's to be used
both as single-user workstations and as
traditional UNIX time-shared systems, we felt
that some changes were required to support
the workstation user. We have made some
alterations to reduce the number of situations
in which user has to exercise superuser
authority. We added the ability to define more
than one group to which a user belongs at
any given time. This allowed us to define
single users as members of the "system"
group. System group members can perform a
number of operations that previously could
only be performed by superuser. Only the
most hazardous commands are still restricted
to superuser authority. This technique gives
the user of a private workstation a simpler
environment to work in, while preserving the
existing AIX authority structure for multiuser
environments.

Configuring a UNIX system has historically
required an understanding of the internal
structure and logic<of UNIX. We felt that it
was unrealistic to impose such a requirement
on our prospective users, so we set out to
simplify the installation and configuration
processes (see Lerom et al.[7]). For those
devices that can be identified internally, such
as displays, the system performs an
automatic configuration process. For devices
that require explicit description, such as
printers, we built a menu interface that
obtains the necessary information from the
user and makes the required coordinated
changes to all of the affected VRM and AIX
system files. These menus use the same
VRM facilities that were provided to allow
users to add device and real-time application
support. The interfaces to this menu structure
have been documented so that users or third­
party programmers can add devices to be
selected and described via the menus.

85

UNIX has a dual-purpose command language.
The commands have been designed from the
beginning to be primitives of a command
procedure programming language, sometimes
at the expense of ease of use when individual
commands are submitted from the terminal.
This makes the management of files and the
performance of common operations
unnecessarily complex. Many UNIX
installations solve this problem by building
sets of procedures that effectively constitute
a command meta-language. We chose to
combine the solution to this problem with the
construction of a full-screen interface to AIX
(see Kilpatrick and Greene[8]). The usability
package provides a full-screen file
management utility and the ability to request
the most common AIX commands via a panel
interface. The dialog manager that is included
in the usability package is general enough to
serve application programs as well as AIX
commands (see Murphy and Verburg[9]).

To simplify the diagnosis of problems in AIX
we added several debugging tools: a trace
mechanism, logging of errors and system
messages, and a memory dump capability.

Enhanced Application Development
Environment
To be able to support the full range of
modern applications, AIX needed several
functional extensions. One of the most critical
was the need for an indexed access method.
We added a B-tree based data management
program that permits either record-level or
field-level access. Although it is packaged
separately from the operating system, data
management becomes an integral part of the
file system when it is installed. Similarly, we
added a data base program supporting the
Structured Query language (SQl) to provide
both users and application programmers with
relational data base facilities.

86

The higher level language compilers for the
RT PC were chosen on the basis of the
number and types of programs that have
been written in those languages. We selected
dialects that would facilitate propagation of
programs from the I BM Personal Computer,
other IBM mainframes, and other UNIX
systems, with language extensions where
necessary to support the AIX environment. In
some cases the compilers have two modes
- one for programs from the PC, and one
for programs from minicomputer or
mainframe environments. We developed a
new subroutine linkage convention (see
O'Quin[10]) that supports multi-module
programs written in several languages.

AIX also includes a new shell that processes
PC DOS commands, conversion programs
that transform data from PC to RT PC format,
and subroutines that allow applications -to
read DOS-formatted diskettes and minidisks
(see Brissette, et al.[11]).

The Files and Tools applications of the
usability package can be extended to cover
new types of files, new actions that can be
performed against those files can be defined,
and new tools - including complete full­
screen applications - can be added. The
dialog manager in the Usability package can
also be used to provide new full-screen
applications with an interface that is
consistent with the interface presented by
Files and Tools.

The "LlBCUR" package, which supports the
presentation of full-screen menus on ASYNC
terminals, has received performance
enhancements and has been compatibly
extended to provide access to the extended
font and other functions of the RT PC native
displays. We also added functions such as
screen division and "layering" logic to give

the dialog manager a high-level, device­
independent interface on which to build.

Programmers developing applications for the
local terminal can have the full power of the
RT PC APA displays available to them.

As a base for lAN-based applications, we
included a set of primitives to support the PC
Network.

Conclusion - A Good Beginning
In its Release 1 form, the RT PC software can
be installed and used for production work
without a large investment in learning the
internals of AIX or the peculiarities of a new
command language. It is a base to which
existing applications can be moved and on
which new applications can be built. Perhaps
more important, AIX and the VRM provide a
system that has been architected to be
extendable.

From the beginning of the project, we have
known that we could not include in Release 1
all of the functions we wanted, and that users
and other developers would have needs that
\"/9 did not anticipate. The open-ended ness of
the system results from our awareness of the
limitations of prediction.

Clearly, we still need to look at the function of
the system in several areas. We are not yet
satisfied with the communications capabilities
of AIX and its ability to function in a
distributed environment. There are aspects of
compiler technology that could make more
effective use of the capabilities of the ROMP.
Additional opportunities will undoubtedly arise
as more people use the system.

References
1. Thomas G. Lang, Mark S. Greenberg, and Charles H.

Sauer, "The Virtual Resource Manager," IBM RT
Personal Computer Technology, p. 119.

2. D.C. Baker, G.A. Flurry, and K.D. Nguyen,
"Implementation of a Virtual Terminal Subsystem,"
IBM RT Personal Computer Technology, p. 134.

3. J.C. O'Quin, J.T. O'Quin, Mark D. Rogers, T.A. Smith,
"Design of the IBM RT PC Virtual Memory Manager,"
IBM RT Personal Computer Technology, p. 126.

4. Rajan Krishnamurty and Terry Mothersole,
"Coprocessor Software Support," IBM RT Personal
Computer Technology, p. 142.

5. Larry Loucks, "IBM RT PC AIX Kernel -
Modifications and Extensions" IBM RT Personal
Computer Technology, p. 96.

6. John M. Bissell, "Extended File Management for AIX"
IBM RT Personal Computer Technology, p. 114.

7. Shirley Lerom, Lee Terrell, and Hira Advani,
"Configuration Methods for a Personal Computer
System," IBM RT Personal Computer Technology,
p.91.

8. P.J. Kilpatrick and Carolyn Greene, "Restructuring the
AIX User Interface," IBM RT Personal Computer
Technology, p. 88.

9. Tom Murphy and Dick Verburg, "Extendable High­
Level AIX User Interface," IBM RT Personal Computer
Technology, p. 116.

10. J.C. O'Quin, "The IBM RT PC Subroutine Linkage
Convention," IBM RT Personal Computer Technology,
p.131.

11. Leonard F. Brissette, Roy A. Clauson, and Jack E.
Olson, "PC DOS Emulation in a UNIX Environment,"
IBM RT Personal Computer Technology, p. 147.

87

Restructuring The AIX User Interface

P.J. Kilpatrick and Carolyn Greene

Introduction
When the UNIX kernel was adopted as the
core of the IBM RT PC operating system, our
User Interface Design Group received an
interesting challenge. UNIX was designed as
a powerful and flexible tool for computer
science experimentation. To users for whom
a computer is a means and not an end,
however, the UNIX command language can
seem complex and unpredictable. The very
open-ended ness that has allowed the
continual expansion of UNIX's functional
power over the years, has resulted in a wide
variety of syntaxes and semantic
characteristics. In a number of cases, too, the
need to make a command useful in Shell
scripts as well as from the terminal has
resulted in quirky responses to
unsophisticated terminal users.

The UNIX user interface also shows its age,
in that it was originally designed for
typewriter-like terminals connected to a
minicomputer via low-speed lines. Many of
the characteristics that detract from UNIX's
usability today, such as extreme terseness of
command language, result from design
decisions intended to improve the
performance of the early UNIX systems.

The process of installing and customizing a
UNIX system is also somewhat complex,
requiring an understanding of UNIX internal
structures and processing.

88

Naturally, we were exacerbating these
problems by porting UNIX to an environment
for which it was never intended: a workstation
supporting multiple virtual terminals for a
single user on an all-points-addressable
display. Our objective was to preserve the
functional power of UNIX while presenting the
user with a consistent and straightforward
terminal interface.

Ground Rules
Our user interface design was subject to a
number of constraints, some architectural and
some practical.

• Users who wanted to use the RT PC to run
one or more specific applications should be
given an interface that would enable them
to install and configure the system and
applications, manage their files, and
perform routine system functions without
being exposed to the complexities of the
full command language.

• Except for the installation and configuration
interface, all of the system user interfaces
had to be available to users in substantially
the same form on the RT PC display and
on attached terminals. Applications, of
course, would operate only on those
terminals capable of satisfying their
functional requirements.

• The user must be able to exploit the full
command language when necessary.

• The ability of the RT PC system to run
multiple concurrent interactive sessions
should be an inherent part of the user
interface.

In other words, we wanted to satisfy a user
set ranging from UNIX experts to novice
users. Rather than adopt a Procrustean, one­
size-fits-all solution, we chose to provide a
family of several related user interfaces with
different objectives.

Windows with Personalities
A virtual terminal running an application
constitutes a "window" onto the output of
that application. Our user interface currently
provides five kinds of windows, each running
its own specialized application.

• The Windows window; shown in Figure 1, is
the operator's console. It is the first thing
displayed when the user logs on, and it is
the base from which all new windows are
created. The Windows window contains a
list of the kinds of windows that can be
created, and a list of the windows that
already exist.

• A Files window (see Murphy and
Verburg[1]) is a full-screen display of a
directory in the user's file system. Selecting
a file causes the user to be presented with
the set of actions that can be performed on
that file.

; !)_~-~ S""" i. j,,,~,~ • .:..j.L J }~ ~

----------~-WINDOWS---~~~----

La<)t tPD~-E ,-"t 03.0£

»~PPLICATIONS Run programs for SI><lCiflC jobs
»FILES Wot'k with yout' files
"TOOLS Select c.-ads
»"IX Type "IX COlI_Dds

.. DOS Type DOS COMaDds

Figure 1 A WINDOWS Window After Two Other
Windows Have Been Created

• A Tools window is a hierarchically arranged
list of commands and application programs
that can be invoked via a panel rather than
a command-language interface.

• An AIX Shell window is the equivalent of a
single instance of the AIX Shel! running on
an ASYNC terminal.

• A DOS Shell window is identical to an AIX
Shell window, except that it has been
preconditioned to submit commands to the
PC DOS compatibility interface of AIX.

After logon, the user can determine which
interfaces are most appropriate to the tasks
to be performed and then create several
windows of suitable types. The windows form
a ring, as shown in Figure 2.

The user can move around the ring of
windows with the Alt-Action (forward) and
Shift-Action (backward) key combinations. If
the user has created a large number of
windows (up to the maximum of 28), he or
she can go directly to the Windows window
with the Ctrl-Action key combination and then

Files,
Tools,
or Shell

r----,
I Console I
I I

I
I

Windows _...J
Window

Files,
Tools,
or Shell

Figure 2 The Ring of Windows

Files,
Tools,
or Shell

move directly to the desired window by
selecting it in the Windows window and
selecting the ACTIVATE command.

The "Usability Package" Interface
In architecting the full-screen user interface
for AIX, our objective was to increase the
productivity, self-confidence, and satisfaction
of the user. We also wanted the benefits of
the new interface to extend to users of
terminals, not just to users of APA displays.
This precluded, perhaps fortunately, the use
of the cute techniques of some recent
products. We divided the screen into two
areas: 1) the command bar at the top of the
screen, and the application area taking up the
remainder of the screen. All other types of
information, such as panels requesting
command parameters, error messages, and

help information, appear in pop-up panels
that overlay parts of the application area.

When the user selects something in the
application area, the command bar displays
all of the commands (or sets of commands)
that are valid for use with that selection.
Some of the commands are very close to
specific command-language counterparts.
Others are generic commands that result in
the invocation of different AIX commands
depending on the type of object being
manipulated. The unifying principle is that the
user should see the system as consistent. It
is the system programmer's problem to deal
with the underlying nonuniformities (see
Murphy and Verburg [1] for a more detailed
description of the Files and Tools
applications).

We have not attempted to provide all of the
commands via the usability interface. Instead,
we have supported the most common tasks
in simplified ways. The Files and Tools
application programs have deliberately been
left open-ended to allow us to support tasks
that we may have overlooked and to allow
inclusion of new applications being added to
AIX.

Conclusions
In attempting to simplify use of UNIX while
preserving its power, we have inevitably
created a family of user interfaces rather than
a single, unified interface. We believe,
however, that we have provided a selection of
tools that is appropriate to the diverse users
of RT PC.

Naturally, the user interface will evolve along
with the rest of the RT PC. We hope to see
increased integration of applications with the
usability package and with each other. We

89

also expect to correct some "rough edges"
that were detected late in the development
cycle, such as a rather ponderous procedure
for keeping a displayed directory
synchronized with changes to the directory
made by other terminals. We are convinced,
however, that the new interfaces represent a
substantial improvement over the existing
command language and provide a good base
for future development.

References
1. Tom Murphy and Dick Verburg, "Extendable High­

Level AIX User Interface," IBM RT Personal Computer
Technology, p. 110.

90

Configuration Methods for a Personal Computer System

Shirley Lerom, Lee Terrell, and Hira Advani

Introduction
RT PC AIX configuration is designed to
exploit the features of the AIX operating
system (see Loucks [1]) and the Virtual
Resource Manager (see Lang, et al.[2]) as
well as overcome some traditional problems
one encounters while building a typical UNIX
system.

One of the design objectives had to be ease­
of-use. Configuration of a typical UNIX
system can be very complex and error prone
for a novice user. AIX configuration is easy to
use, leads the user to supply all needed
information, and handles complex tasks
without bothering the user with the details.
The user is also warned of error situations.

Other design objectives covered in this article
are those of flexibility, availability and
extendability. AIX configuration is flexible in
that it supports the open architecture of the
RT PC system. It is dynamic in that most
changes take effect immediately, as opposed
to generating and then starting a new system.
It is available, since generally the system
remains usable by logged in users during the
configuration steps. Most important, AIX
configuration is extendable to future
peripherals and program products.

One of the critical design problems was to
provide a structure that could be used
dynamically to link kernel device drivers to
VRM device drivers by issuing system service
calls (SVCs). The structure had to be defined
in a generic sense so that it could handle

current and future device drivers, protocol
procedures, and device managers. (See
Figure 1.)

A second design problem was to surface all
configuration information to the user in an
accessible and modifiable format. What we
wanted to achieve, where possible, were
"table-driven" routines that could be
extended to cover future device drivers,
device managers, and/or protocol procedures
in an integrated way, as though they had
been part of the original configuration.

Configuring in a Typical Pre-RT PC UNIX
Environment - The Problem

The "Privileged-User" Philosophy
A typical UNIX system, with its multi-user,
multi-tasking nature, has conceptually built-in
certain large system philosophies. One
philosophy involves a system administrator or
system operator requirement. Merely
browsing a UNIX System Manager's
reference book reveals chapters of
information containing recommended
procedures, guidelines, and mandatory steps
with which 'super' user should comply. In
fact, almost a" UNIX systems have a
superuser login id ('root' in many cases) for
the purpose of system maintenance.
Programs often check the user id (uid) or
effective user id of the person attempting to
execute them to make sure the authority is
that of superuser (or root). For example, only
root can 'mount' a file system, install new

device drivers, or build and install a new
kernel. This is acceptable for large, mUlti-user
systems with a full-time system operator or
knowledgeable UNIX programmers, but in
sma" operations with no reliance on
mainframe systems, it may not be affordable
to have a system operator to maintain and
upgrade the system. Upgrading a system to
support a new peripheral or software
package is particularly important, since it is
such a common occurrence. In typical UNIX
systems, it is also one of the more difficult
tasks, since it involves rebuilding the kernel.

Process Steps: Building, Testing, Integrating,
New Kernels
Device drivers in the UNIX kernel are the
funnels through which all Input/Output
operations must pass. When reading a file,
the disk (or diskette) device drivers are
usually involved. When printing a file, the
printer device driver is used. When initiating
an I/O operation to device 'x', the device 'x'
driver must be used. The device driver
'knows' how to deal with the specific device
for which it was written. A device driver for
device 'x' most likely will not work with device
'y'. Therefore, if the new printer you wish to
add is device 'y', in a classic UNIX system
you must follow some or all of the following
steps to install device 'y':

1. Code and compile the new device 'y'
device driver.

91

AIX
configuration
files

/etc/system

Define code (protocol proc.)
- Define_device (stanza name)

Kernel
interface

Virtual
machine
interface

/etc/vrmconfig

1
I

Kernel
device rc---­
driver

r---------,
I /etc/ddif... I

Kernel
configuration
device
driver
(fdev /config)

_J

____ {Define_device (IODN)
Define_code (IOCN)

VRM
device

ylL., __ d_riv_e_r _

Hardware
interface ..

Figure 1 AIX Configuration Interface Structure

2. Archive the driver in the library
appropriate to your system.

3. Modify the appropriate configuration files.

4. Build a new kernel (to include the driver).

5. Boot the new (test) kernel and debug the
new device 'y' driver.

92

6. Repeat steps 1 - 5 as necessary till
device works satisfactorily.

7. Replace the current kernel with the new
debugged version.

The above steps, while not specific to any
system, do reflect a general flow and are non­
trivial even if one assumes a working
knowledge of the C programming language

and the kernel routines necessary to write a
device driver. This is seemed to us to be a
great deal of work for an ordinary user who
simply wanted to add a printer. We tried to
overcome such limitations in the AIX
configuration design.

Overall Configuration Scheme
Our goals for the configuration mechanism
were:

Ease of Use A need existed for a simple
user interface to configure the
peripheral devices. The user is
assumed only to know
characteristics of the peripheral
device, not about AIX. In the
most simple form, all the user
needs to know is the class and
type of peripheral device and
the adapter port to which the
device is to be connected.

Usability

Flexibility

The user interface to the
configuration routines needs to
guide the user through the
information in a 'leading
prompt' fashion. It is essential
that the user not need to know
in advance what to do. Device
configuration profiles should be
initialized to their nominal state
to minimize the need for user
intervention.

While keeping the design
simple and easy to use, it was
important to preserve the
power and dynamic capabilities
of AIX. That is, when the
configuration is completed, the
device should immediately be
available to the user. This
dynamic re-configuration is

essential in a multi-user
system.

Availability The configuration operations,
when possible, should not
make the system unusable by
the other logged-in users.

Extendability Equally important, the design
must not be obsoleted by new
technology, devices or program
products. The design is such
that all configuration
information is maintained in
English text files. Critical
information is not buried within
software, but rather in user­
readable files. As new devices
become available, these files
are updated or new files
created to reflect the
characteristics of these
devices. This technique is
used, for example, by program
products to add device
support.

Adaptation of the Goals to RT PC AIX
These goals would not have been attainable
in a UNIX-only environment. The re­
configurability of the VRM was critical to
adding and deleting devices dynamically.

The architecture of the Virtual Machine
Interface (VMI) was also key to reducing the
number and complexity of the kernel device
drivers. By providing a constant interface at
the VM I, a single kernel device driver is
capable of handling all printers regardless 0"

the hardware attachment mechanism.

Externalizing the configuration information
into files was important in reducing the
number and complexity of the VRM device

drivers. Unique characteristics of the
multitude of hardware adapter cards are kept
in configuration files.

Modification of Basic UNIX Concepts

Architecture of the VRM
Because of its architected Virtual Machine
Interface (VMI), the VRM maintains a constant
calling interface for the kernel device drivers
(KDD). Since the kernel device drivers no
longer deal directly with the hardware, the
drivers are not as susceptible to changes in
the hardware. As a result, the kernel device
driver for the printer (for example) does not
have to be rewritten or even modified when a
new hardware adapter card (attachment
mechanism) is available. Any differences in
new versus old hardware are contained in the
VRM device driver. This brings us to a
second improvement.

Instal/able Device Drivers
The VRM allows for device drivers to be
installed using calls at the VMI in a run-time
(dynamic) environment. Specifically the
Define_Code Service Call (SVC) and the
Define_Device SVC provide a means for
device drivers to be installed in the VRM.
When installed, the driver is assigned an 110
Device Number (IODN) which is a 'tag' for
interacting with the driver.

VRM device drivers can be installed in two
ways. First, there is a set of device drivers
known as 'core' or 'nucleus' devices that are
installed at VRM Initial Program Load (IPL)
time. These devices are installed by hardware
diagnostic programs that run during each IPL.
If the diagnostic program determines that the
'core' device is actually present in the RT PC
system, it installs the VRM device driver for
that device. This is true for fixed disks,
diskettes, displays, and the tape devices. A

user has simply to plug in a second fixed
disk, for example, and it is ready to use. This
is because the diagnostic program will sense
the presence of the new fixed disk and install
a VRM device driver to handle it. Second, the
portion of the AIX operating system running
at the VMI installs VRM device drivers for all
'non-core' devices (e.g., printers, plotters).

Generic VRM Device Drivers
The VRM device drivers in RT PC are written
so as to be table driven. Information in a
Define_Device Structure (DDS) is created at
system startup and contains characteristics
for the driver to use. A single VRM device
driver is therefore capable of interfacing to
multiple hardware adapters.

Kernel Driver Initialization Routines
A further improvement is the addition of an
initialization routine to each of the kernel
device drivers. Many kernel device drivers
have most of the following routines:

• Open routine
• Close routine
• Read routine
• Write routine
• loctl routine.

An additional routine was added to AIX kernel
drivers to set up (configure) key parameters.
Included in the parameters passed to the
KDD are:

• 10DN, a 'tag' for interfacing with the
corresponding VRM driver

• Virtual Interrupt Level

• KDD unique information (optional).

By way of this initialization routine, the KDD is
informed which VRM device driver to use.

93

The printer KDD, for example, will attach and
communicate with one of two VDD's
depending on the type of printer in use -
parallel or serial.

File Driven Configuration
Another key improvement in the AIX design is
that all key characteristic information about
the peripherals and hardware adapters is
contained in configuration files of English text.
More specifically, all information contained in
the Define_Device Structure (DDS) for the
VRM device driver as well as associated
information for the kernel device driver (KDD)
resides in files in the '/etc' directory on the
root file system.

Open-endedness of Adding Peripherals
The RT PC product supports a wide latitude
of capability in adding peripherals. The cases
for consideration are listed below in an
ascending order of difficulty.

1. Adding an IBM Base Operating System
(BOS) Device

2. Adding IBM Licensed Program Product
(LPP) Devices

3. Adding OEM Printers and Plotters

4. Adding Similar (to IBM) Devices

5. Adding New Device Drivers

Configuration Routines New to the Product
There are several new AIX functions
introduced with the RT PC system.

vrmconfig

94

Vrmconfig is the software
routine responsible for reading
information in the configuration
files to define and initialize the
VRM and kernel device drivers

devices

minidisks

installp

in the system. It issues the
Define_Code and Define_Device
VMI SVC's and initializes the
kernel device drivers.

The 'devices' command is the
software program that
provides the user interface to
the configuration files. These
files contain all information
about peripheral devices and
the hardware adapter cards to
which these devices attach.
Additional information in these
configuration files controls the
flow and logic of the devices
command itself. This control
information is used to present
the user with the minimum
number of information
requests necessary to describe
the device being added.

The 'minidisks' program is the
user interface for partitioning
the fixed disk into AIX file
systems.

The 'installp' function provides
ease of installation of new
program products. If the
program product contains
support for a new device(s),
the configuration files are also
updated. The AIX kernel is
conditionally re-built (if a new
kernel device driver is part of
the program product). In many
cases the installp program
completely handles the
installation of new software as
well as readying new devices
for operation.

Configuration
API

Summary

A significant enhancement of
the RT PC system is the
inclusion of library routines
that provide interfaces to
manipulate the configuration
files. These application
programs are used as a
common mechanism for
updating/modifying the
configuraion files by the
'devices', 'minidisks', and
'installp' programs. Likewise,
user-written routines could be
linked to these programs (in
librts.a) to deal with the
configuration files.

RT PC system configuration offers the user
an interface that manages the complex, file­
driven elements and functions of the system
and ensures that file interaction is complete
and error free. In most cases, this eliminates
the need for a system administrator with a
special set of technical skills to do
configuration.

RT PC configuration is a dynamic program
that can be used during run time to alter the
system to user needs at a specific moment in
time. Much of the underlying complexity is
transparent to the user. Flexibility is derived
from the generic VRM device drivers that
handle a multitude of hardware adapter cards.

Configuration is also extendable. Licensed
Program Products (LPPs) offered by IBM will
automatically use the configuration function to
add software and hardware to the system.
These programs and procedures are not
limited to IBM. Third-party programmers may
likewise use the AIX open system architecture
to develop and install programs on the RT PC
product. Any future peripheral or program

product can likewise use the configuration
programs and APls to present new software
or hardware to the system. If software and
hardware have been added using AIX
configuration programs, they will appear as
an integrated part of the AIX system.

Acknowledgments
Our thanks go to the entire configuration
department for their dedicated team effort -
for the technical leadership provided by
Nancy Springen during the architecture phase
and by Grover Neuman in all subsequent
phases and redirections; to Liz Hughes for
assuming many key configuration routines
and the complex VRM configuration
component, to Terry Bouknecht for her work
on DEVICES, to Lynne McCue for her work in
MINIDISKS, to Carolyn Brady for later
enhancing and maintaining configuration
components, to Emily Havel for her work
controlling the files, and finally to Sylvia
Staves, who tested to ensure that our quality
goals were met.

References
1. Larry Loucks, "Advanced Interactive Executive (AIX)

Operating System Structure," IBM RT Personal
Computer Technology, p. 83.

2. Thomas G. Lang, Mark S. Greenberg, and Charles H.
Sauer, "The Virtual Resource Manager," IBM RT
Personal Computer Technology, p. 119.

95

IBM RT PC AIX Kernel - Modifications and Extensions

Larry Loucks

Introduction
At the heart of the Advanced Interactive
Executive (AIX) operating system is the AIX
kernel. The kernel provides the operating
environment for application programs and
commands. The structure of the AIX kernel
reflects our response to several key
objectives of the RT PC program:

• A primary use of the RT PC was expected
to be as a personal workstation, rather than
as a host for a multi-user configuration.

• We had to ensure that the performance
potential of the ROMP/MMU combination
was not lost in performance bottlenecks.

• The system had to be tuned to operate
effectively in a virtual memory environment.

• The kernel had to be made functionally and
structurally robust enough to be the center
of a production operating system, rather
than an experimental vehicle.

The following sections describe the various
changes and additions that were made to
meet our objectives.

Appropriate Interfaces for a Personal
Workstation Environment

Gary Miller

Auto Logon
The Auto Logon facility of AIX permits a user

96

to be automatically logged on at the system
console when AIX is IPLed, without having to
enter a login name or a password. This
facility is intended for those users who are
using AIX as a single-user system or for
those users who are the only ones to logon
at the system console. The user to be logged
on automatically is identified to the system
when it is being installed.

When Auto Logon is in effect, powering the
system on is all that is necessary to cause
the user to be logged on at the system
console. Auto Logon is performed when the
file /etc/autolog contains the name of a valid
login name as its first or only entry. This
causes the system to process as if the user
has entered a login name and password in
response to the login and password prompts.

The name of the user to be auto logged can
be changed by editing the /etc/autolog file
and changing the login name in the file. Auto
Logon can be negated by deleting the
contents of the /etc/autolog file or simply by
deleting the file itself.

Multiple Concurrent Groups
The Multiple Concurrent Groups facility allows
a user to access files that are owned by any
of the groups in which the user has
membership. A user 10 can be specified as
belonging to more than one group. The
"primary" group is specified in the /etc/
passwd file. Any additional groups are
specified in the /etc/group file. When the user

logs onto the system, the setgroup system
call is used to specify to the kernel all of the
groups of which the user is a member. When
the user attempts to access a file, the
standard permission checks based on the
user's 10 are made for read, write, and
execute/search. If the user would not
normally be granted access to the file on that
basis, the user's group access permissions
are checked. If the user is a member of the
group that owns the file, access to the file is
granted.

No overt actions have to be taken by the user
to enable the Multiple Concurrent Group
facility. It is a part of standard AIX operation.
The group whose 10 appears in the /etc/
passwd file is the primary group of the user.
This is the group whose 10 will be given to all
files created by the user, The primary group
will appear at the head of the list when the
group membership is queried with the groups
command. The primary group can be
temporarily changed by use of the newgrp
command.

The system makes extensive use of this
facility in controlling and permitting access to
certain privileged system files. This is
particularly true for those commands that are
considered to be for superuser or "limited"
superuser use only. These commands are
owned by superuser and are assigned to the
system group. Read and execution
permissions are given to the owner and
members of the system group, with execute

permissions denied for all other users.
System group membership can be given to
those users who are to be allowed to execute
these commands.

