IBM RT PC

VS FORTRAN Reference Manual

Programming Family

Personal

Computer
Software SH23-0130

IBM RT PC

VS FORTRAN Reference Manual

- Programming Family

Personal
Computer
Software

First Edition (March 1987)

The information in this manual applies to Version 1 of IBM RT PC VS FORTRAN for use with Release 2.1 of the AIX
Operating System; and it applies to all subsequent releases and modifications until otherwise indicated in new editions or
Technical Newsletters.

Changes are made periodically to the information herein; these changes will be incorporated in new editions of this publica-
tion.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these avail-
able in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended
to state or imply that only IBM’s program product may be used. Any functionally equivalent program may be used instead.
International Business Machines Corporation provides this manual ""as is'' without warranty of any kind, either express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this manual at any time.

Requests for copies of this product and for technical information about the system should be made to your authorized IBM
RT PC dealer.

A reader’s comment form is provided at the back of this publication. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

©IBM Corporation 1987
®RT PC is a trademark of IBM Corporation

®AIX is a trademark of IBM Corporation

Preface

This reference manual contains a formal description of the FORTRAN 77
programming language as implemented in IBM RT PC VS FORTRAN.
Enhancements to FORTRAN 77 are highlighted in blue. IBM RT PC VS
FORTRAN is for use on an IBM RT Personal Computer (RT PC!?) oper-
ating on the AIX? Operating System.

The procedures for compiling and running FORTRAN programs using IBM
RT PC VS FORTRAN are described in the RT PC VS FORTRAN User’s
Guide.

Note: The symbol "4 or "'<>"" in a section title indicates that related
information specific to R1 or VX mode, respectively, is described under the
same heading at the end of the chapter. Modes are described in

Chapter 1, “Introduction.”

Contents:

Chapter 1 — "Introduction' gives a general overview of RT PC VS
FORTRAN and introduces the terms and concepts of the language.

Chapter 2 — ""Characters, Lines, Statements, and Execution Sequence"
describes the RT PC VS FORTRAN character set, types of lines, types of
statements, and the execution sequence.

Chapter 3 — "Data Types and Constants'' describes the data types and the
kinds of constants used in RT PC VS FORTRAN.

1 RT PC is a trademark of IBM Corporation

2 AIX is a trademark of IBM Corporation

Preface iii

iv FORTRAN Reference

Chapter 4 — '"Names, Arrays, and Substrings" includes rules for naming
variables and constants, how to define and reference arrays, and a
description of character variables and character substrings.

Chapter 5 — "Expressions' describes the four types of expressions used in
statements.
Chapter 6 — ''Assignment Statements'' describes the four types of assign-

ment statements.

Chapter 7 — "'Specification Statements'' describes the various types of
specification statements.

Chapter 8 — ""Control Statements'' describes the various types of control
statements.
Chapter 9 — ""Program and Subprogram Structure'' describes the structure

of RT PC VS FORTRAN programs in terms of program units, which
include the main program and three types of subprograms.

Chapter 10 — "Input and Output'' describes the main features of input and
output in RT PC VS FORTRAN, including the file system and the various
input/output statements.

Chapter 11 — "Format Specifications' describes formatted input/output
and the FORMAT statements available in RT PC VS FORTRAN.

Appendix A — "Intrinsic Functions'' contains a table of FORTRAN
intrinsic functions, which are "built-in" functions that perform mathemat-
ical computations, bit-manipulation routines, and nonstandard library rou-
tines.

Appendix B — "Information for the FORTRAN 66 Programmer" contains
information to assist the FORTRAN 66 programmer in using FORTRAN
77.

Related Publications

You may want to refer to the following IBM RT PC publications for addi-
tional information:

« VS FORTRAN User’s Guide, SH23-0129, describes the procedures for
compiling and running RT PC VS FORTRAN programs under the AIX
Operating System.

e VS Pascal User’s Guide, SH23-0127, describes the procedures for com-
piling and running RT PC VS Pascal programs under the AIX Operating
System.

o VS Pascal Reference Manual, SH23-0128, describes the Pascal pro-
gramming language as implemented on the RT PC.

e VS Language/Operating System Interface Library, SH23-0131, describes
the system routines that can be called from FORTRAN and Pascal pro-
grams.

o Concepts, GC23-0784, gives an overview of the RT PC hardware, the
AIX Operating System, and supporting publications.

o Installing and Customizing the AIX Operating System, SV21-8001, pro-
vides step-by-step instructions for installing and customizing the AIX
Operating System, including instructions for adding devices to and
deleting them from the system and for defining device characteristics.
This book also explains how to create, delete, and change AIX and
non-AIX minidisks.

o Messages Reference, SV21-8002, lists messages displayed by the RT PC
and explains how to respond to the messages.

o Usability Services Guide and Usability Services Reference, SV21-8003,
show how to create and print text files, work with directories, start
application programs, and do other basic tasks.

o Using and Managing the AIX Operating System, SV21-8004, contains

information on using AIX Operating System commands, working with
the file system, developing shell procedures, and performing such

Preface Vv

vi

FORTRAN Reference

system-management tasks as creating and mounting file systems,
backing up the system, and repairing file-system damage.

e AIX Operating System Commands Reference, SV21-8005, lists and
describes the AIX Operating System commands.

« C Language Guide and Reference, SV21-8008, provides information for
writing, compiling, and running C language programs.

o AIX Operating System Technical Reference, SV21-8009, describes the
system calls and subroutines a programmer would use to write applica-
tion programs. This book also provides information about the AIX
Operating System file system, special files, miscellaneous files, and the
writing of device drivers.

o AIX Operating System Programming Tools and Interfaces, SV21-8010,
describes the programming environment of the AIX Operating System
and includes information about the use of operating system tools to
develop, compile, and debug programs.

o AIX Operating System DOS Services Reference, SV21-8012, provides
step-by-step information for using the AIX Operating System shell. In
addition, this book describes the DOS system services.

o User Setup Guide, SV21-8020, provides instructions for setting up and
connecting devices to system units. It also gives procedures for
installing the AIX Operating System and for testing the setup.

o Guide to Operations, SV21-8021, describes system units, displays,
console keyboard, and other devices that can be attached to the RT PC.
This guide also includes procedures for operating the hardware and for
moving system units.

e Problem Determination Guide, SV21-8022, provides instructions for
running diagnostic routines for hardware and problem-determination
procedures for software.

You may also want to consult the IBM RT PC FORTRAN 77 Version 1.1
publications.

Contents

Chapter 1. Introductioncitiiieeiiveerernnsaeroanens 1-1
Methods of Presentationccuiiiniiinnnnnn.. 1-3
Terms and Conceptsccvviii ittt 1-4

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-1
Character Set 9 < e 2-1
Lines 4 < .. o e 2-3

Comment Lines 4 <>0 iiiiirirenennn.. 2-4
Initial Lines of Statements vuun.... 2-5
Continuation Lines 49 < iiitiiininan.. 2-6
Compiler-Directive Lines v..... 2-7
Statements € <> ... 2-7
Statement Labels 2-11
Order of Statements 9 <>t 2-11
Normal Execution Sequence and Control Transfer ¢ < 2-13
R1 Mode Specificsot e 2-15
VX Mode Specifics ... e e 2-17

Chapter 3. Data Typesand Constantsccovveeeenoessasss 3-1
DataTypeRules 3-1
Integer Data Typettt ittt 3-2
RealDataTypeo i i 3-3
Double-Precision Data Type, 3-5
Complex Data Type € % ittt 3-6
Character Data Type 9ttt 3-7
Logical Data Type 4 < ittt 3-8
Constants 9 < e 3-8

Hollerith Constants <c.ourirrrnrenennnnn. 3-8
Hexadecimal Constants 4 <co..u.. 3-9
R1 Mode Specifics i i e 3-11
VX Mode Specificst e 3-14

Chapter 4. Names, Arrays, and Substringsco0eetveeneses 4-1

Names 9 @ oo e 4-1
Scope and Definition Status 4-2

Contents Vil

Array Declarations 4 4-4

Dimension Declarationsc.c e, 4-4
Kinds of Array Declarations 4-5
Actual Array and Dummy Array Declarations 4-6
Referencing Array Elements — Array Subscripts 4-7
Array Storage Sequenceciiiiiiiiaa.a, 4-8
Using Unsubscripted Array Nameso..... 4-9
Character Substrings <c.iiiiririennnnn. 4-10
R1 Mode Specificso 4-12
VX Mode Specifics ... vvviiii e e e 4-13
Chapter 5. EXpressionsc.ceetiiteeenenennnononnnens 5-1
Arithmetic BXpressions <> ...t 5-1
Arithmetic Operatorsttt 5-1
Arithmetic Operands iiiiieennnn. 5-2
Constant EXpressionsceeeeeenennennnnnn. 5-3
Data Type Conversion Rules for Arithmetic Expressions 4 < 5-4
Data Type Conversion Rules for Integers of Different Size 5-8
Integer Division ittt 5-9
Character EXPressionsueueieeenerennnnnnnnnnans 5-9
Relational EXpressionscouiiineenteennnn. 5-11
Arithmetic Relational Expressions 5-12
Character Relational Expressions 5-13
Logical EXpressions <c..iuiireininnnnnnannn. 5-13
Precedence of Operatorsc.oviieiiineeennnenn, 5-15
Expression Programming Errors 5-15
R1 Mode Specifics it 5-17
VX Mode Specificsovviiiii i e e 5-18
Chapter 6. Assignment Statementscctiiieeerennnns 6-1
Arithmetic Assignment Statements 4 < 6-1
Logical Assignment Statements <>0.u.... 6-3
Statement Label (ASSIGN) Assignment Statements 6-4
Character Assignment Statements 6-5
R1 Mode Specifics oot 6-8
VX Mode Specificsttt e 6-9
Chapter 7. Specification Statementsccieeeeeerecanas 7-1
Type Statements — Declaring Data Types 4 7-1
Arithmetic Type Statements 4 7-2
Character Type Statements 4 < 7-3

viii FORTRAN Reference

Logical Type Statements 4 < 7-5
DIMENSION Statements — Declaring Array Dimensions 4 < . 7-6
COMMON Statements — Declaring Common Blocks 4 <> 7-7
DATA Statements — Declaring Initial Values 4 <> 7-9

Implied DO Loops in DATA Statements 7-12
PARAMETER Statements — Making Symbolic Associations 4

o O P 7-14

IMPLICIT Statements — Assigning Default Data Types 4 <> .. 7-15
EXTERNAL Statements — Declaring External or Dummy

Procedures 7-16
INTRINSIC Statements — Declaring Intrinsic Functions 7-18
SAVE Statements — Retaining Definition Status 7-19
EQUIVALENCE Statements — Sharing Storage Between

Elements € <> 7-21
NAMELIST Statements — Specifying Names 4 < 7-23
R1 Mode Specifics 7-25
VX Mode Specifics ... 7-30

Chapter 8. Control Statementscceeeuveeeenonnaeeans 8-1
Block IF-THEN-ELSE Statement Group 8-1
Block IF Statements F 8-4
ELSEIF Statementsc.ouiuiiuiieennneennn.. 8-5
ELSE Statementsueeinetenennnennnnnnnn 8-5
ENDIF Statementsceuietnnerennennnnnnnn 8-6
Sample Block IF-THEN-ELSE Program 8-6
Logical IF Statementscutteiitenerennnnnnnn 8-8
Arithmetic IF Statements 8-9
DO Statements — Loop Control < 8-10
CONTINUE Statementscouiuuneernnnnnnnn... 8-14
STOP Statementsc.ueiiiiurnernnnnnnnn... 8-14
PAUSE Statementsttt innnnnn.. 8-15
Unconditional GOTO Statements 8-16
Assigned GOTO Statements0iiiuneren.nn. 8-18
Computed GOTO Statements <>ccovvuenrnn.. 8-19
END Statements ittt 8-22
VX Mode Specifics 8-23
Chapter 9. Program and Subprogram Structure 9-1
Main Programs and PROGRAM Statements 9-1
Dummy and Actual Arguments — Passing Values 4 < 9-2
Subroutine Subprograms i 9-7

Contents X

SUBROUTINE Statementscouuoivneunennenns 9-7

CALL Statements 9c.uuiuiiernrnennn. ... 99
Sample Subroutine Subprogram 9-10
Functions i e e e 9-11
Function Subprograms and FUNCTION Statements 4 <> .. 9-12
Intrinsic Functions it nnnnn 9-14
Statement Functions 9-15
ENTRY Statementsc.oeiiieeeiinnnnnnneen.. 9-18
RETURN Statements 4 <ccovriiirerninenn... 9-21
Definition Status i e 9-23
Block Data Subprograms and BLOCK DATA Statements 9-25
R1 Mode Specificsvvvii it i e e 9-27
VX Mode Specificsccoiiiiiii i 9-28
Chapter 10. Inputand Outputcc0iiiinrennonesaneans 10-1
Concepts of FORTRAN Input and Output 10-1
External Files, 10-2
Internal Files 4 <t 10-5
Units <> .o 10-7
Sample Input/Output Program 10-8
Parameters of Input/Output Statements <> 10-9
Unit Specifiers i 10-9
Format Specifiers 4 10-10
Record Number Specifiers < 10-11
End-of-File Exit Specifiers 10-11
Error Exit Specifiers 10-12
Input/Output Status Specifiers 10-12
Input/Output Lists <t 10-13
Input/Output Statements <courierernen... 10-15
OPEN Statements 4 < ..., 10-15
CLOSE Statementscouiieiiunnnnnnnenens 10-18
READ, WRITE, and PRINT Statements 10-20
BACKSPACE, ENDFILE, and REWIND Statements —
Positioning Files 10-39
INQUIRE Statements — Obtaining File Properties 10-42
R1 Mode Specifics i i 10-47
VX Mode Specifics 10-49
Chapter 11. Format Specificationsccoiviuinereiaeaes 11-1
Overview of FORMAT Statements 4 11-1
Interactions Between Format Lists and Input/Output Lists 11-4

X FORTRAN Reference

Edit-Descriptorsc.viiiii it 11-6

Repeatable Edit-Descriptors <>cvvnvnnn.. 11-6
Nonrepeatable Edit-Descriptors 49 < 11-20

R1 Mode Specificsc.c i i 11-31
VX Mode Specificsciiiii i 11-33
Appendix A. Intrinsic Functions 0 i A-1
IBM Mode Intrinsic Functions A-1

R1 Mode Intrinsic Functions, A-8
VX Mode Intrinsic Functions, A-13
NOteS .o e e e e e A-22
Appendix B. Information for the FORTRAN 66 Programmer B-1
Using FORTRAN 77 CharacterData B-1
Character Variablescciitiinuennneannn B-2
Character Constantsccevuueemueennennnn B-2
Character Substrings, e B-4
Initializing Character Variables B-5

The Concatenation Operatorccvvuuu... B-6
Character Intrinsic Functions B-6
Sample Program Using Character Data B-10

Migrating FORTRAN 66 Programs to RT PC VS FORTRAN .. B-14

Contents Xi

Xii FORTRAN Reference

Chapter 1. Introduction

IBM RT PC VS FORTRAN is an easy-to-use, high-level programming lan-
guage for the RT Personal Computer. It compiles source code in
FORTRAN as defined by IBM VS FORTRAN Version 2, IBM RT PC
FORTRAN 77 Version 1.1, ANSI Standard FORTRAN 77, and VAX!
FORTRAN Version 3.

In addition to excellent performance, IBM RT PC VS FORTRAN offers
these enhanced functions:

Automated installation

Source compatibility with IBM VS FORTRAN Version 22
Source compatibility with IBM RT PC FORTRAN 77 Version 1.1?
Source compatibility with ANSI Standard FORTRAN 77
Source compatibility with VAX FORTRAN Version 32
Optimized executable code

Excellent compile-time performance

An operating system interface library

No significant limit on program size

No significant limit on data size

Separate unit compilation

Access to command-line options

Common development/debugging environment

Detailed screen messages

Easy inter-language linkages with Pascal and C.

You may select one of four compiler modes: IBM mode, R1 mode, AN
mode, or VX mode. You may work in the mode you need or with which
you are most familiar.

1

2

Trademark of Digital Equipment Corporation

See the RT PC VS FORTRAN User’s Guide for limitations.

Chapter 1. Introduction 1-1

1-2 FORTRAN Reference

IBM Mode

This is the default mode of the compiler, and it allows you to compile
code written in IBM VS FORTRAN Version 2 (see the RT PC VS
FORTRAN User’s Guide for limitations).

You may develop and run IBM mode programs entirely on the RT PC.
As a cost-effective development tool, you may develop and run IBM
mode programs on an independent RT PC workstation and then move
the programs to a mainframe that uses VS FORTRAN Version 2.

You may also take programs written in IBM VS FORTRAN Version 2
from a mainframe and run them on your RT PC.

IBM mode contains all of the ANSI Standard FORTRAN 77 facilities;
you may use ANSI Standard FORTRAN 77 code in IBM mode, and can
improve it using IBM mode enhancements.

R1 Mode

This mode allows you to compile code written in IBM RT PC
FORTRAN 77 Version 1.1 (see the RT PC VS FORTRAN User’s Guide
for limitations). You can take code written in this version of
FORTRAN and recompile it in IBM RT PC VS FORTRAN in order to
take advantage of its improvements and additional features.

AN Mode

This mode allows you to compile code written in ANSI Standard
FORTRAN 77. Code that is to adhere to this definition of FORTRAN
can be compiled in this mode; during program compilation, you are
warned when any extension to this definition is used.

VX Mode

This mode allows you to compile code written in VAX FORTRAN
Version 3 (see the RT PC VS FORTRAN User’s Guide for limitations).
You may take programs written in VAX FORTRAN Version 3 and run
them on your RT PC.

An additional advantage of IBM RT PC VS FORTRAN is that you have the
ability to mix modes in creating an executable program. However, each sep-
arate unit compilation may use only a single mode.

You should note that some programs may produce different results when
run on the RT PC compared to other machines because of differences in
machine architecture, operating systems, or compiler implementations.
These differences, along with the limitations of each mode, are noted in the
RT PC VS FORTRAN User’s Guide.

Methods of Presentation

In this manual:

« [Italicized letters and words represent variables, for which user-supplied
information is substituted. For example, the form of an integer edit-
descriptor is Iw, in which w is a nonzero unsigned integer constant. In
an actual FORMAT statement, the specification might be I5 or 121.

o Brackets ([]) indicate that an item is optional. For example, the
form of a unit specifier is "'[UNIT =] u'. In an actual input/output
statement, the UNIT= keyword could be either used or omitted.

« An ellipsis (...) indicates that the preceding specification can, optionally,
be repeated. For example, the form of an INTRINSIC statement is
"INTRINSIC name [, name] ...", in which name is an intrinsic func-
tion name. An actual INTRINSIC statement could be coded as
"INTRINSIC SIN" or "INTRINSIC SIN, COS" or "INTRINSIC SIN,
COS, TAN" as needed.

« All other words, letters, and symbols are to be coded as shown.
o The general rule in FORTRAN for spaces (blanks) is that they have no
significance in statements, and are used to improve readability. Space

and blank are synonymous in this manual.

« The phrase "FORTRAN 66" refers to ANSI Standard FORTRAN 66.

Chapter 1. Introduction 1-3

« The phrase "FORTRAN 77" refers to ANSI Standard FORTRAN 77.
« Blue type indicates an enhancement to ANSI Standard FORTRAN 77.
« The symbol "4'" or "<>" in a section title indicates that related infor-

mation specific to R1 or VX mode, respectively, is described under the
same heading at the end of the chapter.

Terms and Concepts

1-4 FORTRAN Reference

A FORTRAN program is composed of characters that are grouped into
lines. These lines are grouped into program units, which make up a
program.

Lines consist of up to 72 characters. The first character of a line is consid-
ered to be in column 1, the second in column 2, and so on. The column
position of characters in a line is often significant, especially with fixed-
form input. Fixed-form input needs to be entered according to a predefined
format, while free-form input (available in IBM mode) permits greater
freedom in arranging input text of a program. A line can be a comment line,
an initial line of a statement, or a continuation line of a statement.

"Comment lines' are lines of text that may be helpful in reviewing source
program listings. They have no effect other than to be reproduced in
program listings.

The "initial line'"" of a statement is the statement’s first line, which may
contain a statement label. A "statement label' tags a statement so that it
can be referenced by other statements.

"Continuation lines" are used to continue a statement beyond its initial line.
This may be done because a statement consists of more characters than will
fit onto a single line, or may be done just to improve readability of a source

program.

Data objects include constants and variables. A "constant' is a string of
digits or other characters defining a value that does not change. A ''vari-
able' can have its value changed during program execution.

Variables and constants can have both a name and a data type. The
"name' identifies that data object in a program. The ''data type" of a data
object defines its structural characteristics, features, and properties, such as
the amount of storage it occupies, its range and precision, and in some cases
the operations that can be performed on it. FORTRAN names can use
default data types derived from a naming convention or the default can be
overridden by explicit specifications.

A variable can be a single data object or an aggregate data object. There
are two types of aggregate data objects — array variables and character
variables. An "array variable' is a collection of data occupying consecutive
storage units and can have multiple dimensions. A 'character variable"
represents string data and is a sequence of characters that can be accessed
individually or collectively by a substring reference.

A variable can be given more than one name by a process of "association'".
There are several ways to associate names. The COMMON statement can
be used to associate names among separate program units. The EQUIV-
ALENCE statement can associate names in the same program unit. Vari-
able names can also be associated through the argument-passing mechanism
when functions or subroutine subprograms are referenced.

Names of variables have a "scope'', which is the portion of a program in
which the name is known or can be referenced. In general, a variable name
has a scope that is local to the program unit in which it is defined.
However, a main program name and subroutine and function subprogram
names have a global scope. Names of variables in a common area are local
to the program unit in which they are declared; the name of the common
area itself has a global scope. Dummy arguments to a statement function
have a scope that is local to statement function definition.

"Expressions" in statements combine data objects and operators to create
new values. FORTRAN supports arithmetic, character, logical, and rela-
tional expressions. Mixed-type expressions are also permitted with well-
defined rules for conversions between operands and for generation of
results.

Chapter 1. Introduction 1-5

1-6 FORTRAN Reference

Statements may be categorized as either executable or nonexecutable.
"Executable statements' specify action to be taken by a program; for
example, assigning values to variables, evaluating expressions, affecting flow
of execution, and performing data transmission. ''Nonexecutable state-
ments" describe the use or extent of the program unit, the characteristics of
the data objects, data management, editing information, and statement
functions.

"Specification statements' are nonexecutable statements that declare vari-
ables and symbolic constants. These include the type statements, which
define the data types of variables; the DIMENSION statement, which
defines the size of array variables; the COMMON and EQUIVALENCE
statements, which associate variables; the PARAMETER statement, which
gives a symbolic name to a constant; the EXTERNAL and INTRINSIC
statements, which define attributes of other program units; and the DATA
statement, which sets the starting value of data.

" Assignment statements'' are executable statements that assign values to
variables. The four types of assignment statements are arithmetic, char-
acter, logical, and statement label (ASSIGN) assignment statements. The
ASSIGN statement assigns the value of a statement label or format label to
an integer variable.

"Control statements'' are executable statements that control the execution
of a program, and include the IF, DO, CALL, RETURN, and GOTO state-
ments, among others. The IF statement is conditional; it specifies a logical
or arithmetic expression to be tested and the action to be taken depending
on the result. The DO statement is used in a DO loop for repetitive exe-
cution of the same statement or statements. The CALL and RETURN
statements are used for the execution of subroutine and function subpro-
grams. Several forms of the GOTO statement are used for transfer of
control within a program unit.

"Input/output statements'' are executable statements that are used in trans-
ferring data between main storage and files and devices, and include the
READ, WRITE, and PRINT statements, among others. The READ state-
ment retrieves data from files and devices, and the WRITE and PRINT
statements output data to files and devices.

A "statement function definition" is a single statement in a program unit
containing an operation on dummy arguments. A '"statement function ref-
erence'' in the same program unit contains actual arguments and refers to

the statement function definition. The actual arguments are combined
according to the statement function definition to yield a result that can be
used in an expression.

Program units make up a FORTRAN program and include the main program
and any number of subprograms. Subprograms fall into three categories:
subroutine, function, and block data subprograms.

A "subroutine subprogram" is invoked by a CALL statement in another
program unit and performs its own set of FORTRAN statements, optionally
returning one or more parameters to the calling program unit. A ''function
subprogram' computes and returns a value in the context of an expression
to the calling program unit. A "block data subprogram' is nonexecutable
and is used to initialize (set the starting values of) data declared in common
blocks.

User-defined subroutine and function subprograms are also known as
"external procedures'. Subroutine subprograms are declared with a SUB-
ROUTINE statement and function subprograms are declared with a FUNC-
TION statement. Subroutine and function subprograms can have
"arguments', which are variable names of input and output objects passed
between the calling or referencing program unit and the subprogram being
called or referenced. At the time a function or subroutine subprogram is
declared, its ""dummy arguments" are declared. At the time the subprogram
is called or referenced, ""actual arguments' are substituted for the dummy
arguments.

A subroutine or function subprogram can have multiple entry points. An
ENTRY statement allows execution to begin in a subroutine or function
subprogram at statements other than the first executable statement.

Control is returned from a subroutine or function subprogram when an
END or RETURN statement is encountered. In FORTRAN, an "alternate-
return specification" is provided for subroutine subprograms. Instead of
returning to the calling program unit at the statement following the CALL
statement, a return can be made to an alternate statement.

FORTRAN supplies a comprehensive set of "intrinsic functions', which

perform data type conversion and provide an extensive collection of arith-
metic and transcendental functions.

Chapter 1. Introduction 1-7

1-8 FORTRAN Reference

Files can be external or internal, formatted or unformatted, and accessed
sequentially or randomly, giving FORTRAN a powerful input/output capa-
bility.

External files are connected to an external device such as a disk file or a
console. Internal files provide input/output to character variables.

Formatted files can be the subject of data conversion from internal storage
representation to external character string representation and from external
character string representation to internal storage representation. Format
conversion may be performed via READ, WRITE, and PRINT statements.
There is an extensive set of format specifications to control the form and
layout of converted data. FORTRAN also has a list-directed input/output
capability in which default formatting rules are applied in the data conver-
sion process.

Chapter 2. Characters, Lines, Statements, and Execution
Sequence

Character Set 4 <>

The FORTRAN character set consists of 27 letters, 10 digits, and 14 special
characters.

A "letter' is one of these 27 characters:

ABCDEFGHIJKLM
NOPQRSTUVWXYZS

A "digit" is one of these 10 characters:
0123456789
An "alphanumeric character' is a letter or a digit.

The "special characters' used in FORTRAN are:

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-1

Special
Character Name

Space (blank)

Double quote

$ Dollar sign

! Apostrophe

(Left parenthesis
) Right parenthesis
* Asterisk

+ Plus sign

, Comma

- Minus sign
Decimal or period
/ Slash

Colon

= Equal sign

Figure 2-1. FORTRAN Special Characters

FORTRAN assumes that the characters have an order known as a collating
sequence. The collating sequence from lowest to highest is:

« space (blank)

« double quote (")

« dollar sign ($)

e apostrophe (')

o left parenthesis (()
« right parenthesis ())
o asterisk (*)

o plussign (+)

« comma (,)

e minus sign (-)

e decimal point or period (.)
« slash (/)

2-2 FORTRAN Reference

Lines 4 <>

o digits from 0 to 9
e colon (:)

« equalsign (=)

o letters from A to Z.

Within the ordered sets of digits and letters in a sequence, the characters are
contiguous; that is, there are no holes in the ordered sets.

RT PC VS FORTRAN uses the ASCII representation for characters. The
ASCII representation for each character is listed in the RT PC VS
FORTRAN User’s Guide.

Spaces (blanks) have no meaning in FORTRAN programs, except:

« within string constants, Hollerith constants, and Hollerith fields

« in compiler directives, described in the RT PC VS FORTRAN User’s
Guide

« in column 6, when a space distinguishes between an initial line and a
continuation line

« in counting the total number of characters per line and per statement.

Otherwise, spaces can and should be used freely to improve the layout and
readability of your FORTRAN programs.

All characters used in statements must belong to the FORTRAN character

set described in this section. For comment lines, character constants, and
Hollerith fields, any of the printable ASCII characters can be used.

FORTRAN has certain requirements pertaining to line length and to the
information that can appear in specific columns of lines.

Source code can appear in columns 1-72 and has a limit of 1320 characters
per statement, which corresponds to 20 lines by 66 columns.

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-3

Tabs are preset for eight-character advances.

FORTRAN acknowledges four types of lines: comment lines, initial lines of
statements, continuation lines of statements, and compiler-directive lines.

Source input is accepted in either of two formats:

« fixed-form input format
« free-form input format

A program unit must be written in either fixed-form or free-form input
format, but not both. The way lines are coded in both formats is described
in the following sections.

Comment Lines 4 <>

2-4 FORTRAN Reference

A ""comment line" often contains information that can be helpful in
reviewing a program listing. Comment lines have no effect other than to be
reproduced on program listings.

Comment lines can appear anywhere before a program unit’s END state-
ment, including before its first statement.

In Fixed-Form Input Format: A comment line is identified by a ""C'" in
column 1 or by a blank line.

Comment lines can also appear between an initial line and its first continua-
tion line and between two continuation lines.

Examples:

C This line i1s a comment line.
C The next line is blank ...

C ... and is also a comment line.

In Free-Form Input Format: A comment line begins with a double quote
(") in column 1. A comment line cannot follow a line that is continued and
cannot itself be continued. Blank lines are not allowed in free-form input.

Examples:

"This line is a comment line.
"The following blank line will cause an error.

"This line is also a comment line.

Initial Lines of Statements
An "initial line'" of a statement indicates the start of a statement line.
The initial line of a statement can have a ''statement label", described in

“Statement Labels” on page 2-11.

In Fixed-Form Input Format: An initial line of a statement is any non-
comment line containing a space, a tab, or a 0 in column 6.

Examples:
C These are two initial lines of
C statements without statement labels.
C
GOTO 999
X=A
C These are two initial lines of
C statements with statement labels.
C

379 GOTO 999
485 X=A

In Free-Form Input Format: The first character of the statement text
must be alphabetic. If a statement does not have a label, then the statement
text must begin on the initial line. Blank lines are not allowed.

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-5

Continuation Lines 4 <>

2-6 FORTRAN Reference

"Continuation lines'' are used to continue a statement beyond its initial line.
This may be done for readability of the source program or because the
statement may consist of more characters than will fit onto a single line.

In Fixed-Form Input Format: A continuation line is indicated by any
character other than a 0 or a space in column 6. A continuation line cannot
have a statement label, but columns 1-5 on a continuation line can contain
characters (which are ignored). A statement can have up to 19 continuation
lines.

When a character constant extends across two lines, its value is the same as
if the character in column 7 of the continuation line abuts the last character
on the preceding line.

Examples:

PRINT *,'This string
+ uses two
+ continuation lines.'

The plus signs are in column 6 and indicate continuation lines. The output
from this example is:

This string uses two continuation lines.

In Free-Form Input Format: A line to be continued is indicated by termi-
nating the line with a minus sign (-). A comment line cannot be continued.

If the last character in a line is a minus sign, the compiler assumes it indi-
cates continuation and discards it. If the last two characters in a line are
minus signs, only the last one is taken as a continuation character, and the
preceding one is preserved as a minus sign.

The statement text of continuation lines can start in any position. Up to 19
continuation lines are permitted in a single statement.

Compiler-Directive Lines

A "compiler-directive line" supplies information to the compiler to affect its
action but does not result in executable code.

Spaces are significant in compiler-directive lines and are used to delimit
keywords and file names. For more information on compiler directives, see
the RT PC VS FORTRAN User’s Guide.

In Fixed-Form Input Format: The first character of a compiler directive
is entered in column 7 or after.

Example:

This compiler directive instructs the
compiler to include the body of the file
RASP.FOR into the program source code.

Q0O0a

INCLUDE (RASP.FOR)

In Free-Form Input Format: A compiler directive can start in any
column.

Statements 4 <>

In general, statements must begin on new lines; that is, a statement cannot
begin on the same line as another statement. The exception to this rule is
the logical IF statement, described in “Logical IF Statements’ on page 8-8.

In statements, spaces have no effect except within character constants and
Hollerith constants, where they indicate blank characters.

An END statement must appear on an initial line of its own. No other

statement in a program unit can have an initial line that looks like an END
statement.

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-7

In Fixed-Form Input Format: Statements are written in columns 7-72
and can have up to 19 continuation lines.

Examples:
C This is an assignment statement.
C
A =5.0
C This is a CALL statement to a subroutine.
C
CALL COLLECT (PAY,PHONE)
C This is a logical IF statement.
C

IF (DAY .EQ. 'FRIDAY') RETURN

In Free-Form Input Format: Statements are written in columns 1-80 and
can have up to 19 continuation lines. The first character of a statement
(after a label, if any) must be alphabetic. Multiple statements per line are
not allowed.

A statement is terminated by an initial or continuation line that does not
end with a minus sign.

Example:

"SAMPLE TEXT

10D=010.5
GO TO 56
150 A=B+C* (D+E**F+-
G+H-2.* (G+P))
C=3.

2-8 FORTRAN Reference

Statements may be categorized as either executable or nonexecutable.
"Executable statements'' specify action to be taken by a program; for
example, assigning values to variables, evaluating expressions, affecting flow
of execution, and performing data transmission. ''Nonexecutable state-
ments' describe the use or extent of the program unit, the characteristics of
the data objects, data management, editing information, and statement
functions.

" Assignment statements'' are executable statements that assign values to
variables, and are described in Chapter 6, “Assignment Statements.”

""Specification statements' are nonexecutable statements that define prop-
erties of variables, arrays, and functions. The following specification state-
ments are described in Chapter 7, “Specification Statements” unless
otherwise noted:

BLOCK DATA (Chapter 9)
COMMON

DATA

DIMENSION
EQUIVALENCE
EXTERNAL

FUNCTION (Chapter 9)
IMPLICIT

INTRINSIC

NAMELIST

PARAMETER

PROGRAM (Chapter 9)
SAVE

SUBROUTINE (Chapter 9)
Type

"Control statements'' are executable statements that control a program’s
flow of execution. The following control statements are described in
Chapter 8, “Control Statements’ unless otherwise noted:

CALL (Chapter 9)
CONTINUE

DO

END

ENTRY (Chapter 9)

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-9

Assigned GOTO
Computed GOTO
Unconditional GOTO
Arithmetic IF

Block IF-THEN-ELSE
— Block IF

— ELSEIF

— ELSE

— ENDIF

Logical IF

PAUSE

RETURN (Chapter 9)
STOP

"Input/output statements" are executable statements that are used in trans-
ferring data between main storage and input/output devices. The following
input/output statements are described in Chapter 10, “Input and Output’:

BACKSPACE
CLOSE
ENDFILE
FORMAT
INQUIRE
OPEN
PRINT
— format-directed
— list-directed
« READ
— format-directed
— list-directed
— namelist-directed
« WRITE
— format-directed
— list-directed
— namelist-directed

2-10 FORTRAN Reference

Statement Labels

A "statement label" tags a statement so that it can be referenced by other
statements. Statement labels are 1-5 digits in length and appear in columns
1-5 of initial lines of statements. At least one of the digits in a statement
label must be nonzero.

Any statement can be labeled, but only executable statement labels and
FORMAT statement labels can be referenced by other statements.

Each statement label in a program unit must be unique. Duplication of
statement labels produces an error.

Examples:

C This is a labeled FORMAT statement.

c123 FORMAT ('The result is -- ',I5)

C This is a DO block that uses a statement label.
C

DO 110 ICON=1,100
DESK (ICON)=0.0
110 CONTINUE

Order of Statements 4 <>

The order in which statements appear in a program unit must comply with
the following rules:

« If a PROGRAM statement is used, it must appear as the first noncom-
ment statement of the main program. The first noncomment statement
of a subprogram must be either a FUNCTION, SUBROUTINE, or a
BLOCK DATA statement.

« FORMAT and ENTRY statements can appear anywhere between the
first noncomment statement and the END statement.

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-11

In ordering specification statements in a program unit, IMPLICIT state-
ments must come before all other specification statements except
PARAMETER statements.

Any specification statement that defines the data type of a symbolic
name must come before a PARAMETER statement that defines the
symbolic name of a constant. Also, a PARAMETER statement that
defines the symbolic name of a constant must come before any use of
the name.

PARAMETER and DATA statements may be interspersed with other
specification statements, and the other specification statements must
come before statement function definitions and executable statements.

A NAMELIST statement declaring a namelist name must precede the
use of the name in any input/output statement. It’s placement is the
same as that for other specification statements.

Statement function definitions must come before executable statements.
ENTRY statements can appear anywhere except within an IF block
(between IF and ENDIF) and within a DO block (between a DO state-

ment and the terminal statement of its DO loop).

The final line of a program unit must be an END statement.

Figure 2-2 illustrates the manner in which you can intersperse statements
and comment lines. Vertical lines separate statements that can be mixed.
Horizontal lines separate statements that cannot be mixed.

For example, FORMAT statements can be mixed with statement function
definitions and DATA statements. But statement function definitions
cannot be mixed with executable statements.

2-12 FORTRAN Reference

A PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA

Statement
IMPLICIT Statements
PARAMETER
Other Statements
Comment | NAMELIST, Specification
Lines FORMAT, DATA Statements
and ENTRY |Statements
Statements Statement Function

Definitions

Executable Statements

An END Statement

Figure 2-2. Order of Statements and Comments in a FORTRAN Program

Normal Execution Sequence and Control Transfer 4 <>

The "normal execution sequence’ of a program unit occurs when its execut-
able statements are processed in the order that they appear. Normal exe-
cution sequences begin with the first executable statement in the main
program. When an external procedure is referenced, execution continues
with the first executable statement following the FUNCTION, SUBROU-
TINE, or ENTRY statement in the referenced subprogram.

Normal execution sequences are not affected by nonexecutable statements,
comment lines, or compiler directives appearing between executable state-
ments.

"Control transfer' occurs when the normal execution sequence is altered.
A control transfer is caused by:

« an unconditional, computed, or assigned GOTO statement
« an arithmetic IF statement

« a RETURN statement

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-13

+« a STOP statement

« an input/output statement containing an error specifier or end-of-file
specifier

« acall (using the CALL statement) that has an alternate-return specifier

« alogical IF statement containing any of the above as a subordinate
statement

« ablock IF or ELSEIF statement

« the last statement (if any) of an IF block or ELSEIF block

« aDO statement

« the terminal statement of a DO loop

« an END statement.

Function and subroutine subprograms cannot be invoked recursively; that
is, a subprogram cannot call itself directly or be called by another subpro-

gram that it has called. Also, subprograms cannot reference routines
written in other languages.

2-14 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Character Set
« The dollar sign ($) is not valid as a letter.
o These 26 lowercase letters are included in the character set:

abcdefghijklm
nopqrstuvwzxyz

o Special characters also include:

Special
Character Name
! Exclamation point
% Percent sign
& Ampersand
< Left angle bracket
> Right angle bracket
\ Backslash
_ Underscore

o The compiler converts all lowercase characters to uppercase except
those inside character constants.

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-15

R1 Mode

Lines

+ Free-form input format is not allowed.

Comment Lines

« A'"c"in column 1 also indicates a comment line.

Continuation Lines

« Up to nine continuation lines are allowed per statement.

Statements

« Up to nine continuation lines are allowed per statement.

Order of Statements

« The NAMELIST statement is not allowed.

Normal Execution Sequence and Control Transfer
o Function and subroutine subprograms can be invoked recursively; that
is, a subprogram can call itself directly or be called by another subpro-
gram that it has called.

o Subprograms can also reference routines written in other languages
(such as Pascal), which can be recursive.

2-16 FORTRAN Reference

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM

mode (the default mode).

Character Set
« The dollar sign ($) is not valid as a letter.
o These 26 lowercase letters are included in the character set:

abcdefghijklIm
nopqrstuvwzxyz

[

Special characters also include:

Special

Character Name
! Exclamation point
% Percent sign
& Ampersand
< Left angle bracket
> Right angle bracket
_ Underscore

o The compiler converts all lowercase characters to uppercase except
those inside character constants.

Chapter 2. Characters, Lines, Statements, and Execution Sequence

2-17

Lines

2-18 FORTRAN Reference

Free-form input format is not allowed.
Conditionally compiled lines are allowed.

A "conditionally compiled line" is a line that is only compiled when the
conditional compile switch is activated. Otherwise, the line is treated as
a comment line.

To indicate that a line is to be conditionally compiled, place an upper-
case or lowercase D in column 1 of that line. If the conditionally com-
piled statement continues for more than one line, each continuation line
also needs an uppercase or lowercase D in column 1, as well as a contin-
uation indicator in column 6.

To activate the conditional compile switch, specify the c+ command-
line option when invoking the compiler. For a description of command-
line options, see the RT PC VS FORTRAN User’s Guide.

Example:

Suppose the conditional-compile option
is activated.

The values of the variables are written
out for debugging purposes.

WRITE(*,10) COUNT, VAL, I, J
10 FORMAT('Count = ',I4,'Val = ',F8.4,
+ 'T o= ',I4,'T = ',14)

oo

VX Mode

Comment Lines

Continuation Lines

Statements

Order of Statements

A'"c" or "!" in column 1 also indicates a comment line.

Comments can also be put on any line of a program unit by placing an
exclamation point (!) in any column except column 6. The rest of the
line is then considered a comment.

Example:
C A=B+C ! The two values are added.
C PRINT *,6A I The result is printed.

Up to 99 continuation lines are allowed per statement.

Up to 99 continuation lines are allowed per statement.

A NAMELIST statement declaring a namelist name can appear any-
where between the first noncomment statement and the END statement.

Figure 2-2 is changed to:

Chapter 2. Characters, Lines, Statements, and Execution Sequence 2-19

VX Mode

A PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
Statement

IMPLICIT NONE Statement

IMPLICIT Statements
Comment [NAMEL I ST, PARAMETER
Lines FORMAT, Other Statements
and ENTRY Specification
Statements DATA Statements
Statements

Statement Function
Definitions

Executable Statements

An END Statement

Comment lines can follow an END statement.

Figure 2-3. Ordering of Statements and Comments in a FORTRAN Program (VX mode)

Normal Execution Sequence and Control Transfer

« DO WHILE statements also cause control transfers.

2-20 FORTRAN Reference

Chapter 3. Data Types and Constants

"Data types' define the structural characteristics, features, and properties
of data. FORTRAN has six data types:

« integer

« real

« double-precision
« complex

+ character

« logical.

"Constants" are strings of digits or other characters defining values that do
not change. The representation of a constant specifies both its data type
and its value. A constant can have a logical, character, or arithmetic data
type. An arithmetic constant can have an integer, real, double-precision,
complex, or double-complex value.

Other ways to represent constants are also allowed and are described in
“Constants <> <-” on page 3-8.

An "unsigned' constant has no leading sign (+ or -). A 'signed" constant
has a leading sign. A constant that is "optionally signed" can be either
signed or unsigned. Constants with integer, real, or double-precision values
are optionally signed except where otherwise noted.

Data Type Rules

A symbolic name associated with a constant, variable, array, external func-
tion or statement function can have its data type specified in a type state-
ment.

Chapter 3. Data Types and Constants 3-1

If no type statement is supplied for a program element, a default data type is
supplied, which is determined by the first letter of the name. If the first
letter of aname is I, J, K, L, M, or N, the integer data type is the default.
Any other first letter defaults to the real data type. These data type defaults
can be overridden either by explicit type statements or by IMPLICIT state-
ments.

