kﬁéps FUR;RAN IVD

Se
*S.

,AS.
S.
£,
.S
2S.
Se
S
SO

Se
S.
S.
Se
S.
- Se
Se
i We
~ 8.
S.
Se
<0027
2D
it
3

S

.

o
S'e
s
L

i

o
iSe
7 S ®

kY

IBM Data Processing Division, 112 East Pos

45,0038

ﬁ.OOOS
/

0006
0007
0008
0009
0010

001l

0012
0013
0014

0015

0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

0028
0029
0030
0031
,0032
0033

0034
0035
0036
0037

it

ALY O

1

o

10

15
120
:25

30

J=1

CALL FUNCIX(J),
‘EI=ABS{Y-FI) |

RETURN ' |

COMPEFEER 2VERSION 29 <LEVEL: 0

TEMP=X (1)

IM=1-1 :

'DO 6 J=1,1M

L=I=J :
IF(TEMP-X{L))5,7,7
LA =Xy % :
CONTINUE :
X(1)=TEMP

GO TO 9

X{LEL) =TEMP

CONTINUE

COMPUTES MAXIMUM DEVIATION

F . E BETWEEN
EMPIRICAL AND THEDRETICAL gsf

NM1=N-1
XN=N
DN=0.D
FS=0.0
IL=1 '
Da. 15 I-IL.N”I

IF{X{J)=-X(JE1)
CONTINUE ‘
J=N

IL=J&l

FI=FS

FS= FLQAT(J)/xN@

ES=ABS (Y=FS)
DN=AMAX1(DN,E "«
IF(IL-N)10,4 20|

]

. . . the imminence:

.6

COMPU T /s

Z=DN%SQRT{
CALL SMIR
PROB=1 .0~

END

Contents:

FFT: shortcut the long way
The man behind FORTRAN

Big machine on campus
Finding faults in computers
Graphics speeds cost estimates
Newsfronts

For further reference

Pyramid probe in Mexico

Special report from Princeton

The computer has notably changed the pace and
perspective of scholarly pursuits. At Princeton
University the impact has been pronounced. See
Big machine on campus, a special reprint, p. 11.

Picture credits: Cover, 9, 10, 19, P. Stackpole; 2, 4 (left),
12, 13, 16, 21, A, W. Hummers; 4 (right), Bell Telephone
Laboratories, Inc.; 28, 1BM World Trade Corp.

November, 1966, Vol. 11, No. 4
Computing Report
for the Scientist and Engineer

- Editor: H. C. Welborn

Associate Editor: D. T. Sanders

Technical Editor: R. F. Steinhart
Editorial Assistant: K. M. Joyce
Circulation: R. W. Haigh

Published by

Data Processing Division

International Business Machines Corporation
White Plains, New York 10601

November 1966 Computing Report

FFT: shortcut the long way

New computer algorithm sharply reduces calculations,
opens new avenues of scientific investigation

Over three years ago, Richard L. Garwin of the
IBM Watson Laboratory at Columbia University
was faced with carrying out a large Fourier trans-
form problem in a spin calculation for solid helium
3. Even with available computer programs for
Fourier analysis, he saw that he would need at
least four hours on a high-speed computer to get
his answer. While the Fourier transform is an in-
dispensable mathematical tool in many scientific
disciplines, it was evident that so many thousands
of complex multiply-add operations were involved
that even the modern computer couldn’t do the
job economically.

Not long after that, Dr. Garwin discussed his
problem with John W. Tukey of Princeton Uni-
versity and Bell Telephone Laboratories during a
pause in a meeting of the President’s Science Ad-
visory Committee, of which both were members.

Jotting down notes on a yellow scratch pad,
Dr. Tukey outlined a computer algorithm which
he thought would handle Fourier transforms far
faster than the existing programs. Recognizing the
potential and importance of the algorithm, Dr.
Garwin took the notes to 1IBM’s James W. Cooley
at the 1BM Thomas J. Watson Research Center
at Yorktown Heights. A program development
project was started, and in April, 1965 Mathe-
matics of Computation published the Cooley-
Tukey paper, “An Algorithm for the Machine
Calculation of Complex Fourier Series.”

Since then, the FFT computer algorithm—fast
Fourier transform—has demonstrated an ex-
traordinary range of application both in perform-
ing existing Fourier analysis tasks far more effi-
ciently and in opening up new avenues that were
once considered impracticable. In reducing com-
puter time, the proportionate saving with the FFT
method increases rapidly as the number of co-
efficients to be calculated increases. At the same
time, the FFT is a rare shortcut: it is an exact
algorithm that is actually more accurate than di-
rect computation, which is more subject to round-
off error.

In time and frequency

Fourier transforms are widely used in repre-
senting complex periodic functions in both the
time and frequency domains. Thus any finite peri-
odic function of time X (t) with period (N) can
be expressed in this manner:

N-1
=z j (nt
() hZO Cln)e *™ (Dﬁ),
where C(n) is a function of frequency (n) given
by

N-| .
C=n) X(bre 2T(o5).
t=0

The functions X(t) and C(n) are finite Fourier
transforms of each other, and X(t) can be com-
puted from C(n), and vice versa, as the user re-
quires, as indicated above.

The value of the FFT algorithm in computing
these transforms can be expressed in terms of the
period (N) which is also the number of terms in
each Fourier series. Direct computation of either
X(t) or C(n) as defined above requires N? com-
plex multiply-add operations. With FFT, only
Nlog,N operations are needed. Thus, the ratio of
computing time (FFT to direct) is given by

N ‘ o SZ N l [e) 92 N
N2 N o
For a relatively simple function with N=4, there-
fore, FFT requires log.4/4 = V4 the number of
operations to solve. For a longer period of

N=1024, for example, fewer than 1/100th the
number of operations are needed with FFT.

FFT and Rat Island

Because most practical applications of Fourier
transforms need thousands of terms or more, the
savings in computer time are great. At the Amer-
ican Geophysical Union meeting in Washington,
D. C, last April, Lee Alsop, an IBM scientist at
Lamont Geological Observatory, reported a direct

FFT ORIGINATORS Dr. James W. Cooley (left) and Dr. John W. Tukey.

comparison of the FFT algorithm and a conven-
tional Fourier transform program in analyzing a
strain seismogram of the large Rat Island, Alaska,
earthquake of 1965.

The record of the Rat Island earthquake in
Figure 1 consisted of 2048 numbers representing
longitudinal displacement at instants equally
spaced over a period of about 13.5 hours. The
data were analyzed with both programs and the
frequency spectrum traced out by an automatic
x-y plotter. In Figure 2, the two resulting traces
of the longitudinal component as a function of
period are identical. The difference in computer
time, however, was striking: 1567.8 seconds for
the rather slow conventional program, as com-
pared to only 2.4 seconds for FFT.

Having verified the far greater speed of FFT,
Lee Alsop then ran a further check on its accu-
racy with a time series generated from a sum of
seven sines and cosines of harmonics of a base
frequency. Computer analysis times were 467.4
seconds for the conventional program and 1.2
seconds for FFT. By then computing back again
from the transform, the results of each program
were compared to the original series. It was found
that FFT was slightly more accurate, even though
the particular conventional program used was
specifically developed for high accuracy (some-
what at the expense of speed).

A shortcut the long way

Convolution, an extremely useful mathematical
technique in time series analysis, is performed by
multiplying two time sequences X,(t) and X,(t),

one lagged behind the other by the time t, as
follows:

N~
Ny X (&7) ¥, (7).
T=0

Direct computation of a convolution in the time
domain, as might be surmised from these equa-
tions, usually requires a massive number of arith-
metic operations (N for each point in time) and
so a lot of computer time.

With the speed of the FFT program, it has been
found possible to reduce this effort drastically by
taking the long way—in a manner somewhat like
the use of logarithms in performing complex mul-
tiplications or divisions. Instead of direct multi-
plication of the two time series, the transforms of
Xi(t) and X,(t) are first computed, multiplied
in the frequency domain, and then the result is
transformed back into the time domain. In a con-
volution, for example,

X@W~(FFT)=C,(n)
M=t X (O (FFT)=C, ()

LNy . -
N %—o X DX @ PP~ o) €),

The procedure is similar with covariances. Prior
to the availability of the FFT algorithm, this tech-
nique was never considered seriously.

In a paper presented at the 1966 Spring Joint
Computer Conference, Thomas G. Stockham, Jr.,
of MIT, reported comparative convolution times
for various values of N. FFT took longer than the
direct method at low periods, but at N=32 it was

November 1966 Computing Report 4

B E R L b owow B3 NN . e
8 8 N 5 B 8 8 &8 8 &8 % °© w o v & & B8 N & B 8
[Te] - Ny (2] [o.] [Ye] ~ 3] w L (o] o N S ~ [Ye) bt e [o2] 0] = w
(Yo [o0] o o (o) [+%] o [0 4] ~N ~N ~N o w [¢,] o w ~N o A ~N - £
0.00 . 818.20
45 —= - 8L92 §>—
‘____:—_-_
91 + 4096
1.36 . 27.30 = 0S4
— — ’
1.82 * 2048 oSe
ppe—— N 1S4
2.27 . 16.38
2.73 . 13.65 0S7
—
3.18 ~ s 11.70 0Ss
—
3.64 — . 10.24 oSo
— e
oSio
4.09 « 910 <
0S11
4.55 . 819 oSiz
0Si3
5.00 .« 744 oS1a
-‘:_“-2-.
5.46 . 682 oS1e
—_— S
5.91 —— . 630 ov7

6.37 5:-— S 5.85

6.82 .« 546
7.28 \ . 512
7.73 . 481
8.19 - 455
8.64 . 4.31
8.10 —_— . 409
8.55 . 390

10.01 . 372

10.46 ——— . 356

1092 -==.§ . s

11.37 . 327
11.83 . 315
12.28 . 303
12.74 ” - 292
13.19 . 282
13.65 . 273

Fig. 1 Fig. 2

a third faster, at N=256 six times faster, and at
N=4096 an estimated 80 times faster.

