
..... --­----- -------.. - ---- -------------,-
ACADEMIC OPERATING SYSTEM 4.3 

SYSTEM 
ADMINISTRATION 

GUIDE 

ACADEMIC OPERATING SYSTEM 





IBM Academic Operating System 4.3 
System Administration Guide 

This product is distributed by way of license and is copyright 
protected. Unauthorized copying or reproduction by any means 
of any part of this product i!\ cxpf(~ssly prohihited, except as pro­
vided b the license a cement. 



First Edition (September 1988) 

Thi~ edition applies to IBM Academic Operating System 4.3 Release I and to all subsequent 
releases until otherwise indicated in new editions or in Technical Newsletters. 

References in this publication to IBM products, programs, or services do not imply that IBM 
intends to make these available in all countries in which IBM operates. Any reference to an IBM 
licensed program in this document is not intendt~d to state or imply that only IBM's licensed pro­
gram may be used. Any functionally equivalent program may be used instead. 

Publications are not stocked at the address given below; requests for copies of IBM publications 
should be made to your IBM representative or to the IBM branch office serving your locality. 

A fonn for reader's comments is provided at the back of this publication. If the form has been 
removed, comments may be addressed to: 

IBM Corporation 
Department 6FR 
1510 Page Mill Road 
Palo Alto, CA 
94304 

IBM may use or distribute whatever information you supply in any way it believes appropriate 
without incurring any obligation to you. 

© Copyright International Business Machines Corporation, 1988 

Trademarks 

The following trademarks appear in this guide: 

UNIX is a registered trademark of AT&T Bell Laboratories. 

IBM is a registered trademark of International Business Machines Corporation. 

Andrew, Personal System/2, PS/2, RT, RT PC, and Token Ring are trademarks of International 
Business Machines Corporation. 

PostScript is a registered trademark of Adobe Systems Incorporated. 



Table of (:ontents 

Chapter 1: Introduction to System Administration 
1.1 About this Guide 1 
1.2 What Is System Adlninistration? 
1.3 Cautions for System Administrators 3 
1.4 Notes for System V Administrators 3 

1.4.1 Similarities between IDM/4.3 and System V 4 
1.4.2 Differences Detwecn IDM/4.3 and System V 4 

1.5 Summary of Chapters 5 
1.6 Typographical Conventions 7 
1.7 Pictorial Conventions 8 
1.8 Other References 9 

Chapter 2: Starting Up and Shutting Down the System 11 
2.1 Introduction II 
2.2 The Boot Program II 
2.3 Standalone Utility Shell 12 
2.4 Single-User Mode 13 
2.5 Multi-User Mode 14 

2.5.1 Multi-User Start-Up Files 14 
2.6 How to Shut Down thc IDM/4.3 System 17 

2.6.1 Shutting Down Automatically 17 
2.6.2 Shutting Down Manually 19 

2.7 System Crashes 19 
2.7.1 Recovering from a Crash 20 
2.7.2 Analyzing Crash Dumps 20 

2.8 Troubleshooting Hints 21 

Chapter 3: Reconfiguring the Operating System 23 
3.1 Introduction 23 
3.2 Overview of the Reconfiguration Process 23 
3.3 Format of the Configuration File 25 

3.3.1 Global Configuration Parameters 25 
3.3.2 System Image Parameters 26 
3.3.3 Device Specifications 27 
3.3.4 Wildcarding 29 
3.3.5 Pseudo-Device Specifications 29 

3.4 Creating Multiple System Images 31 
3.5 A Sample Kernel Rcconfiguration 31 
3.6 Kernel Management Tips 33 

Chapter 4: Managing User Accounts 35 
4.1 Introduction 35 
4.2 Overview of a User I\ccount 35 

4.2.1 Login Name 36 
4.2.2 Password 36 
4.2.3 User Identification Number 36 
4.2.4 Group Identification Number 36 



4.2.5 Home Directory 37 
4.2.6 Login Shell 37 

4.3 Adding New Users 37 
4.3.1 Editing the Password File 37 
4.3.2 Creating a I lome Directory 38 
4.3.3 Editing the Groups File 39 
4.3.4 Creating Start-Up Files 39 
4.3.5 Creating a Mailbox 40 
4.3.6 Account Installation Summary 40 

4.4 Customizing User Accounts 41 
4.5 Removing Users 42 

4.5.1 Suspending an Account 42 
4.5.2 Deleting an Account 43 
4.5.3 Account Removal Summary 43 

4.6 System Accounts 44 
4.7 Additional System Accounts 45 
4.8 Restoring a Lost Password 45 

Chapter 5: File and Directory Pcnnissions 47 
5.1 Introduction 47 
5.2 Types of Permissions 47 
5.3 Looking at Pennissions 47 

5.3.1 File Permissions 49 
5.3.2 Directory Pennissions 49 

5.4 Changing Permissions 50 
5.5 Changing the Owner of a File 51 
5.6 Changing the Group of a File 52 
5.7 Setuid Programs 52 
5.8 Setgid Programs 53 
5.9 Sticky Bits 54 

5.9.1 Sticky Executable Files 54 
5.9.2 Sticky Directories S5 

Chapter 6: Managing Tcnninals and Modems 57 
6.1 Introduction 57 
6.2 Kernel Configuration 58 
6.3 Creating Special Files 59 
6.4 Creating Pseudo-Terminals 60 
6.5 Testing the Hardware Configuration 61 
6.6 Login Configuration 62 
6.7 Configuring /etc/ttys 62 
6.8 Sample /etc/ttys Entries 63 
6.9 Configuring /etc/gettytab 64 
6.10 Converting 4.2 /etc/ttys to the 4.3 Fonnat 65 
6.11 Terminal Capability Descriptions 66 
6.12 Terminal Management Tips 68 

Chapter 7: Creating and Maintaining File Systems 69 
7.1 Introduction 69 
7.2 Overview of IBM/4.3 Files and File Systems 69 
7.3 Disk Partitioning 75 
7.4 Creating Disk Partitions 77 

7.4.1 Changing Default Partition Sizes 78 



7.5 Cylinder Groups 79 
7.6 Block Fragments 80 
7.7 Cylinder Group Bookkeeping Information 81 
7.8 Creating File Systems 82 
7.9 Creating Swap Areas 82 
7.-10 Using an Entire Disk for One File System 83 
7.11 Mounting Pile Systems 84 
7.12 Unmounting File Systems 85 
7.13 Maintaining Pile Systems 85 

7.13.1 Disk Pragmentation 86 
7.14 Checking File Systems: Fsck 87 

7.14.1 Running Fsck Non-Interactively 87 
7.14.2 Running Fsck Interactively 88 

7.15 File System Management Tips 88 

Chapter 8: Backing Up and Recovering Files 89 
8.1 Introduction 89 
8.2 Full and Partial Backups 89 
8.3 Backup Media 90 
8.4 Backup Scheduling 92 
8.5 Backing Up Files and Directories 93 

8.5.1 Using Streaming Tape 95 
8.5.2 Using Diskettes 96 
8.5.3 Network Backups 97 

8.6 Restoring Files and Directories 97 
8.6.1 Using Restore Non-Interactively 98 
8.6.2 Using Restore Interactively 100 

8.7 Other Backup and Recovery Utilities 101 
8.7.1 Using Tar 101 
8.7.2 Using Dd 102 

8.8 Backup and Recovery Tips 103 

Chapter 9: Managing the Line Printer System 105 
9.1 Introduction 105 
9.2 Overview of the Line Printer System 105 
9.3 Installation 107 

9.3.1 Disk Space Requirements 108 
9.3.2 Access Permissions 108 
9.3.4 Printer Capability Descriptions 108 
9.3.5 Special Entries for the 3812 Pageprinter 110 
9.3.6 Printers on Serial l,ines II () 

9.4 Interface Programs III 
9.4.1 Filter Return Values 112 
9.4.2 Signals 112 
9.4.3 Arguments 112 

9.5 Operation 113 
9.5.1 Starting Up the Line Printer System 113 
9.5.2 Removing Jobs from a Printer Queue 113 
9.5.3 Using a Remote Printer 113 

9.6 Administering with Lpc 114 
9.6.1 Using Lpc Interactively 117 
9.6.2 Restricting Printer Access 117 

9.7 The Pormat of Printer Control Files 117 



9.8 Troubleshooting 118 
9.8.1 Error Message Logging 118 
9.8.2 Space in the Spooling File System 119 

9.9 Printer Accounting 120 
9.10 Printer Management Tips 121 

Chapter 10: Understanding the Uucp Network 123 
10.1 Introduction 123 
10.2 Overview of the Uucp System 125 

10.2.1 Using Uucp Over A Local Area Network 126 
10.3 Uucp System Maintenance 126 

Chapter II: Implementing Local Area Networks 129 
11.1 Introduction 129 

Chapter 12: Managing USENET 131 
12.1 Introduction 131 
12.2 Overview of USENET Operation 132 
12.3 Maintaining the News System 134 
12.4 Creating a New Newsgroup 134 

12.4.1 Creating USENET Newsgroups 135 
12.4.2 Creating Local Newsgroups 135 

12.5 Expiring Old Articles 136 
12.6 Control Messages 136 
12.7 Batch Processing of Articles 139 
12.8 User Education 139 
12.9 Tips on Managing USENET 140 

Chapter 13: Accounting 141 
13.1 Introduction 141 
13.2 User Login Accounting 141 

13.2.1 Starting Up Login Accounting 141 
13.2.2 Listing User Login Sessions 142 
13.2.3 Summarizing Connect Times 143 
13.2.4 Listing Current System Users 144 

13.3 System Accounting 144 
13.3.1 Starting Up Process Accounting 145 
13.3.2 Stopping Process Accounting 145 
13.3.3 Listing User Commands 146 
13.3.4 Maintaining Process Accounting riles 146 

13.4 Accounting Tips 147 

Chapter 14: Administering Quotas 149 
14.1 Introduction 149 
14.2 Installation 149 

14.2.1 Reconfiguring the Operating System 150 
14.2.2 Setting Up Disk Quotas 151 
14.2.3 Checking Quotas for Consistency 152 
14.2.4 Starting Up the Quota System 152 

14.3 Operating the Quota System 152 
14.3.1 Listing Quotas 153 
14.3.2 Turning Off Quota Checking 153 
14.3.3 Summarizing Disk Quotas 153 



14.4 Compacting Data 154 

Chapter 15: Handling System Messages 157 
15.1 Introduction 157 
15.2 The System Message I,og Daemon 157 
15.3 The Format of letc/syslog.conf 158 

15.3.1 Selectors and Actions 158 
15.3.2 Actions 160 
15.3.3 Comments and Blank I-ines - 161 
15.3.4 Sample Syslogd Entries 161 

15.4 Starting Up Syslogd 162 
15.5 Stopping Syslogd 163 
15.6 Sending Mes~mges from the Command Line 163 
15.7 Checking Messages 164 
15.8 Message Handling Tips 164 

Chapter 16: Executing Periodic Commands 167 
16.1 Introduction 167 
16.2 How Cron Operates 16 
16.3 The Format of Crontah 168 

16.3.1 Time Specification 168 
16.3.2 User Specification 169 
16.3.3 Command Specification 169 
16.3.4 Sample Crontah Entries 169 
16.3.5 Comments 171 

16.4 Cleaning /tmp and lusr/tmp 171 
16.5 Removing Other Old Files 171 
16.6 Turning ofT Games during Prime Time 172 
16.7 Calendar 172 
16.8 Accounting 172 
16.9 Creating User-Specific Crontah Entries 172 

Chapter 17: Controlling Log Files 175 
17.1 Introduction 175 
17.2 Log File Rotation: Version I 175 
17.3 Log Pile Rotation: Version 2 177 
17.4 Uucp 178 
17.5 Other Piles that May Grow without Hound 178 

Chapter 18: Implementing Security ) 81 
18.1 Introduction 181 
18.2 Overview of IHM/4.3 Security Mechanisms 181 
18.3 Physical Security 183 
18.4 Password Security 183 

18.4.1 User Password Security 184 
18.4.2 Passw()rd Aging 184 
18.4.3 Passw()rd File Security 186 

18.5 File Security 186 
18.6 Security for Setuid Programs 187 
18.7 Security for Device Special Files 188 
18.8 File Encryption 188 
18.9 Mail Encryption 189 
18.1 0 "Trojan Horses" 190 



18.11 Modem Security 191 
18.12 Printer Security 192 
18.13 Uucp Security 192 

18.13.1 rile Security 192 
18.13.2 Password Security 193 
18.13.3 Command Execution Security 193 
18.13.4 Conversation Sequencing 193 
18.13.5 Summary 194 

18.14 Network Security 194 
18.15 Miscellaneous Security Tips 195 
18.16 Conclusion 196 

Chapter 19: Understanding the Andrew Fite System and the Andrew Toolkit 
197 ' 

19.1 Introduction 197 
19.2 The Andrew rile System 197 

19.2.1 Creating Volumes 198 
19.2.2 Moving Volumes 199 
19.2.3 Replicating Volumes 200 
19.2.4 Deleting Volumes 200 

19.3 The Andrew Toolkit 200 
19.3.1 Configuring the File System 20 I 
19.3.2 Setting Up a User's flome Environment 201 
19.3.3 Invoking the Andrew Toolkit 202 

Glos.c:tary 203 

Index 211 



CllAPTER I 

Introduction to Systenl Administration 

1. About this Guide 

The IBl\1 Academic Operating System 4.3 (IBM/4.3) is a full implementation of the 4.3 Berkeley 
Software Distribution (4.3 BSD) of the lJN'IX 1 operating system, with enhancements such as sup­
port for the Token-Ring Network architecture and the Andrew File System, a distributed file sys­
tem. The multi-user and multi:.tasking capabilities of the IBM/4.3 system provide a powerful and 
flexible computing environment designed to support a variety of scientific and educational uses. 

This guide is intended to assist you in operating and administering the IBM/4.3 system. It details 
the important functions involved in the everyday operation of the system, including starting up 
and shutting down the system, configuring the operating system, adding new users to and deleting 
old ones from the system, adding and configuring peripheral devices and network connections, 
backing up the files stored on disks, keeping track of system resources, and maintaining system 
security. This guide also provides help diagnosing and solving abnormal system occurrences 
related to these activities. 

In general, this guide assumes that you have little or no system administration experience. It 
explains the fundamental parts of the operating system (such as the file system and access permis­
sions) in somewhat greater detail than other parts. In system administration there is no substitute 
for on-the-job experience, but a good grasp of the underlying system will be invaluable in helping 
to track down and solve problems that arise. 

2. What IS System Administration? 

A system administrator (or manager) is responsible for managing all aspccts of the installation and 
operation of a computer system. A computer system may be quite simple, consisting of a system 
unit and a console terminal, perhaps also with a modem and printer. 

system console 

o 8 
printer modem 

system unit 

Figure I-I: A Simple System 

lUNIX is a registered trademark of AT&T Bell Laboratories. 

IBM/4.3 System Administration Guide 



2 1I1M/4.3 System Administration Guide 

On the other hand, the systeJn you administer may be a very complex set of networked comput­
ers, each of which has one or more peripheral devices attached to it. 

system console 

D 
~ 

terminal 

D 
I 

system console 

D 
1 
~ 
100 01 

r--- ~- o 0 0 01-----1 

""11111 
""""1 
-

IBM 6152 

modern 
0 

I 
local area network 

D-~-D 
system console 0 

direct serial line L _______________ _ 
graphics display 

o 

11111111111111111 

laser printer D 
I 

l@d]~ a ~EEEI.~ 11111111111111111111111111111111 
11111111111111111111111111111111 

" 

tape drive 

Hgurc 1-2: A More Complicated System 

terminal 

D 
I 

11 
I In 

printer 

system conso Ie 

D 
I 
~ 

~ 

0 

IBM RT PC 

Whatever the complexity and size of the system, the primary goal of system administration is to 
keep the computer(s) and peripheral devices running smoothly and efficiently so that system facili­
ties are available to the user community. To achieve this goal, the IBM/4.3 system requires care­
ful control of its operations and a regular schedule of maintenance and backup. An administrator 
must oversee and maintain both hardware and software components of the system, ensure against 
loss or destruction of data stored within the system, and help track down problems when the sys­
tem does not operate as expected. 

September 1988 Chapter 1 



IDM/4.3 System Administration Guide 3 

Fortunately, the IBM/4.3 system can be in~tructed to perform many routine administrative tasks 
automatically. For example, by suitably configuring the cron daemon, the system administrator 
can have the system periodically clean out old and unused ntes from the file system, rotate log 
files, summarize disk usages, back up recently modified nte~ and directories, and process account­
ing records. Automating routine system functions in this way allows the administrator to focus 
on more demanding (and less tedious) system maintenance operations. The IBM/4.3 system is 
rich with tools and tool-building utilities that you can employ to simplify the task of keeping the 
system running smoothly. 

3. Cautions for System Administrators 

When you are performing administrative tasks on the IBM/4.3 system, you will generally be 
logged in as the "superuser" (whose login name is usually 'root') and you will have a tremen­
dous amount of power within the system. In particular, you will be able to read, alter, or delete 
any fIle within the system, including the files and programs necessary to boot the system. The 
great power you have while logged in as the superuser must therefore be used with caution. 

• Log in as the superuser only when necessary to perform administrative functions. Never log 
in as the superuser to do ordinary word processing or program compilation. It is extremely 
dangerous to overuse your supcruser privileges as an administrator of the IBM/4.3 system. 

• Be especially careful when executing commands like rm, mv, and cp, which may remove 
flles that you want to keep. You should usc the interactive forms of these commands (for 
example, rm - i) at all times. Ideal1y, you should alias these commands to their interactive 
forms by inserting the proper lines into your . c shrc file. 

• Try to avoid using "wildcard" characters (such as 1*') in file name specifications, since you 
may unwittingly select a file you don't really want to select. If you are using the C-shell, 
you should set the variable noc 1 obbe r so that you do not overwrite existing files with 
output redirection constructs. 

• Never leave your terminal unattended if you are logged in as the superuser. A naive or mal­
icious user can easily remove or modify essential files and directories if presented with 
superuser privileges. 

• Keep a system log book to record all administrative tasks you perform as the superuser. 
Then, other administrators can see what actions have been taken, and you can review your 
past actions. A well-tended log book can be your most valuable "peripheral device." 

• Consult your documentation and confer with other local experts when dealing with system 
problems. Hasty and incorrect actions may only make a problem worse. Refrain from act­
ing until you are reasonably sure t.hat your plan will indeed solve the problem or allow you 
to pinpoint its cause. 

4. Notes for System V Administrators 

If you have experience in administering other UNIX-based systems, particularly the releases from 
the University of California at Berkeley (BSf) releases), you will find administering an IBM/4.3 
system relatively easy. While there are many important differences between the 4.3BSD release 
and earlier BSD releases, most administrative procedures have not changed very much. (Where 
such procedures have changed, it is largely in the direction of greater simplicity and ease of use.) 
Even if most of your system management experience is with System V, which is in many ways 
incompatible with BSD systems, you will find that you already know quite a bit about adminis­
tering the IBM/4.3 system. The following sections describe the major similarities and differences 
between the two systems; a familiarity with them will help you to know when your System V 
experience applies to administering ~l machine running the IBM/4.3 system, and when it does not. 

Chapter 1 September 1988 



4 1I1i\1/4.3 System Administration Guide 

4.1. Similarities between IBM/4.3 and System V 

Many features of System V administration and IBM/4.3 system administration are identical or 
nearly identical. Some of the major similarities are the following: 

• You will do practically the same things to sct up user accounts on the two systems. Under 
both nSD anp System V, the file /etc/passwd maintains user account information; 
more importantly, the format of the file is the same on both systems. The IBM/4.3 system, 
however, maintains two hashed versions of the password data base, /etc/passwd. pag 
and / etc /pa s swd . di r, to speed up password verification. The data base files are 
generated by the utility mkpasswd, which is called automatically by vipw. 

• The same procedures are used to mount and unmount file systems to increase or decrease 
the available storage space. Also, the same commands are used to check and repair file sys­
tems (except for the Andrew Pile System, if present). 

• Nearly the same administrative accounts (such as root, Ip, and uucp) are provided on 
both System Y systems· and IBM/4.3. nSD systems and the IBM/4.3 system provide 
several additional accounts intended for administrative use, most notably the operator 
account (for use by the person perfonning file system backups) and the nobody account 
(for use in crontab entries where minimal access privileges are required). 

• File access permissions operate similarly on the two systems. The major difference between 
IBM/4.3 and previous BSD releases (and all System Y releases) is that the "sticky bit" may 
now be set on directories as well as on executable programs. If a directory's sticky bit is set, 
only the owner of a file (or, of course, the superuser) can remove it from that directory, 
regardless of the permissions set on the file itself. 

• Process accounting, or keeping track of who is doing what on your machine, works in the 
same way on both systems. 

• Terminals and modems are connected to the system in nearly the same ways. However, the 
format of the terminal line configuration file, /etc/ttys, has changed significantly from 
the 4.2 to the 4.3BSO releases. 

• The uuep system functions nearly identically on both types of system. If you successfully 
administered uucp on a System Y machine, you should have no problems administering it 
under IBM/4.3. One main difference between the two systems is that uucp on the IBM/4.3 
system can operate over TCP/IP links, whereas this capability is absent on many System Y 
machines. 

For further details, consult the relevant chapters in this guide. 

4.2. Differences Between IBM/4.3 and System V 

There are many important differences between System V -based systems and IBM/4.3. For this 
reason, you should exercise caution in applying what you learn in this guidc to non-IBM/4.3 sys­
tems, or in applying to the IBM/4.3 system what you have learned administering a System Y­
based system. The most important differences hctween the two systems, from an administrator's 
point of view, are the following: 

• The IBM/4.3 system incorporates the new "fast file system" introduced in 4.3BSD. Under 
this system, fIle systems have been subdivided into cylinder group ... , so that a directory and 
the i-nodes for the ftles in that directory are ~t()red as close together as possible and file frag­
mentation is reduced. In addition, the size of data blocks may be different on different file 
systems, if necessary to maximize throughput. The minimum block size is now 4096 bytes, 
as opposed to previous values of 512 or 1024. 

• The new me system is able to manage the subdivision of blocks into fragments, thereby 
reducing the amount of space wasted when using a larger minimum block size. In addition, 
the traditional free list has been replaced by a free bitmap, which allows addressing of 

September 1988 Chapter 1 



IUM/4.3 Systcm Administration Guidc 5 

individual block fragments. 

• The IBM/4.3 system provides an extension of normal file and directory links, known as 
"symbolic links," that allows one file to be linked to another, even across file system boun­
daries. This capability is absent from most current. System V systems. 

• The IBM/4.3.system allows very long file names, up to 255 characters in length. In addi­
tion, a path name may be as long as 1024 characters. In System V, file names are usually 
limited to 14 characters in length (although implementations allowing as many as 22 charac­
ters are not uncommon). You may therefore have trouble moving fIles or directories from a 
machine running the IBM/4.3 system to one running a System V derivative. 

• File systems are now created using the program newfs, which is a more friendly version of 
mkfs. The newfs command allows the administrator to tailor file system parameters 
toward achieving either maximum throughput or maximum space efficiency, depending on 
the needs of the local user community. 

• In the IBM/4.3 system, a 'user may belong to several groups simultaneously, while in System 
V a user may belong to only one group at a time and must manually switch (using the 
newgrp command) from group to group if different file access permissions are desired. 

• Under most System V systems, the primary networking software is the uucp system, which 
operates largely as a batch type process (where fIles are spooled for forwarding at specified 
times). Under IBM/4.3 both Ethernet and Token-Ring networks are available. These allow 
Internet communications services such as interactive remote login and file transfer. In addi­
tion, the Andrew File System provides the ability to maintain a file system distributed across 
a local area network. 

• Backups and retrievals under System V systems are usually accomplished with either the 
tar or cpio utilities. Under IBM/4.3, the dump and restore commands are used to 
provide both full and partial backups and to retrieve files interactively from backup tapes. 

• IBM/4.3 includes improved error message reporting and logging facilities using the daemon 
syslogd. Messages are categorized by origin and severity, and the system's responses to 
such messages can be specified with a high degree of selectivity. Error messages can also be 
logged from the local machine to a remote machine across a network. Note in particular 
that messages, even ones indicating very severe problems with the system, are not automati­
cally written on the system console. Under IBM/4.3, you must specifically configure the 
error logging daemon to write messages there, if so desired. 

• Under System V, there are no limits set on a user's disk usage, other than the limit on max­
imum fIle size provided by the ulimi t command. Under the IBM/4.3 system, the system 
administrator may impose disk usage quotas to restrict the total number of disk blocks used, 
the number of files and directories, or both. 

• Under System V (Release 2.0 or greater), nonnal unprivileged users may automate the 
periodic execution of commands by creating t.heir own personal c ron configuration files in 
the directory /usr/spool/cron/crontabs. (Such users cannot edit their cron­
tab fIles directly, however. They must usc the crontab command to retrieve and 
replace those files.) Under IBM/4.3, only the system administrator may alter crontab 
files; there is no provision for user-specific crontab files. . 

Again, you can find greater detail on any of these differences in a later chapter of this book. See 
the following Summary of Chapters for a description of each chapter's contents, or refer to the 
Index at the end of this guide. 

5. Summary of Chapters 

Each chapter in this guide is devoted to a topic of concern to IBM/4.3 system administrators. 
The guide contains the following chapters: 

Chapter 1 September 1988 



6 IBM/4.3 System Administration Guide 

Chapter 1, Introduction to System Administration provides 'a general introduction to administering 
an IBM/4.3 system and to this guide, including some important cautions for new system adminis­
trators. This chapter also discusses some major differences between IRM/4.3 and System V 
machines. 

Chapter 2, Starting Up and Shutting Down the System describes the steps required to bring the 
system into operation and to take it out of operation. This chapter also discusses the various run 
levds of the IBM/4.3 system and how to recover from a system crash. 

Chapter 3, Reconfiguring the Operating System describes the steps involved in creating, installing, 
and booting a new operating system (or kenlel). It also discusses the format and contents of ker­
nel configuration files, and illustrates a sample kernel reconfiguration. 

Chapter 4, Managing User Accounts describes the process of maintaining user accounts, including 
adding accounts, removing accounts, and establishing passwords. The system accounts provided 
with the IRM/4.3 system are discussed, along with some recommendations for adding further sys­
tem accounts. 

Chapter 5, Using File and Directory Permissions discusses how IRM/4.3 manages file and direc­
tory access by maintaining a set of permissions. Related topics include setuid and setgid 
files and the mechanism of "sticky bits." 

Chapter 6, Managing Terminals and Modems illustrates how to add terminals and modems to a 
machine running IBM/4.3, including hardware hook-up and software configuration. The 
termcap data base is discussed briefly. 

Chapter 7, Creating and Maintaining File Systems provides essential information on the structure 
of IBM/4.3 file systems, how to create new file systems, add them to (and remove them from) the 
existing me system hierarchy, and maintain the integrity of the entire file system. 

Chapter 8, Backing IJp and Recovering Filt's discusses backing up and restoring the IBM/4.3 sys­
tem file structure using the utilities dump and restore. Also discussed are the different types 
of file system backups that you will perform, as well as a recommended backup schedule. 

Chapter 9, Managing the Line Printer System explains the configuration and operation of the line 
printer system. This chapter illustrates the normal use of the system and tries to provide enough 
troubleshooting advice to help you debug a malfunctioning system. It also provides an introduc­
tion to constructing printer capability descriptions and printer interface programs. 

Chapter to, Understanding the Uucp Network covers setting up and maintaining network opera­
tions using the uucp networking programs, a batch-type system that provides for remote file copy­
ing and remote command execution. 

Chapter 11, Implementing Local Area Networks gives an overview of of local area networks and 
lists available sources of information. 

Chapter 12, Managing USENET presents an overview of the lJSENET network used to exchange 
information, programs, and miscellaneous messages across the world. 

Chapter 13, Accounting discusses user connect time accounting and system resource accounting as 
they are implemented on the IBM/4.3 system. 

Chapter 14, Administering Quotas shows how to install, configure, and start up the optional disk 
quota subsystem that allows systet11 administrators to place limits on the amount of disk space 
used by an account, on the number of files owned by an account, or on both. Data compaction 
to reduce space consumption is also illustrated. 

Chapter 15, Handling System Messages describes the configuration and operation of the IBM/4.3 
system message logging facilities, provided mainly by the daemon process syslogd. 

Chapter 16, Executing Commands Periodically explains the configuration of the clock daemon, 
c ron, which is used to schedule tasks for periodic execution. 

September t 988 Chapter 1 



IBM/4.3 System Administration Guide 7 

Chapter 17, Controlling l,og Ii"'ilcs identifies various log files in the IBM/4.3 system that can, if left 
unmanaged, grow without limit. This chapter also presents several techniques useful for finding 
and truncating such files. 

Chapter 18, Implementing Security outlines a number of arcas where the system administrator 
must guard the system against intrusion or misuses. Topics include protection for passwords, 
setuid programs, special devices, ordinary files, and electronic mail. Security across networks 
(uucp, Internet, and the Andrew File System) is also discussed. 

Chapter 19, Understanding the Andrew File System and the Andrew Toolkit explains the opera­
tion and maintenance of the distributed Andrew rile System, and gives information on using the 
Andrew Toolkit, a set of user applications. 

Please note that for information on the Network File System and the X Window System you 
should refer to the following sources: 

• For information on the Network File System, see the article entitled "IBM Network File 
System Administration Guide" in the IBM/4.3 documentation. 

• For information on the X Window System, see the article entitled "The X Window System" 
in the IBM/4.3 documentation. 

6. Typographical Conventions 

Throughout this guide, sample command lines and shell scripts are displayed in an effort to make 
concrete the procedures involved in normal system administrative tasks. To understand the exarn­
pIes, you should bear in mind several important typographical conventions. Text that is to be 
typed "as is", such as a command name or a directory name, is set in a constant-width, 
typewriter-like font, like thi s. Output from commands, if any, is also listed in this font. 
For example, a C shell command that will move you to your home directory would be displayed 
like this: 

I cd ,., 

Notice that the shell prompt ('I') is included in this example to underscore the fact that this is a 
command given directly to the shell. 

Text that represents a parameter that needs to be appropriately substituted before a cornmand line 
can actually be executed, such as a size or a part of a file format, is set in an italic font, like this. 
The word or words italicized indicate the kind of substitution required. For example, a command 
to move you into an arbitrary temporary directory might be schematically given as follows: 

I cd temporary-directory 

When you want to actually execute such a command, you would need to substitute a suitable 
value for the string 'temporary-direc.tory'. For example, an actual command line adhering to this 
format is the following: 

I cd /tmp 

Another possible command line might be: 

I cd /usr/tmp 

And there are no doubt other possible substitutions, if your system contains other temporary 
directories. 

It is important to note that some other publications you consult, in particular the manual pages, 
may not conform to the conventions followed in this guide. 

Chapter 1 September 1988 



8 IUM/4.3 System Administration Guide 

7. Pictorial Conventions 

This guide contains numerous illustrations designed to facilitate your understanding of the opera­
tion and administration of the IBM/4.3 system. In these illustrations, a number of standard items 
appear, the principal ones of which are summarized in the following table: 

Pictorial Element 

~ 
111111111 
IIIIIun 

D 
~ command ~ 

September 1988 

J)c..~cription 

An IBM Academic Information Systems Experimental display or 
other high-resolution display capable of bit-mapped graphics . 

. A system console monitor or other terminal providing serial 
communications with a host computer. 

An IBM 6150 RT Personal Computer. 

An IBM 6152 PS/2. 

A table-model RT PC. 

Any file located in the file system hierarchy, usually (but not al­
ways) a plain text file. 

Any command or command pipeline. Usually, the standard in­
put, if any, goes in the left side and the standard output, if any, 
emerges from the right side. 

A daemon process (i.e., a process that sits waiting for something 
to occur and takes appropriate action when it does). 

Chapter 1 



IBM/4.3 System Administration Guide 9 

o 

HlIII""nlHn 

The IBM 5152 Personal Computer graphics printer or other im­
pact printing device (such as a line printer). 

A modem, used for connecting a terminal or host computer to 
some computer through telephone lines. 

A 3812 Pageprinter, or other high-quality output device. 

1.;:0 I . A streaming tape drive. 

~ Any add-in expansion or adapter card. 

D A hard disk drive. 

A floppy diskette drive. 

The kernel, /vmunix (the "king" of programs). 

Any serial port. 

A socket (endpoint for communication). 

Table 1-1: Pictorial Conventions Used In This Guide 

8. Other References 

This manual is designed to serve as an introduction to system administration and to provide a 
general reference to guide you in performing typical administrative tasks on the IBM/4.3 system. 
It does not provide information on specific types of hardware devices that you may wish to con­
nect to your system, so you will need to consult the hardware installation instructions accom­
panying such devices. This guide does not discuss the procedures to be followed in installing the 
IBM/4.3 system software. For this information, consult the document "Installing and Operating 
Academic Information Systems 4.3", in Volume 2 of the IBM/4.3 documentation. Nor is this 
guide intended as a replacement for the manual pages (in the BSD documentation or the IBM/4.3 
documentation), which provide complete (though terse) information on the syntax of administra­
tive commands and on the options available for each command. As you investigate the 

Chapter 1 September 1988 



10 1I1M/4.3 System Administration Guide 

procedures involved in typical administrative tasks, you should read through the relevant chapters 
of this guide and have the relevant pages of the reference manuals open in front of you. 

September 1988 Chapter 1 



CHAPTER 2 

Starting Up and Shutting Down the System 

1. Introduction 

The IBM/4.3 system is designed to allow continuous operation of the system. Barring unforeseen 
events such as power failures or system crashes, the IBM/4.3 system will continue in operation for 
weeks and even months, until the system manager shuts it down. A system shutdown is usually 
necessary to install additional system hardware or peripheral devices, to perform routine preven­
tive nlaintenance, or to transport the machine to another location. A shutdown may also be 
necessary simply to conserve electricity when the system would othcrwise be unused. This 
chapter outlines the steps required to bring the systcm into operation and to take it out of opera­
tion, also called "booting" and "halting" the system. 

A machine with the IBM/4.3 system instalted on it is bc in one of several modes at any time. 
When you turn the machine on, the machine will run a boot program and then attempt to start 
up the IBM/4.3 system into one of two availahle operational states or "run levels." The current 
run level determines what processes and daemons are active, as well as what file systems are avail­
able and who (if anyone) can log into the systcm. During a normal boot process, described 
below, the IBM/4.3 system checks its disks and comes up in a run level called "multi-user mode." 
This is the normal mode of operation on the system, allowing numerous users to log in to the 
machine and execute commands. The other run level is "single-user mode" which is used pri­
marily for administrative tasks. Finally, there is a special mode of operation called the "stan­
dalone utility shell" which allows you to perform administrative or diagnostic functions without 
the aid of the IBM/4.3 system. 

The IBM/4.3 system start-up and shutdown procedures arc reasonably automatic. For example, 
once the machine has been turned on and if correctly configured, the system will go directly from 
a powered-ofT state into multi-user operation without operator intervention. Similarly, the 
administrator can bring the system from a multi-user state to a quiescent state (suitable for power-

. ing down or rebooting) with a single command. Neverthelcss, you must understand the various 
steps involved in these processes well enough that you will be able to intercede and provide 
corrective action if necessary. 

This chapter also discusses how to recover from a system crash, when for some reason the operat­
ing system ceases to operate at aiL If your system crashes unexpectedly, you will also need to 
refer to the discussion of file system creation and maintenance procedures in a later chapter, since 
it is possible that the crash caused damage to the file system. 

2. The Boot Program 

When you first tum on (or "power on") your machine, the console screen will remain blank for a 
few seconds as the machine runs some internal hardware consistency checks. When the system 
has completed these diagnostics, it will load a hoot program into memory and execute it. If 
everything goes normally, a message similar to the following will appear on the screen: 

4.3850 UNIX Standalone Boot Program $Revision: 1.7 $ 
Default hd(O,O)vmunix (just press Enter or wait ~30 seconds 
or press <CTRL>-C for menu) 

IBM/4.3 System Administration Guide 11 



12 IHM/4.3 System Administration Guide 

(Note that the revision level may differ in your message.) the colon at the end of the message is 
the "boot prompt." It indicates that the boot program is awaiting input from the console opera­
tor. If you do nothing, the boot program will wait for the specified amount of time, then under­
take its default action, which is to run the command: 

hd(O,O)~unix 

This command instructs the boot program to look in the root partition of hard disk number 0 
(i.e., /dev /hdOa) for a program named vmunix. The program vmunix is the "kernel" or 
heart of the IBM/4.3 operating system that, when running, will manage the resources of the 
machine. If the boot program finds vmunix there, it will load vmunix into memory and exit, 
turning control of the machine over to the new program. 

It is possible that your system was configurcd with its root filc system in some other location, or 
indeed in several locations. For example, if the root partition (and hence the kernel) is located on 
disk number 1 (i.e., /dev /hd.1 a), then to start up the systcm you would type: 

hd(l,O)vmunix 

If your root partition isn't located on hard disk 0, the boot program may ask you the location of 
the root device once again, by displaying the question: 

root device? 

In this case, the answer should be hdl (or wherevcr thc root partition is actually located). The 
default location for the root me system at installation is hard disk 0, so the default action should 
succeed in starting up the operating system and initiating multi-user operation. If it does, you can 
skip ahead to see what procedures will automaticatly be exccutcd and how you can tailor those 
procedures to suit your local needs and prcferenccs. If thc boot program docs not successfully 
start up the operating system, you will nced to do some troubleshooting. Fortunately a stan­
dalone utility shell is provided for precisely this purpose. 

3. Standalone Utility Shell 

The standalone utility shell allows you to pcrform somc simplc administrative tasks without hav­
ing the IBM/4.3 system running. You will probably usc thc standalone shell primarily to format 
and check disks prior to creating file systems on them, hut a number of other functions are sup­
ported as well. For example, from the standalonc shell you can list the contcnts of any directory 
in the system (using a standalone version of the 1 s command). This is useful if the kernel, 
/vmunix, becomes damaged and you need to find a backup copy of it in the me system to 
boot the system. 

There are two ways to enter the standalone utility shet1: by loading it from a diskette, or by load­
ing it from the hard disk. To load the standalone shell from the hard disk, you would give the 
following command in response to the boot prompt (usual1y a colon, :): 

C 

(Hold down the Control key and type the Icttcr 'c'.) This command invokes the program sau­
ti 1, which presents a menu similar to the following: 

4.3BSD UNIX Standalone Maintenance Program $Revision: 1.7 $ 

Choice Description 

1 
2 
3 
4 
5 
6 

boot - boot standalone program OY kernel 
format - format hard disk 
dump - display disk or diskette (hex) 
cat - displa¥ a file contents (ASCII) 
Is - print d1rectory of UNIX filesystem 
copy - copy all/part of disk or floppy 

September 1988 Chapter 2 



IBM/4.3 Systcm Administration Guidc 

7 debugger - display memory, etc. 
8 iplsource - set boot order in nvram 
9 minidisk - display/change minidisk directory 
10 dosboot - boot standalone program or kernel from DOS diskette 
11 convert - convert R70 ("hd70r") disk to E70 

Enter the menu choice desired then press Enter. 

Choice ? 

13 

You choose the function you want by typing its number. For example, to list the contents of a 
directory, you type C 5' . You are then prompted for the location and name of the directory to be 
listed. To list the root directory, you type: 

hd(O, 0). 

The output of this selection looks something like this: 

2 
2 
4 _profile 
768 bin 
5 boot 
1163 dev 
384 etc 
1152 lib 
3 lost+found 
2304 rnnt 
6 sys 
16 trnp 
1920 usr 
11 vrnunix 
Directory: 

To list some other directory, for example jetc, replace the dot (_) with the name of that direc­
tory: 

hd(O,O)jetc 

The standalone shell reads the correct disk partition and lists the contents of the specified direc­
tory. For complete details on the functions available under the standalone utility shell, see 
sauti l(8R). 

4. Single-User Mode 

When IBM/4.3 is in single-user mode, only the console operator can usc the system. No logins 
are allowed and only the console terminal is active. Single-user mode is the recommended run 
level for most administrative tasks such as file system checking (with the f sck program) and 
backing up or restoring the disks, since file systeln activity is at a minimum. Generally, no 
mounted ftle systems are available in single-user mode, although the system administrator may 
mount them manually, if desired. 

There are several ways to enter single-user mode. If you have just powered up the machine and 
the boot program is running, you can enter single-user mode by typing the following command: 

hd(O,O)vrnunix 

Note that this is the same command that the boot. program would run by default, except that you 
typed it in and did not wait the specified 30 seconds for the boot program to issue it. The boot 
sequence will proceed as nonnal, though in some cases the boot program may ask you for the 

Chapter 2 September 1988 



14 IUM/4.3 Systcm Administration Guide 

location of the root device: 

root device? 

Typically the correct response is 'hdO'. Once you have entered the response to this prompt, the 
boot process will continue and the system will come up in single-user mode. 

If you neglect to type in the appropriate boot command within the 30 second period, you can still 
bring the system up in single-user mode by typing a A c (hold down the Control key and type the 
letter Ie') after the system prints the date. 

It is also possible to enter single-user mode from multi-user mode. This is usually done during 
the sequence of shutdown operations or whenever the system administrator wants to ensure that 
maintenance tasks (such as backups) will operate on quiescent file systems. If the system is run­
ning in multi-user mode and you want to hring it into single-user mode, type the command: 

# kill 1 

Before doing this, however, make sure that no one else is logged on the system, or you are likely 
to disrupt their work. The complete sequence of commands you should issue to ensure this is 
given in the section below on shutting down the system. 

5. Multi-User Mode 

Multi-user mode is the run level that permits multiple users to access the fullest range of system 
resources; consequently, it is the mode that the system will he in most of the time. In multi-user 
mode, numerous daemons are active to oversee system functions such as spooling print jobs, exe­
cuting periodic commands, logging system messages, and handling network communications. All 
terminal lines specified as active in the file /ete/ttys have getty processes started on them 
so users can log in from those terminals. In addition, all fil~ systems listed in the file 
/ete/fstab will be mounted. 

The process of bringing the system up to multi-user mode is handled largely by the i ni t pro­
gram, which is invoked as the last step of the boot process. It is the ini t process which runs 
the multi-user start-up mes described below and which then starts a login process on various ter­
minals. 

5.1. Multi-User Start-Up Filcs 

When IBM/4.3 enters multi-user mode, it consults a file, /ete/re, for a list of the commands 
necessary to start up processes that distinguish single-user from multi-user mode. (re stands for 
"run commands.") The file /ete/re is a Bourne shell script that contains whatever commands 
the system is to run as it enters multi-user mode. It is called the ICmulti-user start-up file." Since 
/ete/re is a shell script, it is quite easy to modify using your favorite text editor. You can 
even program it (for example, to run certain commands conditionally) using the standard Bourne 
shell constructs. However, be sure you know what you arc doing when you modify this me; a 
syntax error or a command that loops forever may cause the system to fail to enter multi -user 
mode. (In that situation, the only recourse is to bring the system up in single-user mode to 
correct your mistakes.) 

Any command can be put into the /ete/re file, but it is best to keep the file fairly small by 
including only those commands absolutely necessary to resume multi-user operation after a sys­
tem boot or reboot. Typically the first commands in /ete/re, after some introductory com­
ments, are the following two: 

HOME=/; export HOME 
PATH=/bin:/usr/bin 

These commands set the home directory and search path, so that subsequent commands do not 
have to include their full path specifications. Following this, the system decides whether it should 

September 1988 Chapter 2 



IBM/4.3 System Administration (;uide 

check the disks (by running the fsek program): 

if [ -r /fastboot ]; then 
rm -f /fastboot 
echo Fast boot ••. skipping disk checks> /dev/console 

elif [ $lx = autobootx ]; then 

else 

fi 

echo.Automatic reboot in progress ... > /dev/console 
date > /dev/console 
/etc/fsck -p > /dev/console 
case $? in 
0) date > /dev/console 

2) 

4) 

8) 

12) 

*) 

esac 

, , 
exit 1 
, , 
/etc/reboot -n 
; ; 
echo "Automatic reboot failed!" > /dev/console 
exit 1 . 
, , 
echo "Reboot interrupted" > /dev/console 
exit 1 

~bho "Unknown error in reboot" > /dev/console 
exit 1 .. , , 

date >/dev/console 

15 

As you can see, the disks will not be checked if the file /fastboot exists. This file is created 
by the program /etc/fastboot (and also by the program /etc/fasthal t) in order to 
have some easy way to indicate to /etc/rc not to check the disks. The set of commands fol­
lowing the second then is run only if the system is being automatically rebooted (in which case 
the rc script was executed with the argument autoboot). The disk checking program fsck 
is run with the -p option to "preen" the disk of any inconsistencies. Depending on the exit 
status of the fsck command (the value of the variable '$ ?'), the rc script will either continue 
executing commands, or exit with an error status. 

The next set of commands in a typical /etc/rc file is designed to ensure that the password 
file, /etc/passwd, has not been corrupted. The password file is essential for logging in, so it 
is important that a reliable version of it exist before users attempt to log in. If the file 
/etc/ptmp exists, the password file has very likely been corrupted; /etc/ptmp is a tem­
porary file created and usually removed by the command v1pw. 

if [ -s /etc/ptmp Ji then 
if [ -s /etc/passwd ]: then 

else 

f1 

Is -1 /etc/passwd /etc/ptmp > /dev/console 
rm -f /etc/ptmp 

echo 'passwd file recovered' > /dev/console 
mv /etc/ptmp /etc/passwd 

elif [ -r /etc/ptmp ]; then 

fi 

echo 'removing passwd lock file' > /dev/console 
rm -f /etc/ptmp 

This section of the /etc/rc script illustrates an important application of the script, namely to 
clean up the file system and several configuration files before entering multi-user mode. Here, if 

Chapter 2 September 1988 



16 InM/4.~.Systcm Administration Guide 

the file /ete/ptmp exists, it will be removed. Other similar tasks usually assigned to 
/ete/re include cleaning out temporary file directories, removing lock files, initializing alist of 
mounted file systems, and updating certain data base files. This is all accomplished by including 
commands like the following: 

/ete/umount -a 
ep /dev/null /ete/mtab 
jete/mount -a > /dev/eonsole 2>&1 
/ete/swapon -a > /dev/eonsole 2>&1 
/bin/ps -U > /dev/eonsole 2>&1 
rm -f /ete/nologin 
rm -f /usr/spool/uuep/LCK.* 
ehmod 666 /dev/tty[pqrs]* 

Toward the end of the file /ete/re, you will find the following command: 

sh /etc/rc.local 

This instructs the system to read and execute any commands found in the file 
/etc/rc. local. Typically this file contains any multi-user start-up instructions that are 
local to your machine. Por example, not an IBM/4.3 systems are attached to a local area net­
work, so the commands necessary to start up network operation are usually put into 
/etc/rc. local instead of /etc/rc. If your machine is attached to a network, you will 
probably fmd commands similar to the following in /etc/rc . local: 

hostname poisson 
ifconfig unO inet 'hostname' netmask 255.255.255.0 
ifconfig 100 localhost 
hostid 'hostname' 

The netmask is used to subnet a class B network. For example, the IP address 129.33.222.8 con­
tains a network number 129.33.222 and a host number 8. You do not need to include the Inter­
net address in the ifconfig command. I fconfiguses the host name to look up the 
address in /etc/hosts. 

Mter the local start-up script has been executed, control returns to the /etc/re rue. Three 
principal steps remain: preserving editor files, starting local daemons, then starting network dae­
mons. In part, the remaining section of the script looks something like this: 

eeho preserving editor files > /dev/eonsole 
(ed /tmpi /usr/lib/ex3.7preserve -a) 

eeho -n standard daemons: 
/ete/updatei eeho -n ' update' 
/ete/eron; eeho -n ' eron 
/ete/accton /usr/adm/aecti 

echo ' accounting' 

echo -n starting network daemons: 
if [ -f /etc/rwhod ]; then 

/etc/rwhod; 

fi 
if 

echo -n ' rwhod' 

-f /etc/inetd ]; then 
/etc/inetdi 
eeho -n ' inetd' 

September 1988 

> /dev/console 
> /dev/console 
> /dev/console 

> /dev/console 

> /dev/console 

> /dev/console 

> /dev/console 

Chapter 2 



IBM/4.3 System Administration Guide 17 

fi 

exit 0 

The /etc/rc ftle should end with the exi t (0) command as shown, so that ini t knows 
that the script has s~ccessfully accomplished its goals. Ini t will then proceed to start a getty 
process on the tenninallines and take logins. Multi~user start~up and initialization has been com­
pleted. At this point, a login banner should appear on the system console and on all tenninals 
attached to the system that are configured to accept logins. 

6. How to Shut Down the IBM/4.3 System 

To shut down the IBM/4.3 system, you must do more than just tum ofT the computer. A deli­
berate shutdown procedure must be followed to ensure that the ftle system is in a clean and 
uncorrupted state and that the disks are not being accessed when the power is turned ofT. This 
primarily involves notifying users that the system is to be shut down, terminating all active 
processes, switching to single-user mode, unmounting any mounted ftle systems, and updating the 
disks. Fortunately, the utility program shutdown is available to provide the system adminis­
trator with an automated shutdown procedure. 

6.1. Shutting Down Automatically 

The shutdown program automatically leads the system administrator through the steps 
required to bring the IBM/4.3 system either to its powered~off state or to a state from which it 
can be rebooted. The simplest way to invoke the command is as follows: 

# shutdown now 

The argument now requests an immediate shutdown, so the procedure will begin at once. In the 
future you can replace now in either of two ways: 

+ number 

to request that the shutdown begin in number minutes, or in the format: 

hour: min 

to request that the shutdown begin at the specified time of day, using a 24-hour clock. 

Regardless of how the command is invoked, a series of warning messages appear on the terminal 
screens of all users who are currently logged in, informing them of the impending shutdown. At 
this time, users should cease running processes and log ofT. They should also ensure that they 
have no processes running in the background. You can check to see that users have complied 
with your request to terminate all processing by running the ps command. A useful format can 
be obtained with the - aux options, as illustrated: 

:It ps -aux 
USER PID %CPU %HEM SZ RSS TT STAT TIME COMMAND 
root 20582 10.2 11.4 290 236 eo R 0:00 ps -aux 
root 91 0.2 2.8 76 50 ? S 34:31 /ete/rwhod 
root 52 0.0 2.7 98 48 ? S 9:17 fete/routed 
root 57 0.0 7.7 206 156 ? I 0:33 /usr/lib/sendmail -bd -q30m 
root 80 0.0 0.8 12 8 ? I 5:15 fete/update 
root 45 0.0 2.1 90 36 ? I 0:03 /ete/syslogd 
root 2 0.0 0.5 800 0 ? D 0:02 page daemon 
root 1 0.0 1.1 68 14 ? I 0:03 /ete/init -
root 0 0.0 0.4 0 0 ? D 0:03 swapper 
root 83 0.0 2.5 58 44 ? I 0:43 /ete/eron 
root 95 0.0 0.9 86 10 ? I 0:02 /etc/inetd 
root 100 0.0 4.4 108 84 ? I 0:01 /usr/lib/lpd 
root 20481 0.0 4.3 192 82 eo I 0:03 -esh (esh) 

Chapter 2 September 1988 



18 I1lM/4.3 Systcm Administration Guide 

As you can see, no one but root remains logged into the system and the only processes still 
running are special processes or daemons. Consequently, it is safe to continue the shutdown pro­
cedure. 

At five minutes before the specified shutdown time (or immediately, if a shorter interval was 
requested), the operating system disables further logins by creating the file /etc/nologin. 
The shu tdown program writes a message there indicating that the system is going to be shut 
down. If someone attempts to login to the system after this file has been created, the login 
program will print the message contained in /etc/nologin on the user's terminal, then exit. 
This file is removed just before the shu tdown program exits, so that the system allows logins 
once it has been rebooted. In addition, the operating system makes certain that the 
/etc/nologin file is removed if it still exists at multi-user start-up time. 

At the appointed time, shutdown causes the system to enter single-user mode. The system 
administrator is left with a shell on the system console. Any mounted file systems remain 
mO"!lnted, so you must now unmount them to complete the shutdown procedure. Execute the 
commands: 

# cd / 
# sync 
# sync 
# /etc/umount -a 

The shutdown sequence is almost complete. You still need to update the root me system by exe­
cuting the sync command. The sync command is one of the simplest user-level commands in 
the IBM/4.3 system, since it does nothing more than execute the s ync(2) system call, which 
causes all buffered disk updates to be written out to the disk. As you can imagine, however, this 
command is also one of the most essential administrative commands, since halting the processor 
without executing it may leave the disks in a non-current state, which can make the me system 
inconsistent. As just illustrated, it is recommended that you execute this command several times 
to make absolutely sure that the contents of in-core buffers arc flushed to disk. The disk updating 
is not necessarily complete just because you get a shell prompt back. To be safe, issue the com­
mand two or three times: 

# sync 
# sync 
# sync 

To power down the machine, first halt the processor with the hal t command: 

# halt 

Now wait until you see the following response from the system: 

syncing disks ... done 
halting (via wait); 

It is now safe to tum off the machine. To return to multi-user operation without powering 
down, type an end-of-me indicator instead of the ha I t command: 

# "d 
The system will re-enter multi-user mode. The start-up script / etc Irc will be executed, and 
multiple users will once again be able to use the system. 

A number of options are available with shutdown to allow the system administrator to over­
ride its default behavior. For example, the option - r requests that the reboot command be 
executed once the system reaches single-user mode. Similarly, the -h option will cause shut­
down to execute the hal t command automatically at the appropriate time. For a complete list 
of the available options, see shu tdown(8). 

Septcmber 1988 Chapter 2 



IBM/4.3 System Administration Guide 19 

6.2. Shutting Down Manually 

In some rare instances, you may need to bring the system down manually instead of using the 
shu tdown command. You do so by following these steps. First of all, notify any users who 
may be logged in that you are about to bring the system down. Either inform them personally (if 
there are only a few. users located close by) or use the wall command: 

# /bin/wall 
System being brought down in 10 minutes! Please log out. 
Ad 

This command writes the specified message on the terminal screens of all users who are currently 
logged in, including the system console. When everyone else has stopped all processing and 
logged off, enter single-user mode with the following command: 

# kill 1 

The system responds: 

# Feb 16 10:18:49 master syslogd: going down on signal 15 
erase ~H, kill AU, intr AC 

To indicate that you have entered single-user mode, the system also changes your shell prompt to 
the following string: 

master# 

(The string rna s te r is be replaced by the hostname of your machine.) Now issue the sync 
command several times and unmount any mounted file systems. Execute the commands: 

master# cd / 
master# sync 
master# sync 
master# /etc/umount -a 

Finally, update the root flie system and halt the processor: 

master# sync 
master# sync 
master# sync 
master# halt 

It is now safe to power off the system. A record of the shutdown prints on the console screen 
(perhaps too fast to read). If the syslogd error-logging daemon is correctly configured, a 
record is also placed in the log file /usr/adm/shutdownlog. See the chapter "System 
Messages" for complete instructions, on how to do this. 

7. System Crashes 

A system "crashes" when it ceases operation without having been told to do so. Many condi­
tions, both software- and hardware-related, can cause a system to crash. For example, if the sys­
tem is unable to write to or read from the paging device, the system will crash; when it does so, it 
may display the following short message on the system console: 

panic: hard 10 err in swap 

The notation panic is an indication that the system has crashed "voluntarily." This means that 
the system detected the error while performing one of its internal consistency checks and was 
unable to recover from the error. More importantly, the system "knew" that it had encountered 
an error that would make continued operation of the system impossible, and printed the message 
indicating what had gone wrong. When a system crashes voluntarily in this way, it attempts to 

Chapter 2 September 1988 



20 rBM/4.3 System Administration Guide 

save (or "dump") an image of the core memory onto a hard disk for post-mortem crash analysis; 
whether or not it succeeds, it then automaticallys invoke the reboot procedure to attempt to 
resume multi-user operation. 

It is also possible for a system to crash "involuntarily," in which case the system does not display 
a message or even try to create a core memory dump. Instead of attempting to reboot itself, the 
system hangs in a frozen state: no input is accepted from users and no output is produced by the 
system. 

7.1. Recovering from a Crash 

In the event of a system crash, you should do the following: 

(1) l\1ake sure that the system has actually crashed. Users may not get any response from the 
system, and hence think that the system has crashed, but there are a number of other rea­
sons for a lack of response. For example, the cable connecting a terminal to the system 
may have accidentally become disconnected, or the user may unknowingly have typed a 
I\S, thereby stopping any output. Also, users logged in across a local area network may 
mistake a network problem for a system crash. To make certain that the system has 
crashed, check the system console. If the system has crashed voluntarily, it most likely 
displayed a panic message on the system console. If the system crashed involuntarily, 
however, there may be no indication at all on the console terminal. If commands typed 
on the console keyboard are not echoed, the system has probably crashed. 

(2) Make an entry in your system log book indicating the time and date of the system crash. 
If an error message printed on the console screen, make a note of the message. 

(3) Reboot the system if it did not automatically reboot itself. 

(4) Run the me system checker, fsck, if the reboot process did not run it automatically. 
This step is essential to maintain a healthy file system. If the system crashed during a disk 
read or write, or before the in-core buffers could be flushed to disk, it is very likely that 
the file system was damaged. Fsck attempts to corree! any inconsistencies it fmds. Do 
not run fsck on any Andrew File Systems prrscnt on your system; you will destroy them. 
Instead, run vf sck on them. 

(5) If the system crashed voluntarily and succeeded in producing a core dump, you may want 
to analyze that dump to determine what caused the crash. See the following section for an 
overview of this process. 

7.2. Analyzing Crash Dumps 

In addition to printing a panic message on the console screen when it crashes voluntarily, the 
system also attempts to create an image of the core memory on a mass storage peripheral device. 
Usually the device chosen is the same as the primary swap area, so that important files in the me 
systems are not endangered. Also, the memory image is written at the end of the swap area so 
that the system can try to reboot. To be used for crash post-mortem analysis, this image must 
then be salvaged from the swap area after the system is rebooted. 

You can move the core image from the swap area by executing the savecore program. This 
program performs two main functions. First, it moves the core image from the swap area into a 
file called vrncore . 1 in whatever directory is provided as an argument to savecore. (If the 
me vrncore. 1 already exists, the 1 is replaced by the lowest integer not already in use.) At the 
same time, savecore saves the namelist in a file called vrnunix. 1 (again, where the 1 may 
replaced by some other numeral). Second, savecore sends a reboot message to the system 
message logging daemon, syslogd. The savecore cmnmand is usually included near the 
end of the multi-user initialization file, /etc/rc. local, so thatit is run automatically each 
time the system goes multi-user. (It is placed in /etc/rc. local instead of /etc/rc 
because the desired location of the saved core is usually site-speciftc.) See savecore(8) for 

September 1988 Chapter 2 



IBM/4.3 Systcm Administration Guidc 21 

further details on this process. 

Once moved to some location in the file system, the core image, or "dump", may be used to 
investigate the cause of the crash. To analyze a dump, you should run the utility adb, as fol­
lows: 

# adb -k.vmunix.l vmcore.l 

If this core image is the result of a panic, the panic message prints. (This is useful if the system 
rebooted itself automatically and the original pani c message has scrolled off the top of the 
screen.) Then run the command: 

$e 

which asks for a C stack trace from the point of the crash; this may provide some clues as to 
what went wrong. If you are not experienced with adb, see adb(l). 