The data type of an array element is the same as that of the array.

The data type of a function name specifies the data type of the value that
the function returns.

Intrinsic functions have data types that are specified in the chart in
Appendix A, “Intrinsic Functions.” Generic intrinsic functions do not have
default data types. Their data types depend on the data types of their argu-
ments.

External function references are given default data types based upon the
first letters in their names, just like variables and arrays.

Integer Data Type

3-2 FORTRAN Reference

The "integer data type" is intended to represent elements of the infinite set
of integers but can represent only a finite subset because of word size limi-
tations in the computer.

The standard integer data type (INTEGER) occupies 1 word (4 bytes, or 32
bits) of storage and can represent values from -2,147,483,648 through
2,147,483,647.

Integers are represented internally in twos complement notation. As a con-
sequence, the negative integer range is one integer greater than the positive
integer range.

An "integer constant" is a string of decimal digits preceded by an optional
sign and no decimal point.

You are able to choose the amount of storage an integer data type is to
occupy:

INTEGER*2 occupies a halfword (2 bytes, or 16 bits) of storage and
can assume values from -32768 through 32767.

INTEGER*4 is the same as the standard integer data type (INTEGER).

Real Data Type

The '""real data type'" is intended to represent the set of real values that com-
prise the continuum. Because of word size limitations in the computer, the
real data type can represent only a finite subset of the infinite set of real
numbers.

The standard real data type (REAL) occupies 1 word (4 bytes, or 32 bits)
of storage. It can represent values from -3.402824E+38 through
-1.175494E-38, 0, and from 1.175494E-38 through 3.402824E+38, with a
precision of about seven decimal places.

The representation of real data allows for +infinity and -infinity and for
indeterminate values. This is important when you are formatting such
values for output. For more information on this subject, see

Chapter 11, “Format Specifications.”

A "real constant'' has an optional sign, an integer part, a decimal point, a
fractional part, and an optional exponent part. Both the integer and frac-
tional parts are strings of digits. Either part can be omitted, but not both.

Examples:

3.14159 +2.236 -1.4142
L7071 +.5 -.618034

5. +8. -6.

0.0 0. .0

These are all valid real constants.

Chapter 3. Data Types and Constants 3-3

3-4 FORTRAN Reference

The optional exponent part of a real constant consists of the letter E fol-
lowed by the optionally signed integer constant. The exponent part indi-
cates a power of 10.

Examples:

E14 E+12 E-10 EO

These are all valid real exponents.

A real constant with an exponent part is the product of the constant pre-
ceding the E and 10 raised to the power indicated by the integer following
the E.

Examples:

+7.52E-1 299793.5E3 20E-3

These are all valid real constants with exponent parts.

You are able to choose the amount of storage a real data type is to occupy:

REAL*4 is the same as the standard real data type (REAL).
REAL*8 is the same as the double-precision data type (DOUBLE
PRECISION).

Double-Precision Data Type

The "double-precision data type" (DOUBLE PRECISION) is an extended-
precision real data type and is used when single-precision data is inadequate.

The double-precision data type occupies 2 words (8 bytes, or 64 bits) of
storage. It can represent values from ~1.797693D+308 through
-2.225074D-308, 0, and from 2.225074D-308 through 1.797693D+308,
with a precision of about 16 decimal places.

A "double-precision exponent'" consists of the letter D followed by an

optionally signed integer constant. A double-precision exponent indicates a
power of 10.

Examples:

D13 D+2 D-9 DO

These are all valid double-precision exponents.

A "double-precision constant' has an optional sign, a real or integer con-
stant, and a double-precision exponent.

Examples:

+7.5D-1 299793.5D3 20D-3 -8D14

These are all valid double-precision constants.

Chapter 3. Data Types and Constants 3-5

Complex Data Type 4 <

3-6 FORTRAN Reference

The "complex data type'' is used to represent elements of the complex
number domain. A complex number consists of an ordered pair of real
numbers in which the first number represents the "real" part of the complex
number and the second number represents the "imaginary'' part.

The standard complex data type (COMPLEX) occupies 2 words (8 bytes,
or 64 bits) of storage.

A "complex constant" is written as two integers or two real numbers sepa-
rated by a comma and enclosed in parentheses. The first number represents
the "real" part of the complex number, and the second number represents
the "imaginary" part.

If the constants of the ordered pair representing the complex constant differ
in precision, the constant of lower precision is converted to a constant of
the higher precision. If the constants differ in type, the integer constant is
converted to a real constant of the same precision as the original real con-
stant.

Examples:
(1, 1 (.707, -0.707)
(-1, 2.) (-1.5E10, 2.6E-5)

(4.7D+2, -1.0D-5)

These are all valid complex constants.

You are able to choose the amount of storage a complex data type is to
occupy:

COMPLEX*8 is the same as the standard complex data type
(COMPLEX).

COMPLEX*16 occupies 4 words (16 bytes, or 128 bits) of storage.

Character Data Type 4

The "character data type' (CHARACTER) is used to represent a string of
characters. A character string can contain any of the printable ASCII char-
acters, including spaces.

A "character constant' is a character string enclosed in apostrophes
("xxx"). The delimiting apostrophes are not part of the character string.
An apostrophe that is to be part of a character string is indicated by two
consecutive apostrophes ('').

The "length" of a character constant is the number of characters in the
string, counting each set of two consecutive apostrophes as one character.
The delimiting apostrophes are not counted in the string length as they are
not part of the string.

Empty (null) character strings are not allowed.

Examples:

x" vt 'FORTRAN'

'The time is 1 o''clock'

rre Tty

embedded apostrophes

These are all valid character constants.
The last two examples have embedded apostrophes.

Chapter 3. Data Types and Constants 3-7

Logical Data Type 4 <>

The "logical data type" represents boolean quantities and can take on only
the values of true and false. The standard logical data type (LOGICAL)
occupies 1 word (4 bytes, or 32 bits) of storage.

A "logical constant'' represents a truth value and is either .TRUE. (for the
true value) or .FALSE. (for the false value).

The abbreviations T and F (without the periods) may be used for .TRUE.
and .FALSE., respectively, only for the initialization of logical variables or
logical arrays in the DATA statement or in the explicit type statement. For
use as input/output data, see “L — Logical Editing” on page 11-15.

You are able to choose the amount of storage a logical data type is to
occupy:

LOGICAL*1 occupies 1 byte (8 bits) of storage.

LOGICAL*4 s the same as the standard logical data type (LOGICAL).

Constants 4 <>

In addition to integer, real, double-precision, complex, double-complex,
character, and logical constants, Hollerith and hexadecimal constants are
also allowed.

Hollerith Constants <>

A "Hollerith constant' is a string of printable characters preceded by a
character count and the letter "H". The form of a Hollerith constant is:

3-8 FORTRAN Reference

wHc|c]...

specifies the number of characters in the string, which may not be less
than 1 or greater than 255 (including spaces).

is a printable character.
Each character requires 1 byte of storage.

Hollerith constants have no data type. They can be used in place of
character-string constants, and can also be used to initialize non-character
variables in DATA statements.

Examples:

24H INPUT/OUTPUT AREA NO. 2
DATA IVAL /4HSAMP/

Hexadecimal Constants <> <>

A "hexadecimal constant' is expressed as the letter "'Z'" followed by a
string of hexadecimal digits, and can be used as a data or type initialization
value for any type of variable or array. The form of a hexadecimal constant
is:

Zclcl...

is a number from 0-9 or a letter from A-F; each pair takes 1 byte of
storage.

Chapter 3. Data Types and Constants 3-9

A hexadecimal constant specifies as much as 8 bytes of data. When the
data type implies that the length of the constant is more than the number of
digits specified, the leftmost digits have a value of 0. When the data type
implies that the length of the constant is Iess than the number of digits spec-
ified, the constant is truncated on the left and a warning message is issued.

Examples:
Z12ABF06C represents the bit string 00010010101010111111000001101100
ZB1DFADE represents the bit string 00001011000111011111101011011110

The first four "0" bits are implied because an odd number of hexadecimal
digits are written.

3-10 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Complex Data Type

Character Data Type

The "real" and "imaginary' parts of a complex constant can be sym-
bolic names as defined in a PARAMETER statement.

The "double-complex data type' (DOUBLE COMPLEX) is also
allowed, and is the same as COMPLEX*16.

A character constant can be delimited by double quotes (''xxx'") as well
as apostrophes ('xxx').

If an apostrophe is to be part of a string that is delimited by apostro-
phes, or if a double quote is to be part of a string that is delimited by
double quotes, it can be indicated either by two consecutive marks ("'

"nn

or """) or by being placed after a backslash (\' or \").

Note: Strings delimited by apostrophes require no special coding for
inserting double quotes; strings delimited by double quotes require no
special coding for inserting apostrophes.

In determining the length of a character constant, two consecutive apos-
trophes are counted as one character when the string is delimited by
apostrophes. Two consecutive double quotes are counted as one char-
acter when the string is delimited by double quotes.

The compiler places a null character (\0) at the end of each character-

string constant appearing outside a DATA statement. This is to ease
communication with C routines.

Chapter 3. Data Types and Constants 3-11

R1 Mode

« For compatibility with C-language usage, these "backslash escapes'' are
recognized in character strings:

Escape Meaning
\n New line
\t Tab
\b Backspace
\f Form feed
\0 Null
\! Apostrophe
\" Double quote
\\ Backslash
\x x, where x is any other
character (\ is ignored)

Figure 3-1. Backslash Escapes

Logical Data Type

« The abbreviations T and F are not allowed.

Constants

» In addition to hexadecimal constants, binary and octal constants are also
allowed.

As much as 4 bytes of data can be specified by binary, octal, and
hexadecimal constants. They are used to initialize logical or integer var-
iables in a DATA statement, and are denoted by a letter followed by a
string enclosed in apostrophes:

3-12 FORTRAN Reference

R1 Mode

— If the letter is an uppercase or lowercase ''B", then the string is
binary, and only digits 0 and 1 are permitted.

— If the letter is an uppercase or lowercase "O'", then the string is
octal, with digits 0-7 permitted.

— If the letter is an uppercase or lowercase "'Z'" or "X", then the string
is hexadecimal, with digits 0-9 and letters A—F permitted.

When the data type implies that the length of the constant is more than
the number of digits specified, the constant is zero-filled on the left.
When the data type implies that the length of the constant is less than
the number of digits specified, the constant is truncated on the left and a
warning message is issued.

Examples:

C All three elements of A are initialized to 10.
INTEGER A (3)
DATA A/B'1010',0'12',2'A"'/

Hexadecimal Constants

o See “Constants” on page 3-12.

Chapter 3. Data Types and Constants 3-13

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Complex Data Type

Logical Data Type

Constants

3-14 FORTRAN Reference

The real and imaginary parts of a complex constant can be symbolic
names as defined in a PARAMETER statement.

The "double-complex data type" (DOUBLE COMPLEX) is also
allowed, and is the same as COMPLEX*16.

The abbreviations T and F are not allowed.
Logical entities used in an arithmetic context are treated as integers.

The LOGICAL*2 data type is also allowed, which occupies a halfword
(2 bytes, or 16 bits) of storage.

The ''byte data type" (BYTE) is also allowed; like LOGICAL*1, it
occupies 1 byte (8 bits) of storage and can contain the logical values
.TRUE. or .FALSE.. Unlike LOGICAL*1, the byte data type can
contain a single character or a value from -128 through 127 instead of a
logical value.

In addition to hexadecimal constants, octal constants are also allowed.

You can use octal and hexadecimal constants wherever numeric con-
stants are allowed. They are denoted by a string enclosed in apostro-
phes followed by a letter:

VX Mode

If the letter is an uppercase or lowercase "'O", then the string is
octal, with digits 0—7 permitted.

If the letter is an uppercase or lowercase '"X", then the string is
hexadecimal, with digits 0-9 and letters A—F permitted.

Leading zeros are ignored in octal and hexadecimal constants. You can
specify up to 64 bits (22 octal digits, 16 hexadecimal digits).

Octal and hexadecimal constants are numeric constants that assume
data types according to the following rules:

An octal or hexadecimal constant used with a binary operator
assumes the data type of the other operand.

Example:

INTEGER*2 INUM
REAL*8 RNUM
INUM='23'0
RNUM*'1F2'X

The constant '23'0 assumes an integer data type with a 2-byte
length, and the constant '1F2'X assumes a real data type with an
8-byte length.

An octal or hexadecimal constant requiring a certain data type
assumes that data type.

Example:
REAL ARR(10)

ARR(1)=ARR('4'0)+1
ARR(1)=ARR('A'X)+1

The constants '4'O and 'A'X both assume an integer data type
with a 4-byte length.

An octal or hexadecimal constant used as an actual argument
assumes a 4-byte length and no data type.

Chapter 3. Data Types and Constants 3-15

VX Mode

Hollerith Constants

3-16 FORTRAN Reference

Example:

CALL SUB('752'0)
X=FUNC('D1'X)

The constants '752'0 and 'D1'X assume a 4-byte length and no
data type.

An octal or hexadecimal constant used in any other context assumes
an INTEGER*4 data type.

Example:

K= .NOT. '14B'X
IF ('7772'0) 10,20,30

The constants '14B'X and '7772'0 both assume an integer data
type with a 4-byte length.

An octal or hexadecimal constant specifies as much as 8 bytes of data.
When the data type implies that the length of the constant is more than
the number of digits specified, the constant is zero-filled on the left.
When the data type implies that the length of the constant is less than
the number of digits specified, the constant is truncated on the left. A
warning message is issued when a variable initialized in a DATA state-
ment is truncated.

Hollerith constants can be used in numeric expressions, and assume data
types according to the following rules:

— A Hollerith constant used with a binary operator assumes the data

type of the other operand.

VX Mode

Example:

INTEGER*2 INUM
REAL*8 RNUM
INUM=1HA
RNUM*2HXY

The constant 1HA assumes an integer data type with a 2-byte
length, and the constant 2HXY assumes a real data type with an
8-byte length.

A Hollerith constant requiring a certain data type assumes that data
type.

Example:

REAL ARR(10)
ARR (1) =ARR (THA) +1

The constant 1HA assumes an integer data type with a 4-byte
length.

A Hollerith constant used as an actual argument assumes no data
type.

Example:

X=FUNC (3HNUM)

The constant 3HNUM assumes no data type and has a 4-byte
length.

A Hollerith constant used in any other context assumes an
INTEGER*4 data type.

Example:

K= .NOT. 1HA
IF (6HSCALAR) 10,20,30

Chapter 3. Data Types and Constants 3-17

VX Mode

Hexadecimal Constants

3-18 FORTRAN Reference

The constants 1HA and 6HSCALAR both assume an integer data
type with a 4-byte length.

When the length of the constant is less than the length implied by the
data type, spaces are appended to the constant on the right. When the
length of the constant is greater than the length implied by the data
type, the constant is truncated on the right. A warning message is issued
if any non-space characters are truncated.

See “Constants” on page 3-14.

Chapter 4. Names, Arrays, and Substrings

This chapter includes FORTRAN rules for names, how to define and refer-
ence arrays, and a description of character variables and substrings of char-
acter variables.

Names 4 <>

A "name" (or "identifier") denotes a program unit, common block, vari-
able, array, constant, argument, or statement function.

A name consists of up to six alphanumeric characters. The dollar sign ($)
can also be used in a name (as its first character) and is treated as a letter.
A name can also have embedded spaces, although they have no significance
and are ignored by the compiler.

FORTRAN does not have any reserved words since the compiler recognizes
keywords in context. To make your programs clear and readable, use names
that are easily distinguishable from FORTRAN keywords.

Examples:

SHELL $FIRST S515
FIVE KOUNT H20

These are all valid names.

When a user-defined name that has not previously appeared in a program
unit is referenced in an executable statement, FORTRAN decides how to
classify that name from the context in which it appears.

Chapter 4. Names, Arrays, and Substrings 4-1

A name’s data type is determined from its first letter. If a variable starts
withanI, J, K, L, M, or N, it is given the integer data type. Variables with
any other first letters, including $, are given the real data type. If an unde-
clared name appears in the context of a function reference, its data type is
determined from its name in the same manner. In both cases, the default
data types can be overridden with IMPLICIT statements. For a description
of the IMPLICIT statement, see “IMPLICIT Statements — Assigning
Default Data Types 4 <>” on page 7-15.

A name appearing in the context of a call to a subroutine has a symbol-table
entry created for it. If an entry for that name already exists, its attributes
are coordinated with those of the new entry. Inconsistencies.such as a sub-
routine name used in the context of a function result in error messages.

You are encouraged to declare all names used in each program unit since it
helps ensure that FORTRAN associates the proper definition with the
name. Allowing FORTRAN to decide on defaults can sometimes result in
logic errors, whose causes are difficult to locate.

Scope and Definition Status

4-2 FORTRAN Reference

The "scope'" of a name is the portion of a program in which the name is
known or can be referred to. A general rule about the scope of a name is
that it is either local to a program unit or global to the entire program.

Names with a ''global scope' include the name of the main program, the
names of all subprograms (subroutine, function, and block data), and the
names of common blocks. A name with a global scope can be used in any
number of program units and still refer to the same thing, and therefore
must be used in a single, consistent manner in a program. For example, a
subroutine cannot have the the same name as a function subprogram or a
common block. Similarly, two function subprograms cannot have the same
name.

Names with a "local scope" include names of variables, arrays, constants,
arguments, and statement functions. A name with a local scope is only
known within a single program unit and therefore can be used in other
program units with a different meaning. Within a program unit, of course, a
name must have a consistent meaning.

A name with local scope can be used in the same compilation as the same
name with global scope as long as the global name is not referenced within
the program unit containing the local name. For example, there can be both
a function subprogram named SYSTEM and a local variable named
SYSTEM in another program unit. But the program unit containing the var-
iable SYSTEM cannot reference the function named SYSTEM. If it is ref-
erenced, the compiler issues error messages.

Exceptions to the scope rules exist and are important to remember when
creating FORTRAN programs. One of the exceptions to the scope rules is
common block names. It is possible to reference a common block name
(which has a global scope) in a program unit that contains a locally scoped
item with the same name as the common block. This is allowed because
common block names always appear in slashes (/), such as /COLD/, and
therefore the compiler can distinguish between the names.

Another exception to the scope rules is names of dummy arguments of
statement functions. The scope of names of dummy arguments of statement
functions is limited to the statement function definition. Any other use of
these names in the statement function or outside the statement function is
not allowed. For example, if a dummy argument to a statement function has
the same name as a function subprogram, that function subprogram cannot
be referenced from within the statement function definition.

References to names of dummy arguments of a statement function from
outside the statement function definition do not refer to those objects.

A third exception to the scope rules is that a name used as an implied DO
control variable in a DATA statement or input/output statement has a
scope that is local to the DATA statement or input/output statement.

The definition status of variables is described in Chapter 9, ‘“Program and
Subprogram Structure.”

Chapter 4. Names, Arrays, and Substrings 4-3

Array Declarations 4

An "array'" is an ordered set of data items with identical attributes, identi-
fied by a single name.

An "array declaration'' specifies an array’s name, which identifies the array

in a program unit. An array declaration also indicates the number of dimen-
sions it contains and the size of each dimension. It can also specify the data
type of its elements. The form of an array declaration is:

aryname (dim [, dim] ...)

aryname
is the name of an array.

dim
is a dimension declaration, described in “Dimension Declarations.”

The number of dimensions an array has depends upon the number of
dimension declarations given when the array is declared (the
maximum number of dimension declarations is seven). Only one array
declaration per array is allowed in a program unit. Duplicate declara-
tions produce an error message.

Dimension Declarations

4-4 FORTRAN Reference

A "dimension declaration' defines the lower and upper bounds of a specific
dimension in an array. The form of a dimension declaration is:

[lowerbnd :] upperbnd

lowerbnd
is an optional dimension-bound expression that defines the lower
bound of the array.

upperbnd
is a dimension-bound expression the defines the upper bound of the
array. The upper bound of the last dimension declaration can be an
asterisk (*), which is described in “Kinds of Array Declarations.”

A "dimension-bound expression'' is an arithmetic expression, in which all
variables, constants, and symbolic constant names are of the integer data

type.

A dimension-bound expression cannot contain any function or array
element references. Integer variables can appear in dimension-bound
expressions only in adjustable array declarations, described in “Kinds of
Array Declarations.” If a symbolic constant name or variable in a
dimension-bound expression is not of the default-implied integer data type,
it must be specified in a type statement or an IMPLICIT statement as
integer before it can be used in a dimension-bound expression.

A dimension bound can have a positive, negative, or zero value, but the
upper bound must not be less than the lower bound. If only the upper
bound is specified, the lower bound has a value of 1. An upper bound spec-
ified by an asterisk (*), described in “Kinds of Array Declarations,” is
always greater than or equal to the lower bound.

Kinds of Array Declarations

The three basic kinds of array declarations are constant array, adjustable
array, and assumed-size array declarations.

A "constant array declaration' is a declaration in which all the dimension-
bound expressions are integer constants.

An "adjustable array declaration" is a declaration in which the dimension-
bound expressions contain integer variables. Adjustable arrays can be used
as dummy arguments in subroutine and function subprograms. Variables
which define the bounds of adjustable arrays must either be dummy argu-
ments themselves or in common blocks.

Chapter 4. Names, Arrays, and Substrings 4-5

An "assumed-size array declaration" is a declaration in which the upper
bound of the last dimension is an asterisk (*). Like adjustable arrays,
assumed-size arrays can be used as dummy arguments in subroutine and
function subprograms. Procedures using assumed-size arrays circumvent
any range checking that the FORTRAN compiler can perform.

Actual Array and Dummy Array Declarations

4-6 FORTRAN Reference

An "actual array declaration'' immediately declares an array and must be a
constant array declaration. Actual array declarations can be used in type
statements, DIMENSION statements, and COMMON statements. These
statements are described in Chapter 7, “Specification Statements.”

A "dummy array declaration' defines a dummy argument in a subroutine or
function subprogram. Dummy array declarations can be constant, adjust-
able, or assumed-size array declarations. They can only appear in subrou-
tine and function subprograms and cannot appear in COMMON statements.

Examples:

C These are five constant array

C declarations in type statements.
C This is a 100-element vector with
C bounds of 1 and 100.

C

INTEGER VECTOR(100)

C This is a 20-element matrix of
five rows and four columns.

Q0

REAL MATRIX(5,4)

C This is a 256-element array with
bounds of 0 and 255.

@]

CHARACTER*2 CHARS(0:255)

C This is a three-element array of

C logical values.
C
LOGICAL BOOLS(-1:+1)
C This is a constant expression
C declaring an eight-element array.
C
REAL WOOD (2%*4)
C This is an adjustable array declaration
C in a DIMENSION statement, which can
c appear in a subprogram. CHARS and LINES
C must be integer and dummy arguments.
C SCREEN must be a dummy argument.
C
DIMENSION SCREEN(1:CHARS, 1:LINES)
C This is an assumed-size array
C declaration in a type statement,
C which can appear in a subprogram.
C

REAL VARIAB (5, *)

Referencing Array Elements — Array Subscripts

An "array subscript'' references an element of an array. The form of an
array subscript is:

(subexpr |, subexpr] ...)

subexpr
is a subscript expression. Note that the parentheses enclosing an array
subscript’s list of subscript expressions are required.

A "subscript expression'" is any valid arithmetic expression. Subscript
expressions can contain array element references and function references.
If a subscript expression contains a function reference, the function must
not change the value of any other subscript expression in the same sub-

Chapter 4. Names, Arrays, and Substrings 4-7

script. If the array being referenced is not initialized in a DATA statement,
the subscript expression can be non-integer with fractional parts truncated.

The value of a subscript expression must not be less than the lower bound
or greater than the upper bound of that array’s dimension. If the upper
bound of the dimension is an asterisk (*), the subscript expression must not
be greater than the size of the actual array.

The compiler does not check for improper indexing of arrays.

Examples:
SCREEN (2, 3)
VARIAB(N+1, MAX(3,4))
SCREEN (IPTR(N) ,JPTR(N))

These are all valid arrays with subscripts.

Array Storage Sequence

4-8 FORTRAN Reference

FORTRAN array data is organized in computer memory by column
(column major order); therefore, the first subscript in a multi-dimensional
array varies fastest.

Examples:
C This is a one-dimensional array.
C
DIMENSION A(-2:3)
C
C The elements of this array are stored in this order:
c A(-2), A(-1), A(0), A(1), A(2), and A(3).

C This is a two-dimensional array.
C
DIMENSION B (4,3)
C
C The elements of this array are stored in this order:
c B(1,1), B(2,1), B(3,1), B(4,1), B(1,2), B(2,2),
C B(3,2), B(4,2), B(1,3), B(2,3), B(3,3), and B(4,3).
C This is another two-dimensional array.
C
DIMENSION C(-1:1,0:1)
C
c The elements of this array are stored in this order:
C c(-1,0), c(o,0), Cc(1,0), C(-1,1), C(0,1), and C(1,1).

A general formula for the relative offset of an arbitrary element, D(I,]), of a
two-dimensional array declared as DIMENSION D(1:m,1:n) is:

relative offset = I + (J-1)*m

The m and n are positive integers greater than or equal to 1. Note that the
relative offset of the row 1, column 1 element [D(1,1)] in this array is 1.

Using Unsubscripted Array Names

Array names are generally followed by subscripts, but the exceptions in
which the array name alone can be used are:

« alist of dummy arguments for a subroutine or function subprogram

« a COMMON statement when declaring that the array resides in that
common block

« atype statement when the data type of the array is established
« an array declaration when the array dimensions are being established
« an EQUIVALENCE statement

+ aDATA statement

Chapter 4. Names, Arrays, and Substrings 4-9

« the list of actual arguments in a reference to an external procedure

« the list of an input/output statement if the array is not an assumed-size
dummy array

e aunit identifier for an internal file in an input/output statement if the
array is not an assumed-size dummy array

« the format identifier in an input/output statement if the array is not an
assumed-size dummy array

« aSAVE statement.

Character Substrings <>

A "character substring'' is a portion of a character string and has a char-
acter data type. A character substring is identified by a substring name,
which can be referenced and have values assigned to it. The form of a sub-
string name is:

charvar ([start] : [finish])

charvar
is a character variable and can be an element of a character array.

start

finish
are optional substring expressions; start specifies the leftmost char-
acter position of the substring.

The values of start and finish must meet this condition (length is the length
of the character variable or character array element):

1 < start < finish < length

4-10 FORTRAN Reference

If start is omitted in a substring name, the value 1 is used. If finish is
omitted, the value length is used. Both start and finish can be omitted. If
this is the case, the substring reference has the form charvar(:), which is
equivalent to charvar.

The length of a character substring is finish - start + 1.
A "substring expression'' is any integer expression and can contain array

element references and function references. The restrictions that apply to
array subscripts also apply to substring expressions.

Examples:
ROPEY (1:3)
THELOT (:)
ACHAR (5:5)
FOURCH (:4)

LINE(I) (1:20)
These are all valid substring expressions.
Incorrect usage of substrings usually results in compile-time errors. For

example, substrings of single-character entities do not exist; therefore, this
code is incorrect and produces a compile-time error:

CHARACTER TEXT (80)

TEXT(1:4) = 'WORD'

If the "'1:4" is meant to refer to the first four characters of the data in
TEXT, the proper use of this character substring is:

CHARACTER*80 TEXT

TEXT(1:4) = 'WORD'

Chapter 4. Names, Arrays, and Substrings 4-11

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Names

« The dollar sign ($) is not considered a letter and cannot appear in a
name.

o The compiler makes no distinction between uppercase letters and lower-
case letters. For example, the names FORTRAN, FORtRAN,
fOrTrAn, and fortran are all equivalent as names in a FORTRAN
program.

Array Declarations

o The maximum number of dimension declarations in an array declaration
is 11.

4-12 FORTRAN Reference

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Names

Character Substrings

A name consists of up to 31 alphanumeric, dollar sign ($), and under-
score (_) characters and must not start with a digit or dollar sign.

The dollar sign is not considered a letter.

The compiler makes no distinction between uppercase letters and lower-
case letters. For example, the names FORTRAN, FORtRAN,
fOrTrAn, and fortran are all equivalent as names in a FORTRAN
program.

Although names can consist of up to 31 characters, names with a global
scope are truncated to eight characters before being passed to the linker.
Names with a global scope include program unit names and common
block names. You need to use names unique to eight characters in these
cases.

A "substring expression' is any valid arithmetic expression, with non-
integer substring expressions being converted to integer values by trun-
cating any fractional part before use.

Chapter 4. Names, Arrays, and Substrings 4-13

4-14 FORTRAN Reference

Chapter 5. Expressions

"Expressions'' combine data objects and operators to create new values,

and consist of operators, operands, and parentheses. In FORTRAN, there
are four types of expressions:

e arithmetic
» character
« relational
e logical.

Arithmetic Expressions <>

An "arithmetic expression'' is a numeric computation that generates a

numeric value.

Arithmetic Operators

The arithmetic operators are:

Operator

Meaning

*%

/

*

Exponentiation

Division

Multiplication
Subtraction or Negation

Addition or ldentity

Figure 5-1. Arithmetic Operators

Chapter 5. Expressions

5-1

The **, /, and * operators are binary operators. The + and - operators can
be unary or binary operators.

The ** operator has the highest precedence, then the * and / operators, and
lastly the + and - operators. Whenever an ambiguity exists, the expressions
are evaluated from left to right. Parentheses can be used to change the
order of evaluation. Items in parentheses are considered first, from the
innermost set of parentheses outward, no matter what operators are used.

Arithmetic Operands

5-2 FORTRAN Reference

An "arithmetic operand'' can be a primary operand, a factor operand, a
term operand, or an arithmetic expression.

"Primary operands' include:

o unsigned arithmetic constants

» symbolic names of arithmetic constants

« arithmetic variable references

« arithmetic array element references

» arithmetic function references

« arithmetic expressions enclosed in parentheses.

"Factor operands'' are:

e primary
« primary ** factor.

A factor consists of one or more primaries separated by the exponentiation
operator. The "primary ** factor'' means that an expression such as
2¥*3**4 i interpreted as 2**(3**4).

"Term operands'' are:
« factor
« term / factor

« term * factor.

A term consists of one or more factors separated by the multiplication (*)
or division (/) operator. Factors are combined left to right.

" Arithmetic expressions'' are:

e term

e +4term or -term

» arithmetic expression + term
« arithmetic expression - term.

An arithmetic expression consists of a series of terms separated by addition
(+) or subtraction (-) operators. A plus or minus sign can precede the first
term in an expression. Terms are combined left to right.

Note that two consecutive operators form an incorrect expression; a**-b is
not allowed, but a**(-b) is allowed.

Constant Expressions

A "constant expression' is either an arithmetic constant expression or an
integer constant expression. Constant expressions are used in many
FORTRAN constructs, especially in specification statements.

An "arithmetic constant expression' is an expression in which each primary
is an arithmetic constant, the symbolic name of an arithmetic constant, or a
constant expression enclosed in parentheses. Exponentiation is allowed
only if the exponent is of the integer data type.

Examples:
5.0%2 2%*%37-1 2% (4.5, 9.8)
-16/4 3.141592/2 5%% (3+42)

These are all valid arithmetic constant expressions.

An "integer constant expression" is an arithmetic constant expression in
which each constant is of the integer data type.

Chapter 5. Expressions 5-3

Examples:
3%5 -10 445% (9-2)

These are all valid integer constant expressions.

Data Type Conversion Rules for Arithmetic Expressions 4 <>

5-4 FORTRAN Reference

When operands of mixed data types appear in an expression, FORTRAN
performs implicit data type conversion on the operands according to well-
defined rules. The data type of an expression is ultimately derived from the
data types of its operands according to the following rules.

When the addition (+) operator or the subtraction (-) operator acts upon a
single operand (that is, used as an unary operator), the data type of the
result is the same as the data type of the operand.

When an arithmetic operator acts upon a pair of operands (that is, used as a
binary operator), the data type of the result is as shown in either Figure 5-2
or Figure 5-3.

In these figures:

I indicates the integer data type.

R indicates the real data type.

D indicates the double-precision data type.

C indicates the standard complex data type (COMPLEX).

CD indicates the COMPLEX*16 data type.

RP indicates the real part of a complex number.

IP indicates the imaginary part of a complex number.

The functions REAL, DBLE, and CMPLX used in the figures are defined in
Appendix A, “Intrinsic Functions.”

Rules are given in the tables in the form of assignments. The data type of

the result is indicated by the letter to the left of the equal sign (=), and the
derivation of that result is given by the expression to the right of the equal

sign.

Figure 5-2 shows the conversion rules for +, -, *, and / operations. For
example, to obtain the rule for I1+C2 where I1 is an integer number and
C2 is a complex number, find the I1 entry under X1 and the C2 entry across
from X2. The conversion rule is:

C = CMPLX (REAL (I11), 0.0) + C2

The result is of the complex data type. The first operand is obtained by
converting the integer number to a real number and then converting that
real number to a complex number with the imaginary part equal to 0.0. The
two complex numbers are then added.

For the -, *, and / conversion rules, replace the + in Figure 5-2 with the
desired operator.

Chapter 5. Expressions 5-5

X2 12
X1
I I =11+ 12
R1 R = R1 + REAL(12)
D1 D =D1 + DBLE(12)
c1 C =C1 + CMPLX(REAL(12),0.0)
cD1 CD = CD1 + DCMPLX(DBLE(I2) .0)
X2 R2
X1
I R = REAL(I1) + R2
R1 R = R1 + R2
D1 D = D1 + DBLE(R2)
c1 C=2¢Cl+ CMPLX(RZ 0.0)
CD1 CD = CDT + DCMPLX(DBLE(R2),0.0)
X2 D2
X1
I D = DBLE(I1) + 2
R1 D = DBLE(R1) +
D1 D =D1 + D2
C1 CD = DCMPLX(DBLE(RP1) + DBLE(IP1)) + DCMPLX(D2,0.0)
CDi CD = €D1 + DCMPLX(D2,0.0)
X2 c2
X1
I C = CMPLX(REAL(11),0.0) + C2
R1 C = CMPLX(R1,0.0) + C2
D1 CD = DCMPLX(D1,0.0) + DCMPLX(DBLE(RP2),DBLE(IP2))
c1 C=2Cl+C2
CD1 CD = CD1 + DCMPLX(DBLE(RP2),DBLE(IP2))
X2 ch2
X1
I CD = DCMPLX(DBLE(11),0.0) + CD2
R1 CD = DCMPLX(DBLE(R1),0.0) + CD2
D1 €D = DCMPLX(D1,0.0) + CD2
c1 CD = DCMPLX(DBLE(RP1),DBLE(IP1) + CD2
CD1 CD = CD1 + CD2

Figure 5-2. Conversion Rules for +, -, *, and / Operations

Figure 5-3 shows the conversion rules for exponentiation (**) operations.
It is interpreted in the same manner as Figure 5-2.

5-6 FORTRAN Reference

X2 12
X1
I b= 11 %% 2
R1 R =R1** 12
D1 D =D1** 2
) C=2C1** 2
DI CD = CD1 ** |1
X2 R2
X1
I R = REAL(11) ** R2
R1 R = R1 ** R2
DI D = DI ** DBLE(R2)
C1 C = Cl *% CMPLX(R2,0.0)
CD1 CD = CD1 ** DCMPLX(DBLE(R2),0.0)
X2 D2
X1
I D = DBLE(11) ** D2
R1 D = DBLE(R1) ** D2
D1 D = D1 ** p2 .
C1 CD = DCMPLX(DBLE(RP1),DBLE(IP1)) ** DCMPLX(D2,0.0)
cD1 CD = CD1 ** DCMPLX(D2,0.0)
X2 c2
X1
I C = CMPLX(REAL(11),0.0) ** 2
R1 C = CMPLX(R1,0.0) ** €2
D1 CD = DCMPLX(D1,0.0) ** DCMPLX(DBLE(RP2),DBLE(1P2))
Cl1 C=CI* ¢2
CD1 | €D = CD1 ** DCMPLX(DBLE(RP2),DBLE(IP2))
X2 CD2
X1
I CD = DCMPLX(DBLE(11),0.0) ** CD2
R1 CD = DCMPLX(DBLE(R1),0.0) ** ¢D2
DI CD = DCMPLX(D1,0.0) ** D2 N
Cl CD = DCHPLX(DBLE(RP1),DBLE(IP1) ** CD2
D1 | €D = CD1 ** (D2

Figure 5-3. Conversion Rules for ** Operations

Some of the entries in Figure 5-3 show what happens when a complex argu-
ment is raised to a complex power. In these cases, the value of the
expression is the principal value, which is determined by the formula:

X1 ** X2 = EXP (X2 * LOG (X1))

Chapter 5. Expressions 5-7

The EXP and LOG are the exponential and natural logarithm intrinsic func-
tions described in Appendix A, “Intrinsic Functions.”

Except for values raised to an integer power in mixed data type expressions,
the operand that differs from the data type of the result is converted to the
data type of the result according to the rules given in the previous tables.
The operator then acts upon a pair of operands of the same data type.

When a primary is raised to an integer power, the integer does not need to
be converted.

Data Type Conversion Rules for [ntegers of Different Size

5-8 FORTRAN Reference

In expressions containing mixtures of INTEGER*2 and INTEGER*4 (or
INTEGER) variables, the operands with the smaller fields are promoted to
the size of the larger fields.

If you assign the result of an expression to a variable with a smaller field, an
undefined result is produced if the value of the result exceeds the range of
values allowed for that variable.

Note also that many FORTRAN statements and functions specifically
require arguments of the standard integer data type. In such cases, you
cannot use arguments of INTEGER*2 size.

Some of the FORTRAN intrinsic bit-manipulation routines also require
arguments of specific integer sizes.

Example:

INTEGER*2 I,K

INTEGER*4 L,J

I=32767

J=2

K=I+J

L=I+J

WRITE(*,100) K,L
100 FORMAT (2I10)

STOP

END

This program prints the numbers -32767 and 32769 and illustrates that
INTEGER*2 variables are promoted to INTEGER*4 variables when those
expressions are evaluated. If this were not the case, the value -32767 would
have been printed twice. The program also illustrates what happens when
an expression is assigned to a variable whose data type range is not large
enough to hold the value.

Integer Division

If an integer operand is divided by another integer operand, the result is not
the strict mathematical quotient. Instead, the quotient is obtained by trun-
cating toward 0. For example, the integer 1 divided by the integer 2 results
in a quotient of 0. Similarly, the integer -8 divided by the integer 3 results
in a quotient of -2.

Character Expressions

A "character expression" operates on character strings and generates char-
acter values. The simplest forms of character expressions are:

character constants

character variables

character array element references

character substring references

character function references

character expressions enclosed in parentheses.

The only character operator is // (concatenation). Concatenation joins
two strings in the order specified, thereby forming one string whose length
is equal to the sum of the lengths of the two strings. The form of the char-
acter concatenation is:

xl // x2

Chapter 5. Expressions 5-9

This produces a new value that is the value of x/ concatenated on the right
with the value of x2.

Example:

C This code prints "Big Ben".

C
CHARACTER*3 FNAME, LNAME
DATA FNAME,LNAME /'Big','Ben'/
PRINT *,FNAME // ' ' // LNAME

Dummy arguments to procedures can be character strings whose length is
specified by an asterisk (*). The asterisk designates the string as an
assumed-size character string whose length is determined at the time an
actual string argument is associated with that dummy argument.

A character string expression involving concatenation of such a string argu-
ment cannot be passed as an actual argument to any procedure, nor can it
appear in the format specification of an input/output statement or as an
item in the input/output list of an input/output statement.

Examples:

C This code results in two compile-time errors

C because of incorrect usage of string expressions.
C

PROGRAM ERROR
CHARACTER*20 TRIAL
TRIAL='Will this go?'
CALL SUBERR(TRIAL)
STOP

END

5-10 FORTRAN Reference

SUBROUTINE SUBERR (STRING)
CHARACTER* (*) STRING

C The first error occurs in this CALL statement.
CALL WILD(STRING//' Nope!')
C The second error occurs in this WRITE statement.

WRITE(*,10) STRING//' Nope again!'
10 FORMAT (A)

RETURN

END

These examples illustrate two of the three character string expression
restrictions. The errors can be corrected by assigning the concatenated
strings to new character variables and using the new variables in the CALL
and WRITE statements.

Relational Expressions

"Relational expressions'' compare arithmetic expression values or character
expression values and yield logical values. The relational operators are:

Relational
Operator Meaning
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

Figure 5-4. Relational Operators

Chapter 5. Expressions 5-11

Arithmetic Relational Expressions

An "arithmetic relational expression' shows a relationship between arith-
metic operands. The form of an arithmetic relational expression is:

el relop e2

el
e2
are arithmetic operands.

relop
is a relational operator.

Only the .EQ. (equal to) and .NE. (not equal to) operators are allowed for
operands of the complex data type.

If the operands are of different data types, the relational expression is
treated as if it were in the form:

((el) - (e2)) relop O

The 0 (zero) has the same data type as the expression.

Comparison of a double-precision value with a complex value is not
allowed.

5-12 FORTRAN Reference

Character Relational Expressions

A "character relational expression' shows a relationship between character
operands. The form of a character relational expression is:

el relop e2

el
e2
are character expressions.

relop
is a relational operator.

The character order, or collating sequence, used by FORTRAN is described
in “Character Set 4 <> on page 2-1. RT PC VS FORTRAN uses the
ASCII representation for character data. The .EQ. (equal to) and .NE.
(not equal to) operators do not use the ordering; they do a bit comparison.

If the operands in a character relational expression have different lengths,
the shorter operand is padded on the right with spaces until the lengths are
equal.

Logical Expressions <>

A "logical expression" operates on logical values and generates a logical
result. The simplest forms of logical expressions are:

logical constants

logical variable references
logical array element references
logical function references
relational expressions.

Chapter 5. Expressions 5-13

Other logical expressions expand upon these simple forms by using paren-
theses and these logical operators:

Logical
Operator Meaning
.NOT. Logical Negation
.AND. Logical Conjunction
.OR. Inclusive Disjunction
.EQV. Logical Equivalence
.NEQV. Logical Nonequivalence

Figure 5-5. Logical Operators

The relative precedence of logical operators is (from highest to lowest):

1. .NOT.

2. .AND.

3. .OR.

4. .EQV. and .NEQV.

The .AND. and .OR. operators are binary operators and appear between
their operands. The .NOT. operator is an unary operator and appears
before its operand. Operators of equal precedence associate left to right.

Examples:

(A .AND. B .AND. C) isequivalentto ((A .AND. B) .AND. C)

(.NOT. A .OR. B .AND. C) is equivalent to
((.NOT. A) .OR. (B .AND. C))

Two .NOT. operators cannot appear next to each other, but an adjacent
.AND. and .NOT. is allowed. For example, (A .AND. .NOT. B) is an
allowable expression.

5-14 FORTRAN Reference

Precedence of Operators

When arithmetic, relational, and logical operators appear in the same
expression, their relative precedence is (from highest to lowest):

1. arithmetic operators
2. relational operators
3. logical operators.

Expression Programming Errors

Any variable, array element, or function referenced in an expression must
be defined by the time of the reference. Integer variables must be defined
with an arithmetic assignment statement rather than a statement label
(ASSIGN) assignment statement. If a character string or substring is refer-
enced in an expression, all the referenced characters should be defined by
the time of the reference.