Digital signal enhancement

Convolution is a widely used method of en-
hancing signals through digital filtering. Signals
can be far more economically “cleaned up” in this
manner in the frequency domain than in the time
domain. In marine exploration seismology, for
example, reverberation noise—an ambient ring-
ing that interferes with analysis—can be sup-
pressed with the help of FFT. The time record of
the reflected pressure wave is transformed to the
frequency domain, where the ringing stands out
as spikes. The spikes of the reverberation fre-
quency and its harmonics are suppressed, and re-
transformation yields an enhanced signal.

Image enhancement in character recognition
systems, now based on analog methods, can be
accomplished digitally with FFT. In what is essen-
tially a two-dimensional version of seismological
applications, image noise can be effectively re-
moved by digital filters. Spatial filtering with FFT
is now being evaluated, for example, for empha-
sizing characteristics of fingerprints.

Other FFT applications

Other potential applications of FFT include
real-time digital analysis of speech. The time-
frequency transformation can be accomplished
while the words are being spoken. Digital Vocod-
ers—voice encoders, presently analog—are then
practicable.

Optical applications of FFT are a natural.
Using it optical systems can be efficiently simu-
lated on a digital computer, since a lens or diffrac-
tion grating essentially performs a Fourier trans-
form on the incoming light. In part, imperfect
images can be much improved by digitizing and
filtering using FFT.

The FFT algorithm is already being applied in
numerical spectroscopy in physics and chemistry.
In power spectrum analysis, FFT makes possible
the direct estimation of the power spectra of noisy
signals, whereas it was formerly necessary to de-
termine the covariance function first. Other appli-
cations are in planetary astronomy, reentry phys-
ics, and detecting underground nuclear tests.

A final irony

In their paper, Cooley and Tukey noted that
I. J. Good had described the basic mathematical
procedure in 1958, although he had not con-
sidered its application to the performance of
Fourier transform by computer. After publication
of the FFT paper, an interested reader pointed out

that Danielson and Lanczos had published the fast
Fourier transform technique way back in 1942—
including a discussion of the saving in number of
operations for small N, at that time being per-
formed on a desk calculator.

Certainly, it would then be fitting to conclude
an article on the early life of FFT with a report
on its performance on the He? spin problem,
which was responsible for converting a 23-year-
old, widely unknown mathematical idea into a
generally useful computer program. Unfortu-
nately, Dr. Garwin didn’t wait for FFT—he found
another way to handle his spin calculation. He is,
however, fond of commenting that the factor by
which FFT reduces the effort involved in Fourier
transform is precisely that involved in replacing
counting with arithmetic.

NEW PROGRAMS WITH FFT

The FFT algorithm has been incorporated by Dr.
Cooley into a 7090 program now available from
the 1IBM Program Information Department. Called
Harmonic Analysis Subroutine, it may be re-
quested through local 1BM sales offices under File
Number 7090-SDA-3425. As a contributed pro-
gram, it is not product-tested, maintained, or
otherwise supported by IBM.

More recently, the FFT was announced as part
of the new System/360 Scientific Subroutine
Package, Version 2 (see Computing Report,
April, 1966, for a description of the original ver-
sion). Version 2, which will be available during
the first quarter of 1967, contains more than 70
additional FORTRAN IV subroutines—some en-
tirely new, some with improved features of exist-
ing capabilities.

A partial list of the Version 2 subroutines fol-
lows: Solution of simultaneous, first-order, ordi-
nary, differential equations by three methods:

Runge-Kutta method with given initial values.

Hamming Modified Predictor-Corrector meth-
od with given initial values.

Adjoint equations method for linear system
with linear boundary conditions.

Integration by the following methods: Trape-
zoid; Simpson’s Rule; Hermitian; Gaussian; Gaus-
sian Laguerre; Gaussian Hermite; Generalized
Gaussian Laguerre; and Trapezoid with Rom-
berg’s extrapolation.

Also, generalized elliptic integrals: polynomial
economization; solution of linear least squares
problems; roots of a polynomial by Quotient-
Difference algorithm; interpolation.

November 1966 Computing Report 6

The man behind FORTRAN

John Backus recalls the time when creating
FORTRAN meant fun, frenzy and eventual success

Now a decade old, FORTRAN is solidly established
as the mother tongue of thousands of scientists
and engineers who communicate with computers.
Recently, it was stamped with the official imprim-
atur of the American Standards Association. This
action is a tribute to the power, ingenuity and uni-
versal use of the language.

It is also a tribute to John W. Backus, now in
the middle of a five-year appointment as an IBM
Fellow, and presently at the University of Cali-
fornia at Berkeley. In 1954 Backus was barely
three years out of college and already a “veteran”
of programming research at 1BM. He was also one
of the very few people at that time who were con-
vinced that a programming language could be
constructed that would enable computers to pro-
duce their own machine code.

Acting on that conviction, Backus conceived
the idea of FORTRAN, won company support to
pursue it, and headed the project team that
worked impossible hours to prove a seemingly im-
plausible theory. Three years and 25,000 lines of
machine instruction later, the proof was in. In this
interview, John Backus tells the story behind that
remarkable effort.

Q. When you and your colleagues started down
the road that led eventually to FORTRAN, did you
have a pretty fair idea of how to go about it?

A. Frankly, we didn’t have the vaguest idea how
the thing would work out in detail. The effort to
construct FORTRAN began out of the recognition
that essentially the cost of programmers was about
equal to the cost of the computer, or even greater.
It was clear that what engineers needed was a
language they could use to code their own prob-
lems. Some work had already been done along
this line. Laning and Zierler produced a little
program at MIT that would take algebraic ex-
pressions and produce code from them. But that’s
about all it would do. And so it began with a letter

to Cuthbert Hurd, my boss at the time, asking if-

we could embark on this thing. Irv Ziller, who is
now IBM director of programming development,
and I were the first two people involved, and it

gradually grew to about 13 over the next three
years. For the first six months we struggled to de-
vise a language that would let you state most of
the things you wanted a computer to do for scien-
tific programming. Then we wrote a report and
went out and described the project to a number of
customer groups and asked them for suggestions.
We got some, but essentially it was new to them
and sometimes a little overwhelming.

Q. The basic role of your group in writing FOR-
TRAN, it has been said, was to design optimizing
techniques. To what degree do you think you suc-
ceeded? And what are the compromises that you
had to make?

A. Well, first of all, there are two kinds of opti-
mization you can shoot for. One is to optimize
the compiling time, and the other is to try to opti-
mize the programs that are produced. And neces-
sarily, if you try to do one you do the opposite in
the other. That is, if you optimize the compiling
time, of necessity you produce less than the best
programs—Iless than you could. On the other
hand, if you want to produce optimum object pro-
grams, why then you have to analyze a lot of
things about the material that you’re coding. And
that takes a lot of compiling time. So that there’s
a balance that’s required—which we didn’t really
recognize well enough—between compiling time
and running time achieved. We struck out simply
to optimize the object program . . . the running
time . . . because most people at that time be-
lieved you really couldn’t do that kind of thing.
They believed that machine-coded programs
would be so terribly inefficient that it would be
impractical for very many applications. So, we
overdid it. In our attempt to prove that the ma-
chine could write as good code in a restricted area,
that is, straightforward scientific computing but
covering a wide range within that area, we found
we had a compiler that did produce, by and large,
quite efficient object programs . . . but in some
cases it spent longer than would be reasonable. To
achieve a small improvement in the object pro-
gram it would spend quite a bit of compiling time,

ALp=X+ X
SUR X=XtV Y
/=H-2

6o 70 zo3

“It would throw things out into memory
in various places and clobber everybody . . .

which wasn’t worth it unless you used the object
program very, very many times. If you’re going
to use an object program for a hundred hours,
then it’s worthwhile spending an hour compiling
it very efficiently. But if you’re only going to use
it for five minutes, it’s pretty depressing to spend
25 minutes compiling.

Q. Could you describe some of the highlights of
your early work on FORTRAN?

A. One of the things that intrigues me is that the
whole thing was done for reasons that don’t exist
anymore. That is, the original work was done to
demonstrate that you could compile efficient pro-
grams by machine. In those days everybody was
writing machine code, and each one felt that he
was an enormously ingenious fellow and that a
machine couldn’t compete with him. But what
turned out after three years of work was that you
could analyze a lot of the things that program-
mers did . . . and you could get the machine to
do it just as well. 'm sure in many cases that
although a programmer could do as well, the
limits of his time and energy were such that often
he would produce a far worse program because
he couldn’t do the kind of backbreaking analysis
that we, as a group of 13 people, planned for
three years and got the machine to perform—
often it would do millions of operations in analyz-

“Each part of the program was
written by one or two people who were
complete masters of what they did . . .”

ing and optimizing one program.