Reduce Superuser Dependency
The AIX system is configured to allow a user
on a single-user user system or multiple
users sharing a system to perform many of
the superuser functions without having to log
on to the system as superuser or to issue the
su command to gain superuser authority.

This scheme is based on the use of the AIX
file permissions, making extensive use of
group permissions, multiple concurrent
groups, and set user ID.

Each of the files (commands, data, etc.) is
assigned to a particular group, and users are
assigned to corresponding groups depending
on the authority to be given to the particular
user. As users are added to the system, they
are placed into the Staff group (group of
general users). Users can then be given
additional authority by assigning them to
additional groups, such as the System group.

Removable Media
The removable mount facility of AIX is
intended primarily to be used with diskettes
which contain mountable file systems. With
this facility mountable diskettes may be
inserted in and removed from the diskette
drive without doing an explicit mount or
umount command.

The system determines that the file system on
the removable media should be "mounted"
when the directory on which the file system is
to be mounted is the current directory and
media containing a valid file system is
inserted in the drive or when a file is opened
on the removable media.

The system determines that the file system on
the removable media should be "unmounted"
when the directory on which the file system is
to be mounted is not the current directory and
no file is open on the removable media.

Interactive Workstation

Evelyn Thompson

The Interactive Workstation (IWS) program
allows the user to easily connect, via the
asynchronous ports, to another computer
system, such as The Source, or another AIX
system from either the AIX system console or
an attached terminal. The connection can be
initiated via a command interface or a menu­
driven interface. The following functions are
provided:

• The necessary transformations to make the
system console keyboard appear as either
an RT PC or an async terminal to the
remote system

• Two protocols to transfer files to or from
the remote system

• Facilities to allow the user to capture
received data in a system file as well as
display the data on the user's screen

• A phone directory function which is
maintainable by the user

• A menu by which the user can alter the
local terminal characteristics

• A menu from which the user can alter the
data transmission characteristics

• Facilities to allow the user to utilize any of
the supported asynchronous
communication adapters

• Facilities to allow the user to connect to
another RT PC and invoke IWS on that
system to connect to a third system

• Facilities to allow two users on a given
system to concurrently use IWS

• Facilities to allow the user to invoke IWS or
XMODEM from another RT PC or terminal
by dialing into an AIX logger.

The menu-driven interface to IWS consists of
several menus. The main menu is first
displayed when IWS is invoked. This menu
allows the user to:

• Initiate a connection to another system by
an asynchronous communication link

• Request a phone directory menu from
which he or she can make the connection

~ Request help information

• Request the "modify local terminal
variables" menu

• Request the "alter connection values"
menu

• Execute an operating system command

• Quit the IWS program.

The Connection menu, is similar to the Main
menu and can be invoked by the user any
time after the connection to the remote
system has been established by executing a
controLv key sequence. The only differences
between the Main menu and this menu are
that the initiation and directory request
functions are replaced by:

• Send a file over an established connection

97

• Receive a file from an established
connection

• Send a break sequence

• Terminate the connection.

The Directory menu is invoked by the user
from the main menu. This menu displays
phone number entries from which the user
can initiate an auto-dial sequence.

The Alter menu is invoked from either the
Main or Connection menu. This menu allows
the user to specify or alter data transmission
characteristics, such as the number of bits
per character or the line speed. It also allows
the user to specify the TTY port, dialing
prefix, and file transfer mode.

The Modify menu can be invoked from either
the Connection menu or the Main menu. This
menu allows the user to change the capture
file name. It also allows the user to toggle
some IWS features such as async emulation
mode.

Efficient Operation in a Virtual Memorj
Environment

Anthony D. Hooten

The Virtual Machine Environment of AIX
The AIX operating system kernel executes in
a virtual machine maintained by the Virtual
Resource Manager (VRM). The VRM provides
virtual machines with paged virtual memory,
with paging support logically hidden from the
virtual machine. A virtual machine may treat
the memory as if it were physical memory
with highly variable access times. The VRM
supports a large virtual memory, up to 240 or
one terabyte. The effective addresses
generated by instructions are 32 bits long,

98

with the high-order 4 bits selecting a segment
register and the low-order 28 bits providing a
displacement within the segment. The
segment registers contain a 12-bit segment
10. The 12-bit ID plus the low order 28 bits of
the effective address yield the 40-bit virtuar
address. A virtual machine may have many
segments defined. To access one of these
segments, the virtual machine loads a
segment identifier into one of the 16 segment
registers. Segments are private to a virtual
machine unless the virtual machine that
creates the segment explicitly gives other
virtual machines access to that segment. The
16 segment registers represent part of the
context-switching aspect of the multiple­
process model in AIX.

In addition to segments, there are two other
types of virtual memory objects: pages and
bytes. Pages consist of 2048 bytes. A
segment can contain from 1 to 131,072
pages. Protection is available at the page
level. Protection information is stored for
individual pages and then some specifics of
the protection mechanism are selected when
a segment register is loaded.

Pages are brought into active storage
(operating system memory) on a demand
basis via page faults. A page fault is a
memory exception caused by a program
trying to reference data that is not currently in
real storage.

Virtual Memory Program Management
Extensions
The AIX kernel has been enhanced to use the
VRM virtual memory services. This section
will discuss three AIX program management
extensions which take advantage of the
advanced virtual memory support. These are
the AIX segment register model, demand

paging of both users and the kernel, and a
process fork enhancement.

Segment Register Model
The segment register model for AIX is as
follows. At any given time, the IDs of up to 16
segments may be loaded into the segment
registers. Each of the 16 segments may be up
to 256 megabytes. Each page in a segment is
individually protected for kernel access and
user access. The AIX kernel occupies
segment register O. Most of the kernel
segment is page-protected no-access for the
user. A few kernel-segment pages used to
transfer data from the kernel to a user
process are protected read-only for the user.
Each user process is allocated three
segments. Segment register 1 is used for the
user text segment. The text segment is
protected read-only for the user and read­
write for the kernel (so that the kernel can
modify programs being debugged). The user
data segment occupies segment register 2,
and has read-write access. Segment register
3 is used for the user stack. The top of the
stack holds the user "u-block," which is
protected no-access for the user and read­
write for the kernel. The u-block is used by
the kernel for process management. The rest
of the stack is protected read-write for both
the user and kernel. Segment registers 4 thru
13 are used for shared-memory segments
and for mapped data files. Shared-memory
segments provide a means for sharing data
among multiple processes. Mapped data files
are described in the following section.
Segment register 14 is used by the VRM to
perform DMA operations. Segment register 15
is used to address the 110 bus directly.

Demand Paging of Both Users and A/X Kernel
Both the users and the kernel execute in
demand-paged virtual memory. When a user­
process reference to a page results in a page

fault, the VRM notifies the kernel, so that
another process can be dispatched. This
page fault notification results in improved
overall system performance, since process
switching can occur when a process is
waiting for a page fault to be resolved. The
kernel is only preempted when a page fault
occurs on user data. All other page faults
which occur for a kernel process are handled
synchronously, with no preemption of the
kernel process.

Process Fork Enhancement
The AIX "fork" system call creates a new
process. The new process (child process) is
an exact copy of the calling (parent) process's
address space. The address space consists
of text, data, and stack segments. Typically,
when executing a new command, the "fork"
system call is followed by an "exec" system
call to load and execute the new command in
the new copy of the address space. This
resuits in replacing the forked address space
with the address space of the new command,
thus undoing much of the work of the fork.

Copying the current process's address space
is expensive and time-consuming - too
much so to waste, if it is to be subsequently
deleted by the "exec" system call. The VRM
"copy segment" SVC creates a new segment,
but delays the actual copying of the data until
one of the sharing processes actually
references the data. Therefore, most of the
data will not have to be copied when an
"exec" system call follows, thus saving the
time and memory required for the copy. The
AIX "fork" system call uses this VRM copy­
segment facility to create the segments of a
new process. This enhancement of "fork"
reduces wasted effort.

AIX and Mapped Data

Mapped Page Ranges
Simple paging systems usually suffer from
conflicts between file I/O and paging I/O. For
example, a file device driver may read disk
data into a memory buffer, then the paging
system might write that buffered data out to
disk. Obviously, some coordination is required
between the AIX operating system kernel and
the VRM to prevent this.

Potential duplication of effort also exists with
program loading. A loader may read a
program into memory from the program
library part of the disk, then the paging
system uses another part of the disk to store
the program when it is paged out. Having the
VRM page the program directly from the
program library saves having to explicitly load
programs and also eliminates space wasted
by copying the program out to a page area of
the disk.

Carried to the extreme, only the paging
system would need to be able to do physical
I/O. The AIX file system manager could tell
the VRM the mapping between data on the
disk and virtual memory pages, and the
paging system could then perform all the
phYSical disk I/O.

The close interaction between the AIX kernel
and the VRM offers several distinct
advantages:

• Reduction in secondary paging space since
many permanent objects, such as program
text libraries, can be paged directly from
their permanent virtual disk location

• Improvement of performance since the
centralized VRM paging supervisor is in a

better position to control disk contention
and paging

• Simplification of the data addressing model.

The VRM supports a means by which AIX can
map the disk blocks of a file to a virtual
memory segment and have phYSical I/O
performed by the memory management
component of the VRM. This mechanism is
known as "mapped page ranges."

The AIX kernel takes advantage of VRM
mapped page range support, and applications
in AIX benefit from this mapped page range
support both impliCitly and explicitly.

Mapped Executables
Implicitly, the AIX kernel implements mapped
page range support in the form of mapped
executables. When a program is loaded, or
"execed" in AIX terminology, the AIX kernel
maps the program's disk blocks to distinct
virtual memory text and data segments. The
AIX kernel performs very little phYSical I/O to
load the program. Only the program file
header is "read" by the kernel. All remaining
disk I/O is demand-paged as the program is
executed. This results in a significant
performance increase for large programs,
which without mapped page range support
would have to have been read entirely into
memory, and possibly paged out by the
paging supervisor.

Mapped Data Files
ExpliCit AIX mapped file support consists of a
system call interface to the data file map
page range facilities. The "shmat" system
call, with the SHM_MAP flag specified, is used
to map the data file associated with the
specified open file descriptor to the address
space of the calling process. When the file

9&

has been successfully mapped, the segment
start address of the mapped file is returned.
The data file to be mapped must be a regular
file residing on a fixed-disk device. Optional
flags may be supplied with the "shmat"
system call to specify how the file is to be
mapped. If the flag SHM_RDONL Y is
specified, the file is mapped read-only. If the
flag SHM_COPY is specified, the file is
mapped copy-on-write. If neither of the flags
are specified, the file is mapped read-write.
Before a file can be mapped read-write or
copy-on-write, the file must first have been
opened for write access. Before a file can be
mapped read-only, the file must first have
been opened for read andlor write access.

All processes that map the same file read­
only or read-write map to the same virtual
memory segment. This segment remains
mapped until the last process mapping the file
closes it.

All processes that map the same file copy-on­
write map the same copy-on-write segment.
Changes to the copy-on-write segment do not
affect the contents of the file resident in the
file system until an "fsync" system cal! is
issued for a file descriptor for which copy-on­
write mapping was requested. If a process
requests copy-on-write mapping for a file, and
the copy-on-write segment does not yet exist,
then it is created, and that segment is
maintained for sharing until the last process
attached to it detaches it with a "close"
system call, at which time the segment is
destroyed. The next request for copy-on-write
mapping for the same file causes a new
segment to be created for the file.

A file descriptor can be used to map the
corresponding file only once. A file may be
multiply-mapped by using multiple file

100

descriptors (resulting from multiple "open"
system calls). However, a file can not be
mapped both read-write and copy-on-write by
one or more users at the same time.

When a file is mapped onto a segment, the
file may be referenced directly by accessing
the segment via Load and Store instructions.
The virtual memory paging system
automatically takes care of the physical 110.
References beyond the end of the file cause
the file to be extended in increments of the
page size (2K).

Experience with AIX has demonstrated that
significant performance benefits can be
derived from the judicious use of mapped file
support for data file manipulation. A
significant amount of system overhead is
eliminated by mapping a data file and
accessing it directly via Load and Store
operations, rather than conventional access
via "read" and "write" system calls. "Read"
and "write" system calls are still supported,
even when the file being accessed is mapped.
AIX mapped file support determines whether
or not a file is mapped when a "read" or
"write" system call is requested for the file,
and accesses the file appropriately if the file
is mapped. An additional level of efficiency
has been found to result from use of the
processor-architecture-specific "memcpy"
subroutine in conjunction with mapped file
support. This subroutine takes advantage of
Load Multiple and Store Multiple instructions
to perform fast data movement.

Building a "Production" Operating System
A number of enhancements were needed to
make AIX suitable for the wide variety of
customer environments and applications that
we expected it to support. Generally
speaking, we felt that we needed to give

applications a consistent interface to work to
for virtual terminals and communications
sessions, improve the performance
characteristics of the system, make additions
to its application-development capabilities,
and simplify the amount of development
required to support new devices.

I/O Management
We restructured the 110 Management area of
the kernel to make effective user of the
VRM's 110 facilities. Instead of a specialized
device driver for each distinct device, we
created a family of generic device drivers that
are capable of supporting a number of unique
devices of a given class. For example, a
single "async" device driver handles async,
RS-232C, and RS-422 interfaces. Truly
device-specific considerations are left to the
VRM device drivers, which can be added or
replaced dynamically without bringing down
the system.

Multiplexing
We added a facility to allow dynamic
extensions to a file system. If the multiplex bit
in the special file inode is on, the last qualifier
of the file name is passed to the character
device driver. The driver looks for the file
outside of the nominal file system. This facility
is used to deal with virtual terminals and
communications sessions as files.

File System

Alan Weaver

The AIX file system takes advantage of the
virtual device interface provided by the VRM.
To improve performance, we increased the
block size of the file system and the buffer
cache to 2048 bytes. To permit AIX to
accommodate an indexed data management

feature and a data base manager, we added
the ability to synchronize the buffer cache
with the fixed disk on a file rather than a file
system basis, added locking facilities, and
incorporated facilities to recover space in
sparse files.

Use of Minidisks
The VRM provides the ability to divide a given
fixed disk into a number of minidisks. This
permits the separation of file systems for
different purposes onto different virtual
devices.

AIX will let a user make 1 to "n" file systems
on a physical disk, where "n" depends on the
size of each file system and of the disk
device. Each file system is built in a separate
VRM minidisk.

AIX uses 512-byte blocks for diskette file
systems and 2048-byte blocks for disk file
systems. With the larger block size the
number of interrupts to be handled is
reduced, resulting in faster effective transfer
of data to real memory.

The space on each minidisk that contains a
file system is divided into a number of 2K­
byte blocks, logically addressed from 0 up to
a limit that depends on the size of the
minidisk. A corresponding cache of 2K-byte
buffers is used to reduce re-reading of
blocks.

Buffer Cache Synchronization
Cache buffers are normally only written to
permanent storage before the buffer is used
again or with the "sync" system call. AIX has,
in addition, the "fsync" system call that works
on an open-file basis to force the modified
data in the cache buffer to permanent storage
and does not return until all of the buffers
have been successfully written. This gives the

user more control over the data on the disk
and permits an application such as Data
Management Services to force writing of only
those buffers that really need to be flushed.

Dynamic Space Management
AIX has two system calls to recover space
within once-sparse files. The calls are
"fclear" and "ftruncate."

• fclear - zeroes a number of bytes starting
at the current file position. The seek pOinter
is advanced by the number of bytes. This
function is different from the write operation
in that it returns full blocks of binary zeroes
to the file by constructing holes and
returning the recovered blocks to the free
list of the file system.

• ftruncate - removes the data beyond the
byte count in a file. The blocks that are
freed are returned to the free list of the file
system.

File/Record-Level Locking
AIX file and record level locking extensions
allow an individual file to be locked in either
an advisory or enforced form. The advisory
lock notifies the caller of 'Iockf' if the
requested region of the file is locked.
Enforced lock protects the locked region from
access by readers and writers even if they
have no knowledge of the locking facility. If
the object being locked is a directory or a
special file, only advisory locks can be
obtained.

Records may be of any length ranging from
one to the maximum of the file size. The data
for a locked record does not need to exist in
order to obtain a lock on the record. Locks
may be applied beyond the current end-of-file
or over an area that has not been written
(sparse file regions).

Process/Program Management

Deb Blakely, Carolyn Jones, Conrad Minshall

Signals Enhancements
In addition to the standard set of System V
signals, AIX provides an enhanced signal
facility. This facility allows a program to mask
and block each type of signal while it is
executing. If a signal is received while it is
blocked, it is queued up and handled after
that signal type is released. However, only
one of each type of signal will be queued.
Except for the SIGCLD Signal, all subsequent
signals of the same type will be ignored. All
SIGCLD's will be queued and processed. Up
to 32 different signals are supported by the
enhanced signals package, but only those
defined in file /include/sys/signal.h can be
used. These are the same signals used by the
standard facility. The following are brief
descriptions of the system calls that make up
the enhanced signal facility:

sigblock Adds specific signals to the list
of signals currently being
blocked from delivery.

sigsetmask Sets the signal mask (the set of
Signals to be blocked from
delivery) to a specified value.

sigpause Sets the signal mask to a new
value, pauses until a signal not
blocked by the mask is received,
and restores the signal mask to
its original value.

sigstack Allows users to define an
alternate stack to be used for
signal handling or get the state
of the current signal stack.

101

sigvec

execve

Allows users to specify how a
specific signal is to be handled.
The user can specify whether
the signal should be blocked,
ignored, or processed by a
handler routine, and whether the
signal should be processed on
the current stack or a special
stack.

Starts a new program in the
current process, resets all
signals that are being caught by
the original program to terminate
the new program, resets the
signal stack state, and leaves the
signal mask untouched.

Buffer Bypass Variations
"Buffer Bypass" is a form of disk I/O which,
like raw I/O and mapped files, bypasses the
kernel's buffer cache, transferring data
directly between the VRM disk device driver
and AIX user processes. This offers direct
and indirect performance gains when it is
unlikely that the data will soon be re­
accessed. The direct gain is the lack of a
memory-to-memory copy of the data. The
(more substantial) indirect gain is the
generally improved cache hit ratio which
results from not replacing useful cache blocks
with data that is unlikely to be reused.

The implementation of buffer bypass is not
device-specific. Requests are in terms of a
file offset and a count, unlike raw I/O
requests, which are in terms of contiguous
physical blocks. Within the rdwri loop we
detect when we need all of a block and (if
buffer bypass has been requested) we call an
asynchronous block I/O routine which
bypasses the buffer cache. After exiting the
loop, we wait on all outstanding
asynchronous operations. A separate pool of

102

buffer headers, pointing into user space
instead of kernel buffers, maintains state
information, allowing process switch. A given
call into rdwri will end up allocating a ring of
these buffer headers, one of which is a ring
header. The parallel asynchronous operations
permit the VRM disk driver to schedule for
minimum arm movement and helps lower the
interblock overhead, so that physically
adjacent blocks can be read without waiting
an entire rotation.

Buffer bypass has not been made available
above the kernel. In a virtual memory
environment, we consider mapped files
superior. For small transient processes that
reference all or nearly all of their pages,
buffer bypass may have a performance
advantage. But how small is "small" and how
transient is "transient?" That is, where is the
breakeven pOint and how is it dependent on
current memory load? In the presence of
these unresolved questions, it was decided to
use mapped files wherever possible - buffer
bypass has been limited to use by the exec
system call for programs whose segment
alignment disallows mapped execution (I.e ..
for programs linked without the - K option).

IPC Queue Extensions
System V interprocess (IPC) message
services have been extended to give more
information when receiving IPC messages.
The new function call is "msgxrcv".

The msgxrcv function returns an extended
message structure that contains the time the
message was sent, the effective user 10 and
group 10 of the sender, the node ID of the
sender or zero if the sender was on the local
node, and the process 10 of the sender.

The IPC design model has been changed
from that of queue = file and message =

record to that of queue = directory and
message = file. This means that the same
kind of information found on a file can be
found on an IPC message: user ID, group 10,
time, etc.

Applications and servers can use the
additional information found in the extended
I PC message structure to check permissions
and send time. Servers can now validate
requests based on the information in the
extended IPC structure, rather than starting
new processes that take on the properties of
the program being served. The timestamp can
be used to make sure the message is not an
old one or to perform other tasks based on
time priority.

Terminal Support

Rudy Chukran

AIX terminal support is tailored to work in the
VRM environment, where terminals are virtual
constructs rather than real devices. It permits
applications to use multiple virtual terminals
and to access their virtual terminals in either
extended ASCII mode or in "monitored"
mode.

Console Support
In order to take advantage of the unique
functions provided by the Virtual Terminal
Manager subsystem of the VRM, a console
device driver was created and modeled on
the RS232 terminal device driver (tty). This
new device driver is referred to as the HFT
device driver. It provides support for a
console consisting of a keyboard, mouse or
tablet, speaker, and up to four displays.

Multiple Virtual Terminals
Some device semantics were established to
allow programs to create new virtual terminals

and access existing ones. If a program
wishes to create a new virtual terminal, the
open system call is issued on the device
/dev/hft. That special file is designated as
multiplexed by setting the "multiplex" bit in
the inode. If an existing virtual terminal is
desired, the program opens the device /dev/
hft/n, where n is the character representation
of a decimal number. This number is referred
to as the channel number, which may also be
interrogated by issuing an ioctl system call on
the file descriptor in question.

If a program needs to know about and control
activity on all the virtual terminals associated
with the console, it opens the device
/dev/hft/mgr. This gives the program access
to the screen manager component of the
VTM subsystem. The program may now
query the state of all the virtual terminals,
activate any terminal, or hide any terminal by
issuing an ioctl.

Extended ASCII Mode
The default mode for a virtual terminal
simulates an enhanced version of the
standard ASCII terminal. It permits programs
built for that interface to run with minimal
change. It also permits new versions of such
programs to access the sound and mouse
functions.

Monitored Mode
In order for a program to operate a bit­
mapped display in bit mode, the program
deals directly with the hardware display
adapter by storing to the memory-mapped I/O
bus. This is done for reasons of speed. Some
rules were established which are to be
followed for programs which operate a
display in bit mode and still allow other
programs to operate using other virtual
terminals.

Since the hardware protects the I/O bus from
access by user programs, a program must
request bus access by opening the /dev /bus
special file. This open sets the bits in the
control register which disable bus access
protection. This control register is saved and
restored for every process dispatch, thus
maintaining security of the bus from
unauthorized programs.

Next, the program puts the terminal into
monitored mode with a control in the output
stream. The control may optionally specify
that key data be entered directly into a user
buffer, thus bypassing clist processing.
Otherwise, key data is read through the
standard read system call.

The program next does an ioctl to set the
signaling protocol. Since other virtual
terminals may be activated at any time via the
Next Window key, a program operating in
monitored mode must relinquish the display
hardware to the operating system upon
request. This request mechanism is done with
signals. When the program is ready to begin
display activity, it issues a Screen Request
control in the output stream. When the
system determines the display is available, it
sends the program a signal denoting display
availability. The program can now change the
hardware settings without interference from
the system. When the Next Window key is
pressed, the system sends the program a
signal to relinquish the display. The program
now has a fixed length of time to output a
Screen Release control, which signifies that
the program has saved whatever states need
to be saved. If the program does not respond
with a Screen Release, all processes in the
tty group are sent the SIGKILL signal.

The program is now ready to access the
display. The hardware registers and refresh
memory are stored into by dereferencing a
pointer which contains the appropriate
address in the I/O space. When the program
is permanently finished with the display, it
would reverse the steps just described, thus
leaving the virtual terminal in the same state
as when the program began.

Even though operating a terminal in
monitored mode is complex, the speed of
direct hardware access is attained, and the
protected environment of a multiuser system
is preserved.

Printer Support

Jim Chen, Larry Henson

Device Driver
The printer device driver provides the
interface to the VRM from the kernei
environment. Up to eight concurrent printers
(fdev/lpO through /dev/lp7) are supported.
Enhancements have been made to provide
better error recovery procedures. Errors, as
they are discovered, are returned to the
application environment only if the application
requests that they be returned. A new set of
ioctls has been defined to allow printer
control from the application. LPRVRMG and
LPRVRMS get and set the VRM define device
structure associated with a printer. This
configuration information and error status
allow the user to control the error processing
and printer setup. LPRUGES returns the AIX
device driver's view of the error situation.
After the error has been determined,
LPRUFLS allows currently queued buffers to
be flushed. LPRURES will tell the VRM to
resume printing the job. LPRGMOD and
LPRSMOD get and set the synchronous vs

103

asynchronous printing modes and the option
to be signalled when an error occurs.

Printer performance has often been a
problem when high speed printers were used.
The device driver now supports both
synchronous and asynchronous. write ~ystem
calls. The device driver returns Immediately
after an asynchronous write is queued. A
synchronous call returns after the write is
finished. Where feasible, buffers are output
without making a copy. Each of these
functions is performed for both serial and
parallel printers.

Previously, serial printers have been run
through the tty device driver. Since tty is
optimized for terminals, getting the right
function for printers has been difficult. By
adding serial printer support to the printer
driver, the full performance and error
recovery enhancements can be utilized. loctls
LPRGETA and LPRSET A allow the baud rate,
character size, parity, and number of stop bits
to be queried and set. The splp(1) command
has been extended to do a stty-like setting of
these options.

Replaceable/Addable Backends
The print command allows user access t~ the
queuing environment (see Figure 1). ~ultlple
queues per printer allow the same ~nnter to
be used for different job types. Multiple
printers per queue can keep the output
flowing in case one printer is unusable. T~e
qdaemon provides background control of the
queues. Started up by the qdaemon,
backends do the work of getting the data to
the device drivers.

The user should not have to know the details
of how each printer works. By providing a
more general printer-support structure, we
made it easier for the user to install and use

104

Applications/users

print queue

Backend top layer

Backend formatter

Figure 1 Print Subsystem Structure

one of the new IBM printers without knowing
the details of how it works. When the system
is set up, the customer describes the printers
that are to be used, including such factors as
paper size and default print quality. If on~­
time changes are reqUired, a command line
parameter will override the configuration
already set up for a single job. These
configuration options allow printers to ?e. set
up for different types of jobs. Thus, .exlstlng
applications will work on the new pnnter~.
without changing the application. The ability
to add new printers in a transparent way
simplifies Change-over requirements.

A multiple queueing environment provides for
using several printers concurrently.
Replaceable backends for different p.rinters
associated with a queue allow the pnnt
subsystem to function as needed in different
situations. We have provided a backend to
support appropriate IBM printers. Error

messages are routed back to the user for
both fatal errors and intervention conditions.
After the intervention condition is corrected,
printing resumes automatically. A generic data
stream will print on any of the supported
printers. Applications are simplified by ha~ing
to deal with a single printer type. Formatting
for the specified margins, justification, and
image graphics support help the user to get
the output needed.

How can a user attach a printer that is not
supported by the IBM backend? If the printer
uses the 5152 data stream, that printer can
be configured to run through the IBM .
backend. If the data stream is like 5152 With
extensions, the relevant functions can be
defined as being on the printer and used as
desired. If a dissimilar printer is desired, the
user can write his own backend to be used
with his printer. This user-written backend can
still be used concurrently with the IBM
backend.

Extended Character Set
The use of the 7 -bit ASCII code definition in
8-bit-bvte machines has created some
proble~s. For simplicity, most applications
have adhered to the 7 -bit standard when
writing portable code. While avoiding the
problem of how to use the 8th bit, it allowed
applications to use that bit for whatever .
purpose they wished. This "usable" 8~h b~t
solved many a sticky problem for applications
that needed "tricks" in their data stream, but
it also created a portability probiem between
applications. Applications that did not use a
pure 7 -bit data stream could not ~nderstand
applications that had polluted their data
stream with a different 8-bit variation.

With the advent of the IBM PC, many new
programs have been writte~ to con~orm to the
PC code page mapping. ThiS mapping uses

the 8th bit to map graphics for code points
from 128 to 255. This extension has allowed
programmers to print and display many
scientific and international graphics not
previously available to them within the
definition of 7 -bit ASCII codes. We considered
it important to establish a code set definition
that could support applications from both
worlds. AIX display and printer support for
8-bit codes was implemented to help meld PC
applications into the world of AIX. The 8-bit
support is compatible with 7 -bit ASCII
applications and provides an additional
degree of commonality with a large number of
PC applications and files.