Unpredictable results occur if you divide by zero or raise a zero value to a
zero or negative power. Unpredictable results also occur if you raise a neg-
ative value to a real or double-precision power.

It is a programming error when a function reference within a statement
changes any other object in that statement.

If a function reference causes an actual argument to the function to become

defined, unpredictable results occur if that object is referenced anywhere
else in the statement containing the function reference.

Chapter 5. Expressions 5-15

Example:

This program is faulty because the variable A in
the second assignment statement of the main
program ERROR is changed by the function reference,
producing unpredictable results.

ONONONS]

PROGRAM ERROR

A =4,
X = FUNC(A) + A
END

FUNCTION FUNC (X)
X=X +1

FUNC = X

RETURN

END

5-16 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Data Type Conversion Rules for Arithmetic Expressions

» The "CD" in Figure 5-2 and Figure 5-3 also indicates the double-
complex (DOUBLE COMPLEX) data type.

Chapter 5. Expressions 5-17

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Arithmetic Expressions

The term "numeric' includes logical data because logical data is treated
as integer data when used in an arithmetic context.

Data Type Conversion Rules for Arithmetic Expressions

Logical Expressions

5-18 FORTRAN Reference

The "CD'" in Figure 5-2 and Figure 5-3 also indicates the double-
complex (DOUBLE COMPLEX) data type.

The simplest forms of logical expressions also include integer constants,
integer variable references, integer array element references, integer
function references, and integer expressions enclosed in parentheses.

When a logical operator operates on integer elements (which is possible
under VX mode only), the logical operation is carried out bit-by-bit on
the corresponding bits of the internal (binary) representation of the
integer elements. The resulting data type is integer.

When a logical operator combines integer and logical values (which is
possible under VX mode only), the logical value is first converted to an
integer value, then the operation is carried out as for two integer ele-
ments. The resulting data type is integer.

The logical operator '.XOR." is also allowed, and is the same as the
.NEQV. operator.

Chapter 6. Assignment Statements

" Assignment statements'' compute values that are then assigned to data
objects. Since FORTRAN does not require that variables be declared
before their use, assignment statements can cause the allocation of storage
for data objects. There are four types of assignment statements:

« arithmetic

« logical

« statement label (ASSIGN)
« character.

Arithmetic Assignment Statements 4 <>

An "arithmetic assignment statement' evaluates an arithmetic expression
and assigns the result to a variable. The form of an arithmetic assignment
statement is:

var = expr

var

is a variable or an array element name whose data type is integer, real,
double-precision, or complex.

expr
is an expression that is compatible with the data type of var.

If the data type of var and the expr are not compatible, the value of expr is
automatically converted to the data type of var according to the following
table:

Chapter 6. Assignment Statements 6-1

6-2 FORTRAN Reference

var expr
Integer INT(expression)
Real REAL (expression)
Double-Precision DBLE (expression)
Comp lex CMPLX{expression)

Figure 6-1. Data Type Conversion for Arithmetic Assignment Statements

The functions in the "Value Assigned" column in Figure 6-1 are generic
intrinsic functions described in Appendix A, ‘“Intrinsic Functions.”

Example:
COMPLEX C
REAL X,Y
INTEGER I,J,K
C = (1.0,2.0)
Y = 5.
J =1
K =2
5 X = C*Y
10 I = (X*J) / (2.0*%Y) * (K**2)
15 X = 4.0 * DATAN(1.0D+0)

In statement 5, the expression is evaluated as a complex data type.
However, X is of the real data type, so it is assigned the real part of the
complex expression.

In statement 10, the expression is evaluated as a real data type. However,
since I is declared as an integer, the expression is truncated toward 0 before
the assignment.

Statement 15 illustrates the preferred method of obtaining # with double-
precision accuracy. But since X is only a single-precision variable, approxi-
mately nine decimal places of precision are lost during the assignment.

Keep in mind that the evaluation of an integer expression containing
INTEGER*2 variables occurs after the variables are promoted to
INTEGER*4, and the result for the expression is of the INTEGER*4 data

type.

The assignment of an integer expression to an integer variable of a larger
data type occurs without problems. However, assignment of an integer
expression to an integer variable of a shorter data type may produce erro-
neous results if the value of the expression is outside the range of the data
type of the variable. Error messages are not produced if this occurs.

Example:

INTEGER*2 I

INTEGER*4 J

J=32770

1=J

WRITE(*,100) I,J
100 FORMAT (2I10)

STOP

END

The execution of this program causes the numbers -32766 and 32770 to be

printed. This occurs because 32770 is outside the range of numbers that
can be represented by the INTEGER*2 data type.

Logical Assignment Statements <>

A "logical assignment statement'' assigns the value of an expression to a
logical variable. The form of a logical assignment statement is:

logvar = logexpr

Chapter 6. Assignment Statements 6-3

logvar
is a logical variable.

logexpr
is a logical expression that must evaluate to either true (TRUE.) or
false (FALSE.).

If a logical variable’s data type is LOGICAL, LOGICAL*1, or

LOGICAL#*4, its logical expression is automatically converted to the correct
data type before the assignment.

Examples:

LOGICAL TELLME, NONO, BIG

TELLME = .TRUE.
NONO = .FALSE.
BIG = (I .GT. 100)

These are all valid logical assignment statements.

Statement Label (ASSIGN) Assignment Statements

A "statement label assignment statement' assigns the value of a format
label or a statement label to an integer variable. The form of statement
label assignment statement is:

ASSIGN label TO intvar

label
is a format label or a statement label.

6-4 FORTRAN Reference

intvar
is an integer variable that must have a data type of either INTEGER
or INTEGER*4,

Examples:

* H, I, and J have been declared as INTEGER.

ASSIGN 424 TO H
ASSIGN 675 TO I
ASSIGN 905 TO J

These are all valid statement label assignment statements.

Note that ASSIGN 100 TO LAB is not the same as LAB = 100. The
former assigns the address of the statement labeled 100 to LAB. The latter
assigns the value 100 to LAB.

Statement label assignment statements are used with assigned GOTO state-
ments, described in Chapter 8, ‘“Control Statements,” and as format
specifiers in formatted input/output, which are described in

Chapter 10, “Input and Output.”

Character Assignment Statements

A "character assignment statement'" evaluates a character expression and
assigns the result to a character variable, character array element, or char-
acter substring. The form of a character assignment statement is:

charvar = charexpr

Chapter 6. Assignment Statements 6-5

6-6 FORTRAN Reference

charvar
is a character variable.

charexpr
is a character expression.

The character field being used on the left side of the statement should not
appear on the right side of the statement. If it does, the results may be
undefined.

The left and right sides of a character assignment statement can have dif-
ferent lengths. If the left side is longer, the right side is extended to the
right with spaces until the lengths are equal. If the left side is shorter, a
substring equal to the length of the left side is taken from the right side
starting at position 1.

Only as much of the right side need be defined as is necessary to define the
left side. For example, consider this program fragment:

CHARACTER MARK*4, BILL*8

MARK = BILL

This assignment of BILL to MARK requires that the substring BILL(1:4)
be defined since that is enough to define MARK. The rest of BILL,
BILL(5:8), does not have to be defined.

If the left side of a character assignment statement is a substring reference,
the right side is assigned only to the substring. The definition status of the
character positions not specified on the left side does not change.

Examples:

CHARACTER*10 STR10
CHARACTER*20 STR20

10 STR10 = 'abcdefghij'
20 STR10 = 'Too long of a string’
30 STR20 = '123456789ABCDEFGHIJK'

40 STR10 STR20(1:10)
50 STR20(2:11) = STR20(1:10)

Statement 10 causes the entire 10-character string to be assigned to the
character variable STR10.

Statement 20 causes the characters '"Too long o' to be assigned to STR10.
The rightmost characters in the character constant are ignored.

Statement 40 assigns only the first 10 characters of STR20 to STR10.

Statement 50 gives undefined results because character positions in the
expression are being assigned values.

Chapter 6. Assignment Statements 6-7

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Arithmetic Assignment Statements

Figure 6-2.

6-8 FORTRAN Reference

The var is a variable or an array element name whose data type is
integer, real, double-precision, complex, or double-complex.

With the inclusion of the double-complex data type, Figure 6-1 is

changed to:
var expr
Integer INT(expression)
Real REAL (expression)

Double-Precision
Complex

Double—-Comp lex

DBLE(expression)
CMPLX(expression)
DCMPLX(expression)

Modes)

Data Type Conversion for Arithmetic Assignment Statements (R1 and VX

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Arithmetic Assignment Statements

« The var is a variable or an array element name whose data type is
integer, real, double-precision, complex, or double-complex.

« With the inclusion of the double-complex data type, Figure 6-1 is
changed. See Figure 6-2 on page 6-8.

Logical Assignment Statements
o If alogical variable’s data type is LOGICAL, LOGICAL*1,

LOGICAL*2, or LOGICAL*4, its logical expression is automatically
converted to the correct data type before the assignment.

Chapter 6. Assignment Statements 6-9

6-10 FORTRAN Reference

Chapter 7. Specification Statements

"Specification statements'' are nonexecutable statements that define prop-
erties of variables, arrays, and functions. The specification statements
described in this chapter are:

Type
DIMENSION
COMMON
DATA
PARAMETER
IMPLICIT
EXTERNAL
INTRINSIC
SAVE
EQUIVALENCE
NAMELIST

The BLOCK DATA, FUNCTION, PROGRAM, and SUBROUTINE spec-
ification statements are described in Chapter 9, “Program and Subprogram
Structure.”

For proper ordering of specification statements in a program unit, see
“Order of Statements 4 <>’ on page 2-11.

Type Statements — Declaring Data Types 4

"Type statements' specify the data types of user-defined names and can
either confirm or override the default data types. Type statements can also
define the dimensions of an array.

A type statement can contain a user-defined name for a variable, array,
dummy argument, external function, or statement function. When a type

Chapter 7. Specification Statements 7-1

statement does contain one of these names, the data type of that name is
defined for the program unit containing the type statement. In any given
program unit, a user-defined name can appear in only one type statement.

A type statement can confirm the data type of an intrinsic function, but it is
not required to do so. Type statements cannot contain main program names
or subroutine subprogram names.

You can initialize data in any form of type declaration statement by placing
values bounded by slashes (/) immediately after the symbolic name of the
variable or array to be initialized.

Arithmetic Type Statements 4 <>

7-2 FORTRAN Reference

An "arithmetic type statement'' declares arithmetic data objects. The form
of an arithmetic type statement is:

type var | 1] [/clist/ V[, var [*1]) [/clist/ 1] ...

type
is INTEGER, INTEGER*2, INTEGER*4, REAL, REAL*4,
REAL*8, DOUBLE PRECISION, COMPLEX, COMPLEX*§, or
COMPLEX*16.

var
is a variable name, array name, dummy argument name, function
name, or array declarator.

/

is a data type length specifier, which must be one of the acceptable
lengths for the data type being declared. This specification overrides
the length attribute that the statement implies, and assigns a new
length to the specified item. If you specify a data type length specifier
with an array declarator, the data type length specifier goes imme-
diately after the array name.

clist
is a list of constants, as in a DATA statement.

Examples:
C These are declared integer variables.

INTEGER CLOCK, HANDS(2), TIME(24)

C These are declared real and
C double-precision variables.
C
REAL RADIO, K101, VARBLS(10, 10, 5)
DOUBLE PRECISION TWOS (50), TWICE, SECOND
C These are declared complex data items.
C
COMPLEX FUNK, ROCK, BACH(48)
C This is a declared real variable
C with initialization.
C

REAL*8 ARRAY(10)/5%0.0, 5%*1.0/

These are all valid arithmetic type statements.

Character Type Statements 4 <>

A "character type statement'' declares character data objects. The form of
a character type statement is:

CHARACTER [*n[,]1] var [*n] [/clist/11, var [*n] [/clist/]] ...

var
is a variable name, array name, dummy argument name, or an array
declarator.

Chapter 7. Specification Statements 7-3

7-4 FORTRAN Reference

is the length in characters of a character variable or a character array
element.

clist
is a list of constants, as in a DATA statement.

The length » must be an unsigned integer constant in the range 1-500, or it
can be a constant expression that is enclosed in parentheses and has a value
of 1-500. (The length of n can be from 1-32767 if the n command-line
option is specified. Command-line options are described in the RT PC V'S
FORTRAN User’s Guide.) If the name is being defined as a dummy argu-
ment or if a data type is being established for later use in a PARAMETER
statement, the length » can also be specified by an asterisk enclosed in
parentheses (*).

The length n following the type name CHARACTER is the default length
for any name in the list that does not have its length specified explicitly. In
the absence of a length specification, the default length is 1. A length
immediately following a variable or array element overrides the default
length for that item only. For an array, the length specifies the length of
each element of that array.

A dummy argument defined as CHARACTER*(*) cannot be used as an
actual argument to a procedure if it is concatenated in a character string
expression. However, a symbolic name of a constant can be used in such a
case.

Examples:

CHARACTER FLIP*10, FLOP*20
CHARACTER WILD(15)*20
CHARACTER*80 LINE(24)

CHARACTER* (10*%20) LSTR

CHARACTER* (*) VARBLE
CHARACTER NAME*10/'ABCDEFGHIJ'/

These are all valid character type statements.

Logical Type Statements 4 <>

A "logical type statement" declares logical data objects. The form of a
logical type statement is:

type var | ¥ [/clist/ 11y var | *1] [/clist/ 1] ...

type
is LOGICAL, LOGICAL*1, or LOGICAL*4.

var
is a variable name, array name, dummy argument name, function
name, or an array declarator.

/
is a data type length specifier of 1 or 4. This specification overrides
the length attribute that the statement implies, and assigns a new
length to the specified item. If you specify a data type length specifier
with an array declarator, the data type length specifier goes imme-
diately after the array name.

clist
is a list of constants, as in a DATA statement.

Examples:

LOGICAL SONG

LOGICAL BOOLS (40)

Chapter 7. Specification Statements 7-5

LOGICAL*4 BLACK, WHITE
LOGICAL FLAG /.TRUE./

These are all valid logical type statements.

DIMENSION Statements — Declaring Array Dimensions 4
<>

A "DIMENSION statement'" specifies the number of dimensions in a user-
defined array. The form of a DIMENSION statement is:

DIMENSION var (dim) [, var (dim)]

var (dim)
is an array declarator that has the form:

name (d [,d] ...)

name
is the user-defined name of the array.

is a dimension declarator.
The number of dimensions in an array is the number of dimension
declarators in its array declarator. The maximum number of dimensions for

an array is seven. Array and dimension declarators are described in
Chapter 4, ‘“Names, Arrays, and Substrings.”

7-6 FORTRAN Reference

Examples.

DIMENSION FORTH (10,5:15,0:99)

DIMENSION AXIS (6)

The first example declares an array of three dimensions. The first dimen-
sion has a range of 1-10, the second dimension has a range of 5-15, and the
third dimension has a range of 0-99. The second example declares a single-
dimension array of six elements.

COMMON Statements — Declaring Common Blocks 4 <>

A "COMMON statement" defines a common block and its contents.
Common blocks are storage areas that allow variables to be shared among
program units. The form of the COMMON statement is:

COMMON [/[cnamel /] nlist [[,] |/ [cnamel /| nlist]]...

cname
is a common block name.

nlist
is a list of variable names, array names, and array declarators, all sepa-
rated by commas.

Dummy argument names and function names must not appear in
COMMON statements.

All variables and arrays appearing in an nlist that follows a common block
name are declared to be in that common block. If the cname is omitted, all
elements appearing in the nlist are declared to be in the blank common
block.

Chapter 7. Specification Statements 7-7

7-8 FORTRAN Reference

A common block name can appear more than once in one or more
COMMON statements in the same program unit. The nlist following each
successive appearance of the same common block name is treated as a con-
tinuation of the list for that common block name. Elements in an nlist of a
common block are allocated storage in the order of their declaration.

The size of a common block is equal to the number of bytes of storage
needed to hold all the elements in that common block.

A named common block with the z command-line option specifies the
named common area to be allocated at execution time. (Command-line
options are described in the RT PC VS FORTRAN User’s Guide.) Note
that this type of common block cannot be initialized at compile time.

Examples:

INTEGER MONTH,DAY,YEAR
COMMON /DATE/ MONTH,DAY,YEAR

The variables MONTH, DAY, and YEAR reside in the common block
DATE. DATE is 12 bytes in length with MONTH occupying the first 4
bytes, DAY occupying the second 4 bytes, and YEAR occupying the last 4
bytes.

INTEGER STAND(2,4)
REAL X(4)
COMMON /CBLOCK/ STAND, X

The arrays STAND and X reside in the common block CBLOCK.
CBLOCK is 48 bytes in length with the arrays stored in this order:
STAND(1,1), STAND(2,1), STAND(1,2), STAND(2,2), STAND(1,3),
STAND(2,3), STAND(1,4), STAND(2,4), X(1), X(2), X(3), and X(4).

PROGRAM EXAMPL
REAL MATRIX(3,3)
COMMON /ABC/ MATRIX

END
SUBROUTINE SUB

REAL COL1(3),COL2(3),COL3(3)
COMMON /ABC/ COL1, COL2, COL3

END

The common block ABC is defined in the main program and contains the
two-dimensional array MATRIX. In the subroutine subprogram SUB, the
common block ABC is referenced, but with different variables. COL1 ref-
erences MATRIX(1,1), MATRIX(2,1), and MATRIX(3,1). COL2 refer-
ences MATRIX(1,2), MATRIX(2,2), and MATRIX(3,2). COL3
references MATRIX(1,3), MATRIX(2,3), and MATRIX(3,3).

DATA Statements — Declaring Initial Values 4 <>

A "DATA statement' is a nonexecutable statement that statically initializes
data variables. DATA statements can be interspersed with PARAMETER
statements and other specification statements. The form of a DATA state-
ment is;

DATA nlist /clist/ [[,] nlist /clist/] ...

nlist
is a list of variables, arrays, array element names, substring names,
and implied DO lists to be initialized.

When using array element names, subscript expressions must be
integer expressions containing only integer constants or names of

Chapter 7. Specification Statements 7-9

integer constants. They must not contain variables, array elements, or
function references.

clist
is a list of constants used to initialize the nlist. The constants can be
preceded by an integer constant repeat-factor and an asterisk (*).

Examples:

5%3.14159 3*'Help' 100%*0

These are constants preceded by an integer
constant repeat-factor and an asterisk.

The number of values in a clist must equal the number of variables or array
elements in the accompanying nlist. An array in an nlist is equivalent to a
list of all the elements in that array in the order they are stored. Array ele-
ments and substrings can be indexed by integer constant expressions.

The data type of each element in a clist must be the same as the data type of
the corresponding variable or array element in the accompanying nlist. If
necessary, the clist constant is converted to the data type of the nlist object
according to the data type conversion rules for arithmetic assignment state-
ments, which are described in Chapter 6, ‘“Assignment Statements.”

A DATA statement can initialize any variable, array element, or substring
unless it is:

« adummy argument
« an object in a blank common block
« an object that is associated with an object in a blank common block

« avariable in a function subprogram whose name is the same as that of
the function or one of its alternate-entry points.

A hexadecimal constant can be used to initialize any type of variable or
array element.

7-10 FORTRAN Reference

If a hexadecimal constant initializes a complex data type, one constant is
used that initializes both the '"real" and "imaginary'' parts, and the constant
is not enclosed in parentheses. If the constant is smaller than the length (in
bytes) of the entire complex entity, zeros are added on the left. If the con-
stant is larger, the leftmost hexadecimal digits are truncated.

A Hollerith constant can be used to initialize a noncharacter variable or
array element.

A logical variable or logical array can be initialized with T instead of
.TRUE. and F instead of .FALSE..

Character items can be initialized by character data. Each character con-
stant initializes exactly one variable, one array element, or one substring. If
a character constant contains more characters than the item it initializes, the
additional rightmost characters in the constant are ignored. If a character
constant contains fewer characters than the item it initializes, the additional
rightmost characters in the item are initialized with blank characters. (Each
character represents 1 byte of storage.)

Objects can be initialized only once in a program unit. DATA statements in
block data subprograms can only initialize objects in named common
blocks.

Examples:

C Some variables are declared.
REAL FIRST,SECOND
INTEGER EGG, NOG,WIGWAM
COMPLEX WEIRD(10)
DOUBLE PRECISION VECT(5)

C The reals are initialized.
DATA FIRST,SECOND /1.0,2.0/

C The integers are initialized.

DATA EGG/12/,NOG/24/,WIGWAM/25/

Chapter 7. Specification Statements 7-11

C Two elements of the complex array
C are initialized.
C

DATA WEIRD(2) ,WEIRD(5)

+ / 2 * (90.0,0.0) /
C All of the double-precision array
C is initialized.
C

DATA VECT /0.,1.,2.,3.,4./

These are all valid DATA statements.

Implied DO Loops in DATA Statements

A DATA statement can incorporate a form of the DO loop (described in
“DO Statements — Loop Control <>” on page 8-10) that provides a
concise static initialization of array variables. This "implied DO loop" is an
indexing specification similar to a DO loop but does not specify the word
DO and has a list of data elements rather than a set of statements as its
range. The form of an implied DO loop is:

(dlist, dovar = first, last[, inc])

dlist
is the implied DO list, which contains a list of array element names
and can contain embedded implied DO lists.

dovar
is the name of an integer variable known as the implied DO variable.

first

last

inc
are integer constant expressions; first is the starting value of dovar, last
is its ending value, and the optional inc is the value by which dovar is
incremented for each loop. If inc is omitted, its default value of 1 is
used.

7-12 FORTRAN Reference

The first, last, and inc expressions establish the implied DO loop’s iteration
count (the number of passes through the loop), which is established just as
for a DO loop. Unlike the DO loop, the iteration count for the implied DO
loop must be greater than 0. The first, last, and inc expressions can contain
implied DO variables of other implied DO lists whose range includes this
implied DO list.

The dlist is the range of an implied DO loop. When an implied DO loop

appears in a DATA statement, each item in the dlist is specified once and
the value of dovar is appropriately incremented for each repetition of the
implied DO loop.

The implied DO variable can have the same name as a variable in the
program unit containing the DATA statement since there is no conflict of

such names.
Examples:
C Some large arrays are declared.
C
INTEGER PRIMES (1000)
INTEGER UPRTRI (20,20)
REAL MATRIX(25,80)
C The large arrays are initialized with DATA
C statements containing implied DO loops.
C
DATA (PRIMES(I), I=1,1000) /1000%1/
DATA ((MATRIX(J,K), J=1,25) K=1,80) /2000%1.0/
C This DATA statement initializes the
C upper triangle of the array UPRTRI.
C

DATA ((UPRTRI(I,J), J=I,20), I=1,20) /210*0/

These are all valid implied DO loop initializations.

Chapter 7. Specification Statements

PARAMETER Statements — Making Symbolic Associations
4+ <

A "PARAMETER statement'' associates a constant value with a symbolic
name. The use of the symbolic name thereafter is equivalent to the use of
the constant value. The form of a PARAMETER statement is:

PARAMETER (name = expr |, name = expr] ...)

name
is the symbolic name being defined. (Symbolic names must be defined
in a type or IMPLICIT statement unless the default implied type is
desired.)

expr
is a constant expression being associated with the symbolic name.

Examples:

PARAMETER (TODAY = 'Friday')

PARAMETER (PI = 3.141592654)

In these examples, the character expression ''Friday' is associated with the
symbolic name TODAY and the arithmetic expression 3.141592654 is asso-
ciated with the symbolic name PI. These expressions can now be referenced
by their respective symbolic names throughout the program.

7-14 FORTRAN Reference

IMPLICIT Statements — Assigning Default Data Types 4 <>

An "IMPLICIT statement' overrides FORTRAN’s default data type rules
and establishes a new default data type for variables. The form of the
IMPLICIT statement is:

IMPLICIT type (letterlist) [, type (letterlist)] ...

type
is INTEGER,INTEGER*2, INTEGER*4, REAL, REAL*4,
REAL*8, LOGICAL, LOGICAL*1, LOGICAL*4, DOUBLE PRE-
CISION, COMPLEX, COMPLEX*8, COMPLEX*16, or CHAR-
ACTER [*n]. (The n is the size of the character data type. If n is not
specified, a value of 1 is assumed.)

letterlist
is a list of letters that, when they begin symbolic names, cause the
symbolic names to receive the data type and size of type.

IMPLICIT statements only apply to the program units in which they appear
and do not change the data type of any intrinsic function. Implicit data
types can be overridden or confirmed for any specific user-defined name if
that name appears in a type statement. Similarly, an explicit data type in a
FUNCTION statement takes precedence over an IMPLICIT statement.
Also, a character data type length can be overridden by a later data type
specification.

A program unit can have more than one IMPLICIT statement, but all
IMPLICIT statements must precede all other specification statements.

Examples.:

C All names beginning with A are declared
c to be of the integer data type.

c

IMPLICIT INTEGER (A)

Chapter 7. Specification Statements 7-15

All names beginning with Q, X, Y, or z
are declared to be of the complex data type.

[oNONe!

IMPLICIT COMPLEX (Q, X-Z)

All names beginning with A, B, C,
b, E, ¥, G, H, P, Q, R, S, T, U,

V, W, X, Y, or Z are declared to be
of the double-precision data type.

[oNoNONONe!

IMPLICIT REAL*8 (A-H, P-32)

These are all valid IMPLICIT statements.

EXTERNAL Statements — Declaring External or Dummy
Procedures

An "EXTERNAL statement" specifies the name of an external or dummy,
procedure, and allows the name to be used as an actual argument in a sub-
routine or function reference. The form of an EXTERNAL statement is:

EXTERNAL procname [, procname] ...

procname
is the name of an external procedure, dummy procedure, or block data
subprogram.

If an intrinsic function name appears in an EXTERNAL statement, that
name becomes the name of an external procedure and the corresponding
intrinsic function can no longer be called from that program unit.

Statement function names cannot appear in EXTERNAL statements, and
user-defined names can appear only once per EXTERNAL statement.

7-16 FORTRAN Reference

Examples:

[oNeNONe!]

This illustrates how to pass the name
of a function in an argument list to

a function subprogram.
SUBROUTINE ROOTS
EXTERNAL POS,NEG

IF (I.LT.0) THEN

X = QUAD(A,B,C,NEG)
ELSE

X = QUAD(A,B,C,POS)
ENDIF

RETURN
END

FUNCTION QUAD(A,B,C,FUNCT)
VAL = FUNCT(A,B,C)

RETURN
END

FUNCTION POS(A,B,C)

RETURN
END

FUNCTION NEG(A,B,C)

RETURN
END

Chapter 7. Specification Statements

7-17

INTRINSIC Statements — Declaring Intrinsic Functions

An "INTRINSIC statement' specifies the name of an intrinsic function, and
allows the name to be used as an actual argument in a subroutine or func-
tion reference. The form of an INTRINSIC statement is:

INTRINSIC name [, name] ...

name
is the name of an intrinsic function.

A name can appear only once in an INTRINSIC statement and in only one
INTRINSIC statement per program unit. If a name appears in an
INTRINSIC statement, it cannot appear in an EXTERNAL statement.

All names used in INTRINSIC statements must be system-defined intrinsic
functions. For a list of intrinsic functions, see Appendix A, “Intrinsic
Functions.”

If a specific name of an intrinsic function is used as an actual argument in a
program unit, that name must be declared in an INTRINSIC statement in
that program unit. If a generic function name of an intrinsic function
appears in an INTRINSIC statement, that function still retains its generic
properties.

The intrinsic functions (in IBM mode) that cannot be used as actual argu-
ments are:

« the type-conversion functions — INT, IFIX, IDINT, FLOAT, SNGL,
REAL, DBLE, CMPLX, DCMPLX, ICHAR, and CHAR

« the lexical relationship functions — LLGE, LGT, LLE, and LLT
« the functions for choosing largest or smallest values — MAX, MAXO,

AMAX1, DMAX1, AMAXO0, MAX1, MIN, MINO, AMIN1, DMINO,
AMINO, and MIN1.

7-18 FORTRAN Reference

Example:

c This illustrates how to pass the
C name of an intrinsic function to
C a subroutine subprogram.

INTRINSIC SIN
CALL DOIT(0.5,SIN,X)

END
SUBROUTINE DOIT(A,F,Y)
REAL A,F

Y = F(A) + F(3.14159)

END

SAVE Statements — Retaining Definition Status

A "SAVE statement' retains the definitions of data objects after control is
returned from the procedures that define them. A data object that is speci-
fied in a SAVE statement in a subroutine or function subprogram remains
defined after exiting the subprogram. The form of a SAVE statement is:

SAVE [aname [, aname] ...

aname
is a common block name enclosed in slashes, a variable name, or an
array name.

Chapter 7. Specification Statements 7-19

A name can appear only once in a SAVE statement. The names of dummy
arguments, procedures, and data objects appearing in common blocks
cannot appear in SAVE statements.

A SAVE statement appearing without an associated aname saves every data
object in the program unit that can be saved. It has the same effect as if
every data object in the program unit appeared in the SAVE statement.

Specifying a common block name in a SAVE statement is the same as
saving all the elements in that common block. A common block mentioned
in a SAVE statement must be mentioned in a SAVE statement in every sub-
program in which that common block appears. A SAVE statement has no
effect in the main program and is therefore optional.

Examples:
C Everything in the subprogram is saved.
C
SAVE
C Some variables are saved.
C

SAVE DIMES, NICKELS, PENNIES
C All of common block STAMPS is saved.

COMMON /STAMPS/ S(50)
SAVE STAMPS

These are all valid SAVE statements.

7-20 FORTRAN Reference

C This code shows one use of the SAVE statement.
C The program prints the integers 1-10. If the
C SAVE statement was not used, a 1 would be printed
C and the rest of the values would be undefined.

DO 10 I=1,10

CALL X(I)

10 CONTINUE

STOP

END

SUBROUTINE X (ICOUNT)

SAVE K

IF (ICOUNT.EQ.1) THEN
K = 1

ELSE
K=K+ 1

ENDIF

PRINT *,K

END

Definition status and the use of the SAVE statement are described further
in Chapter 9, “Program and Subprogram Structure.”

EQUIVALENCE Statements — Sharing Storage Between
Elements 4 <>

An "EQUIVALENCE statement" specifies that two or more variables or
arrays are to share the same storage. The EQUIVALENCE statement does
not cause any automatic data type conversion if the shared elements are of
different data types. The form of an EQUIVALENCE statement is:

EQUIVALENCE (nlist) [, (nlist)] ...

Chapter 7. Specification Statements 7-21

nlist
is a list of at least two variable names, array names, constant array
element names, or character substring names.

When using array element names, subscript expressions must be
integer expressions containing only integer constants or names of
integer constants. They must not contain variables, array elements, or
function references.

Argument names cannot appear in EQUIVALENCE statements.

Equivalencing character variables with noncharacter variables produces
unpredictable results.

An EQUIVALENCE statement specifies that the storage sequences of the
elements that appear in the nlist have the same first storage location. Two
or more variables are considered to be associated if they refer to the same

actual storage. Thus an EQUIVALENCE statement causes its list of vari-
ables to become associated.

An EQUIVALENCE statement cannot specify that the same storage
location is to appear more than once.

Example:
REAL R, S(10)

C An error occurs in the next statement.
EQUIVALENCE (R, S(1)), (R, S(5))

An error occurs because the variable R is forced to appear in two memory
locations — S(1) and S(5).

An EQUIVALENCE statement cannot specify that consecutive array ele-
ments be stored out of sequential order.

Example:
REAL R(10), S(10)

C An error occurs in the next statement.
EQUIVALENCE (R(1), S(1)), (R(5), S(6))

7-22 FORTRAN Reference

An error occurs because the statement attempts to associate R(5) and S(6)
after associating R(1) and S(1). This means that the array R is stretched,
which is not allowed.

Names of dummy arguments cannot appear in EQUIVALENCE state-
ments. Also, if a variable name is also a function name, that name cannot
appear in an EQUIVALENCE statement.

When EQUIVALENCE statements are used in conjunction with
COMMON statements, further restrictions apply. An EQUIVALENCE
statement cannot associate storage elements in different common blocks.
An EQUIVALENCE statement can extend a common block by adding
storage elements after the common block, but not before the common

block.
Example:
COMMON /MASSES/ R(10)
REAL S(10)
C An error occurs in the next statement.

EQUIVALENCE (R(1), sS(10))

An error occurs because the EQUIVALENCE statement tries to extend the
common block by adding storage before the start of the block. When R(1)
and S(10) are associated, S(1) is nine storage elements before the start of
the common block.

NAMELIST Statements — Specifying Names <> <>

A NAMELIST statement specifies a list of variables or array names and
associates that list with a unique namelist name. The namelist name is used
in the namelist-directed READ and WRITE statements to define the vari-
ables or arrays that are to be read or written. The form of a NAMELIST
statement is:

Chapter 7. Specification Statements 7-23

NAMELIST / name / list | / name / list] ...

name
is a namelist name, and cannot be the same as a variable or array
name.

list
is a list of variable or array names, separated by commas.

The list of variable or array names belonging to a namelist name ends with a
new namelist name enclosed in slashes (/) or with the end of the
NAMELIST statement. A variable name or an array name may belong to
one or more namelist lists.

Neither a dummy variable nor a dummy array name may appear in a
namelist list.

The NAMELIST statement must precede any statement function definitions
and all executable statements. A namelist name must be declared in a
NAMELIST statement and may be declared only once. The name may
appear only in input/output statements.

The NAMELIST statement declares a name name to refer to a particular list
of variables or array names. Thereafter, the forms READ (unit,name) and
WRITE (unit,name) are used to transmit data between the unit unit and the
variables specified by the namelist name name.

The rules for input/output conversion of namelist data are the same as the
rules for data conversion described in Chapter 5, ‘“Expressions.” The
namelist data must be in a special form, described in ‘“Namelist Input Data”
on page 10-34.

7-24 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Type Statements — Declaring Data Types

« Initializing data in a type declaration statement by placing values
bounded by slashes (/) after the symbolic name of the variable is not
allowed.

» A storage class type statement is also allowed, which declares a variable
to be STATIC or AUTOMATIC. The form of a storage class type
statement is:

[STATIC] var [, var] ...
or

[AUTOMATIC] var [,var] ...

STATIC

indicates there is exactly one copy of the datum, and its value is
retained between calls.

AUTOMATIC

indicates there is one copy of each variable declared automatic for
each invocation of the procedure. This is the default.

var
is a variable name, array name, or array declarator, but may not be
a dummy argument name or function name.

Storage class type statements must follow these rules:

Chapter 7. Specification Statements 7-25

R1 Mode

— Variables explicitly declared as AUTOMATIC cannot appear in
DATA statements.

— Variables explicitly declared as STATIC can appear in DATA state-
ments.

— Variables explicitly declared as AUTOMATIC or STATIC cannot
appear in SAVE statements.

— Variables cannot be declared as AUTOMATIC or STATIC more
than once.

— AUTOMATIC variables can appear in EQUIVALENCE statements
but they cannot be equivalenced with STATIC variables or variables
in COMMON blocks.

— STATIC variables cannot be equivalenced with AUTOMATIC vari-
ables or variables in COMMON blocks.

— Both explicitly defined AUTOMATIC variables and STATIC vari-
ables cannot appear in COMMON statements.

— The same variable cannot be defined or saved as both AUTO-
MATIC and STATIC.

Arithmetic Type Statements
« The fype is INTEGER, INTEGER*2, INTEGER*4, REAL, REAL*4,
REAL*8, DOUBLE PRECISION, COMPLEX, COMPLEX*§,
COMPLEX*16, or DOUBLE COMPLEX.

« The constant list ¢/ist is not allowed.

7-26 FORTRAN Reference

R1 Mode

Character Type Statements
o The constant list clist is not allowed.

e The n command-line option is not allowed.

Logical Type Statements

« The constant list clist is not allowed.

DIMENSION Statements — Declaring Array Dimensions

o The maximum number of dimensions for an array is 11.

COMMON Statements — Declaring Common Blocks

« FElements in a common block must be either all or none of the character
data type.

+ The z command-line option is not allowed.

DATA Statements — Declaring Initial Values

e A hexadecimal constant can only be used to initialize an integer vari-
able, logical variable, or array element.

o A binary or octal constant can be used to initialize an integer variable,
logical variable, or array element.

« The abbreviations T and F are not allowed.

Chapter 7. Specification Statements ~ 7-27

R1 Mode

PARAMETER Statements — Making Symbolic Associations

Symbolic names of constants may be used to replace one or both parts
of a complex constant.

IMPLICIT Statements — Assigning Default Data Types

7-28 FORTRAN Reference

The type can also be DOUBLE COMPLEX, UNDEFINED, STATIC,
or AUTOMATIC.

UNDEFINED turns off the automatic data typing mechanism and

instructs the compiler to issue a diagnostic for each variable used that
does not appear in a type statement. Specifying the u- command-line
option is equivalent to beginning each procedure with UNDEFINED.

STATIC indicates there is exactly one copy of the datum, and its value
is retained between calls.

AUTOMATIC indicates there is one copy of each variable declared
automatic for each invocation of the procedure. This is the default.

Static and automatic variables in IMPLICIT statements must follow
these rules:

— An implicitly defined automatic variable cannot appear in a DATA
statement.

— A SAVE statement or explicit STATIC type statement overrides an
IMPLICIT AUTOMATIC statement.

— An explicit AUTOMATIC type statement overrides an IMPLICIT
STATIC statement.

— A COMMON statement overrides a previous IMPLICIT statement;
that is, both implicitly defined automatic and static variables can
appear in a COMMON statement and lose their automatic or static
attribute.

R1 Mode

EQUIVALENCE Statements — Sharing Storage Between Elements

« Single subscripts are permitted for multiple-dimension arrays. All
missing subscripts are considered to be equal to 1. A warning message
is given for each incomplete subscript.

NAMELIST Statements — Specifying Names

« The NAMELIST statement is not allowed.

Chapter 7. Specification Statements 7-29

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).
Arithmetic Type Statements
« The type is INTEGER, INTEGER*2, INTEGER*4, REAL, REAL*4,
REAL*8, DOUBLE PRECISION, COMPLEX, COMPLEX*8,
COMPLEX*16, or DOUBLE COMPLEX.
Character Type Statements

¢ The n command-line option is not allowed.

Logical Type Statements
o The type is LOGICAL, LOGICAL*1, LOGICAL*2, or LOGICAL*4,

« The data type length specifier */ can be 1, 2, or 4.

DIMENSION Statements — Declaring Array Dimensions

« A "VIRTUAL statement' is also allowed, which has the same effect as
a DIMENSION statement. The form of a VIRTUAL statement is:

VIRTUAL var (dim) [, var (dim)]

See “DIMENSION Statements — Declaring Array Dimensions <> <>’
on page 7-6 for variable descriptions.

7-30 FORTRAN Reference

VX Mode

COMMON Statements — Declaring Common Blocks

« Flements in a common block must be either all or none of the character
data type.

e The z command-line option is not allowed.

DATA Statements — Declaring Initial Values

« An octal constant can also be used to initialize any type of variable or
array element.

» The abbreviations T and F are not allowed.

« Nonprintable characters such as line feed and form feed can be assigned
to character variables. This is done by giving the nlist item a
CHARACTER*1 (or CHARACTER) data type and making the clist
item an integer in the range 0-255. Integers in hexadecimal radix form
can also be used. For a list of nonprintable characters and their numer-
ical representations, see the RT PC VS FORTRAN User’s Guide.

Examples:

CHARACTER STRING*8, SVECT(6)*10,
+ CARRIAGE RETURN*1, LINE_FEED%*1

DATA STRING /'0Old Rope'/
DATA SVECT /6 * 'Attached'/
DATA CARRIAGE_RETURN /13/
C The integer in this DATA statement is

C in hexadecimal radix form.
DATA LINE_ FEED /Z202/

This program sends a form feed to the printer:

Chapter 7. Specification Statements 7-31

VX Mode

PROGRAM FF
CHARACTER*1 FORM_FEED
DATA FORM_FEED /12/

C The integer could also be 'Z0C'.
OPEN (4,FILE="/dev/1p")
WRITE(4,'(A)') FORM_FEED
STOP
END

PARAMETER Statements — Making Symbolic Associations

« Symbolic names of constants may be used to replace one or both parts
of a complex constant.

« The expr can contain these functions:

— TAND, IOR, NOT, IEOR, ISHFT, LGE, LGT, LLE, and LLT with
constant operands

— CHAR with a constant operand

— MIN, MAX, ABS, MOD, ICHAR, NINT, DIM, DPROD, CMPLX,
CONIJG, and IMAG with constant operands.

IMPLICIT Statements — Assigning Default Data Types
e The type can also be LOGICAL*2, DOUBLE COMPLEX, or NONE.
NONE turns off the automatic data typing mechanism and instructs the
compiler to issue a diagnostic for each variable used that does not
appear in a type statement. Specifying the u- command-line option is

equivalent to beginning each procedure with NONE.

If you specify IMPLICIT NONE, no other IMPLICIT statement can be
included in the program unit.

7-32 FORTRAN Reference

VX Mode

EQUIVALENCE Statements — Sharing Storage Between Elements

» Single subscripts are permitted for multiple-dimension arrays. The
single subscript represents the linear element number.

NAMELIST Statements — Specifying Names

« A NAMELIST statement can appear anywhere in a program unit after
the PROGRAM, FUNCTION, or SUBROUTINE statement. However,
a namelist name must be declared in a NAMELIST statement before
being referenced in a namelist-directed READ, WRITE, or PRINT
statement.

Chapter 7. Specification Statements 7-33

7-34 FORTRAN Reference

Chapter 8. Control Statements

"Control statements' control the execution of a program. The control
statements described in this chapter are:

Block IF-THEN-ELSE
— Block IF

— ELSEIF

— ELSE

— ENDIF

Logical IF

Arithmetic IF

DO

CONTINUE

STOP

PAUSE
Unconditional GOTO
Assigned GOTO
Computed GOTO
END

The CALL, ENTRY, and RETURN control statements are described in
Chapter 9, “Program and Subprogram Structure.”

Block IF-THEN-ELSE Statement Group

The "block IF-THEN-ELSE statement group' is a structured-coding con-
struction that controls program execution without using jumps via GOTO
statements.

To understand the block IF statement and its associated statements more
fully, you need to understand the concept of the IF-level. The IF-level is
used to define the nesting rules for the block IF statement and its associated

Chapter 8. Control Statements 8-1

8-2 FORTRAN Reference

statements and to define the extent of IF blocks, ELSEIF blocks, and ELSE
blocks. The IF-level of any statement is:

nl -n2

The n1 is the number of block IF statements from the beginning of the
current program unit, including this statement. The »2 is the number of
ENDIF statements from the beginning of the current program unit, not
including this statement.

The IF-level of every statement must be greater than or equal to 0, and the
IF-level of every IF, ELSEIF, ELSE, and ENDIF block must be greater
than 0. The IF-level of every END statement must be 0.

The following examples illustrate the basic concepts of the IF-THEN-ELSE
statement group.

Examples:

This is a block IF statement that allows
a group of statements to be executed
only if the expression is true.

[oNeNoNe]

IF (I .LT. 10) THEN

C The next statements are executed
c only if I < 10.
PATH=50
TIME=4.
ENDIF
C This is a block IF statement with a
C series of ELSEIF statements.
C
IF (J .GT. 1000) THEN
C The next statement is executed
C only if J > 1000.
PATH=50
ELSEIF (J .GT. 100) THEN
C The next statement is executed
C only if 100 < J < 1000.