One result we didn’t have in mind was this busi-
ness of having a system that was designed to be
utterly independent of the machine that the pro-
gram was utimately to run on. This came about
out of our desire, by and large, not to impose
knowledge of the machine on the user. It turned
out to be a very valuable capability but we sure
didn’t have it in mind. It was sort of a lucky fluke
that we were strict enough with ourselves to rule
out most machine things. There were a number of
machine applications that said things like “rewind
tape 10,” machine dependent things or things that
had to do with sense switches and other gadgets.
But those have all been eliminated now in FOR-
TRAN Iv—fortunately for everybody.

Q. In his book The Analytical Engine, Jeremy
Bernstein reports that once FORTRAN was opera-
tional, the fun and the challenge were lost for you.
What are some of the things you recall in the days
when it was both challenging and fun?

A. The fun of doing it was the big thing. When we
started out in 1954, we said we were going to
have it in 1955 . . . and then in 1955 we said we
would be ready in 1956 . . . in 1956 we said that
1957 would be the year . . . and finally we did
get it in 1957, We really hoped to get it when the
704 became available, but we were quite a bit

November 1966 Computing Report 8

“...if you're only going to use an object
program for five minutes, it’s pretty
depressing to spend 25 minutes compiling.”

late on that. The customers made out fine without
us for a while. But it was a very enjoyable experi-
ence. The customers who were interested in it
were very gracious to us. Once the system was
basically programmed with about 25,000 instruc-
tions, we had a session out in Los Angeles where
we worked 20 hours a day, slept a little bit, and
went back to work. It was very exciting because
the imminence of finding out whether it was all
going to work was excruciating for us. We had
a lot of laughs, too. Someone wrote a little pro-
gram that caused the most mysterious bugs. It
would throw things out into memory in various
places and clobber everybody, and we had great
hilarious sessions laughing over the technical de-
tails of these momentous boo-boos.

Q. How did you organize the work of producing
this system?

A. There was nothing organized about our activi-
ties. Each part of the program was written by one
or two people who were complete masters of what
they did with very minor exceptions . . . and the
thing just grew like Topsy. We had basic things
that we knew we had to do and each section was
roughly plotted out early on, and each one be-
came 10 times more elaborate than we had antici-
pated at the start, Each group simply decided with
the other groups what it needed, then a preceding

“I think a lot more can be done to get
computers to do what you want themtodo . . .

»»

section group would endeavor to provide it, and
S0 on.

I'd like to mention the people who devised the
basic techniques of the system. Harlan Herrick
and Pete Sheridan wrote the first section, which
produces optimized coding of algebraic expres-
sions. Bob Nelson and Irv Ziller designed the
methods used to handle subscripts, arrays and
loops that make up section two. The analysis per-
formed in this section and in sections four and
five, and the system’s input/output facilities, com-
prised the primary differences between FORTRAN
and many early automatic coding systems. Dick
Goldberg wrote section three, which does most of
the work that was either not feasible or was over-
looked in the preceding two sections. It was in-
credible how many necessary jobs everyone was
unaware of until fairly late in the game. Lois Haibt
wrote section four, which analyzes how often each
part of the program will be used. Sheldon Best,
who was then a member of the computer lab at
MIT, devised some very beautiful but complex
methods for optimizing the use of index registers
and incorporated them in section five. Roy Nutt
was another key non-1BM participant. He was then
with United Aircraft but worked full time with
us designing the input-output facilities and the
assembly program. Dave Sayre had the crucial
job of writing the manual and coordinating things,
so that the system worked as he said it would.

D0 0T-14
KT-Kr+N
HoLD="A(¥T)

Q. What happened once FORTRAN was distrib-
uted?

A. That was a very interesting time. We had the
problem of facing the fact that these 25,000 in-
structions weren’t all going to be correct, and that
there were going to be difficulties that would show
up only after alot of use. So for a whole year after
we distributed it, the whole group worked full
time just getting messages from California and
elsewhere about things that wouldn’t work, and
then running these cases down and laboring long
and hard to figure out what went wrong. We’d
correct it, send it back, and sometimes the correc-
tions were incorrect. Hal Stern was our chief co-
ordinator of corrections. Once he had sent out a
correction all over the country, if it was an errone-
ous “correction,” as occasionally happened, Hal
would be on the telephone continually for days
while we worked to clear up the “bug.”

It’s very hard to convey all the things that
pleased us all while we were doing it and shortly
after it came out, but we had a good time.

Q. Given what you know now about languages
and programming, and given the fact that today
computers are cheaper and programmers are
more expensive, how would you approach the
problem today?

A. If we were doing it again, we’d do it like John
Cocke at 1BM’s Scientific Center in Palo Alto,
California. Cocke has devised methods that do a
lot more optimization than we did by doing it in
a far more orderly way. He can probably do a lot
more in less time. It hasn’t been demonstrated yet
conclusively, but I’'m pretty sure that would be
the case.

Q. What are your feelings about standardiza-
tion? What if FORTRAN had been frozen one year
after you did it?

A. It would have been pretty horrible if we had
been frozen at the very outset. In fact, about a
year after we did it, we began putting out another
system which was very much more acceptable.
The big shortcoming in the first system was that
it lacked the facility to define new programs . . .
in the sense that it lacked the ability to accept
subroutines in FORTRAN. Our second effort, FOR-
TRAN II, produced under Libby Mitchell, had that
facility built in, and it was, of course, a great
improvement. Yet, the specifications of the sys-
tem now aren’t terribly different from that second
try. There have been a number of improvements,

but I don’t think they are as fundamental as that
one . . . there’s been a lot of cleaning up of small
idiosyncrasies that came from our nearsighted-
ness about things. For example, when writing the
system, we didn’t have in mind its application as
a device for allowing you to run the same pro-
gram on many machines. We had only one ma-
chine in mind—the 704. Also, a number of addi-
tions have been made which make many things
much easier to express,

Q. In your view, should development be toward
a multitude of languages for many specific disci-
plines, or should the path lead toward a single,
general language allowing only minor variations
for different applications?

A. I don’t know that I would like to go along
either of those lines. I guess the former more than
the latter. I think what is needed is an arrange-
ment whereby people can describe a language
which they want to use to say what they want to
say. In other words, to use their own notation
where that’s convenient. As I envisage it, it would
have various little pieces of language that would
be useful for a number of people . . . and you
could draw on those and say, “I want this state-
ment and that statement, this kind of notation, or
that” . . . and then for particular applications in
your own work, you could define your own nota-
tion and add it to those pieces that you had se-
lected, that were already previously described,
and with which you were familiar. But basically,
I think it’s getting to the point where a language
like FORTRAN, as well as all the other languages
being proposed, is becoming too much for a user
to learn . . . too much to provide all the richness
that is needed for him to say something very con-
cisely and conveniently, and that the best route is
to let people describe their own languages.

Q. What are the prospects of building a machine
whose programming language is English?

A. Dismal. If it’s really English, we just don’t
know how to cope with it now. And I think it will
be a long time before we can cope with it quickly
enough and efficiently enough to be economically
feasible. And if you have some kind of hybrid
that looks like English, it becomes even more con-
fusing and more difficult to learn than an artificial
language, where you at least know that it’s not
English, that English rules do not apply, and you
know that you have to learn a set of rules, I think

(Please turn to page 19)

November 1966 Computing Report 10

Princeton University and the computer

Big Machine

HE computer has been in residence on university

campuses a relatively short time, but already it has
had a profound effect on scholarship in almost every
field—even in classics and music. At the same time
its use in science and engineering, whose needs
brought it into being, has continued to spiral upward.

Though Princeton’s growing computer capabilities
are impressive for an institution of her size, the swell-
ing demand has put them under strain. The Univer-
sity will soon have one of the very best of a new
generation of machines and, with it, greatly increased
capabilities. But as the demand for computer time
continues to climb no one is quite sure whether a
machine with many times the capacity of Princeton’s
biggest machine at present will be adequate in only
a few years.

Princeton’s key computer today is an International
Business Machines 7094, one of the largest and most
powerful members of what is now the older genera-
tion of computers. As installed here, it has a capacity
to store more than 56 million characters, or units of
data, enough to contain some 22 novels the size of
Gone With the Wind. It can whip through 250,000
additions or subtractions, 100,000 multiplications or
62,500 divisions per second. So big and fast is it that
its time is too valuable to be spent on processing
input data into a form it can use, and printing out the
results. These tasks are performed for it by an IBM
1410 computer, a medium-sized machine that itself
is big enough for many computer installations. The
1410, in effect, is a research assistant, taking care of
the humdrum jobs so the professor can concentrate
on the important ones. ’

The 7094 assembly is situated at the main quarters
of Princeton’s Computer Center on the second floor
of the Engineering Quadrangle. On the floor above
is another computer, the IBM 7044, installed in Jan-
uary. This machine, which also has a smaller assist-
ant, has a capacity rated at 75 per cent of the 7094.

Three medium-sized computers at the James For-
restal Campus come under the Computer Center—
an IBM 1410 at the Plasma Physics Laboratory, an
IBM 1620 at the Daniel and Florence Guggenheim
Laboratories for the Aerospace Propulsion Sciences
and an IBM System/360 Model 40 at the Princeton-
Pennsylvania Accelerator. The Model 40 is a medium-
sized version of the widely heralded new generation
of computers. This machine is due for later conver-
sion to a larger version, the Model 50.