8. Troubleshooting Hints 

Occasionally you may experience problems of various sorts in booting the system or in changing 
run levels. This section lists some common problems that may trip you up and suggests solutions 
to them. .' 

• 

Remember that in single-user mode only the root file system (probably called 
/dev /hdOa) is mounted. Files on other file systems will not be available, unless they are 
mounted manually (using the mount command). Generally this is not a problem, since 
those files will not be listed when an 1 s is performed. The main exception to this involves 
files which are symbolically linked to files in an unmounted file system. For example, the 
file /ete/gettytab as distributed is symbolically linked to the file 
/usr/ldir/ete/gettytab. When a file is symbolically linked to a file on an 
unmounted fue system, it may appear that the file is available on the mounted file system 
when in fact it isn't. For example, gettytab will appear in the output of an Is com­
mand performed in the jete directory, but you will not be able to read or edit the file. 
To make the symbolic link active, you must first mount the me system to which the link 
points. For more discussion of symbolic links, see Chapter 7. 

The command df prints the amount of free disk space on all normally mounted me sys­
tems, whether or not they are all currently mounted. It does so by inspecting the fue 
/etc/fstab and the list of all currently mounted file systems maintained in 
/etc/mtab. Only mounted file systems are list.ed in the sixth column. Compare the fol­
lowing two outputs from df: 

# df 
Filesystem 
/dev/hdOa 
/dev/hdOg 
/dev/hd1g 
# sync 

kbytes 
7413 

41299 
41299 

# umount /dev/hd1g 
# df 
Filesystem. 
/dev/hdOa 
/dev/hdOg 
/dev/hd1g 

kbytes 
7413 

41299 
41299 

used 
6672 

24001 
11175 

used 
6672 

24001 
11175 

avail capacity 
370 95% 

15233 61% 
25097 31% 

avail capacity 
370 95% 

15233 61% 
25097 31% 

Mounted on 
/ 
/usr 
/usr/src 

Mounted on 
/ 
/usr 

The command mount also inspects /etc/mtab and hence should provide an accurate 
picture of which file systems are actually mounted. IIowever, the mount table may have 
been left in an inexact state if the system was not shut down cleanly. Accordingly, the 
start-up script /ete/rc initializes the mount table by unmounting all mountable file sys­
tems, then truncating /ete/mtab to zero length. 

Chapter 2 September 1988 



22 IBM/4.3 System Administration Guide 

• In some rare instances, the system may not boot correctly from a powered-down state. 
When you receive the boot prompt and press return, you may see diagnostic messages simi­
lar to these: 

hdOc adapter f00001fO didn't interrupt 
hdOc ~dapter f0000170 didn't interrupt 
fdOc adapter f00003f2 IRQ 6 CPU level 4 
[some lines deleted) 
root on fdO 
panic: swap blocks <=0 

If this occurs, you can either boot the systcm from a floppy diskctte or load the standalone 
utility shell and execute the boot program from within the utility shell. The second method 
is generally successful in helping the system "find" the disk controller hdOc. 

September t 988 Chapter 2 



CI-IAPTER 3 

Reconfiguring the Operating System 

t. Introduction 

The kernel is the heart of the IBM/4.3 operating system and is responsible for starting processes, 
managing available core memory, and reading and writing the system's secondary storage media. 
It services requests received from the user's shell program and manages all hardware interactions. 
Only by accessing the kernel (by issuing a command to a shell) does a user actually get work done 
on the IBM/4.3 system. 

Because the hardware on one machine may differ from that on another, you need to customize 
the kernel for each actual hardware environment. For example, there may be a network adapter 
installed on one machine but not on another; the operating system for the latter machine need 
not include the network access routines. The process of creating customized kernels is called 
"kernel reconfiguration." By reconfiguring the kernel of a particular machine, you can control the 
peripheral devices available to the system, the layout of disk partitions and file systems, network 
access to the machine, and other hardware-related features. 

Although kernel reconfiguration is largely concenled with tailoring the system to the available 
hardware, it is not limited to hardware components. It also changes the system's idea of the time 
zone in which it is operating, the maximum number of users allowed to log in at anyone time, 
the internal system identification, and other parameters that are not directly related to the underly­
ing hardware. Moreover, you may need to reconfigure your kernel to use optional software such 
as the Andrew File System or the disk space quota subsystem. Reconfiguring the kernel enables 
the operating system to provide the desired functions in your specific hardware and software 
environment. 

The process of reconfiguring the kernel is accomplished in part by the utility program config. 
This tool reads a file describing system parameters and hardware devices, and generates files which 
are used, together with the IBM/4.3 system source code, to build a new IBM/4.3 kernel appropri­
ate to that environment. Finally, this new kernel must be installed as /vrnuni X and the system 
rebooted before the new configuration can take effect. This procedure greatly simplifies system 
maintenance by isolating most system dependencies in a file that is easy to read and modify. 

This ehapter describes the steps required to create, install, and boot a new kernel. It is intended 
to accompany, rather than replace, the artiele "Building IIlM/4.3 Systems with Config" in 
Volume II of the IBM/4.3 documentation. That article provides a terse but complete description 
of the configuration process. It also provides several important appendices describing the gram­
mar used by c onf i g to parse configuration files, the nIles to assign default values for device 
parameters, and several other topics. 

2. Overview of the Reeonfiguration Process 

To reconfigure a kernel, you must have the IIlM/4.3 system source code available on a machine 
at your site. As the IBM/4.3 system is distributed, the kernel source is located in the directory 
jusrjsys. However, the source code may be located anywhere in the me system hierarchy, as 
long as you create a symbolic link from the directory jsys to its actual location. The remainder 
of this chapter gives path names relative to the directory jsys. 

IBM/4.3 System Administration Guide 23 



24 IBM/4.3 System Administration Guide 

Within the jsys directory is a directory namedconf. 'It contains the configuration files you 
need to modify to reconfigure the kernel. One such configuration file, GENER I C, is supplied 
with the IBM/4.3 distribution and corresponds to the kernel, /vrnuni x, as distributed. If your 
kernel has already been reconfigured, you should find additional configuration mes in the 
/sys/conf directory. 

The illustration below shows the six main steps to generate a newly-configured kernel suitable for 
booting. 

o 

r------, r-------------, 

<> B H config~ D D D ~ make HJ 
~ ______ j <> l_Q_Q_Q_~ 0 <> new kernel 

configuration file header files, etc. 

Figure 3-1: Generating a New Kernel 

(1) Create a configuration me for the system to be generated. Usually you can simply copy 
an existing configuration file and make any necessary changes to the copy. For example, 
if you are reconfiguring your kernel for the first time, copy the template GENER I C and 
make changes to the new copy. The contents of a configuration file are described below 
in detail. 

(2) Create a directory to hold a number of files that are used in the kernel construction pro­
cess. (In the following discussion, this directory is called the "target" directory.) By con­
vention, this directory is given the same name as the configuration file and is located in the 
directory Isys, the parent directory of the one holding the configuration files. For 
example, if your new configuration file is named NEW, you would need to create the direc­
tory Isys/NEW. As illustrated, it is a good practice to capitalize the name of your con­
figuration file (and the names of its associated target directories). This helps isolate the 
configuration subdirectories in the Isys directory from other files and directories that 
may be located there. 

(3) Run the utility confiq on the new configuration file. Confiq will read that me and 
generate a prototype makefi Ie and several header files (files with names ending in . h) 
in the target directory. 

(4) Construct source code dependency rules for the system being created. Move into the tar­
get directory and type: 

# make depend 

September 1988 Chapter 3 



IBM/4.3 System Administration Guide 25 

A modified make f i 1 e will be created for use ill the next stage of the reconfiguration 
process. 

(5) This step recompiles the system source code according to the directions now contained in 
the makefi Ie. Type the command: 

#: make vmunix 

A large number of object modules (files with names ending in .0) wHl be created in the 
target directory, along with a file called vmuni x. This is the new bootable system image, 
or kernel. 

(6) Install the newly-created system image as the boot able kernel. After saving a copy of your 
current vmunix kernel, copy the new file vmunix located in the target directory into 
the root directory, I. 

(7) Reboot your machine to try out the new kernel. 

As you can see, the process involved in creating and installing a new kernel is reasonably straight­
forward and automatic. You should only have to edit the configuration file, which is relatively 
easy to understand and modify. The next several sections describe in detail the contents and for­
mat of the configuration file processed by c onf i 9 in step 3 above. 

3. Format of the Configuration File 

A configuration me consists of an arbitrary number of lines, each of which begins with either a 
keyword, some white space (indicating that it is a continuation of the preceding line), or a pound 
sign, #: (indicating that the line is a comment and is to be ignored by config). There are three 
kinds of parameters specified in the configuration file, usually in the following order: 

• Global configuration parameters apply to aU of the system images to be generated from this 
single configuration me. 

• System image parameters are specific to each separate image to be generated from this single 
configuration rue. 

• Device specifications indicate the kinds of devices that either are or will be attached to your 
machine. 

3.1. Global Configuration Parameters 

The seven global configuration parameters are listed and described in the following table. For 
more detailed information, please see Chapter 4, "Configuration File Syntax" and Appendix C, 
"Sample Configuration File" of "Building IBM/4.3 Systems with Config" in Volume II of the 
IBM/4.3 documentation. 

Chapter 3 September 1988 



26 

Keyword 

machine 

cpu 

options 

makeoptions 

timezone 

ident 

maxusers 

Arguments 
type 

"type" 

list 

list 

number 

name 

number 

IBM/4.3 System Administration Guide 

Description 
The new kernel is to run on machine type type. This in­
fonnation is used to locate certain data files that are 
specific to the machine type. It is also used to select 
rules in constructing the resulting configuration files in 
the target directory. 
The system is to run on a central processing unit (CPU) 
of the specified type type. Multiple types are allowed, 
subject to certain constraints, in which case the new ker­
nel will be configured to run on all of the listed CPUs. 
Note that the type must be enclosed in double quotes. 
The optional sections of code in the specified list are in­
cluded in the new kernel. For example, the optional 
quota subsysteITI is included by adding the value QUOTA 
in the list. Multiple options may be separated by com­
mas, or they may each follow a separate options key­
word. 
Options may be passed to the make utility by including 
them in the specified fiJt. 
The system is to run in the specified time zone. The 
number is the number of hours that the desired time 
zone is west of Greenwich Mean Time (GMT). For ex­
ample, Pacific Standard Time is 8 hours west of GMT. 
The new system is to be known as name. This name is 
used primarily to select machine-specific sections of code 
using the #i fdef preprocessor directive. Accordingly, 
name should be all uppercase to conform to nonnal 
#define syntax practices. 
The kernel is to accommodate a maximum of number 
users at one time. There may be many more user ac­
counts (as specified in the user account data base, 
/etc/passwd), but only this many users may simul­
taneously access the syst.em. 

Table 3-1: Global Configuration Parameters 

Each of these keywords must be present on a tine in the configuration file except for the 
options keyword (which is optional). Most system configuration files, however, specify some 
options for inclusion in the system image. One widely-used option is INET, which specifies that 
the kernel include code relevant to network operation. Another common option is XWM, which 
requests support for the X Window System, upon which parts of the IBM Andrew rile System 
are built. 

Note that if you include certain of the available options, you may also need to specify that the 
system be configured to recognize particular hardware or pseudo-hardware devices. For example, 
if you request network support by specifying the INET option, then you must configure the ker­
nel to support the network pseudo-devices inet, ether, and pty. The appropriate fonnat of 
such specifications is discussed below in the section "Pseudo-Device Specification." 

3.2. System Image Parameters 

System image parameters are specified beginning with the keyword config. The simplest pos­
sible specification is this: 

September 1988 Chapter 3 



IBM/4.3 System Administration Guide 27 

config vmunix swap generic 

This specification instructs confi g to follow its default rules for determining the location of the 
system swap space, the root partition, the device for proccssing argument lists, and the device to 
dump the system image in the case of a system crash. The current IBM/4.3 distribution estab­
lishes the default root partition in partition a of disk 0, while all the other default parameters are 
set to partition b of disk O. 

You can override config's default behavior by specifying the system image parameters. A 
moderately complex config line might look like this: 

config vmunix root on hdO swap on hdO and hdl 

The root clause specifies the location of the root file system; in this example, the root file sys­
tem is to be found on device hdO (which is the default location). This line also specifies that 
swapping and paging activity are to occur on both hdO and hdl. (However, note that swapping 
and paging will not occur on the second device listed until the system administrator enables the 
additional areas with the swapon command. Usually, the line 

/etc/swapon -a 

is placed into the multi-user start-up file so that the additional swapping and paging areas are 
enabled automatically at boot time.) 

Several C onf i g keywords may occur in a single configuration file, indicating that multiple sys­
tem images are to be generated from that file. See below for a further discussion of creating mul­
tiple images. 

3.3. Device Specifications 

The most complicated part of the configuration file, and usually the largest, is the specification of 
the hardware devices and pseudo-devices that may be attached to the machine. At boot time, the 
kernel goes through an autoeonfiguration phase during which it tests for the existence of the 
hardware specified in the configuration file. To do this, the system must have some idea of which 
devices might be present on the system. The system is configured to look for particular hardware 
devices by supplying the appropriate information to config. Note that you can configure a 
system image for hardware devices that are not actually attached to a system. This flexibility 
allows you to generate kernels that will accommodate hardware devices that you plan to attach to 
the system in the future. Only the actual hardware found during the autoconfiguration phase of 
the boot process will be used by the system. 

On the IBM/4.3 system, there are four possible device specification keywords, whose syntax is as 
follows: 

controller name info. 
device name info 
disk name info 
tape name info 

A controller is an adapter that uses DMA or controls one or more disks or tapes. The master 
controller is named ioccO, as explained below. Other controllers are attached to it, as are some 
other devices (such as serial output connectors). Tape and disk drives are attached to their own 
appropriate controllers. Aside from the root controller, each device must be attached to some 
other device, in accordance with the following rules: 

• A controller must be attached to another controller. 

• A disk or tape must be attached to a controller. 

• A non-slave device must be attached to a controller. 

Chapter 3 September 1988 



28 IBM/4.3 System Administration Guide 

The information included in the string info specifics where in the logical hierarchy of devices the 
device in question is attached, and hence typically begins with the keyword at. The logical 
hierarchy of device specifications mirrors the hierarchical nature of the actual physical connec­
tions, so it may be helpful to consider the following simple diagram of a machine and its attached 
hardware. 

Il~,~~,~~ ~ ~ Ll!9 ~ ~ ~ 
D D EJ Is I I~)I D D 
lanO hdO hd2 fdO seO se7 

D Is I stO 
D D fdl 

Input/Output hdl scI se8 
Control Channel 

(IOCC) 

D D 
se6 seI3 

Figure 3-2: A Machine's Controllers and Devices 

The top of the physical hierarchy is the input/output control channel, or IOCC, which consists of 
circuitry on the main system board. The Ioec is the channel by which all peripheral equipment 
(attached devices, controller cards, and even physical memory) communicates with the central 
processor. All controllers and some devices are connected directly to the IGCC, 

by plugging them into an available expansion slot. Other devices arc attached to the lace only 
indirectly, by attaching them to some other controller. In the diagram, there are seven controllers 
depicted, all of which connect directly to the loec. Devices may then be attached to those con­
trollers. For example, the hard disk hdO is attached to the hard disk controller, hdcO, which 
resides in one of the available bus slots. Purther, a streaming tape drive, stO, is attached to the 
streaming tape controller, stcO. 
It is relatively straightforward to convert the diagram of the physical set-up into a list of device 
specifications. By convention, the lace has the following specification: 

controller ioccO at nexus ? 

Other controllers are described by giving the name of the controller, the name of the controller to 
which it is attached, the controller adapter base address, and the interrupt level. For example, the 
frrst three controllers might have specifications as follows: 

controller lancO at ioccO csr Oxf00001cO priority 12 
controller hdcO at ioccO csr Oxf00001fO priority? 
controller hdc1 at ioccO csr Oxf0000170 priority? 

The question mark ? indicates that the priority is left unspecified and is to be determined by the 
operating system at boot time. This is known as "wildcarding" a device specification. 

Similarly, devices are specified by listing the name of the device, the name of the controller to 
which it is attached, the controller adapter base address, and the interrupt level. So the device 
lpO may be specified as follows: 

September 1988 Chapter 3 



IBM/4.3 System Administration Guide 

device IpO at ioccO csr Oxf00003bc priority 9 

Moreover, the devices attached to their own controllers are listed as follows: 

disk 
tape 

hdO 
stO 

at hdcO drive 0 
at stcO drive 0 

29 

The recommended controller adapter base address and interrupt priority level for a specific device 
may be obtained by consulting the appropriate manual page in Section 4 of Volume 1 of the 
IBM/4.3 documentation. . 

3.4. Wildcarding 

As just mentioned, it is possible to leave certain device information unspecified in a device specifi­
cation. Whatever information is lacking will be obtained, if possible, by the system as it checks 
its attached devices and controllers in the autoconfiguration stage of the boot process. This pro­
cess of wildcarding device specifications allows you to omit device location information, thereby 
generating a more flexible system image. 

To appreciate the value of wildcarding device location information, consider the following specifi­
cations: 

controller hdcO at ioccO csr OxfOOOOlfO priority ? 
controller hdcl at ioccO csr OxfOOOO170 priority ? 
disk hdO at hdcO drive 0 
disk hdl at hdc ? drive ? 
disk hd2 at hdc ? drive ? 

The controller and drive number specifications have been omitted from the last two disk specifica­
tions to allow disks hdl and hd2 to be attached to either of the two disk controllers present on 
the machine. In that case, you can move a disk from one controller to another, if necessary, 
without having to reconfigure and install a new kernel. This type of wildcarding means that the 
system will be able to configure itself for any of the following hardware configurations involving 
three disks: 

~ ~ ~ ~ ~ ~ 
EJ EJ EJ EJ EJ EJ 
hdO hd2 hdO hdl hdO hdl 

EJ EJ EJ 
hdl hd2 hd2 

Figure 3-3: Sample Disk Connections in a \Vildcarded System 

Don't forget that a system can be run without all the devices specified in the configuration file. 
The configuration rue specifies devices which may be present on the system. As a result, several 
more hardware configurations are possible by removing either hdl or hd2. 

3.5. Pseudo-Device Specifications 

There are several software subsystems that require software drivers similar to the ones compiled 
into the kernel as device specifications for hardware controllers and devices, but for which no 
actual hardware exists. For example, when a user remotely logs in from one system to another 
using the rlogin command, a "pseudo tenninal" is used on the remote host to manage the 
user's login session. The kernel on the remote system receives input across the network through 
the pseudo terminal and sends any output there. There is no actual second terminal being used, 

Chapter 3 September 1988 



30 IBM/4.3 System Administration Guide 

nor is there an actual physical serial port in usc. Rather, 'the kernel accesses the user's terminal 
through a pseudo terminal entry in the /dev directory and treats the port as if a terminal were 
attached to it. Because such software subsystems require device drivers but do not access any 
actual hardware, these devices are collectively called "pseudo-devices." In addition to pseudo ter­
minals, the kernel uses pseudo-devices to communicate across a local area network (using the 
inet and ether pseudo-devices) and even with itself (using the loop software loopback 
interface). Also, support for the X Window System is provided in part by configuring the kernel 
with the xemu 1 pseudo-device. 

There is a second large class of pseudo-devices that in fact are connected to specific hardware dev­
ices but which require special handling over and above that provided by device drivers for normal 
serial lines. As a result, these devices are also treated as pseudo-devices, even though, strictly 
speaking, they do have associated hardware devices. Por example, if a mouse is attached to your 
machine, allowing you to point at and highlight objects on the screen, the kernel needs to be able 
to select the method by which, it will accept data from the mouse and interpret it. Since these 
funCtions exceed those provided by the normal tty driver, the kernel must be configured to 
include the additional sections of code that govern the mouse operation. This is done by specify­
ing the mouse as a pseudo-device. Similarly, some graphics display monitors (or screens) require 
specialized routines to write data and graphics in an optimal fashion. Once again, the additional 
code required by the kernel in order to manage the display device is included by configuring the 
kernel for a further pseudo-device. 

The following are standard pseudo-devices available on the IBM/4.3 system: 

Name 
pty 
ms 
mono 
aed 
ega 
apasixteen 
apaeight 
apaeightc 
inet 
ether 
loop 
xemul 
tb 
ap 

Description 
Pseudo terminals 
Mouse device 
Monochrome Display Monitor 
Academic Information Systems experimental display 
Enhanced Color Graphics Display 
IBM 6155 Extended Monochrome Graphics Display 
IBM 6153 Advanced Monochrome Graphics Display 
IBM 6154 Advanced Color Graphics Display 
Internet Protocol Suite 
ARP on Ethernet and Token-Ring 
Software Loopback Interface 
X Window System support 
Digitizing Tablet 
IBM 3812 Pageprintcr 

Table 3-2: Standard Pseudo-Devices 

Section 4 of Volume I of the InM/4.3 documentation contains a complete list of available 
pseudo-devices. 

In order to configure the kernel to understand how to communicate with these devices and to 
allocate them memory and buffer space, the configuration file must contain an entry for each type 
of pseudo-device. The general form of a pseudo-device specification is as follows: 

pseudo-device name [number) 

As you can see, these entries are simpler than those for normal devices, since they do not need 
either a base address or interrupt level specification. The only allowable argument, which is 

September 1988 Chapter 3 



IBM/4.3 System Administration· Guide 31 

optional for most pseudo-devices, is an indication of how many of the 'named devices to create. 
For example, by default the kernel is configured to allow 32 pseudo terminals. If more of them 
are needed (perhaps because a particul~r machine will be used heavily for remote logins), then an 
argument may be supplied. The standard pseudo-devices on the IBM/4.3 system are configured 
as follows: 

pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 
pseudo-device 

pty 
rns 
mono 
aed 
ega 
apasixteen 
apaeight 
apaeightc 
inet 
ether 
loop 
ether 
xemul 4 
ap 

The argument on the xemul entry indicates that at most four separate invocations of the X 
Window System may be active at a time. Note that if the i ne t pseudo-device is listed, then the 
I NET option must also be listed in the options section at the beginning of the C onf i 9 file. 

4. Creating Multiple System Images 

As indicated earlier, the confi 9 utility allows several system images to be generated from a sin­
gle configuration me. The multiple system images are configured for identical hardware and glo­
bal configuration parameters, but they may differ in the location of the root me system or in the 
location of the swapping and paging devices. ' 

To create multiple system images from a single configuration file, that file must contain multiple 
confi 9 lines, each specifying a different system name. For example, you might include the fol­
lowing two lines: 

config vmunix 
config swvmunix 

root on hdO 
root on hdO swap on hdO and hd! 

Reconfiguration proceeds as described in the overview at the beginning of this chapter, except that 
in step 5 you must now give the two commands: 

# make vmunix 
# make swvmunix 

The result is the creation of two different kernels in the target directory, named vmunix and 
swvmunix. You may install both of them in the root directory and then later boot the system 
from whichever image you choose. 

5. A Sample Kernel Reeonfiguration 

This section takes you through a kernel reconfiguration process step by step. For clarity, we will 
make a very simple change to the kernel, to allow use of the optional quota subsystem. With the 
quota system you can impose disk space quotas on individual users and individual file systems to 
help ensure that the system does not run out of space. A more complete description of the 
operation of the quota system is contained in Chapter 14, "Quotas." Before making the changes 
outlined here, you should read that chapter to detennine whether you should install the quota 
system on your machine. Even if you do not install this subsystem, it may still be helpful for you 

Chapter 3 September 1988 



32 IIIM/4.3 System Administration Guide 

to read the fol1owing walk-through to acquaint yourself wit.h the exact steps required to configure 
and install a new kernel. 

To begin, move into the directory that contains the 'configuration files, /sys/conf: 

# cd /sys/conf 

In that directory you should see a file named GENER I C, which contains the system description 
for the system as distributed by IBM. To modify the file so it includes the quota subsystem, copy 
it and modify the copy. 

# cp GENERIC GEN_QUO 

The name GEN_QUO suggests the new kernel will be like the generic one, with the addition of 
the quota system. (You can of course choose any name you like.) Now edit the file you just 
created (using vi or an editor of your choice) and addthe following line to it. Place the new line 
immediately after the last line beginning with the options keyword. (There are about six such 
lines.) The amount of white space between the two words is irrelevant. 

options QUOTA 
Now save your changes and exit to the shell. 

Next, create a directory to hold the various files used in the configuration process. As indicated 
above, by convention this directory should be given the same name as the new configuration file 
and located in /sys. Type: 

# mkdir .. /GEN_QUO 

Now run the config program with the name of the new configuration file as an argument. 
Type: 

# config GEN_QUO 

This step should finish rather quickly, at which time config will print the fol1owing reminder: 

Don't forget to run "make depend" 

When you see this message, move into the target directory: 

# cd .. /GEN_QUO 

Several mes should now exist in that directory, including a file named makefi Ie used by the 
program make. You do not need to edit any of those files; instead, continue the reconfiguration 
process by typing: 

# make depend 

This step builds rules used by make to recognize interdependencies in the source code. This 
process takes ten minutes or longer, depending on the machine you are running it on. When it 
completes, type the following command: 

# make vmunix 

At this point, the system will recompile the system source code to create a new bootable kernel 
that incorporates the disk quota subsystem. This process is somewhat more lengthy than the pre­
vious make command and may take an hour or more to complete. 

When the make vmunix command completes, the current directory will be populated with a 
large number of object modules (files with names ending in .0) and a new kernel, named 
vmuni x. This is your new bootable system image. You must now install it as the boot pro­
gram, /vmuni x, as follows: 

# cp /vmunix /vmunix.old 

September 1988 Chapter 3 



IBM/4.3 System Administration Guide 33 

# cp vrnunix /vmunix 

The first of these two commands saves your current system image under a different name, so that 
it can be booted if for some reason the new kernel does not operate as expected. The second 
command installs the kernel you just created as the bootable system image. You can see that the 
new /vrnuni X indeed includes routines not in the previous one by looking at the sizes of the 
two flIes: 

# Is -1 /vrnunix* 
-rwxr-xr-x 1 root 
-rwxr-xr-x 1 root 

731136 Feb 
720896 Feb 

9 11:54 vrnunix 
9 11:54 vrnunix.old 

The additional size accounts for the quota-related routines. To complete the entire process, 
reboot your system: 

# sync 
# sync 
# reboot 

You will be able to tell that the system is booting from your newly-configured kernel by inspect­
ing the boot banner that appears: 

4.3BSD UNIX(GEN_QUO) #0 Fri Feb 5 13:07:17 PST 1988 
root@master:/usr/sys/GEN_QUO 

You have successfully reconfigured your kernel to include the disk quota subsystem. To continue 
the quota configuration process, refer to Chapter 14. 

6. Kernel Management Tips 

The kernel is the most important program in the entire IBM/4.3 system. It is therefore crucial 
that you exercise care in modifying your kernel and installing the modified version as your boot­
able system image. In addition to the various pieces of advice given throughout this chapter, the 
following tips will help you maintain the smooth operation of your system: 

• Never build or install a new kernel that has not been successfully configured. If any error 
messages occur during the conf i 9 processing, try to determine what specifications are 
causing trouble and then correct them. 

• Always install a new kernel as /vrnuni x. Many programs available on the system expect 
the currently executing system image to be called /vrnuni X and are likely to give very 
strange (and not very useful) results if you install the kernel under a different name. 

• When you install a new kernel, always save a copy of the old kernel. Then, if the new ker­
nel fails to boot or operate as expected, you will be able to boot from the previous kernel. 
In particular, you should save the generic distribution version of the operating system 
(whose configuration me is /sys/conf/GENERIC) permanently as /genvrnunix so 
that the system can be booted from it in case of emergency. 

Chapter 3 September 1988 



34 IIJM/4.3 System Administration Guide 

This page intentionally left blank. 

September 1988 Chapter 3 



CHAPTER 4 

Managing User Accounts 

1. Introduction 

The IBM/4.3 system allows simultaneous access to machine resources by numerous users, who 
may be connected to the system directly through terminal1ines and modems, or remotely through 
a local area network. In either case, the IBM/4.3 system controls the use of its resources with a 
simple scheme involving user· name.r, password.r, and groups. To gain access to a particular 
machine, a person must be able to provide a valid user name and the correct password associated 
with that name. Moreover, to use certain files and peripheral devices, a user must have the 
correct permissions. By maintaining a closely-monitored list of login names and passwords and 
suitably determining ftle permissions, a system administrator can tailor access to system resources 
with a great deal of flexibility and control. 

The tasks for managing user accounts discussed in this chapter include choosing login names and 
passwords, adding accounts for new users, removing old or inactive accounts, and restoring for­
gotten passwords. Refer to later chapters in this manual for help on related tasks such as setting 
permissions, backing up and restoring user files, adding terminals and peripheral devices, and 
establishing quotas on system disk space. 

2. Overview of a User Account 

A user account is a collection of files, directories, programs, and other items that are associated 
with a user name (or login name). The following diagram depicts the main files and directories 
relevant to a typical user account. 

-, 
I 
I 

I I 

I csh I L ___ J 

login 
shell 

user information 
databases 

system 
mailbox 

I 
I 
I 
I , 
I I 

'.login .cshrc I L ____________ J 

home directory 
and start-up files 

Figure 4-1: Elements of a User Account 

IBM/4.3 System Administration Guide 35 



36 IIJM/4.3 System Administration Guide 

In this example, the account is assigned to a programmer' with login name tim. Accounts are 
created and removed by the system administrator, primarily by adding or deleting lines from the 
account data base file, /etc/passwd. Although many persons can share a single account, it 
is generally preferable to have one account per user. Then, if sevcral persons must be given access 
to the same set of files, the users can be put into the same group. It is recommended that each 
person be assigned·a separate account, especially if the system accounting procedures are in use 
and users are charged for resource consumption (CPU time, disk space, etc.). 

To establish a new user account, the system administrator will need the following six pieces of 
information: 

• login name 

• password 

• user identification number 

• group identification number 

• home directory 

• login shell 
The function and proper format of each of these items is explained in the following subsections. 

2.1. Login Name A login name (or user name). is a string of characters that uniquely identifies a 
user to the operating system. The login name should be no more than. 8 lowercase alphanumeric 
characters and is usually chosen by the system administrator in consultation with the user. Typi­
cally, the user's last name, suitably made all lowercase, is taken as the login name. For instance, a 
user whose last name is Smith might be given the login name smi tho The main exception to 
this practice occurs when a number of related accounts need to be created for use by class 
members or department personnel; in such a case, a standard practice is to begin each such 
account name with a five-letter prefix followed by a hyphen and an arbitrary two-letter sequence. 
(For example, the members of a Philosophy class may be given account names of the form 
philo-aa, philo-ab, philo-ac, and so on.) Whatever naming scheme is adopted, a 
login name must be unique on the system. A user's current login name may be displayed by the 
who ami command. 

2.2. Password A password is a string of characters that the user must provide during the login 
process to be allowed access to a particular machine. (The password is not echoed on the screen 
when typed by the user, so other people in the immediate area will not be able to see it.) The 
password should be at least six characters long and composed of a reasonably random combina­
tion of letters, digits, and special characters. This helps ensure that unauthorized users do not 
easily guess the passwords of other users. 

2.3. User Identification Number The u,rer identification number(or uid) is a numerical indication 
corresponding to the login name. It is used by the operating system and by certain utilities to 
control access to files and directories and can largcly be ignored by the average user. When set­
ting up a new user account, the system administrator must assign each new user a unique user 
identification number. This number must be an integer between 0 and 65535 and is typically 
taken to be the integer following the largest existing uid. The user identification number 0 is 
reserved for the superuser (whose login name is 'root'). 

2.4. Group Identification Number Groups are used to control access to files and directories; this 
is useful to allow members of a project to work on a set of files without each of them having to 
log in using the same user name. A user must belong to at least one group, and may belong to 
several. The group identification number (or gid) is a numerical indication of the group a user ini­
tially belongs to. As with the user identification number, this number must be an integer between 

September 1988 Chapter 4 



IBM/4.3 System Administration Guide 37 

o and 65535. Traditionally, system staff (including the superuser, root) are given a group iden­
tification number of 10. A user may display the current group memberships by entering the 
groups command. 

2.5. Home Directory Each user needs a place to store personal mes and directories. The top 
directory allocated to a specific user is known as that user's home directory. In addition to per­
sonal mes and directories, a number of start-up files (for example, . login, . c shrc, 
. mai 1 rc, . newsrc, and similar files) will be put there. Generally, a part of some file system 

is dedicated to holding user home directories, so that these directories are collected together for 
easy backup and restoring. The location of users' home di.rectories is, however, one of the least, 
standardized features of the IBM/4.3 system. Sometimes part of the /usr file system is used, 
while many installations prefer to dedicate an entire file system, or even multiple me systems, to 
user directories. You should investigate the existing local practices, if any, to find out where on 
your system user home directories are located. In this guide, examples will generally assume that 
the flie system /users is the root directory of user home directories. 

2.6. Login Shell Once a user has provided a correct user name and password, the system 
launches a process for the user known as the login shell, which will persist until the user logs out 
of the system (or until the user changes the login shell). The shell interprets user commands and 
sends appropriate instructions to the operating system for execution. In this way, the shell lies 
between the 'user and the system (or "kernel"). Typically the login shell for a user is set to either 
/bin/csh (the C shell) or /bin/sh (the Bourne shell). In fact, however, practically any 
IBM/4.3 program can be assigned as a user's login shell; it is perfectly legal, for example, to 
specify the login shell as the program dc (in which case that user will perceive the system as a 
very fast and precise desk calculator). Within certain limits, a user can change the login shell 
without assistance from the system administrator, as illustrated below in the section "Customizing 
User Accounts". 

3. Adding New Users 

There are three major steps involved in adding a new user account to the IBM/4.3 system. First, 
a line must be added to the flie /etc/passwd summarizing the necessary user infonnation 
listed above. Second, a home directory must be created to give the new user a place to store per­
sonal flies and directories. Third, several other files need to be created for the new user, including 
start-up files and a system mailbox. 

3.1. Editing the Password File 

The me /etc/passwd is the primary storehouse of account-oriented information on the 
IBM/4.3 system. It contains a number of lines that encapsulate the six pieces of account infonna­
tion listed above (one line per user or system account). The general format of a line in the file 
/etc/passwd is: 

login-name: password: uid: gid: user-info: directory: shell 

Format 4-1: /etc/passwd 

There are seven fields here, each separated from the next by a colon, ':'. A sample line in 
/etc/passwd might therefore look like this: 

smith:1Kd6jEOIUPoJE:341:30:Bert &,117E,8396407:/users/prog/smith:/bin/csh 

The first field is the user's login name and the second is that user's password. Note that the pass-
word appears only in an encrypted form, so that even though users on the system can look into 
/etc/passwd, they cannot easily get a usable password from it. The fourth field contains 

Chapter 4 September 1988 



38 I1JM/4.3 System Administration Guide 

user information; generally this includes three items separated from one another by a comma: the 
user's real name (where the ampersand is replaced by the capitalized user name), the user's office 
number, and the user's phone number. (These three suhfields are used by the finger pro­
gram.) The last two fields are the home directory and login shell for the user. 

While setting up a new user account, the system administrator must edit the file 
/etc/passwd to add a line of this form. Since the password file may be updated by ordinary 
users (for exatnple, using the commands chsh and chfn), it must first be locked before it can 
be edited by the system administrator. This may be accomplished using the vipw program. So 
type: 

# vipw 

The vipw command is the recommended way to make all changes to the password me for 
another reason too: when the password file is updated, the vipw command automatically runs 
the command mkpasswd. mkpasswd generates hashed password data base mes, 
/etc/passwd. pag and jetc/passwd. dir, which are used by the C-Ianguage library 
routines getpwnam () and getpwuid ( ). The use of these hashed data files by the pass­
word lookup functions (instead of a linear search of the normal password file) improves response 
time and system performance. 

Once the me /etc/passwd is opened for editing, add a line containing the information for a 
new account. This line should look just like the example given above with suitable changes 
made, except that you should leave the password field empty. There is no point in putting in a 
password for the new user, since /etc/passwd needs to contain the encrypted password. For 
example, you might add the following line to this file: 

smith::341:30:Bert &,117E,8396407:/users/prog/smith:/bin/csh 

When you are done adding a new account entry to /etc/passwd, save your changes and exit 
to the system. Then type: 

# passwd smith 

where 'smi th' is the login name of the new user. At this point, the passwd program will ask 
you for the new password (and have you enter it a second time, to make sure you didn't mistype). 

3.2. Creating a Home Directory 

Once an entry has been added to /etc/passwd, thc systcm administrator must create the 
home directory listed in the sixth field of that entry. This is done with the mkdi r command. 
For example: 

# cd /users/prog 
=It mkdir smith 

Next, you will need to pass ownership of the new directory to the new user. Type: 

=It chown smith smith 
=It chgrp prog smith 

In this example, smi th is the login name of the new user and prog is that user's default group 
(a group of programmers). For more information on the chown and chgrp commands, see 
the sections "Changing the Owner of a File" and "Changing the Group of a File" below. To 
make sure that the directory has been created and given the correct ownership and group, type: 

# Is -ld smith 

The output of this command should look something like this: 

drwxr-xr-x 2 smith 512 Nov 11 21:08 smith 

September 1988 Chapter 4 



IBM/4.3 System Administration Guide 39 

3.3. Editing the Groups File 

You should now inform the system that you have added a new user to an existing group. Group 
membership information is stored in the file jete/group. Each group is listed on a single 
line in the following format: 

group-name: password: gid: lnembers 

Format 4-2: jete/group 

Each line is broken into four fields by the colons. The first field gives the name of the group. 
This can be (almost) any string, but it is usually something descriptive like 'prog' for a group of 
programmers or 'doc' for a group of documentation personnel. (The only real restriction is that 
group names must be 8 characters long, or fewer.) Some group names are already used for system 
services and admirustrative functions. For example, there is a group called 'whee I' that contains 
the superuser, root, and another group calted 'daemon' that is used by daemon processes. 

The second field in jete/group entries is an encrypted password that, if present, is required 
of all users requesting to change into a group. Usually this field is left blank. 

The third field is the numerical group identification number of the group. This is the number 
that appears in the fourth field of an entry in /ete/passwd. 

The fourth field, fm ally , is a comma-separated list of the members of the group. Each user 
should be listed as a member of the group whose gid appears in the user's /ete/passwd 
entry, and a user may be listed as a member of up to seven other groups (for a total of up to eight 
group memberships). Be careful not to assign a user to more than eight groups, since otherwise 
that user will be unable to login. 

For example, a typical line from / etc / group might look like this: 

doe:*:204:judy,tim,tenli,diek 

This indicates that the users having login names judy, tim, tenli, and dick belong to the 
doc group, which has a group identification number of 204. Anyone of those four persons may 
view and alter mes that belong to the group doc, even if that person does not own the me. 

3.4. Creating Start-Up Files 

The system administrator should now create several start-up files. that will automatically be read 
by the user's login shell at login time. Which start-up files need to be created depends on which 
shell has been specified as the login shell in the user's entry in /ete/passwd. If the login 
shell is specified as /bin/sh, then a file called C. profi Ie' should be created in the user's 
home directory. If the login shell i~ specified as /bin/esh, then several files must be created; 
in the remainder of this chapter, we shall assume that the login shell is /b i n/ e sh. 
Every installation should have prototype start-up files stored in some central location, so that the 
system administrator may simply copy them into the new home directory. A common place to 
fmd such prototype files is the directory /usr/skel. Assuming this is the case, the system 
administrator would execute the commands: 

# cd /users/prog/smith 
# ep /usr/skel/.login .login 
# ep /usr/skel/.eshre .eshre 
# ehown smith .login .eshre 
# ehgrp prog .1ogin .eshre 

When the new user frrst logs in, these prototype start-up files will be run by the shell. They can 
then be altered to suit the user's individual preferences. 

Chapter 4 September 1988 



40 IDM/4.3 System Administration Guide 

If the login shell for a particular user is /b i n/ c sh, then there is one further file that should be 
installed into that user's home directory, called c. logout', which is an analogue of the 
. login file. When that user logs out, the instructions in the. logout file, if it exists, will be 
executed. Usually there isn't anything very complex in this file. Here is an example: 

# a typical .logout file 
echo 'Bye Bye' 
clear 
if ($?prompt) stty 0 

As before, you can simply copy a prototype into the new home directory: 

# cp /usr/skel/ .. logout .logout 
# chown smith .logout 
# chgrp prog .logout 

There is one further. start-up file that you ,may want to create in the new home directory, called 
. hushlogin. When a user logs in, the file /etc/motd and the time of last login are usu­
ally printed on the screen. If, however, the file . hushlogin exists in the home directory, then 
both of those steps are skipped. This mechanism allows you to make the login process slightly 
"quieter" than normal and is most useful if the user logging in is a non-human user such as 
uucp who is not likely to be interested in such information. 

3.5. Creating a Mailbox 

Every user should have a place to store incoming electronic mail. This file is called the user's sys­
tem "mailbox" and it is generally located in the directory /usr/spool/mai 1. You should 
move into that directory, create an empty file whose name is the user's login name, and change 
the ownership, group, and permissions on this file so that only the user can read any mail put 
there. Execute the following commands: 

# cd /usr/spool/mail 
# touch smith 
# chown smith smith 
# chgrp prog smith 
# chmod 660 smith 

As explained in the following chapter, the last command will prevent anyone but the user from 
reading that user's mail. The installation of a new user account is now complete. 

3.6. Account Installation Summary 

The following sequence of commands is a complete summary of the steps required to add a new 
user account to the system. For purposes of illustration, we shall assume that the new login 
name is 'smi th' and that the home directory is /users/prog/smi tho You should note 
that someinstaUations have a script available (typically called adduser) that will perform this 
sequence automatically for you. If such a script is available on your system, you should use it 
instead of the following procedures. 

(1) Select a login name, a password, a user identification number, a group identification 
number, a home directory, and a login shell for the new user. Find out the office number 
and telephone number of the new user, jf appropriate. 

(2) Log in as root and execute the command: 

# vipw 

Add a new line to the end of / etc /pa s swd in the fonnat detailed above. Do not 
include any entry in the password field. W rit.e your changes to the me and quit the editor. 

September 1988 Chapter 4 



IBM/4.3 System Administration Guide 

(3) Initialize the password field by running the command: 

# passwd smith 

Respond to the ensuing prompts with the password chosen in step (1) above. 

(4) Execute the cqmmand: 

# vi /etc/group 

41 

and add the new user name to the fourth field of the group entry whose gid was specified in 
the line added to /etc/passwd in step (2) above. If the new user is to be a member of 
any other groups, you should add the user name to the fourth field of those group entries as 
well. 

(5) Create a new home directory for the user: 

# cd /users/prog 
# mkdir smith 
# chown smith smith 
# chgrp prog smith 

(6) Create some system start-up files m the new home directory. If the login shell IS 

/b i n/ c sh, give the commands: 

# cd /users/prog/smith 
# cp /usr/skel/.login .login 
# cp /usr/skel/.cshrc .cshrc 
# cp /usr/skel/.logout .logout 
# chown smith .login .cshrc .logout 
# chgrp prog .login .cshrc .logout 

If the login shell is /bin/sh, give the commands: 

# cd /users/proq/smith 
# cp /usr/skel/.profile .profile 
# chown smith .profile 
# chgrp prog .profile 

(7) Create a mailbox for the new user: 

# cd /usr/spool/mail 
# touch smith 
# chown smith smith 
# chgrp prog smith 
# chmod 660 smith 

(8) Give the new login name and password to the new user. The new user may now log into 
the system. 

4. Customizing User Accounts 

Once an account has been created and assigned to a particular user, the user may alter some of 
the parameters associated with the account without further assistance from the system administra­
tor by running the passwd command. This command is used primarily to alter the account 
password, but it may also be used to change the login shell (using the - s option) or the user 
infonnation field entries (using the -f option). The passwd command therefore incorporates 
the functions previously perfonned by the commands chsh and chfn. 
To display the current account settings, you may simply look at the relevant line from the rue 
/etc/passwd: 

Chapter 4 September 1988 



42 IBM/4.3 Systcm Administration Guide 

% grep nat /etc/passwd 
nat:uY79FnRa8/tOk:364:50:Nathan Daniels,a106,,:/users/prog/nat:/bin/csh 

A more readable summary can be obtained by using the finger command. For example: 

% finger nat 
Login name: nat 
Office: a106, 

In real life: Nathan Daniels 

Directory: /users/prog/nat 
On since Apr 18 11:39:03 on 
No Plan. 

To alter the login shell, type: 

% passwd -s nat 
Old shell: jbin/csh 
New shell: jbin/sh 

Shell: /bin/csh 
ttypO from ibmpa 

The program listed the current login shell and requested a new one. The programs that you may 
provide in response to the prompt for a new shell are listed in the file /etc/shells. If this 
me does not exist, then only the two shells /bin/csh and jbin/sh may be specified. 

A user may alter the user information displayed by the f i nge r command by running the 
pa s swd command with the - f option: 

% passwd -f nat 
Default values are printed inside of '[]'. 
To accept the default, type <return>. 
To have a blank entry, type the word 'none'. 

Name [Nathan Daniels]: 
Room number (Exs: 597E or 197C) [al06]: 
Office Phone (Ex: 6426000) []: 
Home Phone (Ex: 9875432) []: 

Notice that the command has prompted for the four items typically specified in 
/etc/passwd, the user's name, room number, and home and office phone numbers. 

Finally, a user may advertise to the user community either a plan, or a project, or both, by creat~ 
ing one or both of the mes . pI an and . pro j ect in the home directory. Any text entered 
into these files will be displayed by future invocations of the finger command. Note however 
that a user who wants to announce plans or projects in this way must have the home directory 
readable and executable by everyone on the system in order for the finger command to be 
able to read the appropriate meso The mechanism for setting the access pennissions in this way is 
discussed in the next chapter. 

5. Removing Uscrs 

It will sometimes become necessary to restrict certain users from accessing machine resources or 
to remove their user accounts altogether. This section explains the steps you will need to take in 
order to accomplish these tasks. Before limiting or denying machine access for a particular user, 
however, you should frrst detennine the precise nature of the access restriction. The complete 
deletion of a user from a system involves both removing the appropriate user entry in 
/etc/passwd and removing all mes and directories owned by the user. If you want merely 
to suspend account access temporarily, you simply need to modify the password field of the user 
entry in /etc/passwd. These procedures are detailed in the following two sections. 

5. ( . Suspending an Account 

A user account may need to be suspended temporarily for a wide variety of reasons, ranging from 
preventing misuse of machine resources to enforcing a freeze on further development of a project. 

September 1988 Chapter 4 



IBM/4.3 System Administration Guide 43 

For whatever the reason, the operating system can be instructed to disallow logins for a specific 
account simply by altering the password field in the appropriate line in /ete/passwd. Most 
commonly, the encrypted password is replaced by the word 'VOID' or by some other impossible 
password such as the string 'XXX'. Once this is done (using the vipw command), the user will 
be unable to log into the system. 

The access restriction can be lifted by reversing this process: remove the word 'va ID' from the 
password field (leaving it empty) and then immediately run the passwd command to reinitialize 
the user's password. 

5.2. Deleting an Account 

The first thing that a system administrator should do to permanently remove a user from the sys­
tem is to make a complete backup copy of all files and directories owned by the user. Even if 
you are certain that the user is done with those files, it is remotely possible that they will be 
needed again in the future by someone else, or that the user account will need to be reconstructed. 
You should also transfer ownership of any files that are currently in use by other members of the 
system. It is highly recommended that the administrator send mail to all users informing them of 
the impending account deletion and requesting a response from anyone using files or directories 
belonging to that user. 

You can obtain a list of all files and directories in the directory hierarchy owned by a specific user 
(for example, smi th) by executing the following command: 

# find / -user smith -print 

Most of the files in the list will probably be located under the user's home directory, although 
there may be a number of mes scattered elsewhere in the directory structure (such as the user's 
mail box in /usr/spool/mai 1). You tnay remove all files and directories owned by a 
specific user (once again, smi th) by executing the command: 

# find / -user smith -exee rm {}\i 
Be sure to run this command only after you have completely backed up the files and directories of 
the account you are removing. 

Next, you will need to remove the line in the file /ete/passwd that lists the account infor­
mation for the user being deleted from the system. As before, use the command vipw to edit 
that me. Then edit the ftle jete/groups to remove the user's login name from the fourth 
field of any line that contains it. The user is now completely removed from the system. 

5.3. Account Removal Summary 

The following sequence of steps will allow you to remove a user account from the system. 

(I) Back up all files and directories owned by the user whose account you are deleting. 

(2) Find and remove all files and directories owned by the user: 

# find / -user smith -exee rm {}\i 

(3) Execute the command: 

# vipw 

and remove the line containing the account information for the user you are deleting. 

(4) Execute the command: 

# vi jete/groups 

and remove all references to the user being deleted. 

Chapter 4 September t 988 



44 IBM/4.3 System Administration Guide 

6. System Accounts 

As distributed, the IBM/4.3 system already contains a number of accounts that are designed for 
use by the system itself, by utilities running in the system, or by the superuser and other adminis­
trative personnel. For example, the login account root is provided for use by the superuser to 
perform system maintenance tasks, and the account uucp is provided for use by the uucp sys­
tem. Generally you should not alter either the user identification numbers or the group identifica­
tion numbers of such accounts, nor should you alter the group memberships of those accounts. 
If you change uid's and gid's of system accounts in a haphazard manner, some utilities will no 
longer function correctly. 

As distributed, the IBM/4.3 system includes entries for the folJowing accounts: 

Name 
root 
daemon 
operator 
uucp 
nobody 

Uid 
o 
1 
2 
66 

32767 

J)cscription 
the superuser account 
account for daemon processes 
account for file system backups 
account for uucp transactions 
the user with least privileges 

Table 4-1: Predefined IBM/4.3 System Accounts 

Both the daemon and the operator accounts are provided to allow the system or a user to 
perform tasks that require some enhanced privileges but that do not need full root privileges. 
For instance, anyone logged in as operator has full read permissions on all file systems. The 
ope r a to r account is intended to allow a user to perform file system backups and retrievals 
without having full read and write privileges on the file systems. The nobody account is an 
account with the least possible me system privileges; it is useful to provide a minimally dangerous 
uid argument to some of the entries in /usr/lib/crontab. See the chapter "Periodic 
Command Execution" for full details. Incidentally, the strange-looking user identification number 
for the nobody account is simply the uid midway between the smallest (0) and the largest 
(65535) possible uid values. 

The following groups are also pre-defined in the InM/4.3 system: 

Name Gid Description 
o only users in this group may su to root 
1 owns files in spool directories 

wheel 
daemon 
kmem 2 only this group can read /dev /kmem and /dev /mem 
sys 
tty 
operator 
staff 

3 owner of system source code 
4 owner of user terminals 
5 has read access to disks 

10 owner of non-system source code 

Table 4-2: Predefined IBM/4.3 System Groups 

Once again, you should take care not to alter these values, lest certain utilities break. 

September 1988 Chapter 4 



IBM/4.3 System Administration Guide 45 

7. Additional System Accounts 

You may wish to insert additional entries into /ete/passwd and jete/group in order to 
allow users to perform some simple tasks without having to know the superuser password or hav­
ing full user accounts on a machine. For instance, it is useful to have an account named csyne ' 
so that a user (perhaps even the system administrator) can synchronize the disks without having 
to go through the entire log in process. To accomplish this, you can add the following line to the 
me /ete/passwd: 

syne::7:10:synehronize the file systems:/:jbin/syne 

(You may need to change the uid and gid to conform to local customs.) Similarly, it is very often 
useful to have a login account named cwho' so that users can log in just long enough to see who 
is currently on the system. To do this, add the following line to the file /ete/passwd: 

who::7:10:show who is logged in:/tmp/:jbin/who 

(Once again, you may need to change the uid and gid to conform to local customs.) When a user 
logs in as 'who', no password will be requested and the current users will be listed. Then the sys­
tem will log that user off and print a new login banner. 

8. Restoring a Lost Password 

Users sometimes forget passwords to their accounts, so a systcm administrator will need to know 
how to restore a password. The process is quite simplc: invoke the command pa s swd with the 
user's login name specified as an argument. Since you are the superuser, you will not be asked for 
the previous password. Instead, you will be asked for a new one, and then asked to retype it. 
You have now reinitialized the user's password. 

Chapter 4 September 1988 



46 IUM/4.3 System Administration Guide 

Tills page intentionally left blank. 

September 1988 Chapter 4 



CHAPTER 5 

File and Directory Permissions 

1. Introduction 

The IBM/4.3 system controls access to files and directories by maintaining a set of permissions for 
each fUe or directory in the. file system hierarchy. The pennissions of a file or directory determine 
who on the system is able to do what with the file or directory. If a file is an ordinary text fUe, 
the permissions determine who can look at (or read) and modify (or write) the file. If a file is a 
program or executable shell script, the pennissions dctcrmine who in the system is able to run 
that program or script. By the nature of the tasks assigned to a system administrator, the 
superuser is able to look at and modify any file or directory in the system; in addition, the 
superuser can execute any program or shell script. An ordinary user, however, may look at or 
alter only those mes and directories for which he has the correct permissions; if the permissions 
on a file or directory are not set appropriately, then the user will be unable to access that fUe or 
directory. 

File and directory permissions therefore provide a general mcchanism whereby a user can share 
files with other users or protect them from reading and tampering by other users. They also pro~ 
vide a means by which the system administrator can prevent unauthorized users from executing 
commands that would disrupt the system (such as unmounting a file system) and from modifying 
files that are necessary for the system to function properly. Permissions are an important com~ 
ponent of system security and it is essential that a system administrator understand the operation 
of file and directory permissions thoroughly. This chapter discusses the permissions that can be 
assigned to files and directories under the IBM/4.3 system, as well as several other topics related 
to the permissions mechanism. 

2. Types of Permissions 

There are three types of permissions assigned to a file or directory at the time of its creation, 
called user permissions, group permissions, and other (or world) permissions. User permissions 
specify what actions the owner of a file may undertake. Group permissions specify what actions a 
person who is in the same group as the owner of the file may take, whether or not that person 
actually owns the file. Finally, world permissions specify what actions everyone else who has 
access to the system may undertake. These three types of permissions may be set independently 
of one another. 

For the most part, it is best to let individual users determine the permissions on the mes and 
directories they own. It is crucial, however, that system files and directories have their permis~ 
sions and ownerships set correctly. If certain files in the system do not have the correct permis~ 
sions, ordinary users may be able to acquire superuser privileges and do unfriendly things to your 
system. Consult the chapter on system security for a more complete discussion of the issues 
involved. . 

3. Looking at Permissions 

The information about the permissions governing a me or directory is stored in the corresponding 
i~node, along with information about the owner of that file or directory its date of creation, and 
so on. To see what permissions are set for the members of a particular directory, move to the 
directory and execute the command: 

IBM/4.3 System Administration Guide 47 



48 IDM/4.3 System Administration Guide 

# Is -1 

This instructs the system to produce a "long" listing of the filcs and subdirectories in that direc-
tory. The output will look something like this: 

total 18 
drwxr-xr..:.x 2 monroe 512 Nov 11 21:08 Figsl 
-rw-r--r-- 1 monroe 315 Nov 4 20:35 README 
-rw-r--r-- 1 monroe 1621 Nov 3 20:47 ch.01 
-rw-r--r-- 1 monroe 121 Nov 3 19:31 ch.02 
-rw-r--r-- 1 monroe 285 Nov 3 19:27 ch.03 
-rw-r--r-- 1 monroe 6527 Nov 15 17:07 ch.04 
-rw-r--r-- 1 monroe 6262 Nov 11 18:17 ch.05 
-rw-r--r-- 1 monroe 627 Nov 3 20:35 ch.06 
-rw-r--r-- 1 monroe 1471 Nov 3 21:07 ch.07 
-rw-r--r-- 1 monroe 188 Nov 3 19:29 ch.08 
-rw-r--r-- 1 monroe 148 Nov 3 19:29 ch.09 
-rw-r--r-- 1 monroe 128 Nov 3 19:30 ch.10 

The first line of the output indicates the number of disk blocks occupied by all the files and sub­
directories in the listed directory. The first 10 characters of each subsequent line in this output 
indicate the permissions for each file. The ten characters arc subdivided into four fields, inter­
preted as follows: 

r1r_:_O:~I:T __ T __ T __ r_T __ r_" 
I I I I I I I I I I I 
I - I r IW IX I r IW IX Ir IW IX I 

I I 
L __ ...L __ ...L __ ...L __ ...L __ ..L __ ...L __ ...L __ ...L __ ...L __ J 

YYY 
owner group other 

Figure 5-1: Interpreting the Permissions Fields 

The first column i.ndicates the "type" of the directory entry and may have anyone of the follow­
ing four characters: 

d This indicates that the item listed is· itself a direct01Y. 

This indicates that the item listed is an ordinary file. 

1 This indicates that the item listed is a ,rymh()lic link to a file located elsewhere in the direc-
tory hierarchy, possibly on a different file system. 

s This indicates that the item listed is a socket. 

b This indicates that the item listed is a block special file. 

c This indicates that the item listed is a character special me. 

The last two me types typically reside in the directory of special mes, Idev, and are not used for 
mes or directories located elsewhere in the file system. For administering ordinary user mes and 

September t 988 Chapter 5 



IBM/4.3 System Administration Guide 49 

directories, you can ignore these two file types. 

The three remaining fields in the permissions columns indicate, for the owner, the group of the 
owner, and everyone else, whether the file or directory is readable, writable, or executable by that 
person. The meanings of these terms differ slightly depending on whether they apply to a file or a 
directory. 

3.1. File Permissions 

For files, the characters in the permissions fields have the following meaning: 

r If the first character in the owner, group, or other field is the letter Ir', then that file is read­
able by the appropriate users. Users with read permission may look at the file (for instance, 
using the cat command). They may also copy the file. 

w If the second character in the owner, group, or other field is the letter IW', then that file is 
writable (or changeable) by that user. Users with write permission may edit or even remove 
the rtIe. 

X If the third character in the owner, group, or other field is the letter lX', then the file is exe­
cutable by that user. In general, files are made executable only if they are programs or shell 
scripts. 

s If the third character in the owner field is IS', then the file is an executable file (binary pro­
gram or shell script) that has been configured to run with the effective uid of the owner of 
the file. If the third character in the group field is IS', then the rtIe is an executable ftle that 
has been configured to run with the effective gid of the group of the file. For more informa­
tion on setuid or setgid files, see below. 

t If the last character in the permissions fields (i.e., the third character in the other field) is It', 
then that ftle has its "sticky bit" set. If the file is an executable program, this indicates that 
the text portion of the program will remain in the swap area so that it can be located 
quickly in case the program is executed again. 

If the character in a position in the owner, group, or other field is 1_', then the correspond­
ing permission is not active for that user. 

For example, a rtIe with the permissions 

-rwxrwxrwx 
is readable, writable, and executable by everyone who has access to the directory in which the ftIe 
is stored. (This does not quite mean that just anybody could remove the file or change it, since 
the permissions of the directory in which the file is located may he set so as to restrict others from 
entering it.) Similarly, a ftIe with the permissions: 

-rwx------
is readable, writable, and executable by only the owner of the file. 