While the 8-bit extension is useful in
integrating PC applications, there still exists a
large problem in representing all the graphics
needed for scientific and non-U.S.
applications. Over the years, we have
identified and documented most of the
character-graphics requirements for scientific
and international applications. These
character graphics have been organized and
standardized across IBM. Each code page is
a set of 256 graphics, usually grouped by
countries (e.g., UK English, France, Germany,
Spain) or major application (e.g., PC or
Teletext). These code pages, if handled
independently, represent thousands of
characters and graphics. However, there are
many redundant characters and graphics
(mainly alpha-numeric and punctuation
characters). This presents a sizable problem
for applications to store and process these
character mappings to provide extended
support for scientific and international
symbols.

To aid programmers in dealing with this
problem, the AIX system provides a canonical
mapping of the most widely used IBM code
pages required by scientific and international

applications. The display and printer
subsystems provide controls for accessing
these code pOints. Data stream controls
provide switching to one of three code pages.
These code pages are designated: PO, P1,
and P2.

The base code page, PO, is based on the IBM
PC display font with the exception that the
first 32 code positions contain controls
instead of graphic characters (which were
moved into P1). This base code page allows
most applications PC compatibility without
any changes. In order to access graphics on
code pages P1 or P2, application programs
need to imbed switching controls for the
printer or display in the output data stream.
The application program also needs to use
switching controls to return to the original
code page. Each entry in a code page can be
selected by its 8-bit offset value in the code
page. For displays, the 8-bit offset is added to
a code page offset value in order to access a
particular code point. For printers, once a
code page has been selected by an ASCII
escape sequence, 8-bit code pOint offsets
select graphics in the active code page.

The extended graphic characters defined in
PO, P1, and P2 fulfill the major support
requirements for the US, Europe, Teletext,
and scientific symbols.

Floating Point Support

Richard Eveland

The RT PC system provides enhanced
services for floating point arithmetic. These
services are disigned to support the
Institute of Electrical and Electronic
Engineers' (IEEE) new standard for Binary
Floating Point Arithmetic (754). The floating
point package is utilized by the C, FORTRAN,

and Pascal compilers for all floating point
operations. Floating point operations can be
further enhanced with the addition of the
hardware Floating Point Accelerator
feature.[1]

The compilers perform floating point
operations by making subroutine calls to the
set of floating point routines located in the
kernel's segment O. The interface to these
routines is via a vector of entry points at a
fixed location in memory. Although these
routines are part of the kernel, they are
executed in user mode to avoid the overhead
of a system call. This area of the kernel is
read-only protected by the page protect
mechanism to prevent modification by user
programs.

The floating point routines provide an
environment of six floating point registers,
with a status register that controls exception
and rounding modes. The floating point
registers may contain either a single-precision
or a double-precision floating point number.
Basic operations are in a two-address
(source-destination) form, allowing either
register-register or immediate-register
operations. A no-result flag allows a routine
to return to the caller without bringing the
result out of the destination register and
returning it to the caller. This allows the
ROMP processor to continue executing
instructions in parallel with the Floating Point
Accelerator. The Accelerator can be given a
second operation to perform before the first
is complete, e.g., an Add followed by a
Multiply, further increasing throughput.

The Floating Point Accelerator has 32 sets of
floating point registers available for user
processes. These are allocated to a process
by the kernel only if the process actually
performs a floating point operation. This way

105

the user program does not have to
specifically ask for a hardware register set.
When there is no Accelerator, floating point
subroutines emulate the floating point
registers in a reserved area on the user's
stack.

The kernel provides two sets of floating point
routines: one set that implements the
functions entirely in software and another set
that utilizes the Floating Point Accelerator
hardware for most of the floating point
operations. The kernel installs pointers to the
appropriate set of routines into the vector of
entry points at machine initialization time.
Thus programs using this interface will
automatically use the Floating Point
Accelerator card when it is present, but will
use the software emulation subroutines when
there is no card. Programs compiled to use
this "compatible" mode have the ability to run
on any machine, regardless of whether or not
the Accelerator option is present.

Although the presence of the Floating Point
Accelerator will significantly speed up the
floating point operations in user programs
compiled in "compatible" mode, the maximum
benefit is achieved by compiling the program
to drive the Floating Point Accelerator directly
with in-line code. For C and FORTRAN
programs this may be done by compiling the
program with the "direct" option (- f). This
results in maximum speed for floating point
operations by avoiding the subroutine
interface for most floating point operations.
However, the Floating Point Accelerator card
must be present for these programs to run.
Direct mode versions of the C and math
libraries are provided to be linked with user
programs compiled this way.

The Floating Point Accelerator's hardware
floating pOint unit, the NS32081, does not

106

implement all of the functions required by the
IEEE floating point standard, e.g., handling
denormal operands. When such an event
occurs, the hardware causes a Program
Check interrupt which is handled by software
emulation routines in the VRM. The VRM
routines put the correct result back on the
card so that the event is transparent to the
running program.

Reliability/Availability/Serviceability (RAS)

Ellen Stokes

The IBM RT PC system RAS support is
designed to provide a coherent and
consistent set of error detection and
correction schemes. Wherever possible,
functions and components are self-diagnosing
and correcting; that is:

• Error messages with clear unambiguous
meaning are generated.

• Formatted error logs are automatically
generated.

~ Dump facilities are provided.

• Error analysis routines support software
and hardware problem determination.

A primary objective of the RT PC system RAS
support is to provide problem determination
and correction for the customer, for a
customer service vendor, or for IBM at the
request of the customer. As such, the system
must be reliable in all respects, but in the
event that there is a failure, the system must
be easily and quickly diagnosed and
recovered. Note that "the system" is defined
as that portion of the system which is IBM
developed and/or controlled.

One of the major challenges of the AIX RAS
design was to provide a consistent set of
user interfaces and information across all
components - VRM, kernel, and
applications.

AIX error messages emphasize problem
resolution. The user should be able to
diagnose any "non-catastrophic" problem
without resorting to offline documentation.
"Catastrophic" may be defined as any
problem for which there is no visible means
of doing problem determination with the
online facilities (e.g., system fails to IPL) and
which results in the user being unable to
continue the work session. Problem
determination may be approached in several
ways in the IBM RT PC environment, but the
essence of problem determination is to give
the user the necessary information for
problem correction at the highest possible
level within the system. The user will generally
be able to rely on a single message for the
information required to manage a function to
successful completion. If the level of user
sophistication or problem complexity requires
the exposition of additional information, a
help file can be displayed by the user if one
exists. If additional information is required by
the user, diagnostic tools are available in
IBM-supported LPPs which provide detailed
execution time flow and error analysis. Dump
process execution may be initiated by the
user to view the state of the system at the
time a repeatable error occurs.

The following sections describe the various
problem determination facilities in the RT PC
system.

Trace
The trace function is intended to provide a
tool for general system/application debug and
system performance analysis. Trace monitors

the occurrence of selected events in the
system. Important data specific to each of
these events is recorded on disk. When the
user needs to view this data, a trace report
program formats the trace data in an
intelligible form. The report program sorts the
disk file by date and time, providing a
chronology of the system's behavior. The
trace function may be started either by the
user or by an application.

The user has two commands for controlling
the operation of trace: start and stop. When
starting trace, the user should specify a
profile. This profile is an AIX file that contains
a list of all the classes of events the user has
selected to trace, listed by event type with a
descriptive label. Any number of trace profiles
may exist in the file system. There is a default
profile in /etc/trcprofile. This default profile is
used if no profile is specified when trace is
invoked. However, it is advantageous for the
user to tailor a profile to his own needs.

The trace function takes additional
information about the trace session from the
RAS configuration file /etc/rasconf. This file
contains configuration data for all RAS
functions. The entry for trace includes the file
name where trace data is to be stored
(default /usr/adm/ras/trcfile), the maximum
size of the file name (default 80 blocks), and
the trace buffer size (default 2 blocks).

Trace can operate at all levels of the system:
below the VMI, in the kernel, and at the
application level.

Below the VMI, trace functions are handled
by the VRM trace collector and process. The
trace process is initiated by a Send_Command
SVC (trace on) which sets up the trace
environment and starts the process. The VRM
trace collector receives trace information from

the trace points in the VRM and double
buffers them. When a buffer reaches a
threshold number of entries, the VRM trace
collector notifies the VRM trace process and
the VRM trace process sends that buffer to
the trace application to be written to the trace
file. The trace process is terminated by a
Send_Command SVC (trace off).

In AIX, the kernel trace device driver is the
central control point for trace functions. This
trace device driver /dev /trace has three minor
devices which correspond to the three levels
of the system's software. The application data
is handled by /dev/trace, kernel data by
/dev/unixtrace, and VRM data by /dev/
vrmtrace. The trace device driver controls the
allocation of buffers to collect all trace data
and handles the reading and writing of the
data in the buffers. It also issues the
Send_Command SVC which initiates trace in
the VRM. The trace device driver has an
interrupt handler which receives the interrupt
from the VRM trace process indicating that a
VRM trace buffer has reached its threshold
and needs to be emptied. AIX kernel entries
are written to the AIX trace minor device
/dev/unixtrace by the trsave macro.

On the application level, the trace daemon is
the primary process for trace activity. The
process issues the ioctl command which sets
the trace points "on" in the application,
kernel, and VRM according to the
specification in the selected trace profile. It
also forks two child processes (as needed)
which gather trace entries from the VRM and
kernel trace buffers and write them to the
trace log file. The parent trace daemon reads
the application-level buffer. For both AIX
extensions and applications, trace entries are
collected by the AIX trace collector, which is
an AIX run-time routine. The AIX trace
collector writes these entries directly to the

application trace minor device
(/dev /appltrace).

The trace stop command (trcstop) terminates
tracing by sending software termination
signals to the active trace daemons.

Trace data is formatted and displayed in a
readable format with the trcrpt command.
Because each record is time-stamped, the
trace log file is sorted chronologically and
then formatted according to the data saved
by the trace point which generated it. The
trace report generator is driven by an external
table of trace format templates which are
found in the file /etc/trcfmt. These templates
describe the data layout of the trace data
from each individual trace point. The template
file may be modified by invoking the trcupdate
command to include trace points in newly
installed programs or in third-party programs.
To improve readability and information
content of the report, the template file also
allows for substitution of meaningful
mnemonics for trace points, predefined data
values, etc.

Dump
The IBM RT PC system provides a system
level dump capability to enhance the user's
ability to do problem determination and
resolution. In the IBM RT PC, a "DUMP"
environment may be characterized in several
ways:

• The VRM or virtual machine ceases
execution.

• The VRM or virtual machine abends.

These failures may occur in an application,
the base operating system, or the VRM.

When a failure occurs, the user may choose
to initiate a dump. The user presses a dump

107

key sequence: CTL-ALT-NUMPAD8 for a
VRM dump. The target for a virtual machine
dump is the dump minidisk (allocated at AIX
install time) and the data placed on that dump
minidisk is defined by UNIX System V. The
target for a VRM dump is a high-capacity
diskette.

The VRM dump program is permanently
resident in memory. It has its own diskette
device driver. It is self-contained and does not
depend on any VRM resources. The dump
program is intelligent; it does not dump all of
real or virtual memory. The first 32K of real
memory, NVRAM, tables, control blocks, page
o of virtual machines, error log entries, etc.,
are dumped. Each component (other than
base VRM) that resides below the VMI can
identify to the dump program the location of
its dump table - a table containing relevant
control structure addresses of data to be
placed on the dump diskette. This
identification is normally made at device
initialization time, but can be updated at any
time. The dump program does not pick up
any dynamic structures from components
other than the base VRM unless the structure
is defined in the component dump table.

The VRM dump formatter utility, invoked with
the command dumpfmt, presents the dump
information by name and hexadecimal
representation with ASCII interpretation. The
header information for a dump consists of a
concise set of data defining the nature of the
dump, such as failing module name and
failure address. This header information
becomes part of the customer information
provided to the IBM service personnel for
problem resolution. The dump formatter can
be run interactively or in batch mode.

108

Error Log
The error log function is intended to provide a
tool for problem determination of hardware
and some software errors. Data specific to a
problem or potential problem and certain
informational data (e.g., IPL/shutdown time) is
recorded on disk. When the user needs to
view this data, an error report program
formats the error log data in an intelligible
form. The report program sorts the disk file
by date and time, providing a chronology of
the system's behavior. The error log function
can be started by superuser, but is generally
started by /etc/rc.

The user has two commands for controlling
the operation of error log: start and stop.
Error logging is generally started by /etc/rc by
invoking the executable file /usr/lib/~rrdemon.
This error daemon process is the focal point
for gathering error records. The error log file
specified in /etc/rasconf is implicitly two files
with extension .0 and .1. When the .0 file is
full, the .1 is written; when the .1 file is full,
the .0 file is then overwritten. This allows a
quasi-circular file to be kept with minimum
data loss. Any data that cannot be written to
the log file (e.g., disk adapter failure) is
written to NVRAM. Likewise, at error daemon
invocation, NVRAM is emptied and the data
written to the log file. Data in NVRAM is in an
abbreviated form because there are only 16
bytes available for error logging. But those 16
bytes are mapped to provide all types of error
entries. Error logging can be stopped with the
errstop command. It issues a software
termination signal which is caught by the
error daemon. Error logging is normally
implicitly stopped at shutdown.

The error log function takes additional
information about error logging from the RAS
configuration file /etc/rasconf. This file

contains configuration data for all RAS
functions. The entry for error logging includes
the file name where error log data is to be
stored (default /usr/adm/ras/errfile) and the
maximum size of the file name (default 100
blocks).

Error logging "on" means that all errors
reported are recorded on a disk file. When
error logging is "off," errors are kept in
memory buffers but are never recorded on a
disk file.

Error logging can operate at all levels of the
system: below the VMI, in AIX, and at the
application level.

Below the VMI, error log collection is handled
by the VRM error log collector and process.
The error log process is initiated by a
Send_Command SVC (error log on) which sets
up the error logging environment and starts
the process. The VRM error log collector
receives error information from the VRM and
its components. The VRM error log collector
notifies the VRM error log process and the
VRM error log process sends that error entry
to A!X to be written to the error log file. The
error log process is terminated by a
Send_Command SVC (error log off).

In AIX, the kernel error log device driver is the
central control point for error log functions.
The error log device driver controls the
allocation of buffers to collect all error data
and handles the reading and writing of the
data in the buffers. It also issues the
Send_Command SVC which initiates error
logging in the VRM. The error log device
driver has an interrupt handler which receives
the interrupt from the VRM error log process
indicating that a VRM error entry has been
generated and needs to be written to disk.

AIX kernel error log entries are written to the
AIX error log device (fdev /error) by the
errsave macro.

For both AIX extensions and applications,
error log entries are collected by the AIX error
log collector which is an AIX run-time routine.
The AIX error log collector writes these
entries directly to the error log device
(fdev /error).

Error log data is formatted and displayed in a
readable format with the errpt command.
Because each record is time-stamped, the
error log file is sorted chronologically and
then formatted according to the data saved
by the component which generated it. The
error log report generator is driven by an
external table of error log format templates
which are found in the file /etc/errfmt. These
templates describe the data layout of the
error log data from each individual entry. The
template file can be modified by invoking the
errupdate command to include classes of
errors in newly installed programs or in third­
party programs. To improve readability and
information content of the report, the template
file also allows for substitution of meaningful
mnemonics for classes of errors, predefined
data values, etc.

Error log entries are divided into classes
(hardware, software, IPL/shutdown, general
system, and user-defined). Each class is
optionally divided into subclasses, and each
subclass is optionally divided into masks.
Because the error log file may become very
large, the user can qualify what is to be
included in his error report. The user can
specify a time span, a combination of
classes/subclasses/masks, error entries
desired from a particular virtual machine, or
error entries desired from a particular node.
The default report is a summary report that

contains a one-line entry for each error
formatted. Optionally, the user can request a
detailed report which includes the one-line
summary plus the data associated with that
entry.

For each hardware entry in the error report,
an analysis of the error is appended. This
specifies the probable cause, the error, what
hardware pieces to suspect as bad, a list of
activities the user could perform for further
isolation, and a service request number. This
analysis is based solely on that error entry.

Update
Updates for software products on the RT PC
are packaged together on the same diskette.
A new "update" command provides a menu
interface to applying these updates. When an
update diskette is received, the user can
"apply," on a trial basis, the updates for one
or more of the software products that are
already installed on the system. The user can
then test the updated programs to ensure
that they still function correctly in that
environment. If the updates have caused a
regression, the user can run the update
command to "reject" (back out) the update.
Otherwise, the user issues the update
command to "commit" the update as the new
base level of the program.

Conclusion
We believe that we have successfully made
AIX into an operating system that can be
used without detailed knowledge of its
internal structure. It takes advantage of the
functions of the Virtual Resource Manager to
exploit the capabilities of the RT PC
hardware. It provides us with a general base
on which to provide support for additional
devices, applications, and communications
features without massive re-coding or user
inconvenience.

Acknowledgments
The porting, modification, building, testing,
and documentation of AIX have involved
hundreds of people. The authors of the
various sections of this article wish to thank
their colleagues inside and outside of IBM for
their ideas, support, and just plain hard work.

References
1. Scott M. Smith, "Floating Point Accelerator," IBM RT

Personal Computer Technology, p. 21.

109

Extendable High-Level AIX User Interface

Tom Murphy and Dick Verburg

Introduction
Including the UNIX kernel and command
language in the AIX operating system
presented us with both an advantage and a
problem. The command language came
complete with a wide range of functions
already implemented. However, the large
number of functions was a problem for the
new user. The names of the functions were
frequently less than mnemonic, and there was
little uniformity in the invocation syntax for the
various commands. Some accepted keyword
parameters, some used letter codes. Some
took their input from 'standard-input', others
accepted an input file name as part of their
invocation sequence. In short, the system
was designed for a programmer familiar with
the variety of commands and functions, rather
than for an inexperienced or casual user.

Objectives
The objective of the Usability program was to
provide an alternative interface to the
operating system. This interface was to be
oriented toward the user who was unfamiliar
with the details of the operating system. It
was to be available to users on all terminals,
those attached using the async interface as
well as the system console. It was, however,
not to require creation of new commands to
provide function already provided in the
operating system by existing commands.
Finally, while a particular subset of the
operating system commands was defined for
the initial implementation, the system was to

110

be flexible enough to accommodate additions
in the future without major rework to the
programs in the Usability program.

Usability Definition
The definition of the Usability program was,
naturally, heavily influenced by the choice of
the user interface to be provided. The
interface chosen was to be a full screen
interface on any of the terminals supported by
the system. The primary operator action was
to be a point-and-pick interface in which a
selection was to be made from those
presented on the screen. When additional
information was needed (beyond simple
selection) the user was to be presented with
an overlaying window prompting for the
required information. In addition, extensive
'help' information was to be available to the
user at most times, (More information on the
design and rationale for the user interface
itself is contained in the paper by Kilpatrick
and Greene[1].)

Two primary applications, as seen by the
user, were defined as part of the Usability
package. First was an action-oriented Tools
program. In this application the user is first
presented with a choice of actions to be
performed (e.g., print, copy, compile). After
selecting one of the presented actions, if
additional parameters or 'object'
specifications are required, the user is
presented with an appropriate 'pop-down'
where the appropriate objects (usually files)

can be specified. Second was an object­
oriented Files program. In this application the
user is first presented with a set of objects
(files in the current directory). When one or
more objects are selected, the user can then
specify an action to be performed on the
object(s).

To support these (and other) applications, two
additional components were defined as
service packages. First, a dialog manager
was defined to provide the tools needed by
applications to define and display successive
user-interface screens. Finally, libcur (an
adaptation of an existing UNIX routine
package) and terminfo were selected to
provide control of the screen appearance and
supply an interface that masked specific
terminal device requirements.

Implementation
While the components of the Usability
programs were defined and developed
independently, they share several attributes
that can be seen when they are examined
closely.

Files Program
This application presents the user with a list
of the files in the current directory. While
there are options to limit the set of files
presented, to sort the list, or to select other
segments of the directory tree for display, the
primary operator action is to select the file to
be acted on. When a selection has been

Figure 1 Tools application uses action-object

Figure 2 Files application uses object-action

made, the operator is presented with a choice
of actions that apply to the chosen file. The
determination of what actions are valid for a
particular file is based on its file type and
controlled by a file-type description that
resides in a shared data area outside of the
Files program.

The determination of the file type is based on
the suffix that is part of the file's name. A
table of information is maintained that relates
the suffix to the set of actions that are valid
for files. For each file type there may be a
special print program, compiler, editor,
interpreter, etc. For any of these entries the
specification may be either empty, indicating
that the option is not valid for that file type, or
may contain the name of the program that
provides the support for the function. For
example, for most files the editor specified is
ed, while for object programs no editor is
specified.

The description of a file type is carried
outside the Files program. This provides a
mechanism to modify file types without
modification of the Files program itself. New
file types can be added in the system simply
by adding a description for the new file type
(an interactive program makes this addition
easy). The main Files program does not
require modification unless new classes of
actions are added (in addition to print, edit,
compile, etc).

Tools Program
This application presents the operator with
lists of actions that can be invoked. The lists
of actions available are grouped into sets of
related actions. The first list presented is the
list of available groups. After selection of a
group, the commands/actions that are part of
that group are presented. Selection of a
particular action generally will result in a
request for additional information to allow the
operator to specify the object to be acted on.

The lists of commands are described in files
that are stored on disk, outside the code for

the application. The name of the commands
or command groups, the descriptive
information presented to the user, and the
names of other files associated with the
commands are stored in these files. With this
information stored outside the application,
additional commands and command groups
can easily be added to the application by
simply changing the files, rather than by
modifying the Tools program itself.

Dialog Manager
The dialog manager provides application
control and services to support the
processing of interactive dialogs. Dialogs are
named sets of field or record descriptors
which can be presented within named screen
areas. The dialog manager monitors operator
input and performs conditional processing
based on that input as specified by the dialog.

Dialog definitions were designed to minimize
the discrete number of times an application
needed to be directly involved with screen
output and operator input. Dialog definitions
include information that allows the dialog
manager to direct the flow of control from
one screen panel to another based on the
operator's actions.

Selectable fields, called buttons, can be
defined within a dialog as can the actions to
be performed when a button is selected.
Dialog actions include panel-to-panel
transition, presentation of a new object,
assignment of a value to a named variable,
removal of a panel, saving and restoring the
dialog state, selection or de-selection of
another button, return to the application, and
linking to a user exit.

111

User exits are application routines to be
called by the dialog manager as specified in
the dialog definition. These routines are
usually invoked to perform application-specific
tasks, for example, getting a new list of files.
The dialog manager can be called recursively
from within user exits.

Help text appropriate for the context of the
dialog can also be referenced from within the
dialog. This help text is accessed using the
system help facility to provide for flexibility
and translation, again without modification to
the programs using the dialogs.

Data entry is supported by character and
numeric fields, required entry fields, user
exits, and a "blanks not allowed" option.
MUlti-line input fields are also supported.
Default values can be constant text, named
variables, or combinations of either. Operator
entered data is stored into named variables
as specified in the dialog definition.

Applications can create, update and delete
named variables. These variables can be local
to a single process or shared at the activity,
user, or system level. Shared variables can
be used independent of dialog applications.

Note again, that the dialog is stored in a file
outside both the application and the dialog
manager. The dialogs may be changed
significantly without requiring any
modification, compilation, or reconstruction of
the application. Dialog definitions are pre­
processed from a readable and editable form
to one that is more efficient for run-time
processing. Separation of the dialog from the
application is still maintained.

112

Libcur and Terminfo
The libcur package of routines was adapted
from a similar set of routines that existed in
the UNIX system. This set of routines
provides the structures and management
routines to control multiple, overlapping areas
on the display. Routines were provided to
allow the definition of such areas, assist in
managing the data that is presented in each
area and support presentation on the display
with the appearance of overlapping papers. In
addition, these routines use the system
terminfo routines, which provide access to
and processing for terminal description files
for each type of terminal being supported.

The content of a terminal description includes
the information about a terminal needed to
properly control and process that device. This
includes information about the data ~tream
that must be sent to the device for required
functions (e.g., move the cursor to a selected
row and column, delete a character, clear the
screen). Also included is feature information
(e.g., which attributes are available, what
characters. should be used to construct
boxes). Finally, information about what control
strings will be generated by the terminal in
response to an operator action is described
(e.g., Do key, PF1, Delete character key, etc).

Again, the terminal descriptions are outside
the application, and the addition of a new
terminal type to support requires only the
addition of an appropriate terminal
description.

Files
Program

Other
Programs

Dialog
Manager

Libcur/
Terminfo
Routines

Figure 3 Software Layers

Summary

Tools
Program

At each level of the usability package, the
programs have achieved a level of flexibility
primarily by moving significant amounts of
control information out of the program and
into external data files. Each time this is done
it extracts a penalty in performance since the
information must be accessed and must be
interpreted. In order to minimize the penalty,
each program described above has included
logic that minimizes the number of times the
data is extracted. Thus the penalty has been
limited to a front-end cost when the
applications are invoked.

The structure outlined here does, however,
provide a reasonable degree of future
flexibility and the expense in the form of
processing performance has not proven to be
excessive. Each layer has provided for future
extensions by including a flexible external
definition file. The capabilities of the system
are thus not bound once and for all at the
time the system is shipped, but can be
extended easily as future needs dictate.

References
1. P.J. Kilpatrick and Carolyn Greene, "Restructuring the

AIX User Interface," IBM RT Personal Computer
Technology, p. 88.

113

Extended File Management for AIX

John M. Bissell

Introduction
Most major operating systems provide
sophisticated file access methods, with
functions that allow the definition and
manipulation of records, structures, and
fields. Such functions speed and simplify the
application programmer's task. Since many
applications require random access to
records, most comprehensive access
methods offer some form of indexed access
to data for improved performance.

Base AIX file system calls provide only basic
byte and string-oriented file manipulation
functions. Applications with a need for more
complex data structures and retrieval
capabilities such as indexing must architect
and implement their own access methods.
This lengthens the product development
,.~ycle, cost, and risk. These private access
methods are typically proprietary and
unusable by other applications. This results in
applications that cannot communicate or be
integrated without some intervening file
transform function. In particular, it generally
makes file sharing impossible and parallel
updating inevitable.

IBM RT PC Data Management Services
(OMS) extends the facilities of the base AIX
operating system and command interface. It
builds on the AIX file system to provide both
record and field-level access. The AIX
directory is also expanded to provide
additional information about files. The product

114

consists of an application programming
interface (API) and a set of AIX commands for
manipulating both AIX and Data Management
files.

Data Access Methods
A key design decision was to provide both a
traditional record-level indexed sequential
access method, and a higher-level field
access method which allows records to be
described and manipulated at the field level.
Both types of files use the same underlying
data and index structures, but are not totally
compatible due to the control information that
precedes the field data.

Record Access
Record access allows data structures of fixed
or varying length to be stored and retrieved.
This is the traditional method of file access
for languages such as PL/I, FORTRAN, and
COBOL. It also lends itself very well to
applications development in C, where data
structures are easily defined and manipulated.

Records may be retrieved sequentially, in the
order in which they were added to the file.
They may also be retrieved directly by
supplying the relative byte address (RBA) of
the record within the file. By storing the RBA
of one record in another, complex data
structures such as hierarchies and networks
can be built. Indexed sequential retrieval is
accomplished using the index techniques
described later.

Field Access
Field access permits an application to define
the contents of a file to the field level. Such a
file is a "table," where the rows are records
and the columns are fields.

The column is the basic structural entity in a
table. The creator of the table describes the
characteristics of the columns of the table.
The description must include a user name for
each column and typing information. Column
definitions are stored in a specially named
index (SYSCOLUMNS) in the index file.

A row represents a record in a table. A row
contains one instance of data for all of the
columns in the table. Field access functions
are used to retrieve, insert, and update
individual fields within rows.

The DMS field access support provides for
row selection based on complex selection
criteria, including wild cards. These functions
provide many of the capabilities of a relational
data base on a single table. Field access
functions automatically optimize query access
using indexes where available.

Indexes
Indexed access for record and field functions
is provided using B-tree techniques [1].
Integer, short integer, double preciSion
floating point, and fixed and varying length
character data are supported as key types.
Up to 16 key parts may be defined for each

index, with an ascending or descending
specification on each part. An index may be
defined as unique or duplicate. Architecturally,
any number of indexes may be defined on a
file, although a practical limit may be set by
the maximum size of the index file. Each
index is given a user-defined name which is
then used to refer to the index in subsequent
functions. Indexes are automatically updated
when insertions, modifications, or deletions
are performed.