The University also has access, for 20 hours a week,

on Campus

to a Control Data Corporation 1604 at the Institute
for Defense Analyses, a nonprofit corporation de-
voted to scientific studies for the Department of
Defense, conveniently located in John von Neumann
Hall next door to the Engineering Quadrangle. Fi-
nally, there is in the Controller’s office a small com-
puter, an IBM 14071-G—not under the Computer Cen-
ter—which, unlike the other machines, cannot handle
magnetic tapes for data processing but is limited to
use of punched cards.

PRINCETON’S big new machine will be an IBM Sys-

tem/360 Model 67. It will have a computing
capacity six times that of the present 7094 installa-
tion, according to Prof. Edward J. McCluskey, who
directed the University’s Computer Center until July
1966. (Prof. McCluskey has returned to teaching and
research in the Department of Electrical Engineering
and has been succeeded as Director of the Computer
Center by Roald Buhler.) “The 67 should be able to
take care of all the University’s general computing
needs for several years,” Prof. McCluskey said.
““After our people have had a few months to make
the change we should be able to give up most of
our other major computers.” The Model 67, he ex-
plained, provides capacity for growth because var-
ious extra sections can be added as needed.

To house the new computer, the University will
build a new $2-million building on a four-acre plot
near Palmer Memorial Stadium, convenient to Wil-
liam Charles Peyton Hall (new home of the Depart-
ment of Astrophysical Sciences) and to the other
buildings now rising nearby for the Departments of
Mathematics and Physics. It will also be near the
Engineering Quadrangle and the campus headquar-
ters of the humanities and social science depart-
ments.

The building will provide 50,000 square feet of
floor space, substantially more than is available in the
Computer Center’s present quarters, and will be de-
signed so that it can easily be enlarged if required.
The new building will be a boon not only to the
computer staff, which at its present strength of about
30 is quite cramped, but to users, who will gain desk
space for such things as doctoring programs and
scanning punched cards for errors.

As an interim measure, the Center plans to install
by mid-1967 a simpler version of the Model 67 that
will still multiply the University’s processing capacity.
The Center hopes to work out the programs and pro-

Reprinted with permission from UNIVERSITY: A Princeton Quarterly,
Summer 1966, No. 29. Copyright 1966 Princeton University. 11

cedures required for all System/360 machines on this
one so that the changeover will be as painless as
possible when the bigger version is installed in the
new building in 1968.

Princeton conceives of the Computer Center as a
University-wide scholarly resource, like the library,
which members of the University community may
use without charge. Computer time does not appear
as a direct charge in the research grants Princeton
receives from the government, corporations and
foundations. In effect such use is paid for through
a charge for indirect costs, or overhead. (There is
some pressure on the University to change this pol-
icy.) The Center also has direct support from the
National Science Foundation.

The main Computer Center machines now run vir-
tually around the clock, seven days a week. The only
times they aren’t working on users’ problems are a
couple of hours every morning, when 1BM personnel
stationed at the University take them over for pre-
ventive maintenance, and at odd times when Center
personnel use them in their own work in improving
the languages and programs that set up the circuits
and operations needed to solve different problems.

The Center runs on a “job-shop” system—the user
brings in his job coded on punched cards or, oc-
casionally, magnetic tape and later picks up the ma-
chine’s output, often an accordion-fold stack of con-
tinuous green-striped paper covered with columns of
numbers. At present the average waiting or “turn-
around” time for a small job is two hours or so. Be-
fore the 7044 was installed the demand led to such
queues that the delays were much longer.

NE feature of the Model 67 that, it is hoped,

will ease such bottlenecks and, in fact, make
the computer almost as accessible as a dictionary
will be a mode of operation called time-sharing.
Many Princeton users, irked by the delays and their
remoteness from the machine under the job-shop
system, are eagerly looking forward to this innova-
tion.

Time-sharing means that a user will no longer be
restricted to dropping a prepunched deck of cards
on the counter and waiting for the output to come
back, though this may still be the best procedure
for jobs requiring a long sequence of computations.
Instead the user will have access to the machine
through a typewriter-like console in his own build-
ing. He will be able to type out instructions on the

PRINCETON’S COMPUTER CENTER, under the direction of
Roald Buhler (right), is in operation twenty four hours a day.

keyboard and have the machine answer him. So far
as he can tell he will have exclusive control of
the machine, even though someone else—perhaps
dozens of others—may be using it at the same time.
This will be possible because the machine can slice
its operating time into slivers measured in millionths
of a second and deal them out to the various users.

A new time-sharing feature will be provided
first on the System/360 Model 67 to be installed in
1967, but most of the time this computer will be
fed data in the normal way. About six time-sharing
consoles will be used on the site a few hours a day
mainly to test the different types of console so the
Center can judge which kind will be most suitable
for remote use.

Time-sharing will make possible a host of uses that
are impractical now. An engineer will be able to use
the machine to help develop a problem a step at a
time, checking for errors as he goes, as well as to
produce the final solution. This will save him time
and effort, for in designing a program for the com-
puter he will not need to worry about having all the
complicated steps worked out perfectly in advance.
At present he may work for days designing his pro-
gram and wait hours for the solution, only to find
that some oversight in his program’s logic prevented
the machine from reaching the answer.

An architect will be able to engage in a sort of
dialogue with the machine, asking it questions, get-
ting answers, and asking new questions on the basis
of the earlier answers. At the same time a chemical
engineer will be able to develop a program on a

November 1966 Computing Report 12

“What is difficult is getting a modern student to think at the
‘simple-minded’ level of the modern computer when he is programming.”

MANY PRINCETON STUDENTS use the IBM 7094 for homework. In Computer Center’s ““ready room’ (above) students
prepare their punched-card decks (stored in wall rack) for processing, and they review results for programming errors.

13

“One interesting thing about the computer is that many
classical methods of analysis that had been neglected because they required
tedious hand computation are coming back into vogue.”

complicated problem involving, say, the depletion
of an oil reservoir, and an anthropologist can feed in
data on an obscure Bantu dialect in order to study
vowel shifts.

The Computer Center expects the initial installa-
tion of the new machine to include a number of re-
mote consoles. If the reality of time-sharing comes
up to its promise, 100 or more consoles will eventu-
ally be placed about the campus.

If demand continues to mount as expected, the
Computer Center will have several possible ways to
cope with it. As installed, the System/360 Model 67
will have two processing units—in effect, it will be a
double computer. Two more processing units can be
added, which would nearly double its capacity.
Eventually the Center plans to connect a System/360
Model 91 with the Model 67, providing many times
the capacity of the present 7094. This should be
adequate for several years, but with the present rate
of growth in demand few care to predict exactly how
long this will hold true.

HE first computer of the University’s own was

acquired in 1952 and installed at the Forrestal
Campus. This was a punched-card-programmed cal-
culator, a rudimentary machine by today’s standards,
that was used on a job-lot basis. Six years later an
IBM 650 was set up in the Gauss House on Nassau
Street for the Statistical Techniques Research Group
and the School of Engineering. In a few months Proj-
ect Matterhorn, now the Plasma Physics Laboratory,
acquired a 650 that later came under the control of a
University-wide committee, the forerunner of the
present Computer Center. A computer was installed
at the Institute for Defense Analyses in 1960, and the
Guggenheim Labs received their first computer in
1961.

With the University’s computer requirements bur-
geoning, the Computer Center was created late in
1961 and Prof. McCluskey, a professor of electrical
engineering, was named its director in 1962. Its prin-
cipal machine was an IBM 7090, operating by De-
cember, 1962, which later was converted to the
present 7094 by replacing some of its components
with faster ones.

An example of how a user goes about designing a
computer program to solve a problem that is not
obviously numerical has been given by Dr. Carl
Helm, 35-year-old lecturer in Princeton’s Psychology
Department and an active worker with computers.

Dr. Helm takes as his goal the solution of a puzzle
called “The Towers of Hanoi.” This puzzle consists
of three rods or pins and a set of pierced discs. The
discs are of different sizes, so that, stacked on one
pin in order of size, they form a cone, presumably
reminiscent of an Asian temple. The object is to
transfer all the discs from one pin to another by
moving them one at a time without ever placing a
larger disc on a smaller one. Thus if there are three
discs numbered 1, 2 and 3, and the pins are desig-
nated A, B and C, the discs can be moved from pin A
to pin C with these moves: 1:A-C (that is, disc 1 from
pin A to pin C), 2:A-B, 1:C-B, 3:A-C, 1:B-A, 2:B-C
and 1:A-C.

The puzzle gets enormously more difficult as more
discs are added. If there were 10 or 15 discs it would
be so complex that a person lacking a correct strategy
might blunder along forever without finding a solu-
tion. Even with a correct strategy it would take nearly
forever for a 50-disc puzzle.

How could the problem be given to a computer?
Dr. Helm devised a strategy based on the psycho-
logical principle that people often try first to make
the move that will get them as close as possible to a
solution as quickly as possible. With this in mind he
ranks the possible pin-to-pin moves in this order of
desirability: first, A-C; second, A-B; third, B-C;
fourth, C-B; fifth, B-A; and last, C-A. Since it is not
clear that the move from pin A to pin B is preferable
to the move from pin B to pin C in terms of this
strategy, he ranks these moves arbitrarily.

Dr. Helm compares the computer’s performance
to that of a clerk who can perform a few simple
operations absolutely flawlessly. This clerk has a large
blackboard on which he writes the instructions and
data given to him, as well as the results of various
intermediate calculations. The clerk represents the
puzzle's pins by columns labeled A, B and C on the
blackboard and writes the numbers 1 to 5 in order
from top to bottom in column A to represent the
discs in the starting position. On another part of the
blackboard he writes a “move list,’ composed of the
six possible moves in their order of priority. Since the
clerk has no capacity to make independent judg-
ments, he must be instructed in great detail. We can
present him with this operating method, or program,
incorporating the rules of the game:

Instruction 1. Get the first move from the move list.
Instruction 2. Would this move put a larger disc on

November 1966 Computing Report 14

.