3.2. Directory Permissions 

For directories, the characters in the permissions fields have the following meaning: 

r If the frrst character in the owner, group, or other field is the letter Ir', then that directory is 
readable by the appropriate users. Users with directory read pennission may list the ftIes in 
that directory (for instance, using the 1 s command). 

W If the second character in the owner, group, or other field is the letter IW', then that direc­
tory is writable by that user. Users with write permission in a directory may create files and 
subdirectories in that directory. They may also rename ftIes in that directory (for instance, 
using the mv command) and even remove files from that directory. 

Chapter 5 September 1988 



50 IBM/4.3 System Administration Guide 

x If the third character in the owner, group, or other fi~ld is the letter 'x', then the directory is 
executable by that user. This means that a user may enter that directory (for instance, with 
the cd command) and look at the contents of files. 

t If the last character in the permissions fields (i.e., the third character in the other field) is 't', 
then that dire~tory has its "sticky bit" set. This indicates that the directory is an "append­
only" directory. To remove or rename a file located within such a directory, a user must 
have write permission on the directory and be the owner of the file, regardless of whether 
the me itself allows write permission to other users. (The superuser may also remove or 
rename such files.) 

If the character in a position in the owner, group, or other field is '-', then the correspond­
ing permission is not active for that user. 

For example, a directory that has the permissions: 

drwxrwxrwx 
can be looked into, written into, and moved into by anyone on the system. On the other hand, if 
the permissions for a directory are: 

drwxr--r--

then the owner of the directory may do anything to it, while the group and other users can only 
list the contents of the directory. In particular, users other than the owner cannot move into that 
directory or create files or directories in it. 

4. Changing Permissions 

You may change the permissions of a file or directory by using the ehmod (change mode) com­
mand. For example, the command: 

# ehmod go-rwx jsre 

will prohibit anyone other than the owner (who is probably root) from accessing any files and 
subdirectories located under the directory j s rc. Note that only the owner of a rtIe or the 
superuser may change the mode of a file. 

The ftrst argument to the ehmod command may be specified in two different ways, "symboli­
cally" or "absolutely". When the new mode is expressed "symbolically" (as illustrated above), 
the ftrst argument has three parts: who is affected by the change, the operation to be perfonned, 
and the permission to be altered. The available values for these parts are as follows: 

who may be either 'u' for the user or owner of the file, 'g' for anyone in the same group as the 
owner of the file, and '0' for everyone else. The special abbreviation 'a' is available, stand­
ing for 'ugo'. 

operation 
is '-' if the specified permissions are to be removed for the users indicated, C +' if they are to 
be added, and '=' if the permissions are to be set to the listed permissions, clearing all 
unlisted permissions. 

permission 
may be any combination of 'r' for read permission, 'w' for write permission, 'x' for execute 
permission, IS' for set owner or group id, and It' for sticky bit set. The permission 'X' may 
also be specified instead of 'x' to set execute permission only if the rue is a directory or if 
some other execute bit is already set. 

Alternatively, the permissions may be set absolutely using the following numerical scheme: 

September 1988 Chapter 5' 



IBM/4.3 Systcm Administration Guidc 

4000 
2000 
1000 
0400 
0200 
0100 
0040 
0020 
0010 
0004 
0002 
0001 

set user id on execution 
set group id on execution 
set sticky bit 
read by owner 
write by owner 
execute by owner 
read by group 
write by group 
execute by group 
read by others 
write by others 
execute by others 

Table 5-1: Determining Permissions Numerically 

51 

Octal 4 indicates that the specified person has read permission on the file or directory in question, 
while 2 indicates write permission and 1 indicates eX,ecute permission. For example, the com­
mand: 

# ehmod 700 jsre 

sets the protection modes on the directory / s re to octal 700, which indicates that the directory 
may be read by the owner, written into by the owner, and searched by the owner 
(400 + 200 + 100), and may not be accessed by any other person (except the superuser). So this 
command has the same effect as the one specified symbolically above. 

When a mode is specified symbolically, several useful effects may be obtained by omitting part of 
the symbolic specification. For example, the command: 

# ehmod go= jsre 

removes any permissions which may have existed on the directory jsre for everyone other than 
the owner of that directory. The command: 

# ehmod +X /binjpasswd 

makes the passwd program executable by everyone on the system if it is currently executable 
by anyone. . 

There is a - R option available to the ehmod command that instructs ehmod to recursively des­
cend any directories listed as arguments and set the mode as specified. For example, if the j s re 
directory contains any subdirectories (as is quite likely), then the command: 

# ehmod -R go-rwx jsre 

will cause the entire directory structure under j s re to become unavailable to anyone other than 
its owner. 

5. Changing the Owner of a File 

By default, the owner of a file is the user who creates it. The creation may occur by invoking an 
editor and adding some text to. a file, by compiling some source code into an executable program, 
by copying an existing fUe, or by many other means. In whatever manner a fue is created, the 
operating system inspects the user identification number of the creator to determine the owner of 
the new fue. 

The superuser may change the owner of a fUe or directory by using the chown (change owner) 
command. For example, to change the owner of the file data. 1 from smi th to root, issue 
the command: ' 

Chapter 5 September 1988 



52 IIJM/4.3 System Administration Guide 

# chown root data.l 

The new owner of the file or directory may also be specified by the uid. So the previous example 
could have been written: 

# chown 0 data.l 

Only the superuser may execute the chown command. This rcstriction simplifies certain 
accounting procedures and prevents users from circumventing disk space quotas (if the quota sub­
system is in effect). See chown(8) for more complete details. 

6. Changing the Group of a File 

The group membership of a me or directory is taken to be the group membership of the directory 
in which the me or directory is created. Recall that under the IBM/4.3 system, a user may belong 
to several groups at once. For example, a user may belong to both the prog and doc group 
(programming and documentation, respectively). If this user has a subdirectory owned by doc, 
then all files and directories created within that directory will belong to the group doc. Similarly, 
if this user has a subdirectory owned by prog, then all files and directories created within it will 
belong to the group prog. Note, however, that simply moving a file from a directory belonging 
to one group into a directory owned by another group will not automatically change the group 
membership of the file. To change the group membership of a file from the default membership 
given at the time of creation, you must explicitly instruct the system to do so. 

You may change the group of a file or directory by using the chgrp (change group) command. 
This command works just like the chown command, except that you need to give it a valid 
group name as the first argument. For example, to assign a file to the prog group, type: 

# chgrp prog data.l 

The user invoking the chgrp command must be a member of the group into which the me or 
directory is to be moved. lbe only exception to this rule is the superuser, who may move any 
fue into any group at all. 

Note that the group membership of a file may be changed at the same time as the ownership by 
providing an optional group identification number or group name to the chown command. For 
example, to transfer ownership of a file owned by root to· a normal user, the superuser might 
give a command like: 

# chown nat.prog data.l 

Upon successful completion of this command, the file data. 1 will belong to the user nat and 
the group prog. See chgrp( I) and chown(8) for more complete details. 

7. Setuid Programs 

At times, it is necessary to allow users to modify certain files and directories without allowing 
them to have full read and write privileges on those files and directories. For example, it is 
important to allow users to change their passwords often in order to promote security and reduce 
unauthorized use of the system. But it is a bad idea to let everyone have full read and write per­
missions on the password file, /etc/passwd, since by suitably altering a few numbers, such 
users could give themselves superuser privileges. The IBM/4.3 system solves these conflicting 
desires by allowing certain programs to be run by anyone on the system, while temporarily adopt­
ing the permissions of the owner of the program. Such programs accomplish this by setting the 
effective user identification number to the owner of the file; for brevity, such programs are said 
run to "setuid". 
The effective user identification number of a process is the principal operative factor involved in 
determining file access pennissions. When a process asks to perform some operation on a file, the 
system ensures that that operation can be performed by inspecting the effective user id of the 

September 1988 Chapter 5 



IBM/4.3 Systcm Administration Guidc 53 

process and comparing it to the access permissions of the' file. If the effective uid is that of the 
superuser or of a user allowed access permission to the file, then the requested operation is per­
formed. Initially, the effective user id is identical to the user's real user id (as specified in 
/etc/passwd), but it may be changed temporarily if the program is setuid. In a nutshell, 
the setuid mechanism is simply a way to change from the user's real uid to an effective uid. 

Since the effective user id of a user of a program is governed by a bit in the permissions field, a 
program that runs setuid to the owner of the file is also said to have its setuid bit set. 
This is accomplished by means of the chmod command. For example, to set the setuid bit 
on the file /bin/passwd, execute the following command: 

# chmod 4755 /bin/passwd 

You can determine that a program is setuid by inspecting its permissions: 

# Is -1 jbin/passwd 
-rwsr-xr-x 3 root 27648 Ju1 7 1987 jbin/passwd 

The permission's' in the user's execute column (where an 'x' would otherwise appear) indicates 
that the program is indeed setuid to the owner of the program, in this case root. Since the 
pas swd program has its setuid bit on, it may be executed by anyone with an account on 
the system; but that person will be assume superuser privileges only for the duration of the pro­
gram. This is what allows the passwd program to update the file /etc/passwd even 
though ordinary users cannot write that file. 

Another useful application of the setuid bit involves multi-user games that maintain a com­
mon data base listing scores or other necessary information. A game program that needs to 
update this list might run setuid to the owner of the program, so that other users would not 
be able to change the list except by playing the game and having the game change the list. 

8. Setgid Programs 

There are also programs in the IBM/4.3 system that are configured to execute with the effective 
group id of the program. Such programs are called "setgid" programs and are useful for 
allowing controlled access to files owned by a particular group. For example, under the IBM/4.3 
system, a terminal device is owned by the user logged in it but belongs to group tty. In addi­
tion, such terminal files are writable only by the owner of the file and members of the group 
tty, as illustrated by the following command output: 

# Is -lg /dev/tty1 
crw--w---- 1 monroe tty 6, 0 May 15 11:39 /dev/tty1 

Since normal users are typically not members of the group tty, they will not be able to write on 
the terminal of another user. This prevents an obnoxious user from scrambling the terminal 
screens of other users by redirecting command output into their terminal fUes. 1 

Some commands, however, are designed specifically to facilitate user-to-user communication by 
allowing two or more users to write on the terminal of the other(s) and carry on an interactive 
"conversation". To accomplish this, such programs are configured with the setgid bit set on. 
For example, programs like talk and wri te run setgid tty. You can see this, once 
again, by inspecting the permissions on these programs; for example: 

IThis protection also helps circumvent at least one major security loophole on systems that do not incorporate it. 
Some intelligent terminals can be instructed to echo characters back to the host operating system, as if they had been 
typed on the keyboard itself. A suitably obnoxious user who knows a little bit about how your terminal operates could 
instruct your terminal to issue a command like '/bin/rm -rf *'. thereby removing all of your files! By assigning all 
logged-in terminal lines to the group tty, however, and restricting write access to such files, the IBM/4.3 system 
effectively prevents such potential mayhem. 

Chapter 5 September 1988 



54 IBM/4.3 Systcm Administration Guidc 

# Is -1 /bin/write 
-rwxr-sr-x 1 root tty 34816 Aug 11 1987 /bin/write 

Notice that the group execute field contains an's', indicating that the program is setgid tty. 
A user who desires to write on the screen of another user can execute the wri te command, 
which sets that user's effective group id to the group tty for the duration of the process. 

While programs that run setuid or setgid perform important functions in the IBM/4.3 sys­
tem, they are also a source of great concern for security reasons. If, for example, a setuid 
root program allows the user to spawn a sub-shell (as some editors do), then the user would be 
able to acquire superuser status simply by running the program and spawning a subshell. More 
directly, if one of the shell programs were accidently installed setuid root, then any user 
running that shell would automatically inherit superuser powers. The system administrator must 
therefore exercise special care in setting the setuid or setgid bit on user-accessible pro­
grams. Refer to Chapter 18, "Security", for a more complete discussion of the security problems 
associated with setuid and setgid programs and some useful ways of tracking down poten-
tial problems. . 

9. Sticky nits 

There is one further feature of the IBM/4.3 system that is connected with the perrrusslons 
mechanism of files and directories, called the "sticky bit". The sticky bit was originally devised as 
a way to improve system response in launching large executable binary files and it was only 
recently extended to apply also to directories. Setting the sticky bit of an executable file actually 
has very little in common with setting the sticky bit on a directory, except that both operations 
have the effect of making something persist, or "stick around", longer than would otherwise hap­
pen. The two different functions of the sticky bit are discussed in the following two subsections. 

9.1. Sticky Executable Files 

An executable file normally consists of three principal parts, called the text segment, the initialized 
data segment, and the uninitialized data segment (or bss). There is also a short header at the 
beginning of the file and, if the file has not been stripped, some relocation information, a symbol 
table and a string table at the end of the file. When the program is executed, the text segment and 
the two data segments are copied from the file system into memory. If the file (Le., program) is 
large, this can take a relatively long time. 

Generally, the text segment of an executable file can be shared by different invocations of the file, 
thereby reducing the amount of memory consumed by users of the program. In this case, the text 
segment is said to be sharable. The IBM/4:3 system provides a mechanism that allows the system 
to save a copy of the text segment of a sharable executable file. If the sticky bit is set on a shar­
able executable file, then the text segment of that file will not be removed from the system swap 
area, even though the executable program has ceased running. This allows the system to find the 
text segment quickly without having to travcrse the file systcm, thereby improving response time 
on future executions of that command. The text segment wilt remain in the swap area forever, or 
at least until the operating system is rebootcd. 

As distributed, the IBM/4.3 systcm includes just one executable file that has its sticky bit set, 
namely the screen editor vi (and its links, e, ed, ex, edi t, and view). You can list all the 
files on your system that have the sticky bit on by executing the following command: 

# find / -perm -1000 -exec Is -1 {} \; 

To set or unset the sticky bit, use the chmod program. For example: 

# chmod +t /usr/ucb/vi 

will set the sticky bit on the V i command if for some reason it is not already set. Care must be 
exercised in setting the sticky bit on executable files, however, since indiscriminate setting of the 

September 1988 Chapter 5 



IBM/4.3 System Administration Guide 55 

sticky bit may cause the system to run out of swap space and therefore crash. Most sites restrict 
the use of the sticky bit to programs like vi which have a relatively large text segment and which 
are used by large portions of the user community. Fortunately, only the superuser is allowed to 
set the sticky bit on a sharable executable file. 

9.2. Sticky Directories 

Recently, the function of the sticky bit has been extended so that directories can now be made 
sticky. A directory whose sticky bit is set is called an "append-only" directory. More accurately, 
a sticky directory is one in which deletion of files is restricted: a me located in a sticky directory 
can be removed or renamed only by the owner of the me (who must of course also have write 
pennission in that directory), by the owner of the parent directory, or by the superuser. For 
instance, if the permissions for a directory are: 

drwxrwxrwt 

then anyone on the system can read and write files in the directory, move into the directory, and 
create subdirectories within it. However, normal users will be unable to remove or rename any 
mes with that directory that they do not own, since the sticky bit is set. 

Any user may create a sticky directory by first creating the directory (for example, with mkdi r) 
and then altering its protection modes (using chrnod +t). For system-wide directories, the 
sticky bit must be set by root. It is most useful to set the sticky bit on directories such as 
/trnp and /usr/tmp which must be publicly writable but in which users should not be 
allowed to remove or rename files that do not belong to them. 

Chapter 5 September 1988 



56 IBM/4.3 System Administration Guide 

This page intentionally left blank. 

September t 988 Chapter 5 



CHAPTER 6 

Managing Tenninals and Modems 

1. Introduction 

When the IBM/4.3 system is operating in multi-user mode, it is able to manage login sessions and 
run processes for many users at the same time. Often these users will communicate with the sys­
tem by giving commands at a terminal connected to the machine directly through a serial line. It 
is also common for users to gain access a machine indirectly through a modem that is communi­
cating with another modem connected to the machine. These possibilities are depicted in the fol­
lowing diagram: 

System Console 

D 
CJ 

terminal 

D 
direct-connect terminals 

Figure 6- t : Communicating Over Serial Lines 

It is easy to add terminals and modems to the IBM/4.3 system in order to allow multiple users to 
access machine resources simultaneously. The process consists of two main stages, the hardware 
installation and the software configuration. Pirst, a serial cable attached to the peripheral device 
(terminal or modem) must be physically connected to a serial port that the operating system 
"knows" about. If the cable is not attached to a· planar serial port, an expansion card that con­
tains additional ports must be added to the machine. It may be necessary to reconfigure the ker­
nel to recognize the additional hardware. Then, the system must be instructed to allow users to 
login on the appropriate serial port by editing several configuration files. Once these steps have 
been successfully accomplished and the system is launched into multi-user mode, a login banner 
will appear on the terminal screen and users will be able to login through that port. 

It is also possible for users to login to a machine across a network. In that case, the process is 
even simpler, since no additional physical connection needs to be made. Once the kernel and 
software configuration is accomplished, a user may remotely login to a machine using either the 
rlogin or rsh command. 

IBM/4.3 System Administration Guide 57 



58 IIJM/4.3 System Administration Guide 

System Console System Console 

D 

IOQJJJ IIlQ:JlJ 
c -, r- c 

I 
I 
I 
I 

I I 
I rlogin I L _______ ...l 

g 
terminal 

Figure 6-2: Communicating Over A Network 

If you plan to allow remote access to your machine, you should refer to Chapter lIon local area 
networks for instructions on installing and configuring a network. Then continue with the sec­
tions in this chapter on kernel reconfiguration, creating pseudo terminals, and setting up logins. 

2. Kernel Configuration 

The IBM/4.3 system can support terminals connected to the machine either directly through a 
serial port or indirectly through a network connection using pseudo terminals. In either case, 
however, the kernel must be configured to recognize the appropriate hardware or pseudo­
hardware. Depending on the machine on which the IBM/4.3 system is running, there will be 
either one or two planar serial ports. Additional serial ports may be obtained by installing either 
a multi-port asynchronous communications adapter card (which contains four independent chan­
nels) or a serial/parallel adapter card (which contains a single serial port). The allowable number 
and proper bus placement of these cards is hardware-specific, and you should refer to the installa­
tion instructions for this information. On the IBM RT PC, for example, up to four multi-port 
cards may be installed, along with up to two serial/parallel adapter cards. Together with the two 
planar serial ports, these provide a total of 20 serial ports, as depicted in the following diagram: 

IIi] IIi] [!!I [ill [ill IIi] [!!I [ill IIi] IIi] IIi] [!!] [ill [ill [ill [!!I 
00 01 02 03 0405 06 07 08 09 10 11 12 13 14 15 

[ill 
cO 

Figure 6-3: Serial Ports on the IBM RT PC 

[!!] [!!I [ill 
cl sO sl 

The name of each port is listed in an abbreviated form underneath the corresponding icon; the 
complete name is formed by prefixing those two characters with the base name '/dev /tty'. 
The four serial channels on the card asy2, for example, arc named: 

/dev/tty08 
/dev/tty09 
/dev/ttyl0 
/dev/ttyll 

September 1988 Chapter 6 



IBM/4.3 System Administration Guide 59 

Note that the device names for the two planar serial port can be confusing. The device 
/dev/ttysO corresponds to the serial port labeled 'SI' on the back of the RT, while device 
/dev /ttysl corresponds to the serial port labeled 'S2'. 

For the operating system to recognize any of these devices at boot time, the kernel must be con­
figured to probe for it. This configuration is accomplished, as you have already seen, by including 
the appropriate lines in the kernel configuration file and then regenerating and installing a new 
kernel. The generic kernel on the IBM R T PC, for example, recognizes three multi-port asyn­
chronous communications adapter cards (asyO, asyl, and asy4) one serial/parallel adapter 
card, and the two planar serial ports. The generic kernel therefore can support up to 15 serial 
ports. If you need more than this, or if you wish to locate the cards at different addresses, you 
will need to reconfigure the kernel. Refer to the discussion of Chapter 3 for complete instructions 
on doing this. 

As noted above, if network logins are to be allowed, the kernel must also be configured to sup­
port pseudo terminals and the .INET option must be supplied. The generic kernel supports net­
work activity and up to 32 pseudo terminals. 

3. Creating Special Files 

Once the necessary hardware adapter cards have been installed into the machine and the kernel 
has been reconfigured to recognize them, you will need to create some special files in the / dev 
directory. The kernel communicates with serial devices by writing to and reading from its 
corresponding special fIle. A long listing.of some of the special files recognized by the generic ker­
nel is as follows: 

crw------- 1 root 1, 0 Jan 9 22:18 ttyOO 
crw------- 1 root 1, 1 Jan 9 22:18 ttyOl 
crw------- 1 root 1, 2 Jan 9 22:18 tty02 
crw------- 1 root 1, 3 Jan 9 22:18 tty03 
crw------- 1 root 1, 16 Jan 9 22:18 ttycO 
crw------- 1 root 1, 20 Jan 9 22:18 ttycl 
crw-rw-rw- 1 root 12, 0 Jan 9 22:18 tty sO 
crw-rw-rw- 1 root 12, 1 Jan 9 22:18 ttysl 

You will notice that there is one special file for each serial port. More importantly, instead of giv­
ing a byte-count indicating the size of the file, this listing instead shows the major device number 
and the minor device number of the special file. Part of the reason for this is that these special 
files arc all zero length, so there would be very little point in indicating that. More importantly, 
the kernel distinguishes the various serial devices from one another by looking at the major and 
minor device numbers. When, for example, the kernel wants to write data to a special ftIe, it 
needs to access a device driver in order to know exactly how to do that. The device driver code is 
compiled into the kernel. The major device number indicates what kind of peripheral device the 
special file corresponds to and hence functions as an index into the kernel code driving the dev­
ices. In the examples listed above, both the ports on the multi-port adapter card and the 
serial/parallel adapter card have a major device number of 1, indicating that the same device 
driver is to be used in each case. The planar serial ports have a different major device number, 
primarily because those ports support both asynchronous and synchronous serial communication, 
while the multi-port card and the serial/parallel card supports only asynchronous communication. 

The minor number is passed to the device driver as an argument and is usually used to allow the 
system to distinguish among several devices of the same type. Typically the minor number allows 
the kernel to address multiple ports on a single adapter card, or ports on Jnultiple adapter cards. 

Special files are created with a script, MAKEDEV, located in the /dev directory. MAKEDEV is 
provided largely to simplify device creation by insulating the system administrator from the mun­
dane details of figuring out major and minor device numbers (which are specific to each system). 

Chapter 6 September 1988 



60 IBM/4.3 System Administration Guide 

MAKEDEV accepts a number of arguments describing which collections of devices are to be 
created; once it has figured this out, it issues the correct sequence of mknod instructions to create 
the appropriate devices. 

For example, to create the special devices corresponding to all 20 possible serial ports on the floor 
model IBM RT PC., give the command: 

# /etc/MAKEDEV asyO asyl asy2 asy3 psp coml com2 

There are several other possible arguments that may be supplied to the MAKEDEV script. For 
instance, providing the argument 'std' will cause MAKEDEV to create special files for all the 
"standard" devices necessary to run the IBM/4.3 system, such as the files corresponding to core 
memory (/dev/kmem) and the system trash basket (/dev/null). The only serial device file 
created in the standard configuration is /dev /console, which provides a logical device for 
the system console terminal. Also, if you execute the script with the argument 'local', then 
another script, MAKEDEV. local, if it exists, will be executed. Any additional commands that 
may be required to configure the special device files should be put into MAKEDEV . 1 oc a 1. 

If you are planning to dedicate any of the available serial ports to receive dial-up logins over a 
modem, it is recommended that you change the names of the corresponding special files to the 
form ttydx, where x is some digit or letter (i.e., x is in the range [O-9a-zA-Z)). The reason 
for this is that some programs expect a dial-up line to have a name of that form and may not 
operate correctly if a dial-up line has some other name. For example, if you plan to attach a 
modem to the serial port whose special file is /dev /ttyOO, then you should execute the fol­
lowing command, after you have created the special files: 

# In /dev/ttyOO /dev/ttydO 

It is recommended that you place the appropriate commands into the me MAKEDEV. local 
instead of running them from the shell. 

4. Creating Pseudo-Terminals 

If you plan to allow users to login to your machine from remote machines on a local area net­
work, you will need to create a number of device special files for pseudo terminals. Pseudo termi­
nals are necessary for certain programs that expect input from terminal devices and which expect 
to send output to terminal devices. They are used in network operations (such as rlogin) 
since sockets do not provide the semantics required to manage terminals across a network. Thus, 
when a user logs into a remote machine, the remote shell takes input from and sends output to a 
pseudo terminal associated with the user's network login. 

Unlike normal hard-wired terminals, there are actually two device mes that need to be created for 
each pseudo terminal accessible by the system, a rna.fter device and a slave device. The function 
of the master device is to collect input from the socket managing the network communication and 
pass it as input to the slave device. From the slave device, the data are passed to a process read­
ing the slave device as standard input (such as a login shell). If and when the process generates 
any output, that output is passed as input to the slave device, which then passes it to the master 
device and from there across the network to the real terminal of the user. The two levels are 
necessary so that a process running on a remote machine, including the user's login shell, can 
treat its standard input and output as a normal terminal. In the case described, the slave device 
appears to processes on the remote system exactly like a real terminal. The way in which pseudo 
terminals mimic real terminals is depicted in the following illustration: 

September 1988 Chapter 6 



IBM/4.3 System Administration Guide 

System Console System Console 

Pseudo Terminal 
............. . . 

o r-

I 

rlogin I ___________ ..1 

Figure 6-4: Real and Pseudo Terminals 

~ 
111111111 
111111111 

61 

D 
terminal 

Slave devices have names of the form /dev /ttyxy, where x is p, q, or r, and y is a single 
digit or a letter in the range a through f. Each value of x, therefore, gives rise to sixteen possible 
slave devices. For example, the first sixteen slave devices are named /dev /ttypO through 
/dev /ttypf. The naming of the master devices exactly mirrors that of slave devices, except 
that the three characters tty are replaced by the characters pty. So the first sixteen master dev­
ices are named / dev /pt ypO through / dev /pt yp f. 

To create both the master and slave pseudo terminals, execute the MAKEDEV script with the 
argument ptyx, where x is 0, 1, or 2. The added character tells MAKEDEV which range of 
pseudo terminals to create. For example, the command: 

# /dev/MAKEDEV ptyO 

will cause MAKEDEV to create 32 new entries in the /dev / directory, corresponding to the six­
teen slave devices and the sixteen master devices named above. If you plan to use the machine 
heavily for network activity or other activity requiring pseudo terminals, you may want to create 
additional groups of pseudo device entries. In that case, execute the command: 

# /dev/MAKEDEV ptyl pty2 

This command will create the master and slave devices for x set to the character q and for x set 
to r. 

5. Testing the Hardware Configuration 

Once you have reconfigured the kernel to recognize the serial ports available to the system and 
created the corresponding special device ftles, you can attach a terminal or modem to one of those 
ports. The cabling necessary to connect the device to one of the serial ports is machine-speciflc 
and should be provided by your hardware supplier. If not, you will need to refer to the documen­
tation accompanying the adapter card and the serial device. 

To test the correctness of the configuration and cabling, try sending some data to the special ftle. 
For instance, if a terminal is attached to a serial port whose special device me is /dev /tty03, 
execute the command: 

# date > /dev/tty03 

Another command useful in supplying random data to send to a serial port is the command 
Iptest, which prints the traditional "ripple" pattern of characters on the standard output. So 
you might run the command: 

Chapter 6 September 1988 



62 101\1/4.3 Systcm Administration Guide 

# lptest > /dev/tty03 

If all the steps covered up to now have been successfully accomplished (Le., kernel reconfigura­
tion, adapter card installation, special device creation, and hardware cabling), you should get some 
output on the terminal screen. 

6. I.,ogin Configuration 

If you wish to allow users to login over a particular serial line, the operating system needs to be 
instructed to monitor that line and wait for input from the terminal or modem attached to it. As 
the superuser, you can always send output through a serial line to the device attached to it. For 
the operating system to accept input from the line, however, and to know that that input is to be 
interpreted as a login attempt, the system must be specifically configured to do so. 

The operating system enables a serial line for logins by launching a separate getty process for 
each serial line on which logins are to occur. The function of getty is to open and initialize 
the assigned serial line, and then wait until someone enters a login name. The position of the 
getty process in the login sequence can be seen in the following illustration: 

o 
o 

serial ports 
r-, 
I 

Figure 6-5: The Login Sequence 

As indicated, the ini t process is responsible for creating thc various getty processes that may 
be running. The ini t process knows which serial1ines are to have gettys started on them by 
consulting the configuration file /etc/ttys. Once a login name is received by getty (step 
3 in the diagram), getty invokes the login command to prompt for the password and verify 
the correctness of the login name and password. If the login name and (encrypted) password 
match those listed on some line in the file /etc/passwd, then the appropriate login shell will 
be started up for that user and that shell will interpret all further input from the serial line. When 
the user eventually logs out of the system, the ini t process is notified and it creates a new 
getty to monitor the serial line for new login attempts. 

7. Configuring /ctc/ttys 

The ftIe /etc/ttys is the central storehouse of information regarding which serial lines are to 
have getty processes created on them. The format of this file has changed significantly from 

Scptember t 988 Chapter 6 



IBM/4.3 System Administration Guide 63 

the 4.2 release of the BSD system to the 4.3 release. The new /etc/ttys file incorporates 
information previously scattered through three different files, /etc/ttys, /etc/ttytype, 
and /etc/securetty. By collecting all the relevant terminal infonnation into a single file, 
the IBM/4.3 system simplifies your job as system administrator. 

The general format ~f /etc/ttys can be illustrated as follows: 

device startup-program type status 

Format 6-1: /etc/ttys 

The device specification is simply the name of the device's special me as found in the / dev 
directory. The startup-program is the full path name of the process to be launched by i ni t on 
the corresponding device. UsuaUy the startup program is getty invoked with an argument that 
specifies the baud rate to use. -In fact, however, the startup program can be any process at all, as 
you will soon see. 

The type specification indicates what kind of device is connected to the serial port. You must 
select a terminal type from among those listed in the file /etc/termcap. As distributed, the 
IBM/4.3 system contains terminal descriptions for a large number of common terminal types, as 
well as entries for other kinds of connections such as di alup (for modem communications) and 
network (for network communications). If there is no listing in the data base 
/etc/termcap for a terminal you wish to connect to your system, refer to the section below 
entitled "Terminal Capability Descriptions" for assistance on constructing one. 

The fmal column in the fue /etc/ttys (disregarding any comments, which are introduced by 
the pound sign '#') indicates the status of the associated terminal line. If the ini t program is to 
launch a getty process (or some other startup program) on a specified device, the status field 
must contain the value 'on'. If the status field contains the value 'off', then no such process 
will be started up. If the status field is 'on secure', then root logins are permitted on that 
line; otherwise they are not allowed. This provides some measure of security against unauthorized 
logins across certain terminal lines using the root uid. It is recommended that publicly avail­
able terminals and modems not contain the qualifier 'secure'. The system console, on the 
other hand, should allow root logins. 

The startup command does not have to be a getty process. To allow logins across a local area 
network, for instance, there should be no command at all listed, largely because network login ser­
vices are provided by the daemon rlogind using pseudo terminals instead of serial lines. As a 
result, there is no need to launch getty processes to await login attempts across a network. 

8. Sample /etc/ttys Entries 

Here are some sample lines from an /etc/ttys file: 

console "/etc/getty ibm" ibm5151 on secure 
ttyOO "/etc/getty std.9600" vtl02 on 
ttyOl "/etc/getty std.9600" ibmaed on 
ttydO "/etc/getty std.1200" dialup on 
ttyd1 "/etc/getty std.1200" dialup off 
ttypO none network 
ttypl none network 

# Room 312 
# Room 314 

The first entry lists the information applying to the console terminal. Since it will be used for 
administrative purposes by the system administrator, the status is listed as 'on secure'. The 
argument to the getty process indicates the speed at which the line should be opened and sets 
certain other parameters. The meaning of the argument is discussed below in the section 
"Configuring /etc/gettytab." 

Chapter 6 September 1988 



64 IBM/4.3 Systcm Administration Guide 

The second line illustrates a standard terminal hookup. It is exactly like the first line except that 
root logins are not allowed over ttyO 1 and it ends with a useful comment indicating the loca­
tion of the tenninal in question. We recommend adding such comments to the configuration file, 
since otherwise the location of a terminal may be difficult to determine. 

The fourth and fifth lines illustrate the configuration for a dial-up line. The first of the two 
entries is set to ac~ept logins while the second is not. Presumably, the second modem will be 
used for outgoing phone connections. 

The last two entries in the samples show how to set up network logins. In this case, the two 
pseudo terminals ttypO and ttypl will accept loginsover the network. In an actual 
/etc/ttys file, there will be many more lines like the tast two (as you have already seen 
above). 

9. Configuring /etc/gcttytab 

The startup command listed in the /etc/ttys file for a particular serial line is usually 
getty. As indicated above, getty opens the corresponding special device file and awaits 
input from that line. To do this job correctly, however, getty needs to know certain things 
about the serial line, such as the baud· rate of the peripheral device attached to the line, the parity 
setting, whether the device can generate lowercase letters, and a number of other parameters. 
getty gets this information from the file /etc/gettytab by way of the argument that was 
provided in the file /etc/ttys. For example, consider the entry: 

ttyOO "/etc/getty std.9600" vt102 on # Room 312 

When ini t launches a getty process to monitor /dev /ttyOO, it does so by executing the 
command: 

jete/getty std.9600 ttyOO 

The frrst argument cstd. 9600' indicates that the terminal attached to /dev /ttyOO is a 
"standard" terminal operating at 9600 baud. To see exactly what that means, you need to look at 
the corresponding entry in /etc/gettytab. On most systems, it is no more complicated 
than this: 

2Istd.960019600-baud:\ 
:sp#9600: 

The format of the entries in /etc/gettytab resembles those in /ete/termeap (with 
which you are probably already familiar). The first line lists the names of the entry; notice that 
the second name listed is exactly the argument provided to getty in the entry in 
/ete/ttys. The remaining lines list the terminal line capabilities. The sample entry above 
has just a single capability listed, namely esp' representing the speed of the line in question. 

The configuration for terminal type std. 9600 is so simple because getty automatically 
reads and acts on any terminal line characteristics listed in the entry whose name is de f au 1 t. 
This fact is extremely useful in allowing you to tailor the ge tty parameters for an terminal lines 
in one fell swoop. For example, a typical entry for the defaul t type looks like this: 

default:\ 
:ap:fd#lOOO: 
:im=\r\n\r\nIBM 4.3 (%h) (%t)\r\n\r\r\n\r: 
:sp#1200: 

This specifies that the terminal can use any parity (ap), that the system should delay 1000 mil­
liseconds after printing a form feed (fd#lOOO), and that the default speed is 1200 baud. This 
entry also indicates the initial banner (i m) that is to be printed on' the terminal screen so that 
users know that the system (Le. getty) is awaiting their input. When getty is launched (by 
ini t), it will print a banner that looks like this: 

September 1988 Chapter 6 



IBM/4.3 System Administration Guide 65 

IBM 4.3 (poisson) (ttyOO) 

login: 

To change the banner, simply alter the string assigned as the value of im in the defaul t entry 
in /ete/gettytab. Note that the escape sequence \r is mapped to a carriage return when 
the banner is outpui on the terminal screen and that the escape sequence \n is mapped to a new­
line character. getty also performs certain other substitutions on the string specified in the im 
capability. The substring %h is replaced by the hostname of the machine. Similarly, the sub­
string %t is replaced by the name of the serial port to which the tenninal or modem is attached. 
The second part of this banner is the default login message, as specified by the 1m capability. 
Since there is no 1m capability listed in the defaul t entry, the default message is used. 

A large number of other line characteristics can be configured in the entries in 
/ete/gettytab. A complete list may be obtained by consulting the manual pages for get­
tytab(5). In almost all cases, the default values of the various capabilities have been selected so 
that gettytab entries can be very short and simple. As a result, except for changing the initial 
banner output by getty, you may never need to alter any gettytab entries or add entries to 
it. . 

10. Converting 4.2/etc/ttys to the 4.3 Format 

As noted above, the format of the file,'ete/ttys has changed drastically from the 4.2 release of 
the BSD system to the 4.3 release (upon which IBM/4.3 is based). If you are converting from 4.2 
to IBM/4.3, you may wish to employ the following procedure to help automate the construction 
of a new /ete/ttys fue. 

First of all, install the following script on your system; you can use any name, but the C shell 
script that calls this awk script assumes it is called 'ttys. ser'. 

# awk script to help convert 4.2 ttys file to 4.3 format 

BEGIN { FS = " " } 

FILENAME == "-" { 
FS = " " if ( NF > 1 ) f gettYf$1) = $2 

J else getty $1 = $1 
} 

FILENAME == "/tmp/ttys" { 
port = substr( $1, 3, length($1)-2 ) 
list[port] = port 
if( substr( $1, 1, 1 ) == 1 ) { 

} 
on[port] = "on" 

else { on[port] = "off" 
} 
pty = substr( $1, 6, 1 ) 
if ( substr( $1, 3 3) == "tty" \ 

&& ( P ty == "p II r I pt Y == "q" I I pty -- "r" ) ) \ 
{ comm[port] = "none" } 

else { comm[port] = substr( $1, 2, 
type [port] = "unknown" 
secure[port] = "" 

1 ) } 

} 

FILENAME -- "/etc/ttytype" {type[$2] = $1 } 

FILENAME -- "/etc/securetty" { secure[$1] = "secure" } 

Chapter 6 September 1988 



66 

END { 

} 

for ( port in list ) { 
if ( getty[portJ == "none" ) { 

printf( "'6S 
} else { 

printf( "%S 

I11M/4.3 System Administration Guide 

. } 
getty[comm[port]] ) 

)rintf( "%s%s%sO, type [port] , on[port], secure[port] ) 

Thls script assumes that your old (4.2) version of the file /etc/ttys is located in the file 
/tmp/ttys. In addition, the 4.2 versions of the files /etc/securetty and 
/etc/ttytype are located in their original locations. To use this awk script, run the fol­
lowing simple script: 

#! /bin/csh -f 
# conv_ttys: coristruct 4.3 ttys file from 4.2 files 

/usr/bin/egrep "\"[O-9a-zA-Z]" /etc/gettytab \ 
I /bin/sed -e "s/I/ /g" -e "s/://g" -e "s/\//g" \ 
I /bin/awk -f ttys.scr - /tmp/ttys 

/etc/ttytype /etc/securetty \ 
sort 

Once this C shell script and the previous awk script are in place on your system, you can create a 
4.3 version of the /etc/ttys file simply by running the command: 

# conv_ttys > /etc/ttys 

Thls script uses awk and several other utilities to merge the previous /etc/ttytype, 
/etc/securetty, and /etc/ttys (which is stored in /tmp) to create a new 
/etc/ttys that is in the format required by the IBM/4.3 system. 

11. Terminal Capability Descriptions 

The IBM/4.3 system can allow virtually any kind of terminal to be used as a communications 
device, whether it is a hard-copy teletype machine, a normal ASCII character terminal, or a hlgh­
resolution bit-mapped graphics display device. The system accomplishes thls by isolating 
terminal-dependent information into a common data base of terminal capability descriptions 
(called /etc/termcap) that applications programs can read to determine the appropriate 
display characteristics of any particular terminal. Por instance, when a user instructs the system 
to clear the screen by issuing the command clear, the program will consult the terminal 
description data base to see what characters must be sent over the communications line to have 
the terminal clear its screen. 

There are two main ingredients to achieving successful communication between the system and a 
user at a terminal. First, the administrator must make certain that the system prompts the user to 
identify the type of terminal being used. This can be accomplished quite easily by including the 
appropriate lines in the user start up file (usually either. login or • profi Ie). If the user in 
question has the C shell as the login shell, then the following few lines of code will prompt the 
user for the terminal type: 

echo "Please confirm (or change) your terminal type: 
set noglob; eval 'tset -e"H -s ?$TERM' 

If the start-up shell for a user is the Bourne shell, the following few lines of code will accomplish 
the same goal: . 

echo "Please confirm (or change) your terminal type: 

September 1988 Chapter 6 



IBM/4.3 System Administration Guide 

export TERM 
TERM='tset - _eAH' 

67 

In either case, the system will set the environment variable TERM to a string that uniquely identi­
fies the terminal type. 

The second main administrative activity associated with adding terminals to a system is making 
sure that the me /etc/termcap contains correct terminal descriptions for all terminals that 
will be connected to the system. The /etc/termcap data base supplied with the IBM/4.3 
system contains terminal descriptions of a very large number of terminals, so it is likely that a 
description of a reasonably common terminal already exists there. To see if such a description 
exists (and, if it does, what its abbreviation is), try to scan for a pattern that might identify the ter­
minal. For instance, if your terminal is manufactured by Televideo, try the command: 

# grep televideo /etc/termcap 

Most likely, you will get copious output, like this: 

vl1tvi91219121920ltvi92010ld televideo:\ 
v2 912bl912cltvi912bltvi912cltvilnew televideo 912:\ 
v3 920b 920cltvi920b tvi920clnew televideo 920:\ 
v4 tvi912-2p tvi920-2pl 912-2pI920-2pl tvi-2pltelevideo w/2 pages:\ 
vi tvi92519251televideo model 925:\ 
vj tvi925vbl925vbltelevideo model 925 visual bells:\ 
vn tvi925nl925nltelevideo model 925 no standout or underline:\ 
vk tvi925vbnl925vbnltelevideo model 925 visual bells no so or ul:\ 
va tvi9501950Itelevideo950:\ 
vb tVi950-2PI950-2Pltelevideo950 w/2 pages:\ 
vc tvi950-4p 950-4p televide0950 w/4 pages:\ 
vd tvi950-rv 950-rv televide0950 rev video:\ 
ve tvi950-rv-2pI950-rv-2pltelevideo950 rev video w/2 pages:\ 
vf tvi950-rv-4p 950-rv-4p televideo950 rev video w/4 pages:\ 
vg tvi92419241televideo model 924:\ 
vo tvi924vbl924vbltelevideo model 924 visual bells:\ 
vp tviptltelevideopt:if=/usr/lib/tabset/stdcrt:\ 
vh tvi910+1910+ltelevideo 910+:\ 
va ims950lims televideo 950 emulation:\ 

This output indicates that a number of different kinds of Televideo tcrminals are recognized by 
the system. If a user is working at a Tclcvidco model 920c, for examplc, then the appropriate ter­
minal type abbreviation would be v3. 

If the grep command listed above produccs no output or n,one of the lincs lists your terminal 
type, it is possible that a terminal description docs in fact cxist in /etc/termcap but doesn't 
contain the manufacturer's name. If so, you should look at the complete file to make certain that 
the terminal isn't listed under a slightly different name. So try: 

# page /etc/termcap 

If you still do not fmd an entry that seems to describe your terminal, then you will have to obtain 
a new capability description for the terminal and insert it into /etc/termcap. It is beyond 
the scope of this manual to give complete instructions for writing a terminal description from 
scratch; if you need to do this, consult the manual entry termcap(8). Generally it is possible 
to put together a working termcap description rather quickly by consulting those manual pages 
and the manual accompanying the terminal in question. Another possibility, of course, would be 
to obtain a working termcap description for the terminal in question from someone who has 
already written one. The USENET newsgroup comp. terminals serves in part as a way of 
exchanging terminal descriptions, so you may wish to inquire there. 

Chapter 6 September 1988 



68 IBM/4.3 Systcm Administration Guide 

12. Terminal Managemcnt Tip..~ 

• Remember that no terminals are active during single-user mode, other than the system con­
sole. In addition, no logins will be allowed over any modem lines that are attached to your 
system. This will prevent your machine from receiving incoming uucp or network transmis-
sions. 

• It is possible to edit the me /etc/ttys during normal multi-user operation in order to 
activate or deactivate tenninallines "on the fly". To cause ini t to reread /etc/ttys, 
send it a hangup signal: 

# kill -HUP 1 
Newly-activated seriallines will have a getty process (or whatever startup command is 
specified) launched. Similarly, lines that have been switched from 'on' to 'off' will have 
any existing shell program killed. Thus it is not necessary to reboot your system simply to 
reconfigure terminal lines .. 

• To prevent ini t from launching new getty processes when users log out, send it a ter­
minal stop signal, as follows: 

# kill -TSTP 1 
This is most useful for letting user activity dwindle down in preparation for an upcoming 
system reboot. If you change your mind and wish to resume full multi-user operation, send 
i ni t a hangup signal, as illustrated above. 

September 1988 Chapter 6 



CHAPTER 7 

Creating and Maintaining File Systems 

1. Introduction 

It is probably fair to say that a good understanding of the structure of the IBM/4.3 file system is 
the most important element of successful system administration. As a system administrator, you 
will need to manage the space used by system and user files, add disks when the existing space 
becornes inadequate, and balance the system's use of the available storage space. Since the 
IBM/4.3 system treats practically everything as a file of some sort or another, it is essential to 
maintain a clean and uncorrupted system of files. This chapter will help you understand how the 
IBM/4.3 operating system stores files and how it manipulates them to perform typical functions. 
It also explains how to create and maintain file systems and how to fix them in case of corrup­
tion. 

You should note that the details on file system organization and maintenance given in this 
chapter do not apply to any Andrew File Systems that may be present on your system. In partic­
ular, use of the file system consistency checker fsck on Andrew Pile Systems will result in 
irreparable file system damage. Par instructions on the maintenance of Andrew File Systems, 
refer to Chapter 19, "The Andrew System", and to the separate document The IBM Andrew File 
System. This chapter applies only to normal, undistributed IBM/4.3 file systems. 

2. Overview of IBM/4.3 Files and File Systems 

Logically, a me is an arbitrary sequence of bytes. Every file is located somewhere within the 
IBM/4.3 file system and typically has a name by which it can be accessed (perhaps by giving its 
name as an argument to some command). As the following diagram makes clear, files are located 
in a logical hierarchy in which certain files, caIted directories, contain other files and directories. 

Figure 7- t: Part of the File System Hierarchy 

IBM/4.3 System Administration Guide 69 



70 IBM/4.3 Systcm Administration Guide 

The full or absolute name of a file is simply a listing of the names of all the directories above it, 
separated by the slash character, 'I', followed hy the basename of the file (the name it has in its 
parent directory). Por example, the ahsolute name of the file in the lower right-hand corner of 
the previous diagram is: 

lusrlspo~l/rnail/tirn 

This form of the name is also called an absolute path name, since it specifies the full path taken to 
the file from the highest, or "root" directory, /. 

Physically, the bytes that make up a file arc located on a storage medium such as a rigid (or 
"hard") disk. A disk is a collection of addresses, each of which can contain a value that the sys­
tem can usually both read and write. An IBM/4.J system may have many physical disks attached 
to it, and each disk may be divided into several file systems. A disk usually contains several 
platters or surfaces, as illustrated in the following picture: 

platters cylinder 

Figurc 7-2: Simplified View of a I lard Disk 

An important division of a disk is the cylinder, which consists of all the data located on the same 
track on all platters. Each disk has numerous cylinders, one of which is highlighted in the preced­
ing illustration. Not all disks have multiple platters, however; floppy disks, for example, consist 
only of a single surface (which may usually he written on front and back). For this reason, disks 
shall be illustrated throughout the rest of this guide showing only a single surface. 

The contents of a file are not necessarily stored sequentially on the disk. Although the system 
tries to avoid file fragmentation by keeping a file's contents in the same cylinder or in contiguous 
cylinders, the file's contents may very well he scattered in chunks all over the disk. In spite of this 
apparent chaos, the way that the IBM/4.J systcm reduces the logical entity to the physical collec­
tions of bytes is really quite simple, and you must understand it thoroughly in ordcr to be able to 
administer the system well. 

A disk platter is divided into groups of cylinders called partitions. A partition can contain a file 
systetn, a swap area, or it may be completely unw,ed by the system. A partition may even be 
reserved by the system for its own use. Por example, the IBM/4.3 system does not allow access 
to the entire physical disk, since it reserves the beginning and the end of the disk for maintaining 
bad sector information about the disk. 

September 1988 Chapter 7 



IUM/4.3 System Administration Guide 

reserved for 
system usc 

Partition 2 

Partition I Partition] 

Figure 7-3: How J\ Physical Disk is Divided into Partitions 

71 

The division of a disk into partitions allows several file systems, swap areas, or hoth to be located 
on the same physical disk. The partitions arc created when the disk is formatted and to reparti­
tion a disk requires that you reformat it (therehy losing all information stored on it). 

J\ file system is created in a disk partition with the mkfs command (or with the newfs com­
mand, which is a "friendly" front-end to the mkfs command). The mkfs command sets the 
size and format of the file system. Each partition may contain at most one file system. 

File system 

~ 

Figure 7-4: Each Partition Contains (At Mm;t) One Pile System 

Every file system is divided into a set of block.'!. A block is a sequence of bytes having a predeter­
mined size. Most previous UNIX systems used hlocks of fixed size, either of 512 or 1024 bytes. 
The IBM/4.3 system, however, with its "fast file system", al10ws each file system to have blocks 
of a different size. The minimum size of a block is now 4096 bytes, and the size of a block may 
be increased (to any power of 2) if necessary to optimize disk performance. 

The first blocks in the file system comprise an entity known as the superblock. The superblock 
contains critical information about the file system, such as the size of the blocks in the file system, 

Chapter 7 September 1988 



72 IUM/4.3 Systl~m Administration Guide 

the number of blocks contained in the file syst{~m, t.he time that the file system was last modified, 
and so on. The information cont.ained in the superblock is so important to the system that the 
superblock is replicated at selected points in the file system to guard against losing the entire file 
system and all the data in it in the case of corruption of the superblock. 

r----~----------, 

1 Size of file ~ I -nodes 
1 Addresses of data blocks 1 

Owner of file 
Permissions on file 

Last modification times 
I etc. 1 L _______________ J 

Data blocks 

superblock 

r.------

~ 

----------------, 
-:=>"1 Size of data blocks 1 

1 
1 Number of data blocks : 
I 

1 
1 

Number of cylinder groups: 
Time of last write 

1 
1 

etc. 
L ______ . _________ J 

Figure 7-5: General Structure of a File System 

Following the superblock in the file system is a section of blocks that contain identification nodes, 
(or i-nodes, for short). I-nodes contain information about individual files, such as their location 
in the file system, their sizes, the time they were created and last modified, and who owns them. 
A file system contains a fixed number of i-nodes, which is determined at the time the file system 
is created. I-nodes are not referred to by name, but by the order (or index) in which they are 
found in the section of i-nodes. The index of a particular i-node in the section of i-nodes is called 
the i-node number (or i-number, for short). To display the i-number of a particular file, you can 
run the 1 s command with the - i option. For example, the following command will give a long 
listing of the /etc/rc file, along with the i-number of that file: 

# Is -Ii /etc/rc 
874 -rw-r--r-- 1 root 2746 Jan 21 03:19 /etc/rc 

Following the section of blocks which contain i-nodes arc the data blocks. These are the blocks 
that actually contain the bytes (or data) which make up files and directories. Thc data blocks of a 
file are selectcd by addresses contained within the i-node of a file, as illustrated in the following 
figure: 

September 1988 Chapter 7 



181\1/4.3 System Administration Guide 

Partial I-node Contents 

Data block addresses: 
1021 
1022 
1024 
1025 
1026 
1031 
1032 
1033 

73 

Data blocks 

Hgure 7-6: An I-node Contains Disk Addresses of Data Blocks in Pile 

In the IBM/4.3 system, an i-node has space for 12 direct data block pointers. That means that up 
to 12 data blocks can be addressed directly by the information contained in an i-node. If a file is 
larger than 12 x 4096 bytes (about 50,000 bytes), then the i-node is not able to contain all of the 
addresses of the data blocks occupied by the file. In that case, the i-node will contain, in addition 
to the 12 direct data blocks, the address of a disk block (called an "indirect address block") that 
contains more addresses. These additional addresses pick out the remaining blocks of the fIle, as 
illustrated in the following figure: 

Chapter 7 September 1988 



74 IBM/4.3 System Administration Guide 

Partial I -node Contents 

Direct Addresses 

Single-Indirect 
Block Address 

Data blocks 

~--------------~mID~rnm~~<---

Figure 7-7: Single-Indirect Data Blocks 

single-indirect 
address block 

Exactly how many addresses can be contained in the indirect address hlock depends on the size of 
the block, which was determined when the file systcm was crcated. Similarly, the size of a file 
which can he addressed exclusively using direct data blocks depends on the size of a block in the 
file system. For example, if the block size for a particular file system is set to 8192 bytes, then a 
file may be as large as about 100,000 bytes before indirect addressing is needed. Since an addi­
tional disk read and increased computing time are required to access and interpret the addresses of 
the indirect blocks, you can improve system performance by increasing the block size on file sys­
tems that contain commonly-used files that are in the 50,000 to 100,000 byte size range. In par­
ticular, a minimum size of 8192 bytes per block is recommended for the root file system, contain­
ing /bin and /tmp. 
If a file is too large to be addressed even using all the addresses that will fit into an indirect 
address block, then the system will look in the i-node for a second indirect address block, which 
picks out another group of disk addresses. 

September 1988 Chapter 7 



IBM/4.3 Systcm Administration Guidc 

Data blocks 

Partial I-node Contents 

Direct Addresses ~2::::===:;:Jttttttttttttttl 

Single- Indirect 
Block Address 

single-indirect 
address block 

double-indirect 
address block 

Ii"igurc 7-8: Double-Indirect Data Blocks 

75 

Because the minimum block size was set to 4096 bytes, it is possible to create files as large as 232 

bytes using the direct blocks, the single-indirect hlocks, and the double-indirect blocks. An i-node 
in fact contains one further slot for an indirect address, alJowing for the possibility of triple­
indirect data blocks. The IBM/4.3 system docs not utilize this capability, however, unlike most 
earlier UNIX releases. 

3. Disk Partitioning 

Each physical disk can be divided into several partitions, some of which may in fact overlap. 
Currently, the limit on the number of partitions that may exist on a single disk is eight, and the 
part.itions are consequently named 'a' through 'h'. The general arrangement of these partitions 
on a physical disk can be illustrated as follows: 

c 

ab h 
I I I 

Chapter 7 Scptcmbcr 1988 



76 181\1/4.3 System Administration Guide 

Figure 7-9: The I,ayout of Disk Partitions 

On drives that are smaller than about 200 megahytes, the h partition is usually omitted, in which 
case the general disk partition layout looks like this: 

c 
I 
: a b g 

d e 

Figure 7-10: The Layout of Disk Partitions on a 70 Megabyte Disk 

Similarly, on drives that are smaller than about 60 megabytes, the e partition is omitted as well. 
The typical partition arrangement on a 40 megahyte disk therefore looks like this: 

c 
I 
: a b g 

d f .. 
r----r------.I: 

Figure 7- t 1: The I.ayout of Disk Partitions on a 40 Megabyte Disk 

The a partition is usually used for the root partition, which is where the foot file system resides 
(including the boot program /boot and the kernel /vrnunix). The b partition is commonly 
used as an area fOf paging and swapping activity. The remaining partitions may be used to hold 
file systems or additional swap areas, or they may be left unused. In any case, if a file system is 
created in some disk partition, then it is not possible to create a file system in any partition that 
overlaps that partition. For example, if a file system is created in the c partition, then you will 
not be able to create file systems in any of the othcr partitions. Similarly, if the g partition is 
used to hold a file system, then you cannot usc any of the d, e, or f partitions. So even though 
all eight partitions may exist on a givcn disk, not all of them will be actively in use by the operat­
ing system. 

As you can surmise, the partitions actual1y in usc on a particular disk will fall into one of three 
basic patterns: 

September t 988 Chapter 7 



IBM/4.3 Systcm Administration Guidc 

c ab 
II I 

9 ab d e f 
II I I I 

Figure 7-12: The Three Most Common Partition Use Patterns 

77 

The first option is to devote the entire disk, minus the reserved space at the beginning and the end 
of the disk, to a single file system. This commonly occurs when large amounts of space are 
required to hold users' home directories and personal files. In some cases, the c partition itself 
can be used to access the entire disk, excluding the space at the beginning and end of the disk 
reserved for bad-sector infonnation. (See the section below, "Using the minidi sk Utility", for 
further instructions on devoting an entire disk to a single file system.) A second possibility is to 
have a root file system, a swapping and paging area, and then a large third partition (perhaps for a 
/usr directory). The third basic usage pattern is just like the second, except that the 9 partition 
is not used, while the d, e, and f partitions are. This allows the system administrator somewhat 
finer control over the use of the disk, since file systems in the d, e, and f partitions may be 
mounted and unmounted independently of one another. 

When constructing disk partitions, the IBM/4.3 system uses several default configurations in order 
to determine how large to make a particular partition. The amount of space allocated to each 
partition on the two most common types of disk in the default arrangement is listed in the follow­
ing table: 

Partition 40MB 70MB 

a 15884 15884 
b 10032 33440 
c 87040 141372 
d 15884 15884 
e N/A 55936 
f 43826 19404 
9 59721 91476 

Table 7-1: Standard Partition Sizes 

Note that the a partition, used for the root file system, is the same size on all drives, 15884 sec­
tors. There is nothing sacred about this number, however, and it ean often be useful to have a 
much larger root partition, especially if you reconfigure your kernel quite often and would like to 
maintain numerous system images in the root file system. 

4. Creating Disk Partitions 

The operating system accesses each disk partition through an entry in the / dev directory. These 
partitions are named according to the following scheme: the first part of the name is either 'hd' or 
'sc', depending upon whether the disk is an internal hard disk or whether it is attached to the 
system through the SCSI connector. Since there may be several of each of these two types of 
disk, this two-letter sequence is followed by a single digit, beginning with '0'. Finally, the parti­
tion name is completed by adding a single letter designating one of the eight possible partitions, 

Chapter 7 September 1988 



78 IIJM/4.3 System Administration Guide 

'a', 'b', 'e', 'd', 'e', 'f', 'g', or 'h', So, for example, a partition may be named 'hdOa'. 
The special device files for hdO look like this: 

brw-r----- 1 root 1, 0 Jan 9 22:18 hdOa 
brw-r----- 1 root 1, 1 Jan 9 22:18 hdOb 
brw-r----...;. 1 root 1, 2 Jan 9 22:18 hdOc 
brw-r----- 1 root 1, 3 Jan 9 22:18 hdOd 
brw-r----- 1 root I, 4 Jan 9 22:18 hdOe 
brw-r----- 1 root 1, 5 Jan 9 22:18 hdOf 
brw-r----- 1 root I, 6 Jan 9 22:18 hdOg 
brw-r----- 1 root I, 7 Jan 9 22:18 hdOh 

The IBM/4.3 system typically uses only three or four of the eight possible partitions. The first 
partition holds the root file system, which contains a bootable operating system, /vrnuni x. 
The second partition is used for paging and swapping activity, while the third is used for the 
/u s r file system: 

Partition 2 
Paging and Swapping area 

Partition 1 
root file system 

Partition 3 
/u s r file system 

Figure 7-13: The Typical Disk Partitions for IBM/4.3 

To create the eight partitions on a new disk, you may use the MAKEDEV script already discussed 
in the previous chapter. For instance, to make the partitions for the second hard disk, hdl, give 
the command: 

# /dev/MAKEDEV hdl 

The MAKEDEV script will consult the data base /etc/di sktab to determine what the 
default partition sizes are for that type of disk. 