For record files, each key field is identified by
the starting byte displacement of the part
within the record, the type of data, and length
of the data. For tables, the names of the
column(s) that comprise the key are used.

Key compression and prefix B-tree
techniques [2] are employed to increase the
number of keys that can be contained in each
index block. The index block size is always
chosen to be a multiple of the file system
block size (2K) to provide for efficient access.
Index nodes are buffered to reduce I/O. An
innovative concept called the "level table" is
used to further minimize the tree traversals.
Leaf nodes are chained to provide next and
previous sequential retrieval.

File Architecture
Each Data Management file or table consists
of a data file and an optional index file. Both
files are standard AIX files. The decision to
use two AIX files instead of storing data and
indexes in the same file has several
advantages:

• Each file is smaller, which has some
performance advantage in AIX.

• Decisions on file strategy (such as whether
to map or not) can be made independently
for indexes and data.

• I/O errors in the index file can be recovered
by rebuilding the indexes from the data file.

Data Management files are specified by using
an AIX file system path name. This name
properly refers to an AIX path down through
all but the last name. Data Management uses
the path name through AIX to locate the AIX
directory containing the file(s). The files are
always manipulated together as a data set.

Data File Architecture
Each data file is defined to contain either
fixed or variable length records. Records are
located by their RBA within the file. Each
record has a 4-byte header containing an ID,
consistency counter, and a record length.
Following the data is a 1-byte ID and
matching consistency counter. When a record
is written out, its consistency counters are
incremented. Each time a record is retrieved,
its header and trailer consistency counters
are compared to ensure that all of the record
was written and read correctly.

Free space management is done to reclaim
deleted space. Free areas are chained by
relative size. A request to add a new record
always finds a free area within one access, or
else the file is extended.

The RBA of a record never changes, even
when the record size is changed. (If a record
outgrows its slot, it is moved and a pointer is
left behind.) This simplifies logic, since
indexes do not have to be updated unless the
key of a modified record is changed.

Index File Architecture
All of the indexes defined on a particular file
are stored in a single index file. The file is
managed as a "tree of trees" with the names
of the indexes being stored in a B-tree at the
beginning of the index file. This allows the file

to contain an unlimited number of indexes.
Each index block is identified by the RBA of
its root node, which is kept constant.

Another design decision was to use the data
file algorithms for storing index nodes. Each
index node is stored as a record in a data
file. The records are chosen to be a multiple
of the file system block size, minus the space
required by the record header and trailer.
Relative byte address pointers link the nodes
of each index to form the characteristic
B-tree. This scheme allowed use of already
available code for free space management
and error detection.

Extended Catalogs
The AIX inode structure captures only very
basic information about a file, such as
creation date, date of last modification, etc.
The only descriptive information that is
supplied by the user is the file name. No
provision is .made for storing user-defined
attributes, such as file type, profile, or eyen a
comment as to the contents of the file.

Data Management Services provides the
ability to create and manipulate an extended
catalog for such information. API functions
and several utilities are provided. The catalog
structure for Data Management files and
tables is an extension of the AIX file system
directory structure. The user views Data
Management files as being handled the same
as AIX files.

While extended catalog information is
provided implicitly for Data Management files
and tables when they are created, normal AIX
files and directories do not have any
associated extended information kept on
them unless a specific request to catalog
such objects has been made through the API
functions or the "describe" utility. However,

115

API functions that read data from the catalog
will supply the standard AIX status
information for the non-cataloged files.

A catalog file is given the special name
".SYSCATALOG". This file is created with the
same uid, gid, and mode as the AIX directory
in which it resides. Thus, if a user has write
authority on a directory, he also has write
authority to add/update/delete entries in
.SYSCAT ALOG. The file structure in an AIX
directory containing Data Management files is
shown in Figure 1.

Utility Aspects of System
Integration of Data Management files and
ordinary AIX files is accomplished from a user
perspective by the utility commands. Since
Data Management files and tables can consist
of two AIX files, the standard AIX utilities
such as cp, mv, and Is do not understand the
relationship and special characteristics of
these files. For this reason, several AIX .
utilities. have been supplemented with new
Data Management utilities. A user need only
learn one set of commands for both types of
files, and in fact does not even need to be
aware of the difference. The integration i~
further carried out by having the new
command names aliased to existing AIX
utilities when Data Management is not

Figure 1

116

Any AIX
Directory Node

~
~ L...-_-'

Data Mgmt Catalog Data Mgmt Files

AIX Directory Node with Data Management
Services Files

installed. The new command names are also
used by the Usability program [3] to further
reinforce their acceptance by users.

These new utilities understand both ordinary
AIX files and Data Management files and
tables. They also provide a means to query
and update the extended catalog. The utilities
give the user a consistent view of files,
whether they are AIX, Data Management, or
those created by the SQL/RT Data Base LPP.
Although the standard AIX commands are still
available, their functions are completely
subsumed by the corresponding OMS utility
commands.

The supplied utilities have the following
functions:

• copy - replaces the AIX cp command for
copying files. Copy is designed to detect
file "holes" (blocks of all zeros) and avoid
physically copying them. This prevents AIX
from actually allocating any physical space
for the block, thus conserving disk. The
block materializes as zeros when read.

= move - replaces the AIX mv command for
renaming files.

• delete - replaces the AIX rm command for
removing files.

• list - is an expanded version of the AIX Is
command. List provides information from
the extended catalog for cataloged files. If
the file is not cataloged, inode information
is printed in the manner of Is.

• describe - a utility that not only displays
detailed information on a file (including
indexes and columns for OMS files and
tables), but also allows the user to do the
chown and chmod AIX functions. In

addition, a brief comment may be entered
for the file. The comment is stored in the
extended catalog and displayed by the list
utility.

• archive/retrieve - used to backup and
restore all types of files to removable
media. These commands maintain the
extended catalog information intact.

• create - allows creation of AIX, record,
and field access files.

• recover - used only for Data Management
files that have been determined to contain
corrupted data, possibly from a system
crash.

• condense - used to compress a Data
Management file by removing imbedded
free space.

Process Model
One of the major design decisions in
developing Data Management Services
involved the selection of a process model.
The two alternatives examined were a
subroutine library of Data Management
functions, and a two-task interface. The
decision was made to design a two-task
interface, as shown in Figure 2.

Each application process is supported by its
own OMS process. Communication between
the application and DMS is via the application
shared segment. Control is transferred using
semaphores. The reasons for chOOSing this
deSign over the standard function library
approach were:

• AIX provides new facilities for interprocess
communication which greatly enhance the
ability for cooperating processes to share
data.

Application
Process

Data
Management
Process

AIX File Buffers

Figure 2 Process Model

ASS
P H E
P A G
L R M

E E
D N

T

• The size of executable applications on disk
is reduced, since the amount of linked-in
code is small.

• Memory usage is reduced, since AIX shares
the text segment of the DMS process
among all concurrently executing
applications.

• Data integrity is enhanced. An abnormally­
terminated application does not take down
the Data Management process. Signals,
such as software termination or shutdown,
can be caught and processed without
leaving data in an inconsistent state. Also,
since the address spaces of the application
and Data Management processes are
different, application bugs are much less
likely to corrupt DMS data and control
structures.

• The model allows for such interesting
enhancements as asynchronous I/O, since
the application could be allowed to contir19
processing while waiting for Data
Management to store or retrieve the
requested data.

An application program containing DMS API
functions is compiled and then linked to a
library containing the run-time code for the
Data Management function calls. Each library
function is small, and serves only to
communicate between the application and the
DMS process. The first time one of these
functions is invoked during execution, a Data
Management server process is started using
the fork/exec mechanism. A private shared
segment and a set of two semaphores are
obtained. The DMS process waits on its
semaphore.

Subsequent interaction between the
application and Data Management processes
is as follows:

1 . The run-time library moves the
application-supplied parameters and data
buffers from the application address
space (stack and data segments) to
designated locations in shared memory.

2. The run-time library routine then posts the
DMS process by setting one of the
semaphores. It then waits on the other
semaphore.

3. The DMS process is awakened when its
semaphore is set. It looks in shared
memory to determine the function to be
performed, and calls the appropriate
internal routines to process the request.
The input data is addressed directly from
shared memory, and is not moved.

4. Upon completion of the request, a return
code is placed in shared memory, and the
application is posted by setting its
semaphore. The DMS process then waits
for another request.

5. The application is enabled, and the return
code and any returned data is moved
from shared memory to the application
address space. The run-time routine then
returns to the application.

The DMS process resets a timer each time
the application is posted. If no further request
is received within several seconds, the DMS
process checks to ensure that its application
parent is still running. If it is not, the DMS
process commits all updates in process and
closes all files. It then removes the shared
memory and semaphores and exits.

There is no explicit communication between
DMS processes servicing different
applications. All communication is done
through data contained within the files
themselves. Locking using the lockf system
call is used to control concurrent requests for
data .. '

Use of' Extended AIX Features
Several of the extensions to the base AIX
system have been utilized by Data
Management Services. These features are
discussed further by Loucks[4].

• lockf - this operating system call is used
to provide file and record locking.

• fsync - this operating system call causes
all updated blocks for a specific file to be
forced to disk. Data Management Services
uses this function to provide commit
processing.

• fclear - this operating system call is used
by Data Management when records are
deleted, to return blocks of zeros to AIX for
reallocation. This feature saves disk space
when files have many deleted records.

117

• ftruncate - this operating system call is
used by Data Management to truncate the
file size when records at the end of the file
are deleted, saving media space.

• mapped files - reads and writes data via
the paging hardware and software instead
of through AIX file buffers. System calls
with the attendant high overhead of the
context switch are bypassed by using the
mapped file feature to directly access the
file as if it were a part of the DMS
process's address space.

Conclusions
RT PC Data Management Services enhances
the capability and application development
environment provided by the AIX file system.
The supplied API routines allow the definition
and manipulation of data at either the record
or field level. Integration with AIX is achieved
through a set of utilities that operate on both
AIX and Data Management files.

The use of Data Management Services frees
the application programmer from the time­
consuming task of defining and implementing
a proprietary access method. In addition, the
application benefits from future function and
performance enhancements that may be
made to DMS. Extended AIX features are
exploited to provide improved performance,
media utilization, and data integrity. The
resulting Data Management Services files can
be shared by multiple applications.

The AIX file system is also available for new
or ported applications. An application's choice
of storing data will depend on the need for
functional services: for simple structures, the
AIX file is all that may be needed; for other,
more complex structures, the Data
Management interface is more appropriate.

118

Acknowledgments
The author wishes to thank the past and
present members of the Data Management
development team for their support and
perseverance through the many requirements,
design, and code changes which inevitably
result during an effort of this magnitude. The
final product reflects the very best of their
talents and abilities.

I am indebted to Linda Elliott and Cheng-Fong
Shih for their assistance in architecting and
designing the file structures and interfaces.
The other members of the development team,
comprised of Jeanne Smith, Thuha Nguyen,
Karen Depwe, Pierre Fricke, Albert (S.Y.)
Chang, and Richard McCue, ensured that the
design was implemented efficiently, and
offered many suggestions which manifest
themselves in the quality of this LPP. The
development effort would have amounted to
little without the diligent testing of Wayne
Wheeler. Many thanks also to Harry Sundberg
for the management direction, planning, and,
inSight so necessary for a successful
development project. The origins of the Data
Management Services LPP trace back to
ear!y product definition work done with Jack
Olson.

References
1. Douglas Comer, "The Ubiquitous B-Tree," ACM

Computing Surveys, Vol. 11, No.2, June 1979.

2. R. Bayer and K. Unterauer, "Prefix B-Trees", ACM
Transactions on Database Systems, Vol. 2, No.1,
March 1977.

3. Tom Murphy and Dick Verburg, "Extendable High­
Level AIX User Interface," IBM RT Personal Computer
Technology, p. 110.

4. Larry Loucks, "IBM RT PC AIX Kernel­
Modifications and Extensions, IBM RT Personal
Computer Technology, p. 96.

The Virtual Resource Manager

Thomas G. Lang, Mark S. Greenberg, and Charles H. Sauer

Introduction
The Virtual Resource Manager, or VRM, is a
software package that provides a high-level
operating system environment. The VRM was
designed to build upon a hardware base
consisting of a Reduced Instruction Set
Computer (RISC) and a PC AT compatible I/O
channel, although it is not limited to this
environment.[1] In fact, the VRM can be easily
extended to support different I/O hardware.
An example of this is the VRM's support of

I
1

l' ' Appl;cation pmgram ill
~----,.lY

Operating System

Virtual Machine
l­

I-

-VMI---------------

Device Drivers and
Device Managers

Virtual Resource Manager

-Hardware Interface-----------

Processor I I Memory

Figure 1 RT PC Software Design

the IBM 5080 graphics hardware, which is
designed to an IBM System/370 channel
interface.

The concept of RISC architecture is the
minimization of function in hardware,
providing only a limited set of primitives.[2]
This allows the processor to be designed with
simplified logic and a corresponding increase
in the speed of its instruction set. In this
environment, the software must provide
function that traditionally is provided in
hardware, such as integer multiply and divide
functions and character string manipulation.
The VRM builds on this hardware base to:

• Provide a high-level machine interface,
which simplifies the development and
implementation of operating systems and
their applications.

Simple Device Driver Model Device Manager/Driver Model

I VM I
s!c svc

---+---+----VMI----+---+---

Device Driver J

Figure 2 Virtual Device Models

• Maximize performance to support real-time
process control type applications.

• Allow users to easily customize the system
to meet their needs by providing an
extendable, flexible interface.

• Provide compatibility with IBM-PC
applications by supporting an Intel 80286
coprocessor.

The approach used to accomplish these goals
was to design a Virtual Machine Interface, or
VMI, with a set of functions to facilitate the
use of a variety of operating systems. The
VMI has features that support concurrency of
multiple operating systems and applications,
while in'sulating them from most details of the
implementation of the hardware, except for
the problem state instruction set. Also, the
VMI allows operating system programmers to
install extensions to the VRM to support
additional I/O devices, or even to replace the
IBM-supplied I/O subsystems.

Traditionally, virtual machine implementations
have suffered in performance due to the
overhead of simulating hardware function.
The key to maximizing the performance of the
VRM is that the vast majority of instructions
issued by the operating systems and
applications are directly executed by the
hardware. The VRM software is invoked
mainly to handle I/O operations at a relatively
high functional level.

119

Fundamental to the design of the RT PC is
that the VRM is the underlying support layer
for an operating system. In particular, the
UNIX kernel[6] was chosen as the principal
operating environment supported by the
RT PC product, and the design of the VRM
was influenced by this selection.

The concept of a virtual machine has been
implemented on IBM mainframe computers
with a software product known as VM/370.[3]
The VRM is similar to VM/370 in that it
supports the concurrent execution of multiple
operating systems. However, there is a
significant difference. VM/370 provides a
complete functional simulation of the real
System/370 hardware, such that an operating
system built for the real hardware, like MVS,
can run in a virtual machine. The Virtual
Machine Interface supported by the VRM
provides considerably more function than the
RT 'PC hardware; an operating system
implemented to the VMI will not run on the
real hardware. The design of the VMI traded
off complete hardware compatibility for the
benefits of a high-level, high-function machine
definition.

Along with the concept of concurrent virtual
machines, the VRM supports virtual
memory.[4] The hardware memory
management capabilities include a 24-bit
address space for real memory (Le., the
ability to address up to 16 megabytes of real
memory) and a 40-bit address space for
virtual memory (1024 gigabytes, or one
terabyte).[5] The virtual address space is
comprised of 4096 segments of 256
megabytes each. Sixteen segment registers
are provided by the hardware, and one of
them is permanently dedicated to addressing
I/O devices. Thus, up to 15 segments can be
accessed simultaneously. The VRM software

120

takes advantage of these features to logically
separate the address spaces of the virtual
machines from each other and from the VRM
address space.

Another VRM feature, related to virtual
memory, is "mapped file" support. Mapped
files are a relation of logical disk blocks to
virtual memory addresses, such that a disk
file can be read from or written to simply by
reading from or writing to its associated
memory addresses. Explicit disk reading and
writing is not required.

The AIX operating system contains a
complete file system, based on explicit disk
reading and writing. When modifying AIX for
the VMI, it was desirable to salvage as much
software as possible. Also, the concept of
mapping files does not work well with
removable media, such as tapes or diskettes.
So, mapped file support is augmented with a
minidisk manager in the VRM, providing more
conventional file access support.

The minidisk manager provides access to
disks partitioned into separate spaces, or
minidisks. In turn, the minidisks are
partitioned into logical blocks whose size is
determined by the operating system,
independent of the characteristics of the
physical disk. The minidisk manager also
includes functions not normally found in
simple hardware access methods, such as
error recovery and bad block relocation.
Further, the VMI for the minidisk manager
allows the potential for "remote" minidisks,
accessed across a communication link such
as a high speed local area network.

The "virtual resource" concept is also applied
by the VRM to I/O devices, such as virtual
terminals.[7] The VMI includes a high-level

interface to I/O devices that is consistent for
all devices. Also, the VM I includes provisions
for bypassing the VRM and accessing devices
directly. The preferred method of using a
device from a virtual machine is to take
advantage of the I/O support functions
supplied by the VRM. But, there are graphics
applications, for example, which can gain
enough performance by writing directly to a
display device to offset the loss of flexibility
suffered when bypassing the VRM services.
Another reason for allowing direct access to
I/O devices was compatibility with existing
applications; for example, a BASIC language
program written using the PEEK and POKE
functions to access an I/O device.

Extendable Virtual Machine Architecture
Another feature that distinguishes the VRM is
the extendability of the architecture. Users of
microcomputers have become accustomed to
plugging new devices into a machine's I/O
channel. However, getting the machine's
software to use the device usually requires
some ingenuity. One approach is to design
the new device such that it "looks like" an
existing device, so that the existing software
can recognize and use it. Another approach is
to run an application program that drives the
device directly, independent of the existing
operating system. For example, a program
could communicate with a. device by sending
commands to its I/O port, then using a
software "spin loop" to poll its status port to
determine when the commands complete. The
former approach limits the flexibility of the
new device, while the latter destroys the
effectiveness of a multiprogramming
operating system by tying up the processor
during I/O operations.

The VRM allows a new approach, whereby
software for a new device can be fully

integrated into the existing operating system.
Further, the reconfiguration of the VRM to
add or replace software can be performed in
real time without disrupting the normal
function of the machine.

A data structure, known as a Define Device
Structure, or DDS, is included in the VMI so
that a programmer can describe the attributes
of a new device and its related software
support to the VRM. Information in the DDS
includes the I/O port address(es) used by the
device, which channel interrupt level it uses,
which DMA channel it uses (if any), whether it
has any resident RAM or ROM, etc. Also, the
DDS indicates which program module should
be called to process such functions as:

• Device initialization
• Interrupt handling
• I/O initiation
• Timeout or exception handling
• Device termination

Using information from the DDS, the VRM is
able to determine which user-installed
program to call to handle an interrupt
generated by an installed device. The
additional software required to support a new
device is added in real time, in contrast to
existing systems that require the use of an
off-line or stand-alone program to reconfigure
the system.

To use devices, the VMI contains a set of
functions including:

Define Code Install software into the
VRM, or delete installed
software.

Define Device Install a DDS into the VRM,
or delete an installed DDS.

Attach

Detach

Reserve a device and
allocate any resources its
software may require.

Undo the function of
"Attach."

Send Command Send a command to a
device.

Start I/O A variation on "Send
Command," which allows a
set of commands, or
buffers, to be sent to a
device.

To use a device, a logical connection ("path")
is established between the user and the
device. The Attach function is used to
establish a path, and a path identifier token is
returned to the user. Subsequently, the path
identifier is used to send requests to the
device. When the device completes the
request, it returns status information or an
interrupt to the user, using the path identifier
to route the data.

The VMI defines two ways to send requests
to a device, the Send Command and Start I/O
functions. Parameters for these functions
include the path identifier in addition to device
specific parameters such as a request code
and buffer pointer. The difference between
the two functions is that the latter passes its
parameters in a data structure, know as a
Channel Control Block, or CCB, which allows
the specification of a chain of commands or
buffer pointers. This can be useful, for
example, when using a device that supports
"scatter/gather" functions. During a read
request data can be input from a device and
"scattered" into different memory buffers. Or,
during a write request data can be

"gathered" from different buffers and output
to a device.

Another parameter for the two request
functions is an operation option that
determines if the request is to be processed
by the VRM synchronously or
asynchronously. Implicitly, this also
determines how completion status is returned
to the virtual machine. For synchronous
requests, completion status is supplied as a
return code from the requested function,
while the completion of an asynchronous
request is indicated by a "virtual interrupt".
The VMI defines nine interrupt levels for a
virtual machine, which allows the assignment
of relative priorities to interrupting conditions.
When not processing an interrupt, the virtual
machine is considered to be on level 7. Seven
levels can be assigned to interrupting I/O
devices. In order of decreasing priority, they
are levels 0 through 6. In addition, there are
two other levels. The machine
communications level is used for messages
between the VRM and the virtual machine.
The highest priority level is the program
check level, which is used by the VRM to
report exception or error conditions to the
virtual machine. The return code from a
synchronous request provides 32 bits of
status, while up to 20 bytes of status can be
supplied with each virtual interrupt.

Two types of programs can be installed into
the VRM: device drivers and device
managers. A device driver is a collection of
subroutines that support a specific hardware
device. The VRM synchronously calls the
subroutines to handle device-specific
functions, such as handling interrupts and
time-out conditions, and processing I/O
commands from virtual machines. The VRM
device driver support is intended to be

121

sufficient for implementing relatively simple
devices, such as printers, diskette drivers,
and tape drives.

Device managers provide an additional level
of support for more sophisticated devices,
such as virtual terminals or communications
subsystems (see Figure 2). These types of
device subsystems typically have
requirements to handle multiple asynchronous
events and to manage different types of
resources. For example, the Virtual Terminal
Manager coordinates the activities of device
drivers for the keyboard, display, speaker,
and locator to simulate a higher level device
known as a "terminal."

Allocation of System Resources
Resources in the VRM are categorized as
serially reusable or shared. Serially reusable
resources are those that can be used by
different applications, but only by one at a
time. For example, multiple applications may
use the printer but one application must finish
before the next takes over. Otherwise, the
result would be scrambled printer output.
Shared resources, though, may be used
"simultaneously," Examples include the disks
and memory, which are shared by dividing
them into logical pieces (minidisks and
segments), and the processor and
communication lines, which are shared on a
time basis.

The VRM manages several shared devices,
most notably the keyboard, locator, speaker,
display, and hard files. Virtual machines can
have many logical terminals. The user
controls which logical terminal is associated
with the physical hardware via a set of
reserved key sequences. Virtual terminal input
is routed by the VRM to the owner of the
screen that has been selected for display by

122

the user. Output to virtual terminals is
updated in memory if that display is not
selected.

Support of the PC AT coprocessor presented
some interesting challenges for resource
management.[9] The main constraint was that
the VRM had to be transparent to the
applications using the coprocessor. A
considerable amount of hardware support is
dedicated to this purpose, in the form of
"trap" logic that monitors access by the
coprocessor of I/O addresses.[8] For
nonshared devices, the VRM reserves the
device for exclusive use by the coprocessor.
I/O operations using devices of this type
proceed with no further intervention required
by the VRM. When using shared devices,
however, the VRM must intercept each 1/0
operation requested by the coprocessor and
simulate the function as if it were dedicated to
the coprocessor. For example, when the
coprocessor writes data to what it thinks is
the display screen, the VRM saves this data
in a memory buffer. And, when the
coprocessor's virtual terminal becomes the
"active" terminal, the data is moved to the
actual display buffer. A!so, at this time
keystrokes are routed to the coprocessor
when it accesses what it thinks is the
keyboard adapter's I/O port. Notice that since
the coprocessor accesses nonshared devices
directly, they perform at precisely the same
speed as they do in a PC AT. However,
shared devices suffer some performance
penalty since functions must be simulated by
the VRM software.

Another resource that can be shared with the
coprocessor is memory. The VRM can
reserve some of its own memory for use by
the coprocessor. In this mode, memory
translation hardware detects memory

references by the coprocessor and routes
them to the VRM's memory. Alternatively, a
memory card can be plugged into the I/O
channel, and coprocessor memory references
will be directed to it. This allows a great deal
of flexibility to trade off the lower cost of
shared memory against the higher
performance of dedicated memory. The trade
off is not "all or nothing." For example, a
1-megabyte address space can be provided
for the coprocessor using a 512-kilobyte
memory card and sharing 512 K of system
memory.

Virtual memory is utilized by the VRM to
eliminate arbitrary restrictions on resource
usage. It is not uncommon for operating
systems to restrict the number of processes
in the system or the number of devices that
are supported. The VRM defines internal
control block areas in virtual memory that are
large enough to support thousands of
processes and device drivers. Thus,
limitations are a function of the amount of real
memory, disk space, and I/O channel slots
available on a particular machine.

Designs for Rea!-Time Performance
The VRM was customized for the real-time
processing environment, compensating for
the shortcomings of the kernel in this area.
Features of this design include:

• Low overhead creation and deletion of new
processes and interrupt handlers

• Efficient interprocess communication

• Preemptable processes and interrupt
handlers, to minimize interrupt latency time

• Prioritized scheduling of processes and
interrupt handlers

• Interval timer support with 1-millisecond
granularity.

Multi-programming is implemented in the
VRM by dividing work into logical units, or
"processes," which are scheduled by priority.
In addition, the VRM contains "interrupt
handlers," which are invoked in response to
interrupt signals from hardware devices. In
"Extendable Virtual Machine Architecture" on
page 120, programs in the VRM were
characterized as device managers or device
drivers. Device managers, and virtual
machines, are represented as processes in
the VRM, while interrupt handlers are among
the subroutines that comprise a device driver.

Processes and interrupt handlers can
communicate using shared memory, or by
using the VRM's interprocess communication
functions, which include queues (for message
passing) and semaphores (for serialization
and synchronization).

Particular emphasis was placed on supporting
high-speed devices, with stringent latency
time requirements. Hardware interrupt
processing is the highest priority work in the
system. Interrupts from devices are further
divided into four priority classes, such that the
servicing of an interrupt can be preempted by
a higher priority interrupt.

Also, an "off-level" interrupt handler
capability is available that allows a device
interrupt handler to process time-critical
operations without being preempted, and to
defer less critical processing to a lower
priority level that can be preempted by other
device interrupts.

After all pending interrupts are handled, the
VRM selects the next process to execute
based on 16 priority levels. The selected

process will remain executing until it "waits"
for some condition (such as the completion of
an I/O operation or the arrival of a new work
request), or until it is interrupted. Among
processes with the same priority, "time
slicing" is implemented; that is, if a process
does not relinquish control after a period of
time, the VRM will suspend it and pass
control to another process. The default time
slice interval is 16 milliseconds, and this value
may be increased in increments of 16
milliseconds. If a sufficiently large increment
is selected, time slicing is effectively disabled.

The design of the data structures for
multiprogramming was influenced by
performance considerations. The processor
has a large number of registers (16 system
registers, 16 segment registers, and 16
general-purpose registers), which makes
context switching between applications a
lengthy job. In a typical operating system,
when an interrupt occurs, the state of the
interrupted program is saved in a known
location, then transferred to a control block
associated with the interrupted program if it
becomes necessary to switch control of the
processor to a different program. In the VRM,
this would require moving a large amount of
data, so the interrupt handlers are set up
such that the state of an interrupted program
is saved directly into its control block. This
contributes to faster context switching.

Another aspect of the control block design
that contributes to fast context switching is
that the "dispatcher," which selects which
program next gets control of the processor,
never has to search through queues of
control blocks. The control blocks for
programs that are ready to execute are
always kept sorted by priority, thus only
about 1 % of the total time required for a
context switch is required to select the next

program. The remaining time is spent saving
the state of the current program and restoring
the state of the next program.

The VRM was designed using top-down
structured programming techniques. The
program code was written first in a high-level
language, using primarily PL.8 (an internal
IBM development language, derived from
PL/I).[10, 11, 12] After the system was
functioning to the point where meaningful
applications could be implemented and run,
the performance of the system was measured
in detail. The performance data was used to
determine critical paths in the software, or
"bottlenecks." These parts of the system
were then tuned to maximize performance.
The first step in tuning was to attempt to
make the PL.8 code more efficient. In many
cases, this tuning turned out to be sufficient
to meet performance objectives. However,
some critical paths required recoding in
assembler language to achieve desired
performance.