PN NONe!

Q0N

PATH=5

ELSEIF (J .GT. 10) THEN
The next statement is executed
only if 10 < J £ 100.

PATH=1
ELSE
The next statement is executed
only if J < 10.
PATH=0
ENDIF

This example shows that the constructs
can be nested and that an ELSEIF state-
ment can follow a block IF statement
without requiring an ELSE statement.

IF (I .LT. 100) THEN
The next statement is executed
only if I < 100.
PATH=6
IF (J .LT. 10) THEN
The next statement is executed
only if I < 100 and J < 10.
PATH=PATH+1
ENDIF
The next statement is executed
only if I < 100.
INPUT=0
ELSEIF (I .LT. 1000) THEN
The next statement is executed
only if 100 £ I < 1000.
IF (J .LT. 10) THEN
The next statement is executed
only if 100 £ I < 1000 and
J < 10.
INPUT=1
ENDIF
The next statement is executed
only if 100 £ I < 1000.
PATH=5
ENDIF

Chapter 8. Control Statements

Block IF Statements

8-4 FORTRAN Reference

The form of the block IF statement is:

IF (logexpr) THEN

logexpr
is a logical expression.

In executing the block IF statement, the logical expression is evaluated first.
If the value of the logical expression is true and if the IF block has at least
one executable statement, the next statement executed is the first execut-
able statement of the IF block.

The IF block can have any number of statements and consists of all state-
ments after the IF statement up to but not including the next ENDIF state-
ment that has the same IF-level as this IF statement. The next statement to
be executed after an IF block is the next ENDIF statement with the same
IF-level.

If the value of the logical expression is true and there are no executable
statements in the IF block, the next statement to be executed is the next
ENDIF statement at the same IF-level as this IF statement.

If the value of the logical expression is false, the next statement to be exe-
cuted is the next ELSEIF, ELSE, or ENDIF statement at the same IF-level
as this IF statement.

Note that transfer of control into an IF block from outside the IF block is
not allowed.

The block IF statement has the same appearance as the logical IF statement,
which is described in “Logical IF Statements” on page 8-8; however, the
block IF statement can be identified by its subsequent THEN keyword.

ELSEIF Statements

The form of the ELSEIF statement is:

ELSEIF (logexpr) THEN

logexpr
is a logical expression.

In executing the ELSEIF statement, the logical expression is evaluated first.
If the value of the logical expression is true and if the ELSEIF block has at
least one executable statement, the the next statement executed is the first
executable statement of the ELSEIF block. The ELSEIF block can have
any number of statements and consists of all statements up to but not
including the next ELSEIF, ELSE, or ENDIF statement that has the same
IF-level as this ELSEIF statement. The next statement to be executed after
an ELSEIF block is the next ENDIF statement with the same IF-level.

If the value of the logical expression is true and there are no executable
statements in the ELSEIF block, the next statement to be executed is the
next ENDIF statement that has the same IF-level as this ELSEIF statement.
If the value of the logical expression is false, the next statement to be exe-
cuted is the next ELSEIF, ELSE, or ENDIF statement that has the same
IF-level as this ELSEIF statement.

Note that transfer of control into an ELSEIF block from outside the
ELSEIF block is not allowed.

ELSE Statements

The form of an ELSE statement is:

ELSE

Chapter 8. Control Statements 8-5

The ELSE block associated with an ELSE statement can have any number
of statements (possibly none) and consists of all statements up to but not
including the next ENDIF statement that has the same IF-level as this ELSE
statement.

The ENDIF statement with the same IF-level as the ELSE statement must
appear before any other ELSE or ELSEIF statements at this IF-level. In
other words, only one ELSE statement can be in a block IF statement.
There is no effect in executing an ELSE statement.

Note that transfer of control into an ELSE block from outside the ELSE
block is not allowed.

ENDIF Statements

An "ENDIF statement'' marks the end of a block IF statement group. The
form of the ENDIF statement is:

ENDIF

To specify which statements are in a particular block IF statement, an
ENDIF statement must be at the same IF-level for every block IF statement
in a program unit. There is no effect in executing an ENDIF statement.

Sample Block IF-THEN-ELSE Program

8-6 FORTRAN Reference

This program performs some simple banking operations. First, the program
determines what type of account the customer has (either savings or
checking), which is the outermost IF block. If the account type is invalid,
an "Error in type'' message results.

Two IF blocks are nested within the outer IF block, one for each type of
account. These blocks determine how much money the customer has in the
account and sets arguments accordingly.

PROGRAM IFTHEN
REAL AMOUNT, INT
CHARACTER*10 GIFT,TYPE,STATUS

IF (TYPE.EQ.'SAVINGS ') THEN

IF (AMOUNT.GT.25000.00) THEN
INT = 8.75

STATUS = 'Money Mrkt'
GIFT = 'Watch !
ELSEIF (AMOUNT.GT.500.00) THEN

INT = 5.25
STATUS = 'Regular !
GIFT = 'Blender !
ELSEIF (AMOUNT.GT.0.0) THEN
INT = 5.25
STATUS = 'Regular !
GIFT = 'Nothing '
ELSE
INT = 0.0
STATUS = 'Overdrawn '
GIFT = 'Nothing !
ENDIF
ELSEIF (TYPE.EQ. 'CHECKING ') THEN
IF (AMOUNT.GT.500.00) THEN
INT = 5.25
STATUS = 'NOWaccount'
GIFT = 'Blender !
ELSEIF (AMOUNT.GT.0.0) THEN
INT = 0.0
STATUS = 'Regular !
GIFT = 'Nothing !
ELSE
INT = 0.0
STATUS = 'Bounced !
GIFT = 'Nothing '
ENDIF
ELSE
PRINT *,'Error in type'
ENDIF
END

Chapter 8. Control Statements

8-7

Logical IF Statements

8-8 FORTRAN Reference

A "logical IF statement" evaluates an expression to be either true or false
and, based on the evaluation, executes or does not execute a following state-
ment. If the value of the expression is true, the statement is executed; oth-
erwise, the statement is not executed, and the execution sequence proceeds
as if a CONTINUE statement (described in “CONTINUE Statements” on
page 8-14) had been encountered. The form of the logical IF statement is:

IF (logexpr) statement

logexpr
is a logical expression.

statement
is any executable statement except a DO, block IF, ELSEIF, ELSE,
ENDIF, END, or logical IF statement.

Note that functions evaluated in the logical expression can affect the value
of variables in the executable statement.

Examples:

IF (ERR.NE.O) CALL ERROR(ERR)

This logical IF statement determines if ERR is equal to 0. If it is not equal
to 0, the subroutine ERROR is called. If it is equal to 0, the program con-
tinues with the next statement.

REAL VAL

IF (VAL.EQ.1.0) GOTO 100

This logical IF statement determines if the real number VAL is equal to the
whole number 1. However, the construction of this code is questionable
because a real number in FORTRAN is rarely equal to a whole number
since a real number’s internal precision is limited. A large calculation
involving real numbers that theoretically should come out to be a whole
number can be internally produced by the computer to be a number slightly
less than or slightly greater than expected. It is more effective to determine
if VAL is equal to 1 in this manner:

REAL VAL, ERROR
ERROR = .00001

IF (ABS(VAL-1.0).LT.ERROR) GOTO 100

This program performs the desired test and also takes into account any loss
of precision by determining if the absolute value of VAL - 1.0 is less than
ERROR.

Arithmetic IF Statements

An "arithmetic IF statement' evaluates an expression and causes a transfer
of control to one of three statement labels depending on the value
(-, 0, or +) of the expression. The form of an arithmetic IF statement is:

IF (expr) statlabl, statlab2, statlab3

expr
is an expression that has an integer, real, or double-precision data
type.

Chapter 8. Control Statements 8-9

statlabl

statlab2

statlab3
are statement labels of executable statements that appear in the same
program unit as the arithmetic IF statement. The same statement
label can appear more than once among the three labels.

If the value of an expression is less than 0, statement label statlabl is exe-
cuted. If the value of an expression is 0, statement label statlab? is exe-
cuted. If the value of an expression is greater than 0, statement label
statlab3 is executed.

None of the statement labels may appear within the range of a DO loop or
inside an IF, ELSEIF, or ELSE block unless the arithmetic IF statement is
within the range or block also.

Example:

C In this code, control is transferred
C either to line 10, 20, or 30,

C depending on whether K is less than,
C equal to, or greater than 100.

C

IF (K-100) 10,20,30
10 PRINT *,'K is less than 100.'

GOTO 40
20 PRINT *,'K equals 100."'
GOTO 40
30 PRINT *,'K is greater than 100.'

DO Statements — Loop Control <>

A ""DO statement'' groups a number of statements in a procedure and is
FORTRAN’s principle means of loop control. The form of a DO statement
is:

8-10 FORTRAN Reference

DO statlab [,] dovar = first, last |, inc]

statlab
is the statement label of the terminal statement of the DO loop within
the same program unit.

dovar
is the name of an integer, real, or double-precision variable that is
known as the DO variable.

first

last

inc
are integer, real, or double-precision expressions; first is the starting
value of dovar, last is its ending value, and the optional inc is the value
by which dovar is incremented for each loop. The inc cannot have a
value of 0, can be negative, and has a default value of 1.

The executable statement with the statlab label is the terminal statement of
the DO loop. The terminal statement cannot be an unconditional GOTO,
assigned GOTO, arithmetic IF, block IF, ELSEIF, ELSE, ENDIF,
RETURN, STOP, END, or DO statement.

The range of a DO statement is its associated DO loop, which begins with
the statement following the DO statement and ends with the terminal state-
ment. If a DO statement appears in the range of another DO statement, the
former DO statement’s associated loop must be completely inside the latter
DO statement’s associated loop. If a DO statement appears inside an IF,
ELSEIF, or ELSE block, its DO loop must be entirely contained in that
block. If a block IF statement appears inside of a DO loop, its associated
ENDIF statement must also appear inside the DO loop. DO loops can share
a terminal statement.

The value of the DO variable must not be set or changed by any statement
within the the DO loop associated with that control variable. Thus it is a
programming error to have nested DO loops with the same index variable.

These events take place when a DO statement is executed:

Chapter 8. Control Statements 8-11

« the first, last, and inc expressions are evaluated and are converted to the
data type of the DO variable if necessary, according to the data type
conversion rules for arithmetic assignment statements, which are
described in “Arithmetic Assignment Statements 4 <>’ on page 6-1.

« the DO variable dovar is set to the value of first.

« the DO loop’s iteration count (the number of passes through the loop) is
computed using this formula:

MAX (INT ((last - first + inc) /inc) ,0)

in which MAX (maximum) and INT (integer) are FORTRAN intrinsic
functions. The iteration count may evaluate to 0.

« the iteration count is tested; if it is greater than 0, the statements in the
DO loop are executed. If the iteration count equals O, the DO loop is
bypassed and control is passed to the next executable statement after
the DO loop.

You can specify that a DO loop is to be executed at least once regard-
less of the iteration count, as it is in FORTRAN 66. To do so, use the

y+ command-line option. For a description of command-line options,
see the RT PC VS FORTRAN User’s Guide.

These events take place when the terminal statement of a DO loop is exe-
cuted:
« the value of the DO variable dovar is incremented by the value of inc.

« the iteration count is decremented by 1.

A DO loop is exited under any of these conditions:
« the iteration count is decremented to O or a negative number.
« a RETURN statement is executed within the DO loop.

» control is transferred to a statement in the same program unit but
outside of the DO loop.

8-12 FORTRAN Reference

a subroutine subprogram called from within the DO loop returns via an
alternate return specifier to a statement which is outside of the DO loop.

the program ends.

The value of the DO variable is defined both when the DO loop is exited

due to an iteration count of 0 and when the DO loop is exited due to an

explicit transfer of control out of the DO loop.

Examples:
C This program fragment prints
C the numbers 1-11 to the screen.
C

DO 200 T = 1, 10
200 WRITE(*, '(I5)') I

WRITE(*, '(I5)') I
C This is one way of setting
C an integer array to zeros.
C

INTEGER ARR(20),I

DO 10 I=1,20

ARR(I) =0
170 CONTINUE

C This is one way to compute N factorial.
C The result is stored in the variable FACT.
C

INTEGER I,N,FACT

READ(*,10) N

FACT = 1.0

DO 20 I=2,N

FACT = FACT * N
20 CONTINUE

Chapter 8. Control Statements

8-13

C This loop is not executed.

DO 10 I=5,1
WRITE (*,100)
100 FORMAT ('Nothing"')
10 CONTINUE

CONTINUE Statements

A "CONTINUE statement'' is a "'null" or ''no operation' statement often
used to end a DO block. It is primarily used to end DO blocks that would
otherwise have an invalid terminal statement. The form of a CONTINUE
statement is:

CONTINUE

A CONTINUE statement can appear anywhere any other executable state-
ment can appear in a program and has no effect on program execution.

STOP Statements

A "STOP statement'" stops the execution of a program. The form of a
STOP statement is:

STOP [nnn]

8-14 FORTRAN Reference

nnn
is either a character constant or a string of 1-5 digits.

The nnn is displayed on the screen when the STOP statement is executed.

Example:

IF (IERR.NE.O) STOP 'Abnormal Termination'
STOP 'Normal Termination'
END

This is one possible use of the STOP statement. If the variable IERR is not
equal to 0, the program stops and "Abnormal Termination' is displayed.
Otherwise, '"Normal Termination' is displayed. Note that only one of the
two STOP statements in the example is executed.

PAUSE Statements

A "PAUSE statement" suspends a program until the Enter key is pressed.
The form of a PAUSE statement is:

PAUSE [nnn |

nnn
is either a character constant or a string of 1-5 digits.

The nnn is often used as a prompt to request input.
When the Enter key is pressed, program execution resumes as if a CON-

TINUE statement has been executed. If the Esc (Escape) key is pressed
before the Enter key, program execution is stopped.

Chapter 8. Control Statements 8-15

Examples:

PAUSE 'Insert a diskette into the default drive.'

This PAUSE statement prompts the user to do a specific task. Execution is
stopped until the user presses the Enter key.

PAUSE 10
CALL HOT(I,J,K)
CALL COLD(K,L,M)
PAUSE 11

CALL DAY (M,N,0)
CALL NIGHT(I,O)
PAUSE 12

CALL HOME (J,L)

Here the PAUSE statement is used for debugging a program. By placing
PAUSE statements that print out numbers in strategic places, you are able
to determine where the problem area in a program is. The numbers from
the PAUSE statements are printed out and the execution of the program can
be followed.

Unconditional GOTO Statements

An "unconditional GOTO statement' causes an unconditional transfer of
control to another part of the program unit. The form of the unconditional
GOTO statement is:

GOTO (statlab)

statlab
is the statement label of an executable statement within the same
program unit. That executable statement is the target of the GOTO
statement.

8-16 FORTRAN Reference

A GOTO statement cannot cause a transfer of control into a DO, IF,
ELSEIF, or ELSE block from outside the block.

Examples:

CALL CHKERR (ERR)
IF (ERR.NE.O) GOTO 99

99 STOP 'Error Condition'
END

Here a GOTO is performed if an error condition exists. This is one way to
terminate the program due to an error.

C An error occurs here.
300 GOTO 300

This is the simplest form of an infinite loop and, even though it is obvious,
the compiler does not flag it as an error. It is up to you to avoid program-
ming infinite loops of any kind.

GOTO 10
PRINT *,'This statement is never executed.'
10 PRINT *,'This statement is executed.'

The PRINT statement immediately after the GOTO statement is never exe-
cuted. Not only does execution jump over it because of the GOTO state-
ment, but execution cannot be transferred to it because the PRINT
statement does not have a statement label. The compiler does not flag this
type of error.

GOTO 100

c An error occurs here.
100 FORMAT (2F6.2)

Chapter 8. Control Statements 8-17

A compiler error occurs because a GOTO statement is not allowed to
transfer control to a a nonexecutable statement.

Assigned GOTO Statements

An "assigned GOTO statement'' uses the value of an integer variable as a
statement label and transfers control of the execution to the statement with
that statement label. The form of an assigned GOTO statement is:

GOTO i [[,] (statlab|, statlab] ...) 1]

is the name of a variable that has a data type of INTEGER or
INTEGER*4. (The i cannot have an INTEGER*2 data type.)

statlab
is a statement label of an executable statement within the same
program unit. The same statement label can appear more than once in
the list of statement labels.

At the time the assigned GOTO is executed, the integer variable i must be
defined with the value of a statement label of an executable statement that
is in the same program unit as the assigned GOTO statement. This defi-
nition must be made with an ASSIGN statement. For a description of this
type of assignment, see ‘‘Statement Label (ASSIGN) Assignment
Statements” on page 6-4.

If the optional list of statement labels is present, the value of the integer
variable / must be the same as one of the statement labels in the list.

The assigned GOTO statement has the same transfer of control restrictions
as the unconditional GOTO statement.

8-18 FORTRAN Reference

Example:

360

370

801

C
9999

INTEGER SYSTEM

ASSIGN 801 TO SYSTEM

GOTO SYSTEM (360,370,801)

Code for the IBM System 360 Series computers.
LENGTH=24

GOTO 9999

Code for the IBM System 370 Series computers.
LENGTH=48

GOTO 9999

Code for the IBM RT PC Series computers.
LENGTH=32

GOTO 9999

Code common to all systems.

CONTINUE

In this example, the code for the IBM RT PC Series computers is executed
because SYSTEM refers to the same symbolic address as statement label
801. Remember that SYSTEM does not hold the value 801; it holds an
address associated with an executable statement. To change which execut-
able statement the assigned GOTO statement transfers control to, the
program unit needs to be changed and recompiled.

Computed GOTO Statements <>

A "computed GOTO statement" transfers control of execution to one out
of a set of labeled statements depending on the value of an expression. The
form of a computed GOTO statement is:

GOTO (statlab |, statlab] ...) [,] i

is an integer expression.

Chapter 8. Control Statements 8-19

statlab
is a statement label of an executable statement within the same
program unit. The same statement label can appear more than once in
the list of statement labels.

The computed GOTO statement evaluates the integer expression i to a value
n. Control is then transferred to the statement whose statement label is in
the n'th position in the statlab list. For example, if the value of an
expression is 4, control is transferred to the statement whose statement label
is in the fourth position in the statlab list.

If the value of n is less than 1 or greater than the number of statement labels
in the statlab list, the computed GOTO statement has no effect, and
program execution proceeds as if a CONTINUE statement had been exe-
cuted.

The computed GOTO statement has the same transfer of control
restrictions as the unconditional GOTO statement.

Examples:

C The computed GOTO statement used in this context simulates
C the CASE statement found in many other high-level languages.
C

INTEGER NEXT

GOTO (100,200,300,400,500) NEXT
10 PRINT *,'Execution transfers here if NEXT <> 1,2,3,4,5'
GOTO 999

100 PRINT *,'Execution transfers here if NEXT = 1'
GOTO 999

200 PRINT *,'Execution transfers here if NEXT = 2'
GOTO 999

300 PRINT *,'Execution transfers here if NEXT = 3'
GOTO 999

400 PRINT *,'Execution transfers here if NEXT = 4'
GOTO 999

8-20 FORTRAN Reference

500 PRINT *, 'Execution transfers here if NEXT = 5'
999 END

Control transfers to either line 10, 100, 200, 300, 400, or 500 depending on
the value of NEXT. If NEXT does not equal 1, 2, 3, 4, or 5, control trans-
fers to line 10. If NEXT = 1, control transfers to line 100; if NEXT = 2,
control transfers to line 200, and so on.

INTEGER WHERE

10 WRITE(*,15)

15 FORMAT('Enter 1, 2, or 3:',%)
READ (*,20) WHERE

20 FORMAT(I5)
GOTO (100,200,300) WHERE

GOTO 10
C This code is executed when WHERE = 1.
100
GOTO 400
C This code is executed when WHERE = 2.
200
GOTO 400
C This code is executed when WHERE = 3.
300
400
END

Control is transferred to either line 100, 200, or 300 depending on whether
the user enters a 1, 2, or 3, respectively. If the user does not enter a 1, 2, or
3, another value is prompted for.

Chapter 8. Control Statements 8-21

END Statements

An "END statement'" indicates the end of a program unit’s sequence of
statements. The last executable statement in every program unit must be an
END statement. The form of an END statement is:

END

An END statement executed in a function or subroutine subprogram has the
same effect as a RETURN statement in a subprogram, described in
“RETURN Statements 4 <> on page 9-21. An END statement in a main
program terminates the execution of the program.

8-22 FORTRAN Reference

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

DO Statements — Loop Control

« A DO loop can have an "extended range''; this occurs when a control
statement contained within the DO loop transfers control out of the
loop, and, after execution of one or more statements, another control
statement returns control back into the loop. Thus the range of the loop
is extended to include all executable statements between the destination
statement of the first transfer and the statement that returns control to
the loop.

Rules governing the use of a DO statement’s extended range are:

— A transfer into the range of a DO statement is permitted only if the
transfer is made from the extended range of that DO statement.

— The extended range of a DO statement must not change the control
variable of the DO statement.

Example:

DO 10 I=1,10
PRINT *,'In main DO’

GOTO 20
30 PRINT #*,'Back in main DO'
10 CONTINUE
20 PRINT *,'In extended range of DO'
GOTO 30
END

Chapter 8. Control Statements 8-23

VX Mode

The ""DO WHILE statement" is also allowed; it is similar to a DO state-
ment, but instead of executing for a fixed number of iterations, it exe-
cutes for as long as a logical expression contained in the statement
continues to be true.

The form of a DO WHILE statement is:

DO [statlab|,]1] WHILE (logexpr)

8-24 FORTRAN Reference

statlab
is the statement label of an executable statement that must follow
in the same program unit.

logexpr
is a logical expression.

The DO WHILE statement tests the logical expression at the beginning
of each execution of the loop, including the first. If the value of the
expression is true, the statements in the body of the loop are executed;
if the expression is false, control transfers to the statement following the
loop.

If no label appears in a DO WHILE statement, the DO WHILE loop
must be terminated with an END DO statement.

Example:

CHARACTER*132 LINE

I=1

LINE(132:) = 'x'

DO WHILE (LINE(I:I)
I=I+1

END DO

.EO. vy

The "END DO statement'" is also allowed, and is used terminate the
range of a DO or DO WHILE statement. An END DO statement must
be used to terminate a DO block if the DO or DO WHILE statement

VX Mode

defining the block does not contain a terminal-statement label. An
END DO statement may also be used as a labeled terminal statement if
the DO or DO WHILE statement does contain a terminal-statement
label.

The form of an END DO statement is:

END DO

Examples:

DO WHILE (I .GT. J)
ARRAY(I,J) = 1.0
I=I-1

END DO

DO 10 WHILE (I .GT. J)
ARRAY(I,J) = 1.0
I=I-1

10 END DO

The statement label statlab in the DO statement is optional. If no label
appears, the DO loop must be terminated by the END DO statement.

Example:
C This prints a message five times.
C
DO J=1,5
WRITE (*,10)
FORMAT ('This is a VX mode feature')
END DO

Chapter 8. Control Statements 8-25

VX Mode

Computed GOTO Statements

« The i is any valid arithmetic expression. Non-integer expressions are
converted to integer values before use.

8-26 FORTRAN Reference

Chapter 9. Program and Subprogram Structure

A complete FORTRAN program consists of:

a main program

any number of subroutine subprograms
any number-of function subprograms
any number of block data subprograms.

A "subprogram" is a program unit that begins with a SUBROUTINE,
FUNCTION, or BLOCK DATA statement. A subprogram is defined sepa-
rately and can be compiled independently of the main program.

A "procedure' is a subroutine or function subprogram, an intrinsic func-
tion, or a statement function. Subroutine and function subprograms, which
are also known as external procedures, can share values and results through
argument lists, common blocks, or both.

Main Programs and PROGRAM Statements

A "main program" is a program unit that contains at least one executable
statement and does not start with a SUBROUTINE, FUNCTION, or
BLOCK DATA statement. Execution of a FORTRAN program starts with
the first executable statement in the main program, and therefore only one
main program is allowed per FORTRAN program.

A main program can have a PROGRAM statement. If used, the

PROGRAM statement can only appear as the first statement of the main
program. The form of a PROGRAM statement is;

Chapter 9. Program and Subprogram Structure 9-1

PROGRAM progname

progname
is the user-defined name of the main program.

The progname has a global scope and therefore cannot be the same name as
any common block or other program unit. The progname is also local to the

main program and cannot be the same as any other name within the main
program.

Examples:
PROGRAM INQUIRE
PROGRAM CHANGE
PROGRAM ANALYZE

These are all valid PROGRAM statements.

Dummy and Actual Arguments — Passing Values 4 <>

9-2 FORTRAN Reference

Values can be passed between program units in two ways. One method,
described in “COMMON Statements — Declaring Common Blocks 4 <>”
on page 7-7, uses common blocks. Another method, described here, uses
argument-passing between program units.

A "dummy argument'' is a name by which a value is known during the exe-
cution of a subprogram. The name is local to the subprogram and receives
its value from an actual argument in the calling program. A dummy argu-
ment can be used as an actual argument by making it the calling argument in
a subsequent subprogram call.

An "actual argument'' contains a value that is associated with a dummy
argument. This occurs when a CALL statement containing an actual argu-
ment references the subprogram, which contains the dummy argument.
CALL statements are described in “CALL Statements 4’ on page 9-9.

The number and the data type of actual arguments must be the same as the
number and the data type of their corresponding dummy arguments.

Example:
C X, Y, and Z are the dummy arguments and
C A, B, and C are the actual arguments.

CALL SUB(A,B,C)

END

SUBROUTINE SUB(X,Y,Z)
END

Actual arguments are associated with dummy arguments when execution is
transferred to a subroutine or function subprogram. The arguments remain
associated until execution of the subprogram ends. Therefore, if another
value is assigned to a dummy argument while a subprogram is being exe-
cuted, the value of its corresponding actual argument can change. If an
actual argument is a constant, function reference, or an expression other
than a simple variable, assigning a different value to its corresponding
dummy argument may lead to hard-to-diagnose errors and should be
avoided.

A dummy argument that is a variable can be associated with an actual argu-
ment that is a variable, an array element, or an expression.

The lengths of actual and dummy arguments that have an integer or logical
data type must be the same. For example, an actual argument with a data
type of INTEGER*2 can only be associated with a dummy argument with a
data type of INTEGER*2.

Chapter 9. Program and Subprogram Structure 9-3

9-4 FORTRAN Reference

Actual arguments that are integer expressions can only be associated with
dummy arguments that have a data type of INTEGER or INTEGER*4.
Similarly, actual arguments that are logical expressions can only be associ-
ated with dummy arguments that have a data type of LOGICAL or
LOGICAL*4. An "expression" in this context is any construct that is not a
variable, array, or array element.

Example:

C The results of this code are inaccurate.

CALL SUBR(523)
END

SUBROUTINE SUBR(I)
INTEGER*2 I

RETURN
END

In this program, the integer expression 523, which is the actual argument, is
evaluated and stored in an integer temporary location of 4 bytes. However,
the subroutine expects an argument with an INTEGER*2 data type. This
mismatch of argument data types can result in inaccurate results. Similar
errors occur due to other mismatches; for example, passing real constants to
a subroutine that expects arguments with a double-precision data type.

If an actual argument is an expression, it is evaluated just prior to the asso-
ciation of actual and dummy arguments. If an actual argument is an array
element, its subscript expression is also evaluated just prior to the associ-
ation of actual and dummy arguments. The subscript expression remains
constant, even if it contains variables that are re-defined during the exe-
cution of the subprogram.

A dummy argument that is an array can be associated with an actual argu-
ment that is either an array or an array element. The number and size of
dimensions in the dummy argument may differ from those of the actual
argument, but any reference to the dummy argument must be within the

limits of the array storage sequence of the actual argument. The compiler
does not flag such out-of-bounds references as errors, but the results are
generally unpredictable and undesirable. When passing multi-dimensional
arrays between program units, pay particular attention to the array storage
sequence, which is described in ‘“Array Storage Sequence’ on page 4-8.

Example:
C This program may not work properly because the
C storage sequence of arrays was not considered.
C
PROGRAM MAIN
C
C The dimension is made large enough to handle the
C largest problem.
REAL MATRIX (100, 100)
C Data is read from the disk file opened with logical
C unit number 22.

READ(22,100) MSIZE, ((MATRIX(I,J),J=1,MSIZE),I=1,MSIZE)
100 FORMAT(I6, (F20.10)

C The matrix is inverted.
CALL MATINV (MSIZE,MATRIX)

END
SUBROUTINE MATINV(N,M)

INTEGER N
REAL M(N,N)

RETURN
END

The subroutine does not work properly if the size MSIZE of the square
matrix MATRIX is less than 100 when read from the disk. Mistakes of this
nature are extremely difficult to locate. To avoid making them, establish a
variable for the size of the matrix, initialize this size variable in a DATA
statement (to 100 for this example), and pass it in each CALL statement to
the subroutine.

Chapter 9. Program and Subprogram Structure 9-5

9-6 FORTRAN Reference

A dummy argument that is an asterisk (*) can only appear in the argument
list or an ENTRY statement of a subroutine. The actual argument associ-
ated with this dummy argument is an alternate-return specifier in the CALL
statement to the subprogram.

Dummy arguments that are arrays or character strings can have adjustable
dimensions, which enable you to create program units that can accept
objects of varying size. A dummy argument can be an adjustable array; that
is, it can have its dimensions specified by variables passed as actual argu-
ments. A dummy argument can be an assumed-size array; that is, the upper
bound of its last dimension can be specified by an asterisk (*). In this case,
the value of that dimension is not passed as an actual argument, but is deter-
mined by the number of elements in the array. If you dimension an array
with an asterisk, you must ensure that the calling program unit has provided
an array big enough to contain all the elements that are to be accessed by
the subprogram.

A character string can have its length specified by an asterisk, which
declares that the string has a varying size. The length of such a string is not
passed explicitly as an argument; rather, the length is determined from the
length of the actual argument by the compiler.

A dummy argument with a character data type cannot have a length greater
than the length of its associated actual argument. If the length of the actual
argument is greater than that of the dummy argument, the actual argument
is truncated on the right.

If a dummy argument with a character data type has a length specified by an
asterisk, a character expression that involves concatenation of that argu-
ment cannot be used as an actual argument to any other procedure, format
specification, or input/output list in an input/output statement.

Subroutine Subprograms

A "subroutine subprogram" (or ''subroutine'') is a program unit that is
called from other program units via the CALL statement. When invoked, it
performs the actions defined by its executable statements and then returns
control to the calling program unit. A subroutine does not directly return a
value, although values can be passed to the calling program unit via the sub-
routine’s arguments or via common variables.

Example:

C This subroutine sorts an array of 10 real
C numbers in ascending order. The array X
C is passed to the subroutine and is passed
C back to the calling program unit.

C

SUBROUTINE SORT (X)
REAL X(10),TEMP
INTEGER I,J
DO 20 I=1,9
DO 10 J=I+1,10
IF (X(I).GT.X(J)) THEN

TEMP = X(I)
X(I) = X(J)
X(J) = TEMP
ENDIF
10 CONTINUE
20 CONTINUE
RETURN
END
SUBROUTINE Statements

A subroutine begins with a SUBROUTINE statement, ends with an END
statement, and can contain all statements except PROGRAM, FUNCTION,
and BLOCK DATA statements. The form of a SUBROUTINE statement
is:

Chapter 9. Program and Subprogram Structure ~ 9-7

9-8 FORTRAN Reference

SUBROUTINE subname | (darg |, darg] ...)]

subname
is the user-defined name of the subroutine.

darg
is the user-defined name of a dummy argument. A dummy argument
can be the user-defined name of a variable, array, or dummy proce-
dure. It can also be an asterisk (*), which designates an alternate-
return specifier.

The subname has a global scope and therefore cannot be the same as the
name of any other program unit. It is also local to the subprogram it names.

The darg list defines the number of actual arguments to that subprogram. It
also defines the data type of the arguments, as do any subsequent
IMPLICIT, type, or DIMENSION statements. Argument names cannot
appear in COMMON, DATA, EQUIVALENCE, or INTRINSIC state-
ments.

If a subroutine does not have any dummy arguments, an empty argument
list can be indicated by a pair of parentheses () following the name.

Examples:
SUBROUTINE NOARGS
SUBROUTINE ZILCH ()
SUBROUTINE ONEARG (RILEY)
SUBROUTINE ALTRET (LIMIT, *)

These are all valid SUBROUTINE statements.

CALL Statements 4

A "CALL statement" is used to reference a subroutine from another
program unit. The form of a CALL statement is:

CALL subname | ([arg [, arg] ...1) 1]

subname
is the name of a subroutine.

arg
is an actual argument.

The actual arguments in the CALL statement must agree in data type and
number with the corresponding dummy arguments specified in the SUB-

ROUTINE statement of the referenced subroutine. An actual argument can
be:

* an expression

e an array name

e an intrinsic function name

e an external procedure name

« adummy procedure name

« an "alternate-return specifier'' that has the form *s in which s is the
statement label of an executable statement in the same program unit as
the CALL statement.

If a subroutine has no dummy arguments, a CALL statement referencing it
cannot have any actual arguments. In this case, a CALL statement can
have an optional pair of parentheses () following the subroutine name.

A CALL statement in a program unit causes these events to occur:

1. All actual arguments that are expressions are evaluated.

2. All actual arguments are associated with their corresponding dummy
arguments.

Chapter 9. Program and Subprogram Structure 9-9

3. The specified subroutine is executed.

4. Control is returned to the calling program unit when a RETURN or an
END statement is executed in the subroutine. The statement to which
control is returned is either the statement following the CALL state-
ment or the statement whose alternate-return specifier is designated by
the RETURN statement. RETURN statements are described in
“RETURN Statements 4 <>’ on page 9-21.

A subroutine can be called from any other program unit within the program.
However, recursive subroutine calls are not allowed; that is, a subroutine
cannot call itself directly or be called by another subprogram that it has
called.

Sample Subroutine Subprogram

In this program, the subroutine SORT sorts an array of 10 real numbers
named X. X is passed to SORT through the common block COM. SORT
also receives a three-character code that tells it whether to sort in ascending
or descending order. The code is received with the dummy argument
ORDER, which is a character variable.

PROGRAM SUBS
REAL X(10)
COMMON /COM/ X
READ (*,10) X

10 FORMAT (10F6.2)
CALL SORT('ASC')
PRINT *,X
CALL SORT('DES')
PRINT *,X
STOP
END

9-10 FORTRAN Reference

SUBROUTINE SORT (ORDER)
COMMON /COM/ X
CHARACTER*3 ORDER
REAL TEMP, X (10)
INTEGER I,J
DO 20 I=1,9

DO 10 J=I+1,10

IF ((X(I).GT.X(J)).AND. (ORDER.EQ.'ASC')) THEN
TEMP = X(I)
X(I) = X(J)
X(J) = TEMP
ELSEIF ((X(I).LT.X(J)).AND. (ORDER.EQ.'DES')) THEN
TEMP = X(I)
X(I) = X(J)
X(J) = TEMP
ENDIF
10 CONTINUE
20 CONTINUE
RETURN

END

Functions
A "'function' is referenced in the context of an expression and returns a
value that is used as an operand in that expression.

A "function reference' in an expression causes that function to be exe-
cuted. The form of a function reference is:

funcname (larg [, arg] ...1)

Sfuncname
is the name of an intrinsic function, a statement function, or a func-
tion subprogram.

Chapter 9. Program and Subprogram Structure 9-11

arg
is an actual argument to that function.

The number of actual arguments must be the same as the number of dummy
arguments. Except for generic intrinsic functions, which are described in
“Intrinsic Functions” on page 9-14, the data type of an actual argument
must agree with the data type of its corresponding dummy argument. An
actual argument can be:

an expression

an array name

an external procedure name
an intrinsic function name

a dummy procedure name.

The three kinds of functions are function subprograms, intrinsic functions,
and statement functions.

Function Subprograms and FUNCTION Statements 4 <>

A "function subprogram' (or "external function") begins with a FUNC-
TION statement, ends with an END statement, and can contain all state-
ments except PROGRAM, FUNCTION, and BLOCK DATA statements.
The form of a FUNCTION statement is:

[type] | *lenl] FUNCTION funcname |*len2] (|darg |,darg]...1)

type
defines the data type of the value that the function subprogram
returns. If fype is omitted, the data type is determined by default and
by any subsequent IMPLICIT statements that determine the data
types of ordinary variables. If zype is specified, the funcname cannot
appear in any subsequent type statements.

9-12 FORTRAN Reference

lenl
is the length specification, and can be an unsigned nonzero integer
constant, an integer constant expression enclosed in parentheses, or
an asterisk (*) enclosed in parentheses. The expression can only
contain integer constants; it cannot contain names of integer con-
stants. The Jlenl has a default value of 1.

funcname
is the user-defined name of the function subprogram.

len2
is an unsigned nonzero integer constant specifying the length of the
data type. It must be one of the valid length specifiers for zype.

darg
is the user-defined name of a dummy argument.

The funcname has a global scope and therefore cannot be the same as the
name of any other program unit. It is also local to the subprogram it names.

The darg list defines the number of actual arguments to that subprogram. It
also defines the data type of the arguments, as do any subsequent
IMPLICIT, type, or DIMENSION statements. Argument names cannot
appear in COMMON, DATA, EQUIVALENCE, or INTRINSIC state-
ments.

Unlike in SUBROUTINE statements, parentheses are required in FUNC-
TION statements even when there are no arguments.

The funcname must appear as a variable in the function subprogram. Each
execution of the function must result in an assignment of a value to that var-
iable. The final value of this variable upon executing a RETURN or END
statement defines the value of the function. After the variable is defined, its
value can be referenced in an expression just like any other variable. In
addition to this value, a function subprogram can return other values via
assignments to its dummy arguments or through variables in common
blocks.

A funcname that is declared to have a data type of CHARACTER*(*) has

its length derived from the specification of the function in the calling
program unit.

Chapter 9. Program and Subprogram Structure 9-13

Example:

C This program includes a function subprogram
C that calculates a root of a polynomial using
C the guadratic equation.
C
REAL ROOT,X2,X1,X0
C
C 2% (X*%2) + 4 .5*%X + 1
C
X2 = 2.0
X1 = 4.5
X0 = 1.0
ROOT = QUAD(X2,X1,X0)
END

REAL FUNCTION QUAD (A,B,C)

REAL A,B,C
QUAD = (-B + SQRT(B**2 ~ 4*A*C)) / (2 * A)
RETURN

END

In this example, the actual arguments X2, X1, and X0 are passed to the
function subprogram QUAD where they are associated with the dummy
arguments A, B, and C, respectively. The variable ROOT takes on the
value that the function subprogram returns.

Intrinsic Functions

"Intrinsic functions" are system-supplied functions; that is, they are built
into the system because they are otherwise difficult to express. A
FORTRAN intrinsic function returns a single value and is referenced in the
same way as a user-defined function.

If a variable, array, or statement function is defined with the same name as

that of an intrinsic function, the name is local to that program unit in which
it is declared and the intrinsic function cannot be used in that program unit.

9-14 FORTRAN Reference

If a function subprogram is defined with the same name as that of an
intrinsic function, the name references the intrinsic function unless the name
is declared in an EXTERNAL statement.

Many intrinsic functions have both "generic'" and "specific" names. Gener-
ally, the specific forms of the intrinsic functions require arguments to be of
a particular data type, and an error is generated if an argument of the wrong
data type is used as an actual argument in a specific intrinsic function refer-
ence. The generic forms usually do not require their arguments to be of a
particular data type. When the compiler identifies a generic function refer-
ence in a program, the compiler actually calls the specific function that is
appropriate for the data type of the actual argument in the reference. In
general, the use of generic function names in programs is more convenient.
Except for the data type conversion functions, the data type of the argu-
ment to a generic function determines the data type of the result.

For example, the generic intrinsic function LOG computes the natural loga-
rithm of its argument, which can have a real, double-precision, or complex
data type. The data type of the result is the same as the data type of its
argument. The specific intrinsic functions ALOG, DLOG, and CLOG also
compute natural logarithms. ALOG computes the logarithm of a real argu-
ment and returns a real result. Likewise, DLOG and CLLOG accept double-
precision and complex arguments and return double-precision and complex
results, respectively.

Only a specific intrinsic function name can be used as an actual argument
when an intrinsic function name is passed to a user-defined procedure or
function.

The intrinsic functions, their generic and specific names, and their argument

and result data types are listed in Appendix A, ‘“Intrinsic Functions.”
Statement Functions

A "statement function definition" is a single statement in a program unit

containing an operation on dummy arguments and is nonexecutable. Any

statement function definitions in a program unit can only appear after any

specification statements and before any executable statements.

A "statement function reference'' in the same program unit contains actual
arguments and refers to the statement function definition. The actual argu-

Chapter 9. Program and Subprogram Structure 9-15

ments are combined according to the statement function definition. A
statement function is executed by referencing it just like a function.

The form of a statement function definition is:

statfunc (ldarg [, darg] ... 1) = expression

statfunc
is the name of the statement function being defined.

darg
is the user-defined name of a dummy argument.

expression
is an expression that defines how the dummy arguments are to be
combined.

The data type of expression must be assignment-compatible with the data
type of statfunc. The darg list defines the data types and number of actual
arguments to the statement function.

The scope of any dummy arguments is limited to the statement function.
Therefore, a name of a dummy argument can also be used as the name of
something else in the rest of the program unit. If the name of a dummy
argument in a statement function definition is the same as a local name in
the program unit, a reference to that name within the statement function
always refers to the dummy argument. It never refers to the other usage.

The name of the statement function definition has a scope that is local to its
program unit. Therefore, it cannot be used for anything else other than as
the name of a common block or as the name of a dummy argument to
another statement function definition. In all such uses, the data type of the
name must be the same.

References to dummy arguments of the containing subprogram, variables,
other functions, array elements, and constants are all allowed within the
expression. However, statement function references must refer to statement
functions defined prior to the statement function in which they appear.

9-16 FORTRAN Reference

Statement functions are not recursive, either directly or indirectly. Also, a
statement function can only be referenced in the program unit in which it is
defined.

A statement function name cannot appear in any specification statement
other than a type statement or a COMMON statement. If a statement func-
tion name appears in a type statement, that name cannot be defined as an
array name. If a statement function name appears in a COMMON state-
ment, that name can only be the name of the common block.

Examples:

QUAD is a statement function that
calculates the root of a polynomial
using the quadratic equation.

QO0Qn

PROGRAM EXAMP1

REAL QUAD

c This ends the specification statements.
C
QUAD(A,B,C) = (-B + SORT(B**2 - A4%A*C)) / (2 * A)
C This begins the executable statements.
C

X = QUAD(1.0,2.5,0.5)
END

As this example illustrates, statement functions must appear after all specifi-
cation statements and before all executable statements. In this code, the
actual arguments take on the real default data type.

Chapter 9. Program and Subprogram Structure 9-17

PROGRAM EXAMP2
PARAMETER (PI = 3.141592654)
REAL AREA,CIRCUM,R,RADIUS

AREA(R) = PI * (R*%*2)
CIRCUM(R) = 2 *¥ PI * R

READ(*,100) RADIUS
100 FORMAT(F6.2)
PRINT *,'The area is: ',AREA(RADIUS)
PRINT *,'The circumference is: ',CIRCUM(RADIUS)

END

In this example, the two statement functions AREA and CIRCUM are
defined. Note that both AREA and CIRCUM refer to PI, which is not an
actual argument. This is permissible because the statement function can
refer to all accessible variables within its program unit.