4.1. Changing Default Partition Sizes 

The IBM/4.3 system is distributed with six default disk partition tables compiled into the kernel, 
corresponding to the hd40m, hd70m, hd40r, hd70r, hd70e, and hd70c drives. For any 
of these drives, the sizes of the eight disk partitions can be changed to any reasonable values you 
care to give them. To do so, you must edit the partition table in the kernel and make similar 
modifications to the entries in /etc/di sktab. The relevant section of the kernel source code 
is found in the fue /sys/caio/hd. c. There you wi1l find initializations of several array 
structures, each of which contains 8 pairs of integers. For example, the code for the partitions of 
a hd70c disk looks like this: 

September t 988 Chapter 7 



IBM/4.3 System Administration Guide 79 

hd70c_sizes[8] 
15884, 
33440, 
141525, 
15884, 
55936, 
18819, 
90729, 
0, 0, 

= { 
1, 
105, 
0, 
324, 
428, 
794, 
324, 

/* A=cyl 1 through 104 */ 
/* B=cyl 105 through 323 */ 
/* C=cyl 0 through 1023 */ 
/* D=cyl 324 through 427 */ 
/* E=cyl 428 through 793 */ 
/* F=cyl 794 through 916 */ 
/* G=cyl 324 through 916 */ 

As you can see, a partition is simply a contiguous chunk of disk cylinders which mayor may not 
overlap other such chunks. You can modify these values as necessary, subject to certain obvious 
constraints. You cannot for instance modify the c partition, since it corresponds to the entire 
physical disk. Similarly, the a partition must start at cylinder I. 

5. Cylinder Groups 

Generally, it is inefficient to use a file system structure in which the i-nodes are all located at the 
beginning of a file system and all the data blocks follow the i-nodes, as illustrated earlier. For 
instance, it is very common that all the i-nodes for the files in a particular directory need to be 
inspected in order to complete a user request (such as 1 s -1). In that case, it makes sense to 
arrange those i-nodes in such a way that they can all be accessed in the smallest amount of time; 
this can of course be done fairly easily by locating them in the same cylinder or in contiguous 
cylinders on a disk. But if the i-nodes for a file system are all located at the beginning of the file 
system, it is more difficult to enforce an i-node "clustering" scheme. 

Similarly, many user requests require that the system inspect both a directory and the i-nodes for 
the files in that directory. But under the simple file system layout illustrated, that is generally 
impossible, since a directory is just a file and is hence stored in the data block section of the file 
system. It would improve performance if a directory could be located near the i-nodes it refer­
ences. 

For these and other reasons, this basic picture of the structure of a file system is complicated 
slightly by an enhancement to the IBM/4.3 fast file system designed to increase file system 
throughput and reduce file fragmentation. This enhancement is the subdivision of partitions into 
cylinder group.f. A cylinder group is comprised of one or more consecutive cylinders on a disk. 
Within each cylinder group is a section of bookkeeping information (mostly occupied by i-nodes) 
and a section of data blocks, as depicted in the following diagram: 

Chapter 7 September t 988 



80 IBM/4.3 Systcm Administration Guide 

File system 

superblock 

I-nodes 

Data blocks : 

I-nodes 

2 
Data blocks : 

I-nodes 

3 
Data blocks : 

~ 

Figurc 7-14: The Physical and Logical Positions of Cylinder Groups 

As you can see, it is now generally possible for the operating system to situate a directory and the 
i-nodes for the files in that directory in the same cylinder group. When a new directory is created, 
the system automatically places it and the associated i-nodes in the cylinder group that has a 
greater than average number of free i-nodes and the fewest directories already in it. This policy 
ensures that i-node clustering will happen as often as possible and that directories and i-nodes will 
be as contiguous as possible. As a result, rotational latency is reduced and me system perfor­
mance is increased. 

6. Block Fragmcnts 

The larger block sizes in the IBM/4.3 system provide improved file system performance by allow­
ing larger chunks of data to be transferred to or from the disk in a single disk transaction. The 
larger minimum block size also reduces the need for indirection and thereby speeds up file reading 
and writing for files that are large enough that they would have required indirection under a 
smaller block size. One drawback of this scheme, however, is that a larger block size is apt to 
waste disk space. In a ftle system with blocks that are 4096 bytes, for example, a file of exactly 
10,000 bytes would need to occupy three disk blocks, accounting for a total of 12,288 byte of 
space. In that case, as you can see, over two thousand bytes of the disk (more than half a block) 
are wasted. In a system that employs Sl2-byte blocks, the same 10,000 byte file could be con­
tained in 20 blocks, accounting for a total of 10,240 bytes. As you can easily sec, only 240 bytes 
of the disk are wasted in the latter system, less than one tenth of the space wasted in the system 
with a large block size. 

In an effort to reduce the amount of space "wasted" in this manner, the IBM/4.3 system intro­
duces a new disk object called the fragment. A fragment is a division of a block that can be indi­
vidually addressed and used to contain part of a file's data. Within certain limits, you can deter­
mine how many fragments are to fit into a block on a particular file system, since a block may be 
divided into either two, four, or eight fragments. This value luust be supplied at the time the file 
system is created, as you will see below. If the file system on which the 10,000 byte file is stored 

Septcmber 1988 Chapter 7 



IBM/4.3 System Administration Guide 81 

allows eight fragments to a single 4096-byte block, then that file can be stored in two full blocks 
(8192 bytes) and in four fragments (2048 additional bytes). The four remaining fragments in the 
subdivided block are available for use by some other file. Under this arrangement, then, the total 
wasted space is only 240 bytes (i.e., [8192+2048J-I0000), which is exactly equal to the wasted 
space under the system with 512-byte blocks. 

The way in which fragments help to reduce "wasted" space is shown in the following illustration. 

Without Fragments With Fragments 

Figure 7-15: How Fragments Help Reduce Wasted Space 

Here, the two fIles a and b are to be stored in a file system. In a me system with no fragments, 
the two flIes would each occupy some number of blocks completely, with any remainder in each 
case assigned to part of a complete block. In a system where fragments are pennitted, however, 
the operating system would put whatever part of the second file that does not fit into complete 
blocks into the fragments left available by the fIrst file. In this idealized picture, an entire disk 
block has been saved by allowing parts of files to be placed into disk block fragments. 

The division of blocks into fragments is handled automatically by the operating system, and the 
only time it is of any real concern to the system administrator is at fue system creation time. See 
below for instructions on how to specify the number of fragments per block. 

7. Cylinder Group Bookkeeping Information 

The bookkeeping information placed into each cylinder group is something of a mixed bag. 
Mostly it includes the i-nodes for the files and directories whose data blocks are found in the data 
block section of the cylinder group, but it also includes several other items. First, there is a copy 
of the fue system superblock. The superblock is replicated in each cylinder group in order to pro­
tect against the catastrophe that would ensue if the only copy at the top of the me system were 
damaged. Second, the bookkeeping section of the cylinder group contains a bitmap describing the 
available blocks in the cylinder group. Previous incarnations of the UNIX operating system 
(including all current System V releases) maintain a list of free blocks, organized as a linked list. 
The free list typically begins in the superblock and extends as far into the fue system as is neces­
sary to maintain the address of each free data block in the file system. A list block contains some 
number of addresses of free blocks (usually 50), together with the address of a block that contains 
addresses of more free blocks (if there are any). Eventually, the address of each free block in the 
ftIe system will be contained in one of these free list blocks. 

Unlike System V and some earlier Berkeley releases, the IBM/4.3 system prefers to keep the 
superblock structure static; otherwise the redundant copies would need updating whenever the 

Chapter 7 September 1988 



82 IBM/4.3 System Administration Guide 

original superblock changed. As a result, the beginning of the free list is not kept in the super­
block. Rather, as indicated, the information on free data blocks is kept in a free bitmap. 

You should note that this bookkeeping information (superblock copy, i-nodes, free bitmap, etc.) 
is not always stored at the beginning of a cylinder group. If it were, then it would all be lost if the 
top platter of a disk were rendered unusable, thereby destroying the redundant copies of the 
superblock. To protect against that possibility, the bookkeeping information is stored at varying 
distances from the beginning of the cylinder group. This scheme ensures that not all superblock 
copies will be found on the top platter. 

8. Creating File Systems 

Once you have decided how you wish to use the available disk partitions, you may then proceed 
to create me systems in some of those partitions. The program newf s is provided to create new 
me systems. For instance, to create a me system in the disk partition hd1g, give the command: 

# newfs hd1g 

This form of the command will create a file system in the named disk partition according to vari­
ous default parameters governing the number of i-nodes, fragments, cylinders per cylinder group, 
and so on. Some of these values are obtained from the entry for the appropriate disk type from 
the file /ete/di sktab. If you wish to alter the default behavior of newfs, you may pro­
vide certain arguments. For example, the command: 

# newfs -b 8192 -f 1024 hd1g 

requests the creation of a new file system in the named partition having a block size of 8192 bytes 
(twice the minimum block size) and a fragment size of 1024 bytes. At file system creation time, 
you may also override the default values for the size of the file system, the number of tracks per 
cylinder, the threshold of free space, the sector size, and several other parameters. See the manual 
pages for newfs(8) for a complete list of the tunable parameters. 

If you are inexperienced with creating me systems or uncertain that you actually want to make a 
me system, you can run the newf s command with the - N option, which will cause newf s to 
print out the relevant me system parameters without actually creating the new file system. (This 
is rather like running make - n to see what actions would be performed without actually doing 
them.) 

9. Creating Swap Areas 

If your system contains more than one disk, you may wish to assign the system paging and swap­
ping activities to two or more of the disks, thereby increasing performance by "interleaving" the 
swap areas. To do this, you must first reconfigure the operating system by modifying the system 
configuration file. For example, you can indicate that the system be able to swap on both hdO 
and hd1 by including the following line: 

eonfig vmunix root on hdO swap on hdO and hd1 

Then you must remake and reinstall the kernel, as explained in detail in Chapter 3. 

Next you must edit the file /ete/fstab to indicate which partitions on the specified disks are 
to be used for swapping and paging. Nonnally the b partition is reserved for swapping and pag­
ing, so the appropriate fstab lines would look like this: 

/dev /hdOb: : sw: : 
/dev /hd1b: : sw: : 

The entry I sw' indicates that the relevant partition will be dedicated to swapping and paging. 
There is nothing sacred about the b partition: you may establish swapping areas in partitions 
other than the b partition, and you may use the b partition to hold a normal ftIe system. 

September 1988 Chapter 7 



IBM/4.3 System Administration Guide 83 

Nonetheless, we strongly recommend that you follow nOrrrlal practice and reserve the b partitions 
on all disks as swapping and paging areas. 

So far you have reconfigured your kernel so that paging and swapping are possible on more than 
one device and you have modified the file /ete/fstab to indicate which partitions on those 
disks are to hold the swap areas. You have not however actually enabled the additional swap 
areas. In order to allow the system to boot from a single disk, the system begins by restricting all 
paging and swapping activity to a single drive. To specify that interleaving is actually to take 
place, you must execute the swapon command. For exatnple, to tum on the newly-created 
swap area, give the command: 

# /ete/swapon -a 

The -a option causes all devices marked as swap devices in the me /ete/fstab to be made 
available. Normally this command is included in the multi-user initialization script, jete/reo 

10. Using an Entire Disk for One File System 

Recall that the e partition on a disk is used to access the entire physical disk, including the 
cylinders at the beginning and the end of the disk that. are normally reserved by the system for 
boot programs and bad sector information. Since the system reserves these cylinders for its own 
use, it is not recommended that you create a file system that occupies the entire e partition. On 
disks of certain types, doing so would cause important infonnation to be overwritten. 

To create a file system that fills the available space on a single disk, you should use the mini­
di sk utility to create a new a partition that extends from the beginning of the a partition to the 
end of the g partition, as illustrated: 

Standard e 

minidisk c 

Figure 7-16: Using An Entire Disk for A Single File System 

To repartition a disk, you must invoke the minidi sk option from the standalone utility shell, 
reassign partitions, and then reboot your system. The necessary steps are as follows: 

( 1) Reboot the system: 

# jete/shutdown -r now 

(2) Enter the standalone utility shell: 

hd(O,6)stand/sautil 

(3) Select the minidi sk option: 

9 

(4) Select the disk you want to devote to one file system. In this example, we shall use the 
third hard disk, hd2: 

Chapter 7 September 1988 



84 IHM/4.3 System Administration Guide 

hd(2,2) 

(5) If necessary, reinitialize the minidi sk directory. 

(6) Reboot the system. 

It is possible to cre~te a me system in the e partition of a disk which is not of type hd70e, as 
long as the bad block forwarding table is not too large and the reserved regions of the disk are not 
used. If you create the me system using the newf s program, these restrictions will automatically 
be enforced. Nonetheless, the procedure outlined above using the minidi sk utility is the 
recommended way to place a single file system onto an entire disk. 

t I. Mounting File Systems 

Once a fue system has been created, it may be added to the existing directory hierarchy by using 
the mount command. Merely creating a file system in a disk partition does not make it avail­
able to the system; the system also needs to be told where in the directory hierarchy the ftle sys­
tem is to be located and what permissions the users of the system are to have on the me system. 
A ftle system can be mounted anywhere in the hierarchy of files, provided that the directory where 
it is mounted (the "mount point") is empty before the mount occurs. For example, to mount the 
me system created in partition hdlg at the mount point /usr/sre, run the following com­
mand: 

# mount /dev/hdlg /usr/sre 

The directory /usr/sre must be empty before this command will succeed. A standard mount 
point is available on most IBM/4.3 systems in the directory /mnt. If nothing is located in that 
directory and no other file system is mounted there, then you can attach a file system to the direc­
tory hierarchy by executing the command: 

# mount /dev/hdlg /mnt 

If the message: 

mount: Deviee busy 

appears, then either the named device is already mounted, or the mount point is not empty, or 
else a user is in that directory. The directory /mnt is normally used to mount file systems after 
they have just been created in order to see that everything went okay, and also to mount ftle sys­
tems temporarily for administrative purposes. You should not normally mount me systems there 
for other purposes. 

To make sure that a file system was properly mounted, try to access a file or directory within the 
fue system. For example, perform a ed to the mount point and run 1 s. 
Once you have created me systems in disk partitions other than the root partition and put mes 
into those systems, you should modify the file /ete/fstab to include that information. The 
fue jetejfstab maintains a list of an file systems known to the system and contains informa­
tion about the associated device, the usual mount point, the type of me system, the frequency of 
dumps, and the order in which file system checks are to be done (with fsek). The format of 
this ftIe is as follows: 

device-name: mount-point: type: freq : pass 

Format 7-1: /ete/fstab 

For a complete explanation of the ftelds, refer to the manual page fstab(5). A few lines from a 
typical jete/fstab might look like this: 

September 1988 Chapter 7 



IBM/4.3 System Administration Guide 

/dev/hdOa:/:rw:l:l 
/dev/hdOg:/usr:rw:l:2 
/dev/hdlh:/usr/sre:rw:l:2 

85 

To mount all currently unmounted file systems listed in the file /ete/fstab, execute the 
command: 

# mount -a 

This command is generally placed into the multi-user start-up file, /ete/re, to mount all avail­
able me systems automatically at multi-user initialization time. 

12. Unmounting File Systems 

To remove a mounted m.e system from the system is to "unmount" it. This is the reverse process 
from mounting the file system.. Unmounting does not destroy any files or directories located in 
the file system; it merely makes them unavailable until the file system is mounted once again. A 
me system may be unmounted by invoking the umount command (note the strange spelling). 
For example, to unmount the /u s r file system, give the commands: 

# syne 
# syne 
# umount /dev/hdOg 

(assuming that the /usr me system was originally mounted on the special device 
/dev /hdOg). The syne commands are recommended to flush any output buffers that may 
contain disk updates. To unmount all currently mounted file systems, you can run the command 

# umount -a 

This will cause umount to consult the file system data base me /ete/fstab and to 
unmount all mounted file systems listed therein. If, when you issue an umount command, the 
message: 

umount: Device busy 

appears, then either some user is located in the mount directory (or one of its subdirectories) or 
there is an open me in the named file system. If you want to un mount the file system, determine 
whether some user is using it, or whether a process has a file open in the file system. You may 
need to terminate the process to free up the file system. 

13. Maintaining File Systems 

The IBM/4.3 file system is designed to achieve maximum throughput on a properly-balanced sys­
tem. You can help maintain optimal file system performance by taking steps to balance the disk 
load upon installation and by closely monitoring the use of the system. If certain file systems 
(such as those containing spooling directories) tend to fiJI up occasionally, you may consider 
adding disks or moving the affected file system to a larger disk partition (if one is available). As 
explained below, a file system that continual1y operates at ncar capacity will tend to increase file 
fragmentation and slow disk transfer operations. 

Aside from balancing the disk usage load so as not to overburden a particular disk or disk parti­
tion, the most important administrative concerns for maintaining file systems are to ensure that 
the disks are periodically updated, to minimize disk fragmentation, and to check the integrity and 
consistency of the file systems on a regular basis. As with most other administrative tasks, you 
can suitably configure the system so that these tasks are perform automatically. For example, a 
simple but effective way of helping to ensure a reasonable level of fIle system integrity is to run 
the update program. The update program executes the sync ( ) system call once every 30 
seconds, thereby updating all fde systems currently mounted. So even if you should suffer a 

Chapter 7 September 1988 



86 IBM/4.3 System Administration Guide 

system crash, you are guaranteed that the file systems will be reasonably sane. If no hardware 
damage was done by the crash, then the disk file systems will be at worst 29 seconds "old", and 
this much inconsistency can usually be fixed easily by running fsek, described below. The 
upda te program is usually launched once, at multi-user initialization time, by placing the fol­
lowing line into the file /ete/re: 

jete/update 

You should not run the program directly. 

13.1. Disk Fragmentation 

You have seen that the data blocks that collectively make up a file arc not necessarily stored con­
tiguously on a disk. When a file is created, the kernel consults the bitmap of free blocks and 
selects as many blocks as are necessary to hold the file, placing the addresses of the file's data 
blocks into the file's i-inode. The kernel attempts to reduce disk fragmentation as much as possi­
ble, but it simply doesn't matter to the user or to the kernel if the data blocks are next to one 
another or are widely separated, since it can find them just as easily in either case. Fragmentation 
of a file's data blocks is a concern only because it may take considerably longer to read those data 
blocks if they are not located in contiguous sections of the disk. 

The IBM/4.3 me system is commonly called a "fast file system" because it implements a disk 
block management scheme that keeps data transfer rates nearly constant over time. In other 
words, data transfer rates are not generally sensitive to file system fragmentation through contin­
ued use. Instead, data transfer rates are dependent on the total amount of free space in the me 
system. If a me system has plenty of free space in it, then the disk allocation algorithms of the 
IBM/4.3 system will avoid disk fragmentation. On the other hand, if there is very little free space 
remaining on a particular me system, then the system has no choice but to take whatever free data 
blocks remain; as a result, very great file fragmentation may occur, and data transfer times will 
increase. 

The IBM/4.3 system avoids this kind of performance degradation by making sure that you never 
fill any of your disks. Under the default configuration, once a disk becomes about 90 percent full, 
the system simply "pretends" that the disk is full and disallows further allocation of disk blocks to 
system users (except root). Since the total amount of free space in an IBM/4.3 file system can 
never fall below a certain threshold, the system is always assured that it can find reasonably con­
tiguous blocks to store a file in. So file access times should never sufTer, as long as you do not 
exceed the threshold. 

One consequence of the disk allocation scheme of the fast file system is that you should never 
need to reorganize your disks in order to reduce file fragmentation. If you have administered pre­
vious UNIX-based systems, you know that over time a file system will grow more and more frag­
mented with heavy use, and that response time will eventually sufTer. In those systems, special 
utilities had to be provided to reorganize a disk. Or, if such utilities were not available, the only 
recourse was to make a full backup of the file system onto secondary tnedia, create a new me sys­
tem in the disk partition, and then restore the files from the backup. In either case, me system 
reorganization was a fairly laborious process that would monopolize the disk for quite a while. 
As you can see, the "wasted" 10 percent of an IBM/4.3 file system is a small price to pay for 
never having to do this kind of reorganization. 

You can in fact modify the free space threshold by running the tunefs command on the 
desired file system. For example, the command: 

# tunefs -m 8 /dev/hdlg 

specifies that the rue system in /dev /hdlg should have the free space threshold reduced to 8 
percent of the total available space. (Make sure that the file system is unmounted, if possible, 
before running this command.) It is possible to set this value to zero, and hence make the entire 

September 1988 Chapter 7 



IBM/4.3 Systcm Administration Guide 87 

me system usable, but you will of course increase file fragmentation and reduce throughput by 
doing that. On most systems, the throughput will be reduced by a factor of about 3 over the per­
formance attained at a 10 percent threshold. Accordingly, it is not recommended to set the free 
space threshold to 0 percent. If a particular file system holds files that are reasonable large, you 
may reduce the free space threshold to as low as 3 percent without adversely affecting perfor­
mance. On a me system with lots of small files (such as the file system housing the USENET 
news articles), a value of 8 to 10 percent appears to be safest. 

14. Checking File Systems: Fsck 

It is absolutely essential to check and ensure the integrity of all of the file systems on your 
machine. A me systeln can become corrupted in a number of ways, most commonly by a system 
crash. If, for example, a me is being written to the hard disk when the system crashes, the disk is 
practically certain to contain a mangled version of the file. In addition, the bitmap of free blocks 
in the file system will very likely be incorrect, since it did not get updated. In such cases, the file 
system is said to be inconsisteni, and it is the duty of the system administrator to make sure that 
the file system inconsistencies are detected and corrected, if at all possible. It is very dangerous to 
continue to operate on a file system that has become inconsistent, since additional file system 
activity is likely to exacerbate those inconsistencies. 

The IBM/4.3 system contains a program, fsck, that is designed to help find and correct file sys­
tem inconsistencies. It operates by inspecting redundant copies of file system related information 
and by trying to resolve any conflicts that it discovers among such copies. The file system incon­
sistencies checked by f sck arc the following: 

• Data blocks claimed by more than one i-node, or by an i-node and the free list. 

• Data blocks claimed by an i-node or the free list that are outside the range of the file system. 

• Incorrect link counts. 

• Size of directory is not in the proper format. 

• Bad i-node format. 

• Data blocks not claimed by any i-node or by the free list. 

• File pointing to unallocated i-node. 

• I-node number out of range. 

• Excessive number of i-node blocks. 

• Bad free block list format. 

• Total free block or free i-node count wrong. 

The fsck file checking program runs in two modes: non-interactively, when it is typically run 
by the system after a normal boot, and interactively, when it is run by the operator, to identify 
and correct unexpected inconsistencies, or following a system crash. 

14.1. Running Fsck Non-Interactively 

When IBM/4.3 is brought up, f sck should always be run to check the consistency of the file 
systems. Doing so helps to ensure the integrity of the file systems; if any inconsistencies are 
found, they must be corrected before proceeding. 

Most of the time (hopefully), fsck wi11 not find any inconsistencies. In that case, the output 
will look something like this: 

# fsck /dev/hdlg 
** Phase 1 - Check Blocks and Sizes ** Phase 2 - Check Pathnames ** Phase 3 - Check Connectivity ** Phase 4 - Check Reference Counts 

Chapter 7 Scptember 1988 



88 IHM/4.3 System Administration Guide 

** Phase 5 - Check Cyl groups 
6076 files, 32172 used, 10789 free 

(61 frags, 2682 blocks, 0.1% fragmentation) 

Por explanations of feck's diagnostics, see "Psck - The UNIX Pile System Check Program" 
(SMM:5). 

'Vhen run with the -p option by the system during a normal boot, f eck not only checks for 
file inconsistencies; it also corrects the following inconsistencies in the file system that it knows 
arise from an unclean machine shutdown. These include the following: 

• Unreferenced inodes 

• Link counts in inodes that are too large 

• Missing blocks in the free list 

• Blocks in the free list that are also in files 

• Counts in the super block that are wrong 

For each corrected inconsistency, f eck prints one or more lines identifying the file system on 
which the correction took place and thc nature of the correction. After successfully correcting 
inconsistencies, f eck prints the number of files on that file system, the number of used and free 
blocks, and the percentage of fragmentation. 

If feck encounters inconsistencies other than those listed above, it exits with an abnormal 
return status, leaving the system running in single-user mode, and the boot fails. The operator 
should then run f eck interactively to find and correct the inconsistencies. 

14.2. Running Fsck Interactively 

The operator should run f eck interactively if f eck finds unexpected inconsistencies (those that 
it cannot correct) following a system boot, and after a system crash. In this mode, fsck lists 
each problem and suggests the corrective action that it thinks is most likely to restore the file sys­
tem to a sane state. The operator can then decide whether or not the suggested correction should 
be made. 

15. File System Management Tips 

• Never run the file system checking program feck on Andrew File Systems. If you do, you 
will irreparably damage the Andrew File Systems. An alternate file system consistency 
checker, vfeck, is provided with the IBM/4.3 system to provide the equivalent functional­
ity for Andrew File Systems. 

• Never run fsck on a mounted file system other than the root file system (for which you 
have no choice, since it is always mounted). Running feck on a mounted file system may 
cause numerous unreferenced file errors relating to the presence of pipes and other objects in 
the file system. 

September 1988 Chapter 7 



CHAPTER 8 

Backing Up and Recovering Files 

1. Introduction 

[t is absolutely essential that the system administrator maintain a rigorous backup schedule so 
that current off-line copies of all system and user files are available at all times. Files and direc­
tories can easily become corrupted through abnormal system activity (such as a system crash or 
power failure), or users may accidentally remove files that arc important to them. Even a nor­
mally careful superuser can destroy an entire file system by mistyping an otherwise innocent com­
mand. If a complete backup of an file systems is available, however, the necessary files and direc­
tories can be retrieved easily and quickly using IRM/4.3 recovery commands. 

This chapter describes the backup and recovery utilities available on the In M/4.3 system and 
details typical strategies for using those utilities. UnfortunatcIy, backing up and recovering files is 
one of the least standardized procedures confronting the system administrator, owing largely to an 
abundance of utilities that have in the past been used for this purpose. The currently recom­
mended utilities for backing up and restoring files on the IBM/4.3 system are the two programs 
dump and restore. It is possible, however, that your site may choose to substitute different 
backup and recovery procedures for the ones illustrated here, or it may elect to provide a slightly 
different interface (such as a customized shell script) to these utilities. If either of these possibili­
ties is the case, then you will need to consult local documentation or local experts in addition to 
this chapter. 

If you do employ the programs dump and restore, then you should log in as operator, 
not as root, while performing system backups. There are two main reasons for this. First, the 
operator login account has read permissions on an disks attached to the system, but it does 
not have write permissions. This allows someone togged in as operator to perform backups 
without having full superuser privileges. By performing backups with reduced privileges, the 
operator can avoid damaging file systems through uncareful or inadvertent command execution. 
The second reason for logging in as operator to manage backups and recoveries is that the 
dump program and the message daemon syslogd are configured to notify the operator in case 
assistance is needed or errors arise. For example, if one dump tape becomes filled and another is 
required to continue the backup procedure, the dump program will write a message to the termi­
nal screen of anyone logged in as operator. If you perform system backups while logged in 
as root, you may not see important diagnostic messages from the dump program. 

2. Full and Partial Backups 

Fundamentally, there are just two types of backup that you can perform on your IBM Academic 
Operating System 4.3 system, full and partial. A full backup creates a copy of every file and 
directory located on every file system on your machine. Such backups are entirely non-selective; 
they copy everything on the system to the backup medium. A partial backup, on the other hand, 
is simply any backup that is not full. For example, you may need to perform a partial backup 
when you have to remove a user from the system and want to make a copy of all the files and 
directories owned by that user. Or, more typically, you may perform a partial backup to save a 
copy of every fIle that has changed since a certain date. This kind of partial backup is known as 
an incremental backup because the me system is backed up in small pieces or increments. Main­
taining a series of incremental backups allows the system administrator to have current copies of 

IBM/4.3 System Administration Guide 89 



90 IIJM/4.3 System Administration Guide 

all files on the system while using a minimum number of backup tapes Of floppy diskettes. In 
addition, it generally takes much less time to perform incremental backups than full backups. 

A correctly-designed backup schedule, howevef, will incorporate both types of backups at 
different times. For instance, a relatively large computing installation may schedule full backups 
every month (or even every two weeks) and incremental backups every day. On the other hand, a 
small system with relatively static file systems might need to perform full backups only once every 
two or three months and incremental backups just once a week. Until you are fully acquainted 
with the usage patterns and needs of your particular site, you should follow the backup schedules 
described below. 

3. Backup Media 

In its broadest possible meaning, to backup a file (or an entire me system) is simply to create 
another copy of that file in a place where it may be found in case the original copy becomes lost 
or damaged. Accordingly, a file may be backed up in one or more different ways. The simplest 
method of backing up a file is just to copy the file into another file in the same directory: 

% cp ch.Ol ch.Ol.bak 

This method has the advantages that any user can "backup" files in this way, and it is easy to 
"restore" the original file if necessary (since it is right there in the file system). Some disadvan­
tages of such a backup scheme, however, are obvious: if the disk containing the files is for some 
reason damaged, then both the original file and the copy will be lost. Or if the user mistakenly 
types the command: 

% jbinjrm -f ch.Ol* 

then both the original and its copy will be removed. In a nutshell, this method of backing up files 
sins by putting all its eggs in one basket. Nonetheless, the practice of making a copy of an impor­
tant file as a temporary "backup" is one employed by most IRM/4.3 system users and (within 
limits) it is a practice that you should encourage, if for no other reason than to save yourself time 
restoring files off of backup media. 

Perhaps the worst disadvantage of this backup scheme is simply that it can consume large 
amounts of disk space, which is usually one of the most precious resources on a computer system. 
As the system administrator, you will need to develop a different strategy for backing up impor­
tant files, directories, and me systems. Instead of making copics of files in the file systems, you 
must institute some method of creating copics of file systems that are accessible even if the origi­
nal file system is irreparably damaged. Typically, four main methods of performing system-wide 
backups are employed, as illustrated in the following diagram: 

September 1988 Chapter 8 



IBM/4.3 System Administration Guide 91 

A: Streaming Tape B: Floppy Disk 

C: Network Machine D: Local Disk 

Figure 8-1: Four Common Backup Methods 

First, the system administrator may backup files and file systems onto streaming tape cartridges 
(Figure A). This method is fast and efficient, but you must have a tape drive attached to your 
machine. If you do not have a streaming tape drive available, you may decide to back up files 
onto floppy diskettes (Figure B). This option is not nearly as quick as with streaming tape and 
may require many floppy diskettes to back up all the files located on your system. If your 
machine is attached to a local area network, it is also possible to make a backup copy of your 
files by copying them across the network onto a remote machine (Figure C). The files can then 
remain on the remote disk, or they may be transferred onto streaming tape or floppies from the 
remote machine. If your local machine has sufficient hard disk space, you may copy all or part of 
a hard disk onto another hard disk partition on the sarne machine (Pigure D). This is usually the 
fastest backup method, but the backup files may not be recoverable if the machine is damaged 
and cannot be booted. All four of these backup methods will he explained in the remaining sec­
tions of this chapter. 

Which of these four common methods you employ depends heavily on the type of hardware you 
have available and the amount of time you can devote to file system backups. If the value of the 
data on your system warrants extra safety precautions, you may choose to employ several of these 
methods in combination. Conversely, if the data on some file system are of no particular impor­
tance or can be easily resurrected in case of corruption or loss, then you may decide never to 
backup that file system. This happens generally only in cases where an entire file system is 
devoted to holding temporary or scratch files (such as /tmp or /usr/tmp), to line printer 
spooling, or to the storage of USENET news articles. 

Chapter 8 September 1988 



92 I1JM/4.3 System Administration Guide 

4. Backup Scheduling 

It is recommended that you use the dump program for both full and incremental backups. The 
dump program is designed to copy to the backup medium all files in a file system changed after a 
certain date; it does this by relying on the notion of a dump level and by maintaining an on-line 
record of previous dump dates and levels. By definition, a level 0 dump constitutes a full dump. 
For values of n gre~ter than 0, a dump taken at level n has the effect of backing up all mes modi­
fied after any previous dumps at levels lower than n. So a level 1 dump will backup all mes 
modified since the previous level 0 dump. Similarly, performing a level 2 dump will backup all 
files modified since the previous level I or level 0 dump, whichever occurred more recently than 
the other. And performing a level 3 dump wilt backup all files modified since the previous level 0, 
1, or 2 dump, whichever occurred most recently. Ilence, the higher the dump level you request, 
the fewer mes you are likely to select, since many files will have been dumped at lower levels. 

To see more concretely what this means, imagine that you have just installed the IBM/4.3 system 
software onto your machine. It is good practice to make a complete backup of all the me systems 
right away, so that you can archive the installation tapes or return them to a central administra­
tive authority. (Alternatively, you may wish to edit some of the various configuration files on the 
system before performing this complete backup.) Since your machine has not yet been backed up, 
you should do a level 0 dump on all file systems, which requests a full dump. After a day's com­
puting activity, some of those files will have been modified. If you then request, for example, a 
level 3 backup, you will select all files modified after the most recent level 0, I or 2 backup. The 
most recent backup was a level 0 dump, so you will get all files modified in that day's work. On 
the next day, you might perform a level 2 backup. That will select all files changed after the origi­
nal level 0 backup, since there has (yet) been no level 1 dump. It is important to note that this 
level 2 dump will select all the files selected by the level 3 dump, in addition to any that have 
been changed in the day following the level 3 dump. 

Now let's continue this backup process for several more days. On the day following the level 2 
backup, you might perform a level 5 backup. That selects all files modified since the most recent 
backup at a lower level, which in this case is just the files modified since the preceding dump. On 
the next day, if you perform a level 4 dump, you wilt get all files modified after the level 3 dump. 
At the end of the week, you will want to perform a level 1 dump, which will backup all ftles 
changed since the original level 0 dump. 

This overlapping sequence of dump levels may seem strange until you realize that you must main­
tain three independent sets of dump media, one for monthly dumps (full or level 0), one for 
weekly dumps (level 1), and one for daily dumps (all other levels). As you can sec, most of the 
mes backed up onto the weekly set of tapes will already have been backed up onto the daily set of 
tapes. Similarly, most of the files backed up onto the monthly set of tapes will already have been 
backed up onto the daily and weekly set of tapes. Because of this, the backup scheme described 
here is sometimes called a "double redundancy" backup scheme. The redundancy inherent in this 
scheme provides a certain measure of safety in case a streaming tape or floppy should prove defec­
tive. 

The recommended sequence of full and incremental backups described above is illustrated in the 
following figure: 

September 1988 Chapter 8 



IBM/4.3 System Administration Guide 93 

Set 1: 
Monthly 

Set 2: 
Weekly 

Set 3: 
Daily 000~ 000~ 000~ 000~ 000~ 

FMTWTFMTWTFMTWTFMTWTPMTWTF 

Figure 8-2: The Recommended Backup Schedule 

The horizontal axis lists in sequence the weekdays in a given month, and the vertical axis shows 
the three sets of backup media. The box for any particular day shows which set of tapes to use 
and what level dump to perform. As mentioned, the month begins with a level 0 dump, a full 
backup of the entire me system. Ideally this dump would take place at a time of very little system 
activity, perhaps on a Friday afternoon. Then the following Monday, a level 3 dump is per­
formed using the third set of tapes. The next day, Tuesday, a level 2 dump is performed using the 
same set of tapes as was used for the level 3 dump. and so on until the following Friday, when a 
level I dump is performed, using the second set of tapes. Eventually, a level 0 dump is performed 
at the beginning of the new month. 

As indicated, monthly dumps are always done at level 0 and weekly dumps are always done at 
level 1. The level of the daily dumps varies from day to day and should follow a modified 
"Towers of Hanoi" sequence: 

3 2 5 4 7 6 9 899 

Dumps should always restart at level 3 after a level 0 or level I dump, and you should perform 
weekly dumps often enough that the 9's in this sequence are never reached. The dump schedule 
depicted in the diagram above is an ideal one that you should strive to maintain, if at all possible. 
Whatever schedule you adopt, it is important to heed the following two pieces of advice: 

• Perform all dumps when me system activity is at a minimum. If you perform a dump on a 
fIle system that is actively changing, you risk creating inconsistent dump tapes. The dump 
program makes several passes through a me system, so if things change between passes, the 
dump may already be out of date. Ideally a file system should be unmounted when backed 
up. 

• Make sure that a fue system is "clean" before you make a backup copy of it. The best way 
to do this is to run fsck on a file system before running dump. 

5. Backing Up Files and Directories 

When you want to back up a fue system using the dump program, you must indicate which level 
to use when dumping the file system. To indicate to the dump utility which level to dump at, 

Chapter 8 September 1988 



94 1I1M/4.3 System Administration Guide 

you must supply a key character. For example, to perform a complete (level 0) backup, you 
might issue the following command: 

# dump Osfu 2600 /dev/stO /dev/rhdOg 

The s key character indicates that the next argument is to be understood as the number of feet in 
the backup tape. The default is 2300, so to accommodate the streaming tape, the argument 2600 
was supplied. Also, the f key character indicates that the corresponding argument is to be taken 
as the dump device, in this case /dev /stO (for the streaming tape device). The command syn­
tax is admittedly painful, but users of tar on other systems should have no trouble understand­
ing it. Refer to the manual pages dump(8) for complete details on the available key letters and 
their meaning. 

The dump utility knows which files need to backed up by maintaining a record of all previous 
backup activity in the me /etc/dumpdates. So, for example, when you request a level 4 
dump of a particular file system, the dump program scans /etc/dumpdates to determine 
the date and time of the most recent dump of that file system at level 0, I, 2, or 3. When the 
most recent relevant backup time is found, dump then scans the appropriate file system to see 
which, if any, mes in it have been modified or created since that time. Any such files will then be 
dumped to the standard output of the dump command (usually a streaming tape drive or a 
floppy drive). Finally, when dump is finished backing up the selected files, it writes the current 
date and time into the /etc/dumpdates file, if the u key character was specified, as in the 
example above. This file must be owned by the user operator if the updating is to complete 
successfully. In addition, the file should he writable only by the owner of the file, or else a care­
less user may corrupt the me. The format of the /etc/dumpdates file is this: 

file-systenl level date 

Format 8-1: /etc/dumpdates 

For example, after a level 0 dump of the two file systems on the hdO drive, the top of 
/etc/dumpdates might look like this: 

/dev/rhdOa 0 Thu Sep 17 12:45:44 1987 
/dev/rhdOg 0 Thu Sep 17 12:52:07 1987 

Recall that the hdOa partition usually contains the root file system and the hdOg partition usu­
ally contains the /usr me system. Most systems will have additional file systems available on 
other disk drives, so there will be more lines in the /etc/dumpdates file like the two listed 
above. 

You can determine which me systems need to be backed up by running dump with the W or the 
w key character. If invoked with the W key letter, dump will report to the operator which file 
systems need to be dumped. It prints out the most recent dump date and level for each file sys­
tem listed in the file /etc/dumpdates. In addition, the W key letter causes dump to 
highlight those me systems that need to be dumped by prefixing the relevant output lines with the 
character >. The w key letter causes dump only to report file systems needing to be backed up: 

# fete/dump w 
Dump these file 

/dev/rhdOa 
/dev/rhdOg 

systems: 
( /) Last dump: Level 0, Date Thu Sep 17 12:45 
( /usr) Last dump: Level 0, Date Thu Sep 17 12:52 

Note that the file /etc/dumpdates will not contain accurate information about the most 
recent dumps unless you always perform dumps with the U key letter telling dump to update that 
fIle. If you forget to include that key letter, you can update /etc/dumpdates manually, 
since it is in a human-readable and -editable format. 

September 1988 Chapter 8 



IBM/4.3 System Administration Guide 95 

Once you have detennined which file systems to dump and which level to dump them at, you can 
proceed to actually dump those file systems. The following three sections describe in detail how 
to dump file systems onto streaming tape cartridges, onto floppy diskettes, and across a local area 
network. 

5.1. Using Streaming Tape 

The IBM/4.3 system supports streaming tape backups using the IBM 6157 Streaming Tape Drive, 
which accommodates 45-Megabyte cartridges (for example, the DC300 XLjP data cartridge from 
3M). Because of the large capacity of such cartridges, you should be able to backup each file sys­
tem onto a single cartridge (unless you have created non-standard disk partitions). To back up 
your system onto streaming tape, follow these steps: 

( 1) Erase each of streaming tape cartridges by inserting it into the streaming tape drive and exe­
cuting the command: 

# mt -f /dev/rstO erase 

(2) Make sure that you are logged in as operator. If necessary, execute the following com­
mand: 

# su operator 
% 

As indicated, the shell prompt should change from the pound sign (indicating superuser 
privileges) to the prompt of the user operator, which is by default the percent sign. 

(3) Insert one of the newly-erased tapes into the streaming tape drive and type: 

% dump Osuf 2600 /dev/stO /dev/rhdOa 

This command requests a full dump of the root file system (situated in disk partition 
/dev /rhdOa). Be sure to change the key letter indicating the dump level to the 
appropriate value. If everything goes okay, you will see messages like the following: 

DUMP: Date of this level 0 dump: Fri Feb 26 13:32:43 1988 
DUMP: Date of last level 0 dump: the epoch 
DUMP: Dumping Idev/rhdOa (I) to Idev/stO 
DUMP: mapping (Pass I) [re9ular files] 
DUMP: mapping (Pass II) [d1rectories] 
DUMP: estimated 6624 tape blocks on 0.25 tape(s). 
DUMP: dumping (Pass III) [regular files] 
DUMP: dumping (Pass IV) [directories] 
DUMP: DUMP: 6624 tape blocks on 1 tape(s). 
DUMP: DUMP IS DONE 
DUMP: tape rewinding 
DUMP: level 0 dump on Fri Feb 26 13:34:22 1988 

If the file system you are dumping docs not fit completely onto a single streaming tape, then 
the last four lines printed out in the example above will not appear; instead, you will see 
messages similar to the following ones: 

DUMP: 60.46% done, finished in 0:04 
DUMP: tape rewinding 
DUMP: Change tapes: Mount tape #2 
DUMP: NEEDS ATTENTION: Is the new tape mounted and ready to go?: 

("yes" or "no") 

At this point, you should change tapes and then type 'yes'. The dump program will con­
tinue: 

DUMP: Tape 2 begins with blocks from ino 8701 

Notice that the dump program has indicated the number of the first i-node on the new 

Chapter 8 September 1988 



96 IBM/4.3 System Administration Guide 

tape. You should, if possible, record this number for future reference (preferably on the 
tape case). The dump program writes ona tape in order of increasing i-node numbers, and 
the restore utility restores by i-node number. Continue following the directions from 
dump until the dump is complete. 

(4) Repeat step P) for each file system that you wish to back up. 

As you can see, the dump program requires explicit operator intervention when the end of one 
tape is reached so that a new one can be mounted. Assistance from the operator is also needed 
when the dump is completed and whenever it encounters an excessive number of tape or disk 
errors. (Note that dump will silently absorb up to 32 such errors.) dump always writes these 
requests for action on the controlling terminal of the person who launched the dump. In addi­
tion, you can include the n command line key letter in order to have dump write its requests for 
action on the terminal screens of all persons currently logged in under the ope r a to r user 
name. 

5.2. Using Diskette..~ 

The steps involved in backing up file systems onto floppy diskettes are entirely analogous to those 
involved when using streaming tape. The main difference between using floppies and using 
streaming tape is that individual floppies hold much less data than streaming tape, so you will 
need to have a fairly accurate idea of how much data you need to back up and arrange to have 
plenty of floppy disks on hand. Also, you must make certain that the floppy diskettes are format­
ted before you use them in a dump. 

To back up a file system or selected files onto floppy diskettes, follow these steps: 

(1) First of all, estimate how many floppy disks will be required to contain all the data that you 
wish to archive onto floppies. Each high-density floppy diskette holds 1.2 Megabytes of 
data, or 1,228,800 bytes. If you are backing up individual files in an incremental dump, you 
can simply estimate the total number of bytes by looking at a long listing of the fIles and 
adding up the fourth column. If you want to back up an entire file system, run the df 
command to determine how many blocks are used in that file system. Remember that df 
reports the number of IK (1024 byte) blocks in the file system, so to determine how many 
floppy disks are required to hold it, usc the fol1owing formula: 

number of 1.2M floppies = ( blocks consumcd x 1024) / 1228800 

If the result of this calculation is not integral, then round the result up to the next highest 
integer. That integer indicates (approximately) how many floppies are needed. 

(2) Next, make certain that all the diskettes are properly formatted. Unless you are absolutely 
certain that the diskettes you are about to usc are already formatted, insert each one into the 
upper floppy disk drive and give the command: 

# fdformat -h /dev/rfdO 

When the system asks whether to proceed with formatting, type eye s' and hit the return 
key. The system will then format the diskett.e. Repeat this step for each diskette that needs 
to be formatted. . 

(3) Make sure that you are logged in as operator. If necessary, execute the following com­
mand: 

# su operator 
% 

As indicated, the shell prompt should change from the pound sign (indicating superuser 
privileges). 

September 1988 Chapter 8 



IBM/4.3 Systcm Administration Guide 97 

(4) Now dump the selected file systems onto diskette. For example, to dump the lusr file 
system onto diskette, type: 

% dump Osfu 70 Idev/rfdO /dev/hdOg 

Notice that this command is exactly like that specified in step (3) for dumping to a stream­
ing tape, except that the capacity of the backup medium must be specified correctly. As 
above, the dump program will pause and prompt you for a new diskette when one becomes 
full. Be sure to label each diskette with the name of the file system and the sequence 
number. 

(5) Repeat step (4) for each file system that you want. to backup. 

5.3. Nctwork Backups 

It is possible to perform backups of file systems across a local area network, so that in theory you 
need just one streaming tape drive (or other backup device) for your entire network. To do a 
remote backup, you should be logged in as ope r a to r on the machine which you want to 
backup. Instead of running the dump command, however, you will run a very similar command, 
rdump, to route the files to be backed up over the network to a remote machine. 

System Console System Console 

~ 

I 
I 
I 
I 

D 
~ 
IOQ:DJ 

0 r-

I 
I 

L ______ _ rdump I 
------------' 

~ 
111111111 
111111111 

Figure 8-3: Dumping Across A Local Area Network 

The utility rdump is identical to dump except that the f key letter should be specified and the 
file to be dumped to should be of the form: 

machine: device 

This indicates that the specified device on the specified machine is to be used as the standard out­
put of the dump. For example, to make a full (level 0) backup of the local lusr file system 
onto a streaming tape drive attached to the host named 'tuna', you would give the command: 

% rdump Osfu 2600 tuna:/dev/rstO Idev/rhdOg 

Before running this or a similar cotmnand, make sure that the requested tape drive is not already 
in use. Of course, you will need to have physical access to the machine tuna and the attached 
tape drive in order to insert and change tapes. 

6. Restoring Files and Directorie..1Ii 

Once you have created a set of dump tapes using the utility dump as described above, you can 
list the contents of the tape and restore selected files and directories from it using the re store 
utility. restore is designed specifically to be used in tandem with the dump program and it 

Chapter 8 September 1988 



98 IBM/4.3 System Administration Guide 

will not allow you to restore files from archives created using other IBM/4.3 utilities (unless, of 
course, they call dump in some way). Note that you should always run the restore program 
while logged in as the superuser, root. If you try to restore files and directories while logged in 
as operator, you will probably be unable to create the necessary files or directories in the file 
system., since the operator account has minimal write access to the system disks (even though 
it can read all of them). 

The command-line syntax of restore utility is (not surprisingly) very much like that of the 
dump command. In particular, the following key letters arc available to control restore 
functions: 

Letter Description 

r Read the dump tape into the current directory. 

R Restore using a particular tape from a multi-volume 
dump. This allows restore to be interrupted and 
then restarted. 

x Extract the named files from the backup medium. If no 
argument is supplied, then the root directory on the tape 
will be extracted, thereby causing all files on the tape to 
be extracted. 

t Give a list of files on the tape. If no argument is sup­
plied, then the root directory will be listed, thereby caus­
ing all files on the tape to be listed. 

i Enter restore's interactive mode. A prompt will be 
printed and the program will take commands from the 
terminal. 

Table 8-1: re s to re Function Letters 

As you can see, restore has both interactive and non-interactive modes. The interactive 
mode (described more fully below) allows you to browse through a particular backup volume, see 
what is contained on it, and build a Jist of files and directories to be restored. This is most useful 
when you want to restore only selected files, not an entire tape. 

6.1. Using Restore Non-Interactively 

There are a number of functions that you can perform while using restore in its non­
interactive mode. For example, to list the files and directories backed up on a particular stream­
ing tape, insert the tape into the tape drive and then execute the following command: 

# restore tf /dev/rstO 

To obtain a listing of a floppy disk, simply change the device name to the appropriate value 
(probably '/dev /rfdO'). The output from this command will vary according to the actual 
contents of the tape, of course, but the first few lines will look something like this: 

Dump 
Dumped 

September 1988 

date: Fri Feb 26 15:41:11 1988 
from: Fri Jan 30 17:43:44 1988 

2 
3 

864 
1371 

./lost+found 

./bin 

./bin/yacc 

Chapter 8 



IBM/4.3 System Administration Guide 

1372 
1373 

./bin/lex 

./bin/f77 

99 

The files are listed together with their i-node numbers. Usually the output will be quite lengthy, 
so you may want to redirect the output into a file for later reading or printing: 

# restore tf /dev/rstO > list.1 

The x key letter is used to extract a list of files from a tape. For example, if the file 
/usrjbin/f77 was accidently damaged (or removed by an overzealous C progratnmer), you 
can restore it by inserting the tape containing it into the tape drive and then typing: 

# cd /usr 
# restore xf /dev/rstO ./bin/f77 

Normally, restore will respond with the following message: 

You have not read any tapes yet. 
Unless you know which volume your file(s) are on you should start 
with the last volume and work towards the first. 
Specify next volume #: 

At this point, you should respond by typing the number of the volume containing the me you 
want to restore. If there is just one volume in the archive, then simply type '1'. The requested 
file, /usr/bin/f77, will now be restored from the tape. 

Generally, however, it is unwise to restore files by full (or even relative) path name. One good 
reason for this is that restoring a file by its full path name will clobber the original file, if it still 
exists. That makes it impossible to compare the original and the backup copy, unless you first 
move the original into a safe location. Instead, you can instruct restore to restore the fll.e 
under its i-number. That is to say, you can tell re store to recreate a given file with a file 
name that is the same as the i-number of the original file. You do this by including the m key 
letter. For example: 

# cd /usr 
# restore xmf /dev/rstO .jbin/f77 

Once restore successfully completes this operation, you will see a file in the current directory 
whose name is 1373, which was the i-number of the original file, /usrjbin/f77. Note 
carefully that the name of the restored file is the i-number of the original me (the one backed up 
onto the streaming tape). Of course, the restored file is a file and hence has an i-number of its 
own. That i-number will be identical to the name of the file just in case the original file does not 
exist at the time that the copy is restored from tape. If, on the other hand, the original still exists, 
then the restored file will have a different i-number (since the i-number of the original me is still 
in use). To complete the restore, you need to move the restored file into its preferred place in the 
file system. In our current example, you would run the command: 

# mv ./1373 ./bin/f77 

The final main key letter used with restore in its non-interactive form is the r key letter. 
This is used to restore an entire backup volume. In other words, running restore with the r 
key letter causes the entire contents of a backup tape to be read into the current directory. The r 
key letter should therefore be used only to restore a complete (level 0) dump tape onto a clean file 
system or to restore an incremental dump after a full level zero restore. This activity is advised 
only when restoring a complete file system because of damage or file system corruption or when 
reformatting a disk to change the size of a file system. 

For instance, suppose that the /usr file system, usually located on hard disk partition 
/dev /hdOg, has become hopelessly corrupted by some hardware failure. The first thing you 
want to do is run fsck to check for inconsistencies. Then you want to create a new fue system 

Chapter 8 September 1988 



100 IBM/4.3 System Administration Guide 

there and do a full restore from your existing level 0 backup tapes: 

# fsck /dev/hdOg 
# newfs hdOg 
# mount /dev/rhdOg /mnt 
# cd /mnt 
# restore rf /dev/rstO 

After this sequence of commands is executed, the file system mounted at /mn t will look like the 
/usr file system looked at the previous level 0 dump. You then need to restore any incremental 
dumps you made since that level 0 dump. Collect all those incremental dump tapes and mount 
them in the order of increasing level, regardless of lite order you actually made them in. That is to 
say, if you have a level 1 dump taken after the level 0 dump you just restored, then put that tape 
in the drive and run the command: 

# restore rf /dev/rstO 

If you have a level 2 dump taken after the level I dump you just restored (or after the level 0 
dump, if there is no level I dump), then put that tape in the drive and run the retore com­
mand. Continue in this way with the level 3, 4, and 5 dumps, and any greater level dumps, if any 
exist, taken since the level 0 dump. Once you have restored the incremental dump tapes, the new 
file system will be as current as possible. You may now mount the restored file system at its pre­
ferred mount point: 

# sync 
# sync 
# umount /dev/hdOg 
# mount /dev/hdOg /usr 

The /usr file system has now been completely rcstored from backup media. 

6.2. Using Restore Interactively 

To use restore interactively, supply the i key letter in addition to the name of the tape drive 
(or floppy drive): 

# restore if /dev/rstO 

Once you have executed the restore command, you wilt see the interactive prompt: 

restore> 

At this point, you can enter any of the ten available interactive commands. The following com­
mands are available from within restore: 

Command 

add 

cd 

delete 

extract 

help 

September 1988 

Argument 

file 

dir 

file 

Description 
Add the current directory or the specified argument to 
the list of files to be extracted. 

Move into the specified directory. 

Remove the current directory (or the argument, if speci­
fied) from the list of files to be extracted. 

Extract from the tape all the files that are currently on 
the extraction list. 

List a summary of all the available commands. 

Chapter 8 



IBM/4.3 System Administration Guide 

Is dir 

pwd . file 

quit 

setmodes file 

verbose file 

List the contents of the· current directory or of the direc­
tory specified as an argument. An asterisk C *, precedes 
all directory entries that are currently on the extraction 
list. 

Print the full path name of the current working directory . 

Exit from restore. 

Set owner, modes, and times on all files currently on the 
extraction list. 

Toggle the sense of the V key letter. When set, the ver­
bose option list i-node numbers along with file names 
when the 1 s command is performed. In addition, infor­
mation about each file is printed as it is extracted. 

Table 8-2: restore Commands 

101 

The main advantage of using restore interactively is that you can browse a backup volume to 
see what's on it and selectively restore particular files and directories. 

7. Other Backup and Recovery Utilities 

As indicated, the two utilities dump and restore are the recommended programs to use for 
backing up and restoring either entire file systems or individual files. The scheme of overlapping 
full and incremental backups allows you to maintain complete backup copies of all files with a 
minimum of time spent in the backup process. Because dump understands the notion of dump 
levels and maintains an on-line record of dumps in the file /etc/dumpdates, it can always 
figure out what to dump during any particular backup session. Also, in the event of an abnormal 
condition (such as a tape write error), dump knows how to interact with the operator to attempt 
to circumvent or solve the problem. 

It is also possible to use other IDM/4.3 utilities to perform such backup and restore functions. 
For example, the utility find ean be used to generate a list of all files that have been modified 
since a certain date. Those files can then be given as input to other utilities that will write them 
onto a backup medium such as floppy disk or streaming tape. This section briefly outlines how 
to use some of these other utilities to perform backup and restore functions. 

7.1. Using Tar 

The program tar can be used to save multiple files onto a single file and then restore them. For 
example, the command: 

# tar cf /dev/rstO /usr 

will create a tape archive of the /usr file system on the device /dev /rstO (in this case, a 
streaming tape drive). Similarly, the command: 

# tar xf /dev/rstO /usr/include/sys/fs.h 

will extract the file /usr/include/sys/fs. h from the named archive file and write it 
baek into the me system. The me into which tar writes is usually a tape or floppy disk, but it 
can be any ftIe at all. 

The disks and tapes written by tar are extremely portable between UNIX-based systems. This 
makes tar a good program to use if you want to move data from one system to another, espe­
cially if the target system is not running the IBM/4.3 release of the UNIX system (so that dump 

Chapter 8 September 1988 



102 IRM/4.3 Systcm Administration Guide 

and restore cannot be used). The main constraint with tar is that most versions of tar 
are not able to write onto multiple tapes or disks, so that the amount of data moved is limited to 
what will fit on a single tape or diskette. 

As indicated, tar can be combined with the find command to provide a limited fonn of incre­
mental backup facility. For example, to find all files that are at most four days old and save them 
on tape, give the command: 

# tar cf /dev/rstO 'find /usr -type f -mtime -4 -printj' 

This command searches the /usr file system and produces a list of all files that have been 
created or modified within the last 4 days; then it archives each file listed onto the streaming tape 
drive named /dev /rstO. 

To restore a file from a tar backup medium, you should first make sure that the desired me is 
found in the archive. Run the command: 

# tar tvf /dev/rstO 

to obtain a listing of the ftles contained in the named archive file (here, /dev /rstO). Then, 
extract the desired file with the command: 

# tar xf /dev/rstO /usr/include/sys/fs.h 

The file will be extracted from the archive and placed at the correct spot in the file system. See 
the manual page tar(l) for a more complete specification of the options available with tar and 
for further examples of its usage. 

7.2. Using Dd 

If you have enough local disk drives, you may want to consider using the utility dd to make a 
copy of an active drive on a spare drive, thus providing a quick Clfull" backup (as illustrated in 
Figure D, above). For example, to copy the entire contents of the partition /dev jhdOg 
(which probably contains the /usr file system) to a spare partition /dev jhd2g, you would 
give the command: 

# dd if=/dev/rhdOg of=/dev/rhd2g 

dd simply copies the input file (specified with the' i f=' flag) to the output file (specified with 
the 'of=' flag). Notice that dd operates on raw devices, so you must prefix the letter 'r' to the 
ftle names, as illustrated in the example. 

To restore a file system backed up in this manner, simply invert the input and output files: 

# dd if=/dev/rhd2g of=/dev/rhdOg 

Notice that it is not possible to restore a single file, or a single directory, when using dd in this 
way, since it treats the entire partition as a single file. 

A very common use of dd is to make a backup copy of the root file system, so that the system 
can be booted even if the original root file system somehow becomes corrupted. For example, if 
you are not using the a partition of the hdl drive, you can create a backup of the root me sys­
tem by issuing the following command: 

# dd if=/dev/rhdOa of=/dev/rhdla 

You should note however that root file systems should be backed up in this way only if the two 
drives are of identical types and are partitioned in the same manner. Otherwise you risk overwrit­
ing important data on the hdl drive. Vou should also note that future system releases may 
include some sort of disk labels stored directly on the disk itself. If the portion of the disk that 
you move using dd includes the disk labels, you will effectively rename the destination disk. This 
mayor may not adversely affect system operation. See the manual page dd(l) for a more 

September 1988 Chaptcr 8 



IBM/4.3 System Administration Guide 103 

complete specification of the options available with dd and for further examples of its usage. 

8. Backup and Recovery Tips 

• If for some reason you need to restore an entire file system from streaming tape (or other 
backup mediupl), make sure that you do a full (i.e., level 0) dump immediately thereafter. If 
you neglect this important step, later incremental dumps on that file system will fail. 