The process of tuning the system was an
iterative one for the measurement and
recoding steps. For example, one
performance objective was that the disk
device driver be able to handle a disk
formatted with a 2:1 interleave factor without
missing revolutions, with enough of a margin
to allow for an interrupt from an Async
communications adapter during the critical
path. A factor that increased the difficulty in
meeting this objective was the disk hardware,
which does not support DMA for transferring
data between the adapter and memory. The
disk hardware, chosen mainly on cost and
compatibility considerations, is similar to the
PC AT disk hardware. Using that hardware,
the PC AT supports a 3:1 interleave.

123

In pursuit of the 2: 1 objective, the VRM
interrupt handling logic and disk device driver
were measured and recoded numerous times,
each time squeezing out a few more
microseconds from the path length, until the
objective was met. At several stages in the
process, software ingenuity was required to
surmount hardware timing limits. Some of
these software "tricks" included:

• Sorting the queue of disk requests
according to sector/track number,
influenced by the current position of the
disk arm

• Looking ahead in the queue when one
request completed, to anticipate the
requirements of subsequent requests

• Sending the next command to the disk
adapter before processing of the current
command is complete

• Using a table look-up algorithm to
determine how long a "seek" operation
should take, based on current and future
arm position. then setting a timer to wake
up the disk diivei just piioi to the operation
completing

• Taking full advantage of the overlapped
load, store, and branch capabilities of the
pipelined processor.

In this extreme example, the large tuning
effort paid off when a difficult objective was
met. Fortunately, most other tuning problems
were easier to solve. Also, there were "spin­
off" benefits gained in the disk driver tuning.
The path length reductions in the VRM
common interrupt handling logic benefitted all
device drivers, and some of the techniques
used in the disk driver were applied to other

124

device drivers. In particular, the overlapped
processing of queued requests increases the
throughput of all devices.

Critical to the job of performance tuning was
accurate measurement of the system. Three
different techniques were used. First, selected
operations were executed repetitively, so that
elapsed time could be measured. The
measurement device was a stop watch, so to
eliminate reaction-time errors and to increase
accuracy, the repetition factors were chosen
to be very large (e.g., thousands or even
millions of iterations). Some of these "bench
mark" loops were internally developed, while
others were selected from bench marks
published in trade journals. The latter type of
bench mark was especially useful when
comparing performance of competing
systems.

The second type of measurement was done
by inserting "hooks" into critical paths. These
hooks consist of I/O instructions that output
data to reserved channel addresses. To
obtain measurements, a special I/O adapter is
plugged into the channel to monitor the
output from the hooks. The data collected by
this adapter is saved on a tape. Afterwards,
the tape is input to a data reduction program
that generates a path flow analysis with
timings. This technique allows very
sophisticated path analysis, but suffers the
drawback that the hooks themselves take a
small amount of time to execute. Although the
hook execution time is relatively small, the
cumulative times can, in some cases, add up
to a significant amount. Also, as the interval
between hooks decreases, the hook's
execution time becomes proportionately more
significant.

The third technique involved a logic analyzer
to monitor the output of signals from the
processor Chip. Using the analyzer, it is
possible to measure precisely the time it
takes to execute individual instructions or
sequences of instructions. This is impractical
for measuring large programs, but is well
suited for analyzing small sections of program
code that are executed very frequently. For
example, program context switching and
interrupt handling functions execute hundreds
of times per second. In these critical paths, a
few microseconds can be significant.

A great deal of performance tuning effort was
spent maximizing the "pipeline" effects of the
ROMP processor. The pipeline effects result
from the processor's ability to overlap various
stages of instruction execution. Two different
situations illustrate these effects. First, if the
next instruction(s) after a memory load
instruction do not use the value being loaded
from memory, they may be executed in
parallel with the memory access. By properly
interleaving instructions, this effect can be
exploited to reduce the total execution time of
a sequence of instructions. Second, when a
branch instruction is executed, the processor
must reload its instruction pre-fetch buffer
with the new instruction stream. By using the
processor's Branch-with-Execute instructions,
it is possible to overlap the execution of one
instruction with the pre-fetch buffer reload
time.

The high level language compilers for the
RT PC, in particular the PL.8 compiler, are
designed to take advantage of the pipeline
effects of the processor. For assembler
programmers, the pipeline effects can be
utilized, although usually at the cost of cleanly
structured programming. For the tightly
optimized critical paths in the VRM this has

been done, but the programming effort
required, contrasted with the high efficiency
of the compilers, has resulted in the majority
of the VRM being implemented in high-level
language.

Conclusions
The VRM builds upon the low level RT PC
hardware interface to provide a high-function
system environment. It brings to a desk-top
microcomputer many features that formerly
were found only on much larger, more
expensive systems, such as virtual memory
and virtual 110 subsystems. It also includes
features, such as dynamic reconfiguration and
an extendable architecture, which are unique;
and it allows for the migration of existing
UNIX and IBM PC based applications to a
new architecture.

During the past several years of development,
the RT PC hardware underwent several major
changes, but the Virtual Machine Interface
has remained relatively stable throughout this
time, thus minimizing the impact of the
hardware changes to the implementation of
AIX and its applications.

The VRM's functions complement the
hardware instruction set, providing features
such as virtual memory, virtual devices,
minidisks, and multi-programming. This
creates an environment for implementing
operating system extensions and hardware
device support that has the flexibility to
evolve as the hardware technology evolves
without forcing radical changes to existing
software.

Acknowledgments
The authors would like to acknowledge the
efforts of the people who contributed to the
development of the VRM. The virtual terminal

software was developed by Lynn Rowell's
department. The RAS and Install were
developed by Hira Advani's department. The
VRM device drivers were developed by Mark
Wieland's department. Special thanks go to
Joe Corso and each member of his
department thoughout the VRM development
for the VRM design, the testing methodology,
and the technical leadership for integration of
the product.

References
1. George Radin, "The 801 Minicomputer," IBM Journal

of Research and Development, 27, pp. 237-246,
May 1983.

2. D.A. Patterson and C.H. Sequin, "RISC: A Reduced
Instruction Set Computer," Proc. 8th Annual
Symposium on Computer Architecture, May 1981.

3. R.A. Meyer and L.H. Seawright, "A Virtual Machine
Time-sharing System," IBM Journal of Research and
Development, Volume 9 Number 3, 1970.

4. J.C. O'Quin, J.T. O'Quin, Mark D. Rogers, T.A. Smith,
"Design of the IBM RT PC Virtual Memory Manager,"
IBM RT Personal Computer Technology, p. 126.

5. P.D. Hester, Richard O. Simpson, Albert Chang "IBM
RT PC ROMP and Memory Management Unit
Architecture," IBM RT Personal Computer Technology,
p.48.

6. Larry Loucks, "IBM RT PC AIX Kernel -
Modifications and Extensions IBM RT Personal
Computer Technology, p. 96.

7. D.C. Baker, G.A. Flurry, and K.D. Nguyen,
"Implementation of a Virtual Terminal Subsystem,"
IBM RT Personal Computer Technology, p. 134.

8. John W. Irwin, "Use of a Coprocessor for Emulating
the PC AT," IBM RT Personal Computer Technology,
p.137.

9. Rajan Krishnamurty and Terry Mothersole,
"Coprocessor Software Support," IBM RT Personal
Computer Technology, p. 142.

10. M. Auslander, et aI., "An Overview of the PL.8
Compiler," ACM, 0-89791-074-5/82/006/0022.

11. Alan MacKay and Ahmed Chibib, "Software
Development Tools for ROMP," IBM RT Personal
Computer Technology, p. 72.

12. M.E. Hopkins, "Compiling for the RT PC ROMP," IBM
RT Personal Computer Technology, p. 76.

125

Design of the IBM RT PC Virtual Memory Manager

J.e. O'Quin, J.T. O'Quin, Mark D. Rogers, TA Smith

Design of the RT PC Virtual Memory
Manager
Support of a large virtual address space was
the main objective that guided the design of
the Virtual Memory Manager (VMM). The
VMM should take advantage of the large
address space provided by the Memory
Management Unit (MMU) and the abilities
inherent in the MMU's inverted page table.
Furthermore, the VMM needed to be
designed to minimize the overhead associated
with performing disk I/O. At the same time,
the VMM should not adversely impact system
performance, especially in situations where
sufficient real memory exists to perform the
desired function.

Each instruction executed by the ROMP has
direct addressability to a 32-bit address
space. This is referred to as the effective
address space. The effective address space
is divided up into 16 equal size segments by
the MMU. The MMU converts an effective
address into a virtual address by
concatenating the 12-bit segment identifier
associated with the selected segment onto
the 28-bit segment offset in the effective
address. This results in a 40-bit virtual
address space. Each segment in the virtual
address space is further divided up into
2048-byte pages. This division of the virtual
address space into segments and then into
pages is known as paged segmentation.

One of the two main functions of the VMM is
to provide its users, primarily virtual

126

machines, the ability to define both the virtual
address space and the effective address
space. The VMM provides services such as
create segment and destroy segment that
allow a virtual machine the ability to define
the valid subset of the virtual address space.
It also provides services such as load
segment register and clear segment register
that control the relationship between the
effective address space and the virtual
address space.

The MMU translates a virtual address into a
real address within a 24-bit real address
space. The real address space may not be
big enough to contain all of the pages defined
in the virtual address space. Therefore, both
real memory and a secondary storage device
are used to contain all of the virtual pages.

A page fault interrupt results when an
instruction references a memory location that
is not defined in real memory. The second
main function provided by the VMM is the
page fault handler and it is the part of the
system that is responsible for resolving page
fault interrupts. The job of the page fault
handler is to assign real memory to the
referenced virtual page and to perform the
necessary I/O to transfer its data into that
real memory. This is known as demand
paging.

All of real memory may become filled with
code and data. When this happens, the page
fault handler must select which page of data

in real memory is to be transferred to the
secondary storage device. The clock page
replacement algorithm is used by the VMM to
select this page. Here the real page frames
are examined in a circular or clock-like order.
A frame is selected for replacement if the
data in it has not been referenced in the last
cycle through the page frames. The
"referenced" indicator is reset if the data in
the frame has been referenced, and the next
frame is then examined.

The secondary storage device used by the
VMM is the disk. One or more disks may be
used for paging. Also, paging I/O may be
concurrently active on each of the paging
disks.

Virtual Memory Data Structures
There are three primary data structures
associated with the VMM. They are the
segment table, the external page table, and
the inverted page table (see Figure 1).

Virtual memory is divided up into segments. A
segment represents an objeet suph as a
program, a mapped file, or computational
data. A segment identifier can be thought of
as the short form of an object name. The
segment table defines the objects that can be
referenced at any moment. It contains
information such as the segment's size and
the start of the segment's external page
table. The segment table contains one entry
for each segment and it is not pageable.

Segment Table

Page 0 XPT
Page 1 for

Segment
N

Segment N

Page 0 XPT
Segment M Page 1 for

Segment
M

Inverted Page Table

Page Frame for Segment M

Page Frame for Segment N

Figure 1 Virtual Memory Data Structures

A segment is divided up into 2048-byte virtual
pages. A virtual page can be located in real
memory or on the disk. Each segment has an
external page table (XPT) with one 4-byte
entry for each of its virtual pages. The XPT
entries for a given segment are in contiguous
virtual memory and are therefore directly
addressable. An XPT entry describes the
characteristics of its corresponding virtual
page, such as its protection characteristics
and its location on disk. The XPT is pageable.

There is a pool of external page table entries
defined in the VRM [1] segment. The size of
this pool limits the size of the virtual address
space. The XPT for each defined segment is
contained within this pool. The XPT for the
VRM segment defines each page in the VRM
segment, including the pool of XPT entries.
The subset of the VRM segment's XPT that
defines the pool of XPT entries is referred to
as the XPT of the XPT. It is not pageable.

Real memory is divided up into 2048-byte
page frames. A page frame can be thought of
as a container for a virtual page. The Inverted
Page Table (IPT) defines the virtual page that
is currently associated with each page frame.
The MMU uses the information in the IPT
when translating a virtual address into a real
address and when determining if a protection
violation has occurred[2]. The MMU will
respond with a page fault for any virtual
memory reference that cannot be translated
using the information in the IPT. The IPT
contains one 32-byte entry for each page
frame and is not pageable.

Support a Large Virtual Address Space
Virtual memory extends the power of
computer memory by expanding the number
of memory addresses that can be
represented in a system while relaxing the
limitation that all addressable memory must
be present in real memory. The address
translation hardware requires page tables
fixed in real memory to perform its function.
The size of a conventional page table is
proportional to the size of the virtual address
space, placing a practical limit on the address
space size.

Paged segmentation is a means of reducing
this overhead. It takes advantage of the
grouping of related data in virtual memory by
representing page table data separately for
each segment. This allows space savings for
short or unused segments of the address
space.

An inverted page table further expands the
range of addressability by reducing the real
memory overhead required to support a very
large virtual address space. Since an inverted
page table contains an entry for each page of
real memory, its overhead is proportional to
real rather than virtual memory size. This

makes it feasible to map a system's entire
data base using a single set of virtual
addresses (the "one-level" store). With a one­
level store each segment can be large enough
to represent an entire file or collection of
data.

This is possible because the address
translation hardware only needs the location
of pages that are present in real memory. If a
page is not present, the hardware must
detect this fact, but it does not require the
secondary storage address. The VMM does
need this information, however. Hence, the
VMM must keep this information in some data
structure that is associated with the page. In
the VRM this data structure is the external
page table. Unless this external page table is
pageable, the advantage of the inverted page
table is lost, because the pinned real memory
requirements become proportional to virtual
memory size.

Large and Sparse Segment Support
The VMM supports segments of up to 256
megabytes. The VMM defines any segment
that is one megabyte or larger to be a "large"
segment. A large segment can be totally filled
with data, assuming sufficient disk space. A
large segment may also be lightly filled with
data that is scattered throughout the
segment. This is known as a sparse segment.

The external page table for a large segment
can itself be fairly large. An XPT entry defines
2048 bytes of virtual memory. A page of XPT
entries contains 512 of the 4-byte entries and
defines 1 megabyte of virtual memory.
Therefore, 256 pages of XPT entries are
required to define a 256-megabyte segment.

Since the XPTs are pageable and reside in
virtual memory, a subset of them describe the
XPT area itself. These are the XPT of the

127

XPT. One entry in the XPT of the XPT defines
a page of XPT entries or one megabyte of
virtual memory. The XPT of the XPT for a
256-megabyte segment need only contain 256
entries, which require only half a page of
memory. Therefore, the size of the XPT of the
XPT required to define a large segment is
significantly smaller than the XPT for that
segment.

The VMM takes advantage of the XPT of the
XPT in its support for large and particularly
for large, sparse segments. For example, only
the XPT of the XPT is initialized for a new
segment. This decreases the number of
pages that are initialized for a 256-megabyte
segment from 256 to 1, thus decreasing the
overhead when creating large segments.

Serialization
It is useful to describe the VM M in terms of
the states of the objects it manages. The
most important such objects are virtual pages
and page frames. Each of these objects
always has a well-defined state. Updates to
the data structures that record these states
must be logicaiiy seriaiized with respect to
system events that require that the data
structures be accessed or changed. Such
events fall into three categories:

• Page fault interrupts
• Paging I/O completion interrupts
• Calls to VMM services

Without this serialization, the VMM would be
unable to use these data structures safely. It
must ensure that all accesses to these data
are made within a "critical section." On entry
to a critical section all objects must be in well­
defined states. Code running in the critical
section can perform state transitions, as long
as it leaves all these objects in valid states on
exit.

128

VM M critical sections are serialized by
executing them as the lowest priority interrupt
handler. This places them lower in priority
than all I/O interrupts and higher in priority
than all processes. Due to the characteristics
of VRM interrupt handlers, this ensures that
paging I/O completion interrupts and VMM
services are serialized with respect to each
other.

In order to support a large virtual address
space it is desirable that some of the VM M
data structures are pageable. Therefore, the
VMM interrupt handler was extended to
support the concept of backtracking with
careful update. A page fault within a VMM
critical section causes the critical section to
be exited and makes the process that initiated
the critical section wait for the page fault to
be resolved. The process is allowed to retry
executing the VM M critical section upon
resolution of the page fault. This is
backtracking. Careful update implies that all
VM M critical sections must be coded such
that all VM M data structures that are changed
are left in a consistent state whenever the
critical section can be exited, either by
completing the service or by page faulting.
Backtracking with careful update serializes
the page fault handler with the VMM services.

I/O Management
The VMM attempts to manage disk I/O in
such a way as to compensate for the
imbalance between the high speed of the
processor and the relatively low speed of the
disk. This entails adding complexity to the
page fault handler and to the disk I/O routines
in order to decrease the average I/O time
required to perform a disk I/O or to eliminate
disk I/Os altogether.

Disk Affinity
One of the more important concerns in the

VMM, in the area of performance, is to
efficiently schedule disk requests so as to
minimize seek time. This is done by
attempting to write pages to nearby disk
blocks, and, when reading them back in, to
read more than one page at a time. The act
of writing pages out to nearby locations on
disk may be called "pageout affinity", while
the act of reading more than one nearby page
at once is called "prepaging".

Pageout I/O Affinity
Page faults tend to happen in bursts; that is,
when a process is first invoked, it will "fault
in" its "working set". It is desirable to have
enough free page frames available to satisfy
a "typical" burst of page faults. Not having an
available free page frame can cause a
process to wait on both a pageout to free a
page frame and a pagein to bring in the
desired page. The page replacement
algorithm will select more than one page at a
time to pageout, in order to maintain this
threshold of available free page frames.

Careful management of paging space can
take advantage of the above characteristics
of the page replacement aigorithm to reduce
the I/O time associated with writing out pages
to disk. This is achieved by always allocating
paging space at pageout time. If a disk
address is already assigned to a page, that
address is freed and a new one allocated.
Furthermore, a circular allocation algorithm is
used. This means that two pageouts in a row
will most likely be to adjacent locations in
paging space. This concept of "late
allocation" also makes it possible for the
VM M to better know where the disk arm is
located at that moment, and to find the
paging space with the arm closest to it.
Taken together these things tend to reduce
the seek and rotational delays associated with
VMM disk I/O operations.

Prepaging
When a segment is written out via the purge
page range service, it is probable that the
data in this segment is related; that is, it is
data for a program, or it is a program itself.
When this program runs, it will start page
faulting on the segment that was written out.
Some, or all of these page faults may require
disk reads. Since the pages were placed near
one another on the disk at pageout time, it is
reasonable to assume that in a lightly loaded
system the disk arm would not have to move
much in order to read back all the pages.
This assertion breaks down if some other
disk 110 request is processed between the
faults on the segment, thereby moving the
disk arm away from the area where the
segment resides. In order to counteract this
problem, a "prepaging" policy is used in the
page fault handler. What this means is that
when the VM M processes a page fault that
requires a disk read to resolve, it will attempt

. to read in pages that are nearby on the disk,
and in the same segment as the one faulted
on. Prepaging will also work for segments
that are mapped to a file system, when the
file system disk blocks are either contiguous,
or close together on disk as is often the case.

Disk Cache
The VMM maintains a write-through disk
cache that is under control of the page
replacement mechanism. This disk cache can
be thought of as a dynamic RAM disk that is
managed by the VMM. Unmodified file system
pages, when released, are placed into the
disk cache. When a page fault occurs that
might require a disk read to resolve, the page
fault handler first looks in the disk cache to
see if the contents of the desired disk
address reside in the cache. If so, that page
is "reclaimed" from the disk cache, and no
110 is required. Since cache entries may be

stolen by the page replacement mechanism
when there are no free page frames available,
the size of the disk cache is directly
proportional to the size of real memory and
the level of system activity.

The VRM allows the disk to be accessed via
minidisk manager[1] 110 operations and via
the VMM. The VRM enforces the following
rules to ensure that the disk cache is
synchronized with minidisk operations. First, a
write to a minidisk may cause an entry to be
purged from the disk cache. Secondly, closing
a minidisk may cause all of the entries in the
disk cache associated with the minidisk to be
purged.

Special Topics
The design of several of the functions
provided by the VMM were greatly influenced
by the virtual machine concept and by specific
attributes of the AIX operating system.

Asynchronous Page Fault Processing
Typically in a paging system a process is
forced to wait until all 110 required to resolve
a page fault is complete. Other processes are
allowed to execute, but the faulting process
must wait until it can successfully execute the
faulting instruction. This is known as
synchronous page fault processing.

Synchronous page fault processing is not
desirable when a multi-tasking virtual machine
appears as a single process to the VMM. The
multi-tasking virtual machine may have other
tasks that can execute while the faulting task
waits for the page fault to be resolved. The
VRM solves this problem by informing the
virtual machine about page faults via machine
communications interrupts. The VMM
generates a "page fault occurred" virtual
interrupt for each page fault and a

corresponding "page fault cleared" virtual
interrupt when 110 is complete for the page
fault. This allows the virtual machine the
ability to dispatch another task while the
faulting task waits for the "page fault
cleared" virtual interrupt. This is known as
asynchronous page fault processing since the
entire virtual machine is not forced to wait.

Page fault notification virtual interrupts are
under the control of the virtual machine.
Therefore a virtual machine that executes
only a single task can disable page fault
notification interrupts and leave all page fault
processing up to the VMM. Here the virtual
machine's page faults would be processed
synChronously. Similarly a multi-tasking virtual
machine can disable page fault notification
interrupts in selected critical sections when
preemption is undesirable.

Mapping of Files
Usually, the data in a segment does not
persist beyond the execution of a program.
The VMM allows the data contained within a
segment to be associated with files in the
virtual machine's file system, thus allowing
that data to exist after the execution of a
program. This association of file data with
virtual pages is achieved through mapped
files.

The map page range service is provided to
allow a virtual machine the ability to create a
"one-level store" environment or a subset,
such as mapping an individual file. This
service is necessary because neither the
operating system executing in the virtual
machine nor the VRM have the capability by
themselves to map a file. The virtual machine
does not have access to the VM M tables and
the VRM is designed to be independent of the
virtual machine's file system structure. The

129

map page range service provides the virtual
machine the ability to tell the VMM the
relationship between a logical entity, such as
a file, and its location on the disk.

Scheduler Paging Control
Thrashing is a term commonly used to
describe a system that is spending most of
the time paging and little time performing
useful work. The VMM maintains information
in the virtual machine's page 0 that can be
used by the virtual machine's scheduler to
detect thrashing. The scheduler can
periodically examine this information to
determine how many concurrent tasks it will
allow to be active.

The scheduler may determine that the system
is thrashing and decide to reduce the number
of active concurrent tasks by quiescing one
or more of them. The VMM purge page range
service provides the scheduler an efficient
method to swap out a task's current working
set. This can result in the pageout I/O affinity
benefits discussed earlier. Furthermore, the
task may also benefit from prepaging when it
:- --,...-"": ... _.&.t"'
Ii:) I vClvLlVClLvU.

Delayed Copy
Typically, the AIX operating system executes
a program by using the fork system call to
copy the process's address space and the
exec system call to load and execute the
program in the new copy of the address
space. The copying of the address space can
result in unnecessary processing and I/O
delays when followed by an exec system call,
since the exec system call will overwrite the
just copied address space with the new
program's code and data. Therefore, the
VMM's copy segment service attempts to
delay copying data until the data is actually
referenced, and with the exception of the

130

speed of the operation, the two address
spaces are equivalent to the virtual machine.
The data in the two address spaces need
only be equivalent during the time between
the fork and the exec. Much of the data may
be un referenced when an exec follows a fork,
and such data is never actually copied.

Conclusion
The VMM simplifies the design of advanced
applications and operating systems, reduces
I/O costs, and complements the hardware's
ability to support a large virtual address
space. Advanced applications and operating
systems are supported by the following VM M
services:

• Demand Paging in a Virtual Machine
environment

• Asynchronous page fault processing
• Mapped files
• Scheduler control information

The cost of VMM disk I/O is reduced by:

• Pageout I/O affinity

• Disk caching

Finally, the VMM meets its major design
objective of supporting a large virtual address
space. The VMM takes advantage of the
inverted page table by defining an external
page table that has very small entries and
that is directly addressable. Backtracking with
careful update allows efficient support of a
pageable external page table. Together, they
greatly reduce the VM M data structure
overhead associated with each page of virtual
memory.

References
1. Thomas G. Lang, Mark S. Greenberg, and Charles H.

Sauer, "The Virtual Resource Manager," IBM RT
Personal Computer Technology, p. 119.

2. P.O. Hester, Richard O. Simpson, Albert Chang, "IBM
RT PC ROMP and Memory Management Unit
Architecture," IBM RT Personal Computer Technology,
p.48.

The IBM RT PC Subroutine Linkage Convention

J.C.O'Quin

Introduction
A subroutine linkage convention is a set of
rules concerning the machine state at
subroutine entry and exit. Because these
rules are generally understood by compiler
writers and assembly language programmers,
it is possible to call separately compiled
functions and get meaningful results. Since
knowledge of these conventions pervades the
system, it is important that they be carefully
evaluated before introducing a machine with a
new instruction set. Mistakes in this area
usually cannot be remedied in future releases.

This paper discusses some important design
decisions reflected in the linkage convention
used by the IBM RT PC system. Details of
this interface are described in section 6 of the
IBM RT PC: Assembler Language Reference
Manual [1]. The initial release provides
compilers for C, FORTRAN, Pascal and
BASIC, which all support this common linkage
convention.

Performance Considerations
The subroutine call mechanism materially
affects system performance. Studies have
shown some UNIX programs spending as
much as 20% of their CPU time in call/return
linkage code [2]. Other factors, such as the
number of registers available for allocation
and optimization can have dramatic second­
order effects on the quality of compiled code.

Good programming style suggests that
programs be decomposed into small routines.
System design should encourage this practice
by providing an efficient call mechanism. This
is particularly important for "reduced
instruction set" machines, which emulate
some higher-level instructions in software.
The IBM ROMP microprocessor uses
"extended opcode" subroutines to perform
such functions as storage move, integer
divide, and floating point operations.

A properly deSigned computer's performance
is primarily limited by its memory bandwidth
requirements. One effective method of
eliminating storage references is to keep
intermediate data in fast CPU registers. The
IBM ROMP microprocessor has 16 general­
purpose registers for this purpose, and
instructions with only register operands are
much faster than those involving storage
references. This is true of all existing
processors to varying degrees. Although
mainframes with very large data caches
provide relatively inexpensive storage
references, their register operations are still
faster. A primary deSign goal of the RT PC
linkage interface is to minimize the number of
storage references when calling a subroutine.

Function Prologue and Epilogue
When the framesize is less than 32,768 bytes,
the function entry and exit code is very
straightforward:

stm r6, -save(r1)

cal r1, -framesize(r1)

save modified
non-volatile
regs

adjust stack
pointer

1m r6, framesize-save(r1) # restore caller's
regs

brx r15 # branch to

cal r1, framesize(r1)

return point
after

restoring the
. stack pOinter

The "Load Multiple and Store Multiple"
instructions (LM and STM) provide an efficient
mechanism for saving some of the caller's
registers. By convention, registers r6 through
r14 must be preserved across the call. The
stack pointer register (r1) must also be
restored. This avoids forcing the caller to
reload register variables and temporary data
after every call. Research with the PL.8
compiler has demonstrated the benefits of
preserving some, but not all, registers across
calls.

The called routine will save only the registers
it modifies. If it can perform its entire job
using only registers rO through r5, no
registers need be saved. If registers r13, r14,
and r15 are modified, but r6 through r12 are
unused, then r13 would be specified in the
STM and LM instructions in place of r6.

131

Register r1 was chosen for the stack pointer
because the Load Multiple and Store Multiple
instructions address registers from the first
operand through register r15. This means that
these instructions can be used within a
routine without disturbing the stack pointer.
These instructions are particularly valuable for
performing large block moves.

The fact that r1 is not saved and restored
across the call by the STM and LM in the
function prologue and epilogue is no
disadvantage, because the "Compute
Address Lower" instruction (CAL) does the
job more efficiently. I n fact, the "Branch
Register with Execute" (BRX) completely
overlaps restoring the stack pointer with the
instruction fetch for the return branch. If a
subroutine does not require a stack frame, it
need not update r1 at all. This means that
small routines can be coded with no prologue
or epilogue; the minimum call overhead is just
a branch out and a branch back. The system
call interface routines and the "extended
opcod'es" (such as move and divide) fall into
this category. It is also possible for optimizing
compners to avoid prologues and ep!!ogues
for some smaii routines.