ENTRY Statements

A subroutine or function subprogram has a primary entry point that is
established via the SUBROUTINE or FUNCTION statement declaring the
program unit. A subroutine call or a function reference normally activates a
subprogram at its primary entry point, and the first statement that is exe-
cuted is normally the first executable statement in the subprogram.

An "ENTRY statement' defines an alternate entry point in a subroutine or
function subprogram. This alternate entry point is the start of a sequence of
statements that is different from the sequence executed by entering the sub-
program at its primary entry point. Additionally, an alternate entry point
can have a dummy argument list that differs in number and data type from
that of the primary entry point and from those of other ENTRY statements
in the same subprogram. The form of an ENTRY statement is:

9-18 FORTRAN Reference

ENTRY entname | (darg |,darg] ...)]

entname
is the user-defined name of the entry point for a subroutine or func-
tion subprogram.

darg
is the user-defined name of a dummy argument. A dummy argument
can be the user-defined name of a variable, array, or dummy proce-
dure. If the subprogram is a subroutine, the dummy argument can
also be an asterisk (*), which designates an alternate-return specifier.

The entname has a global scope and is also local to the subprogram it names.
The entname cannot appear as a dummy argument in a FUNCTION or
SUBROUTINE statement or in another ENTRY statement in the same sub-
program. It also cannot appear in an EXTERNAL statement. In a function
subprogram, the only place entname can be used prior to the ENTRY state-
ment is in a type statement.

The darg list defines the number of actual arguments to that subroutine. It
also defines the data type of the arguments, as do any IMPLICIT, type, or
DIMENSION statements. Argument names cannot appear in COMMON,
DATA, EQUIVALENCE, or INTRINSIC statements.

An ENTRY statement cannot appear within an IF block or a DO block. If
an ENTRY statement does not have any dummy arguments, an empty argu-
ment list can be indicated by a pair of parentheses () following the name.

When a subprogram is referenced or called via an alternate entry point, the
actual arguments must agree in number, order, and data type with the
dummy arguments except for subroutine names and alternate-return
specifiers, which do not have a data type.

If a function subprogram has a character data type, all entry points to it
must also have a character data type. If the length of a character function
subprogram is specified with an asterisk (*), all entry points to that function
must also have a length specified with an asterisk; otherwise, all entry points
must have the same length specification.

Chapter 9. Program and Subprogram Structure 9-19

Examples:

C This subroutine opens from one to four data files.
C
SUBROUTINE OPEN4
OPEN (4 ,FILE='File4.Dat"')
ENTRY OPEN3
OPEN(3,FILE='File3.Dat"')
ENTRY OPEN2
OPEN(2,FILE='File2.Dat"')
ENTRY OPEN1
OPEN(1,FILE='File1.Dat"')
RETURN
END

To open four data files, do a cALL, OPEN4; this causes the four OPEN state-
ments to be executed. To open only one data file, do a CALL OPEN1; this
causes only the last OPEN statement to be executed.

This function subprogram calculates the volume of a
cylinder, given the radius of the base and the height.
Also, the entry point AREA can be referenced to
calculate the area of a circle, given the radius.

[PHONONP NP

REAL FUNCTION VOL (RDS,HGT)
PARAMETER (PI = 3.141592654)
REAL RDS,HGT

A(RDS) = PI * RDS*%*2
VOL = A(RDS) * HGT
RETURN

ENTRY AREA (RDS)
AREA = A(RDS)
RETURN

END

The advantage of using this code over using two separate function subpro-
grams is that the equation for the area of a circle needs to be specified only
once (with the statement function A) instead of twice. Note that the argu-
ment lists for VOL and AREA do not have to match.

9-20 FORTRAN Reference

RETURN Statements ¢ <>

A "RETURN statement'' ends the execution of its subroutine or function
subprogram and returns control to the calling program unit. The execution
of a RETURN statement is equivalent to the execution of an END state-
ment. The form of a RETURN statement in a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine is:

RETURN [int]

int
is an integer constant or an integer expression.

When a RETURN statement is in a function subprogram, the value of the
function is the current value of the variable with the same name as the func-
tion. If the function variable is not assigned a value prior to the execution
of a RETURN or END statement, the function value is undefined.

The int appearing in a RETURN statement of a subroutine indicates an
alternate return to the calling program unit. If int lies between 1 and n,
where #n is the number of asterisks (*) in the SUBROUTINE or ENTRY
statement, the int'th asterisk in the dummy argument list is selected.
Control then returns to the calling program unit at the statement whose
statement label is specified in the int'th alternate-return specifier in the
CALL statement.

For example, if the value of int is 5, the fifth asterisk in the dummy argu-
ment list is selected, and control is returned to the statement whose state-
ment label is specified in the fifth alternate return specifier in the CALL
statement (see “CALL Statements 4" on page 9-9).

Chapter 9. Program and Subprogram Structure 9-21

If int is omitted or if it lies outside the range 1 to »n, a normal return is exe-
cuted. Control is returned to the calling program unit at the statement fol-
lowing the CALL statement.

Examples:
REAI, FUNCTION ABS (X)
REAL X
ABS=X
IF(X.GT.0) RETURN
ABS=-X
END

This example illustrates that a RETURN statement does not have to be the
last statement in a subprogram. It also shows that an END statement in a
subprogram is equivalent to a RETURN statement.

PROGRAM EXAMPL
REAL ARG1,ARG2

CALL DOIT(*10,ARG1,ARG2,*20,*30)
PRINT *,'If WHERE <> 1, 2, or 3, return here!'

1]

10 PRINT *,'If WHERE 1, return here!'’

20 PRINT *,'If WHERE 2, return herel!'’

30 PRINT *,'If WHERE

3, return here!'
END

SUBROUTINE DOIT (*,X,Y,%*,*)
REAL X,Y
INTEGER WHERE

RETURN WHERE
END

9-22 FORTRAN Reference

If WHERE = 1, execution is transferred to the statement labeled 10 in the
main program after returning from DOIT. If WHERE = 2 or WHERE = 3,
execution transfers to the statements labeled 20 or 30, respectively. If
WHERE does not equal 1, 2, or 3, execution transfers to the statement
immediately following the CALL statement, as would happen even if
WHERE was not on the RETURN statement.

In a Main Program: In a main program, a RETURN statement can be
used to stop the execution of a program. It acts the same as a STOP state-
ment, described in “STOP Statements’ on page 8§-14.

Example:
PROGRAM MAIN
PRINT*,'This is an IBM mode feature!'
RETURN

PRINT#*, 'This sentence is not printed.'
END

In this example, the second PRINT statement is never executed because the
RETURN statement stops the program’s execution.

Definition Status
When a RETURN or END statement is executed in a subprogram, all data
objects within the subprogram become undefined except:
« data objects specified in SAVE statements
« data objects in blank common blocks
« data objects in a named common block that appear in the current sub-
program and also appear in at least one other subprogram that directly

or indirectly references the current subprogram

« initially defined data objects that have neither been redefined nor
become undefined.

Chapter 9. Program and Subprogram Structure 9-23

If a named common block appears in the main program, data objects in that
common block remain defined.

Examples:

This program illustrates the different
definition statuses of a counter variable
in three different subroutines.

0o NnNao

PROGRAM EXAMPL
bo 10 I=1,5
CALL SUBA(I)
CALL SUBB(I)
CALL SUBC(I)
10 CONTINUE
END

SUBROUTINE SUBA (KOUNT)
IF (KOUNT.EQ.1) I=0
I=T+1
WRITE (*,10) I
10 FORMAT ('SUBA has been called 'I2' times. ***ERROR***')
RETURN
END

SUBROUTINE SUBB (KOUNT)
SAVE J
IF (KOUNT.EQ.1) J=0
J=J+1
WRITE (*,10) J
10 FORMAT ('SUBB has been called 'I2' times. ***WORKS!!!*%%'")
RETURN
END

SUBROUTINE SUBC (KOUNT)
DATA K/0/
K=K+1
WRITE(*,10) K
10 FORMAT('SUBC has been called 'I2' times. ***WORKS!!!**x'")
RETURN
END

The value 1 is printed the first time subroutine SUBA is called. In subse-
quent calls, however, undefined values are printed because the variable I in

9-24 FORTRAN Reference

SUBA loses its value when SUBA returns control to the main program. The
variables J and K in the other two subprograms are effective counter vari-
ables since their values are retained even after a return to the main program.
The values are retained by using SAVE and DATA statements.

Block Data Subprograms and BLOCK DATA Statements

A ""block data subprogram'' is nonexecutable and is used to initialize data
declared in common blocks. More than one block data subprogram is
allowed in a FORTRAN program, but only one can be unnamed. A block
data subprogram begins with a BLOCK DATA statement, ends with an
END statement, and can contain type, IMPLICIT, PARAMETER,
DIMENSION, COMMON, SAVE, EQUIVALENCE, and DATA state-
ments. The form of a BLOCK DATA statement is:

BLOCK DATA [blockname]

blockname
is the name of the BLOCK DATA subprogram.

If present, the blockname cannot be the same as the name of any common
block or other program unit. It also cannot be the same as any local name
in the subprogram.

More than one named common block can be initialized in the same block
data subprogram. All the variables in a named common block must be spec-
ified, even if they are not all initialized. Also, any one common block can
be specified in only one block data subprogram.

Chapter 9. Program and Subprogram Structure 9-25

Example:

c Notice that not all the variables are initialized.
BLOCK DATA

COMMON /SHAPES,/ CIRCLE,TRIANGLE,SQUARE
REAL CIRCLE

COMPLEX TRIANGLE

DOUBLE PRECISION SQUARE

COMMON /FOODS/ BURGER,DOGS,FRIES
LOGICAL BURGER

REAL DOGS

COMPLEX FRIES

DATA CIRCLE,TRIANGLE / 3.2, (11.5,1.5) /
DATA BURGER /.TRUE./,DOGS /.45/

END

9-26 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

CALL Statements

« Recursive subroutine calls are allowed; that is, a subroutine can call
itself directly or be called by another subprogram that it has called.

Function Subprograms and FUNCTION Statements

» The length specifications lenl and len2 are not allowed.

RETURN Statements

+ A RETURN statement cannot be used in a main program.

Chapter 9. Program and Subprogram Structure 9-27

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Dummy and Actual Arguments — Passing Values

o If the actual argument is a Hollerith constant, the dummy argument
must have a numeric data type.

Function Subprograms and FUNCTION Statements

« The length specification len! is not allowed.

RETURN Statements
« If necessary, int is converted to integer.

« A RETURN statement cannot be used in a main program.

0-28 FORTRAN Reference

Chapter 10. Input and Output

This chapter contains a description of:

« the concepts of FORTRAN input and output, including files, records,
units, and the various forms of file access and record formats

o the parameters common to the FORTRAN input/output statements
« these input/output statements:

— OPEN

— CLOSE

— READ

— WRITE

— PRINT

— BACKSPACE
— ENDFILE

— REWIND

— INQUIRE

The FORMAT statement is described in Chapter 11, ‘“Format
Specifications.” Additional information on FORTRAN input and output

under the RT PC AIX Operating System can be found in the RT PC
FORTRAN User’s Guide.

Concepts of FORTRAN Input and Output

A "record" is a sequence of characters or values and is the building block of
the FORTRAN input/output system. The three kinds of records are:

« formatted records
« unformatted records

Chapter 10. Input and Output 10-1

External Files

« endfile records.

A "formatted record" is a sequence of characters ended by an end-of-
record control character, which is the line-feed character (ASCII decimal
value 10). Therefore, a formatted record is a line of text. Formatted
records are interpreted on input in the same manner that the operating
system and any text editor interprets characters. In general, formatted files
are transportable to other language processors and computers.

An "unformatted record" is a sequence of values. Unformatted records are
not altered or interpreted by the input/output system and may not have an
end-of-record character like formatted files. In general, unformatted files
are not transportable to other language processors and computers because
of different internal representations of values.

An "endfile record" should be thought of as a label immediately following

the last record of a file, which signals the end of that file. It does not phys-
ically exist but the input/output system supplies an indication of one to the
underlying operating system.

A "file" is a set of related records treated as a unit. A FORTRAN file is
either external or internal.

An "external file'" is a file on a physical peripheral device such as a disk file
or is actually a physical device such as a printer or console. An external file
being operated upon by a FORTRAN program has a number of properties
including:

a file name

a file position

a file record format
a file access method.

10-2 FORTRAN Reference

File Name

File Position

The "file name' of an external file is a character string identical to that by
which it is known to the operating system.

The "position" of an external file is usually established by the preceding
input/output operation. There is a notion of the beginning-of-file, the end-
of-file, the current record, the preceding record, and the next record. Itis
also possible to be between records, in which case the next record is the
successor to the previous record, and there is no current record.

The position of the file after a sequential WRITE statement is the end-of-
file, but not beyond the endfile record. A READ statement executed at the
end-of-file, but not beyond the endfile record, positions the file beyond the
endfile record. Executing an ENDFILE statement positions the file beyond
the endfile record. A program can branch on reading an endfile record via
the END= option in a READ statement.

File Record Format — Formatted or Unformatted

The "file record format' of an external file is formatted or unformatted.
Internal files are always formatted.

A "formatted file" consists entirely of formatted records. Each record is in
ASCII form and is ended by an end-of-record character.

An "unformatted file" consists of unformatted records; that is, each record
is in binary form and is ended by an end-of-record character.

Unformatted files are more efficient than formatted files in input/output
overhead and in file space requirements. For example, 8 bytes are needed
to write a single-precision real number with six digits of accuracy using a
formatted WRITE statement. Using an unformatted WRITE statement,
only 4 bytes are needed. Unformatted access can be used if data is to be
written and read by FORTRAN on the same processor. However, unfor-
matted files cannot be printed or edited with standard text editors.

Chapter 10. Input and Output 10-3

If data is to be transferred without any system interpretation, especially if
all 256 character combinations are needed, unformatted input/output is
necessary since formatted files are limited to the printable character set.
For example, unformatted input/output is needed to control a device with a
single-byte binary interface. If formatted input/output is used, certain
characters (such as the carriage return) have their meanings changed.

File Access Method — Sequential or Direct

The file access method of an external file is either sequential or direct
(random).

A "sequential-access file" (or "sequential file'') contains records in an order
determined by the order in which the records were written. Sequential files
cannot be read or written using the REC= option, which specifies a direct
access input/output position. The FORTRAN input/output system extends
a sequential file if a record is written beyond the endfile record providing
that enough space exists on the external device.

A "direct-access file" (or "direct file") can have its records written in any
order. Each record is assigned a specific record position at the time it is
written, which is used to reference the record. Record positions are num-
bered sequentially with the first record position having the number 1. All
records in a direct file must have the same length, which is specified when
the file is opened.

If desired, records can be written out of order and record positions can be
skipped. For example, records can be written in positions 9, 5, and 11 in
that order without writing the intermediate records. A record cannot be
deleted but can be rewritten with a new value. Also, a record position that
has not been written cannot be read, even though the FORTRAN
input/output system recognizes this as an error only when the attempted
read is to a record beyond the highest-numbered record in the file.

In order for a position in a direct file to be meaningful, direct files must
reside in block-structured storage devices, also known as blocked devices.
Blocked devices, such as disks, have the capability to locate a specific posi-
tion on the device and can be used for both sequential access and direct
access of files. FORTRAN does not allow direct access of sequential
devices since there is no notion of seeking an absolute location on an
unblocked file.

10-4 FORTRAN Reference

The FORTRAN input/output system extends a direct file if a write is made
to a position beyond the current highest-numbered record in the file pro-
viding that enough space exists on the storage device.

Most uses of direct files tend to also require unformatted files. Direct for-
matted files require special care. FORTRAN formatted files generally
comply with the operating system’s rules for text files, thereby allowing
standard system utilities such as text editors to be used on them. These
rules are enforced for sequential formatted files but may not always be
enforced for direct formatted files (which may not be valid text files)
because they may have "holes' of unwritten records. Text editors may not
be able to interpret these unwritten records in a file.

Direct formatted files cannot contain any character-compression informa-
tion.

Note: The combination of direct and unformatted files is ideal for a data
base management facility that is accessed exclusively through the
FORTRAN input/output system.

Internal Files 4 <>

An "internal file" is a character variable, character array element, character
array, or character substring that serves as the source or destination of some
input/output action. A record of an internal file is a character variable,
character array element, or character substring.

Internal files provide a means for using the formatting capabilities of the
FORTRAN input/output system to convert values to and from their
external character representations within FORTRAN’s internal storage
structures. This means that reading from a character variable converts the
character values into numeric, logical, or character variables. Writing to a
character variable converts values into their external character represen-
tation.

If an internal file is a character variable, character array element, or char-
acter substring, the file has exactly one element with a length equal to the
length of the character variable, character array element, or character sub-
string. If an internal file is a character array, each element of that array is a
record of the file with each record having the same length.

Chapter 10. Input and Output 10-5

If less than an entire record is written by a WRITE statement, the remainder
of the record is filled with spaces.

The position of an internal file is always at the beginning-of-file prior to the
execution of any input/output statements. Reading and writing records to
an internal file can be accomplished by using sequential formatted
input/output statements, list-directed input/output statements, and
namelist-directed input/output statements. Only READ, WRITE, and
PRINT statements can reference an internal file. Other statements such as
OPEN, CLOSE, and INQUIRE cannot be used on internal files.

Example:

[oNeNeNe!

100

120

10-6 FORTRAN Réference

This program illustrates how internal files can be used
to convert integer and real numbers to character strings,
and vice versa.

PROGRAM INFILE
CHARACTER*10 STR
REAL VAL

A character string is converted to a real number.

STR = '123.456"

READ (STR, 100) VAL

FORMAT (F6.2)

WRITE(*,%*) 'Real number after conversion is: ', VAL

A real number is converted to a character string.
VAL = 456.98

WRITE(STR, 100) VAL
WRITE(*,*) 'Character string after conversion is: ',STR

A character string is converted to an integer number.

STR = '789'

READ (STR,120) IVAL

FORMAT (I3)

WRITE (*,*) 'Integer number after conversion is: ',IVAL

Units <>

C An integer number is converted to a character string.

IVAL = 890

WRITE (STR, 120) IVAL

WRITE(*,*) 'Character string after conversion is: ',STR
STOP

END

A "unit" is a means of specifying a file. A unit is specified in an
input/output statement by either an external unit specifier or an internal
unit specifier.

An "external unit specifier" is either a positive integer expression or an
asterisk (*), which indicates the console on the operating system. In most
cases, external unit specifiers are bound by name to external devices or files
on those devices when the OPEN statement is executed. Once a value is
associated with an external file name, the value is used refer to the external
file. The external unit specifier is uniquely associated with the external
device or file until a CLOSE statement is executed or until the program
ends.

Exceptions to these rules involve the external units 5 and 6, which are ini-
tially associated with the console for reading and writing and do not require
an OPEN statement. An asterisk as an external unit specifier also refer-
ences unit 5. The console is a sequential formatted file. When reading from
the console, the backspace and line-delete keys have their normal editing
functions.

An "internal unit specifier' is the name of a character variable, character
array, character array element, or character substring. Internal unit
specifiers can only be used in READ, WRITE, and PRINT statements and
are not allowed in any of the auxiliary input/output statements such as
OPEN, CLOSE, and INQUIRE.

Chapter 10. Input and Output 10-7

Sample Input/Output Program

This program copies a file containing three columns of integers and switches
the first and second columns. Each column is seven characters wide. The
input file is named by the user and the output file is OUT.TXT.

C Before executing program --
C from Bourne shell: OUTFILE=OUT.TXT
c export OUTFILE
C
C from C shell: setenv OUTFILE OUT.TXT
C

PROGRAM SWITCH

CHARACTER*23 FNAME

INTEGER FIRST, SECOND, THIRD

LOGICAL EXISTS
C A prompt is made to the console
] by writing to *.
C

100 WRITE(*,900)
900 FORMAT ('Input the symbolic name of file: ')

The file name is read from the
console by reading from *.

Q00

150 READ(*,910) FNAME
910 FORMAT (A)

A test is conducted to determine if
the file exists.
If not, the user is again prompted.

QON0N

INQUIRE (FILE=FNAME,EXIST=EXISTS)
IF (.NOT.EXISTS) THEN
WRITE (*,920)
920 FORMAT ('The file does not exist.
+ Enter another file name: ')
GOTO 150
ENDIF

C Unit 3 is used for input.

OPEN (3, FILE=FNAME)

10-8 FORTRAN Reference

C Unit 4 is used for output.

C

OPEN (4 ,FILE="OUTFILE',STATUS='NEW"')
C The file is read and written until
C end-of-file is reached.
C

200 READ(3,930,END=300) FIRST,SECOND,THIRD
WRITE (4,930) SECOND,FIRST, THIRD
930 FORMAT(3I7)

GOTO 200
C
300 WRITE(*,910) 'The copying is finished.'
STOP
END

Parameters of Input/Output Statements <>

Unit Specifiers

FORTRAN input/output statements require certain parameters that specify
sources and destinations of data transfers, as well as other aspects of oper-
ations.

A "unit specifier" indicates the unit to be used in an input/output opera-
tion. The form of a unit specifier is:

[UNIT =] u

is an external or internal unit specifier.

An external unit specifier is either an *, 5, or 6, (which refer to the console)
or can be a positive integer expression (which refers to an external file with

Chapter 10. Input and Output 10-9

that unit number). An internal unit specifier is the name of a character vari-
able, character array, character array element, or character substring.

If the optional UNIT= keyword is not used, the ¥ must be the first item in
the argument list of specifiers. If the UNIT= keyword is used, then the
FMT= keyword must be used, and all the specifiers in the argument list can
appear in any order.

Format Specifiers 4

A "'format specifier'" indicates the format to be used in an input/output
operation. The form of the format specifier is:

[FMT =] f

f

can be a statement label, an integer variable, a character expression,
an asterisk (*), or an array name.

A statement label refers to the FORMAT statement that has that label. An
integer variable refers to the FORMAT label that it is associated with in an

ASSIGN statement. A character expression refers to its current value as the
format specifier. An asterisk specifies list-directed formatting.

An array name can have a data type of integer, real, double-precision,
logical, or complex. It must contain character data whose leftmost charac-
ters constitute a valid format specification. The length of the format spec-
ification may exceed the length of the first element of the array; it is
considered the concatenation of all the elements of the array in the order
given by array element ordering.

If the optional FMT= keyword is not used, the f must be the second item in
the argument list of specifiers. If both UNIT= and FMT= are used, the
argument list of specifiers can appear in any order.

For a description of the format list and the elements it can contain, see
Chapter 11, “Format Specifications.”

10-10 FORTRAN Reference

Record Number Specifiers <>

A "record number specifier" indicates the number of the record to be read
or written in a direct access input/output operation. The form of the record
number specifier is:

REC =rn

rn
is an integer expression. It represents the relative position of a record
within the file associated with UNIT=u. The internal record number
of the first record is 1.

End-of-File Exit Specifiers

An "end-of-file exit specifier' designates a statement label at which exe-
cution is to start when an end-of-file condition occurs while reading from a
file. The form of an end-of-file specifier is:

END =

is a statement label in the same program unit as the READ statement.
(The s cannot be an integer variable assigned the value of a statement
label through an ASSIGN statement.)

Chapter 10. Input and Output 10-11

Error Exit Specifiers

An "error exit specifier' designates a statement label at which execution is
to start when an error occurs during the execution of an input/output state-
ment. The form of an error exit specifier is:

ERR = s

is a statement label in the same program unit as the input/output
statement. (The s cannot be an integer variable assigned the value of
a statement label through an ASSIGN statement.)

Input/Output Status Specifiers

An "input/output status specifier" designates an integer variable into which
the status of an input/output operation is returned. The form of an
input/output status specifier is:

IOSTAT = ios

ios
is the name of an integer variable or integer array element. The data
type of ios must be INTEGER or INTEGER*4.

When an input/output statement containing this specifier finishes exe-
cution, the ios is defined. A zero value indicates that the input/output oper-
ation completed normally; that is, there were no errors and an end-of-file
was not encountered. A negative value indicates that an end-of-file was
encountered during a READ statement. A positive value indicates that an
error condition occurred during the execution of the input/output state-
ment. Error numbers and messages are listed in the RT PC VS FORTRAN
User’s Guide.

10-12 FORTRAN Reference

Note: The meaning of a positive value differs among operating systems.

Input/Output Lists <>
An "input/output list" specifies the objects whose values are transferred by
READ, WRITE, and PRINT statements. An input/output list is a list of
elements separated by commas, and can be empty.
Input/output lists can contain input/output objects and implied DO loops,
which are described in the following two sections.

Input/Output Objects <>

"Input/output objects' can be specified as items in input/output lists of
READ, WRITE, and PRINT statements. An input or output object can be:

» avariable name
« an array element name
« acharacter substring name

e an array name, in which all the elements of the array are specified in the
order that they are stored internally

« (for output objects only) any other expression except a character
expression that concatenates an assumed-length character string.

Example:

WRITE (0,100) 'The results are: ',WIDGET, OMELET(J,4)
100 FORMAT (A,I5,F10.5)

This is a valid input/output list.

Chapter 10. Input and Output 10-13

Implied DO Loops <>

"Implied DO loops' can be specified as items in input/output lists of
READ, WRITE, and PRINT statements. The form of an implied DO loop
is:

(dlist, dovar = first, last [, inc])

Implied DO loops are described in “Implied DO Loops in DATA
Statements’” on page 7-12.

In a READ statement, the implied DO variable dovar and associated objects
cannot appear as input list items in the implied DO list dlist but can be read
in the same READ statement outside of the implied DO loop. The dlist
assignment is repeated for each iteration of dovar, which is appropriately
incremented for each repetition of the implied DO loop.

Example:

ISIZE=10
READ(3,150) (JINX(I),I=1,ISIZE)
150 FORMAT (101I7)

In this code, notice that an object associated with the implied DO loop is
read with the same READ statement but outside of the implied DO loop.
Elements of the array JINX are defined for each iteration of the variable I.
The format specified in the FORMAT statement causes the values to be
read 10 per record.

10-14 FORTRAN Reference

Input/Output Statements <>

The FORTRAN input/output statements include OPEN, CLOSE, READ,
WRITE, PRINT, BACKSPACE, ENDFILE, and REWIND. During the
execution of any input/output statement, expression evaluation can refer-
ence functions. Any function so referenced cannot execute any other
input/output statement.

OPEN Statements 4 <>

An "OPEN statement'' associates a unit number with an external device by
specifying its file name. If the file is to be a direct file, the RECL=r/ option
specifies the length of the records in that file. If the unit specified in an
OPEN statement is already opened, it is closed before being associated with
a file. The form of an OPEN statement is:

OPEN (arglist)

arglist
is an argument list of specifiers that must contain one unit specifier. It
can also contain one of each of the other allowable specifiers.

The forms of the unit specifier and other allowable specifiers are:

[UNIT=] u
is an external unit specifier described in “Unit Specifiers” on
page 10-9.

IOSTAT = ios
is an input/output status specifier described in “Input/Output Status
Specifiers” on page 10-12.

ERR =5

is an error exit specifier described in “Error Exit Specifiers’ on
page 10-12.

Chapter 10. Input and Output 10-15

FILE = fname
identifies a shell environment variable whose value is the file name. If
this specifier is omitted, unit n is connected to FILE.FTnF001.

Example:

OPEN (9,FILE='MYFILE')

This statement looks for a shell environment variable named
MYFILE. If the variable exists, it’s value is the file name; if there is
no such variable, a default file named FILE.MYFILE is used.

STATUS = sta
specifies the status of the file when it is opened. The sta is a character
expression whose value must be 'OLD', '"NEW', 'SCRATCH', or
'"UNKNOWN'. 'OLD' is used for reading or writing existing files.
'NEW' is used for writing new files. '"UNKNOWN'" is the default.

If '"NEW!' is specified and the file already exists, the file is truncated
to a zero length and opened. If the file does not exist, it is created. If
'OLD' is specified and the file does not exist, an error results.

If 'OLD' or 'NEW' is specified, the FILE= keyword must be sup-
plied. If 'SCRATCH' is specified, the file is automatically deleted
when the file is closed or when the program ends. If "UNKNOWN' is
specified, the file is treated as if "OLD"' had been specified.

ACCESS = acc
specifies the access mode for the file. The acc is a character
expression whose value must be either 'SEQUENTIAL' or
'DIRECT'. 'SEQUENTIAL' is the default.

FORM = fm
specifies whether the file is formatted or unformatted. The fm is a
character expression whose value must be either 'FORMATTED' or
'"UNFORMATTED'. 'FORMATTED' is the default.

RECL =1/

specifies the record length of the file. The r/is an integer expression.
This specification is limited to and required for direct files.

10-16 FORTRAN Reference

BLANK = bink
controls the default treatment of blanks (spaces) in formatted READ
statements, which can be altered by a BN (blank null) or BZ (blank
zero) edit-descriptor in a format specification. The blnk is a character
expression whose value must be either '"NULL' or 'ZERQO'. The
default is "NULL', in which all spaces are ignored in numeric input
fields. If 'ZERO! is specified, all spaces other than leading spaces are
treated as zeros.

A file opened in FORTRAN is either old or new, and there is no distinction
between "open for reading'' and "open for writing." Therefore, an old
(existing) file can be opened and written to, thereby changing the file. Simi-
larly, the same file can be alternately read from and written to, providing
that no attempts are made to read beyond end-of-file or to read unwritten
records from direct files. Writing to a sequential file deletes any records
that exist beyond the record being written to.

When a device such as console or printer is opened as a file, it generally
does not make a difference whether the file is old or new. With disk files,
opening '"NEW' creates a new temporary file. If that file is closed with
STATUS='KEEP' or if the program ends before a CLOSE statement is
performed on the file, a permanent file is created with the name given when
the file was opened. Any file that already exists with that name is deleted.
If a file is closed with STATUS='DELETE"', the newly created temporary
file is deleted and any file already existing with that name remains intact.

Opening a disk file that does not exist with STATUS="'0OLD' generates a
run-time error. If the file does exist, writing to that file changes its con-
tents.

Examples:

In Bourne shell:
DATAFILE=DATA1.DAT
export DATAFILE

In C shell:
setenv DATAFILE DATA1.DAT

oo aoaan

OPEN (9 ,FILE="DATAFILE')

Chapter 10. Input and Output 10-17

This example shows the minimum information needed in an OPEN state-
ment to open an existing file. The unit number is 9 and the file name is
DATA1.DAT. The default status is 'OLD’'; if DATA1.DAT does not exist,
file FILE.FT9F001 is created. The default access is 'SEQUENTIAL' and
the default file format is 'FORMATTED'.

In Bourne shell:
myfile=0UT.DAT
export myfile

In C shell:
setenv myfile OUT.DAT

[PNONONONCHONS]

OPEN (UNIT=9,FILE="'myfile',STATUS='NEW',
+ FORM="'FORMATTED' ,ACCESS='DIRECT')

This OPEN statement opens the new file OUT.DAT as unit 9. The file
format is '"FORMATTED' and the file access is '"DIRECT".

In Bourne shell:
printer=/dev/1lp
export printer

In C shell:
setenv printer /dev/lp

OO NP NONONON]

OPEN(8,FILE='printer’')

This OPEN statement opens the printer so that it can be written to directly
from a program. The printer here is assigned to unit 8.

CLOSE Statements

A ""CLOSE statement'' disassociates a specified unit from a file, thereby
preventing input/output from being directed to that unit number until it is
reopened. The form of a CLOSE statement is:

10-18 FORTRAN Reference

CLOSE (arglist)

arglist
is an argument list of specifiers that must contain one unit specifier. It
can also contain one of each of the other allowable specifiers.

The forms of the unit specifier and other allowable specifiers are:

[UNIT=] u
is an external unit specifier described in ‘“Unit Specifiers’ on
page 10-9.

IOSTAT = ios
is an input/output status specifier described in “Input/Output Status
Specifiers” on page 10-12.

ERR =5
is an error exit specifier described in ‘““Error Exit Specifiers” on
page 10-12.

STATUS = dis
specifies the disposition of the file after it is closed and applies only to
files opened with STATUS='NEW'. The dis is a character
expression whose value must be either '"KEEP' or 'DELETE'. The
default is 'KEEP'.

A file opened with STATUS='NEW' is a temporary file and is discarded if
STATUS='DELETE"' is specified. A FORTRAN program that ends
normally automatically closes all opened files as if a CLOSE statement with
STATUS='KEEP' had been specified. STATUS='KEEP' cannot be spec-
ified for a file that was opened with STATUS='SCRATCH".

Examples:

CLOSE (8)

Chapter 10. Input and Output 10-19

This example shows the minimum information needed in a CLOSE state-
ment to close an opened file. This statement closes and saves the file
opened as unit 8.

CLOSE (UNIT=9, STATUS='DELETE"')

This statement deletes an opened file that had either previously existed or
had been created with an OPEN statement (in which case the file was tem-
porary to the program).

READ, WRITE, and PRINT Statements

"READ statements' are used for inputting data. '"WRITE and PRINT
statements'' are used for outputting data. Note that the PRINT statement
does not refer to "'printing" on the system printer; it is used to write to the
standard output device. The READ, WRITE, and PRINT statements can
be categorized as format-specified, unformatted, list-directed, or namelist-
directed input/output statements.

"Format-specified input/output statements" are used to direct the editing
or conversion between the internal representations of the computer and the
representations of character strings in a file or data item. The formatting of
the data is controlled by the FORMAT statement, which is described in
Chapter 11, “Format Specifications.”

"Unformatted input/output statements' do not perform editing or conver-
sion between the internal representations of the computer and represent-
ations of character strings in a file or character data item. Unformatted
input/output statements execute faster than formatted input/output state-
ments; however, unformatted data is generally not transportable to other
language processors and computers.

"List-directed input/output statements" transfer data to or from a for-
matted record; the formatting of the data is controlled by the data types and
lengths of the data items in an input/output list. This manner of treating
records is more convenient than the structured manner of format-specified
input/output statements when precise layout of the data is not important.

"Namelist-directed input/output statements' use a namelist instead of an
input/output list to specify the names of variables or arrays to be read or

10-20 FORTRAN Reference

written. Namelists are declared in NAMELIST statements, described in
“NAMELIST Statements — Specifying Names <> <> on page 7-23.

Format-Specified and Unformatted READ, WRITE, and PRINT Statements

The forms of the format-specified and unformatted READ, WRITE, and
PRINT statements are:

READ f [, iolist]
READ (arglist) | iolist]
WRITE (arglist) | iolist]

PRINT f [, iolist

f

is a format specifier described in “Format Specifiers 4’ on
page 10-10.

iolist
is an input/output list described in “Input/Output Lists <>’ on
page 10-13.

arglist
is an argument list of specifiers that must contain one unit specifier. It
can also contain one of each of the other allowable specifiers.

The forms of the unit specifier and other allowable specifiers are:

[UNIT=] u
is a unit specifier described in “Unit Specifiers” on page 10-9.

[FMT =] f

is a format specifier described in “Format Specifiers 4 on
page 10-10.

Chapter 10. Input and Output 10-21

IOSTAT = ios
is an input/output status specifier described in “Input/Output Status
Specifiers’ on page 10-12.

ERR = s
is an error exit specifier described in ‘“Error Exit Specifiers” on
page 10-12.

REC =rn
is a record number specifier described in “Record Number Specifiers
<” on page 10-11. Record number specifiers can only be used on
files that have been opened with ACCESS='DIRECT".

END = s
is an end-of-file exit specifier described in ‘“End-of-File Exit
Specifiers’ on page 10-11. This specifier is only applicable to the
READ statement and cannot appear in WRITE or PRINT statements.

If an arglist contains a format specifier, the statement is a formatted
input/output statement; if it does not, the statement is an unformatted
input/output statement.

If the format specifier is an asterisk (*), the statement is a list-directed
input/output statement. In this case, the record number specifier cannot
appear in the statement’s arglist. List-directed input/output can be done on
an internal file.

An arglist cannot contain a record number specifier if the unit specifier des-
ignates an internal file. Also, an arglist cannot contain both a record
number specifier and an end-of-file specifier.

After the last record of a file is read, the file is positioned at end-of-file.

Formatted input /output examples:

INTEGER I,J,K

READ(*,10) I1,J,K
10 FORMAT(3I5)

10-22 FORTRAN Reference

This code reads three integers from the console by using an asterisk and a
FORMAT statement labeled 10.

COMPLEX C

READ (3, 100, REC=6,ERR=99) C
100 FORMAT (2F8.4)

This code reads a complex number from the sixth record of the direct file

associated with unit 3 using the FORMAT statement labeled 100. If an
error occurs, a jump is made to the statement labeled 99.

CHARACTER*20 STR

READ 50,STR
50 FORMAT (A)

This code reads a character expression from the console to the character
variable STR.

INTEGER I(10)

WRITE(4,100) (I(J),Jd=1,5)
100 FORMAT(10I5)

This code writes the first five elements of integer array I to unit 4 using the
FORMAT statement labeled 100.

WRITE(*,'(A)') 'Input your data: '
This code writes a character expression to the console. Note that the format

is specified by a character expression and not by the label of a FORMAT
statement.

Chapter 10. Input and Output 10-23

INTEGER RECORD
REAL X (10)

WRITE (4,20,REC=RECORD) X
20 FORMAT (10F6.2)

This code writes all 10 elements of real array X to record number RECORD
of the direct file associated with unit 4. The FORMAT statement labeled
20 is used.

INTEGER I,J,K

PRINT 10,I,J,K
10 FORMAT (3I5)

This code prints the three integers I, J, and K to the console using the
FORMAT statement labeled 10.

CHARACTER*3 FARM
DATA FARM /' (A)'/

PRINT FARM, 'Title’

This code prints the word ''Title" to the console. The format is specified by
the character variable FARM.

Unformatted input/output examples:

WRITE(9) 10,3.14159, '"HELLO'

This code writes the values 10, 3.14159, and ""HELLO" to the file opened
to unit 9. The file must have been opened with
FORM='UNFORMATTED'. Since no format is specified, the output is
unformatted; that is, no conversion between the internal representations of
the values and the equivalent character expressions takes place. Therefore,
the values written to unit 9 are (in hexadecimal radix form):

10-24 FORTRAN Reference

00001B1040490FD048454C4CA4F
The 00001B10 is the internal representation for the integer 10, 40490FDO

is the internal representation for the real number 3.14159, and

48454CACA4F is the internal representation for the character expression
"HELLO".

INTEGER I,J,K

I.QEAD(8) 1,J3,K
This code reads in three integers from the file opened as unit 8. The file
must have been opened with FORM='UNFORMATTED', and the data in

the file must be in unformatted form. No conversion between formatted
and unformatted data takes place.

List-Directed READ Statements 4 <>

The parameters in a list-directed READ statement are the same as those for
a formatted and unformatted READ statement, except that the format
specifier is always an asterisk (*).

Data is read into storage locations as specified in a READ statement’s input
list. Input data consists of any number of value separators and input values.

A "value separator' is used to delimit a value in a list-directed input list. A
value separator can be:

» acomma (,) with optional spaces on either side
o aslash (/) with optional spaces on either side

« one or more spaces between constants or after the last constant in the
list

« an end-of-record, which appears as a space between two constants.

Chapter 10. Input and Output 10-25

A comma is used to separate values. Two consecutive commas specifies a
null value. A null value indicates that the corresponding list element
remains unchanged.

A slash discards the remaining items in the input list and substitutes null
values in their place.

A value separator adjacent to an end-of-record is not considered a null
value.

An "input value' to a list-directed READ statement can be a constant, a
null value, or can take one of two other forms.

One form is r *, where r is an unsigned nonzero integer constant that indi-
cates r occurrences of a null value.

The other form is r * ¢, where r is an unsigned nonzero integer constant
and c is a constant; this form indicates r occurrences of ¢. For example, 3*5
indicates 5, 5, 5.

Values in list-directed input cannot contain embedded spaces, except for
character constants in which spaces are significant. A list-directed input
value can be a:

null value
is indicated by two consecutive value separators, by no characters or
spaces preceding the first value separator in an input list, or by an r *
form. List-directed input values that are null have no effect on the
definition status of variables in the corresponding input/output list;
that is, variables in the input/output list that are defined remain
defined and variables that are not defined remain undefined. A null
value cannot be used as the real or imaginary part of a complex con-
stant.

integer value
which must have the form of an integer constant.

real value
which must have the form of a real constant. The decimal point can
be omitted, in which case the number is assumed not to have a frac-
tional part.

10-26 FORTRAN Reference

complex value
is represented by an ordered pair of real numbers that are separated
by a comma and enclosed in parentheses. Spaces can surround the
real numbers and an end-of-record can appear before or after the
comma separating the numbers.

character string value
is a string of characters enclosed in apostrophes. Any spaces are sig-
nificant and are part of the constant. An apostrophe that is part of
the character string is represented by by two consecutive apostrophes
in the string. Note that a character constant not ended by an apos-
trophe causes erroneous results.

Character constants can span record boundaries; that is, a character
constant can be continued over as many records as needed. A record
boundary in a character constant does not add any additional charac-
ters to the value.

If a character constant as read is longer than the length of its corre-
sponding input/output list item, the character constant is truncated to
fit. If a character constant is shorter than its corresponding
input/output list item, the character constant is placed left-justified in
the variable and the remaining positions in the variable are filled with
spaces.

logical value
is represented by a T for .TRUE. or an F for .FALSE.. The T or F
character can be preceded by a period (.) and can be followed by
other characters except commas and slashes.

Examples:

INTEGER I,J,K
LOGICAL CHOICE

READ *,I,J,K,CHOICE
END

Input data: 110 220, 330 T

Chapter 10. Input and Output 10-27

In this example, I gets the value 110, J gets the value 220, K gets the value
330, and CHOICE gets the value . TRUE. The data is entered from the
console. Note that both spaces and commas are used as value separators.

COMPLEX C
DIMENSION X(2), IN(4)
CHARACTER*10 STR

IN(1)=5
IN(2)=7
IN(3)=12
IN(4)=16
READ (7,%*) C,X,STR,IN

END
Input data:
(1.4,0.32) 1.11 2.22 'DATA' 2% 2%6

In this example, C gets the value (1.4,0.32), X(1) gets the value 1.11, X(2)
gets the value 2.22, STR gets the value 'DATA', IN(1) retains the value of
5, IN(2) retains the value of 7, and IN(3) and IN(4) each get the value 6.
The data is read from the file opened as unit 7.

List-Directed READ Statements with Internal Files: The READ state-
ment transfers data from one area of internal storage to one or more other
areas of internal storage. The area in internal storage that is read from is
called an internal file. The type of the items specified in this statement
determines the conversion to be performed.

An internal, list-directed READ statement starts data transmission at the
beginning of the storage area indicated by the internal unit specifier. One
value in the internal file is transferred to each item of the list in the order
they are specified. The conversion to be performed depends on the type
and length of the name of the item in the list. Data transmission stops when
data has been moved to every item of the list or when the end of the storage
area is reached.

If the internal unit specifier is a character variable, a character array
element name, or a character substring name, it is treated as one record. If

10-28 FORTRAN Reference

the internal unit specifier is a character array name, each array element is
treated as one record.

The length of a record is the length of the character variable, character sub-
string name, or character array element specified by the internal unit
specifier when the READ statement is executed.