• Remember that tape read and write errors happen occasionally and that they can prevent 
you from extracting certain files from a backup medium. In order to have maximum confi­
dence in the integrity of a set of dump media, the following measures are recommended. 
First, find the name of the last file that was dumped: 

# restore tf /dev/rstO I tail 

The last file listed in the output is the one you want. Next, instruct restore to restore 
that file: 

# restore x filename 

But mount the tapes in increasing order (in other words, insert the tapes in the same order 
that you originally inserted them when you made the dump). This strategy forces 
restore to read each tape completely. If there are problems with any of the backup 
media, you will discover them while performing this check. 

Chapter 8 September t 988 



104 18M/4.3 System Administration Guide 

This page intentionally left blank. 

September t 988 Chapter 8 



CHAPTER 9 

Managing the Line Printer System 

1. Introduction 

The line printer system is a collection of programs and filcs that manage the spooling and process­
ing of print jobs submitted by IRM/4.3 system users. Virtually any printer can be used in con­
junction with the line printer system, ranging from very slow and unintelligent impact printers to 
very fast and intelligent laser printers and phototypesetters. The line printer system is able to 
manage multiple printers (which are usually of different types), multiple spooling queues, and 
both local and remote printers. It also provides facilities for maintaining accounting information 
about print jobs and for restricting printer access to a group of users or to a group of networked 
machines. 

This chapter explains the configuration and operation of the line printer system. It illustrates the 
normal use of the system and provides troubleshooting advice to help you debug a malfunctioning 
system. This chapter also provides an introduction to constructing printer capability descriptions 
and printer interface programs, the two central items required to add a new type of printer to the 
line printer spooling system. 

2. Overview of the Line Printer System 

Typically, a user requests that a document be printed either by piping the output of a command 
to the Ipr command or by invoking the Ipr command with a filename as an argument. The 
Ipr command then enters the request into a print queue. Onder IDM/4.3, there is nothing mys­
terious about a print queue; it is simply a subdirectory of the main printer spooling directory 
(/usr/spool/lpd) that has the same name as one of the printers available to system users. 
For instance, if you have two printers available to users of your system, called prl and pr2, 
then there will be two print queue directories, /usr/spool/lpd/prl and 
/usr/spool/lpd/pr2. The overall operation of the line printing system is illustrated in 
the diagram on the following page. 

You will notice that for each print request, Ipr inserts two files into the spooling directory. For 
example, the diagram shows that a new print request for printer pr 1 actually consists of two 
fues, here named efA002 and dfA002. The files with names beginning with ef are called 
control files and those with names beginning with df are called data files. The data file contains 
the data to be printed and is usually identical to the file that was originally given as input to Ipr. 
The control file is created by Ipr and contains instructions on how to process the data in the 
data fue, as well as information relating to the owner of the print request, the host it originated 
on, the name of the corresponding data file, and so on. 

The principal provider of line printing services on IDM/4.3 is the daemon Ipd. When first 
started up (usually at boot time), Ipd examines the file /ete/printeap, a data base file 
that contains information on the printers attached to the local machine and on printers accessible 
across a local area network. Lpd determines which printers have requests queued for them by 
inspecting each spool directory for data and control files. ror each directory in which waiting 
requests are found, Ipd forks a copy of itself to monitor the processing of those requests. It 
then listens for further requests for services, both from the local domain (by monitoring the socket 
/dev /printer) and from the network domain (by monitoring the socket corresponding to 
the entry printer in the me jete/services). 

IBM/4.3 System Administration Guide 105 



106 

~------------- -------, 

: J:l JJ, J:l Q 
1 J:Jo J:l J:J2 bJ c ____________________ _ 

Queue for printer prl 

o 

IBM/4.3 System Administration Guide 

~---------------------, 

: JJ8 JJ9 JJo Q 
1 J:J8 JJ9 IJo bJ 
c ____________________ _ 

Queue for printer pr2 

11111111111111111 
pr 

Figure 9-1: Overview of the Line Printer Spooling System 

September 1988 Chapter 9 



IBM/4.3 Systcm Administration Guidc 107 

When Ipr enters a print request into a spool directory, it sends a message to the corresponding 
Ipd daemon informing it of the existence of the new request. If no daemon is actively servicing 
the indicated spool directory, the original Ipd forks a copy of itself to process the request. The 
printing daemon first creates a lock file called lock in the spool directory to prevent multiple 
daemons from becoming active simultaneously and trying to process the same set of print 
requests. The lock" ftle contains two lines; the first is the process identification number (pid) of 
the daemon and the second is the name of the control file of the job currently being processed. 
When the daemon finishes a print job, it removes the control and data files for the completed job 
from the spool directory and, if additional requests are pending, changes the second line of the 
lock file so that status inquiries by Ipq and lprm will give accurate results. If no further 
requests are found, the daemon dies. 

An lpd daemon servicing a particular printer processes jobs in a "first in, first out" pattern as 
dictated by the names of the control and data files. (As explained below, however, it is possible 
to rearrange the print queue by.placing selected jobs at the top of the queue.) Lpd determines the 
type of the request then launches a printer interface program, or filter, to translate the information 
in the data file into a form appropriate for the intended printer. Printer filters are also responsible 
for maintaining accounting records and disposing of any error messages or other diagnostic output 
that may arise in the course of sending the file to the printer. 

Once the line printer system is in operation, the administrator may query its status and control its 
operation using several utility programs. The program Ipq gives information on queued 
requests, listing the files remaining to be printed, their owners, and their sizes. A more 
comprehensive administrative program is the utility lpc, which provides the ability to query 
printer status, enable or disable either a printer or its associated queue, restart a printer daemon, 
and rearrange the order of requests in a queue. It is important to note that spooling a print 
request and actually sending the spooled request to a printer are two separate operations that may 
be controlled independently of one another. It is lpr that places requests into a spool directory, 
while lpd arranges for their fmal processing. Thus, the line printer system administrator may 
stop lpr's spooling to a particular printer without halting the printing of jobs already spooled. 
This is useful if you want to take a printer out of service but first want to let it complete any 
queued jobs. Similarly, the administrator may stop a device from printing without disabling 
spooling. This may be useful if you need to take the printer ofT-tine temporarily to clear a paper 
jam, change ribbons or toner cartridges, or perform some other maintenance operation. 

3. Installation 

IBM/4.3 is distributed with the line printer programs and configuration files installed in their 
usual directories. The line printer system consists mainly of the following programs and files: 

/usr/ucb/lpq 
/usr/ucb/lprm 
/usr/ucb/lpr 
/etc/printcap 
/usr/lib/lpd 
/etc/lpc 
/etc/hosts.lpd 

Spooling queue examination program 
Queued joh dcletion program 
Job queuing program 
Printer capability data base 
Line printer daemon 
Line printer control program 
I ,ist of remote hosts allowed to use printer 

Table 9-1: Main Components of the Printer Spooling System 

It is recommended that you leave these programs and files in their preferred locations. If this is 
not possible, you should symbolically link the ones you install cIsewhere to the locations listed 
above. 

Chapter 9 September 1988 



108 IIJM/4.3 Systcm Administration Guide 

3.1. Disk Space· Requiremcnts 

One of the important administrative tasks of the line printer system manager is to ensure that 
there is sufficient free space in the file system housing the spooling directories to hold all user­
submitted print requests. If there is insufficient space, user jobs might not get spooled, or jobs 
that are spooled may be truncated at random points. It is to your distinct advantage to try to 
minimize the aggravation caused by recurring space problems by providing adequate space for the 
spooling system before it is enabled for use by system users. 

It is impossible, however, to say categorically what a safe amount of space might be, since the 
amount of space needed to hold print johs is a function of the number of users on your system, 
their volume of printing, the number and speed of the printers available, the service requirements 
of those printers, and several other factors. The best you can do is to estimate space requirements 
then monitor disk consumption for the first few days or weeks of operation to see whether your 
guess is a reasonable one. Anywhere from half a megabyte to several megabytes of space may be 
required to allow all user requests to be successfully spooled and printed. On a machine dedicated 
as a network print spooler for a large user community, as much as ten or twenty megabytes of 
space may be reasonable. For further discussion of space requirements and some advice on how 
to cope with limited resources, see the section "Space in the Spooling File System" below. 

3.2. Access Permissions 

The various print queues are generally maintained in the directory /usr/spool/lpd. The 
requests and status information for a particular printer are contained in a subdirectory whose 
name is the same as the printer. The spooling area should be writable only by the user daemon 
and by the group daemon. Further, the programs Ipr, Iprm, Ipd, and Ipq should be 
installed setuid root and setgid daemon. This scheme ensures that normal (non­
privileged) users will be unable to remove print request other than their own (since they must use 
the utility program Iprm to do so) or circumvent printer accounting (by inserting print requests 
into the queue directory without using Ipr). 

Once these programs are placed into the appropriate directories and given the correct permissions, 
three things still must be done to activate printing on a specific printer: 

(1) Create a printer capability description for the printer (also called a "printcap" entry) and 
install it in the data base file /ete/printeap. 

(2) Create a printer interface program (or a set of such programs) for your printer. 

(3) Tum on the line printer daemon, /usr/lib/lpd, and enable the printer with Ipe. 
Most of the work involved in installing a new printer will occur in the first two operations. Some 
interface programs are quite trivial, while the interface programs for very sophisticated printers 
such as laser printers and digital typesetters are often quite complicated. Por those printers, for 
example the IBM 3812 Pageprinter, you will probably receive a set of interface programs and 
printer capability descriptions as part of the software release accompanying the hardware. If not, 
your best course of action is to modify an existing printcap description and an existing printer 
interface program. The following two sections provide some advice on these issues. 

3.3. Printer Capability Descriptions 

The me /ete/printeap is the central storehouse of information about the printers available 
on your system. It is modeled after the te rme ap data base, which lists terminal capabilities, 
but it is much simpler than te rme ap and generally easier to maintain. This me must contain 
an entry for each printer that a user can select using a command ]ike: 

% Ipr -Pprinter ch.l 

For a given printer, the corresponding /ete/printeap entry lists the spooling directory, 
accounting log files, lock files, and printer interface programs. If the printer is attached to the 

September 1988 Chapter 9 



IBM/4.3 System Administration Guide 109 

system through a serial port, the printcap entry will also list the baud rate to use when communi­
cating with the printer and several other parameters necessary for the operating system to condi­
tion the line to the printer. A list of printer capabilities that may be specified in an 
/etc/printcap entry is included in the following table. 

Name T~pe Default Descri~tion 

af sIr NULL Accounting file 
br num none If lp is a serial line, set the baud rate 
cf sIr NULL cifplot data filter 
df sir NULL tex data filter (DVI format) 
fc num 0 If lp is a serial line, clear flag bits 
ff sir \f String to send for a form feed 
fo boo! false Print a form feed when device is opened 
fs num 0 Like f c, but set bits 
gf sir NULL Graph data filter (plot(3X) format) 
hI boo! false Print the burst header page last 
ic boo! false Driver supports (non standard) ioctl to indent printout 
if sir NULL Text filter which does accounting 
If sir /dev/console Error logging file 
10 sir lock Lock file 
Ip sir /dev/lp Device to open for output 
mx num 1000 Maximum file size (in BUFS I Z blocks) 0 = unlimited 
nd sir NULL Next directory for list of queues (unimplemented) 
nf sir NULL di troff data filter (device independent troff) 
of sir NULL Output filtering program 
pI num 66 Page length (in lines) 
pw num 132 Page width (in characters) 
px num 0 Page width in pixels (horizontal) 
py num 0 Page length in pixels (vertical) 
rf sIr NULL Pilter for printing rORTRAN style text files 
rg sir NULL Restricted group 
rm sir NULL Machine for remote printer 
rp sIr Ip Remote printer name 
rs bool false Restrict remote users to those with local accounts 
rw boo! false Open the printer device for reading and writing 
sb bool false Short banner (one line only) 
sc boo! false Suppress multiple copies 
sd sir jusr/spool/lpd Spool directory 
sf boo! false Suppress form feeds 
sh boo! false Suppress printing of burst page header 
st Sir status Status file 
tc str NULL Use description of printer sIr 
tf str NULL troff data filter (CAT phototypesetter) 
tr sIr NULL Trailer string to print when queue empties 
vf str NULL Raster image filter 
xc num 0 If Ip is a serial line, clear local mode bits 
xe num 0 Like xc, but set bits 

Table 9-2: Printer Capabilities 

Chapter 9 September 1988 



110 1111\1/4.3 System Administration Guide 

One important difference between /etc/printcap and /etc/terrncap is that a user 
cannot substitute some other printer capability entry for the ones contained in 
/etc/printcap. (Recall that /etc/terrncap will not be searched if the user has the 
environment variable TERMCAP set.) The reason is simply that otherwise a user could circum­
vent the accounting and logging procedures specified in the printcap entry. 

Like terminal capability descriptions, a particular printer capability description may not include all 
of the items listed in the preceding table. A very simple printeap entry might look like this: 

lpldefault line printer:\ 
:af=/usr/adrn/lp.acct:if=/usr/lib/lpf: 

Any entries not specified in the printer capability description will be assigned the default value. If, 
as illustrated, the name of the printer is 'lp', the line printer system will treat it as the default line 
printer and send it all printing requests that do not include a printer specification -Pprinter. You 
can override this specification using the PR INTER environment variable. 

3.4. Special Entries for the 3812 Pagcprintcr 

In addition to the standard entries listed above, the IIlM/4.3 system recognizes two additional 
printer capabilities, SS and PP, which are intended for usc by the IBM 3812 Pageprinter. The 
PP entry specifics the port through which the Pageprinter is attached to the host machine. This 
port usually differs from that specified in the lp entry since the IBM/4.3 system uses a special 
line protocol, ap, to communicate with the 3812. If the Pageprinter is to be used on your sys­
tem, the kernel configuration file must specify the asynchronous protocol ap pseudo-device. 
Refer to Chapter 3, "Reconfiguring the Operating System", for complete instructions on how to 
include that specification. 

The S S printer capability identifies the log file for the 3812. This file maintains a list of all mes­
sages received from the printed itself, such as PAPER JAM or other diagnostic messages relating 
to the state of the printer. This file differs from the error message file specified by the I f entry, 
which collects messages from the interface filter. In any event, the use of I f is not recom­
mended; instead, syslogd should be used to manage messages from the interface filters, as 
explained below. 

3.5. Printers on Serial Lines 

There are several printer capabilities that allow you to specify how the system is to communicate 
with a printer attached to your system through a serial port. Por example, the lp entry lists the 
device to open for output. It can often be omitted if only one printer is available on your system, 
since in that case you will very likely have linked the special file for that port to the device 
/dev /lp (which is the default port to open). Further, the br entry indicates the baud rate at 
which the system is to communicate with the printer. Which rate you run at depends on the 
capabilities of the printer. Some impact printers print so slowly that there is no point in using 

, any baud rate higher than 300. Most modern non-impact printers (such as laser printers and 
typesetters), on the other hand, are able to communicate with a host computer at 9600 baud with 
no problem, as long as flow control is enabled (so that the host computer will quit sending data 
when the printer's buffers are full). 

There are four other printcap capabilities related to serial operation, fs, fc, XS, and xc. The 
frrst two are used to set or clear flag bits on the serial line driver that determine how the system 
interprets output to the printer and input from the printer. The latter two capabHities are used to 
set or clear local mode words. 

September 1988 Chapter 9 



IBM/4.3 Systcm Administration Guidc 111 

4. Interface Programs 
When lpd undertakes to service a print request found in the spooling directory, it passes the data 
to be printed to an interface program or filter. The function of the interface program is to handle 
whatever device-specific processing still remains to be done on the input file before it can be sent 
to the printer. The input me to the filter is the data to be printed (namely, the 'df' file) and the 
output me is simply the printer itself, as depicted in the following general diagram: 

data file 

Value returned to lpd 

-1 unrecoverable error 
o job printed okay . 

1 try to reprint job :J 
. ~ .. ~~~~~~ .~~.t. ~.r.i~.t~.~ .j.~~ ...... j 

r , r , 
r----------------, 

~ pro H if ~ 
or 

~ if ~ 
or error file 

standard ~ cf ~ 
mput or 

.--. ___ st_a-,.nd_a_r~d __ --;~~_ n 
output ~ 

I 
I 
I 
I 
I 
I 
I 

~ nf ~ 
or 

or 

vf ~ 
L ________________ J I 

J L J 

accounting 
output 

accounting file 

Figure 9-2: Position of the Printer Interface Program 

The work that the interface filter needs to perform depends on the kind of input it is given, and 
there are several possibilities. For example, the data file may contain the output of anyone of a 
number of common text-processing programs such as nroff, troff, or tex, or it may con­
tain output of some other IBM/4.3 utility such as plot or cifplot. The data file may even 
consist of nothing more than the output of piping a normal ASCII text file through pro 

Because the data me may contain various types of input, a number of interface programs must be 
available to turn that data file into a form understandable by the destination printer. A 
moderately capable printer (i.e., one able to produce output for a number of different types of 
input data file) will have a description like this: 

dt:sample line printer:\ 
:lp=/dev/lp:af=/usr/adm/lp.acct:\ 
: if=/usr/local/dt/dtif: of=/usr/local/dt/dtof:\ 
:gf=/usr/local/dt/dtgf:nf=/usr/local/dt/dtnf:\ 
: df=/usr/local/dt/dtdf: vf=/usr/local/dt/dtvf:\ 
:tf=/usr/local/dt/dttf: 

The nf printcap entry specifies the printer filter to be used if the data me contains output from 

Chapter 9 September 1988 



112 IBM/4.3 System Administration Guide 

di troff, the device-independent troff. Similarly, the tf entry specifies the filter to use if 
the data file contains output from the original troff (intended for a CAT phototypesetter). 
Depending on the kind of input contained in the data file, Ipd will spawn the appropriate filter. 
1pd determines whieh ftlter is appropriate by inspecting the control file. (Of course, the control 
ftle garners this information ultimately from Ipr.) 

Table 9-2 includes the filters available with IBM/4.3. 

4. t. Filter Return Values 

In addition to filtering the data file into a form suitable for sending to the printer, the interface 
program must also communicate the results of its actions back to the calling daemon so that 1pd 
knows whether to proceed with further printing or to attempt some corrective action. The inter­
face program, whether it is a compiled program or a shell script, must pass an exit value back to 
its parent process in accordance with the conventions illustrated in the diagram above. If the 
ftltering and printing occurred as expected and no errors were discovered, a value of 0 must be 
returned. In that case, Ipd knows that further jobs may be processed and sent to the printer. If 
for some reason the job should be reprinted, a value of 1 should be returned. If an error 
occurred but the job was printed anyway, a value of 2 should be returned. Finally, if some unre­
coverable error happened, a value of -1 should be returned. 

4.2. Signals 

The printer interface program may trap and interpret signals in any way desirable, or it may 
ignore them entirely, with one exception. The interrupt signal, S I G I NT, must be trapped and 
used to perform whatever cleanup operations are necessary to keep the printer system running 
smoothly and to keep from cluttering the file system. The parent Ipd daemon may send this 
signal to the interface program for a variety of reasons, the most obvious one being that a user 
requests termination of a currently printing job with the Iprm command. 

When the printer interface program receives the S I G I NT signal, it must do whatever it can to 
clean up after itself and leave the printer in a state ready to receive further print jobs. If any lock 
files had been created to ensure exclusive use of some resources, they should he removed. Simi­
larly, any temporary files created in the filtering process should be removed. 

4.3. Arguments 

The arguments passed to a filter vary, depending on the specifie filter. The following arguments 
apply to most ftlters: 

filter -xwidth - ylength -n login -h host acctg file 

The -x and -y arguments specify horizontal and vertical space, respectively, in pixels. (See the 
px and py entries in the printcap file.) The -n option specifics the login name of the job 
owner, and the -h option specifics the host name of the owner. The acctg_fi Ie argument 
specifies the name of the accounting file (from printcap). 

There are two filters whose arguments differ: 

• The if ftlter has the following arguments: 

filter [ - c) - wwidth -1length - i indent - n login - h ho.rl acctg file 

You can use the -c flag, which is optional, to pass control characters which you do not 
want interpreted to the printer. (for example, when using the -1 option of 1pr to print a 
fue). The values for -wand -1 come from the pw and pI entries in the printcap me. 
The remaining arguments are the same as described above. 

• The 0 f filter is called with the following arguments: 

filter -wwidth -1length 

September 1988 Chapter 9 



IBM/4.:l System Administration Guide 113 

The values for -wand -1 come from the pw and pi entries in the printcap me. 

5. Operation 

This section discusses three aspects of operating the line printer system: starting it up, removing 
jobs from the print~r queue, and using a remote printer. 

5.1. Starting Up the Line Printer System 

For the line printer system to operate normally, the line printer daemon lpd must be running. 
Usually the daemon is started up automatically at boot time by placing the following lines into 
the multi-user initialization me, /etc/rc: 

if [ -f /usr/lib/lpd ]i then 
rm -f /dev/printer 
/usr/lib/lpd 
echo 'Printer daemon started' > /dev/console 

fi 

You should place these lines into that file if they arc not already there. If you want to launch the 
line printer daemon without rebooting your system, simply give its full name as a command: 

# /usr/lib/lpd 

As indicated in the overview above, this will launch the parent lpq daemon, who will scan the 
queue directories for waiting print jobs and listen on various sockets for new print requests. 

5.2. Removing Jobs from a Printer Queue 

The lprm command is provided so that ordinary users can remove jobs from a spooling queue 
that they have previously submitted. This is accomplished by removing both the control and data 
fues corresponding to the specified print requests. If necessary, lprm will first kill off a daemon 
servicing a queue and then restart it after the mes are removed. If the mes are destined for a 
printer on a remote system, lprm will first look into the local queue to see if the requested job 
still resides there. If not, it tries to remove the control and data files from the remote machine. 

Normally, only those jobs owned by a particular user are candidates for removal. The diagnostic 
message: 

Permission denied 

will be issued if a user attempts to remove print requests that are not owned by that user. The 
superuser may remove any jobs from the print queue, however. A particular printer's queue may 
be entirely emptied by the command: 

# lprm -Pprinter -

If the printer option is not specified, or the environment variable PRINTER is not defmed, only 
the print requests for the default line printer will be removed. 

5.3. Using a Remote Printer 

It is extremely simple to configure the printcap file so that some or all print requests are 
routed over a local area network for printing on a printer attached to a remote host. Suppose, for 
example, that you want to configure the line printer daemon on the local host tuna to send all 
print jobs to the remote host grunnion. To do this, simply install a printcap entry like the 
following into the me /etc/printcap on tuna: 

Ipldefault line printer:\ 
:lp=:rm=grunnion:rp=pr3:sd=/usr/spool/lpd:mx#O: 

Chapter 9 September 1988 



114 IBM/4.3 System Administration Guide 

By giving the printer the name 'Ip', you have establishc(iit as the default printer. This part of 
the print cap is optional, and you may give the remote printer whatever dcsignation you like. The 
important part of this printcap is that the I p entry is empty and the rm entry contains the host 
name of the remote machine. Further, the rp entry lists the name of the printer on the remote 
system (in this example, pr3). If you want the print requests to be routed to the default printer 
on the remote syst~m, you can omit the rp entry. Of course, the remote host specified by the 
rm entry must be a known name on your local arca network (as stored in the file 
/etc/hosts). In addition, if there is an /etc/hosts. Ipd file on grunnion, it must 
contain the name tuna so that users on tuna will be allowcd access to the remote printer. If 
the printer capability description for pr3 on grunnion contains the entry rs, only those 
users on tuna who also have accounts on grunni on will be allowed to print on pr3. 

tuna 

B 
~----D-~ 

~ 

I I IQQJ1I 

, 0' I I 
0 

11111'111 
I I 

111111111 
L ______ J 

Figure 9-3: Spooling Print Requests to a Remote Printer 

As you can see above, the file to be printed is stored in two different print queues, one on the 
local host and one on the remote host. This allows spooling for the remote printer to continue 
on the local host even if the remote host is down or network traffic is temporarily interrupted. 
Once the data and control files are transferred to the remote print queue, they are removed frOIn 
the local queue. Similarly, no files will be transferred from the spooling directory on tuna to 
the spooling directory on grunni on unless enough disk space is available on grunni on to 
contain the files. The local printcap for the remote printer contains the entry mx#O so that the 
local Ipd daemon will not enforce any size restrictions on data files being queued. 

Note also that all data file ftltering is done on the remote machine. This means that the data file 
will be ftltered by the appropriate ftJter as specified in the /etc/printcap file on the remote 
machine. As a result, no ftIters are listed in the local printcap file. 

6. Administering with IJPc 

Once the line printer system is installed, configured, and launched, you may control its operation 
by using the Ipc program. For example, you can prevent additional print jobs from being 
placed by Ipr into the print queue of the default printer by executing the command: 

# Ipc disable Ip 

You may manipulate the printer and the print queue independently of each other. For example, 
you may deactivate a printer and its queue altogether (by disabling both of them). You may dis­
able just the printer, for instance to clear a paper jam, while allowing the print queue still to 
accept print requests. Finally, you may disable just the print queue, so that existing jobs will be 
serviced even though no new jobs are accepted. 

September 1988 Chapter 9 



IBM/4.3 System Administration Guide 115 

The following table lists the commands you can specify as arguments to the Ipc command. 

Chapter 9 September 1988 



116 

Command Arguments 

help command 

abo rt printer 

c lean printer 

di sable printer 

down printer mes.rage 

enab 1 e printer 

exit 

restart printer 

start printer 

status printer 

s top printer 

topq printer jobnum 

up printer 

September t 988 

IHM/4.3 System Administration Guide 

Descrialtion 

Print a short description of the specified command. If no 
argument is given, print a list of all commands recog­
nized by lpc. '7' is a synonym for 'help'. 

If there is an active spooling daemon (lpd) on the local 
host, kill it. Furthermore, prevent new invocations of 
the Ipd daemon from being started by Ipr. 

Remove any temporary files, data files, or control mes 
that cannot be printed from the queue of the specified 
local printer. 

Turn the specified printer queue off. This command 
prevents new jobs from being entered into the queue by 
the Ipr command. 

Turn the specified printer queue off, disable printing, and 
put the specified message into the printer status me. 
This command is normally used to deactivate a printer 
and to inform users of the cause of the deactivation. 

Enable spooling into the specified printer's queue, there­
by allowing Ipr to enter new jobs. 

Exit from the lpc command. This is useful only if you 
are running Ipc interactively (see below). 'qui t' is a 
synonym for 'exi t'. 

Attempt to launch a new line printer daemon, lpd. 
This is useful if the previous 1 pd has died unexpectedly, 
leaving unprocessed jobs in a queue. If you are the su­
peruser, you may execute this command even if Ipd is 
currently running; in that case, however, the current dae­
mon will first be killed. This command is most useful 
for normal unprivileged users to attempt to restart the 
daemon overseeing the queue for printer printer. 

Enable printing and start a spooling daemon for the 
specified printer. 

Display the status of the specified printer, listing whether 
queuing and/or printing are enabled, the number of jobs 
in the queue, and whether a daemon process is active. 

Stop thc spooling daemon after the current job com­
pletcs and then disable printing. Users may continue to 
spool requests using Ipr. 

Place the specified job numbers at the top of the printer 
queue. 

Enable everything and start a new printer daemon on the 
local host. This command undoes the effects of the 
down command. 

Table 9-3: lpc Commands 

Chapter 9 



IBM/4.3 System Administration Guide 117 

Note that you may give the argument (a 11' anyplace that a particular printer is specified if you 
want the command to affect all printers listed in /ete/printeap. 

6.1. Using Lpc Interactively 

If you invoke the command lpe with no arguments, you will be prompted for commands 
interactively. For example: 

# /ete/lpe 
lpe> help 
Commands may be abbreviated. 

abort 
elean 
lpe> 

enable 
exit 

disable help 
down quit 

Commands are: 

restart status 
start stop 

topq 
up 

? 

It is generally more useful to give administrative commands from this interactive mode than from 
the command line since you will be able to execute a status immediately to see whether the 
requested change has actually occurred. To return to the shell, simply give the exi t or qui t 
command. 

6.2. Restricting Printer Access 

The default operation of the line printer spooling system is to accept requests for all printers 
specified in the /ete/printeap file from all users on the system. It is however possible to 
restrict printing on a particular printer to the members of a given group. This is accomplished by 
specifying the rg printer capability. For example, if the printcap description for a particular 
printer contains the entry: 

:rg=doe: 

then only users belonging to the group doe will be allowed to queue requests to that printer. 
Note that the specified printer may be either local or remote; the rg capability governs only the 
placement of print requests into the local print queues. 

As indicated above, it is also possible to control remote access to local printers. A remote host 
must have its name listed in the file /ete/hosts. lpd for the local machine to allow the 
remote lpd daemon to send requests to the local printer. Remote users may also submit jobs 
directly on the local machine using rlogin or rsh commands if the name of their remote host 
is listed in the fue /ete/hosts. equi v. It is possible, however, to restrict printing by 
remote users to those that actually have accounts on the local machine by including the boolean 
r s in the printcap entry. 

7. The Format of Printer Control Files 

As mentioned above, the lpd daemon servicing a particular print queue determines which out­
put filter is appropriate for a given job by inspecting the associated control file. The control file 
contains information about the origin of the print job and the processing necessary to tum the 
data fue into a form suitable for printing. It may also specify that certain non-printing actions are 
to occur, such as sending mail to the user who submitted the job or removing certain flies upon 
completion of the actual printing. 

A control me is a sequence of lines, each of which begins with a key letter that indicates what to 
do with the data on the remainder of the tine. The data specify in part who submitted the print 
request, what machine it originated on, and what data file constitutes the print job. The 
command-line arguments passed to the interface filter are collected by lpd entirely from the 
entries in the control fue. The output filter typically uses some of the information included in the 
control fue to print a banner on the burst page. A sample control me might look like this: 

Chapter 9 September 1988 



118 

Htuna 
Pnat 
Jstdin 
Ctuna 
Lnat 
fdfAOOltuna 
UdfAOOltuna 
N 

IBM/4.3Systcm Administration Guide 

According to this sample control file, the job originated on the machine tuna (key letter H) and 
was submitted by the user nat (key letter P). The file to be printed was received via the stan­
dard input to Ipr (key letter J). Since there is a line beginning with the key letter If', the data 
file dfAOO 1 tuna is already formatted and should therefore be further processed with the if 
interlace filter (or the of filter if accounting is not required). This control file also specifies that 
the data file should be removed (unlinked) after successful completion of the printing (key letter 
U). Finally, since there is an N key letter that has no data following it, the print request must 
have been received by Ipr through its standard input. In other words, Ipr was invoked in a 
pipeline. 

Generally, there is no need to look at control files in any detail. They are automatically generated 
by Ipr and removed by Ipd upon completion of printing. If you do need to investigate the 
control files, you should consult the manual pages for Ipd(8) for a complete list of the available 
key letters and their meanings. 

8. Troubleshooting 

This section discusses two aspects of handling problems with a printer system: establishing error 
message logging, and solving problems relating to space in the spooling file system. 

8.1. Error Message Logging 

Errors that arise in the operation of Ipd and associated commands such as Ipr and Ipc are 
logged using the system-wide error-logging daemon s ys logd. Exactly where the error message 
is placed depends on the severity of the error and the configuration of the message-handling dae­
mon. Many sites prefer to log printer messages to a standard message file such as 
/usr/adm/messages. To do this, simply insert a line like the following into the sys­
logd configuration file, /etc/syslog. conf: 

*.err /usr/adm/messages 

You can instead route all line printer spooling system messages to a specific location by inserting 
a line like the following into /etc/syslog. conf: 

Ipr.* /usr/adm/lpd.errors 

This configuration will cause all error messages from the line printer system to be logged in the 
file /usr/adm/lpd. errors, regardless of the severity of the problem. In this case, you 
will have a specific location in which to look for such error messages. 

Recall that the 1 f printer capability specifies the name of an error log file. This is the location to 
which error messages are sent when they originate from the line printer interface program. When a 
message is sent to the standard error output of the interface program, it will be appended to the 
me specified by the If entry (and if none is specifled, it will be sent to /dev /console). The 
If capability is a relic of pre-syslogd days and is not recommended as a general purpose 
message logging scheme. Instead, it is highly recommended that the interface program use the 
syslogd daemon to report errors encountered when filtering or printing a request. This can be 
accomplished either by invoking the syslog() function (if the interface filter is a compiled 
program) or by executing the logger command (if the interface filter is a shell script). For a 

September 1988 Chapter 9 



IBM/4.3 System Administration Guide 119 

more complete discussion of the message-logging daemon sys Iogd and the configuration of 
/etc/syslog. conf, see Chapter 15, "System Messages." For information on the tnessages 
that can be generated by the line printer system, see the "4.3BSD Line Printer Spooler Manual" 
(SMM:6). 

S.2. Space in the Spooling File System 

Occasionally, a data file will be too large to fit into the space available in the spooling directory of 
the specified printer. For instance, the intermediate output file of a troff command (or other 
document processing system) can easily grow to several megabytes for a document that is even 
slightly over a hundred pages long. When there is insufficient space to copy the entire data ftle 
into the spooling area, the Ipr command will spool the request, but it will truncate the data file 
at some appropriate spot so that the truncated part will fit into the spooling area. Filtering and 
printing of the truncated data ftle will then proceed as usual. 

Generally, however, this is not what your users want, so you may need to institute one of several 
possible remedies for spooling space problems. Of course, the most obvious solution (and also 
the best long-term solution) is to increase the amount of available spooling space by moving the 
file system which houses the spooling directory to a larger disk partition. In cases where a partic­
ular machine is operating as a print server for an entire network of machines, you will want to 
place the /usr ftle system in a relatively large partition (for example, the c partition of an 
unused disk). You might even want to install /usr/spool as a separate file system entirely. 
Then you can selectively decide not to back it up at all when you dump other file systems to 
secondary media. 

If it is not possible to solve spooling space problems by increasing the amount of available space, 
you can instruct users to submit a large print request without actually copying the data file to the 
spooling directory. To do this, they can use the - s option to Ipr, which requests that a sym­
bolic link be made to the ftle. For example, the command: 

% Ipr -s -n book.tr 

will symbolically link the file to be printed, book. tr, to the data file in the default spool direc­
tory, /usr/spool/lpd/lp. Since a symbolic link is used, you can link a data file to its 
image in the spooling directory even across file system boundaries. 

If you observe that Ipr-submitted requests arc often causing the spooling file system to fill up, 
you may want to instruct users submitting large jobs to usc symbolic links into the spool direc­
tory in this way rather than always creating a copy of the print job there. Often such a large print 
job is the output of a complicated pipeline of pre- and post-processors that is launched by make, 
so it is relatively painless to have the job always be symbolically linked by editing the 
Makefi Ie to include the - s flag on Ipr. 

There is an easy way for the line printer system administrator to get Ipr to enforce a limit on 
how much free space it will consume with its spooling activity. The file minfree in each spool 
directory, if it exists, specifics the minimum amount. of space to leave free on the file system hous­
ing the spool directories. This feature is provided so that the line printer queue will not com­
pletely fill the disk. The file is in human-readable ASCII format, so it can be edited with your 
favorite text editor if you need to change the value. 

If you are routing requests over a network, you must also make certain that enough space exists 
in the remote spooling areas to accommodate requests generated on a local machine. Recall that 
control and data files are forwarded to a remote spooling area only if there is sufficient space to 
hold them both. If there is not, the reqm!st will not be accepted on the remote machine (or else it 
may silently be truncated to fit). Unlike the case of large files on the local machine, it is not pos­
sible to symbolically link a large data file across a network to a remote spooling area. Once again, 
the best solution to a space shortage problem on a network print spooler is to enlarge the amount 
of space available for line printer spooling on the remote system. A short-term remedy is to 

Chapter 9 September 1988 



120 IBI\1/4.3 System Administration Guide 

remotely copy the large ftle to temporary space on the reniote machine and then invoke Ipr on 
the remote machine, specifying that a symbolic link be used. For example: 

% rep book.tr grunnion:/tmp/book.tr 
% rsh grunnion 'lpr -s -r -n /tmp/book.tr' 

The - r option instructs Ipr on the remote system to remove the data file upon completion of 
the printing. 

Finally, if a print job is too large to be copied into any filc system on the remote print spooler, 
the best solution is to segment the job into smaller jobs. Exactly how you do this depends on the 
type of print job. For example, the following simple script will select a range of pages from a 
di troff output file: 

#! /bin/sh 
# ditpgs: extract a range of pages from ditroff output 
if [ $# != 2 -a .$# != 3 ]; then 

fi 

echo "ditpgs: incorrect number of arguments!" 
exit 1 

BEG=$1 
END='expr $2 + l' 

sed -n -e "1,/"x init/p" \ 
-e "/"x font/p" \ 
-e "/"p$BEG$/,/"p$END$/p" $3 

echo "x stop" 

Similar scripts can be devised for other types of print jobs. Since these page-selection filters are 
useful in their own right (aside from their value in solving space problems), it is worth taking a 
few minutes to develop them for the types of output common at your site. 

9. Printer Accounting 

The line printer system can easily be configured to maintain accounting information about all 
print jobs sent to it, and there is a utility, pac, that helps determine printer usage and monetary 
charges for each user account. Even in computing environments where there is no need to 
charges users for printer use, it may still be advisable to enable printer accounting so that the sys­
tem administrator will be able to monitor printer activity, thereby providing useful infonnation 
about consumption of paper, ribbons, or other necessary printer supplies. 

To enable printer accounting, the printcap must include an af entry, which specifies the me into 
which the output filter should place per-job printer usage records. Typically this file is stored in 
the /usr/adm directory, like most other log files and accounting records. For example: 

: af=/usr/adm/lp.acct: 

In addition to the af entry, the printer capability description must include indications of printer 
interface programs other than that specified by the 0 f entry. The reason for this is that the 0 f 
filter is started by Ipd only once and has all text files piped through it. Thus it is impossible to 
maintain records about individual print jobs. The other print filters are launched on a per-job 
basis and automatically do accounting if an af entry is included in the printcap. If you write 
your own printer interface program, you must make certain that it correctly appends records to 
the accounting ftle (whose name is passed to it as an argument). 

Each record of a successful user print job occupies one line in the accounting file. The general 

September 1988 Chapter 9 



IBM/4.3 System Administration. Guide 121 

format of the line is as follows: 

number-ofpages hostname: urername 

(The white space here is the tab character.) If you are writing your own printer filter, you will 
need to include sections of code similar to the following. 

char *name; 
char *host; 
char *acctfile; 

if ( freopen(acctfile, "a", stdout) != NULL) 
{ 

printf ( "%7 . 2f\ t%s: %s\n" , 
(float)npages, host, name); 

To interpret the printer accounting records, you may use the utility program pac. See the 
manual page pac(8) for details on using that program. 

10. Printer Management Tips 

• When you attach a printer to a particular serial port, you must also make certain that the 
operating system does not try to accept logins on that port. If you do not suitably configure 
the system, the kernel wi11launch a getty process on that port and data originating from 
the printer may be interpreted by getty as a login attempt. To make sure that this 
doesn't happen, you need edit the file /etc/ttys and change the status indicator 'on' to 
'0 f f'. For example, if a printer is attached to your machine on serial port 
/dev /ttyOO, the corresponding line in /etc/ttys might look like this: 

ttyOO "/etc/getty std.9600" ibm3812 off secure 

• Sometimes the lpq command will report that a daemon is active on a particular printer but 
in fact nothing is printing on it. In this case, the printer is said to be "hung". To remedy 
the situation, try executing the following two commands: 

# lpc abort printer 
# lpc start printer 

• It is possible to print multiple copies of a single document by including the -#n command 
line option on lpr. You should be aware however that this option causes Ipd to send 
the same data me to the printer in series the specified number of times. Some printers are 
able to print multiple copies of a single page, and hence multiple copies of a document, 
much more efficiently than if the request is sent as separate jobs. You may therefore wish 
to modify the printer interface filters to intercept requests for multiple copies and translate 
them into the appropriate printer control statements. 

For example, the following script contains a fragment of PostScript I code that will instruct 
the printer to produce the requested number of copies: 

#! /bin/sh 
# pscopy: print multiple copies of a PostScript file 
echo "%!" 

IpostScript is a registered trademark of Adobe Systems Incorporated. 

Chapter 9 September 1988 



122 IUM/4.3 System Administration Guide 

echo "statusdict begin /#copies $1 def end" 
cat -
# now reset the printer 
echo "%!" 
echo "statusdict begin /#copies 1 def end" 

Note that the printer output will not he collated, so that manual reshuffling of the pages 
may he necessary. Even including the time it takes to collate the output by hand, however, 
the time savings can be dramatic for large and moderately-sized documents. 

• To ensure that certain line printer system commands work properly across a local area net­
work, you should place into the / . rhosts file on the remote print server the names of 
all machines from which that server will accept print jobs. For example, the utility Iprm 
may not succeed in removing a job that is already queued on a remote machine unless the 
host on which the command is run is a "trusted" host. 

September t 988 Chapter 9 



CHAPTER 10 

Understanding the Uucp Network 

1. Introduction 

The family of programs known collectively as "uucp" allows you to establish a network of 
machines that can exchange files, run commands remotely, forward mail, and transmit news arti­
cles. Some typical uucp activity is illustrated in the following diagram: 