Note that there is no in-line check for stack
overflow. The IBM RT PC AIX operating
system uses page fault interrupts to detect
overflow. A 256M-byte segment of the
address space is reserved for each process's
stack. This segment is "inverted", meaning
that it grows towards lower-numbered
addresses. The stack segment is
automatically extended on demand, until a
1 M-byte limit is reached, at which time the
process receives a memory fault signal.

132

Parameter Passing

C Language Compatibility Requirements
Languages that permit a linkage editor to
ensure that actual parameters and formal
parameters agree in number and type
improve not only program reliability, but also
performance, since the parameter passing
mechanism can be tailored to specific
argument types. For example, it would be
possible to pass floating pOint arguments in
the floating point registers.

Unfortunately, the C language permits actual
parameters to differ from formal parameters
in both number and type. Some C programs
address their arguments as an array in
storage. This is an easy way to handle a
variable number of arguments. The standard
C library function "printf" is the archetypal
example of this, but there are others; and
UNIX System V provides a "varargs.h"
include file in the standard distribution, which
tends to encourage people to do this. Even
though this practice can be considered non­
portable, there seem to be enough programs
I)sing it to make supporting it worthwhile.

Passing Parameters in Registers
Within a single source program, register
allocation is the compiler's responsibility,
although C programmers may provide
guidance via "register" declarations. When a
subroutine call occurs, the linkage convention
interacts strongly with register allocation.
Expressions have been evaluated as
arguments for the subroutine. We would like
to pass their values in registers to avoid
storage references in both the caller and the
subroutine.

There is a conflict between our desire to pass
values in the registers and the need to

support programs like "printf". This is
resolved by allowing C programs to view their
arguments as a storage array with each
argument aligned to a full-word boundary.
Space for this array is allocated in the stack
by the caller, but it does not store the first
four words in the stack. Instead, these values
are passed in registers r2 through r5. If the
subroutine takes the address of some
parameter, it must store these registers in the
stack space provided. Then normal C pointer
arithmetic will give the expected results.

Some compilers may elect to store all
arguments except those explicitly declared
"register". This is easy to implement, and
surprisingly effective. Most of the functions in
the standard C library and in the AIX
operating system kernel benefit from this
simple strategy.

The registers selected for passing arguments
are not preserved across function calls
because argument expression values are
often not needed after the call.

FlJnctiOrl Values
Function vaiues are returned in a register,
making them available for immediate use in
the enclosing expression. A subtle advantage
is gained by using r2 for this purpose. This
register no longer contains any of the caller's
data, and it is not unusual to pass a function
value as an argument to another subroutine.

Functions return their values according to
type:

• int, long, short, pOinter, and char values
are returned (right justified) in r2.

• double values are returned in r2 and r3.

• structures are returned in a buffer allocated
by the caller, the address of which was
passed in r2 as a hidden first parameter.
This means that the first actual parameter
word will be in r3 and that all subsequent
parameters are moved "down" one word.

This structure return scheme has the
advantage of being reentrant. A function
returning a structure can be called recursively
from a signal handler at any time without
mishap. It also permits optimization of
assignment statements such as "s = foo(x);"
to return the result in the desired location. Its
disadvantage is that a caller who does not
want the returned value cannot omit the
function declaration, since int would be
assumed in that case. The advantages seem
to outweigh this disadvantage. Incompatible
declarations are likely to fail nearly every
time, whereas small timing windows in which
certain types of signal must not be received
are much more difficult to discover and
debug. In practice, these potential
incompatibilities do not seem to cause
trouble.

Summary
It is possible to pass parameters in the CPU
registers and still maintain compatibility with C
programs that use techniques like those
provided in "varargs.h". The result is a
speed-up in CPU time for system code of
about 15% compared to an earlier
implementation that passed all parameters in
the stack.

Linkage interface experience on the RT PC
project points out a major benefit of reduced
instruction set machine architectures. Even
after years of research compiling to the
ROMP microprocessor and similar instruction
sets, as late as December 1984, we were

able to gain substantial performance
improvements by further tuning the call
interface. This would have been impossible
had microcode changes to a high-level call
instruction been required.

The fact that the deceptively Simple problem
of calling a subroutine turns out to have many
hidden complexities may come as a surprise
to some. The conflicting semantics of various
programming languages make it difficult to
arrive at a final solution to this problem that
can be etched forever in silicon.

Acknowledgments
These ideas grew out of years of research
and experiment on several different
compilers. Major contributions were made by
Marc Auslander, Jim Christensen, Martin
Hopkins, Mark Laff, and Peter Oden:

References
1. IBM RT PC: Assembler Language Reference Manual.

IBM Corp., document number SC23-0815-0.

2. S.C. Johnson and D.M. Ritchie, "Portability of C
Programs", The Bell System Technical Journal,
Vol. 57, No.6, Jul-Aug 1978, p. 2044.

133

Implementation of a Virtual Terminal Subsystem

D.C. Baker, G.A. Flurry, K.D. Nguyen

Introduction
This article describes the IBM RT PC Virtual
Terminal Manager subsystem, which is part of
the Virtual Resource Manager. The
subsystem provides terminal support for the
RT PC virtual machine environment.

The terminal model for the RT PC must
support the terminal requirements for the AIX
operating system in a virtual machine
environment. The IBM RT PC AIX operating
system requires a "glass teletype" emulation
such as the Digital Equipment Corporation
VT-100 or the IBM 3161, which is an
enhancement of the original keyboard
send/receive (KSR) teletype. This KSR
terminal model provides support for the AIX
"termio" model used in the shell and the
majority of the current teletype based
applications. The model also must support
other users of the virtual machine
environment such as diagnostics, installation
and various internal test packages. Although
these additional users did not control the
choice of the terminal model, the KSR does
accomodate their requirements.

The KSR terminal model is an ASCII terminal
emulation in the spirit of the ANSI 3.64
standard utilizing a PCASCII code set rather
than the ANSI 3.4/3.41 code sets. The ANSI
3.64 data stream is extended, as specified by
the standard, to support enhanced sound­
generation capability, to handle the flow of
locator events, and to provide various

134

controls to switch physical displays, fonts,
and terminal characteristics.

The classic teletype model has several
limitations in the AIX environment. Consider
multiple processes writing to the same
terminal; with the classic teletype model, there
is no guarantee of atomicity in the output
streams. This has caused many unnatural
contraints, most notably, blind background
processing, which is difficult for the user to
monitor. One can envision that the problem is
aggravated by the multiple virtual machine
environment provided by the RT PC, where
there is even less possibility for synchronized
use of the terminal.

One way to solve the multi-thread problem is
to add physical devices to the workstation.
HO'v"v'8ver, there are obvious reasons that
many tasks and/or virtual machines cannot
each have a unique physical terminal. The
cost of multiple displays, keyboards, locators
and other interactive resources prohibits a
profusion of such devices. A workstation
generally restricts the number of devices it
can support due to adapter slot or power
limitations. The facilities (office or desk space,
electrical outlets, etc.) also place obvious
constraints on the number of devices that an
individual can effectively use. Not so obvious
is the inconvenience of the physical
movement and refocusing of concentration
required to use a multiplicity of interactive
devices. Thus, one must conclude that these

devices have to be shared in some fashion to
minimize system cost and maximize operator
convenience.

The existence of multiple thread environments
as described above and the required sharing
of physical interactive resources lead us to
the concept of "virtual terminals" to provide
terminal I/O in support of multi-tasking for an
operating system running in a single virtual
machine and/or for multiple virtual machines.
By virtual terminals we imply the appearance,
to a virtual machine or several virtual
machines, of more terminals than physically
exist on the workstation.

The implementation of multiple virtual
terminals requires sharing of the available
physical resources needed for interaction with
the user. Obvious!y, these resources must at
least be time-shared among the virtual
terminals. We considered the implementation
of space sharing of both the input (keyboard
and locator) and output (displays) devices,
resulting in a so-called "messy desk" model.
We rejected the latter for displays because
the significant processing required to support
the "messy desk" is better spent in end-user
application execution. Thus, virtual terminals
simply time-share the physical displays,
resulting in a full-screen virtual terminal
management system. Our implementation of
time sharing in no way restricts application
packages from space sharing the screen of a
single virtual terminal among multiple

processes. As will be described later,
however, we did choose to space-share the
input devices.

The Concept of Virtual Terminals
The concept of terminal virtualization has
advantages classically associated with virtual
resources such as virtual storage or virtual
disks. For discussion, let us consider the
analogy between virtual storage and virtual
terminals:

• A classical virtual storage system gives the
programmer and or user the impression of
having more storage than is physically
present. The concept of virtual terminals
allows the virtual machines the impression
that there are considerably more display
devices than are physically present, that
there are more input devices than are
physically present and that these devices
have different characteristics than the
physical devices.

• Virtual storage relieves the programmer of
clumsy mechanisms, such as overlays, for
dealing with limited physical resource.
Virtual terminals relieve the programmer of
developing his or her own mechanisms for
dealing with the limitations of the actual
resources.

• In a virtual storage system, programs can
be written to be independent of the
specifics of the physical resource, such as
the size of primary storage, types and
formats of secondary storage devices, etc.
With virtual terminals, a program can be
written to be independent of the specifics of
physical terminal devices, for example,
display buffer organizations, presence of
optional input devices, etc.

Virtual Terminal Manager Subsystem
Structure
Figure 1 shows a simplified conceptual model
of the Virtual Terminal Manager. It consists of
a supervisor, a Keyboard Device Driver
(KDD), a Locator Device Driver (LDD), a
Sound Device Driver (SOD), a Display Device
Driver (ODD), and multiple virtual terminals.

Each virtual terminal embodies the
characteristics of a single keyboard
send/receive terminal. That is, it recognizes
and processes the data stream received from
the virtual machine causing the requested
actions to occur, for example, move the
cursor or draw characters onto the virtual
display, insert or delete lines, clear the
screen, or change the attributes with which
characters are rendered. In addition to these
actions, the outbound data stream can cause
the generation of sequences of continuous
tone sounds or cause the virtual display to be
rendered on any of the available physical
displays.

A virtual terminal receives input from a virtual
keyboard and/or a virtual locator; it outputs to
a virtual display. Thus, the virtual terminal can
always expect to get input from its virtual
input devices and can always output to its
virtual display. These virtual devices mayor
may not have physical devices allocated to
them, however, so the virtual terminal may
not actually get input or write to a physical
display. As each virtual terminal recognizes
and processes the data stream inbound from
the keyboard, it can, if requested,
automatically echo various characters and
simple functions back to its virtual display.

The virtual terminal has a special mode of
operation in which it handles virtualized input
in an essentially normal way but relinquishes

Virtual
Terminal
Supervisor

Resource
Controller

Virtual
Terminal

Keyboard Display
Device Device
Driver Driver

Figure 1 Virtual Terminal Manager structure

all physical display control to the application
environment. In this mode, application
programs can enjoy a very short path to the
physical display and can implement, if they
choose, arbitrarily complex graphics rendering
algorithms, character algorithms, etc. The
purpose of this mode is twofold. First, it
allows the functional content of the base
virtual terminal subsystem to be enhanced.
Second, it reduces the performance overhead
associated with device-independent display
virtualization.

The supervisor comprises two components:
the resource controller and the screen
manager. The resource controller initializes
and terminates the subsystem, allows a virtual
machine to query and modify the
configuration and characteristics of the
interactive devices (the real terminal) available
to the user, and allocates and deallocates the
system resources required for the operation
of a virtual terminal as it is opened and
closed.

The screen manager is the analog of the
paging supervisor in a virtual storage system.
It performs the allocation of physical devices
to the virtual devices used by the virtual

135

terminals. The screen manager, in conjunction
with the keyboard and locator device drivers,
implements the time and space sharing
required to virtualize these input devices. For
example, we partition the physical keyboard
into two subsets, termed logical keyboards.
The first of the logical keyboards (the
alphanumeric keys, the function keys, and
their shifted states) is allocated at all times to
one and only one of the virtual keyboards
used by the virtual terminals; the other logical
keyboard (the shifted states of the Action key)
is reserved for the screen manager. In a
similar manner, the screen manager, in
cooperation with the display device driver,
implements the space sharing required to
virtualize a display. At any time, the display is
allocated to one and only one of the virtual
displays used by the virtual terminals.

The screen manager allocates all the physical
devices en masse to the virtual devices of the
"active" virtual terminal; that is, the virtual
terminal with which the user may interact. The
active virtual terminal can actually get input
and produce output on a display. The screen
manager also provides for reallocation of the
physical ieSOUices. The impetus fOi
reallocation results from either user requests
(via the logical keyboard, or a similar logical
mouse, allocated to the screen manager) or
application requests. It involves deallocating
the resources from the currently active virtual
terminal and the allocation to the newly active
virtual terminal. This allocation requires the
cooperation of both virtual terminals. As
mentioned above, the participation of the
device drivers ensures synchronization of
events such as keystrokes and work request
acknowledgments.

It is important to note that while a single
virtual terminal is restricted to a single
physical display at anyone instant, the

136

collection of virtual terminals is not. The
virtual terminal subsystem supports up to four
physical displays and any virtual terminal may
use anyone of the four at any instant. This
restriction is due to the number of expansion
slots in the hardware rather than an
architectural restriction of the Virtual Terminal
Manager subsystem.

Resource Management
The virtual terminal supervisor provides for
changing the physical environment. Global
changes affect all virtual terminals. For
instance, a virtual machine may add or delete
physical displays, add a locator, a sound
device or fonts, and change the physical
characteristics of the keyboard and locator.

Local changes affect only a single virtual
terminal. Applications effect these changes
through the data stream sent to their virtual
terminals. Applications may change the
current font, the current physical display and
various mappings and default operating
characteristics. Additionally, we provide an
escape mechanism to allow the application to
re!ease a display on a !ocal terminal basis for
direct access to the dispiay adapter.

Conclusion
The virtual terminal system just described is
deliberately restricted in order to reserve
processing resources for application tasks.
These restrictions take the following form:

• No support for a multi-window, space­
sharing approach to physical display
resource allocation

• No built-in graphics or paint program
support

• Primitive resource allocation via the virtual
terminal supervisor.

The above restrictions enabled us to
implement a virtual terminal system with the
following desirable characteristics:

• Multiple interactive threads with near single­
terminal performance

• Physical-device-independent terminal model

• Application escape for direct physical
display access.

The result is a virtual terminal environment
compatible with existing applications and
capable of supporting new, more
sophisticated applications.

Use of a Coprocessor for Emulating the PC AT

John W. Irwin

Introduction
The IBM RT PC workstation, based on the
ROMP processor, is a significant departure
from previous small computer architectures
and cannot run object code assembled or
compiled for older processors.[1] Users who
are moving up to the RT PC from the IBM
Personal Computer (PC) may wish to continue
using their present software library for
reasons of economy and familiarity. Some
existing software for the PC may never be
rewritten for the new processor, particularly
software that was originally written in
assembler. The PC AT coprocessor was
developed to provide continued use of such
PC software products, including the popular
editor and spreadsheet packages.

Even after most PC software is ported to the
RT PC, the vast support network of
programming expertise, publications, and
programs that exists today for the PC AT may
never be equalled for the RT PC. The PC AT
coprocessor makes this base of support
immediately available to the RT PC user by
emulating the IBM PC AT within the RT PC
architecture.

Critical to the use of Personal Computer
software in the RT PC was the development
of coprocessor hardware for the purpose of
protecting the system against improperly
written PC code and for sharing system
resources between the ROMP and the
coprocessor. When properly supported by a
ROMP software driver, the result is a safe

and accurate emulation of the PC AT over a
wide variety of RT PC configurations.[2]

The System Environment of the Coprocessor
The PC AT coprocessor card was designed
as a feature card for the RT PC Input/Output
(I/O) channel.[3] The Intel 80286 runs
simultaneously with the host ROMP
processor, appears to the user as a PC AT,
and can use the RT PC diskette drive or
aSSigned minidisks in the RT PC disk space.
The keyboard and display(s) are time-shared
between the two processors under control of
the ROMP.

The I/O channel in the RT PC is separate
from the processor channel and is attached to
the ROMP processor by an I/O Channel
Converter (IOCC) as shown in Figure 1. The
I/O channel is physically identical to the PC
AT channel, has compatible signal timing, and
will accept most 16-bit PC AT adapter cards
and many 8-bit PC AT adapter cards. The I/O
channel does not support ROMP memory
access and therefore has unused bandwidth
to support the coprocessor.

Like the other members of the PC AT family,
the coprocessor will attempt to load and run
any diskette the user places in the diskette
drive. Neither the coprocessor nor the ROMP
has any control over what code will be
executed. Such "unfriendly" code may not
follow approved access procedures to the I/O
controllers, preserve critical memory
locations, or share I/O devices such as the

keyboard and display. A combined hardware/
software protection system safely isolates
such unfriendly code from the balance of the
system.

Many adapter cards that may be installed on
the RT PC I/O channel may not have existed
when the PC AT code was written. An
example is an all-points-addressable (APA)
display adapter. The same coprocessor
hardware that protects the system against
improperly written PC code and supports the
sharing of system resources between the
coprocessor and the ROMP is used by ROMP
host software to emulate current PC AT
adapters while using the new adapters.

Hardware Design Features
The coprocessor is packaged on a PC AT
form factor adapter card. The heart of the PC
AT system board is duplicated in the
coprocessor architecture in that 65,536
distinct I/O addresses are possible using a
16-bit subset of the 24 I/O channel address
lines. Within this address space, 80286
access must be limited to those I/O devices
assigned to the coprocessor while access is
blocked to those devices assigned to the
ROMP. This is accomplished by an 8192 by
1-bit Random Access Memory (RAM) on the
coprocessor card, which can be written to
only by the ROMP. During I/O operations by
the coprocessor, the trap RAM is addressed
by the 80286 I/O address lines A 15-A3, so
that the corresponding access bit is read from
the RAM. In the trap RAM, each bit controis

137

Processor card

I/O
channel
converter

Light load

System memory bus

Coprocessor
card

Heavy load

(PC AT) compatible channel

Figure 1 System Block Diagram

access to a group of eight I/O addresses. As
shown on Figure 2A, if the bit is on, the
coprocessor can access the device normally,
otherwise the coprocessor access is trapped
and one of several conditions may exist:

1. The device does not exist on the system.

2. The device is currently assigned to the
ROMP. For instance, the printer might
currently be in use by the ROMP and
unavailable to the coprocessor.

3. The device may exist in a different form
than expected by the coprocessor code
and the ROMP will emulate the device
expected by the coprocessor. The
keyboard is an example.

4. The device is assigned to the
coprocessor, but the ROMP must track all
changes made to the device by the
coprocessor. A time-shared display
adapter is an example.

138

System
memory card(s)

Memory & I/O
cards

5. The device address is being used as a
parameter passing port to synchronize
operations between the coprocessor and
the ROMP. The diagnostics use this
mechanism.

When an I/O trap occurs, the coprocessor is
stopped by assertion of the NOT-READY iine.
The coprocessor card I/O channel drivers are
turned off so that the ROMP can use the
channel to access the coprocessor trap and
filter registers and other I/O devices needed
to emulate the addressed I/O device. The
ROMP can set up the coprocessor to issue
an interrupt whenever an I/O trap occurs.

The ROMP responds to an I/O trap by
reading the flag register of the coprocessor
where individual bits show I/O read trap, I/O
write trap, and the I/O access width (8 or 16
bits). If the trapped operation is an I/O write,
the ROMP reads the coprocessor trap
address and trap data registers and emulates
the hardware device. The ROMP read of the
coprocessor trap data register releases the

coprocessor for further operation. If the
trapped operation is an I/O read, the ROMP
must read the trap address register, calculate
the emulated response to the read, then write
that response to the coprocessor data
register. The ROMP write to the data register
releases the coprocessor for further
operation.

Interrupt Filtering
The I/O channel interrupt lines are shared by
both processors and certain conditions must
be met for the system to operate:

1 . The coprocessor must not respond to
interrupts from I/O devices assigned to
the ROMP. The code running in the
coprocessor cannot be controlled;
therefore, such interrupts must be
blocked by hardware.

2. The coprocessor must have free access
to interrupts from I/O devices assigned to
it.

3. The ROMP must force interrupts to the

emulated devices.

The coprocessor card contains two 16-bit
registers for interrupt control as shown in
Figure 2B. One register is used to mask I/O
channel interrupts to the coprocessor, the
other register is used to force interrupts to
the coprocessor. By the manipulation of these
two registers, the ROMP completely controls
the interrupt environment of the coprocessor.

The interrupt mask register contains a bit for
each I/O channel interrupt line. If the bit is set
by the ROMP, that I/O channel interrupt is
gated to the interrupt controller, otherwise the
I/O channel interrupt is blocked and cannot
affect the operation of the coprocessor.

The interrupt force register contains a bit for
each channel interrupt. If a bit is set by the
ROMP, the corresponding interrupt is
asserted. Additional register bits are provided
to force the keyboard and non-maskable
interrupts (NMI) to the 80286 since these
interrupts do not appear on the channel.

Sharing Video Resources
The problem of sharing or emulating video
adapters is made difficult by the variety of
video configurations that are supported by the
PC AT code and the different set of display
options available in the RT PC. Video sharing
or emulation is accomplished by a
combination of ROMP code and video filter
logic on the coprocessor card.

If the user prefers to have a display dedicated
to the coprocessor, any PC AT compatible
display may be plugged into the channel for
this purpose, provided that there are no
address conflicts with displays assigned to
the ROMP. The I/O filters and traps are set
by the ROMP to allow the coprocessor
access to the coprocessor display and to
prevent access to the ROMP display(s).

A lower cost configuration is a display time­
shared between the ROMP and the
coprocessor, under operator control through
the keyboard. To properly restore the display
when the coprocessor regains control, the
ROMP must keep a record of coprocessor
video actions occurring during the time the
ROMP is using the display. Control actions to
the display adapter are trapped and recorded
using the I/O traps. The memory mapped
video buffer is recorded by video buffer
relocation hardware as shown in Figure 2C.

In the PC AT memory map there are 128K
bytes assigned to video buffers. At address
OAOOOOh, there are 64K bytes assigned to the

A
80286

I/O address

Irq, address, data

Trap
controls

to ROMP ,r-----------I

B 80286 8259
Interrupt
generator

ROMP generated
emulated interrupts

to selected I/O

Interrupt
filter

Bus interrupts

c

80286

Memory addresses
and data

Video
control
register

Video
relocation
logic

Virtual video
buffer

Real video
buffer

Figure 2 I/O Traps and Filters

Enhanced Graphics Adapter (EGA). At
OBOOOOh, there are 32K bytes assigned to the
monochrome adapter and also used by the
EGA. At OB8000h, there are 32K bytes

assigned to the Color Graphics Adapter (CGA)
and also used by the EGA. The coprocessor
hardware can distinguish these ranges and
process accesses to each range separately.

139

The ROMP writes to a control register on the
coprocessor card to set each buffer address
range to one of four modes:

1. Assigned to the coprocessor

2. Made invisible

3. Relocated into a memory buffer

4. Relocated into a memory buffer and the
addresses of the buffered data queued.

When a display is assigned to the
coprocessor, the traps and relocation
hardware for the corresponding address
range are turned off.

When a display range is made invisible, I/O
reads and writes are trapped, reads and
writes to the video buffer are suppressed,
and the coprocessor is thus prevented from
interfering with displays assigned to the
ROMP.

When the installed display adapter is one of
the common adapters used by the PC family,
display control is not difficult. Control
becomes much more difficult when the
installed display adapter is not supported by
the code running in the coprocessor (an APA
display) or when the processor display output
is mapped into a window on a shared display.
In these instances, the ROMP must translate
the virtual video buffer to the display.

When the ROMP translates the virtual buffer
to a display (Figure 3A), the ROM P code must
know when the video buffer has been
changed by the coprocessor. This may be
accomplished by using interrupts or by
polling. When the coprocessor display activity
is low, the ROMP allows a coprocessor
interrupt to occur whenever a buffer write

140

occurs. This interrupt is issued without
stopping the coprocessor. Since display
updates tend to occur in bursts, the interrupt
is masked off during periods of high display
activity and the ROMP then polls periodically
for buffer changes.

The display may have a different pel density
or pel aspect ratio than the display supported
by the coprocessor code, so considerable
processing is required to map the virtual
buffer to the screen. If the ROMP had to
refresh the entire screen each time a change
was made by the coprocessor, emulation
performance would be entirely unacceptable.
For instance, the coprocessor update of the
time of day on the screen might frequently
write a single character to the screen. If the
ROMP could not easily determine which
characters were changed, this action could
result in an unacceptable ROMP processing
load to examine the entire buffer for changes
or to recalculate the entire screen. Either
method would require processing several
thousand bytes of buffer data to make the
Single-byte change.

The video address queuing performance aid
is used to inform the ROMP exactly which
buffer bytes have been changed so that
minimum buffer data has to be processed.
This performance aid yields as much as a
100,000 to 1 performance improvement.

The queue is a memory area assigned by the
ROMP (Figure 38) that is organized as a
circular buffer. The low-order address of the
circular queue is provided by a counter on the
coprocessor card and the queue size can be
set to 1024, 2048, or 4096 entries. When
relocation with queuing is selected, the
coprocessor card logic inserts a hardware­
generated memory write cycle immediately
after each write to the virtual video buffer.

80286
code

A

B

Relocation
logic

Virtual
buffer
in
system
storage

Relocation
logic

Virtual
buffer
in
system
storage

ROMP
display
sharing
code

Address

ROMP
emulator
code

Figure 3 Video Relocation and Queuing

Video
display

Real
buffer
in
adapter

Real
buffer
in
adapter

The low-order 16 bits of the video address
are written into the queue area in memory
and the hardware queue input counter is
advanced. The input counter (queue tail) is
read by the ROMP, the data translated, and
the output register (queue head) is advanced
by the ROMP. An interrupt informs the ROMP
when the queue overflows during scrolling or
clearing the screen. When overflow occurs,
the ROMP resets the queue pointers and
regenerates the entire screen.

Bus Arbitration
The separate memory and I/O channels of the
RT PC system relieve the I/O channel of the
ROMP instruction and data fetch load so that
the channel is lightly loaded when the
coprocessor is not running, averaging about
10% usage. The coprocessor, when running,

can use about 90% of the available bus
cycles or all the available bandwidth.

An additional Direct Memory Access (DMA)
channel, using a special arbitration method,
was added to the system board logic to
service the coprocessor. In the channel
socket assigned to the coprocessor, the pins
normally connected to DMA channel 7 are,
instead, connected to the special arbitration
logic, DMA channel 8. Where the
acknowledgment to normal DMA channel
requests grant the channel to a secondary
master for an indefinite length of time, the
special coprocessor arbitration grants the
channel to the coprocessor only until another
user (or memory refresh) requires service. At
that time, the acknowledge signal for the
coprocessor is dropped by the arbitration
logic to signal the coprocessor to vacate the
channel at the next possible point in the
cycle. The coprocessor drops the request and
master lines to release the channel and then
immediately requests service again to recover
the channel when it is free. The coprocessor
DMA channel is the lowest priority, below
ROMP Programmed 1/0 (PIO), refresh, and all
other DMA channels, so that other channel
activity is affected very little by the
coprocessor.

System Memory Versus Channel Memory
If channel memory is not installed, the
coprocessor uses system memory that is
pinned by the VRM and will not be paged out.
This is the most economical coprocessor
configuration, but not the best performing
one. Because of the long access path from
the coprocessor to system memory, the
coprocessor performs only slightly better than
the PC XT and affects ROMP performance by
memory and 1/0 channel interference. If
better coprocessor performance is required, a
512K, 16-bit, PC AT channel memory card

can be installed at address 0 and additional
memory cards may be installed above one
megabyte.

At the time of coprocessor initiation, the
ROMP code tests for the presence of channel
memory at channel address 0 and again at
one megabyte. If memory is found at either
location, all contiguous channel memory is
used by the coprocessor. With most of the
coprocessor memory access cycles taken
from the one wait-state channel memory, the
coprocessor performance approaches PC AT
performance. There is less system memory
contention with the ROMP, so that ROMP
performance is increased as well.

Conclusions
The RT PC's PC AT coprocessor card with its
ROMP programming support represents an
ambitious attempt to emulate a specific
machine environment within a machine of
radically different architecture. This aim has
succeeded to the degree that, except for
processing speed, the user cannot ordinarily
distinguish the coprocessor from an actual
PC AT. The most important new features of
the coprocessor are the ability to provide true
concurrent processing with system protection
against unfriendly coprocessor code and the
combination of coprocessor hardware and
ROMP software that provides flexibility in 1/0
adapter and 1/0 channel or system memory
allocation. Future expansion is provided by
the ability to emulate PC AT adapters using
new RT PC adapters or future 1/0 device
adapters not known to the original writers of
the PC code. In addition, the coprocessor
features special arbitration for increased 1/0
channel performance.