PROFESSOR LELAND ALLEN of the Princeton Department of Chemistry is surrounded
by some of the computer printout generated in his quantum-mechanical investigations of
the electron structure of molecules.

DR. MILTO results obtained
in thermonuclear-fusion experiment conducted with ionized

matter, or plasma, contained in ring-shaped Stellarator (top).

15

“The digital computer, perhaps more than any other innovation
in history, has suffered from the prejudices and misunderstanding

attendant to any major change.”

a smaller one? If so, go to instruction 5. If not, go to
instruction 3.
Instruction 3. Move the disc as indicated.
Instruction 4. Are all the discs on pin C (that is, is
the job done)? If so, stop. If not, go to instruction 1.
Instruction 5. Find the next move on the move list,
then go to instruction 2,

Told to begin, the clerk (1) gets the first move
from the move list, (2) finds pin C empty, (3) moves
1:A-C and (4) finds the job unfinished and returns to
instruction 1. (The numbers in parentheses refer to
the number of the instruction being executed.)

Now he (1) finds the first move (2:A-C), (2) finds
it violates the rule and goes to instruction 5, (5) finds
the second move, (2) finds it legal, (3) moves 2:A-B
and (4) finds the job still unfinished. Shuttling be-
tween instructions 1 and 5, the clerk now finds he
cannot make the first, second or third moves (3:A-C,
3:A-B, 2:B-C) because they would place discs on
smaller ones. The fourth move (2:B-A) is legal and
is therefore executed. However, this results in mov-
ing disc 2 back to the pin it just came from. Since
the next move will put the same disc on pin B again
a circular pattern is established that will get him no-
where. In computer parlance, the clerk is “hung up
in a loop.”

How can this be fixed? Dr. Helm suggests a simple
amendment to instruction 2 so that it reads, “Will
this move put a larger disc on a smaller one or move
the disc that was moved on the preceding trial? If
so, go to instruction 5. If not, go to instruction 3.”
With this change the program can be executed by
the clerk to complete the task in 81 moves.

This example illustrates two important character-
istics of computer work—first, the power of the
conditional response (note the ““if’* clauses in instruc-
tions 2 and 4), and second, the fact that all pro-
grammers sometimes fall into traps of illogic that
don’t become apparent until their programs are
tested in an actual run. Finding and correcting such
lapses and the more mundane key-punching errors
make up the “debugging” process, a standard pro-
grammer’s practice.

The procedure described here is not the most
efficient one possible. If the priorities of the second
and third moves were reversed the program would
find a solution in 31 moves, the mathematical mini-
mum. But Dr. Helm’s purpose was to construct a
kind of working model of the way a person might

actually solve the puzzle. The question of efficiency
was secondary to the question of whether the pro-
cedure would successfully mimic human perform-
ance, even making the same wrong moves. The
power of the computer makes it possible to explore
such problems even though the efficiency of the
procedures may be very low. Dr. Helm has observed
at least three other strategies for attacking this puzzle
that lead to quite different programs.

THE uses of computers at Princeton are so many
and so varied it would be impossible in this space
to describe them all, but a few examples may suggest
the extent to which the computer has made itself
indispensable.

In an applied science, Prof. Rowland Richards Jr.
noted that the computer is now widely used in all
phases of civil engineering. It has caused a revision
of many existing techniques of analysis, design and
construction, he said, and has also bred new ones,
such as the “'systems” approach to decision-making
—used at Princeton primarily for transportation plan-
ning. Many courses in the department therefore
stress familiarity with the computer.

“One interesting thing about the computer,” he
said, “is that many classical methods of analysis that
had been neglected because they required tedious
hand computation are coming back into vogue, since
conceptually they are relatively easy. This trend is
good for the student; it points up historical continu-
ity and the importance of fundamentals not only in
formulating problems but also in solving them.”

As an example Prof. Richards cited the problem of
designing a concrete gravity dam—one that stays in
place through its own weight. A variety of alternate
configurations can be solved through visualizing the
dam as a combination of wedges (see diagram) and
applying the standard solution for a single wedge
with different angles and surface loadings. The first

“wedge is solved, but this gives incorrect stresses on

the exposed face of the second wedge. The second
and remaining wedges are adjusted in turn by apply-
ing correction loads to satisfy the known external
conditions. However, although a rough approxima-
tion of the stresses throughout is reached at this
point, the exposed faces of the fifth wedge now do
not satisfy known conditions and the correction se-
quence must continue in reverse order back to the
starting point. After one cycle the first wedge is again
out of balance and the whole process starts over with

November 1966 Computing Report 16

Upstream’

slightly more accurate initial values. Fventually,
through repetition, the stress field is determined that
will match the water and air pressures on the dam’s
boundary. The precision depends primarily on the
number of cycles.

This procedure, known as “iteration,” is one of the
principal techniques of problem-solving by com-
puter. “It might take 20 hours for a student to under-
stand the actual computer program to do this,” Prof.
Richards commented, “but the basic strategy is sim-
ple. In fact, getting a modern student to think at the
‘simple-minded’ level of the modern computer when
he is programming is what is difficult.”

Prof. Leland Allen, of the Department of Chemis-
try, is Princeton’s largest consumer of computer
time. He is also one of the University’s most articu-
late and forceful apostles of the computer, secing a
limitless role for it in all academic disciplines.

Prof. Allen’s work involves theoretical studies of
the electron structure of molecules, which in even
simple types can be bewilderingly complex. With a
group of graduate students and post-doctoral re-
scarch associates, he has developed and applied sev-
eral new quantum-mechanical techniques to a wide
variety of chemical problems. One of these is the
explanation of the bonding mechanism in noble-gas
compounds. Until recently it was a fundamental hy-
pothesis of chemistry that atoms of certain rare gases
were incapable of entering into chemical combina-
tions. All this has changed with the discovery of
such compounds by Prof. Neil Bartlett (who joined
the Princeton faculty last summer). Prof. Allen’s

group has also been using computer-generated elec-
tron structures to predict the types of noble-gas com-
pounds that are unlikely to exist, which is very diffi-
cult to do by any other method.

WORK at the Department of Astrophysical Sci-
ences focuses on two problems that are central
concerns of the field today. Prof. Martin Schwarz-
schild uses the computer to study one of these, the
life cycle of a star. “The physics of the problem is
quite varied,” he said. “It involves atomic processes,
nuclear processes, thermodynamic equations, the
laws of physics applied to the state of gases in the
interior of a star. The computer gives us a chance to
follow a star through all these processes step by step,
to see how its size, brightness, appearance, and so
on, change as the star ages.

“Some other very exciting work is being done in
this department by Prof. Dimitri Mihalas. He is using
the computer for the analysis of the stellar atmos-
phere, the outer fringe of the star that we can see
directly. In this way he hopes to determine the
chemical composition of the star, which is practically
synonymous with the composition of the universe.
The mathematics of this problem is very tricky. The
loss of radiation as it interacts with the individual
atoms in the stellar atmosphere must be taken into
account in detail. Only a computer can do it.

“l might also add that the computers may come in
for very heavy use from our Orbiting Astronomical
Observatory, which we hope will be circling the earth
with its 32-inch telescope in 1968. This satellite will
be studying interstellar matter and will be sending us
large quantities of data in digital form that will be
impossible to handle without a computer.”

In a social science, Prof. Michael D. Godfrey of the
Department of Economics has used the computer’s
cathode-ray tube to give undergraduate classes an
idea of how the economy works. “We have taken
models of the economy from the economic literature
and written programs for them,” he said. “Then we
display the results on the tube and see what happens
when certain factors are changed over a period of
time—the level of investment, for example. This use
has been quite successful.”

Prof. Godfrey has also used the computer for re-
search. One effort has been to analyze how the gov-
ernment’s adjustment of economic data to remove
seasonal influences affects the quality of the data. His
conclusion is that this procedure has a serious effect

17

“The digital computer fundamentally changes the way
we ask questions about the physical world and about human nature.”

that should be of concern to economists.

In the Department of Classics, Prof. Samuel D. At-
kins has developed a computer program that can be
used for compiling concordances for works in an-
cient languages. A concordance is an alphabetical
catalogue of a work’s words, with the context in
which they appear. A familiar example is the con-
cordance provided with many editions of the Bible.

The computer program has been used to compile
a concordance of Vergil’s Eclogues and other works
in Latin and Hittite. The work is transferred to
punched cards and fed to the computer, and the
output is the finished catalogue. ““Concordances
have been compiled for many years, but by hand,”
Atkins explained. “They are very useful to scholars
studying a number of problems, such as stylistics,
authorship, meter, linguistics, and so on.”

THE computer is gaining in use in Princeton’s ad-
ministration, too, and even here gives some scope
for program research and development. The small
card-operated machine is at present used principally
by the Office of the Controller in preparing the pay-
roll and distributing budget accounts, according to
Joseph G. Bradshaw, General Manager of University
Services. Eventually, when the Computer Center’s
System/360 Model 67 is installed, the administration
will give up its machine and use a small System/360
Model 20 as a remote terminal of the big computer.
Mr. Bradshaw expects other offices of the adminis-
tration, such as the Purchasing and Food Services
Departments, to develop effective uses of the ma-
chine.