serial 
line ~ 

t 
~~~ 

111111111 
111111111 

telephone .......... '[lite" ...... . 

~ 
~ 

IDLCI 
0 

IIIIIIIM 
111111111 

I oca area networ 
I 

1111111" 
111111111 

~ 

I remote I 

L - - - - - - - - - commano e-xecution - - - - - - - - - - ~ 

Figurc 10-1: Some Typical uucp Network Activities 

~ 
11111110 
111111111 

The uucp network is fundamentally a batch network, meaning that user requests to transfer files 
between systems or to execute commands remotely are translated into work and data files that are 
then queued to a spooling directory where they will found and interpreted by the uucico pro­
gram. Although uuc i co is invoked immediately whenever the user-level programs uucp and 
uux are executed, the requests may not actually be processed at that time. For example, there 
may not currently be a free modem available to handle the outgoing telephone call, or the uucp 
system may have been configured to disallow calls to the remote system until the late hours of the 
night. Exactly when the queued requests are processed therefore depends on parameters specific 
to the remote system, over which a normal user may have no control. The processing of requests 
also depends upon how often the uucico program is run, and that is usually controlled, as you 
will see, by the cron daemon and its configuration file, /usr/lib/crontab. 

IBM/4.3 Systcm Administration Guide 123 



124 IHM/4.3 System Administration Guide 

uucp was designed as this kind of "store and . forward" network largely because it was first 
intended to service file transfer over low-speed, non-dedicated telephone lines, where there is usu­
ally no pennanent communications link between any two systems on the network. It made sense 
for each system to save up requests for the other system and then to try to establish a communi­
cations channel at some specified time. If no connection could be made, the requests simply 
would be saved until one could be established. Recently, uucp has been given the ability to carry 
out its activities over a local area network using the Internet protocols (TCP/IP). 

There are two principal services provided by the uucp networking software, file transfer from one 
machine to another and remote command execution. File transfer is accomplished with the 
uucp command. Por example, if a user nat wants to copy a file named 'ch. l' in the current 
working directory on the local host to the home directory on remote host named 'grunnion', 
that. user might run the following command: 

% uucp -C ch.l grunnion!-nat/ch.l 

The sequence of steps involved in servicing this· request is depicted in the following diagram: 

telephone 
0000 

connection 

una 

Figure 10-2: Remote Copy With uucp 

a 

r- -.., , , 
:~~ 
,~ 
, ,destination 
L ___ J 

grunn10n 

When the command listed above is executed, uucp will place several files into a spool directory. 
One of the files, a data fUe, is simply the file to be transferred. It is copied into the spool direc­
tory since the -C command line option was specified. (The default action is not to spool a copy, 
but to use the specified source file. In this case a copy was deliberately spooled so that future 
changes to the original source me will not appear in the remote copy.) The other me placed into 
the spool directory is a work (or control) file containing instructions governing the fUe transfer. 
The work and data files remain spooled in this manner until a uucico daemon fmds them 
there, at which time the daemon will interpret the work file and initiate a telephone connection to 
the appropriate remote system. When uucico succeeds in logging in to the remote system, the 
shell launched is in fact another invocation of the uucico daemon. The second daemon is said 
to be in slave mode, receiving instructions and data from the original uuc i co daemon on 
tuna, which is in master mode. If everything goes okay, the file will be transferred from the 
local host to the remote, placed into a temporary spooling directory on the remote host, and 
finally moved into the user's home directory on the remote host. The me transfer requested by 
the original uucp eommand is now complete. 

Remote command execution is accomplished with the uux command. A user on the local sys­
tem, tuna, can request that a command be executed on a remote machine by invoking the uux 
command, for instance as follows: 

% cat ch.l I uux - grunnion!lpr 

This requests that the ftle ch. 1 in the current directory be piped through uux, which will send 
its standard input over to grunnion to be piped through the command Ipr. The sequence 

September 1988 Chapter 10 



IBM/4.3 System Administration Guide 125 

of operations set in motion by this pipeline is quite similar to that involved in servicing a uucp 
request and is depicted in the following diagram: 

~ uux~i ~ 
L ___ J 111111111 

telephone 
o 

~D--~ 
1 1 

:D' 1 1 
L ___ J 

~command~ 

1 

V 
0000 0000 

connection 

una grunn10n 

Figure 10-3: Remote Command Execution With uux 

As before, several files are spooled to a uucp directory, where they are interpreted by the 
uucico daemon. One of the mes is the work file, in this case the file ch. 1. The other file 
spooled by uux is an execute file, which contains information about the origin of the request and 
about the processing the remote system needs to do in order to satisfy the request. The local 
uucico daemon begins a conversation with the uucico daemon on the remote system, at 
which time the execute and work files are transferred to the remote system. The execute file is 
interpreted by the uuxqt program on the remote system, which launches the command 
requested by the remote user. In this case, the work file is spooled to the line printer system. 

Many other services can be built on top of these two basic services. A prime example of a 
software package that often rides piggyback on uucp is the USENET network. The USENET 
network software, netnews, oversees the storage of news articles on the local file systems and 
manages all user interaction with those articles (such as reading them, replying to them, etc.). 
The netnews programs also decide whether an article received by a machine (or originating on 
that machine) should be transmitted to some neighboring machine. The actual transmission of 
news articles from one machine to another, however, is handled entirely by the uucp networking 
software. 

2. Overview of the Uucp System 

The programs and files that make up the uucp system are found in three principle directories, as 
depicted in the following diagram. The programs in /usr/bin constitute an ordinary user's 
primary interface to the uucp system. It is by running one of these programs (usually uucp or 
uux) that a user sets in motion the elaborate chain of events that make up uucp network activity 
(for example, a ftIe transfer from one machine to another or the remote execution of a command). 
With two exceptions, all of these programs are owned by the uucp administrator's account, 
uucp, and run setuid uucp and setgid daemon. These commands need to be 
installed setuid and setgid in order to be able to read the various configuration files in 
/usr/lib/uucp and to create files in the uucp spool directories. The uucp programs main­
tain data security by preventing normal users from reading or writing anything in its spool and 
administrative directories. The only way that a normal user can insert a file into one of the spool 

. directories, and hence queue a me for transmission to a remote system, is by running a user-level 
command which will do that for him. The two programs that are not owned by the uucp 
account are uuencode· and uudecode, which are two utilities that provide a means to 
encode and decode 8-bit binary data files for transmission across 7-bit data lines. These programs 
do not need to read or write anything located in the restricted uucp directories, so it is safest to 
have them owned by root. 

Chapter 10 September 1988 



126 IUM/4.3 System Administration Guide 

r--------.., 
I uucp 
I uudecode 

uuencode 
uulog 
uuname 
uupoll 
uuq 

I uusend 
, uusnap 
I uux L ________ J 

User-level Commands 

Spool Directories 

Figure 10-4: Location of uucp Files and Commands 

2.1. Using Uucp Over A Local Area Network 

r-----------.., 
L-devices I 

L-dialcodes 
L.aliases 
L.cmds 
L.sys 
SQFILE 
USERFILE 
uucico 
uuclean 
uuxqt I ___________ J 

Administrative Files 

As indicated in the introduction above, it is possible to route uucp traffic over a local area net­
work. If your machine is connected to such a network, it is generally preferable to use it rather 
than direct serial lines or modems to send and receive uucp network traffic, largely because file 
and data transfers will occur more quickly and more reliably than using traditional serial connec­
tions. In addition, TCPjIP network communication can handle full 8-bit data and file transfers, 
thereby obviating the need to filter binary files through the utilities uuencode and 
uudecode. Finally, since two systems located on the same local area network are ipso facto 
connected by a permanent communications link, there is usually no need to wait until such a link 
can be established, as commonly happens when modems must be used to link systems. Note 
however that uucp still operates as a "store and forward" network, even when communicating 
with other systems over a local area network. 

To use the uucp programs over a TCP/IP link, you must add an entry to the network services 
data base ftle, jete/services. The appropriate entry looks like this: 

uucp 540/tcp uucpd # uucp on TCP/IP 

This indicates that the uucpd daemon will be listening on port number 540 using the TCP pro­
tocol. 

3. Uucp System Maintenance 

The uucp system requires periodic maintenance to make sure that sites are being polled correctly, 
to remove old spool ftles, to rotate log files, and to clean up garbage left in uucp directories. 

September 1988 Chapter 10 



IBM/4.3 System Administration Guide 127 

These and other actions are typically performed with the assistance of the c ron daemon by 
including some entries into the configuration file, /usr/1ib/crontab. Generally, cron is 
configured to execute one of several scripts which call the appropriate utilities to perform the 
desired actions. As a result, once you have suitably modified the c ron tab file and installed the 
scripts on your system, uucp maintenance will proceed fairly automatically. The crontab file 
is discussed in detail in Chapter 16. 

The specific actions and their frequencies requircd for uucp systcm maintenance may vary among 
installations, but the following are some common tasks: 

• Poll remote systems, until an answer is received, on an hourly basis. To do this, you use a 
program called uupo11, which resides in /usr/bin. Uupo11 docs this by placing a 
request for a null job in the queue for the remote system, then invoking uucico. For 
more information, see uupo 11(8). 

• Clean up garbage files in the spool (jusrjspoo1juucppublic) on a daily basis. 
This is done using uuclean, which resides in jusrj1ibjuucp. This program is typ­
ically started by the daemon each day to remove files that arc more than three days old from 
the spool directories. (These arc usuatly files relating to jobs that could not be completed.) 
You can, however, specify a time period other than three days, as well as a directory, one or 
more file prefixes, the level of debugging output you want produced, and that mail be sent 
to the owner upon a file's deletion. 

• Remove old log files (found in usrjspoo1juucp with names beginning with LOG) on 
a daily or weekly basis, depending on the number of files generated and available space. 

Chapter 10 September 1988 



128 IIJM/4.3 System Administration Guide 

This page intentionally left blank. 

September 1988 Chapter 10 



CHAPTER 11 

Implementing Local Area Networks 

1. Introduction 

For uses such as sending, receiving, and forwarding electronic mail, or for distributing news arti­
cles in the USENET network, the uucp family of programs serves splendidly. It provides error­
free transmission of data across phone lines and local area network cables between cooperating 
systems, and it allows the system administrator to determine exactly when, if ever, such transmis­
sion shall take place. For many important uses, however, the batch type of networking provided 
by the uucp system is inadequate. For example, uucp has no capability to manage interactive 
login sessions from a local machine to a remote host. While it is possible to use other IBM/4.3 
system utilities (such as cu or tip) to login to remote systems over normal phone lines or 
directly-connected serial lines, it is generally quicker and more reliable to use a local area network 
to accomplish this. The IBM/4.3 system supports local area network access using both Ethernet 
and Token-Ring hardware. 

Typically a local area network consists of numerous machines linked to a single hardware device, 
as depicted in the following illustration. 

~ ~ 
~ 

1111111" 111111111 
111111111 111111111 

m::aJ 

~ 
C 

111111111 

~ 
111111111 

m::aJ 
c 

Gateway 
111111111 
111111111 

Figure 11-1: Local Area Network Hardware Configuration 

Because there is an abundance of information on local area networks, this chapter does not dis­
cuss them in detail. For infonnation, you should see the following articles: 

• Section 5 of "Installing and Operating Academic Operating System 4.3" in Volume II of the 
IBM/4.3 documentation 

• Section 15 of "4.3BSD Network Implementation Notes" in the UNIX System Manager's 
Manual 

• Section 11 of "Name Server Operations Guide" in the UNIX System Manager's Manual 

IBM/4.3 System Administration Guide 129 



130 IBl\1/4.3 System Administration Guide 

• Section 8 of "Timed Installation and Operation Guide" in the UNIX System Manager's 
Manual 

September 1988 Chapter 11 



CHAPTER 12 

Managing USENET 

1. Introduction 

USENET is an electronic network that links UNIX-based systems (including IBM/4.3 systems) 
around the world. It is used for exchanging information, posting questions, distributing public­
domain programs, and a variety of other activities; it functions as a sort of electronic bulletin 
board containing a large number of news groups. Unlike some bulletin board systems you may 
be familiar with, however, USENET does not operate on a single host machine and there is no 
central administrative authority that collects and distributes news messages. Rather, USENET 
messages are transmitted from the machine they originate on to neighboring machines, and from 
there onto more and more distant machines until messages have been distributed to all interested 
machines located in the messages' distribution area. Most machines subscribe only to those news 
groups that are of interest to the users of the machine, largely because subscribing to all news 
groups can consume large amounts of disk storage space. Some machines, though, transmit all 
active news groups, whether or not they are of interest to the users of that machine; such sites are 
known as "backbone" machines. 

111111111 
111111111 

Backbone Sites r------------------------------------------, 

~ B ~ 
IIHIIIII 1111111" 
111111111 111111111 

- - - - - - - - -local area fWlwork - - - - - - - - - - - - - - - - - - - - - -

D 

serial 
line 

r--------, 

I 

~G 
111111111 
111111111 

L ________ J 

Network Leaf 

Figure 12-1: A Typical Segment of the USENET Network 

IBM/4.3 System Administration Guide 131 



132 IBM/4.3 System Administration Guide 

In this diagram, machines A and B are backbone sites; they exchange all news articles that come 
to them from other backbone sites and from machines they serve. I Machine C is not a backbone 
site, but it still subscribes to all active news !,'fOUpS because it is a news source, or "feed", for 
machines D, E, and F. This kind of tJSENET host is generally called a "secondary" site. Since 
machines D, E, P, and G do not serve as a feed for any other machines, they are sometimes 
referred to as USENET "leaves". 

As you may have guessed from the figure above, lJSENET is a logical network, in the sense that 
it rides piggyback on existing networking software such as uucp and the Internet protocols to 
move articles from site to site. Accordingly, tJSENET messages may be transmitted over phone 
lines, through direct serial lines, through Ethernet cables, across Token-Ring connections; or 
through whatever physical hardware is used to connect one machine to its news feed. The actual 
underlying hardware and software protocols used in the transmission of articles are invisible to the 
USENET users, since their interactions with USENET messages are always accomplished by a 
news reading and posting program (of which there are several). 

From an administrative point of view, lJSENET installation and maintenance is reasonably 
straightforward, once you have a working network connection with a site that agrees to act as a 
news feed. (Por information on instalIing lJSENE'r, sec "lJSENET Version B Installation" in 
the UNIX System Manager's Manual.) USENET is designed so that most administrative functions 
can be performed automatically, either by receipt and processing of certain control messages sent 
across the network itself, or by periodic invocation of various commands by the c ron daemon. 
The primary tasks involved in acting as the USENET administrator for your site include making 
sure that news articles and log files do not consume too much disk space and keeping configura­
tion files up to date. The USENET administrator will also be called upon to add or remove news 
groups and to monitor log files used by the news software. Finally, you will also have to ensure 
that your local user community makes intelligent and polite usc of the faeilities provided by the 
USE NET network. 

2. Overview of USENET Operation 

USENET articles are posted, passed from site to site, and ultimately read by using a set of pro­
grams collectively called the netnews programs. These programs are in the public domain and 
may be obtained from most USENET sites. If they arc not already installed on your system, you 
will probably obtain the source code from your news feed; see the lJSENET installation article 
referenced above for more information. 

To illustrate the overall operation of tJSENET, let us follow the path of a news article from its 
original posting to its reading on some other system. First and foremost, a news article is posted 
by some user at some USENET site. There are several ways to post an article, either by using a 
news-posting program (sueh as postnews or the newer Pnews) Of by sending the article by 
electronic mail to an account on a remote system that receives news articles. If the article is 
posted using the mail program, it will automatically pass through the recnews program. In 
either case, the article will then be handed over to the i news program, which determines how 
the article should be sent from the local machine to it.s USENET neighbors. 

There are two primary methods for getting news articles from one machine to another. If the ori­
ginating machine is connected to a network that allows remote command execution, then the arti­
cle can simply be sent as the standard input to the rnews program running on the receiving 
machine. For example, if the two machines arc connected hy the uucp network, then inews 

IThere are other requirements as well that a machine must fulfill in order to be considered a backbone site. A 
backbone site must exchange every non-local newsgroup that it receives with at least two other backbone sites (or with 
the main feed for a particular geographic area), have the disk capacity to handle the volume of net traffic, and run a re­
cent version of the ne tnews software. In addition, a backbone site must agree to be advertised as a backbone site. 

September 1988 Chapter 12 



IBM/4.3 Systcm Administration Guidc 133 

will run a command like the following: 

uux - -r -z remote!rnews 

On the other hand, news articles can be sent through an inter-machine mail link. In this case, the 
mail will be sent to an account named rnews on the remote system, which will probably call 
the program uurec to process the incoming mail, strip ofT mail headers, and pass the news arti­
cle to rnews. The different paths for originating and transmitting news articles are illustrated in 
the following figure. 

User Commands 
r--------, 
I I 

~ Pnews ~-.-j---- inews ~<O uux 0· .. ··········• ~~' ° mail O+OrecnewsO>O----1 lliendnew~... 

I 
I 

m 0+ ~~<O .. uurec .. O~.·.·.·.·.· ...... . 
L ________ J 

Spooling Directory 

Figure 12-2: Overview of News Posting and Reading 

An article passed to rnews is checked against a history file listing the articles already received on 
the local system. If the article has not yet been seen, it will be forwarded to USENET neighbors 
that the remote system feeds. The rnews progratn will also place the news article into an 
appropriate spot in the ft1.e system hierarchy, where they are accessed by a news-reading program 
such as rn or readnews. Typically the news articles are placed into subdirectories of the 
jusrjspooljnews directory, as indicated in the following figure: 

Chapter 12 September 1988 



134 IBM/4.3System Administration Guide 

Figure 12-3: Part of the News Directory I lierarchy 

3. Maintaining the News System 

Maintaining the new system is largely a job of ensuring that files no longer needed in the system 
are discarded. Specifically this applies to history and log files, which will grow with use and can 
become a problem if not discarded when appropriate, and news groups that are no longer active. 
As administrator for the news system, you should do the following: 

• Use the expi re program (which is discussed later in this chapter) to delete lines from the 
history file relating to articles that have been deleted. The history file contains information 
on the articles you've received from other sites; lJSENET checks it when attempting to 
deliver a new article. If the article has already been received at your site, USENET will not 
duplicate it. You may want to manually check the history file every few months to make 
sure that expi re is removing the appropriate lines. Be sure, however, that you don't 
completely discard the history file, in case a site attempts to send you an article you recently 
received. 

• Use the trimlib script to keep the log file from becoming too large. You can install 
trimlib in /usr/lib/news and add an entry to your crontab file (which is dis­
cussed in Chapter 16) to automatically invoke this script once a week. 

• Make sure to remove inactive newgroups. To do this, run the shell script rmqroup 
(which resides in /usr/lib/news) with the name of the newsgroup you want to 
remove as the argument. 

4. Creating a New Ncwsgroup 

Occasionally, someone at your site may suggest that a new newsgroup be created in order to serve 
a need that is currently not served. Since there is no central lJSENET administrative authority, it 
is possible for the USE NET administrator at any site to create a newsgroup and then inform the 
net of the existence of the new group. Other sites are then free to subscribe to the new group or 

September 1988 Chapter 12 



IBM/4.3 System Administration Guide 135 

not to subscribe, as they wish. It may also be necessary to create newsgroups intended for local 
distribution only. The steps required to establish a new newsgroup in each of these two cases are 
listed below. 

4.1. Creating USENET Ncwsgroups 

Generally, it is not "a good idea to add new groups to the existing USENET groups without first 
determining that such a newsgroup is really needed. It is possible that the discussion you wish to 
carry on fits nicely into an existing newsgroup, or that it would at least be tolerated by an existing 
newsgroup. Even if there is no current forum for your topic, it is also possible that there is insuf­
ficient interest in that topic to warrant the creation of a new group. It is preferable to avoid a 
proliferation of newsgroups and you are likely to receive some unfavorable reactions if you create 
a new USENET group without first following these steps: 

(I) First and foremost, determine if a new newsgroup is reatly needed. Scrutinize lists of exist­
ing groups to see if one of them will accommodate the topics you wish to discuss. If the 
traffic in a particular related newsgroup is not too heavy, chances are that the added discus­
sion will be welcomed there and there will he no need to create a new group. Por example, 
the group cornp. lang. po stscript is devoted to discussing the PostScript page 
description language, but it is also used to trade actual PostScript programs, thereby obviat­
ing the need for a separate comp. lang. postscript. sources group. 

(2) Select an appropriate name for the new group, and decide if you want it to be a moderated 
newsgroup or not. The name should be as short and pithy as possible, consistent with the 
requirement that it should try to exhibit its relation to existing groups. 

(3) Post an article to the group news. groups describing your proposed new group. 
Request that comments, both pro and con, he mailed to you rather than posted directly to 
the network. Also cross-post your article to related newsgroups, but be sure to set the 
'Followup-to' field so that posted responses go only to the news. groups group. 

(4) Wait a few weeks and then review the comments that you receive by mail and on the net­
work. Pay special attention to any objections that are expressed. At this stage it may be 
necessary to refine or modify the name and direction of the new group. If you do so, start 
the whole process over again, notifying the news. group subscribers of the modifica­
tions. 

(5) Collect and categorize the responses you have received by electronic mail. There is no 
magic number of votes needed to justify the creation of a new group, but currently it is 
recommended that the positive responses must outnumber the negative responses by a mar­
gin of at least 100. If you cannot find at least that many people in the projected distribution 
area who would actively read and contribute articles, then the group is probably not needed. 
If you do get a significant re8ponse, however, then you 8hould summarize your totals and 
post an article to news. group containing the summary. Also, this article should include 
the names and addresses of those expression an opinion. 

(6) Send mail to backbone@rutgers. edu summarizing your results and asking that the 
new group be created. You can of course issue the appropriate control message yourself, 
but many sites will ignore it unless you arc a recognized backbone site. If the new group is 
to be moderated, include all the relevant information about who is going to do the modera­
tion. 

If you follow these steps precisely and manage to dicit the appropriate amount of user response, 
then the new group probably will be created by the administrators at Rutgers. 

4.2. Creating Local Newsgroups 

Local newsgroups may be distinguished from those having a larger distribution by the fact that 
names of local newsgroups contain no prefix (and hence no periods). If a group is to be 

Chapter 12 September t 988 



136 IIlM/4.3 System Administration Guide 

maintained entirely locally, so that messages are never forwarded to any neighboring machines, 
then the steps outlined in the previous section may be skipped and the USENET administrator 
may simply create the group. For example, to create the local newsgroup called 'general', 
give the command: 

# inews ~C general 

The appropriate spooling directory witI be created the first time an article is posted to the new 
group. 

5. Expiring Old Articles 

By default, a news article expires two weeks after it. has been received on the host system, whether 
anybody has bothered to read the article or not. You can configure the c ron daemon to 
remove expired articles automatically by inserting the following line into the configuration me, 
/usr/lib/crontab. 

15 23 * * * root /usr/lib/news/expire 

At 11:15 p.m. of each day, the program /usr/lib/news/expire wiII scan the news direc­
tories, searching for files that have reached their two-week limit. If any such files arc found, hey 
will be removed from the system. 

If your system is short on disk space, you can decide to expire articles sooner than the two week 
default, one one of several ways. First, you can change the constant DFLTEXP in the net­
news software source code and then recompile the code. As distributed, DFLTEXP has a value 
of 1,209,600 seconds (or two weeks), which you may alter to suit local preferences. 

A slightly simpler way to modify the two week default for expiring articles is to provide an argu­
ment to the expi re command that you put into your c rontab file. The - e option, fol­
lowed by a number, will cause articles older than that number of days to be expired. For exam­
ple, the c rontab entry: 

15 23 * * * root /usr/lib/news/expire -e 7 

will expire articles after 7 days. In theory, this should reduce the amount of disk space consumed 
by USENET articles by approximately one-half. 

6. Control Messages 

Much of the day-to-day administration of the network news is handled automatically by the news 
system itself. For example, suppose that a user appeals to the network to help solve some prob­
lem, but then manages to solve it locally. In this case, there is very little use in having the mes­
sage read by the entire news-reading community in the distribution area of the message, or in hav­
ing the message further distributed. Instead, the original poster can request that all systems that 
have already received the message cancel it, so that it is not read or replied to by future news 
readers. To do this, the user may send out what is called a "control message". 

A control message is simply a news message whose header contains a line beginning with the key­
word 'Control'. The remaining portion of the control line is the message to be acted upon. For 
example, here is the relevant line from a typical control message: 

Control: cancel <1987Sep16.144435.26473@nat.ucbvax.berkeley.edu> 

Control messages are intended primarily for communication among USENET systems and not 
for human users or administrators of such systems. When the netnews system (typically rnews) 
receives and recognizes a control message, it will act upon it immediately, unless instructed 
differently. It is possible to have the news software queue the control messages for manual pro­
cessing by the local USENET administrator, but this is not generally recommended since it invari­
ably leads to delays in processing control messages. 

September 1988 Chapter 12 



IBM/4.3 System Administration Guide 137 

The important part of a control message is just the news header itself, which contain the control 
line. The body of the message (i.e., the part that follows the header) is usually ignored, although 
it can be used to explain the reasons for the control message. Only the checkgroups control 
message contains a message body that is important to the receiving system. 

For compatibility with earlier news systems, messages having a newsgroup 'all. all. ctl' are 
also interpreted as control messages. In addition, if such a message header docs not contain a line 
beginning with the keyword "Control", the Subject line is used instead. Also, if the first four 
characters on a "Subject" line are "cmsg", the remainder of that line is interpreted as a control 
message. 

There are currently eight different control messages, each specified by a keyword command like 
cane e 1 above. The keywords, the necessary arguments, and their actions arc: 

Chapter 12 September 1988 



138 IBM/4.3 Systent Administration Guide 

Message Arguments I>l'scription 
cancel me,lisage-id If the message with the specified identification number 

message-id is present of the local system, then it is can­
celled. If that article is not present, then the control 
message witl not be sent on to neighboring sites. Only 
the author of a message or the local USE NET adminis­
trator may issue such a control message. 

ihave message-id The sending host has the specified messagemessage-id 
and is prepared to forward it to the host receiving the 
control message, if requested. NonnaIly, all articles in 
the appropriate newsgroups are send to a host, which 
then consults a history file to" see if it has already been 
received; if so, the newly-received article is thrown away. 
The ihave control messages allows a site to detennine 
whether an article should in fact be send to another site 
or not. 

sendme message-id The host issuing this control message wants the specified 
message mes.rage-id sent to it. This message is typically 
used to reply to an ihave control message. 

newgroup name The specified new group nameis added to the active file 
and mail will be sent to the local USENET administra­
tor indicating that this was done. A further argument 
'mode r a ted' may be present, indicating that the new 
group will be moderated. 

rmgroup name The specified group name is removed from the local 
system's active file. If the MANUALLY compile flag was 
not specified at software installation time, then the arti­
cles belonging to this group, the group directory, and the 
appropriate line in the active file will be removed. 

sendsys The sys file, containing a list of the local system's 
neighbors and newsgroups sent to them, is to be sent by 
return mail to the originator of the control message. 
This message is used to keep lJSENET maps up-to-date 
and to determine which sites are receiving network news. 

versi on The name and version number of the news software is to 
be mailed hack to the originator of this control message. 

checkgroups The message containing this control line is a list of all 
active newsgroups, together with a short description of 
each group. The body of the message is piped through 
the program checkgroups, which will update the lo­
cal newsgroups file, add any missing newsgroups, and 
mail a message to the lJSENET administrator concern­
ing old groups which should be removed. 

Table 12-1: lJSENET Control Messages 

Any unrecognized message keywords wiJI cause an error message to be mailed to the local 
USENET administrator, so part of your job as system administrator will be to inspect this mail 
and act accordingly. As time passes, additional keywords may be defined, in which case the 
source code (in particular, the file control. c) will need to be modified to recognize new key­
words and to perfonn the appropriate actions when they arc received in control messages. 

September 1988 Chapter 12 



IBM/4.3 System Administration Guide 139 

There are three ways to send control messages: 

• To post network-wide control messages, use net. msg . ctl. 

• To send a restricted broadcast of a control message, use btl. msg . ctl. 

• To send a control message to a particular system, use to. systemname. ctl. 

7. Batch Processing of Articles 

If your news feed communicates with you via the uucp network and you subscribe to a reason­
ably large number of newsgroups, then you will probably want USE NET articles to be sent to 
you in a hatched and compressed fonn. In this form, many articles are combined into a single file 
which is then compressed in order to reduce the size of the transmission. When such a transmis­
sion arrives at your site, it is uncompressed and then unbatched, and the individual articles are 
placed into the proper locations in the news directories. 

Outgoing Articles 

sendbatch -c 

o ~ batc~ -* ~ compress ~ o 
DODD 
0000 
DODD 

Feed ........................................ I 

j
r---------1tE:D<- - -~.-..... -.... -..... -.... -..... -.... -..... ---' 

rnews 0 0 0 0 ~ 
o ~uncompresD~~ unbatch ~ 0 0 0 0 D 

0000 '"'''"' """"' 
Leaf 

Figure 12-4: Hatching and Compressing News Transmissions 

The alternative to batching is to have uucp execute one command for each separate news article, 
thereby increasing the amount of work required to get the news articles to your site. Similarly, 
compressing the batched articles can reduce the total file size hy as much as 500/0, effectively halv­
ing the transmission time and expense. 

8. User Education 

USENET survives solely by the good graces of those who provide the hardware and administer 
the network software at each site. Participation in the USE NET network is completely voluntary, 
and at any time, any site on the network is free to discontinue transmitting USENET articles, if 
the costs should become too great for that site to bear or if it proves to be a nuisance to continue 
USENET services. It is important therefore that your local users community be made aware of 
certain rules of etiquette governing USENET usc. For example, a site that floods the net with 
numerous sizable, vitriolic, and largely useless postings, or with obviously self-serving 

Chapter 12 September 1988 



140 IBM/4.3 System Administration Guide 

advertisements, is abusing the courtesy of other USENETsitcs and may risk losing its news feed. 
In order to help avert such a situation, the system administrator must educate the local user com­
munity to whatever degree possible. On-line (JSENET documentation should be made available 
and users should be cncouraged to read them. In addition to the on-line documentation, users 
should be directed to the following two articles reprinted in the {her' s Manual Supplementary 
Documents, "How' To Read the Network News" (USD-9) and "How To Use USENET 
Effectively" (USD-IO). 

9. Tips on Managing (]SENET 

• If you find that USENET articles have consumed more disk space than you would like, you 
can manually expire articles in certain specified newsgroups by invoking the expi re com­
mand with the -n argument, which will cause the immediate expiration of all newsgroups 
listed. For example, the command: 

# /usr/lib/news/expire -n rec.* 

will expire all articles in the recreation newsgroups. 

• If the transmission and processing of news articles puts a significant load on your machine, 
then arrange to have these tasks done at night. 

• Never expire articles while unbatching of incoming mail is occurring. 

• It is highly recommended that you subscribe to the newsgroup news. admin. This 
group is devoted to a discussion of netnews administration. 

September 1988 Chapter 12 



CHAPTER 13 

Accounting 

1. Introduction 

In many computing environments, it is essential to keep an accurate record of who is logging into 
the system and what they are doing while connected to it. Typically, such information is used to 
determine account charges and billing infonnation for the users of a system. This information can 
also be used in a variety of other ways, however. For example, in the event of a system break-in 
by an unauthorized user, a complete record of logins may provide some clues as to the identity of 
the culprit and the method used to gain access to the system. It may also be useful to know 
which commands are being used most often on a particular system so that they can be given 
priority in the software maintenance schedule. Also, by maintaining a record of who is using a 
systeln, the system administrator can help balance the distribution of the limited resources avail­
able among the entire user community. By monitoring login times, the system administrator can 
determine the optimal time to perform large system maintenance tasks such as file system back­
ups. 

The IBM/4.3 system can be set up to provide two types of accounting information: user connect 
time accounting and system resource accounting. This chapter describes, for each of these two 
different accounting systems, how it works, how to start it, how to stop it, and how to summarize 
accounting records. 

2. User Login Accounting 

The simplest type of accounting provided by the II3M/4.3 system is called user login accounting 
or user connect time accounting. User login accounting provides the system administrator with 
information about which users are logging in to the system, when they are logging in, and how 
long they remain logged in. It maintains records on who is currently using the system and on 
who has used the system in the recent past. 

The system uses two main files to store user login accounting information: jetcjutrnp and 
jusrjadrnjwtmp. Neither one of these files is in a human-readable form, so you will never 
alter or view their contents directly. Rather, various system daemons and utilities are used to 
update and summarize the information contained in these files, as described in the following sec­
tions. 

2.1. Starting Up Login Accounting 

Each time a user logs into the system, the log in program attempts to write an entry into the 
me jusrjadmjwtmp. An entry is also added to this file, if it exists, by the ini t command 
each time a user logs out, thereby maintaining a complete record of how long the user was logged 
in to the system. If the me jusr /adm/wtmp does not exist, however, then no user connect 
time accounting is done. In that case, the system administrator will have no way of knowing who 
has logged into the system in the recent past or how long they remained connected to the system. 
If the fue does exist, however, then user connect time accounting will be done automatically. 
This means that there is no special command that must be run in order to turn on connect time 
accounting if the me ju s r j admjwtmp already exists. If you want to enable connect time 
accounting but that me does not exist, simply create it O-length, as follows: 

IBM/4.3 System Administration Guide 141 



142 IBM/4.3 Systcm Administration Guide 

# touch /usr/adm/wtmp 

The file /usr/adm/wtmp is a binary data file. In addition to user logins and logouts, it also 
maintains data on system reboots and date changes, and if left undisturbed, it will grow without 
limit. Consequently, any needed information should be extracted from it periodically and the me 
should be truncated. to 0 bytes. You may perform this truncation by executing the command: 

# cp /dev/null /usr/adm/wtmp 

After collecting any desired user accounting information (as described below) and before re­
initializing the accounting me in this manner, you may wish to copy it onto a backup medium 
such as streaming tape or floppy diskette. (Consult the chapter on performing backups for infor­
mation on doing this.) You may also wish to rotate the file /usr/adm/wtmp, as described in 
complete detail in Chapter 16. 

2.2. Listing User I.,ogin Scssions 

A record of who has logged on the IBM/4.3 system in the recent past may be obtained with the 
last command. The last command will look into the file /usr/adm/wtmp and extract 
information about a user and a teletype, or about a group of users and teletypes. For example, 
the last command with no arguments will print a record of all logins and logouts, in reverse 
order. The beginning of a typical output might look like this: 

% last 
smith 
smith 
smith 
judy 
reboot 
smith 
judy 
jr 
judy 
judy 
judy 
judy 
smith 
jr 
judy 

ttypO 
ttypO 
ttypO 
ttyaed 

ttypO 
ttyaed 
ttyaed 
ttyaed 
ttyap16 
ttyap16 
ttyaed 
ttypO 
ttypO 
ttyaed 

ibmpa 
ibmpa 
ibmpa 

ibmpa 

ibmpa 
bullhead 

Fri Mar 
Fri Mar 
Fri Mar 
Thu Mar 
Thu Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Mon Mar 
Sun Mar 

26 13:46 
26 12:22 -
26 12:20 -
25 09:59 -
25 09:54 

still 
13:34 
12:21 
17:07 

22 15:37 - 15:42 
22 12:17 - 15:00 
22 12:10 - 12:16 
22 10:09 - 12:10 
22 10:08 - crash 
22 10:07 - 10:08 
22 10:05 - 10:09 
22 10:00 - 12:40 
22 09:27 - 09:27 
21 15:24 - 17:40 

lO~6r~f2 ~l' n 
00:01 
07:08 

!00:05} 02:43 
00:06 
02:00 

(2+23:45) 
00:00 
00:04 
02:39 
00:00 
02:15 

The first column lists the user name givcn at login time; the second column lists the name of the 
teletype port through which the login occurred. If the login session occurred across a network, 
then the third column will contain the name of the remote host from which the connection was 
made; otherwise the third column is blank. Finally, the remaining columns list the login and 
logout times, along with an indication of the total elapsed time for that login session. 

The last command can be instructed to give login data ahout a particular user, or a particular 
teletype port, instead of the default complete listing. For instance, to obtain information about all 
login sessions by the user judy, a user would type: 

% last judy 

and to obtain login information about all logins that occurred through the system console, a user 
would type: 

% last console 

These two types of options may be combined, so that the command: 

% last judy console 

will list all logins by judy on the system console. There is a special string recognized by the 
last command, 'reboot', which requests that only reboots of the system be listed. So the 

September 1988 Chapter 13 



IBM/4.3 System Administration Guide 143 

command: 

% last reboot 

will list, in reverse order, all system reboots recorded in the file /usr/adm/wtmp. 

2.3. Summarizing Connect Times 

Although the last program provides a complete listing of all recent user logins, it does not pro­
vide any totals from among the data listed. To obtain a listing of total connect times, you may 
invoke the program /etc/ac. This program produces a printout of total connect times for 
each user who has logged in during the life of the current accounting file, /usr/adm/wtmp. 
For example, if invoked with no arguments, a total of all connect times by all users is printed: 

# /etc/ac 
total 429.75 

If, on the other hand, you wish to see how much connect time a particular user has consumed, 
you may invoke the command with the -p option. For instance: 

# /etc/ac -p 
gordon 312.05 
jr 52.26 
monroe 64.60 
susan 0.16 
ping 0.21 
yokela 0.05 
kevin 0.57 
carl 0.07 
mar 0.01 
root 0.00 
total 429.97 

A further option, -d, requests that only a daily total be printed; this restricts the listing to con­
nect time within each midnight-to-midnight period: 

# /etc/ac -p -d 
gordon 7.69 

Nov 1 total 7.69 
gordon 8.15 
jr 6.52 

Nov 2 total 14.67 
gordon 8.17 
j r 20.63 
monroe 5.25 

Nov 3 total 34.05 
gordon 12.67 
monroe 5.01 
susan 0.01 

[lines omitted] 

gordon 7.35 
Nov 27 total 7.35 

gordon 2.67 
monroe 2.35 

Nov 28 total 5.02 

Chapter 13 September 1988 



144 IUM/4.3 Systcm Administration Guide 

As you can see, this kind of connect time summary is likely to be quite lengthy on a system with 
even a moderate amount of use. 

2.4. Listing Current System Uscrs 

At any time, you may obtain a list of current users of the system by executing the who com­
mand. You will obtain some output similar to this: 

# who 
gordon 
monroe 

ttyaed 
ttypO 

Mar 28 10:51 
Mar 28 11:03 (ihmpa) 

The who command obtains this information by consulting the me /etc/utmp, which is a 
binary data file that contains information about all users currently logged in. As indicated by the 
printout, /etc/utmp contains four pieces of information about each current user: the user's 
login name (in the form of the user identification number), the teletype through which the user is 
logged in, the time that the us"er logged in, and the user's remote host, if that user is logged in 
across a network (indicated above in parentheses). 

Unlike the file /usr/adm/wtmp, the file /etc/utmp will not grow without boundaries, 
since each time a user logs out (or hangs up the telephone, if logged in through a modem), the 
corresponding entry in /etc/utmp is removed by the ini t process. Therefore, there is no 
need to monitor the size of /etc/utmp or to back it up onto a secondary storage medium. It 
is, however, advisable to truncate this file at boot time, in order to guard against a possibly inac­
curate file left over by a system crash. You may wish to include the following line in your local 
system start-up me, /etc/rc . local: 

cp /dev/null /etc/utmp 

If this line is placed there, the system will automatically trim the list of current system users at 
boot time. 

3. System Accounting 

System process accounting involves keeping track of exactly who is doing what on the system. 
The kernel implements process accounting by maintaining internal statistics about each process as 
it runs and then appending a record summarizing those statistics to a system accounting me. If 
process accounting is enabled, the following items will be monitored and reported: 

• Name of each command or process run on the system. 

• User time expired during the running of the process. 

• System time expired during the running of the process. 

• Total elapsed time for the process. 

• Time of day at which process was initiated. 

• Uid of person running process. 

• Gid of person running process. 

• Average amount of memory consumed by process. 

• Number of disk I/O blocks used by process. 

• Controlling terminal line. 

In addition, the accounting record contains a flag indicating whether the process was killed by a 
signal, whether it was run by the super-user, whether it dumped core, and several other useful 
pieces of information about the process. 

The accounting ftIe maintained by the process accounting system, usually /usr/adrn/acct, 
therefore provides a nearly-complete picture of who is doing what on the system, how long it 

September 1988 Chapter 13 



IBM/4.3 Systcm Administration Guidc 145 

takes, when they did it, and whether the command exited normally or not. Since it is designed to 
maintain such information about every process in the system, the system accounting file will inev­
itably grow quite large. It is the job of the system administrator to monitor the accounting file 
periodically, extract and summarize the necessary information, and then truncate the file to a rea­
sonable size. The following sections provide detailed instructions on starting, stopping, and main­
taining the process accounting system. 

3.1. Starting Up Process Accounting 

Like the user connect time accounting system discussed above, the process accounting system is 
entirely optional and does not have to be running in order for the IBM/4.3 system to provide ser­
vices to local and network users. Unlike the login accounting system, however, which starts up 
automatically if the file /usr/adm/wtmp exists, the system administrator must explicitly tell 
the operating system to begin collecting process accounting information. This is done by invok­
ing the command /etc/accton with some file name provided as an argument. Essentially, 
/etc/accton just passes the file name to the system call acct ( ) which notifies the kernel 
to begin placing accounting records into the named file. Once accounting is enabled, the kernel 
will append a record to the accounting file as each process terminates. The record lists, among 
other iteIns, the name of the process, the time at which the process was launched, the user and 
group identification numbers of the user who initiated the process, the average memory usage, 
and accounting user and system time. 

On the IBM/4.3 system, process accounting records are usually kept in the file 
/usr/adm/acct. If your system is running in multi-user mode and you want to turn on 
process accounting, you can simply type the following command to the shell: 

# /etc/accton /usr/adm/acct 

Usually, however, the following lines are placed into the system start-up script, /ete/re, in 
order to initiate system accounting automatically when the system enters multi-user mode: 

/etc/accton /usr/adm/aect 
echo -n ' accounting' > /dev/console 

You should make sure that these lines do not precede the commands that mount the file system 
holding the accounting rtIe. Otherwise, the kenlcl will not be able to locate the accounting file 
and the accton command will fail. 

3.2. Stopping Process Accounting 

You may at times wish to turn off the process accounting system, so that records are no longer 
appended to the accounting file at the completion of each process. You will need to turn off sys­
tem accounting, for example, if you want to unmount the file system containing the accounting 
rtIe. If you do not stop the accounting before you attempt to unmount the file system, you will 
get the message: 

/dev/hdOg: Device busy 

To turn off process accounting, you must invoke the accton command with no arguments, as 
follows: 

# /etc/accton 

Once this command is executed, the kernel will cease· appending accounting records to the system 
accounting me. 

Chapter 13 September 1988 



146 IBM/4.3 System Administration Guide 

3.3. Listing User Commands 

One utility that reads and interprets the system accounting file is the lasteomm program. This 
program gives information on commands that have alrcady terminated and for which records have 
been entcred into the accounting ftle. A typical segmcnt of lasteomm output might look like 
this: 

# lasteomm 
sh S root 0.12 sees Wed Apr 13 13:45 
atrun root 0.08 sees Wed Apr 13 13:45 
sh S root 0.09 sees Wed Apr 13 13:30 
atrun root 0.08 sees Wed Apr 13 13:30 
df smith ttyOO 0.25 sees Wed Apr 13 13:26 
who smith ttyOO 0.06 sees Wed Apr 13 13:26 
mail X smith ttyOO 0.45 sees Wed Apr 13 13:25 
rlogin smith ttyOO 2.42 sees Wed Apr 13 07:58 
rlogin F smith ttyOO 8.81 sees Wed Apr 13 07:58 
sendmail F root 0.05 sees Wed Apr 13 13:20 

The first column lists the command name. The second c01umn may contain a flag indicating 
whether it was run by the superuscr (in the cxample, IS'), whethcr it ran following a fork but 
not an exec (in the example, 'F'), or whether is was terminated by a signal (in the example, 
'X'). The remaining columns are fairly self-explanatory; there are the uscr name, controlling ter­
minal, elapsed time, and time of day when launched. 

As with the last command, you can supply certain arguments to the lastcomm command 
to restrict the records output to a subset of the complete list. For example, the command: 

# lastcomm smith 

wi11list the records for the user smi tho Similarly, the command: 

# lasteomm console 

will list records for all processes launched from the system console. This can be useful, for exam­
ple, if you know that some unauthorized user was able to gain access to the console. 
lastcomm will give you a complete list of the commands run by that user and perhaps allow 
you to isolate any damage that may have been done. 

3.4. Maintaining Process Accounting ' .... iles 

As indicated above, the main process accounting file /usr/adm/acet will grow quite large as 
processes are launched then terminate. It is useful to reduce the amount of disk space occupied 
by accounting records by summarizing the records in /usr/adm/acet and then truncating 
that fIle. The summaries are kept in two other files, /usr/adm/savaeet and 
/usr/adm/usracct, which contain, respectively, a summary of the raw accounting data 
and a per-user summary of all accounting data. These summaries, especially the per-user sum­
maries in /usr/adm/usracct, can be used to determine account charges. 

The IBM/4.3 system provides the general administrative command, jete/sa, to report on, 
maintain, and clean up the system accounting files. One of the most common uses of the sa 
command is to merge the raw accounting records contained in /usr/adm/aeet with those 
records already summarized in /usr/adm/savacct. When invoked with the -5 option, 
s a will summarize the records in the raw file and in the summary file and then create a new sum­
mary ftle containing all the previous accounting information. Note that sa will also output the 
new merged statistics, so if you merely want to merge the two fi1es, you should redirect the output 
of s a, as indicated: 

# jete/sa -s > /dev/null 

Scptembcr 1988 Chapter 13 



IBM/4.3 System Administration Guide 147 

After this command has completed, the raw accounting fiie wilt contain just a single entry (that 
corresponding to the sa command itself). 

4. Accounting Tips 

• There is no system utility that indicates whether or not process accounting is enabled. (Part 
of the reason for this is that process accounting is handled directly by the kernel and not by 
some ancillary daemon or process.) You can determine this easily, however, by running the 
lastcomm command and comparing the date of the most recent command logged with 
the current system date. For example: 

# date ; lastcomm I head -1 
Wed Apr 13 13:02:40 PDT 1988 
date root console 0.05 secs Wed Apr 13 13:02 

The output indicates clearly that process accounting is currently enabled. 

• You should note that the accounting system summarizing program provided with the 
IBM/4.3 system, jete/sa, docs not differentiate logins or system resource consumption 
by group. There is no way, short of writing your own shell scripts or programs, to obtain 
usage totals for a particular group. This reflects the decision to associate accounting pro­
grams with the user identification number (uid) and not the group identification number 
(gid). It is also probably the basis for the use of the word 'account' to describe the collec­
tion of directories, flIes, and other objects that altogether allow a user to log in to the sys­
tem. 

• Remember that the kernel writes process accounting records into the accounting file (usually 
/usr/adm/aeet) when the process terminate/i. One consequence of this scheme is that 
no accounting records are kept for processes which never terminate, or for processes which 
are running when the system crashes. It may therefore be possible for very clever users to 
circumvent the process accounting system by arranging to crash the system at some 
appropriate time. 

• In the IBM/4.3 system, the accounting file is typically /usr/acim/aeet. As you have 
seen, it is possible to save process accounting records in some other location, but this prac­
tice is not recommended since several utilities (for example, lastcomm) expect records to 
be kept in /usr/adm/aect. 

Chapter 13 September 1988 



148 IBM/4.3 System 'Adnlinistratlon Guide 

This page intentionally left blank. 

September 1988 Chapter 13 



CHAPTER 14 

Administering Quotas 

1. Introduction 

Disk space for fIle storage is one of the most easily endangered resources of any computer system. 
Without some method of limiting individual space consumption, a fIle system can quickly be 
fIlled by indiscriminate accumulation of user files or by runaway processes that create large output 
fIles. The IBM/4.3 system includes a subsystem designed to allow the system administrator to set 
up quotas limiting the consumption of disk space by an individual user. When the quota system 
is operating, the administrator can place limits on the total amount of disk space that a user's fIles 
may occupy, on the total number of files that a user may own, or both. Moreover, the adminis­
trator can apply these two kinds of quotas on a per-user basis, allocating some users more space 
than others, or assigning identical quotas to all users. 

For each of the two types of quotas available (total disk space and number of files), the adminis­
trator must set both a "soft" and a "hard" limit. The hard limit is the absolute maximum 
amount of disk space or number of i-nodes that a user can own. The quota system will not allow 
these numbers to be exceeded under any circumstances, so once they are reached, any attempts to 
consume more disk space or create new mes will fail. The first time the hard limit is reached, a 
message will be sent to the user's terminal screen. The user must reduce space consumption (or 
the total number of fIles) in order to bring the usage under the hard quota, since no further 
resources will be allocated to the user. Only one such message will be printed. 

The soft limit is the total number of blocks (measured in 1 K) or i-nodes that the user is not 
expected to exceed. The soft limit acts as a cautionary boundary that space consumption is 
approaching the hard limit. If the user exceeds this number, a warning will be issued. If the user 
logs out without reducing below the soft limit the amount of disk space occupied or the total 
number of files (whichever limit was surpassed), the user will be warned once again at the next 
login session and the total number of remaining warnings is reduced by one. In all, three warn­
ings are given before the user is considered to have exceeded the hard limit. No more resources 
will be allocated to that user; in particular, that user will be unable to log in until the disk usage is 
reduced below the quota. 

You should note that the disk space quota subsystem is entirely optional. In the default system 
configuration, the quota system is not installed and users will be able to create as many files as 
they like, of whatever size they like, wherever in the file system they have write permission, until 
the available disk storage is depleted. In order for the size and/or number of user files to be 
governed by the quota subsystem, the system administrator must install the subsystem into the 
kernel and configure user quotas. This chapter describes the installation, configuration, and 
operation of the disk quota system. 

2. Installation 

The quota system is quite simple to use and monitor once it has been installed on your IBM/4.3 
system. Installation itself is not difficult, but it does involve reconfiguring the operating system 
and selecting quotas for individual users, as described in the following sections. 

IBM/4.3 System Administration Guide 149 



150 IBM/4.3 Systcm Administration Guide 

2.1. Reconfiguring thc Operating System 

Before the system administrator can set quotas on system users, several steps are necessary to 
install and configure the quota system. Pirst and foremost, the operating system (or "kernel") 
must be reconfigured to include routines used by the disk quota subsystem. This task was used as 
an example in Chapter 3 to illustrate how to reconfigure the operating system, and you should 
refer to that discussion for a complete step-by-step walk-through of the process. The remainder 
of this section provides a summary of the steps necessary to install the disk quota subsystem into 
the kernel. Before doing any kernel reconfiguration, however, you should make sure that this has 
not already been done for you. Run the command: 

# quota 

If the quota subsystem has already been installed, you will see the following message: 

Disc quotas for root (uid 0): none. 

(The alternate spelling 'di sc" for 'di sk' in this and other messages from quota-related com­
mands reflects the fact that the disk quota subsystem was developed by researchers in Australia.) 
If, on the other hand, the quota system has not been instal1cd, you will see the following message: 

There are no quotas on this system 

You should proceed with the rest of this section only if you see the latter message. 

To begin, you must include the following line in the system configuration file (probably a copy of 
/sys/conf/GENERIC, which we shall call 'GEN_QUO'): 

options QUOTA 

This line instructs the system configuration process to include sections of code relevant to the 
operation of the disk quota system. If this line is not put into the configuration file, then the 
necessary code will not be included and you will be unable to establish disk quotas on your sys­
tem. 

When you have finished inserting this line into the system configuration file, you will need to 
create a target directory to hold several files that will soon be created. Then run the config 
program: 

# mkdir .. /GEN_QUO 
# config GEN_QUO 

If everything goes smoothly, the config program will create several files in the target directory. 
You can complete the system regeneration process by issuing the following commands: 

# cd .. /GEN .... QUO 
# make depend 
# make vmunix 

Finally, you will need to install the newly-created system image into the root directory and reboot 
the system. For example, 

# cp /vmunix /vmunix.old 
# cp vmunix /vmunix 
# sync 
# sync 
# reboot 

If you encounter any difficulties. in this phase of the quota installation procedure, or if you are 
unfamiliar with the process of generating a new kernel, please refer to Chapter 3 and to the docu­
ment "Building IBM/4.3 Systems with Config", in Volume 2 of the Technical Computing Sys­
tems documentation. 

September 1988 Chapter 14 



IBM/4.3 System Administration Guide 151 

2.2. Setting Up Disk Quotas 

The next step involved in installing the disk quota system is deciding which of the available file 
systems need to have their space regulated by user quotas. Generally, it is sufficient to place 
disk-space quotas only on those file systems that store users' home directories. If other file sys­
tems are in part dedicated to holding user files, then they too are good candidates for inclusion 
under the quota system. Possibly the /u s r file system qualifies under this category, depending 
on your local usage patterns. For various reasons, however, it is recommended that spooling 
directories and temporary directories (such as /tmp) not be placed under the quota system. 

Once you have determined which file systems shall be governed by quotas, the file 
/etc/fstab must be modified to indicate this information. Each file system listed in 
/etc/fstab that is to have quota-checking enabled must be indicated by a file type entry of 
the form 'rq'. For example, suppose that you wish to establish quotas on the /usr ftle system. 
The original entry for this ftle system in /etc/fstab looks like this: 

/dev/hdOg:/usr:rw:l:2 

To enable quotas on this file system, modify the entry so it looks like this: 

/dev/hdOg:/usr:rq:l:2 

Next, create a null file called quotas in the root directory of each file system on which a space 
limitation is to occur. For example: 

# cd /usr 
# touch quotas 

The ftle quotas is used to maintain a record of disk quota limits and usage for the fiie system 
in whose root directory it is located. 

Finally, the system administrator must decide how much disk space each user shall be allocated 
for each ftle system and then inform the system of these decisions. These space decisions will no 
doubt need to be based on local parameters such as the number of persons using the system, how 
important and space-intensive their projects are, how much free disk space is available, and other 
factors too numerous to mention here. Once these decisions have been made, they are imple­
mented by invoking the edquota utility. 

To illustrate the use of the edquota command, suppose that the user whose login name is 
guest is to be limited to 100 kilobytes of disk space and 100 files. Invoke the cmnmand: 

# edquota guest 

The edquota command creates a temporary file and calls up an editor on that file. The editor 
will be either vi or whatever editor is the value of the EDITOR environment variable. When 
you finish and write your changes, edquota wilt update the quota file quotas in the root 
directory of the specified ftle system. (You cannot edit the file quotas directly since it is stored 
in a binary format.) 

For example, since no quotas have yet been placed on the user gue s t, the editor file will look 
like this: 

fs /usr blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0) 

Note that the quotas are specified in unit called "blocks". The edquota command interprets a 
"block" as 1024 bytes, regardless of the fact that the IBM/4.3 file system uses blocks that are at 
least 4096 bytes long (and may be much targer). The use of the word 'block' here is therefore 
unfortunate and is likely to cause confusion if you are not careful. When using edquota and 
the related utilities, always remember that what is called a block is just a kilobyte. The same 
warning applies to the du command. 

Chapter 14 September 1988 



152 IBM/4.3 System Administration Guide 

Now change the four zeros to the appropriate value; for this example, you should place a hard 
limit of 100 kilobytes and 100 i-nodes (or files) and a soft limit of 10 percent less than the hard 
limit. Change the line so that it looks like this: 

fs /usr blocks (soft = 90, hard = 100) inodes (soft = 90, hard = 100) 

Then write the file and quit; you are finished establishing some sample disk quotas. 

2.3. Checking Quot~., for Consistency 

After establishing some quotas on a file system but before actually starting up the quota-checking 
system, the system administrator should run the quotacheck utility in order to make sure 
that the quotas listed in the file quotas make sense for the file system it resides in. For exam­
ple, having established a quota in the /usr file system for the user guest, you might give the 
command: 

# quotacheck /u~r 

The quotacheck command examin«s a file system, builds a table of current disk usage, and 
compares this table against the quotas listed in the file quotas in the root directory of the 
specified file system. You may want to think of quotacheck as the quota system analogue of 
f sck. The quotacheck utility ensures, for instance, that the number of blocks actually 
owned by some user corresponds with the numher listed as owned in the quotas file. If there 
is any inconsistency between the two figures, the quotas file is updated to reflect the actual 
usage. If, however, quotacheck finds no inconsistencies, then it exits silently (unless invoked 
with the -v option, which causes it to indicate the calculated quotas for each user on a particular 
file system). 

Normally, quotacheck is run at boot time by placing the line: 

/etc/quotacheck -a 

into the file /etc/rc. local. The -a option requests that aU me systems specified In 
/etc/fstab as having quotas in force be checked. 

2.4. Starting Up the Quota System 

The system administrator informs the operating system that quota-checking is to be turned on by 
invoking the quotaon command. The quota system can be made operational for a particular 
file system by providing the name of the file system as an argument. For example, the command: 

# /etc/quotaon /usr 

will enable quota-checking for the /usr file system. If no file systems are named as arguments 
but the -a option is present, then quotaon will read the file /etc/fstab and enable disk 
quotas on all file systems that have type rq, as explained above. In eithcr casc, the option -v 
may be specified in order to produce a "verbose" command output in which a message is printed 
for each file system where quotas are successfully turned on. 

Typically, the line: 

/etc/quotaon -a 

is inserted into the system start-up file /etc/rc. local so that quotas are turned on 
automatically at boot time. This command should be run alter the quotacheck utility. 

3. Operating the Quota System 

Operating the quota system includes the following tasks, discussed in this section: listing quotas, 
tuming off quota checking, summarizing disk quotas, and compacting data. 

September 1988 Chapter 14 



IBM/4.3 System Administration Guide 153 

3.1. Listing Quotas 

A user may check the quotas that have been set by the system administrator by running the 
quota command. For example, if the user guest logs in and runs the command, that person 
may see something like this: 

% quota 

Disc quotas for guest (uid 98): 
Filesys current quota limit #Warns 

/usr 25 90 100 
files 

15 
quota 

90 
limit #Warns 

100 

For each of the two types of disk space limited by the quota system (total disk space and total 
number of fIles), four numbers are reported: the current usage, the soft quota, the hard quota, and 
the number of remaining login warnings. In the columns headings, the soft quota is labeled 
'quota' and the hard quota is labeled' I imi t'. As you can sec, the user gue st has only 15 
files which consume about 25 kilobytes of space, well below the soft limit set by the system 
administrator. As a result, no warnings have been issued yet. 

The super-user may check on other users' disk quotas by supplying an optional argument to the 
command. For example, if the super-user runs the following command: 

# quota guest 

then the disk usage and established limits on the user gue s t will be printed. The output will be 
identical to that given above. 

3.2. Turning Off Quota Checking 

If the quota-checking facilities should need to be turned off for some reason, the quotaoff 
utility may be run. For example, to disable the quota checking system that is in force on the 
/usr me system, give the command: 

# quotaoff /usr 

The specified me system must be listed in the file /etc/fstab and must be mounted at the 
time the quota-checking is turned off. Upon successful completion of this command, the quota 
system will be disabled. Users will be able to exceed any quotas (either hard or soft) that would 
previously have applied to them. 

Note that running umoun t on an idle file system will automatically cause the quotas on that file 
system to be turned off. Remounting the file system, however, will not cause the quota system to 
be reactivated. 

3.3. Summarizing Disk Quotas 

As noted above, the quota usage for any particular user may be listed by running the quota 
command. A more complete summary of the space usage and quota limits for a particular file 
system may be obtained with the repquota command. For example, a summary of disk usage 
and quotas in force on the /u s r file system might look like this: 

:It requota /usr 

User 
root 
daemon 
notes 
uucp 
guest 
nobody 

used 
35632 

141 
1110 

745 
25 
56 

Block 
soft 

o 
o 
o 
o 

90 
o 

limits 
hard 

o 
o 
o 
o 

100 
o 

warn 
o 
o 
o 
o 
3 
o 

used 
1 
1 
1 
1 

15 
1 

File limits 
soft hard 

a 0 
o 0 
o 0 
o 0 

90 100 
o 0 

warn 
o 
o 
o 
o 
3 
a 

The column headings listed should be self-explanatory. The second column indicates whether 
either one or both of the block limit and the file limit have been exceeded. For example, if the 

Chapter 14 September 1988 



154 IBM/4.3 Systcm Administration Guide 

user gue st has 95 kilobytes of file storage, then the appropriate tine might look like this: 

guest +- 95 90 100 3 45 90 100 3 

The + - indicates that the block limit has been exceeded, but not the limit on the number of files. 
Similarly, if both soft limits have been exceeded, the line from repquota might look like this: 

guest ++ 95 90 100 3 95 90 100 3 

The + + indicates that both soft limits have been exceeded. Notice that the user has not logged in 
since the quotas were exceeded, as indicated by the fact that there are still three warnings remain­
ing. When the user guest next logs in, the following warning wiU be printed: 

Warning: too much disc space on lusr, 2 warnings left. 

If the user ignores this warning and attempts to create additional files without first removing 
some, the kernel will issue the following message as soon as the hard limit is reached: 

DISC .LIMIT REACHED (/usr) - WRITE FAILED 

The only recourse for this user is to remove some files until the amount of disk space consumed 
is once again below the soft limit. If this warning appears when the user is in the middle of edit­
ing a document and does not want to lose extensive changes made to it, it is possible to write the 
file onto a file system where no quotas arc in force. For example, from within the vi editor, 
guest could type: 

:w Itmp/ch.02 

to write a copy of the file being edited (called 'ch. 02') into the temporary file space. It must be 
moved from there by the time the system is next rebooted, however, or the file may be lost for­
ever. 

4. Compacting Data 

Users with chronic disk space problems (as indicated by continually approaching or exceeding 
their quotas) may be able to free valuable disk space by taking advantage of various data compac­
tion utilities available on the IBM/4.3 system .. These utilities allow the user to replace a file by a 
compacted or compressed version of that file. When the original file is a plain ASCII file (such as 
source code or straight text), the compacted file will typically be about half as large as the original. 
So, by carefully compacting files that are not used very often (but which could not be con­
veniently moved to a secondary storage medium such as magnetic tape), a user can maintain 
many more files and directories than the disk space quota would otherwise allow. 

The recommended way to compact files is by using the compress command. For example, to 
reduce the amount of disk space occupied by the file report. feb, the user would issue the 
command: 

# compress report. feb 

This command will create a new file called report. feb. Z in the current working directory 
and remove the original. (The suffix' . Z' indicates simply that this is a compacted version of a 
me.) The compressed me may later be uncompacted and restored to its original state with the 
uncompress command. For instance, to recover the file report. feb, just type the com­
mand: 

# uncompress report.feb.Z 

Users should know that a compressed file cannot he edited using the nannal IBM/4.3 system edi­
tors, nor can it be given as input to commands in the same way that the original' file could. There 
is, however, a utility called zcat which operates exactly like the cat command, except that it 
outputs an uncompressed version of the file (without actually recreating the original me). By 

Septembcr 1988 Chapter 14 



IBM/4.3 System Administration Guide 155 

running zcat as the first command in a pipeline, you can send the original version of the me as 
input to other commands, even though only a compacted version of the me is available on disk. 
For instance, if the file repo rt . feb contains t ro f f input text, then the command: 

# zcat report.feb.Z I troff -me I Ipr 

will produce a printed copy of the report. Refer to compress(l) for complete details on these 
utilities. See also the manual entries for pack(l) and compact(l) for related data compaction 
utilities. 

Chapter 14 September 1988 



156 IIJM/4.3 System Administration Guide 

This page intentionally left blank. 

September 1988 Chapter 14 



CHAPTER 15 

Handling System Messages 

1. Introduction 

It is an unfortunate fact of life that errors .and other problems occasionally occur during the 
operation of any computer system. A problem may be a fairly minor one (such as the inability to 
deliver a piece of electronic mail because the addressee is unknown to the system), or it may be 
an extremely serious one (such as the inability to create a file because a file system is out of 
space). Yet no matter what the reason, when such exceptional conditions arise it is essential that 
a notification of the condition be sent to the system administrator or to other users who may be 