If a record contains more data than is necessary to satisfy all the items in the
list and the associated format identifier, the remaining data is ignored. The
next READ statement with list-directed input/output starts with the next
record if no other input/output statement is executed on that file.

If a record contains less data than is necessary to satisfy the list and the
record does not have a slash after the last element, an error is detected. If
the list has not been satisfied when a slash separator is found, the remaining
items in the list remain unaltered and execution of the READ is terminated.

If the list indicates that more data items are to be moved and none remain in
the character variable, character substring, or last array element of a char-
acter array, an end of file is detected. If an array element is not last and the
list requires more data items than that element contains, the items are taken
from the next array element.

Control is transferred to the statement specified by END when the end of
the file is encountered; that is, when there is insufficient data in the char-
acter variable or array to satisfy the requirements of the input/output list.
No indication is given of the number of list items read into before the end of
the file was encountered. If IOSTAT=ios is specified, a negative integer
value is assigned to ios when an end of file is detected. Execution continues
with the statement indicated by END (if specified) or with the next state-
ment if END is not specified. If END and IOSTAT are both omitted,
program execution ends when the end of the file is encountered.

Example:

1 CHARACTER#*50 CHARVR
2 READ (UNIT=7, FMT=100) CHARVR
100 FORMAT (A50)
3 READ (UNIT=CHARVR, FMT=*) A1, A2, A3

Chapter 10. Input and Output 10-29

Statement 1 defines a character variable, CHARVR, of fixed-length 50.
Statement 2 reads 50 characters of input into CHARVR. Statement 3 reads
from CHARVR, performs the conversion (depending on the type and
length of the names of the items in the list), and assigns values to A1, A2,
and A3.

List-Directed WRITE and PRINT Statements 4 <>

The parameters in list-directed WRITE and PRINT are the same as those
for formatted and unformatted WRITE and PRINT statements, except that
their format specifiers are always asterisks (*).

Data is transferred from the variables specified in the output list to a speci-
fied unit. In general, values are written to the output device in a manner
consistent with list-directed input. One exception is character string data,
which cannot be re-read by a list-directed input statement after being
written by a list-directed WRITE or PRINT statement.

FORTRAN starts new records when necessary and never generates slashes
or null values on list-directed output. Values in the output are separated by
three spaces, except for character values, which are not preceded or fol-
lowed by any spaces. The data types and how they are generated in list-
directed output are:

integer value
is generated as an Iw edit-descriptor. The w is the minimum number
of characters required to print the integer value.

real or double-precision value
is generated as an F edit-descriptor or an E edit-descriptor depending
on the magnitude of the number. The specific edit-descriptors used
are described in this table:

Range of Edit-Descriptor Used
Number Real Double—Precision
1.0 £ val < 10.0 OPF9.6 OPF17.14

val < 1.0 or
val 2 10.0 1PE13.6E2 1PE22. 14E3

10-30 FORTRAN Reference

complex value

is generated as a pair of real numbers enclosed in parentheses with a

comma separating the real and imaginary parts.

character string value

is generated as a string of characters. However, it is not contained in
apostrophes and therefore cannot be re-read using list-directed input.

logical value
is generated as T for .TRUE. and F for .FALSE..

Examples:

PRINT *,1000,0.12345
PRINT *,(1.1,2.2),.TRUE., 'Chars'

In this example, the output to the console is:

1000 +1.234500E-01
(+1.100000E+00,+2.200000E+00) TChars

INTEGER I
REAL X (2)

I =-12
X(1) = 1.2E-12
X(2) = 2.4E+12
WRITE(9,*) I,X
In this example, the output to the file opened as unit 9 is:

-12 +1.200000E-12 +2.400000E+12

Chapter 10. Input and Output

10-31

List-Directed WRITE Statements with Internal Files: The WRITE
statement transfers data from one or more areas of internal storage to
another area of internal storage. The receiving area is called an internal file.
This statement can be used to convert numeric data to character data. The
type of item specified in the statement determines the conversion to be per-
formed.

An internal WRITE statement starts data transmission at the beginning of
the storage area indicated by the internal unit specifier. Each item of the
list is transferred to the internal file in the order it is specified. The conver-
sion to be performed depends on the type and length of the name of the
item in the list. Data transmission stops when every item of the list has
been moved to the internal file or when the end of the internal file is
reached.

If the internal unit specifier is a character variable, a character array
element name, or a character substring name, it is treated as one record. If
the internal unit specifier is a character array name, each array element is
treated as one record. If a record is not large enough to hold all the con-
verted items, a new record is started for any noncharacter item that will
exceed the record length. For character items, as much as can be put in the
record is written there, and the remainder is written at the beginning of the
next record.

The length of a record is the length of the character variable, character sub-
string name, character array element specified by the internal unit specifier
when the WRITE statement is executed.

Example:
1 CHARACTER*120 CHARVR
2 WRITE (UNIT=CHARVR, FMT=%) A1, A2, A3
3 FORMAT (A120)
4 WRITE (UNIT=3, FMT=3) CHARVR

Statement 1 defines a character variable, CHARVR, of fixed-length 120.
Statement 2 writes the internal file represented by CHARVR by converting
the values in A1, A2, and A3. Statement 4 writes the 120 characters of
CHARVR to the unit 3 external file.

10-32 FORTRAN Reference

Namelist-Directed READ Statements <> <>

The forms of namelist-directed READ statements are:

READ name

READ (arglist)

name
is a namelist name declared in a NAMELIST statement. NAMELIST
statements are described in “NAMELIST Statements — Specifying
Names <> <>’ on page 7-23.

arglist
is an argument list of specifiers that must contain one unit specifier
and one format specifier.

The forms of the unit, format, and other allowable specifiers are:

[UNIT =] u
is a unit specifier described in “Unit Specifiers” on page 10-9.

[FMT =] name
is a namelist name declared in a NAMELIST statement. NAMELIST
statements are described in “NAMELIST Statements — Specifying
Names <> <’ on page 7-23.

IOSTAT = ijos
is an input/output status specifier described in “Input/Output Status
Specifiers” on page 10-12.

ERR =5

is an error exit specifier described in “Error Exit Specifiers” on
page 10-12.

Chapter 10. Input and Output 10-33

END = s
is an end-of-file exit specifier described in ‘“End-of-File Exit
Specifiers” on page 10-11.

In the "READ name" form of this statement, the unit specifier defaults to
the console.
When the namelist input data is on internal files, only the second form of

this statement is allowed because a unit specifier must be used.

Namelist Input Data: To be read using a namelist list, input data must be
in this form:

&namelist value-assignment | , value-assignment | ... ZEND

namelist
is a namelist name declared in a NAMELIST statement. It cannot
contain spaces and must be contained within a single record. The
NAMELIST statement is described in “NAMELIST Statements —
Specifying Names <> <-” on page 7-23.

value-assignment
is a value assignment. Value assignments are separated by commas
and take either of these forms:

name = constant

arrayname = constant |, constant] ...

name
is an array element name or a variable name.

10-34 FORTRAN Reference

constant
is an integer, real, complex, logical or character constant.
Embedded spaces are not permitted, except:

o in character constants. Any spaces are part of the constant.
o in complex constants. Spaces can surround the "real"
numbers.

A logical constant can be in the form T for .TRUE. or F for
.FALSE.. Subscripts must be integer constants, and can be sur-
rounded by spaces.

arrayname
is the name of an array.

Variable names and array names cannot contain spaces and must be con-
tained within a single record.

The first character of each input data record is ignored. Data should be
entered starting at the second position of each record.

Any number of spaces can surround the equal sign in value assignment.

The end of a record is equivalent to a space character. However, character
constants can span record boundaries, which do not add any additional
characters to the value. Numeric constants and logical constants can not
span record boundaries.

In a list, constants are separated by commas. Values are assigned to an
array in a linear fashion. The first value in the list is assigned to the first
element of the array, the second value is assigned to the second element of
the array, and so on. The number of constants must be less than or equal to
the number of elements in the array. For multi-dimensional array element
sequencing, see ‘“‘Array Storage Sequence’ on page 4-8.

A null value is denoted by two consecutive commas, by a comma with no
preceding value, or by a trailing comma. A null value indicates that the
value of the variable or corresponding array element remains unchanged. A
null value cannot be used as the "real" or "imaginary" part of a complex
constant.

Chapter 10. Input and Output 10-35

Successive occurrences of the same constant can be represented in the form
r * ¢, where r is an unsigned nonzero integer constant and c is a constant;
this form indicates r occurrences of ¢. For example, 3*5 indicates 5, 5, 5.

The variable names and array names specified in the input file must appear
in the namelist list, but the order is not significant. A name that has been
made equivalent to a name in the input data cannot be substituted for that
name in the namelist list. The list can contain names of items in common
blocks but must not contain dummy argument names.

It is not necessary for the input file to define every name in the namelist list.
The values of items that do not appear in the input data are unchanged.

Operations: The namelist-directed READ statement performs the fol-
lowing operations:

1. Reads data sequentially from an external or internal file until it finds an
ampersand (&), followed by the specified namelist name, followed by a
space.

2. Matches the item names that appear in the input records with the item
names specified in the corresponding NAMELIST statement.

« If a match is found, the READ statement converts, if necessary, the
value associated with the item in the input to the data type of the
item according to the rules for data type conversion for arithmetic
assignment statements (see Figure 6-1 on page 6-2).

Then, the READ statement assigns the converted value to the vari-
able or corresponding array element. The values are converted and
are assigned to the associated items in the order in which the items
appear in the input records.

o If a match is not found, an error is detected.

3. Stops processing when the end of the data group, specified by ""&END",
is encountered.

An internal namelist-directed READ statement starts data transmission
from the beginning of the internal file.

10-36 FORTRAN Reference

Example:

C Suppose a namelist is declared
C as: NAMELIST /NAM1/ A, B, C
C

READ (UNIT=2, FMT=NAM1)

Input data (a b indicates a blank):

bENAMT A=1,
bB=1, C=3,
b EEND

In this example, note that the format specifier specifies a namelist name
(NAM1) instead of a statement label of a FORMAT statement, an integer
variable name, a character expression, an array name, or an asterisk (*).
Also note that iolist is omitted. The names of variables or arrays to be read
are supplied by the namelist name.

Namelist-Directed WRITE and PRINT Statements <> <>

The forms of namelist-directed WRITE and PRINT statements are:

WRITE (arglist)

PRINT name

name
is a namelist name declared in a NAMELIST statement. NAMELIST
statements are described in “NAMELIST Statements — Specifying
Names <> < on page 7-23.

arglist
is an argument list of specifiers that must contain one unit specifier

and one format specifier.

The forms of the unit, format, and other allowable specifiers are:

Chapter 10. Input and Output 10-37

[UNIT=] u
is a unit specifier described in ‘“Unit Specifiers” on page 10-9.

[FMT =] name
is a namelist name declared in a NAMELIST statement. NAMELIST
statements are described in “NAMELIST Statements — Specifying
Names <> <>” on page 7-23.

IOSTAT = ios
is an input/output status specifier described in “Input/Output Status
Specifiers” on page 10-12.

ERR =5
is an error exit specifier described in “Error Exit Specifiers” on
page 10-12.

END = s
is an end-of-file exit specifier described in ‘“End-of-File Exit
Specifiers” on page 10-11.

In the namelist-directed PRINT statement, the unit specifier defaults to the
console.

When the namelist output data is directed to internal files, only the WRITE
statement is allowed because a unit specifier must be used.

Operations: The namelist-directed WRITE statement performs the fol-
lowing operations:

1. Retrieves data from internal storage (items specified by the namelist).

2. Converts data from binary to character form according to the data types
of the items specified in the corresponding NAMELIST statement.

3. Writes the converted data to the external or internal file.

An internal namelist-directed WRITE statement starts data transmission
from the beginning of the internal file.

10-38 FORTRAN Reference

Namelist Qutput Data: When output data is written using a namelist list,
it is written in a form that can be read using a namelist list. All variable and
array names specified in the namelist list and their values are written out,
each according to its type. Character data is included between apostrophes.
The fields for the data are made large enough to contain all the significant
digits. The values of a complete array are written out in columns.

The order of data output is controlled by the order in which items are speci-
fied in the namelist list. The first item in the list is written out first, the
second item is written out second, and so on.

Example:

C Suppose a namelist is declared
c as: NAMELIST /NAM1/ A, B, C

C and the input data is:

C ENAM1 A=1,B=1,C=3, EEND

WRITE (UNIT=3, FMT=NAM1)

Output (assuming A, B, and C are real variables):

&ENAM1 A=+1.000000,B=+2.000000,C=+3.000000, §END

BACKSPACE, ENDFILE, and REWIND Statements — Positioning

Files

Files can be positioned explicitly in FORTRAN using BACKSPACE,
ENDFILE, and REWIND statements.

A "BACKSPACE statement'' backspaces a sequential file by one record.
The two forms of the BACKSPACE statement are:

BACKSPACE u

BACKSPACE (arglist)

Chapter 10. Input and Output 10-39

An "ENDFILE statement" writes an endfile record on a sequential file.
The two forms of the ENDFILE statement are:

ENDFILE u

ENDFILE (arglist)

A "REWIND statement'' positions or re-positions a sequential file at its
first record. The two forms of the REWIND statement are:

REWIND u

REWIND (arglist)

In all the forms:

u
is a unit number.

arglist
is an argument list of specifiers that must contain one unit specifier. It
can also contain one of each of the other allowable specifiers.

The forms of the unit specifier and other allowable specifiers are:

[UNIT=1] u
is an external unit specifier described in “Unit Specifiers” on
page 10-9.

IOSTAT = ios

is an input/output status specifier described in “Input/Output Status
Specifiers” on page 10-12.

10-40 FORTRAN Reference

ERR = s
is an error exit specifier described in “Error Exit Specifiers’ on
page 10-12.

BACKSPACE Statements: A BACKSPACE statement positions the file
associated with a specified unit before the preceding record. If there is no
preceding record, the file position is not changed. If the preceding record is
the endfile record, the file is positioned before the endfile record.

BACKSPACE statements can only be applied to sequential files associated
with blocked devices, and can be applied to unformatted files.

Examples:

BACKSPACE 4

This code backs up one record on the sequential file attached to device 4.

BACKSPACE (UNIT=4,ERR=99)

This code backs up one record on the sequential file attached to device 4
and branches to the statement labeled 99 if an error occurs.

ENDFILE Statements: An ENDFILE statement writes an endfile record
as the next record on the sequential file associated with a specified unit.

The file is then positioned after the endfile record, thereby prohibiting
further sequential data transfers to that file until either a BACKSPACE or a
REWIND statement is executed.

Examples:

ENDFILE 4

This code writes an endfile record on the sequential file associated with unit
4,

Chapter 10. Input and Output 10-41

INTEGER IOS

ENDFILE (UNIT=4,I0STAT=IOS)

This code writes an endfile record on the sequential file associated with unit
4 and also returns the input/output status code in the integer variable 10S.

REWIND Statements: A REWIND statement positions the sequential
file associated with a specified unit at its first record.

Example:

REWIND 4

This code positions the sequential file associated with unit 4 at its first
record.

INQUIRE Statements — Obtaining File Properties

An "INQUIRE statement" obtains information about the properties of a
particular named file or about a file’s association to a particular unit.
INQUIRE statements can be executed before, while, and after a file is asso-
ciated with a unit. Any values assigned as a result of an INQUIRE state-
ment are values that are current at the time the statement is executed. The
two types of INQUIRE statements are "inquire by file' and "inquire by
unit."

The form of an "inquire by file" INQUIRE statement is:

INQUIRE (arglist)

10-42 FORTRAN Reference

arglist
is an argument list of specifiers that must contain one file specifier. It
can also contain one of each of the other allowable specifiers.

The form of a file specifier is:

FILE = filname

filname
is the symbolic name of the file that is the subject of inquiry.

The filname is a character expression that, when its trailing spaces are
removed, is an environment variable recognizable to the operating system.
The named file does not have to exist nor does it have to be associated with
a unit.

The form of an "inquire by unit" INQUIRE statement is:

INQUIRE (arglist)

arglist
is an argument list of specifiers that must contain one unit specifier. It
can also contain one of each of the other allowable specifiers.

The form of a unit (UNIT=) specifier is described in “Unit Specifiers” on
page 10-9. The unit specified does not have to exist nor does it have to be
associated with a file. If the unit is associated with a file, the inquiry is
made about the association and the file it is associated with.

The other allowable specifiers make up the remainder of an INQUIRE
statement’s argument list. Only one of each type of specifier is allowed per
argument list and the same variable name cannot be given to more than one
specifier. All specified integer variables must have a data type of either

Chapter 10. Input and Output 10-43

10-44

INTEGER or INTEGER*4. All specified logical variables must have a data
type of either LOGICAL or LOGICAL*4.

The forms of the other allowable specifiers are:

IOSTAT = ios
is an input/output status specifier described in “Input/Output Status
Specifiers’ on page 10-12.

ERR = s
is an error exit specifier described in “Error Exit Specifiers’ on
page 10-12. An INQUIRE statement does not cause any error condi-
tions.

EXIST = ex
determines if a specified file exists. The ex is a logical variable that is
set by an INQUIRE statement to either . TRUE. or .FALSE..

OPENED = od
determines if a specified file is opened. The od is a logical variable
that is set by an INQUIRE statement to either .TRUE. or .FALSE..

NUMBER = num
determines the number of the external unit currently associated with
the file. The num is an integer variable that is set to the number of the
external unit. If the file is not associated with a unit, the value of num
is undefined.

NAMED = nmd
determines if the file has a name. The nmd is a logical variable that is
set to either .TRUE. or .FALSE..

NAME = fn
determines the name of the file. The fn is a character variable that is
set to the name. If the file does not have a name, the value of fn is
undefined.

ACCESS = acc
determines whether the file can be accessed sequentially or directly.
The acc is a character variable that is assigned either the value
'SEQUENTTIAL' or 'DIRECT". If the file is not associated with a
unit, the value of acc is undefined.

FORTRAN Reference

SEQUENTIAL = seq
determines if the file can be accessed sequentially. The seq is a char-
acter variable that is assigned either the value 'YES' or 'NO'. If
FORTRAN cannot determine what access methods are allowed for
the file, seq is assigned the value "UNKNOWN',

DIRECT = dir
determines if the file can be accessed directly. The dir is a character
variable that is assigned either the value 'YES' or 'NO'. If
FORTRAN cannot determine what access methods are allowed for
the file, dir is assigned the value "UNKNOWN".

FORM = fm
determines the format of the file. The fm is a character variable that
is assigned the value '"FORMATTED' for a formatted file and is
assigned the value '"UNFORMATTED' for an unformatted file. If
the file is not associated with a unit, the value of fm is undefined.

FORMATTED = fmt
determines if the file is a formatted file. The fmt is a character vari-
able that is assigned either the value 'YES' or 'NO'. If FORTRAN
cannot determine if the file is formatted, fm¢ is assigned the value
"UNKNOWN'.

UNFORMATTED = unf
determines if the file is an unformatted file. The unfis a character
variable that is assigned either the value 'YES' or 'NO'. If
FORTRAN cannot determine if the file is unformatted, unf is
assigned the value '"UNKNOWN'.

RECL = rcl
determines the record length of a direct file. The rc/ is an integer vari-
able that is assigned the value of the record length. If the file is not
associated with a unit or if the file is not a direct file, the value of rcl is
undefined.

NEXTREC = nr
determines the number of the next record to be read or written on a
direct file. The nris an integer variable that is assigned the value of
the next record number. If the file is associated with a unit but no
data transfer has taken place, nr is assigned the value 1. If the file is
not a direct file or if the position cannot be determined (possibly due

Chapter 10. Input and Output 10-45

to an error), the value of nr is undefined. If a NEXTREC specifier is
used in an INQUIRE statement, a RECL specifier must also be used.

BLANK = bink
determines the file’s default treatment of blanks (spaces). The bilnk is
a character variable that is assigned the value '"NULL' if all spaces in
numeric input fields are ignored and is assigned the value 'ZERQO" if
all spaces other than leading spaces are treated as zeros. If the file is
not associated with a unit or if the file is not a formatted file, the value
of bink is undefined.

Example:

This program reads in a symbolic file
named entered by the user and writes
the values of X, Y, and Z to that file.

QQaaQ

INTEGER NUM
LOGICAL EX,OD
CHARACTER*20 FNAME

READ (*,' (A)') FNAME

INQUIRE (FILE=FNAME,6 EXIST=EX, OPENED=0D,
+ NUMBER=NUM)

IF (.NOT.EX) THEN
OPEN (4, FILE=FNAME , STATUS="'NEW")
NUM = 4

ELSEIF (.NOT.OD) THEN
OPEN (4, FILE=FNAME, STATUS="'OLD")
NUM = 4

ENDIF

WRITE (NUM, 100) X,Y,Z

END

In this example, the INQUIRE statement first tests to see if the file exists.
If it does not, the file is opened with a status of '"NEW'. If the file does
exist then a test is conducted to see if it is open. If it is not open, it is
opened with a status of "OLD'. The unit number is used to write out the
values of X, Y, and Z.

10-46 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Internal Files
« List-directed input/output statements with internal files are not allowed.

« Namelist-directed input/output statements with internal files are not
allowed.

Format Specifiers

« The f cannot be an array name.

OPEN Statements

FILE = fname
The frname is a character expression and, if omitted, unit 5 is con-
nected to 'stdin', unit 6 is connected to 'stdout’, and unit n (except
units 0, 5, and 6) is connected to the file 'fort.n'. The fname is a file
name and no shell variables are needed.

When opened, a sequential file is positioned at end-of-file. -

List-Directed READ Statements

« List-directed READ statements with internal files are not allowed.

Chapter 10. Input and Output 10-47

R1 Mode

List-Directed WRITE and PRINT Statements

« List-directed WRITE statements with internal files are not allowed.

Namelist-Directed READ Statements

« The NAMELIST statement is not allowed.

Namelist-Directed WRITE and PRINT Statements

« The NAMELIST statement is not allowed.

10-48 FORTRAN Reference

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Internal Files
« List-directed input/output statements with internal files are not allowed.

« Namelist-directed input/output statements with internal files are not
allowed.

« Internal files can also be referenced by ACCEPT and TYPE statements.

Units
« Internal unit specifiers can also be used in ACCEPT and TYPE state-
ments.
Parameters of Input/Output Statements
o A 'namelist specifier' indicates that namelist-directed input/output is

being used, and identifies the namelist name of the list of variables or
array names to be read or written. The form of the namelist specifier is:

[NML =] nminame

nmliname
is a namelist name.

The keyword NML= is optional only if the namelist specifier is the
second item in the argument list of specifiers and the first item is a unit

Chapter 10. Input and Output 10-49

VX Mode

specifier without the optional UNIT= keyword. A namelist specifier
cannot be used in a statement that contains a format specifier.

Record Number Specifiers

The record number specifier can also take the form:

The variable rn is described in “Record Number Specifiers <*” on
page 10-11.

Input/Output Lists

« An "input/output list" specifies the objects whose values are trans-
ferred by READ, WRITE, PRINT, ACCEPT, and TYPE statements.

Input/Output Objects

« "Input/output objects" can be specified as items in input/output lists of
READ, WRITE, PRINT, ACCEPT, and TYPE statements.

Implied DO Loops

« "Implied DO loops' can be specified as items in input/output lists of
READ, WRITE, PRINT, ACCEPT, and TYPE statements.

10-50 FORTRAN Reference

VX Mode

Input/Output Statements

o The "ACCEPT statement'" is also allowed, and has the same effect as a
READ statement. The ACCEPT statement is only used for sequential-
access and can be used only as a PRINT statement. The forms of an
ACCEPT statement are:

ACCEPT [[, iolist]
ACCEPT * [,iolist | (for list-directed input/output)

ACCEPT nl/ (for namelist-directed input/output)

nl
is a namelist specifier without the ""NML="'keyword specified.
Namelist specifiers are described in “Parameters of Input/Output
Statements” on page 10-49.

See “READ, WRITE, and PRINT Statements” on page 10-20 for
descriptions of the other variables.

o The "TYPE statement" is also allowed, and has the same effect as a
PRINT statement. The forms of a TYPE statement are:

TYPE f [, iolist |
TYPE * [,iolist | (for list-directed input/output)

TYPE nl (for namelist-directed input/output)

Chapter 10. Input and Output 10-51

VX Mode

OPEN Statements

nl
is a namelist specifier without the "NML=""keyword specified.
Namelist specifiers are described in “Parameters of Input/Output
Statements” on page 10-49.

See “READ, WRITE, and PRINT Statements” on page 10-20 for
descriptions of the other variables.

o FILE = fname

The fname is a character expression and, if omitted, an anonymous file
with a status of 'SCRATCH! is created, which is automatically
deleted when the file is closed or when the program ends. The fname
is a file name and no shell variables are needed.

List-Directed READ Statements

List-directed READ statements with internal files are not allowed.

List-Directed WRITE and PRINT Statements

List-directed WRITE statements with internal files are not allowed.

Namelist-Directed READ Statements

10-52 FORTRAN Reference

Namelist-directed input/output with internal files is not allowed.

A dollar sign ($) can also be used to indicate the beginning and end of a
group of data records.

Spaces and tabs can also be used to separate namelist value assignments
and to separate constants in a constant list. Any number of consecutive
spaces is equivalent to a single space.

VX Mode

« A comma preceded or followed by spaces is equivalent to a single
comma.

« When a list of values is assigned to an array element, the assignment
begins with the specified array element, rather than with the first
element of the array.

« "END'" is an optional part of the last delimiter (&END).

« AT or F representing a logical constant can be preceded by a period
and followed by other characters.

Namelist-Directed WRITE and PRINT Statements

« Namelist-directed input/output with internal files is not allowed.

Chapter 10. Input and Output 10-53

10-54 FORTRAN Reference

Chapter 11. Format Specifications

This chapter describes formatted input/output and the FORMAT state-
ments available in FORTRAN. To understand these concepts, you need to
be familiar with the FORTRAN file system, units, records, access methods,
and input/output statements as described in Chapter 10, “Input and
Output.”

"Format specifications" are used in conjunction with READ, WRITE, and
PRINT format-specified input/output statements to direct the editing or
conversion between the internal representations of the computer and the
representations of character strings in a file or character data item.

Overview of FORMAT Statements 4

READ, WRITE, and PRINT statements that specify formats are formatted
input/output statements. A format can be specified by:

+ the label of a FORMAT statement

» the name of an integer variable that is assigned the label of a FORMAT
statement by an ASSIGN statement

« acharacter variable, character array element, character array name, or
character expression that has the form of a format specifier

- an array name with a data type of integer, real, double-precision, logical,
or complex. The data must be a valid format specification. The length
of the format specification may exceed the length of the first element of
the array; it is considered the concatenation of all the elements of the
array in the order given by array element ordering.

« an asterisk (*), which indicates list-directed input/output.

Chapter 11. Format Specifications 11-1

Examples:

WRITE (*, 990) LAKE, STREAM, OCEAN
990 FORMAT(I5, 2F10.2)

This code specifies a format by referencing a FORMAT statement.

ASSIGN 880 TO INTVAR
880 FORMAT(I5, F10.2, Ib5)
WRITE (*, INTVAR) MARK, GLEN, MAUREEN

This code specifies a format by assigning the label of a FORMAT statement
to an integer variable.

CHARACTER*9 CHARVAR
CHARVAR = '(F10.2, I5, F10.2)'
WRITE (*,CHARVAR) SOLID, LIQUID, GAS

This code specifies a format by using a character variable that has the form
of a format specifier.

CHARACTER*7 CHAREXP
DATA CHAREXP /'2I5, I3'/
WRITE(*, '(' // CHAREXP // ')') IRENE, JANET, KAREN

This code specifies a format by using a character expression that has the
form of a format specifier.

CHARACTER*4 FMT

IWIDE = INT(LOG10 (REAL(IABS(I))))+1

IF (I.LT.0) IWIDE = IWIDE + 1

FMT = '(I' // CHAR(ICHAR('0')+IWIDE) // ')'
WRITE (¥ ,FMT) I

This code computes a format specification from the size of the integer to be

printed out. The common log of the integer + 1 determines how many
columns wide the integer is.

FORTRAN Reference

WRITE(*,*) CAR, BUS, TRAIN

This code specifies a format by using an asterisk (*), and is a list-directed
write.

A FORMAT statement must have a label. Like all nonexecutable state-
ments, FORMAT statements cannot be the targets of branching statements.

A "format list" contains a list of format specifications that are separated by
commas. Format lists are enclosed in parentheses and can include format
specifications that are:

+ repeatable edit-descriptors
« nonrepeatable edit-descriptors
» nested format specifications.

In general, repeatable edit-descriptors are used for the conversion of indi-
vidual input/output list items between internal storage and character
strings. Nonrepeatable edit-descriptors interact directly with a record to
control the format and are not associated with input/output list items.

Repeatable and nonrepeatable edit-descriptors can be grouped in a nested
format specification that consists of up to 10 levels of nested parentheses
within the outermost level.

A nested format specification is repeated when a nonzero unsigned integer
constant, known as a ''repeat factor", precedes its left parenthesis. A
repeatable edit-descriptor is repeated when a repeat factor appears directly
before or directly after its left parenthesis. Characters following matching
right parenthesis are ignored.

The forms of the repeatable edit-descriptors are:

Chapter 11. Format Specifications 11-3

Iw and Iw.m integer editing

Fw.d real editing

Ew.d and Ew.dEe real editing

Dw.d real editing

Gw.d and Gw.dEe real editing

Lw logical editing

A and Aw character editing
Zw hexadecimal editing

The d and m are unsigned integer constants. The w and e are unsigned
nonzero integer constants.

The forms of the nonrepeatable edit-descriptors are:

Txxxxxxx! apostrophe editing

nHxxxxxxxxxxxx Hollerith editing

Tec, TLc, and TRc tabbing to columns

nX inserting spaces

/ starting a new record

: conditionally terminating a format list
kP scale-factor editing

BN and BZ blank interpretation

S, SS, and SP sign control

The x represents any printable character. The » and ¢ are unsigned,
nonzero integer constants. The k is an optionally signed integer constant.

Interactions Between Format Lists and Input/Output Lists

To understand how the edit-descriptors control editing, you first need to
understand how format lists interact with input/output lists of READ,
WRITE, and PRINT statements.

An empty format list () can only be used if there are no items in the

input/output list, in which case the only action the input/output statement
performs is the implicit record-skipping action associated with formatted

11-4 FORTRAN Reference

input/output. If an input/output list is not empty, at least one repeatable
edit-descriptor must appear in the format list. Each item in the
input/output list is associated in turn with a repeatable edit-descriptor
during the execution of the input/output statement. The nonrepeatable
edit-descriptors interact directly with the record to control the format and
are not associated with input/output list items.

Items in a format list are interpreted from left to right. A repeatable edit-
descriptor is treated as if the edit-descriptor is present r times, where r is its
repeat factor. If ris omitted, the repeatable edit-descriptor is present only
one time. Similarly, a nested format specification is treated as if its list of
items appears r times, and is only present one time if r is omitted.

Format specifications are interpreted when an input/output statement is
executed. The term "format controller” is used to describe the entity that
interprets the format specifications. The process formatted input/output
follows is:

The format controller scans the format specifications in the format list.
When a repeatable edit-descriptor is found, a corresponding item must
appear in the input/output list; otherwise, the format controller ends
the input/output process. If an item does appear in the input/output
list, the item and the edit-descriptor are associated and input or output
of that item proceeds under the format control of that edit-descriptor.
If the format controller encounters a colon (:) edit-descriptor in the
format list and there are no more items in the input/output list, the
input/output process is ended.

If the format specification is nested, the format controller begins asso-
ciating input/output items as the outermost specification level first.
That is, the first input/output item is associated with the outermost
specification, the second input/output item is associated with the next
outermost specification, and so on.

If the format controller encounters the last right parenthesis of the
format list and there are no more items in the input/output list, the
input/output process is ended. If there are more input/output list
items, the file is positioned at the beginning-of-record of the next
record and the format controller re-scans the format, starting at the
beginning of the current format specification and ending at the last
right parenthesis preceding it. If there is no preceding right paren-

Chapter 11. Format Specifications 11-5

Edit-Descriptors

thesis, the format controller re-scans the format from the beginning of
the format list.

Within the portion of the format list that is to be re-scanned, there
must be at least one repeatable edit-descriptor. If the re-scan of the
format list begins with a nested format specification that is repeated,
the repeat factor indicates the number of times to repeat that nested
format specification. The re-scan does not change the previously set
scale-factor, the BN or BZ blank interpretation, or the S, SP, or SS sign
control.

Usually, when the input/output process ends, the unread characters of
an input record are skipped or an end-of-record is written on output.

Repeatable Edit-Descriptors <>

Repeatable edit-descriptors are associated with items from an input/output
list and are used for editing numerical, logical, and character data items.

Numeric Editing 4 <>: The I, F, E, D, and G edit-descriptors are used
for formatting integer, real, and complex data. The rules that each of these
edit-descriptors follow are:

11-6 FORTRAN Reference

On input, leading spaces are not significant. The interpretation of other
spaces depends on whether the BN (blank null) or BZ (blank zero) edit-
descriptor is in effect, but all blank fields are always treated as the value
0. Plus signs are optional.

On input with E and F editing, a decimal point appearing in the input
field overrides the decimal point specified in the edit-descriptor.

On output, characters generated are right-justified in the field with
leading spaces if required.

« On output, the entire field is filled with asterisks (*) if the number of
characters produced exceeds the field width or if the exponent exceeds
its specified width.

« On output, the maximum positive or negative number is substituted for
the floating-point exceptions (+infinity, -infinity, and NaN).

« Editing of complex numbers is controlled by two successive D, E, F, or
G edit-descriptors; one controls the editing of the complex number’s
real part, and one controls the editing of its imaginary part. The two
edit-descriptors for a complex number do not have to be the same.

I — Integer Editing 4

The I edit-descriptor must be associated with an input/output list item that
has an integer data type. One form of the I edit-descriptor is:

Iw

is the character width of the field. On input, an optional sign can
appear in the field.

The other form of an I edit-descriptor is:

Iw.m

is the character width of the field.

specifies a minimum field width for the integer value. The m must not
be greater than the w.

Chapter 11. Format Specifications 11-7

On input, the m specification has no effect. On output, if the converted
integer number is shorter than m characters, leading zeros are placed in the
field. If m is 0 and the integer value to be formatted is also 0, the output
field consists of w spaces regardless of any sign control in effect.

Examples:

INTEGER I,J,K
DATA I,J,K /12,345,6789/

WRITE (*,100) I
WRITE (*,200) I
WRITE (*,300) I
WRITE (*,400) I
100 FORMAT(31I3)
200 FORMAT (314)
300 FORMAT (31I5)
400 FORMAT(3I5.4)

The output is:

12345%%%

12 3456789

12 345 6789
0012 0345 6789

FORMAT statement 100 specifies three characters of output for each
integer. Since the integer 6789 is four characters, the rest of the field is
filled with asterisks (*). FORMAT statement 200 specifies an output field
of four characters and FORMAT statements 300 and 400 specify output
fields of five characters. FORMAT statement 400 specifies a minimum
field of four characters.

11-8 FORTRAN Reference

INTEGER IVAL(3)

READ (*,100) IVAL
READ (*,200) IVAL
READ (*,300) IVAL
100 FORMAT (3I3)
200 FORMAT (3I4)
300 FORMAT (3I5)

Input data:

123451234512345
123451234512345
123451234512345

After the READ statement using FORMAT statement 100 is executed,
IVAL(1) has the value 123, IVAL(2) has the value 451, and IVAL(3) has
the value 234.

After the READ statement using FORMAT statement 200 is executed,
IVAL(1) has the value 1234, IVAL(2) has the value 5123, and IVAL(3)
has the value 4512.

Finally, after the READ statement using FORMAT statement 300 is exe-
cuted, IVAL(1), IVAL(2), and IVAL(3) all have the value 12345.

F — Real Editing

The F edit-descriptor must be associated with an input/output list item that
has a real or double-precision data type, or it can be associated with either
part of a complex list item. The form of the F edit-descriptor is:

Fw.d

is the character width of the field.

Chapter 11. Format Specifications 11-9

is the length of the number’s fractional part.

The input field begins with an optional sign followed by a string of digits
optionally containing a decimal point. If the decimal point is present, it
overrides the d specified in the edit-descriptor. If the decimal point is not
present, the rightmost d digits of the string are interpreted as following the
decimal point and leading spaces are converted to zeros if necessary.

The number can be followed by an exponent. The form of the exponent is
either a plus sign (+) or minus sign (-) followed by an integer, or an E or D
followed by zero or more spaces followed by an optional sign and an
integer. E and D are treated identically.

Input examples:

Input Format Value Comments
-100 F6.2 -1.0 (1)
2.9 F6.2 2.9

4 .E+2 F6.2 400.0 (2)

(1) The decimal point is assumed to be two
digits in from the right.
(2) The F format can be used for exponents.

The output field occupies w digits, d of which follow the decimal point. The
output value is controlled both by the input/output list item and by the
current scale-factor described in ‘“P — Scale-Factor Editing”” on

page 11-27. The output value is rounded, not truncated.

11-10 FORTRAN Reference

Output examples.:

Note: A b indicates a blank.

Value Format Output Comments
+ 1.2 F4.3 * ok kK (1)

+ 1.2 F8.4 bb1.2000

.12345 F8.3 bbbb.123 (2)

(1) The format field can not handle any
number > 1, so asterisks are printed.

(2) The fractional part is rounded to
three digits.

E and D — Real Editing

An E or D edit-descriptor must be associated with an input/output list item
that has a real or double-precision data type, or can be associated with

either part of a complex list item. The forms of the E and D edit-descriptors
are:

Ew.d

Dw.d

Ew.dEe

is the character width of the field.
is the length of the number’s fractional part.

specifies the field width of an exponent and has no effect on input.

The forms Ew.d and Dw.d have identical editing effects. The input field for

Chapter 11. Format Specifications 11-11

an E edit-descriptor is identical to that of an F edit-descriptor containing
the same w and d fields.

Input examples:

Input Format Value Comments
12.34 E8.4 12.34 (1)
.1234E2 E8.4 12.34

. 1234E99 E8.4 +4++++ (2)
E+20 D10.6 * error * (3)
2.E10 E12.6E1 2.E10 : (4)

(1) No E is necessary in the input field.
(2) Single-precision reals have an upper
limit of about 3.4E+38.
(3) A leading digit is required.
) The two digits in the exponent field
override the one digit specified by
the format.

The form of the output field depends on the current scale-factor described
in “P — Scale-Factor Editing” on page 11-27. For a scale-factor of 0, the
output field contains a minus sign (-) if needed, followed by a decimal point,
followed by a string of digits, followed by an exponent. The form of the
exponent depends upon its size and can be any one of these:

« If "Ew.d" is the form of the edit-descriptor and if -99 < exponent < 99,
the output for an exponent is an E followed by a plus (+) or minus (-)
sign followed by the two-digit exponent.

« If "Ew.d" is the form of the edit-descriptor and if -999 < exponent <
999, the output for an exponent is a plus (+) or minus (-) sign followed
by the three-digit exponent.

« If "Ew.dEe" is the form of the edit-descriptor and if -(10**e)+1 <
exponent < (10**e)-1, the output for an exponent is an E followed by a

plus (+) or minus (-) sign followed by e digits of exponent with possible
leading zeros.

11-12 FORTRAN Reference

The form Ew.d cannot be used if the absolute value of the exponent to be
printed exceeds 999.

The scale-factor controls decimal normalization of the printed E field. If
the scale-factor k is in the range -d < k < 0, the output field contains
exactly d - k leading zeros after the decimal point and d + k significant
digits after that. If 0 < £ < d + 2, the output field contains exactly k signif-
icant digits before the decimal point and d - k - 1 places after the decimal
point. Other values of k are errors.

Output examples:

Note: A b indicates a blank.

Value Format Output Comments
1234 .56 E10.3 bb.123E+04

1234.56 D10.3 bb.123D+04 (1)
88.D106 E12.6 b.880000+108 (2)
88.D106 E12.4E3 bb.8800E+108

(1) Ew.d and Dw.d are the same.
(2) There is no room for the E.

G — Real Editing 4 <>

The G edit-descriptor is like the E and F edit-descriptors, except that it
allows the output format to adapt to the magnitude of the number being
converted. Thus the G edit-descriptor gives you a choice of output formats
and you do not have to check the size of the numbers ahead of time.

The G edit-descriptor must be associated with an input/output list item that

has a real or double-precision data type, or it can be associated with either
part of a complex list item. The forms of the G edit-descriptor are:

Chapter 11. Format Specifications 11-13

Gw.d

Gw.dEe

w
is the character width of the field.

d
is the length of the number’s fractional part unless a scale-factor
greater than 1 is in effect.

e

specifies the field width of an exponent and has no effect on input.
On input, the G edit-descriptor is the same as the F edit-descriptor.

On output, the format of the converted number is dependent on its magni-
tude. The following table describes the action of the G edit-descriptor, in
which N is the number to be converted, b indicates a blank, n = 4 in Gw.d
editing, and n = e + 2 in Gw.dEe editing.

Magnitude of N Equivalent Conversion
N <0.] or Gw.d is the same as kPEw.d
N > 107"d Gw.dEe is the same as kPEw.dEe
0.1 <N <1 F(w=n).d, n(b)
1<N<10 F(w=n).(d=1), n(b)
10%%(d=2) < N < 10%%(d—1) F(w=n).1, n(b)
10%*(d=1) < N < 10%*d F(w=n).0, n(b)

Figure 11-1. G Edit-Descriptor

11-14 FORTRAN Reference

The G edit-descriptor can be used to transmit integer or logical data

according to the type specification of the corresponding variable in the
input/output list.

Qutput examples:

Note: A b indicates a blank.

Value Format Output Comments
1234.56 G12.5 bb1234.6bbbb (1)
12345.6 G12.5 bb12346.bbbb (2)
123456. G12.5 bb.12346E+06 (3)

(1) This is in F8.1 format.
(2) This is in F8.0 format.
(3) This is in E12.5 format.

L. — Logical Editing

The L edit-descriptor must be associated with an input/output list item that
has a logical data type. The form of the L edit-descriptor is:

Lw

is the character width of the field.

On input, the field consists of optional spaces followed by an optional
decimal point followed by a T for .TRUE. or an F for .FALSE.. Any char-
acters following the T or F are accepted on input but are not acted upon;
therefore, the strings .TRUE. and .FALSE. are valid inputs.

Chapter 11. Format Specifications 11-15

Input examples:

Input Format Value Comments
T L4 .TRUE.
F L4 .FALSE. (1)

T L6 .TRUE. (2)
.FALSE. L7 .FALSE. (3)
XX L3 *¥ error * (4)

The decimal point is optional.

)
(2) The leading blanks are optional.
(3) The "ALSE." is ignored.
(4) Other characters are not allowed.

On output, the T or F is preceded by w - 1 spaces.

Qutput examples:

Note: A b indicates a blank.

Value Format Output
.TRUE. L4 bbbT
.FALSE. L1 F
.TRUE. L6 bbbbbT

A — Character Editing 4

The A edit-descriptor can be associated with an input/output list item that
has any data type. The forms of the A edit-descriptor are:

11-16 FORTRAN Reference

is the field width.

The straight A format acquires an implied field width from the number of
characters in its associated input/output list item.

On input, if w exceeds the number of characters in the input/output list
item, the input characters are left-justified and trailing blanks are added. If
w is less that the number of characters in the input/output list item, the
rightmost characters are truncated.