References
1. P.O. Hester, Richard O. Simpson, Albert Chang, "IBM

RT PC ROMP and Memory Management Unit
Architecture," IBM RT Personal Computer Technology,
p.48.

2. Rajan Krishnamurty and Terry Mothersole,
"Coprocessor Software Support," IBM RT Personal
Computer Technology, p. 142.

3. Sheldon L. Phelps and John D. Upton, "System
Board and I/O Channel for the IBM RT PC System,"
IBM RT Personal Computer Technology, p. 26.

141

Coprocessor Software Support

Rajan Krishnamurty and Terry Mothersole

Introduction
Compatibility with existing applications that
run on the IBM Personal Computer AT was
deemed to be a significant enhancement to
the RT PC ROMP-based product. The IBM
RT PC Personal Computer AT Coprocessor
Services LPP provides the user with a means
to run PC applications on the IBM RT PC
Personal Computer AT Coprocessor card in a
way that is essentially the same as their
execution on a PC AT. The coprocessor card
consists of an Intel 80286 processor and
hardware support to allow PC AT applications
to be executed concurrently with ROMP
applications[1]. Coprocessor software support
inclutles ROMP code executing in the Virtual
Resource Manager, which provides several
levels of device support and virtual terminal
ring support with ROMP virtual terminals.
A!so, the Coprocessor LPP includes AIX Shell
code to allow the user to configure the PC AT
environment and start/end a coprocessor
session.

System Environment
The AT Coprocessor Services LPP, when
installed on the RT PC, allows the PC AT
coprocessor to run concurrently with the
native ROMP processor. The coprocessor
card is attached to the I/O channel. Figure 1
shows the PC AT coprocessor system
environment and Figure 2 shows the
coprocessor software support. VRM software
running on ROMP, with the aid of trap logic
on the coprocessor card, protects the RT PC
base operating system from applications

142

S
a
F
T
W
A
R
E

H
A
R
D
W
A
R
E

I

PCST ART jPCEND

PC Applications

DOS V
R

CP Virt. CP Dev.

M
Terminal Manager

BIOS/BASIC I CP Device Drivers

80286 Coprocessor ROMp·

Trap/Control Hardware 10CC

- I 1 -
I/O Channel

I I I
I I I

I - . I _ .. I
l;ommo. I I I t'rlmer I I I UISK I I

IOiLel ~ I Key~ard I
Figure 1 Coprocessor environment

running on the coprocessor. Most of the
challenge of incorporating the coprocessor
was the allocation of memory, sharing of
devices, supporting displays that are not
supported by the PC AT, and monitoring I/O
accesses in the creation of a PC AT
environment.

An AIX command, PCSTART, is provided to
the user to tailor the configuration of the
PC AT environment. PCST ART allows the

user to select a combination of system
resources that are to be attached to the
coprocessor. The user may optionally save
this configuration in a default profile to be
used in future initiations of the coprocessor.
PCST ART also provides a prompting mode
for the casual user, in which the user is first
shown the current default value for a
parameter and has the option to alter its
value.

There is no memory on the coprocessor card,
so memory is provided as a mixture of
system memory and I/O channel-attached
memory. Memory is first allocated from the
cards plugged into the I/O channel. If there is
not enough channel-attached memory (there
might not be any), the rest is provided from
ROMP system memory and pinned to prevent
page faults. This is accomplished by setting
up the 10CC to convert the I/O channel
addresses to the appropriate virtual
addresses. The virtual addresses use the
MMU segment register that is dedicated for
I/O device access to system memory.
Channel-attached memory must begin at
address 0 and be continuous if it is to be
recognized and used by the coprocessor. The
amount of system memory that is available to
the coprocessor depends upon how much is
left after VRM and the operating system have
met their requirements.

Devices connected to the I/O channel are
supported in different ways, depending on the
specific attributes of the device. The followin"g

AIX

Virtual Machine Interface (VMI)

V
R
M

H
A
R
D
IN
A
R
E

Figure 2

Virtual SVC Virtual
INT INT

CP Virtual
Terminal
(CPVT)

Virtual
Display Driver

CP
Manager
(CPM)

CP Device Driver
(CPDD)

Coprocessor Card (80286)

Co-Processor Software Structure

definitions describe the range of device
support:

• ROMP only - the device is available only
to the ROMP.

• Shared - a device is shared when it can
either be accessed by both processors
concurrently (e.g., disk, DMA) or can be
dynamically switched between them (e.g.,
the display). Device sharing is accomplished
by allowing only the ROMP to issue the 110
commands to the device.

• Dedicated - the device is allocated to the
coprocessor for the duration of the

Coprocessor
Device ROMP Only Shared Dedicated Only

MMU X

10CC X

System Mouse X

DMA X

Disk X

Keyboard X

Real Time Clock X

Configuration CMOS RAM X

Minidisk
Manager

Display

Communications Ports

Planar Serial Ports

Printer

Diskette

Speaker

New Devices

System Memory

I/O Channel Memory

80286 Int. Ctlr

80287 Math Coprocessor

Interval Timer

Light Pen

X X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 3 Device Support Modes

coprocessor session. If the device is
PC AT-compatible (e.g., planar serial ports),
coprocessor accesses to it go directly to
that device with no ROMP intervention. If
the device is not PC AT-compatible,
coprocessor accesses to it are trapped and
emulated by the ROMP.

• Coprocessor only - available only to the
coprocessor. Either the ROMP is unable to
get to it or the device is never allocated to
the ROMP.

Figure 3 shows the ways in which the various
supported devices are treated.

Disk support is provided using RT PC
minidisks. File system integrity is maintained
by trapping all coprocessor accesses to the
disk. Coprocessor support code performs the
data transfers using the minidisk manager
and then sends acknowledgments back to the
coprocessor.

Terminal Support: Displays
The RT PC display support plan includes
PC AT supported display adapters and new
RT PC adapters that are unknown to the PC
family product line. Given that the
coprocessor option could reside on any
RT PC display configuration, code and
hardware were required to supply the
coprocessor user with various display support
possibilities in order to run PC applications on
a non-PC supported display adapter. Thus,
the coprocessor user has two display
configuration options available: dedicated

143

mode, which allows the coprocessor to
access the display adapter directly; and
monitored mode, which prevents the
coprocessor from accessing the adapter
directly, while allowing the coprocessor virtual
terminal to be in the ring of virtual terminals
supported by the Virtual Terminal Manager[2].

Allowing the coprocessor to run a PC­
supported system display adapter in
dedicated mode (with channel-attached
memory) gives the user up to 80% of the
performance of the PC AT since there is no
intermediate device driver trapping/emulating
the I/O address range or relocating the video
memory. The only Release 1 displays that this
mode can be used with are the I BM Personal
Computer Monochrome Display Adapter and
the Enhanced Color Graphics Display
Adapter. The APA8 can only be run dedicated
if a future PC application is written that
supports it. In any case, the APA8 in
dedicated mode is not supported as the
primary coprocessor display.

Depending on the display utilization by ROMP
virtual terminals, dedicated mode is formally
defined as "direct" or "allocated:"

• If ROMP had a virtual terminal opened on
the requested system display at the time
the coprocessor was started, then the
display is configured in "direct" access
mode. In this mode, the virtual terminal
does not provide a device-driver interface
that monitors the state of the adapter at all
times (I/O and video buffer). The only way
for the user to access the next ROMP
virtual terminal in the ring is to terminate
the coprocessor virtual terminal session by
use of a special key sequence (CNTL-AL T­
ACTION). This prevents the user from
terminating the coprocessor session

144

inadvertently with the AL T -ACTION hot-key
sequence.

• If ROM P did not have an open virtual
terminal on the requested system display,
then the display is "allocated" to the
coprocessor for the duration of its session.
In this mode, the user can traverse the
virtual terminal ring without ending the
coprocessor session.

The user is unaware that the display is
configured as dedicated/direct or dedicated/
allocated, and the performance is the same.
Note: If the system display can be allocated
to the coprocessor (as opposed to direct), it
will be, so as to enable the user to hot key to
other virtual terminals.

If a PC AT-supported system display cannot
be allocated to the coprocessor, or if the user
wishes to emulate the PC Monochrome
adapter or PC Color Graphics display adapter
on the APA8, the system display can be
configured to be shared with ROMP in a
display access mode referred to as
"monitored." All I/O commands from the
coprocessor are trapped and saved; to allow
the display adapter state to be restored when
control is returned to the coprocessor. When
the display adapter is the PC Monochrome or
the Enhanced Color Graphics Adapter, the
video buffer is accessed directly by the
coprocessor. When the display adapter is the
APA8, video buffer accesses are relocated to
system memory and the APA8 virtual display
driver is used to update the screen. This
mode also frees the display adapter so that
ROMP can open new virtual terminals on it.
Control of the requested system display
adapter is switched to the coprocessor when
its virtual terminal becomes active via the
AL T -ACTION hot-key sequence.

Coprocessor support of the APA8 was the
major driving force behind providing a display
access mode that would allow sharing display
devices between ROMP and the coprocessor.
The coprocessor virtual terminal mode
processor utilizes the same VRM virtual
display driver (VDD) interface that other virtual
terminals do, to emulate the PC Monochrome
Adapter and the PC Color Graphics Adapter.
Emulation of the graphics modes involved a
great amount of transformations on the video
pel buffer. Emulation details are outlined
below:

• Color text emulation is supported on the
APA8. However, the color select register is
ignored since this adapter is monochrome.
Text characters are built up into text lines,
while the color attributes are ignored. This
allows an application that switches between
text and graphics to operate on this one
adapter, without requiring the user to
configure in two displays to support the two
different modes.

• The pel resolution and the pel aspect ratio
of the PC Color Graphics Display Adapter
differs from the APA8. Converting a
graphics image built for a 640 x 200
resolution display with a pel ratio of 2:1, to
a 720 x 512 high-res display with a pel ratio
of 1:1 was accomplished with a simple and
fast algorithm that duplicated scan rows to
create a 640 x 400 image. Basically, the
algorithm squared off the rectangular pel
ratio of the PC color graphics image, in
order to proportion the image onto the
square pel ratio of the APA8. The resulting
image was then centered onto the APA8
screen with a border around it.

• To support an application operating in 320
x 200 medium resolution color graphics
mode, four different shades of gray are

provided, by a "half-toning" method, to
simulate the four selected colors. On a
Color Graphics Display Adapter (CGA), two
bits describe a logical pel unit, which
consists of two physical screen pels. With
the scan rows duplicated as in high­
resolution (640 x 200) mode, this creates a
640 x 400 image with a square logical pel
unit of four physical pels. The four pels
comprising the logical pel unit are turned on
or off to produce one of four shades (Le.,
black, dark gray, light gray, white). As an
example, with all pels turned on, the color
produced is white. With two diagonal pels
turned on, the color produced is a light
gray.

The coprocessor may have use of more than
one display, but it can use only one ROMP
system display on which a virtual terminal
exists. Other displays can be ROMP displays
that can be allocated to the coprocessor or
coprocessor-only display devices such as the
PC Color Graphics Adapter. The PCSTART
command monitors the system usage of the
available system displays and only allows a
valid coprocessor environment to be set up.

Terminal Support: Keyboard
The keyboard on RT PC is a shared device
between the ROMP processor and the
coprocessor. Residing in the VRM
coprocessor terminal support code are a
device driver and a mode processor that
provide a PC AT 8042 keyboard controller
interface to the coprocessor. The mode
processor takes in RT PC key positions from
the VRM keyboard device driver, translates
them to PC or PC AT scan codes, places
them in a simulated keyboard buffer, and then
generates an interrupt to the coprocessor.
The scan code sets for PC and for PC AT are
stored in a structure indexed by the type of
the emulated keyboard. The simulated

keyboard buffer is a 16-byte FI FO queue with
a 17th byte for overrun.

The keyboard layout of the RT PC keys is a
superset of a PC AT keyboard. It contains all
of the engravings resident on a PC AT
keyboard, while some of them have been
moved or duplicated to other key positions.
For example, the new set of cursor motion
keys and edit keys (INS, DEL, PAGE UP,
PAGE DOWN, HOME, and END), will be
translated as engraved, without numbers. The
coprocessor virtual terminal will maintain state
flags for the NUMLOCK and the SHIFT keys,
as well as for the CAPSLOCK, SCROLL
LOCK, CTRL, and ALT. Depending on the
combined state of the NUMLOCK and the
SHIFT, SHIFT make/breaks may be sent
around the scan codes for the new native
cursor motion and edit keys, in order to force
the engraved key translation.

From a system perspective, the coprocessor
mode processor works with the VRM
keyboard device driver in raw mode, receiving
all makes and breaks of keys. During virtual
terminal transitions, the break of keys may be
sent to the next active terminal. Since the
mode processor keeps track of the control/
shift keys, it can send break scan codes
appropriately. The mode processor also traps
the situation where the user wishes to
terminate the coprocessor session with the
CNTL-AL T -ACTION key sequence. This
simulates the user entering the PCEND
command in the AIX operating system.

Disk Emulation
The fixed disk devices on the RT PC are
divided into logical minidisks that are
managed by the minidisk manager. PC AT
fixed disks are emulated through the use of
minidisks. Up to two minidisks can be
allocated to the coprocessor during a given

session. The only interface to the fixed disk
from the coprocessor is through BIOS. Any
attempts to issue I/O instructions to the
physical disk addresses are trapped by the
coprocessor card and are interpreted as
unallocated device accesses.

Async Redirection
There exists a coprocessor async device
driver that will emulate serial port functions of
the PC AT serial/parallel card on the native
RT PC planar serial ports (RT PC model 6150
only) which are Zilog Z8530 based. I/O
between the coprocessor and the PC AT
Serial/Parallel card (National 8250) is
redirected to one of the two planar async
ports. Control information being sent will be
translated from the PC AT Serial/Parallel card
format to the planar serial port format and
redirected to the async ports on the planar.
Data bytes containing control information
being received from the async ports on the
planar wi!! be translated from the planar serial
port format to the PC AT serial port format
and redirected to the coprocessor.

All PC AT serial port commands are emulated
on the planar ports except stuck parity and
diagnostic loop mode.

Summary
The RT PC AT Coprocessor Services LPP
provides PC compatibility to the user,
complete with device-monitoring features to
emulate an IBM PC AT environment.

There are known incompatibilities that exist
due to hardware restrictions, or to limited
software emulation capabilities:

1. (Mini)disk access supported through BIOS
interface only. All BIOS calls are
supported except formatting a disk,

145

initializing drive pair characteristics, read
long, and write long.

2. Code dependent on instruction execution
timing may cause unpredictable results.

3. Some 6845 display controller commands
and some PC color graphics modes are
not supported on the APA8.

4. Enhanced Color Graphics Adapter high­
resolution modes are supported only on
the Enhanced Color Display in dedicated
mode.

5. Partial DMA support.

Even with the known restrictions, the AT
Coprocessor LPP provides the RT PC user
with the ability to run PC applications
concurrently with ROMP virtual terminals. The
simulated PC AT environment is made
virtually transparent to the user after
configuration time and allows system devices
to be shared by both processors.

Acknowiedgments
The Coprocessor Licensed Program Product
is the result of the outstanding contributions
of many people. The dedication of the
development team which included Harish
Agarawal, Wayne Blackard, Dean Boschult,
David Chiang and Chuck Nunn and the
management leadership of Johnny Barnes,
Joe Corso, Stan Douglas, Pat Motola and
Gary Snyder during the various stages of the
project were critical to the success of the
product. The cooperation and efforts of the
Systems Test, System Assurance and VRM
departments were key in ensuring a high
quality product. The encouragement and
support provided by Clay Cipione, Glenn

146

Henry, Larry Loucks and Frank King were
invaluable in helping us through many difficult
times.

References
1. John W. Irwin, "Use of a Coprocessor for Emulating

the PC AT," IBM RT Personal Computer Technology,
p.137.

2. D.C. Baker, G.A. Flurry, and K.D. Nguyen,
"Implementation of a Virtual Terminal Subsystem,"
IBM RT Personal Computer Technology, p. 134.

PC DOS Emulation in the AIX Environment

Leonard F. Brissette, Roy A. Clauson, Jack E. Olson

Introduction
This article describes the major features of
the PC DOS emulation functions that are a
part of the IBM RT PC AIX operating system.
The widespread acceptance of the IBM PC
and the DOS operating system mandated that
a user interface with a similar set of DOS
functions be part of the RT PC AIX. These
functions allow the existing PC DOS user to
easily move up to the higher performance and
capacity of the RT PC with minimal re­
training. The nature of the AIX operating
system allows a single RT PC to concurrently
support multiple PC DOS emulation users,
hence an apparent "multi-tasking" DOS. The
PC DOS emulation functions are provided by
two major pieces; the RT PC AIX DOS Shell
and the RT PC AIX DOS File Access Method.

The RT PC AIX DOS Shell Interface
The RT PC AIX DOS Shell (hereafter referred
to as the "DOS Shell") provides a more
friendly alternative user interface to the
traditional UNIX Shells. It allows a user to
manipulate "UNIX" files on AIX file systems
and "DOS" files on diskettes or RT PC
minidisks. It is an emulation of most of the PC
DOS 3.0 functions, using identical command
syntax. Those functions not emulated are PC
DOS or hardware specific.

The DOS Shell allows for PC DOS batch file
execution and also emulates the line editing
functions provided by PC DOS. An escape
mechanism is provided (via a prefix of '! ') to
allow a user to execute an AIX Shell

command without having to exit the DOS
Shell and then restart it.

Figure 1 shows one instance of a DOS Shell
and its relationship to the rest of the system.
At "login", a user's AIX .profile file can
specify "dos" and the DOS Shell will
automatically be invoked for the user. Using
this procedure makes the system look entirely
"DOS" to the user, except for the login.
Environment variables are used to define the
relationship between DOS Shell "logical
devices" like A:, LPT1:, etc., and the system's
resources. These environment variables may
be individually overridden by placing the
override information in the user's .profile file.
Thus, each DOS user on the system can
customize his or her own DOS environment.

A user may also place an "autoexec.bat" file
in the A: drive, and at "login" time this batch
file will be executed just as in DOS.

The DOS Shell uses the DOS File Access
Method set of routines in the DOS library to
access user files. These routines allow
transparent access to either an AIX file
system or a DOS file system and will be
discussed in the next section. The DOS file
system may have been created for use by the
PC AT coprocessor feature. Thus, data
objects created or processed on the
coprocessor may also be processed by native
running RT PC applications, though not
concurrently.

DOS Library

I .profile DOS User
File Application

DOS Access Space
Shell I-- Method

AIX Kernel API

TTY Device Driver
Fixed
Disk
DD
(hd)

Floppy
Disk
DD
(fd) r.;Tl I ASVNC I

Printer
DD
(Ip)

~ DD

VMI

Figure 1 PC DOS Emulation Component Relationships

Application programs written for the RT PC
system may be executed from the DOS Shell.
These programs may be stored in either AIX
or DOS file systems. The system searches for
these programs starting in directory /usr/dos,
then in the user's current directory, and then
in each directory specified by the PATH list.

The DOS Shell was implemented as a
separate shell, rather than using the "link"
command, because of the difference in
semantics between the DOS Shell special
characters (? and *) and the AIX shell
metacharacters. The DOS Shell parses the
command line input following PC DOS rules

147

and passes the parsed/expanded parameters
to RT PC AIX programs in the conventional
AIX format of argc, argv values.

The RT PC DOS File Access Method
Many existing PC DOS applications create
data files in the form of data bases,
spreadsheet models, and various forms of
text documents. In an attempt to build upon
the existing customer base, the need was
recognized for easy migration of that data to
the RT PC, as well as easy use of PC
application data in a mixed PC and RT PC
environment. Although file conversion utilities
are provided for some files, it was felt that
many applications may want to use the same
format of data on both PC's and on the
RTPC.

The DOS File Access Method (DFAM)
consists of a set of library routines that allow
applications to access both DOS and AIX file
systems transparently. The application
program interface contains those functions
available in the UNIX file access method.
However, these functions have been
generalized to allow access to either DOS or
AIX files. The syntax of these routines is
identical to corresponding AIX system calls.
Hence, existing applications can be easily
converted to use DOS file systems.

DFAM uses the concepts of path names and
a current directory to determine the location
of a specified file. If a specified file resides in
the AIX file system, calls are converted to AIX
file system calls. If the files reside in the DOS
file system (either on a DOS diskette, or on a
DOS minidisk created by the coprocessor),
DFAM interprets the DOS directory structure
and retrieves data from the DOS file system.

DFAM resides above the kernel. No changes
were made to the AIX file system access

148

method in order to implement DFAM. This
was done to assure portability of existing
applications that use the current UNIX file
systems.

As was mentioned previously, a number of
environment variables have been established
in the AIX environment for use by DOS
emulation functions. DFAM uses these
environment variables to determine the
binding of DOS device names to AIX
directories or system devices, as well as to
aid in the interpretation of file and path names
received by the various library routines.

Automatic conversion of ASCII files is
provided through the use of a DOS
environment variable DOSFORMAT. If a file is
opened explicitly as an ASCII file, each read
or write to that file results in the conversion
of the data to either DOS ASCII or AIX ASCII,
depending upon the value of the
DOSFORMAT variable. This conversion deals
primarily with line ending characters
(NL, CR, LF).

DOS file attributes are closely emulated by
the DFAM library routines. The "hidden" and
"read-only" file attributes are emulated if the
file resides in the AIX file system. This was
done using analagous attributes in the AIX file
system. The "system", "volume" and
"archive" attributes do not directly map to
AIX attributes, and are therefore, not directly
supported.

Some Limitations
Some of the DOS functions have not been
implemented. The current design allows for
the possibility of adding those functions, if
necessary.

DOS file sharing became available in DOS
Release 3.1. This was too late in the RT PC

development cycle to be included in Release
1. File sharing allows concurrent access to
the same file by multiple processes. At file
"open time", an application specifies whether
or not other processes may have write, read,
or read/write access concurrently.

Coprocessor applications run independent of
applications executing on the native RT PC
processor. No provision has been made for
access concurrency by coprocessor
applications and RT PC applications.

Summary
A high degree of PC DOS compatibility has
been achieved at the user interface level. This
should allow PC DOS users to easily migrate
to the RT PC. The system behaves like a
multi-tasking DOS system from an end user's
perspective. PC data files move easily into
and out of the RT PC, allowing users
flexibility in their data processing
environment.

Authors

Hira G. Advani

Engineering Systems Products, Austin, Texas

After receiving an MS in Computer Science
from Georgia Institute of Technology, Mr.
Advani joined the IBM Office Products
Division at Austin, TX in 1978. He worked on
several software projects related to OS/6 and
Displaywriter. He is currently a Development
Programmer and is Operating System
Extensions manager for the IBM RT PC.

David C. Baker

Engineering Systems Products, Austin, Texas

Mr. Baker is an advisory programmer. He
received the Bachelor of Science in Electrical
Engineering from New Mexico State
University in 1972 and the Master of Science
in Engineering from the University of Texas at
Austin in 1979. He joined IBM in 1976 and
was involved in microprocessor and systems
architecture and design. Mr. Baker worked on
the system design of the Displaywriter. After
a temporary assignment to the IBM T. J.
Watson Research Center at Yorktown
Heights, Mr. Baker returned to Austin where
he worked on the advanced technology effort
leading to the startup of the RT PC
development project. Mr. Baker currently
serves as chief programmer for local terminal
support.

Ronald J. Barnett

Engineering Systems Products, Austin, Texas

After joining IBM in 1965, Mr. Barnett served
in a variety of staff and management
positions in the areas of quality and industrial
engineering. He worked in quality and
reliability positions on NASA Space and Navy
Sonar programs before moving to Austin in
1978. In Austin, he has managed quality and
industrial engineering areas for IBM's 5520
Administrative System, Displaywriter, and
RT PC products. Mr. Barnett holds degrees in
Industrial Management and Industrial
Engineering from Auburn University.

J. R. (Bob) Barr

Engineering Systems Products, Austin, Texas

Mr. Barr joined the Federal Systems Division
of IBM in Owego, NY in 1960, where he had
design and test responsibilities on several
major government contracts. He received a
BS degree in Electrical Engineering from the
University of Missouri in 1960 and an MS
degree in Electrical Engineering from the
University of Arizona in 1964. He is currently
an advisory engineer in the Microprocessor
Design group.

Charles W. Bartlett

Engineering Systems Products, Austin, Texas

Charles Bartlett is a project engineer and
manager of Manufacturing Test for the IBM

RT PC. He joined IBM in 1981 after receiving
a BSEE from the University of Texas at
Austin. He received an Outstanding Technical
Achievement Award in 1983 for the design of
printer test equipment.

John M. Bissell

Engineering Systems Products, Austin, Texas

Mr. Bissell was the team leader for Data
Management Services, and vendor technical
interface for the SQL/RT LPP. Mr. Bissell
joined IBM in 1972 after receiving a BSEE
degree from MIT. Prior to coming to Austin,
he worked on software for the Space Shuttle
Launch Processing System at Cape
Canaveral, Flo He currently manages the Data
Management Services department.

Leonard F. Brissette

Engineering Systems Products, Austin, Texas

Leonard Brissette is an advisory engineer
with the Engineering Systems Architecture
department. He came to I BM from Eastman
Kodak Company in 1978 as a senior
associate engineer in the Office Products
Division at Austin, TX. Before joining the
RT PC development group, Mr. Brissette
worked on various Austin word processing
products in the areas of diskette and data
stream design and applications. His work with
the Advanced Applications Development
group involved data base and LAN

149

applications. Mr. Brissette holds a BSEE from
the University of Texas at EI Paso.

Bertram E. Buller

Engineering Systems Products, Austin, Texas

Mr. Buller is an advisory programmer in the
Hardware Architecture group for the RT PC.
He joined IBM in 1956 in Kingston, NY as a
diagnostic programmer for the SAGE system.
He has participated in the development of the
1410 operating system, OS/360, System/23,
and Displaywriter. He has held management
assignments in the FAA Air Traffic Control,
3705 Emulator, and 6670 SNA
communications projects. From 1972 to 1976,
Mr. Buller provided technical guidance on
SNA for a number of major application
projects, including Credit Lyonnaise, Mid­
Atlantic Mastercard, and the State of
California. He received a BA degree from
Gettysburg College in 1950 and has done
graduate work at Syracuse University.

A. V. (Tony) Burghart

Entry Systems Division, Austin, Texas

Mr. Burghart is an advisory engineer
responsible for the design and implementation
of a new manufacturing process. He joined
IBM in 1965 in Endicott, NY. He transferred to
Austin in 1973. His career experience at IBM
has been in the development and support of
manufacturing processes, both component
manufacturing and product manufacturing. He
has held positions in both engineering and
management. He received an IBM
Outstanding Contribution Award for his work
in developing a chemical recovery process.
He holds a patent for a circuit line repair tool.
Mr. Burghart received his BS in Electrical
Engineering from Wichita State University in
1965.

150

Nancy A. Burns

Engineering Systems Products, Austin, Texas

Mrs. Burns is a senior associate programmer
for IBM. She is currently a technical member
of the team developing an expert system to
perform diagnostics on a machine with limited
memory. Mrs. Burns is a PhD candidate at
Southern Methodist University. She received
a BS in Statistics and Quantitative Methods at
Louisiana State University and an MA in
Mathematical Sciences at the University of
North Florida. She is a member of the
Association for Computing Machinery and its
Special Interest Group on Artificial
Intelligence, the American Association for
Artificial Intelligence, and the Association for
Computational Linguistics.

Albert Chang

IBM Research Division, Yorktown Heights,
New York

Dr. Chang is manager of systems
development in the Advanced Minicomputer
Pioject of the IBM Research Division which
he joined in 1965 after receiving a PhD in
Electrical Engineering from the University of
California at Berkeley. His current interests
are in systems programming and computer
architecture.

Ahmed Chibib

Engineering Systems Products, Austin, Texas

Mr. Chibib joined the IBM Research Division
in Yorktown in 1965. There he worked on
computer assisted instruction and symbolic
execution of programs. In 1977, he joined the
OPD Architecture group in Austin and
participated in the early PL.8 compiler work
for ROMP. He is currently a member of the
PL.8 Tools group for IS&CG.