affected by it. This allows corrective or preventive action to be taken, and will help you keep the 
computer and its peripheral devices running smoothly. In addition, by collecting and logging 
diagnostic messages that arise from problem conditions in the system, you will be able to main­
tain an on-line record of error messages which you can monitor and summarize as needed. 

The IBM/4.3 system includes a very powerful and flexible set of tools for monitoring the diagnos­
tic messages that result from problems in the operating system, in peripheral devices, in daemons 
controlling certain machine resources, or in the execution of user-invoked commands. These 
tools can be configured to automatically route diagnostic messages to an appropriate place, 
whether to a log file, to the console screen, to the terminals of some or all currently logged-in 
users, or even to another machine on your local area network. This chapter describes the confi­
guration and operation of these IBM/4.3 system message logging facilities. You should note that 
an earlier diagnostic message reporting and logging system, /etc/cimesg, has been rendered 
obsolete by the commands and daemons described here. 

2. The System Message Log Daemon 

All system messages are monitored by the daemon /etc/syslogd, which is usually launched 
when the operating system enters multi-user mode. This daemon reads from the device 
/dev flog (to read messages generated by local commands), from the Internet domain socket 
specified in /etc/services (to read messages generated by network activity), and from the 
special device /dev /klog (to read messages generated by the kernel). When a message arrives 
from one of these three sources, sys logd responds by taking an action indicated by an entry in 
the configuration file /etc/syslog. conf. Most commonly, the message will either be 
logged in a me or displayed on the system console screen (or both). Other possible actions 
include displaying the message on other terminal screens or sending the message to a remote com­
puter on a network. The logical position of the syslogd is depicted in the following figure: 

IBM/4.3. System Administration Guide 157 



158 IRM/4.3 System Administration Guide 

Read from 
r-------------------------------------------, 

/dev/log Internet 
domain socket /dev/klog 

-------0 
/etc/syslog.conf 

system console error file remote host line printer 
I 

-------------------------------------------~ 
Write to 

Figure 15-1: Where syslogd Reads From and Writes To 

The syslogd daemon performs a sync operation each time the system accesses it, so that 
logged information is immediately written out to the disk. Each mes.rage managed by the system 
message logging facility is just one line. It may begin with a priority code enclosed in angle 
brackets, indicating the level of severity of the reported condition. 

3. The Format of /etc/syslog.conf 

The disposition of all system diagnostic messages received by the syslogd daemon is con­
trolled by the entries in the file /etc/syslog. conf. This section describes these entries, 
the actions that result from them, and the use of comments and blank lines. It also provides a 
sample syslog. conf file. 

3.1. Selectors and Actions 

Each entry in syslog. conf occupies a single line, which is taken to consist of a selector and 
an action (which are separated from one another by one or more tab characters). Thus the gen­
eral format of a line in /etc/syslog. conf looks like this: 

selector action 

Format 15-1: /etc/syslog. conf 

September 1988 Chapter 15 



IBM/4.3 Systcm Administration Guide 159 

A sample entry from /etc/syslog . conf might look like this: 

kern. err /dev/console 

This line indicates that whenever an error message is received from the kernel, that message is 
written onto the system console terminal, /dev /console. 
A selector actually fncorporates two pieces of information, a facility and a level. The facility indi­
cator is an abbreviation of where the message came from, and the level indicator specifies the 
severity of the message. As illustrated, the facility indicator is separated from the level indicator 
by a period. 

The currently available facility values are listed in the following table: 

Facility Description 
ke rn The facility associated with messages generated by the kernel 

(such as a panic or double panic). Such messages can­
not be generated by any user-level process. 

user The facility associated with messages generated by ordinary user 
processes. This is the default facility specifier and is used if no 
facility is specified. 

mai 1 The facility associated with messages generated by the electronic 
mail system. 

daemon The facility associated with messages generated by system-level 
daemon processes, such as ftpd, routed, and syslogd it­
self. 

auth The facility associated with messages generated by the permis­
sions authorization system, including commands such as lo­
gin, su, and getty. 

lpr The facility associated with messages generated by the line printer 
spooling system, such as lpr, lpc, lpd and similar com­
mands. 

localO A facility reserved for local usc. In all, there are eight local facili­
ties (localO through loca17) that may be interpreted ac­
cording to local needs. 

mark A special-purpose facility designed to allow the system message 
logging daemon to periodically "mark" a log file or console 
screen. If enabled, a mark facility sends a message every 20 
minutes. The interval may be altered by providing an argument 
to the sys logd at the time it is launched. Por example, the 
command line: 

/etc/syslogd -mlO 

will change the mark interval to 10 minutes. 

Tablc 15-1: Error Message Facility Indicators 

The available values for the priority level are listed in the fol1owing table: 

Chapter 15 September 1988 



160 

Lcvcl 
emerg 

alert 

crit 

err 

warning 
notice 

info 
debug 

none 

IBM/4.3 SystcmAdministration Guide 

Description 
The priority of an emergency or panic condition. Usually, a 
message with this priority is broadcast to all users and logged to 
the system error file. Such a condition may very likely result in a 
system crash. 
The priority of a serious condition that should be corrected im­
mediately, if possible. 
The priority of a critical condition, such as hard input/output er­
rors on a disk drive. . 
The priority of errors that. do not fit into any of the first three 
priorities. 
The priority of warning messages. 
The priority of conditions that are not error conditions but 
which should probably be handled specially by the system ad­
ministrator. 
The priority of informational messages. 
The priority of debugging messages. These messages are normal­
ly of use only while debugging a program. 
No priority. This priority indicator is provided in order to turn 
off facilities that would otherwise be selected by the asterisk wild­
card character. For example, the selector: 

*.noticeimail.none 

will select all facilities at priority notice, except for any mes­
sages originating in the mail system. 

Table 15-2: Error Message Level Indicators 

Note that these levels are listed in decreasing priority. For example, the level err is of greater 
priority than the level info. Each available facility may have any of these priority levels associ­
ated with it, except for the mark facility, which always signals a message of priority info. 

3.2. Actions 

When a message of a certain level is received from a certain facility, the syslogd daemon takes 
whatever action is listed on the appropriate line of the configuration file, 
/etc/syslog. conf. For example, consider the following line in the configuration file: 

lpd.debug /usr/adm/lpd-errs 

This instructs syslogd to write whatever messages it receives from the line printer system that 
are of severity debug (or greater) into the log file, /usr/adm/lpd-errs. As you prob­
ably surmise, if an action is simply a file name, then the corresponding message is written onto 
the end of that ftl.e. Nothing prevents the file from being a terminal device such as the system 
console. So the following type of configuration line is quite possible: 

kern.emerg /dev/console 

This instructs syslogd to write whatcver mcssages it receives from the kernel that are of sever­
ity emerg on the system console. 

In addition to writing the received message onto the end of a file, syslogd can be configured 
to send the message to one of three other places. i\ full list of message destinations is given in the 
following table: 

September 1988 Chapter 15 



IBM/4~3 System Administration Guide 

Specification 
file 

@host 

user 

* 

Description 
The message is appended to the file specified by the name file. 
The fIle must be specified using an absolute path name (i.e., a 
name that begins with a leading slash, II'). 

The message is forwarded across a local area network to the re­
mote system whose name is ho.rt. The disposition of the message 
on the remote system depends of course on the configuration of 
syslogd on that host. 

The message is written on the terminal screen of the named user, 
if that user is currently logged in. Multiple users may be speci­
fied by listing their names separated by commas. 

The message is written on the terminal screens of all users who 
are currently logged into the system. 

Table 15-3: Destinations for System Messages 

3.3. Comments and Blank Lines 

161 

As you have no doubt already guessed by looking at the sample /etc/syslog. conf listed 
above, any line in this file that begins with the pound sign '#' is interpreted as a comment and is 
ignored. Similarly, all blank lines are ignored. 

3.4. Sample Syslogd Entries 

It is difficult to give any detailed advice concerning the disposition of diagnostic messages arising 
from the operation of an IBM/4.3 system, since your interest in and reactions to certain messages 
will be highly site-specific. Nonetheless, it will be useful to look at a sample 
/etc/syslog. conf: 

# a sample /etc/syslog.conf 

*.err 
kern. debug 
auth.notice 

/dev/console 
/dev/console 
/dev/console 

kern. debug 
daemon,auth.notice 
*.err 

/usr/adm/messages 
/usr/adm/messages 
/usr/adm/messages 

mail.crit 

lpr.debug 

mail.debug 

*.alert 
kern. err 
daemon. err 

*.alert 

Chapter 15 

/usr/adm/messages 

/usr/adm/lpd-errs 

/usr/spool/mqueue/syslog 

operator 
operator 

operator 

root 

September 1988 



162 IIJM/4.3 System Administration Guide 

*.emerg * 
auth.crit @gator 

The very first line indicates that all messages of severity err or greater are to be written on the 
systetn console terminal, regardless of their origin. The second and third lines also cause some 
other messages of lesser severity to be written there, but only when they arise from the kernel at 
level debug or greater or from the authorization system at level notice or greater. This 
disposition of messages from the authorization system can help you to help track failed login 
attempts and failed su attempts. 

Since it is also useful to save messages of great severity and messages indicating possible security 
violations (such as failed su attempts), the next four Jines send those messages also to the 
system-wide message file, which is usually lusr/adm/messages. Notice that the sys­
logd daemon can manage multiple message log files, as indicated by the next two entries which 
send aU printer-related message's to the file /usr/adm/lpd-errs and all mail-related mes­
sages to the file /usr/spool/mqueue/syslog. 
All the remaining lines in this sample configuration file, except the last one, illustrate how to send 
messages to a particular user or group of users. For example, all messages of severity alert (or 
greater), as well as aU kernel and daemon messages of severity err (or greater) are sent to the 
ope r a to r account, if anyone is currently logged in using that name. The ope r a to r 
account is intended to be used primarily for file system backups and restores, and it is important 
that that person should receive notification of any abnormal activity that may affect those back­
ups or restores. 

The fmal line listed above shows how to route error messages over a network to a remote 
machine. Any authorization-related messages of severity cri t or greater will be sent to the 
syslogd on the rernote host named 'gator'. This allows a central authority to supervise 
possible security violations on an entire network of workstations and servers. Similar syslogd 
configuration lines may be useful, for example, if your site maintains a central print server and 
you prefer all printing system messages to be sent to that server. 

4. Starting Up Syslogd 

The daemon syslogd is normally started up at system boot time. You can launch it automat­
ically whenever you enter multi-user operation by including the following line in the me 
/etc/rc or the file /etc/rc. local: 

letc/syslogd 

As a rule, the message logging daemon should be ~tarted up after the file systems are checked and 
mounted, but before any other daemons arc started up. Consequently, the line given above is 
usually placed into the file /etc/rc . local, which is run before editor files are preserved and 
other local and network daemons are started up. 

It is possible to modify the default behavior of the message logging system by supplying a com­
mand line argument when syslogd is first launched. For example, you may specify that 
sys logd configure itself according to instructions located in some file other than 
/etc/syslog. conf by invoking it with the -f argument. 

A special debugging flag, -d, can be provided to tum on syslogd debugging. This is most 
useful for checking the syntax of a revised configuration file. As the following command output 
illustrates, the first thing syslogd -d docs is to parse the configuration file: 

# letc/syslogd -d 
off & running .... 
init 
cfline(*.err 

September 1988 

/dev/console) 

Chapter 15 



IBM/4.3 Systcm Administration Guidc 

cfline(kern.debug 
cflin~(auth.notice 
[lines omitted] 
cfline(auth.crit 

/dev/console) 
/dev/console) 

@gator) 

163 

If there are errors in the configuration file, they will be listed in the diagnostic output. For exam­
ple, suppose that you forget to specify a severity level on some line, so that the first several lines 
in /etc/syslog. conf look like this: 

*.err /dev/console 
kern /dev/console 

Then, when you run syslogd with debugging turned on, you will see diagnostics like these: 

# /etc/syslogd -d 
off & running ... o 

init 
/dev/console) 
/dev/console) 

cfline(*.err 
cfline(kern 
syslogd: unknown priority name "": no such file or directory 

(In fact you will see this message repeated several times, owing to the fact that the first line was 
successfully parsed and acted upon.) Such messages are an indication that you need to edit the 
configuration me and correct the mistake. 

5. Stopping Syslogd 

Once started, the system message daemon sys logd wilJ continue in operation unless stopped 
manually by the system administrator (or, in rare circumstances, by abnormal system activity). 
To halt system message logging manually, you should send a terminate signal to the daemon 
using the kill command. Recall that the process id number of syslogd is automatically 
saved in the file /etc/syslog. pid each time the error daemon is launched (usually from 
within /etc/rc). You can therefore be assured of killing the appropriate process by executing 
the command line: 

# kill 'cat /etc/syslog.pid' 

Sometimes, the file /etc/syslog 0 pid cannot be created when syslogd is launched; in 
such cases, you will need to find the process id numher of the syslogd daemon by using the 
ps command: 

# ps -ax I grep syslogd 

You should get two lines of output; for example: 

45? S 
1977 pO S 

0:02 /etc/syslogd 
0:00 grep syslogd 

Select the process id number of the daemon itself and execute the ki 11 command using it as an 
argument. In this case, the pid is 45, so you would type: 

# kill 45 

6. Sending Messages from the Command Line 

The command logger allows the system administrator to enter messages into the system log 
files manually from the command line. For example, you may run the command: 

# logger System time and date reset 

Chapter 15 September 1988 



164 IIJM/4.3 System Administration Guide 

to record that the system time and date were just reset. 'fhe message specified on the command 
line will be entered into the appropriate log file exactly as if it had originated as a message from a 
program. 

If no me is specified, the default system message file (/usr/adm/messages) will be used. 
You can send the message to another file by providing the - f command line argument. For 
example, the command: 

# logger -f /usr/spool/adm/syslog Games turned off. 

wi1l append the message to the file specified. 

The logger command also assumes a default facility and level for the message provided, 
namely 'user. notice'. If you want to send the message to a different selector, you may 
specify it on the command line. For example, the command: 

# logger -p mail. info Truncated /usr/spool/mail/smith 

will perform whatever action syslogd is configured to perform for informational messages 
from the mail system. See the manual page logger(l) for a complete summary of the avail­
able options for the logger'command. 

7. Checking Messages 

The system administrator should monitor the error log files regularly in order to determine 
whether the system is operating as expected, and if not, what corrective action to take. To see the 
end of a log file, execute the command: 

tail -r /usr/adm/messages 

The - r flag will cause the output to be sorted in reverse order, so that the first line seen is actu­
ally the last line that was appended to the file. You should check the configuration file 
/etc/syslog. conf to see what other log files are in use by the system message logging 
daemon. 

8. Message Handling Tips 

• If you plan to make major revIsions to the message daemon configuration fIle, 
/etc/syslog. conf, or if you are inexperienced with syslogd and its configura­
tion me, then you should invoke syslogd with the debugging flag (-d) in order to 
ensure that the configuration file is correctly set up. To be extra safe, you should first make 
a copy of the original, edit the copy, and then run syslogd with the debugging flag on 
the revised copy: 

# cp /etc/syslog.conf /tmp/syslog.conf 
# vi /tmp/syslog.conf 

[make changes to the new copy) 
# /etc/syslogd -d -f/tmp/syslog.conf 

Note that no space is allowed after the - f flag and before the file name. If syslogd suc­
cessfully parses the new file, then you can overwrite the original copy with the revised one 
and then start up syslogd: 

# mv /tmp/syslog.conf /etc/syslog.conf 
# /etc/syslogd 

Since there should be at most one instance of syslogd running on your system at one 
time, you should perfonn these tests while no s ys logd is running. 

• You can edit the error message daemon configuration file, /etc/syslog. conf, even 
while the system is operating in multi-user mode and the message daemon syslogd is 

September 1988 Chapter 15 



IBM/4.3 System Administration Guide 165 

running. To force syslogd to reread its configuration file, send it a hangup signal, as fol­
lows: 

# kill -HUP 'cat /etc/syslog.pid' 

Thus, you can change the disposition of system messages "on the fly", without needing to 
reboot the system or bring it down to single-user state. 

Chapter 15 September 1988 



166 IBM/4.3 System Administration Guide 

This page intentionally left blank. 

September 1988 Chapter 15 



CHAPTER 16 

Executing Periodic Conlmands 

1. Introduction 

One of a system administrator's major concerns is to reduce as much as possible the number of 
actions that must be performed manually to keep the system running smoothly. To help achieve 
this goal, IBM/4.3 provides a simple and flexible way to run a command or shell script automati­
cally at specified times. The cron daemon and its configuration file crontab are the tools 
you will use to establish periodic command execut.ion. One of the main uses of these tools is to 
perform a variety of system administration tasks that need to be accomplished at regular intervals 
and that require minimal operator assistance. For example, c ron can be used to help maintain 
an uncluttered file system by removing files that have not been accessed within a certain amount 
of time; this is especially useful for finding and removing temporary files, outdated log files, and 
the like. The c ron daemon is also useful for st.arting various communications processes such as 
uucp. This chapter explains how to set up the c ron system to handle such tasks automatically 
and efficiently. For information on establishing uucp connections using c ron, see the section on 
administration in "Installation and Operation of tJtJcp" in the UNIX System Manager's Manual 
(Section 9). 

2. How eron Operates 

Cron is a clock daemon that is usually started up at multi-user initialization time by placing the 
following line in the file /etc/rc: 

/etc/cron 

If this line is not present in your /etc/rc file or in /etc/rc. local, the cron daemon 
can be launched by typing that line to the shell. The basic operation of c ron is to read the file 
/usr/lib/crontab (and, if it exists, the file /usr/lib/crontab. local) once 
every minute, on the minute, to see if there are commands contained there that arc scheduled to 
be run. If there are such commands, cron will run them. The logical position of cron is 
illustrated in the following diagram: 

IBM/4.3 System Administration Guide 167 



168 IUM/4.3 System Administration Guide 

C9 
------0 
/usr/lib/crontab 

any command 

Figure 16-1: The Position of c ron 

If the specified command does not itself redirects its output, c ron will place any output resulting 
from the execution of the command into the file /usr/adm/cronlog. cron will also res­
can the crontab ftle(s) each time they are altered. In addition, unless terminated manually by 
the system administrator or by abnormal system activity, cron never exits. There should there­
fore be at most one instance of the c ron daemon running on a system at any given tim.e. 

3. The Format of Crontab 

The format of the files /usr/lib/crontab and /usr/lib/crontab .local is 
straightforward. The crontab files consist of Jines, each of which has seven fields (which are 
separated from one another by any number of spaces and/or tabs). The format is as follows: 

minute hour day-of month month day-of week user command 

2 3 4 5 6 7 

When Who What 

Format 16-1: /usr/lib/crontab 

As indicated, the seven fields may be thought of as grouped into three parts, a time specification 
(indicating when the specified action is to occur), a user specification (indicating who is to run the 
specified action), and a command specification (indicating what action is to occur). The appropri­
ate values for each of these parts are discussed in the following three subsections. 

3.1. TIme Specification 

The flfst five fields jointly indicate the time when the command specified in the last field will be 
run. Each of these five fields may be filled with a number from the appropriate legal range for the 

September 1988 Chapter 16 



IBM/4.3 System Administration Guide 169 

field, a dash-separated range of values, a comma-separated list of values, or an asterisk (+) indicat­
ing that all legal values are selected. The legal ranges arc as foJlows: 

minute 
hour 
day-of month 
month 
day-ofweek 

00 to 59 
00 to 23 
00 to 31 
01 to 12 
o I to 07 (where 0 I denotes Monday) 

Table 16-1: Legal crontab Time Specifications 

If the specified value is a dash-separated range, then cron will run the appropriate command for 
each value in the range. So, for example, a line whose day-ofweek field was 

1-5 

would be selected for each working day, i.e. Monday through Friday. If the specified value is a 
comma-separated list, then c ron will run the command for each value in the list. A line whose 
day-of week field was 

1,3,5 

would be run every Monday, Wednesday, and Friday, at the time selected by the first two fields. 
You should notice, however, that this will happen only if the day-ofmonth field is also selected in 
the crontab entry (perhaps because it contains an asterisk). The cron daemon will run a 
command listed in the c rontab file just in case all five time fields are satisfied. 

3.2. User Specification 

The fonnat of c ron tab has recently been altered to include an indication of who the command 
is to be run by. More precisely, this field contains the login name of the user whose user identifi­
cation number is to be adopted as the effective uid of the specified process. For many commands 
the user field will contain the name 'root', since root privileges are needed to read or write 
certain files or to run certain commands. But some of the commands that are typically run by 
cron do not need root's absolute privileges and it is dangerous to run them under the root 
uid. For such commands, the system administrator can specify a login name with lesser 
privileges. 

For example, processes that are run periodically for the uucp system are usually run with the 
uucp account listed as the user. This allows them to access (and possibly remove) files and 
directories in uucp spool directories. Also, some commands that need minimal access privileges 
have the account nobody in the user field. The nobody account was added to the system 
precisely to provide a less dangerous uid for crontab entries that do not require greater 
privileges. 

3.3. Command Specification 

The fmal field in a crontab entry is the specification of what action is to be taken at the time 
specified in the frrst five fields. The command field of a crontab entry may contain any valid 
command line. In particular, it may contain input/output redirection characters, pipes, and multi­
ple commands separated by semicolons. 

3.4. Sample Crontab Entries 

The following is a sample crontab entry: 

Chapter 16 September t 988 



170 IBM/4.3 System Administration Guide 

00 * * * * root date > /dev/console 

This specifies that the date command is to be nm every hour of every day of every week in the 
month, at the beginning of each hour (Le., minute 00). The output here is redirected to the sys­
tem console, so if there is no other activity on the console, a list of times will accumulate on the 
console screen. 

The sixth field in a crontab entry specifics the user whose uid and permissions the command 
specified in the seventh field should inherit. In this example, the date command will be run 
with the uid and permissions of the superuser. (This allows the command to actually write on the 
systetn console, which may not be possible for other users.) 

Here is another typical crontab entry: 

00,15,30,45 * * * * root /usr/lib/atrun 

When cron reads a crontab file containing this line, it will execute the atrun command 
every 15 minutes. This command will be run every hour of every day of every month, since the 
second, third, fourth, and fifth time fields each contain an asterisk. The a trun command is 
invoked in order to process user:..specified commands or scripts that were submitted with the at 
command. Remember that even though a user may submit a command to be run at some later 
time with the at command, that command will not actually be run unless the a trun command 
is executed periodically. This task is typically assigned to c ron. Notice also that the granularity 
of the at command is dependent upon the corresponding crontab entry. Por instance, a 
command submitted to run at exactly 12:20 a.m. would not be run until 12:30 a.m., since the 
crontab entry listed above has a granularity of 15 'minutes. To achieve finer control over 
times speci.fied with the at command, you could usc a c ron tab entry like this: 

00,05,10,15,20,25,30,35,40,45,50,55 * * * * root /usr/lib/atrun 

This entry will execute the atrun command every five minutes, so that a command submitted 
to run at 12:20 a.m. will now be executed at exactly 12:20 a.m. (or as close to it as possible, since 
it takes cron a few seconds to launch the command). The system administrator must balance 
the greater precision offered to users of at with the increased system load incurred by running 
atrun more often. On most systems, a granularity of 15 minutes is perfectly acceptable. 

Finally, the following crontab entry will send a holiday greeting to the terminal screen of each 
user who is logged in at the appropriate time: 

00 00 01 01 * root echo "Happy New Year" I /bin/wall 

Here, c ron has been instructed to write to each logged-in user at midnight (12:00 a.m.) on Janu­
ary 1st of each year. Notice that the fifth field, the day-ofweek field, contains an asterisk, so that 
the command will be executed no matter which day of the week New Years Day faUs on. 

It is possible to send a multi-line message to all users by inserting a percent sign, C%', at the 
appropriate spot in the me.ssage. For example, you might expand the previous greeting, as fol­
lows: 

00 00 01 01 * root echo "Happy New Year%To All" I /bin/wall 

The percent sign will be translated by c ron into a newline character before the string is given as 
input to wall, so that the wall command reccives a two-line message as input. Vou can 
embed as many percent signs as you like in order to create a message of the desired number of 
lines. Currently it is not possible to have the percent sign appear in the resulting message. 

Although you can specify multi-line input to a command using the percent character, it is not 
possible to embed multi-line commands into the command field of the crontab me. If a 
multi-line command is desired, or if multiple commands must be run to accomplish some admin­
istrative task, the relevant lines should be put into a shell script and c ron should be instructed 
to execute that shell script. This situation is illustrated below. 

September 1988 Chapter 16 



IBM/4.3 System Administration Guide 171 

3.5. Comments 

In the configuration files read by cron (i.e., /usr/lib/crontab and 
/usr/lib/crontab. local), any line that begins with a pound sign (#) is treated as a 
comment and is ignored by cron when it reads that file. You may also isolate a group of 
related crontab ,entries by surrounding them and any applicable comment lines with vertical 
white space. Blank lines can be used for this purpose. 

4. Cleaning /tmp and /usr/tmp 

It is fairly typical for the system directories that hold temporary files, /tmp and /usr/tmp, to 
be cleared of most files and subdirectories at system multi-user initialization time. (Check the 
start-up file /etc/rc to see whether this happens on your own system.) Since, however, your 
IBM/4.3 system may continue running for days, weeks, or even months at a time, it is good prac­
tice to clear out these directories periodically. This is partly because these directories can easily 
becotne filled with scratch files or buffer files from processes that die unexpectedly or that are 
killed by the user. Another reason is that users sometimes copy files into the temporary direc­
tories and then forget to remove them when finished. Keeping these directories from accumulat­
ing too mueh junk is a perfect task for c ron. 
One way to manage the temporary file space with cron is to insert into crontab an entry like 
this one: 

00 02 * * * root find /tmp -atime +3 -exec rm -f {} \; 

At 2:00 a.m. on each day in the month, c ron will search the directory /tmp for files that have 
not been accessed in the last three days. If it finds any such files, it will remove them. 

While this command removes all stale files below the /tmp directory, it does nothing to any sub­
directories (except empty them of all files). We would also like cron to remove these empty 
directories, if there are any. To accomplish this, we could add another entry to crontab: 

10 02 * * * root find /tmp ! -name . I -name lost+found -type d \ 
-mtime +1 -exec rmdir {} \; 

This command will look for all directories under /tmp that have not been accessed in a day and 
that are not named either'. ' or 'lost+ found'; then, if it finds any, it will remove them. 
(Note that we instructed cron to run this command ten minutes after running the previous 
command. This was so that we could be sure that the previous command was completed before 
the second began.) 

A much better solution to the general problem of managing temporary file space is to collect all 
of these related procedures into a shell script and to have c ron execute that script, instead of 
putting each such command into crontab. For example, the command field of these two pre­
vious crontab entries, as well as related commands to be run on a daily basis (such as similar 
commands for the directory /usr/tmp), might be put into a shell script called daily. If 
such a script is stored in the directory /usr/adm, then the following single crontab entry 
will suffice: 

00 02 * * * root /bin/sh /usr/adm/daily 2>&1 I mail root 

In this example, any output and error messages resulting from the running of the script will be 
mailed to the superuser. This strategy of collecting similar commands into shell scripts minimizes 
the number of entries in crontab and makes it much easier to read and maintain. 

5. Removing Other Old Files 

There are two tools available to you to help in maintaining files that can become cumbersome. 
Both can be invoked by c ron: 
• The uuc lean program purges files it knows are no longer needed from the uucp spool 

directory and is typically run by c ron on a daily basis. See Section 5 in Chapter 17 for 

Chapter 16 September 1988 



172 IUI\1/4.3 System Administration Guide 

more infonnation. 

• The trimlib script helps in keeping lJSENET log files to a reasonable size and is typi­
cally run by c ron on a weekly basis: 

6. Turning off Games during Prime Time 

Computer games are no doubt sometimes a relaxing pastime, but most installations frown upon 
games-playing during the prime working hours. You can put the abilities of c ron to good use 
by having it run the following simple script sometime in the morning: 

#! /bin/sh 
# turn_off 
chmod go-x /usr/games/* 
logger Garnes turned off 

And games may be turned back on with the following script: 

#! /bin/sh 
# turn_on 
chmod go+x /usr/games/* 
logger Garnes turned on 

To activate this scripts at the appropriate time, you can put the following three lines into the file 
/usr/lib/crontab. local: 

# turn games off/on at appropriate times 
00 08 * * 1-5 root /usr/games/turn_off 
00 18 * * 1-5 root /usr/games/turn_on 

Then the games will be turned off at 8 a.m. each weekday morning and back on again at 6 p.m. 

7. Calendar 

The calendar(l) program is a reminder service for IBM/4.3 system users. It works by con­
sulting the file calendar in the current directory and printing lines that contain today's date or 
tomorrow's date. By including the command calendar - in a crontab file entry, you can 
specify that cal endar check each user's calendar file, then notify users of the results through 
mai l( I). See calendar( I) for more infonnation. 

8. Accounting 

You can include entries in your crontab file that request accounting infonnation concerning 
connect time and process resource. IBM/4.3 stores information related to connect time account­
ing in /usr/adm/wtmp; you can use the ac(8) program to summarize this information. 
IBM/4.3 stores information regarding proccss time accounting in /usr/adm/acct, once this 
HIe is enabled by accton(8). You can use the sa(8) program to analyze and summarize this 
information. 

You might want to implement procedures based on information provided by these commands for 
accounting tasks such as charging for computing time. A convenient and efficient way to do this 
is to place these commands in your crontab file, so that they arc executed every day at the 
time you specify. 

9. Creating User-Specific Crontab Entries 

Unlike the versions of c ron supplied with newer releases of System V (2.0 or later), the IBM/4.3 
c ron does not provide ordinary users with the ability to create and edit their own personal 
crontab files (thus allowing them to perform periodic actions automatically in the same way 
that the system administrator can). Nonetheless, it is simple to include entries in the system-wide 

September 1988 Chapter 16 



IBM/4.3 System Administration Guide 173 

crontab or crontab. local to provide this service. For example, if the user nat needs 
to execute a certain set of commands periodically, you can place an entry like the following into 
one of the cron configuration files, probably crontab. local: 

00 03 * * * nat /bin/csh -f -c ~nat/cron.rc 

In this case, cron·will execute whatever commands exist in the file cron. rc in nat's home 
directory. No doubt the time and periodicity listed in the crontab entry must be chosen in 
consultation with the user. In the example listed, the script will be run each day at 3:00 a.m. It is 
then up to the user nat to maintain the script of C shell commands in the me cron. rc. 

Before actually inserting sueh lines into the cron configuration files, however, you should deter­
mine whether in fact the user needs to use c ron. (After all, imagine trying to maintain c ron­
tab entries for the dozens or even hundreds of different users in your computing environment!) 
It is quite possible that the users's needs can he accomplished more simply, without using cron 
directly. For example, suppose that a user needs to maintain a list of the files that exist in the 
home directory at a specified time each day. You could provide this service by inserting the fol­
lowing command into the crontab. local file: 

00 03 * * * nat ls -1 ~nat > ~nat/LIST 

Alternatively, you could insert the previous line that runs the script cron. rc in nat's home 
directory, leaving it up to that user to insert the proper commands into it. But instead of using 
cron, the user can use the at command, in the following clever way. First, the user must 
create an at script that contains the desired commands, as well as a command that rein vokes at 
at the same time the following day. Here is an example of what this user might put into the at 
script: 

# at.rc 
# imitate cron actions with an at script 
ls -1 ~ > LIST 
sleep 60 
at 0300 at.rc 

To start the whole process, the user should give this command: 

% at 0300 at.rc 

Then, at 3:00 in the morning, the home directory will he listed, the script will steep for a minute 
(just to be safe), and then at will be reinvoked for the following morning with the same script. 
In this way, a recursive application of at can provide exactly the functionality that cron would 
provide, at much less cost to the system administrator. If ordinary users request that you create 
crontab entries for them, you should recommend that they try to accomplish the same effects 
in this somewhat simpler way. 

Chapter 16 September 1988 



174 IBM/4.3 System Administration Guide 

This page intentionally left blank. 

September 1988 Chapter 16 



CHAPTER 17 

Controlling Log Files 

1. Introduction 

There are a number of files located at various spots in the IBM/4.3 file system that are used to 
tnaintain a record of system activities such as user logins, command executions, news transmis­
sions, system errors, failed root login attempts, and similar events of concern to the system 
administrator. Collectively these files are called "log files" because they contain an ongoing log of 
system activities. Log files can be extremely useful in helping track down system problems or 
maintain a secure system, but they may grow without bound unless they are periodically trun­
cated. One good example of this is the file /u s r / adm/wtmp, which collects user connect­
time information. As long as users continue to log in and out of your system, this me will grow 
larger and larger. The processes that append records to /usr/adm/wtmp (ini t and 
login) do not check to see if the size of the file has exceeded some limit. Accordingly, it is the 
duty of the system administrator to collect the infonnation needed from these files, summarize it, 
and then truncate the files so that they can continue to grow and perform their logging functions. 
This chapter explains some of the techniques commonly used to administer the many log mes in 
the IBM/4.3 system. 

Some log files are inspected, summarized, and truncated by special system utilities dedicated to 
that task, so that all the system administrator needs to do is make sure that those utilities get run 
at the appropri~te intervals. On the other hand, most of the log files have no special utility pro­
grams associated with them. Accordingly, the main pat1 of this chapter is devoted to developing 
and explaining several useful shell scripts that will help you maintain system log fUes. In either 
case, whether you use special utilities or the scripts presented here, the scheduling of the log file 
processing is usually handled by the elock daemon, cron, as illustrated below. 

Exactly what you do with the information that is stored in the system's log files is highly site­
dependent. If your system is well-administered and you experience few if any abnormal 
occurrences, then you may never need to inspect those files and you can pretty much forget about 
them once you have instituted a suitable log file rotation scheme. More probably, however, you 
will want to collect, summarize, and use the information in the log files in some important way. 
In an environment where users must pay for computing services, for instance, you might use the 
connect-time information stored in /usr/adm/wtmp to determine part of the account charges 
for the user community. Or if you have experienced a system break-in, the process accounting 
log files may help you determine when and how the break-in occurred. 

2. Log File Rotation: Version I 

The simplest way to make certain that log files do not get too large is just to truncate them 
periodically. This may be accomplished using the cron daemon, by inserting a line into the file 
/usr/lib/crontab. For example, to truncate the log file containing a record of user 
logins, you might put in the following line: 

30 02 * * * root cp /dev/null /usr/adm/wtmp 

At 2:30 a.m. of each morning, the file will he truncated to 0 bytes by copying /dev /null onto 
it. Since it is run each day, this command ensures that /u s r / adm/wtmp never gets too large. 

IBM/4.3 System Administration Guide 175 



176 IIJM/4.3 System Administration Guide 

This scheme, however, has several clear disadvantages. I~orcm()st among them is the fact that 
potentially useful information is simply thrown away rather than archived, summarized, or other­
wise maintained on the system. If you want to use the connect-time infonnation to charge 
account fees, you will need to collect the appropriate information before it is removed from the 
system. 

As you can see, merely truncating a log file in this way is rarely the correct way to manage the 
information contained in it. Accordingly, most ~itcs prefer to institute a procedure that combines 
rotation with truncation. Under this arrangement, the information in a current log file is first 
saved in an intermediate me. There are usually several such intermediate files, only the oldest of 
which is actually thrown away. This procedure can be illustrated by the following simple shell 
script: 

#! /bin/sh 
# wtmp_swap: rotate connect-time accounting files 
echo "Rotating wtmp files" 
cd /usr/adm 
mv wtmp.2 wtmp.3 
mv wtmp.l wtmp.2 
mv wtmp.O wtmp.l 
mv wtmp wtmp.O 
cp /dev/null wtmp 
chmod 644 wtmp 

As you can see, existing intermediate files are rotat.ed before the current wtmp file is placed into 
the first intermediate file; then wtmp is recreated, with a size of zero bytes. The sequence of 
actions can be illustrated as follows: 

Before D 
After 

wtmp.3 wtmp.2 wtmp.l wtmp.O wtmp 

Figure 17-1: Log File Rotation Sequence 

By rotating the log file /u s r / adm/wtmp in this way, the system administrator can ensure. that 
a reasonable amount of connect-time information is kept availahle on the system, while removing 
the danger that that file will eventually grow too large for the available storage space. 

This log file rotation and truncation script is designed to be run periodically by c ron. So you 
will want to put a line like the following into your crontab file: 

00 02 * * * root /usr/adm/wtmp_swap > /dev/console 

Notice that the output from the script is redirected to the system console, so that the system 
administrator will know that the script has run. 

September 1988 Chapter 17 



IBM/4.3 Systcm Administration Guide 177 

3. Log Filc Rotation: V crsion 2 

The log file rotation and truncation script presented in the previous section provides the basic 
functionality needed to maintain system log files at an acceptable size while not throwing away 
too much information at anyone time. The approach illustrated by the script wtmp_swap, 
however, has several disadvantages that can easily be alleviated. You will notice that that script as 
currently written rotates and truncates only a single file, /usr/adm/wtmp. To apply that 
method to other log files on the system, you would need to create a similar script for each log file, 
probably by copying that script and making suitable changes. If you later wanted to add some 
feature to the log file processing routine (for example, backing up the oldest intermediate file onto 
a floppy disk or streaming tape instead of just removing it), you would need to fmd, edit, and 
modify every copy of the script. Since the various copies may be scattered about in different 
directories, that is not a trivial undertaking. 

It is a good idea therefore to encapsulate the rotation and truncation sequence into a script that 
can be applied to several different log files. It is also good practice to add some diagnostic output 
to the script, so the system administrator will know if it terminates prematurely. With these 
desires in mind, then, consider the following improved version of wtmp_swap: 

#! /bin/sh 
# log_swap: rotate a log file through intermediary files 

ERROR='eval echo >&2' # send error message to stderr 
USAGE='Usage: $0 logfile number' 
trap '$ERROR "$0: exiting prematurely"; exit l' 1 2 3 15 

if [ $# != 2 ]; then 
$ERROR $USAGE 
exit 1 

fi 

LOG=$1 
NUM=$2 

i='expr 
while [ 
do 

j=' 
if 

fi 
i='expr 
done 

$NUM - I' 
$i -gt 0 ] 

expr $i - I' 
[ -f $LOG.$j 

mv $LOG.$j 

$i - I' 

if [ -f $LOG ]; then 
cp $LOG $LOG.O 

] ; then 
$LOG.$i 

cp /dev/null $LOG 
fi 

This script requires two arguments, namely the log file to be rotated and the number of intermedi­
ary files to use. If it is not invoked with exactly two arguments, it prints a diagnostic message and 
then exits; otherwise it proceeds precisely as did the previous script. To activate log me rotation, 
you must once again add some lines to the c ron configuration me. For example: 

00 02 * * * root /usr/local/log swap /usr/adm/wtmp 6 
01 02 * * * root /usr/local/log:swap /usr/lib/news/log 5 

Chapter 17 Septcmber 1988 



178 

02 02 * * * 
10 03 1 * * 

root 

IBM/4.3 System Administration Guide 

/usr/local/log_swap /usr/adm/messages 6 
/usr/local/log_swap /usr/spool/uucp/LOGFILE 5 

4. Uucp 

During normal operation, uucp generates a number of small files, which it places in the directories 
beneath /usr/spool/uucp. If left unchecked, these files can cause space problems; uucp 
provides the following tools to aid in preventing this: 

• The uuclean(8) program purges filesit knows are no longer needed from the uucp spool 
directory. It works by looking in the spool directory for files with the specified prefix and 
deleting all fIles that are older than the specified number of hours. Typically uuc lean is 
run from c ron on a daily basis. It has the following arguments: 

/usr/lib/uucp/uuclean [ -m ) r -nlrours] r -ppre ) [ -dsuhdirectory ) [ -Xnum ) 

The -p options specifies the prefix uuc lean should look for when searching for files; 
You can specify up to ten prefixes. The - n option specifies the age of files that should be 
deleted, in hours, provided they have the specified prefix. The default age is 72 hours. The 
-m specifies that uuclean is to send mail to the owner of the file upon the file's deletion, 
and the -d option specifies that uuc lean should work in only the named subdirectory. 
The - x option specifies the level of debugging output you want. 

• The uulog program scans session log files and helps you to maintain them by printing a 
summary log of ollcp and uux transactions. lJucp gathers information from uucp and uux 
log files (which reside in /usr/spool/uucp under names beginning with LOG), then 
creates a file called LOGFILE in /usr/spool/uucp/LOGFILE that you can exam­
ine directly or through uulog, which resides in /usr/bin. When using uulog, you 
can specify that it print information about work done for a specific user, or about the sys­
tem that requested the work. uulog then prints the time, date, and status for each 
request. 

USENET also creates mes that must be monitored. There are two groups of files that should be 
maintained: 

• History files can be cleaned up with the expi re program. This program deletes lines 
from the history file that relate to articles that. have been removed. 

• The log file can be maintained with the /mi sc/trimlib script, which you can install 
in LIB/trimlib. This script is typically invoked weekly by cron. 

5. Other Files that May Grow without Bound 

Aside from the log files discussed above, it is possible for ot her files in the system to grow without 
bound for one reason or another. For example, if a particular user never reads any electronic 
mail, then that user's system mailbox will get largcr and larger as new mail keeps arriving. If the 
quota subsystem is not installed and running, or if quotas have not been established on the 
/usr fIle system, then the mailbox may eventually get very large. Similarly, it is simple to write 
a program or shell script that creates an increasingly large output file. It is even possible to cause 
a text-processing program like troff to go into an endless loop, thereby creating a fIle that 
grows until a user's disk space quota is exceeded or until the remaining space in the file system is 
consumed. 

These types of large files are not log files, so the techniques presented above will not apply 
directly to such large fIles. Instead, it may be useful to run the following script periodically 
(perhaps once a week) to search for very large files and notify the system administrator: 

#! /bin/sh 

September 1988 Chapter 17 



IBM/4.3 System Administration' Guide 179 

BIG='expr 1000000 / 512' 
find / -size $BIG -type f -exec is -1 {}\i 1\ 

/usr/ucb/mail -s "large files" root 

In this script, a me is considered to be too big when it is larger than a million bytes (expressed in 
512-byte "blocks"). You may of course want to alter that constant to suit your local practices. 
Many applications such as image-processing and large data bases will routinely create and main­
tain mes much larger than that. 

The following crontab entry will activate the script once a week at 2:30 in the morning: 

30 2 * * 0 root /usr/local/find_big 

Chapter 17 September 1988 



180 1I1M/4.3 System Administration Guide 

This page intentionally left blank. 

September 1988 Chapter 17 



CHAPTER 18 

Implementing Security 

1. Introduction 

Ensuring the integrity of the files and data stored on the IBM/4.3 system (and hence the smooth 
operation of the system) is a task that involves much more than regular disk backups and file sys­
tem checking. A system administrator must maintain a high level of security in order to prevent 
malicious or careless users from damaging or destroying important system programs and files, or 
from looking at sensitive user-generated files. This chapter discusses some of the security issues 
that should be addressed by each IDM/4.3 system administrator. It pinpoints the main areas in 
which such systems may be insecure and suggests preventive action to avoid break-ins or sabo­
tage. 

Careless or naive users are generally not much of a security threat to a well-administered system, 
although in rare circumstances such a user can crash the system by running too many processes at 
once, thereby exhausting the system's swap space. Typically, the main threat to a system is gen­
erated not by careless users, but by malicious ones (hereafter referred to as the "bad guys") who 
generally know quite a bit about the operation of the system and how to circumvent many of its 
protection features. It is more difficult, indeed sometimes impossible, to prevent a bad guy from 
gaining access to your system, especially if you have publicly-available terminals or dial-in 
modems attached to the system. By following the security measures discussed in this chapter, 
however, you can protect the system's most obvious weak points and attempt to minimize such 
break-ins. 

How actively the system administrator must pursue security loopholes and monitor user activity 
depends on the value of the data stored on the system and the importance of having a working 
system at all times. The level of security that must be maintained, however, is always a trade-off 
between the cost of protection (such as additional hardware, inconvenience to users, or time 
invested by a system administrator) and the value of the data being protected. The measures dis­
cussed in this chapter are designed to ensure a reasonable level of security and should be followed 
by all administrators of the IBM/4.3 system; additional security measures may be necessary to 
accommodate your local needs. 

2. Overview of IBM/4.3 Security Mechanisms 

The IBM/4.3 system provides several built-in security mechanisms and it is consequently rela­
tively difficult to break into the system if it is properly administered. In previous chapters, you 
have become acquainted with a number of the system's features that help ensure the security of 
the system and its fues. These are: 

• Login name and password prompting. Before being granted access to the system, a person 
must supply a valid login name and password. This mechanism is designed to prevent 
unauthorized persons from using system resources. The best way to keep bad guys from 
damaging important system files or from inspecting the data on your system is to keep them 
from gaining access to the system, and the password mechanism tries to do precisely that. 

• File access permissions. In order to be able to read and/or modify a file, or move into a 
directory, a user must have the proper access permissions. This allows a user to prevent 
other users (or other users not in the same group) from looking at, copying, or otherwise 

IBM/4.3 System Administration Guide 181 



182 18M/4.3 System Administration Guide 

manipulating personal files. In addition, the superuser ean help assure the integrity of 
important system files by properly setting their protection bits. 

• Disk quotas. A system can be severely disabled if it runs out of free file space, as can hap­
pen quite easily if users are allowed to create arbitrarily large files or large numbers of files. 
If the disk quota subsystem is installed and running, however, users will be unable to exceed 
their hard quotas and consume excessive amounts of disk space, even though free space 
remains in the me system. 

• System accounts with non-superuser privileges. The IBM/4.3 system provides non-superuser 
accounts for use in performing several important administrative functions. Por example, the 
operator account has read permission on all file systems, so that a user logged into that 
account may perform ftle system backups. This allows backups to be performed at non­
peak hours by relatively inexperienced personnel without providing them full root 
privileges. 

• Process accounting. If prbcess accounting is enabled, then the system administrator will be 
able to determine who in the system is doing what. This allows the administrator to bal­
ance the use of machine resources among competing users and to help troubleshoot in the 
case of a lapse in security. 

• Setuid programs. The mechanism of setuid programs (where a program can run with 
the effective user identification number of the owner of the program) allows normal users to 
perform functions that would otherwise require the assistance of a system administrator, 
without according those users the privileges glven to system administrators. 

There are several additional features of the IBM/4.3 system that contribute to its secure operation 
but which have not been discussed previously: 

• Data encryption. If a user decides that the normal file access protections are insufficient to 
ensure that certain sensitive mes will not be read by anyone else (even by the superuser), the 
user can encrypt those files. Encryption changes the file into a form that is unreadable to 
anyone who cannot frrst decrypt the file by providing the encryption key. In effect, the data 
encryption mechanisms are an extension of the password security mechanisms to individual 
files. 

• Mail encryption. There is a mail encryption facility that allows users to encrypt messages 
sent through the electronic mail system. By using this facility, users can exchange poten­
tially sensitive information without fear that a clear text version of it may be intercepted by 
other users or by the superuser. 

• Superuser password protections. Several system commands are designed to restrict access to 
superuser privileges, even by users who for some reason may know the superuser password. 
For example, the su command allows only those users who are members of the group 
whee 1 to become root. Anyone else will be denied permission to assume the root 
uid, even though they may be able to supply the correct root password. As described 
below, it is also possible to prevent logins using the root login name over selected termi­
nal lines. In a situation where very tight security is required, root logins can be disabled 
on all terminals except the system console. As a result, superuser privileges can be denied to 
anyone unable to access the console, even though the superuser password has become 
compromised. 

• Password aging. It is a good idea for users to change their passwords often. Although in 
the IBM/4.3 system there is no automatic way to force a user to change the account pass­
word periodically, it is relatively simple to implement such a scheme using shell scripts. One 
possibility is presented below. 

Not surprisingly, many of the principal security loopholes of an IBM/4.3 system arise from 
misuse of these mechanisms, either because they were incorrectly implemented or because they 

Septembcr 1988 Chaptcr 18 



IBM/4.3 System Administration Guide 183 

were not implemented at all. The large part of this chapter discusses the correct implementation 
and maintenance of these security mechanisms, as well as some consequences that may arise from 
incorrect administration. 

3. Physical Sccurity 

The frrst level of security, and no doubt the most obvious, is to ensure that the physical hardware 
not be exposed to damage, unauthorized use, or theft. This may involve placing the equipment in 
a secure area that is accessible only by key or magnetic card; it may also involve physically secur­
ing the equipment with locks and cables. Every effort must be made to keep unauthorized per­
sons away from the equipment. This is particularly important with the system console, since 
there is usually a superuser login session on it. Even when there is no superuser login on the con­
sole, a bad guy can usually obtain root privileges simply by powering down a machlne and 
rebooting it in single-user mode, if the bad guy has physical access to the machine. If your 
workstation has a key to disable the keyboard, you should use it whenever you step away from 
the machine. . 

In addition to maintaining the physical security of the computing equipment, the administrator 
must maintain adequate physical security for backup tapes and disks. A bad guy who has access 
to current dump tapes can circumvent the password security and file access protections provided 
by the IBM/4.3 system simply by reading those tapes onto another system on which he has 
superuser privileges. Therefore, the system administrator should lock up all secondary media 
(streaming tapes and diskettes, for example) when they are not in usc. It is also highly recom­
mended that at least one complete backup copy of aU file systems be stored ofT-site, so that the 
data and files can be resurrected on another system in the event that fire, flood, or other natural 
disaster destroys the machine and physical surroundings. 

Finally, the system administrator should remind users at publicly-available terminals to log out 
whenever they leave the terminal unattended for any length of time. As you shall soon see, it is 
quite easy for a bad guy to install some short but effective scripts that can be used to undermine a 
system's security, if the bad guy can gain access to the system. It is imperative therefore that 
users either log out or disable use of the terminal if some errand takes them away from the termi­
nal. The lock command is provided with the IBM/4.3 system to allow users to lock the termi­
nal in order to be able to step away for a few minutes. Consult the manual page lock(l) for 
complete details on this program. 

4. Password Security 

A password is a user's main line of defense against unwanted persons reading, copying, or even 
removing files and directories owned by the user. It is essential that each user account have a 
password, and that the password be as secure as possible (generally, at least 6 to 8 characters long, 
with a mixture of letters, numbers, and special characters). Remember that the encrypted form of 
each user's password can be inspected by anyone on the system, since the file /etc/passwd is 
publicly-readable. While it is fairly difficult (though not impossible) to decrypt an encrypted pass­
word, it is relatively simple, using the programming tools of the IBM/4.3 system, to encrypt a 
string and then see whether the result matches any existing encrypted passwords. Short passwords 
can easily be broken by testing all possible combinations of letters and special characters. Even 
long passwords can sometimes be uncovered if the user selects a word that exists in a publicly 
accessible list such as an on-line dictionary or telephone directory. 

Password security is particularly important to the superuser account, and the system administrator 
must take special care to guard the superuser password against accidently disclosure. As discussed 
in earlier chapters, the system superuser has practically unlimited powers when logged in to the 
IDM/4.3 system. A superuser can remove files and directories, change permissions on programs, 
and render disks and other peripherals unusable. It is therefore particularly important to keep 
unauthorized persons from knowing the root password or from otherwise assuming superuser 

Chapter 18 Septcmber 1988 



184 rBM/4.3 System Administration Guide 

privileges. The superuscr password should never be givcn 'to another uscr just to allow that user 
to remove a lock file, or start a daemon, or any other administrative task, no mattcr how simple. 

4.1. User Pa..~word Security 

Most systeJll brcak-ins bcgin when a bad guy gains access to a system as a normal user, not as the 
superuser. It is important, therefore, that users protect their passwords by selecting suitably ran­
dom ones and by not revealing their passwords to other users. Unfortunately, it is all too simple 
for a user on a system to finesse a password out of unsuspecting users, espccially users at 
publicly-available terminals, by writing a script to trap passwords. :p.lmagine that a malicious 
user logs in at a public terminal, executes the script, and then leavcs the arca. Whcn another uscr 
attempts to log in, the script mails the user name and password to the bad guy, and then ends. 
Control returns to the shell, and the unsuspecting user might not notice anything unusual. 

There is no rcal defense against this type of trick except to encourage user to change passwords as 
often as possible so that the stolen password will soon become outdated. Users should also mon­
itor the time of last login (displayed by the system each time thc user logs in) to cnsure that 
somcone elsc has not guesscd or stolen their password. If such a security breach occurs, the user 
should notify the system administrator and change the account password immediately. 

4.2. Pa..~sword Aging 

In order to help prevent unauthorized break-ins, it is very useful to have uscrs periodically change 
their passwords. The IBM/4.3 systcm docs not incorporate password aging mechanisms found on 
some earlier UNIX-based systems, largely because those mechanisms were difficult to use and 
maintain. It is, however, relatively easy to institute password aging by having cron periodically 
run a script that checks users' current passwords against a saved version of previous passwords. 
The following script has been found to work quite well: 

#! /bin/sh 
# agepasswd: Check age of passwords 
SYSADM=root 
PWFILE=/etc/passwd 

cd /etc/passwd.age.data 
awk -F: ' {printf "%s %sO, $1, $2}' $PWFILE 

while read user password junk 
do 

if (test "$password" != "XXX" -a "$user" != "who") 
then 

if (test -f $user) 
then 

else 

fi 
else 

if (test "$password" != "'cat $user"") 
then 

echo "$password" > $user 
fi 

echo "$password" > $user 

rm -f $user 
fi 
if (test -f $user) 
then 

if (test ""cat $user'" = "") 

September 1988 Chapter 18 



IBM/4.3 Systcm Administration Guidc 

then 
echo " 

Your password is invalid. Please change it." 1\ 
/usr/ucb/mail -n $user 
echo " 

185 

USier $user has an invalid password." /usr/ucb/mail -n $SYSADM 
fi 

fi 
done 

For each line in the password file, this section of the script checks to see if there is a saved pass­
word ili the directory /etc/passwd. age. data. If there is and it differs from the current 
password, then the saved password is updated; if there is no saved password, then the current 
password is saved. Finally, if the password is null, a note is mailed to the user and to the system 
administrator, since such accoupts are most definitely security holes. 

userlist='ls' 
for user in $userlist 
do 

userline='grep "\"$user" $PWFILE' 
if (test "$userline" = "") 
then 

rm -f $user 
echo " 

User $user rm'd from passwd monitor." 
fi 

/usr/ucb/mail -n $SYSADM 

done 

This section of the script checks to see whether there are saved passwords for accounts that no 
longer exist. If so, the saved password is removed and the system administrator is notified. The 
actual password aging mechanism is contained in the remaining section of the script: 

userlist='ls' 
if (test "$userlist" != "n) 
then 

almost_old='find $userlist -mtime 50 -print' 
if (test "$almost_old" != '''') 
then 

for user in $almost_old 
do 

echo " 
Your password has not been changed in the last 50 days. 
You must change your password at least every 60 days. 
Please change it." 1\ 

/usr/ucb/mail -n $user 
done 

fi 
too_old='find $userlist -mtime +60 -print' 
if (test n$too_old" != "") 
then 

echo " 
These users have not changed passwords 
in the last 60 days: $too_old" 1\ 

/usr/ucb/mail -n $SYSADM 
for user in $too_old 

Chapter 18 September 1988 



186 IIJM/4.3 System Administration Guide 

do 
echo " 

Your password has not been changed in the last 60 days. 
Please change it." 1\ 

/usr/ucb/mail -n $user 
. done 

fi 
fi 

First, the remaining saved passwords are checked to sec which are older than 50 days. If there are 
any such passwords, the user and the system administrator are notified. Then, the script searches 
for passwords older than 60 days and notifies the concerned persons if any are found. 

To start up password aging, simply install the entire script as /etc/passwd. age, create the 
directory /etc/passwd. age. data, and then insert the following line into one of the 
cron configuration files, probably /usr/lib/erontab. local: 

35 23 * * * root /ete/agepasswd 

In the late hours of the night, the e ron daemon will run the aging script. 

4.3. Password File Security 

The file /ete/passwd maintains all account-related information, and it is essential for logging 
in. If it is destroyed or otherwise made unreadable by the system, no one (not even the 
superuser) will be allowed to log in to the system. The system administrator should therefore 
have a current copy of the password file available on a backup medium. It is also recommended 
that a copy of the password file be kept available on-line, so that the copy can be used to restore 
an original that has become corrupted. 

More importantly, the protection modes of the password file must be set correctly. Generally, the 
password file should not be writable by any user on the system except the superuser, though for 
various reasons it must be readable by everyone. Thus: 

# Is -1 /etc/passwd 
-rw-r--r-- 1 root 8438 Mar 26 01:56 /ete/passwd 

You should also ensure that the directory jete is not writable by anyone other than the 
superuser. Recall that anyone with write permission on a directory can rename files within the 
directory, or even remove them, regardle.rs of the permi.rsion .rellings on the files. 

To protect against security violations on the passwd file (and others), make sure that the directory 
permissions on jete are set up correctly. If you arc in doubt, run the following command line: 

# ehmod 755 jete 

This will ensure that the /ete/ directory has the correct access permissions. 

5. File Security 

It is essential that system files and directories be given the proper pennission, before the system is 
made available to normal users. The system administrator is responsible for making sure that all 
programs and files installed in publicly-readable directories (such as /bin and /usr/bin) 
have the appropriate permissions and ownerships, and you should not assume that the system as 
distributed conforms to the requirements of a secure system. For the most part, a program that 
will be executable by anyone on the system should be of ownership and group bin and should 
have protection mode 755. This establishes global read and execute permissions on the program, 
but restricts write access to the owner of the program. There are exceptions to this rule, especially 
when a program is designed to be run by a daemon process and not directly by a user. For 
example, some groups of commands such as the line printer spooling system and the uucp system 

September 1988 Chapter 18 



IBM/4.3 System Administration Guide 187 

require special ownership and execution modes. Consult the appropriate chapter in this guide for 
details on the required configuration. 

6. Security for Setuid Programs 

A bad guy is rarely content to break into a system just once. If a bad guy succeeds in becoming 
root and acquiring superuser privileges, he is likely to leave behind certain "burglar tools" that 
will make it easy to become root in the future. Of special concern are files that run setuid 
root. 
Recall that a program can be configured to run with the file and directory permissions of the 
owner of the file (not the person invoking the program) by setting the setuid bit of the file on. 
A program that runs setuid root, then, allows the user to acquire superuser permissions as 
long as the program is executing. Normally, this is only a problem for programs that allow the 
user to give commands interactively or to spawn subshells. 

Suppose that a bad guy succeeds in acquiring root privileges once. The bad guy knows that 
you will probably uncover that loophole soon enough, so his first course of action is to create 
another way to achieve superuser status. There are some simple ways to do this. Further, any 
bad guy inteIligent enough to acquire superuser privileges will most certainly make it difficult to 
detect his necessary scripts and files by giving them an innocuous-looking name. You can trip up 
such a bad guy by maintaining a list of the setuid programs on your system and by periodi­
cally comparing the list to the actual setuid programs on your system. The following simple 
script provides a framework that you can modify as necessary: 

#! /bin/sh 
# check_setuid: check setuid root files against a saved list 
SYSADM=root 
cd /etc 
find / -user root -perm -4000 -0 -perm -2000 -print> setuid.tmp 
if [ -f setuid.log J 
then 

else 

diff setuid.tmp setuid.log I \ 
/usr/ucb/mail -n -s "setuid root problems" $SYSADM 

fi 
mv setuid.tmp setuid.log 

rm -f setuid.tmp 

When installing this script (presumably to be run periodically by cron), make sure that the fIle 
/etc/setuid. log is not readable or writable by anyone other than root. 
It should be noted that the IBM/4.3 system automatically provides a very important setuid 
security mechanism not found in some earlier versions of the UNIX operating system. Previ­
ously, system administrators had to make sure that every program configured to run setuid 
root was not writable by anyone but root alone. The reason for this was that a file retained 
its protection modes even if another file was moved onto it (for example, using cp or mv). A 
publicly-writable setuid root program could therefore have had a shell program copied onto 
it, resulting in a setuid root interactive shell. In the IBM/4.3 system this is not possible, 
since writing to a fIle clears the setuid bit if the person doing the writing is not the superuser. 

Such safety mechanisms notwithstanding, it is difficult to overstate the extent to which setuid 
and setgid programs can pose a significant security risk on the IBM/4.3 system. You should 
make certain that existing setuid and setgid programs are correctly installed. Just as 
importantly, you should be extremely careful in admitting new setuid/setgid programs 
onto the systems you administer. It is almost always possible to achieve the desired effects 
without resorting to the setuid or setgid mechanisms. If you must however install some 
such program, try to install it with non-superuser ownership, thereby attempting to minimize the 
potential damage if a clever user should succeed in breaking the security of the program. 

Chapter 18 September 198~ 



188 IIJM/4.3 System Administration Guide 

7. Security for Device Special Filc..'i 

The directory /dev contains a number of special device files that are used by the operating sys­
tem to manage communications with terminals (usually having a device file with a name like 
/dev /ttyl), networks, and storage media such as floppy and hard disks. There are also spe­
cial files correspon4ing to the internal memory of t.he system itself (usually called /dev /mem 
and /dev /kmem). It is imperative that these special files have their permissions set correctly in 
order to prevent unauthorized access to their contents. 

The special files /dev /mem and /dev /kmem should be readable and writable only by the 
super-user (or by the operating system itself). They should be owned by root and belong to 
the group kmem. For example: 

# Is -lg /dev/{kmem,mem} 
crw-r----- 1 root kmem 
crw-r----- 1 root kmem 

3, 
3, 

1 Aug 12 12:10 /dev/kmem 
o Aug 12 12:11 /dev/mem 

The disks of the system must also be protected by correctly setting the protection mechanisms. 
All the special files in the /dev directory that correspond to disks should be owned by root, 
should be in the group operator, and should have permissions mode 600. For example, the 
device files for hard disk 0 should look something like this: 

brw-r----- 1 root operator 1, 0 Jan 
brw-r----- 1 root operator 1, 1 Jan 
brw-r----- 1 root operator 1, 2 Jan 
brw-r----- 1 root operator 1, 3 Jan 
brw-r----- 1 root operator 1, 4 Jan 
brw-r----- 1 root operator 1, 5 Jan 
brw-r----- 1 root operator 1, 6 Jan 
brw-r----- 1 root operator 1, 7 Jan 

9 22:18 /dev/hdOa 
9 22:18 /dev/hdOb 
9 22:18 /dev/hdOc 
9 22:18 /dev/hdOd 
9 22:18 /dev/hdOe 
9 22:18 /dev/hdOf 
9 22:18 /dev/hdOg 
9 22:18 /dev/hdOh 

If these device files were readable or writable by other users, the security of files and directories 
stored on them would be endangered, since a bad guy could easily write a simple program to 
extract or modify the data stored therein. 

8. File Encryption 

The files and data stored on a computer system arc very often of a relatively sensitive nature, such 
as company product plans or employee salaries. The security protection ofTered by the system of 
login names and passwords, together with the system of file and directory permissions, may not 
be adequate for such projects. Although these protections can ensure that most users will be 
denied access to certain files, the superuser can always look into any files that reside on the file 
system. In cases where even the superuser must be kept from looking at certain files because of 
their highly confidential nature, the user may encrypt, or encode, those files. This process 
translates the mes into a form that is meaningless to anyone who cannot decrypt the files. 

On the IBM/4.3 system, this encoding and decoding of files and data is accomplished by means of 
the crypt command. To use this command to encode a HIe, you must first select a password 
or key that crypt uses to transform the input file. As with login passwords, the crypt key 
should be at least six alphanumeric characters; if the password is shorter than that, the encryption 
is much easier to break. 

Suppose that the file salaries is to be encrypted, and t.hat the key you have chosen for the 
encryption is 'mykey6'. Then the command: 

% crypt mykey6 < salaries> sal.encr 

will encrypt the original me sal a r i e s (also called the "clear text") and place the results into 
the Hie sal. encr. To decode the encrypted version of the file, use the command: 

% crypt mykey6 < sal.encr 

September 1988 Chapter 18 



IBM/4.3 System Administration Guide 189 

The clear text will be send to the standard output, in this case the terminal screen. You may of 
course also redirect the standard output; for example: 

% crypt rnykey6 < sal.encr > sal. clear 

Mter this command is run, the two files salaries and sal. clear will be identical. 

You should be aw~e of two potential security loopholes in using the crypt command in this 
way. First, you will notice that the encryption key was specified on the command line, so it 