Input examples:

Input Format Value Comments
ABCD A 'ABCD'

ABCD A4 'ABCD’

ABCDEF A2 'AB! (1)
ABCD A6 'ABCD ' (2)

(1) The rightmost characters are truncated.
(2) Trailing blanks are added.

On output, if w exceeds the number of characters produced by the

input/output list item, leading blanks are provided; otherwise, the leftmost
w characters of the input/output list item are output.

Output examples:

Note: A b indicates a blank.

Value Format Output Comments
'ABCDEF"' A ABCDEF

'ABCDEF' A6 ABCDEF

' ABCDEF' A3 ABC (1)
'ABCD' A6 bbHABCD (2)

(1) The leftmost characters are output.
(2) Two leading blanks are added.

Chapter 11. Format Specifications 11-17

Z — Hexadecimal Editing <> <>

The Z edit-descriptor is used for hexadecimal representations of internal
numeric, logical, and character data items. The form of the Z edit-
descriptor is:

Zw

is the field width.

On input of numeric and logical input/output list items, hex digits are
accepted with the most significant digits appearing first. Two hex digits are
placed in each byte of the input/output list items. Blanks are treated as
zeros or nulls depending whether the BZ or BN edit-descriptor is in effect.
A warning message is issued if overflow occurs.

On input of character input/output list items, initial input data is ignored if
the specified field width exceeds the default width. Hex digits are placed
into the character input/output list item in address order, with blanks
treated as zeros. Character input/output list items are filled with zero bytes
through their highest byte if the input field width is less than the default
field width.

Input examples:

External Internal
Format Field Hex Value
73 EO02 EO2
Z5 FF215A FF215
Z5 12C 0012C
z4 -FFF * error *
z4 12.A ¥ error *

On output, if a specified field width exceeds the default width, the output
field is filled with initial padding blanks (or zeros if the internal represen-

11-18 FORTRAN Reference

tation is zero). If a specified field width is less than the default width, the

leftmost digits are truncated and the rest of the number is printed. A
warning message is issued when truncation occurs.

Output examples:

Internal

(Decimal) External
Format Value Representation
Z4 28643 6FE3
zZ8 -28643 FFF901D
z2 16 10
Z4 =1 FFFF

This is a sample program using hexadecimal editing.

PROGRAM HEXIO

INTEGER I,J,K

CHARACTER*5 STRING

READ (*,100) I

READ(*,100) J

READ (*,100) K

READ (*,100) STRING
100 FORMAT (Z)

WRITE(*,300) I,J,K,STRING
300 FORMAT (3I8,A8)

STOP

END

Input data:
FFFFFFFF
000000A6

00006FE3
48454CHCHTF

The output is:

-1 166 28643 HELLO

Chapter 11. Format Specifications

11-19

Formatting Extreme Values <>

The "extreme values' used in the RT PC VS FORTRAN floating-point
system include +infinity, -infinity, and Not-a-Number (NaN). Infinity is
the result of floating-point overflow. NaN is produced by certain invalid
operations, such as division by 0. For a further description of extreme
values, see the RT PC VS FORTRAN User’s Guide.

When extreme values are printed in D, E, F, or G format, the maximum
positive or negative number is substituted for +infinity, -infinity, and NaN.

On the output of non-extreme values, the entire field is filled with asterisks
(*) if the field width as specified by the associated format specifier in the
FORMAT statement is inadequate to display the value.

Example:

C (+infinity)
1 A=1.E99

C (-infinity)
2 B=-1.E99

C (Not-a-Number)
3 c=0./0

WRITE(*,5) A,B,C
5 FORMAT (E15.10, E10.1, D15.10)
END

Statements 1, 2, and 3 produce compile-time warnings for +infinity,

-infinity, and NaN, respectively. The maximum positive number is substi-
tuted for A and C; the maximum negative number is substituted for B.

Nonrepeatable Edit-Descriptors 4 <>

Nonrepeatable edit-descriptors are format list items that are not associated
with any input/output list items.

11-20 FORTRAN Reference

'xxx' — Apostrophe Editing

An apostrophe edit-descriptor has the form of a character constant and
causes the characters (including the spaces) contained within the apostro-
phes to be written. An apostrophe that is part of the character string is indi-
cated by two consecutive apostrophes (''). Apostrophe edit-descriptors
cannot be used for input.

Examples:
IVAL = 15
WRITE(*,50) IVAL
50 FORMAT('The value is -- ',I2)

The output is:

The value is -- 15

READ(*, 100) AMOUNT
C An error occurs in the next statement.
100 FORMAT ('Input the amount: ',F6.2)

An error occurs because apostrophe editing cannot be used for input.

H — Hollerith Editing

The form of the H edit-descriptor is:

nH

is the number of characters after the H that are to be output. Spaces
are included in the character count.

Hollerith editing cannot be used for input.

Chapter 11. Format Specifications 11-21

Examples.

IVAL = 15
WRITE (*,50) IVAL
50 FORMAT(16HThe value is -- ,I2)

The output is:

The value is -- 15

READ (*,100) AMOUNT
C An error occurs in the next statement.
1700 FORMAT (18HInput the amount: ,F6.2)

An error occurs because Hollerith editing cannot be used for input.

X (Tab) and T (Skip) — Positional Editing

The X and T edit-descriptors position the format controller within a record
and do not transmit any characters to or from a record.

When a formatted record is read on input, it is treated as if it has an infinite
length, with as many trailing spaces as needed being used to to satisfy input
requests. The X and T edit-descriptors determine the position of the next
character to be read from the record. These edit-descriptors can therefore
be used to skip portions of the input record or to read the same positions in
the record more than once.

On output, the input/output system initially appears to create a record of
infinite length that is filled with spaces. As formatted output transmits
characters to the record, the final length of the record is determined by the
rightmost position to which a character is transmitted. Changing the posi-
tion with the X or T edit-descriptor does not directly affect the length of the
record but does affect the position to which the next character is trans-
mitted in the output record.

Using the X or T edit-descriptors, some positions in the record may not

have any characters transmitted to them (they are skipped), which means
that those character positions retain their original blank values. Characters

11-22 FORTRAN Reference

need to be transmitted after the skipped positions in order for those char-
acter positions to eventually be included in the output record.

It is possible to position to and overwrite a formatted output record position
by using the X and T edit-descriptors. In this case, only the last value
written to a given character position becomes part of the final formatted
record.

The form of the X edit-descriptor is:

nX

is the number of spaces the record position is advanced.

The T edit-descriptor positions the record to a specified column. One form
of the T edit-descriptor is:

Tc

is an absolute column position.

Another form of the T edit-descriptor is:

TLc

is the number of characters to the left (backward) that the column
position is moved relative to the current position.

Chapter 11. Format Specifications 11-23

A third form of the T edit-descriptor is:

TRc

is the number of characters to the right (forward) that the column
position is moved relative to the current position.

On input, the T edit-descriptors are used for skipping or re-reading portions
of the input record. If the TLc edit-descriptor moves the character position
to where input fields were previously transmitted, those items can be re-
transmitted.

On output, if a character is transmitted to a position where another char-
acter has already been transmitted, the earlier transmission is replaced.

Examples:

WRITE (*,50)
50 FORMAT('Column 1',5X, 'Column 14°',
+ TR2, 'Column 25')

The output is:

Column 1 Column 14 Column 25

WRITE (*,100)
100 FORMAT ('aaaaa',TL2, 'bbbbb',5X, 'ccececce’',
+ T10, 'ddddd"')

11-24 FORTRAN Reference

The output is:

aaabbbbb dddddcccc

READ (5,150) K,L
150 FORMAT (I4,T30,I4)

Input data:

1000 2000

K is assigned the value 1000 and L is assigned the value 2000.

INTEGER ARR(5)
REAL X

READ (5,200) X,ARR
200 FORMAT (F6.2,5X,14,TL4,I4,TL4, 14,

+ TL4,I4,TL4,I4)
Input data:
314.52 9876

X is assigned the value 314.52 and each of the five elements in the array
ARR is assigned the value 9876.

/ — Starting a New Record
A slash (/) indicates the end of transfer on the current record.
On input, the file is positioned to the beginning of the next record.

On output, an end-of-record is written and the file is positioned to write at
the start of the next record.

Chapter 11. Format Specifications 11-25

Examples:
INTEGER X,Y,Z
DATA X,Y,Z2 /12,13,14/

WRITE (*,100) X Y,Z
100 FORMAT(I4 / I4 / 1I4)

The output is:
12

13
14

REAL X (3)

READ (5,500) X
500 FORMAT(F6.2 / 2F6.2)

Input data:
3.4
6.5 12.4

X(1), X(2), and X(3) are assigned the values 13.4, 16.5, and 12.4, respec-
tively.

: — Conditional Termination

A colon (:) appearing in a format list ends the processing of the format list
if there are no more items in the input/output list. If there are more items
in the input/output list when the colon is encountered, the colon is ignored.
More than one colon can appear in a format list.

The colon edit-descriptor is useful in preventing the transfer of extraneous
textual data that might otherwise be printed after all appropriate numeric
items have been transferred. It is also useful in preventing further slash
editing on input.

11-26 FORTRAN Reference

Example:

WRITE(*,10) (A(I),I=1,N)
10 FORMAT (3 (:'Array Value' F10.5)/)

This code causes N values of the array A to be printed to the console.
Because of the colon, the text is not printed if N is 0.

P — Scale-Factor Editing

The P edit-descriptor sets the scale-factor for subsequent E, F, and G edit-
descriptors until another P edit-descriptor is encountered. The form of the
P edit-descriptor is:

kP

is an optionally signed integer constant.
At the start of each input/output statement, the scale-factor is 0.

On input with E, F, or G editing, providing that an exponent does not
appear in the external field, the externally represented number is multiplied
by 10**-k before being assigned to the corresponding input/output list
item. The scale-factor has no effect if there is an exponent in the input
field.

Input examples:

Input Format Value Comments
98.765 3PF8.6 0.098765 (1)
98.765 -3PF8.6 98765. (2)
.98765E+2 3PF10.5 .98765E+2 (3)

(1) Value=Input * 10**-3
(2) Value=Input * 10%%*3
(3) The scale-factor has no effect.

Chapter 11. Format Specifications 11-27

On output with E editing, the real part of the input/output list element is
multiplied by 10**k and the exponent is reduced by k, thereby altering the
column position of the decimal point but not the actual output value.

On output with F and G editing, the input/output list element is multiplied
by 10**k before transfer to the record.

Output examples:

Note: A b indicates a blank.

Value Format Output Comments
12.34 2PF7.2 1234.00 (1)
12.34 -2PF6.4 0.1234 (2)
12.34 2PE10.3 b12.34E+00 (3)

(1) Output=vValue * 10**2

(2) Output=Value * 10**-2

(3) Real Part = Real Part * 10%%*2
Exponent = Exponent - 2

BN and BZ — Blank Interpretation

BN and BZ edit-descriptors specify how blanks (spaces) are to be inter-
preted in numeric input fields. The initial setting for blank interpretation in
a file is set with the BLANK = parameter in its OPEN statement.

If BZ editing is in effect, leading blanks are ignored and embedded blanks
are treated as zeros. This edit-descriptor stays in effect until a BN edit-
descriptor is encountered in the format list.

If BN editing is in effect, blanks in input fields are ignored. When blanks
are ignored, all the non-blank characters in the input field are treated as if
they are right-justified, with the number of leading blanks equal to the
number of ignored blanks.

11-28 FORTRAN Reference

Examples:

The READ statement treats the characters
between the vertical bars as the value 123.
<Enter> indicates pressing the ENTER key.

Q000

READ (*,100) I
100 FORMAT (BN, I6)

1123 <Enter>|
1123 456<Enter>|
| 123<Enter>|

| 123<Enter>|

Using the BN edit-descriptor in conjunction with the infinite blank padding
at the end of formatted records makes interactive input very convenient.

INTEGER AMOUNT

READ (%, 100) AMOUNT
100 FORMAT (BZ,I3)

This code prompts the user for an amount that cannot be greater than 999
because the I3 edit-descriptor is used. Since BZ editing is in effect, the user
must type in leading blanks in the input field if the number less than 100
because any trailing blanks are treated as zeros, making the input incorrect.
If the BN edit-descriptor is used instead, as illustrated in the next example,
the procedure is made less cumbersome.

INTEGER AMOUNT

READ (*,100) AMOUNT
100 FORMAT (BN, I3)

In this code, all trailing blanks are ignored. The input field is right-justified

and the trailing blanks are moved to the beginning of the field. For amounts
less than 100, initial blanks do not have to be inserted.

Chapter 11. Format Specifications 11-29

S, SS and SP — Sign Control

An output field generated by I, D, E, F, or G editing includes an optional
sign immediately preceding the digits of the value. The sign always appears
if the number is negative; however, FORTRAN omits it from positive
numbers.

The S, SS, and SP edit-descriptors can be used to control the printing of the
optional plus signs. Any edit-descriptor chosen remains in effect until
another one is encountered in the format list.

An SP edit-descriptor specifies that the optional plus signs be printed. An
SS edit-descriptor specifies that they not be printed. An S edit-descriptor
restores the option of omitting plus signs to FORTRAN.

On input, these edit-descriptors have no effect and are ignored.

11-30 FORTRAN Reference

R1 Mode Specifics

This section describes the instances in which R1 mode differs from IBM
mode (the default mode).

Overview of FORMAT Statements

« A format cannot be specified by an array name.

Numeric Editing
« In aformatted read, a comma can be used to separate values in an input
record. Commas override the field lengths given in the FORMAT state-

ment. For example, the format (110, F20.10, 14) reads the record
-345, .05E-3, 12 correctly.

I — Integer Editing

+ The Iw.m form of the I edit-descriptor is not allowed.

G — Real Editing

« The G edit-descriptor cannot be used to transmit integer or logical data.

A — Character Editing

« The A edit-descriptor can only be associated with an input/output list
item that has a character data type.

Chapter 11. Format Specifications 11-31

R1 Mode

7, — Hexadecimal Editing

The Z edit-descriptor is not allowed.

Formatting Extreme Values

An error message is issued upon output of +infinity, -infinity, and NaN.

Nonrepeatable Edit-Descriptors

11-32 FORTRAN Reference

The dollar sign ($) edit-descriptor is also allowed, and is used to inhibit
an end-of-record.

Usually when the format controller ends a format list, data transmission
to the current record ceases and the file is positioned so that a new
WRITE starts a new record. But if the format controller encounters a
dollar sign while scanning the format list, this automatic end-of-record
action is inhibited. This means that subsequent input/output statements
can continue reading from or writing to the same record.

A common use for dollar sign editing is to prompt to the console and
read a response from the same line.

Example:
WRITE(*,'($A)"') 'Enter your weight -> '
READ (*, '(BN, I6)') LIGHT

The dollar sign edit-descriptor does not inhibit the automatic end-of-
record generated when reading from the * unit. Input made to the
console must be terminated by a carriage return, which permits the
proper functioning of the backspace and line-delete keys.

VX Mode Specifics

This section describes the instances in which VX mode differs from IBM
mode (the default mode).

Repeatable Edit-Descriptors
o The O edit-descriptor is also allowed, and is used for octal editing.

The O edit-descriptor transfers octal (base 8) values, and can be used
with any data type. The forms of the O edit-descriptor are:

Ow

Ow.m

is the character width of the field.

specifies a minimum field width for the integer value. The m must
be greater than w.

On input, the O edit-descriptor transfers w characters from the external
field and assigns them as an octal value to the corresponding
input/output list element. The external field can contain only the
numbers 0-7; it cannot contain a sign, a decimal point, or an exponent
field. An all-blank field is treated as a value of 0. If the value of the
external field exceeds the range of the corresponding list element, an
error occurs. On input, the m specification has no effect.

Chapter 11. Format Specifications 11-33

VX Mode

Input examples:

External
Format Field
05 32767
o4 16234
03 97A

Internal
Octal Value

32767
1623
* error *

On output, the O edit-descriptor transfers the octal value of the corre-
sponding input/output list element, right-justified, to an external field w
characters long. No signs are output; a negative value is transmitted in
internal form. If the value does not fill the field, leading spaces are
inserted; if the value exceeds the field width, the entire field is filled

with asterisks.

If m is present, the external field consists of at least m digits, and is
zero-filled on the left if necessary. Note that if m is 0 and the external
representation is 0, then the external field is blank-filled.

Output examples:

Internal
(Decimal)
Format Value
06 32767
06 -32767
02 14261
o4 27
05 10.5
04.2 7
4.4 7

11-34 FORTRAN Reference

External
Representation

ATT7777
100001
%k %k
AA33
41050
An07
0007

VX Mode

Numeric Editing
« In aformatted read, a comma can be used to separate values in an input
record. Commas override the field lengths given in the FORMAT state-

ment. For example, the format (110, F20.10, 14) reads the record
-345, .05E-3, 12 correctly.

G — Real Editing

« The G edit-descriptor cannot be used to transmit integer or logical data.

7, — Hexadecimal Editing

o The Z edit-descriptor can also have the form:

Zw.m

specifies a minimum field width.
If m is present, the external field consists of at least m digits, and is

zero-filled on the left if necessary. Note that if m is O and the external
representation is 0, then the external field is blank-filled.

Qutput examples:

Note: A b indicates a blank.

Internal
(Decimal) External
Format Value Representation
Z3.3 1500 5DC
76.4 1500 bb5DC

Chapter 11. Format Specifications 11-35

VX Mode

Nonrepeatable Edit-Descriptors

11-36 FORTRAN Reference

The dollar sign ($) edit-descriptor is also allowed, and is described on
page 11-32.

The Q edit-descriptor is also allowed, and is used for character count
editing.

The Q edit-descriptor determines how many characters are remaining in
the input field and must be associated with an input/output list item that
has an integer or logical data type.

On input, the number of characters in the input record remaining to be
transferred is assigned to the associated input/output list item. This can
be useful if you wish to read a string of characters into an array and the

-length of the string is not known.

Example:

INTEGER COUNT

CHARACTER*1 NAME (80)

READ (*,10) I,J,COUNT, (NAME(K),K=1, COUNT)
10 FORMAT (2I5,0Q,80A1)

On output, the Q edit-descriptor is ignored and its associated
input/output list item is skipped.

Appendix A. Intrinsic Functions

In the following figures, a parenthesized number following an intrinsic func-
tion refers to one of the notes that follow this chart. The notes contain
additional information that you need to know to properly use the intrinsic
functions.

"Dbl Cmplx" indicates COMPLEX*16 in IBM mode and indicates
COMPLEX*16 or DOUBLE COMPLEX in R1 and VX modes.

IBM Mode Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Conversion INT Real Integer
to Integer 1 INT IFIX Real Integer
@) IDINT Double Integer
Conversion REAL Integer Real
to Real 1 REAL SNGL Double Real
2) DREAL Complex Double

Figure A-1 (Part 1 of 7). IBM Mode Intrinsic Functions

Appendix A. Intrinsic Functions A-~1

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Conversion DFLOAT Integer Double
to Double- DBLE Real Double
Precision 1 Double Double
2) Complex Double
Integer Complex
Conversion Real Complex
to Complex lor2 CMPLX Double Complex
3) Complex Complex
DCMPLX Double Dbl Cmplx
Conversion to
Integer (4) 1 ICHAR Character Integer
Conversion to
Character (4) 1 CHAR Integer Character
Truncation 1 AINT AINT Real Real
(5) DINT Double Double
Nearest ANINT ANINT Real Integer
Whole (6) 1 DNINT Double Double
Nearest NINT NINT Real Integer
Integer (7) 1 IDNINT Double Integer
IABS Integer Integer
Absolute ABS Real Real
Value (8) 1 ABS DABS Double Double
CABS Complex Real
CDABS Dbl Cmplx Double

Figure A-1 (Part 2 of 7).

A-2 FORTRAN Reference

IBM Mode Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
MOD Integer Integer
Remaindering (9) 2 MOD AMOD Real Real
DMOD Double Double
Transfer ISIGN Integer Integer
of sign 2 SIGN SIGN Real Real
(10) DSIGN Double Double
Positive IDIM Integer Integer
Difference 2 DIM DIM Real Real
(1D DDIM Double Double
Double-
Precision 2 DPROD Real Double
Product
MAXO Integer Integer
Choosing AMAX1 Real Real
Largest 2 ormore MAX DMAX1 Double Double
Value AMAXO Integer Real
MAX1 Real Integer
MINO Integer Integer
Choosing AMIN1 Real Real
Smallest 2 ormore MIN DMIN1 Double Double
Value AMINO Integer Real
MIN1 Real Integer
Length (12) 1 LEN Character Integer
Index of
Substring (13) 2 INDEX Character Integer

Figure A-1 (Part 3 of 7).

IBM Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-3

Intrinsic Number of Generic Specific Data Type of

Function Arguments Name Name Argument Function

Imaginary

Part of 1 AIMAG Complex Real

Complex DIMAG Dbl Cmplx Double

Argument

Complex 1 CONJG Complex Complex

Conjugate (14) DCONIJG Dbl Cmplx Dbl Cmplx
SQRT Real Real

Square 1 SQRT DSQRT Double Double

Root (15) CSQRT Complex Complex
CDSQRT Dbl Cmplx Dbl Cmplx
EXP Real Real

Exponential 1 EXP DEXP Double Double
CEXP Complex Complex
CDEXP Dbl Cmplx Dbl Cmplx

Natural ALOG Real Real

Logarithm 1 LOG DLOG Double Double

(16) CLOG Complex Complex

CDLOG Dbl Cmplx Dbl Cmplx

Common 1 LOGI10 ALOG10 Real Real

Logarithm (16) DLOGI10 Double Double
SIN Real Real

Sine (17) 1 SIN DSIN Double Double
CSIN Complex Complex
CDSIN Dbl Cmplx Dbl Cmplx

Figure

A-1 (Part 4 of 7).

A-4 FORTRAN Reference

IBM Mode Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
COS Real Real
Cosine COS DCOS Double Double
an CCOSs Complex Complex
CDCOS Dbl Cmplx Dbl Cmplx
Tangent TAN TAN Real Real
(17 DTAN Double Double
Arcsine ASIN ASIN Real Real
(18) DASIN Double Double
Arccosine ACOS ACOS Real Real
(19) DACOS Double Double
ATAN ATAN Real Real
DATAN Double Double
Arctangent (20)
ATAN?2 ATAN?2 Real Real
DATAN2 Double Double
Hyperbolic SINH SINH Real Real
Sine DSINH Double Double
Hyperbolic COSH COSH Real Real
Cosine DCOSH Double Double
Hyperbolic TANH TANH Real Real
Tangent DTANH Double Double
Lexically
Greater Than LGE Character Logical
or Equal To (21)
Lexically
Greater Than (21) LGT Character Logical

Figure A-1 (Part 5 of 7).

IBM Mode Intrinsic Functions

Appendix A. Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of

Function Arguments Name Name Argument Function

Lexically Less

Than or 2 LLE Character Logical

Equal To (21)

Lexically Less

Than (21) 2 LLT Character Logical

Cotangent 1 COTAN COTAN Real Real

DCOTAN Double Double

1 ERF Real Real

Error 1 ERFC Real Real

Function 1 DERF Double Double
1 DERFC Double Double
1 GAMMA Real Real

Gamma and 1 ALGAMA Real Real

Log-gamma 1 DGAMMA Double Double
1 DLGAMA Double Double

Bitwise

Logical OR 2 IOR Integer Integer

Bitwise

Logical AND 2 IAND Integer Integer

Bitwise

Logical XOR 2 IEOR Integer Integer

(exclusive OR)

Bitwise

Logical NOT 1 NOT Integer Integer

(ones complement)

Figure A-1 (Part 6 of 7).

A-6 FORTRAN Reference

IBM Mode Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Bitwise

Logical Shift 2 ISHFT Integer Integer
Clear a Bit

(set to 0) 2 IBCLR Integer Integer
Set a Bit

(setto 1) 2 IBSET Integer Integer
Test a Bit

(return .TRUE. 2 BTEST Integer Logical
if bitis 1)

Figure A-1 (Part 7 of 7). IBM Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-7

R1 Mode Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Conversion INT Real Integer
to Integer 1 INT IFIX Real Integer
N IDINT Double Integer
Conversion REAL Integer Real
to Real 1 REAL FLOAT Integer Real
2) SNGL Double Real
Conversion Integer Double
to Double- 1 DBLE Real Double
Precision Double Double
(2) Complex Double
Integer Complex
Conversion Real Complex
to Complex lor2 CMPLX Double Complex
(3) Complex Complex
DCMPLX Double Dbl Cmplx
Conversion to
Integer (4) 1 ICHAR Character Integer
Conversion to
Character (4) 1 CHAR Integer Character
Truncation 1 AINT AINT Real Real
(5) DINT Double Double
Nearest ANINT ANINT Real Integer
Whole (6) 1 DNINT Double Double

Figure A-2 (Part 1 of 5).

A-8 FORTRAN Reference

R1 Mode Intrinsic Functions

R1 Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Nearest NINT NINT Real Integer
Integer (7) 1 IDNINT Double Integer
IABS Integer Integer
Absolute ABS Real Real
Value (8) 1 ABS DABS Double Double
CABS Complex Real
ZABS Dbl Cmplx Double
MOD Integer Integer
Remaindering (9) 2 MOD AMOD Real Real
DMOD Double Double
Transfer ISIGN Integer Integer
of sign 2 SIGN SIGN Real Real
(10) DSIGN Double Double
MAXO Integer Integer
Choosing AMAX1 Real Real
Largest 2 ormore MAX DMAX1 Double Double
Value AMAXO0O Integer Real
MAX1 Real Integer
MINO Integer Integer
Choosing AMIN1 Real Real
Smallest 2 ormore MIN DMIN1 Double Double
Value AMINO Integer Real
MIN1 Real Integer
Length (12) 1 LEN Character Integer

Figure A-2 (Part 2 of 5). R1 Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-9

R1 Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Index of
Substring (13) 2 INDEX Character Integer
Imaginary
Part of 1 AIMAG Complex Real
Complex DIMAG Dbl Cmplx Double
Argument
Complex 1 CONIJG Complex Complex
Conjugate (14) DCONJG Dbl Cmplx Dbl Cmplx
Square SQRT Real Real
Root 1 SQRT DSQRT Double Double
(15) CSQRT Complex Complex
EXP Real Real
Exponential 1 EXP DEXP Double Double
CEXP Complex Complex
Natural ALOG Real Real
Logarithm 1 LOG DLOG Double Double
(16) CLOG Complex Complex
Common ALOG10 Real Real
Logarithm (16) 1 LOG10 DLOG10 Double Double
SIN Real Real
Sine (17) 1 SIN DSIN Double Double
CSIN Complex Complex

Figure A-2 (Part 3 of 5).

A-10 FORTRAN Reference

R1 Mode Intrinsic Functions

R1 Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
COS Real Real
Cosine 1 COS DCOS Double Double
an CCOS Complex Complex
Tangent 1 TAN TAN Real Real
a7 DTAN Double Double
Arcsine 1 ASIN ASIN Real Real
(18) DASIN Double Double
Arccosine 1 ACOS ACOS Real Real
(19) DACOS Double Double
1 ATAN ATAN Real Real
DATAN Double Double
Arctangent (20)
2 ATAN2 ATAN2 Real Real
DATAN2 Double Double
Hyperbolic 1 SINH SINH Real Real
Sine DSINH Double Double
Hyperbolic 1 COSH COSH Real Real
Cosine DCOSH Double Double
Hyperbolic 1 TANH TANH Real Real
Tangent DTANH Double Double
Bitwise
Logical OR 2 IOR Integer Integer

Figure A-2 (Part 4 of 5).

R1 Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-11

R1 Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Bitwise

Logical AND 2 TAND Integer Integer
Bitwise

Logical XOR 2 IEOR Integer Integer
(exclusive OR)

Bitwise

Logical NOT 1 NOT Integer Integer
(ones complement)

Bitwise

Logical Shift 2 ISHFT Integer Integer
Bitwise

Circular Shift 2 ISHFTC Integer Integer
Clear a Bit

(set to 0) 2 IBCLR Integer Integer
Set a Bit

(setto 1) 2 IBSET Integer Integer
Test a Bit

(return .TRUE. 2 BTEST Integer Logical
if bitis 1)

Retrieve Bits 3 IBITS Integer Integer

Figure A-2 (Part 5 of 5). R1 Mode Intrinsic Functions

A-12 FORTRAN Reference

VX Mode Intrinsic Functions

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Conversion
to Integer 1 IFIX Real Integer
REAL Integer Real
Conversion REAL REAL Complex Real
to Real 1 REAL Dbl Cmplx Real
(2) SNGL Double Real
FLOAT Integer Real
Integer Double
Conversion Real Double
to Double- DBLE Double Double
Precision 1 Complex Double
2) Dbl Cmplx Double
DFLOAT Integer Double
lor2 Integer Complex
Conversion 1or2 Real Complex
to Complex lor2 CMPLX Double Complex
3) 1 Complex Complex
1 Dbl Cmplx Complex

Figure A-3 (Part 1 of 9).

VX Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-13

VX Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
lor2 Integer Dbl Cmplx
Conversion lor2 Real Dbl Cmplx
to Double- lor2 DCMPLX Double Dbl Cmplx
Complex 1 Complex Dbl Cmplx
1 Dbl Cmplx Dbl Cmplx
Conversion to
Integer (4) 1 ICHAR Character Integer
Conversion to 1 CHAR Logical Character
Character (4) Integer Character
Real Integer
INT Double Integer
Complex Integer
Truncation Dbl Cmplx Integer
(1,5) 1
IDINT Double Integer
AINT AINT Real Real
DINT Double Double
Nearest ANINT ANINT Real Real
Whole (6) 1 DNINT Double Double
NINT Real Integer
Nearest 1 Double Integer
Integer (7)
IDNINT Double Integer

Figure A-3 (Part 2 of 9).

A-14 FORTRAN Reference

VX Mode Intrinsic Functions

VX Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
ABS Real Real
DABS Double Double
Absolute 1 ABS CABS Complex Real
Value (8) CDABS Dbl Cmplx Double
TIABS Integer Integer
MOD Integer Integer
Remaindering (9) 2 MOD AMOD Real Real
DMOD Double Double
SIGN SIGN Real Real
Transfer 2 DSIGN Double Double
of Sign (10)
ISIGN Integer Integer
IDIM Integer Integer
Positive 2
Difference (11) DIM DIM Real Real
DDIM Double Double
Double-
Precision 2 DPROD Real Double
Product

Figure A-3 (Part 3 of 9).

VX Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-15

VX Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
MAX AMAX1 Real Real
DMAX1 Double Double
Choosing
Largest 2 ormore MAXO Integer Integer
Value
MAX1 Real Integer
AMAXO Integer Real
MIN AMINI1 Real Real
DMIN1 Double Double
Choosing
Smallest 2 ormore MINO Integer Integer
Value
MIN1 Real Integer
AMINO Integer Real
Length (12) 1 LEN Character Integer
Index of
Substring (13) 2 INDEX Character Integer
Real Part
of Complex 1 REAL Complex Real
Argument DREAL Dbl Cmplx Double
Figure A-3 (Part 4 of 9). VX Mode Intrinsic Functions

A-16 FORTRAN Reference

VX Mode

Intrinsic Number of Generic Specific Data Type of

Function Arguments Name Name Argument Function

Imaginary

Part of AIMAG Complex Real

Complex DIMAG Dbl Cmplx Double

Argument

Complex CONIG CONJG Complex Complex

Conjugate (14) DCONJG Dbl Cmplx Dbl Cmplx

Square SQRT Real Real

Root SQRT DSQRT Double Double

(15) CSQRT Complex Complex

CDSQRT Dbl Cmplx Dbl Cmplx
EXP Real Real

Exponential EXP DEXP Double Double
CEXP Complex Complex
CDEXP Dbl Cmplx Dbl Cmplx

Natural ALOG Real Real

Logarithm LOG DLOG Double Double

(16) CLOG Complex Complex

CDLOG Dbl Cmplx Dbl Cmplx

Common LOGI10 ALOG10 Real Real

Logarithm (16) DLOG10 Double Double
SIN Real Real

Sine (17) SIN DSIN Double Double
CSIN Complex Complex
CDSIN Dbl Cmplx Dbl Cmplx

Figure A-3 (Part 5 of 9).

VX Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-17

VX Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Sine 1 SIND Real Real
(degree) DSIND Double Double
COoS Real Real
Cosine 1 COS DCOS Double Double
a7 CCOS Complex Complex
CDCOS Dbl Cmplx Dbl Cmplx
Cosine 1 COSD Real Real
(degree) DCOSD Double Double
Tangent 1 TAN TAN Real Real
(17) DTAN Double Double
Tangent 1 TAND TAND Real Real
(degree) DTAND Double Double
Arcsine 1 ASIN ASIN Real Real
(18) DASIN Double Double
Arcsine 1 ASIND ASIND Real Real
(degree) DASIND Double Double
Arccosine 1 ACOS ACOS Real Real
(19) ; DACOS Double Double
Arccosine 1 ACOSD ACOSD Real Real
(degree) DACOSD Double Double

Figure A-3 (Part 6 of 9).

A-18 FORTRAN Reference

VX Mode Intrinsic Functions

VX Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
1 ATAN ATAN Real Real
DATAN Double Double
Arctangent (20)
2 ATAN2 ATAN2 Real Real
DATAN2 Double Double
1 ATAND ATAND Real Real
DATAND Double Double
Arctangent
(degree) 2 ATAN2D ATAN2D Real Real
DATAN2D Double Double
Hyperbolic 1 SINH SINH Real Real
Sine DSINH Double Double
Hyperbolic 1 COSH COSH Real Real
Cosine DCOSH Double Double
Hyperbolic 1 TANH TANH Real Real
Tangent DTANH Double Double
Lexically
Greater Than 2 LGE Character Logical
or Equal To (21)
Lexically
Greater Than (21) 2 LGT Character Logical

Figure A-3 (Part 7 of 9).

VX Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-19

VX Mode

Intrinsic Number of Generic Specific Data Type of

Function Arguments Name Name Argument Function

Lexically Less

Than or 2 LLE Character Logical

Equal To (21)

Lexically Less

Than (21) 2 LLT Character Logical
LOGICAL*1 INTEGER*2

IZEXT LOGICAL*2 INTEGER*2

INTEGER*2 INTEGER*2

Zero-Extend 1 ZEXT

Functions LOGICAL*1 INTEGER*4
LOGICAL*2 INTEGER*4

JZEXT LOGICAL*4 INTEGER*4

INTEGER*2 INTEGER*4
INTEGER*4 INTEGER*4

Bitwise 2 IOR IIOR INTEGER*2 INTEGER*2

Logical OR JIOR INTEGER*4 INTEGER*4

Bitwise 2 IAND ITAND INTEGER*2 INTEGER*2

Logical AND JIAND INTEGER*4 INTEGER?*4

Bitwise IIEOR INTEGER*2 INTEGER*2

Logical XOR 2 IEOR JIEOR INTEGER*4 INTEGER*4

(exclusive OR)

Bitwise INOT INTEGER*2 INTEGER*2

Logical NOT 1 NOT JNOT INTEGER*4 INTEGER*4

(ones complement)

Figure A-3 (Part 8 of 9).

A-20 FORTRAN Reference

VX Mode Intrinsic Functions

VX Mode

Intrinsic Number of Generic Specific Data Type of
Function Arguments Name Name Argument Function
Bitwise IISHFT INTEGER*2 INTEGER*2
Logical Shift 2 ISHFT JISHFT INTEGER*4 INTEGER*4
Bitwise IISHFTC INTEGER*2 INTEGER*2
Circular Shift 2 ISHFTC JISHFTC INTEGER*4 INTEGER*4
Clear a Bit IIBCLR INTEGER*2 INTEGER*2
(set to 0) 2 IBCLR JIBCLR INTEGER*4 INTEGER*4
Set a Bit IIBSET INTEGER*2 INTEGER*2
(setto 1) 2 IBSET JIBSET INTEGER*4 INTEGER*4
Test a Bit BITEST INTEGER*2 LOGICAL*4
(return .TRUE. 2 BTEST BITEST INTEGER*4 LOGICAL*2
if bitis 1)

IBITS INTEGER*2 INTEGER¥*2
Retrieve Bits 3 IBITS JIBITS INTEGER*4 INTEGER*4

Figure A-3 (Part 9 of 9).

VX Mode Intrinsic Functions

Appendix A. Intrinsic Functions

A-21

Notes

In general, if a generic name of an intrinsic function exists, it can be used in
place of a specific name to permit greater flexibility. Except for the data
type conversion functions, the data type of the argument to a generic
intrinsic function determines the data type of the result.

For example, the generic intrinsic function LOG computes the natural loga-
rithm of its argument, which can have a real, double-precision, or complex
data type. The data type of the result is the same as the data type of its
argument. The specific intrinsic functions ALOG, DLOG, and CLOG also
compute natural logarithms. ALOG computes the logarithm of a real argu-
ment and returns a real result. Likewise, DLOG and CLOG accept double-
precision and complex arguments and return double-precision and complex
results, respectively.

All arguments in an intrinsic function reference must have the same data
type.

The restrictions on the ranges of arguments and the ranges of results apply
to the intrinsic functions when referenced in both their generic forms and
specific forms.

The result of a complex function is the principal value of the function.

(1) The INT function truncates a real or double-precision argument
toward 0. If the argument to INT is a complex number or variable,
the function is applied to its real part. IFIX is the same as INT for
real arguments.

(2) If the argument to a REAL or DBLE function is complex, the func-
tion is applied to its real part.

A-22 FORTRAN Reference

(3)

(4)

(5)

(6)

(7

€))

A single argument to a CMPLX function can have an integer, real,
double-precision, or complex data type. If a CMPLX function has
two arguments, both arguments must have the same data type, which
can be integer, real, or double-precision.

If a is a complex variable, CMPLX(q) is a. If a is an integer, real, or
double-precision variable, CMPLX(a) is the complex value whose
real part is REAL(a@) and whose imaginary part is 0. CMPLX(a,b) is
a complex value whose real part is REAL(a) and whose imaginary
part is REAL(b).

ICHAR converts a character argument to an integer argument based
on the position of the character argument in the character collating
sequence used by the processor. If the length of the argument to
ICHAR is greater than one character, ICHAR returns the collating
sequence index of the first character of the argument. Similarly,
CHARU(/) returns the i'th character in the collating sequence.
CHAR has a character data type and a length of 1.

RT PC VS FORTRAN uses the ASCII character set to represent
characters; therefore, the complementary functions CHAR and
ICHAR convert characters to their ASCII representations. For
example, ICHAR('A') is 65.

The truncation functions AINT and DINT are like the INT function
except that a real or double-precision result is returned instead of an
integer result.

The nearest whole number function returns INT(a + .5) if a is
greater than or equal to O or INT(a - .5) if a is less than 0. If the
generic form of the function is used, the data type of the result
depends on the data type of a and can be either real or double-
precision.

The nearest integer function is like the nearest whole number func-
tion except that it returns an integer result.

When used with a complex argument, ABS returns the square root of

the sum of the squares of the real and imaginary components of the
complex value. The result in this case has a real data type.

Appendix A. Intrinsic Functions A-23

9

(10)

(11)
(12)

(13)

(14)

(15)

(16)

A-24 FORTRAN Reference

MOD(a,b) is defined as a-b*INT(a/b). The result for MOD,
AMOD, and DMOD is undefined when the value of the second argu-
ment is 0.

SIGN(a,b) is ABS(a) if b is greater than or equal to 0 and -ABS(a) if
b is less than 0. If the value of a is 0, the result is 0.

DIM(a,b) is a-b if a is greater than b; otherwise, it is 0.

When applied to a character variable or array element, LEN returns
the length that the variable or element had when it was declared in
the CHARACTER type statement. LLEN is useful in a subprogram
where a character variable appears as a dummy argument and is
declared as an assumed-size variable. The argument of LEN does
not have to be defined at the time the function is referenced. The
LEN of a character constant is the number of characters between the
apostrophes.

INDEX(a,b) returns an integer value indicating the starting position
within the character string a of a substring identical to string b. If b
occurs more than once in g, the starting position of the first occur-
rence is returned. If @ does not contain b or if 4 is longer than a, the
INDEX function returns a value of 0.

A complex value is expressed as an ordered pair of reals (a,6). The a
is the real part and b is the imaginary part. CONJG(a,b) returns
(a,-b); in other words, CONJG returns a complex result whose imag-
inary part is the negative of the imaginary part of the argument.

SQRT and DSQRT require an argument that is not less than 0. The
result of CSQRT is the principal value with the real part greater than
or equal to 0. When the real part of the result is O, the imaginary
part is greater than or equal to O.

ALOG, DLOG, ALOG10, or DLOG10 require an argument that is
greater than 0. The value of the argument of CLOG must not be
(0.,0.). The range of the imaginary part of the result of CLOG is
-7 < imaginary part < «. The imaginary part of the result is 7
only when the real part of the argument is less than 0 and the imagi-
nary part of the argument is O.

(17)

(18)

(19)

(20)

(21)

All angles are expressed in radians. The absolute value of the argu-
ment of SIN, DSIN, COS, DCOS, TAN, and DTAN can be greater
than 2*q.

The absolute value of the argument of ASIN and DASIN must be
less than or equal to 1. The range of the result in radians is
-7/2 < result < w/2.

The absolute value of the argument of ACOS and DACOS must be
less than or equal to 1. The range of the result in radians is
0 < result < 7.

The range of the result in radians for ATAN and DATAN is

-m/2 < result € w/2. ATAN2(q,b) and DATAN2(a,b) return the
arctangent of a/b. If the value of the first argument of ATAN2 or
DATAN?2 is positive, the result is positive. If the value of the first
argument is 0, the result is O if the second argument is positive; the
result is 7 if the second argument is negative. If the value of the first
argument is negative, the result is negative. If the value of the
second argument is 0, the absolute value of the result is 7/2. The
arguments cannot both have the value 0. The range in radians of the
result for ATAN2 and DATAN2 is -7 < result < .

The logical functions LGE(q,b), LGT(a,b), LLE(a,b) and LLT(a,b)
return true or false values depending on the collating sequence of the
characters in variables a and b. LGE(a,b) returns a true value if a=5b
or if a follows b in the collating sequence; otherwise, a false value is
returned. LGT(a,b) returns a true value if a follows b in the collating
sequence; otherwise, a false value is returned. LLE(a,b) returns a
true value if a=b or if a comes before b in the collating sequence;
otherwise, a false value is returned. LLT(q,b) returns a true value if
a comes before b in the collating sequence; otherwise, a false value is
returned.

If the operands for any of these functions do not have equal lengths,
the shorter operand is extended to the right with blanks to the length
of the longer operand. For example, LGT('Todd','Wayne') returns
a false value.

Appendix A. Intrinsic Functions A-25

A-26 FORTRAN Reference

Appendix B. Information for the FORTRAN 66 Programmer

Note: Information in this appendix applies only to FORTRAN programs
compiled under IBM mode, which is the default mode.

The purpose of this appendix is to assist the FORTRAN 66 programmer in
using RT PC VS FORTRAN, which is based upon FORTRAN 77 stand-
ards. This appendix includes a description of:

« FORTRAN 77 character data
« migrating FORTRAN 66 programs to RT PC VS FORTRAN.

Using FORTRAN 77 Character Data

The following sections provide a description of how character data is used in
FORTRAN 77 programs. For the exact syntax of statements, as well as any
restrictions, see the appropriate sections in Chapters 1 - 11 of this manual.