An adjunct of the Registrar’'s Office, the Office of
College Operations, has devoted considerable study
and work to computers. “The requirements of a uni-
versity are becoming so complex that a machine is
almost necessary,” said the office’s director, Dr. Wil-
liam A. Stuart. ““At most universities, computers are
used to process data for a large number of students.
At Princeton, however, we can develop computer
applications and-systems to produce data in depth on
individual students. These data can then be brought
to bear on the decisions which people must make—
admission, majors, courses, and so on.”

The assistant director of the Office of College Op-
erations and its computer expert is Dr. Walter B.

Studdiford, who doubles as a lecturer in the Depart-
ment of Psychology. One of his recent projects was
to adapt for Princeton’s use a program developed at
MIT for scheduling classes, assigning classes to class-
rooms, apportioning the students who sign up for
them, and so on. He is also working on various pro-
grams that will make student data available when
and where needed. The office undertakes special
analyses, such as studies of how well an incoming
student’s Princeton grades can be predicted by his
scores on pre-admission tests. (The answer: very well
indeed.)

Chemistry Professor Allen views the invention of
the computer as one of the most important events
in human history and sees its use as transforming all
fields of scholarship, not just chemistry and the other
natural sciences.)

“The digital computer, perhaps more than any
other innovation in history, has suffered from the
prejudices and misunderstanding attendant to any
major change,” he has written. “This is not unex-
pected since the digital computer fundamentally
changes the way we ask questions about the physical
world and about human nature. Many sophisticated
scholars have viewed the digital computer mecha-
nistically as a device contributing a mechanical and
impersonal element to mental activity and in some
way diminishing the human spirit. In reality an ex-
actly opposite manifestation is the greatest promise
offered by its existence.

“. .. Application of nonnumerical methods will
contribute a larger fraction of scholarly computer use
in the future and this shift will parallel the diffusion
into other disciplines. . . . It is clear that the influence
of digital computers on the whole spectrum of schol-
arship is so great that all major universities must
make this area a central feature of their planning.”

The value of the Computer Center as an educa-
tional resource was stressed by Mr. Buhler, its in-
coming Director. “Computer experience is becoming
more and more vital to students entering many dif-
ferent careers,” Mr. Buhler said. “The only way they
can get this is by actually using a computer. Prince-
ton has an excellent facility that is already used by
students to a large degree. We hope to be able to
make this use still larger.”

—Charles E. Pepper

November 1966 Computing Report 18

(Continued from page 10)

a lot of people have found that it’s just deceiving
to call it English, because it’s really artificial and
its only merit is that it can be read by people with-
out too much training. Yet, it can’t be written by
people without too much training, and to learn it
is difficult because of the confusion between its
artificiality and its apparent similarity to English.
Beyond that, even the reading of it is a sort of
spurious thing, because most programs that are
of any significance are really sufficiently complex,
so that an untrained person isn’t going to be able
to follow it anyway. And for the trained person,
all the verbiage and extra words only detract from
the conciseness of it and, therefore, the ability to
understand it,

Q. Is the fact that English itself is a very com-
plicated language part of the problem?

A. Yes. You must have simple formation rules.
And when you’re trying to make a program-
ming language look like English, you invariably
get into rather complex formations because there’s
nothing simple about English. There’s a fascinat-
ing little study by Casimir Borkowski in 1BM Re-
search that analyzes the problems in merely pick-
ing out a piece of newspaper text and trying to
identify personal names in it. The task was se-
lected because of its apparent simplicity . . , names
arc usually preceded by a “Mr.” and first letters
are always capitalized. So you think it might be
casy to do, but when you get into the details of
actually doing it, it is enormously difficult. The
number of rules and exceptions that you get in to
is simply hair-raising.

Q. There seems to be of late a diminishing inter-
est in so-called artificial intelligence programs,
such as game playing and pattern recognition.
What’s your view of this whole area of heuristic
programming? Did the first promising steps in the
50’s ever live up to their potential?

A. No. First of all it’s a terribly ill-defined expres-
sion in that it seems to imply that you'’re trying
to do something that you really don’t know how
to do. Heuristic programs that have been written
on that basis have turned out to be sort of abys-
mal. There’s a classic example where an elaborate
program was written to prove some of the theo-
rems in “Principia Mathematica.” The program
proved something like 20 percent of them, but
many of the ones it did prove took 15 or 20 min-
utes or more. Then, in one summer Hao Wang, a
well-known logician, learned how to program and

then wrote a program that proved all of them in
two minutes.

Q. In the FORTRAN that you developed, expres-
sions are permitted only when all of their elements
are of the same type (either all floating point or
all integer). Similarly, only a fairly rigid kind of
expression can be used as a subscript, With Oper-
ating System /360 FORTRAN you can have mixed
expressions and generalized subscripts. In your
view is this a proper development path?

A. Sure.

Q. Why?

A. It’s a good path because it makes it easier for
the user. Less restrictions, and so on. The diffi-
culty is that it makes it harder for the compiler.
Some of the reasons that some of the idiosyn-
crasies in FORTRAN exist is the effort to try to
make it clear to the user when the system will be
able to efficiently code his problem and when it
won’t. And if you allow all kinds of generalized
subscript expressions, why then the compiled code
will be more efficient in some cases, but not so
efficient in others. And it will be more difficult for
the user to know where the boundary between
the two is. In that sense, there is a difficulty, but
people aren’t so worried about efficiency anymore
anyway. Nobody writes code by hand anymore, so
they don’t know what efficiency really is. They get
it all through some system and unless it’s simply
awful, they don’t know whether it’s efficient or
inefficient.

Q. Looking to the future, do you foresee any im-
portant modifications of FORTRAN?

A. I think that a lot more can be done to get
computers to do what you want them to do . . .
make them more accessible to more people . . .
and make it still cheaper to program. I think
some of the difficulties with programming systems
that are being developed is that there is too much
to learn. And that’s one of the shortcomings of
FORTRAN itself. There’s too much to learn just to
begin programming. With console type opera-
tions, where a person can really communicate
with a computer, the system should be able to
teach the user, be able to answer his questions,
be able to tell him how to say what he wants to
say. But the future of FORTRAN I guess is tied to
the fact that a lot of people already know it. Many
thousands of engineers and other people have
taken the trouble to learn it and want to use it. -:

19

/Ii‘wy@ Fesi
S5/ /J,’?;] Fest
Adﬁw?,é%m dest!
Sc/zﬂea/uvcﬁ:/ o110 Aest

N
111(55-4 lléﬂ//-/}("SZA

Finding faults in computers

Diagnostic engineers program computers to reveal how well
they are working, and even whether they were properly designed

Diagnostic engineering is to computers as the
practice of medicine is to people. Like medicine,
diagnostic engineering is both an art and a
science. It involves the development of methods
for testing computers, finding errors in equip-
ment design, isolating component malfunctions,
and generally improving the overall operation of
data processing systems.

John J. Dent is the Diagnostic Engineering
Manager at 1BM’s laboratory in Kingston, New
York. Mr. Dent’s staff of 60 engineers is respon-
sible for designing programs to test System/360
Models 65, 67, and 75, and 2250 and 2260 dis-
play systems, all manufactured at Kingston, and
System/360 Model 91, manufactured across the
Hudson River at Poughkeepsie.

“Good diagnostic programs and testing,” says
Mr. Dent, “are intended to increase the perform-
ance of our products by catching any design errors
before the systems leave the plant. The same pro-
grams are used by customer engineers in the field
as system maintenance tools.”

The diagnostic engineer is at work early in the
designing of a new system. He reviews such pre-
liminary specifications as processor computing
speed, type and capacity of storage elements, type
and number of input/output devices, instruction
operations, and special equipment configurations
and design criteria. From these specifications, and
his intimate knowledge of system components and
how they interact with each other, the engineer
determines whether the proposed system can be
efficiently programmed and maintained. If he sees
room for improvement, he recommends appro-
priate design changes. He also reviews the pre-
liminary designs with an eye to recommending
maintenance features and planning the programs
to be used in diagnostic testing.

Five stages of testing

Those programs, placed on magnetic tape, are
used at a number of stages during the life of a
computer. First is a manufacturing bring-up test,
which seeks fabricating errors—for example wir-
ing faults and bad components. Next is a shipping

test, at which time, explains Mr. Dent, “we run
the toughest program available to make sure the
computer is solid—that all units are working to-
gether as a total system.”

After a computer has been shipped to the cus-
tomer and installed, it is tested once again. ‘“The
installation test is similar to the manufacturing
bring-up test,” he states, “except that we are look-
ing not for fabricating errors but for faults that
may have appeared during transit.”

Then the customer engineer uses the diagnos-
tic-program tape for regular, scheduled pre-
ventive-maintenance tests, as well as for any un-
scheduled tests required because of an unex-
plained machine breakdown. A goal of diagnostic
engineering is to come up with one system of test
programs that will satisfy all of these require-
ments,

Mr. Dent points out that there are two basic
concepts of diagnostic testing. One is functional
testing, which determines that a given machine
performs the functions it was designed to per-
form. The other is logic testing, which determines
whether all the logic circuits are operating cor-
rectly; that is, it tests the hardware. For example,
the data-processing compatibility of System/360
is tested by running the same set of functional
tests on all models. But a unique logic test is
needed for the hardware of each model. As John
Dent puts it, “Usually we end up with one pro-
gram that contains a little of both concepts.”