Roy A. Clauson

Engineering Systems Products, Austin, Texas

Mr. Clauson is currently the manager of the
Engineering Systems Architecture department
for the IBM RT PC. During the development
of the RT PC he managed one of the
operating system departments responsible for
porting UNIX to the RT PC. Mr. Clauson
joined IBM in the Boston, MA, branch office
in 1970. He worked on testing 3270 Display
products, various communications networks,
and the System/370-135 while in Kingston,
NY. In 1975 he joined the 5256 printer
development group in Rochester, MN and
subsequently worked on the 5280 Distributed
Data System I/O Subsystem. In 1980 Mr.
Clauson transferred to Austin, TX, where he
has held management assignments for 5280
follow-ons, Office Systems Interconnect
Architecture, and IBM RT PC software
development. Mr. Clauson received a BSEE
from Northwestern University in 1970 and an
MSEE from Syracuse University in 1979.

Raymond A. DuPont

Engineering Systems Products, Austin, Texas

Mr. DuPont joined IBM in April 1964 at East
Fishkill, NY after receiving a diploma from the
Penn Technical Institute. He held various
aSSignments in test equipment maintenance,
bipolar circuit design and manufacturing
engineering. He received a BS degree in
PhYSics from Marist College in June, 1974.
He transferred to Austin in 1976 and has
worked in the circuit technology area. He
received a MSEE degree from the University
of Vermont in 1982. He is currently a senior
engineer and manager of the AESD Advanced
Circuit Technology department.

Charles K. Erdelyi

General Technology Division, Essex Junction,
Vermont

Mr. Erdelyi was born in Hungary in 1938 and
came to the U.S. in 1957. He joined IBM as a
Customer Engineer in 1958 and, with the
exception of military and educational leaves,
has been with the company since. He holds a
BSEE and MSEE from MIT and an MSEE
from the University of Vermont. He has spent
most of his engineering career in circuit
design activities. He is currently a senior
engineer responsible for CMOS macro
development.

Gregory C. Flurry

Engineering Systems Products, Austin, Texas

Mr. Flurry joined the Office Products Division
of IBM in Lexington, KY in 1973. He worked
in Advanced Ink Jet Technology and on an
electronic typewriter using that technology.
He spent two years at the IBM Research
Laboratory in Yorktown Heights, NY working
on various projects related to office
workstations. He transferred to Austin in 1980
to work on the RT PC virtual terminal
subsystem. Mr. Flurry received a BS in
electrical engineering from Vanderbilt
University and an MS in electrical engineering
from the University of Kentucky. He is
currently an advisory programmer in RT PC
system architecture.

C. P. (Chuck) Freeman

Engineering Systems Products, Austin, Texas

Mr. Freeman is a staff engineer assigned to
AESD Memory Management Design. He
joined IBM in 1976 and the ROMP project in
1980. He designed a portion of the ROMP

nodal model and the Memory Control portion
of the MMU memory management chip. Mr.
Freeman has had principal responsibility for
M M U since 1983. He received a BS degree in
Electrical Engineering from Tennessee
Technological University in 1975 and an MS
degree from the University of Texas at Austin
in 1981.

Willie T. Glover, Jr.

Engineering Systems Products, Austin, Texas

Mr. Glover is a senior associate engineer in
Advanced Microprocessor Design. He joined
I BM in 1980 after receiving a BS in Electrical
Engineering from the University of Tennessee,
Knoxville. Mr. Glover is a member of Tau
Beta Pi, Eta Kappa Nu, and the Institute of
Electrical and Electronics Engineers.

Mark S. Greenberg

Engineering Systems Products, Austin, Texas

Mr. Greenberg is a senior programmer who
has been working on the design and
implementation of the VRM since 1982. He
joined IBM FSD at the Cape Canaveral
Facility in 1965 after receiving a BS in
mathematics from MIT.

Carolyn Greene

Engineering Systems Products, Austin, Texas

Ms. Greene is a staff programmer and is
currently technical assistant to the manager
of the AESD Systems Extensions group. She
was the architect responsible for the
externals of the Usability Services package.
Ms. Greene received a BS in Information and
Computer Science from Georgia Institute of
Technology in 1980. After two years of
graduate study on user interface design, she

joined IBM in 1982. Ms. Greene has worked
on several software projects for the
Displaywriter and the IBM RT PC, doing
design, modelling, and evaluation of user
interfaces.

Randall D. Groves

Engineering Systems Products, Austin, Texas

Mr. Groves is a staff engineer in the
Advanced Microprocessor Development
group in Austin. He jOined IBM in 1979 in
Manassas, VA and transferred to the MMU
chip design team in Austin in 1982. Mr.
Groves received BS degrees in Electrical
Engineering and in Business Administration
from Kansas State University in 1978 and
1979. He is a member of Tau Beta Pi, Eta
Kappa Nu, Blue Key, and Phi Kappa Phi.

G. Glenn Henry

Engineering Systems Products, Austin, Texas

Mr. Henry is an IBM Fellow and is the
manager of Hardware and Software System
Development for the IBM RT PC. He joined
IBM in 1967 in San Jose, CA, and has been
involved in the design and management of the
IBM 1800, IBM System/3, the IBM System/32,
and the IBM System/38. He has received
several formal awards, including an IBM
corporate award in 1982 for his work on the
System/38. Mr. Henry received a BS and an
MS in mathematics in 1966 and 1967 from the
California State University at Hayward, and is
a member of the ACM and IEEE.

Phillip D. Hester

Engineering Systems Products, Austin, Texas

Phil Hester is a senior engineer and manager
of Hardware Architecture for the IBM RT PC.

151

His area's responsibilities include hardware
architecture, performance, compatibility, and
follow-on requirements. He joined IBM in
1976 after receiving a bachelor's degree in
Electrical Engineering from the University of
Texas at Austin. His previous experience
includes design of various portions of ROMP,
lead engineer for MMU, and management of
the Microprocessor and Memory Management
department. While at IBM, he received an MS
degree in Engineering from the University of
Texas in 1981.

Harrell Hoffman

Engineering Systems Products, Austin, Texas

Mr. Hoffman joined IBM in 1976 at Houston
where he was involved with programming the
space shuttle on board computers. He worked
as a programmer on the 5520 Administrative
System in Austin before moving to his current
position of staff engineer with the advanced
microprocessor group. Mr. Hoffman has a MS
in Computer Science and BS degrees in
Electrical Engineering and in Mathematics.

John T. Honaway

Engineering Systems Products, Austin, Texas

Mr. Hollaway is the manager of the AESP
Workstation Development group. He has
development and product engineering
responsibility for RT PC. Mr. Hollaway joined
IBM in 1964 as a junior engineer at
Lexington, KY. He worked on such projects
as the Tape Transmission Unit,
communication controls for the MCIST, the
Small Business Terminal, and Communicating
Mag Card I. Mr. Hollaway entered
management in 1972. His management
assignments include Dictation Systems, OS/6,
communicating Mag Card, and Displaywriter
1/0 and RAS. Mr. Hollaway received a BSEE

152

from the University of Missouri at Rolla in
1964, and an MSEE from the University of
Kentucky in 1966.

M. E. Hopkins

IBM Research Division, Yorktown Heights,
New York

Martin Hopkins is manager of compilers in the
Advanced Minicomputer Department of the
IBM Research Division. He spent ten years
with Computer Usage Co., a software house,
mainly working on compiler development. In
1969 he joined the Research Division. Since
then he has worked on computer architecture
as well as compiler development and
language design. In 1985 he received a
Corporate Award for his work on the PL.8
language and compiler. Mr. Hopkins has a BA
in Philosophy from Amherst College.

John W. Irwin

Engineering Systems Products, Austin, Texas

John W. Irwin is a senior engineer in
Advanced Eng!neering Systems Development
He joined iB~ as a Customer Engineer in
1956 after serving as a USAF jet fighter pilot,
then transferred to the Poughkeepsie
Laboratory in 1958. He participated in the
design of Hypertape I and II, the 2415 Tape
Unit, and the 2803 Mod I and II Tape
Controllers. He received an IBM Corporate
Award in 1974 for development of the GCR
recording method and an IBM Eighth Level
Invention Award in 1985 in recognition of 24
patent applications and 28 patent
publications.

Jerry Kilpatrick

Engineering Systems Products, Austin, Texas

Jerry Kilpatrick joined IBM in 1968 after
receiving a BS in Mathematics from
Centenary College. He initially worked as a
Systems Engineer in the Shreveport, LA
Branch Office. In 1969 he took an educational
leave of absence to do graduate work in
Computer Science at the University of North
Carolina at Chapel Hill. After receiving his
PhD in 1976, Dr. Kilpatrick returned to IBM at
Austin. He was the User Interface Design
manager for the RT PC.

Rajan Krishnamurty

Engineering Systems Products, Austin, Texas

Rajan Krishnamurty, a staff programmer in
Austin, TX received a BSEE degree from the
University of Houston, 1976, and a MSEE
degree from the University of Texas, 1983.
After joining IBM in 1976 at Austin, TX he
worked on the media attachment hardware on
the Displaywriter from 1979 to 1982. After
working on a number media proposals for
follow-on pioducts, he joined the RT PC
program in 1983 where he was responsible
for development of the PC AT coprocessor
services licensed program product. Mr.
Krishnamurty holds two U.S. patents and has
had nine articles published in the IBM
Technical Disclosure Bulletin.

Thomas G. Lang

Engineering Systems Products, Austin, Texas

Mr. Lang is a staff programmer for the
Advanced Engineering Systems Development
group, where he works on design and
implementation of the VRM. He joined IBM in
1978 in Rochester, MN, after receiving a BS

in Computer Science and Electrical
Engineering from Michigan State University.
In Rochester, he worked on SNA
communications programming for the S/32
and S/34. He transferred to Austin in 1980,
where he was involved with operating
systems development on the 5280 Data Entry
System before joining AESD.

S. A. Lerom

Engineering Systems Products, Austin, Texas

During the development of the RT PC system,
Ms. Lerom managed the AIX Configuration
department. She currently is Technical
Assistant to G. G. Henry. Ms. Lerom received
a BA in Mathematics from the University of
Minnesota. She joined IBM in 1976 in
Rochester, MN, and has worked in
communications software development on
S/3 CCP, S/34, and 5280. She transferred to
Austin in 1980 and entered management in
1981 as manager of a SNA Communications
department.

Larry Loucks

Engineering Systems Products, Austin, Texas

Larry Loucks is a member of the IBM Senior
Technical Staff and is the lead architect of
the RT PC system. He received a BA in
Mathematics from Minot State University in
Minot, ND. Larry joined IBM in 1967 in the
Fargo, ND branch office. In 1970 he
transferred to Raleigh, NC, where he worked
on QTAM, TCAM, and SNA. In 1977 he
transferred to Austin, where he has worked
on the 5520 and the RT PC.

Alan MacKay

Engineering Systems Products, Austin, Texas

After receiving a BS degree in Computer
Science from Brigham Young University, Mr.
MacKay joined the IBM Office Products
Division at Lexington, KY in 1974. There he
worked on Software Development Tools. He
received his MS in Computer Science from
the University of Kentucky in 1977. In 1977,
he joined the OPD Architecture group in
Austin and participated in the early PL.8
compiler work for ROMP. He is currently a
member of the PL.8 tools group for IS&CG.

F. T. May

Engineering Systems Products, Austin, Texas

Mr. May joined IBM as an associate engineer
in Lexington, KY in 1961, with BS and MS
degrees in Electrical Engineering from the
University of Kentucky and the University of
Tennessee. In 1968, he moved to Austin to
head a new development laboratory in
conjunction with the release to production
of the Mag Card I. In 1973, he was promoted
to director of the Office Product Division
engineering organization in Lexington, KY. He
was vice president of OPD development from
1973 to 1976 and then returned to Austin as
vice president of office systems with
responsibility for Austin manufacturing and
development. He was director of the Austin
laboratory from 1977 to 1978. Mr. May was
the IBM RT PC Workstation Development
Manager and is currently responsible for
future workstation development.

Peter E. McCormick

General Technology Division, Essex Junction,
Vermont

Mr. McCormick received a BSEE degree from
Worcester Polytechnic Institute in 1965 and a
MSEE degree from Michigan State University
in 1967. He joined IBM in 1967 at East
Fishkill, NY, transferred to Manassas, VA in
1970, and to Essex Junction, VT in 1978. His
work experience has been in bipolar and FET
circuit and chip design spanning SSI, LSI, and
VLSI digital integrated circuits. Development
projects have included masterslice, master
image, and custom chip designs. He is
currently an advisory engineer in the
Microcomponent Design area of the IBM
General Technology Division.

T. L. Mothersole

Engineering Systems Products, Austin, Texas

Ms. Mothersole received her BA in Computer
Science from the University of Texas at
Austin in 1978. She spent 3 years at Motorola
Semiconductors in the Computer Aided
Design group, working on engineering tools
for circuit analysis and logic simulations. She
joined IBM in 1982 in the Displaywriter
Display Support group. After working on
several screen management research
projects, she joined the design and
implementation team building coprocessor
terminal support in the VRM.

Tom Murphy

Engineering Systems Products, Austin, Texas

Mr. Murphy is a senior programmer. He
received a bachelor's degree in Education
and a master's degree in Computer Science

153

from the University of Wisconsin. Mr. Murphy
joined I BM in 1967 and has been involved
with language implementation on System 3,
5100 Series, and 5280. Currently he serves
as lead programmer for the usability package.

Khoa D. Nguyen

Engineering Systems Products, Austin, Texas

Mr. Nguyen is an advisory engineer in the
system design department of the AESD
group, where he worked on the design of the
virtual terminal subsystem. He joined the IBM
Office Products Division at Austin, TX in 1975
and worked on hardware and software
projects related to OS/6, ROMP, and
Displaywriter. He received a BS degree in
Electrical Engineering and Computer Sciences
from the University of California at Berkeley in
1974 and a MS degree in Electrical
Engineering from the University of Texas at
Austin in 1980.

Jack E. Olson

Engineering Systems Products, Austin, Texas

Jack Olson is a senior programmer with the
Advanced Strategic Products Development
Group in ESD. He joined IBM as an associate
programmer in 1969 at the Application
Development Center in Des Plaines, I L.
Before coming to Austin he was in the DB/DC
Development Group in the Santa Teresa
Laboratory where he worked on the CICS and
IMS projects. In Austin he was a member of
the 5520 Administrative System development
team before joining the RT PC development
group. He holds a BS in Mathematics from
the Illinois Institute of Technology and an
MBA in Operations Research from
Northwestern University.

154

John C. O'Quin

Engineering Systems Products, Austin, Texas

Jack O'Quin joined IBM in 1977, after
receiving a BA in Computer Science from the
University of Texas at Austin. He began doing
operating system work while employed by the
University Computation Center. Prior to
joining the RT PC project, he worked on the
IBM 5520 operating system. After assisting in
the initial bringup of the RT PC prototype
hardware, he worked at improving the code
produced by the C compiler. This led to
redefining the subroutine linkage interface. He
also was active in developing the virtual
memory paging supervisor in the VRM.

John T. O'Quin

Engineering Systems Products, Austin, Texas

Mr. O'Quin is an advisory programmer who
has been working on the design and
implementation of the VRM since 1982. He
joined IBM in 1977 in Austin, TX after
receiving a MSEE degree from Georgia Tech.

Mukesh P. Patei

Engineering Systems Products, Austin, Texas

Mr. Patel received his MSEE degree from
Utah State University in June 1966 and joined
the General Electric Company in Lynchburg,
VA, in the Communication Division. In June
1968 he joined IBM in East Fishkill, NY where
he worked on bipolar device characterization
and modeling. He transferred to Manassas,
VA in 1971, where he worked on a variety of
bipolar and FET circuit designs and chip
design systems. He continued to work in this
area until his transfer to Austin, TX in 1978.
He has been a key member of the design
team on the ROMP and MMU chip designs

and has defined the design system and
methodology and directed their
implementation. He is a senior engineer
in the Advanced Microprocessor Development
Function.

P. T. Patel

Engineering Systems Products, Austin, Texas

Mr. Patel joined IBM in Manassas, VA in June
1973 upon receiving a MSEE degree from the
University of Connecticut. He worked in
various bipolar circuit design activities in
Manassas. He transferred to Burlington in
1978 where he worked in the 1(2)L circuit
technology. He transferred to Austin in 1980
and has worked in the area of VLSI design.
He has been the lead designer on the
memory management chip and made
numerous contributions to the design
methodology. He is currently an advisory
engineer in the Advanced Microprocessor
Development Function.

Sheldon L. Phelps

Engineering Systems Products, Austin, Texas

Mr. Phelps is a staff engineer in Advanced
Engineering Systems Development with
RT PC System Architecture. His primary work
on RT PC is on the I/O Channel Architecture.
He joined IBM in 1969 at San Jose working
on the System/3 file system. In 1972 he
moved to Rochester, MN Development
Laboratory to work on processor
development for the 3657 Ticket Unit. Mr.
Phelps received his BSME from Los Angeles
State College in 1961 and his MSEE from the
University of California at Santa Barbara in
1969. Prior to working for IBM, he worked for
the Naval Civil Engineering Laboratory at Port
Hueneme, CA.

Mark D. Rogers

Engineering Systems Products, Austin, Texas

Mark Rogers joined IBM in 1982 after
receiving a BA in Computer Science from the
University of Texas at Austin. He is a senior
associate programmer in the Advanced
Engineering Systems Development group. On
the IBM RT PC he has been involved in the
design and implementation of the VRM Virtual
Memory Manager.

Ron Rowland

Engineering Systems Products, Austin, Texas

Mr. Rowland, a staff engineer, received a
BSEE degree from the University of Cincinnati
(1978) and attended graduate classes at the
Electrical Engineering department of the
University of Texas at Austin. Prior to his
present position in memory systems
development for the RT PC, he had worked
on communication controllers for the IBM
5520 Administrative System, memory systems
for the IBM System/36, and memory systems
for the IBM Displaywriter. He has authored
papers on design for testability, gate array
design methodologies, and on various
aspects of memory systems design.

Charles H. Sauer

Engineering Systems Products, Austin, Texas

Dr. Sauer received his BA in mathematics and
PhD in computer sciences from the University
of Texas at Austin in 1970 and 1975,
respectively. He joined IBM at the Thomas J.
Watson Research Center in 1975. From 1977
to 1979 he was an Assistant Professor of
Computer Sciences at the University of Texas
at Austin. In 1979 he returned to the Watson

Research Center and in 1982 transferred to
the IBM Communications Products Division
laboratory in Austin, TX. Currently he is
Manager of System Architecture for the IBM
RT PC. Dr. Sauer has published three
textbooks, Computer System Performance
Modeling, co-authored by K. M. Chandy,
Simulation of Computer Communication
Systems, co-authored by E.A. MacNair, and
Elements of Practical Performance Modeling,
co-authored by E.A. MacNair. He has
received an IBM Outstanding Innovation
Award for creation and basic design of the
Research Queueing Package (RESQ). Dr.
Sauer is a member of the Association for
Computing Machinery.

Martin S. Schmookler

Engineering Systems Products, Austin, Texas

Dr. Schmookler, who is a member of the
Microprocessor Development group in Austin,
joined IBM in 1956 at the Poughkeepsie, NY
laboratory. There he worked on the designs
of many large systems, including Stretch,
7074, 7094, System/360 Models 91 and 195,
3033, and the 3081. He received a BSEE from
Pennsylvania State University in 1956, an
MSEE from Syracuse University in 1964, and
a PhD from Princeton University in 1969
through the IBM Resident Study Fellowship
program. In 1976, he was a Visiting Associate
Professor in the Computer Sciences
department at the University of Texas at
Austin, where he is currently an adjunct
associate professor. Dr. Schmookler has
received two I BM Invention Achievement
awards, and is a member of Tau Beta Pi, Pi
Mu Epsilon, Eta Kappa Nu, and the Institute
of Electrical and Electronics Engineers.

Ed Seewann

Engineering Systems Products, Austin, Texas

Mr. Seewann joined IBM in Austin in 1969
after receiving an MEE degree from Rice
University. He has had numerous circuit
design responsibilities and his development
work includes circuit designs for the Mag
Card I, Mag Card II, and System/6. He is
currently an advisory engineer in the
Advanced Microprocessor Development
Function.

Richard O. Simpson

Engineering Systems Products, Austin, Texas

Richard Simpson is a senior programmer in
the Advanced Microprocessor Development
department of IBM's Engineering Systems
Products group, working on ROMP
architecture. He joined IBM in 1969 and has
worked in several IBM divisions on various
projects, including J ES2 and the 5520
Administrative System. He has been involved
with ROMP architecture since 1981. He holds
BA and MEE degrees from Rice University
and is pursuing studies for a PhD in
Computer Science at the University of Texas
at Austin.

Scott M. Smith

Engineering Systems Products, Austin, Texas

Mr. Smith joined I BM in Austin in 1978
working in test tool development for the
Systems Assurance function and became
manager of test tool development in 1980. In
1983 he transferred to Advanced Engineering
Systems Products Development, where he
has been involved with floating point
accelerators. He received a BSEE from the

155

University of Texas at Austin in 1969 and an
MSEE from the University of Maryland­
College Park in 1972. Prior work experience
includes Texas Instruments Incorporated and
the University of Texas Applied Research
Laboratories. Mr. Smith is a member of Tau
Beta Pi, Eta Kappa Nu, and the IEEE
Computer Society.

T.A. Smith

Engineering Systems Products, Austin, Texas

Todd Smith is a staff programmer. He joined
IBM at Austin in 1984. He received a BS in
Mathematics and a BS in Electrical
Engineering from MIT and an MS in Computer
Science from SMU. He is a member of the
RT PC Architecture department and worked
on the design of the Virtual Memory Manager
and other VRM components.

Joe C. St. Clair

Engineering Systems Products, Austin, Texas

Mr. St. Clair is an advisory engineer in
Display Subsystem Development. He has
been working in the area of display adapter
design since 1980. He joined IBM in 1976
after receiving a MS degree from the
University of Illinois at Urbana-Champaign. In
1971 he received a BSEE degree from the
University of Texas at Austin. He is a member
of IEEE, ACM, Eta Kappa Nu, and Tau Beta
Pi.

Lee Terrell

Engineering Systems Products, Austin, Texas

Lee Terrell is an advisory engineer in the
Advanced Engineering Systems Development
group. He joined IBM in 1974 after receiving a

156

BS degree in Electrical Engineering from the
University of Texas at Austin. He was
technical lead programmer in the AIX
Configuration group for the RT PC.

Abraham Torres

Engineering Systems Products, Austin, Texas

Mr. Torres is an advisory engineer working in
the Advanced Microprocessor Design group.
He joined IBM in 1973 after receiving a BS
degree in Electrical Engineering from the
University of Texas at EI Paso and has done
graduate work at the University of Texas at
Austin. He worked in MOSFET circuit design
and in the Design Automation group
supporting Austin's development lab. In 1978,
he joined the ROMP group and worked on the
logic design of ROM P. He also had
responsibility for the ROMP design
methodology and testing.

John D. Upton

Engineering Systems Products, Austin, Texas

Mr. Upton is an advisory engineer in the Full
Function CPU development area of the
Advanced Engineering Systems Development
group. He received his BS in Physics in 1971
and a BS in Electrical Engineering in 1977
from Lamar University. He joined IBM in 1977
at Boulder, CO and moved to Austin in 1980.
He has been involved in the areas of logic
design, simulation, and testing on several
microprocessor-based IBM products. He
joined the RT PC development group as
design team leader for the 6151 system
board. He later assumed design responsibility
for the 6150 system board as well.

Dick Verburg

Engineering Systems Products, Austin, Texas

Mr. Verburg is a staff programmer. He
received bachelor's degrees in Marketing and
Computer Science from Michigan
Technological University. Mr. Verburg joined
IBM in 1978 and has been involved with
language implementation on the 5280.
Currently he serves as lead programmer for
the dialog manager.

Donald E. Waldecker

Engineering Systems Products, Austin, Texas

Mr. Waldecker is a senior engineer and
manager of Microprocessor Development. He
joined IBM in 1961 in the Federal Systems
Division, Owego, NY and transferred to Austin
in 1978. Since then he has been involved in
the management of ROMP/MMU chip
development and system related application
of these chips. While in Owego, he worked on
development and management of numerous
militarized computers, data links, and
computer system integration activities. Mr.
VValdecker has a BSEE from the University of
Missouri - Rolla, and a MSEE from
Syracuse University. He is a member of Tau
Beta Pi, Eta Kappa Nu, and Phi Kappa Phi.

Frank C.H. Waters

Engineering Systems Products, Austin, Texas

Mr. Waters joined IBM in 1962 after
graduating from Oklahoma State University
with a BS in Physics. He has worked as a
technical writer, programmer, and
programming manager on projects such as
the 7040/7044, OS/360 Release 1,
TERMTEXT, OSjVS1 and VS2, VSAM, 3850

Mass Storage System, 8100 Data Base and
Transaction Management System, and AIX
user interface design. Mr. Waters is currently
an advisory programmer on educational leave
of absence from IBM to pursue graduate
studies in the cognitive and social
psychological aspects of the human use of
computers.

T. G. (Tom) Whiteside

Engineering Systems Products, Austin, Texas

Mr. Whiteside is currently manager of AESD
Memory Management Design, with
responsibility for both the ROMP and MMU
chips. He joined IBM in 1982 and worked on
the ROMP project for about a year. He then
participated in the RT PC product definition
as a member of AESD Hardware Architecture
until his return to the ROMP area in 1984. Mr.
Whiteside received a BS degree in Electrical
Engineering from the University of Texas at
Austin in 1975. Prior to joining IBM, Mr.
Whiteside worked at the Motorola
Government Electronics Division from 1975 to
1981 and the Motorola MOS Division
Microprocessor Design Group from 1981 to
1982.

Kenneth G. Wilcox

Engineering Systems Products, Austin, Texas

Mr. Wilcox joined IBM in 1957 in Owego, NY
where he worked on test and design of
Federal Systems Division computers and
computer systems for projects such as
TITAN, SATURN missiles, and F15 and A7
aircraft. For the past two years he has been
the development engineer for the RT PC
processor card. He graduated from DeVry
Technical Institute in 1954 and has taken
undergraduate courses at the University of
New York and the University of Texas.

C. Edward Williams

Engineering Systems Products, Austin, Texas

Mr. Williams is a staff engineer for IBM. He is
currently a technical member of the team
developing expert system diagnostics for a
personal workstation. Mr. Williams attended
Atlantic Christian College in Wilson, North
Carolina. He was on the 5258 Ink Jet Printer
Development team and the Displaywriter
Diagnostics Development team. He has won
three Informal awards and one IBM Means
Service award.

Peter Y. Woon

Engineering Systems Products, Austin, Texas

Dr. Woon received his BS in Physics from the
University of Toronto, MS in Mathematics
from the University of Waterloo, and PhD in
Computer Science from New York University.
He joined IBM in 1962 as a programmer in
the New York Programming Center, and has
since worked in research and development
divisions in areas such as languages,
compilers, operating systems, computer
architecture, and advanced software
technology. He was manager of OPD Austin
Architecture, and then manager of Advanced
Microprocessor Software Architecture and
Tools. At present, he is manager of Software
Technology at the IBM Japan Science
Institute in Tokyo. Dr. Woon is a member of
Tau Beta Pi and Eta Kappa N u.

C. G. (Chuck) Wright

Engineering Systems Products, Austin, Texas

Mr. Wright, an advisory engineer in the
Advanced Microprocessor Development
group in Austin, received a BS degree from
Trinity University in 1974, and an MS in

Electrical Engineering from Texas A & M
University in 1975. For the past several years
he has worked in the microprocessor design
area, mostly in the design of the bus interface
portions of various LSI designs.

George M. Yanker

Engineering Systems Products, Austin, Texas

Mr. Yanker worked as an advisory engineer
on the RT PC, first in the Development
Engineering group and then as manufacturing
engineering's design-for-robotics coordinator
between development and manufacturing
engineering. He joined IBM in 1964 with a BS
degree in Mechanical Engineering from the
University of Arkansas and received an MS
degree in Engineering Mechanics from the
University of Kentucky in 1968. His past
assignments were in the development and
design of Austin's Mag Card I, Mag Card II,
Office System 6, and Displaywriter. He
received an Outstanding Contribution Award
in 1973 for design work on the Mag Card II
and he received an IBM Invention
Achievement Award in 1985.

157

p

-~------- - ------- ~ ---- - - ----==-=':'=®

International Business Machines Corporation

Engineering Systems Products
Independent Business Unit
472 Wheelers Farms Road
Milford, CT 06460

SA23-1057
Printed in U.S.A.

-

\

SA23-1057-00

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	xBack