The ANSI standard for FORTRAN 77 does not include how character data
is to be stored in the computer’s memory. The standard does refer to a col-
lating sequence (or order) of the characters but does not assign numerical
values to them. In RT PC VS FORTRAN, ASCII codes are used to
internally represent character data; therefore, programs written in this code
that assume character data is represented by the ASCII codes may not be

portable to other computers that use a different display mode such as
EBCDIC.

Appendix B. Information for the FORTRAN 66 Programmer B-1

Character Variables

In FORTRAN 66, there are no character variables and all characters must
be stored in numeric variables, which can become quite cumbersome.

FORTRAN 77 features the character data type, which defines variables for
character assignment, storage, and manipulation. Numeric data types are
not allowed to do this. Character data objects are declared with CHAR-
ACTER type statements.

Examples:

C A 20-byte variable is declared.
CHARACTER*20 NAME

C An 8-byte variable and a 15-byte
C variable are declared.
CHARACTER FNAME*8,LNAME*15

C An array of 50 elements having
C 20 bytes each is declared.
CHARACTER*20 NAMES (50)

Character Constants

B-2 FORTRAN Reference

In standard FORTRAN 66, character constants are represented only by
Hollerith constants. In FORTRAN 77, a character constant can be repres-
ented by a Hollerith constant or by a string of characters enclosed in apos-
trophes ('xxx').

This second type of character constant has to be between 1 and 255 charac-
ters in length. Spaces within the apostrophes are part of the character con-

stant and are included in the character count. An apostrophe that is part of
the character constant is indicated by two consecutive apostrophes.

This is 2 comparison of hexadecimal and string character constants:

Hexadecimal String

4HABCD 'ABCD'

1GHEnter File Name "Enter File Name'
10HWhat's Up? 'Wb?t"s Up?'

IHI [)

Character constants can be assigned to character variables, passed as
parameters in subroutine subprogram calls and function references, and out-
putted using the standard input/output routines.

Examples:

CHARACTER*10 NAME,POLICY (15)

NAME = 'James'

C The string 'James ' is assigned to NAME.
NAME = 'Doctor Proctor'

C The string 'Doctor Pro' is assigned to NAME.

DO 10 I=1,15

POLICY(I) = 'Life Insur'
10 CONTINUE
C All 15 elements of the array POLICY
C are initialized to 'Life Insur'.

Character constants can be given symbolic names by using the PARAM-
ETER statement.

Example:

CHARACTER*22 TITLE
PARAMETER (TITLE = 'Encyclopedia Americana')

This code allows the programmer to refer to the character constant "'Ency-
clopedia Americana" by the name TITLE. TITLE is a symbolic name and

Appendix B. Information for the FORTRAN 66 Programmer B-3

not a variable; therefore, it cannot be assigned to a different character con-
stant.

Character Substrings

B-4 FORTRAN Reference

A character substring is a portion of a character string and is identified by a
substring name that can be referenced and have values assigned to it. The
form of a substring name is:

charvar ([start] : [finish])

charvar
is a character variable.

start
finish
are integer expressions within the bounds of the declared size of
charvar. The default size of start is 1 and the default size of finish is
the size of charvar.
Examples:
CHARACTER*20 STR1,STR2,STR3(10)
STR1(1:5) = 'Stuff'
C 'stuff' is assigned to the
C first five positions of STRI1.
STR1(6:10) = STR2(1:5)
C The first five characters of STR2 are
c assigned to positions 6-10 of STRI1.
STR1(:10) = STR2(11:)
C The last 10 characters of STR2 are
C assigned to the first 10 positions of STRI1.
STR1(:) = STR2(:)
C All of STR2 is assigned to STRI1.

STR3(4) (1:10) = STR(1:10)

C The first 10 characters of STR1 are
C assigned to the first 10 positions of
C the fourth element of array STR3.

CHARACTER*21 STRING
DATA STRING /'All Things Considered'/

STRING(:)

C STRING = 'All Things Considered’
STRING(:10)

C STRING = 'All Things'
STRING(11:)

C STRING = ' Considered'
STRING(5:15)

C STRING = 'Things Cons'
STRING(10:30)

C An error occurs because 30 is

Q

greater than the size of STRING.

Imnitializing Character Variables

A DATA statement can be used to initially assign character constants to
character variables.

Examples:

CHARACTER*10 NAME(10)
DATA NAME (1) ,NAME(2) /'Mr.', 'President'/
DATA NAME /10*'unknown'/

Both DATA statements initialize elements of the character array NAME.
A DATA statement can also assign nonprintable characters such as line-
feed and form-feed to character variables. The character variable must be 1

byte in length and assigned to the ASCII representation of the nonprintable
character.

Appendix B. Information for the FORTRAN 66 Programmer B-5

Example:

CHARACTER*1 CR,FF,CC(10)
DATA CR,FF,CC /13,$12,(I,I=0,9)/

This code initializes CR to a carriage-return, FF to a form-feed, and array
CC to the first 10 ASCII characters.

The Concatenation Operator

FORTRAN’s only character operator is // (concatenation). Concatenation
joins two strings in the order specified, thus forming one string whose length
is equal to the sum of the lengths of the two strings.

Examples:

CHARACTER*9 FNAME, LNAME
DATA FNAME,LNAME /'President', 'Roosevelt'/

PRINT *,FNAME // LNAME

C 'PresidentRoosevelt' is printed.
PRINT *,FNAME // ' ' // LNAME

C 'President Roosevelt' is printed.
PRINT *,FNAME(1:4) //'. '// LNAME

C 'Pres. Roosevelt' is printed.

Character Intrinsic Functions
FORTRAN 77 provides intrinsic functions that either input or output char-

acter data. These include ICHAR, CHAR, INDEX, LEN, LGE, LGT,
LLE, and LLT, which are listed in Appendix A, “Intrinsic Functions.”

B-6 FORTRAN Reference

ICHAR

CHAR

The ICHAR function converts a character argument to an integer argument
based on the position of the character argument in the character collating
sequence used by the processor. The form of the ICHAR function is:

ICHAR (char)

char
is a character argument. If char is longer than one character, the col-
lating sequence index of the first character is returned and the
remaining characters are ignored.

The ICHAR function in RT PC VS FORTRAN converts a character to its
ASCII representation; for example, ICHAR('A") is 65.

The CHAR function converts an integer argument to the character argu-
ment that has that integer as its collating sequence index. The form of the
CHAR function is:

CHAR (int)

int
is an integer argument.
The CHAR function in RT PC VS FORTRAN converts an integer to a

character based on the ASCII collating sequence; for example, CHAR(65)
is A.

Appendix B. Information for the FORTRAN 66 Programmer B-7

INDEX

LEN

B-8 FORTRAN Reference

The INDEX function requires two character expressions as arguments and
returns an integer value indicating the starting position within the first char-
acter string of a substring identical to the second string. The form of the
INDEX function is:

INDEX (a, b)

is the character string to be scanned for the substring b.

If b occurs more than once in a, the starting position of the first occur-
rence is returned. If a does not contain b, or if b is longer than a, the
INDEX function returns a value of 0.

The LEN function requires a character expression as an argument and
returns its length. The form of the LEN function is:

LEN (char)

char
is a character expression.

The LEN of a character variable or array element is the length it had when
it was declared in the CHARACTER type statement. The LEN of a char-
acter constant is the number of characters between the apostrophes.

Examples:

STR = 'ABC'

L = LEN(STR)
C L =10

L = LEN('XYZ")
C L =3
C In this code, CHARACTER* (*) causes STR to
C take on the length of the argument passed.
C On the first call to SUB, LEN(STR) evaluates to 80;
C on the second call to SUB, LEN(STR) evaluates to 20.
C

PROGRAM MAIN

CHARACTER STR1*80, STR2*20

READ (*, ' (A) ') STR

STR2 = 'Title'

CALL SUB(STR1)

CALL SUB(STR2)

END

SUBROUTINE SUB(STR)

CHARACTER* (*) STR

DO 10 I=1, LEN(STR)

170 CONTINUE
RETURN
END

CHARACTER*10 STR

LGE, LGT, LLE, and LLT

The LGE, LGT, LLE, and LLT functions return true or false values

depending on the collating sequences of two character arguments. The

forms of these logical intrinsic functions are:

Appendix B. Information for the FORTRAN 66 Programmer

B-9

LGE (a, b)
LGT (a, b)
LLE (a.,b)

LLT (a,b)

are character arguments.

LGEC(a,b) returns a true value if a=5 or if a follows b in the collating
sequence; otherwise, a false value is returned. LGT(a,b) returns a true
value if a follows b in the collating sequence; otherwise, a false value is
returned. LLE(a,b) returns a true value if a=b or if a comes before b in the
collating sequence; otherwise, a false value is returned. LLT(q,b) returns a
true value if @ comes before b in the collating sequence; otherwise, a false
value is returned.

If the operands for any of these functions do not have equal lengths, the
shorter operand is extended to the right with blanks to the length of the
longer operand. For example, LGT('Todd','Wayne') returns a false value.

Sample Program Using Character Data

This program prompts the user for a list of up to 10 names. The names are
then separated into two arrays — one for first names and one for last
names. Each array is then sorted alphabetically. Finally, the first name in
the first name array is concatenated with the first name in the last name
array and printed, the second name in the first name array is concatenated
with the second name in the last name array and printed, and so on.

B-10 FORTRAN Reference

Q00

10

PROGRAM CHARS
CHARACTER*20 NAMES (10), FNAMES(10), LNAMES(10)
INTEGER COUNT

DATA NAMES,FNAMES, LNAMES /30%' '/

CALL GETNAM (NAMES, COUNT)

CALL SPLIT (NAMES, FNAMES,LNAMES, COUNT)

CALL SORT (FNAMES, COUNT)

CALL SORT (LNAMES, COUNT)

CALL PRINT (FNAMES, LNAMES,COUNT)

STOP

END

GETNAM prompts the user for the list of input names.

The input list is ended by entering a blank name.

SUBROUTINE GETNAM (NAMES, COUNT)

INTEGER I,COUNT

CHARACTER*20 NAMES (10)

WRITE (*,*)

DO 10 I=1,10
WRITE(*,'(A,I2,A,%$)') 'Enter name #',I,' -~ '
READ(*,' (A)') NAMES(I)

IF (NAMES(I) (1:1).EQ.' ') THEN
COUNT = I-1
RETURN

ENDIF

CONTINUE

COUNT = 10

RETURN

END

Appendix B. Information for the FORTRAN 66 Programmer

B-11

C SPLIT searches the array of names for blanks
C and assumes that a blank separates a first
C name from a last name.
C It then places first names and last names in
C the FNAMES and LNAMES arrays, respectively.
C
SUBROUTINE SPLIT (NAMES,FNAMES,LNAMES,COUNT)
INTEGER COUNT,PLACE, I
CHARACTER*20 NAMES (COUNT), FNAMES (COUNT), LNAMES (COUNT)
DO 10 I=1,COUNT
PLACE = INDEX(NAMES(I),' ')
IF (PLACE.EQ.0) PLACE = 20
FNAMES (I) = NAMES(I) (:PLACE)
IF (PLACE.NE.20) LNAMES(I) = NAMES(I) (PLACE+1:)
10 CONTINUE
RETURN
END
C SORT sorts the arrays of names
C using a basic binary sort.
C

SUBROUTINE SORT (NAMES,COUNT)
INTEGER COUNT,I,J
CHARACTER*20 NAMES (COUNT) , TEMP
DO 20 I=1, COUNT-1

DO 10 J=I+1,COUNT

IF (LGT(NAMES(I),NAMES(J))) THEN
TEMP = NAMES (I)
NAMES (I) = NAMES (J)
NAMES (J) = TEMP
ENDIF
10 CONTINUE
20 CONTINUE
RETURN
END

B-12 FORTRAN Reference

C PRINT concatenates the first and last
C names and removes any excess blanks.

SUBROUTINE PRINT (FNAMES,LNAMES, COUNT)
INTEGER COUNT,I,PLACE1,PLACE2
CHARACTER*20 FNAMES (COUNT), LNAMES (COUNT)
WRITE(*,'(/,A,/)"') 'After manipulation, the names are:'
DO 10 I=1,COUNT

PLACE1 = INDEX(FNAMES(I),' ")

IF (PLACE1.EQ.0) PLACE1 = 20

PLACE2 = INDEX(LNAMES(I),' ')

IF (PLACE2.EQ.0) PLACE2 = 20

WRITE (*,'(A,I2,A,$)') 'Name #',I,' = '
WRITE(*,'(A)') FNAMES(I) (:PLACE1) // LNAMES (I) (:PLACE2)
10 CONTINUE
RETURN
END

A sample run of this program is:

Enter name # 1 - Mickey Mouse
Enter name # 2 - Donald Duck
Enter name # 3 - Pluto

Enter name # 4 - Bugs Bunny
Enter name # 5 - Porky Pig
Enter name # 6 - Tweety Bird
Enter name # 7 -

After manipulation, the names are:

Name # 1 - Bugs

Name # 2 - Donald Bird
Name # 3 - Mickey Bunny
Name # 4 - Pluto Duck
Name # 5 - Porky Mouse
Name # 6 - Tweety Pig

Appendix B. Information for the FORTRAN 66 Programmer B-13

Migrating FORTRAN 66 Programs to RT PC VS FORTRAN

Migrating FORTRAN 66 programs to RT PC VS FORTRAN, which is a
FORTRAN 77 compiler, is made easier with the following FORTRAN 66
compatibility features, which are activated by issuing the y+ command-line
option to the compiler.

DO Loops: Unlike in FORTRAN 77, DO loops in FORTRAN 66 are
executed at least once no matter what parameters are initially set. DO loops
are described in “DO Statements — Loop Control <>” on page 8-10.

Common Blocks: Unlike in FORTRAN 77, character and numeric data in
FORTRAN 66 can be assigned to the same common block. Common
blocks are described in “COMMON Statements — Declaring Common
Blocks 4 <>” on page 7-7.

Default Sizes of Variables: In FORTRAN 77, the default size for an
integer or logical variable is 4 bytes. In FORTRAN 66, the default size is 2
bytes.

Character Assignment: Since FORTRAN 66 does not have a character
data type, all character processing is accomplished with numeric variables
and Hollerith constants. Hollerith constants can be assigned to numeric
variables in assignment statements and DATA statements.

A Hollerith constant must be between 1-255 characters in length, and
spaces are significant. A Hollerith constant can be written in either of two
forms. One form is:

nHce ...

B-14 FORTRAN Reference

is the number of characters in the constant.

is one of the n characters.

The other form of a Hollerith constant is:

'eee...!

is a character in the constant.

Examples:

4HABCD
'ABCD'
6H ABC
! ABC'

These are all valid Hollerith constants.

4HABCDEF - This has too many characters.

4HAB - This does not have enough characters.
- The string length is O.

'ABCD — The trailing apostrophe is missing.

These are all invalid Hollerith constants.

Appendix B. Information for the FORTRAN 66 Programmer

B-15

When a Hollerith constant is part of an assignment or DATA statement and
the variable has a length that is less than the length of the Hollerith con-
stant, the rightmost characters are truncated. If the length of the variable is
greater than the length of the Hollerith constant, trailing spaces are added.

Examples:

INTEGER*4 I
INTEGER*2 J
REAL*4 X
REAL*8 Y

DATA I /'ABCD'/

C I = '"ABCD'

DATA J /1HA/
c J = 'a"

DATA K /'ABCD'/
c K = 'A'

X = 8HABCD GH
C X = 'ABCD'

Y = S8HABCD GH
C Y = 'ABCD GH'

Reading or writing numeric variables that take on character data can be
done by using the A edit-descriptor in a FORMAT statement. If no length
is specified, an implied length of the variable size is used. The A edit-
descriptor is described in “A — Character Editing <>”’ on page 11-16.

If a Hollerith constant is passed as a parameter to a subroutine or function
subprogram, the actual value passed depends upon the form of the Hollerith
constant. If a call to the subroutine subprogram X is made as CALL
X(4HABCD), the address of a 4-byte numeric constant with the value
"ABCD'" is passed. If the call is made as CALL X(' ABCD"), the Hollerith
constant is treated as a FORTRAN 77 character string and both the address
and the length of the string are passed. The CALL X('ABCD') must be
received by a subroutine subprogram that expects a parameter with a char-
acter data type.

B-16 FORTRAN Reference

Hollerith constants cannot be used in logical expressions. However, a

Hollerith constant can be assigned to a numeric variable which can be used
in logical expressions.

Examples:

C This is not permitted.
IF(I .NE. 4HABCD) GOTO 100

J=4ABCD
C This is permitted and accomplishes
C what the previous code tries to do.

IF(I .NE. J) GOTO 100

Appendix B. Information for the FORTRAN 66 Programmer B-17

B-18 FORTRAN Reference

Index

Special Characters

// (concatenation) 5-9

A

A edit-descriptor 11-16
R1 specifics 11-31
ACCEPT statement (VX mode)
ACCESS= specifier
description of 10-16, 10-44
in INQUIRE statement 10-44
in OPEN statement 10-16
actual argument 9-3
VX specifics 9-28
actual array declaration 4-6
addition 5-2
adjustable array declaration 4-5
alphanumeric character 2-1
alternate entry point 9-18
alternate-return specifier 9-9
ampersand 2-15, 2-17
AN mode 1-2
AND. 5-14
angle bracket 2-15, 2-17
ANSI Standard 1-3
ANSI Standard FORTRAN 77 1-1
migration 1-2
apostrophe 2-2, 3-7
apostrophe edit-descriptor
argument passing 9-2
VX specifics 9-28

10-51

11-21

arithmetic
assignment statement 6-1
R1 specifics 6-8
VX specifics 6-9
constant expression 5-3
expression 5-1, 5-3
VX specifics 5-18
IF statement 8-9
operand 5-2
operators 5-1
relational expression 5-12
type statement 7-2
R1 specifics 7-26
VX specifics 7-30
array
description of 4-4
dimensions 7-6
R1 specifics 7-27
storage sequence 4-8
subscript 4-7
unsubscripted 4-9
array declaration
actual 4-6
adjustable 4-5
assumed-size 4-6
constant 4-5
description of 4-4
dummy 4-6
R1 specifics 4-12
ASCII representation 2-3, 5-13
ASSIGN statement 6-4
assigned GOTO statement 8-18
assignment statement 6-1-6-7
description of 6-1
assumed-size array declaration 4-6

Index

X-1

assumed-size character string 5-10
asterisk 2-2

as external unit specifier 10-7

as format specifier 10-10

in array declaration 4-6

in character string 5-10

in character type statement 7-4

in DATA statement 7-10

in ENTRY statement 9-19

in FUNCTION statement 9-13

in numeric editing 11-7

in SUBROUTINE statement 9-8
AUTOMATIC (R1 mode) 7-25, 7-28

B

backslash 2-15, 3-11
backslash escape 3-12
BACKSPACE statement 10-39
binary constant (R1 mode) 3-12
binary operator 5-2, 5-14
blank 2-2,2-3
blank interpretation 11-28
BLANK-= specifier
description of 10-17, 10-46
in INQUIRE statement 10-46
in OPEN statement 10-17
BLOCK DATA statement 9-25
block data subprogram 9-25
block IF statement 8-4
block IF-THEN-ELSE statement group 8-1
sample program 8-6
BN edit-descriptor 11-28
boolean quantities 3-8
BYTE (VX mode) 3-14
byte data type (VX mode) 3-14
BZ edit-descriptor 11-28

X-2 FORTRAN Reference

C

CALL statement 9-9
R1 specifics 9-27
character
alphanumeric 2-1
assignment statement 6-5
collating sequence 2-2
constant 3-7
count editing (VX mode) 11-36
data type 3-7
R1 specifics 3-11
editing 11-16
R1 specifics 11-31
expression 5-9
length 3-7
operator 5-9
order 2-2
relational expression 5-13
representation 2-3
set 2-1
R1 specifics 2-15
VX specifics 2-17
special 2-1
R1 specifics 2-15
VX specifics 2-17
string 3-7, 5-10
substring 4-10
VX specifics 4-13
type statement 7-3
R1 specifics 7-27
VX specifics 7-30
CHARACTER 3-7,7-3
CLOSE statement 10-18
collating sequence 2-2
colon 2-2
colon edit-descriptor 11-26
column major order 4-8
comma 2-2
comment line

description of 2-4
fixed-form 2-4
free-form 2-5
R1 specifics 2-16
VX specifics 2-19
common block
declaring 7-7
description of 7-7
R1 specifics 7-27
VX specifics 7-31
COMMON statement 7-7
R1 specifics 7-27
VX specifics 7-31
compiler mode

AN 1-2
IBM 1-2
R1 1-2
VX 1-2

compiler-directive line
description of 2-7
fixed-form 2-7
free-form 2-7
complex
constant 3-6
data type 3-6
R1 specifics 3-11
VX specifics 3-14
imaginary part 3-6
real part 3-6
COMPLEX 3-6
COMPLEX*8 3-6
COMPLEX*16 3-6
computed GOTO statement 8-19
VX specifics 8-26
concatenation 5-9
conditional termination 11-26
conditionally compiled line

VX specifics 2-18
constant

binary (R1 mode) 3-12

character 3-7,3-11

complex 3-6

description of 3-1, 3-8

double-precision 3-5

hexadecimal 3-9

Hollerith 3-8

VX specifics 3-16

integer 3-2
logical 3-8
octal

R1 specifics 3-12
VX specifics 3-14

optionally signed 3-1

real 3-3

R1 specifics 3-12

signed 3-1

unsigned 3-1

VX specifics 3-14
constant array declaration 4-5
constant expression 5-3
continuation line

description of 2-6

fixed-form 2-6

free-form 2-6

minus sign 2-6

R1 specifics 2-16

VX specifics 2-19
CONTINUE statement 8-14
control statement 8-1-8-22

description of 8-1
control transfer

description of 2-13

R1 specifics 2-16

VX specifics 2-20

Index

X-3

D

D edit-descriptor 11-11
data object
arithmetic 7-2
character 7-3
logical 7-5
overview of 1-5
DATA statement 7-9
R1 specifics 7-27
VX specifics 7-31
data type
byte (VX mode) 3-14
character 3-7
R1 specifics 3-11
complex 3-6
R1 specifics 3-11
VX specifics 3-14
declaring 7-1
R1 specifics 7-25
default 3-2,4-2,7-15
description of 3-1
double-complex (R1 and VX
modes) 3-11, 3-14
double-precision 3-5
integer 3-2
logical 3-8
R1 specifics 3-12
VX specifics 3-14
real 3-3
rules 3-1
data type conversion
for arithmetic assignment statements
R1 specifics 6-8
VX specifics 6-8
for arithmetic expressions 5-4
R1 specifics 5-17
VX specifics 5-18
for integers of different size 5-8

X-4 FORTRAN Reference

decimal point 2-2
default data type 3-2, 4-2
definition status 9-23
of names 4-2
retaining 7-19
digit 2-1
dimension declaration 4-4
DIMENSION statement 7-6
R1 specifics 7-27
VX specifics 7-30
dimension-bound expression 4-5
direct-access file 10-4
DIRECT= specifier
description of 10-45
in INQUIRE statement 10-45
division 5-2,5-9
DO loop
description of 8-11
extended range (VX mode) 8-23
implied 7-12, 10-14
VX specifics 10-50
VX specifics 8-23
DO statement 8-10
extended range (VX mode) 8-23
VX specifics 8-23
DO WHILE statement (VX mode) 8-24
dollar sign 2-2, 4-1
dollar sign edit-descriptor (R1 and VX
mode) 11-32,11-36
DOUBLE COMPLEX (R1 and VX
modes) 3-11, 3-14
DOUBLE PRECISION 3-5
double quote 2-2, 2-5, 3-11
double-precision
constant 3-5
data type 3-5
exponent 3-5
dummy argument 9-2
VX specifics 9-28
dummy array declaration 4-6
dummy procedure 7-16

E

E edit-descriptor 11-11
edit-descriptor
A 11-16
R1 specifics 11-31
apostrophe 11-21
BN 11-28
BZ 11-28
colon 11-26
D 11-11
dollar sign (R1 and VX mode) 11-32,
11-36
E 11-11
F 11-9
G 11-13
R1 specifics 11-31
VX specifics 11-35
H 11-21
I 11-7
R1 specifics 11-31
L 11-15
nested format specification 11-3
nonrepeatable 11-3, 11-20-11-30
numeric 11-6-11-15
R1 specifics 11-31
VX specifics 11-35
O (VX mode) 11-33
P 11-27
Q (VX mode) 11-36
repeat factor 11-3
repeatable 11-3, 11-6-11-20
R1 specifics 11-32
S 11-30
slash 11-25
SP 11-30
SS 11-30
T 11-22
VX specifics 11-33, 11-36

X 11-22
Z 11-18
R1 specifics 11-32
VX specifics 11-35
ELSE statement 8-5
ELSEIF statement 8-5
END DO statement (VX mode) 8-24
END statement 8-22
end-of-file exit specifier 10-11
end-of-record, inhibiting (R1 and VX
mode) 11-32, 11-36
END= specifier
description of 10-11
in namelist-directed READ
statement 10-34
in namelist-directed WRITE
statement 10-38
in PRINT statement 10-22
in READ statement 10-22
in WRITE statement 10-22
endfile record 10-2
ENDFILE statement 10-39
ENDIF statement 8-6
entry point 9-18
ENTRY statement 9-18
VX specifics 9-28
EQ. 5-11
equal sign 2-2
equalto 5-11
EQUIVALENCE statement 7-21
R1 specifics 7-29
VX specifics 7-33
.EQV. 5-14
ERR = specifier
description of 10-12
in BACKSPACE statement 10-41
in CLOSE statement 10-19
in ENDFILE statement 10-41
in INQUIRE statement 10-44
in namelist-directed READ
statement 10-33

Index

X-5

in namelist-directed WRITE
statement 10-38

in OPEN statement 10-15

in PRINT statement 10-22

in READ statement 10-22

in REWIND statement 10-41

in WRITE statement 10-22
error exit specifier 10-12
exclamation point 2-15, 2-17, 2-19
executable statements 2-9
execution sequence

description of 2-13

R1 specifics 2-16

VX specifics 2-20
EXIST= specifier

description of 10-44

in INQUIRE statement 10-44

exponent
double-precision 3-5
real 3-3
exponentiation 5-2
expression

arithmetic 5-1

VX specifics 5-18
character 5-9
constant 5-3
description of 5-1
dimension-bound 4-5
errors 5-15
logical 5-13

VX specifics 5-18
operator precedence in 5-15
relational 5-11
substring 4-11

VX specifics 4-13

external

file 10-2
function 9-12

R1 specifics 9-27

VX specifics 9-28
procedure 7-16,9-1
unit specifier 10-7

X-6 FORTRAN Reference

EXTERNAL statement 7-16
extreme values 11-20
R1 specifics 11-32

F edit-descriptor 11-9
factor operand 5-2
FALSE. 3-8
file
access methods 10-4
description of 10-2
direct-access 10-4
external 10-2
formatted 10-3
internal 10-5
R1 specifics 10-47
VX specifics 10-49
name 10-3
obtaining properties 10-42
overview of 1-8
position 10-3, 10-39
record format 10-3
sequential-access 10-4
specifyinga 10-7
unformatted 10-3
FILE= specifier
description of 10-16, 10-43
in INQUIRE statement 10-43
in OPEN statement 10-16
R1 specifics 10-47
VX specifics 10-52
fixed-form input format
comment line 2-4
compiler-directive line 2-7
conditionally compiled line
VX specifics 2-18
continuation line 2-6
initial line 2-5

statement 2-8 description of 9-11

FMT= specifier external 9-12

description of 10-10 R1 specifics 9-27

in namelist-directed READ VX specifics 9-28
statement 10-33 intrinsic 9-14

in namelist-directed WRITE reference 9-11
statement 10-38 statement 9-15

in PRINT statement 10-21 subprogram 9-12

in READ statement 10-21 R1 specifics 9-27

in WRITE statement 10-21 VX specifics 9-28

R1 specifics 10-47 FUNCTION statement 9-12

FORM-= specifier
description of 10-16, 10-45

in INQUIRE statement 10-45 G
in OPEN statement 10-16
format
code G edit-descriptor 11-13
See edit-descriptor R1 specifics 11-31
controller 11-5 VX specifics 11-35
input 2-4 .GE. 5-11
list 11-3 global scope 4-2
specifications 11-1-11-30 GOTO statement
specifier 10-10 assigned 8-18
R1 specifics 10-47 computed 8-19
FORMAT statement 11-1 VX specifics 8-26
R1 specifics 11-31 unconditional 8-16
formatted file 10-3 greater than 5-11
formatted record 10-2 orequalto 5-11
FORMATTED= specifier .GT. 5-11
description of 10-45
in INQUIRE statement 10-45
FORTRAN 66 1-3 H
differences B-1-B-17
migration B-14
FORTRAN 77 1-4 H edit-descriptor 11-21
free-form input format hexadecimal constant 3-9
comment line 2-5 R1 specifics 3-12
compiler-directive line 2-7 VX specifics 3-14
continuation line 2-6 hexadecimal editing 11-18
initial line 2-5 R1 specifics 11-32
statement 2-8 VX specifics 11-35
function

Index X-7

Hollerith constant 3-8
VX specifics 3-16
Hollerith editing 11-21

[1]

I edit-descriptor 11-7
R1 specifics 11-31
IBM mode 1-2
identifier
See name
identity 5-2
IF statement
arithmetic 8-9

block 8-4
logical 8-8
IF-level 8-1

imaginary part 3-6
IMPLICIT statement 7-15

R1 specifics 7-28

VX specifics 7-32
implied DO loop 7-12, 10-14

VX specifics 10-50
inclusive disjunction 5-14
initial line

description of 2-5

fixed-form 2-5

free-form 2-5
initializing values 7-9

R1 specifics 7-27

VX specifics 7-31
input format 2-4
input/output 10-1-10-46

concepts of 10-1

list 10-13

VX specifics 10-50
object 10-13
VX specifics 10-50
parameters 10-9

X-8 FORTRAN Reference

VX specifics 10-49
sample program 10-8
statements 10-15-10-46
VX specifics 10-51
status specifier 10-12
INQUIRE statement 10-42
integer

constant 3-2

constant expression 5-3

data type 3-2

editing 11-7

R1 specifics 11-31

INTEGER 3-2
INTEGER*2 3-3
INTEGER*4 3-3
internal file

description of 10-5

R1 specifics 10-47

VX specifics 10-49

with list-directed READ statement

R1 specifics 10-47
VX specifics 10-52

with list-directed WRITE statement

R1 specifics 10-48
VX specifics 10-52
internal unit specifier 10-7
VX specifics 10-49
intrinsic function
declaring 7-18
description of 9-14
IBM mode list A-1
R1 mode list A-8
VX mode list A-13
INTRINSIC statement 7-18
IOSTAT= specifier
description of 10-12
in BACKSPACE statement
in CLOSE statement 10-19

in ENDFILE statement 10-40
in INQUIRE statement 10-44

in namelist-directed READ
statement 10-33

in namelist-directed WRITE
statement 10-38

in OPEN statement 10-15

in PRINT statement 10-22

in READ statement 10-22

in REWIND statement 10-40

in WRITE statement 10-22

L

L edit-descriptor 11-15
label 2-11
.LE. 5-11
left angle bracket 2-15,2-17
left parenthesis 2-2
less than 5-11
orequalto 5-11
letter 2-1
R1 specifics 2-15
VX specifics 2-17
line
comment 2-4
compiler-directive 2-7
conditionally compiled
VX specifics 2-18
continuation 2-6
description of 2-3
initial 2-5
overview of 1-4
R1 specifics 2-16
VX specifics 2-18
list-directed input value 10-26
local scope 4-2
logical
assignment statement 6-3
VX specifics 6-9
conjunction 5-14
constant 3-8
data type 3-8
R1 specifics 3-12

VX specifics 3-14
editing 11-15
equivalence 5-14
expression 5-13

VX specifics 5-18
IF statement 8-8
negation 5-14
nonequivalence 5-14
type statement 7-5

R1 specifics 7-27

VX specifics 7-30

LOGICAL 3-8
LOGICAL*1 3-8
LOGICAL*2 (VX mode)
LOGICAL*4 3-8

loop control 8-10

LT, 5-11

M

main program 9-1
methods of presentation
minus sign 2-2, 2-6
mode

AN 1-2
IBM 1-2
R1 1-2
VX 1-2

multiplication 5-2

N

name
common block 7-7
default data type 4-2
description of 4-1
file 10-3

3-14

1-3

Index

X-9

R1 specifics 4-12
scope of 4-2
specifying 7-23
unsubscripted array 4-9
VX specifics 4-13
NAME-= specifier
description of 10-44
in INQUIRE statement 10-44
NAMED= specifier
description of 10-44
in INQUIRE statement 10-44
namelist specifier (VX mode) 10-49
NAMELIST statement 7-23
PRINT specified 10-37
READ specified 10-33
R1 specifics 7-29
VX specifics 7-33
WRITE specified 10-37
.NE. 5-11
negation 5-2
.NEQV. 5-14
NEXTREC= specifier
description of 10-45
in INQUIRE statement 10-45
NONE (VX mode) 7-32
nonexecutable statement 2-9
nonrepeatable edit-descriptor
See edit-descriptor
normal execution sequence
description of 2-13
R1 specifics 2-16
VX specifics 2-20
NOT. 5-14
not equal to 5-11
NUMBER= specifier
description of 10-44
in INQUIRE statement 10-44
numeric editing 11-6-11-15
R1 specifics 11-31
VX specifics 11-35

X-10 FORTRAN Reference

0]

O edit-descriptor (VX mode) 11-33
octal constant

R1 specifics 3-12

VX specifics 3-14
octal editing (VX mode) 11-33
OPEN statement 10-15

R1 specifics 10-47

VX specifics 10-52
OPENED= specifier

description of 10-44

in INQUIRE statement 10-44
operand 5-2
optionally signed constant 3-1
.OR. 5-14
order

column major 4-8

of array data 4-8

of characters 2-2

of logical operators 5-14

of operators 5-15

of statements 2-11

R1 specifics 2-16
VX specifics 2-19

P

P edit-descriptor 11-27
PARAMETER statement 7-14
R1 specifics 7-28
VX specifics 7-32
parenthesis 2-2
passing arguments 9-2
VX specifics 9-28
PAUSE statement 8-15
percent sign 2-15, 2-17
period 2-2

plus sign 2-2
position, file 10-3, 10-39
positional editing 11-22
presentation methods 1-3
primary operand 5-2
PRINT statement
description of 10-20
format-specified 10-21
list-directed 10-30
namelist-directed 10-37
unformatted 10-21
procedure 9-1
PROGRAM statement 9-1
program unit
control transfer 2-13
R1 specifics 2-16
VX specifics 2-20
execution sequence 2-13
R1 specifics 2-16
VX specifics 2-20
overview of 1-7

Q

Q edit-descriptor (VX mode) 11-36

R

READ statement
description of 10-20
format-specified 10-21
list-directed 10-25
R1 specifics 10-47
VX specifics 10-52
with internal files 10-28
namelist-directed 10-33
R1 specifics 10-48

VX specifics 10-52
unformatted 10-21
real
constant 3-3
data type 3-3
editing 11-9, 11-11, 11-13
R1 specifics 11-31
VX specifics 11-35
exponent 3-3
part 3-6
REAL 3-3
REAL*4 3-4
REAL*8 3-4
REC= specifier
description of 10-11
in PRINT statement 10-22
in READ statement 10-22
in WRITE statement 10-22
VX specifics 10-50
RECL= specifier
description of 10-16, 10-45
in INQUIRE statement 10-45
in OPEN statement 10-16
record
description of 10-1
endfile 10-2
formatted 10-2
number specifier 10-11
VX specifics 10-50
starting new 11-25
unformatted 10-2
record format, file 10-3
relational
expression 5-11
operator 5-11
repeat factor 11-3
repeatable edit-descriptor
See edit-descriptor
RETURN statement 9-21
R1 specifics 9-27
VX specifics 9-28
REWIND statement 10-39

Index

X-11

right angle bracket 2-15, 2-17

right parenthesis 2-2

RT PC FORTRAN 77 1-1
migration 1-2

R1 mode 1-2

S

S edit-descriptor 11-30
SAVE statement 7-19
scale-factor editing 11-27
scope rules 4-2
exceptions to 4-3
sequential-access file 10-4
SEQUENTIAL= specifier
description of 10-45
in INQUIRE statement 10-45
sign control 11-30
signed constant 3-1
skip 11-22
slash 2-2,7-2
slash edit-descriptor 11-25
SP edit-descriptor 11-30
space 2-2,2-3
special character 2-1
R1 specifics 2-15
VX specifics 2-17
specification statement 7-1-7-24
description of 7-1
SS edit-descriptor 11-30
statement 2-10
ACCEPT (VX mode) 10-51
arithmetic assignment 6-1
R1 specifics 6-8
VX specifics 6-9
arithmetic IF 8-9
arithmetic type 7-2
R1 specifics 7-26
VX specifics 7-30

X-12 FORTRAN Reference

ASSIGN 6-4
assigned GOTO 8-18
assignment 6-1-6-7
BACKSPACE 10-39
BLOCK DATA 9-25
block IF 8-4
CALL 9-9
R1 specifics 9-27
character assignment 6-5
character type 7-3
R1 specifics 7-27
VX specifics 7-30
CLOSE 10-18
COMMON 7-7
R1 specifics 7-27
VX specifics 7-31
computed GOTO 8-19
VX specifics 8-26
CONTINUE 8-14
control 8-1-8-22
control transfer 2-13
R1 specifics 2-16
VX specifics 2-20
DATA 17-9
R1 specifics 7-27
VX specifics 7-31
description of 2-7
DIMENSION 7-6
R1 specifics 7-27
VX specifics 7-30
DO 8-10
VX specifics 8-23
DO WHILE (VX mode) 8-24
ELSE 8-5
ELSEIF 8-5
END 8-22
END DO (VX mode) 8-24
ENDFILE 10-39
ENDIF 8-6
ENTRY 9-18
VX specifics 9-28
EQUIVALENCE 7-21

R1 specifics 7-29
VX specifics 7-33
executable 2-9
execution sequence 2-13
R1 specifics 2-16
VX specifics 2-20
EXTERNAL 7-16
fixed-form 2-8
FORMAT 11-1
R1 specifics 11-31
free-form 2-8
FUNCTION 9-12
GOTO 8-16, 8-18, 8-19
VX specifics 8-26
IF-THEN-ELSE 8-1
IMPLICIT 7-15
R1 specifics 7-28
VX specifics 7-32
input/output 10-15-10-46
VX specifics 10-51
INQUIRE 10-42
INTRINSIC 7-18
label 2-11
logical assignment 6-3
VX specifics 6-9
logical IF 8-8
logical type 7-5
R1 specifics 7-27
VX specifics 7-30
NAMELIST 7-23
PRINT specified 10-37
READ specified 10-33
R1 specifics 7-29
VX specifics 7-33
WRITE specified 10-37
nonexecutable 2-9
OPEN 10-15
R1 specifics 10-47
VX specifics 10-52
order 2-11
R1 specifics 2-16
VX specifics 2-19

overview of 1-6
PARAMETER 7-14
R1 specifics 7-28
VX specifics 7-32
PAUSE 8-15
PRINT 10-20, 10-30, 10-37
PROGRAM 9-1
READ 10-20, 10-33
RETURN 9-21
R1 specifics 9-27
VX specifics 9-28
REWIND 10-39
R1 specifics 2-16, 7-25
SAVE 7-19
specification 7-1-7-24
statement label assignment 6-4
STOP 8-14
SUBROUTINE 9-7
type 7-1-7-6
TYPE (VX mode) 10-51
unconditional GOTO 8-16
VIRTUAL (VX mode) 7-30
VX specifics 2-19
WRITE 10-20, 10-30, 10-37
statement function 9-15
statement label assignment statement
See ASSIGN statement
STATIC (R1 mode) 7-25,7-28
static initialization 7-12
STATUS= specifier
description of 10-16, 10-19
in CLOSE statement 10-19
in OPEN statement 10-16
STOP statement 8-14
storage
class type statement 7-25
of arrays 4-8
sharing 7-21
string
See character string
subprogram

Index

X-13

block data 9-25
description of 9-1
function 9-12
R1 specifics 9-27
VX specifics 9-28
subroutine 9-7

SUBROUTINE statement 9-7

subroutine subprogram 9-7

sample 9-10
subscript expression 4-7
substring

See character substring
substring expression 4-11
VX specifics 4-13

subtraction 5-2
symbol-table entry 4-2
symbolic association 7-14

T

T edit-descriptor 11-22
tab 2-4,11-22
term operand 5-2
termination, conditional 11-26
.TRUE. 3-8
twos complement notation 3-2
type statement
arithmetic 7-2
R1 specifics 7-26
VX specifics 7-30
character 7-3
R1 specifics 7-27
VX specifics 7-30
description of 7-1
logical 7-5
R1 specifics 7-27
VX specifics 7-30
R1 specifics 7-25

X-14 FORTRAN Reference

storage class 7-25
TYPE statement (VX mode) 10-51

U

unary operator 5-2, 5-14
unconditional GOTO statement 8-16
UNDEFINED (R1 mode) 7-28
underscore 2-15, 2-17
unformatted file 10-3
unformatted record 10-2
UNFORMATTED= specifier

description of 10-45

in INQUIRE statement 10-45
unit 10-7
unit specifier

description of 10-9

external 10-7

internal 10-7

VX specifics 10-49

UNIT= specifier

description of 10-9

in BACKSPACE statement 10-40

in CLOSE statement 10-19

in ENDFILE statement 10-40

in INQUIRE statement 10-43

in namelist-directed READ

statement 10-33
in namelist-directed WRITE
statement 10-38

in OPEN statement 10-15

in PRINT statement 10-21

in READ statement 10-21

in REWIND statement 10-40.

in WRITE statement 10-21
unsigned constant 3-1
unsubscripted array names 4-9

VX specifics 10-52
A\ with internal files 10-32
namelist-directed 10-37

R1 specifics 10-48
3‘2‘; ;egg%ﬁNm 2 VX specifics 10-53
migration 1-2 unformatted 10-21
VIRTUAL statement (VX mode) 7-30
VS FORTRAN 1-1
migration 1-2 X
VX mode 1-2

X edit-descriptor 11-22
XOR. (VX mode) 5-18

W

WRITE statement Z
description of 10-20
format-specified 10-21))
list-directed 10-30 z e‘lgtl";‘gsefi‘ffi’ct;’r s

R1 specifics 10-43 VX specifics 11-35

Index X-15

IBM RT PC

Reader’s Comment Form

IBM RT PC VS FORTRAN SH23-0130-0
Reference Manual

Your comments assist us in improving our products. IBM may use and
distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course,

continue to use the information you supply.

For prompt resolution to questions regarding setup, operation, program
support, and new program literature, contact the authorized IBM RT PC

dealer in your area.

Comments:

| BUSINESS REPLY MAIL

I FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

| POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
| Department 791, Building 4

Commerce Park & Eagle Road

Danbury, Connecticut 06810

ade} pue pjo4

L - — - - L
|
|
I
I
|

me e =—= o= Cutor Fold Along Ling = — —

PO,

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

N

N s

©IBM Corp. 1987
All rights reserved.

International Business Machines Corporation
Department 79L, Building 4

Commerce Park and Eagle Road

Danbury, CT 06810

Printed in the
United States of America

SH23-0130

SHE23-B138-B0 1‘

AHNTEN

\»