Fault detection and isolation

The diagnostic engineer depends primarily on
logical, arithmetic, and condition-sensing instruc-
tions to detect faults in a computer system. He
analyzes the logic of the equipment and considers
the various failures that might occur. Then he de-
velops test routines to detect those failures, ana-
lyze the results, and present data on any failures
that are found. In designing a diagnostic pro-
gram, the engineer faces three basic problems:

1. He must determine what the sequence of
failure indications will be for each fault defined.

2. He must devise a set of instructions that will

November 1966 Computing Report 20

nostic engineering. Those steps are (upper right) review-
ing computer logic and designing a diagnostic-program
flow chart; (lower left) coding the program; (lower right)

detect all the faults defined in a relatively short
time,

3. He must devise a fault-isolation program
that will determine the specific cause of each
fault,

[Faults are detected by comparing output data
with predetermined expected results or simulated
results, Faults are isolated by cross-correlating the
information in a set of failure indications. In gen-
cral, the procedure is to relate each failure indi-
cation to a set of possible causes, then eliminate
the causes not associated with all failure indica-
tions generated during the test.

The diagnostic tape for a typical System/360
Model 65 configuration might contain 220 differ-
ent programs with a total of perhaps 264,000 ma-
chine instructions. The tape tests the system auto-

debugging. Here analog circuits in a 2250 display console
are being tested. Computer-generated alignment pattern
can be corrected with a light pen, if necessary, to pro-
duce the shape prescribed by the diagnostic program.

matically, each program testing one aspect, such
as the floating-point circuitry or the magnetic-
tape unit. A control program, or monitor, is
placed on the diagnostic tape to automatically
sequence the test programs. “The monitor per-
mits a number of individual test programs to be
run from one reel of tape,” explains Mr. Dent. “It
also provides the field engineer with a customized
test tape that can be used for field maintenance
of each system configuration.”

Good diagnostic engineering—particularly in
the design stage—can mean the difference be-
tween a system’s early release to manufacturing
and wasteful hours of investigation in the labora-
tory. “The diagnostic engineer is the first pro-
grammer to get on a machine,” says Mr. Dent. “If
anything is wrong, he’ll find it.” u

21

Graphics speeds cost estimates

An experimental computer terminal at IBM’s San Jose
plant enables engineers to cut cost-estimating time by 75 percent

How long does it take an engineer to estimate the
cost of manufacturing a new product? For most
engineers, who must spend a good deal of time
wading through bulky manufacturing-cost manu-
als, the answer is ‘too long.” At 1BM’s San Jose
plant, where this kind of search is conducted at
electronic speeds, the answer is different and eye-
opening,

At San Jose, the time that engineers devote to
making cost estimates has been reduced 75 per
cent by an experimental computer-assisted tech-
nique. An important key to the new method is a
desk-top, image-display terminal linked by tele-
phone lines to an 1BM 1620 data processing sys-
tem. The terminal—developed at the company’s
Advanced Systems Development Laboratory in
nearby Los Gatos-—allows rapid interaction, or

STCOK DIAMETER
IN_INCHES

X8

o

BARREL PLATING

o

QPERALION INDEX
SELECT DESIRED OPERATION

“conversation,” between engineer and computer.

Cartridges of 16-mm film strips containing de-
scriptions of various manufacturing alternatives
are used with the terminals. An engineer selects a
cartridge, places it in the terminal, and views
a series of alternatives on its 9- by 7-inch screen.
Simply by pointing an electronic light pen at one
of the alternatives, the engineer informs the com-
puter of the one he wants it to work with.

Complete data for each alternative are stored
in the computer’s memory. As the engineer
chooses successive manufacturing steps, the com-
puter keeps a running account of the costs in-
volved. At the conclusion of the problem, the
computer prints out a complete cost estimate and
manufacturing routing.

There is no need for the engineer to enter in-

O .0
ADDED
OPERATIONS

o o

DRILLING
OPERATIONS

CYLINDRICAL 1]
TRAVERSE GRINDING cgﬁ?u&c

o o
INFEED THR
WCR‘WB!M& Gﬁ”%fﬁg
CERTERLESS) {CENTERLESS3

o

CEMTER
DRI

MACHINE TYPE

DEBURR BY
TUMBLING

(o)

MILLING
OPERATIONS

(o]

CYLINDRICAL
PLUNGE GRINDING

o

LATHE
GPERATIONS

£nter the type of machine desire
iathe operation.

AUTOMATIC SCREW

SECONDARY NO. 1
HAND SCREW

SECONDARY BENCH LATH
OR HAND SCREW

PRIMARY ENGINE LATHE

X . .)
PRIMARY BENCH LATHE
OR HAND SCREW

WORKING WITH LIGHT PEN on CRT, a cost estimator (1) refers to

engineering drawing; (2) selects ‘lathe operations’ from machine index;

November 1966 Computing Report 22

formation at a keyboard or wait while a printer
taps out the computer’s response to individual
questions. He can proceed through a cost prob-
lem about as quickly as he can react to the alter-
natives appearing on the screen. And by having
to react only to visual images, he can proceed
without interrupting his train of thought,

The images displayed on the screen make up
a scries of logical steps that lead the engineer
through an evaluation of all variables associated
with the cost of the part to be manufactured.
Usually, about 100 images are enough to cover
an cntire cost-estimating problem.

How much does a drive shaft cost?

Engineers can use the pilot technique for such
commonly produced items as cylindrical parts,
stampings, sheet-metal parts, wound cabling, plas-
tic injection moldings, frames, and gates. If an
engincer wished to estimate the cost of producing
a drive shaft, for example, he would select the
film cartridge that corresponded to and triggered

“cylindrical parts” program stored in the com-
puter’s memory. This program would be applica-
ble to almost any cylindrical part and would call
up from pre-stored data all variables associated
with such parts.

After the engineer supplied identification data
in response to the first few screened images, sub-
scquent images would request information on the
matcrial and its stock shape, diameter, and length.

When the material specification was complete, a
selection of the various operations that might be
performed on a cylindrical part would appear on
the screen. Associated with each operation would
be several images requesting more details about
what the engineer would like to do to the part.
For example, if a lathe operation were indi-
cated, the engineer would be asked whether he
wanted to use an engine lathe, turret lathe, or
automatic screw machine. Proceeding through
the steps, the engineer would be asked whether
he desired a form cut, groove cut, or threading
operation. He could select such operations at ran-
dom and repeat them as often as necessary.
After he had specified the desired manufactur-
ing methods, the engineer would call for a com-
putation and print-out of the entire routing. A
document complete with step-by-step information
and total-cost figures would be printed out after
the computer had taken into account tolerance
limits, labor rates, pre-programmed information
on machine set-up and operating times for each
operation, and a host of other pertinent variables.
Comparative cost estimates can be obtained
with the experimental terminal by altering only
those variables or manufacturing methods the
engineer wishes to re-examine. The computer can
recall the unaltered variables from its memory
and adjust its computations to take account of the
new specifications, so there is no need to start
from scratch and re-run the entire program. :

ERATION.
£nter desired lathe operation

END OF LATHE OPERATIONS

THREADING

FORM, CUTOFF
REAM, COUNTERBORE

DRUL TURN, FACE,
BORE AND KNURL

(3) specifies lathe type; (4) indicates kind of lathe

: opERaTION DEsCRIPTION
W HATERTAL- 1S 06-040- CARBON STEE
QCK SHAPE TS ROUND ™ “ " 4 750 “DIAM

.'5 00 LENGTM. ccsr TN SUNHA

L FRXHAKr BENCH TATRE OK "HAND ~SCREW; TUPERATTON &
RM_OR' CUTOFF: 750 DIAMETER 0 INS

SUMHARY OF . HANBL‘ G.JMACNINE 11 AND SETU e,

DRILL, TURN, FACE) GORE OR-XNURL +150 DUAMETER
CING, MACHI yYRE

o & SECONDERY- BENCH TATHE "OR-FNU"STHy UFERKTIUN"%

A DR!LL PRESS.

DRILL L)y TAPY

G
CUUTOTALULABOR

~ PATERTAT COST

AbD. FOR -PACKAGIN
< AL ESTINAT

operation; (5) receives computer-generated output four times faster.

23

Newsfronts

A NEW MICROFILM CONVERSION SERVICE, now available to
IBM customers, is cutting the document maintenance prob-
lem down to size. Designed to reduce the cost, space and
time involved in the storing of documents, the service
provides full microfilm capabilities ranging from camera
work to distribution and film maintenance for both aper-
ture cards and microfiche. An aperture card, such as the
one shown coming out of the console-type Microcopier
(above), is a standard punched card containing a single
frame of microfilm. Microfiche are sheets of microfilm
on which 90 pages of documents can be reproduced. A
frame of a microfiche sheet is projected on the desk-top
document viewer at left. The service is available at two
centers located: in White Plains, New York, and Camp-
bell, California.

Much of the routine work involved in the editing
and typing of documents can be eliminated with
a new time-sharing system called DATATEXT. The
system, which can be used simultaneously by up
to 80 customers at different locations, was suc-
cessfully field tested in a wide variety of applica-
tions including the preparation of engineering
documents, technical manuals, detailed bibliogra-

phies, price lists and telephone directories. Using
DATATEXT, a customer need type any document
only once for entry into the computer. The com-
puter then accepts revisions to any part of the
material at any time and holds the latest version
available for immediate print-out at the cus-
tomer’s terminal—at a speed of 150 words a min-
ute. DATATEXT is now in operation in the San
Francisco Bay area. Additional systems are
planned for installation in Chicago, Cleveland,
Los Angeles, New York and Philadelphia.