might be visible to anyone who happened to run t.he ps command at the right moment. To cir­
cumvent this problem, you may omit giving the encryption key on the command line. If you 
omit it, however, then crypt will prompt you for it interactively. For example: 

% crypt < salaries> sal.encr 
Enter key: 

As with normal user password checking, crypt will not echo the key on the terminal screen 
when you enter it. 

The second security loophole possible when using crypt concerns the original clear text mes on 
the system. The user must remember to remove these files once they have been encrypted, or else 
all the good security work will have been in vain. The best solution to this problem is never to 
leave the clear text files on the system. This may be accomplished by creating and editing sensi­
tive mes using the encryption option of the text editor vi. '1'0 edit (or create) an encrypted file, 
give the command: 

% vi -x sal.encr 

Here the - x option instructs the editor to read (or create) the encrypted file sal. enc r. You 
will be prompted for the encryption key before anything else happens. If you supply the correct 
key, then the me will be opened in its clear text form and you may edit it at will. When you save 
and quit the me, it will be saved in an encrypted form, using the same key you earlier specified. 
The line-oriented editors ed and ex also allow you to edit and save encrypted files. 

9. Mail Encryption 

If you want to send sensitive files or messages through the electronic mail system, there is a set of 
commands that attempt to implement a secure communications channel. In order to use this 
facility, the intended recipient of the mail must select a password or encryption key and use it to 
register with the encrypted mail system. That user must then supply the key when the mail is 
received. You will not, however, be prompted for the key when you send the mail. 

To illustrate, suppose that you and another user wish to exchange some private mail. First, that 
user must register with the secret mail system by issuing the command enro 11. The sequence 
will look like this: 

% enroll 
Gimme key: 
% 

As with passwords, the encryption key is not echoed on the terminal screen as it is typed. The 
user is now enrolled in the secret mail system and may be sent messages. This is done with the 
command xsend, which operates very much like rnai 1. For example: 

Chapter 18 September 1988 



190 IIJM/4.3 Systcn1 Administration Guide 

% xsend monroe 
I agree entirely with your assessment of smith. I have 
instructed the system manager to remove his account 
immediately. If the secur1ty leaks do not stop, then 
perhaps we should also notify Curmudgeon. 

Mark 

The intended recipient will be notified by normal electronic mail that some secret mail has 
arrived. To read the secret mail, that user would type: 

% xget 
Key: 

Note that the system has responded by requesting the secret key or password. If the same key is 
provided as the one given at enrollment time, the mail will be printed in an unencrypted fonn. 

Unlike normal electronic mail, not even the superuser can read mail sent with this secret mail sys­
tem, since both the message and the key are stored in a binary, encrypted form (in the directory 
/usr/spoo1/secretmai 1). 

10. "Trojan Horses" 

A "Trojan horse" is a command or a shell script that is masquerading as some familiar command. 
A bad guy can use Trojan horses to accomplish all sorts of mischief in the IBM/4.3 system, so 
you had better learn how to recognize and deal with them. Several scripts discussed earlier in this 
chapter are examples of Trojan horses. 

There are two lessons to learn from these examples. The first lesson concerns the writability of 
directories used to hold publicly-executable commands. If anyone on the system can insert files 
into program directories, then the possibility is always open that bad guys will insert various Tro­
jan horses there. So, the first line of defense is to make sure that program directories like 
/usr/bin, /bin, and others are not writable by nonnal users. There is also a corollary to 
this lesson: if you know (or suspect) that some unauthorized person has succeeded in acquiring 
superuser privileges, then you should scrutinize public program directories to make sure no Tro­
jan horses were planted there. Especially kcep an eye on the commands in /u s r /new (if it 
exists on your system), since it is quite common for commands located there to have the same 
name as commands located elsewhere. 

A second and more important lesson is this: you should make sure that search paths, especially 
for the superuser account, are set up so that public program directories are searched before any 
other directories. In particular, the current directory (indicated in the search path as C • ') should 
be placed after other important directories in the search path. You may accomplish this by 
including a line like the following one in your . c shrc file: 

set path = ( jete /usr/ueb /bin /usr/bin . /usr/new ) 

Here the current directory will always be searched only after the four main program directories are 
searched. 

To appreciate the full value of this last point, suppose that you, the system administrator, have 
the following search path: 

# echo $PATH 
.:/ete:/usr/ucb:/bin:/usr/bin:/usr/local:/usr/new 

Now imagine that a user complains to you that all the subdirectories under his home directory are 
suddenly missing. Most probably, you will move into that home directory and run the command 
1 s to see what's there. If you do so, however, you are likely to fall prey to a Trojan horse in the 
fonn of a bogus 1 s command in that user's home directory. Imagine that there is an executable 

September 1988 Chapter 18 



IBM/4.3 System Administration Guide 

script there containing the following commands: 

#! /bin/csh 
cp /bin/sh /tmp/RV33421 
chmod ugo+s /tmp/RV33421 
/bin/ls ~argv[*] 

191 

As you can see, you have just helped the bad guy in his quest to assume superuser powers by 
making an innocuous-looking copy of an interactive shell program and then making it setuid 
root. Only afterwards was the real 1 s run. If you don't notice the file 1 s in the current direc­
tory, you would be none the wiser that you have just created a tremendous breach of security 
(namely the creation of a publicly-executable setuid root shell)! To repeat, make certain 
that the current directory is listed last in your search path, or at least after the main directories 
holding executable programs. To be extra safe, remove the' . ' entry and all world-writable direc­
tories from the superuser search path. 

11. Modem Security 

Having a modem attached to your system that is configured to accept logins is always a potential 
security hazard. This is largely (though not exclusively) because you have virtually no control 
over who may call your system and attempt to log in. The first level of protection against unau­
thorized logins over the modem is to try to keep the phone number of the system as private as 
possible. If you are not operating a public time-sharing system, do not broadcast or publish 
modem numbers. If necessary, you may want to change modem phone numbers periodically. 
Remember that obscurity entails a certain amount of security. 

The second level of defense against modem break-in is to make sure that every account on the 
system has a password. If a dial-in bad guy can find a user name for which there is no password, 
he will be able to log on as that user, and he may be able to attain superuser status by one of the , 
means discussed above. You can detect accounts without passwords by running the following 
command: 

# grep '[A:]*::' /etc/passwd 

If there is any output from this command, it should be just for accounts running under restricted 
shells, like a who account that runs /bin/who as its login shell and then exits. If there are 
any other accounts without passwords, you should either deactivate the accounts or add pass­
words to them. Note that the password aging script given earlier in this chapter will automatically 
perform this check each time it is run. Incidentally, the who account itself may constitute some­
what of a security risk, since someone who discovers your modem number will be able to glean 
useful information about valid user names on your system, thereby making it slightly easier to 
break into the system. If you are highly concerned about modem security, remove the who 
account. 

You can prevent someone from logging in as root across a dial-up line by suitably modifying 
the file /etc/ttys, as described in an earlier chapter. Recall that if the fourth field of a line in 
that me contains the annotation 'secure', then the superuser can log in on the corresponding 
terminal line. If there is no such annotation for any dial-up lines, then no one will be able to log 
in as root on them. Determine whether or not you need to have retnote superuser access to 
your machine; if you do not, then remove the argument' secure' frotn all dial-up line entries. 

The final defense against modem break -in is to make sure that all users log out when they are 
done working over the modem. It is generally not sufficient for a user simply to tum off the 
modem, for this may leave a shell on the host machine still talking to the modem. The next per­
son to dial up the modem will not have to log in, and will have access to all that user's fues and 
directories. 

Chapter 18 September 1988 



192 IBM/4.3 System Administration Guide 

12. I)rinter Security 

To ensure adequate security for the line printer spooling system, it is essential that the owner and 
group of the various programs that comprise the system be set correctly and that the spooling 
areas be given the correct permissions. This prevents users from removing or modifying spooled 
output that does not belong to them, or from circumventing the printer accounting mechanisms. 
Unless your site has made significant modifications to the line printer system, the following steps 
should be taken: 

• Make sure that the spooling areas are writable only by the user daemon and the group 
daemon. 

• Make sure that the user program lpr runs setuid root and setgid daemon. 
Also make sure that the programs that manipulate the spooling queues (lpd, lpq, and 
lprm), run setuid root and setgid daemon. 

• Make sure that the file /etc/hosts. lpd is not writable by normal system users. 

• Make sure that the printer data base files /etc/printcap cannot be written by ordi­
nary users. Typically this file is owned by root, belongs to group staff, and has per­
missions mode 644. 

• Make sure that the printer accounting files (as specified in the printcap entry for each 
printer) cannot be read or written by ordinary users. 

As you have seen, it can be dangerous having setuid root programs doing so much work on 
your system. Although the various programs in the line printer spooling system have been care­
fully written in an attempt to avoid the most common setuid security problems, you might 
think it preferable to remove the setuid root configuration altogether. In a networked 
environment where remote spooling is allowed, however, that is simply not possible. But if the 
IBM/4.3 system you are administering is not connected to a local area network, then you can 
relax the owner and group membership of the programs in the spooling system. Previous ver­
sions of the line printer spooling system had lpd running setuid daemon and setgid 
spooling, while lpq and lprm ran setgid spooling. 

Finally, you must also ensure the physical security of the printer and its output. It does very little 
good to make certain that the line printer system is secure from tampering if a passerby can pick 
up whatever output happens to be near the printer. And it docs a user little good to set up res­
trictive access permissions on ftles and directories if the physical hardcopy can be inspected by 
untrusted persons. Exactly how you maintain the security of the printer and its output will 
depend heavily on the use of the printer and the volume of output. Determine what measures are 
appropriate for your installation and then implement them. 

13. Uucp Security 

Software packages like uucp that altow file transfer to and from your system and unattended com­
mand execution on your system can pose significant security risks if the software is improperly 
installed or configured. Unless you actively restrict the uucp system along the lines suggested 
below, then any outside user who can log into your system will be able to execute any commands 
and copy any files available to the uucp login. Before activating the uucp system for inter­
machine communication, you should ensure that file ownerships are set correctly, that uucp­
related login accounts are set up securely, and that certain configuration files have the correct 
access permissions. 

13.1. File Security 

Various control files used by the uucp system contain highly sensitive information (such as the 
names of systems you communicate with, and login account names and passwords) that should 
be kept secret from normal IBM/4.3 system users. In particular, the files L. sys, USERFILE, 

September 1988 Chapter 18 



IBM/4,3 System Administration Guide 193 

and SQF I LE should be owned by the user uuep and should be readable and writable only by 
that user. 

13.2. Password Security 

The uucp system requires an account for the uucp system administrator. Usually the account 
name is 'uuep'. As indicated above, this account owns most of the files and programs that 
make up the uucp package. It is recommended that you create a separate login account for each 
remote system that is to communicate with your local system using the uucp package. For exam­
ple, if you maintain uucp links to three systems named 'tic', 'tae', and 'toe', then the fol­
lowing lines (or suitable variants) should be added to the password ftle, /ete/passwd: 

uutic::6001:1:uucp from tic:/usr/spool/uucppublic:/usr/lib/uucp/uucico 
uutac::6001:2:uucp from tac:/usr/spool/uucppublic:/usr/lib/uucp/uucico 
uutoe::6001:3:uucp from toe:/usr/spool/uucppublic:/usr/lib/uucp/uucico 

You will then need to initialize .passwords for these three accounts and convey that information to 
the uucp administrator at each remote site. 

13.3. Command Execution Security 

The file /usr/lib/uuep/L. emds contains a list of commands that a remote uucp user 
may execute on your system via the uux command. \Vhen uux receives a request to launch 
uuxqt to process some execute file, it first checks to see that the command specified in the exe­
cute file is contained in the file L. emds. By adding commands to this me or removing them 
from it, you can expand or contract the functionality that your machine agrees to provide to your 
uucp neighbors. A typical L. emds file might look like this: 

rmail 
ruusend 
Ipr 
who 

This would allow a uucp account to run the commands rmai 1 and ruusend (which for­
ward mail to other systems), Ipr (to send files to a local line printer), and who (to see who is 
currently on the system). If you are concerned to limit access to your system (and it is not a net­
work printer server), then your L. emds file should look like this: 

rmail 
ruusend 

The who command was disallowed since it is likely to provide potentially useful infonnation to a 
bad guy attempting to log in to your system under some account other than uucp. You can 
disallow a remote system from running any commands Oil your system by creating the file 
L. emds zero-length. 

13.4. Conversation Sequencing 

The uucp system can be configured to keep a log of conversations with each remote system, 
including a count of the number of conversations between the local system and the remote sys­
tem. By comparing these numbers, the two systems can effectively verify that they have been 
talking with each other. If the records do not agree, then one system may be trying to imper­
sonate another, in which case the login attempt should be disallowed. 

The record of conversations is maintained in the file SQF I LE in the uucp administrative direc­
tory, /usr/lib/uuep. This file contains a line for each system that is to have conversation 
sequencing checked. Initially, just the name of the remote system is put into this file. Then, 
when a successful conversation takes place, each system will update its sequence ftle to reflect the 
activity. 

Chapter 18 September 1988 



194 IBM/4.3 System Administration Guide 

By default, the conversation sequencing is disabled, since in practice it is rarely used. In order to 
configure the software to perform the sequence checking, you must recompile the software with 
the GNXSEQ preprocessor option enabled. Of course, sequencing must be in effect on both sides 
of the uucp conversation. 

13.5. Summary 

Maintaining uucp security is not overly difficult once the system has been securely installed and 
configured. As you have just seen, it is possible to institute a call sequencing procedure that pro­
vides very good assurance that a remote system really is the system that it claims to be when ini­
tiating a uucp conversation. Nonetheless, it is simply undeniable the uucp system provides yet 
another avenue for bad guys to gain access to your system. In view of this fact, many sites prefer 
to isolate their uucp connection to the outside world from other machines on the local network. 
Even if a bad guy succeeds in breaching the normal security mechanisms of the uucp node, he 
will be unable to access the resources of the machines on the local area network. 

14. Network Security 

If your IBM/4.3 system is connected to a local area network, you will need to consider several 
issues related to maintaining a secure operating environment across the entire network. The net­
working capabilities provided by the IBM/4.3 system increase the computing power and flexibility 
available to both individual users and the system administrator; at the same time, they create addi­
tional security holes that must be closed by careful system administration. 

The first level of network security is to ensure that configuration files on each host are correctly 
and securely set up. For example, each network host that permits remote login and remote com­
mand execution (using the rlogin and rsh commands from remote hosts) automatically 
employs an authentication scheme involving the file /ete/hosts. equi v. If a user on a 
retnote machine, say grunni on, requests a network service from another machine, say tuna, 
then the server on tuna first checks to see whether the host grunni on is listed in the me 
/ete/hosts. equi v. If so, and if the user has an account on tuna, then the service will 
be performed as requested. The /ete/hosts. equi V file thus lists hosts that are treated as 
"equivalent" to the local host, at least in terms of aIJowing logins, command execution, and other 
network services. 

There are two main exceptions to the host authentication scheme using 
/ete/hosts. equi v. First, if the user's home directory on tuna contains a • rhosts 
me listing the user's account on grunni on, then the scrvice will be performed whether or not 
grunnion is listed in the /ete/hosts. equi V file on tuna. So users can obtain net­
work services even from machines which are not. considered equivalent in the overall network. 
Second, if the user requesting a service from a remote host is root, then only the file 
/ . rho sts on tuna is consulted to sec if supemser privileges should be accorded to the user 
root on grunni on. This al10ws the administrator on tuna to deny superuser access to 
anyone but a local root, if a very restricted network is desirable. It also allows the administra­
tor to designate the root login on some other machine as equivalent to the root login on 
tuna, so that administrative functions can be performed across the network. Obviously, the file 
/ . rhosts is an extremely important file that must be protected from writing by normal users. 
It is probably also a good idea to prevent other users from reading that file. 

The me /ete/hosts. Ipd is used in much the same way as /ete/hosts. equi V, to 
restrict or allow access to a local printer by other network hosts. In addition, the r sprinter 
capability can be specified in order to disallow remote printing except to users who have accounts 
on the print server. For complete details on enforcing network security within the line printer 
spooling system, refer to Chapter 9. 

There is one further configuration file relevant to the maintenance of network security, 
/ete/ftpusers. Recall that the ftp server running on a particular machine allows 

September 1988 Chapter 18 



IUM/4.3 System Administration Guide 195 

anonymous access to files and directories owned by a user named 'ftp'. The ftp server allows 
practically anyone to look at and copy files located in such directories. In particular, the ftp 
server does not consult the file /ete/hosts. equi V to determine if it should service an 
ftp request. Instead, the ftp server consults the file /ete/ftpusers and di.rallows ftp 
services to any users whose names appear therein. A typical ftpusers file contains at least 
the two names 'uuep' and 'root' You may wish to include additional names in this file if 
abuses by particular users warrant removing their ftp capability. 

The most important concern in maintaining a secure network is to ensure the security of each 
individual workstation on the network. Remember that users may be prompted for login names 
and passwords when they attempt to establish a connection with a remote machine and that that 
information can be intercepted by any machine on the network. More generally, any file copied 
over the network essentially becomes public information if it is not first encrypted, since it is easy 
to write programs to monitor network traffic. As a result, if there is even one machine attached 
to your local area network th~t maintains user accounts for persons whose commitment to the 
security of the entire network is in doubt, or which is not itself immune from intruders, it may be 
impossible to achieve an acceptable level of data security in the networked environment. Even 
the mechanism of listing "trusted hosts" in the file /ete/hosts. equi V can be circum­
vented in a very straightforward manner. A bad guy who gains control over one machine in a 
local area network can easily have that machine impersonate any other host on the network. 

For better or worse, a network is only as secure as the least secure machine on the network. As 
the system administrator concerned with maintaining a secure network, you must therefore first 
make each workstation as secure as possible against outside intruders and against inside bad guys. 
If a particular machine is consistently lax in security-related areas and you are unable to educate 
the user population accordingly, your only recourse may be to remove that machine from the net­
work. 

15. Miscellaneous Security Tips 

• Make sure that the eron configuration file /usr/lib/crontab (and 
/usr/lib/erontab. local, if it exists) is owned by root and is not writable by 
anyone other than root. As distributed, this file is not writable even by root. To make 
changes to the e rontab file, the superuscr must edit it and then save the changes with the 
: w! command (assuming the editor is vi). Also, since there is really little difference 
between commands placed directly into the erontab file and any scripts that are called by 
it, make sure that users cannot alter those scripts (and possibly make one into a Trojan 
horse). 

• Make sure that you completely understand the format of the various configuration files used 
by the system and its utilities before you undertake to modify one of them. You can create 
tremendous security loopholes if you improperly modify such files. Where possible, use 
system-provided utilities that arc designed to assist you in modifying configuration fUes. 
(For example, the utility program vipw performs several consistency checks on the file 
/ete/passwd when you try to update it.) Similarly, if local scripts are available for such 
mundane tasks as adding new users to the system, use them. 

• Install all setuid and setgid programs so that they cannot be either written or read 
by anyone on the system (i.e., establish the permissions so that they are - - s - - X - - X or 
--x--s--x). By preventing read access to such programs, you will also prevent a bad 
guy from gaining information that may potentially be useful to him in breaking the security 
of the program. 

• Periodically scrutinize the contents of /ete/re and /ete/re. local to ensure that 
the multi-user initialization commands they contain are indeed current for your installation. 
A bad guy who succeeds in breaking root may plant commands in them that compromise 
system security. 

Chapter 18 September 1988 



196 IUM/4.3 System Administration Guide 

• Remove the guest login account from your system, unless it is absolutely necessary. At 
the very least, make sure that it has a password (and that the password is different from 
'guest'). 

• It is a good idea to have a colleague (ideally, an experienced system administrator) attempt 
to break into .your system at irregular intervals. Exactly how you arrange this depends on 
which aspects of system security you want to test. 

16. Conclusion 

The task of ensuring the secure operation of the IBM/4.3 system is one that demands your con­
tinual attention. Unlike the installation and configuration of a piece of hardware or software, 
security is never a one-shot deal. You must constantly be on guard against system intruders and 
against system users who want to win at the ultimate computer "game", achieving superuser 
status. The price you and your system pay for losing at that game can be a very dear one. In a 
reasonably dire case, it may involve doing a full backup of all file systems, a task which may 
inconvenience you and your users for several hours at least. If, however, the physical security of 
your system was breached and your backup media have been lost or stolen, the price may be even 
greater, since you risk losing literally years .of work hecause of a moment's indiscretion. 

Even in an environment that is devoid of such "had guys", you must make sure that the user 
community fully understands the protection mechanisms that arc built into the IBM/4.3 system. 
The size and complexity of the IBM/4.3 system virtually guarantee that mere common sense is 
never sufficient to maintain a secure and functional computer system. User education, especially 
concerning file access permissions and password security, is therefore a fundamental part of the 
system administrator's task. The security of the shared computing environment provided by the 
IBM/4.3 system is everybody's concern, not just the system administrator's. 

The final word on system security (at least in this guide) is simply that security is worth whatever 
additional time and effort it takes to get things right, whether that means. periodically traversing 
the file system to ensure that files and programs have the correct permissions, or scrutinizing some 
source code to make certain that a new setuid program docs not contain any inadvertent secu­
rity loopholes. Every time that you add some new piece of software or hardware to your system, 
you should carefully consider the impact that the new item wi11have on your existing security 
measures. Above all, if a system administrator's manual accompanies the new product, take the 
time to read it thoroughly, looking especially for any discussions of system security. 

September 1988 Chapter 18 



CHAPTER 19' 

Understanding the Andrew File System and the Andrew Toolkit 

1. IntrOduction 

This chapter describes the Andrew File Systcm and the Andrew Toolkit applications. The 
Andrew File System is a distributed file system for a large network of personal workstations; it 
operates under IBM/4.3 and runs on the IBM RT PC and the IBM 6152 Academic System, and 
is described in the first section of this chapter. The Andrew Toolkit Applications is a set of four 
application programs that can be used with or without thc Andrew File System. The second 
major section of this chapter describes these programs. 

2. The Andrew File System 

The diagram below is an overview of the Andrew File System; definitions of the tenns in the 
diagram follow it. 

File Managers 
(servers) 

r----------------------------, 
Control Server 

[] o o 

r------, r-- -------- -------- --, 
I 

! i~ e ~ 
111111111 
111111111 

-

Status Manager 
(console) 

111111111 
111111111 

111111111 
111111111 

111111111 
111111111 

I 
I - '-- ---L ______________________ _ 

Cache Managers 
(clients) 

IBM/4.3 System Administration Guide 197 



198 

Managers 

IUM/4.3 System Administration Guide 

Figure t 9- t: Overview of the Andrew File System Architecture 

Managers are programs that are responsible for controlling different aspects of 
the Andrew File System. 

The File Manager runs on the servers and presents files to the worksta­
tions. 

The Cache Managers reside on workstations and translate workstation 
requests into calls to the File Manager to present the requested files. 

The Status Manager provides a status display of all of the file managers. 

Servers Servers are machines in which files arc stored. The control server is a central 
point where. change is introduced into the Andrew File System. In general, 
servers are separately administered and arc separate from workstations. 

Console The console is a machine used to run the file manager monitor program. The 
console will indicate if a file manager is down and is also useful for determining 
how well a file manager is running when it is up. The console can be any client 
workstation. The console docs not have to be a dedicated machine; an 
operator's workstation is often used as the console. Any machine that is run­
ning a copy of vopcon is a console machine. From a console machine you 
can monitor the file managers. 

Control server The control server administers the other servers centrally; a process runs on the 
control server that is used by the other servers to keep files on their local file 
systems up to date. 

To users of the Andrew File System the main unit of data is the file, which is the unit passed 
between the Andrew File Manager and the Andrew Cache Manager. To the administrator, how­
ever, the important unit of data is the volume. A volume is a hierarchical group of related files, 
for example, the files belonging to one user. The volume is the basic organizing mechanism for 
data stored within the file system; they are the units for addressing, storing, and accessing data, for 
moving data from server to server, the unit to which quotas are applied, and the unit of data that 
is restored if a user loses a file. 

Much of the administrator's work deals with maintaining volumes, including the following tasks, 
which are discussed in this section: 

• Creating and naming volumes for new users 

• Moving volumes between servers to handle space or load balancing considerations 

• Replicating volumes 

• Deleting volumes 

• Creating backup volumes 

For information on operational tasks,such as adding new users, deleting users, and adding a new 
server, see the section "Operation Description" in Part I of The IBM Andrew File System. You 
will also find information on monitoring the Andrew File System under the section "How to See 
What Is Happening" in the same article. 

2.1. Creating Volumes 

A volume is typically a group of related files, such as all the files belonging to one user. Before 
creating volumes, you will need to decide on the number of volumes you want, and their sizes 
and names. Once you've set things up initially, you will create a new volume when you add a 
new user. You should keep the following considerations in mind when deciding how to divide 
the file system tree into volumes: 

September 1988 Chapter 19 



IBM/4.3 System Administration Guide 199 

• Volumes should be small enough that moving volumes between partitions is a reasonable 
approach to balancing server disk utilization and load; for example, you would not want to 
make each volume just larger than 50% of t.he available space in a typical partition. Doing 
so would waste almost half the available space. Making volumes fairly small relative to par­
tition size makes it easier to move volumes around to gain an most efficient use of space. 

• The size of the volume must not exceed the capahility of the backup media. The Andrew 
File System backup system expects that the entire contents of a volume can be backed up 
on a single unit of external storage (e.g., tape). The backup system allows more than one 
volume to be backed up to the same tape. Using smaller volumes improves tape utilization. 

When deciding on volume names, you should keep the following in tnind: 

• Choose tneaningful names, i.e., names that will tell you something about the volume's con­
tents and owner. During system administration tasks, you will probably encounter volume 
names out of context; using names that give information about the contents of the volume 
can help you in these tasks. 

• Using prefixes can help in assigning meaningful names. For example, you might choose the 
prefix user for all user volumes; names of all user volumes would begin with this prefix, 
followed by a period and the user's login ID. Using a scheme like this is also useful during 
backup because volumes on tapes can be grouped according to volume name prefix. A 
volume name can be more than 32 characters long. 

• You'll find it advantageous to develop a naming scheme (such as using prefixes) that is rea­
sonably consistent, particularly when your system grows. 

• Quota enforcement is done on a volume basis; accounting can be as well. 

• Once you decide on a design, you can move volumes, but you cannot use the rename 
operation across volume boundaries. 

• Manipulating the tree structure on a basis other than a whole volume (you can move the 
mount point) or less than a volume (you can move directories or files within a volume) is 
difficult. Moving a subtree of a volume to another volume requires moving every byte of 
data in the subtree. 

Once you've determined which volumes you want to create, their sizes, and names, you use 
createvol(8V) to create volumes at the appropriate server. You don't need to worry too 
much about where you create a vdlume; you can create volumes on a single partition within the 
system, then move volumes to another partition when necessary. When a volume is first created 
it uses little of the system's resources; it may also take some time to be visible at workstations. 

Createvol has the following format and arguments: 

createvol volname server partition 

The arguments specify the volume name, the server where the volume wilJ be created, and the 
server where the volume will be created, respectively. The partition name shold always start with 
the character string /vicep. 

Once you've created a volume, you can, if you wish, use the vol-lookup(8V) command 
(normally used only for debugging) to make sure the volume was actually created. To use it in 
this way, type vol-lookup followed by the name you specified for the volume 

2.2. Moving Volumes 

If space within a partition is at a premium, or if a file manager becomes overloaded, you may 
need to move one or more volumes to free up space. To move a volume from one partition to 
another, on the same server or on another server in the system, you use the movevol(8V) com­
mand. The volume being moved can be used continuously while it's being moved; users may get 
a "volume busy" message from the cache manager, but the wait should be short, from a few 

Chapter 19 September 1988 



200 IIlM/4.3 Systcm Administration Guide 

seconds to a minute or so. The actual move takes much longer; the amount of time required 
depends on the size of the volume, how busy the server is, and whether the move has to wait for 
any other volume operations involving the same servers. 

Movevo 1 has the following format and arguments: 

movevo 1 vo/name server partition 

For vo/name you should supply the name of the volume you want moved; for server you should 
supply the name of the server or partition to which you want the volume moved. Movevo 1 
invokes the vol-dump and vol-restore commands; for more information, see the man 
pages for them. 

2.3. Replicating Volumes 

The Andrew File System can replicate volumes for read-only access so that more than one server 
can access the same volume. This can be especially useful in large systems where many users 
would be inconvenienced if a server crashed, and where the demand for certain files is sufficiently 
high to warrant distributing the load over multiple servers. Replicating volumes also helps to 
avoid a high number of "cal1backs." A callback is a promise by the file manager to notify the 
workstation if a particular file changes; the file manager must keep the promise for every worksta­
tion that has recently used a file. Because read-only volumes don't change, callbacks are unneces­
sary. Workstations accessing replicated volumes witt not see changes immediately because of the 
updating that must take place in the system. 

To create a read-only volume, you use vol-dump(8V), vol-restore(8V), and vol­
c lone(8V) to clone a volume and propagate the changes to other servers. This is called releas­
ing a volume. You will find examples of how it is done in vol-restore(8V). The read-only 
volume that results from this process is an exact copy of the original read-write volume. See the 
man pages for these programs for more information. 

2.4. Deleting Volumes. 

When a volume is no longer needed, you use the purgevol(8V) command. you must use the 
f s( I V) command to do this. Before removing a particular volume you should be sure that there 
is a dump of the most recent copy of the volume in ofT-line storage. Also, once you've deleted a 
volume, you will need to remove related backup volumes as welt. 

It is also possible to delete a group of volumes from a file system, although you should do so 
with great care. For information, see newfs(8). 
To use the purgevo 1 command, you simply type purgevo 1 followed by the name of the 
volume you want deleted. 

3. The Andrcw Toolkit 

The Andrew Toolkit is a set of tools you can usc for tasks such as writing and editing documents, 
sending and receiving mail, writing programs, and othcrs. On a workstation you can use more 
than one applications at a time because each appears in its own window on the screen. The 
applications ineluded in the toolkit are: 

ez 

console 
tx 
hz 

September 1988 

An editor that provides full edit.ing and formatting capabilities, and that is 
integrated with previewing and printing functions. 

A program that monitors the syst.em and displays system functions. 

A typescript program that provides user access to the full functions of IBM/4.3. 

A help program that provides detailed reference information in a window on the 
screen. 

Chapter 19 



IBM/4.3 System Administration Guide 201 

This sections explains two tasks involved in setting up a workstation for the Andrew Toolkit: 
configuring the me system, and' setting up the user's home environment. For information on 
using the applications, see liThe IBM Andrew Toolkit Applications User's Guide." 

3.1. Configuring the File System 

How you configure' the me system for the Andrew Toolkit depends on whether you are running 
the toolkit applications in a standalone mode or in conjunction with the Andrew Pile System. 

3.1.1. For a Standalone System 

To configure the file system for a standalone system, you need to install the Andrew Toolkit from 
tape as described in' "Installing and Operating I IlM/4.3." The following directories are important 
to this process: ' 

/usr/andrew . Contains the Andrew Toolkit subtree 
/usr/andrew/bin 'Contains the Toolkit executable code 
/usr/bin/XII Contains required X Window System components (Xibm) 
/usr/lib/XII/fonts Contains the X Window System fonts 
/usr/lib/font Contains printer-specific fonts 

Additionally, the following directories and files arc important for those wishing to use the Andrew 
Programmer's Toolkit (see Programmer's Guide To The Andrew Toolkit): 

/usr/include/XII 
/usr/lib/libXII.a 
/usr/lib/libXtI1.a 
/usr/lib/liboldX.a 

Contains the X Window System include mes 
Contains the X Window System Xlib library 
Contains the X Window System Toolkit library 
Contains the old Xlib library for back-compatibility 

3.1.2. For a System Connected to the Andrew File System 

For a system that is connected to the Andrew File System, you will need to create symbolic links 
to the appropriate Andrew File System directories and files. You do not need to do this if those 
directories or files are already local on the system as described above. The following commands 
are suggested. (Note that these assume a particular Andrew File System structure and should not 
be executed verbatim.) 

In -~ /usr/andrew 
In -$ /usr/bin/Xll 
In -s /usr/lib/Xll/fonts 
In -s /usr/lib/font 
In -s /usr/incIude/Xl1 
In -s /usr/lib/libXll. a 
In -s /usr/Iib/IibXtll. a 
In -s /usr/Iib/liboldX. a 

/vice/usr/andrew 
/vice/usr/bin/Xll 
/vice/usr/Iib/Xll/fonts 
/vice/usr/lib/font 
/vice/usr/inciude/Xll 
/vice/usr/Iib/IibXll.a 
/vice/usr/Iib/IibXtll.a 
/vice/usr/Iib/liboldX.a 

Again, the actual location of the Andrew File System directories and files (e.g., 
/vice/usr/andrew) may vary from site to site and the preceding commands should be 
used only as examples. 

3.2. Setting Up a User's Home Environment 

To set up a user's home environment, you need to do the following: 

(1) Add the following lines to the. login file: 

setenv DISPLAY :0 

Chapter 19 September 1988 



202 IIJM/4.3 System Administration Guide 

setenv PRINTER <printername> 
setenv CLASSPATH /usr/andrew/dlib/be2 
setenv ANDREWDIR /usr/andrew 
setenv BE2WM xlI 

(2) Make sure the path statement in the . c shrc file includes the following: 

/usr/andrew 
/usr/andrew/bin 
/usr/bin/XII 

(3) Make sure that an Andrew preferences file exists in the user's home directory. The ftle 
/usr/guest/guest/andrew/preferences. aug may be used as a starting 
point and will provide the functions described in uThe IBM Andrew Toolkit Applications 
User's Guide." You can copy this file into the user's home directory then either rename it 
to preferences (from preferences. aug), or else append it to an existing 
preferences file. 

(4) In the same manner, make sure an . Xdefaul ts file exists in the home directory; you 
can use /usr/guest/guest/andrew/. Xdefaul ts. aug as a starting point. 

3.3. Invoking the Andrew Toolkit 

Executing the command Andrew invokes the Andrew environment as described in "The IBM 
Andrew Toolkit Applications User's Guide." 

September 1988 Chapter 19 



IBM/4.3 Systcm Administration Guidc 203 

Glossary 

If you are a new system administrator, or new to the IBM/4.3 system, some of the terminology 
employed in this guide may be unfamiliar to you. The following glossary is provided to give 
short but helpful characterizations of the terms. For a fuller discussion of any item, you should 
refer to the Index to see where it is discussed in more detail in this guide. 

System V 
Syst.em V is a version of the UNIX operating system. 

account 
A collection of files, directories, programs, and other objects that together allow a user to log in to 
t.he system and execute commands. The primnry repository of account information is the file 
/etc/passwd. 

accounting 
Accounting is the process of keeping track of user login sessions, CPU usage, command usage, disk 
usage, etc., so that users may be charged for the resources they utilize or so that the system adminis­
trator can intettigently balance the resource utilizat.ion. 

Andrew 
The Andrew system is a set. of software tools that allow the user to manage work in a distributed, 
mUlti-processing, windowing environment. The Andrew system consists of two major parts, the 
Andrew Toolkit Applications and the Andrew file System. 

Andrew File System 
The Andrew File System is a distributed file system for a large network of personal workstations. 

Andrew Toolkit Applications 

baud 

block 

boot 

byte 

The Andrew Toolkit is a set of user applications that operate under the Andrew System. The four 
major applications are ez, console, typescript, and help. 

The baud rate of a device is a measure of how much data the device can process in a given amount 
of time. Technically, the baud rate of a device is the number of signal changes per second that the 
device is capable of decoding. Generally this means t.hat a 2400-baud modem can send and receive 
2400 biL-; per second. See also modem and terminal. 

A block is a division of a file system, at least 4096 hytes in size (under the new "fast file system"). 
The IBM/4.3 system allows different file syst.ems to have diOcrent si:;~ed blocks. 

To boot a system is to cause it to begin operation from a powered-down state. 

A byte is a sequence of eight adjacent binary digits that are operated upon as a unit. A byte is usu .. 
ally large enough to hold a single character. 

console 
A console is a terminal dedicated to system ndministration use. When the IBMj4.3 system begins 
operation, it writes some messages on the syst.em console and takes input from it. In single-user 
mode, the console is the only operative terminal and is automatically given superuser privileges. In 
multi-user mode, the console is treated like any other terminal. 

September 1988 



204 IIJM/4.3 System Administration Guide 

core dump 

crash 

cron 

A core dump is a file named 'core' that i~ cr<~ated hy the operating system when a program ter­
minates abnormally. You can examine t.he core dump wit.h a debugging utility (such as adb or 
sdb) to try to determine what caused the abnormal termination of the program. 

A system crashes when it halts operation without having been told to do so. A variety of 
conditions,both software and hardware-related, can cause a system to crash. 

Cron executes commands at specified dates and times according to instructions in the file 
/usr J1ib/crontab. 

cylinder group 
A cylinder group is a subdivision of a file system (and hence of a disk partition) consisting of one or 
more consecutive cylinders on a disk. A cylinder group contains a copy of the superblock, some i­
nodes, a bitmap describing the free data blocks in the group, and some data blocks. 

daemon 
A daemon is a process that is not controlled by a terminal. Once launched, it sile; quietly waiting for 
requests. When a request arrives, the daemon services it and then goes to sleep to await further 
requests. Ipd and syslogd are two daemons that are usually running on a IBM/4.3 system. 

datagram 
A datagram is a collection of data that forms all or part of a message sent across a network. 

directory 
A directory is a special type of file that contains entries (called "links") that are references to other 
files. By convention, a directory contains at least two links, ' ... which refers to the directory itself 
and' •• '. which refers to the parent directory (if it has one). 

Ethernet 

file 

An Ethernet is a physical network that allows transmission of messages in any of a number of proto­
cols. The IBM/4.3 system supports both TCP/IP and Xerox Network/System communication across 
an Ethernet. See also TCP/IP. 

A file is a sequence of bytes. The operating system imposes no other particular structure on a file. 
System-related informat.ion about the file (who owns it, who may change it, how big it is, etc.) is not 
stored in the file ile;elf, but in the file's identHicat.ion node. See also i-node. 

file descriptor 
A file descriptor is an integer assigned by the system to a me when it is opened by certain system 
calls. 

file name 
A file name is a string of characters by which ;t file may he accessed. The name of a file may be up 
to 255 characters in length. Generally, it is unwise to usc special characters (such as '*'. '? '. ,[ .. ' ] ') 
as parts of a file name. 

file system 
A file system is a hierarchical structure of directories and files used to manage the storage of data on 
a secondary storage medium (typically a hard disk). The top directory of a file system may be 
located at some point in another file system, called the "mount point", or it may be the root direc­
tory of the entire file system on your machine. See also Andrew File System, directory, and i-node. 

finger 
Finger is a program that lisle; such information as login name, terminal name, idle time, login time, 
and so forth. . 

September 1988 



IBM/4.3 System Administration Guide 205 

gid 
A gid is an integer assigned to a particular group Ihat the system uses to store information about the 
group. 'Gid' stands for 'group identification number'. See also uid. 

group 

head 

A group is a collection of one or more users. Groups are useful to allow several users to access a 
common set of'files and directories. Under the IOM/4.3 system, a user may belong to several groups 
at once. The primary repository of group membership information is the file / e tc / group. 

Head is a program that lists the first few lines of one or more files. 

home directory 
A user's home directory is the top-level directory assigned to (and owned by) the user. It is the 
working directory that the user will be located in at login time. The user's start-up files and personal 
files and directories are located within the home directory. 

i-node 
An i-node is a part of the file system used to hold information relating to a file, such as the size of 
the file, the owner, the permissions, and the data blocks in the file system occupied by the file. '1-
node' is short for 'identification node'. 

Internet Protocol Suite 
A set of rules (or "protocols") that govern the transmission of data and messages among cooperating 
computers in a network. TCP and IP are the best known protocols in this suite, which is therefore 
sometimes referred to as "TCP/IP". The IOM/4.3 system provides Tep/IP services through a com­
bination of kernel facilities (primarily sockets), daemons (such as rlogind and ftpd), and user­
level commands (rlogin, ftp, etc.). See also TCP and JP. 

interrupt 

IP 

An interrupt is a signal sent to a program to cause the program to stop executing. Interrupts are 
also sent from I/O devices to the central processor when an error has occurred or when assistance is 
needed to complete the input/output request. 

IP is a member of the Internet protocol suite that provides message addressing services. IP routes 
the datagrams handed to it by other protocols (usual1y Tep) to the desired destination. 'IP' stands 
for 'Internet Protocol'. See also TCP. 

kernel 

link 

login 

The kernel is the heart of the IBM/4.3 operating system. It controls all processes running in the sys­
tem and allocates resources to them as necessary. It manages the storage of all data on the system's 
disks. The kernel also takes instructions from a shell and executes them, making certain that the 
user issuing the instructions has the appropriate permissions on any programs and files that must be 
accessed in order to perform the requested task. The disk image of the kernel is located in the file 
/vmunix. 

A link, or "hard link", is an entry in a directory that pointe; to an i-node. There may be several links 
(possibly in different directories) pointing to the same i-node, and hence the same file. liard links 
cannot, however, cross file systems. See also symh()lie link. 

Generally, to login is to connect to a computer syst.em. On the IBM/4.3 system, the login sequence 
consists of the user providing a user name and a password. The system will respond by printing the 
file /etc/motd and by running any commands located in t.he file .profile (if the login shell is 
the Bourne shell) or in the two files • login and • cshrc (if the login shell is the C-shell). 

login name 
The login name, or user name, is one identifier by which the system recognizes a user. It is used in 
the output of many commands (such as who) or as an argument to many commands (such as 
finger). A login name is uniquely associated with a user identification number by the account 

September 1988 



206 IUM/4 .. 3 Systcm Administration Guide 

entry in the file I etc/passwd. 

login shcll 

mode 

The login shell is the program launched by the system at the completion of the login process. The 
login shell is specified by the last field of an entry in the me letc/passwd. The most common 
login shells are Ibinl csh and Ibinl sh, although in theory any program can serve as a login 
shell. -

A mode is a method of operating. r or example, the vi editor has two modes: text entry (for normal 
typing) and command (for issuing commands to the editor). 

modem 
A modem is a device used to allow two computers (or a computer and a terminal) to communicate 
across normal telephone lines. The modem translates electronic signals into audible tones, suitable 
for transmission across voice lines. 'Modem' stands for 'modulator-demodulator'. See also baud. 

mount 
To mount a me system is to make it accessible. Unless a file system is mounted, it cannot be read 
from or written to. 

multi-tasking 
Multi-tasking is running one or more processes (tasks) at the same time. 

multi-user mode 
Multi-user mode is the state in which numerous persons can log in to the system and execute com­
mands. The IBMj4.3 system enters this mode automatically at hoot time. Multi-user mode is not 
recommended for adminis.GE network 

operating system 
The operating system is the software that controls the execution of programs. The IBMj4.3 operat­
ing system provides resource allocation, process scheduling, I/O cont.GE password 

path name 
A path name is a string of characters that refers to a file. A path name may be either absolute 
(meaning that it begins with a slash, 'I', and gives the entire path from the root directory to the file) 
or relative (meaning that the name starts in some directory other than the root directory). A path 
name may be at most 1024 characters in length. 

peripheral device 
A peripheral device is any piece of computing equipment that is not built-in to your computer but 
which is connected to it in some way, lypically t.hrough a cable. Common examples of peripheral 
devices are terminals, modems, printers, and tape drives. 

permissions 

pid 

Each file and directory in the IBMj4.3 system has associated wit.h it a sel of permissions that deter­
mine who is allowed to do what with the me or directory. By suitably restricting permissions, a user 
can prevent other persons from looking at, copying, or removing personal files and directories. Per­
mission information about a file or directory is stored in its i-node. 

Each active process in the system is assigned a unique posit.ive integer in the range 0 to 30000 by 
which it is identified to the system. The pid is used by certain commands (such as kill) to select 
processes. 'Pid' stands for 'process identification number'. See also process. 

printcap 
Printcap is the name of a data base used to describe line printers. Each entry in the data base is 
used to describe one printer. 

process 
A process is an instance of a running program. Associated with each process is a process identifica­
tion number (Pid) which are used in various shell commands (such as kill or stop) to control the 

September t 988 



IBM/4.3 Systcm Administration Guide 207 

operation of the process. See also pid. 

quota 

root 

A quota is a limit placed by the syst.em administrator on a user's ability to consume system 
resources. Under the IllM/4.3 system, an administrator may limit the total amount of disk space 
owned by a user, the total number of files owned by a user, or hoth. 

Root is another name for the superuser. 

root directory 
The root directory is the top level of a tree-structured directory system. 

run level 
The system's run level determines what file systems are mounted and how many persons may log in. 
Single-user mode allows one user only, who must communicat.e through the system console; multi­
user mode allows many use~s to log in, through any terminal attached to the system (or across a net­
work). 

scarch path 
A user's search path is a list of directories in which the user's shell program will look in an effort to 
find a command given by the user. To sec your current search path, look at the value of the pa th 
variable. 

sctgid 
A program runs setgid when it allows the person executing it to assume the permissions of the group 
of the program, for the duration of the program. 'Setgid' stands for 'set group identification'. 

setuid 

shcll 

A program runs setuid when it allows the person execut.ing it t.o assume the permissions of the owner 
of the program, for the duration of the program. 'Setuid' stands for 'set user identification'. 

A shell is a command interpreter. It takes commands from a user and translates them into the 
appropriate kernel instructions. The shell is responsible for interpreting metacharacters (such as '*' 
and '?' in file names), quotation, redirection symbols, etc. The two most common shells are the C 
shell (/bin/ csh) and the Bourne shell (/bin/ sh). 

shcll script 
A shell script is an executahle text file containing shell commands and/or comments. A script is 
invoked in precisely the same way as a command, by giving its mime to the shell. 

single-user mode 
Single-user mode is the st.ate in which only one person is able to access machine resources. Some 
daemons are not yet running and file systems other t.han the root file system may not yet be 
mounted. When the IBM/4.3 system is in single-user mode, only the console terminal is active as a 
port into the system. Single-user mode is recommended for system administrat.ion tasks, since the file 
systems are in a relatively unchanging state and may be mOllnted or unmounted as needed. See also 
multi-user mode. 

socket 
A socket is an endpoint for communicat.ion between processes, especially between processes com­
municating over a local area network. Each socket has queues for sending and receiving data. 
Sockets originated in the BSD releases and are generally ahsent from System V-based machines. 

source code 
The source code for a program is a file or set of files containing the human-readable instructions that 
must be converted by a compiler (usually cc) into an executable program. 

speci al proccs..Ci 
Processes with pid's of 0,1, and 2 are called special processes, since these pid's are reserved for them 
and not reused. Process 0 is the scheduler. Process 1 is the ini t process and is the ancestor of all 

Scptember 1988 



208 

spool 

IBM/4.3System· Administration Guide 

other processes in the system. Process 2 is the paging daemon. 

To spool output is to place it in a special. spooling direct.ory where it will await further processing. 
For example. the program lpr places print request') into the directory /usr/spool/lpd where 
they are found and processed by the daemon lpd. Generally. 5pooled requests wilt be serviced in 
the order received. 'Spool' stands for '5imult.aneou5 peripheral output ofT-line'. 

standalone utility shell 
The standalone utility shell allows the admini5trator to perform certain tasks without even having the 
IBM/4.3 system running. 

start-up file 
A start-up file is a file that is executed by the sY5tem when a U5er logs in. If the login shell is the 
Bourne shell. the system executes the file • profile in the user's home directory. If the login shell 
is the C shell. the system executes the two files • c shrc and • login (in that order) in the user's 
home directory. In either case. however. if the person logging in is not the owner of a start-up file. 
then it will not be executed. 

sticky bit 
If a program's sticky bit is set. its text portion will remain in the system swap area permanently (or 
until the next reboot). For often-executed programs. set.l.ing the sticky bit can improve performance. 
If a directory's sticky bit is set. then to remove or rename a file within the directory you must have 
write permission on the directory and be t.he owner of the file or the parent directory (or be the 
superuser). Often the sticky bit is set on /tmp and /usr/tmp to prevent users from removing files 
that do not belong to them. 

subdirectory 
A subdirectory is any directory that is located within another directory. For example. the directory 
/usr / spool is a subdirectory of the directory /usr. 

superuser 

swap 

A superuser is a user who has absolute privileges on the InM/4.3 system. The superuser can run 
any command. enter any directory. kill any process. and remove or alter any file in the system. Gen­
eral1y you will be logged in as the superuser (root) only while performing system administration 
activities. since you will need to be able to traverse all parts of the file system and manipulate many 
files within it. 

To swap is to move a process from main memory into secondary storage. or vice versa. By swap­
ping processes in and out. a computer syst.em is able t.o manage proce5se5 that collectively require 
more memory than is available on the 5Y5tern. 

symbolic link 
A symbolic link is a special kind of file that conlain5 an arbit.rary path name. When the kernel 
encounters a symbolic link in a path name when searching for a file. it interpret') the remainder of 
the file name relative to the file name contained in the 5ymbotic link. The two files linked in this way 
need not be on the same file system. See also link. 

system 
The word 'system' can be used to designate any of the following items. listed from most specific to 
most general: (1) the kernel or operating system. /vmunix. which manages the ent.ire computer and 
provides the essential connection between user-specified commands and the hardware they execute 
on; (2) the kernel together with the normal t.ools and utilit.ies that alt.ogether comprise the computer 
software; (3) the combination of software and computer hardware in a single machine; (4) a collec­
tion of machines into a network. 

system administrator 
The system administrator. or system manager. is responsible for keeping a computer system running 
smoothly and efficiently. This includes adding and removing peripheral devices. installing new 
software. and any other tasks related to the operation of the system. The system administrator is 

September 1988 



IBM/4.3 System Administration Guidc 209 

tail 

TCP 

often called a superuser, since that person has the ability to access any file or directory within the 
system. 

Tail is a program that lists the last few lines of one or more files. 

TCI> is a member of the Internet protocol suite that provides ror reliable message transmission across 
a patcket-switching network. TCr packages messages into datagrams and tracks their delivery. 
'Ter' stands for 'Transmission Control Protocol'. See also II), Ethernet, and datagram. 

termcap 
Termcap is the name of a data base that describes terminals. Each entry in the data base includes 
a description of a terminal's capabilities and operations. 

termin~1 

uid 

A terminal is a peripheral 4evice used to communicate with a comput.er. Typically a terminal con­
sists of a keyboard and a video display screen; a more elahorate terminal may have a mouse and/or 
a modem attached to it. 

A uid is an integer assigned to a particular user that the system uses to store inrormation about the 
user. 'Uid' stands for 'user identification number'. See also gid. 

unmount 
To un mount a file system is to make it inaccessible, so that users cannot read from it nor write to it. 

uscr 
A user is a person who has an account on a compuler. 

UUCP 
The UUCP system is a family of programs that allow file transfer from one machine to another and 
remote command execution. Historically UUCP has operated over dial-up telephone lines or direct­
connect serial lines, although recently it has been expanded to allow communications between 
machines on a local area network. 'UUCP' stands for 'UNIX-lo.,UNIX Copy'. 

working directory 
Your working directory is the directory that you are currently located within. The command pwd 
lists the current working directory. You can change from one working directory to another using the 
cd command. 

X-Windows 
The X-Windows package is a TCP/IP-based window system capable of providing a window environ­
ment' and graphics capability on bit-mapped terminals. The Andrew Toolkit is built on top of the 
X-windows system. 

September 1988 



210 IIJM/4.3 Systcm Administration Guidc 

5~v-L 

-l~(" -c~ jAv/vjJP - C 

f;U-v 

f.~ ~ J~ lit) rjJv 

This page intentionatJy left blank. 

September 1988 



IBM/4.3 System Administration Guide 

/etc/printcap 105 
/vmunix 23, 24, 25, 32, 33, 205 
3812 Pageprinter 8, 30, 108, 110 
4.2080 63, 65 
4.30S0 1 
4.30S0 63, 65 
6157 Streaming Tape Drive 8, 95 
account 4, 35, 203 
account removal 42 
account suspension 42 
accounting 141, 18~ 203 
accounting file 144 
accounting, connect-time 141 
accounting, printer 120 
accounting, process 4,] 82 
accounting, system-resource 141 
accounts, system 4, 44 
accton 145 
adapter base address, controller 28 
adapter card, serial/parallel 58 
adb 21 
administration cautions, system 3 
administration, system ],] 3 
administrator, system I, 208 
aging, password 182, 184 
Andrew 1, 26, 203 
Andrew File System 5,20, 23, 69, 88, 203 
Andrew Toolkit Applications 203 
append-only directory 55 
area network, local 124 
area, page 31 
area, swap 20, 31, 70 
at 170, 173 
a t granularity 170 
atrun 170 
autoconfiguration 27 
backbone site 131, 135 
backup 5,89 
backup, full 89 
backup, incremental 89 
backup, partial 89 
bad guy 181,183,184,187,188,190, 191 
banner, login 17, 65 
batch network 123 
batched news 139 
baud 63,109,110,203 
bit, sticky 4,49, 50, 54,208 
bitmap, free 5, 82 
block 4,48, 71,82, 151,203 
block size 4, 71 
block special file 48 

Index 

hlock, data 72 
hook, log 3, 20 
hoot 11,22,27,203 
hoot program 11 
boot prompt I 2, 22 
boot time 113 
Oourne shell 14, 37, 42, 66 
nSD 1,3,207 
nSD, 4.3 1 
hyte 69, 203 
C shell 37, 42, 66 
c(lble, serial 57 
CAT phototypesetter 112 
character special file 48 
character, key 94 
chgrp 52 
chmod 50 
chown 51 
cluster, i-node 79 
code, source 23, 207 
command execution, periodic 167 
command execution, remote 124 
comment 25, 63, 64, 135, 161, 171 
communications adapter card, multi-port 58 
compaction, file 154 
compressed news 139 
config 23 
configurat.ion file 25 
connect-time accounting 141 
console 5, 8, II, 13, 17, 60, 63, 162, 203 
control cll(lrmcl, input/output 28 
control file 105, 117, 124 
control rnessflge 136 
control, flow t 10 
controller 27 
controller adapter base address 28 
conventions, pict.orial 8 
conventions, typographical 7 
conversation sequencing 193 
conv_ttys 66 
core dump 204 
crash 19,86,87,89,204 
crash dump 20, 21 
crash, involuntary 20 
crash, syst.em 11, 147 
crash, voluntary 19, 20 
creation, newsgroup 134 
cron 3,5, 136, 167, 186 
cron 204 
crontab 5, 167 
cylinder 70, 79 

211 

September 1988 



212 

cylinder group 4, 79, 204 
daemon 44, 108, 125 
daemon 8,105,124,167,204 
data block 72 
data block, direct 73 
data block, double-in~irect 74 
data block, indirect 73, 74 
data block, single-indirect 73 
data block, triple-indirect 75 
data encryption 182 
data file 105, 124 
datagram 204 
dd 102 
descriptor, file 204 
device 27 
device driver 59 
device number, major 59 
device number, minor 59 
device, dump 27 
device, master 60 
device, peripheral 206 
device, slave 60 
device, swap 27 
df 21, 96 
dial-up line 60 
direct data block 73 
direct login 57 
directory 69, 79, 204 
directory permissions 47, 49, 181 
directory, append-only 55 
directory, home 36, 37, 38, 205 
directory, root 70, 207 
directory, sticky 55 
directory, working 209 
disk 27, 70 
disk fragmentation 86 
disk quota 5 
diskette, floppy 8, 91, 96 
ditpgs 120 
ditroff 112,120 
dmesg 157 
domain, local 105 
domain, network 105 
double redundancy 92 
double-indirect data block 74 
driver, device 59 
dump 5, 89, 92 
dump device 27 
dump level 92, 93 
dump, core 204 
dump, crash 20. 21 
encrypted password 37 
encryption 188 
encryption, data 182 
encryption, file 182, 188 
encryption. mail 182, 189 
error message 5, 118, 157 

September 1988 

IIJM/4.3 System Administration Guide 

error. tape 96 
Ethernet 5, 129, 204 
execute file 125 
expiring news 136 
fast file system 4, 71, 79, 86, 203 
fastboot 15 
fasthalt 15 
feed, news 132 
file 8, 69, 204 
file compaction 154 
file descriptor 204 
file encryption 182, 188 
file fragmentation 4, 79, 86 
file name 5, 70, 204 
file permissions 4, 35, 47, 49, 181 
file space, temporary 91 
file system 69, 70, 82, 204 
File System, Andrew 5, 20, 23, 69, 88, 203 
file system, fast 4, 7 I, 79, 86, 203 
file system, mounted 21, 84 
file system, quiescent 14 
file system, root 31, 76, 102 
file system, unmounted 85 
file transfer 124 
file, accounting 144 
file, configuration 25 
file, control 105, 117. 124 
file. data 105, 124 
file, execute 125 
file, lock 16, 107, 109 
file, password 15. 37 
file, special 59 
filc, start-up 39, 208 
filc, work ] 24, 125 
fillcr, printer 107, 108, Ill. 117 
finger 42 
finger 204 
floppy diskettc 8, 91, 96 
floppy diskcU.c, formaUing 96 
flow control 110 
formfitting floppy diskettc 96 
fragmcnt 4, 80, 82 
fragmcntation 70 
fragmcntation, disk 86 
fragmcntation, file 4, 79, 86 
frce bitmap 5, 82 
free list 5, 81 
fsck IS, 20, 84, 87 
ftp 194 
full backup 89 
full restore 99 
gamcs 53, 172 
get ty 14, 17, 62 
~d 36,39,144,205 
granularity, at 170 

2,\0 
I 

group 5,35,36,39.117,147,205 
group identification number 36 



IBM/4.3 System Administration Guide 

group password 39 
group permissions 47 
group, cylinder 4, 79, 204 
guy, bad 181,183,184,187,188,190,191 
halt 18 
halt 11, 18 
hard quota 149 
head 205 
home directory 36, 37, 38, 205 
horse, Trojan 190, 195 
hostname 65 
hung printer 121 
i-node 47, 72, 79, 86,96,99, 205 
i-node cluster 79 
i-node number 72 
i-number 72, 96, 99 
IBM RT PC 8, 58, 59, 60 
identification number, group 36 
identification number, user 36 
incremental backup 89 
indirect data block 73, 74 
ini t 14, 17, 62, 68 
input/output control channel 28 
installation, software 9 
interface program, printer 107, 108, 111, 117 
Internet 5, 124 
Internet Protocol Suite 205 
interrupt 205 
interrupt level 28 
involuntary crash 20 
IOCC 28 
IP 205 
kernel 8, 12, 23, 25, 205 
kernel reconfiguration 23, 57, 82, 149 
key character 94 
key letter 100 
L. cmds 193 
leaf site 132 
letter, key 100 
level, dump 92, 93 
level, interrupt 28 
level, run II, 207 
line printer system 105, 125 
line, dial-up 60 
link 5, 205 
link, symbolic 5,21,23,48,107,119,208 
list, free 5, 81 
local area network 124 
local domain 105 
lock file 16, 107, 109 
log book 3, 20 
logging, message 5 
login 62 
login 205 
login banner 17, 65 
login name 36, 181, 205 
login shell 36, 37, 66, 206 

login, direct 57 
login, network 57, 59, 60 
log_swap ] 77 
lpc 107, 114 
lpd 105 
lpq 107 
lpr 105 
lptest 61 
mail encryption 182, 189 
mailbox 40, 178 
major device number 59 
make 32 
MAKEDEV 59, 78 
manual pages 7, 10 
master 124 
master device 60 
maximum number of users 25 
menu 13 
message logging 5 
message, control 136 
message, error 5, 118, 157 
message, system 157 
minor device number 59 
mkfs 71 
mkpasswd 4, 38 
mode 206 
mode, multi-user 11, 14, 203, 206 
mode, single-user 11, 13, 18, 21, 68, 203, 207 
modem 4, 8, 57, 60, 206 
modem security 191 
mount 206 
mount point 84, 100, 204 
mounted file system 21, 84 
mouse 30 
multi-port communications adapter card 58 
multi-t.asking I, 206 
multi-user 1 
multi-tlser mode 11, 14, 203, 206 
multi-user start-up file 14, 18, 27, 85, 113 
multiple copies, printing 122 
name, file 5, 70, 204 
name, login 36,] 81, 205 
name, path 5, 70,99, 206 
name, system 25 
name, user 35, 36, 205 
netnews 125, 132 
network 123, 129 
network domain 105 
network login 57, 59, 60 
network security 194 
network, batch 123 
newfs 5,71 
news feed ] 32 
news, batched 139 
news, compressed 139 
news, expiring 136 
newsgroup creation 134 

213 

September t 988 



214 

nobody 4, 44, 169 
noclobber 3 
nologin 18 
number of users, maximum 25 
number, i-node 72 
of Hanoi, Towers 93. 
operating system 206 
operator 4, 44, 89, 96, 98, 162, 188 
other permissions 47 
pac 120, 121 
page area 31 
Pageprinter, 3812 8, 30, 108, 110 
pages, manual 7,10 
paging 19, 76, 82 
panic 19 
panic 19, 20 
partial backup 89 
partition 70, 75 
partition,root 12,27,76 
password 35,36,181,193,205 
password aging 182, 184 
password file 15, 37 
password restoration 45 
password security 183 
password, encrypted 37 
password, group 39 
path name 5, 70,99, 206 
path, search 190, 207 
periodic command execution 167 
peripheral device 206 
permissions 47,206 
permissions, directory 47,49, 181 
permissions, file 4, 35,47,49, 181 
permissions, group 47 
permissions, other 47 
permissions, user 47 
phototypesetter, CAT 112 
physical security 183, 192 
pictorial conventions 8 
pid 107, 206 
pipe 88 
planar serial port 58 
platter 70 
point, mount 84, 100, 204 
port, serial 8, 57, 58 
PostScript 122 
print queue 105 
print server 193 
printcap 108, 206 
printer 8 
printer access, restricted 117 
printer accounting 120 
printer filter 107, 108, 111, 117 
printer interface program 107, 108, Ill, 117 
printer security 192 
printer status 107 
printer system, line 105, 125 

September 1988 

IBM/4.3 System Administration Guide 

, printer. hung 121 
printing multiple copies 122 
printing, remote 113 
process 206 
process accounting 4, 182 
process, special 207 
program. boot 11 
program, se tgid 49, 53 
program, setuid 49,52,182,187,195 
prompt, boot 12,22 
Protocol Suite, Internet 205 
pscopy 122 
pseudo terminal 29, 58, 59, 60, 63 
pseudo-device 26, 27, 30 
queue, print 105 
quiescent file system 14 
quota 25, 52, 178, 182, 207 
quota subsystem 23, 31, 149 
quota. disk 5 
quota. hard 149 
quota. son 149 
rdump 97 
reboot 25, 68 
reconfiguration. kernel 23. 57. 82, 149 
recovery 89 
redundancy. double 92 
remote command execution 124 
remote printing 113 
removal. account 42 
restoration, password 45 
res tore 5. 89,97 
restore 5, 97 
restore, full 99 
rest.ricted printer access 117 
root 3,36.44.89.98,169.188.208 
root 207 
root directory 70, 207 
root file syst.em 31. 76, 102 
root partition 12, 27, 76 
RT PC, InM 8, 58, 59, 60 
run level 11, 207 
sautil 13 
savecore 20 
script, shell 170, 207 
search path 190, 207 
secondary site 132 
security 54, 63, 146, 181 
security, modem 191 
security, network 194 
security, password 183 
security, physical 183, 192 
security, printer 192 
security, setuid 187,192,195 
security, tcrminal 53 
security, uucp 192 
scquencing, conversation 193 
serial cable 57 



IBM/4.3 System Administration Guide 

serial port 8, 57, 58 
serial port, planar 58 
serial/parallel adapter card 58 
server, print .193 
setgid 207 
setgid program 49., 53 
setuid 108 
setuid 207 
setuid program 49,52,182, .187,195 
setuid security 187,192,195 
shared text segment 54 
shell 207 
shell script 170, 207 
shell, Bourne 14, 37, 42, 66 
shett, C 37, 42, 66 
shell, login 36, 37, 66, 206 
shutdown 17,19 
shutdown 17 
shutdown, system 11 
single-indirect data block 73 
single-user mode 11,13,18,21,68,203,207 
site, backbone 131, 135 
site, leaf 132 
sit.e, secondary 132 
size, block 4, 71 
slave 124 
slave device 60 
socket 8,48,60,105,207 
soft quota 149 
software installation 9 
source code 23, 207 
special file 59 
special file, block 48 
special file, character 48 
special process 207 
spool 91,105,124,125,208 
st.andalone utility shell ] 1, 12, 83, 208 
start-up file 39, 208 
start-up file, multi-user 14, 18, 27, 85, 113 
start-up, system 11 
status, printer 107 
sticky bit 4, 49, 50, 54, 208 
sticky directory 55 
streaming tape 28, 91, 95 
Streaming Tape Drive, 6157 8,95 
strip 54 
subdirectory 208 
subsystem, quota 23,31, 149 
superblock 71,81,82 
superuser 3, 47, 208 
suspension, account 42 
swap 208 
swap area 20, 31, 70 
swap device 27 
swap on 27 
swapping 76,82 
symbolic link 5, 21, 23, 48, 107, 119, 208 

sync 18,85 
syslogd 5, 19, 89, 118, ] 57 
system I, 208 
system accountc; 4, 44 
system administration 1, 13 
system administration cautions 3 
system administrator 1, 208 
systcm crash 11, 147 
system message 157 
system name 25 
system shutdown 11 
system start-up 11 
Systcm V 3, 4, 81, 172, 203, 207 
system, file 69, 70, 82, 204 
system, operating 206 
System, X, Window 7, 201 
system -resource accounting 141 
t.ail 209 
tape 27 
tape error 96 
tape, streaming 28, 91, 95 
tar 101 
TCP 126,209 
Tep/IP 4, 124 
temporary file space 91 
tcrmcap 108, 209 
tcrminal 4, 8, 57, 209 
terminal security 53 
terminal, pseudo 29, 58, 59, 60, 63 
text segment, shared 54 
time zone 23, 25 
time, boot 11 3 
Token-Ring ], 5, 129 
Toolkit Applicat.ions, Andrew 203 
Towers of Ilanoi 93 
transrer, file 1 24 
triple-indircct data block 75 
troff 112 
Trojan horse 190, 195 
tty 53 
typographical conventions 7 
uid 36, 144, ] 69, 209 
ulimit 5 
umount 85 
unmount 19, 85, 209 
unmounted file systcm 85 
update 85 
USENET 67, 91, 125, ] 29, ] 31 
user 209 
user iden1.Hica1.ion number 36 
mer name 35, 36, 205 
user permissions 47 
ut.ility shell, standalone 11, 12, 83, 208 
uucico 124 
uucp 40,44, 124, 125, 167 
UUCP 209 
uucp 4, 68, 123, 129 

21S 

September 1988 



216 

uucp security 192 
uucpd 126 
uudecode 125 
uuencode 125 
uux 124, 193 
uuxqt 125 
V, System 3,4,81,172,203,207 
vipw 4, 15, 38 
vmunix 12 
voluntary crash 19, 20 
wall 19 
who 45,144,191,193 
wildcard 3, 28 
Window System, X 7,7,26,30,31,201,201 
work file ] 24, 125 
working directory 209 
wtmp_swap 176 
X Window System 7, 26, 30, 31, 201 
X -Windows 209 
zone, time 23, 25 

September 1988 

JUM/4.3 Systcm Administration Guidc 



IBM Acadcmic Operating System 4.3 
System Administration Guide 

READER'S COMMENT FORM 

You may use this form to communicate your comments about this publication, its organization, 
or subject mattcr, with the understanding that IIlM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatevcr rcvicw and action, if any, 
are deemed appropriate. 

If you wish, give your name, university or sitc, mailing address, and datc: 

Thank you for your coopcration. No postage stamp neccssary if mailed in the U.S.A. (Else­
whcre, an IBM office or rcprcsentative will he happy to forward your comments, or you may mail 
dircctly to the address in the Edition Notice on the hack of the title pagc.) 