Scientists and engineers now can hold problem-
solving exchanges with System/360 Models 30,
40 and 50 without leaving their work areas or
awaiting their turns. A new computer program
called RACS (Remote Access Computing Sys-
tem), functions as a high-speed switchboard,
controlling the flow of information between re-
mote terminals and a central computer. A proto-
type of RACS has been in operation at the Lock-
heed-Georgia plant (Marietta), where hundreds
of engineers have access to a System/360 Model
50 through communications terminals scattered
throughout the Lockheed complex. (See Lock-
heed Pioneers Remote Computing, Computing
Report, April, 1966.) The programming language
used to communicate with a RACS-equipped
computer is FORTRAN. The system is scheduled to
be available in the second quarter of 1967.

A computer that simulates the behavior of pulsat-
ing stars is helping astronomers measure cosmic
distances with greater precision. Dr. Robert F.
Christy, professor of theoretical physics at Cali-
fornia Institute of Technology (Pasadena), is
using an 1BM 7094 computer to imitate RR Lyrae
stars located in the Milky Way. By simulating ob-
served stellar spectra of these oscillating stars, Dr.
Christy can determine the chemical composition
of the actual stars and their distance from each
other. His study has shown that RR Lyrae stars
are all about 50 times brighter than our sun, about
half as massive, and that 30 percent of their sur-
face consists of helium—a much higher percent-
age than previously believed.

November 1966 Computing Report 24

THE “NERVE CENTER” of Saturn rockets during orbital
test flights is a three foot high instrument unit assembled
by 18M. The unit, which contains 60 different component
parts, guides the vehicle, controls it in orbit, and navi-

gates its flight throughout the mission. It has guided all
of the Saturn launches to date. These missions included
tests of the Apollo spacecraft’s heat shield and the be-
havior of liquid hydrogen in zero gravity.

25

Communication capabilities can now be added to
the 1BM 1130 computer with the attachment of a
new device—the 1130 communications adapter.
Equipped with the new unit, the 1130 can operate
either as a stand-alone computer or as a commu-
nications terminal with access to the power and
memory capacity of the System/360. The ability
to switch from one role to the other makes the
1130 well-suited for branches of large firms that
need both a local computer facility and access to
a more powerful central computer. Other poten-
tial users include universities with widely sepa-
rated campus facilities, government installations,
and aerospace companies with remote testing sites.
The adapter, which permits the computers to be
connected by regular leased telephone lines, will
be available to customers in the first quarter of
next year.

Computers are taking the conflict out of class
scheduling for many of the nation’s schools. A
new set of programs called Student Scheduling
System/360 is being used to assign students to
class sections more rapidly and efficiently. The
system, which requires no knowledge of program-
ming, enables educators to test alternative sched-
uling strategies before choosing the one that best
meets their educational and fiscal objectives. Two
supporting programs within the package known
as Tally and Conflict Matrix routines are run prior
to actual scheduling. The Tally routine lists the
total number of students requesting each course
by grade level and sex. The Conflict Matrix pro-
gram points out potential scheduling conflicts,
such as a student registered to take two different
courses at the same hour.

Laboratory technicians can eliminate the excess
paperwork “syndrome” with a new information
gathering system that automatically records and
identifies for computer processing the results of
hundreds of different kinds of clinical tests. De-
signed for hospital, pharmaceutical and commer-
cial laboratories, the 1BM 1080 data acquisition
system cuts time-consuming paperwork, virtually

eliminates errors, and speeds reports on test re-
sults to doctors or laboratory managers. In addi-
tion, the computer can be instructed to perform
a “reasonability test” to determine if a patient’s
test results are in keeping with his medical history.
The system will be available in the second quarter
of 1967.

PHOTOS TRANSMITTED TO EARTH from future interplane-
tary space vehicles, such as the Mariner, may be carried
on the beam of light generated by a semiconductor laser.
A patent covering such injection lasers of a type that
includes the gallium arsenide laser (the most widely used
of the semiconductor lasers), has been granted to 1BM.
This type of laser system, now being studied by IBM’s
Federal Systems Division, may make possible the trans-
mission of photos in a few seconds as compared with the
eight hours required to transmit each of the Mariner
pictures by radio. The Division, under contract to NAsA,
is also exploring the feasibility of using the lasers to re-
place some of the cables in the “umbilicals” of space
rockets on the launching platform.

November 1966 Computing Report 26

For further reference

Publications available on request
from local IBM sales offices

Readers desiring more detailed information on sub-
jects covered in the articles in Computing Report
may address inquiries to local 1BM offices. Some spe-
cific publications pertinent to topics in this issue fol-
low. They may be requested through any 1BM sales
office.

FORTRAN
Operating System/360 FORTRAN IV

Language (C28-6515-4)
IBM /130 FORTRAN Language (C26-5933-3)
FORTRAN (F28-8074-3)

IBM /800 FORTRAN Language (C26-5905-3)

I1BM 7090/94 1BSYS VI3 FORTRAN IV

Language (C28-6390-3)
IBM 7040/ 44 FORTRAN 1V

Specifications (C28-6330-1)
Bibliographies

Literature on Information Retrieval

and Machine Translation (320-1710)
Literature on Information Retrieval

and Machine Translation (Second

Edition) (953-0300)
List of Books on Computers (520-1588)
Miscellaneous New Publications
The Role of Computers in Civil

Engineering (520-1114)
The Role of Computers in Electrical

Engineering (520-1288)
1BM /800 for Wind Tunnel Data

Acquisition (E20-0271)
Operating System/360 Job Control

Language Charts (C28-6632)
IBM /080 Data Acquisition System

for the Clinical Laboratory (E20-0176)
IBM 1800 Time-Sharing Executive

System Operating Procedures (C26-3754)

IBM System/360 Operating System PL/I

Language Specifications (revision) (C28-6571-3)

Subroutine Library Computational
Subroutines
Programmers Guide

(C28-6590-0)
(C28-6594-0)

Catalogs of Programs — Supplements

1BM 1240, 1401, 1420, 1440, 1460 (N20-0013-7)
1BM 705, 1410, 7010, 7070, 7072,

7074, 7080, 7740, 7750 (N20-0014-7)
IBM 1620, 1710 (N20-0015-7)
IBM 704, 709, 7040, 7044, 7090, 7094 (N20-0016-7)
IBM System/360 (N20-0030-5)
1BM 1130, 1800 (N20-0031-1)

Revised Publications of General Interest

IBM 1130 Assembler Language (C26-5927-2)

System/ 360 Scientific Subroutine
Package Application Description

Medical Information System
Programs

System/ 360 Data Communication

and Acquisition Configurator

(H20-0166-2)
(H20-0182-1)

(A22-6824-3)

IBM Journal of Research and Development

The 1BM Journal of Research and Development, pub-
lished bimonthly, is available to readers of Comput-
ing Report on a single issue or subscription basis.
Articles contained in the current issue, Volume Ten,
Number Four, include: Diagnosis of Automata Fail-
ures: A Calculus and a Method; A Numerical Analy-
sis of the Transient Behavior of a Transistor Cir-
cuit; Properties of a Free, Steadily Travelling Elec-
trical Domain in GaAs; Effect of Domain and Cir-
cuit Properties on Oscillations in GaAs; Resonant
Excitation of Magnetostrictive Driven Print Wires
for High-Speed Printing; A High-Speed Read Only
Store Using Thick Magnetic Films; Dynamic Laser
Wave-length Selection; Localized-Field Permanent
Magnet Array for the Thick-Film Read Only Store;
and Domain Wall Velocities in Thin Magnetic Films.
Information about subscription rates may be obtained
from the 1BM Journal of Research and Development
Circulation Department, 1BM Corporation, Old Or-
chard Road, Armonk, New York 10504.

27

Pyramid probe
in Mexico

Two thousand years ago, when Augustus was
carving the profile of the Roman empire, the ar-
chitects of the Teotihuacdn civilization were
sculpting two of the most awesome monuments
yet discovered in Mexico—the Pyramids of the
Sun and the Moon.

Set on a base of 10 acres, the Pyramid of the
Sun soars to a height of 216 feet. But for all of its
size, it reveals little of the Teotihuacins, whose
civilization flourished until 900 A.D. when it mys-
teriously ceased to exist.

Archeologists who have unearthed the rem-
nants of this ancient city—including exquisite
carvings, wall paintings and buildings—are now
mapping a research path back into the past with
the aid of computers.

Under a grant from the National Science Foun-
dation and the Wenner-Gren Foundation for
Anthropological Research, Dr. George L. Cowgill
of Brandeis University will use an'18M 1620 and
a 7094 to scrutinize data sifted from the ruins.

The major aim of the computer study is to see

what insights computers can provide which tra-

ditional methods would overlook. “We are espe-
cially interested,” says Dr. Cowgill, “that these

procedures will add importantly to our reconstruc- -

tions of the culture and social organization of
Teotihuacan.”

WD 88¢

100

pa1sanbay uinyay

10901 "X °N ‘sure[q augp

peoy 3504 1seq 711
uoIsIAI(Suissadord ejeqy

uone10d10) SIUIYIBN SSauIsng [EUOHEUISIUY

2226 "ON 1IWY3d
“A N ‘MHOA MIN

aivd

39V1S0d 'S N
ajey ying

